WorldWideScience

Sample records for shotgun proteomics identifies

  1. Shotgun Proteomics Identifies Proteins Specific for Acute Renal Transplant Rejection

    Energy Technology Data Exchange (ETDEWEB)

    Sigdel, Tara K.; Kaushal, Amit; Gritsenko, Marina A.; Norbeck, Angela D.; Qian, Weijun; Xiao, Wenzhong; Camp, David G.; Smith, Richard D.; Sarwal, Minnie M.

    2010-01-04

    Acute rejection (AR) remains the primary risk factor for renal transplant outcome; development of non-invasive diagnostic biomarkers for AR is an unmet need. We used shotgun proteomics using LC-MS/MS and ELISA to analyze a set of 92 urine samples, from patients with AR, stable grafts (STA), proteinuria (NS), and healthy controls (HC). A total of 1446 urinary proteins were identified along with a number of NS specific, renal transplantation specific and AR specific proteins. Relative abundance of identified urinary proteins was measured by protein-level spectral counts adopting a weighted fold-change statistic, assigning increased weight for more frequently observed proteins. We have identified alterations in a number of specific urinary proteins in AR, primarily relating to MHC antigens, the complement cascade and extra-cellular matrix proteins. A subset of proteins (UMOD, SERPINF1 and CD44), have been further cross-validated by ELISA in an independent set of urine samples, for significant differences in the abundance of these urinary proteins in AR. This label-free, semi-quantitative approach for sampling the urinary proteome in normal and disease states provides a robust and sensitive method for detection of urinary proteins for serial, non-invasive clinical monitoring for graft rejection after

  2. Directed Shotgun Proteomics Guided by Saturated RNA-seq Identifies a Complete Expressed Prokaryotic Proteome

    Energy Technology Data Exchange (ETDEWEB)

    Omasits, U.; Quebatte, Maxime; Stekhoven, Daniel J.; Fortes, Claudia; Roschitzki, Bernd; Robinson, Mark D.; Dehio, Christoph; Ahrens, Christian H.

    2013-11-01

    Prokaryotes, due to their moderate complexity, are particularly amenable to the comprehensive identification of the protein repertoire expressed under different conditions. We applied a generic strategy to identify a complete expressed prokaryotic proteome, which is based on the analysis of RNA and proteins extracted from matched samples. Saturated transcriptome profiling by RNA-seq provided an endpoint estimate of the protein-coding genes expressed under two conditions which mimic the interaction of Bartonella henselae with its mammalian host. Directed shotgun proteomics experiments were carried out on four subcellular fractions. By specifically targeting proteins which are short, basic, low abundant, and membrane localized, we could eliminate their initial underrepresentation compared to the estimated endpoint. A total of 1250 proteins were identified with an estimated false discovery rate below 1%. This represents 85% of all distinct annotated proteins and ~90% of the expressed protein-coding genes. Genes that were detected at the transcript but not protein level, were found to be highly enriched in several genomic islands. Furthermore, genes that lacked an ortholog and a functional annotation were not detected at the protein level; these may represent examples of overprediction in genome annotations. A dramatic membrane proteome reorganization was observed, including differential regulation of autotransporters, adhesins, and hemin binding proteins. Particularly noteworthy was the complete membrane proteome coverage, which included expression of all members of the VirB/D4 type IV secretion system, a key virulence factor.

  3. Shotgun Proteomics Identifies Serum Fibronectin as a Candidate Diagnostic Biomarker for Inclusion in Future Multiplex Tests for Ectopic Pregnancy

    Science.gov (United States)

    Brown, Jeremy K.; Lauer, Katarina B.; Ironmonger, Emily L.; Inglis, Neil F.; Bourne, Tom H.; Critchley, Hilary O. D.; Horne, Andrew W.

    2013-01-01

    Ectopic pregnancy (EP) is difficult to diagnose early and accurately. Women often present at emergency departments in early pregnancy with a ‘pregnancy of unknown location’ (PUL), and diagnosis and exclusion of EP is challenging due to a lack of reliable biomarkers. The objective of this study was to identify novel diagnostic biomarkers for EP. Shotgun proteomics, incorporating combinatorial-ligand library pre-fractionation, was used to interrogate pooled sera (n = 40) from women undergoing surgery for EP, termination of viable intrauterine pregnancy and management of non-viable intrauterine pregnancy. Western blot was used to validate results in individual sera. ELISAs were developed to interrogate sera from women with PUL (n = 120). Sera were collected at time of first symptomatic presentation and categorized according to pregnancy outcome. The main outcome measures were differences between groups and area under the receiver operating curve (ROC). Proteomics identified six biomarker candidates. Western blot detected significant differences in levels of two of these candidates. ELISA of sera from second cohort revealed that these differences were only significant for one of these candidates, fibronectin. ROC analysis of ability of fibronectin to discriminate EP from other pregnancy outcomes suggested that fibronectin has diagnostic potential (ROC 0.6439; 95% CI 0.5090 to 0.7788; P>0.05), becoming significant when ‘ambiguous’ medically managed PUL excluded from analysis (ROC 0.6538; 95% CI 0.5158 to 0.7918; P<0.05). Fibronectin may make a useful adjunct to future multiplex EP diagnostic tests. PMID:23826180

  4. Shotgun Proteomics and Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    W. Hayes McDonald

    2002-01-01

    Full Text Available Coupling large-scale sequencing projects with the amino acid sequence information that can be gleaned from tandem mass spectrometry (MS/MS has made it much easier to analyze complex mixtures of proteins. The limits of this “shotgun” approach, in which the protein mixture is proteolytically digested before separation, can be further expanded by separating the resulting mixture of peptides prior to MS/MS analysis. Both single dimensional high pressure liquid chromatography (LC and multidimensional LC (LC/LC can be directly interfaced with the mass spectrometer to allow for automated collection of tremendous quantities of data. While there is no single technique that addresses all proteomic challenges, the shotgun approaches, especially LC/LC-MS/MS-based techniques such as MudPIT (multidimensional protein identification technology, show advantages over gel-based techniques in speed, sensitivity, scope of analysis, and dynamic range. Advances in the ability to quantitate differences between samples and to detect for an array of post-translational modifications allow for the discovery of classes of protein biomarkers that were previously unassailable.

  5. Immunohistochemical expression analysis of leucine-rich PPR-motif-containing protein (LRPPRC), a candidate colorectal cancer biomarker identified by shotgun proteomics using iTRAQ.

    Science.gov (United States)

    Nishio, Tomohisa; Kurabe, Nobuya; Goto-Inoue, Naoko; Nakamura, Toshio; Sugimura, Haruhiko; Setou, Mitsutoshi; Maekawa, Masato

    2017-08-01

    Colorectal cancer (CRC) is the fourth most frequent cause of cancer deaths in the world. Novel biomarkers for the diagnosis, prognosis, and treatment of CRC are required to improve the clinical strategy. We applied shotgun proteomics using isobaric tags for relative and absolute quantitation (iTRAQ) to identify novel biomarkers of CRC, and then we detected leucine-rich PPR-motif-containing protein (LRPPRC) expression in 83 normal colorectal tissues and 133 CRC tissues by immunohistochemistry. A total of 570 proteins were identified using iTRAQ. We validated the expression of LRPPRC protein by immunohistochemical analysis of the 77 proteins that showed expression changes in the cancer tissues >1.5-fold the levels in the normal tissues. The expression levels of LRPPRC were significantly higher in CRC tissues than those in normal colorectal tissues, and the expression levels were related with tumor differentiation and especially high in moderately differentiated CRC tissues. We identified a novel, differentially expressed protein, LRPPRC, which has the potential to serve as a molecular target for diagnosis and/or prognosis of CRC. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. PAnalyzer: A software tool for protein inference in shotgun proteomics

    Directory of Open Access Journals (Sweden)

    Prieto Gorka

    2012-11-01

    Full Text Available Abstract Background Protein inference from peptide identifications in shotgun proteomics must deal with ambiguities that arise due to the presence of peptides shared between different proteins, which is common in higher eukaryotes. Recently data independent acquisition (DIA approaches have emerged as an alternative to the traditional data dependent acquisition (DDA in shotgun proteomics experiments. MSE is the term used to name one of the DIA approaches used in QTOF instruments. MSE data require specialized software to process acquired spectra and to perform peptide and protein identifications. However the software available at the moment does not group the identified proteins in a transparent way by taking into account peptide evidence categories. Furthermore the inspection, comparison and report of the obtained results require tedious manual intervention. Here we report a software tool to address these limitations for MSE data. Results In this paper we present PAnalyzer, a software tool focused on the protein inference process of shotgun proteomics. Our approach considers all the identified proteins and groups them when necessary indicating their confidence using different evidence categories. PAnalyzer can read protein identification files in the XML output format of the ProteinLynx Global Server (PLGS software provided by Waters Corporation for their MSE data, and also in the mzIdentML format recently standardized by HUPO-PSI. Multiple files can also be read simultaneously and are considered as technical replicates. Results are saved to CSV, HTML and mzIdentML (in the case of a single mzIdentML input file files. An MSE analysis of a real sample is presented to compare the results of PAnalyzer and ProteinLynx Global Server. Conclusions We present a software tool to deal with the ambiguities that arise in the protein inference process. Key contributions are support for MSE data analysis by ProteinLynx Global Server and technical replicates

  7. Comparative shotgun proteomic analysis of Clostridium acetobutylicum from butanol fermentation using glucose and xylose

    Directory of Open Access Journals (Sweden)

    Verberkmoes Nathan C

    2011-10-01

    Full Text Available Abstract Background Butanol is a second generation biofuel produced by Clostridium acetobutylicum through acetone-butanol-ethanol (ABE fermentation process. Shotgun proteomics provides a direct approach to study the whole proteome of an organism in depth. This paper focuses on shotgun proteomic profiling of C. acetobutylicum from ABE fermentation using glucose and xylose to understand the functional mechanisms of C. acetobutylicum proteins involved in butanol production. Results We identified 894 different proteins in C. acetobutylicum from ABE fermentation process by two dimensional - liquid chromatography - tandem mass spectrometry (2D-LC-MS/MS method. This includes 717 proteins from glucose and 826 proteins from the xylose substrate. A total of 649 proteins were found to be common and 22 significantly differentially expressed proteins were identified between glucose and xylose substrates. Conclusion Our results demonstrate that flagellar proteins are highly up-regulated with glucose compared to xylose substrate during ABE fermentation. Chemotactic activity was also found to be lost with the xylose substrate due to the absence of CheW and CheV proteins. This is the first report on the shotgun proteomic analysis of C. acetobutylicum ATCC 824 in ABE fermentation between glucose and xylose substrate from a single time data point and the number of proteins identified here is more than any other study performed on this organism up to this report.

  8. Enhanced detection method for corneal protein identification using shotgun proteomics

    Directory of Open Access Journals (Sweden)

    Schlager John J

    2009-06-01

    Full Text Available Abstract Background The cornea is a specialized transparent connective tissue responsible for the majority of light refraction and image focus for the retina. There are three main layers of the cornea: the epithelium that is exposed and acts as a protective barrier for the eye, the center stroma consisting of parallel collagen fibrils that refract light, and the endothelium that is responsible for hydration of the cornea from the aqueous humor. Normal cornea is an immunologically privileged tissue devoid of blood vessels, but injury can produce a loss of these conditions causing invasion of other processes that degrade the homeostatic properties resulting in a decrease in the amount of light refracted onto the retina. Determining a measure and drift of phenotypic cornea state from normal to an injured or diseased state requires knowledge of the existing protein signature within the tissue. In the study of corneal proteins, proteomics procedures have typically involved the pulverization of the entire cornea prior to analysis. Separation of the epithelium and endothelium from the core stroma and performing separate shotgun proteomics using liquid chromatography/mass spectrometry results in identification of many more proteins than previously employed methods using complete pulverized cornea. Results Rabbit corneas were purchased, the epithelium and endothelium regions were removed, proteins processed and separately analyzed using liquid chromatography/mass spectrometry. Proteins identified from separate layers were compared against results from complete corneal samples. Protein digests were separated using a six hour liquid chromatographic gradient and ion-trap mass spectrometry used for detection of eluted peptide fractions. The SEQUEST database search results were filtered to allow only proteins with match probabilities of equal or better than 10-3 and peptides with a probability of 10-2 or less with at least two unique peptides isolated within

  9. PatternLab for proteomics: a tool for differential shotgun proteomics

    Directory of Open Access Journals (Sweden)

    Yates John R

    2008-07-01

    Full Text Available Abstract Background A goal of proteomics is to distinguish between states of a biological system by identifying protein expression differences. Liu et al. demonstrated a method to perform semi-relative protein quantitation in shotgun proteomics data by correlating the number of tandem mass spectra obtained for each protein, or "spectral count", with its abundance in a mixture; however, two issues have remained open: how to normalize spectral counting data and how to efficiently pinpoint differences between profiles. Moreover, Chen et al. recently showed how to increase the number of identified proteins in shotgun proteomics by analyzing samples with different MS-compatible detergents while performing proteolytic digestion. The latter introduced new challenges as seen from the data analysis perspective, since replicate readings are not acquired. Results To address the open issues above, we present a program termed PatternLab for proteomics. This program implements existing strategies and adds two new methods to pinpoint differences in protein profiles. The first method, ACFold, addresses experiments with less than three replicates from each state or having assays acquired by different protocols as described by Chen et al. ACFold uses a combined criterion based on expression fold changes, the AC test, and the false-discovery rate, and can supply a "bird's-eye view" of differentially expressed proteins. The other method addresses experimental designs having multiple readings from each state and is referred to as nSVM (natural support vector machine because of its roots in evolutionary computing and in statistical learning theory. Our observations suggest that nSVM's niche comprises projects that select a minimum set of proteins for classification purposes; for example, the development of an early detection kit for a given pathology. We demonstrate the effectiveness of each method on experimental data and confront them with existing strategies

  10. The temporal analysis of yeast exponential phase using shotgun proteomics as a fermentation monitoring technique.

    Science.gov (United States)

    Huang, Eric L; Orsat, Valérie; Shah, Manesh B; Hettich, Robert L; VerBerkmoes, Nathan C; Lefsrud, Mark G

    2012-09-18

    System biology and bioprocess technology can be better understood using shotgun proteomics as a monitoring system during the fermentation. We demonstrated a shotgun proteomic method to monitor the temporal yeast proteome in early, middle and late exponential phases. Our study identified a total of 1389 proteins combining all 2D-LC-MS/MS runs. The temporal Saccharomyces cerevisiae proteome was enriched with proteolysis, radical detoxification, translation, one-carbon metabolism, glycolysis and TCA cycle. Heat shock proteins and proteins associated with oxidative stress response were found throughout the exponential phase. The most abundant proteins observed were translation elongation factors, ribosomal proteins, chaperones and glycolytic enzymes. The high abundance of the H-protein of the glycine decarboxylase complex (Gcv3p) indicated the availability of glycine in the environment. We observed differentially expressed proteins and the induced proteins at mid-exponential phase were involved in ribosome biogenesis, mitochondria DNA binding/replication and transcriptional activator. Induction of tryptophan synthase (Trp5p) indicated the abundance of tryptophan during the fermentation. As fermentation progressed toward late exponential phase, a decrease in cell proliferation was implied from the repression of ribosomal proteins, transcription coactivators, methionine aminopeptidase and translation-associated proteins. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Shotgun proteomics approach to characterizing the embryonic proteome of the silkworm, Bombyx mori, at labrum appearance stage.

    Science.gov (United States)

    Li, J-Y; Chen, X; Hosseini Moghaddam, S H; Chen, M; Wei, H; Zhong, B-X

    2009-10-01

    The shotgun approach has gained considerable acknowledgement in recent years as a dominant strategy in proteomics. We observed a dramatic increase of specific protein spots in two-dimensional electrophoresis (2-DE) gels of the silkworm (Bombyx mori) embryo at labrum appearance, a characteristic stage during embryonic development of silkworm which is involved with temperature increase by silkworm raiser. We employed shotgun liquid chromatography tandem mass spectrometry (LC-MS/MS) technology to analyse the proteome of B. mori embryos at this stage. A total of 2168 proteins were identified with an in-house database. Approximately 47% of them had isoelectric point (pI) values distributed theoretically in the range pI 5-7 and approximately 60% of them had molecular weights of 15-45 kDa. Furthermore, 111 proteins had an pI greater than 10 and were difficult to separate by 2-DE. Many important functional proteins related to embryonic development, stress response, DNA transcription/translation, cell growth, proliferation and differentiation, organogenesis and reproduction were identified. Among them proteins related to nervous system development were noticeable. All known heat shock proteins (HSPs) were detected in this developmental stage of B. mori embryo. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed energetic metabolism at this stage. These results were expected to provide more information for proteomic monitoring of the insect embryo and better understanding of the spatiotemporal expression of genes during embryonic developmental processes.

  12. Defining Diagnostic Biomarkers Using Shotgun Proteomics and MALDI-TOF Mass Spectrometry.

    Science.gov (United States)

    Armengaud, Jean

    2017-01-01

    Whole-cell MALDI-TOF has become a robust and widely used tool to quickly identify any pathogen. In addition to being routinely used in hospitals, it is also useful for low cost dereplication in large scale screening procedures of new environmental isolates for environmental biotechnology or taxonomical applications. Here, I describe how specific biomarkers can be defined using shotgun proteomics and whole-cell MALDI-TOF mass spectrometry. Based on MALDI-TOF spectra recorded on a given set of pathogens with internal calibrants, m/z values of interest are extracted. The proteins which contribute to these peaks are deduced from label-free shotgun proteomics measurements carried out on the same sample. Quantitative information based on the spectral count approach allows ranking the most probable candidates. Proteogenomic approaches help to define whether these proteins give the same m/z values along the whole taxon under consideration or result in heterogeneous lists. These specific biomarkers nicely complement conventional profiling approaches and may help to better define groups of organisms, for example at the subspecies level.

  13. Coupling of gel-based 2-DE and 1-DE shotgun proteomics approaches to dig deep into the leaf senescence proteome of Glycine max.

    Science.gov (United States)

    Gupta, Ravi; Lee, Su Ji; Min, Cheol Woo; Kim, So Wun; Park, Ki-Hun; Bae, Dong-Won; Lee, Byong Won; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kim, Sun Tae

    2016-10-04

    Leaf senescence is the last stage of leaf development that re-mobilizes nutrients from the source to sink. Here, we have utilized the soybean as a model system to unravel senescence-associated proteins (SAPs). A comparative proteomics approach was used at two contrasting stages of leaf development, namely mature (R3) and senescent (R7). Selection criteria for these two stages were the contrasting differences in their biochemical parameters - chlorophyll, carotenoids and malondialdehyde contents. Proteome analysis involved subjecting the total leaf proteins to 15% poly-ethylene glycol (PEG) pre-fractional method to enrich the low-abundance proteins (LAPs) and their analyses by gel-based 2-DE and 1-DE shotgun proteomics approaches. 2-DE profiling of PEG-supernatant and -pellet fractions detected 153 differential spots between R3 and R7 stages, of which 102 proteins were identified. In parallel, 1-DE shotgun proteomics approach identified 598 and 534 proteins in supernatant and pellet fractions of R3 and R7 stages, respectively. MapMan and Gene Ontology analyses showed increased abundance and/or specific accumulation of proteins related to jasmonic acid biosynthesis and defense, while proteins associated with photosynthesis and ROS-detoxification were decreased during leaf senescence. These findings and the generated datasets further our understanding on leaf senescence at protein level, providing a resource for the scientific community. Leaf senescence is a major biological event in the life cycle of plants that leads to the recycling of nutrients. However, the molecular mechanisms underlying leaf senescence still remain poorly understood. Here, we used a combination of gel-based 2-DE and 1-DE shotgun proteomics approaches to dig deeper into the leaf senescence proteome using soybean leaf as a model experimental material. For the identification of low-abundance proteins, polyethylene glycol (PEG) fractionation was employed and both PEG-supernatant and -pellet

  14. Large pore dermal microdialysis and liquid chromatography-tandem mass spectroscopy shotgun proteomic analysis: a feasibility study.

    Science.gov (United States)

    Petersen, Lars J; Sørensen, Mette A; Codrea, Marius C; Zacho, Helle D; Bendixen, Emøke

    2013-11-01

    The purpose of the present pilot study was to investigate the feasibility of combining large pore dermal microdialysis with shotgun proteomic analysis in human skin. Dialysate was recovered from human skin by 2000 kDa microdialysis membranes from one subject at three different phases of the study; trauma due to implantation of the dialysis device, a post implantation steady-state period, and after induction of vasodilatation and plasma extravasation. For shotgun proteomics, the proteins were extracted and digested with trypsin. Peptides were separated by capillary and nanoflow HPLC systems, followed by tandem mass spectrometry (MS/MS) on a Quadrupole-TOF hybrid instrument. The MS/MS spectra were merged and mapped to a human target protein database to achieve peptide identification and protein inference. Results showed variation in protein amounts and profiles for each of the different sampling phases. The total protein concentration was 1.7, 0.6, and 1.3 mg/mL during the three phases, respectively. A total of 158 different proteins were identified. Immunoglobulins and the major classes of plasma proteins, including proteases, coagulation factors, apolipoproteins, albumins, and complement factors, make up the major load of proteins in all three test conditions. Shotgun proteomics allowed the identification of more than 150 proteins in microdialysis samples from human skin. This highlights the opportunities of LC-MS/MS to study the complex molecular interactions in the skin. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Shotgun proteomics reveals physiological response to ocean acidification in Crassostrea gigas.

    Science.gov (United States)

    Timmins-Schiffman, Emma; Coffey, William D; Hua, Wilber; Nunn, Brook L; Dickinson, Gary H; Roberts, Steven B

    2014-11-03

    Ocean acidification as a result of increased anthropogenic CO2 emissions is occurring in marine and estuarine environments worldwide. The coastal ocean experiences additional daily and seasonal fluctuations in pH that can be lower than projected end-of-century open ocean pH reductions. In order to assess the impact of ocean acidification on marine invertebrates, Pacific oysters (Crassostrea gigas) were exposed to one of four different p CO2 levels for four weeks: 400 μatm (pH 8.0), 800 μatm (pH 7.7), 1000 μatm (pH 7.6), or 2800 μatm (pH 7.3). At the end of the four week exposure period, oysters in all four p CO2 environments deposited new shell, but growth rate was not different among the treatments. However, micromechanical properties of the new shell were compromised by elevated p CO2. Elevated p CO2 affected neither whole body fatty acid composition, nor glycogen content, nor mortality rate associated with acute heat shock. Shotgun proteomics revealed that several physiological pathways were significantly affected by ocean acidification, including antioxidant response, carbohydrate metabolism, and transcription and translation. Additionally, the proteomic response to a second stress differed with p CO2, with numerous processes significantly affected by mechanical stimulation at high versus low p CO2 (all proteomics data are available in the ProteomeXchange under the identifier PXD000835). Oyster physiology is significantly altered by exposure to elevated p CO2, indicating changes in energy resource use. This is especially apparent in the assessment of the effects of p CO2 on the proteomic response to a second stress. The altered stress response illustrates that ocean acidification may impact how oysters respond to other changes in their environment. These data contribute to an integrative view of the effects of ocean acidification on oysters as well as physiological trade-offs during environmental stress.

  16. Shotgun proteomics of Xanthobacter autotrophicus Py2 reveals proteins specific to growth on propylene.

    Science.gov (United States)

    Broberg, Christopher A; Clark, Daniel D

    2010-11-01

    Coenzyme M (CoM, 2-mercaptoethanesulfonate), once thought to be exclusively produced by methanogens, is now known to be the central cofactor in the metabolism of short-chain alkenes by a variety of aerobic bacteria. There is little evidence to suggest how, and under what conditions, CoM is biosynthesized by these organisms. A shotgun proteomics approach was used to investigate CoM-dependent propylene metabolism in the Gram-negative bacterium Xanthobacter autotrophicus Py2. Cells were grown on either glucose or propylene, and the soluble proteomes were analyzed. An average of 395 proteins was identified from glucose-grown replicates, with an average of 419 identified from propylene-grown replicates. A number of linear megaplasmid (pXAUT01)-encoded proteins were found to be specifically produced by growth on propylene. These included all known to be crucial to propylene metabolism, in addition to an aldehyde dehydrogenase, a DNA-binding protein, and five putative CoM biosynthetic enzymes. This work has provided fresh insight into bacterial alkene metabolism and has generated new targets for future studies in X. autotrophicus Py2 and related CoM-dependent alkene-oxidizing bacteria.

  17. A label-free quantitative shotgun proteomics analysis of rice grain development

    Directory of Open Access Journals (Sweden)

    Koh Hee-Jong

    2011-09-01

    Full Text Available Abstract Background Although a great deal of rice proteomic research has been conducted, there are relatively few studies specifically addressing the rice grain proteome. The existing rice grain proteomic researches have focused on the identification of differentially expressed proteins or monitoring protein expression patterns during grain filling stages. Results Proteins were extracted from rice grains 10, 20, and 30 days after flowering, as well as from fully mature grains. By merging all of the identified proteins in this study, we identified 4,172 non-redundant proteins with a wide range of molecular weights (from 5.2 kDa to 611 kDa and pI values (from pH 2.9 to pH 12.6. A Genome Ontology category enrichment analysis for the 4,172 proteins revealed that 52 categories were enriched, including the carbohydrate metabolic process, transport, localization, lipid metabolic process, and secondary metabolic process. The relative abundances of the 1,784 reproducibly identified proteins were compared to detect 484 differentially expressed proteins during rice grain development. Clustering analysis and Genome Ontology category enrichment analysis revealed that proteins involved in the metabolic process were enriched through all stages of development, suggesting that proteome changes occurred even in the desiccation phase. Interestingly, enrichments of proteins involved in protein folding were detected in the desiccation phase and in fully mature grain. Conclusion This is the first report conducting comprehensive identification of rice grain proteins. With a label free shotgun proteomic approach, we identified large number of rice grain proteins and compared the expression patterns of reproducibly identified proteins during rice grain development. Clustering analysis, Genome Ontology category enrichment analysis, and the analysis of composite expression profiles revealed dynamic changes of metabolisms during rice grain development. Interestingly, we

  18. Streamlined Membrane Proteome Preparation for Shotgun Proteomics Analysis with Triton X-100 Cloud Point Extraction and Nanodiamond Solid Phase Extraction

    Directory of Open Access Journals (Sweden)

    Minh D. Pham

    2016-05-01

    Full Text Available While mass spectrometry (MS plays a key role in proteomics research, characterization of membrane proteins (MP by MS has been a challenging task because of the presence of a host of interfering chemicals in the hydrophobic protein extraction process, and the low protease digestion efficiency. We report a sample preparation protocol, two-phase separation with Triton X-100, induced by NaCl, with coomassie blue added for visualizing the detergent-rich phase, which streamlines MP preparation for SDS-PAGE analysis of intact MP and shot-gun proteomic analyses. MP solubilized in the detergent-rich milieu were then sequentially extracted and fractionated by surface-oxidized nanodiamond (ND at three pHs. The high MP affinity of ND enabled extensive washes for removal of salts, detergents, lipids, and other impurities to ensure uncompromised ensuing purposes, notably enhanced proteolytic digestion and down-stream mass spectrometric (MS analyses. Starting with a typical membranous cellular lysate fraction harvested with centrifugation/ultracentrifugation, MP purities of 70%, based on number (not weight of proteins identified by MS, was achieved; the weight-based purity can be expected to be much higher.

  19. An inventory of the Aspergillus niger secretome by combining in silico predictions with shotgun proteomics data

    Directory of Open Access Journals (Sweden)

    Martens-Uzunova Elena S

    2010-10-01

    Full Text Available Abstract Background The ecological niche occupied by a fungal species, its pathogenicity and its usefulness as a microbial cell factory to a large degree depends on its secretome. Protein secretion usually requires the presence of a N-terminal signal peptide (SP and by scanning for this feature using available highly accurate SP-prediction tools, the fraction of potentially secreted proteins can be directly predicted. However, prediction of a SP does not guarantee that the protein is actually secreted and current in silico prediction methods suffer from gene-model errors introduced during genome annotation. Results A majority rule based classifier that also evaluates signal peptide predictions from the best homologs of three neighbouring Aspergillus species was developed to create an improved list of potential signal peptide containing proteins encoded by the Aspergillus niger genome. As a complement to these in silico predictions, the secretome associated with growth and upon carbon source depletion was determined using a shotgun proteomics approach. Overall, some 200 proteins with a predicted signal peptide were identified to be secreted proteins. Concordant changes in the secretome state were observed as a response to changes in growth/culture conditions. Additionally, two proteins secreted via a non-classical route operating in A. niger were identified. Conclusions We were able to improve the in silico inventory of A. niger secretory proteins by combining different gene-model predictions from neighbouring Aspergilli and thereby avoiding prediction conflicts associated with inaccurate gene-models. The expected accuracy of signal peptide prediction for proteins that lack homologous sequences in the proteomes of related species is 85%. An experimental validation of the predicted proteome confirmed in silico predictions.

  20. Tandem Mass Spectrum Sequencing: An Alternative to Database Search Engines in Shotgun Proteomics.

    Science.gov (United States)

    Muth, Thilo; Rapp, Erdmann; Berven, Frode S; Barsnes, Harald; Vaudel, Marc

    2016-01-01

    Protein identification via database searches has become the gold standard in mass spectrometry based shotgun proteomics. However, as the quality of tandem mass spectra improves, direct mass spectrum sequencing gains interest as a database-independent alternative. In this chapter, the general principle of this so-called de novo sequencing is introduced along with pitfalls and challenges of the technique. The main tools available are presented with a focus on user friendly open source software which can be directly applied in everyday proteomic workflows.

  1. Proteomic analysis of pleural effusion from lung adenocarcinoma patients by shotgun strategy.

    Science.gov (United States)

    Sheng, Shu-Hong; Zhu, Hui-Li

    2014-02-01

    To construct a protein catalogue of malignant pleural effusion from lung adenocarcinoma patients and to screen the potential candidates of biomarkers for diagnostic value in human lung adenocarcinoma. Five malignant pleural effusion samples of lung adenocarcinoma patients were collected from January 2009 to September. A composite sample was analyzed using shotgun strategy. Pleural effusion samples were separated by means of SDS-PAGE. Proteomic analysis was performed by 1D-LC-MS/MS, and then the proteins were identified using SEQUEST software and protein database search. Among 230 unique proteins, 123 proteins were identified with higher confidence levels (at least two unique peptide sequences matched). Most of these proteins have been reported in plasma. However, there are 7 proteins, including JUP protein, suprabasin, annexin A2, transforming growth factor-beta-induced protein ig-h3 (βig-h3), V-set and immunoglobulin domain-containing protein 4 precursor, ifapsoriasin 2 and actin, cytoplasmic 1 have not been reported in serum. Seven proteins may represent potential candidates of biomarkers. Annexin A2 is of special interest since it may play a role in the regulation of intercellular adhesion and cell proliferation.

  2. Shotgun proteomic analytical approach for studying proteins adsorbed onto liposome surface

    KAUST Repository

    Capriotti, Anna Laura

    2011-07-02

    The knowledge about the interaction between plasma proteins and nanocarriers employed for in vivo delivery is fundamental to understand their biodistribution. Protein adsorption onto nanoparticle surface (protein corona) is strongly affected by vector surface characteristics. In general, the primary interaction is thought to be electrostatic, thus surface charge of carrier is supposed to play a central role in protein adsorption. Because protein corona composition can be critical in modifying the interactive surface that is recognized by cells, characterizing its formation onto lipid particles may serve as a fundamental predictive model for the in vivo efficiency of a lipidic vector. In the present work, protein coronas adsorbed onto three differently charged cationic liposome formulations were compared by a shotgun proteomic approach based on nano-liquid chromatography-high-resolution mass spectrometry. About 130 proteins were identified in each corona, with only small differences between the different cationic liposome formulations. However, this study could be useful for the future controlled design of colloidal drug carriers and possibly in the controlled creation of biocompatible surfaces of other devices that come into contact with proteins into body fluids. © 2011 Springer-Verlag.

  3. Comparative shotgun proteomic analysis of wild and domesticated Opuntia spp. species shows a metabolic adaptation through domestication.

    Science.gov (United States)

    Pichereaux, Carole; Hernández-Domínguez, Eric E; Santos-Diaz, Maria Del Socorro; Reyes-Agüero, Antonio; Astello-García, Marizel; Guéraud, Françoise; Negre-Salvayre, Anne; Schiltz, Odile; Rossignol, Michel; Barba de la Rosa, Ana Paulina

    2016-06-30

    The Opuntia genus is widely distributed in America, but the highest richness of wild species are found in Mexico, as well as the most domesticated Opuntia ficus-indica, which is the most domesticated species and an important crop in agricultural economies of arid and semiarid areas worldwide. During domestication process, the Opuntia morphological characteristics were favored, such as less and smaller spines in cladodes and less seeds in fruits, but changes at molecular level are almost unknown. To obtain more insights about the Opuntia molecular changes through domestication, a shotgun proteomic analysis and database-dependent searches by homology was carried out. >1000 protein species were identified and by using a label-free quantitation method, the Opuntia proteomes were compared in order to identify differentially accumulated proteins among wild and domesticated species. Most of the changes were observed in glucose, secondary, and 1C metabolism, which correlate with the observed protein, fiber and phenolic compounds accumulation in Opuntia cladodes. Regulatory proteins, ribosomal proteins, and proteins related with response to stress were also observed in differential accumulation. These results provide new valuable data that will help to the understanding of the molecular changes of Opuntia species through domestication. Opuntia species are well adapted to dry and warm conditions in arid and semiarid regions worldwide, and they are highly productive plants showing considerable promises as an alternative food source. However, there is a gap regarding Opuntia molecular mechanisms that enable them to grow in extreme environmental conditions and how the domestication processes has changed them. In the present study, a shotgun analysis was carried out to characterize the proteomes of five Opuntia species selected by its domestication degree. Our results will help to a better understanding of proteomic features underlying the selection and specialization under

  4. Application of a new procedure for liquid chromatography/mass spectrometry profiling of plasma amino acid-related metabolites and untargeted shotgun proteomics to identify mechanisms and biomarkers of calcific aortic stenosis.

    Science.gov (United States)

    Olkowicz, Mariola; Debski, Janusz; Jablonska, Patrycja; Dadlez, Michal; Smolenski, Ryszard T

    2017-09-29

    Calcific aortic valve stenosis (CAS) increasingly affects our ageing population, but the mechanisms of the disease and its biomarkers are not well established. Recently, plasma amino acid-related metabolite (AA) profiling has attracted attention in studies on pathology and development of biomarkers of cardiovascular diseases, but has not been studied in CAS. To evaluate the potential relationship between CAS and AA metabolome, a new ion-pairing reversed-phase liquid chromatography-tandem mass spectrometry (IP-RPLC-MS/MS) method has been developed and validated for simultaneous determination of 43 AAs in plasma of stenotic patients and age-matched control subjects. Furthermore, untargeted mass spectrometry-based proteomic analysis and confirmatory ELISA assays were performed. The method developed offered high accuracy (intra-assay imprecision averaged 4.4% for all compounds) and sensitivity (LOQ within 0.01-0.5μM). We found that 22 AAs and three AA ratios significantly changed in the CAS group as compared to control. The most pronounced differences were observed in urea cycle-related AAs and branched-chain AA (BCAA)-related AAs. The contents of asymmetric dimethylarginine (ADMA) and its monomethylated derivative (NMMA) were increased by 30-64% with CAS. The arginine/ADMA and Fischer's ratios as well as arginine, homoarginine, ADMA, symmetric dimethylarginine, hydroxyproline, betaine and 3-methylhistidine correlated with cardiac function-related parameters and concomitant systemic factors in the CAS patients. The results of proteomic analysis were consistent with involvement of inflammation, lipid abnormalities, hemostasis and extracellular matrix remodeling in CAS. In conclusion, changes in plasma AA profile and protein pattern that we identified in CAS provide information relevant to pathomechanisms and may deliver new biomarkers of the disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Large pore dermal microdialysis and liquid chromatography-tandem mass spectroscopy shotgun proteomic analysis: a feasibility study

    DEFF Research Database (Denmark)

    Petersen, Lars J.; Sorensen, Mette A.; Codrea, Marius C.

    2013-01-01

    Background/AimsThe purpose of the present pilot study was to investigate the feasibility of combining large pore dermal microdialysis with shotgun proteomic analysis in human skin. MethodsDialysate was recovered from human skin by 2000 kDa microdialysis membranes from one subject at three different......, and complement factors, make up the major load of proteins in all three test conditions. ConclusionShotgun proteomics allowed the identification of more than 150 proteins in microdialysis samples from human skin. This highlights the opportunities of LC-MS/MS to study the complex molecular interactions...... in the skin....

  6. Optimization of filtering criterion for SEQUEST database searching to improve proteome coverage in shotgun proteomics

    Directory of Open Access Journals (Sweden)

    Ye Mingliang

    2007-08-01

    Full Text Available Abstract Background In proteomic analysis, MS/MS spectra acquired by mass spectrometer are assigned to peptides by database searching algorithms such as SEQUEST. The assignations of peptides to MS/MS spectra by SEQUEST searching algorithm are defined by several scores including Xcorr, ΔCn, Sp, Rsp, matched ion count and so on. Filtering criterion using several above scores is used to isolate correct identifications from random assignments. However, the filtering criterion was not favorably optimized up to now. Results In this study, we implemented a machine learning approach known as predictive genetic algorithm (GA for the optimization of filtering criteria to maximize the number of identified peptides at fixed false-discovery rate (FDR for SEQUEST database searching. As the FDR was directly determined by decoy database search scheme, the GA based optimization approach did not require any pre-knowledge on the characteristics of the data set, which represented significant advantages over statistical approaches such as PeptideProphet. Compared with PeptideProphet, the GA based approach can achieve similar performance in distinguishing true from false assignment with only 1/10 of the processing time. Moreover, the GA based approach can be easily extended to process other database search results as it did not rely on any assumption on the data. Conclusion Our results indicated that filtering criteria should be optimized individually for different samples. The new developed software using GA provides a convenient and fast way to create tailored optimal criteria for different proteome samples to improve proteome coverage.

  7. Enhanced SDC-assisted digestion coupled with lipid chromatography-tandem mass spectrometry for shotgun analysis of membrane proteome.

    Science.gov (United States)

    Lin, Yong; Wang, Kunbo; Liu, Zhonghua; Lin, Haiyan; Yu, Lijun

    2015-10-01

    Despite the biological importance of membrane proteins, their analysis has lagged behind that of soluble proteins and still presents a great challenge mainly because of their highly hydrophobic nature and low abundance. Sodium deoxycholate (SDC)-assisted digestion strategy has been introduced in our previous papers, which cleverly circumvents many of the challenges in shotgun membrane proteomics. However, it is associated with significant sample loss due to the slightly weaker extraction/solubilization ability of 1% SDC. In this study, an enhanced SDC-assisted digestion method (ESDC method) was developed that incorporates the almost strongest ability of SDC with a high concentration (5%) to lyse membrane and extract/solubilize hydrophobic membrane proteins, and then dilution to 1% for more efficient digestion. The comparative study using rat liver membrane-enriched sample showed that, compared with previous SDC-assisted method and the "universal" filter-aided sample preparation (FASP) method, the ESDC method not only increased the identified number of total proteins, membrane proteins, hydrophobic proteins, integral membrane proteins (IMPs) and IMPs with more than 5 transmembrane domains (TMDs) by an average of 10.8%, 13.2%, 17.8%, 17.9% and 52.9%, respectively, but also enhanced the identified number of total peptides and hydrophobic peptides by averagely 12.5% and 14.2%. These results demonstrated that the ESDC method provides a substantial improvement in the recovery and identification of membrane proteins, especially those with high hydrophobicity and multiple TMDs, and thereby displaying more potential for shotgun membrane proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The Impact II, a Very High-Resolution Quadrupole Time-of-Flight Instrument (QTOF) for Deep Shotgun Proteomics*

    Science.gov (United States)

    Beck, Scarlet; Michalski, Annette; Raether, Oliver; Lubeck, Markus; Kaspar, Stephanie; Goedecke, Niels; Baessmann, Carsten; Hornburg, Daniel; Meier, Florian; Paron, Igor; Kulak, Nils A.; Cox, Juergen; Mann, Matthias

    2015-01-01

    Hybrid quadrupole time-of-flight (QTOF) mass spectrometry is one of the two major principles used in proteomics. Although based on simple fundamentals, it has over the last decades greatly evolved in terms of achievable resolution, mass accuracy, and dynamic range. The Bruker impact platform of QTOF instruments takes advantage of these developments and here we develop and evaluate the impact II for shotgun proteomics applications. Adaption of our heated liquid chromatography system achieved very narrow peptide elution peaks. The impact II is equipped with a new collision cell with both axial and radial ion ejection, more than doubling ion extraction at high tandem MS frequencies. The new reflectron and detector improve resolving power compared with the previous model up to 80%, i.e. to 40,000 at m/z 1222. We analyzed the ion current from the inlet capillary and found very high transmission (>80%) up to the collision cell. Simulation and measurement indicated 60% transfer into the flight tube. We adapted MaxQuant for QTOF data, improving absolute average mass deviations to better than 1.45 ppm. More than 4800 proteins can be identified in a single run of HeLa digest in a 90 min gradient. The workflow achieved high technical reproducibility (R2 > 0.99) and accurate fold change determination in spike-in experiments in complex mixtures. Using label-free quantification we rapidly quantified haploid against diploid yeast and characterized overall proteome differences in mouse cell lines originating from different tissues. Finally, after high pH reversed-phase fractionation we identified 9515 proteins in a triplicate measurement of HeLa peptide mixture and 11,257 proteins in single measurements of cerebellum—the highest proteome coverage reported with a QTOF instrument so far. PMID:25991688

  9. The Impact II, a Very High-Resolution Quadrupole Time-of-Flight Instrument (QTOF) for Deep Shotgun Proteomics.

    Science.gov (United States)

    Beck, Scarlet; Michalski, Annette; Raether, Oliver; Lubeck, Markus; Kaspar, Stephanie; Goedecke, Niels; Baessmann, Carsten; Hornburg, Daniel; Meier, Florian; Paron, Igor; Kulak, Nils A; Cox, Juergen; Mann, Matthias

    2015-07-01

    Hybrid quadrupole time-of-flight (QTOF) mass spectrometry is one of the two major principles used in proteomics. Although based on simple fundamentals, it has over the last decades greatly evolved in terms of achievable resolution, mass accuracy, and dynamic range. The Bruker impact platform of QTOF instruments takes advantage of these developments and here we develop and evaluate the impact II for shotgun proteomics applications. Adaption of our heated liquid chromatography system achieved very narrow peptide elution peaks. The impact II is equipped with a new collision cell with both axial and radial ion ejection, more than doubling ion extraction at high tandem MS frequencies. The new reflectron and detector improve resolving power compared with the previous model up to 80%, i.e. to 40,000 at m/z 1222. We analyzed the ion current from the inlet capillary and found very high transmission (>80%) up to the collision cell. Simulation and measurement indicated 60% transfer into the flight tube. We adapted MaxQuant for QTOF data, improving absolute average mass deviations to better than 1.45 ppm. More than 4800 proteins can be identified in a single run of HeLa digest in a 90 min gradient. The workflow achieved high technical reproducibility (R2 > 0.99) and accurate fold change determination in spike-in experiments in complex mixtures. Using label-free quantification we rapidly quantified haploid against diploid yeast and characterized overall proteome differences in mouse cell lines originating from different tissues. Finally, after high pH reversed-phase fractionation we identified 9515 proteins in a triplicate measurement of HeLa peptide mixture and 11,257 proteins in single measurements of cerebellum-the highest proteome coverage reported with a QTOF instrument so far. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Cloud CPFP: a shotgun proteomics data analysis pipeline using cloud and high performance computing.

    Science.gov (United States)

    Trudgian, David C; Mirzaei, Hamid

    2012-12-07

    We have extended the functionality of the Central Proteomics Facilities Pipeline (CPFP) to allow use of remote cloud and high performance computing (HPC) resources for shotgun proteomics data processing. CPFP has been modified to include modular local and remote scheduling for data processing jobs. The pipeline can now be run on a single PC or server, a local cluster, a remote HPC cluster, and/or the Amazon Web Services (AWS) cloud. We provide public images that allow easy deployment of CPFP in its entirety in the AWS cloud. This significantly reduces the effort necessary to use the software, and allows proteomics laboratories to pay for compute time ad hoc, rather than obtaining and maintaining expensive local server clusters. Alternatively the Amazon cloud can be used to increase the throughput of a local installation of CPFP as necessary. We demonstrate that cloud CPFP allows users to process data at higher speed than local installations but with similar cost and lower staff requirements. In addition to the computational improvements, the web interface to CPFP is simplified, and other functionalities are enhanced. The software is under active development at two leading institutions and continues to be released under an open-source license at http://cpfp.sourceforge.net.

  11. Processing Shotgun Proteomics Data on the Amazon Cloud with the Trans-Proteomic Pipeline*

    Science.gov (United States)

    Slagel, Joseph; Mendoza, Luis; Shteynberg, David; Deutsch, Eric W.; Moritz, Robert L.

    2015-01-01

    Cloud computing, where scalable, on-demand compute cycles and storage are available as a service, has the potential to accelerate mass spectrometry-based proteomics research by providing simple, expandable, and affordable large-scale computing to all laboratories regardless of location or information technology expertise. We present new cloud computing functionality for the Trans-Proteomic Pipeline, a free and open-source suite of tools for the processing and analysis of tandem mass spectrometry datasets. Enabled with Amazon Web Services cloud computing, the Trans-Proteomic Pipeline now accesses large scale computing resources, limited only by the available Amazon Web Services infrastructure, for all users. The Trans-Proteomic Pipeline runs in an environment fully hosted on Amazon Web Services, where all software and data reside on cloud resources to tackle large search studies. In addition, it can also be run on a local computer with computationally intensive tasks launched onto the Amazon Elastic Compute Cloud service to greatly decrease analysis times. We describe the new Trans-Proteomic Pipeline cloud service components, compare the relative performance and costs of various Elastic Compute Cloud service instance types, and present on-line tutorials that enable users to learn how to deploy cloud computing technology rapidly with the Trans-Proteomic Pipeline. We provide tools for estimating the necessary computing resources and costs given the scale of a job and demonstrate the use of cloud enabled Trans-Proteomic Pipeline by performing over 1100 tandem mass spectrometry files through four proteomic search engines in 9 h and at a very low cost. PMID:25418363

  12. Processing shotgun proteomics data on the Amazon cloud with the trans-proteomic pipeline.

    Science.gov (United States)

    Slagel, Joseph; Mendoza, Luis; Shteynberg, David; Deutsch, Eric W; Moritz, Robert L

    2015-02-01

    Cloud computing, where scalable, on-demand compute cycles and storage are available as a service, has the potential to accelerate mass spectrometry-based proteomics research by providing simple, expandable, and affordable large-scale computing to all laboratories regardless of location or information technology expertise. We present new cloud computing functionality for the Trans-Proteomic Pipeline, a free and open-source suite of tools for the processing and analysis of tandem mass spectrometry datasets. Enabled with Amazon Web Services cloud computing, the Trans-Proteomic Pipeline now accesses large scale computing resources, limited only by the available Amazon Web Services infrastructure, for all users. The Trans-Proteomic Pipeline runs in an environment fully hosted on Amazon Web Services, where all software and data reside on cloud resources to tackle large search studies. In addition, it can also be run on a local computer with computationally intensive tasks launched onto the Amazon Elastic Compute Cloud service to greatly decrease analysis times. We describe the new Trans-Proteomic Pipeline cloud service components, compare the relative performance and costs of various Elastic Compute Cloud service instance types, and present on-line tutorials that enable users to learn how to deploy cloud computing technology rapidly with the Trans-Proteomic Pipeline. We provide tools for estimating the necessary computing resources and costs given the scale of a job and demonstrate the use of cloud enabled Trans-Proteomic Pipeline by performing over 1100 tandem mass spectrometry files through four proteomic search engines in 9 h and at a very low cost. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Revisiting Notechis scutatus venom: on shotgun proteomics and neutralization by the "bivalent" Sea Snake Antivenom.

    Science.gov (United States)

    Tan, Choo Hock; Tan, Kae Yi; Tan, Nget Hong

    2016-07-20

    Recent advances in proteomics enable deep profiling of the compositional details of snake venoms for improved understanding on envenomation pathophysiology and immunological neutralization. In this study, the venom of Australian tiger snake (Notechis scutatus) was trypsin-digested in solution and subjected to nano-ESI-LCMS/MS. Applying a relative quantitative proteomic approach, the findings revealed a proteome comprising 42 toxin subtypes clustered into 12 protein families. Phospholipases A2 constitute the most abundant toxins (74.5% of total venom proteins) followed by Kunitz serine protease inhibitors (6.9%), snake venom serine proteases (5.9%), alpha-neurotoxins (5.6%) and several toxins of lower abundance. The proteome correlates with N. scutatus envenoming effects including pre-synaptic and post-synaptic neurotoxicity and consumptive coagulopathy. The venom is highly lethal in mice (intravenous median lethal dose=0.09μg/g). BioCSL Sea Snake Antivenom, raised against the venoms of beaked sea snake (Hydrophis schistosus) and N. scutatus (added for enhanced immunogenicity), neutralized the lethal effect of N. scutatus venom (potency=2.95mg/ml) much more effectively than the targeted H.schistosus venom (potency=0.48mg/ml). The combined venom immunogen may have improved the neutralization against phospholipases A2 which are abundant in both venoms, but not short-neurotoxins which are predominant only in H. schistosus venom. A shotgun proteomic approach adopted in this study revealed the compositional details of the venom of common tiger snake from Australia, Notechis scutatus. The proteomic findings provided additional information on the relative abundances of toxins and the detection of proteins of minor expression unreported previously. The potent lethal effect of the venom was neutralized by bioCSL Sea Snake Antivenom, an anticipated finding due to the fact that the Sea Snake Antivenom is actually bivalent in nature, being raised against a mix of venoms of the

  14. Protein identification and quantification from riverbank grape, Vitis riparia: Comparing SDS-PAGE and FASP-GPF techniques for shotgun proteomic analysis.

    Science.gov (United States)

    George, Iniga S; Fennell, Anne Y; Haynes, Paul A

    2015-09-01

    Protein sample preparation optimisation is critical for establishing reproducible high throughput proteomic analysis. In this study, two different fractionation sample preparation techniques (in-gel digestion and in-solution digestion) for shotgun proteomics were used to quantitatively compare proteins identified in Vitis riparia leaf samples. The total number of proteins and peptides identified were compared between filter aided sample preparation (FASP) coupled with gas phase fractionation (GPF) and SDS-PAGE methods. There was a 24% increase in the total number of reproducibly identified proteins when FASP-GPF was used. FASP-GPF is more reproducible, less expensive and a better method than SDS-PAGE for shotgun proteomics of grapevine samples as it significantly increases protein identification across biological replicates. Total peptide and protein information from the two fractionation techniques is available in PRIDE with the identifier PXD001399 (http://proteomecentral.proteomexchange.org/dataset/PXD001399). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Shotgun proteomics deciphered age/division of labor-related functional specification of three honeybee (Apis mellifera L.) exocrine glands.

    Science.gov (United States)

    Fujita, Toshiyuki; Kozuka-Hata, Hiroko; Hori, Yutaro; Takeuchi, Jun; Kubo, Takeo; Oyama, Masaaki

    2018-01-01

    The honeybee (Apis mellifera L.) uses various chemical signals produced by the worker exocrine glands to maintain the functioning of its colony. The roles of worker postcerebral glands (PcGs), thoracic glands (TGs), and mandibular glands (MGs) and the functional changes they undergo according to the division of labor from nursing to foraging are not as well studied. To comprehensively characterize the molecular roles of these glands in workers and their changes according to the division of labor of workers, we analyzed the proteomes of PcGs, TGs, and MGs from nurse bees and foragers using shotgun proteomics technology. We identified approximately 2000 proteins from each of the nurse bee or forager glands and highlighted the features of these glands at the molecular level by semiquantitative enrichment analyses of frequently detected, gland-selective, and labor-selective proteins. First, we found the high potential to produce lipids in PcGs and MGs, suggesting their relation to pheromone production. Second, we also found the proton pumps abundant in TGs and propose some transporters possibly related to the saliva production. Finally, our data unveiled candidate enzymes involved in labor-dependent acid production in MGs.

  16. Shotgun analysis of membrane proteomes by an improved SDS-assisted sample preparation method coupled with liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Lin, Yong; Jiang, Huajun; Yan, Yujun; Peng, Bin; Chen, Jinhua; Lin, Haiyan; Liu, Zhonghua

    2012-12-12

    Analysis of the membrane proteins, particularly the integral membrane proteins, is limited by the inherent membrane hydrophobicity. Sodium dodecyl sulfate (SDS) is one of the most efficient reagents used for the extraction of membrane proteins, but its presence in samples interferes with LC-MS-based proteomic analyses because it affects RP-LC separations and electrospray ionization. In this paper, we present an improved sample preparation strategy based on SDS-assisted digestion and peptide-level SDS-removal using an optimized potassium dodecyl sulfate (KDS) precipitation method (SSDP method) for shotgun analysis of the membrane proteome. This method utilizes a high concentration of SDS (1.0%) to lyse the membranes and to solubilize the hydrophobic membrane proteins, resulting in a more complete protein digestion in the diluted SDS buffer (0.1% SDS), and a high efficiency of SDS removal and peptide recovery by the optimized KDS precipitation for protein identification. The SSDP method provides evidence that proteins can be efficiently digested, and the SDS can be decreased to 95% peptide recovery. Compared to other sample preparation methods commonly used in shotgun membrane proteomics, the newly developed method not only increased the identified number of the total proteins, membrane proteins and integral membrane proteins by an average of 33.1%, 37.2% and 40.5%, respectively, but also leading to the identification of highest number of matching peptides. All the results showed that the method yielded better recovery and reliability in the identification of the proteins especially the highly hydrophobic integral membrane proteins, and thus providing a promising tool for the shotgun analysis of membrane proteome. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates.

    Science.gov (United States)

    Shteynberg, David; Deutsch, Eric W; Lam, Henry; Eng, Jimmy K; Sun, Zhi; Tasman, Natalie; Mendoza, Luis; Moritz, Robert L; Aebersold, Ruedi; Nesvizhskii, Alexey I

    2011-12-01

    The combination of tandem mass spectrometry and sequence database searching is the method of choice for the identification of peptides and the mapping of proteomes. Over the last several years, the volume of data generated in proteomic studies has increased dramatically, which challenges the computational approaches previously developed for these data. Furthermore, a multitude of search engines have been developed that identify different, overlapping subsets of the sample peptides from a particular set of tandem mass spectrometry spectra. We present iProphet, the new addition to the widely used open-source suite of proteomic data analysis tools Trans-Proteomics Pipeline. Applied in tandem with PeptideProphet, it provides more accurate representation of the multilevel nature of shotgun proteomic data. iProphet combines the evidence from multiple identifications of the same peptide sequences across different spectra, experiments, precursor ion charge states, and modified states. It also allows accurate and effective integration of the results from multiple database search engines applied to the same data. The use of iProphet in the Trans-Proteomics Pipeline increases the number of correctly identified peptides at a constant false discovery rate as compared with both PeptideProphet and another state-of-the-art tool Percolator. As the main outcome, iProphet permits the calculation of accurate posterior probabilities and false discovery rate estimates at the level of sequence identical peptide identifications, which in turn leads to more accurate probability estimates at the protein level. Fully integrated with the Trans-Proteomics Pipeline, it supports all commonly used MS instruments, search engines, and computer platforms. The performance of iProphet is demonstrated on two publicly available data sets: data from a human whole cell lysate proteome profiling experiment representative of typical proteomic data sets, and from a set of Streptococcus pyogenes experiments

  18. Shotgun proteomic analysis of Bombyx mori brain: emphasis on regulation of behavior and development of the nervous system.

    Science.gov (United States)

    Wang, Guo-Bao; Zheng, Qin; Shen, Yun-Wang; Wu, Xiao-Feng

    2016-02-01

    The insect brain plays crucial roles in the regulation of growth and development and in all types of behavior. We used sodium dodecyl sulfate polyacrylamide gel electrophoresis and high-performance liquid chromatography - electron spray ionization tandem mass spectrometry (ESI-MS/MS) shotgun to identify the proteome of the silkworm brain, to investigate its protein composition and to understand their biological functions. A total of 2210 proteins with molecular weights in the range of 5.64-1539.82 kDa and isoelectric points in the range of 3.78-12.55 were identified. These proteins were annotated according to Gene Ontology Annotation into the categories of molecular function, biological process and cellular component. We characterized two categories of proteins: one includes behavior-related proteins involved in the regulation of behaviors, such as locomotion, reproduction and learning; the other consists of proteins related to the development or function of the nervous system. The identified proteins were classified into 283 different pathways according to KEGG analysis, including the PI3K-Akt signaling pathway which plays a crucial role in mediating survival signals in a wide range of neuronal cell types. This extensive protein profile provides a basis for further understanding of the physiological functions in the silkworm brain. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  19. Shotgun label-free proteomic analysis of clubroot (Plasmodiophora brassicae resistance conferred by the gene Rcr1 in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Tao Song

    2016-07-01

    Full Text Available Clubroot, caused by the plasmodiophorid pathogen Plasmodiophora brassicae, is one of the most serious diseases on Brassica crops worldwide and a major threat to canola production in western Canada. Host resistance is the key strategy for clubroot management on canola. Several clubroot resistance (CR genes have been identified, but the mechanisms associated with these CR genes are poorly understood. In the current study, a label-free shotgun proteomic approach was used to profile and compare the proteomes of B. rapa carrying and not carrying the CR gene Rcr1 upon P. brassicae infection. A total of 527 differentially accumulated proteins (DAPs were identified between the resistant and susceptible samples, and functional annotation of these DAPs indicates that the perception of P. brassicae and activation of defense responses is triggered via an unique signaling pathway distinct from common modes of recognition receptors reported with many other plant-pathogen interactions; this pathway appears to act in a calcium-independent manner through a not-well defined cascade of mitogen-activated protein kinases and may require the ubiquitin-26S proteasome related to abiotic stresses, especially the cold-stress tolerance. Both up-regulation of defense-related and down-regulation of pathogenicity-related metabolism were observed in plants carrying Rcr1, and these functions may all contribute to the clubroot resistance mediated by this CR gene. These results, combined with those of transcriptomic analysis reported earlier, improved our understanding of molecular mechanisms associated with Rcr1 and clubroot resistance at large, and identified candidate metabolites or pathways for further confirmation of specific resistance mechanisms. Deploying CR genes with different modes of action may help improve the durability of clubroot resistance.

  20. Increasing information from shotgun proteomic data by accounting for misassigned precursor ion masses.

    Science.gov (United States)

    Scherl, Alexander; Tsai, Yihsuan Shannon; Shaffer, Scott A; Goodlett, David R

    2008-07-01

    Although mass spectrometers are capable of providing high mass accuracy data, assignment of true monoisotopic precursor ion mass is complicated during data-dependent ion selection for LC-MS/MS analysis of complex mixtures. The complication arises when chromatographic peak widths for a given analyte exceed the time required to acquire a precursor ion mass spectrum. The result is that many measured monoisotopic masses are misassigned due to calculation from a single mass spectrum with poor ion statistics based on only a fraction of the total available ions for a given analyte. Such data in turn produces errors in automated database searches, where precursor m/z value is one search parameter. We propose here a postacquisition approach to correct misassigned monoisotopic m/z values that involves peak detection over the entire elution profile and correction of the precursor ion monoisotopic mass. As a result of using this approach to reprocess shotgun proteomic data we increased peptide sequence assignments by 10% while reducing the estimated false positive ratio from 1 to 0.2%. We also show that 4% of the salvaged identifications may be accounted for by correction of mixed tandem mass spectra resulting from fragmentation of multiple peptides simultaneously, a situation which we refer to as accidental CID.

  1. Shotgun Quantitative Proteomic Analysis of Proteins Responding to Drought Stress in Brassica rapa L. (Inbred Line “Chiifu”

    Directory of Open Access Journals (Sweden)

    Soon-Wook Kwon

    2016-01-01

    Full Text Available Through a comparative shotgun quantitative proteomics analysis in Brassica rapa (inbred line Chiifu, total of 3,009 nonredundant proteins were identified with a false discovery rate of 0.01 in 3-week-old plants subjected to dehydration treatment for 0, 24, and 48 h, plants subjected to drought stress. Ribulose-bisphosphate carboxylases, chlorophyll a/b-binding protein, and light harvesting complex in photosystem II were highly abundant proteins in the leaves and accounted for 9%, 2%, and 4%, respectively, of the total identified proteins. Comparative analysis of the treatments enabled detection of 440 differentially expressed proteins during dehydration. The results of clustering analysis, gene ontology (GO enrichment analysis, and analysis of composite expression profiles of functional categories for the differentially expressed proteins indicated that drought stress reduced the levels of proteins associated with photosynthesis and increased the levels of proteins involved in catabolic processes and stress responses. We observed enhanced expression of many proteins involved in osmotic stress responses and proteins with antioxidant activities. Based on previously reported molecular functions, we propose that the following five differentially expressed proteins could provide target genes for engineering drought resistance in plants: annexin, phospholipase D delta, sDNA-binding transcriptional regulator, auxin-responsive GH3 family protein, and TRAF-like family protein.

  2. Shotgun proteomic analysis of plasma from dairy cattle suffering from footrot: characterization of potential disease-associated factors.

    Directory of Open Access Journals (Sweden)

    Dongbo Sun

    Full Text Available The plasma proteome of healthy dairy cattle and those with footrot was investigated using a shotgun LC-MS/MS approach. In total, 648 proteins were identified in healthy plasma samples, of which 234 were non-redundant proteins and 123 were high-confidence proteins; 712 proteins were identified from footrot plasma samples, of which 272 were non-redundant proteins and 138 were high-confidence proteins. The high-confidence proteins showed significant differences between healthy and footrot plasma samples in molecular weight, isoelectric points and the Gene Ontology categories. 22 proteins were found that may differentiate between the two sets of plasma proteins, of which 16 potential differential expression (PDE proteins from footrot plasma involved in immunoglobulins, innate immune recognition molecules, acute phase proteins, regulatory proteins, and cell adhesion and cytoskeletal proteins; 6 PDE proteins from healthy plasma involved in regulatory proteins, cytoskeletal proteins and coagulation factors. Of these PDE proteins, haptoglobin, SERPINA10 protein, afamin precursor, haptoglobin precursor, apolipoprotein D, predicted peptidoglycan recognition protein L (PGRP-L and keratan sulfate proteoglycan (KS-PG were suggested to be potential footrot-associated factors. The PDE proteins PGRP-L and KS-PG were highlighted as potential biomarkers of footrot in cattle. The resulting protein lists and potential differentially expressed proteins may provide valuable information to increase understanding of plasma protein profiles in cattle and to assist studies of footrot-associated factors.

  3. A multidimensional liquid chromatography-tandem mass spectrometry platform to improve protein identification in high-throughput shotgun proteomics.

    Science.gov (United States)

    Capriotti, Anna Laura; Cavaliere, Chiara; Cavazzini, Alberto; Gasparrini, Francesco; Pierri, Giuseppe; Piovesana, Susy; Laganà, Aldo

    2017-05-19

    A new on-line multidimensional system for sequential trapping and individual elution and separation of peptides based on their molecular weight is described. By sequentially using two chemically different trapping columns, a polymethacrylate monolith and a packed C18 one, peptides from complex samples can be on-line trapped and divided into two fractions, containing respectively mainly medium-large peptides and smaller peptides. Then, by means of two switching valves working in parallel, the two fractions were individually separated by reversed phase chromatography. The whole gradient consisted of two subgradients, with the first one dedicated to the separation of smaller peptides and the second one to the separation of larger peptides. Such configuration allowed to identify up to 1476 proteins in a standard E. coli tryptic digest, with improved performance, increased average sequence coverage and reduced single unique peptide identifications compared to a conventional shotgun proteomics configuration comprising only the C18 trapping column and the analytical column. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Proteomic Characterization and Comparison of Malaysian Tropidolaemus wagleri and Cryptelytrops purpureomaculatus Venom Using Shotgun-Proteomics

    Directory of Open Access Journals (Sweden)

    Syafiq Asnawi Zainal Abidin

    2016-10-01

    Full Text Available Tropidolaemus wagleri and Cryptelytrops purpureomaculatus are venomous pit viper species commonly found in Malaysia. Tandem mass spectrometry analysis of the crude venoms has detected different proteins in T. wagleri and C. purpureomaculatus. They were classified into 13 venom protein families consisting of enzymatic and nonenzymatic proteins. Enzymatic families detected in T. wagleri and C. purpureomaculatus venom were snake venom metalloproteinase, phospholipase A2, ʟ-amino acid oxidase, serine proteases, 5′-nucleotidase, phosphodiesterase, and phospholipase B. In addition, glutaminyl cyclotransferase was detected in C. purpureomaculatus. C-type lectin-like proteins were common nonenzymatic components in both species. Waglerin was present and unique to T. wagleri—it was not in C. purpureomaculatus venom. In contrast, cysteine-rich secretory protein, bradykinin-potentiating peptide, and C-type natriuretic peptide were present in C. purpureomaculatus venom. Composition of the venom proteome of T. wagleri and C. purpureomaculatus provides useful information to guide production of effective antivenom and identification of proteins with potential therapeutic applications.

  5. Improvement of a sample preparation method assisted by sodium deoxycholate for mass-spectrometry-based shotgun membrane proteomics.

    Science.gov (United States)

    Lin, Yong; Lin, Haiyan; Liu, Zhonghua; Wang, Kunbo; Yan, Yujun

    2014-11-01

    In current shotgun-proteomics-based biological discovery, the identification of membrane proteins is a challenge. This is especially true for integral membrane proteins due to their highly hydrophobic nature and low abundance. Thus, much effort has been directed at sample preparation strategies such as use of detergents, chaotropes, and organic solvents. We previously described a sample preparation method for shotgun membrane proteomics, the sodium deoxycholate assisted method, which cleverly circumvents many of the challenges associated with traditional sample preparation methods. However, the method is associated with significant sample loss due to the slightly weaker extraction/solubilization ability of sodium deoxycholate when it is used at relatively low concentrations such as 1%. Hence, we present an enhanced sodium deoxycholate sample preparation strategy that first uses a high concentration of sodium deoxycholate (5%) to lyse membranes and extract/solubilize hydrophobic membrane proteins, and then dilutes the detergent to 1% for a more efficient digestion. We then applied the improved method to shotgun analysis of proteins from rat liver membrane enriched fraction. Compared with other representative sample preparation strategies including our previous sodium deoxycholate assisted method, the enhanced sodium deoxycholate method exhibited superior sensitivity, coverage, and reliability for the identification of membrane proteins particularly those with high hydrophobicity and/or multiple transmembrane domains. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Sex differences in shotgun proteome analyses for chronic oral intake of cadmium in mice.

    Directory of Open Access Journals (Sweden)

    Yoshiharu Yamanobe

    Full Text Available Environmental diseases related to cadmium exposure primarily develop owing to industrial wastewater pollution and/or contaminated food. In regions with high cadmium exposure in Japan, cadmium accumulation occurs primarily in the kidneys of individuals who are exposed to the metal. In contrast, in the itai-itai disease outbreak that occurred in the Jinzu River basin in Toyama Prefecture in Japan, cadmium primarily accumulated in the liver. On the other hand, high concentration of cadmium caused renal tubular disorder and osteomalacia (multiple bone fracture, probably resulting from the renal tubular dysfunction and additional pathology. In this study, we aimed to establish a mouse model of chronic cadmium intake. We administered cadmium-containing drinking water (32 mg/l to female and male mice ad libitum for 11 weeks. Metal analysis using inductively coupled plasma mass spectrometry revealed that cadmium accumulated in the kidneys (927 x 10 + 185 ng/g in females and 661 x 10 + 101 ng/g in males, liver (397 x 10 + 199 ng/g in females and 238 x 10 + 652 ng/g in males, and thyroid gland (293 + 93.7 ng/g in females and 129 + 72.7 ng/g in males of mice. Female mice showed higher cadmium accumulation in the kidney, liver, and thyroid gland than males did (p = 0.00345, p = 0.00213, and p = 0.0331, respectively. Shotgun proteome analyses after chronic oral administration of cadmium revealed that protein levels of glutathione S-transferase Mu2, Mu4, and Mu7 decreased in the liver, and those of A1 and A2 decreased in the kidneys in both female and male mice.

  7. Sex Differences in Shotgun Proteome Analyses for Chronic Oral Intake of Cadmium in Mice

    Science.gov (United States)

    Yamanobe, Yoshiharu; Nagahara, Noriyuki; Matsukawa, Takehisa; Ito, Takaaki; Niimori-Kita, Kanako; Chiba, Momoko; Yokoyama, Kazuhito; Takizawa, Toshihiro

    2015-01-01

    Environmental diseases related to cadmium exposure primarily develop owing to industrial wastewater pollution and/or contaminated food. In regions with high cadmium exposure in Japan, cadmium accumulation occurs primarily in the kidneys of individuals who are exposed to the metal. In contrast, in the itai-itai disease outbreak that occurred in the Jinzu River basin in Toyama Prefecture in Japan, cadmium primarily accumulated in the liver. On the other hand, high concentration of cadmium caused renal tubular disorder and osteomalacia (multiple bone fracture), probably resulting from the renal tubular dysfunction and additional pathology. In this study, we aimed to establish a mouse model of chronic cadmium intake. We administered cadmium-containing drinking water (32 mg/l) to female and male mice ad libitum for 11 weeks. Metal analysis using inductively coupled plasma mass spectrometry revealed that cadmium accumulated in the kidneys (927 x 10 + 185 ng/g in females and 661 x 10 + 101 ng/g in males), liver (397 x 10 + 199 ng/g in females and 238 x 10 + 652 ng/g in males), and thyroid gland (293 + 93.7 ng/g in females and 129 + 72.7 ng/g in males) of mice. Female mice showed higher cadmium accumulation in the kidney, liver, and thyroid gland than males did (p = 0.00345, p = 0.00213, and p = 0.0331, respectively). Shotgun proteome analyses after chronic oral administration of cadmium revealed that protein levels of glutathione S-transferase Mu2, Mu4, and Mu7 decreased in the liver, and those of A1 and A2 decreased in the kidneys in both female and male mice. PMID:25793409

  8. Staged-probability strategy of processing shotgun proteomic data to discover more functionally important proteins.

    Science.gov (United States)

    Xu, Hong; Ma, Guijun; Tan, Qingqiao; Zhou, Qiang; Su, Wen; Li, Rongxiu

    2012-02-01

    Biologically important proteins related to membrane receptors, signal transduction, regulation, transcription, and translation are usually low in abundance and identified with low probability in mass spectroscopy (MS)-based analyses. Most valuable proteomics information on them were hitherto discarded due to the application of excessively strict data filtering for accurate identification. In this study, we present a staged-probability strategy for assessing proteomic data for potential functionally important protein clues. MS-based protein identifications from the second (L2) and third (L3) layers of the cascade affinity fractionation using the Trans-Proteomic Pipeline software were classified into three probability stages as 1.00-0.95, 0.95-0.50, and 0.50-0.20 according to their distinctive identification correctness rates (i.e. 100%-95%, 95%-50%, and 50%-20%, respectively). We found large data volumes and more functionally important proteins located at the previously unacceptable lower probability stages of 0.95-0.50 and 0.50-0.20 with acceptable correctness rate. More importantly, low probability proteins in L2 were verified to exist in L3. Together with some MS spectrogram examples, comparisons of protein identifications of L2 and L3 demonstrated that the staged-probability strategy could more adequately present both quantity and quality of proteomic information, especially for researches involving biomarker discovery and novel therapeutic target screening.

  9. A Timely shift from shotgun to targeted proteomics and how it can be groundbreaking for cancer research

    DEFF Research Database (Denmark)

    Faria, Sara S.; Morris, Carlos F.M.; Silva, Adriano R.

    2017-01-01

    . Mass spectrometry-based proteomics has proven itself as a robust and logical alternative to the immuno-based methods that once dominated the field. Nevertheless, intrinsic limitations of classic proteomic approaches such as the natural gap between shotgun discovery-based methods and clinically......The fact that cancer is a leading cause of death all around the world has naturally sparked major efforts in the pursuit of novel and more efficient biomarkers that could better serve as diagnostic tools, prognostic predictors, or therapeutical targets in the battle against this type of disease...... applicable results have called for the implementation of more direct, hypothesis-based studies such as those made available through targeted approaches, that might be able to streamline biomarker discovery and validation as a means to increase survivability of affected patients. In fact, the paradigm...

  10. A Novel Algorithm for Validating Peptide Identification from a Shotgun Proteomics Search Engine

    Science.gov (United States)

    Jian, Ling; Niu, Xinnan; Xia, Zhonghang; Samir, Parimal; Sumanasekera, Chiranthani; Zheng, Mu; Jennings, Jennifer L.; Hoek, Kristen L.; Allos, Tara; Howard., Leigh M.; Edwards, Kathryn M.; Weil, P. Anthony; Link, Andrew J.

    2013-01-01

    Liquid chromatography coupled with tandem mass spectrometry has revolutionized the proteomics analysis of complexes, cells, and tissues. In a typical proteomic analysis, the tandem mass spectra from a LC/MS/MS experiment are assigned to a peptide by a search engine that compares the experimental MS/MS peptide data to theoretical peptide sequences in a protein database. The peptide spectra matches are then used to infer a list of identified proteins in the original sample. However, the search engines often fail to distinguish between correct and incorrect peptides assignments. In this study, we designed and implemented a novel algorithm called De-Noise to reduce the number of incorrect peptide matches and maximize the number of correct peptides at a fixed false discovery rate using a minimal number of scoring outputs from the SEQUEST search engine. The novel algorithm uses a three step process: data cleaning, data refining through a SVM-based decision function, and a final data refining step based on proteolytic peptide patterns. Using proteomics data generated on different types of mass spectrometers, we optimized the De-Noise algorithm based on the resolution and mass accuracy of the mass spectrometer employed in the LC/MS/MS experiment. Our results demonstrate De-Noise improves peptide identification compared to other methods used to process the peptide sequence matches assigned by SEQUEST. Because De-Noise uses a limited number of scoring attributes, it can be easily implemented with other search engines. PMID:23402659

  11. Integrated SDS removal and peptide separation by strong-cation exchange liquid chromatography for SDS-assisted shotgun proteome analysis.

    Science.gov (United States)

    Sun, Difei; Wang, Nan; Li, Liang

    2012-02-03

    We report an improved shotgun method for analyzing proteomic samples containing sodium dodecyl sulfate (SDS). This method is based on the use of strong-cation exchange (SCX) liquid chromatography (LC) for SDS removal that can be integrated with peptide separation as the first dimension of the two-dimensional LC tandem mass spectrometry workflow. To optimize the performance of SDS removal, various experimental conditions, including the concentrations of chemical reagents and salts in the sample, the SDS concentration, and the SCX mobile phase composition, were investigated. It was found that a peptide recovery rate of about 90% could be achieved while removing SDS efficiently. One key finding was that, by increasing the SDS concentration to a certain level (0.5%) in the digested peptide sample, the sample recovery rate could be increased. The peptide recovery rate of BSA digests was found to be 90.6 ± 1.0% (n = 3), and SDS in the SCX fractions collected was not detectable by pyrolysis GC-MS, i.e., below the detection limit of 0.00006% for the undesalted SCX fractions. The peptide recovery rates were found to be 90.9% ± 2.7 (n = 3) and 89.5% ± 0.5% (n = 3) for the digests of the membrane-protein-enriched fractions of E. coli cell lysates and the MCF-7 breast cancer cell line, respectively. Compared to the methods that use acid-labile surfactants, such as RapiGest and PPS, for the MCF-7 membrane fraction sample, the SDS method identified, on average (n = 3), more peptides (∼5%) and proteins (∼16%) than the RapiGest method, while the RapiGest method identified more peptides (∼21%) and proteins (∼7%) from the E. coli membrane fraction than the SDS method. In both cases, the two methods identified more peptides and proteins than the PPS method. Since SCX is widely used as the first dimension of 2D-LC MS/MS, integration of SDS removal with peptide separation in SCX does not add any extra steps to the sample handling process. We demonstrated the application of

  12. Shot-gun proteome and transcriptome mapping of the jujube floral organ and identification of a pollen-specific S-locus F-box gene

    Directory of Open Access Journals (Sweden)

    Ruihong Chen

    2017-07-01

    Full Text Available The flower is a plant reproductive organ that forms part of the fruit produced as the flowering season ends. While the number and identity of proteins expressed in a jujube (Ziziphus jujuba Mill. flower is currently unknown, integrative proteomic and transcriptomic analyses provide a systematic strategy of characterizing the floral biology of plants. We conducted a shotgun proteomic analysis on jujube flowers by using a filter-aided sample preparation tryptic digestion, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS. In addition, transcriptomics analyses were performed on HiSeq2000 sequencers. In total, 7,853 proteins were identified accounting for nearly 30% of the ‘Junzao’ gene models (27,443. Genes identified in proteome generally showed higher RPKM (reads per kilobase per million mapped reads values than undetected genes. Gene ontology categories showed that ribosomes and intracellular organelles were the most dominant classes and accounted for 17.0% and 14.0% of the proteome mass, respectively. The top-ranking proteins with iBAQ >1010 included non-specific lipid transfer proteins, histones, actin-related proteins, fructose-bisphosphate aldolase, Bet v I type allergens, etc. In addition, we identified one pollen-specificity S-locus F-box-like gene located on the same chromosome as the S-RNase gene. Both of these may activate the behaviour of gametophyte self-incompatibility in jujube. These results reflected the protein profile features of jujube flowers and contributes new information important to the jujube breeding system.

  13. RePS: a sequence assembler that masks exact repeats identified from the shotgun data

    DEFF Research Database (Denmark)

    Wang, Jun; Wong, Gane Ka-Shu; Ni, Peixiang

    2002-01-01

    We describe a sequence assembler, RePS (repeat-masked Phrap with scaffolding), that explicitly identifies exact 20mer repeats from the shotgun data and removes them prior to the assembly. The established software is used to compute meaningful error probabilities for each base. Clone......-end-pairing information is used to construct scaffolds that order and orient the contigs. We show with real data for human and rice that reasonable assemblies are possible even at coverages of only 4x to 6x, despite having up to 42.2% in exact repeats. Udgivelsesdato: 2002-May...

  14. Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development.

    Science.gov (United States)

    Katz, Ehud; Boo, Kyung Hwan; Kim, Ho Youn; Eigenheer, Richard A; Phinney, Brett S; Shulaev, Vladimir; Negre-Zakharov, Florence; Sadka, Avi; Blumwald, Eduardo

    2011-11-01

    Label-free LC-MS/MS-based shot-gun proteomics was used to quantify the differential protein synthesis and metabolite profiling in order to assess metabolic changes during the development of citrus fruits. Our results suggested the occurrence of a metabolic change during citrus fruit maturation, where the organic acid and amino acid accumulation seen during the early stages of development shifted into sugar synthesis during the later stage of citrus fruit development. The expression of invertases remained unchanged, while an invertase inhibitor was up-regulated towards maturation. The increased expression of sucrose-phosphate synthase and sucrose-6-phosphate phosphatase and the rapid sugar accumulation suggest that sucrose is also being synthesized in citrus juice sac cells during the later stage of fruit development.

  15. Performance evaluation of the Q Exactive HF-X for shotgun proteomics

    DEFF Research Database (Denmark)

    Kelstrup, Christian D; Bekker-Jensen, Dorte B; Arrey, Tabiwang N

    2018-01-01

    Progress in proteomics is mainly driven by advances in mass spectrometric (MS) technologies. Here we benchmarked the performance of the latest MS instrument in the benchtop Orbitrap series, the Q Exactive HF-X, against its predecessor for proteomics applications. A new peak picking algorithm...

  16. Shotgun glycomics of pig lung identifies natural endogenous receptors for influenza viruses.

    Science.gov (United States)

    Byrd-Leotis, Lauren; Liu, Renpeng; Bradley, Konrad C; Lasanajak, Yi; Cummings, Sandra F; Song, Xuezheng; Heimburg-Molinaro, Jamie; Galloway, Summer E; Culhane, Marie R; Smith, David F; Steinhauer, David A; Cummings, Richard D

    2014-06-03

    Influenza viruses bind to host cell surface glycans containing terminal sialic acids, but as studies on influenza binding become more sophisticated, it is becoming evident that although sialic acid may be necessary, it is not sufficient for productive binding. To better define endogenous glycans that serve as viral receptors, we have explored glycan recognition in the pig lung, because influenza is broadly disseminated in swine, and swine have been postulated as an intermediary host for the emergence of pandemic strains. For these studies, we used the technology of "shotgun glycomics" to identify natural receptor glycans. The total released N- and O-glycans from pig lung glycoproteins and glycolipid-derived glycans were fluorescently tagged and separated by multidimensional HPLC, and individual glycans were covalently printed to generate pig lung shotgun glycan microarrays. All viruses tested interacted with one or more sialylated N-glycans but not O-glycans or glycolipid-derived glycans, and each virus demonstrated novel and unexpected differences in endogenous N-glycan recognition. The results illustrate the repertoire of specific, endogenous N-glycans of pig lung glycoproteins for virus recognition and offer a new direction for studying endogenous glycan functions in viral pathogenesis.

  17. Optimized Fast and Sensitive Acquisition Methods for Shotgun Proteomics on a Quadrupole Orbitrap Mass Spectrometer

    DEFF Research Database (Denmark)

    Kelstrup, Christian D; Young, Clifford; Lavallee, Richard

    2012-01-01

    Advances in proteomics are continually driven by the introduction of new mass spectrometric instrumentation with improved performances. The recently introduced quadrupole Orbitrap (Q Exactive) tandem mass spectrometer allows fast acquisition of high-resolution higher-energy collisional dissociation...

  18. Phage-Induced Expression of CRISPR-Associated Proteins is Revealed by Shotgun Proteomics in Streptococcus thermophilus

    Energy Technology Data Exchange (ETDEWEB)

    Young, Jacque C [ORNL; Dill, Brian [ORNL; Pan, Chongle [ORNL; Hettich, Robert {Bob} L [ORNL; Banfield, Jillian F. [University of California, Berkeley; Shah, Manesh B [ORNL; Fremaux, Christophe [Danisco France SAS; Horvath, Philippe [Danisco France SAS; Barrangou, Rodolphe [Danisco USA; Verberkmoes, Nathan C [ORNL

    2012-01-01

    The CRISPR/Cas system, comprised of clustered regularly interspaced short palindromic repeats along with their associated (Cas) proteins, protects bacteria and archaea from viral predation and invading nucleic acids. While the mechanism of action for this acquired immunity is currently under investigation, the response of Cas protein expression to phage infection has yet to be elucidated. In this study, we employed shotgun proteomics to measure the global proteome expression in a model system for studying the CRISPR/Cas response: infection of S. thermophilus DGCC7710 with phage 2972. Host and viral proteins were simultaneously measured following inoculation at two different multiplicities of infection and across various time points using two-dimensional liquid chromatography tandem mass spectroscopy. Thirty-seven out of forty predicted viral proteins were detected, including all proteins of the structural virome and viral effector proteins. In total, 1,013 of 2,079 predicted S. thermophilus proteins were detected, facilitating the monitoring of host protein synthesis changes in response to virus infection. Importantly, Cas proteins from all four CRISPR loci in the S. thermophilus DGCC7710 genome were detected, including loci previously thought to be inactive. Many Cas proteins were found to be constitutively expressed, but several demonstrated increased abundance during peak infection, including the Cas9 proteins from the CRISPR1 and CRISPR3 loci, which are key players in the interference phase of the CRISPR/Cas response. Altogether, these results provide novel insights into the proteomic response of S. thermophilus, specifically CRISPR-associated proteins, upon phage 2972 infection.

  19. P-MartCancer-Interactive Online Software to Enable Analysis of Shotgun Cancer Proteomic Datasets.

    Science.gov (United States)

    Webb-Robertson, Bobbie-Jo M; Bramer, Lisa M; Jensen, Jeffrey L; Kobold, Markus A; Stratton, Kelly G; White, Amanda M; Rodland, Karin D

    2017-11-01

    P-MartCancer is an interactive web-based software environment that enables statistical analyses of peptide or protein data, quantitated from mass spectrometry-based global proteomics experiments, without requiring in-depth knowledge of statistical programming. P-MartCancer offers a series of statistical modules associated with quality assessment, peptide and protein statistics, protein quantification, and exploratory data analyses driven by the user via customized workflows and interactive visualization. Currently, P-MartCancer offers access and the capability to analyze multiple cancer proteomic datasets generated through the Clinical Proteomics Tumor Analysis Consortium at the peptide, gene, and protein levels. P-MartCancer is deployed as a web service (https://pmart.labworks.org/cptac.html), alternatively available via Docker Hub (https://hub.docker.com/r/pnnl/pmart-web/). Cancer Res; 77(21); e47-50. ©2017 AACR . ©2017 American Association for Cancer Research.

  20. P-MartCancer–Interactive Online Software to Enable Analysis of Shotgun Cancer Proteomic Datasets

    Energy Technology Data Exchange (ETDEWEB)

    Webb-Robertson, Bobbie-Jo M.; Bramer, Lisa M.; Jensen, Jeffrey L.; Kobold, Markus A.; Stratton, Kelly G.; White, Amanda M.; Rodland, Karin D.

    2017-10-31

    P-MartCancer is a new interactive web-based software environment that enables biomedical and biological scientists to perform in-depth analyses of global proteomics data without requiring direct interaction with the data or with statistical software. P-MartCancer offers a series of statistical modules associated with quality assessment, peptide and protein statistics, protein quantification and exploratory data analyses driven by the user via customized workflows and interactive visualization. Currently, P-MartCancer offers access to multiple cancer proteomic datasets generated through the Clinical Proteomics Tumor Analysis Consortium (CPTAC) at the peptide, gene and protein levels. P-MartCancer is deployed using Azure technologies (http://pmart.labworks.org/cptac.html), the web-service is alternatively available via Docker Hub (https://hub.docker.com/r/pnnl/pmart-web/) and many statistical functions can be utilized directly from an R package available on GitHub (https://github.com/pmartR).

  1. ProteinLasso: A Lasso regression approach to protein inference problem in shotgun proteomics.

    Science.gov (United States)

    Huang, Ting; Gong, Haipeng; Yang, Can; He, Zengyou

    2013-04-01

    Protein inference is an important issue in proteomics research. Its main objective is to select a proper subset of candidate proteins that best explain the observed peptides. Although many methods have been proposed for solving this problem, several issues such as peptide degeneracy and one-hit wonders still remain unsolved. Therefore, the accurate identification of proteins that are truly present in the sample continues to be a challenging task. Based on the concept of peptide detectability, we formulate the protein inference problem as a constrained Lasso regression problem, which can be solved very efficiently through a coordinate descent procedure. The new inference algorithm is named as ProteinLasso, which explores an ensemble learning strategy to address the sparsity parameter selection problem in Lasso model. We test the performance of ProteinLasso on three datasets. As shown in the experimental results, ProteinLasso outperforms those state-of-the-art protein inference algorithms in terms of both identification accuracy and running efficiency. In addition, we show that ProteinLasso is stable under different parameter specifications. The source code of our algorithm is available at: http://sourceforge.net/projects/proteinlasso. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Global phosphotyrosine proteomics identifies PKCδ as a marker of responsiveness to Src inhibition in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Eliot T McKinley

    Full Text Available Sensitive and specific biomarkers of protein kinase inhibition can be leveraged to accelerate drug development studies in oncology by associating early molecular responses with target inhibition. In this study, we utilized unbiased shotgun phosphotyrosine (pY proteomics to discover novel biomarkers of response to dasatinib, a small molecule Src-selective inhibitor, in preclinical models of colorectal cancer (CRC. We performed unbiased mass spectrometry shotgun pY proteomics to reveal the pY proteome of cultured HCT-116 colonic carcinoma cells, and then extended this analysis to HCT-116 xenograft tumors to identify pY biomarkers of dasatinib-responsiveness in vivo. Major dasatinib-responsive pY sites in xenograft tumors included sites on delta-type protein kinase C (PKCδ, CUB-domain-containing protein 1 (CDCP1, Type-II SH2-domain-containing inositol 5-phosphatase (SHIP2, and receptor protein-tyrosine phosphatase alpha (RPTPα. The pY313 site PKCδ was further supported as a relevant biomarker of dasatinib-mediated Src inhibition in HCT-116 xenografts by immunohistochemistry and immunoblotting with a phosphospecific antibody. Reduction of PKCδ pY313 was further correlated with dasatinib-mediated inhibition of Src and diminished growth as spheroids of a panel of human CRC cell lines. These studies reveal PKCδ pY313 as a promising readout of Src inhibition in CRC and potentially other solid tumors and may reflect responsiveness to dasatinib in a subset of colorectal cancers.

  3. Current Challenges in Detecting Food Allergens by Shotgun and Targeted Proteomic Approaches: A Case Study on Traces of Peanut Allergens in Baked Cookies

    Science.gov (United States)

    Pedreschi, Romina; Nørgaard, Jørgen; Maquet, Alain

    2012-01-01

    There is a need for selective and sensitive methods to detect the presence of food allergens at trace levels in highly processed food products. In this work, a combination of non-targeted and targeted proteomics approaches are used to illustrate the difficulties encountered in the detection of the major peanut allergens Ara h 1, Ara h 2 and Ara h 3 from a representative processed food matrix. Shotgun proteomics was employed for selection of the proteotypic peptides for targeted approaches via selective reaction monitoring. Peanut presence through detection of the proteotypic Ara h 3/4 peptides AHVQVVDSNGNR (m/z 432.5, 3+) and SPDIYNPQAGSLK (m/z 695.4, 2+) was confirmed and the developed method was able to detect peanut presence at trace levels (≥10 μg peanut g−1 matrix) in baked cookies. PMID:22413066

  4. Growth Phase-Dependent Proteomes of the Malaysian Isolated Lactococcus lactis Dairy Strain M4 Using Label-Free Qualitative Shotgun Proteomics Analysis

    Science.gov (United States)

    Yap, Theresa Wan Chen; Rabu, Amir; Abu Bakar, Farah Diba; Abdul Rahim, Raha; Mahadi, Nor Muhammad; Illias, Rosli Md.

    2014-01-01

    Lactococcus lactis is the most studied mesophilic fermentative lactic acid bacterium. It is used extensively in the food industry and plays a pivotal role as a cell factory and also as vaccine delivery platforms. The proteome of the Malaysian isolated L. lactis M4 dairy strain, obtained from the milk of locally bred cows, was studied to elucidate the physiological changes occurring between the growth phases of this bacterium. In this study, ultraperformance liquid chromatography nanoflow electrospray ionization tandem mass spectrometry (UPLC- nano-ESI-MSE) approach was used for qualitative proteomic analysis. A total of 100 and 121 proteins were identified from the midexponential and early stationary growth phases, respectively, of the L. lactis strain M4. During the exponential phase, the most important reaction was the generation of sufficient energy, whereas, in the early stationary phase, the metabolic energy pathways decreased and the biosynthesis of proteins became more important. Thus, the metabolism of the cells shifted from energy production in the exponential phase to the synthesis of macromolecules in the stationary phase. The resultant proteomes are essential in providing an improved view of the cellular machinery of L. lactis during the transition of growth phases and hence provide insight into various biotechnological applications. PMID:24982972

  5. Growth Phase-Dependent Proteomes of the Malaysian Isolated Lactococcus lactis Dairy Strain M4 Using Label-Free Qualitative Shotgun Proteomics Analysis

    Directory of Open Access Journals (Sweden)

    Theresa Wan Chen Yap

    2014-01-01

    Full Text Available Lactococcus lactis is the most studied mesophilic fermentative lactic acid bacterium. It is used extensively in the food industry and plays a pivotal role as a cell factory and also as vaccine delivery platforms. The proteome of the Malaysian isolated L. lactis M4 dairy strain, obtained from the milk of locally bred cows, was studied to elucidate the physiological changes occurring between the growth phases of this bacterium. In this study, ultraperformance liquid chromatography nanoflow electrospray ionization tandem mass spectrometry (UPLC- nano-ESI-MSE approach was used for qualitative proteomic analysis. A total of 100 and 121 proteins were identified from the midexponential and early stationary growth phases, respectively, of the L. lactis strain M4. During the exponential phase, the most important reaction was the generation of sufficient energy, whereas, in the early stationary phase, the metabolic energy pathways decreased and the biosynthesis of proteins became more important. Thus, the metabolism of the cells shifted from energy production in the exponential phase to the synthesis of macromolecules in the stationary phase. The resultant proteomes are essential in providing an improved view of the cellular machinery of L. lactis during the transition of growth phases and hence provide insight into various biotechnological applications.

  6. Interleukin-6 Induced "Acute" Phenotypic Microenvironment Promotes Th1 Anti-Tumor Immunity in Cryo-Thermal Therapy Revealed By Shotgun and Parallel Reaction Monitoring Proteomics.

    Science.gov (United States)

    Xue, Ting; Liu, Ping; Zhou, Yong; Liu, Kun; Yang, Li; Moritz, Robert L; Yan, Wei; Xu, Lisa X

    2016-01-01

    Cryo-thermal therapy has been emerged as a promising novel therapeutic strategy for advanced breast cancer, triggering higher incidence of tumor regression and enhanced remission of metastasis than routine treatments. To better understand its anti-tumor mechanism, we utilized a spontaneous metastatic mouse model and quantitative proteomics to compare N-glycoproteome changes in 94 serum samples with and without treatment. We quantified 231 highly confident N-glycosylated proteins using iTRAQ shotgun proteomics. Among them, 53 showed significantly discriminated regulatory patterns over the time course, in which the acute phase response emerged as the most enhanced pathway. The anti-tumor feature of the acute response was further investigated using parallel reaction monitoring target proteomics and flow cytometry on 23 of the 53 significant proteins. We found that cryo-thermal therapy reset the tumor chronic inflammation to an "acute" phenotype, with up-regulation of acute phase proteins including IL-6 as a key regulator. The IL-6 mediated "acute" phenotype transformed IL-4 and Treg-promoting ICOSL expression to Th1-promoting IFN-γ and IL-12 production, augmented complement system activation and CD86(+)MHCII(+) dendritic cells maturation and enhanced the proliferation of Th1 memory cells. In addition, we found an increased production of tumor progression and metastatic inhibitory proteins under such "acute" environment, favoring the anti-metastatic effect. Moreover, cryo-thermal on tumors induced the strongest "acute" response compared to cryo/hyperthermia alone or cryo-thermal on healthy tissues, accompanying by the most pronounced anti-tumor immunological effect. In summary, we demonstrated that cryo-thermal therapy induced, IL-6 mediated "acute" microenvironment shifted the tumor chronic microenvironment from Th2 immunosuppressive and pro-tumorigenic to Th1 immunostimulatory and tumoricidal state. Moreover, the magnitude of "acute" and "danger" signals play a key

  7. Potential immunogenic polypeptides of Burkholderia pseudomallei identified by shotgun expression library and evaluation of their efficacy for serodiagnosis of melioidosis.

    Science.gov (United States)

    Puah, Suat Moi; Puthucheary, S D; Chua, Kek Heng

    2013-01-01

    The search for novel immunogenic polypeptides to improve the accuracy and reliability of serologic diagnostic methods for Burkholderia pseudomallei infection is ongoing. We employed a rapid and efficient approach to identify such polypeptides with sera from melioidosis patients using a small insert genomic expression library created from clinically confirmed local virulent isolates of B. pseudomallei. After 2 rounds of immunoscreening, 6 sero-positive clones expressing immunogenic peptides were sequenced and their identities were: benzoate 1,2-dioxygenase beta subunit, a putative 200 kDa antigen p200, phosphotransferase enzyme family protein, short chain dehydrogenase and 2 hypothetical proteins. These immunogens were then transferred to an ELISA platform for further large scale screening. By combining shotgun expression library and ELISA assays, we identified 2 polypeptides BPSS1904 (benzoate 1,2-dioxygenase beta subunit) and BPSL3130 (hypothetical protein), which had sensitivities of 78.9% and 79.4% and specificities of 88.1% and 94.8%, respectively in ELISA test, thus suggesting that both are potential candidate antigens for the serodiagnosis of infections caused by B. pseudomallei.

  8. Optimization of Urea Based Protein Extraction from Formalin-Fixed Paraffin-Embedded Tissue for Shotgun Proteomics.

    Science.gov (United States)

    Luebker, Stephen A; Koepsell, Scott A

    2016-01-01

    Urea based protein extraction of formalin-fixed paraffin-embedded (FFPE) tissue provides the most efficient workflow for proteomics due to its compatibility with liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). This study optimizes the use of urea for proteomic analysis of clinical FFPE tissue. A series of protein extraction conditions manipulating temperature and buffer composition were compared to reduce carbamylation introduced by urea and increase protein detection. Each extraction was performed on a randomized pair of serial sections of homogenous FFPE tissue and analyzed with LC-ESI-MS/MS. Results were compared in terms of yield, missed cleavages, and peptide carbamylation. Lowering extraction temperature to 60°C decreased carbamylation at the cost of decreased protein detection and yield. Protein extraction for at least 20 minutes at 95°C followed by 60°C for 2 hours maximized total protein yield while maintaining protein detection and reducing carbamylation by 7.9%. When accounting for carbamylation during analysis, this modified extraction temperature provides equivalent peptide and protein detection relative to the commercially available Qproteome® FFPE Tissue Kit. No changes to buffer composition containing 7 M urea, 2 M thiourea, and 1 M ammonium bicarbonate resulted in improvements to control conditions. Optimized urea in-solution digestion provides an efficient workflow with maximized yields for proteomic analysis of clinically relevant FFPE tissue.

  9. Shotgun protein sequencing.

    Energy Technology Data Exchange (ETDEWEB)

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  10. In Silico Functional Networks Identified in Fish Nucleated Red Blood Cells by Means of Transcriptomic and Proteomic Profiling

    Directory of Open Access Journals (Sweden)

    Sara Puente-Marin

    2018-04-01

    Full Text Available Nucleated red blood cells (RBCs of fish have, in the last decade, been implicated in several immune-related functions, such as antiviral response, phagocytosis or cytokine-mediated signaling. RNA-sequencing (RNA-seq and label-free shotgun proteomic analyses were carried out for in silico functional pathway profiling of rainbow trout RBCs. For RNA-seq, a de novo assembly was conducted, in order to create a transcriptome database for RBCs. For proteome profiling, we developed a proteomic method that combined: (a fractionation into cytosolic and membrane fractions, (b hemoglobin removal of the cytosolic fraction, (c protein digestion, and (d a novel step with pH reversed-phase peptide fractionation and final Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometric (LC ESI-MS/MS analysis of each fraction. Combined transcriptome- and proteome- sequencing data identified, in silico, novel and striking immune functional networks for rainbow trout nucleated RBCs, which are mainly linked to innate and adaptive immunity. Functional pathways related to regulation of hematopoietic cell differentiation, antigen presentation via major histocompatibility complex class II (MHCII, leukocyte differentiation and regulation of leukocyte activation were identified. These preliminary findings further implicate nucleated RBCs in immune function, such as antigen presentation and leukocyte activation.

  11. Plasma proteomics to identify biomarkers - Application to cardiovascular diseases

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Overgaard, Martin; Melholt Rasmussen, Lars

    2015-01-01

    There is an unmet need for new cardiovascular biomarkers. Despite this only few biomarkers for the diagnosis or screening of cardiovascular diseases have been implemented in the clinic. Thousands of proteins can be analysed in plasma by mass spectrometry-based proteomics technologies. Therefore......, this technology may therefore identify new biomarkers that previously have not been associated with cardiovascular diseases. In this review, we summarize the key challenges and considerations, including strategies, recent discoveries and clinical applications in cardiovascular proteomics that may lead...... to the discovery of novel cardiovascular biomarkers....

  12. Combining RNA-seq and proteomic profiling to identify seminal fluid proteins in the migratory grasshopper Melanoplus sanguinipes (F).

    Science.gov (United States)

    Bonilla, Martha L; Todd, Christopher; Erlandson, Martin; Andres, Jose

    2015-12-22

    Seminal fluid proteins control many aspects of fertilization and in turn, they play a key role in post-mating sexual selection and possibly reproductive isolation. Because effective proteome profiling relies on the availability of high-quality DNA reference databases, our knowledge of these proteins is still largely limited to model organisms with ample genetic resources. New advances in sequencing technology allow for the rapid characterization of transcriptomes at low cost. By combining high throughput RNA-seq and shotgun proteomic profiling, we have characterized the seminal fluid proteins secreted by the primary male accessory gland of the migratory grasshopper (Melanoplus sanguinipes), one of the main agricultural pests in central North America. Using RNA sequencing, we characterized the transcripts of ~ 8,100 genes expressed in the long hyaline tubules (LHT) of the accessory glands. Proteomic profiling identified 353 proteins expressed in the long hyaline tubules (LHT). Of special interest are seminal fluid proteins (SFPs), such as EJAC-SP, ACE and prostaglandin synthetases, which are known to regulate female oviposition in insects. Our study provides new insights into the proteomic components of male ejaculate in Orthopterans, and highlights several important patterns. First, the presence of proteins that lack predicted classical secretory tags in accessory gland proteomes is common in male accessory glands. Second, the products of a few highly expressed genes dominate the accessory gland secretions. Third, accessory gland transcriptomes are enriched for novel transcripts. Fourth, there is conservation of SFPs' functional classes across distantly related taxonomic groups with very different life histories, mating systems and sperm transferring mechanisms. The identified SFPs may serve as targets of future efforts to develop species- specific genetic control strategies.

  13. Proteomic and Genetic Approaches Identify Syk as an AML Target

    Science.gov (United States)

    Hahn, Cynthia K.; Berchuck, Jacob E.; Ross, Kenneth N.; Kakoza, Rose M.; Clauser, Karl; Schinzel, Anna C.; Ross, Linda; Galinsky, Ilene; Davis, Tina N.; Silver, Serena J.; Root, David E.; Stone, Richard M.; DeAngelo, Daniel J.; Carroll, Martin; Hahn, William C.; Carr, Steven A.; Golub, Todd R.; Kung, Andrew L.; Stegmaier, Kimberly

    2009-01-01

    SUMMARY Cell-based screening can facilitate rapid identification of compounds inducing complex cellular phenotypes. Advancing a compound toward the clinic, however, generally requires identification of precise mechanisms of action. We previously found that epidermal growth factor receptor (EGFR) inhibitors induce acute myeloid leukemia (AML) differentiation via a non-EGFR mechanism. In this report, we integrated proteomic and RNAi-based strategies to identify their off-target anti-AML mechanism. These orthogonal approaches identified Syk as a target in AML. Genetic and pharmacological inactivation of Syk with a drug in clinical trial for other indications promoted differentiation of AML cells and attenuated leukemia growth in vivo. These results demonstrate the power of integrating diverse chemical, proteomic, and genomic screening approaches to identify therapeutic strategies for cancer. PMID:19800574

  14. Proteomics

    DEFF Research Database (Denmark)

    Dam, Svend; Stougaard, Jens

    2014-01-01

    Proteomics is an efficient tool to identify proteins present in specific tissues, cell types, or organelles. The resulting proteome reference maps and/or comparative analyses provide overviews of regulated proteins between wild type and mutants or between different conditions together...... proteomics data. Two characteristics of legumes are the high seed protein level and the nitrogen fixing symbiosis. Thus, the majority of the proteomics studies in Lotus have been performed on seed/pod and nodule/root tissues in order to create proteome reference maps and to enable comparative analyses within...... Lotus tissues or toward similar tissues from other legume species. More recently, N-glycan structures and compositions have been determined from mature Lotus seeds using glycomics and glycoproteomics, and finally, phosphoproteomics has been employed...

  15. Proteomic Analysis of the Soybean Symbiosome Identifies New Symbiotic Proteins*

    Science.gov (United States)

    Clarke, Victoria C.; Loughlin, Patrick C.; Gavrin, Aleksandr; Chen, Chi; Brear, Ella M.; Day, David A.; Smith, Penelope M.C.

    2015-01-01

    Legumes form a symbiosis with rhizobia in which the plant provides an energy source to the rhizobia bacteria that it uses to fix atmospheric nitrogen. This nitrogen is provided to the legume plant, allowing it to grow without the addition of nitrogen fertilizer. As part of the symbiosis, the bacteria in the infected cells of a new root organ, the nodule, are surrounded by a plant-derived membrane, the symbiosome membrane, which becomes the interface between the symbionts. Fractions containing the symbiosome membrane (SM) and material from the lumen of the symbiosome (peribacteroid space or PBS) were isolated from soybean root nodules and analyzed using nongel proteomic techniques. Bicarbonate stripping and chloroform-methanol extraction of isolated SM were used to reduce complexity of the samples and enrich for hydrophobic integral membrane proteins. One hundred and ninety-seven proteins were identified as components of the SM, with an additional fifteen proteins identified from peripheral membrane and PBS protein fractions. Proteins involved in a range of cellular processes such as metabolism, protein folding and degradation, membrane trafficking, and solute transport were identified. These included a number of proteins previously localized to the SM, such as aquaglyceroporin nodulin 26, sulfate transporters, remorin, and Rab7 homologs. Among the proteome were a number of putative transporters for compounds such as sulfate, calcium, hydrogen ions, peptide/dicarboxylate, and nitrate, as well as transporters for which the substrate is not easy to predict. Analysis of the promoter activity for six genes encoding putative SM proteins showed nodule specific expression, with five showing expression only in infected cells. Localization of two proteins was confirmed using GFP-fusion experiments. The data have been deposited to the ProteomeXchange with identifier PXD001132. This proteome will provide a rich resource for the study of the legume-rhizobium symbiosis. PMID

  16. Novel TIA biomarkers identified by mass spectrometry-based proteomics.

    Science.gov (United States)

    George, Paul M; Mlynash, Michael; Adams, Christopher M; Kuo, Calvin J; Albers, Gregory W; Olivot, Jean-Marc

    2015-12-01

    Transient ischemic attacks remain a clinical diagnosis with significant variability between physicians. Finding reliable biomarkers to identify transient ischemic attacks would improve patient care and optimize treatment. Our aim is to identify novel serum TIA biomarkers through the use of mass spectroscopy-based proteomics. Patients with transient neurologic symptoms were prospectively enrolled. Mass spectrometry-based proteomics, an unbiased method to identify candidate proteins, was used to test the serum of the patients for biomarkers of cerebral ischemia. Three candidate proteins were found, and serum concentrations of these proteins were measured by enzyme-linked immunosorbent assay in a second cohort of prospectively enrolled patients. The Student's t-test was used for comparison. The Benjamini-Hochberg false discovery rate controlling procedure for multiple comparison adjustments determined significance for the proteomic screen. Patients with transient ischemic attacks (n = 20), minor strokes (n = 15), and controls (i.e. migraine, seizure, n = 12) were enrolled in the first cohort. Ceruloplasmin, complement component C8 gamma (C8γ), and platelet basic protein were significantly different between the ischemic group (transient ischemic attack and minor stroke) and the controls (P = 0·0001, P = 0·00027, P = 0·00105, respectively). A second cohort of patients with transient ischemic attack (n = 22), minor stroke (n = 20), and controls' (n = 12) serum was enrolled. Platelet basic protein serum concentrations were increased in the ischemic samples compared with control (for transient ischemic attack alone, P = 0·019, for the ischemic group, P = 0·046). Ceruloplasmin trended towards increased concentrations in the ischemic group (P = 0·127); no significant difference in C8γ (P = 0·44) was found. Utilizing mass spectrometry-based proteomics, platelet basic protein has been identified as a candidate serum

  17. Analysis of pig serum proteins based on shotgun liquid ...

    African Journals Online (AJOL)

    Recent advances in proteomics technologies have opened up significant opportunities for future applications. We used shotgun liquid chromatography, coupled with tandem mass spectrometry (LC-MS/MS) to determine the proteome profile of healthy pig serum. Samples of venous blood were collected and subjected to ...

  18. Serum proteomic analysis identifies sex-specific differences in lipid metabolism and inflammation profiles in adults diagnosed with Asperger syndrome.

    Science.gov (United States)

    Steeb, Hannah; Ramsey, Jordan M; Guest, Paul C; Stocki, Pawel; Cooper, Jason D; Rahmoune, Hassan; Ingudomnukul, Erin; Auyeung, Bonnie; Ruta, Liliana; Baron-Cohen, Simon; Bahn, Sabine

    2014-01-27

    The higher prevalence of Asperger Syndrome (AS) and other autism spectrum conditions in males has been known for many years. However, recent multiplex immunoassay profiling studies have shown that males and females with AS have distinct proteomic changes in serum. Here, we analysed sera from adults diagnosed with AS (males = 14, females = 16) and controls (males = 13, females = 16) not on medication at the time of sample collection, using a combination of multiplex immunoassay and shotgun label-free liquid chromatography mass spectrometry (LC-MSE). The main objective was to identify sex-specific serum protein changes associated with AS. Multiplex immunoassay profiling led to identification of 16 proteins that were significantly altered in AS individuals in a sex-specific manner. Three of these proteins were altered in females (ADIPO, IgA, APOA1), seven were changed in males (BMP6, CTGF, ICAM1, IL-12p70, IL-16, TF, TNF-alpha) and six were changed in both sexes but in opposite directions (CHGA, EPO, IL-3, TENA, PAP, SHBG). Shotgun LC-MSE profiling led to identification of 13 serum proteins which had significant sex-specific changes in the AS group and, of these, 12 were altered in females (APOC2, APOE, ARMC3, CLC4K, FETUB, GLCE, MRRP1, PTPA, RN149, TLE1, TRIPB, ZC3HE) and one protein was altered in males (RGPD4). The free androgen index in females with AS showed an increased ratio of 1.63 compared to controls. Taken together, the serum multiplex immunoassay and shotgun LC-MSE profiling results indicate that adult females with AS had alterations in proteins involved mostly in lipid transport and metabolism pathways, while adult males with AS showed changes predominantly in inflammation signalling. These results provide further evidence that the search for biomarkers or novel drug targets in AS may require stratification into male and female subgroups, and could lead to the development of novel targeted treatment approaches.

  19. Serum proteomic analysis identifies sex-specific differences in lipid metabolism and inflammation profiles in adults diagnosed with Asperger syndrome

    Science.gov (United States)

    2014-01-01

    Background The higher prevalence of Asperger Syndrome (AS) and other autism spectrum conditions in males has been known for many years. However, recent multiplex immunoassay profiling studies have shown that males and females with AS have distinct proteomic changes in serum. Methods Here, we analysed sera from adults diagnosed with AS (males = 14, females = 16) and controls (males = 13, females = 16) not on medication at the time of sample collection, using a combination of multiplex immunoassay and shotgun label-free liquid chromatography mass spectrometry (LC-MSE). The main objective was to identify sex-specific serum protein changes associated with AS. Results Multiplex immunoassay profiling led to identification of 16 proteins that were significantly altered in AS individuals in a sex-specific manner. Three of these proteins were altered in females (ADIPO, IgA, APOA1), seven were changed in males (BMP6, CTGF, ICAM1, IL-12p70, IL-16, TF, TNF-alpha) and six were changed in both sexes but in opposite directions (CHGA, EPO, IL-3, TENA, PAP, SHBG). Shotgun LC-MSE profiling led to identification of 13 serum proteins which had significant sex-specific changes in the AS group and, of these, 12 were altered in females (APOC2, APOE, ARMC3, CLC4K, FETUB, GLCE, MRRP1, PTPA, RN149, TLE1, TRIPB, ZC3HE) and one protein was altered in males (RGPD4). The free androgen index in females with AS showed an increased ratio of 1.63 compared to controls. Conclusion Taken together, the serum multiplex immunoassay and shotgun LC-MSE profiling results indicate that adult females with AS had alterations in proteins involved mostly in lipid transport and metabolism pathways, while adult males with AS showed changes predominantly in inflammation signalling. These results provide further evidence that the search for biomarkers or novel drug targets in AS may require stratification into male and female subgroups, and could lead to the development of novel targeted treatment

  20. Quantitative proteomics for identifying biomarkers for tuberculous meningitis

    Directory of Open Access Journals (Sweden)

    Kumar Ghantasala S Sameer

    2012-11-01

    Full Text Available Abstract Introduction Tuberculous meningitis is a frequent extrapulmonary disease caused by Mycobacterium tuberculosis and is associated with high mortality rates and severe neurological sequelae. In an earlier study employing DNA microarrays, we had identified genes that were differentially expressed at the transcript level in human brain tissue from cases of tuberculous meningitis. In the current study, we used a quantitative proteomics approach to discover protein biomarkers for tuberculous meningitis. Methods To compare brain tissues from confirmed cased of tuberculous meningitis with uninfected brain tissue, we carried out quantitative protein expression profiling using iTRAQ labeling and LC-MS/MS analysis of SCX fractionated peptides on Agilent’s accurate mass QTOF mass spectrometer. Results and conclusions Through this approach, we identified both known and novel differentially regulated molecules. Those described previously included signal-regulatory protein alpha (SIRPA and protein disulfide isomerase family A, member 6 (PDIA6, which have been shown to be overexpressed at the mRNA level in tuberculous meningitis. The novel overexpressed proteins identified in our study included amphiphysin (AMPH and neurofascin (NFASC while ferritin light chain (FTL was found to be downregulated in TBM. We validated amphiphysin, neurofascin and ferritin light chain using immunohistochemistry which confirmed their differential expression in tuberculous meningitis. Overall, our data provides insights into the host response in tuberculous meningitis at the molecular level in addition to providing candidate diagnostic biomarkers for tuberculous meningitis.

  1. Automation of dimethylation after guanidination labeling chemistry and its compatibility with common buffers and surfactants for mass spectrometry-based shotgun quantitative proteome analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Andy; Tang, Yanan; Chen, Lu; Li, Liang, E-mail: Liang.Li@ualberta.ca

    2013-07-25

    Graphical abstract: -- Highlights: •Dimethylation after guanidination (2MEGA) uses inexpensive reagents for isotopic labeling of peptides. •2MEGA can be optimized and automated for labeling peptides with high efficiency. •2MEGA is compatible with several commonly used cell lysis and protein solubilization reagents. •The automated 2MEGA labeling method can be used to handle a variety of protein samples for relative proteome quantification. -- Abstract: Isotope labeling liquid chromatography–mass spectrometry (LC–MS) is a major analytical platform for quantitative proteome analysis. Incorporation of isotopes used to distinguish samples plays a critical role in the success of this strategy. In this work, we optimized and automated a chemical derivatization protocol (dimethylation after guanidination, 2MEGA) to increase the labeling reproducibility and reduce human intervention. We also evaluated the reagent compatibility of this protocol to handle biological samples in different types of buffers and surfactants. A commercially available liquid handler was used for reagent dispensation to minimize analyst intervention and at least twenty protein digest samples could be prepared in a single run. Different front-end sample preparation methods for protein solubilization (SDS, urea, Rapigest™, and ProteaseMAX™) and two commercially available cell lysis buffers were evaluated for compatibility with the automated protocol. It was found that better than 94% desired labeling could be obtained in all conditions studied except urea, where the rate was reduced to about 92% due to carbamylation on the peptide amines. This work illustrates the automated 2MEGA labeling process can be used to handle a wide range of protein samples containing various reagents that are often encountered in protein sample preparation for quantitative proteome analysis.

  2. Identifying cytotoxic T cell epitopes from genomic and proteomic information: "The human MHC project."

    DEFF Research Database (Denmark)

    Lauemøller, S L; Kesmir, C; Corbet, S L

    2000-01-01

    Complete genomes of many species including pathogenic microorganisms are rapidly becoming available and with them the encoded proteins, or proteomes. Proteomes are extremely diverse and constitute unique imprints of the originating organisms allowing positive identification and accurate discrimin......Complete genomes of many species including pathogenic microorganisms are rapidly becoming available and with them the encoded proteins, or proteomes. Proteomes are extremely diverse and constitute unique imprints of the originating organisms allowing positive identification and accurate...... discrimination, even at the peptide level. It is not surprising that peptides are key targets of the immune system. It follows that proteomes can be translated into immunogens once it is known how the immune system generates and handles peptides. Recent advances have identified many of the basic principles...

  3. Differential membrane proteomics using 18O-labeling to identify biomarkers for cholangiocarcinoma

    DEFF Research Database (Denmark)

    Kristiansen, Troels Zakarias; Harsha, H C; Grønborg, Mads

    2008-01-01

    Quantitative proteomic methodologies allow profiling of hundreds to thousands of proteins in a high-throughput fashion. This approach is increasingly applied to cancer biomarker discovery to identify proteins that are differentially regulated in cancers. Fractionation of protein samples based...

  4. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Christian Niehage

    Full Text Available Multipotent mesenchymal stromal cells (MSCs are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2% or high (10% serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention.

  5. Peptide-level Robust Ridge Regression Improves Estimation, Sensitivity, and Specificity in Data-dependent Quantitative Label-free Shotgun Proteomics*

    Science.gov (United States)

    Goeminne, Ludger J. E.; Gevaert, Kris; Clement, Lieven

    2016-01-01

    Peptide intensities from mass spectra are increasingly used for relative quantitation of proteins in complex samples. However, numerous issues inherent to the mass spectrometry workflow turn quantitative proteomic data analysis into a crucial challenge. We and others have shown that modeling at the peptide level outperforms classical summarization-based approaches, which typically also discard a lot of proteins at the data preprocessing step. Peptide-based linear regression models, however, still suffer from unbalanced datasets due to missing peptide intensities, outlying peptide intensities and overfitting. Here, we further improve upon peptide-based models by three modular extensions: ridge regression, improved variance estimation by borrowing information across proteins with empirical Bayes and M-estimation with Huber weights. We illustrate our method on the CPTAC spike-in study and on a study comparing wild-type and ArgP knock-out Francisella tularensis proteomes. We show that the fold change estimates of our robust approach are more precise and more accurate than those from state-of-the-art summarization-based methods and peptide-based regression models, which leads to an improved sensitivity and specificity. We also demonstrate that ionization competition effects come already into play at very low spike-in concentrations and confirm that analyses with peptide-based regression methods on peptide intensity values aggregated by charge state and modification status (e.g. MaxQuant's peptides.txt file) are slightly superior to analyses on raw peptide intensity values (e.g. MaxQuant's evidence.txt file). PMID:26566788

  6. Peptide-level Robust Ridge Regression Improves Estimation, Sensitivity, and Specificity in Data-dependent Quantitative Label-free Shotgun Proteomics.

    Science.gov (United States)

    Goeminne, Ludger J E; Gevaert, Kris; Clement, Lieven

    2016-02-01

    Peptide intensities from mass spectra are increasingly used for relative quantitation of proteins in complex samples. However, numerous issues inherent to the mass spectrometry workflow turn quantitative proteomic data analysis into a crucial challenge. We and others have shown that modeling at the peptide level outperforms classical summarization-based approaches, which typically also discard a lot of proteins at the data preprocessing step. Peptide-based linear regression models, however, still suffer from unbalanced datasets due to missing peptide intensities, outlying peptide intensities and overfitting. Here, we further improve upon peptide-based models by three modular extensions: ridge regression, improved variance estimation by borrowing information across proteins with empirical Bayes and M-estimation with Huber weights. We illustrate our method on the CPTAC spike-in study and on a study comparing wild-type and ArgP knock-out Francisella tularensis proteomes. We show that the fold change estimates of our robust approach are more precise and more accurate than those from state-of-the-art summarization-based methods and peptide-based regression models, which leads to an improved sensitivity and specificity. We also demonstrate that ionization competition effects come already into play at very low spike-in concentrations and confirm that analyses with peptide-based regression methods on peptide intensity values aggregated by charge state and modification status (e.g. MaxQuant's peptides.txt file) are slightly superior to analyses on raw peptide intensity values (e.g. MaxQuant's evidence.txt file). © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Metrics for the Human Proteome Project 2016: Progress on Identifying and Characterizing the Human Proteome, Including Post-Translational Modifications.

    Science.gov (United States)

    Omenn, Gilbert S; Lane, Lydie; Lundberg, Emma K; Beavis, Ronald C; Overall, Christopher M; Deutsch, Eric W

    2016-11-04

    The HUPO Human Proteome Project (HPP) has two overall goals: (1) stepwise completion of the protein parts list-the draft human proteome including confidently identifying and characterizing at least one protein product from each protein-coding gene, with increasing emphasis on sequence variants, post-translational modifications (PTMs), and splice isoforms of those proteins; and (2) making proteomics an integrated counterpart to genomics throughout the biomedical and life sciences community. PeptideAtlas and GPMDB reanalyze all major human mass spectrometry data sets available through ProteomeXchange with standardized protocols and stringent quality filters; neXtProt curates and integrates mass spectrometry and other findings to present the most up to date authorative compendium of the human proteome. The HPP Guidelines for Mass Spectrometry Data Interpretation version 2.1 were applied to manuscripts submitted for this 2016 C-HPP-led special issue [ www.thehpp.org/guidelines ]. The Human Proteome presented as neXtProt version 2016-02 has 16,518 confident protein identifications (Protein Existence [PE] Level 1), up from 13,664 at 2012-12, 15,646 at 2013-09, and 16,491 at 2014-10. There are 485 proteins that would have been PE1 under the Guidelines v1.0 from 2012 but now have insufficient evidence due to the agreed-upon more stringent Guidelines v2.0 to reduce false positives. neXtProt and PeptideAtlas now both require two non-nested, uniquely mapping (proteotypic) peptides of at least 9 aa in length. There are 2,949 missing proteins (PE2+3+4) as the baseline for submissions for this fourth annual C-HPP special issue of Journal of Proteome Research. PeptideAtlas has 14,629 canonical (plus 1187 uncertain and 1755 redundant) entries. GPMDB has 16,190 EC4 entries, and the Human Protein Atlas has 10,475 entries with supportive evidence. neXtProt, PeptideAtlas, and GPMDB are rich resources of information about post-translational modifications (PTMs), single amino acid

  8. Clinical proteomics identifies urinary CD14 as a potential biomarker for diagnosis of stable coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Min-Yi Lee

    Full Text Available Inflammation plays a key role in coronary artery disease (CAD and other manifestations of atherosclerosis. Recently, urinary proteins were found to be useful markers for reflecting inflammation status of different organs. To identify potential biomarker for diagnosis of CAD, we performed one-dimensional SDS-gel electrophoresis followed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS. Among the proteins differentially expressed in urine samples, monocyte antigen CD14 was found to be consistently expressed in higher amounts in the CAD patients as compared to normal controls. Using enzyme-linked immunosorbent assays to analyze the concentrations of CD14 in urine and serum, we confirmed that urinary CD14 levels were significantly higher in patients (n = 73 with multi-vessel and single vessel CAD than in normal control (n = 35 (P < 0.001. Logistic regression analysis further showed that urinary CD14 concentration level is associated with severity or number of diseased vessels and SYNTAX score after adjustment for potential confounders. Concomitantly, the proportion of CD14+ monocytes was significantly increased in CAD patients (59.7 ± 3.6% as compared with healthy controls (14.9 ± 2.1% (P < 0.001, implicating that a high level of urinary CD14 may be potentially involved in mechanism(s leading to CAD pathogenesis. By performing shotgun proteomics, we further revealed that CD14-associated inflammatory response networks may play an essential role in CAD. In conclusion, the current study has demonstrated that release of CD14 in urine coupled with more CD14+ monocytes in CAD patients is significantly correlated with severity of CAD, pointing to the potential application of urinary CD14 as a novel noninvasive biomarker for large-scale diagnostic screening of susceptible CAD patients.

  9. Biomarkers of systemic lupus erythematosus identified using mass spectrometry-based proteomics: a systematic review.

    Science.gov (United States)

    Nicolaou, Orthodoxia; Kousios, Andreas; Hadjisavvas, Andreas; Lauwerys, Bernard; Sokratous, Kleitos; Kyriacou, Kyriacos

    2017-05-01

    Advances in mass spectrometry technologies have created new opportunities for discovering novel protein biomarkers in systemic lupus erythematosus (SLE). We performed a systematic review of published reports on proteomic biomarkers identified in SLE patients using mass spectrometry-based proteomics and highlight their potential disease association and clinical utility. Two electronic databases, MEDLINE and EMBASE, were systematically searched up to July 2015. The methodological quality of studies included in the review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Twenty-five studies were included in the review, identifying 241 SLE candidate proteomic biomarkers related to various aspects of the disease including disease diagnosis and activity or pinpointing specific organ involvement. Furthermore, 13 of the 25 studies validated their results for a selected number of biomarkers in an independent cohort, resulting in the validation of 28 candidate biomarkers. It is noteworthy that 11 candidate biomarkers were identified in more than one study. A significant number of potential proteomic biomarkers that are related to a number of aspects of SLE have been identified using mass spectrometry proteomic approaches. However, further studies are required to assess the utility of these biomarkers in routine clinical practice. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  10. Proteome identification of the silkworm middle silk gland

    Directory of Open Access Journals (Sweden)

    Jian-ying Li

    2016-03-01

    Full Text Available To investigate the functional differentiation among the anterior (A, middle (M, and posterior (P regions of silkworm middle silk gland (MSG, their proteomes were characterized by shotgun LC–MS/MS analysis with a LTQ-Orbitrap mass spectrometer. To get better proteome identification and quantification, triplicate replicates of mass spectrometry analysis were performed for each sample. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaíno et al., 2014 [1] via the PRIDE partner repository (Vizcaino, 2013 [2] with the dataset identifier PXD003371. The peptide identifications that were further processed by PeptideProphet program in Trans-Proteomic Pipeline (TPP after database search with Mascot software were also available in .XML format files. Data presented here are related to a research article published in Journal of Proteomics by Li et al. (2015 [3].

  11. Proteomics - new analytical approaches

    International Nuclear Information System (INIS)

    Hancock, W.S.

    2001-01-01

    Full text: Recent developments in the sequencing of the human genome have indicated that the number of coding gene sequences may be as few as 30,000. It is clear, however, that the complexity of the human species is dependent on the much greater diversity of the corresponding protein complement. Estimates of the diversity (discrete protein species) of the human proteome range from 200,000 to 300,000 at the lower end to 2,000,000 to 3,000,000 at the high end. In addition, proteomics (the study of the protein complement to the genome) has been subdivided into two main approaches. Global proteomics refers to a high throughput examination of the full protein set present in a cell under a given environmental condition. Focused proteomics refers to a more detailed study of a restricted set of proteins that are related to a specified biochemical pathway or subcellular structure. While many of the advances in proteomics will be based on the sequencing of the human genome, de novo characterization of protein microheterogeneity (glycosylation, phosphorylation and sulfation as well as the incorporation of lipid components) will be required in disease studies. To characterize these modifications it is necessary to digest the protein mixture with an enzyme to produce the corresponding mixture of peptides. In a process analogous to sequencing of the genome, shot-gun sequencing of the proteome is based on the characterization of the key fragments produced by such a digest. Thus, a glycopeptide and hence a specific glycosylation motif will be identified by a unique mass and then a diagnostic MS/MS spectrum. Mass spectrometry will be the preferred detector in these applications because of the unparalleled information content provided by one or more dimensions of mass measurement. In addition, highly efficient separation processes are an absolute requirement for advanced proteomic studies. For example, a combination of the orthogonal approaches, HPLC and HPCE, can be very powerful

  12. Shotgun Metaproteomics of the Human Distal Gut Microbiota

    Energy Technology Data Exchange (ETDEWEB)

    Verberkmoes, Nathan C [ORNL; Erickson, Alison L [ORNL; Shah, Manesh B [ORNL; Godzik, A [Burnham Institute for Medical Research, La Jolla, CA; Rosenquist, M [Swedish University of Agricultural Sciences, Upsalla, Sweden; Halfvarsson, J [Orebro University Hospital, Orebro, Sweden; Lefsrud, Mark G [McGill University, Montreal, Quebec; Apajalahti, J. [Alimetrics Ltd,; Hettich, Robert {Bob} L [ORNL; Jansson, J [Swedish University of Agricultural Sciences, Upsalla, Sweden

    2009-01-01

    The human gut contains a dense, complex, and diverse microbial community, comprising the gut microbiome. Metagenomics has recently revealed the composition of genes in the gut microbiome, but provides no direct information about which genes are expressed or functioning. Therefore, our goal was to develop a novel approach to directly identify microbial proteins in fecal samples to gain information about what genes were expressed and about key microbial functions in the human gut. We used a non-targeted, shotgun mass spectrometry-based whole community proteomics, or metaproteomics, approach for the first deep proteome measurements of thousands of proteins in human fecal samples, thus demonstrating this approach on the most complex sample type to date. The resulting metaproteomes had a skewed distribution relative to the metagenome, with more proteins for translation, energy production, and carbohydrate metabolism compared to what was earlier predicted from metagenomics. Human proteins, including antimicrobial peptides, were also identified, providing a non-targeted glimpse of the host response to the microbiota. Several unknown proteins represented previously undescribed microbial pathways or host immune responses, revealing a novel complex interplay between the human host and its associated microbes.

  13. Shotgun metaproteomics of the human distal gut microbiota

    Energy Technology Data Exchange (ETDEWEB)

    VerBerkmoes, N.C.; Russell, A.L.; Shah, M.; Godzik, A.; Rosenquist, M.; Halfvarsson, J.; Lefsrud, M.G.; Apajalahti, J.; Tysk, C.; Hettich, R.L.; Jansson, Janet K.

    2008-10-15

    The human gut contains a dense, complex and diverse microbial community, comprising the gut microbiome. Metagenomics has recently revealed the composition of genes in the gut microbiome, but provides no direct information about which genes are expressed or functioning. Therefore, our goal was to develop a novel approach to directly identify microbial proteins in fecal samples to gain information about the genes expressed and about key microbial functions in the human gut. We used a non-targeted, shotgun mass spectrometry-based whole community proteomics, or metaproteomics, approach for the first deep proteome measurements of thousands of proteins in human fecal samples, thus demonstrating this approach on the most complex sample type to date. The resulting metaproteomes had a skewed distribution relative to the metagenome, with more proteins for translation, energy production and carbohydrate metabolism when compared to what was earlier predicted from metagenomics. Human proteins, including antimicrobial peptides, were also identified, providing a non-targeted glimpse of the host response to the microbiota. Several unknown proteins represented previously undescribed microbial pathways or host immune responses, revealing a novel complex interplay between the human host and its associated microbes.

  14. Shotgun approaches to gait analysis : insights & limitations

    NARCIS (Netherlands)

    Kaptein, Ronald G.; Wezenberg, Daphne; IJmker, Trienke; Houdijk, Han; Beek, Peter J.; Lamoth, Claudine J. C.; Daffertshofer, Andreas

    2014-01-01

    Background: Identifying features for gait classification is a formidable problem. The number of candidate measures is legion. This calls for proper, objective criteria when ranking their relevance. Methods: Following a shotgun approach we determined a plenitude of kinematic and physiological gait

  15. Evaluation of sample extraction methods for proteomics analysis of green algae Chlorella vulgaris.

    Science.gov (United States)

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-05-01

    Many protein extraction methods have been developed for plant proteome analysis but information is limited on the optimal protein extraction method from algae species. This study evaluated four protein extraction methods, i.e. direct lysis buffer method, TCA-acetone method, phenol method, and phenol/TCA-acetone method, using green algae Chlorella vulgaris for proteome analysis. The data presented showed that phenol/TCA-acetone method was superior to the other three tested methods with regards to shotgun proteomics. Proteins identified using shotgun proteomics were validated using sequential window acquisition of all theoretical fragment-ion spectra (SWATH) technique. Additionally, SWATH provides protein quantitation information from different methods and protein abundance using different protein extraction methods was evaluated. These results highlight the importance of green algae protein extraction method for subsequent MS analysis and identification. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Proteomic analysis of Fasciola hepatica excretory and secretory products (FhESPs) involved in interacting with host PBMCs and cytokines by shotgun LC-MS/MS.

    Science.gov (United States)

    Liu, Qing; Huang, Si-Yang; Yue, Dong-Mei; Wang, Jin-Lei; Wang, Yujian; Li, Xiangrui; Zhu, Xing-Quan

    2017-02-01

    Fasciola hepatica is a helminth parasite with a worldwide distribution, which can cause chronic liver disease, fasciolosis, leading to economic losses in the livestock and public health in many countries. Control is mostly reliant on the use of drugs, and as a result, drug resistance has now emerged. The identification of F. hepatica genes involved in interaction between the parasite and host immune system is utmost important to elucidate the evasion mechanisms of the parasite and develop more effective strategies against fasciolosis. In this study, we aimed to identify molecules in F. hepatica excretory and secretory products (FhESPs) interacting with the host peripheral blood mononuclear cells (PBMCs), Th1-like cytokines (IL2 and IFN-γ), and Th17-like cytokines (IL17) by Co-IP combined with tandem mass spectrometry. The results showed that 14, 16, and 9 proteins in FhESPs could bind with IL2, IL17, and IFN-γ, respectively, which indicated that adult F. hepatica may evade the host immune responses through directly interplaying with cytokines. In addition, nine proteins in FhESPs could adhere to PBMCs. Our findings provided potential targets as immuno-regulators, and will be helpful to elucidate the molecular basis of host-parasite interactions and search for new potential proteins as vaccine and drug target candidates.

  17. Application for proteomic techniques in studying osteoarthritis: a review.

    Science.gov (United States)

    Gharbi, Myriam; Deberg, Michelle; Henrotin, Yves

    2011-01-01

    After the genomic era, proteomic corresponds to a wide variety of techniques that study the protein content of cells, tissue, or organism and that allow the isolation of protein of interest. It offers the choice between gel-based and gel-free methods or shotgun proteomics. Applications of proteomic technology may concern three principal objectives in several biomedical or clinical domains of research as in osteoarthritis: (i) to understand the physiopathology or underlying mechanisms leading to a disease or associated with a particular model, (ii), to find disease-specific biomarker, and (iii) to identify new therapeutic targets. This review aimed at gathering most of the data regarding the proteomic techniques and their applications to osteoarthritis research. It also reported technical limitations and solutions, as for example for sample preparation. Proteomics open wide perspectives in biochemical research but many technical matters still remain to be solved.

  18. Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva

    Energy Technology Data Exchange (ETDEWEB)

    Mudenda, Lwiindi; Aguilar Pierle, Sebastian; Turse, Joshua E.; Scoles, Glen A.; Purvine, Samuel O.; Nicora, Carrie D.; Clauss, Therese RW; Ueti, Massaro W.; Brown, Wendy C.; Brayton, Kelly A.

    2014-08-07

    Dermacentor andersoni, known as the Rocky Mountain wood tick, is found in the western United States and transmits pathogens that cause diseases of veterinary and public health importance including Rocky Mountain spotted fever, tularemia, Colorado tick fever and bovine anaplasmosis. Tick saliva is known to modulate both innate and acquired immune responses, enabling ticks to feed for several days without detection. During feeding ticks subvert host defences such as hemostasis and inflammation, which would otherwise result in coagulation, wound repair and rejection of the tick. Molecular characterization of the proteins and pharmacological molecules secreted in tick saliva offers an opportunity to develop tick vaccines as an alternative to the use of acaricides, as well as new anti-inflammatory drugs. We performed proteomics informed by transcriptomics to identify D. andersoni saliva proteins that are secreted during feeding. The transcript data generated a database of 21,797 consensus sequences, which we used to identify 677 proteins secreted in the saliva of D. andersoni ticks fed for 2 and 5 days, following proteomic investigations of whole saliva using mass spectrometry. Salivary gland transcript levels of unfed ticks were compared with 2 and 5 day fed ticks to identify genes upregulated early during tick feeding. We cross-referenced the proteomic data with the transcriptomic data to identify 157 proteins of interest for immunomodulation and blood feeding. Proteins of unknown function as well as known immunomodulators were identified.

  19. Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity

    DEFF Research Database (Denmark)

    Lasonder, Edwin; Janse, Chris J; van Gemert, Geert-Jan

    2008-01-01

    Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in humans. Here we report the first proteomic comparison of different parasite stages from the mosquito -- early and late oocysts containing midgut sporozoites, and the mature...... whose annotation suggest an involvement in sporozoite maturation, motility, infection of the human host and associated metabolic adjustments. Analyses of proteins identified in the P. falciparum sporozoite proteomes by orthologous gene disruption in the rodent malaria parasite, P. berghei, revealed...... three previously uncharacterized Plasmodium proteins that appear to be essential for sporozoite development at distinct points of maturation in the mosquito. This study sheds light on the development and maturation of the malaria parasite in an Anopheles mosquito and also identifies proteins that may...

  20. Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods

    DEFF Research Database (Denmark)

    Jakobsen, Lis; Vanselow, Katja; Skogs, Marie

    2011-01-01

    Centrosomes in animal cells are dynamic organelles with a proteinaceous matrix of pericentriolar material assembled around a pair of centrioles. They organize the microtubule cytoskeleton and the mitotic spindle apparatus. Mature centrioles are essential for biogenesis of primary cilia that mediate...... by identifying a novel set of five proteins preferentially associated with mother or daughter centrioles, comprising genes implicated in cell polarity. Pulsed labelling demonstrates a remarkable variation in the stability of centrosomal protein complexes. These spatiotemporal proteomics data provide leads...

  1. Convergent transcriptomics and proteomics of environmental enrichment and cocaine identifies novel therapeutic strategies for addiction.

    Science.gov (United States)

    Zhang, Yafang; Crofton, Elizabeth J; Fan, Xiuzhen; Li, Dingge; Kong, Fanping; Sinha, Mala; Luxon, Bruce A; Spratt, Heidi M; Lichti, Cheryl F; Green, Thomas A

    2016-12-17

    Transcriptomic and proteomic approaches have separately proven effective at identifying novel mechanisms affecting addiction-related behavior; however, it is difficult to prioritize the many promising leads from each approach. A convergent secondary analysis of proteomic and transcriptomic results can glean additional information to help prioritize promising leads. The current study is a secondary analysis of the convergence of recently published separate transcriptomic and proteomic analyses of nucleus accumbens (NAc) tissue from rats subjected to environmental enrichment vs. isolation and cocaine self-administration vs. saline. Multiple bioinformatics approaches (e.g. Gene Ontology (GO) analysis, Ingenuity Pathway Analysis (IPA), and Gene Set Enrichment Analysis (GSEA)) were used to interrogate these rich data sets. Although there was little correspondence between mRNA vs. protein at the individual target level, good correspondence was found at the level of gene/protein sets, particularly for the environmental enrichment manipulation. These data identify gene sets where there is a positive relationship between changes in mRNA and protein (e.g. glycolysis, ATP synthesis, translation elongation factor activity, etc.) and gene sets where there is an inverse relationship (e.g. ribosomes, Rho GTPase signaling, protein ubiquitination, etc.). Overall environmental enrichment produced better correspondence than cocaine self-administration. The individual targets contributing to mRNA and protein effects were largely not overlapping. As a whole, these results confirm that robust transcriptomic and proteomic data sets can provide similar results at the gene/protein set level even when there is little correspondence at the individual target level and little overlap in the targets contributing to the effects. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Proteomic analysis identifies mitochondrial metabolic enzymes as major discriminators between different stages of the failing human myocardium

    DEFF Research Database (Denmark)

    Urbonavicius, Sigitas; Wiggers, Henrik; Bøtker, Hans Erik

    2009-01-01

    Our aim was to identify patterns in differentially regulated proteins associated with the progression of chronic heart failure. We specifically studied proteomics in chronic reversibly (RDM) and irreversibly dysfunctional myocardium (IRDM), as well as end-stage failing myocardium (ESFM)....

  3. A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck

    OpenAIRE

    Zeng, Yunliu; Pan, Zhiyong; Ding, Yuduan; Zhu, Andan; Cao, Hongbo; Xu, Qiang; Deng, Xiuxin

    2011-01-01

    Here, a comprehensive proteomic analysis of the chromoplasts purified from sweet orange using Nycodenz density gradient centrifugation is reported. A GeLC-MS/MS shotgun approach was used to identify the proteins of pooled chromoplast samples. A total of 493 proteins were identified from purified chromoplasts, of which 418 are putative plastid proteins based on in silico sequence homology and functional analyses. Based on the predicted functions of these identified plastid proteins, a large pr...

  4. Evaluation of approaches to identify the targets of cellular immunity on a proteome-wide scale.

    Directory of Open Access Journals (Sweden)

    Fernanda C Cardoso

    Full Text Available BACKGROUND: Vaccine development against malaria and other complex diseases remains a challenge for the scientific community. The recent elucidation of the genome, proteome and transcriptome of many of these complex pathogens provides the basis for rational vaccine design by identifying, on a proteome-wide scale, novel target antigens that are recognized by T cells and antibodies from exposed individuals. However, there is currently no algorithm to effectively identify important target antigens from genome sequence data; this is especially challenging for T cell targets. Furthermore, for some of these pathogens, such as Plasmodium, protein expression using conventional platforms has been problematic but cell-free in vitro transcription translation (IVTT strategies have recently proved successful. Herein, we report a novel approach for proteome-wide scale identification of the antigenic targets of T cell responses using IVTT products. PRINCIPAL FINDINGS: We conducted a series of in vitro and in vivo experiments using IVTT proteins either unpurified, absorbed to carboxylated polybeads, or affinity purified through nickel resin or magnetic beads. In vitro studies in humans using CMV, EBV, and Influenza A virus proteins showed antigen-specific cytokine production in ELIspot and Cytometric Bead Array assays with cells stimulated with purified or unpurified IVTT antigens. In vitro and in vivo studies in mice immunized with the Plasmodium yoelii circumsporozoite DNA vaccine with or without IVTT protein boost showed antigen-specific cytokine production using purified IVTT antigens only. Overall, the nickel resin method of IVTT antigen purification proved optimal in both human and murine systems. CONCLUSIONS: This work provides proof of concept for the potential of high-throughput approaches to identify T cell targets of complex parasitic, viral or bacterial pathogens from genomic sequence data, for rational vaccine development against emerging and re

  5. Identifying cytotoxic T cell epitopes from genomic and proteomic information: "The human MHC project."

    DEFF Research Database (Denmark)

    Lauemøller, S L; Kesmir, C; Corbet, S L

    2000-01-01

    discrimination, even at the peptide level. It is not surprising that peptides are key targets of the immune system. It follows that proteomes can be translated into immunogens once it is known how the immune system generates and handles peptides. Recent advances have identified many of the basic principles...... processing, as these become available. The ability to translate the accumulating primary sequence databases in terms of immune recognition should enable scientists and clinicians to analyze any protein of interest for the presence of potentially immunogenic epitopes. The computational tools to scan entire...

  6. Proteomic profiling of human plasma exosomes identifies PPARγ as an exosome-associated protein

    International Nuclear Information System (INIS)

    Looze, Christopher; Yui, David; Leung, Lester; Ingham, Matthew; Kaler, Maryann; Yao, Xianglan; Wu, Wells W.; Shen Rongfong; Daniels, Mathew P.; Levine, Stewart J.

    2009-01-01

    Exosomes are nanovesicles that are released from cells as a mechanism of cell-free intercellular communication. Only a limited number of proteins have been identified from the plasma exosome proteome. Here, we developed a multi-step fractionation scheme incorporating gel exclusion chromatography, rate zonal centrifugation through continuous sucrose gradients, and high-speed centrifugation to purify exosomes from human plasma. Exosome-associated proteins were separated by SDS-PAGE and 66 proteins were identified by LC-MS/MS, which included both cellular and extracellular proteins. Furthermore, we identified and characterized peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear receptor that regulates adipocyte differentiation and proliferation, as well as immune and inflammatory cell functions, as a novel component of plasma-derived exosomes. Given the important role of exosomes as intercellular messengers, the discovery of PPARγ as a component of human plasma exosomes identifies a potential new pathway for the paracrine transfer of nuclear receptors.

  7. A Comparative Quantitative Proteomic Study Identifies New Proteins Relevant for Sulfur Oxidation in the Purple Sulfur Bacterium Allochromatium vinosum

    OpenAIRE

    Weissgerber, Thomas; Sylvester, Marc; Kröninger, Lena; Dahl, Christiane

    2014-01-01

    In the present study, we compared the proteome response of Allochromatium vinosum when growing photoautotrophically in the presence of sulfide, thiosulfate, and elemental sulfur with the proteome response when the organism was growing photoheterotrophically on malate. Applying tandem mass tag analysis as well as two-dimensional (2D) PAGE, we detected 1,955 of the 3,302 predicted proteins by identification of at least two peptides (59.2%) and quantified 1,848 of the identified proteins. Altere...

  8. Deep Proteome Analysis Identifies Age-Related Processes in C. elegans.

    Science.gov (United States)

    Narayan, Vikram; Ly, Tony; Pourkarimi, Ehsan; Murillo, Alejandro Brenes; Gartner, Anton; Lamond, Angus I; Kenyon, Cynthia

    2016-08-01

    Effective network analysis of protein data requires high-quality proteomic datasets. Here, we report a near doubling in coverage of the C. elegans adult proteome, identifying >11,000 proteins in total with ∼9,400 proteins reproducibly detected in three biological replicates. Using quantitative mass spectrometry, we identify proteins whose abundances vary with age, revealing a concerted downregulation of proteins involved in specific metabolic pathways and upregulation of cellular stress responses with advancing age. Among these are ∼30 peroxisomal proteins, including the PRX-5/PEX5 import protein. Functional experiments confirm that protein import into the peroxisome is compromised in vivo in old animals. We also studied the behavior of the set of age-variant proteins in chronologically age-matched, long-lived daf-2 insulin/IGF-1-pathway mutants. Unexpectedly, the levels of many of these age-variant proteins did not scale with extended lifespan. This indicates that, despite their youthful appearance and extended lifespans, not all aspects of aging are reset in these long-lived mutants. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Comprehensive evaluation of Toxoplasma gondii VEG and Neospora caninum LIV genomes with tachyzoite stage transcriptome and proteome defines novel transcript features

    DEFF Research Database (Denmark)

    Ramaprasad, Abhinay; Mourier, Tobias; Naeem, Raeece

    2015-01-01

    genomics of these two closely related coccidians has been of particular interest to identify genes that contribute to varied host cell specificity and disease. Here, we describe a manual evaluation of these genomes based on strand-specific RNA sequencing and shotgun proteomics from the invasive tachyzoite...

  10. Suicidal shotgun wound employing a shotgun barrel, a shotgun shell, and a BB.

    Science.gov (United States)

    Linert, Brian; Regnier, Janis; Doyle, Barrett W; Prahlow, Joseph A

    2010-03-01

    A vast majority of firearms-related suicides involve the conventional use of a properly functioning, intact firearm. Occasionally, forensic investigators encounter a case wherein the firearm suicide victim employs some form of unconventional use of a weapon, or utilizes an unusual weapon type. In this case report, the authors present an unusual case in which a man committed suicide by using a shotgun shell, a shotgun barrel (separate from the rest of the gun), and a BB. Some confusion as to the cause and manner of death was present during the initial scene investigation. Examination at autopsy revealed the cause of death to be a shotgun wound of the chest and prompted further scene investigation. Therefore, this case serves as another example of the importance of cooperation between scene investigators and forensic pathologists when investigating a death. A review of suicidal firearm cases using unconventional means and/or firearms is presented.

  11. Modern uses of proteome to identify the biological effects of radiation

    International Nuclear Information System (INIS)

    Ashry, O.M.

    2014-01-01

    Recent advances in molecular biology, genetics, and clinical research are transforming the understanding of the molecular mechanisms of human diseases and in particular of endocrine disorders. It is now clear, more than ever, that disease is a function of genes, whether they are involved directly or indirectly through the environment. The significant advances have occurred through the completion of the sequencing of human genome. Proteomics have gained much attention as a drug development platform because disease processes and treatments are often manifested at the protein level. Protein expression profiles are used in cancer research to identify tumor subtypes and to achieve a more reliable and objective classification. Molecular analysis allows for subgrouping based on genomic or proteomic profiles together with histopathology evaluation in colorectal cancer, breast cancer, lung cancer, lymphomas and others. The identification of markers for bladder cancer was reported that defines the degree of differentiation. It could be a new field for studying and detecting irradiation induced physiological changes on protein expressions rather than on the chromosome as a whole. (author)

  12. Plasma proteome coverage is increased by unique peptide recovery from sodium deoxycholate precipitate.

    Science.gov (United States)

    Serra, Aida; Zhu, Hongbin; Gallart-Palau, Xavier; Park, Jung Eun; Ho, Hee Haw; Tam, James P; Sze, Siu Kwan

    2016-03-01

    The ionic detergent sodium deoxycholate (SDC) is compatible with in-solution tryptic digestion and LC-MS/MS-based shotgun proteomics by virtue of being easy to separate from the peptide products via precipitation in acidic buffers. However, it remains unclear whether unique human peptides co-precipitate with SDC during acid treatment of complex biological samples. In this study, we demonstrate for the first time that a large quantity of unique peptides in human blood plasma can be co-precipitated with SDC using an optimized sample preparation method prior to shotgun proteomic analysis. We show that the plasma peptides co-precipitated with SDC can be successfully recovered using a sequential re-solubilization and precipitation procedure, and that this approach is particularly efficient at the extraction of long peptides. Recovery of peptides from the SDC pellet dramatically increased overall proteome coverage (>60 %), thereby improving the identification of low-abundance proteins and enhancing the identification of protein components of membrane-bound organelles. In addition, when we analyzed the physiochemical properties of the co-precipitated peptides, we observed that SDC-based sample preparation improved the identification of mildly hydrophilic/hydrophobic proteins that would otherwise be lost upon discarding the pellet. These data demonstrate that the optimized SDC protocol is superior to sodium dodecyl sulfate (SDS)/urea treatment for identifying plasma biomarkers by shotgun proteomics.

  13. Mass spectrometry (LC-MS/MS) identified proteomic biosignatures of breast cancer in proximal fluid

    Science.gov (United States)

    Whelan, Stephen A.; He, Jianbo; Lu, Ming; Souda, Puneet; Saxton, Romaine E.; Faull, Kym F.; Whitelegge, Julian P.; Chang, Helena R.

    2012-01-01

    Summary We have begun an early phase of biomarker discovery in three clinically important types of breast cancer using a panel of human cell lines: HER2 positive, HER2 negative and hormone receptor positive and triple negative (HER2−, ER−, PR−). We identified and characterized the most abundant secreted, sloughed, or leaked proteins released into serum free media from these breast cancer cell lines using a combination of protein fractionation methods before LC-MS/MS mass spectrometry analysis. A total of 249 proteins were detected in the proximal fluid of 7 breast cancer cell lines. The expression of a selected group of high abundance and/or breast cancer specific potential biomarkers including thromobospondin 1, galectin-3 binding protein, cathepsin D, vimentin, zinc-α2-glycoprotein, CD44, and EGFR from the breast cancer cell lines and in their culture media were further validated by Western blot analysis. Interestingly, mass spectrometry identified a cathepsin D protein single-nucleotide polymorphism (SNP) by alanine to valine replacement from the MCF-7 breast cancer cell line. Comparison of each cell line media proteome displayed unique and consistent biosignatures regardless of the individual group classifications demonstrating the potential for stratification of breast cancer. Based on the cell line media proteome, predictive Tree software was able to categorize each cell line as HER2 positive, HER2 negative and hormone receptor positive and triple negative based on only two proteins, muscle fructose 1,6-bisphosphate aldolase and keratin 19. In addition, the predictive Tree software clearly identified MCF-7 cell line overexpresing the HER2 receptor with the SNP cathepsin D biomarker. PMID:22934887

  14. Identifying Predictors of Taxane-Induced Peripheral Neuropathy Using Mass Spectrometry-Based Proteomics Technology.

    Directory of Open Access Journals (Sweden)

    Emily I Chen

    Full Text Available Major advances in early detection and therapy have significantly increased the survival of breast cancer patients. Unfortunately, most cancer therapies are known to carry a substantial risk of adverse long-term treatment-related effects. Little is known about patient susceptibility to severe side effects after chemotherapy. Chemotherapy-induced peripheral neuropathy (CIPN is a common side effect of taxanes. Recent advances in genome-wide genotyping and sequencing technologies have supported the discoveries of a number of pharmacogenetic markers that predict response to chemotherapy. However, effectively implementing these pharmacogenetic markers in the clinic remains a major challenge. On the other hand, recent advances in proteomic technologies incorporating mass spectrometry (MS for biomarker discovery show great promise to provide clinically relevant protein biomarkers. In this study, we evaluated the association between protein content in serum exosomes and severity of CIPN. Women with early stage breast cancer receiving adjuvant taxane chemotherapy were assessed with the FACT-Ntx score and serum was collected before and after the taxane treatment. Based on the change in FACT-Ntx score from baseline to 12 month follow-up, we separated patients into two groups: those who had no change (Group 1, N = 9 and those who had a ≥20% worsening (Group 1, N = 8. MS-based proteomics technology was used to identify proteins present in serum exosomes to determine potential biomarkers. Mann-Whitney-Wilcoxon analysis was applied and maximum FDR was controlled at 20%. From the serum exosomes derived from this cohort, we identified over 700 proteins known to be in different subcellular locations and have different functions. Statistical analysis revealed a 12-protein signature that resulted in a distinct separation between baseline serum samples of both groups (q<0.2 suggesting that the baseline samples can predict subsequent neurotoxicity. These toxicity

  15. Novel snail1 target proteins in human colon cancer identified by proteomic analysis.

    Directory of Open Access Journals (Sweden)

    María Jesús Larriba

    2010-04-01

    Full Text Available The transcription factor Snail1 induces epithelial-to-mesenchymal transition (EMT, a process responsible for the acquisition of invasiveness during tumorigenesis. Several transcriptomic studies have reported Snail1-regulated genes in different cell types, many of them involved in cell adhesion. However, only a few studies have used proteomics as a tool for the characterization of proteins mediating EMT.We identified by proteomic analysis using 2D-DIGE electrophoresis combined with MALDI-TOF-TOF and ESI-linear ion trap mass spectrometry a number of proteins with variable functions whose expression is modulated by Snail1 in SW480-ADH human colon cancer cells. Validation was performed by Western blot and immunofluorescence analyses. Snail1 repressed several members of the 14-3-3 family of phosphoserine/phosphothreonine binding proteins and also the expression of the Proliferation-associated protein 2G4 (PA2G4 that was mainly localized at the nuclear Cajal bodies. In contrast, the expression of two proteins involved in RNA processing, the Cleavage and polyadenylation specificity factor subunit 6 (CPSF6 and the Splicing factor proline/glutamine-rich (SFPQ, was higher in Snail1-expressing cells than in controls. The regulation of 14-3-3epsilon, 14-3-3tau, 14-3-3zeta and PA2G4 by Snail1 was reproduced in HT29 colon cancer cells. In addition, we found an inverse correlation between 14-3-3sigma and Snail1 expression in human colorectal tumors.We have identified a set of novel Snail1 target proteins in colon cancer that expand the cellular processes affected by Snail1 and thus its relevance for cell function and phenotype.

  16. Comparative transcriptomics and proteomics of three different aphid species identifies core and diverse effector sets.

    Science.gov (United States)

    Thorpe, Peter; Cock, Peter J A; Bos, Jorunn

    2016-03-02

    Aphids are phloem-feeding insects that cause significant economic losses to agriculture worldwide. While feeding and probing these insects deliver molecules, called effectors, inside their host to enable infestation. The identification and characterization of these effectors from different species that vary in their host range is an important step in understanding the infestation success of aphids and aphid host range variation. This study employs a multi-disciplinary approach based on transcriptome sequencing and proteomics to identify and compare effector candidates from the broad host range aphid Myzus persicae (green peach aphid) (genotypes O, J and F), and narrow host range aphids Myzus cerasi (black cherry aphid) and Rhopalosiphum padi (bird-cherry oat aphid). Using a combination of aphid transcriptome sequencing on libraries derived from head versus body tissues as well as saliva proteomics we were able to predict candidate effectors repertoires from the different aphid species and genotypes. Among the identified conserved or core effector sets, we identified a significant number of previously identified aphid candidate effectors indicating these proteins may be involved in general infestation strategies. Moreover, we identified aphid candidate effector sequences that were specific to one species, which are interesting candidates for further validation and characterization with regards to species-specific functions during infestation. We assessed our candidate effector repertoires for evidence of positive selection, and identified 49 candidates with DN/DS ratios >1. We noted higher rates of DN/DS ratios in predicted aphid effectors than non-effectors. Whether this reflects positive selection due to co-evolution with host plants, or increased neofunctionalization upon gene duplication remains to be investigated. Our work provides a comprehensive overview of the candidate effector repertoires from three different aphid species with varying host ranges

  17. Analyses of the xylem sap proteomes identified candidate Fusarium virguliforme proteinacious toxins.

    Directory of Open Access Journals (Sweden)

    Nilwala S Abeysekara

    Full Text Available Sudden death syndrome (SDS caused by the ascomycete fungus, Fusarium virguliforme, exhibits root necrosis and leaf scorch or foliar SDS. The pathogen has never been identified from the above ground diseased foliar tissues. Foliar SDS is believed to be caused by host selective toxins, including FvTox1, secreted by the fungus. This study investigated if the xylem sap of F. virguliforme-infected soybean plants contains secreted F. virguliforme-proteins, some of which could cause foliar SDS development.Xylem sap samples were collected from five biological replications of F. virguliforme-infected and uninfected soybean plants under controlled conditions. We identified five F. virguliforme proteins from the xylem sap of the F. virguliforme-infected soybean plants by conducting LC-ESI-MS/MS analysis. These five proteins were also present in the excreted proteome of the pathogen in culture filtrates. One of these proteins showed high sequence identity to cerato-platanin, a phytotoxin produced by Ceratocystis fimbriata f. sp. platani to cause canker stain disease in the plane tree. Of over 500 soybean proteins identified in this study, 112 were present in at least 80% of the sap samples collected from F. virguliforme-infected and -uninfected control plants. We have identified four soybean defense proteins from the xylem sap of F. virguliforme-infected soybean plants. The data have been deposited to the ProteomeXchange with identifier PXD000873.This study confirms that a few F. virguliforme proteins travel through the xylem, some of which could be involved in foliar SDS development. We have identified five candidate proteinaceous toxins, one of which showed high similarity to a previously characterized phytotoxin. We have also shown the presence of four soybean defense proteins in the xylem sap of F. virguliforme-infected soybean plants. This study laid the foundation for studying the molecular basis of foliar SDS development in soybean and possible

  18. Quantitative proteomics and integrative network analysis identified novel genes and pathways related to osteoporosis.

    Science.gov (United States)

    Zeng, Yong; Zhang, Lan; Zhu, Wei; Xu, Chao; He, Hao; Zhou, Yu; Liu, Yao-Zhong; Tian, Qing; Zhang, Ji-Gang; Deng, Fei-Yan; Hu, Hong-Gang; Zhang, Li-Shu; Deng, Hong-Wen

    2016-06-16

    Osteoporosis is mainly characterized by low bone mineral density (BMD), and can be attributed to excessive bone resorption by osteoclasts. Migration of circulating monocytes from blood to bone is important for subsequent osteoclast differentiation and bone resorption. Identification of those genes and pathways related to osteoclastogenesis and BMD will contribute to a better understanding of the pathophysiological mechanisms of osteoporosis. In this study, we applied the LC-nano-ESI-MS(E) (Liquid Chromatograph-nano-Electrospray Ionization-Mass Spectrometry) for quantitative proteomic profiling in 33 female Caucasians with discordant BMD levels, with 16 high vs. 17 low BMD subjects. Protein quantitation was accomplished by label-free measurement of total ion currents collected from MS(E) data. Comparison of protein expression in high vs. low BMD subjects showed that ITGA2B (p=0.0063) and GSN (p=0.019) were up-regulated in the high BMD group. Additionally, our protein-RNA integrative analysis showed that RHOA (p=0.00062) differentially expressed between high vs. low BMD groups. Network analysis based on multiple tools revealed two pathways: "regulation of actin cytoskeleton" (p=1.13E-5, FDR=3.34E-4) and "leukocyte transendothelial migration" (p=2.76E-4, FDR=4.71E-3) that are functionally relevant to osteoporosis. Consistently, ITGA2B, GSN and RHOA played crucial roles in these two pathways respectively. All together, our study strongly supported the contribution of the genes ITGA2B, GSN and RHOA and the two pathways to osteoporosis risk. Mass spectrometry based quantitative proteomics study integrated with network analysis identified novel genes and pathways related to osteoporosis. The results were further verified in multiple level studies including protein-RNA integrative analysis and genome wide association studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Identifying active methane-oxidizers in thawed Arctic permafrost by proteomics

    Science.gov (United States)

    Lau, C. M.; Stackhouse, B. T.; Chourey, K.; Hettich, R. L.; Vishnivetskaya, T. A.; Pfiffner, S. M.; Layton, A. C.; Mykytczuk, N. C.; Whyte, L.; Onstott, T. C.

    2012-12-01

    The rate of CH4 release from thawing permafrost in the Arctic has been regarded as one of the determining factors on future global climate. It is uncertain how indigenous microorganisms would interact with such changing environmental conditions and hence their impact on the fate of carbon compounds that are sequestered in the cryosol. Multitudinous studies of pristine surface cryosol (top 5 cm) and microcosm experiments have provided growing evidence of effective methanotrophy. Cryosol samples corresponding to active layer were sampled from a sparsely vegetated, ice-wedge polygon at the McGill Arctic Research Station at Axel Heiberg Island, Nunavut, Canada (N79°24, W90°45) before the onset of annual thaw. Pyrosequencing of 16S rRNA gene indicated the occurrence of methanotroph-containing bacterial families as minor components (~5%) in pristine cryosol including Bradyrhizobiaceae, Methylobacteriaceae and Methylocystaceae within alpha-Proteobacteria, and Methylacidiphilaceae within Verrucomicrobia. The potential of methanotrophy is supported by preliminary analysis of metagenome data, which indicated putative methane monooxygenase gene sequences relating to Bradyrhizobium sp. and Pseudonocardia sp. are present. Proteome profiling in general yielded minute traces of proteins, which likely hints at dormant nature of the soil microbial consortia. The lack of specific protein database for permafrost posted additional challenge to protein identification. Only 35 proteins could be identified in the pristine cryosol and of which 60% belonged to Shewanella sp. Most of the identified proteins are known to be involved in energy metabolism or post-translational modification of proteins. Microcosms amended with sodium acetate exhibited a net methane consumption of ~65 ngC-CH4 per gram (fresh weight) of soil over 16 days of aerobic incubation at room temperature. The pH in microcosm materials remained acidic (decreased from initial 4.7 to 4.5). Protein extraction and

  20. SILAC Proteomics of Planarians Identifies Ncoa5 as a Conserved Component of Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Alexander Böser

    2013-11-01

    Full Text Available Planarian regeneration depends on the presence of pluripotent stem cells in the adult. We developed an in vivo stable isotope labeling by amino acids in cell culture (SILAC protocol in planarians to identify proteins that are enriched in planarian stem cells. Through a comparison of SILAC proteomes of normal and stem cell-depleted planarians and of a stem cell-enriched population of sorted cells, we identified hundreds of stem cell proteins. One of these is an ortholog of nuclear receptor coactivator-5 (Ncoa5/CIA, which is known to regulate estrogen-receptor-mediated transcription in human cells. We show that Ncoa5 is essential for the maintenance of the pluripotent stem cell population in planarians and that a putative mouse ortholog is expressed in pluripotent cells of the embryo. Our study thus identifies a conserved component of pluripotent stem cells, demonstrating that planarians, in particular, when combined with in vivo SILAC, are a powerful model in stem cell research.

  1. SILAC proteomics of planarians identifies Ncoa5 as a conserved component of pluripotent stem cells.

    Science.gov (United States)

    Böser, Alexander; Drexler, Hannes C A; Reuter, Hanna; Schmitz, Henning; Wu, Guangming; Schöler, Hans R; Gentile, Luca; Bartscherer, Kerstin

    2013-11-27

    Planarian regeneration depends on the presence of pluripotent stem cells in the adult. We developed an in vivo stable isotope labeling by amino acids in cell culture (SILAC) protocol in planarians to identify proteins that are enriched in planarian stem cells. Through a comparison of SILAC proteomes of normal and stem cell-depleted planarians and of a stem cell-enriched population of sorted cells, we identified hundreds of stem cell proteins. One of these is an ortholog of nuclear receptor coactivator-5 (Ncoa5/CIA), which is known to regulate estrogen-receptor-mediated transcription in human cells. We show that Ncoa5 is essential for the maintenance of the pluripotent stem cell population in planarians and that a putative mouse ortholog is expressed in pluripotent cells of the embryo. Our study thus identifies a conserved component of pluripotent stem cells, demonstrating that planarians, in particular, when combined with in vivo SILAC, are a powerful model in stem cell research. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Quantitative proteomics identify molecular targets that are crucial in larval settlement and metamorphosis of bugula neritina

    KAUST Repository

    Zhang, Huoming

    2011-01-07

    The marine invertebrate Bugula neritina has a biphasic life cycle that consists of a swimming larval stage and a sessile juvenile and adult stage. The attachment of larvae to the substratum and their subsequent metamorphosis have crucial ecological consequences. Despite many studies on this species, little is known about the molecular mechanism of these processes. Here, we report a comparative study of swimming larvae and metamorphosing individuals at 4 and 24 h postattachment using label-free quantitative proteomics. We identified more than 1100 proteins at each stage, 61 of which were differentially expressed. Specifically, proteins involved in energy metabolism and structural molecules were generally down-regulated, whereas proteins involved in transcription and translation, the extracellular matrix, and calcification were strongly up-regulated during metamorphosis. Many tightly regulated novel proteins were also identified. Subsequent analysis of the temporal and spatial expressions of some of the proteins and an assay of their functions indicated that they may have key roles in metamorphosis of B. neritina. These findings not only provide molecular evidence with which to elucidate the substantial changes in morphology and physiology that occur during larval attachment and metamorphosis but also identify potential targets for antifouling treatment. © 2011 American Chemical Society.

  3. Proteomic Analysis of Saliva Identifies Potential Biomarkers for Orthodontic Tooth Movement

    Science.gov (United States)

    Ellias, Mohd Faiz; Zainal Ariffin, Shahrul Hisham; Karsani, Saiful Anuar; Abdul Rahman, Mariati; Senafi, Shahidan; Megat Abdul Wahab, Rohaya

    2012-01-01

    Orthodontic treatment has been shown to induce inflammation, followed by bone remodelling in the periodontium. These processes trigger the secretion of various proteins and enzymes into the saliva. This study aims to identify salivary proteins that change in expression during orthodontic tooth movement. These differentially expressed proteins can potentially serve as protein biomarkers for the monitoring of orthodontic treatment and tooth movement. Whole saliva from three healthy female subjects were collected before force application using fixed appliance and at 14 days after 0.014′′ Niti wire was applied. Salivary proteins were resolved using two-dimensional gel electrophoresis (2DE) over a pH range of 3–10, and the resulting proteome profiles were compared. Differentially expressed protein spots were then identified by MALDI-TOF/TOF tandem mass spectrometry. Nine proteins were found to be differentially expressed; however, only eight were identified by MALDI-TOF/TOF. Four of these proteins—Protein S100-A9, immunoglobulin J chain, Ig alpha-1 chain C region, and CRISP-3—have known roles in inflammation and bone resorption. PMID:22919344

  4. Proteomics strategy for identifying candidate bioactive proteins in complex mixtures: application to the platelet releasate.

    LENUS (Irish Health Repository)

    O'Connor, Roisin

    2010-01-01

    Proteomic approaches have proven powerful at identifying large numbers of proteins, but there are fewer reports of functional characterization of proteins in biological tissues. Here, we describe an experimental approach that fractionates proteins released from human platelets, linking bioassay activity to identity. We used consecutive orthogonal separation platforms to ensure sensitive detection: (a) ion-exchange of intact proteins, (b) SDS-PAGE separation of ion-exchange fractions and (c) HPLC separation of tryptic digests coupled to electrospray tandem mass spectrometry. Migration of THP-1 monocytes in response to complete or fractionated platelet releasate was assessed and located to just one of the forty-nine ion-exchange fractions. Over 300 proteins were identified in the releasate, with a wide range of annotated biophysical and biochemical properties, in particular platelet activation, adhesion, and wound healing. The presence of PEDF and involucrin, two proteins not previously reported in platelet releasate, was confirmed by western blotting. Proteins identified within the fraction with monocyte promigratory activity and not in other inactive fractions included vimentin, PEDF, and TIMP-1. We conclude that this analytical platform is effective for the characterization of complex bioactive samples.

  5. Downregulation of GNA13-ERK network in prefrontal cortex of schizophrenia brain identified by combined focused and targeted quantitative proteomics.

    Science.gov (United States)

    Hirayama-Kurogi, Mio; Takizawa, Yohei; Kunii, Yasuto; Matsumoto, Junya; Wada, Akira; Hino, Mizuki; Akatsu, Hiroyasu; Hashizume, Yoshio; Yamamoto, Sakon; Kondo, Takeshi; Ito, Shingo; Tachikawa, Masanori; Niwa, Shin-Ichi; Yabe, Hirooki; Terasaki, Tetsuya; Setou, Mitsutoshi; Ohtsuki, Sumio

    2017-03-31

    Schizophrenia is a disabling mental illness associated with dysfunction of the prefrontal cortex, which affects cognition and emotion. The purpose of the present study was to identify altered molecular networks in the prefrontal cortex of schizophrenia patients by comparing protein expression levels in autopsied brains of patients and controls, using a combination of targeted and focused quantitative proteomics. We selected 125 molecules possibly related to schizophrenia for quantification by knowledge-based targeted proteomics. Among the quantified molecules, GRIK4 and MAO-B were significantly decreased in plasma membrane and cytosolic fractions, respectively, of prefrontal cortex. Focused quantitative proteomics identified 15 increased and 39 decreased proteins. Network analysis identified "GNA13-ERK1-eIF4G2 signaling" as a downregulated network, and proteins involved in this network were significantly decreased. Furthermore, searching downstream of eIF4G2 revealed that eIF4A1/2 and CYFIP1 were decreased, suggesting that downregulation of the network suppresses expression of CYFIP1, which regulates actin remodeling and is involved in axon outgrowth and spine formation. Downregulation of this signaling seems likely to impair axon formation and synapse plasticity of neuronal cells, and could be associated with development of cognitive impairment in the pathology of schizophrenia. The present study compared the proteome of the prefrontal cortex between schizophrenia patients and healthy controls by means of targeted proteomics and global quantitative proteomics. Targeted proteomics revealed that GRIK4 and MAOB were significantly decreased among 125 putatively schizophrenia-related proteins in prefrontal cortex of schizophrenia patients. Global quantitative proteomics identified 54 differentially expressed proteins in schizophrenia brains. The protein profile indicates attenuation of "GNA13-ERK signaling" in schizophrenia brain. In particular, EIF4G2 and CYFIP1

  6. A proteogenomics approach integrating proteomics and ribosome profiling increases the efficiency of protein identification and enables the discovery of alternative translation start sites

    Science.gov (United States)

    Koch, Alexander; Gawron, Daria; Steyaert, Sandra; Ndah, Elvis; Crappé, Jeroen; De Keulenaer, Sarah; De Meester, Ellen; Ma, Ming; Shen, Ben; Gevaert, Kris; Van Criekinge, Wim; Van Damme, Petra; Menschaert, Gerben

    2015-01-01

    Next-generation transcriptome sequencing is increasingly integrated with mass spectrometry to enhance MS-based protein and peptide identification. Recently, a breakthrough in transcriptome analysis was achieved with the development of ribosome profiling (ribo-seq). This technology is based on the deep sequencing of ribosome-protected mRNA fragments, thereby enabling the direct observation of in vivo protein synthesis at the transcript level. In order to explore the impact of a ribo-seq-derived protein sequence search space on MS/MS spectrum identification, we performed a comprehensive proteome study on a human cancer cell line, using both shotgun and N-terminal proteomics, next to ribosome profiling, which was used to delineate (alternative) translational reading-frames. By including protein-level evidence of sample-specific genetic variation and alternative translation, this strategy improved the identification score of 69 proteins and identified 22 new proteins in the shotgun experiment. Furthermore, we discovered 18 new alternative translation start sites in the N-terminal proteomics data and observed a correlation between the quantitative measures of ribo-seq and shotgun proteomics with a Pearson correlation coefficient ranging from 0.483 to 0.664. Overall, this study demonstrated the benefits of ribosome profiling for MS-based protein and peptide identification and we believe this approach could develop into a common practice for next-generation proteomics. PMID:25156699

  7. Identifying Key Proteins in Hg Methylation Pathways of Desulfovibrio by Global Proteomics, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Summers, Anne O. [Univ. of Georgia, Athens, GA (United States). Dept. of Microbiology; Miller, Susan M. [Univ. of California, San Francisco, CA (United States). Dept. of Pharmaceutical Chemistry; Wall, Judy [Univ. of Missouri, Columbia, MO (United States). Dept. of Biochemistry; Lipton, Mary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-18

    Elemental mercury, Hg(0) is a contaminant at many DOE sites, especially at Oak Ridge National Laboratory (ORNL) where the spread of spilled Hg and its effects on microbial populations have been monitored for decades. To explore the microbial interactions with Hg, we have devised a global proteomic approach capable of directly detecting Hg-adducts of proteins. This technique developed in the facultative anaerobe, Escherichia coli, allows us to identify the proteins most vulnerable to acute exposure to organomercurials phenyl- and ethyl-mercury (as surrogates for the highly neurotoxic methyl-Hg) (Polacco, et al, 2011). We have found >300 such proteins in all metabolic functional groups and cellular compartments; most are highly conserved and can serve as markers for acute Hg exposure (Zink, et al. 2016, in preparation). We have also discovered that acute Hg exposure severely disrupts thiol, iron and redox homeostases, and electrolyte balance (LaVoie, et al., 2015) Thus, we proposed to bring these techniques to bear on the central problem of identifying the cellular proteins involved in bacterial uptake and methylation of mercury and its release from the cell.

  8. Suicide with Shotgun: A Case Report

    Directory of Open Access Journals (Sweden)

    Ali Yildirim

    2011-03-01

    Full Text Available Suicide appears to be a major public health problem in our country and all over the World. Suicide methods will vary between the various communities the most common types of suicides are hanging, using chemicals and using firearms (pistol, shotgun. Connected with easy availability of shotguns suicide cases with using shotgun is significantly increasing in recent years. In our study, suicide with a shotgun, are evaluated in terms of shooting range and its features, originate, area of suicide, crime scene, sex and age. [J Contemp Med 2011; 1(1.000: 29-34

  9. Proteomics Approaches to Identify Tumor Antigen Directed Autoantibodies as Cancer Biomarkers

    OpenAIRE

    Imafuku, Yuji; Omenn, Gilbert S.; Hanash, Samir

    2004-01-01

    The identification of autoantibodies to tumor cell proteins by proteomics approaches has great potential impact on cancer biomarker discovery. The humoral immune response represents a form of biological amplification of signals that are otherwise weak due to very low concentrations of antigen, especially in the early stages of cancers. In addition, proteomics can detect immunoreactivity directed against protein post-translational modifications. Two-dimensional gel based Western blots, protein...

  10. Proteomic analysis of polyribosomes identifies splicing factors as potential regulators of translation during mitosis.

    Science.gov (United States)

    Aviner, Ranen; Hofmann, Sarah; Elman, Tamar; Shenoy, Anjana; Geiger, Tamar; Elkon, Ran; Ehrlich, Marcelo; Elroy-Stein, Orna

    2017-06-02

    Precise regulation of mRNA translation is critical for proper cell division, but little is known about the factors that mediate it. To identify mRNA-binding proteins that regulate translation during mitosis, we analyzed the composition of polysomes from interphase and mitotic cells using unbiased quantitative mass-spectrometry (LC-MS/MS). We found that mitotic polysomes are enriched with a subset of proteins involved in RNA processing, including alternative splicing and RNA export. To demonstrate that these may indeed be regulators of translation, we focused on heterogeneous nuclear ribonucleoprotein C (hnRNP C) as a test case and confirmed that it is recruited to elongating ribosomes during mitosis. Then, using a combination of pulsed SILAC, metabolic labeling and ribosome profiling, we showed that knockdown of hnRNP C affects both global and transcript-specific translation rates and found that hnRNP C is specifically important for translation of mRNAs that encode ribosomal proteins and translation factors. Taken together, our results demonstrate how proteomic analysis of polysomes can provide insight into translation regulation under various cellular conditions of interest and suggest that hnRNP C facilitates production of translation machinery components during mitosis to provide daughter cells with the ability to efficiently synthesize proteins as they enter G1 phase. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Protein substrates of the arginine methyltransferase Hmt1 identified by proteome arrays.

    Science.gov (United States)

    Low, Jason K K; Im, Hogune; Erce, Melissa A; Hart-Smith, Gene; Snyder, Michael P; Wilkins, Marc R

    2016-02-01

    Arginine methylation on nonhistone proteins is associated with a number of cellular processes including RNA splicing, protein localization, and the formation of protein complexes. In this manuscript, Saccharomyces cerevisiae proteome arrays carrying 4228 proteins were used with an antimethylarginine antibody to first identify 88 putatively arginine-methylated proteins. By treating the arrays with recombinant arginine methyltransferase Hmt1, 42 proteins were found to be possible substrates of this enzyme. Analysis of the putative arginine-methylated proteins revealed that they were predominantly nuclear or nucleolar in localization, consistent with the localization of Hmt1. Many are involved in known methylarginine-associated functions, such as RNA processing and ribonucleoprotein complex biogenesis, yet others are of newer classes, namely RNA/DNA helicases and tRNA-associated proteins. Using ex vivo methylation and MS/MS, a set of 12 proteins (Brr1, Dia4, Hts1, Mpp10, Mrd1, Nug1, Prp43, Rpa43, Rrp43, Spp381, Utp4, and Npl3), including the RNA helicase Prp43 and tRNA ligases Dia4 and Hts1, were all validated as Hmt1 substrates. Interestingly, the majority of these also had human orthologs, or family members, that have been documented elsewhere to carry arginine methylation. These results confirm arginine methylation as a widespread modification and Hmt1 as the major arginine methyltransferase in the S. cerevisiae cell. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Temporal Proteomics of Inducible RNAi Lines of Clp Protease Subunits Identifies Putative Protease Substrates.

    Science.gov (United States)

    Moreno, Juan C; Martínez-Jaime, Silvia; Schwartzmann, Joram; Karcher, Daniel; Tillich, Michael; Graf, Alexander; Bock, Ralph

    2018-02-01

    The Clp protease in the chloroplasts of plant cells is a large complex composed of at least 13 nucleus-encoded subunits and one plastid-encoded subunit, which are arranged in several ring-like structures. The proteolytic P-ring and the structurally similar R-ring form the core complex that contains the proteolytic chamber. Chaperones of the HSP100 family help with substrate unfolding, and additional accessory proteins are believed to assist with Clp complex assembly and/or to promote complex stability. Although the structure and function of the Clp protease have been studied in great detail in both bacteria and chloroplasts, the identification of bona fide protease substrates has been very challenging. Knockout mutants of genes for protease subunits are of limited value, due to their often pleiotropic phenotypes and the difficulties with distinguishing primary effects (i.e. overaccumulation of proteins that represent genuine protease substrates) from secondary effects (proteins overaccumulating for other reasons). Here, we have developed a new strategy for the identification of candidate substrates of plant proteases. By combining ethanol-inducible knockdown of protease subunits with time-resolved analysis of changes in the proteome, proteins that respond immediately to reduced protease activity can be identified. In this way, secondary effects are minimized and putative protease substrates can be identified. We have applied this strategy to the Clp protease complex of tobacco ( Nicotiana tabacum ) and identified a set of chloroplast proteins that are likely degraded by Clp. These include several metabolic enzymes but also a small number of proteins involved in photosynthesis. © 2018 American Society of Plant Biologists. All Rights Reserved.

  13. Temporal Proteomics of Inducible RNAi Lines of Clp Protease Subunits Identifies Putative Protease Substrates1[OPEN

    Science.gov (United States)

    Martínez-Jaime, Silvia; Karcher, Daniel; Tillich, Michael

    2018-01-01

    The Clp protease in the chloroplasts of plant cells is a large complex composed of at least 13 nucleus-encoded subunits and one plastid-encoded subunit, which are arranged in several ring-like structures. The proteolytic P-ring and the structurally similar R-ring form the core complex that contains the proteolytic chamber. Chaperones of the HSP100 family help with substrate unfolding, and additional accessory proteins are believed to assist with Clp complex assembly and/or to promote complex stability. Although the structure and function of the Clp protease have been studied in great detail in both bacteria and chloroplasts, the identification of bona fide protease substrates has been very challenging. Knockout mutants of genes for protease subunits are of limited value, due to their often pleiotropic phenotypes and the difficulties with distinguishing primary effects (i.e. overaccumulation of proteins that represent genuine protease substrates) from secondary effects (proteins overaccumulating for other reasons). Here, we have developed a new strategy for the identification of candidate substrates of plant proteases. By combining ethanol-inducible knockdown of protease subunits with time-resolved analysis of changes in the proteome, proteins that respond immediately to reduced protease activity can be identified. In this way, secondary effects are minimized and putative protease substrates can be identified. We have applied this strategy to the Clp protease complex of tobacco (Nicotiana tabacum) and identified a set of chloroplast proteins that are likely degraded by Clp. These include several metabolic enzymes but also a small number of proteins involved in photosynthesis. PMID:29229697

  14. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    LENUS (Irish Health Repository)

    Toomey, David

    2009-01-01

    BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins\\/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and\\/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY\\/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i) homologous to previously crystallized proteins or (ii) targets of known drugs, but are (iii) not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS\\/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under \\'change-of-application\\' patents.

  15. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins

    KAUST Repository

    Chan, Yuk-kit

    2015-04-01

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient, and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1, and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future. This article is protected by copyright. All rights reserved.

  16. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    Directory of Open Access Journals (Sweden)

    David Toomey

    Full Text Available BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i homologous to previously crystallized proteins or (ii targets of known drugs, but are (iii not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under 'change-of-application' patents.

  17. A comparative quantitative proteomic study identifies new proteins relevant for sulfur oxidation in the purple sulfur bacterium Allochromatium vinosum.

    Science.gov (United States)

    Weissgerber, Thomas; Sylvester, Marc; Kröninger, Lena; Dahl, Christiane

    2014-04-01

    In the present study, we compared the proteome response of Allochromatium vinosum when growing photoautotrophically in the presence of sulfide, thiosulfate, and elemental sulfur with the proteome response when the organism was growing photoheterotrophically on malate. Applying tandem mass tag analysis as well as two-dimensional (2D) PAGE, we detected 1,955 of the 3,302 predicted proteins by identification of at least two peptides (59.2%) and quantified 1,848 of the identified proteins. Altered relative protein amounts (≥1.5-fold) were observed for 385 proteins, corresponding to 20.8% of the quantified A. vinosum proteome. A significant number of the proteins exhibiting strongly enhanced relative protein levels in the presence of reduced sulfur compounds are well documented essential players during oxidative sulfur metabolism, e.g., the dissimilatory sulfite reductase DsrAB. Changes in protein levels generally matched those observed for the respective relative mRNA levels in a previous study and allowed identification of new genes/proteins participating in oxidative sulfur metabolism. One gene cluster (hyd; Alvin_2036-Alvin_2040) and one hypothetical protein (Alvin_2107) exhibiting strong responses on both the transcriptome and proteome levels were chosen for gene inactivation and phenotypic analyses of the respective mutant strains, which verified the importance of the so-called Isp hydrogenase supercomplex for efficient oxidation of sulfide and a crucial role of Alvin_2107 for the oxidation of sulfur stored in sulfur globules to sulfite. In addition, we analyzed the sulfur globule proteome and identified a new sulfur globule protein (SgpD; Alvin_2515).

  18. Serum proteome profiling identifies novel and powerful markers of cystic fibrosis liver disease.

    Directory of Open Access Journals (Sweden)

    Timo Rath

    Full Text Available BACKGROUND AND AIMS: Cystic Fibrosis associated liver disease (CFLD develops in approximately 30% of CF patients. However, routine sensitive diagnostic tools for CFLD are lacking. Within this study, we aimed to identify new experimental biomarkers for the detection of CFLD. METHODS: 45 CF patients were included in the study and received transient elastography. Differential regulation of 220 different serum proteins was assessed in a subgroup of patients with and without CFLD. Most interesting candidate proteins were further quantified and validated by ELISA in the whole patient cohort. To assess a potential relation of biomarker expression to the degree of hepatic fibrosis, serum biomarkers were further determined in 18 HCV patients where liver histology was available. RESULTS: 43 serum proteins differed at least 2-fold in patients with CFLD compared to those without liver disease as identified in proteome profiling. In ELISA quantifications, TIMP-4 and Endoglin were significantly up-regulated in patients with CFLD as diagnosed by clinical guidelines or increased liver stiffness. Pentraxin-3 was significantly decreased in patients with CFLD. Serum TIMP-4 and Endoglin showed highest values in HCV patients with liver cirrhosis compared to those with fibrosis but without cirrhosis. At a cut-off value of 6.3 kPa, transient elastography compassed a very high diagnostic accuracy and specificity for the detection of CFLD. Among the biomarkers, TIMP-4 and Endoglin exhibited a high diagnostic accuracy for CFLD. Diagnostic sensitivities and negative predictive values were increased when elastography and TIMP-4 and Endoglin were combined for the detection of CFLD. CONCLUSIONS: Serum TIMP-4 and Endoglin are increased in CFLD and their expression correlates with hepatic staging. Determination of TIMP-4 and Endoglin together with transient elastography can increase the sensitivity for the non-invasive diagnosis of CFLD.

  19. Comparative analysis of human reproductive proteomes identifies candidate proteins of sperm maturation.

    Science.gov (United States)

    Fu-Jun, Liu; Xiao-Fang, Shen

    2012-12-01

    Male reproductive proteomes provide basis for studying gene products and its involvement or regulation in sperm physiology. Here, a comparative study between these proteomes was performed to find potential proteins and functions associated with human sperm maturation. Seven reproductive proteomes associated with human sperm physiology were integrated. Gene ontology analysis were performed using DAVID and Panther tools to determine enriched functions. Total of 270 proteins overlapped between epididymal, prostatic milieu and sperm proteome were thought to be candidate proteins involved in sperm maturation, and they showed enriched functions of proteasomal protein catabolic process and protein folding. 34 epididymal milieu proteins and 274 prostatic milieu proteins were contributed to the composition of seminal fluids proteome. Literatures have confirmed the involvements in sperm maturation of many of these proteins The spatial expressions of 24 epididymal milieu proteins involved in chaperone and antioxidant activity were authenticated by real-time RT-PCR. These proteins may serve as candidate molecules for future studies of sperm maturation and male infertility.

  20. Development of a sandwich ELISA for the thrombin light chain identified by serum proteome analysis

    Directory of Open Access Journals (Sweden)

    Kazuyuki Sogawa

    2017-08-01

    Full Text Available We previously identified novel biomarker candidates in biliary tract cancer (BTC using serum proteome analysis. Among several candidates, we focused on thrombin light chain which is a 4204 Da peptide as the most promising biomarker for BTC. To move thrombin light chain toward potential diagnostic use, we developed an enzyme immunoassay that enables to measure serum thrombin light chain levels.Both one monoclonal antibody specific to the N-termini and one polyclonal antibody were used to develop a sandwich ELISA for thrombin light chain. The assay was evaluated by comparing the results with those obtained by the ClinProt™ system. Serum samples were obtained from 20 patients with BTC, 20 patients with BBTDs and 20 HVs using the ClinProt™ system and ELISA.The results of the established ELISA showed a positive correlation with the findings by ClinProt™ system (slope=0.3386, intercept=34.901, r2=0.9641. The performance of the ELISA was satisfactory in terms of recovery (97.9–102.5% and within-run (1.5–4.8% and between-day (1.9–6.7% reproducibility. Serum thrombin light chain levels were significantly greater in BTC (176.5±47.2 ng/mL than in BBTDs (128.6±17.4 ng/mL and HVs (127.6±16.0 ng/mL (p<0.001.The sandwich ELISA developed in this study will be useful for validation of the diagnostic significance of serum thrombin light chain levels in various cancers. Keywords: Thrombin light chain, Biliary tract cancer, Sandwich ELISA, Serum biomarker

  1. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer

    NARCIS (Netherlands)

    Bast, R.C.; Yu, Y.H.; Li, J.N.; Sokoll, L.J.; Rai, A.J.; Rosenzweig, J.M.; Cameron, B.; Wang, Y.Y.; Meng, X.Y.; Berchuck, A.; Haaften-Day, C.; Hacker, N.F.; de Bruijn, H.W.A.; van der Zee, A.G.J.; Jacobs, I.J.; Fung, E.T.; Chan, D.W.; Zhang, Z

    Early detection remains the most promising approach to improve long-term survival of patients with ovarian cancer. In a five-center case-control study, serum proteomic expressions were analyzed on 153 patients with invasive epithelial ovarian cancer, 42 with other ovarian cancers, 166 with benign

  2. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components

    DEFF Research Database (Denmark)

    Alabert, Constance; Bukowski-Wills, Jimi-Carlo; Lee, Sung-Po

    2014-01-01

    replication in human cells. NCC relies on biotin-dUTP labelling of replicating DNA, affinity purification and quantitative proteomics. Comparing nascent chromatin with mature post-replicative chromatin, we provide association dynamics for 3,995 proteins. The replication machinery and 485 chromatin factors...

  3. Proteomic profiling identifies an UV-induced activation of cofilin-1 and destrin in human epidermis

    NARCIS (Netherlands)

    Hensbergen, Paul J.; Alewijnse, Astrid E.; Kempenaar, Johanna; van der Schors, Roel C.; Balog, Crinai A.; Deelder, André M.; Beumer, Gerrit; Ponec, Maria; Tensen, Cornelis P.

    2005-01-01

    The human skin is the only line of defense against UV radiation. A series of responses to protect the skin are induced by UV radiation. In this study, a proteomic approach was used to study these responses. We have performed high-resolution two-dimensional polyacrylamide gel electrophoresis

  4. Data for in-depth characterisation of the lamb meat proteome from longissimus lumborum

    Directory of Open Access Journals (Sweden)

    Tzer-Yang Yu

    2015-06-01

    Full Text Available This Data article provides Supplementary data related to the research article titled “In-depth characterisation of the lamb meat proteome from longissimus lumborum” by Yu et al. [1]. This research article reports the proteome catalogue of the 48 h post-mortem lamb longissimus lumborum. A list of 388 ovine-specific proteins were identified and characterised after separating the samples into sarcoplasmic, myofibrillar and insoluble fractions, followed by an in-depth shotgun proteomic evaluation and bioinformatic analysis. The detailed list of identified proteins, the annotated MS/MS spectra corresponding to the proteins identified by a single peptide-spectrum match, the raw Gene Ontology annotation data and other miscellaneous files, as will be described below, were contained in this Data article. We hope the data presented here will contribute to the current knowledge of the global protein composition of lamb skeletal muscle/meat.

  5. Proteomics identifies Bacillus cereus EntD as a pivotal protein for the production of numerous virulence factors

    Directory of Open Access Journals (Sweden)

    Hélène eOmer

    2015-10-01

    Full Text Available Bacillus cereus is a gram-positive pathogen that causes a wide variety of diseases in humans. It secretes into the extracellular milieu proteins that may contribute directly or indirectly to its virulence. EntD is a novel exoprotein identified by proteogenomics of B. cereus ATCC 14579. We constructed a ΔentD mutant and analyzed the impact of entD disruption on the cellular proteome and exoproteome isolated from early, late and stationary-phase cultures. We identified 308 and 79 proteins regulated by EntD in the cellular proteome and the exoproteome, respectively. The contribution of these proteins to important virulence-associated functions, including central metabolism, cell structure, antioxidative ability, cell motility and toxin production, are presented. The proteomic data were correlated with the growth defect, cell morphology change, reduced motility and reduced cytotoxicity of the ΔentD mutant strain. We conclude that EntD is an important player in B. cereus virulence. The function of EntD and the putative EntD-dependent regulatory network are discussed. To our knowledge, this study is the first characterization of an Ent family protein in a species of the B. cereus group.

  6. Proteomics identifies Bacillus cereus EntD as a pivotal protein for the production of numerous virulence factors.

    Science.gov (United States)

    Omer, Hélène; Alpha-Bazin, Béatrice; Brunet, Jean-Luc; Armengaud, Jean; Duport, Catherine

    2015-01-01

    Bacillus cereus is a Gram-positive pathogen that causes a wide variety of diseases in humans. It secretes into the extracellular milieu proteins that may contribute directly or indirectly to its virulence. EntD is a novel exoprotein identified by proteogenomics of B. cereus ATCC 14579. We constructed a ΔentD mutant and analyzed the impact of entD disruption on the cellular proteome and exoproteome isolated from early, late, and stationary-phase cultures. We identified 308 and 79 proteins regulated by EntD in the cellular proteome and the exoproteome, respectively. The contribution of these proteins to important virulence-associated functions, including central metabolism, cell structure, antioxidative ability, cell motility, and toxin production, are presented. The proteomic data were correlated with the growth defect, cell morphology change, reduced motility, and reduced cytotoxicity of the ΔentD mutant strain. We conclude that EntD is an important player in B. cereus virulence. The function of EntD and the putative EntD-dependent regulatory network are discussed. To our knowledge, this study is the first characterization of an Ent family protein in a species of the B. cereus group.

  7. High throughput sequencing and proteomics to identify immunogenic proteins of a new pathogen: the dirty genome approach.

    Science.gov (United States)

    Greub, Gilbert; Kebbi-Beghdadi, Carole; Bertelli, Claire; Collyn, François; Riederer, Beat M; Yersin, Camille; Croxatto, Antony; Raoult, Didier

    2009-12-23

    With the availability of new generation sequencing technologies, bacterial genome projects have undergone a major boost. Still, chromosome completion needs a costly and time-consuming gap closure, especially when containing highly repetitive elements. However, incomplete genome data may be sufficiently informative to derive the pursued information. For emerging pathogens, i.e. newly identified pathogens, lack of release of genome data during gap closure stage is clearly medically counterproductive. We thus investigated the feasibility of a dirty genome approach, i.e. the release of unfinished genome sequences to develop serological diagnostic tools. We showed that almost the whole genome sequence of the emerging pathogen Parachlamydia acanthamoebae was retrieved even with relatively short reads from Genome Sequencer 20 and Solexa. The bacterial proteome was analyzed to select immunogenic proteins, which were then expressed and used to elaborate the first steps of an ELISA. This work constitutes the proof of principle for a dirty genome approach, i.e. the use of unfinished genome sequences of pathogenic bacteria, coupled with proteomics to rapidly identify new immunogenic proteins useful to develop in the future specific diagnostic tests such as ELISA, immunohistochemistry and direct antigen detection. Although applied here to an emerging pathogen, this combined dirty genome sequencing/proteomic approach may be used for any pathogen for which better diagnostics are needed. These genome sequences may also be very useful to develop DNA based diagnostic tests. All these diagnostic tools will allow further evaluations of the pathogenic potential of this obligate intracellular bacterium.

  8. Proteomics dataset

    DEFF Research Database (Denmark)

    Bennike, Tue Bjerg; Carlsen, Thomas Gelsing; Ellingsen, Torkell

    2017-01-01

    The datasets presented in this article are related to the research articles entitled “Neutrophil Extracellular Traps in Ulcerative Colitis: A Proteome Analysis of Intestinal Biopsies” (Bennike et al., 2015 [1]), and “Proteome Analysis of Rheumatoid Arthritis Gut Mucosa” (Bennike et al., 2017 [2])...... been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers PXD001608 for ulcerative colitis and control samples, and PXD003082 for rheumatoid arthritis samples....

  9. Proteomic characterization of circulating extracellular vesicles identifies novel serum myeloma associated markers.

    Science.gov (United States)

    Harshman, Sean W; Canella, Alessandro; Ciarlariello, Paul D; Agarwal, Kitty; Branson, Owen E; Rocci, Alberto; Cordero, Hector; Phelps, Mitch A; Hade, Erinn M; Dubovsky, Jason A; Palumbo, Antonio; Rosko, Ashley; Byrd, John C; Hofmeister, Craig C; Benson, Don M; Paulaitis, Michael E; Freitas, Michael A; Pichiorri, Flavia

    2016-03-16

    Multiple myeloma (MM) is a hematological malignancy of clonal plasma cells in the bone marrow (BM). The microenvironment plays a key role in MM cell survival and drug resistance through release of soluble factors, expression of adhesion molecules and release of extracellular vesicles (EVs). The aim of this manuscript is to use proteomic profiling of EVs as a tool to identify circulating tumor associated markers in MM patients. First, we characterized the EV protein content obtained from different MM cell lines. Then, we established differences in protein abundance among EVs isolated from MM patient serum and BM and the serum of healthy donors. These data show that the Major Histocompatibility Complex Class I is highly enriched in EVs of MM cell lines and MM patient's serum. Next, we show that CD44 is highly expressed in the EVs isolated from the corticosteroid resistant MM cell line, MM.1R. Furthermore, CD44 was found to be differentially expressed in EVs isolated from newly diagnosed MM patients. Finally through ELISA analysis, we establish the potential of serum CD44 as a predictive biomarker of overall survival. These results support the analysis of EVs as an easily accessible source for MM biomarkers. Extracellular vesicles are becoming a research focus due to their roles in cancer cell biology such as immune evasion, therapeutic resistance, proliferation and metastases. While numerous studies of vesicle characterization and biology have been conducted in many cancer models, the role of EV in MM remains relatively unstudied. Here we found that EVs isolated from MM cells are enriched in MHC-1 antigen presenting complex and its binding protein β2-MG, this observation is compatible with the enhanced proteasome activity of MM cells compared to other cancers and the ability of functional MHC-1 to bind and present peptides, generated from protein degradation by the proteasome. Additionally, our experiments show that CD44 is particularly enriched in the EV fraction

  10. Proteomic analysis identifies galectin-1 as a predictive biomarker for relapsed/refractory disease in classical Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Kamper, Peter; Ludvigsen, Maja; Bendix, Knud

    2011-01-01

    Considerable effort has been spent identifying prognostic biomarkers in classic Hodgkin lymphoma (cHL). The aim of our study was to search for possible prognostic parameters in advanced-stage cHL using a proteomics-based strategy. A total of 14 cHL pretreatment tissue samples from younger, advanced......-stage patients were included. Patients were grouped according to treatment response. Proteins that were differentially expressed between the groups were analyzed using 2D-PAGE and identified by liquid chromatography mass spectrometry. Selected proteins were validated using Western blot analysis. One...

  11. Combining proteomics and transcriptome sequencing to identify active plant-cell-wall-degrading enzymes in a leaf beetle

    Directory of Open Access Journals (Sweden)

    Kirsch Roy

    2012-11-01

    Full Text Available Abstract Background The primary plant cell wall is a complex mixture of polysaccharides and proteins encasing living plant cells. Among these polysaccharides, cellulose is the most abundant and useful biopolymer present on earth. These polysaccharides also represent a rich source of energy for organisms which have evolved the ability to degrade them. A growing body of evidence suggests that phytophagous beetles, mainly species from the superfamilies Chrysomeloidea and Curculionoidea, possess endogenous genes encoding complex and diverse families of so-called plant cell wall degrading enzymes (PCWDEs. The presence of these genes in phytophagous beetles may have been a key element in their success as herbivores. Here, we combined a proteomics approach and transcriptome sequencing to identify PCWDEs present in larval gut contents of the mustard leaf beetle, Phaedon cochleariae. Results Using a two-dimensional proteomics approach, we recovered 11 protein bands, isolated using activity assays targeting cellulose-, pectin- and xylan-degrading enzymes. After mass spectrometry analyses, a total of 13 proteins putatively responsible for degrading plant cell wall polysaccharides were identified; these proteins belong to three glycoside hydrolase (GH families: GH11 (xylanases, GH28 (polygalacturonases or pectinases, and GH45 (β-1,4-glucanases or cellulases. Additionally, highly stable and proteolysis-resistant host plant-derived proteins from various pathogenesis-related protein (PRs families as well as polygalacturonase-inhibiting proteins (PGIPs were also identified from the gut contents proteome. In parallel, transcriptome sequencing revealed the presence of at least 19 putative PCWDE transcripts encoded by the P. cochleariae genome. All of these were specifically expressed in the insect gut rather than the rest of the body, and in adults as well as larvae. The discrepancy observed in the number of putative PCWDEs between transcriptome and proteome

  12. Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Agner, Jeppe; Piersma, Sander R

    2013-01-01

    In order to successfully enter the latent stage, Mycobacterium tuberculosis must adapt to conditions such as nutrient limitation and hypoxia. In vitro models that mimic latent infection are valuable tools for describing the changes in metabolism that occur when the bacterium exists in a non......-growing form. We used two complementary proteomic approaches, label-free LC-MS/MS analysis and two-dimensional difference gel electrophoresis, to determine the proteome profile of extracellular proteins from M. tuberculosis cultured under nutrient starvation. Through the label-free LC-MS/MS analysis......, significant differences in the overall metabolism during nutrient starvation were detected. Notably, members of the toxin-antitoxin systems were present in larger quantities in nutrient-starved cultures, supporting a role for these global modules as M. tuberculosis switches its metabolism into dormancy...

  13. Proteomics Approaches to Identify Tumor Antigen Directed Autoantibodies as Cancer Biomarkers

    Directory of Open Access Journals (Sweden)

    Yuji Imafuku

    2004-01-01

    Full Text Available The identification of autoantibodies to tumor cell proteins by proteomics approaches has great potential impact on cancer biomarker discovery. The humoral immune response represents a form of biological amplification of signals that are otherwise weak due to very low concentrations of antigen, especially in the early stages of cancers. In addition, proteomics can detect immunoreactivity directed against protein post-translational modifications. Two-dimensional gel based Western blots, protein antigen microarrays, and multiplex ELISA reactions have been applied by our group to antigen based biomarker detection and validation. The latter two are based on liquid-phase separations that are suitable for automation. This work has resulted in the identification of numerous cancer biomarker candidates. Large clinical studies are currently planned to establish their value in early cancer diagnosis.

  14. Proteomics approaches to identify tumor antigen directed autoantibodies as cancer biomarkers.

    Science.gov (United States)

    Imafuku, Yuji; Omenn, Gilbert S; Hanash, Samir

    2004-01-01

    The identification of autoantibodies to tumor cell proteins by proteomics approaches has great potential impact on cancer biomarker discovery. The humoral immune response represents a form of biological amplification of signals that are otherwise weak due to very low concentrations of antigen, especially in the early stages of cancers. In addition, proteomics can detect immunoreactivity directed against protein post-translational modifications. Two-dimensional gel based Western blots, protein antigen microarrays, and multiplex ELISA reactions have been applied by our group to antigen based biomarker detection and validation. The latter two are based on liquid-phase separations that are suitable for automation. This work has resulted in the identification of numerous cancer biomarker candidates. Large clinical studies are currently planned to establish their value in early cancer diagnosis.

  15. Proteome and Acetylome Analysis Identifies Novel Pathways and Targets Regulated by Perifosine in Neuroblastoma

    OpenAIRE

    Gu, Xiao; Hua, Zhongyan; Dong, Yudi; Zhan, Yue; Zhang, Xiaowen; Tian, Wei; Liu, Zhihui; Thiele, Carol J.; Li, Zhijie

    2017-01-01

    Perifosine, an Akt inhibitor, has been shown to be effective in controlling neuroblastoma tumor growth. However, studies indicate that in addition to the ability to inhibit Akt, other mechanisms contribute to perifosine?s anti-tumor activity. To gain insight into perifosine anti-tumor activity in neuroblastoma we have studied changes in the proteome and acetylome after perifosine treatment in SK-N-AS neuroblastoma cells using SILAC labeling, affinity enrichment, high-resolution and LC-MS/MS a...

  16. Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Pandey, Aarti; Chakraborty, Subhra; Datta, Asis; Chakraborty, Niranjan

    2008-01-01

    Dehydration or water-deficit is one of the most important environmental stress factors that greatly influences plant growth and development and limits crop productivity. Plants respond and adapt to such stress by altering their cellular metabolism and activating various defense machineries. Mechanisms that operate signal perception, transduction, and downstream regulatory events provide valuable information about the underlying pathways involved in environmental stress responses. The nuclear proteins constitute a highly organized, complex network that plays diverse roles during cellular development and other physiological processes. To gain a better understanding of dehydration response in plants, we have developed a comparative nuclear proteome in a food legume, chickpea (Cicer arietinum L.). Three-week-old chickpea seedlings were subjected to progressive dehydration by withdrawing water and the changes in the nuclear proteome were examined using two-dimensional gel electrophoresis. Approximately 205 protein spots were found to be differentially regulated under dehydration. Mass spectrometry analysis allowed the identification of 147 differentially expressed proteins, presumably involved in a variety of functions including gene transcription and replication, molecular chaperones, cell signaling, and chromatin remodeling. The dehydration responsive nuclear proteome of chickpea revealed a coordinated response, which involves both the regulatory as well as the functional proteins. This study, for the first time, provides an insight into the complex metabolic network operating in the nucleus during dehydration.

  17. Proteomics in quality control: Whey protein-based supplements.

    Science.gov (United States)

    Garrido, Bruno Carius; Souza, Gustavo H M F; Lourenço, Daniela C; Fasciotti, Maíra

    2016-09-16

    The growing consumption of nutritional supplements might represent a problem, given the concern about the quality of these supplements. One of the most used supplements is whey protein (WP); because of its popularity, it has been a target of adulteration with substitute products, such as cheaper proteins with lower biological value. To investigate this type of adulteration, this study used shotgun proteomics analyses by MS(E) (multiplexed, low- and high-collision energy, data-independent acquisition) of WP-based supplements. Seventeen WP-based supplement samples were evaluated. Chicken, maize, rice, potato, soybean, and wheat proteins were considered as probable sources of bovine whey adulteration. Collectively, 523 proteins were identified across all 16 samples and replicates, with 94% of peptides inside a normal distribution within 10ppm of maximum error. In 10 of the 16 samples analyzed, only proteins from bovine whey could be detected, while in the other samples several other protein sources were detected in high concentrations, especially soybean, wheat, and rice. These results point out a probable adulteration and/or sample contamination during manufacturing that could only be detected using this proteomic approach. The present work shows how shotgun proteomics can be used to provide reliable answers in quality control matters, especially focusing on Whey Protein nutritional supplements which are a very popular subject in food and nutrition. In order to achieve an appropriate methodology, careful evaluation was performed applying extremely rigorous quality criteria, established for the proteomic analysis. These criteria and the methodological approach used in this work might serve as a guide for other authors seeking to use proteomics in quality control. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Autoantibody biomarkers identified by proteomics methods distinguish ovarian cancer from non ovarian cancer with various CA-125 levels

    Science.gov (United States)

    Karabudak, Aykan; Hafner, Julie; Shetty, Vivekananda; Chen, Songming; Secord, Angeles Alvarez; Morse, Michael

    2013-01-01

    Purpose CA-125 has been a valuable marker for detecting ovarian cancer, however, not sensitive enough to detect early stage disease and not specific for ovarian cancer. The purpose of our study was to identify autoantibody markers that are specific for ovarian cancer regardless of CA-125 levels. Methods Top-down and iTRAQ quantitative proteomics methods were used to identify high frequency autoantibodies in ovarian cancer. Protein microarrays comprising the recombinant autoantigens were screened using serum samples from various stages of ovarian cancer with diverse levels of CA-125 as well as benign and healthy controls. ROC curve and dot blot analyses were performed to validate the sensitivity and specificity of the autoantibody markers. Results The proteomics methodologies identified >60 potential high frequency autoantibodies in ovarian cancer. Individual serum samples from ovarian cancer stages I-IV compared to control samples that were screened on a microarray containing native recombinant autoantigens revealed a panel of stage I high frequency autoantibodies. Preliminary ROC curve and dot blot analyses performed with the ovarian cancer samples showed higher specificity and sensitivity as compared to CA-125. Three autoantibody markers exhibited higher specificity in various stages of ovarian cancer with low and normal CA-125 levels. Conclusions Proteomics technologies are suitable for the identification of protein biomarkers and also the identification of autoantibody biomarkers when combined with protein microarray screening. Using native recombinant autoantigen arrays to screen autoantibody markers, it is possible to identify markers with higher sensitivity and specificity than CA-125 that are relevant for early detection of ovarian cancer. PMID:23999876

  19. Autoantibody biomarkers identified by proteomics methods distinguish ovarian cancer from non-ovarian cancer with various CA-125 levels.

    Science.gov (United States)

    Karabudak, Aykan A; Hafner, Julie; Shetty, Vivekananda; Chen, Songming; Secord, Angeles Alvarez; Morse, Michael A; Philip, Ramila

    2013-10-01

    CA-125 has been a valuable marker for detecting ovarian cancer, however, it is not sensitive enough to detect early-stage disease and not specific to ovarian cancer. The purpose of our study was to identify autoantibody markers that are specific to ovarian cancer regardless of CA-125 levels. Top-down and iTRAQ quantitative proteomics methods were used to identify high-frequency autoantibodies in ovarian cancer. Protein microarrays comprising the recombinant autoantigens were screened using serum samples from various stages of ovarian cancer with diverse levels of CA-125 as well as benign and healthy controls. ROC curve and dot blot analyses were performed to validate the sensitivity and specificity of the autoantibody markers. The proteomics methodologies identified more than 60 potential high-frequency autoantibodies in ovarian cancer. Individual serum samples from ovarian cancer stages I-IV compared to control samples that were screened on a microarray containing native recombinant autoantigens revealed a panel of stage I high-frequency autoantibodies. Preliminary ROC curve and dot blot analyses performed with the ovarian cancer samples showed higher specificity and sensitivity as compared to CA-125. Three autoantibody markers exhibited higher specificity in various stages of ovarian cancer with low and normal CA-125 levels. Proteomics technologies are suitable for the identification of protein biomarkers and also the identification of autoantibody biomarkers when combined with protein microarray screening. Using native recombinant autoantigen arrays to screen autoantibody markers, it is possible to identify markers with higher sensitivity and specificity than CA-125 that are relevant to early detection of ovarian cancer.

  20. A Proteomics Approach to Identify New Putative Cardiac Intercalated Disk Proteins.

    Directory of Open Access Journals (Sweden)

    Siddarth Soni

    Full Text Available Synchronous beating of the heart is dependent on the efficient functioning of the cardiac intercalated disk (ID. The ID is composed of a complex protein network enabling electrical continuity and chemical communication between individual cardiomyocytes. Recently, several different studies have shed light on increasingly prevalent cardiac diseases involving the ID. Insufficient knowledge of its composition makes it difficult to study these disease mechanisms in more detail and therefore here we aim expand the ID proteome. Here, using a combination of general membrane enrichment, in-depth quantitative proteomics and an intracellular location driven bioinformatics approach, we aim to discover new putative ID proteins in rat ventricular tissue.General membrane isolation, enriched amongst others also with ID proteins as based on presence of the established markers connexin-43 and n-cadherin, was performed using centrifugation. By mass spectrometry, we quantitatively evaluated the level of 3455 proteins in the enriched membrane fraction (EMF and its counterpart, the soluble cytoplasmic fraction. These data were stringently filtered to generate a final set of 97 enriched, putative ID proteins. These included Cx43 and n-cadherin, but also many interesting novel candidates. We selected 4 candidates (Flotillin-2 (FLOT2, Nexilin (NEXN, Popeye-domain-containg-protein 2 (POPDC2 and thioredoxin-related-transmembrane-protein 2 (TMX2 and confirmed their co-localization with n-cadherin in the ID of human and rat heart cryo-sections, and isolated dog cardiomyocytes.The presented proteomics dataset of putative new ID proteins is a valuable resource for future research into this important molecular intersection of the heart.

  1. Integrated Translatomics with Proteomics to Identify Novel Iron–Transporting Proteins in Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Xiao-Yan eYang

    2016-02-01

    Full Text Available Streptococcus pneumoniae (S. pneumoniae is a major human pathogen causing morbidity and mortality worldwide. Efficiently acquiring iron from the environment is critical for S. pneumoniae to sustain growth and cause infection. There are only three known iron-uptake systems in Streptococcal species responsible for iron acquisition from the host, including ABC transporters PiaABC, PiuABC and PitABC. Besides, no other iron-transporting system has been suggested. In this work, we employed our newly established translating mRNA analysis integrated with proteomics to evaluate the possible existence of novel iron transporters in the bacterium. We simultaneously deleted the iron-binding protein genes of the three iron-uptake systems to construct a piaA/piuA/pitA triple mutant (Tri-Mut of S. pneumoniae D39, in which genes and proteins related to iron transport should be regulated in response to the deletion. With ribosome associated mRNA sequencing-based translatomics focusing on translating mRNA and iTRAQ quantitative proteomics based on the covalent labeling of peptides with tags of varying mass, we indeed observed a large number of genes and proteins representing various coordinated biological pathways with significantly altered expression levels in the Tri-Mut mutant. Highlighted in this observation is the identification of several new potential iron-uptake ABC transporters participating in iron metabolism of Streptococcus. In particular, putative protein SPD_1609 in operon 804 was verified to be a novel iron-binding protein with similar function to PitA in S. pneumoniae. These data derived from the integrative translatomics and proteomics analyses provided rich information and insightful clues for further investigations on iron-transporting mechanism in bacteria and the interplay between Streptococcal iron availability and the biological metabolic pathways.

  2. Proteomics of Trypanosoma evansi infection in rodents.

    Directory of Open Access Journals (Sweden)

    Nainita Roy

    2010-03-01

    Full Text Available Trypanosoma evansi infections, commonly called 'surra', cause significant economic losses to livestock industry. While this infection is mainly restricted to large animals such as camels, donkeys and equines, recent reports indicate their ability to infect humans. There are no World Animal Health Organization (WAHO prescribed diagnostic tests or vaccines available against this disease and the available drugs show significant toxicity. There is an urgent need to develop improved methods of diagnosis and control measures for this disease. Unlike its related human parasites T. brucei and T. cruzi whose genomes have been fully sequenced T. evansi genome sequence remains unavailable and very little efforts are being made to develop improved methods of prevention, diagnosis and treatment. With a view to identify potential diagnostic markers and drug targets we have studied the clinical proteome of T. evansi infection using mass spectrometry (MS.Using shot-gun proteomic approach involving nano-lc Quadrupole Time Of Flight (QTOF mass spectrometry we have identified over 160 proteins expressed by T. evansi in mice infected with camel isolate. Homology driven searches for protein identification from MS/MS data led to most of the matches arising from related Trypanosoma species. Proteins identified belonged to various functional categories including metabolic enzymes; DNA metabolism; transcription; translation as well as cell-cell communication and signal transduction. TCA cycle enzymes were strikingly missing, possibly suggesting their low abundances. The clinical proteome revealed the presence of known and potential drug targets such as oligopeptidases, kinases, cysteine proteases and more.Previous proteomic studies on Trypanosomal infections, including human parasites T. brucei and T. cruzi, have been carried out from lab grown cultures. For T. evansi infection this is indeed the first ever proteomic study reported thus far. In addition to providing a

  3. Effect of IL-6R Inhibition with Tocilizumab on the Proteome of Peripheral Blood Mononuclear Cells from a Rheumatoid Arthritis Patient

    DEFF Research Database (Denmark)

    Meyer, Michael Kruse; Andersen, Marlene; Bennike, Tue Bjerg

    2015-01-01

    +, and CD56+ immune cells. Each cell-type was prepared through a discovery proteomics pipeline, and analyzed on a Q Exactive Plus mass spectrometer by gel-free shotgun proteomics. Results: The patient responded well to tocilizumab monotherapy, and reached clinical remission without any observed side effects....... A combined total of 4,343 proteins were identified at discovery rate, hereof 3,242 proteins qualified for label free quantification. We systematically evaluated the metabolic, inflammatory and signaling pathways of each immune cell type as a result of the IL-6R inhibition. The CD14+ cells were...... glucose metabolism, and reduces stress responses....

  4. Data extraction from proteomics raw data

    DEFF Research Database (Denmark)

    Mancuso, Francesco; Bunkenborg, Jakob; Wierer, Michael

    2012-01-01

    In shot-gun proteomics raw tandem MS data are processed with extraction tools to produce condensed peak lists that can be uploaded to database search engines. Many extraction tools are available but to our knowledge, a systematic comparison of such tools has not yet been carried out. Using raw data...... and agreement in-between tools. Processing a primary data set with 9 different tandem MS extraction tools resulted in a low overlap of identified peptides. The tools differ by assigned charge states of precursors, precursor and fragment ion masses, and we show that peptides identified very confidently using one...... extraction tool might not be matched when using another tool. We also found a bias towards peptides of lower charge state when extracting fragment ion data from higher resolution raw data without deconvolution. Collecting and comparing the extracted data from the same raw data allow adjusting parameters...

  5. The Proteome of Biologically Active Membrane Vesicles from Piscirickettsia salmonis LF-89 Type Strain Identifies Plasmid-Encoded Putative Toxins

    Directory of Open Access Journals (Sweden)

    Cristian Oliver

    2017-09-01

    Full Text Available Piscirickettsia salmonis is the predominant bacterial pathogen affecting the Chilean salmonid industry. This bacterium is the etiological agent of piscirickettsiosis, a significant fish disease. Membrane vesicles (MVs released by P. salmonis deliver several virulence factors to host cells. To improve on existing knowledge for the pathogenicity-associated functions of P. salmonis MVs, we studied the proteome of purified MVs from the P. salmonis LF-89 type strain using multidimensional protein identification technology. Initially, the cytotoxicity of different MV concentration purified from P. salmonis LF-89 was confirmed in an in vivo adult zebrafish infection model. The cumulative mortality of zebrafish injected with MVs showed a dose-dependent pattern. Analyses identified 452 proteins of different subcellular origins; most of them were associated with the cytoplasmic compartment and were mainly related to key functions for pathogen survival. Interestingly, previously unidentified putative virulence-related proteins were identified in P. salmonis MVs, such as outer membrane porin F and hemolysin. Additionally, five amino acid sequences corresponding to the Bordetella pertussis toxin subunit 1 and two amino acid sequences corresponding to the heat-labile enterotoxin alpha chain of Escherichia coli were located in the P. salmonis MV proteome. Curiously, these putative toxins were located in a plasmid region of P. salmonis LF-89. Based on the identified proteins, we propose that the protein composition of P. salmonis LF-89 MVs could reflect total protein characteristics of this P. salmonis type strain.

  6. The development of SRM assays is transforming proteomics research.

    Science.gov (United States)

    Manes, Nathan P; Nita-Lazar, Aleksandra

    2017-04-01

    Bottom-up targeted proteomics using SRM is a powerful analytical technology, but it requires the development of SRM assays, which is a complex procedure. Whereas proteome-wide SRM assays have recently been developed for a small number of species, this is not so for the mouse. In this issue, Percy et al. report the development of hundreds of mouse SRM assays. Their development required shotgun MS to identify proteotypic peptides, synthesis, and LC-MS characterization of peptide standards, and interlaboratory SRM to robustly assess the quality of the assays. The resulting SRM assays are intended to be used to analyze mouse plasma and cardiac tissue, primarily for cardiovascular disease and cancer research. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  7. Periostin identified as a potential biomarker of prostate cancer by iTRAQ-proteomics analysis of prostate biopsy

    Directory of Open Access Journals (Sweden)

    Tong Shijun

    2011-04-01

    Full Text Available Abstract Background Proteomics may help us better understand the changes of multiple proteins involved in oncogenesis and progression of prostate cancer(PCa and identify more diagnostic and prognostic biomarkers. The aim of this study was to screen biomarkers of PCa by the proteomics analysis using isobaric tags for relative and absolute quantification(iTRAQ. Methods The patients undergoing prostate biopsies were classified into 3 groups according to pathological results: benign prostate hyperplasia (BPH, n = 20, PCa(n = 20 and BPH with local prostatic intraepithelial neoplasm(PIN, n = 10. Then, all the specimens from these patients were analyzed by iTRAQ and two-dimensional liquid chromatography-tandem mass spectrometry (2DLC-MS/MS. The Gene Ontology(GO function and the transcription regulation networks of the differentially expressed were analyzed by MetaCore software. Western blotting and Immunohistochemical staining were used to analyze the interesting proteins. Result A total of 760 proteins were identified from 13787 distinct peptides, including two common proteins that enjoy clinical application: prostate specific antigen (PSA and prostatic acid phosphatase(PAP. Proteins that expressed differentially between PCa and BPH group were further analyzed. Compared with BPH, 20 proteins were significantly differentially up-regulated (>1.5-fold while 26 were significantly down-regulated in PCa( Conclusion Our study indicates that the iTRAQ technology is a new strategy for global proteomics analysis of the tissues of PCa. A significant up-regulation of periostin in PCa compared to BPH may provide clues for not only a promising biomarker for the prognosis of PCa but also a potential target for therapeutical intervention.

  8. High throughput sequencing and proteomics to identify immunogenic proteins of a new pathogen: the dirty genome approach.

    Directory of Open Access Journals (Sweden)

    Gilbert Greub

    Full Text Available BACKGROUND: With the availability of new generation sequencing technologies, bacterial genome projects have undergone a major boost. Still, chromosome completion needs a costly and time-consuming gap closure, especially when containing highly repetitive elements. However, incomplete genome data may be sufficiently informative to derive the pursued information. For emerging pathogens, i.e. newly identified pathogens, lack of release of genome data during gap closure stage is clearly medically counterproductive. METHODS/PRINCIPAL FINDINGS: We thus investigated the feasibility of a dirty genome approach, i.e. the release of unfinished genome sequences to develop serological diagnostic tools. We showed that almost the whole genome sequence of the emerging pathogen Parachlamydia acanthamoebae was retrieved even with relatively short reads from Genome Sequencer 20 and Solexa. The bacterial proteome was analyzed to select immunogenic proteins, which were then expressed and used to elaborate the first steps of an ELISA. CONCLUSIONS/SIGNIFICANCE: This work constitutes the proof of principle for a dirty genome approach, i.e. the use of unfinished genome sequences of pathogenic bacteria, coupled with proteomics to rapidly identify new immunogenic proteins useful to develop in the future specific diagnostic tests such as ELISA, immunohistochemistry and direct antigen detection. Although applied here to an emerging pathogen, this combined dirty genome sequencing/proteomic approach may be used for any pathogen for which better diagnostics are needed. These genome sequences may also be very useful to develop DNA based diagnostic tests. All these diagnostic tools will allow further evaluations of the pathogenic potential of this obligate intracellular bacterium.

  9. Proteome and Acetylome Analysis Identifies Novel Pathways and Targets Regulated by Perifosine in Neuroblastoma

    Science.gov (United States)

    Gu, Xiao; Hua, Zhongyan; Dong, Yudi; Zhan, Yue; Zhang, Xiaowen; Tian, Wei; Liu, Zhihui; Thiele, Carol J.; Li, Zhijie

    2017-01-01

    Perifosine, an Akt inhibitor, has been shown to be effective in controlling neuroblastoma tumor growth. However, studies indicate that in addition to the ability to inhibit Akt, other mechanisms contribute to perifosine’s anti-tumor activity. To gain insight into perifosine anti-tumor activity in neuroblastoma we have studied changes in the proteome and acetylome after perifosine treatment in SK-N-AS neuroblastoma cells using SILAC labeling, affinity enrichment, high-resolution and LC-MS/MS analysis. Bioinformatic analysis indicates that, a total of 5,880 proteins and 3,415 lysine acetylation sites were quantified in SK-N-AS cells and 216 differentially expressed proteins and 115 differentially expressed lysine acetylation sites were obtained. These differentially expressed proteins and lysine acetylated proteins were involved in a number of different biological functions, metabolic pathways and pathophysiological processes. This study details the impact of perifosine on proteome and lysine acetylome in SK-N-AS cells and expands our understanding of the mechanisms of perifosine action in neuroblastoma. PMID:28165023

  10. Optimization and Modeling of Quadrupole Orbitrap Parameters for Sensitive Analysis toward Single-Cell Proteomics.

    Science.gov (United States)

    Sun, Bingyun; Kovatch, Jessica Rae; Badiong, Albert; Merbouh, Nabyl

    2017-10-06

    Single-cell proteomics represents a field of extremely sensitive proteomic analysis, owing to the minute amount of yet complex proteins in a single cell. Without amplification potential as of nucleic acids, single-cell mass spectrometry (MS) analysis demands special instrumentation running with optimized parameters to maximize the sensitivity and throughput for comprehensive proteomic discovery. To facilitate such analysis, we here investigated two factors critical to peptide sequencing and protein detection in shotgun proteomics, i.e. precursor ion isolation window (IW) and maximum precursor ion injection time (ITmax), on an ultrahigh-field quadrupole Orbitrap (Q-Exactive HF). Counterintuitive to the frequently used proteomic parameters for bulk samples (>100 ng), our experimental data and subsequent modeling suggested a universally optimal IW of 4.0 Th for sample quantity ranging from 100 ng to 1 ng, and a sample-quantity dependent ITmax of more than 250 ms for 1-ng samples. Compared with the benchmark condition of IW = 2.0 Th and ITmax = 50 ms, our optimization generated up to 300% increase to the detected protein groups for 1-ng samples. The additionally identified proteins allowed deeper penetration of proteome for better revealing crucial cellular functions such as signaling and cell adhesion. We hope this effort can prompt single-cell and trace proteomic analysis and enable a rational selection of MS parameters.

  11. Detergents: Friends not foes for high-performance membrane proteomics toward precision medicine.

    Science.gov (United States)

    Zhang, Xi

    2017-02-01

    Precision medicine, particularly therapeutics, emphasizes the atomic-precise, dynamic, and systems visualization of human membrane proteins and their endogenous modifiers. For years, bottom-up proteomics has grappled with removing and avoiding detergents, yet faltered at the therapeutic-pivotal membrane proteins, which have been tackled by classical approaches and are known for decades refractory to single-phase aqueous or organic denaturants. Hydrophobicity and aggregation commonly challenge tissue and cell lysates, biofluids, and enriched samples. Frequently, expected membrane proteins and peptides are not identified by shotgun bottom-up proteomics, let alone robust quantitation. This review argues the cause of this proteomic crisis is not detergents per se, but the choice of detergents. Recently, inclusion of compatible detergents for membrane protein extraction and digestion has revealed stark improvements in both quantitative and structural proteomics. This review analyzes detergent properties behind recent proteomic advances, and proposes that rational use of detergents may reconcile outstanding membrane proteomics dilemmas, enabling ultradeep coverage and minimal artifacts for robust protein and endogenous PTM measurements. The simplicity of detergent tools confers bottom-up membrane proteomics the sophistication toward precision medicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Comparative functional analysis of the Caenorhabditis elegans and Drosophila melanogaster proteomes.

    Directory of Open Access Journals (Sweden)

    Sabine P Schrimpf

    2009-03-01

    Full Text Available The nematode Caenorhabditis elegans is a popular model system in genetics, not least because a majority of human disease genes are conserved in C. elegans. To generate a comprehensive inventory of its expressed proteome, we performed extensive shotgun proteomics and identified more than half of all predicted C. elegans proteins. This allowed us to confirm and extend genome annotations, characterize the role of operons in C. elegans, and semiquantitatively infer abundance levels for thousands of proteins. Furthermore, for the first time to our knowledge, we were able to compare two animal proteomes (C. elegans and Drosophila melanogaster. We found that the abundances of orthologous proteins in metazoans correlate remarkably well, better than protein abundance versus transcript abundance within each organism or transcript abundances across organisms; this suggests that changes in transcript abundance may have been partially offset during evolution by opposing changes in protein abundance.

  13. Quantitative proteomic analysis of ibuprofen-degrading Patulibacter sp. strain I11

    DEFF Research Database (Denmark)

    Almeida, Barbara; Kjeldal, Henrik; Lolas, Ihab Bishara Yousef

    2013-01-01

    Ibuprofen is the third most consumed pharmaceutical drug in the world. Several isolates have been shown to degrade ibuprofen, but very little is known about the biochemistry of this process. This study investigates the degradation of ibuprofen by Patulibacter sp. strain I11 by quantitative...... proteomics using a metabolic labelling strategy. The whole genome of Patulibacter sp. strain I11 was sequenced to provide a species-specific protein platform for optimal protein identification. The bacterial proteomes of actively ibuprofen-degrading cells and cells grown in the absence of ibuprofen...... was identified and quantified by gel based shotgun-proteomics. In total 251 unique proteins were quantitated using this approach. Biological process and pathway analysis indicated a number of proteins that were up-regulated in response to active degradation of ibuprofen, some of them are known to be involved...

  14. Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea.

    Science.gov (United States)

    Shah, Punit; Powell, Ann L T; Orlando, Ron; Bergmann, Carl; Gutierrez-Sanchez, Gerardo

    2012-04-06

    Botrytis cinerea, a model necrotrophic fungal pathogen that causes gray mold as it infects different organs on more than 200 plant species, is a significant contributor to postharvest rot in fresh fruit and vegetables, including tomatoes. By describing host and pathogen proteomes simultaneously in infected tissues, the plant proteins that provide resistance and allow susceptibility and the pathogen proteins that promote colonization and facilitate quiescence can be identified. This study characterizes fruit and fungal proteins solubilized in the B. cinerea-tomato interaction using shotgun proteomics. Mature green, red ripe wild type and ripening inhibited (rin) mutant tomato fruit were infected with B. cinerea B05.10, and the fruit and fungal proteomes were identified concurrently 3 days postinfection. One hundred eighty-six tomato proteins were identified in common among red ripe and red ripe-equivalent ripening inhibited (rin) mutant tomato fruit infected by B. cinerea. However, the limited infections by B. cinerea of mature green wild type fruit resulted in 25 and 33% fewer defense-related tomato proteins than in red and rin fruit, respectively. In contrast, the ripening stage of genotype of the fruit infected did not affect the secreted proteomes of B. cinerea. The composition of the collected proteins populations and the putative functions of the identified proteins argue for their role in plant-pathogen interactions.

  15. A proteomic study to identify soya allergens--the human response to transgenic versus non-transgenic soya samples.

    Science.gov (United States)

    Batista, Rita; Martins, Isabel; Jeno, Paul; Ricardo, Cândido Pinto; Oliveira, Maria Margarida

    2007-01-01

    In spite of being among the main foods responsible for allergic reactions worldwide, soybean (Glycine max)-derived products continue to be increasingly widespread in a variety of food products due to their well-documented health benefits. Soybean also continues to be one of the elected target crops for genetic modification. The aim of this study was to characterize the soya proteome and, specifically, IgE-reactive proteins as well as to compare the IgE response in soya-allergic individuals to genetically modified Roundup Ready soya versus its non-transgenic control. We performed two-dimensional gel electrophoresis of protein extracts from a 5% genetically modified Roundup Ready flour sample and its non-transgenic control followed by Western blotting with plasma from 5 soya-sensitive individuals. We used peptide tandem mass spectrometry to identify soya proteins (55 protein matches), specifically IgE-binding ones, and to evaluate differences between transgenic and non-transgenic samples. We identified 2 new potential soybean allergens--one is maturation associated and seems to be part of the late embryogenesis abundant proteins group and the other is a cysteine proteinase inhibitor. None of the individuals tested reacted differentially to the transgenic versus non-transgenic samples under study. Soybean endogenous allergen expression does not seem to be altered after genetic modification. Proteomics should be considered a powerful tool for functional characterization of plants and for food safety assessment. Copyright (c) 2007 S. Karger AG, Basel.

  16. Shotgun microbial profiling of fossil remains.

    Science.gov (United States)

    Der Sarkissian, C; Ermini, L; Jónsson, H; Alekseev, A N; Crubezy, E; Shapiro, B; Orlando, L

    2014-04-01

    Millions to billions of DNA sequences can now be generated from ancient skeletal remains thanks to the massive throughput of next-generation sequencing platforms. Except in cases of exceptional endogenous DNA preservation, most of the sequences isolated from fossil material do not originate from the specimen of interest, but instead reflect environmental organisms that colonized the specimen after death. Here, we characterize the microbial diversity recovered from seven c. 200- to 13 000-year-old horse bones collected from northern Siberia. We use a robust, taxonomy-based assignment approach to identify the microorganisms present in ancient DNA extracts and quantify their relative abundance. Our results suggest that molecular preservation niches exist within ancient samples that can potentially be used to characterize the environments from which the remains are recovered. In addition, microbial community profiling of the seven specimens revealed site-specific environmental signatures. These microbial communities appear to comprise mainly organisms that colonized the fossils recently. Our approach significantly extends the amount of useful data that can be recovered from ancient specimens using a shotgun sequencing approach. In future, it may be possible to correlate, for example, the accumulation of postmortem DNA damage with the presence and/or abundance of particular microbes. © 2014 John Wiley & Sons Ltd.

  17. iTRAQ-Based Quantitative Proteomics Identifies Potential Regulatory Proteins Involved in Chicken Eggshell Brownness.

    Directory of Open Access Journals (Sweden)

    Guangqi Li

    Full Text Available Brown eggs are popular in many countries and consumers regard eggshell brownness as an important indicator of egg quality. However, the potential regulatory proteins and detailed molecular mechanisms regulating eggshell brownness have yet to be clearly defined. In the present study, we performed quantitative proteomics analysis with iTRAQ technology in the shell gland epithelium of hens laying dark and light brown eggs to investigate the candidate proteins and molecular mechanisms underlying variation in chicken eggshell brownness. The results indicated 147 differentially expressed proteins between these two groups, among which 65 and 82 proteins were significantly up-regulated in the light and dark groups, respectively. Functional analysis indicated that in the light group, the down-regulated iron-sulfur cluster assembly protein (Iba57 would decrease the synthesis of protoporphyrin IX; furthermore, the up-regulated protein solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator, member 5 (SLC25A5 and down-regulated translocator protein (TSPO would lead to increased amounts of protoporphyrin IX transported into the mitochondria matrix to form heme with iron, which is supplied by ovotransferrin protein (TF. In other words, chickens from the light group produce less protoporphyrin IX, which is mainly used for heme synthesis. Therefore, the exported protoporphyrin IX available for eggshell deposition and brownness is reduced in the light group. The current study provides valuable information to elucidate variation of chicken eggshell brownness, and demonstrates the feasibility and sensitivity of iTRAQ-based quantitative proteomics analysis in providing useful insights into the molecular mechanisms underlying brown eggshell pigmentation.

  18. Inflammatory and fibrotic proteins proteomically identified as key protein constituents in urine and stone matrix of patients with kidney calculi.

    Science.gov (United States)

    Boonla, Chanchai; Tosukhowong, Piyaratana; Spittau, Björn; Schlosser, Andreas; Pimratana, Chaowat; Krieglstein, Kerstin

    2014-02-15

    To uncover whether urinary proteins are incorporated into stones, the proteomic profiles of kidney stones and urine collected from the same patients have to be explored. We employed 1D-PAGE and nanoHPLC-ESI-MS/MS to analyze the proteomes of kidney stone matrix (n=16), nephrolithiatic urine (n=14) and healthy urine (n=3). We identified 62, 66 and 22 proteins in stone matrix, nephrolithiatic urine and healthy urine, respectively. Inflammation- and fibrosis-associated proteins were frequently detected in the stone matrix and nephrolithiatic urine. Eighteen proteins were exclusively found in the stone matrix and nephrolithiatic urine, considered as candidate biomarkers for kidney stone formation. S100A8 and fibronectin, representatives of inflammation and fibrosis, respectively, were up-regulated in nephrolithiasis renal tissues. S100A8 was strongly expressed in infiltrated leukocytes. Fibronectin was over-expressed in renal tubular cells. S100A8 and fibronectin were immunologically confirmed to exist in nephrolithiatic urine and stone matrix, but in healthy urine they were undetectable. Conclusion, both kidney stones and urine obtained from the same patients greatly contained inflammatory and fibrotic proteins. S100A8 and fibronectin were up-regulated in stone-baring kidneys and nephrolithiatic urine. Therefore, inflammation and fibrosis are suggested to be involved in the formation of kidney calculi. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Effects of Fe and Mn deficiencies on the protein profiles of tomato (Solanum lycopersicum) xylem sap as revealed by shotgun analyses.

    Science.gov (United States)

    Ceballos-Laita, Laura; Gutierrez-Carbonell, Elain; Takahashi, Daisuke; Abadía, Anunciación; Uemura, Matsuo; Abadía, Javier; López-Millán, Ana Flor

    2018-01-06

    The aim of this work was to study the effects of Fe and Mn deficiencies on the xylem sap proteome of tomato using a shotgun proteomic approach, with the final goal of elucidating plant response mechanisms to these stresses. This approach yielded 643 proteins reliably identified and quantified with 70% of them predicted as secretory. Iron and Mn deficiencies caused statistically significant and biologically relevant abundance changes in 119 and 118 xylem sap proteins, respectively. In both deficiencies, metabolic pathways most affected were protein metabolism, stress/oxidoreductases and cell wall modifications. First, results suggest that Fe deficiency elicited more stress responses than Mn deficiency, based on the changes in oxidative and proteolytic enzymes. Second, both nutrient deficiencies affect the secondary cell wall metabolism, with changes in Fe deficiency occurring via peroxidase activity, and in Mn deficiency involving peroxidase, Cu-oxidase and fasciclin-like arabinogalactan proteins. Third, the primary cell wall metabolism was affected by both nutrient deficiencies, with changes following opposite directions as judged from the abundances of several glycoside-hydrolases with endo-glycolytic activities and pectin esterases. Fourth, signaling pathways via xylem involving CLE and/or lipids as well as changes in phosphorylation and N-glycosylation also play a role in the responses to these stresses. Biological significance In spite of being essential for the delivery of nutrients to the shoots, our knowledge of xylem responses to nutrient deficiencies is very limited. The present work applies a shotgun proteomic approach to unravel the effects of Fe and Mn deficiencies on the xylem sap proteome. Overall, Fe deficiency seems to elicit more stress in the xylem sap proteome than Mn deficiency, based on the changes measured in proteolytic and oxido-reductase proteins, whereas both nutrients exert modifications in the composition of the primary and secondary

  20. Proteomic analysis of equine amniotic membrane: characterization of proteins.

    Science.gov (United States)

    Galera, Paula D; Ribeiro, Cássio R; Sapp, Harold L; Coleman, James; Fontes, Wagner; Brooks, Dennis E

    2015-05-01

    Human amniotic membrane (AM) has been used as a biomaterial for surgical wound skin and ocular surface reconstruction for several years. Currently, equine AM has been used for corneal reconstruction in several animal species, and appears to have the same properties as human AM. Despite the observed positive healing abilities of this tissue in horses with ulcerative keratitis the proteins of equine AM have not been described. To identify proteins known to be associated with corneal healing from frozen equine AM. Placentas were acquired from healthy live foal births from a local Thoroughbred breeding farm. The amnion was removed from the chorion by blunt dissection, washed with phosphate-buffered saline (PBS), and treated with 0.05% trypsin and 0.02% ethylene diaminetetraacetic acid in PBS. Amnion was attached to nitrocellulose paper (epithelial side up), and cut into 4 × 4 cm pieces. The sheets were frozen at -80 °C. The protein samples were solubilized, and analyzed by 2D gel electrophoresis and shotgun proteomics. A reference identification map of the equine AM proteins was produced and 149 different proteins were identified. From gel-based proteomics, 49 spots were excised and 43 proteins identified by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Shotgun proteomics identified 116 proteins with an overlap of 10 proteins in both analyses. We have described a reference map for equine AM proteins that may provide a background to explain the positive results found in horses with ulcerative keratopathies using this biomaterial. © 2014 American College of Veterinary Ophthalmologists.

  1. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  2. Novel targets of sulforaphane in primary cardiomyocytes identified by proteomic analysis.

    Science.gov (United States)

    Angeloni, Cristina; Turroni, Silvia; Bianchi, Laura; Fabbri, Daniele; Motori, Elisa; Malaguti, Marco; Leoncini, Emanuela; Maraldi, Tullia; Bini, Luca; Brigidi, Patrizia; Hrelia, Silvana

    2013-01-01

    Cardiovascular diseases represent the main cause of mortality in the industrialized world and the identification of effective preventive strategies is of fundamental importance. Sulforaphane, an isothiocyanate from cruciferous vegetables, has been shown to up-regulate phase II enzymes in cardiomyocytes and counteract oxidative stress-induced apoptosis. Aim of the present study was the identification and characterization of novel sulforaphane targets in cardiomyocytes applying a proteomic approach. Two-dimensional gel electrophoresis and mass spectrometry were used to generate protein profiles of primary neonatal rat cardiomyocytes treated and untreated with 5 µM sulforaphane for 1-48 h. According to image analysis, 64 protein spots were found as differentially expressed and their functional correlations were investigated using the MetaCore program. We mainly focused on 3 proteins: macrophage migration inhibitory factor (MIF), CLP36 or Elfin, and glyoxalase 1, due to their possible involvement in cardioprotection. Validation of the time-dependent differential expression of these proteins was performed by western blotting. In particular, to gain insight into the cardioprotective role of the modulation of glyoxalase 1 by sulforaphane, further experiments were performed using methylglyoxal to mimic glycative stress. Sulforaphane was able to counteract methylglyoxal-induced apoptosis, ROS production, and glycative stress, likely through glyoxalase 1 up-regulation. In this study, we reported for the first time new molecular targets of sulforaphane, such as MIF, CLP36 and glyoxalase 1. In particular, we gave new insights into the anti-glycative role of sulforaphane in cardiomyocytes, confirming its pleiotropic behavior in counteracting cardiovascular diseases.

  3. The skeletal proteome of the brittle star Ophiothrix spiculata identifies C-type lectins and other proteins conserved in echinoderm skeleton formation

    Directory of Open Access Journals (Sweden)

    Brian T. Livingston

    2016-07-01

    Full Text Available Determining the identity and functional role of proteins involved in biomineralization and the formation of skeletons is critical to our understanding of the process. Proteomics has allowed rapid characterization of the proteins occluded within mineralized tissue, but the large numbers of proteins detected makes it difficult to assign the relative importance of each protein. We have taken a comparative approach, examining the skeletal proteome of different species of echinoderms in order to identify the proteins that are conserved and likely to be important. Our previous study comparing the skeletal proteome of the brittle star Ophiocoma wendtii to the published proteomes of the sea urchin Strongylocentrotus purpuratus revealed some conservation of proteins, but indicated that the C-type lectin domain-containing spicule matrix proteins abundant in the sea urchin skeletal proteome were not conserved in the brittle star. Here we examine the skeletal proteome of a different species of brittle star, Ophiothrix spiculata. We have isolated the proteins from the skeleton of O. spiculata and performed LC/MS/MS to identify peptides present. Comparison to transcriptome and genome databases revealed the proteins present in the O. spiculata proteome. Despite being diverged for several million years, the two brittle stars have very similar proteins in their skeletons. Included is a fibrinogen C-like lectin and several C-type lectins proteins, which we describe in detail. The unusual number of C-type lectins found in the S. purpuatus skeleton and the repetitive regions seen in those spicule matrix proteins are not present in O. spiculata.

  4. Quantitative Proteomic Analyses Identify ABA-related Proteins and Signal Pathways in Maize Leaves Under Drought Conditions

    Directory of Open Access Journals (Sweden)

    zhao Yulong

    2016-12-01

    Full Text Available Drought stress is one of major factors resulting in maize yield loss. The roles of abscisic acid (ABA have been widely studied in crops in response to drought stress. However, more attention is needed to identify key ABA-related proteins and also gain deeper molecular insights about drought stress in maize. Based on this need, the physiology and proteomics of the ABA-deficient maize mutant vp5 and its wild-type Vp5 under drought stress were examined and analyzed. Malondialdehyde content increased and quantum efficiency of photosystem II decreased under drought stress in both genotypes. However, the magnitude of the increase or decrease was significantly higher in vp5 than in Vp5. A total of 7051 proteins with overlapping expression patterns among three replicates in the two genotypes were identified by Multiplex run iTRAQ-based quantitative proteomic and liquid chromatography-tandem mass spectrometry methods, of which the expression of only 150 proteins (130 in Vp5, 27 in vp5 showed changes of at least 1.5-fold under drought stress. Among the 150 proteins, 67 and 60 proteins were up-regulated and down-regulated by drought stress in an ABA-dependent way, respectively. ABA was found to play active roles in regulating signaling pathways related to photosynthesis, oxidative phosphorylation (mainly related to ATP synthesis, and glutathione metabolism (involved in antioxidative reaction in the maize response to drought stress. Our results provide an extensive dataset of ABA-dependent, drought-regulated proteins in maize plants, which may help to elucidate the underlying mechanisms of ABA-enhanced tolerance to drought stress in maize.

  5. Proteomic Analysis of Lipid Droplets from Caco-2/TC7 Enterocytes Identifies Novel Modulators of Lipid Secretion

    Science.gov (United States)

    Beilstein, Frauke; Bouchoux, Julien; Rousset, Monique; Demignot, Sylvie

    2013-01-01

    In enterocytes, the dynamic accumulation and depletion of triacylglycerol (TAG) in lipid droplets (LD) during fat absorption suggests that cytosolic LD-associated TAG contribute to TAG-rich lipoprotein (TRL) production. To get insight into the mechanisms controlling the storage/secretion balance of TAG, we used as a tool hepatitis C virus core protein, which localizes onto LDs, and thus may modify their protein coat and decrease TRL secretion. We compared the proteome of LD fractions isolated from Caco-2/TC7 enterocytes expressing or not hepatitis C virus core protein by a differential proteomic approach (isobaric tag for relative and absolute quantitation (iTRAQ) labeling coupled with liquid chromatography and tandem mass spectrometry). We identified 42 proteins, 21 being involved in lipid metabolism. Perilipin-2/ADRP, which is suggested to stabilize long term-stored TAG, was enriched in LD fractions isolated from Caco-2/TC7 expressing core protein while perilipin-3/TIP47, which is involved in LD synthesis from newly synthesized TAG, was decreased. Endoplasmic reticulum-associated proteins were strongly decreased, suggesting reduced interactions between LD and endoplasmic reticulum, where TRL assembly occurs. For the first time, we show that 17β-hydroxysteroid dehydrogenase 2 (DHB2), which catalyzes the conversion of 17-keto to 17 β-hydroxysteroids and which was the most highly enriched protein in core expressing cells, is localized to LD and interferes with TAG secretion, probably through its capacity to inactivate testosterone. Overall, we identified potential new players of lipid droplet dynamics, which may be involved in the balance between lipid storage and secretion, and may be altered in enterocytes in pathological conditions such as insulin resistance, type II diabetes and obesity. PMID:23301014

  6. Proteomic analysis of lipid droplets from Caco-2/TC7 enterocytes identifies novel modulators of lipid secretion.

    Directory of Open Access Journals (Sweden)

    Frauke Beilstein

    Full Text Available In enterocytes, the dynamic accumulation and depletion of triacylglycerol (TAG in lipid droplets (LD during fat absorption suggests that cytosolic LD-associated TAG contribute to TAG-rich lipoprotein (TRL production. To get insight into the mechanisms controlling the storage/secretion balance of TAG, we used as a tool hepatitis C virus core protein, which localizes onto LDs, and thus may modify their protein coat and decrease TRL secretion. We compared the proteome of LD fractions isolated from Caco-2/TC7 enterocytes expressing or not hepatitis C virus core protein by a differential proteomic approach (isobaric tag for relative and absolute quantitation (iTRAQ labeling coupled with liquid chromatography and tandem mass spectrometry. We identified 42 proteins, 21 being involved in lipid metabolism. Perilipin-2/ADRP, which is suggested to stabilize long term-stored TAG, was enriched in LD fractions isolated from Caco-2/TC7 expressing core protein while perilipin-3/TIP47, which is involved in LD synthesis from newly synthesized TAG, was decreased. Endoplasmic reticulum-associated proteins were strongly decreased, suggesting reduced interactions between LD and endoplasmic reticulum, where TRL assembly occurs. For the first time, we show that 17β-hydroxysteroid dehydrogenase 2 (DHB2, which catalyzes the conversion of 17-keto to 17 β-hydroxysteroids and which was the most highly enriched protein in core expressing cells, is localized to LD and interferes with TAG secretion, probably through its capacity to inactivate testosterone. Overall, we identified potential new players of lipid droplet dynamics, which may be involved in the balance between lipid storage and secretion, and may be altered in enterocytes in pathological conditions such as insulin resistance, type II diabetes and obesity.

  7. Analytical utility of mass spectral binning in proteomic experiments by SPectral Immonium Ion Detection (SPIID)

    DEFF Research Database (Denmark)

    Kelstrup, Christian D; Freese, Christian; Heck, Albert J R

    2014-01-01

    , increasing the demand for advanced data interpretation. Several PTMs are known to generate unique fragment ions during tandem mass spectrometry (MS/MS), the so-called diagnostic ions, which unequivocally identifies that a given mass spectrum relates to a specific PTM. Although such ions hold tremendous......Unambiguous identification of tandem mass spectra is a cornerstone in mass spectrometry (MS)-based proteomics. As the study of post-translational modifications (PTMs) by shotgun proteomics progresses in depth and coverage, the ability to correctly identify PTM-bearing peptides is essential......, formylation and lysine acetylation containing samples. Using the developed software tool we are able to identify known diagnostic ions by comparing histograms of modified and unmodified peptide spectra. Since the investigated tandem mass spectra data are acquired with high mass accuracy, unambiguous...

  8. Shotgun metagenomic data streams: surfing without fear

    Energy Technology Data Exchange (ETDEWEB)

    Berendzen, Joel R [Los Alamos National Laboratory

    2010-12-06

    Timely information about bio-threat prevalence, consequence, propagation, attribution, and mitigation is needed to support decision-making, both routinely and in a crisis. One DNA sequencer can stream 25 Gbp of information per day, but sampling strategies and analysis techniques are needed to turn raw sequencing power into actionable knowledge. Shotgun metagenomics can enable biosurveillance at the level of a single city, hospital, or airplane. Metagenomics characterizes viruses and bacteria from complex environments such as soil, air filters, or sewage. Unlike targeted-primer-based sequencing, shotgun methods are not blind to sequences that are truly novel, and they can measure absolute prevalence. Shotgun metagenomic sampling can be non-invasive, efficient, and inexpensive while being informative. We have developed analysis techniques for shotgun metagenomic sequencing that rely upon phylogenetic signature patterns. They work by indexing local sequence patterns in a manner similar to web search engines. Our methods are laptop-fast and favorable scaling properties ensure they will be sustainable as sequencing methods grow. We show examples of application to soil metagenomic samples.

  9. Proteomes: A New Proteomic Journal

    Directory of Open Access Journals (Sweden)

    Jacek R. Wiśniewski

    2012-10-01

    Full Text Available In the early years of proteomics, mass spectrometry served only as a technique in protein chemistry facilitating the characterization of purified proteins and mapping their posttranslational modifications (PTMs. A bit later this technique almost completely replaced Edman degradation and amino acid analysis. The continuous development of the mass spectrometry techniques created a huge analytical potential allowing the study of nearly complete proteomes in single experiments. This evolution distanced proteomics from protein chemistry and placed it in a novel position. Its capability to identify and quantify in parallel thousands of proteins and their modifications at minute sample amount requirements is one of the most fascinating technological advances in biology today.

  10. Mining the granule proteome

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Goetze, Jens P; Johnsen, Anders H

    2015-01-01

    Proteomics of secretory granules is an emerging strategy for identifying secreted proteins, including potentially novel candidate biomarkers and peptide hormones. In addition, proteomics can provide information about the abundance, localization and structure (post-translational modification) of g...

  11. Combining phenotypic and proteomic approaches to identify membrane targets in a ‘triple negative’ breast cancer cell type

    Directory of Open Access Journals (Sweden)

    Rust Steven

    2013-02-01

    Full Text Available Abstract Background The continued discovery of therapeutic antibodies, which address unmet medical needs, requires the continued discovery of tractable antibody targets. Multiple protein-level target discovery approaches are available and these can be used in combination to extensively survey relevant cell membranomes. In this study, the MDA-MB-231 cell line was selected for membranome survey as it is a ‘triple negative’ breast cancer cell line, which represents a cancer subtype that is aggressive and has few treatment options. Methods The MDA-MB-231 breast carcinoma cell line was used to explore three membranome target discovery approaches, which were used in parallel to cross-validate the significance of identified antigens. A proteomic approach, which used membrane protein enrichment followed by protein identification by mass spectrometry, was used alongside two phenotypic antibody screening approaches. The first phenotypic screening approach was based on hybridoma technology and the second was based on phage display technology. Antibodies isolated by the phenotypic approaches were tested for cell specificity as well as internalisation and the targets identified were compared to each other as well as those identified by the proteomic approach. An anti-CD73 antibody derived from the phage display-based phenotypic approach was tested for binding to other ‘triple negative’ breast cancer cell lines and tested for tumour growth inhibitory activity in a MDA-MB-231 xenograft model. Results All of the approaches identified multiple cell surface markers, including integrins, CD44, EGFR, CD71, galectin-3, CD73 and BCAM, some of which had been previously confirmed as being tractable to antibody therapy. In total, 40 cell surface markers were identified for further study. In addition to cell surface marker identification, the phenotypic antibody screening approaches provided reagent antibodies for target validation studies. This is illustrated

  12. Proteomic-based detection of a protein cluster dysregulated during cardiovascular development identifies biomarkers of congenital heart defects.

    Directory of Open Access Journals (Sweden)

    Anjali K Nath

    Full Text Available Cardiovascular development is vital for embryonic survival and growth. Early gestation embryo loss or malformation has been linked to yolk sac vasculopathy and congenital heart defects (CHDs. However, the molecular pathways that underlie these structural defects in humans remain largely unknown hindering the development of molecular-based diagnostic tools and novel therapies.Murine embryos were exposed to high glucose, a condition known to induce cardiovascular defects in both animal models and humans. We further employed a mass spectrometry-based proteomics approach to identify proteins differentially expressed in embryos with defects from those with normal cardiovascular development. The proteins detected by mass spectrometry (WNT16, ST14, Pcsk1, Jumonji, Morca2a, TRPC5, and others were validated by Western blotting and immunoflorescent staining of the yolk sac and heart. The proteins within the proteomic dataset clustered to adhesion/migration, differentiation, transport, and insulin signaling pathways. A functional role for several proteins (WNT16, ADAM15 and NOGO-A/B was demonstrated in an ex vivo model of heart development. Additionally, a successful application of a cluster of protein biomarkers (WNT16, ST14 and Pcsk1 as a prenatal screen for CHDs was confirmed in a study of human amniotic fluid (AF samples from women carrying normal fetuses and those with CHDs.The novel finding that WNT16, ST14 and Pcsk1 protein levels increase in fetuses with CHDs suggests that these proteins may play a role in the etiology of human CHDs. The information gained through this bed-side to bench translational approach contributes to a more complete understanding of the protein pathways dysregulated during cardiovascular development and provides novel avenues for diagnostic and therapeutic interventions, beneficial to fetuses at risk for CHDs.

  13. Proteomic-based detection of a protein cluster dysregulated during cardiovascular development identifies biomarkers of congenital heart defects.

    Science.gov (United States)

    Nath, Anjali K; Krauthammer, Michael; Li, Puyao; Davidov, Eugene; Butler, Lucas C; Copel, Joshua; Katajamaa, Mikko; Oresic, Matej; Buhimschi, Irina; Buhimschi, Catalin; Snyder, Michael; Madri, Joseph A

    2009-01-01

    Cardiovascular development is vital for embryonic survival and growth. Early gestation embryo loss or malformation has been linked to yolk sac vasculopathy and congenital heart defects (CHDs). However, the molecular pathways that underlie these structural defects in humans remain largely unknown hindering the development of molecular-based diagnostic tools and novel therapies. Murine embryos were exposed to high glucose, a condition known to induce cardiovascular defects in both animal models and humans. We further employed a mass spectrometry-based proteomics approach to identify proteins differentially expressed in embryos with defects from those with normal cardiovascular development. The proteins detected by mass spectrometry (WNT16, ST14, Pcsk1, Jumonji, Morca2a, TRPC5, and others) were validated by Western blotting and immunoflorescent staining of the yolk sac and heart. The proteins within the proteomic dataset clustered to adhesion/migration, differentiation, transport, and insulin signaling pathways. A functional role for several proteins (WNT16, ADAM15 and NOGO-A/B) was demonstrated in an ex vivo model of heart development. Additionally, a successful application of a cluster of protein biomarkers (WNT16, ST14 and Pcsk1) as a prenatal screen for CHDs was confirmed in a study of human amniotic fluid (AF) samples from women carrying normal fetuses and those with CHDs. The novel finding that WNT16, ST14 and Pcsk1 protein levels increase in fetuses with CHDs suggests that these proteins may play a role in the etiology of human CHDs. The information gained through this bed-side to bench translational approach contributes to a more complete understanding of the protein pathways dysregulated during cardiovascular development and provides novel avenues for diagnostic and therapeutic interventions, beneficial to fetuses at risk for CHDs.

  14. Proteomic profiling identifies PTK2/FAK as a driver of radioresistance in HPV-negative head and neck cancer

    Science.gov (United States)

    Skinner, Heath D.; Giri, Uma; Yang, Liang P.; Woo, Sang Hyeok; Story, Michael; Pickering, Curtis; Byers, Lauren; Williams, Michelle; El Naggar, Adel; Wang, Jing; Diao, Lixia; Shen, Li; Fan, You Hong; Molkentine, David; Beadle, Beth; Meyn, Raymond; Myers, Jeffrey; Heymach, John

    2016-01-01

    Purpose Head and neck squamous cell carcinoma (HNSCC) is commonly treated with radiotherapy, and local failure after treatment remains the major cause of disease-related mortality. To date human papillomavirus (HPV) is the only known clinically validated, targetable biomarkers of response to radiation in HNSCC. Experimental Design We performed proteomic and transcriptomic analysis of targetable biomarkers of radioresistance in HPV-negative HNSCC cell lines in vitro, and tested whether pharmacologic blockade of candidate biomarkers sensitized cells to radiotherapy. Candidate biomarkers were then investigated in several independent cohorts of patients with HNSCC. Results Increased expression of several targets was associated with radioresistance, including FGFR, ERK1, EGFR, and focal adhesion kinase (FAK), also known as PTK2. Chemical inhibition of PTK2/FAK, but not FGFR, led to significant radiosensitization with increased G2/M arrest and potentiated DNA damage. PTK2/FAK overexpression was associated with gene amplification in HPV-negative HNSCC cell lines and clinical tumors. In two independent cohorts of patients with locally advanced HPV-negative HNSCC, PTK2/FAK amplification was highly associated with poorer disease-free survival (DFS) (P=0.012 and P=0.034). PTK2/FAK mRNA expression was also associated with worse DFS (P=0.03). Moreover, both PTK2/FAK mRNA (P=0.021) and copy number (P=0.063) were associated with DFS in the Head and Neck Cancer subgroup of The Cancer Genome Atlas. Conclusion Proteomic analysis identified PTK2/FAK overexpression is a biomarker of radioresistance in locally advanced HNSCC, and PTK2/FAK inhibition radiosensitized HNSCC cells. Combinations of PTK2/FAK inhibition with radiotherapy merit further evaluation as a therapeutic strategy for improving local control in HPV-negative HNSCC. PMID:27036135

  15. Facile preparation of salivary extracellular vesicles for cancer proteomics

    Science.gov (United States)

    Sun, Yan; Xia, Zhijun; Shang, Zhi; Sun, Kaibo; Niu, Xiaomin; Qian, Liqiang; Fan, Liu-Yin; Cao, Cheng-Xi; Xiao, Hua

    2016-04-01

    Extracellular vesicles (EVs) are membrane surrounded structures released by cells, which have been increasingly recognized as mediators of intercellular communication. Recent reports indicate that EVs participate in important biological processes and could serve as potential source for cancer biomarkers. As an attractive EVs source with merit of non-invasiveness, human saliva is a unique medium for clinical diagnostics. Thus, we proposed a facile approach to prepare salivary extracellular vesicles (SEVs). Affinity chromatography column combined with filter system (ACCF) was developed to efficiently remove the high abundant proteins and viscous interferences of saliva. Protein profiling in the SEVs obtained by this strategy was compared with conventional centrifugation method, which demonstrated that about 70% more SEVs proteins could be revealed. To explore its utility for cancer proteomics, we analyzed the proteome of SEVs in lung cancer patients and normal controls. Shotgun proteomic analysis illustrated that 113 and 95 proteins have been identified in cancer group and control group, respectively. Among those 63 proteins that have been consistently discovered only in cancer group, 12 proteins are lung cancer related. Our results demonstrated that SEVs prepared through the developed strategy are valuable samples for proteomics and could serve as a promising liquid biopsy for cancer.

  16. Proteomics dataset

    DEFF Research Database (Denmark)

    Bennike, Tue Bjerg; Carlsen, Thomas Gelsing; Ellingsen, Torkell

    2017-01-01

    The datasets presented in this article are related to the research articles entitled “Neutrophil Extracellular Traps in Ulcerative Colitis: A Proteome Analysis of Intestinal Biopsies” (Bennike et al., 2015 [1]), and “Proteome Analysis of Rheumatoid Arthritis Gut Mucosa” (Bennike et al., 2017 [2...... conducted the sample preparation and liquid chromatography mass spectrometry (LC-MS/MS) analysis of all samples in one batch, enabling label-free comparison between all biopsies. The datasets are made publicly available to enable critical or extended analyses. The proteomics data and search results, have...... been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers PXD001608 for ulcerative colitis and control samples, and PXD003082 for rheumatoid arthritis samples....

  17. An integrated transcriptomic and proteomic analysis of sea star epidermal secretions identifies proteins involved in defense and adhesion.

    Science.gov (United States)

    Hennebert, Elise; Leroy, Baptiste; Wattiez, Ruddy; Ladurner, Peter

    2015-10-14

    Sea stars rely on epidermal secretions to cope with their benthic life. Their integument produces a mucus, which represents the first barrier against invaders; and their tube feet produce adhesive secretions to pry open mussels and attach strongly but temporarily to rocks. In this study, we combined high-throughput sequencing of expressed mRNA and mass-spectrometry-based identification of proteins to establish the first proteome of mucous and adhesive secretions from the sea star Asterias rubens. We show that the two secretions differ significantly, the major adhesive proteins being only present in trace amounts in the mucus secretion. Except for 41 proteins which were present in both secretions, a total of 34 and 244 proteins were identified as specific of adhesive secretions and mucus, respectively. We discuss the role of some of these proteins in the adhesion of sea stars as well as in their protection against oxygen reactive species and microorganisms. In addition, 58% of the proteins identified in adhesive secretions did not present significant similarity to other known proteins, revealing a list of potential novel sea star adhesive proteins uncharacterized so far. The panel of proteins identified in this study offers unprecedented opportunities for the development of sea star-inspired biomimetic materials. Copyright © 2015. Published by Elsevier B.V.

  18. Coronin-1C is a novel biomarker for hepatocellular carcinoma invasive progression identified by proteomics analysis and clinical validation

    Directory of Open Access Journals (Sweden)

    Chen Liang-Dong

    2010-02-01

    Full Text Available Abstract Background To better search for potential markers for hepatocellular carcinoma (HCC invasion and metastasis, proteomic approach was applied to identify potential metastasis biomarkers associated with HCC. Methods Membrane proteins were extracted from MHCC97L and HCCLM9 cells, with a similar genetic background and remarkably different metastasis potential, and compared by SDS-PAGE and identified by ESI-MS/MS. The results were further validated by western blot analysis, immunohistochemistry (IHC of tumor tissues from HCCLM9- and MHCC97L-nude mice, and clinical specimens. Results Membrane proteins were extracted from MHCC97L and HCCLM9 cell and compared by SDS-PAGE analyses. A total of 14 differentially expressed proteins were identified by ESI-MS/MS. Coronin-1C, a promising candidate, was found to be overexpressed in HCCLM9 cells as compared with MHCC97L cells, and validated by western blot and IHC from both nude mice tumor tissues and clinical specimens. Coronin-1C level showed an abrupt upsurge when pulmonary metastasis occurred. Increasing coronin-1C expression was found in liver cancer tissues of HCCLM9-nude mice with spontaneous pulmonary metastasis. IHC study on human HCC specimens revealed that more patients in the higher coronin-1C group had overt larger tumor and more advanced stage. Conclusions Coronin-1C could be a candidate biomarker to predict HCC invasive behavior.

  19. Comparative analysis of the heat stable proteome of radicles of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance

    NARCIS (Netherlands)

    Boudet, J.; Buitink, J.; Hoekstra, F.A.; Rogniaux, H.; Larré, C.; Satour, P.; Leprince, O.

    2006-01-01

    A proteomic analysis was performed on the heat stable protein fraction of imbibed radicles of Medicago truncatula seeds to investigate whether proteins can be identified that are specifically linked to desiccation tolerance (DT). Radicles were compared before and after emergence (2.8 mm long) in

  20. Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer.

    Science.gov (United States)

    Michaut, Magali; Chin, Suet-Feung; Majewski, Ian; Severson, Tesa M; Bismeijer, Tycho; de Koning, Leanne; Peeters, Justine K; Schouten, Philip C; Rueda, Oscar M; Bosma, Astrid J; Tarrant, Finbarr; Fan, Yue; He, Beilei; Xue, Zheng; Mittempergher, Lorenza; Kluin, Roelof J C; Heijmans, Jeroen; Snel, Mireille; Pereira, Bernard; Schlicker, Andreas; Provenzano, Elena; Ali, Hamid Raza; Gaber, Alexander; O'Hurley, Gillian; Lehn, Sophie; Muris, Jettie J F; Wesseling, Jelle; Kay, Elaine; Sammut, Stephen John; Bardwell, Helen A; Barbet, Aurélie S; Bard, Floriane; Lecerf, Caroline; O'Connor, Darran P; Vis, Daniël J; Benes, Cyril H; McDermott, Ultan; Garnett, Mathew J; Simon, Iris M; Jirström, Karin; Dubois, Thierry; Linn, Sabine C; Gallagher, William M; Wessels, Lodewyk F A; Caldas, Carlos; Bernards, Rene

    2016-01-05

    Invasive lobular carcinoma (ILC) is the second most frequently occurring histological breast cancer subtype after invasive ductal carcinoma (IDC), accounting for around 10% of all breast cancers. The molecular processes that drive the development of ILC are still largely unknown. We have performed a comprehensive genomic, transcriptomic and proteomic analysis of a large ILC patient cohort and present here an integrated molecular portrait of ILC. Mutations in CDH1 and in the PI3K pathway are the most frequent molecular alterations in ILC. We identified two main subtypes of ILCs: (i) an immune related subtype with mRNA up-regulation of PD-L1, PD-1 and CTLA-4 and greater sensitivity to DNA-damaging agents in representative cell line models; (ii) a hormone related subtype, associated with Epithelial to Mesenchymal Transition (EMT), and gain of chromosomes 1q and 8q and loss of chromosome 11q. Using the somatic mutation rate and eIF4B protein level, we identified three groups with different clinical outcomes, including a group with extremely good prognosis. We provide a comprehensive overview of the molecular alterations driving ILC and have explored links with therapy response. This molecular characterization may help to tailor treatment of ILC through the application of specific targeted, chemo- and/or immune-therapies.

  1. Functional Proteomics to Identify Moderators of CD8+ T Cell Function in Melanoma

    Science.gov (United States)

    2015-05-01

    reads. Highly represented phage have been subcloned and are being tested for in vitro function. We have identified one phage that augments T...other cell populations, and subclone differentially expressed sequences the phage backbone for functional assessment (or have peptides synthesized

  2. A phospho-proteomic screen identifies substrates of the checkpoint kinase Chk1

    DEFF Research Database (Denmark)

    Blasius, Melanie; Forment, Josep V; Thakkar, Neha

    2011-01-01

    BACKGROUND: The cell-cycle checkpoint kinase Chk1 is essential in mammalian cells due to its roles in controlling processes such as DNA replication, mitosis and DNA-damage responses. Despite its paramount importance, how Chk1 controls these functions remains unclear, mainly because very few Chk1...... substrates have hitherto been identified. RESULTS: Here, we combine a chemical genetics approach with high-resolution mass spectrometry to identify novel Chk1 substrates and their phosphorylation sites. The list of targets produced reveals the potential impact of Chk1 function not only on processes where Chk...... identification of KAP1 Ser473 phosphorylation as a robust readout for Chk1 activity could be used to explore the in vivo effects of Chk1 inhibitors that are being developed for clinical evaluation....

  3. Plasma membrane proteome analysis identifies a role of barley Membrane Steroid Binding Protein in root architecture response to salinity.

    Science.gov (United States)

    Witzel, Katja; Matros, Andrea; Møller, Anders L B; Ramireddy, Eswarrayya; Finnie, Christine; Peukert, Manuela; Rutten, Twan; Herzog, Andreas; Kunze, Gotthard; Melzer, Michael; Kaspar-Schoenefeld, Stephanie; Schmülling, Thomas; Svensson, Birte; Mock, Hans-Peter

    2018-01-31

    Although physiological consequences of plant growth under saline conditions have been well described, understanding the core mechanisms conferring plant salt adaptation has only started. We target the root plasma membrane (PM) proteomes of two barley varieties, cvs. Steptoe and Morex, with contrasting salinity tolerance. In total, 588 PM proteins were identified by mass spectrometry, of which 182 were either cultivar- or salinity stress-responsive. Three candidate proteins with increased abundance in the tolerant cv. Morex were involved either in sterol-binding (a GTPase-activating protein for the ADP ribosylation factor, ZIGA2, and a membrane steroid binding protein, MSBP) or in phospholipid synthesis (phosphoethanolamine methyltransferase, PEAMT). Overexpression of barley MSBP conferred salinity tolerance to yeast cells, while knock-out of the heterologous AtMSBP1 increased salt sensitivity in Arabidopsis. Atmsbp1 plants showed a reduced number of lateral roots under salinity and root tip-specific expression of barley MSBP in Atmsbp1 complemented this phenotype. In barley, an increased abundance of MSBP correlates with reduced root length and lateral root formation as well as increased levels of auxin under salinity being stronger in the tolerant cv. Morex. Hence, we concluded the involvement of MSBP in phytohormone-directed adaptation of root architecture in response to salinity. This article is protected by copyright. All rights reserved.

  4. Proteomic analyses of the SMYD family interactomes identify HSP90 as a novel target for SMYD2.

    Science.gov (United States)

    Abu-Farha, Mohamed; Lanouette, Sylvain; Elisma, Fred; Tremblay, Véronique; Butson, Jeffery; Figeys, Daniel; Couture, Jean-François

    2011-10-01

    The SMYD (SET and MYND domain) family of lysine methyltransferases (KMTs) plays pivotal roles in various cellular processes, including gene expression regulation and DNA damage response. Initially identified as genuine histone methyltransferases, specific members of this family have recently been shown to methylate non-histone proteins such as p53, VEGFR, and the retinoblastoma tumor suppressor (pRb). To gain further functional insights into this family of KMTs, we generated the protein interaction network for three different human SMYD proteins (SMYD2, SMYD3, and SMYD5). Characterization of each SMYD protein network revealed that they associate with both shared and unique sets of proteins. Among those, we found that HSP90 and several of its co-chaperones interact specifically with the tetratrico peptide repeat (TPR)-containing SMYD2 and SMYD3. Moreover, using proteomic and biochemical techniques, we provide evidence that SMYD2 methylates K209 and K615 on HSP90 nucleotide-binding and dimerization domains, respectively. In addition, we found that each methylation site displays unique reactivity in regard to the presence of HSP90 co-chaperones, pH, and demethylation by the lysine amine oxidase LSD1, suggesting that alternative mechanisms control HSP90 methylation by SMYD2. Altogether, this study highlights the ability of SMYD proteins to form unique protein complexes that may underlie their various biological functions and the SMYD2-mediated methylation of the key molecular chaperone HSP90.

  5. IBT-based quantitative proteomics identifies potential regulatory proteins involved in pigmentation of purple sea cucumber, Apostichopus japonicus.

    Science.gov (United States)

    Xing, Lili; Sun, Lina; Liu, Shilin; Li, Xiaoni; Zhang, Libin; Yang, Hongsheng

    2017-09-01

    Sea cucumbers are an important economic species and exhibit high yield value among aquaculture animals. Purple sea cucumbers are very rare and beautiful and have stable hereditary patterns. In this study, isobaric tags (IBT) were first used to reveal the molecular mechanism of pigmentation in the body wall of the purple sea cucumber. We analyzed the proteomes of purple sea cucumber in early pigmentation stage (Pa), mid pigmentation stage (Pb) and late pigmentation stage (Pc), resulting in the identification of 5580 proteins, including 1099 differentially expressed proteins in Pb: Pa and 339 differentially expressed proteins in Pc: Pb. GO and KEGG analyses revealed possible differentially expressed proteins, including"melanogenesis", "melanosome", "melanoma", "pigment-biosynthetic process", "Epidermis development", "Ras-signaling pathway", "Wnt-signaling pathway", "response to UV light", and "tyrosine metabolism", involved in pigment synthesis and regulation in purple sea cucumbers. The large number of differentially expressed proteins identified here should be highly useful in further elucidating the mechanisms underlying pigmentation in sea cucumbers. Furthermore, these results may also provide the base for further identification of proteins involved in resistance mechanisms against melanoma, albinism, UV damage, and other diseases in sea cucumbers. Copyright © 2017. Published by Elsevier Inc.

  6. Rapid and Deep Proteomes by Faster Sequencing on a Benchtop Quadrupole Ultra-High-Field Orbitrap Mass Spectrometer

    DEFF Research Database (Denmark)

    Kelstrup, Christian D; Jersie-Christensen, Rosa R; Batth, Tanveer Singh

    2014-01-01

    Shotgun proteomics is a powerful technology for global analysis of proteins and their post-translational modifications. Here, we investigate faster sequencing speed of the latest Q Exactive HF mass spectrometer, which features an ultra-high-field Orbitrap mass analyzer. Proteome coverage is evalu......Shotgun proteomics is a powerful technology for global analysis of proteins and their post-translational modifications. Here, we investigate faster sequencing speed of the latest Q Exactive HF mass spectrometer, which features an ultra-high-field Orbitrap mass analyzer. Proteome coverage...

  7. Proteomic Characterisation of the Salt Gland-Enriched Tissues of the Mangrove Tree Species Avicennia officinalis.

    Science.gov (United States)

    Tan, Wee-Kee; Lim, Teck-Kwang; Loh, Chiang-Shiong; Kumar, Prakash; Lin, Qingsong

    2015-01-01

    Plant salt glands are nature's desalination devices that harbour potentially useful information pertaining to salt and water transport during secretion. As part of the program toward deciphering secretion mechanisms in salt glands, we used shotgun proteomics to compare the protein profiles of salt gland-enriched (isolated epidermal peels) and salt gland-deprived (mesophyll) tissues of the mangrove species Avicennia officinalis. The purpose of the work is to identify proteins that are present in the salt gland-enriched tissues. An average of 2189 and 977 proteins were identified from the epidermal peel and mesophyll tissues, respectively. Among these, 2188 proteins were identified in salt gland-enriched tissues and a total of 1032 selected proteins were categorized by Gene Ontology (GO) analysis. This paper reports for the first time the proteomic analysis of salt gland-enriched tissues of a mangrove tree species. Candidate proteins that may play a role in the desalination process of the mangrove salt glands and their potential localization were identified. Information obtained from this study paves the way for future proteomic research aiming at elucidating the molecular mechanism underlying secretion in plant salt glands. The data have been deposited to the ProteomeXchange with identifier PXD000771.

  8. Comparative proteomic approach identifies PKM2 and cofilin-1 as potential diagnostic, prognostic and therapeutic targets for pulmonary adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Xing-chen Peng

    Full Text Available Lung cancer is the leading cause of cancer-related death in the world. Non-small cell lung carcinomas (Non-SCLC account for almost 80% of lung cancers, of which 40% were adenocarcinomas. For a better understanding of the molecular mechanisms behind the development and progression of lung cancer, particularly lung adenocarcinoma, we have used proteomics technology to search for candidate prognostic and therapeutic targets in pulmonary adenocarcinoma. The protein profile changes between human pulmonary adenocarcinoma tissue and paired surrounding normal tissue were analyzed using two-dimensional polyacrylamide gel electrophoresis (2-DE based approach. Differentially expressed protein-spots were identified with ESI-Q-TOF MS/MS instruments. As a result, thirty two differentially expressed proteins (over 2-fold, p<0.05 were identified in pulmonary adenocarcinoma compared to normal tissues. Among them, two proteins (PKM2 and cofilin-1, significantly up-regulated in adenocarcinoma, were selected for detailed analysis. Immunohistochemical examination indicated that enhanced expression of PKM2 and cofilin-1 were correlated with the severity of epithelial dysplasia, as well as a relatively poor prognosis. Knockdown of PKM2 expression by RNA interference led to a significant suppression of cell growth and induction of apoptosis in pulmonary adenocarcinoma SPC-A1 cells in vitro, and tumor growth inhibition in vivo xenograft model (P<0.05. In addition, the shRNA expressing plasmid targeting cofilin-1 significantly inhibited tumor metastases and prolonged survival in LL/2 metastatic model. While additional works are needed to elucidate the biological significance and molecular mechanisms of these altered proteins identified in this study, PKM2 and cofilin-1 may serve as potential diagnostic and prognostic biomarkers, as well as therapeutic targets for pulmonary adenocarcinoma.

  9. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in a...

  10. Proteomic Approaches Identify Members of Cofilin Pathway Involved in Oral Tumorigenesis

    Science.gov (United States)

    Polachini, Giovana M.; Sobral, Lays M.; Mercante, Ana M. C.; Paes-Leme, Adriana F.; Xavier, Flávia C. A.; Henrique, Tiago; Guimarães, Douglas M.; Vidotto, Alessandra; Fukuyama, Erica E.; Góis-Filho, José F.; Cury, Patricia M.; Curioni, Otávio A.; Michaluart Jr, Pedro; Silva, Adriana M. A.; Wünsch-Filho, Victor; Nunes, Fabio D.; Leopoldino, Andréia M.; Tajara, Eloiza H.

    2012-01-01

    The prediction of tumor behavior for patients with oral carcinomas remains a challenge for clinicians. The presence of lymph node metastasis is the most important prognostic factor but it is limited in predicting local relapse or survival. This highlights the need for identifying biomarkers that may effectively contribute to prediction of recurrence and tumor spread. In this study, we used one- and two-dimensional gel electrophoresis, mass spectrometry and immunodetection methods to analyze protein expression in oral squamous cell carcinomas. Using a refinement for classifying oral carcinomas in regard to prognosis, we analyzed small but lymph node metastasis-positive versus large, lymph node metastasis-negative tumors in order to contribute to the molecular characterization of subgroups with risk of dissemination. Specific protein patterns favoring metastasis were observed in the “more-aggressive” group defined by the present study. This group displayed upregulation of proteins involved in migration, adhesion, angiogenesis, cell cycle regulation, anti-apoptosis and epithelial to mesenchymal transition, whereas the “less-aggressive” group was engaged in keratinocyte differentiation, epidermis development, inflammation and immune response. Besides the identification of several proteins not yet described as deregulated in oral carcinomas, the present study demonstrated for the first time the role of cofilin-1 in modulating cell invasion in oral carcinomas. PMID:23227181

  11. Proteomic Studies on Human and Experimental Cerebral Malaria

    KAUST Repository

    Moussa, Ehab

    2012-07-01

    Cerebral malaria (CM) is a severe neurological complication of malaria infection that results from interrelated pathologies. Despite extensive research efforts, the mechanism of the disease is not completely understood. Clinical studies, postmortem analysis, and animal models have been the main research arenas in CM. In this thesis, shotgun proteomics approach was used to further understand the pathology of human and experimental CM. The mechanism by which CM turns fatal is yet to be identified. A clinical proteomics study was conducted on pooled plasma samples from children with reversible or fatal CM from the Gambia. The results show that depletion of coagulation factors and increased levels of circulating proteasomes are associated with fatal pediatric CM. This data suggests that the ongoing coagulation during CM might be a disseminated intravascular coagulation state that eventually causes depletion of the coagulation factors leading to petechial hemorrhages. In addition, the mechanism(s) by which blood transfusion benefits CM in children was investigated. To that end, the concentration and multimerization pattern of von-willebrand factor, and the concentration of haptoglobin in the plasma of children with CM who received blood transfusions were measured. In addition to clinical studies, experimental cerebral malaria (ECM) in mice has been long used as a model for the disease. A shotgun proteomics workflow was optimized to identify the proteomic signature of the brain tissue of mice with ECM.Because of the utmost importance of membrane proteins in the pathology of the disease, sample fractionation and filter aided sample preparation were used to recover them. The proteomic signature of the brains of mice infected with P. berghei ANKA that developed neurological syndrome, mice infected with P. berghei NK56 that developed severe malaria but without neurological signs, and non-infected mice, were compared to identify CM specific proteins. Among the differentially

  12. Target-similarity search using Plasmodium falciparum proteome identifies approved drugs with anti-malarial activity and their possible targets.

    Directory of Open Access Journals (Sweden)

    Reagan M Mogire

    Full Text Available Malaria causes about half a million deaths annually, with Plasmodium falciparum being responsible for 90% of all the cases. Recent reports on artemisinin resistance in Southeast Asia warrant urgent discovery of novel drugs for the treatment of malaria. However, most bioactive compounds fail to progress to treatments due to safety concerns. Drug repositioning offers an alternative strategy where drugs that have already been approved as safe for other diseases could be used to treat malaria. This study screened approved drugs for antimalarial activity using an in silico chemogenomics approach prior to in vitro verification. All the P. falciparum proteins sequences available in NCBI RefSeq were mined and used to perform a similarity search against DrugBank, TTD and STITCH databases to identify similar putative drug targets. Druggability indices of the potential P. falciparum drug targets were obtained from TDR targets database. Functional amino acid residues of the drug targets were determined using ConSurf server which was used to fine tune the similarity search. This study predicted 133 approved drugs that could target 34 P. falciparum proteins. A literature search done at PubMed and Google Scholar showed 105 out of the 133 drugs to have been previously tested against malaria, with most showing activity. For further validation, drug susceptibility assays using SYBR Green I method were done on a representative group of 10 predicted drugs, eight of which did show activity against P. falciparum 3D7 clone. Seven had IC50 values ranging from 1 μM to 50 μM. This study also suggests drug-target association and hence possible mechanisms of action of drugs that did show antiplasmodial activity. The study results validate the use of proteome-wide target similarity approach in identifying approved drugs with activity against P. falciparum and could be adapted for other pathogens.

  13. ITIH4: A New Potential Biomarker of “Toxin Syndrome” in Coronary Heart Disease Patient Identified with Proteomic Method

    Directory of Open Access Journals (Sweden)

    Hao Xu

    2013-01-01

    Full Text Available Objective. This trial aims to look for the protein biomarker of “toxin syndrome” of CHD patients. Methods. We have performed two trials in this paper. The first trial was a randomized controlled trial (RCT of the plasma proteome in unstable angina (UA patients by Maldi-Tof Mass. The second trial was a nested case-control study in 1503 stable CHD patients with one-year followup for acute cardiovascular events (ACEs. Results. In the RCT study, 12 protein spots were found to be the differential protein for the significant differences between the difference of before and after treatment in group A and group B; 2 of them (3207.37 Da and 4279.95 Da was considered to be unique to “toxin syndrome” for being differential proteins of group B but not group A. These 2 spots were identified as Isoform 1 of Fibrinogen alpha chain precursor (FGA, 3207.37 Da and Isoform 2 of inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4, 4279.95 Da, respectively. In the nested case-control study, the result of Western blot demonstrated that protein expression of ITIH4 in the group with followup ACEs was significantly lower than the matched group without followup ACEs (P=0.027. Conclusion. ITIH4 might be a new potential biomarker of CHD “toxin syndrome” in TCM, indicating the potential role in early identifying high-risk CHD patients in stable period.

  14. Dynamic proteomic profile of potato tuber during its in vitro development.

    Science.gov (United States)

    Yu, Jae Woong; Choi, Jong-Soon; Upadhyaya, Chandrama Prakash; Kwon, Sang Oh; Gururani, Mayank Anand; Nookaraju, Akula; Nam, Ju-Hyun; Choi, Chi-Won; Kim, Seung Il; Ajappala, Hemavathi; Kim, Hyun Soon; Jeon, Jae Heung; Park, Se Won

    2012-10-01

    Potato tuberization is a complicated biochemical process, which is dependent on external environmental factors. Tuber development in potato consists of a series of biochemical and morphological processes at the stolon tip. Signal transduction proteins are involved in the source-sink transition during potato tuberization. In the present study, we examined protein profiles under in vitro tuber-inducing conditions using a shotgun proteomic approach involving denaturing gel electrophoresis and liquid chromatography-mass spectrometry. A total of 251 proteins were identified and classified into 9 groups according to distinctive expression patterns during the tuberization stage. Stolon stage-specific proteins were primarily involved in the photosynthetic machinery. Proteins specific to the initial tuber stage included patatin. Proteins specific to the developing tuber stage included 6-fructokinase, phytoalexin-deficient 4-1, metallothionein II-like protein, and malate dehydrogenase. Novel stage-specific proteins identified during in vitro tuberization were ferredoxin-NADP reductase, 34 kDa porin, aquaporin, calmodulin, ripening-regulated protein, and starch synthase. Superoxide dismutase, dehydroascorbate reductase, and catalase I were most abundantly expressed in the stolon; however, the enzyme activities of these proteins were most activated at the initial tuber. The present shotgun proteomic study provides insights into the proteins that show altered expression during in vitro potato tuberization. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Gel-free proteomics reveal potential biomarkers of priming-induced salt tolerance in durum wheat.

    Science.gov (United States)

    Fercha, Azzedine; Capriotti, Anna Laura; Caruso, Giuseppe; Cavaliere, Chiara; Gherroucha, Hocine; Samperi, Roberto; Stampachiacchiere, Serena; Lagana, Aldo

    2013-10-08

    Seed priming has been successfully demonstrated to be an efficient method to improve crop productivity under stressful conditions. As a first step toward better understanding of the mechanisms underlying the priming-induced salt stress tolerance in durum wheat, and to overcome the limitations of the gel-based approach, a comparative gel-free proteomic analysis was conducted with durum wheat seed samples of varying vigor as generated by hydro- and ascorbate-priming treatments. Results indicate that hydro-priming was accompanied by significant changes of 72 proteins, most of which are involved in proteolysis, protein synthesis, metabolism and disease/defense response. Ascorbate-priming was, however, accompanied by significant changes of 83 proteins, which are mainly involved in protein metabolism, antioxidant protection, repair processes and, interestingly, in methionine-related metabolism. The present study provides new information for understanding how 'priming-memory' invokes seed stress tolerance. The current work describes the first study in which gel-free shotgun proteomics were used to investigate the metabolic seed protein fraction in durum wheat. A combined approach of protein fractionation, hydrogel nanoparticle enrichment technique, and gel-free shotgun proteomic analysis allowed us to identify over 380 proteins exhibiting greater molecular weight diversity (ranging from 7 to 258kDa). Accordingly, we propose that this approach could be useful to acquire a wider perspective and a better understanding of the seed proteome. In the present work, we employed this method to investigate the potential biomarkers of priming-induced salt tolerance in durum wheat. In this way, we identified several previously unrecognized proteins which were never been reported before, particularly for the ascorbate-priming treatment. These findings could provide new avenues for improving crop productivity, particularly under unfavorable environmental conditions. © 2013.

  16. Entrance, exit, and reentrance of one shot with a shotgun

    DEFF Research Database (Denmark)

    Gulmann, C; Hougen, H P

    1999-01-01

    The case being reported is one of a homicidal shotgun fatality with an unusual wound pattern. A 34-year-old man was shot at close range with a 12-gauge shotgun armed with No. 5 birdshot ammunition. The shot entered the left axillary region, exited through the left infraclavicular region, and ther......The case being reported is one of a homicidal shotgun fatality with an unusual wound pattern. A 34-year-old man was shot at close range with a 12-gauge shotgun armed with No. 5 birdshot ammunition. The shot entered the left axillary region, exited through the left infraclavicular region...

  17. An Integrated Proteomics/Transcriptomics Approach Points to Oxygen as the Main Electron Sink for Methanol Metabolism in Methylotenera mobilis▿†

    Science.gov (United States)

    Beck, David A. C.; Hendrickson, Erik L.; Vorobev, Alexey; Wang, Tiansong; Lim, Sujung; Kalyuzhnaya, Marina G.; Lidstrom, Mary E.; Hackett, Murray; Chistoserdova, Ludmila

    2011-01-01

    Methylotenera species, unlike their close relatives in the genera Methylophilus, Methylobacillus, and Methylovorus, neither exhibit the activity of methanol dehydrogenase nor possess mxaFI genes encoding this enzyme, yet they are able to grow on methanol. In this work, we integrated a genome-wide proteomics approach, shotgun proteomics, and a genome-wide transcriptomics approach, shotgun transcriptome sequencing (RNA-seq), of Methylotenera mobilis JLW8 to identify genes and enzymes potentially involved in methanol oxidation, with special attention to alternative nitrogen sources, to address the question of whether nitrate could play a role as an electron acceptor in place of oxygen. Both proteomics and transcriptomics identified a limited number of genes and enzymes specifically responding to methanol. This set includes genes involved in oxidative stress response systems, a number of oxidoreductases, including XoxF-type alcohol dehydrogenases, a type II secretion system, and proteins without a predicted function. Nitrate stimulated expression of some genes in assimilatory nitrate reduction and denitrification pathways, while ammonium downregulated some of the nitrogen metabolism genes. However, none of these genes appeared to respond to methanol, which suggests that oxygen may be the main electron sink during growth on methanol. This study identifies initial targets for future focused physiological studies, including mutant analysis, which will provide further details into this novel process. PMID:21764938

  18. Proteomics Mapping of Cord Blood Identifies Haptoglobin ?Switch-On? Pattern as Biomarker of Early-Onset Neonatal Sepsis in Preterm Newborns

    OpenAIRE

    Buhimschi, Catalin S.; Bhandari, Vineet; Dulay, Antonette T.; Nayeri, Unzila A.; Abdel-Razeq, Sonya S.; Pettker, Christian M.; Thung, Stephen; Zhao, Guomao; Han, Yiping W.; Bizzarro, Matthew; Buhimschi, Irina A.

    2011-01-01

    Background Intra-amniotic infection and/or inflammation (IAI) are important causes of preterm birth and early-onset neonatal sepsis (EONS). A prompt and accurate diagnosis of EONS is critical for improved neonatal outcomes. We sought to explore the cord blood proteome and identify biomarkers and functional protein networks characterizing EONS in preterm newborns. Methodology/Principal Findings We studied a prospective cohort of 180 premature newborns delivered May 2004-September 2009. A prote...

  19. Quantitative proteomic profiling identifies DPYSL3 as pancreatic ductal adenocarcinoma-associated molecule that regulates cell adhesion and migration by stabilization of focal adhesion complex.

    Directory of Open Access Journals (Sweden)

    Takeo Kawahara

    Full Text Available Elucidation of how pancreatic cancer cells give rise to distant metastasis is urgently needed in order to provide not only a better understanding of the underlying molecular mechanisms, but also to identify novel targets for greatly improved molecular diagnosis and therapeutic intervention. We employed combined proteomic technologies including mass spectrometry and isobaric tags for relative and absolute quantification peptide tagging to analyze protein profiles of surgically resected human pancreatic ductal adenocarcinoma tissues. We identified a protein, dihydropyrimidinase-like 3, as highly expressed in human pancreatic ductal adenocarcinoma tissues as well as pancreatic cancer cell lines. Characterization of the roles of dihydropyrimidinase-like 3 in relation to cancer cell adhesion and migration in vitro, and metastasis in vivo was performed using a series of functional analyses, including those employing multiple reaction monitoring proteomic analysis. Furthermore, dihydropyrimidinase-like 3 was found to interact with Ezrin, which has important roles in cell adhesion, motility, and invasion, while that interaction promoted stabilization of an adhesion complex consisting of Ezrin, c-Src, focal adhesion kinase, and Talin1. We also found that exogenous expression of dihydropyrimidinase-like 3 induced activating phosphorylation of Ezrin and c-Src, leading to up-regulation of the signaling pathway. Taken together, the present results indicate successful application of combined proteomic approaches to identify a novel key player, dihydropyrimidinase-like 3, in pancreatic ductal adenocarcinoma tumorigenesis, which may serve as an important biomarker and/or drug target to improve therapeutic strategies.

  20. Quantitative proteomic profiling identifies DPYSL3 as pancreatic ductal adenocarcinoma-associated molecule that regulates cell adhesion and migration by stabilization of focal adhesion complex.

    Science.gov (United States)

    Kawahara, Takeo; Hotta, Naoe; Ozawa, Yukiko; Kato, Seiichi; Kano, Keiko; Yokoyama, Yukihiro; Nagino, Masato; Takahashi, Takashi; Yanagisawa, Kiyoshi

    2013-01-01

    Elucidation of how pancreatic cancer cells give rise to distant metastasis is urgently needed in order to provide not only a better understanding of the underlying molecular mechanisms, but also to identify novel targets for greatly improved molecular diagnosis and therapeutic intervention. We employed combined proteomic technologies including mass spectrometry and isobaric tags for relative and absolute quantification peptide tagging to analyze protein profiles of surgically resected human pancreatic ductal adenocarcinoma tissues. We identified a protein, dihydropyrimidinase-like 3, as highly expressed in human pancreatic ductal adenocarcinoma tissues as well as pancreatic cancer cell lines. Characterization of the roles of dihydropyrimidinase-like 3 in relation to cancer cell adhesion and migration in vitro, and metastasis in vivo was performed using a series of functional analyses, including those employing multiple reaction monitoring proteomic analysis. Furthermore, dihydropyrimidinase-like 3 was found to interact with Ezrin, which has important roles in cell adhesion, motility, and invasion, while that interaction promoted stabilization of an adhesion complex consisting of Ezrin, c-Src, focal adhesion kinase, and Talin1. We also found that exogenous expression of dihydropyrimidinase-like 3 induced activating phosphorylation of Ezrin and c-Src, leading to up-regulation of the signaling pathway. Taken together, the present results indicate successful application of combined proteomic approaches to identify a novel key player, dihydropyrimidinase-like 3, in pancreatic ductal adenocarcinoma tumorigenesis, which may serve as an important biomarker and/or drug target to improve therapeutic strategies.

  1. PTRF/cavin-1 and MIF proteins are identified as non-small cell lung cancer biomarkers by label-free proteomics.

    Directory of Open Access Journals (Sweden)

    Angelo Gámez-Pozo

    Full Text Available With the completion of the human genome sequence, biomedical sciences have entered in the "omics" era, mainly due to high-throughput genomics techniques and the recent application of mass spectrometry to proteomics analyses. However, there is still a time lag between these technological advances and their application in the clinical setting. Our work is designed to build bridges between high-performance proteomics and clinical routine. Protein extracts were obtained from fresh frozen normal lung and non-small cell lung cancer samples. We applied a phosphopeptide enrichment followed by LC-MS/MS. Subsequent label-free quantification and bioinformatics analyses were performed. We assessed protein patterns on these samples, showing dozens of differential markers between normal and tumor tissue. Gene ontology and interactome analyses identified signaling pathways altered on tumor tissue. We have identified two proteins, PTRF/cavin-1 and MIF, which are differentially expressed between normal lung and non-small cell lung cancer. These potential biomarkers were validated using western blot and immunohistochemistry. The application of discovery-based proteomics analyses in clinical samples allowed us to identify new potential biomarkers and therapeutic targets in non-small cell lung cancer.

  2. Combining results of multiple search engines in proteomics.

    Science.gov (United States)

    Shteynberg, David; Nesvizhskii, Alexey I; Moritz, Robert L; Deutsch, Eric W

    2013-09-01

    A crucial component of the analysis of shotgun proteomics datasets is the search engine, an algorithm that attempts to identify the peptide sequence from the parent molecular ion that produced each fragment ion spectrum in the dataset. There are many different search engines, both commercial and open source, each employing a somewhat different technique for spectrum identification. The set of high-scoring peptide-spectrum matches for a defined set of input spectra differs markedly among the various search engine results; individual engines each provide unique correct identifications among a core set of correlative identifications. This has led to the approach of combining the results from multiple search engines to achieve improved analysis of each dataset. Here we review the techniques and available software for combining the results of multiple search engines and briefly compare the relative performance of these techniques.

  3. Combining Results of Multiple Search Engines in Proteomics*

    Science.gov (United States)

    Shteynberg, David; Nesvizhskii, Alexey I.; Moritz, Robert L.; Deutsch, Eric W.

    2013-01-01

    A crucial component of the analysis of shotgun proteomics datasets is the search engine, an algorithm that attempts to identify the peptide sequence from the parent molecular ion that produced each fragment ion spectrum in the dataset. There are many different search engines, both commercial and open source, each employing a somewhat different technique for spectrum identification. The set of high-scoring peptide-spectrum matches for a defined set of input spectra differs markedly among the various search engine results; individual engines each provide unique correct identifications among a core set of correlative identifications. This has led to the approach of combining the results from multiple search engines to achieve improved analysis of each dataset. Here we review the techniques and available software for combining the results of multiple search engines and briefly compare the relative performance of these techniques. PMID:23720762

  4. Plasma Proteomic Analysis May Identify New Markers for Radiation-Induced Lung Toxicity in Patients With Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Cai Xuwi; Shedden, Kerby; Ao Xiaoping; Davis, Mary

    2010-01-01

    Purpose: To study whether radiation induces differential changes in plasma proteomics in patients with and without radiation-induced lung toxicity (RILT) of Grade ≥2 (RILT2). Methods and Materials: A total of 57 patients with NSCLC received radiation therapy (RT) were eligible. Twenty patients, 6 with RILT2 with tumor stage matched to 14 without RILT2, were enrolled for this analysis. Platelet-poor plasma was obtained before RT, at 2, 4, 6 weeks during RT, and 1 and 3 months after RT. Plasma proteomes were compared using a multiplexed quantitative proteomics approach involving ExacTag labeling, reverse-phase high-performance liquid chromatography and nano-LC electrospray tandem mass spectrometry. Variance components models were used to identify the differential protein expression between patients with and without RILT2. Results: More than 100 proteins were identified and quantified. After excluding proteins for which there were not at least 2 subjects with data for at least two time points, 76 proteins remained for this preliminary analysis. C4b-binding protein alpha chain, Complement C3, and Vitronectin had significantly higher expression levels in patients with RILT2 compared with patients without RILT2, based on both the data sets of RT start to 3 months post-RT (p < 0.01) and RT start to the end of RT (p < 0.01). The expression ratios of patients with RILT2 vs. without RILT2 were 1.60, 1.36, 1.46, and 1.66, 1.34, 1.46, for the above three proteins, respectively. Conclusions: This proteomic approach identified new plasma protein markers for future studies on RILT prediction.

  5. Proteins associated with the size and expansion rate of the abdominal aortic aneurysm wall as identified by proteomic analysis

    DEFF Research Database (Denmark)

    Urbonavicius, Sigitas; Lindholt, Jes Sanddal; Delbosc, Sandrine

    2010-01-01

    Identification of biomarkers for the natural history of abdominal aortic aneurysms (AAA) holds the key to non-surgical intervention and improved selection for AAA repair. We aimed to associate the basic proteomic composition of AAA wall tissue with the expansion rate and size in patients with AAA....

  6. Serum proteomic analysis identifies sex-specific differences in lipid metabolism and inflammation profiles in adults diagnosed with Asperger syndrome

    NARCIS (Netherlands)

    H. Steeb (Hannah); J.M. Ramsey (Jordan); P.C. Guest (Paul); P. Stocki (Pawel); J.D. Cooper (Jason); H. Rahmoune (Hassan); E. Ingudomnukul (Erin); B. Auyeung (Bonnie); L. Ruta (Liliana); S. Baron-Cohen (Simon); S. Bahn (Sabine)

    2014-01-01

    textabstractBackground: The higher prevalence of Asperger Syndrome (AS) and other autism spectrum conditions in males has been known for many years. However, recent multiplex immunoassay profiling studies have shown that males and females with AS have distinct proteomic changes in serum. Methods.

  7. Shotgun weddings (dekichatta kekkon) in contemporary Japan.

    Science.gov (United States)

    Castro-Vázquez, Genaro

    2015-01-01

    The accelerated greying of its population along with birth rates plummeting below replacement levels synergise into one of the most acute social issues in contemporary Japan. Although singleness, childlessness, delayed marriage and late-in-life-childbirth have become endemic, official records nevertheless reveal an increase in childbirth among women aged 15-19 in 2013. Furthermore, official statistics for 2010 show that 50% of Japanese women aged 25 or younger who married were expecting a baby. This paper focuses on 17 Japanese mothers who had a 'shotgun wedding' (dekichatta kekkon)--a ceremony organised due to an unplanned pregnancy. Aged between 29 and 35 years, the mothers came from Tokyo and Kanagawa and were interviewed for the purposes of exploring their experiences with and viewpoints on unplanned childbirth, contraception and marriage. Grounded in a symbolic interactionist perspective, the analysis of interviews suggested that shotgun weddings largely stem from contraception issues, the will to get pregnant in order to keep a partner and homosocial pressure to prevent the termination of the unexpected pregnancy.

  8. Proteomics Analysis to Identify and Characterize the Molecular Signatures of Hepatic Steatosis in Ovariectomized Rats as a Model of Postmenopausal Status

    Directory of Open Access Journals (Sweden)

    Chen-Chung Liao

    2015-10-01

    Full Text Available Postmenopausal women are particularly at increased risk of developing non-alcoholic fatty liver disease (NAFLD. Here we aimed to determine the impact of postmenopausal-induced NAFLD (PM-NAFLD in an ovariectomized rat model. Sixteen six-week-old Sprague-Dawley female rats were randomly divided into two groups (eight per group, for sham-operation (Sham or bilateral ovariectomy (Ovx. Four months after surgery, indices of liver damage and liver histomorphometry were measured. Both serum aspartate aminotransferase (AST and alanine aminotranferease (ALT levels were significantly higher in the Ovx than Sham group. We performed quantitative LC-MS/MS-based proteomic profiling of livers from rats with PM-NAFLD to provide baseline knowledge of the PM-NAFLD proteome and to investigate proteins involved in PM-NAFLD by ingenuity pathways analysis (IPA to provide corroborative evidence for differential regulation of molecular and cellular functions affecting metabolic processes. Of the 586 identified proteins, the levels of 59 (10.0% and 48 (8.2% were significantly higher and lower, respectively, in the Ovx group compared to the Sham group. In conclusion, the changes in regulation of proteins implicated in PM-NAFLD may affect other vital biological processes in the body apart from causing postmenopause-mediated liver dysfunction. Our quantitative proteomics analysis may also suggest potential biomarkers and further clinical applications for PM-NAFLD.

  9. Analysis of the Protein Kinase A-Regulated Proteome of Cryptococcus neoformans Identifies a Role for the Ubiquitin-Proteasome Pathway in Capsule Formation

    Directory of Open Access Journals (Sweden)

    J. M. H. Geddes

    2016-01-01

    Full Text Available The opportunistic fungal pathogen Cryptococcus neoformans causes life-threatening meningitis in immunocompromised individuals. The expression of virulence factors, including capsule and melanin, is in part regulated by the cyclic-AMP/protein kinase A (cAMP/PKA signal transduction pathway. In this study, we investigated the influence of PKA on the composition of the intracellular proteome to obtain a comprehensive understanding of the regulation that underpins virulence. Through quantitative proteomics, enrichment and bioinformatic analyses, and an interactome study, we uncovered a pattern of PKA regulation for proteins associated with translation, the proteasome, metabolism, amino acid biosynthesis, and virulence-related functions. PKA regulation of the ubiquitin-proteasome pathway in C. neoformans showed a striking parallel with connections between PKA and protein degradation in chronic neurodegenerative disorders and other human diseases. Further investigation of proteasome function with the inhibitor bortezomib revealed an impact on capsule production as well as hypersusceptibility for strains with altered expression or activity of PKA. Parallel studies with tunicamycin also linked endoplasmic reticulum stress with capsule production and PKA. Taken together, the data suggest a model whereby expression of PKA regulatory and catalytic subunits and the activation of PKA influence proteostasis and the function of the endoplasmic reticulum to control the elaboration of the polysaccharide capsule. Overall, this study revealed both broad and conserved influences of the cAMP/PKA pathway on the proteome and identified proteostasis as a potential therapeutic target for the treatment of cryptococcosis.

  10. A statistical approach designed for finding mathematically defined repeats in shotgun data and determining the length distribution of clone-inserts

    DEFF Research Database (Denmark)

    Zhong, Lan; Zhang, Kunlin; Huang, Xiangang

    2003-01-01

    that repeats of different copy number have different probabilities of appearance in shotgun data, so based on this principle, we constructed a statistical model and inferred criteria for mathematically defined repeats (MDRs) at different shotgun coverages. According to these criteria, we developed software...... MDRmasker to identify and mask MDRs in shotgun data. With repeats masked prior to assembly, the speed of assembly was increased with lower error probability. In addition, clone-insert size affect the accuracy of repeat assembly and scaffold construction, we also designed length distribution of clone...

  11. Deep Coverage Proteomics Identifies More Low-Abundance Missing Proteins in Human Testis Tissue with Q-Exactive HF Mass Spectrometer.

    Science.gov (United States)

    Wei, Wei; Luo, Weijia; Wu, Feilin; Peng, Xuehui; Zhang, Yao; Zhang, Manli; Zhao, Yan; Su, Na; Qi, YingZi; Chen, Lingsheng; Zhang, Yangjun; Wen, Bo; He, Fuchu; Xu, Ping

    2016-11-04

    Since 2012, missing proteins (MPs) investigation has been one of the critical missions of Chromosome-Centric Human Proteome Project (C-HPP) through various biochemical strategies. On the basis of our previous testis MPs study, faster scanning and higher resolution mass-spectrometry-based proteomics might be conducive to MPs exploration, especially for low-abundance proteins. In this study, Q-Exactive HF (HF) was used to survey proteins from the same testis tissues separated by two separating methods (tricine- and glycine-SDS-PAGE), as previously described. A total of 8526 proteins were identified, of which more low-abundance proteins were uniquely detected in HF data but not in our previous LTQ Orbitrap Velos (Velos) reanalysis data. Further transcriptomics analysis showed that these uniquely identified proteins by HF also had lower expression at the mRNA level. Of the 81 total identified MPs, 74 and 39 proteins were listed as MPs in HF and Velos data sets, respectively. Among the above MPs, 47 proteins (43 neXtProt PE2 and 4 PE3) were ranked as confirmed MPs after verifying with the stringent spectra match and isobaric and single amino acid variants filtering. Functional investigation of these 47 MPs revealed that 11 MPs were testis-specific proteins and 7 MPs were involved in spermatogenesis process. Therefore, we concluded that higher scanning speed and resolution of HF might be factors for improving the low-abundance MP identification in future C-HPP studies. All mass-spectrometry data from this study have been deposited in the ProteomeXchange with identifier PXD004092.

  12. Hydroponic isotope labeling of entire plants and high-performance mass spectrometry for quantitative plant proteomics.

    Science.gov (United States)

    Bindschedler, Laurence V; Mills, Davinia J S; Cramer, Rainer

    2012-01-01

    Hydroponic isotope labeling of entire plants (HILEP) combines hydroponic plant cultivation and metabolic labeling with stable isotopes using (15)N-containing inorganic salts to label whole and mature plants. Employing (15)N salts as the sole nitrogen source for HILEP leads to the production of healthy-looking plants which contain (15)N proteins labeled to nearly 100%. Therefore, HILEP is suitable for quantitative plant proteomic analysis, where plants are grown in either (14)N- or (15)N-hydroponic media and pooled when the biological samples are collected for relative proteome quantitation. The pooled (14)N-/(15)N-protein extracts can be fractionated in any suitable way and digested with a protease for shotgun proteomics, using typically reverse phase liquid chromatography nanoelectrospray ionization tandem mass spectrometry (RPLC-nESI-MS/MS). Best results were obtained with a hybrid ion trap/FT-MS mass spectrometer, combining high mass accuracy and sensitivity for the MS data acquisition with speed and high-throughput MS/MS data acquisition, increasing the number of proteins identified and quantified and improving protein quantitation. Peak processing and picking from raw MS data files, protein identification, and quantitation were performed in a highly automated way using integrated MS data analysis software with minimum manual intervention, thus easing the analytical workflow. In this methodology paper, we describe how to grow Arabidopsis plants hydroponically for isotope labeling using (15)N salts and how to quantitate the resulting proteomes using a convenient workflow that does not require extensive bioinformatics skills.

  13. Proteomic characterization of venom of the medically important Southeast Asian Naja sumatrana (Equatorial spitting cobra).

    Science.gov (United States)

    Yap, Michelle Khai Khun; Fung, Shin Yee; Tan, Kae Yi; Tan, Nget Hong

    2014-05-01

    The proteome of Naja sumatrana (Equatorial spitting cobra) venom was investigated by shotgun analysis and a combination of ion-exchange chromatography and reverse phase HPLC. Shotgun analysis revealed the presence of 39 proteins in the venom while the chromatographic approach identified 37 venom proteins. The results indicated that, like other Asiatic cobra venoms, N. sumatrana contains large number of three finger toxins and phospholipases A2, which together constitute 92.1% by weight of venom protein. However, only eight of the toxins can be considered as major venom toxins. These include two phospholipases A2, three neurotoxins (two long neurotoxins and a short neurotoxin) and three cardiotoxins. The eight major toxins have relative abundance of 1.6-27.2% venom proteins and together account for 89.8% (by weight) of total venom protein. Other venom proteins identified include Zn-metalloproteinase-disintegrin, Thaicobrin, CRISP, natriuretic peptide, complement depleting factors, cobra venom factors, venom nerve growth factor and cobra serum albumin. The proteome of N. sumatrana venom is similar to proteome of other Asiatic cobra venoms but differs from that of African spitting cobra venom. Our results confirm that the main toxic action of N. sumatrana venom is neurotoxic but the large amount of cardiotoxins and phospholipases A2 are likely to contribute significantly to the overall pathophysiological action of the venom. The differences in toxin distribution between N. sumatrana venom and African spitting cobra venoms suggest possible differences in the pathophysiological actions of N. sumatrana venom and the African spitting cobra venoms, and explain why antivenom raised against Asiatic cobra venom is not effective against African spitting cobra venoms. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Identifying Aspects of the Post-Transcriptional Program Governing the Proteome of the Green Alga Micromonas pusilla.

    Directory of Open Access Journals (Sweden)

    Peter H Waltman

    Full Text Available Micromonas is a unicellular motile alga within the Prasinophyceae, a green algal group that is related to land plants. This picoeukaryote (<2 μm diameter is widespread in the marine environment but is not well understood at the cellular level. Here, we examine shifts in mRNA and protein expression over the course of the day-night cycle using triplicated mid-exponential, nutrient replete cultures of Micromonas pusilla CCMP1545. Samples were collected at key transition points during the diel cycle for evaluation using high-throughput LC-MS proteomics. In conjunction, matched mRNA samples from the same time points were sequenced using pair-ended directional Illumina RNA-Seq to investigate the dynamics and relationship between the mRNA and protein expression programs of M. pusilla. Similar to a prior study of the marine cyanobacterium Prochlorococcus, we found significant divergence in the mRNA and proteomics expression dynamics in response to the light:dark cycle. Additionally, expressional responses of genes and the proteins they encoded could also be variable within the same metabolic pathway, such as we observed in the oxygenic photosynthesis pathway. A regression framework was used to predict protein levels from both mRNA expression and gene-specific sequence-based features. Several features in the genome sequence were found to influence protein abundance including codon usage as well as 3' UTR length and structure. Collectively, our studies provide insights into the regulation of the proteome over a diel cycle as well as the relationships between transcriptional and translational programs in the widespread marine green alga Micromonas.

  15. Identifying Aspects of the Post-Transcriptional Program Governing the Proteome of the Green Alga Micromonas pusilla

    Energy Technology Data Exchange (ETDEWEB)

    Waltman, Peter H.; Guo, Jian; Reistetter, Emily Nahas; Purvine, Samuel; Ansong, Charles K.; van Baren, Marijke J.; Wong, Chee-Hong; Wei, Chia-Lin; Smith, Richard D.; Callister, Stephen J.; Stuart, Joshua M.; Worden, Alexandra Z.; Mills, Ken

    2016-07-19

    Micromonas is a unicellular green alga that belongs to the prasinophytes, a sister lineage to land plants. This picoeukaryotic (<2 μm diameter) alga is widespread in the marine environment but still not understood at the cellular level. Here, we examine the mRNA and protein level changes that take place over the course of the day-night cycle using mid-exponential nutrient replete cultures of Micromonas pusilla CCMP1545 grown and analyzed in biological triplicate. During the experiment, samples were collected at key transition points during the diel for evaluation using high-throughput LC-MS proteomics. We also sequenced matched mRNA samples from the same time points, using pair-ended directional Illumina RNA-Seq to investigate the dynamics and relationship between the mRNA and protein expression programs of M. pusilla. Similar to a prior study of the marine cyanobacterium Prochlorococcus, we found significant divergence in the mRNA and proteomics expression dynamics in response to the light:dark cycle. Additionally, expressional responses of genes and the proteins they encoded could also be variable within the same metabolic pathway, such as the oxygenic photosynthesis pathway. A regression framework was used to predict protein levels using both mRNA expression and gene-specific sequence-based features. Several features in the genome sequence were found to influence protein abundance including the codon usage and the length of the 3’ UTR. Collectively, our studies provide insights into the regulation of the proteome over a diel as relationships between the transcriptional and translational programs in the widespread marine green alga Micromonas.

  16. Proteomics Identifies Golgi phosphoprotein 3 (GOLPH3) with A Link Between Golgi Structure, Cancer, DNA Damage and Protection from Cell Death.

    Science.gov (United States)

    Bergeron, John J M; Au, Catherine E; Thomas, David Y; Hermo, Louis

    2017-12-01

    GOLPH3 is the first example of a Golgi resident oncogene protein. It was independently identified in multiple screens; first in proteomic-based screens as a resident protein of the Golgi apparatus, and second as an oncogene product in a screen for genes amplified in cancer. A third screen uncovered the association of GOLPH3 with the Golgi resident phospholipid, phosphatidyl inositol 4 phosphate (PI4P) to maintain the characteristic ribbon structure of the Golgi apparatus favoring vesicular transport of secretory proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. A feasibility study to identify proteins in the residual Pap test fluid of women with normal cytology by mass spectrometry-based proteomics.

    Science.gov (United States)

    Boylan, Kristin Lm; Afiuni-Zadeh, Somaieh; Geller, Melissa A; Hickey, Kayla; Griffin, Timothy J; Pambuccian, Stefan E; Skubitz, Amy Pn

    2014-01-01

    The proteomic analysis of body fluids is a growing technology for the identification of protein biomarkers of disease. Given that Papanicolaou tests (Pap tests) are routinely performed on over 30 million women annually in the U.S. to screen for cervical cancer, we examined the residual Pap test fluid as a source of protein for analysis by mass spectrometry (MS). In the liquid-based Pap test, cervical cells are collected from the ectocervix and placed into an alcohol-based fixative prior to staining and pathologic examination. We hypothesized that proteins shed by cells of the female genital tract can be detected in the Pap test fixative by MS-based proteomic techniques. We examined the feasibility of using residual fluid from discarded Pap tests with cytologically "normal" results to optimize sample preparation for MS analysis. The protein composition of the cell-free Pap test fluid was determined by silver staining of sodium dodecyl sulfate -polyacrylamide gels, and the abundance of serum proteins was examined by Western immunoblot using an antibody against human serum albumin. Both pooled and individual samples were trypsin digested and analyzed by two-dimensional MS/MS. Proteins were identified by searching against the Human Uniprot database, and characterized for localization, function and relative abundance. The average volume of the residual Pap test fluid was 1.5 ml and the average protein concentration was 0.14 mg/ml. By Western immunoblot we showed that the amount of albumin in each sample was significantly reduced compared to normal serum. By MS/MS, we identified 714 unique proteins in pooled Pap test samples and an average of 431 proteins in individual samples. About 40% of the proteins identified were extracellular or localized to the plasma membrane. Almost 20% of the proteins identified were involved in immunity and defense, characteristic of the healthy cervical-vaginal proteome. By merging the protein sets from the individual and pooled Pap test

  18. Microbial community profiling of human saliva using shotgun metagenomic sequencing.

    Directory of Open Access Journals (Sweden)

    Nur A Hasan

    Full Text Available Human saliva is clinically informative of both oral and general health. Since next generation shotgun sequencing (NGS is now widely used to identify and quantify bacteria, we investigated the bacterial flora of saliva microbiomes of two healthy volunteers and five datasets from the Human Microbiome Project, along with a control dataset containing short NGS reads from bacterial species representative of the bacterial flora of human saliva. GENIUS, a system designed to identify and quantify bacterial species using unassembled short NGS reads was used to identify the bacterial species comprising the microbiomes of the saliva samples and datasets. Results, achieved within minutes and at greater than 90% accuracy, showed more than 175 bacterial species comprised the bacterial flora of human saliva, including bacteria known to be commensal human flora but also Haemophilus influenzae, Neisseria meningitidis, Streptococcus pneumoniae, and Gamma proteobacteria. Basic Local Alignment Search Tool (BLASTn analysis in parallel, reported ca. five times more species than those actually comprising the in silico sample. Both GENIUS and BLAST analyses of saliva samples identified major genera comprising the bacterial flora of saliva, but GENIUS provided a more precise description of species composition, identifying to strain in most cases and delivered results at least 10,000 times faster. Therefore, GENIUS offers a facile and accurate system for identification and quantification of bacterial species and/or strains in metagenomic samples.

  19. Proteomic approach for identifying gonad differential proteins in the oyster (Crassostrea angulata) following food-chain contamination with HgCl2.

    Science.gov (United States)

    Zhang, Qing-Hong; Huang, Lin; Zhang, Yong; Ke, Cai-Huan; Huang, He-Qing

    2013-12-06

    Hg discharged into the environmental waters can generally be bioaccumulated, transformed and transmited by living organisms, thus resulting in the formation of Hg-toxicity food chains. The pathway and toxicology of food chain contaminated with environmental Hg are rarely revealed by proteomics. Here, we showed that differential proteomics had the potential to understand reproduction toxicity mechanism in marine molluscs through the Hg-contaminated food chain. Hg bioaccumulation was found in every link of the HgCl2-Chlorella vulgaris-oyster-mice food chain. Morphological observations identified the lesions in both the oyster gonad and the mice ovary. Differential proteomics was used to study the mechanisms of Hg toxicity in the oyster gonad and to find some biomarkers of Hg contamination in food chain. Using 2-DE and MALDI-TOF/TOF MS, we identified 13 differential protein spots, of which six were up-regulated, six were down-regulated, while one was undecided. A portion of these differential proteins was further confirmed using real-time PCR and western blotting methods. Their major functions involved binding, protein translocation, catalysis, regulation of energy metabolism, reproductive functioning and structural molecular activity. Among these proteins, 14-3-3 protein, GTP binding protein, arginine kinase (AK) and 71kDa heat shock connate protein (HSCP 71) are considered to be suitable biomarkers of environmental Hg contamination. Furthermore, we established the gene correspondence, responding to Hg reproductive toxicity, between mouse and oyster, and then used real-time PCR to analyze mRNA differential expression of the corresponding genes in mice. The results indicated that the mechanism of Hg reproductive toxicity in mouse was similar to that in oyster. We suggest that the proteomics would be further developed in application research of food safety including toxicological mechanism. It is well known that mercury (Hg) is one of the best toxic metal elements in

  20. Proteomic analysis of cell walls of two developmental stages of alfalfa stems.

    Science.gov (United States)

    Verdonk, Julian C; Hatfield, Ronald D; Sullivan, Michael L

    2012-01-01

    Cell walls are important for the growth and development of all plants. They are also valuable resources for feed and fiber, and more recently as a potential feedstock for bioenergy production. Cell wall proteins comprise only a fraction of the cell wall, but play important roles in establishing the walls and in the chemical interactions (e.g., crosslinking) of cell wall components. This crosslinking provides structure, but restricts digestibility of cell wall complex carbohydrates, limiting available energy in animal and bioenergy production systems. Manipulation of cell wall proteins could be a strategy to improve digestibility. An analysis of the cell wall proteome of apical alfalfa stems (less mature, more digestible) and basal alfalfa stems (more mature, less digestible) was conducted using a recently developed low-salt/density gradient method for the isolation of cell walls. Walls were subsequently subjected to a modified extraction utilizing EGTA to remove pectins, followed by a LiCl extraction to isolate more tightly bound proteins. Recovered proteins were identified using shotgun proteomics. We identified 272 proteins in the alfalfa stem cell wall proteome, 153 of which had not previously been identified in cell wall proteomic analyses. Nearly 70% of the identified proteins were predicted to be secreted, as would be expected for most cell wall proteins, an improvement over previously published studies using traditional cell wall isolation methods. A comparison of our and several other cell wall proteomic studies indicates little overlap in identified proteins among them, which may be largely due to differences in the tissues used as well as differences in experimental approach.

  1. Proteomic analysis of cell walls of two developmental stages of alfalfa stems

    Directory of Open Access Journals (Sweden)

    Julian C Verdonk

    2012-12-01

    Full Text Available Cell walls are important for the growth and development of all plants. They are also valuable resources for feed and fiber, and more recently as a potential feedstock for bioenergy production. Cell wall proteins comprise only a fraction of the cell wall, but play important roles in establishing the walls and in the chemical interactions (e.g. crosslinking of cell wall components. This crosslinking provides structure, but restricts digestibility of cell wall complex carbohydrates, limiting available energy in animal and bioenergy production systems. Manipulation of cell wall proteins could be a strategy to improve digestibility. An analysis of the cell wall proteome of apical alfalfa stems (less mature, more digestible and basal alfalfa stems (more mature, less digestible was conducted using a recently developed low-salt/density gradient method for the isolation of cell walls. Walls were subsequently subjected to a modified extraction utilizing EGTA to remove pectins, followed by a LiCl extraction to isolate more tightly bound proteins. Recovered proteins were identified using shotgun proteomics. We identified 272 proteins in the alfalfa stem cell wall proteome, 153 of which had not previously been identified in cell wall proteomic analyses. Nearly 70% percent of the identified proteins were predicted to be secreted, as would be expected for most cell wall proteins, an improvement over previously published studies using traditional cell wall isolation methods. A comparison of our and several other cell wall proteomic studies indicates little overlap in identified proteins among them, which may be largely due to differences in the tissues used as well as differences in experimental approach.

  2. Proteome investigation of the non-model plant pomegranate (Punica granatum L.).

    Science.gov (United States)

    Capriotti, Anna Laura; Caruso, Giuseppe; Cavaliere, Chiara; Foglia, Patrizia; Piovesana, Susy; Samperi, Roberto; Laganà, Aldo

    2013-11-01

    A gel-free, shotgun proteomics approach was used to characterize pomegranate aril proteome by nanoliquid chromatography-high-resolution tandem mass spectrometry. To identify both high-abundance and low-abundance proteins, we applied two distinct sample preparation protocols, i.e., a classical one widely applied in literature and a second one able to reduce the dynamic range of protein concentration of the sample, based on combinatorial hexapeptide ligand library technology. However, the proteins identified with the latter protocol were only a small minority. Because pomegranate is a non-model plant species, i.e., information of its genome sequence are lacking, only a few protein sequences are included in the most widely known protein sequence databases. To improve both the number of identified proteins and data reliability, identification was performed integrating the results obtained with three distinct plant protein databases, since the majority of proteins could only be attributed by homology with other plant species. Nevertheless, many proteins had assigned only one unique peptide, because of the phylogenetic distance of pomegranate from the main model plants. After manual revision of the identified proteins to eliminate the redundant or ambiguous identifications, a list of 1,488 proteins was obtained, only six of which belonging to pomegranate species. To the author's best knowledge, this is the first work aimed at the proteomic characterization of Punica granatum.

  3. Transcriptomic and proteomic approach to identify differentially expressed genes and proteins in Arabidopsis thaliana mutants lacking chloroplastic 1 and cytosolic FBPases reveals several levels of metabolic regulation.

    Science.gov (United States)

    Soto-Suárez, Mauricio; Serrato, Antonio J; Rojas-González, José A; Bautista, Rocío; Sahrawy, Mariam

    2016-12-01

    During the photosynthesis, two isoforms of the fructose-1,6-bisphosphatase (FBPase), the chloroplastidial (cFBP1) and the cytosolic (cyFBP), catalyse the first irreversible step during the conversion of triose phosphates (TP) to starch or sucrose, respectively. Deficiency in cyFBP and cFBP1 isoforms provokes an imbalance of the starch/sucrose ratio, causing a dramatic effect on plant development when the plastidial enzyme is lacking. We study the correlation between the transcriptome and proteome profile in rosettes and roots when cFBP1 or cyFBP genes are disrupted in Arabidopsis thaliana knock-out mutants. By using a 70-mer oligonucleotide microarray representing the genome of Arabidopsis we were able to identify 1067 and 1243 genes whose expressions are altered in the rosettes and roots of the cfbp1 mutant respectively; whilst in rosettes and roots of cyfbp mutant 1068 and 1079 genes are being up- or down-regulated respectively. Quantitative real-time PCR validated 100% of a set of 14 selected genes differentially expressed according to our microarray analysis. Two-dimensional (2-D) gel electrophoresis-based proteomic analysis revealed quantitative differences in 36 and 26 proteins regulated in rosettes and roots of cfbp1, respectively, whereas the 18 and 48 others were regulated in rosettes and roots of cyfbp mutant, respectively. The genes differentially expressed and the proteins more or less abundant revealed changes in protein metabolism, RNA regulation, cell signalling and organization, carbon metabolism, redox regulation, and transport together with biotic and abiotic stress. Notably, a significant set (25%) of the proteins identified were also found to be regulated at a transcriptional level. This transcriptomic and proteomic analysis is the first comprehensive and comparative study of the gene/protein re-adjustment that occurs in photosynthetic and non-photosynthetic organs of Arabidopsis mutants lacking FBPase isoforms.

  4. In-Depth, Label-Free Analysis of the Erythrocyte Cytoplasmic Proteome in Diamond Blackfan Anemia Identifies a Unique Inflammatory Signature.

    Directory of Open Access Journals (Sweden)

    Esther N Pesciotta

    Full Text Available Diamond Blackfan Anemia (DBA is a rare, congenital erythrocyte aplasia that is usually caused by haploinsufficiency of ribosomal proteins due to diverse mutations in one of several ribosomal genes. A striking feature of this disease is that a range of different mutations in ribosomal proteins results in similar disease phenotypes primarily characterized by erythrocyte abnormalities and macrocytic anemia, while most other cell types in the body are minimally affected. Previously, we analyzed the erythrocyte membrane proteomes of several DBA patients and identified several proteins that are not typically associated with this cell type and that suggested inflammatory mechanisms contribute to the pathogenesis of DBA. In this study, we evaluated the erythrocyte cytosolic proteome of DBA patients through in-depth analysis of hemoglobin-depleted erythrocyte cytosols. Simple, reproducible, hemoglobin depletion using nickel columns enabled in-depth analysis of over 1000 cytosolic erythrocyte proteins with only moderate total analysis time per proteome. Label-free quantitation and statistical analysis identified 29 proteins with significantly altered abundance levels in DBA patients compared to matched healthy control donors. Proteins that were significantly increased in DBA erythrocyte cytoplasms included three proteasome subunit beta proteins that make up the immunoproteasome and proteins induced by interferon-γ such as n-myc interactor and interferon-induced 35 kDa protein [NMI and IFI35 respectively]. Pathway analysis confirmed the presence of an inflammatory signature in erythrocytes of DBA patients and predicted key upstream regulators including mitogen activated kinase 1, interferon-γ, tumor suppressor p53, and tumor necrosis factor. These results show that erythrocytes in DBA patients are intrinsically different from those in healthy controls which may be due to an inflammatory response resulting from the inherent molecular defect of ribosomal

  5. High-content screening of yeast mutant libraries by shotgun lipidomics

    DEFF Research Database (Denmark)

    Tarasov, Kirill; Stefanko, Adam; Casanovas, Albert

    2014-01-01

    To identify proteins with a functional role in lipid metabolism and homeostasis we designed a high-throughput platform for high-content lipidomic screening of yeast mutant libraries. To this end, we combined culturing and lipid extraction in 96-well format, automated direct infusion...... factor KAR4 precipitated distinct lipid metabolic phenotypes. These results demonstrate that the high-throughput shotgun lipidomics platform is a valid and complementary proxy for high-content screening of yeast mutant libraries....

  6. Of mice and men: comparative proteomics of bronchoalveolar fluid.

    Science.gov (United States)

    Gharib, S A; Nguyen, E; Altemeier, W A; Shaffer, S A; Doneanu, C E; Goodlett, D R; Schnapp, L M

    2010-06-01

    We hypothesised that comparing the protein mixture in bronchoalveolar lavage fluid (BALF) between humans and mice may lead to mechanistic insights into common and divergent pathways that evolved in each species. BALF from four humans and six mice was pooled separately and underwent identical shotgun proteomic analysis. Functional and network analysis was applied to identify overlapping and distinct pathways enriched in the BALF. Follow-up experiments using Western analysis in unpooled BALF samples were performed. We identified 91 unique proteins in human and 117 unique proteins in mouse BALF samples. Functional analysis of the proteins revealed conservation of several key processes between the species, including defence response. Oxidative stress response, however, was selectively enriched only in mouse BALF. Differences in the expression of peroxiredoxin-1, a key member of the defence pathway against oxidative injury, were confirmed between normal human and mouse BALF and in models of lung injury. A computational proteomics approach of mouse and human BALF confirms the conservation of immune and defence-mediated pathways while highlighting differences in response to oxidative stress. These observations suggest that the use of mice models to study human lung disorders should be undertaken with an appreciation of interspecies variability.

  7. Reversed-Phase Chromatography with Multiple Fraction Concatenation Strategy for Proteome Profiling of Human MCF10A Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuexi; Yang, Feng; Gritsenko, Marina A.; Wang, Yingchun; Clauss, Therese RW; Liu, Tao; Shen, Yufeng; Monroe, Matthew E.; Lopez-Ferrer, Daniel; Reno, Theresa; Moore, Ronald J.; Klemke, Richard L.; Camp, David G.; Smith, Richard D.

    2011-05-01

    Two dimensional liquid chromatography (2D LC) is commonly used for shotgun proteomics to improve the analysis dynamic range. Reversed phase liquid chromatography (RPLC) has been routinely employed as the second dimensional separation prior to the mass spectrometric analysis. Construction of 2D separation with RP-RP arises a concern for the separation orthogonality. In this study, we applied a novel concatenation strategy to improve the orthogonality of 2D RP-RP formed by low pH (i.e., pH 3) and high pH (i.e., pH 10) RPLC. We confidently identified 3753 proteins (18570 unique peptides) and 5907 proteins (37633 unique peptides) from low pH RPLC-RP and high pH RPLC-RP, respectively, for a trypsin-digested human MCF10A cell sample. Compared with SCX-RP, the high pH-low pH RP-RP approach resulted in 1.8-fold and 1.6-fold in the number of peptide and protein identifications, respectively. In addition to the broader identifications, the High pH-low pH RP-RP approach has advantages including the improved protein sequence coverage, the simplified sample processing, and the reduced sample loss. These results demonstrated that the concatenation high pH-low pH RP-RP strategy is an attractive alternative to SCX for 2D LC shotgun proteomic analysis.

  8. Proteomic Analysis to Identify Functional Molecules in Drug Resistance Caused by E-Cadherin Knockdown in 3D-Cultured Colorectal Cancer Models

    Science.gov (United States)

    2013-09-01

    methods and developed a new method for phosphoproteomic studies, which was published in Journal of Proteome Research. In conclusion, during the...19) Zhai, B.; Villen, J.; Beausoleil, S. A.; Mintseris, J.; Gygi, S. P. Phosphoproteome analysis of Drosophila melanogaster embryos . J. Proteome ...P a g e | 1 AD_________________ Award Number: W81XWH-12-1-0412 TITLE: Proteomic Analysis to

  9. Proteomic profiling of antibody-inducing immunogens in tumor tissue identifies PSMA1, LAP3, ANXA3, and maspin as colon cancer markers

    Science.gov (United States)

    Yang, Qian; Roehrl, Michael H.; Wang, Julia Y.

    2018-01-01

    We hypothesized that cancer tissue immunogens – antigens capable of inducing specific antibody production in patients – are promising targets for development of precision diagnostics and humoral immunotherapies. We developed an innovative immuno-proteomic strategy and identified new immunogenic markers of colon cancer. Proteins from cancers and matched normal tissues were separated by 2D gel electrophoresis and blotted with serum antibodies from the same patients. Antibody-reactive proteins were sequenced by mass spectrometry and validated by Western blotting and immunohistochemistry. 170 serum antibody-reactive proteins were identified only in cancerous but not matched normal. Among these, proteasome subunit alpha type 1 (PSA1), leucine aminopeptidase 3 (LAP3), annexin A3 (ANXA3), and maspin (serpin B5) were reproducibly found in tissues from three patients. Differential expression patterns were confirmed in samples from eight patients with various stages of colon adenocarcinoma and liver metastases. These tumor-resident proteins and/or their associated serum antibodies may be promising markers for colon cancer screening and early diagnosis. Furthermore, tumor tissue-specific antibodies could potentially be exploited as immunotherapeutic targets against cancer. More generally, proteomic profiling of antibody-inducing cancer-associated immunogens represents a powerful generic method for uncovering the tumor antigen-ome, i.e., the totality of immunogenic tumor-associated proteins. PMID:29423100

  10. Coatomer subunit beta 2 (COPB2), identified by label-free quantitative proteomics, regulates cell proliferation and apoptosis in human prostate carcinoma cells.

    Science.gov (United States)

    Mi, Yuanyuan; Sun, Chuanyu; Wei, Bingbing; Sun, Feiyu; Guo, Yijun; Hu, Qingfeng; Ding, Weihong; Zhu, Lijie; Xia, Guowei

    2018-01-01

    Label-free quantitative proteomics has broad applications in the identification of differentially expressed proteins. Here, we applied this method to identify differentially expressed proteins (such as coatomer subunit beta 2 [COPB2]) and evaluated the functions and molecular mechanisms of these proteins in prostate cancer (PCA) cell proliferation. Proteins extracted from surgically resected PCA tissues and adjacent tissues of 3 patients were analyzed by label-free quantitative proteomics. The target protein was confirmed by bioinformatics and GEO dataset analyses. To investigate the role of the target protein in PCA, we used lentivirus-mediated small-interfering RNA (siRNA) to knockdown protein expression in the prostate carcinoma cell line, CWR22RV1 cells and assessed gene and protein expression by reverse transcription quantitative polymerase chain reaction and western blotting. CCK8 and colony formation assays were conducted to evaluate cell proliferation. Cell cycle distributions and apoptosis were assayed by flow cytometry. We selected the differentiation-related protein COPB2 as our target protein based on the results of label-free quantitative proteomics. High expression of COPB2 was found in PCA tissue and was related to poor overall survival based on a public dataset. Cell proliferation was significantly inhibited in COPB2-knockdown CWR22RV1 cells, as demonstrated by CCK8 and colony formation assays. Additionally, the apoptosis rate and percentage of cells in the G 1 phase were increased in COPB2-knockdown cells compared with those in control cells. CDK2, CDK4, and cyclin D1 were downregulated, whereas p21 Waf1/Cip1 and p27 Kip1 were upregulated, affecting the cell cycle signaling pathway. COPB2 significantly promoted CWR22RV1 cell proliferation through the cell cycle signaling pathway. Thus, silencing of COPB2 may have therapeutic applications in PCA. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Blood lead concentration after a shotgun accident.

    Science.gov (United States)

    Gerhardsson, Lars; Dahlin, Lars; Knebel, Richard; Schütz, Andrejs

    2002-01-01

    In an accidental shooting, a man in his late forties was hit in his left shoulder region by about 60 lead pellets from a shotgun. He had injuries to the vessels, the clavicle, muscles, and nerves, with total paralysis of the left arm due to axonal injury. After several surgical revisions and temporary cover with split skin, reconstructive surgery was carried out 54 days after the accident. The brachial plexus was swollen, but the continuity of the nerve trunks was not broken (no neuroma present). We determined the blood lead (BPb) concentration during a follow-up period of 12 months. The BPb concentration increased considerably during the first months. Although 30 lead pellets were removed during the reconstructive surgery, the BPb concentration continued to rise, and reached a peak of 62 microg/dL (3.0 micromol/L) on day 81. Thereafter it started to decline. Twelve months after the accident, BPb had leveled off at about 30 microg/dL. At that time, muscle and sensory functions had partially recovered. The BPb concentration exceeded 30 microg/dL for 9 months, which may have influenced the recovery rate of nerve function. Subjects with a large number of lead pellets or fragments embedded in the body after shooting accidents should be followed for many years by regular determinations of BPb. To obtain a more stable basis for risk assessment, the BPb concentrations should be corrected for variations in the subject's hemoglobin concentration or erythrocyte volume fraction.

  12. OTU analysis using metagenomic shotgun sequencing data.

    Directory of Open Access Journals (Sweden)

    Xiaolin Hao

    Full Text Available Because of technological limitations, the primer and amplification biases in targeted sequencing of 16S rRNA genes have veiled the true microbial diversity underlying environmental samples. However, the protocol of metagenomic shotgun sequencing provides 16S rRNA gene fragment data with natural immunity against the biases raised during priming and thus the potential of uncovering the true structure of microbial community by giving more accurate predictions of operational taxonomic units (OTUs. Nonetheless, the lack of statistically rigorous comparison between 16S rRNA gene fragments and other data types makes it difficult to interpret previously reported results using 16S rRNA gene fragments. Therefore, in the present work, we established a standard analysis pipeline that would help confirm if the differences in the data are true or are just due to potential technical bias. This pipeline is built by using simulated data to find optimal mapping and OTU prediction methods. The comparison between simulated datasets revealed a relationship between 16S rRNA gene fragments and full-length 16S rRNA sequences that a 16S rRNA gene fragment having a length >150 bp provides the same accuracy as a full-length 16S rRNA sequence using our proposed pipeline, which could serve as a good starting point for experimental design and making the comparison between 16S rRNA gene fragment-based and targeted 16S rRNA sequencing-based surveys possible.

  13. Comparative proteomics as a tool for identifying specific alterations within interferon response pathways in human glioblastoma multiforme cells

    DEFF Research Database (Denmark)

    Tarasova, Irina A; Tereshkova, Alesya V; Lobas, Anna A

    2018-01-01

    oncolytic virus therapy would be most effective. We quantified changes in protein abundances in two glioblastoma multiforme (GBM) cell lines that differ in the ability to induce resistance to vesicular stomatitis virus (VSV) infection in response to type I interferon (IFN) treatment. In IFN-treated samples...... we observed an up-regulation of protein products of some IFN-regulated genes (IRGs). In total, the proteome analysis revealed up to 20% more proteins encoded by IRGs in the glioblastoma cell line, which develops resistance to VSV infection after pre-treatment with IFN. In both cell lines protein......-protein interaction and signaling pathway analyses have revealed a significant stimulation of processes related to type I IFN signaling and defense responses to viruses. However, we observed a deficiency in STAT2 protein in the VSV-sensitive cell line that suggests a de-regulation of the JAK/STAT/IRF9 signaling...

  14. Proteomic Analysis of Mouse Oocytes Identifies PRMT7 as a Reprogramming Factor that Replaces SOX2 in the Induction of Pluripotent Stem Cells.

    Science.gov (United States)

    Wang, Bingyuan; Pfeiffer, Martin J; Drexler, Hannes C A; Fuellen, Georg; Boiani, Michele

    2016-08-05

    The reprogramming process that leads to induced pluripotent stem cells (iPSCs) may benefit from adding oocyte factors to Yamanaka's reprogramming cocktail (OCT4, SOX2, KLF4, with or without MYC; OSK(M)). We previously searched for such facilitators of reprogramming (the reprogrammome) by applying label-free LC-MS/MS analysis to mouse oocytes, producing a catalog of 28 candidates that are (i) able to robustly access the cell nucleus and (ii) shared between mature mouse oocytes and pluripotent embryonic stem cells. In the present study, we hypothesized that our 28 reprogrammome candidates would also be (iii) abundant in mature oocytes, (iv) depleted after the oocyte-to-embryo transition, and (v) able to potentiate or replace the OSKM factors. Using LC-MS/MS and isotopic labeling methods, we found that the abundance profiles of the 28 proteins were below those of known oocyte-specific and housekeeping proteins. Of the 28 proteins, only arginine methyltransferase 7 (PRMT7) changed substantially during mouse embryogenesis and promoted the conversion of mouse fibroblasts into iPSCs. Specifically, PRMT7 replaced SOX2 in a factor-substitution assay, yielding iPSCs. These findings exemplify how proteomics can be used to prioritize the functional analysis of reprogrammome candidates. The LC-MS/MS data are available via ProteomeXchange with identifier PXD003093.

  15. Integrated Proteomic and Transcriptomic-Based Approaches to Identifying Signature Biomarkers and Pathways for Elucidation of Daoy and UW228 Subtypes

    Directory of Open Access Journals (Sweden)

    Roger Higdon

    2017-02-01

    Full Text Available Medulloblastoma (MB is the most common malignant pediatric brain tumor. Patient survival has remained largely the same for the past 20 years, with therapies causing significant health, cognitive, behavioral and developmental complications for those who survive the tumor. In this study, we profiled the total transcriptome and proteome of two established MB cell lines, Daoy and UW228, using high-throughput RNA sequencing (RNA-Seq and label-free nano-LC-MS/MS-based quantitative proteomics, coupled with advanced pathway analysis. While Daoy has been suggested to belong to the sonic hedgehog (SHH subtype, the exact UW228 subtype is not yet clearly established. Thus, a goal of this study was to identify protein markers and pathways that would help elucidate their subtype classification. A number of differentially expressed genes and proteins, including a number of adhesion, cytoskeletal and signaling molecules, were observed between the two cell lines. While several cancer-associated genes/proteins exhibited similar expression across the two cell lines, upregulation of a number of signature proteins and enrichment of key components of SHH and WNT signaling pathways were uniquely observed in Daoy and UW228, respectively. The novel information on differentially expressed genes/proteins and enriched pathways provide insights into the biology of MB, which could help elucidate their subtype classification.

  16. Integrative analyses of miRNA and proteomics identify potential biological pathways associated with onset of pulmonary fibrosis in the bleomycin rat model

    Energy Technology Data Exchange (ETDEWEB)

    Fukunaga, Satoki [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-Naka, Konohana-ku, Osaka 554-8558 (Japan); Kakehashi, Anna [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Sumida, Kayo; Kushida, Masahiko; Asano, Hiroyuki [Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-Naka, Konohana-ku, Osaka 554-8558 (Japan); Gi, Min [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan)

    2015-08-01

    To determine miRNAs and their predicted target proteins regulatory networks which are potentially involved in onset of pulmonary fibrosis in the bleomycin rat model, we conducted integrative miRNA microarray and iTRAQ-coupled LC-MS/MS proteomic analyses, and evaluated the significance of altered biological functions and pathways. We observed that alterations of miRNAs and proteins are associated with the early phase of bleomycin-induced pulmonary fibrosis, and identified potential target pairs by using ingenuity pathway analysis. Using the data set of these alterations, it was demonstrated that those miRNAs, in association with their predicted target proteins, are potentially involved in canonical pathways reflective of initial epithelial injury and fibrogenic processes, and biofunctions related to induction of cellular development, movement, growth, and proliferation. Prediction of activated functions suggested that lung cells acquire proliferative, migratory, and invasive capabilities, and resistance to cell death especially in the very early phase of bleomycin-induced pulmonary fibrosis. The present study will provide new insights for understanding the molecular pathogenesis of idiopathic pulmonary fibrosis. - Highlights: • We analyzed bleomycin-induced pulmonary fibrosis in the rat. • Integrative analyses of miRNA microarray and proteomics were conducted. • We determined the alterations of miRNAs and their potential target proteins. • The alterations may control biological functions and pathways in pulmonary fibrosis. • Our result may provide new insights of pulmonary fibrosis.

  17. Proteomic Profiling of a Primary CD4+ T Cell Model of HIV-1 Latency Identifies Proteins Whose Differential Expression Correlates with Reactivation of Latent HIV-1.

    Science.gov (United States)

    Saha, Jamaluddin Md; Liu, Hongbing; Hu, Pei-Wen; Nikolai, Bryan C; Wu, Hulin; Miao, Hongyu; Rice, Andrew P

    2018-01-01

    The latent HIV-1 reservoir of memory CD4 + T cells that persists during combination antiviral therapy prevents a cure of infection. Insight into mechanisms of latency and viral reactivation are essential for the rational design of strategies to reduce the latent reservoir. In this study, we quantified the levels of >2,600 proteins in the CCL19 primary CD4 + T cell model of HIV-1 latency. We profiled proteins under conditions that promote latent infection and after cells were treated with phorbol 12-myristate 13-acetate (PMA) + ionomycin, which is known to efficiently induce reactivation of latent HIV-1. In an analysis of cells from two healthy blood donors, we identified 61 proteins that were upregulated ≥2-fold, and 36 proteins that were downregulated ≥2-fold under conditions in which latent viruses were reactivated. These differentially expressed proteins are, therefore, candidates for cellular factors that regulate latency or viral reactivation. Two unexpected findings were obtained from the proteomic data: (1) the interactions among the majority of upregulated proteins are largely undetermined in published protein-protein interaction networks and (2) downregulated proteins are strongly associated with Gene Ontology terms related to mitochondrial protein synthesis. This proteomic data set provides a useful resource for future mechanistic studies of HIV-1 latency.

  18. A comparative proteomic study identified LRPPRC and MCM7 as putative actors in imatinib mesylate cross-resistance in Lucena cell line

    Directory of Open Access Journals (Sweden)

    Corrêa Stephany

    2012-03-01

    Full Text Available Abstract Background Although chronic myeloid leukemia (CML treatment has improved since the introduction of imatinib mesylate (IM, cases of resistance have been reported. This resistance has been associated with the emergence of multidrug resistance (MDR phenotype, as a BCR-ABL independent mechanism. The classic pathway studied in MDR promotion is ATP-binding cassette (ABC family transporters expression, but other mechanisms that drive drug resistance are largely unknown. To better understand IM therapy relapse due to the rise of MDR, we compared the proteomic profiles of K562 and Lucena (K562/VCR cells. Results The use of 2-DE coupled with a MS approach resulted in the identification of 36 differentially expressed proteins. Differential mRNA levels of leucine-rich PPR motif-containing (LRPPRC protein, minichromosome maintenance complex component 7 (MCM7 and ATP-binding cassette sub-family B (MDR/TAP member 1 (ABCB1 were capable of defining samples from CML patients as responsive or resistant to therapy. Conclusions Through the data presented in this work, we show the relevance of MDR to IM therapy. In addition, our proteomic approach identified candidate actors involved in resistance, which could lead to additional information on BCR-ABL-independent molecular mechanisms.

  19. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Raymond, Carolyn

    2016-05-10

    Epidermal bladder cells (EBC) are large single-celled, specialized, and modified trichomes found on the aerial parts of the halophyte Mesembryanthemum crystallinum. Recent development of a simple but high throughput technique to extract the contents from these cells has provided an opportunity to conduct detailed single-cell-type analyses of their molecular characteristics at high resolution to gain insight into the role of these cells in the salt tolerance of the plant. In this study, we carry out large-scale complementary quantitative proteomic studies using both a label (DIGE) and label-free (GeLC-MS) approach to identify salt-responsive proteins in the EBC extract. Additionally we perform an ionomics analysis (ICP-MS) to follow changes in the amounts of 27 different elements. Using these methods, we were able to identify 54 proteins and nine elements that showed statistically significant changes in the EBC from salt-treated plants. GO enrichment analysis identified a large number of transport proteins but also proteins involved in photosynthesis, primary metabolism and Crassulacean acid metabolism (CAM). Validation of results by western blot, confocal microscopy and enzyme analysis helped to strengthen findings and further our understanding into the role of these specialized cells. As expected EBC accumulated large quantities of sodium, however, the most abundant element was chloride suggesting the sequestration of this ion into the EBC vacuole is just as important for salt tolerance. This single-cell type omics approach shows that epidermal bladder cells of M. crystallinum are metabolically active modified trichomes, with primary metabolism supporting cell growth, ion accumulation, compatible solute synthesis and CAM. Data are available via ProteomeXchange with identifier PXD004045.

  20. A proteomic investigation of soluble olfactory proteins in Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Guido Mastrobuoni

    Full Text Available Odorant-binding proteins (OBPs and chemosensory proteins (CSPs are small soluble polypeptides that bind semiochemicals in the lymph of insect chemosensilla. In the genome of Anopheles gambiae, 66 genes encode OBPs and 8 encode CSPs. Here we monitored their expression through classical proteomics (2D gel-MS analysis and a shotgun approach. The latter method proved much more sensitive and therefore more suitable for tiny biological samples as mosquitoes antennae and eggs. Females express a larger number and higher quantities of OBPs in their antennae than males (24 vs 19. OBP9 is the most abundant in the antennae of both sexes, as well as in larvae, pupae and eggs. Of the 8 CSPs, 4 were detected in antennae, while SAP3 was the only one expressed in larvae. Our proteomic results are in fairly good agreement with data of RNA expression reported in the literature, except for OBP4 and OBP5, that we could not identify in our analysis, nor could we detect in Western Blot experiments. The relatively limited number of soluble olfactory proteins expressed at relatively high levels in mosquitoes makes further studies on the coding of chemical messages at the OBP level more accessible, providing for few specific targets. Identification of such proteins in Anopheles gambiae might facilitate future studies on host finding behavior in this important disease vector.

  1. Identification of factors that function in Drosophila salivary gland cell death during development using proteomics

    Science.gov (United States)

    McPhee, C K; Balgley, B M; Nelson, C; Hill, J H; Batlevi, Y; Fang, X; Lee, C S; Baehrecke, E H

    2013-01-01

    Proteasome inhibitors induce cell death and are used in cancer therapy, but little is known about the relationship between proteasome impairment and cell death under normal physiological conditions. Here, we investigate the relationship between proteasome function and larval salivary gland cell death during development in Drosophila. Drosophila larval salivary gland cells undergo synchronized programmed cell death requiring both caspases and autophagy (Atg) genes during development. Here, we show that ubiquitin proteasome system (UPS) function is reduced during normal salivary gland cell death, and that ectopic proteasome impairment in salivary gland cells leads to early DNA fragmentation and salivary gland condensation in vivo. Shotgun proteomic analyses of purified dying salivary glands identified the UPS as the top category of proteins enriched, suggesting a possible compensatory induction of these factors to maintain proteolysis during cell death. We compared the proteome following ectopic proteasome impairment to the proteome during developmental cell death in salivary gland cells. Proteins that were enriched in both populations of cells were screened for their function in salivary gland degradation using RNAi knockdown. We identified several factors, including trol, a novel gene CG11880, and the cop9 signalsome component cop9 signalsome 6, as required for Drosophila larval salivary gland degradation. PMID:22935612

  2. Proteomic evidences for rex regulation of metabolism in toxin-producing Bacillus cereus ATCC 14579.

    Directory of Open Access Journals (Sweden)

    Sabrina Laouami

    Full Text Available The facultative anaerobe, Bacillus cereus, causes diarrheal diseases in humans. Its ability to deal with oxygen availability is recognized to be critical for pathogenesis. The B. cereus genome comprises a gene encoding a protein with high similarities to the redox regulator, Rex, which is a central regulator of anaerobic metabolism in Bacillus subtilis and other Gram-positive bacteria. Here, we showed that B. cereus rex is monocistronic and down-regulated in the absence of oxygen. The protein encoded by rex is an authentic Rex transcriptional factor since its DNA binding activity depends on the NADH/NAD+ ratio. Rex deletion compromised the ability of B. cereus to cope with external oxidative stress under anaerobiosis while increasing B. cereus resistance against such stress under aerobiosis. The deletion of rex affects anaerobic fermentative and aerobic respiratory metabolism of B. cereus by decreasing and increasing, respectively, the carbon flux through the NADH-recycling lactate pathway. We compared both the cellular proteome and exoproteome of the wild-type and Δrex cells using a high throughput shotgun label-free quantitation approach and identified proteins that are under control of Rex-mediated regulation. Proteomics data have been deposited to the ProteomeXchange with identifier PXD000886. The data suggest that Rex regulates both the cross-talk between metabolic pathways that produce NADH and NADPH and toxinogenesis, especially in oxic conditions.

  3. Proteome data to explore the impact of pBClin15 on Bacillus cereus ATCC 14579.

    Science.gov (United States)

    Madeira, Jean-Paul; Alpha-Bazin, Béatrice; Armengaud, Jean; Omer, Hélène; Duport, Catherine

    2016-09-01

    This data article reports changes in the cellular and exoproteome of B. cereus cured from pBClin15.Time-course changes of proteins were assessed by high-throughput nanoLC-MS/MS. We report all the peptides and proteins identified and quantified in B. cereus with and without pBClin15. Proteins were classified into functional groups using the information available in the KEGG classification and we reported their abundance in term of normalized spectral abundance factor. The repertoire of experimentally confirmed proteins of B. cereus presented here is the largest ever reported, and provides new insights into the interplay between pBClin15 and its host B. cereus ATCC 14579. The data reported here is related to a published shotgun proteomics analysis regarding the role of pBClin15, "Deciphering the interactions between the Bacillus cereus linear plasmid, pBClin15, and its host by high-throughput comparative proteomics" Madeira et al. [1]. All the associated mass spectrometry data have been deposited in the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository (http://www.ebi.ac.uk/pride/), with the dataset identifier PRIDE: PXD001568, PRIDE: PXD002788 and PRIDE: PXD002789.

  4. Proteomic evidences for rex regulation of metabolism in toxin-producing Bacillus cereus ATCC 14579.

    Science.gov (United States)

    Laouami, Sabrina; Clair, Géremy; Armengaud, Jean; Duport, Catherine

    2014-01-01

    The facultative anaerobe, Bacillus cereus, causes diarrheal diseases in humans. Its ability to deal with oxygen availability is recognized to be critical for pathogenesis. The B. cereus genome comprises a gene encoding a protein with high similarities to the redox regulator, Rex, which is a central regulator of anaerobic metabolism in Bacillus subtilis and other Gram-positive bacteria. Here, we showed that B. cereus rex is monocistronic and down-regulated in the absence of oxygen. The protein encoded by rex is an authentic Rex transcriptional factor since its DNA binding activity depends on the NADH/NAD+ ratio. Rex deletion compromised the ability of B. cereus to cope with external oxidative stress under anaerobiosis while increasing B. cereus resistance against such stress under aerobiosis. The deletion of rex affects anaerobic fermentative and aerobic respiratory metabolism of B. cereus by decreasing and increasing, respectively, the carbon flux through the NADH-recycling lactate pathway. We compared both the cellular proteome and exoproteome of the wild-type and Δrex cells using a high throughput shotgun label-free quantitation approach and identified proteins that are under control of Rex-mediated regulation. Proteomics data have been deposited to the ProteomeXchange with identifier PXD000886. The data suggest that Rex regulates both the cross-talk between metabolic pathways that produce NADH and NADPH and toxinogenesis, especially in oxic conditions.

  5. Identification of factors that function in Drosophila salivary gland cell death during development using proteomics.

    Science.gov (United States)

    McPhee, C K; Balgley, B M; Nelson, C; Hill, J H; Batlevi, Y; Fang, X; Lee, C S; Baehrecke, E H

    2013-02-01

    Proteasome inhibitors induce cell death and are used in cancer therapy, but little is known about the relationship between proteasome impairment and cell death under normal physiological conditions. Here, we investigate the relationship between proteasome function and larval salivary gland cell death during development in Drosophila. Drosophila larval salivary gland cells undergo synchronized programmed cell death requiring both caspases and autophagy (Atg) genes during development. Here, we show that ubiquitin proteasome system (UPS) function is reduced during normal salivary gland cell death, and that ectopic proteasome impairment in salivary gland cells leads to early DNA fragmentation and salivary gland condensation in vivo. Shotgun proteomic analyses of purified dying salivary glands identified the UPS as the top category of proteins enriched, suggesting a possible compensatory induction of these factors to maintain proteolysis during cell death. We compared the proteome following ectopic proteasome impairment to the proteome during developmental cell death in salivary gland cells. Proteins that were enriched in both populations of cells were screened for their function in salivary gland degradation using RNAi knockdown. We identified several factors, including trol, a novel gene CG11880, and the cop9 signalsome component cop9 signalsome 6, as required for Drosophila larval salivary gland degradation.

  6. Unsupervised statistical clustering of environmental shotgun sequences

    Directory of Open Access Journals (Sweden)

    Bhatnagar Srijak

    2009-10-01

    Full Text Available Abstract Background The development of effective environmental shotgun sequence binning methods remains an ongoing challenge in algorithmic analysis of metagenomic data. While previous methods have focused primarily on supervised learning involving extrinsic data, a first-principles statistical model combined with a self-training fitting method has not yet been developed. Results We derive an unsupervised, maximum-likelihood formalism for clustering short sequences by their taxonomic origin on the basis of their k-mer distributions. The formalism is implemented using a Markov Chain Monte Carlo approach in a k-mer feature space. We introduce a space transformation that reduces the dimensionality of the feature space and a genomic fragment divergence measure that strongly correlates with the method's performance. Pairwise analysis of over 1000 completely sequenced genomes reveals that the vast majority of genomes have sufficient genomic fragment divergence to be amenable for binning using the present formalism. Using a high-performance implementation, the binner is able to classify fragments as short as 400 nt with accuracy over 90% in simulations of low-complexity communities of 2 to 10 species, given sufficient genomic fragment divergence. The method is available as an open source package called LikelyBin. Conclusion An unsupervised binning method based on statistical signatures of short environmental sequences is a viable stand-alone binning method for low complexity samples. For medium and high complexity samples, we discuss the possibility of combining the current method with other methods as part of an iterative process to enhance the resolving power of sorting reads into taxonomic and/or functional bins.

  7. Characterization of the porcine synovial fluid proteome and a comparison to the plasma proteome

    Directory of Open Access Journals (Sweden)

    Tue Bjerg Bennike

    2015-12-01

    In addition, we analyzed the proteome of human plasma, and compared the proteomes to the obtained porcine synovial fluid proteome. The proteome of the two body fluids were found highly similar, underlining the detected plasma derived nature of many synovial fluid components. The healthy porcine synovial fluid proteomics data, human rheumatoid arthritis synovial fluid proteomics data used in the method optimization, human plasma proteomics data, and search results, have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD000935.

  8. Shotgun pyrosequencing metagenomic analyses of dusts from swine confinement and grain facilities.

    Directory of Open Access Journals (Sweden)

    Robert J Boissy

    Full Text Available Inhalation of agricultural dusts causes inflammatory reactions and symptoms such as headache, fever, and malaise, which can progress to chronic airway inflammation and associated diseases, e.g. asthma, chronic bronchitis, chronic obstructive pulmonary disease, and hypersensitivity pneumonitis. Although in many agricultural environments feed particles are the major constituent of these dusts, the inflammatory responses that they provoke are likely attributable to particle-associated bacteria, archaebacteria, fungi, and viruses. In this study, we performed shotgun pyrosequencing metagenomic analyses of DNA from dusts from swine confinement facilities or grain elevators, with comparisons to dusts from pet-free households. DNA sequence alignment showed that 19% or 62% of shotgun pyrosequencing metagenomic DNA sequence reads from swine facility or household dusts, respectively, were of swine or human origin, respectively. In contrast only 2% of such reads from grain elevator dust were of mammalian origin. These metagenomic shotgun reads of mammalian origin were excluded from our analyses of agricultural dust microbiota. The ten most prevalent bacterial taxa identified in swine facility compared to grain elevator or household dust were comprised of 75%, 16%, and 42% gram-positive organisms, respectively. Four of the top five swine facility dust genera were assignable (Clostridium, Lactobacillus, Ruminococcus, and Eubacterium, ranging from 4% to 19% relative abundance. The relative abundances of these four genera were lower in dust from grain elevators or pet-free households. These analyses also highlighted the predominance in swine facility dust of Firmicutes (70% at the phylum level, Clostridia (44% at the Class level, and Clostridiales at the Order level (41%. In summary, shotgun pyrosequencing metagenomic analyses of agricultural dusts show that they differ qualitatively and quantitatively at the level of microbial taxa present, and that the

  9. Plasma low-molecular-weight proteome profiling identified neuropeptide-Y as a prostate cancer biomarker polypeptide.

    Science.gov (United States)

    Ueda, Koji; Tatsuguchi, Ayako; Saichi, Naomi; Toyama, Atsuhiko; Tamura, Kenji; Furihata, Mutsuo; Takata, Ryo; Akamatsu, Shusuke; Igarashi, Masahiro; Nakayama, Masato; Sato, Taka-Aki; Ogawa, Osamu; Fujioka, Tomoaki; Shuin, Taro; Nakamura, Yusuke; Nakagawa, Hidewaki

    2013-10-04

    In prostate cancer diagnosis, PSA test has greatly contributed to the early detection of prostate cancer; however, expanding overdiagnosis and unnecessary biopsies have emerged as serious issues. To explore plasma biomarkers complementing the specificity of PSA test, we developed a unique proteomic technology QUEST-MS (Quick Enrichment of Small Targets for Mass Spectrometry). The QUEST-MS method based on 96-well formatted sequential reversed-phase chromatography allowing efficient enrichment of <20 kDa proteins quickly and reproducibly. Plasma from 24 healthy controls, 19 benign prostate hypertrophy patients, and 73 prostate cancer patients were purified with QUEST-MS and analyzed by LC/MS/MS. Among 153 057 nonredundant peptides, 189 peptides showed prostate cancer specific detection pattern, which included a neurotransmitter polypeptide neuropeptide-Y (NPY). We further validated the screening results by targeted multiple reaction monitoring technology using independent sample set (n = 110). The ROC curve analysis revealed that logistic regression-based combination of NPY, and PSA showed 81.5% sensitivity and 82.2% specificity for prostate cancer diagnosis. Thus QUEST-MS technology allowed comprehensive and high-throughput profiling of plasma polypeptides and had potential to effectively uncover very low abundant tumor-derived small molecules, such as neurotransmitters, peptide hormones, or cytokines.

  10. A strategy for interaction site prediction between phospho-binding modules and their partners identified from proteomic data.

    Science.gov (United States)

    Aucher, Willy; Becker, Emmanuelle; Ma, Emilie; Miron, Simona; Martel, Arnaud; Ochsenbein, Françoise; Marsolier-Kergoat, Marie-Claude; Guerois, Raphaël

    2010-12-01

    Small and large scale proteomic technologies are providing a wealth of potential interactions between proteins bearing phospho-recognition modules and their substrates. Resulting interaction maps reveal such a dense network of interactions that the functional dissection and understanding of these networks often require to break specific interactions while keeping the rest intact. Here, we developed a computational strategy, called STRIP, to predict the precise interaction site involved in an interaction with a phospho-recognition module. The method was validated by a two-hybrid screen carried out using the ForkHead Associated (FHA)1 domain of Rad53, a key protein of Saccharomyces cerevisiae DNA checkpoint, as a bait. In this screen we detected 11 partners, including Cdc7 and Cdc45, essential components of the DNA replication machinery. FHA domains are phospho-threonine binding modules and the threonines involved in both interactions could be predicted using the STRIP strategy. The threonines T484 and T189 in Cdc7 and Cdc45, respectively, were mutated and loss of binding could be monitored experimentally with the full-length proteins. The method was further tested for the analysis of 63 known Rad53 binding partners and provided several key insights regarding the threonines likely involved in these interactions. The STRIP method relies on a combination of conservation, phosphorylation likelihood, and binding specificity criteria and can be accessed via a web interface at http://biodev.extra.cea.fr/strip/.

  11. A Strategy for Interaction Site Prediction between Phospho-binding Modules and their Partners Identified from Proteomic Data*

    Science.gov (United States)

    Aucher, Willy; Becker, Emmanuelle; Ma, Emilie; Miron, Simona; Martel, Arnaud; Ochsenbein, Françoise; Marsolier-Kergoat, Marie-Claude; Guerois, Raphaël

    2010-01-01

    Small and large scale proteomic technologies are providing a wealth of potential interactions between proteins bearing phospho-recognition modules and their substrates. Resulting interaction maps reveal such a dense network of interactions that the functional dissection and understanding of these networks often require to break specific interactions while keeping the rest intact. Here, we developed a computational strategy, called STRIP, to predict the precise interaction site involved in an interaction with a phospho-recognition module. The method was validated by a two-hybrid screen carried out using the ForkHead Associated (FHA)1 domain of Rad53, a key protein of Saccharomyces cerevisiae DNA checkpoint, as a bait. In this screen we detected 11 partners, including Cdc7 and Cdc45, essential components of the DNA replication machinery. FHA domains are phospho-threonine binding modules and the threonines involved in both interactions could be predicted using the STRIP strategy. The threonines T484 and T189 in Cdc7 and Cdc45, respectively, were mutated and loss of binding could be monitored experimentally with the full-length proteins. The method was further tested for the analysis of 63 known Rad53 binding partners and provided several key insights regarding the threonines likely involved in these interactions. The STRIP method relies on a combination of conservation, phosphorylation likelihood, and binding specificity criteria and can be accessed via a web interface at http://biodev.extra.cea.fr/strip/. PMID:20733106

  12. Transcriptome and proteome data reveal candidate genes for pollinator attraction in sexually deceptive orchids.

    Science.gov (United States)

    Sedeek, Khalid E M; Qi, Weihong; Schauer, Monica A; Gupta, Alok K; Poveda, Lucy; Xu, Shuqing; Liu, Zhong-Jian; Grossniklaus, Ueli; Schiestl, Florian P; Schlüter, Philipp M

    2013-01-01

    Sexually deceptive orchids of the genus Ophrys mimic the mating signals of their pollinator females to attract males as pollinators. This mode of pollination is highly specific and leads to strong reproductive isolation between species. This study aims to identify candidate genes responsible for pollinator attraction and reproductive isolation between three closely related species, O. exaltata, O. sphegodes and O. garganica. Floral traits such as odour, colour and morphology are necessary for successful pollinator attraction. In particular, different odour hydrocarbon profiles have been linked to differences in specific pollinator attraction among these species. Therefore, the identification of genes involved in these traits is important for understanding the molecular basis of pollinator attraction by sexually deceptive orchids. We have created floral reference transcriptomes and proteomes for these three Ophrys species using a combination of next-generation sequencing (454 and Solexa), Sanger sequencing, and shotgun proteomics (tandem mass spectrometry). In total, 121 917 unique transcripts and 3531 proteins were identified. This represents the first orchid proteome and transcriptome from the orchid subfamily Orchidoideae. Proteome data revealed proteins corresponding to 2644 transcripts and 887 proteins not observed in the transcriptome. Candidate genes for hydrocarbon and anthocyanin biosynthesis were represented by 156 and 61 unique transcripts in 20 and 7 genes classes, respectively. Moreover, transcription factors putatively involved in the regulation of flower odour, colour and morphology were annotated, including Myb, MADS and TCP factors. Our comprehensive data set generated by combining transcriptome and proteome technologies allowed identification of candidate genes for pollinator attraction and reproductive isolation among sexually deceptive orchids. This includes genes for hydrocarbon and anthocyanin biosynthesis and regulation, and the development of

  13. Systematic screening for novel lipids by shotgun lipidomics.

    Science.gov (United States)

    Papan, Cyrus; Penkov, Sider; Herzog, Ronny; Thiele, Christoph; Kurzchalia, Teymuras; Shevchenko, Andrej

    2014-03-04

    A commonly accepted LIPID MAPS classification recognizes eight major lipid categories and over 550 classes, while new lipid classes are still being discovered by targeted biochemical approaches. Despite their compositional diversity, complex lipids such as glycerolipids, glycerophospholipids, saccharolipids, etc. are constructed from unique structural moieties, e.g., glycerol, fatty acids, choline, phosphate, and trehalose, that are linked by amide, ether, ester, or glycosidic bonds. This modular organization is also reflected in their MS/MS fragmentation pathways, such that common building blocks in different lipid classes tend to generate common fragments. We take advantage of this stereotyped fragmentation to systematically screen for new lipids sharing distant structural similarity to known lipid classes and have developed a discovery approach based on the computational querying of shotgun mass spectra by LipidXplorer software. We applied this concept for screening lipid extracts of C. elegans larvae at the dauer and L3 stages that represent alternative developmental programs executed in response to environmental challenges. The search, covering more than 1.5 million putative chemical compositions, identified a novel class of lyso-maradolipids specifically enriched in dauer larvae.

  14. Novel advances in shotgun lipidomics for biology and medicine.

    Science.gov (United States)

    Wang, Miao; Wang, Chunyan; Han, Rowland H; Han, Xianlin

    2016-01-01

    The field of lipidomics, as coined in 2003, has made profound advances and been rapidly expanded. The mass spectrometry-based strategies of this analytical methodology-oriented research discipline for lipid analysis are largely fallen into three categories: direct infusion-based shotgun lipidomics, liquid chromatography-mass spectrometry-based platforms, and matrix-assisted laser desorption/ionization mass spectrometry-based approaches (particularly in imagining lipid distribution in tissues or cells). This review focuses on shotgun lipidomics. After briefly introducing its fundamentals, the major materials of this article cover its recent advances. These include the novel methods of lipid extraction, novel shotgun lipidomics strategies for identification and quantification of previously hardly accessible lipid classes and molecular species including isomers, and novel tools for processing and interpretation of lipidomics data. Representative applications of advanced shotgun lipidomics for biological and biomedical research are also presented in this review. We believe that with these novel advances in shotgun lipidomics, this approach for lipid analysis should become more comprehensive and high throughput, thereby greatly accelerating the lipidomics field to substantiate the aberrant lipid metabolism, signaling, trafficking, and homeostasis under pathological conditions and their underpinning biochemical mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Proteomic identification of putative microRNA394 target genes in Arabidopsis thaliana identifies major latex protein family members critical for normal development

    DEFF Research Database (Denmark)

    Litholdo, Celso G; Parker, Benjamin; Eamens, Andrew L

    2016-01-01

    , the identification of proteins targeted by LCR F-box itself has proven problematic. Here, a proteomic analysis of shoot apices from plants with altered LCR levels identified a member of the Latex Protein (MLP) family gene as a potential LCR F-box target. Bioinformatic and molecular analyses also suggested that other...... MLP family members are likely to be targets for this post-translational regulation. Direct interaction between LCR F-Box and MLP423 was validated. Additional MLP members had reduction in protein accumulation, in varying degrees, mediated by LCR F-Box. Transgenic Arabidopsis lines, in which MLP28...... Taken together, the results demonstrate that MLPs are driven to degradation by LCR, and indicate that MLP gene family is target of miR394-LCR regulatory node, representing potential targets for directly post-translational regulation mediated by LCR F-Box. In addition, MLP28 family member is associated...

  16. Quantitative proteomics as a tool to identify resistance mechanisms in erlotinib-resistant subclones of the non-small cell lung cancer cell line HCC827

    DEFF Research Database (Denmark)

    Jacobsen, Kirstine

    Background: Erlotinib (Tarceva®, Roche) has significantly changed the treatment of non-small cell lung cancer (NSCLC) as approximately 70% of patients show significant tumor regression when treated (Santarpia et. al., 2013). However, all patients relapse due to development of acquired resistance...... line HCC827. Materials & Methods: We established 3 erlotinib-resistant subclones (resistant to 10, 20, 30 µM erlotinib, respectively), and performed comparative quantitative proteomic analysis of these and the parental HCC827 cell line. The resistant subclones were examined both in absence and presence...... the identification of novel resistance mechanisms. We identified 2875 cytoplasmic proteins present in all 4 cell lines. Of these 87, 56 and 23 are upregulated >1.5 fold; and 117, 72 and 32 are downregulated >1.5 fold, respectively, in the 3 resistant clones compared to the parental cell line. By network analysis, we...

  17. Plasma membrane proteomics of human breast cancer cell lines identifies potential targets for breast cancer diagnosis and treatment.

    Directory of Open Access Journals (Sweden)

    Yvonne S Ziegler

    Full Text Available The use of broad spectrum chemotherapeutic agents to treat breast cancer results in substantial and debilitating side effects, necessitating the development of targeted therapies to limit tumor proliferation and prevent metastasis. In recent years, the list of approved targeted therapies has expanded, and it includes both monoclonal antibodies and small molecule inhibitors that interfere with key proteins involved in the uncontrolled growth and migration of cancer cells. The targeting of plasma membrane proteins has been most successful to date, and this is reflected in the large representation of these proteins as targets of newer therapies. In view of these facts, experiments were designed to investigate the plasma membrane proteome of a variety of human breast cancer cell lines representing hormone-responsive, ErbB2 over-expressing and triple negative cell types, as well as a benign control. Plasma membranes were isolated by using an aqueous two-phase system, and the resulting proteins were subjected to mass spectrometry analysis. Overall, each of the cell lines expressed some unique proteins, and a number of proteins were expressed in multiple cell lines, but in patterns that did not always follow traditional clinical definitions of breast cancer type. From our data, it can be deduced that most cancer cells possess multiple strategies to promote uncontrolled growth, reflected in aberrant expression of tyrosine kinases, cellular adhesion molecules, and structural proteins. Our data set provides a very rich and complex picture of plasma membrane proteins present on breast cancer cells, and the sorting and categorizing of this data provides interesting insights into the biology, classification, and potential treatment of this prevalent and debilitating disease.

  18. Proteomics mapping of cord blood identifies haptoglobin "switch-on" pattern as biomarker of early-onset neonatal sepsis in preterm newborns.

    Science.gov (United States)

    Buhimschi, Catalin S; Bhandari, Vineet; Dulay, Antonette T; Nayeri, Unzila A; Abdel-Razeq, Sonya S; Pettker, Christian M; Thung, Stephen; Zhao, Guomao; Han, Yiping W; Bizzarro, Matthew; Buhimschi, Irina A

    2011-01-01

    Intra-amniotic infection and/or inflammation (IAI) are important causes of preterm birth and early-onset neonatal sepsis (EONS). A prompt and accurate diagnosis of EONS is critical for improved neonatal outcomes. We sought to explore the cord blood proteome and identify biomarkers and functional protein networks characterizing EONS in preterm newborns. We studied a prospective cohort of 180 premature newborns delivered May 2004-September 2009. A proteomics discovery phase employing two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry identified 19 differentially-expressed proteins in cord blood of newborns with culture-confirmed EONS (n = 3) versus GA-matched controls (n = 3). Ontological classifications of the proteins included transfer/carrier, immunity/defense, protease/extracellular matrix. The 1(st)-level external validation conducted in the remaining 174 samples confirmed elevated haptoglobin and haptoglobin-related protein immunoreactivity (Hp&HpRP) in newborns with EONS (presumed and culture-confirmed) independent of GA at birth and birthweight (PLCA) was further used for unbiased classification of all 180 cases based on probability of "antenatal IAI exposure" as latent variable. This was then subjected to 2(nd)-level validation against indicators of adverse short-term neonatal outcome. The optimal LCA algorithm combined Hp&HpRP switch pattern (most input), interleukin-6 and neonatal hematological indices yielding two non-overlapping newborn clusters with low (≤20%) versus high (≥70%) probability of IAI exposure. This approach reclassified ∼30% of clinical EONS diagnoses lowering the number needed to harm and increasing the odds ratios for several adverse outcomes including intra-ventricular hemorrhage. Antenatal exposure to IAI results in precocious switch-on of Hp&HpRP expression. As EONS biomarker, cord blood Hp&HpRP has potential to improve the selection of newborns for prompt and targeted treatment at birth.

  19. Proteomics Mapping of Cord Blood Identifies Haptoglobin “Switch-On” Pattern as Biomarker of Early-Onset Neonatal Sepsis in Preterm Newborns

    Science.gov (United States)

    Buhimschi, Catalin S.; Bhandari, Vineet; Dulay, Antonette T.; Nayeri, Unzila A.; Abdel-Razeq, Sonya S.; Pettker, Christian M.; Thung, Stephen; Zhao, Guomao; Han, Yiping W.; Bizzarro, Matthew; Buhimschi, Irina A.

    2011-01-01

    Background Intra-amniotic infection and/or inflammation (IAI) are important causes of preterm birth and early-onset neonatal sepsis (EONS). A prompt and accurate diagnosis of EONS is critical for improved neonatal outcomes. We sought to explore the cord blood proteome and identify biomarkers and functional protein networks characterizing EONS in preterm newborns. Methodology/Principal Findings We studied a prospective cohort of 180 premature newborns delivered May 2004-September 2009. A proteomics discovery phase employing two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry identified 19 differentially-expressed proteins in cord blood of newborns with culture-confirmed EONS (n = 3) versus GA-matched controls (n = 3). Ontological classifications of the proteins included transfer/carrier, immunity/defense, protease/extracellular matrix. The 1st-level external validation conducted in the remaining 174 samples confirmed elevated haptoglobin and haptoglobin-related protein immunoreactivity (Hp&HpRP) in newborns with EONS (presumed and culture-confirmed) independent of GA at birth and birthweight (PLCA) was further used for unbiased classification of all 180 cases based on probability of “antenatal IAI exposure” as latent variable. This was then subjected to 2nd-level validation against indicators of adverse short-term neonatal outcome. The optimal LCA algorithm combined Hp&HpRP switch pattern (most input), interleukin-6 and neonatal hematological indices yielding two non-overlapping newborn clusters with low (≤20%) versus high (≥70%) probability of IAI exposure. This approach reclassified ∼30% of clinical EONS diagnoses lowering the number needed to harm and increasing the odds ratios for several adverse outcomes including intra-ventricular hemorrhage. Conclusions/Significance Antenatal exposure to IAI results in precocious switch-on of Hp&HpRP expression. As EONS biomarker, cord blood Hp&HpRP has potential to improve the

  20. Identification of Highly Expressed Plasmodium Vivax Proteins from Clinical Isolates Using Proteomics.

    Science.gov (United States)

    Venkatesh, Apoorva; Lahiri, Anwesha; Reddy, Panga Jaipal; Shastri, Jayanthi; Bankar, Sheetal; Patankar, Swati; Srivastava, Sanjeeva

    2017-08-25

    Plasmodium vivax is the most geographically widespread species responsible for malaria in humans. Our study focused on identifying highly expressed parasite proteins using a shotgun proteomics approach. Parasites (P. vivax) are isolated from seven patient samples using saponin lysis. Protein extracts from these parasites are processed and subjected to LC-MS/MS analysis. An overall proteome coverage of 605 P. vivax proteins along with 1670 human host proteins are obtained upon combining the data from LC-MS/MS runs. While a major proportion of the P. vivax proteins are either hypothetical or involved in basic cellular activities, few proteins such as tryptophan-rich antigen (Pv-fam-a; PVX_090265), Pv-fam-d protein (PVX_101520), Plasmodium exported protein (PVX_003545), Pvstp1 (PVX_094303) and hypothetical protein (PVX_083555) are detected in more than 80% of the clinical isolates and found to be unique to P. vivax without orthologs in P. falciparum. Our proteomics study on individual parasite isolates reveals highly expressed P. vivax proteins, few of which may be good candidates for vivax malaria diagnosis due to their abundance and absence in P. falciparum. This study represents the first step towards the identification of biomarkers for P. vivax malaria. In future, their clinical diagnostic values must be explored and validated on large patient cohorts. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Proteomic comparisons of venoms of long-term captive and recently wild-caught Eastern brown snakes (Pseudonaja textilis) indicate venom does not change due to captivity.

    Science.gov (United States)

    McCleary, Ryan J R; Sridharan, Sindhuja; Dunstan, Nathan L; Mirtschin, Peter J; Kini, R Manjunatha

    2016-07-20

    Snake venom is a highly variable phenotypic character, and its variation and rapid evolution are important because of human health implications. Because much snake antivenom is produced from captive animals, understanding the effects of captivity on venom composition is important. Here, we have evaluated toxin profiles from six long-term (LT) captive and six recently wild-caught (RC) eastern brown snakes, Pseudonaja textilis, utilizing gel electrophoresis, HPLC-MS, and shotgun proteomics. We identified proteins belonging to the three-finger toxins, group C prothrombin activators, Kunitz-type serine protease inhibitors, and phospholipases A2, among others. Although crude venom HPLC analysis showed LT snakes to be higher in some small molecular weight toxins, presence/absence patterns showed no correlation with time in captivity. Shotgun proteomics indicated the presence of similar toxin families among individuals but with variation in protein species. Although no venom sample contained all the phospholipase A2 subunits that form the textilotoxin, all did contain both prothrombin activator subunits. This study indicates that captivity has limited effects on venom composition, that venom variation is high, and that venom composition may be correlated to geographic distribution. Through proteomic comparisons, we show that protein variation within LT and RC groups of snakes (Pseudonaja textilis) is high, thereby resulting in no discernible differences in venom composition between groups. We utilize complementary techniques to characterize the venom proteomes of 12 individual snakes from our study area, and indicate that individuals captured close to one another have more similar venom gel electrophoresis patterns than those captured at more distant locations. These data are important for understanding natural variation in and potential effects of captivity on venom composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Biochemical Markers of Brain Injury: An Integrated Proteomics-Based Approach

    Science.gov (United States)

    2006-02-01

    Jaskoll, T. (2001) The functional genomic response of developing embryonic submandibular glands to NF-κB inhibition. BMC Dev. Biol. 1, 15 12 Malakhov, M...biomarkers for breast cancer . J Mammary Gland Biol Neoplasia 7, 407-13. 23. McDonald, W. H., and Yates, J. R., 3rd (2002) Shotgun proteomics and...YANG, A., et al. (2002). Evalu- ation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell

  3. Quantitative Proteomic Analysis of Differentially Expressed Protein Profiles Involved in Pancreatic Ductal Adenocarcinoma

    Science.gov (United States)

    Kuo, Kung-Kai; Kuo, Chao-Jen; Chiu, Chiang-Yen; Liang, Shih-Shin; Huang, Chun-Hao; Chi, Shu-Wen; Tsai, Kun-Bow; Chen, Chiao-Yun; Hsi, Edward; Cheng, Kuang-Hung; Chiou, Shyh-Horng

    2016-01-01

    Objectives The aim of this study was to identify differentially expressed proteins among various stages of pancreatic ductal adenocarcinoma (PDAC) by shotgun proteomics using nano-liquid chromatography coupled tandem mass spectrometry and stable isotope dimethyl labeling. Methods Differentially expressed proteins were identified and compared based on the mass spectral differences of their isotope-labeled peptide fragments generated from protease digestion. Results Our quantitative proteomic analysis of the differentially expressed proteins with stable isotope (deuterium/hydrogen ratio, ≥2) identified a total of 353 proteins, with at least 5 protein biomarker proteins that were significantly differentially expressed between cancer and normal mice by at least a 2-fold alteration. These 5 protein biomarker candidates include α-enolase, α-catenin, 14-3-3 β, VDAC1, and calmodulin with high confidence levels. The expression levels were also found to be in agreement with those examined by Western blot and histochemical staining. Conclusions The systematic decrease or increase of these identified marker proteins may potentially reflect the morphological aberrations and diseased stages of pancreas carcinoma throughout progressive developments leading to PDAC. The results would form a firm foundation for future work concerning validation and clinical translation of some identified biomarkers into targeted diagnosis and therapy for various stages of PDAC. PMID:26262590

  4. FSHD myotubes with different phenotypes exhibit distinct proteomes.

    Directory of Open Access Journals (Sweden)

    Alexandra Tassin

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is a progressive muscle disorder linked to a contraction of the D4Z4 repeat array in the 4q35 subtelomeric region. This deletion induces epigenetic modifications that affect the expression of several genes located in the vicinity. In each D4Z4 element, we identified the double homeobox 4 (DUX4 gene. DUX4 expresses a transcription factor that plays a major role in the development of FSHD through the initiation of a large gene dysregulation cascade that causes myogenic differentiation defects, atrophy and reduced response to oxidative stress. Because miRNAs variably affect mRNA expression, proteomic approaches are required to define the dysregulated pathways in FSHD. In this study, we optimized a differential isotope protein labeling (ICPL method combined with shotgun proteomic analysis using a gel-free system (2DLC-MS/MS to study FSHD myotubes. Primary CD56(+ FSHD myoblasts were found to fuse into myotubes presenting various proportions of an atrophic or a disorganized phenotype. To better understand the FSHD myogenic defect, our improved proteomic procedure was used to compare predominantly atrophic or disorganized myotubes to the same matching healthy control. FSHD atrophic myotubes presented decreased structural and contractile muscle components. This phenotype suggests the occurrence of atrophy-associated proteolysis that likely results from the DUX4-mediated gene dysregulation cascade. The skeletal muscle myosin isoforms were decreased while non-muscle myosin complexes were more abundant. In FSHD disorganized myotubes, myosin isoforms were not reduced, and increased proteins were mostly involved in microtubule network organization and myofibrillar remodeling. A common feature of both FSHD myotube phenotypes was the disturbance of several caveolar proteins, such as PTRF and MURC. Taken together, our data suggest changes in trafficking and in the membrane microdomains of FSHD myotubes. Finally, the

  5. A high-throughput sample preparation method for cellular proteomics using 96-well filter plates.

    NARCIS (Netherlands)

    Switzar, L.; van Angeren, J.A; Pinkse, M; Kool, J.; Niessen, W.M.A.

    2013-01-01

    A high-throughput sample preparation protocol based on the use of 96-well molecular weight cutoff (MWCO) filter plates was developed for shotgun proteomics of cell lysates. All sample preparation steps, including cell lysis, buffer exchange, protein denaturation, reduction, alkylation and

  6. Proteogenomics Dashboard for the Human Proteome Project.

    Science.gov (United States)

    Tabas-Madrid, Daniel; Alves-Cruzeiro, Joao; Segura, Victor; Guruceaga, Elizabeth; Vialas, Vital; Prieto, Gorka; García, Carlos; Corrales, Fernando J; Albar, Juan Pablo; Pascual-Montano, Alberto

    2015-09-04

    dasHPPboard is a novel proteomics-based dashboard that collects and reports the experiments produced by the Spanish Human Proteome Project consortium (SpHPP) and aims to help HPP to map the entire human proteome. We have followed the strategy of analog genomics projects like the Encyclopedia of DNA Elements (ENCODE), which provides a vast amount of data on human cell lines experiments. The dashboard includes results of shotgun and selected reaction monitoring proteomics experiments, post-translational modifications information, as well as proteogenomics studies. We have also processed the transcriptomics data from the ENCODE and Human Body Map (HBM) projects for the identification of specific gene expression patterns in different cell lines and tissues, taking special interest in those genes having little proteomic evidence available (missing proteins). Peptide databases have been built using single nucleotide variants and novel junctions derived from RNA-Seq data that can be used in search engines for sample-specific protein identifications on the same cell lines or tissues. The dasHPPboard has been designed as a tool that can be used to share and visualize a combination of proteomic and transcriptomic data, providing at the same time easy access to resources for proteogenomics analyses. The dasHPPboard can be freely accessed at: http://sphppdashboard.cnb.csic.es.

  7. Identification of meat products by shotgun spectral matching

    DEFF Research Database (Denmark)

    Ohana, D.; Dalebout, H.; Marissen, R. J.

    2016-01-01

    A new method, based on shotgun spectral matching of peptide tandem mass spectra, was successfully applied to the identification of different food species. The method was demonstrated to work on raw as well as processed samples from 16 mammalian and 10 bird species by counting spectral matches to ...

  8. A shotgun marriage - community health workers and government ...

    African Journals Online (AJOL)

    A shotgun marriage - community health workers and government health . services. Qualitative evaluation of a community health worker project in Khayelitsha. C. Mathews, H. van der Wait, P. Barron. In 1988 the Western Cape Regional Services Council. (RSC) initiated a community health worker (CHW) project.

  9. Screening currency notes for microbial pathogens and antibiotic resistance genes using a shotgun metagenomic approach.

    Directory of Open Access Journals (Sweden)

    Saakshi Jalali

    Full Text Available Fomites are a well-known source of microbial infections and previous studies have provided insights into the sojourning microbiome of fomites from various sources. Paper currency notes are one of the most commonly exchanged objects and its potential to transmit pathogenic organisms has been well recognized. Approaches to identify the microbiome associated with paper currency notes have been largely limited to culture dependent approaches. Subsequent studies portrayed the use of 16S ribosomal RNA based approaches which provided insights into the taxonomical distribution of the microbiome. However, recent techniques including shotgun sequencing provides resolution at gene level and enable estimation of their copy numbers in the metagenome. We investigated the microbiome of Indian paper currency notes using a shotgun metagenome sequencing approach. Metagenomic DNA isolated from samples of frequently circulated denominations of Indian currency notes were sequenced using Illumina Hiseq sequencer. Analysis of the data revealed presence of species belonging to both eukaryotic and prokaryotic genera. The taxonomic distribution at kingdom level revealed contigs mapping to eukaryota (70%, bacteria (9%, viruses and archae (~1%. We identified 78 pathogens including Staphylococcus aureus, Corynebacterium glutamicum, Enterococcus faecalis, and 75 cellulose degrading organisms including Acidothermus cellulolyticus, Cellulomonas flavigena and Ruminococcus albus. Additionally, 78 antibiotic resistance genes were identified and 18 of these were found in all the samples. Furthermore, six out of 78 pathogens harbored at least one of the 18 common antibiotic resistance genes. To the best of our knowledge, this is the first report of shotgun metagenome sequence dataset of paper currency notes, which can be useful for future applications including as bio-surveillance of exchangeable fomites for infectious agents.

  10. Screening currency notes for microbial pathogens and antibiotic resistance genes using a shotgun metagenomic approach.

    Science.gov (United States)

    Jalali, Saakshi; Kohli, Samantha; Latka, Chitra; Bhatia, Sugandha; Vellarikal, Shamsudheen Karuthedath; Sivasubbu, Sridhar; Scaria, Vinod; Ramachandran, Srinivasan

    2015-01-01

    Fomites are a well-known source of microbial infections and previous studies have provided insights into the sojourning microbiome of fomites from various sources. Paper currency notes are one of the most commonly exchanged objects and its potential to transmit pathogenic organisms has been well recognized. Approaches to identify the microbiome associated with paper currency notes have been largely limited to culture dependent approaches. Subsequent studies portrayed the use of 16S ribosomal RNA based approaches which provided insights into the taxonomical distribution of the microbiome. However, recent techniques including shotgun sequencing provides resolution at gene level and enable estimation of their copy numbers in the metagenome. We investigated the microbiome of Indian paper currency notes using a shotgun metagenome sequencing approach. Metagenomic DNA isolated from samples of frequently circulated denominations of Indian currency notes were sequenced using Illumina Hiseq sequencer. Analysis of the data revealed presence of species belonging to both eukaryotic and prokaryotic genera. The taxonomic distribution at kingdom level revealed contigs mapping to eukaryota (70%), bacteria (9%), viruses and archae (~1%). We identified 78 pathogens including Staphylococcus aureus, Corynebacterium glutamicum, Enterococcus faecalis, and 75 cellulose degrading organisms including Acidothermus cellulolyticus, Cellulomonas flavigena and Ruminococcus albus. Additionally, 78 antibiotic resistance genes were identified and 18 of these were found in all the samples. Furthermore, six out of 78 pathogens harbored at least one of the 18 common antibiotic resistance genes. To the best of our knowledge, this is the first report of shotgun metagenome sequence dataset of paper currency notes, which can be useful for future applications including as bio-surveillance of exchangeable fomites for infectious agents.

  11. iTRAQ-Based Proteomics Screen identifies LIPOCALIN-2 (LCN-2) as a potential biomarker for colonic lateral-spreading tumors.

    Science.gov (United States)

    Wang, Xianfei; Li, Aimin; Guo, Yubin; Wang, Yadong; Zhao, Xinhua; Xiang, Li; Han, Zelong; Li, Yue; Xu, Wen; Zhuang, Kangmin; Yan, Qun; Zhong, Jietao; Xiong, Jing; Liu, Side

    2016-06-24

    The improvement and implementation of a colonoscopy technique has led to increased detection of laterally spreading tumors (LSTs), which are presumed to constitute an aggressive type of colonic neoplasm. Early diagnosis and treatment of LSTs is clinically challenging. To overcome this problem, we employed iTRAQ to identify LST-specific protein biomarkers potentially involved in LST progression. In this study, we identified 2,001 differentially expressed proteins in LSTs using iTRAQ-based proteomics technology. Lipocalin-2 (LCN-2) was the most up-regulated protein. LSTs expression levels of LCN-2 and matrix metallopeptidase-9 (MMP-9) showed positive correlation with worse pathological grading, and up-regulation of these proteins in LSTs was also reflected in serum. Furthermore, LCN-2 protein overexpression was positively correlated with MMP-9 protein up-regulation in the tumor tissue and serum of LST patients (former rs = 0.631, P = 0.000; latter rs = 0.815, P = 0.000). Our results suggest that LCN-2 constitutes a potential biomarker for LST disease progression and might be a novel therapeutic target in LSTs.

  12. Comparative proteomics as a tool for identifying specific alterations within interferon response pathways in human glioblastoma multiforme cells

    DEFF Research Database (Denmark)

    Tarasova, Irina A; Tereshkova, Alesya V; Lobas, Anna A

    2018-01-01

    An acquisition of increased sensitivity of cancer cells to viruses is a common outcome of malignant progression that justifies the development of oncolytic viruses as anticancer therapeutics. Studying molecular changes that underlie the sensitivity to viruses would help to identify cases where on...

  13. IL-1beta induced protein changes in diabetes prone BB rat islets of Langerhans identified by proteome analysis

    DEFF Research Database (Denmark)

    Sparre, T; Bjerre-Christensen, Ulla; Mose Larsen, P

    2002-01-01

    of 82 out of 1 815 protein spots detected by two dimensional gel electrophoresis in IL-1beta exposed diabetes prone Bio Breeding (BB-DP) rat islets of Langerhans in vitro. The aim of this study was to identify the proteins in these 82 spots by mass spectrometry and compare these changes with those seen...

  14. Proteomics mapping of cord blood identifies haptoglobin "switch-on" pattern as biomarker of early-onset neonatal sepsis in preterm newborns.

    Directory of Open Access Journals (Sweden)

    Catalin S Buhimschi

    Full Text Available Intra-amniotic infection and/or inflammation (IAI are important causes of preterm birth and early-onset neonatal sepsis (EONS. A prompt and accurate diagnosis of EONS is critical for improved neonatal outcomes. We sought to explore the cord blood proteome and identify biomarkers and functional protein networks characterizing EONS in preterm newborns.We studied a prospective cohort of 180 premature newborns delivered May 2004-September 2009. A proteomics discovery phase employing two-dimensional differential gel electrophoresis (2D-DIGE and mass spectrometry identified 19 differentially-expressed proteins in cord blood of newborns with culture-confirmed EONS (n = 3 versus GA-matched controls (n = 3. Ontological classifications of the proteins included transfer/carrier, immunity/defense, protease/extracellular matrix. The 1(st-level external validation conducted in the remaining 174 samples confirmed elevated haptoglobin and haptoglobin-related protein immunoreactivity (Hp&HpRP in newborns with EONS (presumed and culture-confirmed independent of GA at birth and birthweight (P<0.001. Western blot concurred in determining that EONS babies had conspicuous Hp&HpRP bands in cord blood ("switch-on pattern" as opposed to non-EONS newborns who had near-absent "switch-off pattern" (P<0.001. Fetal Hp phenotype independently impacted Hp&HpRP. A bayesian latent-class analysis (LCA was further used for unbiased classification of all 180 cases based on probability of "antenatal IAI exposure" as latent variable. This was then subjected to 2(nd-level validation against indicators of adverse short-term neonatal outcome. The optimal LCA algorithm combined Hp&HpRP switch pattern (most input, interleukin-6 and neonatal hematological indices yielding two non-overlapping newborn clusters with low (≤20% versus high (≥70% probability of IAI exposure. This approach reclassified ∼30% of clinical EONS diagnoses lowering the number needed to harm and increasing

  15. Proteomic profiling of pretreatment serum from HIV-infected patients identifies candidate markers predictive of lymphoma development

    DEFF Research Database (Denmark)

    Vase, Maja Ølholm; Ludvigsen, Maja; Bendix, Knud

    2016-01-01

    . Differentially expressed proteins were identified by liquid chromatography-tandem mass spectrometry. A tissue microarray, containing diagnostic HIV-lymphoma tissue samples (N = 40), was used to investigate immunohistochemical expression of markers in tumoural lesions. RESULTS: Fourteen differentially expressed...... protein spots were detected. Using principal components analysis, spots containing immunoglobulin J chain, apolipoprotein A-I, procollagen C-endopeptidase enhancer-1 and complement C4-A were associated with lymphoma development (P ... with subsequent lymphoma compared with patients without subsequent lymphoma. In the tissue microarray, amyloid A was widely expressed, and high expression showed a tendency towards inferior outcome (log-rank 0.073). CONCLUSION: We identified several differentially expressed protein spots present already...

  16. Quantitative proteomics identifies central players in erlotinib resistance of the non-small cell lung cancer cell line HCC827

    DEFF Research Database (Denmark)

    Jacobsen, Kirstine; Lund, Rikke Raaen; Beck, Hans Christian

    Background: Erlotinib (Tarceva®, Roche) has significantly changed the treatment of non-small cell lung cancer (NSCLC) as 70% of patients show significant tumor regression when treated. However, all patients relapse due to development of acquired resistance, which in 43-50% of cases are caused...... by a secondary mutation (T790M) in EGFR. Importantly, a majority of resistance cases are still unexplained. Our aim is to identify novel resistance mechanisms in erlotinib-resistant subclones of the NSCLC cell line HCC827. Materials & Methods: We established 3 erlotinib-resistant subclones (resistant to 10, 20...... or other EGFR or KRAS mutations, potentiating the identification of novel resistance mechanisms. We identified 2875 cytoplasmic proteins present in all 4 cell lines. Of these 87, 56 and 23 are upregulated >1.5 fold; and 117, 72 and 32 are downregulated >1.5 fold, respectively, in the 3 resistant clones...

  17. Quantitative proteomics identifies Gemin5, a scaffolding protein involved in ribonucleoprotein assembly, as a novel partner for eukaryotic initiation factor 4E

    DEFF Research Database (Denmark)

    Fierro-Monti, Ivo; Mohammed, Shabaz; Matthiesen, Rune

    2006-01-01

    Protein complexes are dynamic entities; identification and quantitation of their components is critical in elucidating functional roles under specific cellular conditions. We report the first quantitative proteomic analysis of the human cap-binding protein complex. Components and proteins associa...

  18. Gel-based and gel-free proteome data associated with controlled deterioration treatment ofGlycine maxseeds.

    Science.gov (United States)

    Min, Cheol Woo; Lee, Seo Hyun; Cheon, Ye Eun; Han, Won Young; Ko, Jong Min; Kang, Hang Won; Kim, Yong Chul; Agrawal, Ganesh Kumar; Rakwal, Randeep; Gupta, Ravi; Kim, Sun Tae

    2017-12-01

    Data presented here are associated with the article: "In-depth proteomic analysis of soybean ( Glycine max ) seeds during controlled deterioration treatment (CDT) reveals a shift in seed metabolism" (Min et al., 2017) [1]. Seed deterioration is one of the major problems, affecting the seed quality, viability, and vigor in a negative manner. Here, we display the gel-based and gel-free proteomic data, associated with the CDT in soybean seeds. The present data was obtained from 2-DE, shotgun proteomic analysis (label-free quantitative proteomic analysis) using Q-Exactive, and gene ontology analysis associated with CDT in soybean seeds (Min et al., 2017) [1].

  19. C4 photosynthetic machinery: insights from maize chloroplast proteomics

    Directory of Open Access Journals (Sweden)

    Qi eZhao

    2013-04-01

    Full Text Available C4 plants exhibit much higher CO2 assimilation rates than C3 plants. The specialized differentiation of mesophyll cell (M and bundle sheath cell (BS type chloroplasts is unique to C4 plants and improves photosynthesis efficiency. Maize (Zea mays is an important crop and model with C4 photosynthetic machinery. Current high-throughput quantitative proteomics approaches (e.g., 2DE, iTRAQ, and shotgun proteomics have been employed to investigate maize chloroplast structure and function. These proteomic studies have provided valuable information on C4 chloroplast protein components, photosynthesis, and other metabolic mechanisms underlying chloroplast biogenesis, stromal and membrane differentiation, as well as response to salinity, high/low temperature, and light stress. This review presents an overview of proteomics advances in maize chloroplast biology.

  20. IPO-38 is identified as a novel serum biomarker of gastric cancer based on clinical proteomics technology.

    Science.gov (United States)

    Hao, Yuan; Yu, Yingyan; Wang, Lishun; Yan, Min; Ji, Jun; Qu, Ying; Zhang, Jun; Liu, Bingya; Zhu, Zhenggang

    2008-09-01

    Gastric cancer is one of the most common malignancies in China. So far, there are few reliable serum biomarkers for diagnosis. The available biomarkers of CEA, CA19-9 and CA72-4 are not sufficiently sensitive and specific for gastric cancer. In this study, a high density antibody microarray was used for identifying new biomarkers from serum samples of gastric cancer. Serum samples from colorectal cancer, pancreatic cancer, hepatocellular cancer, and breast cancer were also screened for comparative study. As result, some candidate biomarkers were identified. IPO-38, an up-regulated serum protein in gastric cancer was selected for subsequent validation including serum IPO-38 expression by ELISA and IPO-38 protein expression by immunohistochemistry. The immunoprecipitation by IPO-38 for gastric cancer cell line and MALDI-TOF/TOF mass spectrometer suggested that pull-down of IPO-38 belongs to H2B histone, which was supported by co-localization study of laser scanning confocal microscope. A follow-up study showed that the survival rate of IPO-38 negative group was better than that in IPO-38 positive group. The study first clarified the property of IPO-38 proliferating marker, and proposed that IPO-38 protein is a promising biomarker both for diagnosis and for predicting prognosis of gastric cancer.

  1. A quantitative proteomics approach identifies ETV6 and IKZF1 as new regulators of an ERG-driven transcriptional network.

    Science.gov (United States)

    Unnikrishnan, Ashwin; Guan, Yi F; Huang, Yizhou; Beck, Dominik; Thoms, Julie A I; Peirs, Sofie; Knezevic, Kathy; Ma, Shiyong; de Walle, Inge V; de Jong, Ineke; Ali, Zara; Zhong, Ling; Raftery, Mark J; Taghon, Tom; Larsson, Jonas; MacKenzie, Karen L; Van Vlierberghe, Pieter; Wong, Jason W H; Pimanda, John E

    2016-12-15

    Aberrant stem cell-like gene regulatory networks are a feature of leukaemogenesis. The ETS-related gene (ERG), an important regulator of normal haematopoiesis, is also highly expressed in T-ALL and acute myeloid leukaemia (AML). However, the transcriptional regulation of ERG in leukaemic cells remains poorly understood. In order to discover transcriptional regulators of ERG, we employed a quantitative mass spectrometry-based method to identify factors binding the 321 bp ERG +85 stem cell enhancer region in MOLT-4 T-ALL and KG-1 AML cells. Using this approach, we identified a number of known binders of the +85 enhancer in leukaemic cells along with previously unknown binders, including ETV6 and IKZF1. We confirmed that ETV6 and IKZF1 were also bound at the +85 enhancer in both leukaemic cells and in healthy human CD34 + haematopoietic stem and progenitor cells. Knockdown experiments confirmed that ETV6 and IKZF1 are transcriptional regulators not just of ERG, but also of a number of genes regulated by a densely interconnected network of seven transcription factors. At last, we show that ETV6 and IKZF1 expression levels are positively correlated with expression of a number of heptad genes in AML and high expression of all nine genes confers poorer overall prognosis. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Comparative proteomic analysis of latex from Hevea brasiliensis treated with Ethrel and methyl jasmonate using iTRAQ-coupled two-dimensional LC-MS/MS.

    Science.gov (United States)

    Dai, Longjun; Kang, Guijuan; Nie, Zhiyi; Li, Yu; Zeng, Rizhong

    2016-01-30

    Ethrel (ET) is an effective and widely used latex yield stimulant of Hevea brasiliensis (Pará rubber tree), and jasmonate (JA) is a key inducer of laticifer differentiation in this plant. To examine variations in the latex proteome caused by these phytohormones, ET and methyl jasmonate (MeJA) were applied to Reyan 7-33-97 rubber tree clones, and comparative proteomic analyses were conducted. On the basis of a transcriptome shotgun assembly (TSA) sequence database and an iTRAQ-coupled two-dimensional LC-MS/MS approach, 1499 latex proteins belonging to 1078 clusters were identified. With a 1.5-fold cut-off value to determine up- and down-regulated proteins, a total of 101 latex proteins were determined to be regulated by ET and/or MeJA via pairwise comparisons among the three exposure durations (0 h, 6 h, and 48 h). Proteins associated with latex regeneration, including phosphoenolpyruvate carboxylase and acetyl-CoA C-acetyltransferase, and those associated with latex flow, such as chitinase and a sieve element occlusion protein, were affected by the application of ET. Chitinase and polyphenol oxidase were also found to be regulated by MeJA. The findings of this study may provide new insight into the roles of phytohormones in latex yield and the causative mechanisms of laticifer differentiation in rubber trees. On the basis of a transcriptome shotgun assembly (TSA) sequence database and an iTRAQ-coupled two-dimensional LC-MS/MS approach, the most comprehensive proteome of the latex was profiled, and the ethylene-/jasmonate-responsive proteins were identified in the latex of H. brasiliensis. The findings of this study may provide new insight into the role of phytohormones in latex yield and the causative mechanisms of laticifer differentiation in rubber trees. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Chloride intracellular channel 1 identified using proteomic analysis plays an important role in the radiosensitivity of HEp-2 cells via reactive oxygen species production.

    Science.gov (United States)

    Kim, Jae-Sung; Chang, Jong Wook; Yun, Hong Shik; Yang, Kyung Mi; Hong, Eun-Hee; Kim, Dong Hyun; Um, Hong-Duck; Lee, Kee-Ho; Lee, Su-Jae; Hwang, Sang-Gu

    2010-07-01

    The nature of the molecules underlying the radioresistance phenotype of laryngeal cancer cells remains to be established. We initially generated radioresistant laryngeal cancer cell lines from human HEp-2 cells with fractionated radiation. These RR-HEp-2 cells and isolated clones displayed more radioresistant and anti-apoptotic phenotypes than parental HEp-2 cells after radiation. Characteristics of RR-Hep-2 cell lines were confirmed by upregulation of radioresistance-related genes, such as epidermal growth factor receptor, Hsp90, and Bcl-xl. Subsequently, we examined proteome changes between HEp-2 and RR-HEp-2 cells and identified 16 proteins showing significantly altered expression levels. Interestingly, protein expression of chloride intracellular channel 1 (CLIC1) was markedly suppressed in RR-HEp-2 cells, compared with non-irradiated control cells. Suppression of CLIC1 with an indanyloxyacetic acid-94 or small interfering RNA led to radioresistance in HEp-2 cells by suppressing the radiation-induced cellular ROS level. However, ectopic overexpression of CLIC1 induced radiosensitivity in RR-HEp-2 cells via induction of ROS level after radiation, suggesting that the protein acts as a positive regulator of ROS production. Our results collectively indicate that suppression of CLIC1 contributes to acquisition of the radioresistance phenotype of laryngeal cancer cells via inhibition of ROS production, implying that this protein is an important candidate molecule for radiotherapy in radioresistant laryngeal cancer cells.

  4. Membrane-associated proteomics of chickpea identifies Sad1/UNC-84 protein (CaSUN1), a novel component of dehydration signaling

    Science.gov (United States)

    Jaiswal, Dinesh Kumar; Mishra, Poonam; Subba, Pratigya; Rathi, Divya; Chakraborty, Subhra; Chakraborty, Niranjan

    2014-02-01

    Dehydration affects almost all the physiological processes including those that result in the accumulation of misfolded proteins in the endoplasmic reticulum (ER), which in turn elicits a highly conserved signaling, the unfolded protein response (UPR). We investigated the dehydration-responsive membrane-associated proteome of a legume, chickpea, by 2-DE coupled with mass spectrometry. A total of 184 protein spots were significantly altered over a dehydration treatment of 120 h. Among the differentially expressed proteins, a non-canonical SUN domain protein, designated CaSUN1 (Cicer arietinum Sad1/UNC-84), was identified. CaSUN1 localized to the nuclear membrane and ER, besides small vacuolar vesicles. The transcripts were downregulated by both abiotic and biotic stresses, but not by abscisic acid treatment. Overexpression of CaSUN1 conferred stress tolerance in transgenic Arabidopsis. Furthermore, functional complementation of the yeast mutant, slp1, could rescue its growth defects. We propose that the function of CaSUN1 in stress response might be regulated via UPR signaling.

  5. Temporal profiling of the heat-stable proteome during late maturation of Medicago truncatula seeds identifies a restricted subset of late embryogenesis abundant proteins associated with longevity.

    Science.gov (United States)

    Chatelain, Emilie; Hundertmark, Michaela; Leprince, Olivier; Le Gall, Sophie; Satour, Pascale; Deligny-Penninck, Stéphanie; Rogniaux, Hélène; Buitink, Julia

    2012-08-01

    Developing seeds accumulate late embryogenesis abundant (LEA) proteins, a family of intrinsically disordered and hydrophilic proteins that confer cellular protection upon stress. Many different LEA proteins exist in seeds, but their relative contribution to seed desiccation tolerance or longevity (duration of survival) is not yet investigated. To address this, a reference map of LEA proteins was established by proteomics on a hydrophilic protein fraction from mature Medicago truncatula seeds and identified 35 polypeptides encoded by 16 LEA genes. Spatial and temporal expression profiles of the LEA polypeptides were obtained during the long maturation phase during which desiccation tolerance and longevity are sequentially acquired until pod abscission and final maturation drying occurs. Five LEA polypeptides, representing 6% of the total LEA intensity, accumulated upon acquisition of desiccation tolerance. The gradual 30-fold increase in longevity correlated with the accumulation of four LEA polypeptides, representing 35% of LEA in mature seeds, and with two chaperone-related polypeptides. The majority of LEA polypeptides increased around pod abscission during final maturation drying. The differential accumulation profiles of the LEA polypeptides suggest different roles in seed physiology, with a small subset of LEA and other proteins with chaperone-like functions correlating with desiccation tolerance and longevity. © 2012 Blackwell Publishing Ltd.

  6. Outer membrane proteomics of kanamycin-resistant Escherichia coli identified MipA as a novel antibiotic resistance-related protein.

    Science.gov (United States)

    Li, Hui; Zhang, Dan-feng; Lin, Xiang-min; Peng, Xuan-xian

    2015-06-01

    Antibiotic-resistant bacteria are a great threat to human health and food safety and there is an urgent need to understand the mechanisms of resistance for combating these bacteria. In the current study, comparative proteomic methodologies were applied to identify Escherichia coli K-12 outer membrane (OM) proteins related to kanamycin resistance. Mass spectrometry and western blotting results revealed that OM proteins TolC, Tsx and OstA were up-regulated, whereas MipA, OmpA, FadL and OmpW were down-regulated in kanamycin-resistant E. coli K-12 strain. Genetic deletion of tolC (ΔtolC-Km) led to a 2-fold decrease in the minimum inhibitory concentration (MIC) of kanamycin and deletion of mipA (ΔmipA-Km) resulted in a 4-fold increase in the MIC of kanamycin. Changes in the MICs for genetically modified strains could be completely recovered by gene complementation. Compared with the wild-type strain, the survival capability of ΔompA-Km was significantly increased and that of Δtsx-Km was significantly decreased. We further evaluated the role and expression of MipA in response to four other antibiotics including nalidixic acid, streptomycin, chloramphenicol and aureomycin, which suggested that MipA was a novel OM protein related to antibiotic resistance. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Proteomic profiling of mammary carcinomas identifies C7orf24, a gamma-glutamyl cyclotransferase, as a potential cancer biomarker

    DEFF Research Database (Denmark)

    Gromov, Pavel; Gromova, Irina; Friis, Esbern

    2010-01-01

    , and a novel protein, C7orf24, was identified as being upregulated in cancer cells. Protein expression levels of C7orf24 were evaluated by immunohistochemical assays to qualify deregulation of this protein. Analysis of C7orf24 expression showed up-regulation in 36.4 and 23.4% of cases present in the discovery...... in different types of cancer suggests deregulation of C7orf24 to be a general event in epithelial carcinogenesis, indicating that this protein may play an important role in cancer cell biology and thus constitute a novel therapeutic target. Furthermore, as C7orf24 is externalized to the tissue extracellular......Breast cancer is the leading cause of cancer deaths in women today and is the most common cancer (excluding skin cancers) among women in the Western world. Although cancers detected by screening mammography are significantly smaller than nonscreening ones, noninvasive biomarkers for detection...

  8. Nutritional Proteomics: Investigating molecular mechanisms underlying the health beneficial effect of functional foods

    Directory of Open Access Journals (Sweden)

    Yusuke Kawashima

    2013-07-01

    Full Text Available ABSTRACTObjective: We introduce a new technical and conceptual term “nutritional proteomics” by identifying and quantifying the proteins and their changes in a certain organ or tissue dependent on the food intake by utilizing a mass spectrometry-based proteomics technique.Purpose: Food intake is essentially important for every life on earth to sustain the physical as well as mental functions. The outcome of food intake will be manifested in the health state and its dysfunction. The molecular information about the protein expression change caused by diets will assist us to understand the significance of functional foods. We wish to develop nutritional proteomics to promote a new area in functional food studies for a better understanding of the role of functional foods in health and disease.Methods: We chose two classes of food ingredients to show the feasibility of nutritional proteomics, omega-3 polyunsaturated fatty acids and omega-6 polyunsaturated fatty acids both of which are involved in the inflammation/anti-inflammation axis. Each class of the polyunsaturated fatty acids was mixed in mouse chow respectively. The liver tissue of mice fed with omega-3 diet or omega-3 diet was analyzed by the state-of-the-art shotgun proteomics using nano-HPLC-ESI-MS/MS. The data were analyzed by the number of differentially expressed proteins that were guaranteed by 1% false discovery rate for protein identification and by the statistical significance of variance evaluated by p-value in two-tailed distribution analysis better than 0.05 (n=4. The differential pattern of protein expression was characterized with Gene Ontology designation.Results: The data analysis of the shotgun nutritional proteomics identified 2,810 proteins that are validated with 1% FDR. Among these 2,810 proteins, 125 were characterized with statistical significance of variance (p<0.05; n=4 between the omega-3 diet and the omega-6 diet by twotailed distribution analysis. The results

  9. Redox regulation of cell proliferation: Bioinformatics and redox proteomics approaches to identify redox-sensitive cell cycle regulators.

    Science.gov (United States)

    Foyer, Christine H; Wilson, Michael H; Wright, Megan H

    2018-03-29

    Plant stem cells are the foundation of plant growth and development. The balance of quiescence and division is highly regulated, while ensuring that proliferating cells are protected from the adverse effects of environment fluctuations that may damage the genome. Redox regulation is important in both the activation of proliferation and arrest of the cell cycle upon perception of environmental stress. Within this context, reactive oxygen species serve as 'pro-life' signals with positive roles in the regulation of the cell cycle and survival. However, very little is known about the metabolic mechanisms and redox-sensitive proteins that influence cell cycle progression. We have identified cysteine residues on known cell cycle regulators in Arabidopsis that are potentially accessible, and could play a role in redox regulation, based on secondary structure and solvent accessibility likelihoods for each protein. We propose that redox regulation may function alongside other known posttranslational modifications to control the functions of core cell cycle regulators such as the retinoblastoma protein. Since our current understanding of how redox regulation is involved in cell cycle control is hindered by a lack of knowledge regarding both which residues are important and how modification of those residues alters protein function, we discuss how critical redox modifications can be mapped at the molecular level. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  10. Beyond classification: gene-family phylogenies from shotgun metagenomic reads enable accurate community analysis.

    Science.gov (United States)

    Riesenfeld, Samantha J; Pollard, Katherine S

    2013-06-22

    Sequence-based phylogenetic trees are a well-established tool for characterizing diversity of both macroorganisms and microorganisms. Phylogenetic methods have recently been applied to shotgun metagenomic data from microbial communities, particularly with the aim of classifying reads. But the accuracy of gene-family phylogenies that characterize evolutionary relationships among short, non-overlapping sequencing reads has not been thoroughly evaluated. To quantify errors in metagenomic read trees, we developed MetaPASSAGE, a software pipeline to generate in silico bacterial communities, simulate a sample of shotgun reads from a gene family represented in the community, orient or translate reads, and produce a profile-based alignment of the reads from which a gene-family phylogenetic tree can be built. We applied MetaPASSAGE to a variety of RNA and protein-coding gene families, built trees using a range of different phylogenetic methods, and compared the resulting trees using topological and branch-length error metrics. We identified read length as one of the major sources of error. Because phylogenetic methods use a reference database of full-length sequences from the gene family to guide construction of alignments and trees, we found that error can also be substantially reduced through increasing the size and diversity of the reference database. Finally, UniFrac analysis, which compares metagenomic samples based on a summary statistic computed over all branches in a read tree, is very robust to the level of error we observe. Bacterial community diversity can be quantified using phylogenetic approaches applied to shotgun metagenomic data. As sequencing reads get longer and more genomes across the bacterial tree of life are sequenced, the accuracy of this approach will continue to improve, opening the door to more applications.

  11. CysTRAQ - A combination of iTRAQ and enrichment of cysteinyl peptides for uncovering and quantifying hidden proteomes.

    Science.gov (United States)

    Tambor, Vojtech; Hunter, Christie L; Seymour, Sean L; Kacerovsky, Marian; Stulik, Jiri; Lenco, Juraj

    2012-01-04

    Shotgun proteomics is capable of characterizing differences in both protein quality and quantity, and has been applied in various biomedical applications. Unfortunately, the high complexity and dynamic range of proteins in studied samples, clinical in particular, often hinders the identification of relevant proteins. Indeed, information-rich, low abundance proteins often remain undetected, whereas repeatedly reported altered concentrations in high abundance proteins are often ambiguous and insignificant. Several techniques have therefore been developed to overcome this obstacle and provide a deeper insight into the proteome. Here we report a novel approach, which enables iTRAQ reagent quantitation of peptides fractionated based on presence of a cysteine residue (thus CysTRAQ). For the first time, we prove that iTRAQ quantitation is fully compatible with cysteinyl peptide enrichment and is not influenced by the fractionation process. Moreover, the employment of the method combined with high-resolution TripleTOF 5600 mass spectrometer for very fast MS/MS acquisition in human amniotic fluid analysis significantly increased the number of identified proteins, which were simultaneously quantified owing to the introduction of iTRAQ labeling. We herein show that CysTRAQ is a robust and straightforward method with potential application in quantitative proteomics experiments, i.e. as an alternative to the ICAT reagent approach. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Identification of antimicrobial resistance genes in multidrug-resistant clinical Bacteroides fragilis isolates by whole genome shotgun sequencing

    DEFF Research Database (Denmark)

    Sydenham, Thomas Vognbjerg; Sóki, József; Hasman, Henrik

    2015-01-01

    Bacteroides fragilis constitutes the most frequent anaerobic bacterium causing bacteremia in humans. The genetic background for antimicrobial resistance in B. fragilis is diverse with some genes requiring insertion sequence (IS) elements inserted upstream for increased expression. To evaluate whole...... genome shotgun sequencing as a method for predicting antimicrobial resistance properties, one meropenem resistant and five multidrug-resistant blood culture isolates were sequenced and antimicrobial resistance genes and IS elements identified using ResFinder 2.1 (http...

  13. Short term changes in the proteome of human cerebral organoids induced by 5-MeO-DMT.

    Science.gov (United States)

    Dakic, Vanja; Minardi Nascimento, Juliana; Costa Sartore, Rafaela; Maciel, Renata de Moraes; de Araujo, Draulio B; Ribeiro, Sidarta; Martins-de-Souza, Daniel; Rehen, Stevens K

    2017-10-09

    Dimethyltryptamines are entheogenic serotonin-like molecules present in traditional Amerindian medicine recently associated with cognitive gains, antidepressant effects, and changes in brain areas related to attention. Legal restrictions and the lack of adequate experimental models have limited the understanding of how such substances impact human brain metabolism. Here we used shotgun mass spectrometry to explore proteomic differences induced by 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) on human cerebral organoids. Out of the 6,728 identified proteins, 934 were found differentially expressed in 5-MeO-DMT-treated cerebral organoids. In silico analysis reinforced previously reported anti-inflammatory actions of 5-MeO-DMT and revealed modulatory effects on proteins associated with long-term potentiation, the formation of dendritic spines, including those involved in cellular protrusion formation, microtubule dynamics, and cytoskeletal reorganization. Our data offer the first insight about molecular alterations caused by 5-MeO-DMT in human cerebral organoids.

  14. Use of comparative proteomics to identify key proteins related to hepatic lipid metabolism in broiler chickens: evidence accounting for differential fat deposition between strains.

    Science.gov (United States)

    Huang, Jianzhen; Tang, Xue; Ruan, Jiming; Ma, Haitian; Zou, Sixiang

    2010-01-01

    In order to investigate differences in fat metabolism during embryonic development, a comparative proteomics strategy was employed using Arbor Acres (AA) and San Huang (SH) broiler chickens with different growth and fat deposition characteristics. These birds were floor-reared and fed identical diets, and embryonic livers were collected from AA and SH chicken embryos on days 9, 14 and 19 of incubation and hatching. Proteins were extracted and fractionated by two-dimensional electrophoresis (2-DE), Neuhoff's colloidal Coomassie Blue G-250 staining was carried out, and stained gels were scanned and analyzed using PDQuest7.3 software (Bio-Rad). In-gel trypsin digestion of the differential protein spots and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) were subsequently assessed. Peptide mass fingerprinting of the differentially expressed proteins was performed using the server from MASCOT or either Prospector or ProFound, and 37 proteins were successfully identified. In the present study, embryo and liver weights showed a trend toward enhanced growth during embryonic development. Of the 37 identified differential proteins, phosphoenolpyruvate carboxykinase (PEPCK), apolipoprotein A-I (Apo A-I), fatty acid-binding protein (L-FABP) and 3-hydroxy-3-methylglutaryl-Coenzyme A synthase (HMG-CoA synthase) were up-regulated in SH chickens to a greater extent than they were in AA chickens. These observations suggest that the lipid metabolic proteins and enzymes are inherent characteristics that contribute to the apparent differences in fat deposition between the two strains.

  15. Deep transcriptome-sequencing and proteome analysis of the hydrothermal vent annelid Alvinella pompejana identifies the CvP-bias as a robust measure of eukaryotic thermostability

    Directory of Open Access Journals (Sweden)

    Holder Thomas

    2013-01-01

    Full Text Available Abstract Background Alvinella pompejana is an annelid worm that inhabits deep-sea hydrothermal vent sites in the Pacific Ocean. Living at a depth of approximately 2500 meters, these worms experience extreme environmental conditions, including high temperature and pressure as well as high levels of sulfide and heavy metals. A. pompejana is one of the most thermotolerant metazoans, making this animal a subject of great interest for studies of eukaryotic thermoadaptation. Results In order to complement existing EST resources we performed deep sequencing of the A. pompejana transcriptome. We identified several thousand novel protein-coding transcripts, nearly doubling the sequence data for this annelid. We then performed an extensive survey of previously established prokaryotic thermoadaptation measures to search for global signals of thermoadaptation in A. pompejana in comparison with mesophilic eukaryotes. In an orthologous set of 457 proteins, we found that the best indicator of thermoadaptation was the difference in frequency of charged versus polar residues (CvP-bias, which was highest in A. pompejana. CvP-bias robustly distinguished prokaryotic thermophiles from prokaryotic mesophiles, as well as the thermophilic fungus Chaetomium thermophilum from mesophilic eukaryotes. Experimental values for thermophilic proteins supported higher CvP-bias as a measure of thermal stability when compared to their mesophilic orthologs. Proteome-wide mean CvP-bias also correlated with the body temperatures of homeothermic birds and mammals. Conclusions Our work extends the transcriptome resources for A. pompejana and identifies the CvP-bias as a robust and widely applicable measure of eukaryotic thermoadaptation. Reviewer This article was reviewed by Sándor Pongor, L. Aravind and Anthony M. Poole.

  16. A fractionation method to identify qauntitative changes in protein expression mediated by IGF-1 on the proteome of murine C2C12 myoblasts

    Directory of Open Access Journals (Sweden)

    Friedmann Theodore

    2009-08-01

    Full Text Available Abstract Although much is known about signal transduction downstream of insulin-like growth factor-1 (IGF-1, relatively little is known about the global changes in protein expression induced by this hormone. In this study, the acute effects of IGF-1 on the proteome of murine C2C12 cells were examined. Cells were treated with IGF-1 for up to 24 hours, lysed, and fractionated into cytosolic, nuclear, and insoluble portions. Proteins from the cytosolic fraction were further separated using a new batch ion-exchange chromatography method to reduce sample complexity, followed by two-dimensional (2D electrophoresis, and identification of selected proteins by mass spectrometry. PDQuest software was utilized to identify and catalogue temporal changes in protein expression during IGF-1 stimulation. In response to IGF-1 stimulation, expression of 23 proteins increased at least three-fold and expression of 17 proteins decreased at least three-fold compared with control un-stimulated C2C12 cells. Changes in expression of selected proteins from each group, including Rho-GDI, cofillin, RAD50, enolase, IκB kinase b (IκBKb and Hsp70 were confirmed by Western blotting. Additionally, the position of 136 'landmark' proteins whose expression levels and physicochemical properties did not change appreciably or consistently during IGF-1 treatment were mapped and identified. This characterization of large-scale changes in protein expression in response to growth factor stimulation of C2C12 cells will further help to establish a comprehensive understanding of the networks and pathways involved in the action of IGF-1.

  17. In Planta Proteomics and Proteogenomics of the Biotrophic Barley Fungal Pathogen Blumeria graminis f. sp. hordei*

    Science.gov (United States)

    Bindschedler, Laurence V.; Burgis, Timothy A.; Mills, Davinia J. S.; Ho, Jenny T. C.; Cramer, Rainer; Spanu, Pietro D.

    2009-01-01

    To further our understanding of powdery mildew biology during infection, we undertook a systematic shotgun proteomics analysis of the obligate biotroph Blumeria graminis f. sp. hordei at different stages of development in the host. Moreover we used a proteogenomics approach to feed information into the annotation of the newly sequenced genome. We analyzed and compared the proteomes from three stages of development representing different functions during the plant-dependent vegetative life cycle of this fungus. We identified 441 proteins in ungerminated spores, 775 proteins in epiphytic sporulating hyphae, and 47 proteins from haustoria inside barley leaf epidermal cells and used the data to aid annotation of the B. graminis f. sp. hordei genome. We also compared the differences in the protein complement of these key stages. Although confirming some of the previously reported findings and models derived from the analysis of transcriptome dynamics, our results also suggest that the intracellular haustoria are subject to stress possibly as a result of the plant defense strategy, including the production of reactive oxygen species. In addition, a number of small haustorial proteins with a predicted N-terminal signal peptide for secretion were identified in infected tissues: these represent candidate effector proteins that may play a role in controlling host metabolism and immunity. PMID:19602707

  18. In planta proteomics and proteogenomics of the biotrophic barley fungal pathogen Blumeria graminis f. sp. hordei.

    Science.gov (United States)

    Bindschedler, Laurence V; Burgis, Timothy A; Mills, Davinia J S; Ho, Jenny T C; Cramer, Rainer; Spanu, Pietro D

    2009-10-01

    To further our understanding of powdery mildew biology during infection, we undertook a systematic shotgun proteomics analysis of the obligate biotroph Blumeria graminis f. sp. hordei at different stages of development in the host. Moreover we used a proteogenomics approach to feed information into the annotation of the newly sequenced genome. We analyzed and compared the proteomes from three stages of development representing different functions during the plant-dependent vegetative life cycle of this fungus. We identified 441 proteins in ungerminated spores, 775 proteins in epiphytic sporulating hyphae, and 47 proteins from haustoria inside barley leaf epidermal cells and used the data to aid annotation of the B. graminis f. sp. hordei genome. We also compared the differences in the protein complement of these key stages. Although confirming some of the previously reported findings and models derived from the analysis of transcriptome dynamics, our results also suggest that the intracellular haustoria are subject to stress possibly as a result of the plant defense strategy, including the production of reactive oxygen species. In addition, a number of small haustorial proteins with a predicted N-terminal signal peptide for secretion were identified in infected tissues: these represent candidate effector proteins that may play a role in controlling host metabolism and immunity.

  19. Proteome data to explore the impact of pBClin15 on Bacillus cereus ATCC 14579

    Directory of Open Access Journals (Sweden)

    Jean-Paul Madeira

    2016-09-01

    Full Text Available This data article reports changes in the cellular and exoproteome of B. cereus cured from pBClin15.Time-course changes of proteins were assessed by high-throughput nanoLC-MS/MS. We report all the peptides and proteins identified and quantified in B. cereus with and without pBClin15. Proteins were classified into functional groups using the information available in the KEGG classification and we reported their abundance in term of normalized spectral abundance factor. The repertoire of experimentally confirmed proteins of B. cereus presented here is the largest ever reported, and provides new insights into the interplay between pBClin15 and its host B. cereus ATCC 14579. The data reported here is related to a published shotgun proteomics analysis regarding the role of pBClin15, “Deciphering the interactions between the Bacillus cereus linear plasmid, pBClin15, and its host by high-throughput comparative proteomics” Madeira et al. [1]. All the associated mass spectrometry data have been deposited in the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org via the PRIDE partner repository (http://www.ebi.ac.uk/pride/, with the dataset identifier PRIDE: PXD001568, PRIDE: PXD002788 and PRIDE: PXD002789.

  20. Automated and Accurate Estimation of Gene Family Abundance from Shotgun Metagenomes.

    Directory of Open Access Journals (Sweden)

    Stephen Nayfach

    2015-11-01

    Full Text Available Shotgun metagenomic DNA sequencing is a widely applicable tool for characterizing the functions that are encoded by microbial communities. Several bioinformatic tools can be used to functionally annotate metagenomes, allowing researchers to draw inferences about the functional potential of the community and to identify putative functional biomarkers. However, little is known about how decisions made during annotation affect the reliability of the results. Here, we use statistical simulations to rigorously assess how to optimize annotation accuracy and speed, given parameters of the input data like read length and library size. We identify best practices in metagenome annotation and use them to guide the development of the Shotgun Metagenome Annotation Pipeline (ShotMAP. ShotMAP is an analytically flexible, end-to-end annotation pipeline that can be implemented either on a local computer or a cloud compute cluster. We use ShotMAP to assess how different annotation databases impact the interpretation of how marine metagenome and metatranscriptome functional capacity changes across seasons. We also apply ShotMAP to data obtained from a clinical microbiome investigation of inflammatory bowel disease. This analysis finds that gut microbiota collected from Crohn's disease patients are functionally distinct from gut microbiota collected from either ulcerative colitis patients or healthy controls, with differential abundance of metabolic pathways related to host-microbiome interactions that may serve as putative biomarkers of disease.

  1. WGSQuikr: fast whole-genome shotgun metagenomic classification.

    Directory of Open Access Journals (Sweden)

    David Koslicki

    Full Text Available With the decrease in cost and increase in output of whole-genome shotgun technologies, many metagenomic studies are utilizing this approach in lieu of the more traditional 16S rRNA amplicon technique. Due to the large number of relatively short reads output from whole-genome shotgun technologies, there is a need for fast and accurate short-read OTU classifiers. While there are relatively fast and accurate algorithms available, such as MetaPhlAn, MetaPhyler, PhyloPythiaS, and PhymmBL, these algorithms still classify samples in a read-by-read fashion and so execution times can range from hours to days on large datasets. We introduce WGSQuikr, a reconstruction method which can compute a vector of taxonomic assignments and their proportions in the sample with remarkable speed and accuracy. We demonstrate on simulated data that WGSQuikr is typically more accurate and up to an order of magnitude faster than the aforementioned classification algorithms. We also verify the utility of WGSQuikr on real biological data in the form of a mock community. WGSQuikr is a Whole-Genome Shotgun QUadratic, Iterative, K-mer based Reconstruction method which extends the previously introduced 16S rRNA-based algorithm Quikr. A MATLAB implementation of WGSQuikr is available at: http://sourceforge.net/projects/wgsquikr.

  2. Proteomic screening identifies calreticulin as a miR-27a direct target repressing MHC class I cell surface exposure in colorectal cancer.

    Science.gov (United States)

    Colangelo, T; Polcaro, G; Ziccardi, P; Pucci, B; Muccillo, L; Galgani, M; Fucci, A; Milone, M R; Budillon, A; Santopaolo, M; Votino, C; Pancione, M; Piepoli, A; Mazzoccoli, G; Binaschi, M; Bigioni, M; Maggi, C A; Fassan, M; Laudanna, C; Matarese, G; Sabatino, L; Colantuoni, V

    2016-02-25

    Impairment of the immune response and aberrant expression of microRNAs are emerging hallmarks of tumour initiation/progression, in addition to driver gene mutations and epigenetic modifications. We performed a preliminary survey of independent adenoma and colorectal cancer (CRC) miRnoma data sets and, among the most dysregulated miRNAs, we selected miR-27a and disclosed that it is already upregulated in adenoma and further increases during the evolution to adenocarcinoma. To identify novel genes and pathways regulated by this miRNA, we employed a differential 2DE-DIGE proteome analysis. We showed that miR-27a modulates a group of proteins involved in MHC class I cell surface exposure and, mechanistically, demonstrated that calreticulin is a miR-27a direct target responsible for most downstream effects in epistasis experiments. In vitro miR-27a affected cell proliferation and angiogenesis; mouse xenografts of human CRC cell lines expressing different miR-27a levels confirmed the protein variations and recapitulated the cell growth and apoptosis effects. In vivo miR-27a inversely correlated with MHC class I molecules and calreticulin expression, CD8(+) T cells infiltration and cytotoxic activity (LAMP-1 exposure and perforin release). Tumours with high miR-27a, low calreticulin and CD8(+) T cells' infiltration were associated with distant metastasis and poor prognosis. Our data demonstrate that miR-27a acts as an oncomiRNA, represses MHC class I expression through calreticulin downregulation and affects tumour progression. These results may pave the way for better diagnosis, patient stratification and novel therapeutic approaches.

  3. Proteomic analysis identifies MMP-9, DJ-1 and A1BG as overexpressed proteins in pancreatic juice from pancreatic ductal adenocarcinoma patients

    International Nuclear Information System (INIS)

    Tian, Mei; Cui, Ya-Zhou; Song, Guan-Hua; Zong, Mei-Juan; Zhou, Xiao-Yan; Chen, Yu; Han, Jin-Xiang

    2008-01-01

    There is an urgent need to discover more sensitive and specific biomarkers to improve early diagnosis and screen high-risk patients for pancreatic ductal adenocarcinoma (PDAC). Pancreatic juice is an ideal specimen for PDAC biomarkers discovery, because it is an exceptionally rich source of proteins released from pancreatic cancer cells. To identify novel potential biomarkers for PDAC from pancreatic juice, we carried out difference gel electrophoresis (DIGE) and tandem mass spectrometry (MS/MS) to compare the pancreatic juice profiling from 9 PDAC patients and 9 cancer-free controls. Of the identified differently expressed proteins, three up-regulated proteins in pancreatic cancer juice, matrix metalloproteinase-9 (MMP-9), oncogene DJ1 (DJ-1) and alpha-1B-glycoprotein precursor (A1BG), were selected for validation by Western blot and immunohistochemistry. Serum MMP-9 levels were also detected by enzyme linked immunosorbent assay (ELISA). Fourteen proteins were up-regulated and ten proteins were down-regulated in cancerous pancreatic juice compared with cancer-free controls. Increased MMP-9, DJ-1 and A1BG expression in cancerous pancreatic juice were confirmed by Western blot. Immunohistochemical study showed MMP-9, DJ-1 and A1BG positively expressed in 82.4%, 72.5% and 86.3% of pancreatic cancer tissues, significantly higher than that in normal pancreas tissues. Up-regulation of DJ-1 was associated with better differentiation (p < 0.05). Serum MMP-9 levels were significantly higher in PDAC (255.14 ng/ml) than those in chronic pancreatitis (210.22 ng/ml, p = 0.009) and healthy control (203.77 ng/ml, p = 0.027). The present proteome analysis revealed MMP-9, DJ-1 and A1BG proteins as elevated in pancreatic juice from PDAC, which suggest their further utility in PDAC diagnosis and screening. This is the first time A1BG was identified as a potential biomarker in pancreatic cancer associated samples. The measurement of serum MMP-9 might be clinically useful for PDAC

  4. In-Depth Analysis of Exoproteomes from Marine Bacteria by Shotgun Liquid Chromatography-Tandem Mass Spectrometry: the Ruegeria pomeroyi DSS-3 Case-Study

    Directory of Open Access Journals (Sweden)

    Jean Armengaud

    2010-07-01

    Full Text Available Microorganisms secrete into their extracellular environment numerous compounds that are required for their survival. Many of these compounds could be of great interest for biotechnology applications and their genes used in synthetic biology design. The secreted proteins and the components of the translocation systems themselves can be scrutinized in-depth by the most recent proteomic tools. While the secretomes of pathogens are well-documented, those of non-pathogens remain largely to be established. Here, we present the analysis of the exoproteome from the marine bacterium Ruegeria pomeroyi DSS-3 grown in standard laboratory conditions. We used a shotgun approach consisting of trypsin digestion of the exoproteome, and identification of the resulting peptides by liquid chromatography coupled to tandem mass spectrometry. Three different proteins that have domains homologous to those observed in RTX toxins were uncovered and were semi-quantified as the most abundantly secreted proteins. One of these proteins clearly stands out from the catalogue, representing over half of the total exoproteome. We also listed many soluble proteins related to ABC and TRAP transporters implied in the uptake of nutrients. The Ruegeria pomeroyi DSS-3 case-study illustrates the power of the shotgun nano-LC-MS/MS strategy to decipher the exoproteome from marine bacteria and to contribute to environmental proteomics.

  5. In-depth characterisation of the lamb meat proteome from longissimus lumborum

    Directory of Open Access Journals (Sweden)

    Tzer-Yang Yu

    2015-03-01

    Full Text Available Lamb is one of the major red meats consumed globally, both as a key component in the diet of some countries, and as a niche meat product in others. Despite this relatively wide consumption, an in-depth description of the global protein composition of lamb has not been reported. In this study, we investigated the proteome of the 48 h post-mortem lamb longissimus lumborum through separation of the samples into sarcoplasmic, myofibrillar and insoluble fractions, followed by an in-depth shotgun proteomic evaluation and bioinformatic analysis. As a result, 388 ovine-specific proteins were identified and characterised. The 207 proteins found in the sarcoplasmic fraction were dominated by glycolytic enzymes and mitochondrial proteins. This fraction also contained several sarcomeric proteins, e.g., myosin light chains and titin. Some of them might be the degradation products from the post-mortem proteolysis. Actin, myosin and tropomyosin were abundant in the myofibrillar fraction while nebulin and titin were also present. Collagen type I, III and IV were found in the insoluble fraction but there were also sequences from myosin and titin. The present study also confirms the existence of at least 300 predicted protein sequences obtained from the latest issue of the sheep genome (version 3 with high confidence.

  6. A high-throughput sample preparation method for cellular proteomics using 96-well filter plates.

    Science.gov (United States)

    Switzar, Linda; van Angeren, Jordy; Pinkse, Martijn; Kool, Jeroen; Niessen, Wilfried M A

    2013-10-01

    A high-throughput sample preparation protocol based on the use of 96-well molecular weight cutoff (MWCO) filter plates was developed for shotgun proteomics of cell lysates. All sample preparation steps, including cell lysis, buffer exchange, protein denaturation, reduction, alkylation and proteolytic digestion are performed in a 96-well plate format, making the platform extremely well suited for processing large numbers of samples and directly compatible with functional assays for cellular proteomics. In addition, the usage of a single plate for all sample preparation steps following cell lysis reduces potential samples losses and allows for automation. The MWCO filter also enables sample concentration, thereby increasing the overall sensitivity, and implementation of washing steps involving organic solvents, for example, to remove cell membranes constituents. The optimized protocol allowed for higher throughput with improved sensitivity in terms of the number of identified cellular proteins when compared to an established protocol employing gel-filtration columns. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Proteome Alterations of Hippocampal Cells Caused by Clostridium botulinum C3 Exoenzyme.

    Science.gov (United States)

    Schröder, Anke; Rohrbeck, Astrid; Just, Ingo; Pich, Andreas

    2015-11-06

    C3bot from Clostridium botulinum is a bacterial mono-ADP-ribosylating enzyme, which transfers an ADP-ribose moiety onto the small GTPases Rho A/B/C. C3bot and the catalytic inactive mutant (C3E174Q) cause axonal and dendritic growth as well as branching in primary hippocampal neurons. In cultured murine hippocampal HT22 cells, protein abundances were analyzed in response to C3bot or C3E174Q treatment using a shotgun proteomics approach. Proteome analyses were performed at four time points over 6 days. More than 4000 protein groups were identified at each time point and quantified in triplicate analyses. On day one, 46 proteins showed an altered abundance, and after 6 days, more than 700 proteins responded to C3bot with an up- or down-regulation. In contrast, C3E174Q had no provable impact on protein abundance. Protein quantification was verified for several proteins by multiple reaction monitoring. Data analysis of altered proteins revealed different cellular processes that were affected by C3bot. They are particularly involved in mitochondrial and lysosomal processes, adhesion, carbohydrate and glucose metabolism, signal transduction, and nuclear proteins of translation and ribosome biogenesis. The results of this study gain novel insights into the function of C3bot in hippocampal cells.

  8. High pH reversed-phase chromatography as a superior fractionation scheme compared to off-gel isoelectric focusing for complex proteome analysis.

    Science.gov (United States)

    Stein, Derek R; Hu, Xiaojie; McCorrister, Stuart J; Westmacott, Garrett R; Plummer, Francis A; Ball, Terry B; Carpenter, Michael S

    2013-10-01

    MS/MS is the technology of choice for analyzing complex protein mixtures. However, due to the intrinsic complexity and dynamic range present in higher eukaryotic proteomes, prefractionation is an important step to maximize the number of proteins identified. Off-gel IEF (OG-IEF) and high pH RP (Hp-RP) column chromatography have both been successfully utilized as a first-dimension peptide separation technique in shotgun proteomic experiments. Here, a direct comparison of the two methodologies was performed on ex vivo peripheral blood mononuclear cell lysate. In 12-fraction replicate analysis, Hp-RP resulted in more peptides and proteins identified than OG-IEF fractionation. Distributions of peptide pIs and hydropathy did not reveal any appreciable bias in either technique. Resolution, defined here as the ability to limit a specific peptide to one particular fraction, was significantly better for Hp-RP. This leads to a more uniform distribution of total and unique peptides for Hp-RP across all fractions collected. These results suggest that fractionation by Hp-RP over OG-IEF is the better choice for typical complex proteome analysis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Application of iTRAQ-Based Quantitative Proteomics Approach to Identify Deregulated Proteins Associated with Liver Toxicity Induced by Polygonum Multiflorum in Rats.

    Science.gov (United States)

    Lin, Longfei; Li, Hui; Lin, Hongmei; Zhang, Miao; Qu, Changhai; Yan, Lei; Yin, Xingbin; Ni, Jian

    2017-01-01

    Clinical reports on adverse reactions that result from Polygonum multiflorum (PM) and its preparations, especially regarding liver injury, have recently received widespread attention. This study aimed to investigate the mechanism of hepatotoxicity induced by different PM extracts through iTRAQ quantitative proteomics. The different PM extracts were orally administrated for 90 days to rats, and the hepatotoxicity effect was evaluated through measurement of biochemical indexes, oxidative damage indexes and hematoxylin-eosin (HE) staining. Then, the hepatotoxicity mechanism was investigated by iTRAQ quantitative proteomics. The results of biochemical and histopathological analyses showed that liver injury occurred in all groups of rats given by various PM extracts, which proved all of the PM extracts could induce hepatotoxicity. The hepatotoxicity mechanism may differ between the total extract group and the other groups through the results of biochemical indicators. The iTRAQ proteomics study showed that hepatotoxicity resulting from PM was mainly related to the abnormal activity of mitochondrion function-related oxidative phosphorylation pathways. This iTRAQ proteomics study revealed that the hepatotoxicity induced by PM is primarily related to the oxidative phosphorylation pathways. NADH dehydrogenase family proteins and Slc16a2 could be potential biomarkers of hepatotoxicity resulting from PM. © 2017 The Author(s). Published by S. Karger AG, Basel.

  10. Application of iTRAQ-Based Quantitative Proteomics Approach to Identify Deregulated Proteins Associated with Liver Toxicity Induced by Polygonum Multiflorum in Rats

    Directory of Open Access Journals (Sweden)

    Longfei Lin

    2017-10-01

    Full Text Available Background/Aims: Clinical reports on adverse reactions that result from Polygonum multiflorum (PM and its preparations, especially regarding liver injury, have recently received widespread attention. This study aimed to investigate the mechanism of hepatotoxicity induced by different PM extracts through iTRAQ quantitative proteomics. Methods: The different PM extracts were orally administrated for 90 days to rats, and the hepatotoxicity effect was evaluated through measurement of biochemical indexes, oxidative damage indexes and hematoxylin-eosin (HE staining. Then, the hepatotoxicity mechanism was investigated by iTRAQ quantitative proteomics. Results: The results of biochemical and histopathological analyses showed that liver injury occurred in all groups of rats given by various PM extracts, which proved all of the PM extracts could induce hepatotoxicity. The hepatotoxicity mechanism may differ between the total extract group and the other groups through the results of biochemical indicators. The iTRAQ proteomics study showed that hepatotoxicity resulting from PM was mainly related to the abnormal activity of mitochondrion function-related oxidative phosphorylation pathways. Conclusion: This iTRAQ proteomics study revealed that the hepatotoxicity induced by PM is primarily related to the oxidative phosphorylation pathways. NADH dehydrogenase family proteins and Slc16a2 could be potential biomarkers of hepatotoxicity resulting from PM.

  11. Ultrasonic-based membrane aided sample preparation of urine proteomes.

    Science.gov (United States)

    Jesus, Jemmyson Romário; Santos, Hugo M; López-Fernández, H; Lodeiro, Carlos; Arruda, Marco Aurélio Zezzi; Capelo, J L

    2018-02-01

    A new ultrafast ultrasonic-based method for shotgun proteomics as well as label-free protein quantification in urine samples is developed. The method first separates the urine proteins using nitrocellulose-based membranes and then proteins are in-membrane digested using trypsin. The enzymatic digestion process is accelerated from overnight to four minutes using a sonoreactor ultrasonic device. Overall, the sample treatment pipeline comprising protein separation, digestion and identification is done in just 3h. The process is assessed using urine of healthy volunteers. The method shows that male can be differentiated from female using the protein content of urine in a fast, easy and straightforward way. 232 and 226 proteins are identified in urine of male and female, respectively. From this, 162 are common to both genders, whilst 70 are unique to male and 64 to female. From the 162 common proteins, 13 are present at levels statistically different (p minimalism concept as outlined by Halls, as each stage of this analysis is evaluated to minimize the time, cost, sample requirement, reagent consumption, energy requirements and production of waste products. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Clinical proteomics: Current status, challenges, and future perspectives

    Directory of Open Access Journals (Sweden)

    Shyh-Horng Chiou

    2011-01-01

    Full Text Available This account will give an overview and evaluation of the current advances in mass spectrometry (MS-based proteomics platforms and technology. A general review of some background information concerning the application of these methods in the characterization of molecular sizes and related protein expression profiles associated with different types of cells under varied experimental conditions will be presented. It is intended to provide a concise and succinct overview to those clinical researchers first exposed to this foremost powerful methodology in modern life sciences of postgenomic era. Proteomic characterization using highly sophisticated and expensive instrumentation of MS has been used to characterize biological samples of complex protein mixtures with vastly different protein structure and composition. These systems are then used to highlight the versatility and potential of the MS-based proteomic strategies for facilitating protein expression analysis of various disease-related organisms or tissues of interest. Major MS-based strategies reviewed herein include (1 matrix-assisted laser desorption ionization-MS and electron-spray ionization proteomics; (2 one-dimensional or two-dimensional gel-based proteomics; (3 gel-free shotgun proteomics in conjunction with liquid chromatography/tandem MS; (4 Multiple reaction monitoring coupled tandem MS quantitative proteomics and; (5 Phosphoproteomics based on immobilized metal affinity chromatography and liquid chromatography-MS/MS.

  13. Proteome-wide analysis and diel proteomic profiling of the cyanobacterium Arthrospira platensis PCC 8005.

    Directory of Open Access Journals (Sweden)

    Sabine Matallana-Surget

    Full Text Available The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation.

  14. [Application of online two-dimensional separation system using monolithic columns for proteome analysis of human cartilage].

    Science.gov (United States)

    Xie, Shajie; Wang, Fangjun; Yan, Dan; Zhou, Guangdong; Ye, Mingliang; Zou, Hanfa

    2010-02-01

    In Shotgun proteome analysis, where nano-flow is adopted to increase the sensitivity as well as extremely complicated samples such as proteolytic digest are inevitably confronted, monolithic capillary columns are widely used to improve the liquid chromatography separation performance. It is known that cartilage contains extensive amounts of extracellular matrix (ECM), in which collagens and aggrecans being the most abundant macromolecules. It is obvious that the high content of ECM components causes a challenge in the comprehensive proteome analysis of cartilage. In this study, a 7 cm x 150 microm i. d. phosphate strong cation exchange (SCX) monolithic capillary column was coupled with an 85 cm x 75 microm i. d. C12 reversed-phase monolithic capillary column for online two-dimensional separation of 20 microg tryptic digest of proteins extracted from human cartilage. After 14 salt steps fractionation and following gradient separation coupled with tandem mass spectrometry detection, finally 7 434 unique peptides, corresponding to 1 901 distinct proteins were positively identified. Then, the identified proteins were analyzed by Gene Ontology (GO), and it was found that most of the identified proteins were come from articular chondrocytes with low abundance, which is important for the researches of articular diseases.

  15. Clinical proteomics

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Frederiksen, Hanne; Johannsen, Trine Holm

    2018-01-01

    )-platforms already implemented in many clinical laboratories for routine quantitation of small molecules (i.e. uHPLC coupled to triple-quadrupole MS). Progress in targeted proteomics of circulating insulin-like growth factor 1 (IGF-I) have provided valuable insights about tryptic peptides, transitions, internal......Clinical proteomics aims to deliver cost-effective multiplexing of potentially hundreds of diagnostic proteins, including distinct protein isoforms. The analytical strategy known as targeted proteomics is particularly promising because it is compatible with robust mass spectrometry (MS...... standards and calibrants. The present challenge is to examine if targeted proteomics of IGF-I can truly measure up to the routine performance that must be expected from a clinical testing platform....

  16. Analysis of secretome of breast cancer cell line with an optimized semi-shotgun method

    International Nuclear Information System (INIS)

    Tang Xiaorong; Yao Ling; Chen Keying; Hu Xiaofang; Xu Lisa; Fan Chunhai

    2009-01-01

    Secretome, the totality of secreted proteins, is viewed as a promising pool of candidate cancer biomarkers. Simple and reliable methods for identifying secreted proteins are highly desired. We used an optimized semi-shotgun liquid chromatography followed by tandem mass spectrometry (LC-MS/MS) method to analyze the secretome of breast cancer cell line MDA-MB-231. A total of 464 proteins were identified. About 63% of the proteins were classified as secreted proteins, including many promising breast cancer biomarkers, which were thought to be correlated with tumorigenesis, tumor development and metastasis. These results suggest that the optimized method may be a powerful strategy for cell line secretome profiling, and can be used to find potential cancer biomarkers with great clinical significance. (authors)

  17. Advances of Proteomic Sciences in Dentistry.

    Science.gov (United States)

    Khurshid, Zohaib; Zohaib, Sana; Najeeb, Shariq; Zafar, Muhammad Sohail; Rehman, Rabia; Rehman, Ihtesham Ur

    2016-05-13

    Applications of proteomics tools revolutionized various biomedical disciplines such as genetics, molecular biology, medicine, and dentistry. The aim of this review is to highlight the major milestones in proteomics in dentistry during the last fifteen years. Human oral cavity contains hard and soft tissues and various biofluids including saliva and crevicular fluid. Proteomics has brought revolution in dentistry by helping in the early diagnosis of various diseases identified by the detection of numerous biomarkers present in the oral fluids. This paper covers the role of proteomics tools for the analysis of oral tissues. In addition, dental materials proteomics and their future directions are discussed.

  18. Putrescine induces somatic embryo development and proteomic changes in embryogenic callus of sugarcane.

    Science.gov (United States)

    Reis, Ricardo Souza; Vale, Ellen de Moura; Heringer, Angelo Schuabb; Santa-Catarina, Claudete; Silveira, Vanildo

    2016-01-01

    Somatic embryogenesis, an important biotechnological technique, has great potential for application in sugarcane breeding and micropropagation. Polyamines have been associated with the regulation of several physiological processes, including the acquisition of embryogenic competence and somatic embryogenesis. In this study, we used a proteomic approach to evaluate the effects of exogenous polyamine on sugarcane somatic embryo development to better understand this process. Embryogenic cultures were treated with different concentrations of putrescine, spermidine, and spermine. Proteomic analyses combined the shotgun method and the nanoESI-HDMS(E) technology. Among polyamines, 500 μM putrescine gave rise to the highest number of somatic embryos; however, no differences in the amount of fresh matter were observed between polyamines and control. Differences in protein abundance profiles resulting from the effect of 500 μM putrescine on sugarcane somatic embryo maturation were observed. Proteomic analyses of putrescine and control treatment showed differences in the abundances of proteins related to somatic embryogenesis, such as arabinogalactan proteins, peroxidases, heat shock proteins, glutathione s-transferases, late embryogenesis abundant proteins, and 14-3-3 proteins. These results show that putrescine and the identified proteins play important roles in protecting the cells against an in vitro stress environment, contributing to the formation of somatic embryos during the maturation treatment. Despite all studies with somatic embryogenesis, the molecular mechanisms controlling the process have not been completely understood. In this study, we highlighted the effects of the polyamine putrescine on somatic embryogenesis of sugarcane and the differentially abundant proteins related to somatic embryo development. We identified six groups of important stress related proteins that are involved in the adaptation of cells to the stress environment of in vitro culture and

  19. Shotgun lipidomic analysis of chemically sulfated sterols compromises analytical sensitivity

    DEFF Research Database (Denmark)

    Casanovas, Albert; Hannibal-Bach, Hans Kristian; Jensen, Ole Nørregaard

    2014-01-01

    Shotgun lipidomics affords comprehensive and quantitative analysis of lipid species in cells and tissues at high-throughput [1 5]. The methodology is based on direct infusion of lipid extracts by electrospray ionization (ESI) combined with tandem mass spectrometry (MS/MS) and/or high resolution F...... low ionization efficiency in ESI [7]. For this reason, chemical derivatization procedures including acetylation [8] or sulfation [9] are commonly implemented to facilitate ionization, detection and quantification of sterols for global lipidome analysis [1-3, 10]....

  20. Challenges in translating plasma proteomics from bench to bedside: update from the NHLBI Clinical Proteomics Programs

    OpenAIRE

    Gerszten, Robert E.; Accurso, Frank; Bernard, Gordon R.; Caprioli, Richard M.; Klee, Eric W.; Klee, George G.; Kullo, Iftikhar; Laguna, Theresa A.; Roth, Frederick P.; Sabatine, Marc; Srinivas, Pothur; Wang, Thomas J.; Ware, Lorraine B.

    2008-01-01

    The emerging scientific field of proteomics encompasses the identification, characterization, and quantification of the protein content or proteome of whole cells, tissues, or body fluids. The potential for proteomic technologies to identify and quantify novel proteins in the plasma that can function as biomarkers of the presence or severity of clinical disease states holds great promise for clinical use. However, there are many challenges in translating plasma proteomics from bench to bedsid...

  1. Isobaric Tags for Relative and Absolute Quantification (iTRAQ)-Based Untargeted Quantitative Proteomic Approach To Identify Change of the Plasma Proteins by Salbutamol Abuse in Beef Cattle.

    Science.gov (United States)

    Zhang, Kai; Tang, Chaohua; Liang, Xiaowei; Zhao, Qingyu; Zhang, Junmin

    2018-01-10

    Salbutamol, a selective β 2 -agonist, endangers the safety of animal products as a result of illegal use in food animals. In this study, an iTRAQ-based untargeted quantitative proteomic approach was applied to screen potential protein biomarkers in plasma of cattle before and after treatment with salbutamol for 21 days. A total of 62 plasma proteins were significantly affected by salbutamol treatment, which can be used as potential biomarkers to screen for the illegal use of salbutamol in beef cattle. Enzyme-linked immunosorbent assay measurements of five selected proteins demonstrated the reliability of iTRAQ-based proteomics in screening of candidate biomarkers among the plasma proteins. The plasma samples collected before and after salbutamol treatment were well-separated by principal component analysis (PCA) using the differentially expressed proteins. These results suggested that an iTRAQ-based untargeted quantitative proteomic strategy combined with PCA pattern recognition methods can discriminate differences in plasma protein profiles collected before and after salbutamol treatment.

  2. Uncovering Trophic Interactions in Arthropod Predators through DNA Shotgun-Sequencing of Gut Contents.

    Directory of Open Access Journals (Sweden)

    Débora P Paula

    Full Text Available Characterizing trophic networks is fundamental to many questions in ecology, but this typically requires painstaking efforts, especially to identify the diet of small generalist predators. Several attempts have been devoted to develop suitable molecular tools to determine predatory trophic interactions through gut content analysis, and the challenge has been to achieve simultaneously high taxonomic breadth and resolution. General and practical methods are still needed, preferably independent of PCR amplification of barcodes, to recover a broader range of interactions. Here we applied shotgun-sequencing of the DNA from arthropod predator gut contents, extracted from four common coccinellid and dermapteran predators co-occurring in an agroecosystem in Brazil. By matching unassembled reads against six DNA reference databases obtained from public databases and newly assembled mitogenomes, and filtering for high overlap length and identity, we identified prey and other foreign DNA in the predator guts. Good taxonomic breadth and resolution was achieved (93% of prey identified to species or genus, but with low recovery of matching reads. Two to nine trophic interactions were found for these predators, some of which were only inferred by the presence of parasitoids and components of the microbiome known to be associated with aphid prey. Intraguild predation was also found, including among closely related ladybird species. Uncertainty arises from the lack of comprehensive reference databases and reliance on low numbers of matching reads accentuating the risk of false positives. We discuss caveats and some future prospects that could improve the use of direct DNA shotgun-sequencing to characterize arthropod trophic networks.

  3. Improved Understanding of Microbial Iron and Sulfate Reduction Through a Combination of Bottom-up and Top-down Functional Proteomics Assays

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Ruth [Cornell Univ., Ithaca, NY (United States)

    2016-02-28

    Our overall goal was to improve the understanding of microbial iron and sulfate reduction by evaluating a diverse iron and sulfate reducing organisms utilizing a multi-omics approach combining “top-down” and “bottom-up” omics methodologies. We initiated one of the first combined comparative genomics, shotgun proteomics, RTqPCR, and heterologous expression studies in pursuit of our project objectives. Within the first year of this project, we created a new bioinformatics tool for ortholog identification (“SPOCS”). SPOCS is described in our publication, Curtis et al., 2013. Using this tool we were able to identify conserved orthologous groups across diverse iron and sulfate reducing microorganisms from Firmicutes, gamma-proteobacteria and delta-proteobacteria. For six iron and sulfate reducers we also performed shotgun proteomics (“bottom-up” proteomics including accurate mass and time (AMT) tag and iTRAQ approaches). Cultures include Gram (-) and Gram (+) microbes. Gram (-) were: Geobacter sulfureducens (grown on iron citrate and fumarate), Geobacter bemidjiensis (grown on iron citrate and fumarate), Shewanella oneidiensis (grown on iron citrate and fumarate) and Anaeromyxobacter dehalogenans (grown on iron citrate and fumarate). Although all cultures grew on insoluble iron, the iron precipitates interfered with protein extraction and analysis; which remains a major challenge for researchers in disparate study systems. Among the Gram (-) organisms studied, Anaeromyxobacter dehalogenans remains the most poorly characterized. Yet, it is arguably the most versatile organisms we studied. In this work we have used comparative proteomics to hypothesize which two of the dozens of predicted c-type cytochromes within Anaeromyxobacter dehalogenans may be directly involved in soluble iron reduction. Unfortunately, heterologous expression of these Anaeromyxobacter dehalogenans ctype cytochromes led to poor protein production and/or formation of inclusion bodies

  4. Combined use of peptide ion and normalized delta scores to evaluate milk authenticity by ion-trap based proteomics coupled with error tolerant searching.

    Science.gov (United States)

    Nardiello, Donatella; Natale, Anna; Palermo, Carmen; Quinto, Maurizio; Centonze, Diego

    2017-03-01

    A fundamental issue in proteomics is the peptide identification by database searching and the assessment of the goodness of fit between experimental and theoretical data. Despite the different number of ways to measure the quality of search results, the definition of a scoring criterion is still highly desirable in ion-trap based proteomics. Indeed, in order to fully take advantage of a low resolution MS/MS dataset, it is essential to strike a balance between greater information capture and reduced number of incorrect peptide assignments. In addition, the development of user-specified rules is a crucial aspect when very similar proteins of the same family are analyzed in order to infer the origin species. In this study, a post-processing validation scheme is provided for the evaluation of proteomic data in shot-gun ion-trap proteomics, when a flexible database searching based on the error tolerant mode is adopted in combination with a low-specificity enzyme to maximize sequence coverage. To validate peptide assignments, we used standard β-casein digested with trypsin/chymotrypsin or trypsin alone and the popular search engine MASCOT to identify the relevant (known) peptide sequences. A linear combination between peptide ion score and normalized delta score (i.e. the difference between the best and the second best ion score, divided by the best score) is proposed to increase the accuracy in sequence assignments from low-resolution tandem mass spectra. Finally, the optimized post-processing database validation was successfully applied to the direct analysis of milk tryptic/chymotryptic digests of different origin, without resorting to two-dimensional electrophoresis that is usually performed for protein separation in ion-trap proteomics. The identification of species-specific amino acidic sequences among the validated peptide spectrum matches has allowed to fully discriminate between the animal species, so evaluating accurately the milk authenticity. Copyright

  5. Seasonal heat stress affects adipose tissue proteome toward enrichment of the Nrf2-mediated oxidative stress response in late-pregnant dairy cows.

    Science.gov (United States)

    Zachut, M; Kra, G; Livshitz, L; Portnick, Y; Yakoby, S; Friedlander, G; Levin, Y

    2017-03-31

    Environmental heat stress and metabolic stress during transition from late gestation to lactation are main factors limiting production in dairy cattle, and there is a complex interaction between them. Many proteins expressed in adipose tissue are involved in metabolic responses to stress. We aimed to investigate the effects of seasonal heat stress on adipose proteome in late-pregnant cows, and to identify biomarkers of heat stress. Late pregnant cows during summer heat stress (S, n=18), or during the winter season (W, n=12) were used. Subcutaneous adipose tissue biopsies sampled 14days prepartum from S (n=10) and W (n=8) were analyzed by intensity-based, label-free, quantitative shotgun proteomics (nano-LC-MS/MS). Plasma concentrations of malondialdehyde and cortisol were higher in S than in W cows. Proteomic analysis revealed that 107/1495 proteins were differentially abundant in S compared to W (Pcows. This work shows that seasonal heat stress increases plasma concentrations of the oxidative stress marker malondialdehyde and cortisol in transition dairy cows. As many proteins expressed in the adipose tissue are involved in metabolic responses to stress, we investigated the effects of heat stress on the proteome of adipose tissue from late-pregnant cows during summer or winter seasons. We demonstrated that heat stress enriches several stress-related pathways, such as the Nrf2-mediated oxidative stress response and the acute-phase response in adipose tissues. Thus, environmental heat stress has a unique effect on adipose tissue in late-pregnant cows, as part of the regulatory adaptations to chronic heat load during the summer season. In addition, this study presents the widest available dataset of adipose tissue proteome in dairy cows, and revealed several novel biomarkers of heat stress in adipose tissue of dairy cows, the use of which awaits further validation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A Proteomic Approach to Lipo-Chitooligosaccharide and Thuricin 17 Effects on Soybean GerminationUnstressed and Salt Stress.

    Directory of Open Access Journals (Sweden)

    Sowmyalakshmi Subramanian

    Full Text Available Salt stress is an important abiotic stressor affecting crop growth and productivity. Of the 20 percent of the terrestrial earth's surface available as agricultural land, 50 percent is estimated by the United Nations Environment Program to be salinized to the level that crops growing on it will be salt-stressed. Increased soil salinity has profound effects on seed germination and germinating seedlings as they are frequently confronted with much higher salinities than vigorously growing plants, because germination usually occurs in surface soils, the site of greatest soluble salt accumulation. The growth of soybean exposed to 40 mM NaCl is negatively affected, while an exposure to 80 mM NaCl is often lethal. When treated with the bacterial signal compounds lipo-chitooligosaccharide (LCO and thuricin 17 (Th17, soybean seeds (variety Absolute RR responded positively at salt stress of up to 150 mM NaCl. Shotgun proteomics of unstressed and 100 mM NaCl stressed seeds (48 h in combination with the LCO and Th17 revealed many known, predicted, hypothetical and unknown proteins. In all, carbon, nitrogen and energy metabolic pathways were affected under both unstressed and salt stressed conditions when treated with signals. PEP carboxylase, Rubisco oxygenase large subunit, pyruvate kinase, and isocitrate lyase were some of the noteworthy proteins enhanced by the signals, along with antioxidant glutathione-S-transferase and other stress related proteins. These findings suggest that the germinating seeds alter their proteome based on bacterial signals and on stress, the specificity of this response plays a crucial role in organ maturation and transition from one stage to another in the plants' life cycle; understanding this response is of fundamental importance in agriculture and, as a result, global food security. The mass spectrometry proteomics data have been deposited to the ProteomeXchange with identifier PXD004106.

  7. Deciphering the interactions between the Bacillus cereus linear plasmid, pBClin15, and its host by high-throughput comparative proteomics

    OpenAIRE

    Madeira, Jean-Paul; Omer, Hélène; Alpha-Bazin, Béatrice; Armengaud, Jean

    2016-01-01

    The pathogen, Bacillus cereus, is able to adapt itsmetabolismto various environmental conditions. The reference strain, Bacillus cereus ATCC 14579, harbors a linear plasmid, pBClin15, which displays a cryptic prophage behavior. Here, we studied the impact of pBClin15 on the aerobic respiratory metabolism of B. cereus by curing its host strain. We compared, by means of a high-throughput shotgun proteomic approach, both the cellular proteome and the exoproteome of B. cereus ATCC 14579 in the pr...

  8. Proteomic analysis and bioluminescent reporter gene assays to investigate effects of simulated microgravity on Caco-2 cells.

    Science.gov (United States)

    La Barbera, Giorgia; Capriotti, Anna Laura; Michelini, Elisa; Piovesana, Susy; Calabretta, Maria Maddalena; Zenezini Chiozzi, Riccardo; Roda, Aldo; Laganà, Aldo

    2017-08-01

    Microgravity is one of the most important features in spaceflight. Previous evidence from in-vitro studies has shown that significant changes occur under simulated microgravity. For this reason, human colon adenocarcinoma Caco-2 cells were selected as cell model of intestinal epithelial barrier and their response to altered gravity conditions was investigated, especially on the protein level. In this study, we combined label-free shotgun proteomics and bioluminescent reporter gene assays to identify key proteins and pathways involved in the response of Caco-2 cells under reference and microgravity conditions. A two-dimensional clinostat was modified with 3D-printed adaptors to hold conventional T25 culture flasks. The comparative proteome analysis led to identify 38 and 26 proteins differently regulated by simulated microgravity after 48 and 72 h, respectively. Substantial fractions of these proteins are involved in regulation, cellular and metabolic processes and localization. Bioluminescent reporter gene assays were carried out to investigate microgavity-induced alterations on the transcriptional regulation of key targets, such as NF-kB pathway and CYP27A1. While no significant difference was found in the basal transcription, a lower NF-kB basal activation in simulated microgravity conditions was reported, corroborating the hypothesis of reduced immunity in microgravity conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structural characterization of ether lipids from the archaeon Sulfolobus islandicus by high-resolution shotgun lipidomics

    DEFF Research Database (Denmark)

    Jensen, Sara Munk; Brandl, Martin; Treusch, Alexander H

    2015-01-01

    The molecular structures, biosynthetic pathways and physiological functions of membrane lipids produced by organisms in the domain Archaea are poorly characterized as compared with that of counterparts in Bacteria and Eukaryota. Here we report on the use of high-resolution shotgun lipidomics...... to characterize, for the first time, the lipid complement of the archaeon Sulfolobus islandicus. To support the identification of lipids in S. islandicus, we first compiled a database of ether lipid species previously ascribed to Archaea. Next, we analyzed the lipid complement of S. islandicus by high......-resolution Fourier transform mass spectrometry using an ion trap-orbitrap mass spectrometer. This analysis identified five clusters of molecular ions that matched ether lipids in the database with sub-ppm mass accuracy. To structurally characterize and validate the identities of the potential lipid species, we...

  10. Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome

    DEFF Research Database (Denmark)

    Xie, Hailiang; Guo, Ruijin; Zhong, Huanzi

    2016-01-01

    The gut microbiota has been typically viewed as an environmental factor for human health. Twins are well suited for investigating the concordance of their gut microbiomes and decomposing genetic and environmental influences. However, existing twin studies utilizing metagenomic shotgun sequencing...... have included only a few samples. Here, we sequenced fecal samples from 250 adult twins in the TwinsUK registry and constructed a comprehensive gut microbial reference gene catalog. We demonstrate heritability of many microbial taxa and functional modules in the gut microbiome, including those...... associated with diseases. Moreover, we identified 8 million SNPs in the gut microbiome and observe a high similarity in microbiome SNPs between twins that slowly decreases after decades of living apart. The results shed new light on the genetic and environmental influences on the composition and function...

  11. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood

    Science.gov (United States)

    Fan, H. Christina; Blumenfeld, Yair J.; Chitkara, Usha; Hudgins, Louanne; Quake, Stephen R.

    2008-01-01

    We directly sequenced cell-free DNA with high-throughput shotgun sequencing technology from plasma of pregnant women, obtaining, on average, 5 million sequence tags per patient sample. This enabled us to measure the over- and underrepresentation of chromosomes from an aneuploid fetus. The sequencing approach is polymorphism-independent and therefore universally applicable for the noninvasive detection of fetal aneuploidy. Using this method, we successfully identified all nine cases of trisomy 21 (Down syndrome), two cases of trisomy 18 (Edward syndrome), and one case of trisomy 13 (Patau syndrome) in a cohort of 18 normal and aneuploid pregnancies; trisomy was detected at gestational ages as early as the 14th week. Direct sequencing also allowed us to study the characteristics of cell-free plasma DNA, and we found evidence that this DNA is enriched for sequences from nucleosomes. PMID:18838674

  12. Proteomics and Deep Sequencing Comparison of Seasonally Active Venom Glands in the Platypus Reveals Novel Venom Peptides and Distinct Expression Profiles*

    Science.gov (United States)

    Wong, Emily S. W.; Morgenstern, David; Mofiz, Ehtesham; Gombert, Sara; Morris, Katrina M.; Temple-Smith, Peter; Renfree, Marilyn B.; Whittington, Camilla M.; King, Glenn F.; Warren, Wesley C.; Papenfuss, Anthony T.; Belov, Katherine

    2012-01-01

    The platypus is a venomous monotreme. Male platypuses possess a spur on their hind legs that is connected to glands in the pelvic region. They produce venom only during the breeding season, presumably to fight off conspecifics. We have taken advantage of this unique seasonal production of venom to compare the transcriptomes of in- and out-of-season venom glands, in conjunction with proteomic analysis, to identify previously undiscovered venom genes. Comparison of the venom glands revealed distinct gene expression profiles that are consistent with changes in venom gland morphology and venom volumes in and out of the breeding season. Venom proteins were identified through shot-gun sequenced venom proteomes of three animals using RNA-seq-derived transcripts for peptide-spectral matching. 5,157 genes were expressed in the venom glands, 1,821 genes were up-regulated in the in-season gland, and 10 proteins were identified in the venom. New classes of platypus-venom proteins identified included antimicrobials, amide oxidase, serpin protease inhibitor, proteins associated with the mammalian stress response pathway, cytokines, and other immune molecules. Five putative toxins have only been identified in platypus venom: growth differentiation factor 15, nucleobindin-2, CD55, a CXC-chemokine, and corticotropin-releasing factor-binding protein. These novel venom proteins have potential biomedical and therapeutic applications and provide insights into venom evolution. PMID:22899769

  13. Proteomics and deep sequencing comparison of seasonally active venom glands in the platypus reveals novel venom peptides and distinct expression profiles.

    Science.gov (United States)

    Wong, Emily S W; Morgenstern, David; Mofiz, Ehtesham; Gombert, Sara; Morris, Katrina M; Temple-Smith, Peter; Renfree, Marilyn B; Whittington, Camilla M; King, Glenn F; Warren, Wesley C; Papenfuss, Anthony T; Belov, Katherine

    2012-11-01

    The platypus is a venomous monotreme. Male platypuses possess a spur on their hind legs that is connected to glands in the pelvic region. They produce venom only during the breeding season, presumably to fight off conspecifics. We have taken advantage of this unique seasonal production of venom to compare the transcriptomes of in- and out-of-season venom glands, in conjunction with proteomic analysis, to identify previously undiscovered venom genes. Comparison of the venom glands revealed distinct gene expression profiles that are consistent with changes in venom gland morphology and venom volumes in and out of the breeding season. Venom proteins were identified through shot-gun sequenced venom proteomes of three animals using RNA-seq-derived transcripts for peptide-spectral matching. 5,157 genes were expressed in the venom glands, 1,821 genes were up-regulated in the in-season gland, and 10 proteins were identified in the venom. New classes of platypus-venom proteins identified included antimicrobials, amide oxidase, serpin protease inhibitor, proteins associated with the mammalian stress response pathway, cytokines, and other immune molecules. Five putative toxins have only been identified in platypus venom: growth differentiation factor 15, nucleobindin-2, CD55, a CXC-chemokine, and corticotropin-releasing factor-binding protein. These novel venom proteins have potential biomedical and therapeutic applications and provide insights into venom evolution.

  14. Proteomic profiling of barley spent grains guides enzymatic solubilization of the remaining proteins.

    Science.gov (United States)

    Bi, Xuezhi; Ye, Lijuan; Lau, Ally; Kok, Yee Jiun; Zheng, Lu; Ng, Daniel; Tan, Kelly; Ow, Dave; Ananta, Edwin; Vafiadi, Christina; Muller, Jeroen

    2018-03-17

    Within the brewing industry, malted barley is being increasingly replaced by raw barley supplemented with exogenous enzymes to lessen reliance on the time-consuming, high water and energy cost of malting. Regardless of the initial grain of choice, malted or raw, the resultant bulk spent grains are rich in proteins (up to 25% dry weight). Efficient enzymatic solubilization of these proteins requires knowledge of the protein composition within the spent grains. Therefore, a comprehensive proteomic profiling was performed on spent grains derived from (i) malted barley (spent grain A, SGA) and (ii) enzymatically treated raw barley (spent grain B, SGB); data are available via ProteomeXchange with identifier PXD008090. Results from complementary shotgun proteomics and 2D gel electrophoresis showed that the most abundant proteins in both spent grains were storage proteins (hordeins and embryo globulins); these were present at an average of two fold higher in spent grain B. Quantities of other major proteins were generally consistent in both spent grains A and B. Subsequent in silico protein sequence analysis of the predominant proteins facilitated knowledge-based protease selection to enhance spent grain solubilization. Among tested proteases, Alcalase 2.4 L digestion resulted in the highest remaining protein solubilization with 9.2 and 11.7% net dry weight loss in SGA and SGB respectively within 2 h. Thus, Alcalase alone can significantly reduce spent grain side stream, which makes it a possible solution to increase the value of this low-value side stream from the brewing and malt extract beverage manufacturing industry.

  15. Drafting the proteome landscape of myeloid-derived suppressor cells.

    Science.gov (United States)

    Gato, María; Blanco-Luquin, Idoia; Zudaire, Maribel; de Morentin, Xabier Martínez; Perez-Valderrama, Estela; Zabaleta, Aintzane; Kochan, Grazyna; Escors, David; Fernandez-Irigoyen, Joaquín; Santamaría, Enrique

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that are defined by their myeloid origin, immature state, and ability to potently suppress T-cell responses. They regulate immune responses and the population significantly increases in the tumor microenvironment of patients with glioma and other malignant tumors. For their study, MDSCs are usually isolated from the spleen or directly of tumors from a large number of tumor-bearing mice although promising ex vivo differentiated MDSC production systems have been recently developed. During the last years, proteomics has emerged as a powerful approach to analyze MDSCs proteomes using shotgun-based mass spectrometry (MS), providing functional information about cellular homeostasis and metabolic state at a global level. Here, we will revise recent proteome profiling studies performed in MDSCs from different origins. Moreover, we will perform an integrative functional analysis of the protein compilation derived from these large-scale proteomic studies in order to obtain a comprehensive view of MDSCs biology. Finally, we will also discuss the potential application of high-throughput proteomic approaches to study global proteome dynamics and post-translational modifications (PTMs) during the differentiation process of MDSCs that will greatly boost the identification of novel MDSC-specific therapeutic targets to apply in cancer immunotherapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Clustered Xenopus keratin genes: A genomic, transcriptomic, and proteomic analysis.

    Science.gov (United States)

    Suzuki, Ken-Ichi T; Suzuki, Miyuki; Shigeta, Mitsuki; Fortriede, Joshua D; Takahashi, Shuji; Mawaribuchi, Shuuji; Yamamoto, Takashi; Taira, Masanori; Fukui, Akimasa

    2017-06-15

    Keratin genes belong to the intermediate filament superfamily and their expression is altered following morphological and physiological changes in vertebrate epithelial cells. Keratin genes are divided into two groups, type I and II, and are clustered on vertebrate genomes, including those of Xenopus species. Various keratin genes have been identified and characterized by their unique expression patterns throughout ontogeny in Xenopus laevis; however, compilation of previously reported and newly identified keratin genes in two Xenopus species is required for our further understanding of keratin gene evolution, not only in amphibians but also in all terrestrial vertebrates. In this study, 120 putative type I and II keratin genes in total were identified based on the genome data from two Xenopus species. We revealed that most of these genes are highly clustered on two homeologous chromosomes, XLA9_10 and XLA2 in X. laevis, and XTR10 and XTR2 in X. tropicalis, which are orthologous to those of human, showing conserved synteny among tetrapods. RNA-Seq data from various embryonic stages and adult tissues highlighted the unique expression profiles of orthologous and homeologous keratin genes in developmental stage- and tissue-specific manners. Moreover, we identified dozens of epidermal keratin proteins from the whole embryo, larval skin, tail, and adult skin using shotgun proteomics. In light of our results, we discuss the radiation, diversification, and unique expression of the clustered keratin genes, which are closely related to epidermal development and terrestrial adaptation during amphibian evolution, including Xenopus speciation. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Neprosin, a Selective Prolyl Endoprotease for Bottom-up Proteomics and Histone Mapping

    Czech Academy of Sciences Publication Activity Database

    Schräder, Ch.U.; Lee, L.; Rey, M.; Sarpe, V.; Man, Petr; Sharma, S.; Zabrouskov, V.; Larsen, B.; Schrimer, D.C.

    2017-01-01

    Roč. 16, č. 6 (2017), s. 1162-1171 ISSN 1535-9476 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LQ1604 Institutional support: RVO:61388971 Keywords : EXCHANGE MASS-SPECTROMETRY * POSTTRANSLATIONAL MODIFICATIONS * SHOTGUN PROTEOMICS Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 6.540, year: 2016

  18. The Proteomic Response to Mutants of the Escherichia coli RNA Degradosome

    Science.gov (United States)

    2013-01-01

    More information on parameters of the mass spectometry experiment and a discussion of data quality is provided in Section 1 (ESI†). Computational...of >2300 proteins using mass spectrometry based shotgun proteomics in E. coli strains deficient in rhlB, eno, pnp (which displays temperature...sensitive growth), or 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report

  19. Proteomics of Maize Root Development.

    Science.gov (United States)

    Hochholdinger, Frank; Marcon, Caroline; Baldauf, Jutta A; Yu, Peng; Frey, Felix P

    2018-01-01

    Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of developmental mutants, proteomic changes during the initiation and emergence of shoot-borne, lateral and seminal roots have been examined. Furthermore, root hairs were surveyed to understand the proteomic changes during the elongation of these single cell type structures. In addition, primary roots have been used to study developmental changes of the proteome but also to investigate the proteomes of distinct tissues such as the meristematic zone, the elongation zone as well as stele and cortex of the differentiation zone. Moreover, subcellular fractions of the primary root including cell walls, plasma membranes and secreted mucilage have been analyzed. Finally, the superior vigor of hybrid seedling roots compared to their parental inbred lines was studied on the proteome level. In summary, these studies provide novel insights into the complex proteomic interactions of the elaborate maize root system during development.

  20. Proteomics of Maize Root Development

    Directory of Open Access Journals (Sweden)

    Frank Hochholdinger

    2018-03-01

    Full Text Available Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of developmental mutants, proteomic changes during the initiation and emergence of shoot-borne, lateral and seminal roots have been examined. Furthermore, root hairs were surveyed to understand the proteomic changes during the elongation of these single cell type structures. In addition, primary roots have been used to study developmental changes of the proteome but also to investigate the proteomes of distinct tissues such as the meristematic zone, the elongation zone as well as stele and cortex of the differentiation zone. Moreover, subcellular fractions of the primary root including cell walls, plasma membranes and secreted mucilage have been analyzed. Finally, the superior vigor of hybrid seedling roots compared to their parental inbred lines was studied on the proteome level. In summary, these studies provide novel insights into the complex proteomic interactions of the elaborate maize root system during development.

  1. Combined Transcriptomic and Proteomic Approach to Identify Toxicity Pathways in Early Life Stages of Japanese Medaka (Oryzias latipes) Exposed to 1,2,5,6-Tetrabromocyclooctane (TBCO).

    Science.gov (United States)

    Sun, Jianxian; Tang, Song; Peng, Hui; Saunders, David M V; Doering, Jon A; Hecker, Markus; Jones, Paul D; Giesy, John P; Wiseman, Steve

    2016-07-19

    Currently, the novel brominated flame retardant 1,2,5,6-tetrabromocyclooctane (TBCO) is considered a potential replacement for hexabromocyclododecane (HBCD). Therefore, use of TBCO could increase in the near future. To assess potential toxicological risks to aquatic organisms, embryos of Japanese medaka (Oryzias latipes) were exposed to 10, 100, or 1000 μg/L TBCO from 2 h postfertilization until 1 day post-hatch. TBCO accumulated in embryos in the order of 0.43-1.3 × 10(4)-fold, and the rate constant of accumulation was 1.7-1.8 per day. The number of days to hatch and the hatching success of embryos exposed to the medium and the greatest concentrations of TBCO were impaired. Responses of the transcriptome (RNA-seq) and proteome were characterized in embryos exposed to 100 μg/L TBCO because this was the least concentration of TBCO that caused an effect on hatching. Consistent with effects on hatching, proteins whose abundances were reduced by exposure to TBCO were enriched in embryo development and hatching pathways. Also, on the basis of the responses of transcriptome and proteome, it was predicted that TBCO might impair vision and contraction of cardiac muscle, respectively, and these effects were confirmed by targeted bioassays. This study provided a comprehensive understanding of effects of TBCO on medaka at early life stages and illustrated the power of "omics" to explain and predict phenotypic responses to chemicals.

  2. Label-free quantitative proteomic profiling identifies disruption of ubiquitin homeostasis as a key driver of Schwann cell defects in spinal muscular atrophy.

    Science.gov (United States)

    Aghamaleky Sarvestany, Arwin; Hunter, Gillian; Tavendale, Amy; Lamont, Douglas J; Llavero Hurtado, Maica; Graham, Laura C; Wishart, Thomas M; Gillingwater, Thomas H

    2014-11-07

    Low levels of survival of motor neuron (SMN) protein cause the neuromuscular disease spinal muscular atrophy (SMA), characterized by degeneration of lower motor neurons and atrophy of skeletal muscle. Recent work demonstrated that low levels of SMN also trigger pathological changes in Schwann cells, leading to abnormal axon myelination and disrupted deposition of extracellular matrix proteins in peripheral nerve. However, the molecular pathways linking SMN depletion to intrinsic defects in Schwann cells remained unclear. Label-free proteomics analysis of Schwann cells isolated from SMA mouse peripheral nerve revealed widespread changes to the Schwann cell proteome, including disruption to growth/proliferation, cell death/survival, and molecular transport pathways. Functional clustering analyses revealed significant disruption to a number of proteins contributing to ubiquitination pathways, including reduced levels of ubiquitin-like modifier activating enzyme 1 (Uba1). Pharmacological suppression of Uba1 in Schwann cells was sufficient to reproduce the defective myelination phenotype seen in SMA. These findings demonstrate an important role for SMN protein and ubiquitin-dependent pathways in maintaining Schwann cell homeostasis and provide significant additional experimental evidence supporting a key role for ubiquitin pathways and, Uba1 in particular, in driving SMA pathogenesis across a broad range of cells and tissues.

  3. Recovery of a Medieval Brucella melitensis Genome Using Shotgun Metagenomics

    Science.gov (United States)

    Kay, Gemma L.; Sergeant, Martin J.; Giuffra, Valentina; Bandiera, Pasquale; Milanese, Marco; Bramanti, Barbara

    2014-01-01

    ABSTRACT Shotgun metagenomics provides a powerful assumption-free approach to the recovery of pathogen genomes from contemporary and historical material. We sequenced the metagenome of a calcified nodule from the skeleton of a 14th-century middle-aged male excavated from the medieval Sardinian settlement of Geridu. We obtained 6.5-fold coverage of a Brucella melitensis genome. Sequence reads from this genome showed signatures typical of ancient or aged DNA. Despite the relatively low coverage, we were able to use information from single-nucleotide polymorphisms to place the medieval pathogen genome within a clade of B. melitensis strains that included the well-studied Ether strain and two other recent Italian isolates. We confirmed this placement using information from deletions and IS711 insertions. We conclude that metagenomics stands ready to document past and present infections, shedding light on the emergence, evolution, and spread of microbial pathogens. PMID:25028426

  4. Genome, Proteome and Structure of a T7-Like Bacteriophage of the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae.

    Science.gov (United States)

    Frampton, Rebekah A; Acedo, Elena Lopez; Young, Vivienne L; Chen, Danni; Tong, Brian; Taylor, Corinda; Easingwood, Richard A; Pitman, Andrew R; Kleffmann, Torsten; Bostina, Mihnea; Fineran, Peter C

    2015-06-24

    Pseudomonas syringae pv. actinidiae is an economically significant pathogen responsible for severe bacterial canker of kiwifruit (Actinidia sp.). Bacteriophages infecting this phytopathogen have potential as biocontrol agents as part of an integrated approach to the management of bacterial canker, and for use as molecular tools to study this bacterium. A variety of bacteriophages were previously isolated that infect P. syringae pv. actinidiae, and their basic properties were characterized to provide a framework for formulation of these phages as biocontrol agents. Here, we have examined in more detail φPsa17, a phage with the capacity to infect a broad range of P. syringae pv. actinidiae strains and the only member of the Podoviridae in this collection. Particle morphology was visualized using cryo-electron microscopy, the genome was sequenced, and its structural proteins were analysed using shotgun proteomics. These studies demonstrated that φPsa17 has a 40,525 bp genome, is a member of the T7likevirus genus and is closely related to the pseudomonad phages φPSA2 and gh-1. Eleven structural proteins (one scaffolding) were detected by proteomics and φPsa17 has a capsid of approximately 60 nm in diameter. No genes indicative of a lysogenic lifecycle were identified, suggesting the phage is obligately lytic. These features indicate that φPsa17 may be suitable for formulation as a biocontrol agent of P. syringae pv. actinidiae.

  5. Genome, Proteome and Structure of a T7-Like Bacteriophage of the Kiwifruit Canker Phytopathogen Pseudomonas Syringae pv. Actinidiae

    Directory of Open Access Journals (Sweden)

    Rebekah A. Frampton

    2015-06-01

    Full Text Available Pseudomonas syringae pv. actinidiae is an economically significant pathogen responsible for severe bacterial canker of kiwifruit (Actinidia sp.. Bacteriophages infecting this phytopathogen have potential as biocontrol agents as part of an integrated approach to the management of bacterial canker, and for use as molecular tools to study this bacterium. A variety of bacteriophages were previously isolated that infect P. syringae pv. actinidiae, and their basic properties were characterized to provide a framework for formulation of these phages as biocontrol agents. Here, we have examined in more detail φPsa17, a phage with the capacity to infect a broad range of P. syringae pv. actinidiae strains and the only member of the Podoviridae in this collection. Particle morphology was visualized using cryo-electron microscopy, the genome was sequenced, and its structural proteins were analysed using shotgun proteomics. These studies demonstrated that φPsa17 has a 40,525 bp genome, is a member of the T7likevirus genus and is closely related to the pseudomonad phages φPSA2 and gh-1. Eleven structural proteins (one scaffolding were detected by proteomics and φPsa17 has a capsid of approximately 60 nm in diameter. No genes indicative of a lysogenic lifecycle were identified, suggesting the phage is obligately lytic. These features indicate that φPsa17 may be suitable for formulation as a biocontrol agent of P. syringae pv. actinidiae.

  6. ReAS: Recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Ye, Jia; Li, Songgang

    2005-01-01

    We describe an algorithm, ReAS, to recover ancestral sequences for transposable elements (TEs) from the unassembled reads of a whole genome shotgun. The main assumptions are that these TEs must exist at high copy numbers across the genome and must not be so old that they are no longer recognizable...... in comparison to their ancestral sequences. Tested on the japonica rice genome, ReAS was able to reconstruct all of the high copy sequences in the Repbase repository of known TEs, and increase the effectiveness of RepeatMasker in identifying TEs from genome sequences. Udgivelsesdato: 2005-Sep...

  7. Arabidopsis peroxisome proteomics

    Directory of Open Access Journals (Sweden)

    John D. Bussell

    2013-04-01

    Full Text Available The analytical depth of investigation of the peroxisomal proteome of the model plant Arabidopsis thaliana has not yet reached that of other major cellular organelles such as chloroplasts or mitochondria. This is primarily due to the difficulties associated with isolating and obtaining purified samples of peroxisomes from Arabidopsis. So far only a handful of research groups have been successful in obtaining such fractions. To make things worse, enriched peroxisome fractions frequently suffer from significant organellar contamination, lowering confidence in localization assignment of the identified proteins. As with other cellular compartments, identification of peroxisomal proteins forms the basis for investigations of the dynamics of the peroxisomal proteome. It is therefore not surprising that, in terms of functional analyses by proteomic means, there remains a considerable gap between peroxisomes and chloroplasts or mitochondria. Alternative strategies are needed to overcome the obstacle of hard-to-obtain organellar fractions. This will help to close the knowledge gap between peroxisomes and other organelles and provide a full picture of the physiological pathways shared between organelles. In this review we briefly summarize the status quo and discuss some of the methodological alternatives to classic organelle proteomic approaches.

  8. Genomes to Proteomes

    Energy Technology Data Exchange (ETDEWEB)

    Panisko, Ellen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Grigoriev, Igor [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Daly, Don S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webb-Robertson, Bobbie-Jo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baker, Scott E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  9. Proteomics and bioinformatics analysis reveal underlying pathways of infection associated histologic chorioamnionitis in pPROM.

    Science.gov (United States)

    Tambor, V; Kacerovsky, M; Lenco, J; Bhat, G; Menon, R

    2013-02-01

    The presence of microbial invasion of the amniotic cavity (MIAC) and histological chorioamnionitis (HCA) is associated with adverse neonatal outcomes in pregnancies complicated by preterm prelabor rupture of membranes (pPROM). Therefore, there is an urgent need to identify new biomarkers revealing these conditions. The objective of this study is to identify possible biomarkers and their underlying biofunctions in pPROM pregnancies with and without MIAC and HCA. A total of 72 women with pPROM were recruited. Only women with both MIAC and HCA (n = 19) and all women without these complications (n = 19) having the same range of gestational ages at sampling were included in the study. Samples of amniotic fluid were obtained by transabdominal amniocentesis, processed and analyzed using quantitative shotgun proteomics. Ingenuity pathway analysis was used to identify molecular networks that involve altered proteins. Network interaction identified by ingenuity pathway analysis revealed immunological disease and the inflammatory response as the top functions and disease associated with pPROM in the presence of MIAC and HCA. The proteins involved in these pathways were significantly altered between the groups with and without the presence of both MIAC and HCA. Proteins involved included histones H3, H4, H2B, cathelicidin antimicrobial peptide, myeloperoxidase, neutrophil gelatinase-associated lipocalin, matrix metalloproteinase-9, peptidoglycan recognition protein-1 and neutrophil defensin 1, all of which were found to be up-regulated in the presence of MIAC and HCA. Bioinformatic analysis of proteomics data allowed us to project likely biomolecular pathology resulting in pPROM complicated by MIAC and HCA. As inflammation is not a homogeneous phenomenon, we provide evidence for oxidative-stress-associated DNA damage and biomarkers of reactive oxygen species generation as factors associated with inflammation and proteolysis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Serum Proteome Signature of Radiation Response: Upregulation of Inflammation-Related Factors and Downregulation of Apolipoproteins and Coagulation Factors in Cancer Patients Treated With Radiation Therapy—A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Widlak, Piotr, E-mail: widlak@io.gliwice.pl [Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice (Poland); Jelonek, Karol; Wojakowska, Anna; Pietrowska, Monika [Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice (Poland); Polanska, Joanna [Institute of Automatics Control, Silesian University of Technology, Gliwice (Poland); Marczak, Łukasz [Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Poznan (Poland); Miszczyk, Leszek; Składowski, Krzysztof [Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice (Poland)

    2015-08-01

    Purpose: Ionizing radiation affects the proteome of irradiated cells and tissue, yet data concerning changes induced during radiation therapy (RT) in human blood are fragmentary and inconclusive. We aimed to identify features of serum proteome and associated processes involved in response to partial body irradiation during cancer treatment. Methods and Materials: Twenty patients with head and neck squamous cell cancer (HNSCC) and 20 patients with prostate cancer received definitive intensity modulated RT. Blood samples were collected before RT, just after RT, and 1 month after the end of RT. Complete serum proteome was analyzed in individual samples, using a shotgun liquid chromatography-tandem mass spectrometry approach which allowed identification of approximately 450 proteins. Approximately 100 unique proteins were quantified in all samples after exclusion of immunoglobulins, and statistical significance of differences among consecutive samples was assessed. Processes associated with quantified proteins and their functional interactions were predicted using gene ontology tools. Results: RT-induced changes were marked in the HNSCC patient group: 22 upregulated and 33 downregulated proteins were detected in post-RT sera. Most of the changes reversed during follow-up, yet levels of some proteins remained affected 1 month after the end of RT. RT-upregulated proteins were associated with acute phase, inflammatory response, and complement activation. RT-downregulated proteins were associated with transport and metabolism of lipids (plasma apolipoproteins) and blood coagulation. RT-induced changes were much weaker in prostate cancer patients, which corresponded to differences in acute radiation toxicity observed in both groups. Nevertheless, general patterns of RT-induced sera proteome changes were similar in both of the groups of cancer patients. Conclusions: In this pilot study, we proposed to identify a molecular signature of radiation response, based on specific

  11. Proteomic studies on the effects of Lipo-chitooligosaccharide and Thuricin 17 under unstressed and salt stressed conditions in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Sowmyalakshmi Subramanian

    2016-08-01

    Full Text Available Plants, being sessile organisms, are exposed to widely varying environmental conditions throughout their life cycle. Compatible plant-microbe interactions favor plant growth and development, and help plants deal with these environmental challenges. Microorganisms produce a diverse range of elicitor molecules to establish symbiotic relationships with the plants they associate with, in a given ecological niche. Lipo-chitooligosaccharide (LCO and thuricin 17 (Th17 are two such compounds shown to positively influence plant growth of both legumes and non-legumes. Arabidopsis thaliana responded positively to treatment with the bacterial signal compounds LCO and Th17 in the presence of salt stress (up to 250 mM NaCl. Shotgun proteomics of unstressed and 250 mM NaCl stressed A. thaliana rosettes (7 days post stress in combination with the LCO and Th17 revealed many known, putative, hypothetical and unknown proteins. Overall, carbon and energy metabolic pathways were affected under both unstressed and salt stressed conditions when treated with these signals. PEP carboxylase, Rubisco-oxygenase large subunit, pyruvate kinase, and proteins of photosystem I and II were some of the noteworthy proteins enhanced by the signals, along with other stress related proteins. These findings suggest that the proteome of A. thaliana rosettes is altered by the bacterial signals tested, and more so under salt stress, thereby imparting a positive effect on plant growth under high salt stress. The roles of the identified proteins are discussed here in relation to salt stress adaptation, which, when translated to field grown crops can be a crucial component and of significant importance in agriculture and global food production. The mass spectrometry proteomics data have been deposited to the ProteomeXchange with identifier PXD004742.

  12. Genomic and proteomic identification of Late Holocene remains

    DEFF Research Database (Denmark)

    Biard, Vincent; Gol'din, Pavel; Gladilina, Elena

    2017-01-01

    the site of Chersonesus in Crimea, Ukraine. We found that ZooMS allowed for identification to the taxonomic level for 28 of our 30 samples (> 90%), identifying them as either “porpoise” or “dolphin”, and approximately half of those samples could be further identified to species level with the shotgun...

  13. Proteomic Investigation of Rhizoctonia solani AG 4 Identifies Secretome and Mycelial Proteins with roles in Plant Cell Wall Degradation and Virulence

    KAUST Repository

    Lakshman, Dilip

    2016-03-28

    Rhizoctonia solani AG 4 is a soilborne necrotrophic fungal plant pathogen that causes economically important diseases on agronomic crops worldwide. Here we used a proteomics approach to characterize both intracellular proteins and the secretome of R. solani AG 4 isolate Rs23A under several growth conditions; the secretome being highly important in pathogenesis. From over 500 total secretome and soluble intracellular protein spots from 2-D gels, 457 protein spots were analyzed and 318 proteins positively matched with fungal proteins of known function by comparison with available R. solani genome databases specific for anastomosis groups 1-IA, 1-IB, and 3. These proteins were categorized to possible cellular locations and functional groups; and for some proteins their putative roles in plant cell wall degradation and virulence. The majority of the secreted proteins were grouped to extracellular regions and contain hydrolase activity.

  14. Proteomic analysis of human tooth pulp: proteomics of human tooth.

    Science.gov (United States)

    Eckhardt, Adam; Jágr, Michal; Pataridis, Statis; Mikšík, Ivan

    2014-12-01

    The unique pulp-dentin complex demonstrates strong regenerative potential, which enables it to respond to disease and traumatic injury. Identifying the proteins of the pulp-dentin complex is crucial to understanding the mechanisms of regeneration, tissue calcification, defense processes, and the reparation of dentin by dental pulp. The lack of knowledge of these proteins limits the development of more efficient therapies. The proteomic profile of human tooth pulp was investigated and compared with the proteome of human dentin and blood. The samples of tooth pulp were obtained from 5 sound permanent human third molars of 5 adults (n = 5). The extracted proteins were separated by 2-dimensional gel electrophoresis, analyzed by nano-liquid chromatography tandem mass spectrometry, and identified by correlating mass spectra to the proteomic databases. A total of 342 proteins were identified with high confidence, and 2 proteins were detected for the first time in an actual human sample. The identified tooth pulp proteins have a variety of functions: structural, catalytic, transporter, protease activity, immune response, and many others. In a comparison with dentin and blood plasma, 140 (pulp/dentin) shared proteins were identified, 37 of which were not observed in plasma. It can be suggested that they might participate in the unique pulp-dentin complex. This proteomic investigation of human tooth pulp, together with the previously published study of human dentin, is one of the most comprehensive proteome lists of human teeth to date. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Quantitative proteomic analysis of cabernet sauvignon grape cells exposed to thermal stresses reveals alterations in sugar and phenylpropanoid metabolism.

    Science.gov (United States)

    George, Iniga S; Pascovici, Dana; Mirzaei, Mehdi; Haynes, Paul A

    2015-09-01

    Grapes (Vitis vinifera) are a valuable fruit crop and wine production is a major industry. Global warming and expanded range of cultivation will expose grapes to more temperature stresses in future. Our study investigated protein level responses to abiotic stresses, with particular reference to proteomic changes induced by the impact of four different temperature stress regimes, including both hot and cold temperatures, on cultured grape cells. Cabernet Sauvignon cell suspension cultures grown at 26°C were subjected to 14 h of exposure to 34 and 42°C for heat stress, and 18 and 10°C for cold stress. Cells from the five temperatures were harvested in biological triplicates and label-free quantitative shotgun proteomic analysis was performed. A total of 2042 non-redundant proteins were identified from the five temperature points. Fifty-five proteins were only detected in extreme heat stress conditions (42°C) and 53 proteins were only detected at extreme cold stress conditions (10°C). Gene Ontology (GO) annotations of differentially expressed proteins provided insights into the metabolic pathways that are involved in temperature stress in grape cells. Sugar metabolism displayed switching between alternative and classical pathways during temperature stresses. Additionally, nine proteins involved in the phenylpropanoid pathway were greatly increased in abundance at extreme cold stress, and were thus found to be cold-responsive proteins. All MS data have been deposited in the ProteomeXchange with identifier PXD000977 (http://proteomecentral.proteomexchange.org/dataset/PXD000977). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Data from proteomic characterization and comparison of mammalian milk fat globule proteomes by iTRAQ analysis

    Directory of Open Access Journals (Sweden)

    Yongxin Yang

    2015-06-01

    Full Text Available Milk fat globules memebrane (MFGM-enriched proteomes from Holstein, Jersey, yak, buffalo, goat, camel, horse, and human were extracted and identified by an iTRAQ quantification proteomic approach. Proteomes data were analyzed by bioinformatic and multivariate statistical analysis and used to present the characteristic traits of the MFGM proteins among the studied mammals. The data of this study are also related to the research article “Proteomic characterization and comparison of mammalian milk fat globule proteomes by iTRAQ analysis” in the Journal of Proteomics [1].

  17. Elucidation of cross-species proteomic effects in human and hominin bone proteome identification through a bioinformatics experiment

    DEFF Research Database (Denmark)

    Welker, F.

    2018-01-01

    not been demonstrated. If error-tolerant searches do not overcome the cross-species proteomic issue then there might be inherent biases in the identified proteomes. Here, a bioinformatics experiment is performed to test this using a set of modern human bone proteomes and three independent searches against...... positions in the search against the chimpanzee proteome (≈90%, 6-8 Ma). This provides a bioinformatic background to future phylogenetic and proteomic analysis of ancient hominin proteomes, including the future description of novel hominin amino acid sequences, but also has negative implications...

  18. A computational screen for type I polyketide synthases in metagenomics shotgun data.

    Directory of Open Access Journals (Sweden)

    Konrad U Foerstner

    Full Text Available BACKGROUND: Polyketides are a diverse group of biotechnologically important secondary metabolites that are produced by multi domain enzymes called polyketide synthases (PKS. METHODOLOGY/PRINCIPAL FINDINGS: We have estimated frequencies of type I PKS (PKS I - a PKS subgroup - in natural environments by using Hidden-Markov-Models of eight domains to screen predicted proteins from six metagenomic shotgun data sets. As the complex PKS I have similarities to other multi-domain enzymes (like those for the fatty acid biosynthesis we increased the reliability and resolution of the dataset by maximum-likelihood trees. The combined information of these trees was then used to discriminate true PKS I domains from evolutionary related but functionally different ones. We were able to identify numerous novel PKS I proteins, the highest density of which was found in Minnesota farm soil with 136 proteins out of 183,536 predicted genes. We also applied the protocol to UniRef database to improve the annotation of proteins with so far unknown function and identified some new instances of horizontal gene transfer. CONCLUSIONS/SIGNIFICANCE: The screening approach proved powerful in identifying PKS I sequences in large sequence data sets and is applicable to many other protein families.

  19. Proteomic Biomarkers for Spontaneous Preterm Birth

    DEFF Research Database (Denmark)

    Kacerovsky, Marian; Lenco, Juraj; Musilova, Ivana

    2014-01-01

    This review aimed to identify, synthesize, and analyze the findings of studies on proteomic biomarkers for spontaneous preterm birth (PTB). Three electronic databases (Medline, Embase, and Scopus) were searched for studies in any language reporting the use of proteomic biomarkers for PTB published...

  20. Modification-specific proteomics in plant biology

    DEFF Research Database (Denmark)

    Ytterberg, A Jimmy; Jensen, Ole N

    2010-01-01

    and proteomics. In general, methods for PTM characterization are developed to study yeast and mammalian biology and later adopted to investigate plants. Our point of view is that it is advantageous to enrich for PTMs on the peptide level as part of a quantitative proteomics strategy to not only identify the PTM...

  1. Enrichment and proteomic analysis of plasma membrane from rat dorsal root ganglions

    Directory of Open Access Journals (Sweden)

    Lin Yong

    2009-11-01

    Full Text Available Abstract Background Dorsal root ganglion (DRG neurons are primary sensory neurons that conduct neuronal impulses related to pain, touch and temperature senses. Plasma membrane (PM of DRG cells plays important roles in their functions. PM proteins are main performers of the functions. However, mainly due to the very low amount of DRG that leads to the difficulties in PM sample collection, few proteomic analyses on the PM have been reported and it is a subject that demands further investigation. Results By using aqueous polymer two-phase partition in combination with high salt and high pH washing, PMs were efficiently enriched, demonstrated by western blot analysis. A total of 954 non-redundant proteins were identified from the plasma membrane-enriched preparation with CapLC-MS/MS analysis subsequent to protein separation by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE or shotgun digestion. 205 (21.5% of the identified proteins were unambiguously assigned as PM proteins, including a large number of signal proteins, receptors, ion channel and transporters. Conclusion The aqueous polymer two-phase partition is a simple, rapid and relatively inexpensive method. It is well suitable for the purification of PMs from small amount of tissues. Therefore, it is reasonable for the DRG PM to be enriched by using aqueous two-phase partition as a preferred method. Proteomic analysis showed that DRG PM was rich in proteins involved in the fundamental biological processes including material exchange, energy transformation and information transmission, etc. These data would help to our further understanding of the fundamental DRG functions.

  2. Genomic V exons from whole genome shotgun data in reptiles.

    Science.gov (United States)

    Olivieri, D N; von Haeften, B; Sánchez-Espinel, C; Faro, J; Gambón-Deza, F

    2014-08-01

    Reptiles and mammals diverged over 300 million years ago, creating two parallel evolutionary lineages amongst terrestrial vertebrates. In reptiles, two main evolutionary lines emerged: one gave rise to Squamata, while the other gave rise to Testudines, Crocodylia, and Aves. In this study, we determined the genomic variable (V) exons from whole genome shotgun sequencing (WGS) data in reptiles corresponding to the three main immunoglobulin (IG) loci and the four main T cell receptor (TR) loci. We show that Squamata lack the TRG and TRD genes, and snakes lack the IGKV genes. In representative species of Testudines and Crocodylia, the seven major IG and TR loci are maintained. As in mammals, genes of the IG loci can be grouped into well-defined IMGT clans through a multi-species phylogenetic analysis. We show that the reptilian IGHV and IGLV genes are distributed amongst the established mammalian clans, while their IGKV genes are found within a single clan, nearly exclusive from the mammalian sequences. The reptilian and mammalian TRAV genes cluster into six common evolutionary clades (since IMGT clans have not been defined for TR). In contrast, the reptilian TRBV genes cluster into three clades, which have few mammalian members. In this locus, the V exon sequences from mammals appear to have undergone different evolutionary diversification processes that occurred outside these shared reptilian clans. These sequences can be obtained in a freely available public repository (http://vgenerepertoire.org).

  3. Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing.

    Science.gov (United States)

    Chan, Chia Sing; Chan, Kok-Gan; Tay, Yea-Ling; Chua, Yi-Heng; Goh, Kian Mau

    2015-01-01

    The Sungai Klah (SK) hot spring is the second hottest geothermal spring in Malaysia. This hot spring is a shallow, 150-m-long, fast-flowing stream, with temperatures varying from 50 to 110°C and a pH range of 7.0-9.0. Hidden within a wooded area, the SK hot spring is continually fed by plant litter, resulting in a relatively high degree of total organic content (TOC). In this study, a sample taken from the middle of the stream was analyzed at the 16S rRNA V3-V4 region by amplicon metagenome sequencing. Over 35 phyla were detected by analyzing the 16S rRNA data. Firmicutes and Proteobacteria represented approximately 57% of the microbiome. Approximately 70% of the detected thermophiles were strict anaerobes; however, Hydrogenobacter spp., obligate chemolithotrophic thermophiles, represented one of the major taxa. Several thermophilic photosynthetic microorganisms and acidothermophiles were also detected. Most of the phyla identified by 16S rRNA were also found using the shotgun metagenome approaches. The carbon, sulfur, and nitrogen metabolism within the SK hot spring community were evaluated by shotgun metagenome sequencing, and the data revealed diversity in terms of metabolic activity and dynamics. This hot spring has a rich diversified phylogenetic community partly due to its natural environment (plant litter, high TOC, and a shallow stream) and geochemical parameters (broad temperature and pH range). It is speculated that symbiotic relationships occur between the members of the community.

  4. Short term changes in the proteome of human cerebral organoids induced by 5-MeO-DMT

    OpenAIRE

    Dakic, Vanja; Minardi Nascimento, Juliana; Costa Sartore, Rafaela; Maciel, Renata de Moraes; de Araujo, Draulio B.; Ribeiro, Sidarta; Martins-de-Souza, Daniel; Rehen, Stevens K.

    2017-01-01

    Dimethyltryptamines are entheogenic serotonin-like molecules present in traditional Amerindian medicine recently associated with cognitive gains, antidepressant effects, and changes in brain areas related to attention. Legal restrictions and the lack of adequate experimental models have limited the understanding of how such substances impact human brain metabolism. Here we used shotgun mass spectrometry to explore proteomic differences induced by 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) o...

  5. Microbiology and proteomics, getting the best of both worlds!

    Science.gov (United States)

    Armengaud, Jean

    2013-01-01

    High-throughput identification of proteins with the latest generation of hybrid high-resolution mass spectrometers is opening new perspectives in microbiology. I present, here, an overview of tandem mass spectrometry technology and bioinformatics for shotgun proteomics that make 2D-PAGE approaches obsolete. Non-labelling quantitative approaches have become more popular than labelling techniques on most proteomic platforms because they are easier to carry out while their quantitative outcome is rather robust. Parameters for recording mass spectrometry data, however, need to be chosen carefully and statistics to assess the confidence of the results should not be neglected. Interestingly, next-generation sequencing methodologies make any microbial model quickly amenable to proteomics, leading to the documentation of a wide range of organisms from diverse environments. Some recent discoveries made using microbial proteomics have challenged some biological dogma, such as: (i) initiation of the translation does not occur predominantly from ATG codons in some microorganisms, (ii) non-canonical initiation codons are used to regulate the production of specific but important proteins and (iii) a gene may code for multiple polypeptide species, heterogeneous in terms of sequences. Microbial diversity and microbial physiology can now be revisited by means of exhaustive comparative proteomic surveys where thousands of proteins are detected and quantified. Proteogenomics, consisting of better annotating of genomes with the help of proteomic evidence, is paving the way for integrated multi-omic approaches in microbiology. Finally, meta-proteomic tools and approaches are emerging for tackling the high complexity of the microbial world as a whole, opening new perspectives for assessing how microbial communities function. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Proteomic Analysis of Bacillus thuringiensis at Different Growth Phases by Using an Automated Online Two-Dimensional Liquid Chromatography-Tandem Mass Spectrometry Strategy

    Science.gov (United States)

    Huang, Shaoya; Sun, Yunjun; Yang, Qi; Xiao, Xiuqing; Cao, Zhenping

    2012-01-01

    The proteome of a new Bacillus thuringiensis subsp. kurstaki strain, 4.0718, from the middle vegetative (T1), early sporulation (T2), and late sporulation (T3) phases was analyzed using an integrated liquid chromatography (LC)-based protein identification system. The system comprised two-dimensional (2D) LC coupled with nanoscale electrospray ionization (ESI) tandem mass spectrometry (MS/MS) on a high-resolution hybrid mass spectrometer with an automated data analysis system. After deletion of redundant proteins from the different batches and B. thuringiensis subspecies, 918, 703, and 778 proteins were identified in the respective three phases. Their molecular masses ranged from 4.6 Da to 477.4 Da, and their isoelectric points ranged from 4.01 to 11.84. Function clustering revealed that most of the proteins in the three phases were functional metabolic proteins, followed by proteins participating in cell processes. Small molecular and macromolecular metabolic proteins were further classified according to the Kyoto Encyclopedia of Genes and Genome and BioCyc metabolic pathway database. Three protoxins (Cry2Aa, Cry1Aa, and Cry1Ac) as well as a series of potential intracellular active factors were detected. Many significant proteins related to spore and crystal formation, including sporulation proteins, help proteins, chaperones, and so on, were identified. The expression patterns of two identified proteins, CotJc and glutamine synthetase, were validated by Western blot analysis, which further confirmed the MS results. This study is the first to use shotgun technology to research the proteome of B. thuringiensis. Valuable experimental data are provided regarding the methodology of analyzing the B. thuringiensis proteome (which can be used to produce insecticidal crystal proteins) and have been added to the related protein database. PMID:22636013

  7. The proteome browser web portal.

    Science.gov (United States)

    Goode, Robert J A; Yu, Simon; Kannan, Anitha; Christiansen, Jeffrey H; Beitz, Anthony; Hancock, William S; Nice, Edouard; Smith, A Ian

    2013-01-04

    In 2010, the Human Proteome Organization launched the Human Proteome Project (HPP), aimed at identifying and characterizing the proteome of the human body. To support complete coverage, one arm of the project will take a gene- or chromosomal-centric strategy (C-HPP) aimed at identifying at least one protein product from each protein-coding gene. Despite multiple large international biological databases housing genomic and protein data, there is currently no single system that integrates updated pertinent information from each of these data repositories and assembles the information into a searchable format suitable for the type of global proteomics effort proposed by the C-HPP. We have undertaken the goal of producing a data integration and analysis software system and browser for the C-HPP effort and of making data collections from this resource discoverable through metadata repositories, such as Australian National Data Service's Research Data Australia. Here we present our vision and progress toward the goal of developing a comprehensive data integration and analysis software tool that provides a snapshot of currently available proteomic related knowledge around each gene product, which will ultimately assist in analyzing biological function and the study of human physiology in health and disease.

  8. Describing the Diapause-Preparatory Proteome of the Beetle Colaphellus bowringi and Identifying Candidates Affecting Lipid Accumulation Using Isobaric Tags for Mass Spectrometry-Based Proteome Quantification (iTRAQ

    Directory of Open Access Journals (Sweden)

    Daniel A. Hahn

    2017-04-01

    Full Text Available Prior to entering diapause, insects must prepare themselves physiologically to withstand the stresses of arresting their development for a lengthy period. While studies describing the biochemical and cellular milieu of the maintenance phase of diapause are accumulating, few studies have taken an “omics” approach to describing molecular events during the diapause preparatory phase. We used isobaric tags and mass spectrometry (iTRAQ to quantitatively compare the expression profiles of proteins identified during the onset of diapause preparation phase in the heads of adult female cabbage beetles, Colaphellus bowringi. A total of 3,175 proteins were identified, 297 of which were differentially expressed between diapause-destined and non-diapause-destined female adults and could therefore be involved in diapause preparation in this species. Comparison of identified proteins with protein function databases shows that many of these differentially expressed proteins enhanced in diapause destined beetles are involved in energy production and conversion, carbohydrate metabolism and transport, and lipid metabolism. Further hand annotation of differentially abundant peptides nominates several associated with stress hardiness, including HSPs and antioxidants, as well as neural development. In contrast, non-diapause destined beetles show substantial increases in cuticle proteins, suggesting additional post-emergence growth. Using RNA interference to silence a fatty acid-binding protein (FABP that was highly abundant in the head of diapause-destined females prevented the accumulation of lipids in the fat body, a common product of diapause preparation in this species and others. Surprisingly, RNAi against the FABP also affected the transcript abundance of several heat shock proteins. These results suggest that the identified differentially expressed proteins that play vital roles in lipid metabolism may also contribute somehow to enhanced hardiness to

  9. Nano-liquid Chromatography-orbitrap MS-based Quantitative Proteomics Reveals Differences Between the Mechanisms of Action of Carnosic Acid and Carnosol in Colon Cancer Cells*

    Science.gov (United States)

    Valdés, Alberto; Artemenko, Konstantin A.; Simó, Carolina; Bergquist, Jonas; Cifuentes, Alejandro

    2017-01-01

    Carnosic acid (CA) and carnosol (CS) are two structurally related diterpenes present in rosemary herb (Rosmarinus officinalis). Although several studies have demonstrated that both diterpenes can scavenge free radicals and interfere in cellular processes such as cell proliferation, they may not necessarily exert the same effects at the molecular level. In this work, a shotgun proteomics study based on stable isotope dimethyl labeling (DML) and nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) has been performed to identify the relative changes in proteins and to gain some light on the specific molecular targets and mechanisms of action of CA and CS in HT-29 colon cancer cells. Protein profiles revealed that CA and CS induce different Nrf2-mediated response. Furthermore, examination of our data revealed that each diterpene affects protein homeostasis by different mechanisms. CA treatment induces the expression of proteins involved in the unfolded protein response in a concentration dependent manner reflecting ER stress, whereas CS directly inhibits chymotrypsin-like activity of the 20S proteasome. In conclusion, the unbiased proteomics-wide method applied in the present study has demonstrated to be a powerful tool to reveal differences on the mechanisms of action of two related bioactive compounds in the same biological model. PMID:27834734

  10. Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance

    Directory of Open Access Journals (Sweden)

    Kristina L Ford

    2011-09-01

    Full Text Available Using a series of multiplexed experiments we studied the quantitative changes in protein abundance of three Australian bread wheat cultivars (Triticum aestivum L. in response to a drought stress. Three cultivars differing in their ability to maintain grain yield during drought, Kukri (intolerant, Excalibur (tolerant and RAC875 (tolerant, were grown in the glasshouse with cyclic drought treatment that mimicked conditions in the field. Proteins were isolated from leaves of mature plants and isobaric tags were used to follow changes in the relative protein abundance of 159 proteins. This is the first shotgun proteomics study in wheat, providing important insights into protein responses to drought as well as identifying the largest number of wheat proteins (1,299 in a single study. The changes in the three cultivars at the different time points reflected their differing physiological responses to drought, with the two drought tolerant varieties (Excalibur and RAC875 differing in their protein responses. Excalibur lacked significant changes in proteins during the initial onset of the water deficit in contrast to RAC875 that had a large number of significant changes. All three cultivars had changes consistent with an increase in oxidative stress metabolism and ROS scavenging capacity seen through increases in superoxide dismutases and catalases as well as ROS avoidance through the decreases in proteins involved in photosynthesis and the Calvin cycle.

  11. The genome, transcriptome, and proteome of the nematode Steinernema carpocapsae: evolutionary signatures of a pathogenic lifestyle.

    Science.gov (United States)

    Rougon-Cardoso, Alejandra; Flores-Ponce, Mitzi; Ramos-Aboites, Hilda Eréndira; Martínez-Guerrero, Christian Eduardo; Hao, You-Jin; Cunha, Luis; Rodríguez-Martínez, Jonathan Alejandro; Ovando-Vázquez, Cesaré; Bermúdez-Barrientos, José Roberto; Abreu-Goodger, Cei; Chavarría-Hernández, Norberto; Simões, Nelson; Montiel, Rafael

    2016-11-23

    The entomopathogenic nematode Steinernema carpocapsae has been widely used for the biological control of insect pests. It shares a symbiotic relationship with the bacterium Xenorhabdus nematophila, and is emerging as a genetic model to study symbiosis and pathogenesis. We obtained a high-quality draft of the nematode's genome comprising 84,613,633 bp in 347 scaffolds, with an N50 of 1.24 Mb. To improve annotation, we sequenced both short and long RNA and conducted shotgun proteomic analyses. S. carpocapsae shares orthologous genes with other parasitic nematodes that are absent in the free-living nematode C. elegans, it has ncRNA families that are enriched in parasites, and expresses proteins putatively associated with parasitism and pathogenesis, suggesting an active role for the nematode during the pathogenic process. Host and parasites might engage in a co-evolutionary arms-race dynamic with genes participating in their interaction showing signatures of positive selection. Our analyses indicate that the consequence of this arms race is better characterized by positive selection altering specific functions instead of just increasing the number of positively selected genes, adding a new perspective to these co-evolutionary theories. We identified a protein, ATAD-3, that suggests a relevant role for mitochondrial function in the evolution and mechanisms of nematode parasitism.

  12. A proteomic approach for the rapid, multi-informative and reliable identification of blood.

    Science.gov (United States)

    Patel, E; Cicatiello, P; Deininger, L; Clench, M R; Marino, G; Giardina, P; Langenburg, G; West, A; Marshall, P; Sears, V; Francese, S

    2016-01-07

    Blood evidence is frequently encountered at the scene of violent crimes and can provide valuable intelligence in the forensic investigation of serious offences. Because many of the current enhancement methods used by crime scene investigators are presumptive, the visualisation of blood is not always reliable nor does it bear additional information. In the work presented here, two methods employing a shotgun bottom up proteomic approach for the detection of blood are reported; the developed protocols employ both an in solution digestion method and a recently proposed procedure involving immobilization of trypsin on hydrophobin Vmh2 coated MALDI sample plate. The methods are complementary as whilst one yields more identifiable proteins (as biomolecular signatures), the other is extremely rapid (5 minutes). Additionally, data demonstrate the opportunity to discriminate blood provenance even when two different blood sources are present in a mixture. This approach is also suitable for old bloodstains which had been previously chemically enhanced, as experiments conducted on a 9-year-old bloodstain deposited on a ceramic tile demonstrate.

  13. Application of a discovery to targeted LC–MS proteomics approach to identify deregulated proteins associated with idiosyncratic liver toxicity in a rat model of LPS/diclofenac co-administration

    International Nuclear Information System (INIS)

    Ramm, S.; Morissey, B.; Hernandez, B.; Rooney, C.; Pennington, S.R.; Mally, A.

    2015-01-01

    Increasing experimental and clinical evidence suggest a contribution of non-drug related risk factors (e.g., underlying disease, bacterial/viral infection) to idiosyncratic drug reactions (IDR). Our previous work showed that co-treatment with bacterial endotoxin (LPS) and therapeutic doses of diclofenac (Dcl), an analgesic associated with drug idiosyncrasy in patients, induced severe hepatotoxicity in rats. Here, we used an integrated discovery to targeted LC–MS proteomics approach to identify mechanistically relevant liver and plasma proteins modulated by LPS/Dcl treatment, potentially applicable as early markers for IDRs. Based on pre-screening results and their role in liver toxicity, 47 liver and 15 plasma proteins were selected for targeted LC–MS analysis. LPS alone significantly changed the levels of 19 and 3 of these proteins, respectively. T-kininogen-1, previously suggested as a marker of drug-induced liver injury, was markedly elevated in plasma after repeated Dcl treatment in the absence of hepatotoxicity, possibly indicating clinically silent stress. Dcl both alone and in combination with LPS, caused up-regulation of the ATP synthase subunits (ATP5J, ATPA, and ATPB), suggesting that Dcl may sensitize cells against additional stress factors, such as LPS through generation of mitochondrial stress. Additionally, depletion of plasma fibrinogen was observed in the co-treatment group, consistent with an increased hepatic fibrin deposition and suspected contribution of the hemostatic system to IDRs. In contrast, several proteins previously suggested as liver biomarkers, such as clusterin, did not correlate with liver injury in this model. Taken together, these analyses revealed proteomic changes in a rat model of LPS/Dcl co-administration that could offer mechanistic insight and may serve as biomarkers or safety alert for a drug’s potential to cause IDRs

  14. Shotgun metagenomic sequencing reveals freshwater beach sands as reservoir of bacterial pathogens.

    Science.gov (United States)

    Mohiuddin, Mahi M; Salama, Yasser; Schellhorn, Herb E; Golding, G Brian

    2017-05-15

    Recreational waters and adjacent beach sands harbor complex microbial communities which may contain human pathogens that cannot be detected by conventional methods. Here, we investigate the diversity of bacterial populations inhabiting four freshwater beaches of the Great Lakes region using shotgun metagenomic sequencing approach. Our analysis suggests that average taxonomic richness and alpha diversity are significantly higher (P beach sands compared to the corresponding water environments. Compared to the water environments, beach sands harbored taxa from a more diverse range of phyla, including a higher proportion of sequences from unclassified phyla. Unique phyla were also identified in sand which included species from Aquificae, Candidatus Microgenomates, Latescibacteria, and Candidatus Aminicenantes. Sequences originating from pathogens were detected in both sand and water, with some pathogens enriched in both environments. Both lakes exhibited similar community composition suggesting that geographic location did not appear to have any major impact on bacterial diversity. These findings reveal the diversity of bacterial communities of freshwater beaches and highlight the importance of monitoring pathogens in recreational beaches, especially in the sand environment of these beaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. SUPER-FOCUS: a tool for agile functional analysis of shotgun metagenomic data.

    Science.gov (United States)

    Silva, Genivaldo Gueiros Z; Green, Kevin T; Dutilh, Bas E; Edwards, Robert A

    2016-02-01

    Analyzing the functional profile of a microbial community from unannotated shotgun sequencing reads is one of the important goals in metagenomics. Functional profiling has valuable applications in biological research because it identifies the abundances of the functional genes of the organisms present in the original sample, answering the question what they can do. Currently, available tools do not scale well with increasing data volumes, which is important because both the number and lengths of the reads produced by sequencing platforms keep increasing. Here, we introduce SUPER-FOCUS, SUbsystems Profile by databasE Reduction using FOCUS, an agile homology-based approach using a reduced reference database to report the subsystems present in metagenomic datasets and profile their abundances. SUPER-FOCUS was tested with over 70 real metagenomes, the results showing that it accurately predicts the subsystems present in the profiled microbial communities, and is up to 1000 times faster than other tools. SUPER-FOCUS was implemented in Python, and its source code and the tool website are freely available at https://edwards.sdsu.edu/SUPERFOCUS. redwards@mail.sdsu.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  16. Proteomic analysis of menstrual blood.

    Science.gov (United States)

    Yang, Heyi; Zhou, Bo; Prinz, Mechthild; Siegel, Donald

    2012-10-01

    Menstruation is the expulsion of the endometrial lining of the uterus following a nearly month long preparation for embryo implantation and pregnancy. Increasingly, the health of the endometrium is being recognized as a critical factor in female fertility, and proteomes and transcriptomes from endometrial biopsies at different stages of the menstrual cycle have been studied for both diagnostic and therapeutic purposes (1 Kao, L. C., et al. 2003 Endocrinology 144, 2870-2881; Strowitzki, Tet al. 2006 Hum. Reprod. Update 12, 617-630; DeSouza, L., et al. 2005 Proteomics 5, 270-281). Disorders of the uterus ranging from benign to malignant tumors, as well as endometriosis, can cause abnormal menstrual bleeding and are frequently diagnosed through endometrial biopsy (Strowitzki, Tet al. 2006 Hum. Reprod. Update 12, 617-630; Ferenczy, A. 2003 Maturitas 45, 1-14). Yet the proteome of menstrual blood, an easily available noninvasive source of endometrial tissue, has yet to be examined for possible causes or diagnoses of infertility or endometrial pathology. This study employed five different methods to define the menstrual blood proteome. A total of 1061 proteins were identified, 361 were found by at least two methods and 678 were identified by at least two peptides. When the menstrual blood proteome was compared with those of circulating blood (1774 proteins) and vaginal fluid (823 proteins), 385 proteins were found unique to menstrual blood. Gene ontology analysis and evaluation of these specific menstrual blood proteins identified pathways consistent with the processes of the normal endometrial cycle. Several of the proteins unique to menstrual blood suggest that extramedullary uterine hematopoiesis or parenchymal hemoglobin synthesis may be occurring in late endometrial tissue. The establishment of a normal menstrual blood proteome is necessary for the evaluation of its usefulness as a diagnostic tool for infertility and uterine pathologies. Identification of unique

  17. Gel-based and gel-free proteome data associated with controlled deterioration treatment of Glycine max seeds

    Directory of Open Access Journals (Sweden)

    Cheol Woo Min

    2017-12-01

    Full Text Available Data presented here are associated with the article: “In-depth proteomic analysis of soybean (Glycine max seeds during controlled deterioration treatment (CDT reveals a shift in seed metabolism” (Min et al., 2017 [1]. Seed deterioration is one of the major problems, affecting the seed quality, viability, and vigor in a negative manner. Here, we display the gel-based and gel-free proteomic data, associated with the CDT in soybean seeds. The present data was obtained from 2-DE, shotgun proteomic analysis (label-free quantitative proteomic analysis using Q-Exactive, and gene ontology analysis associated with CDT in soybean seeds (Min et al., 2017 [1].

  18. Comparative mitochondrial proteomics: perspective in human diseases

    Directory of Open Access Journals (Sweden)

    Jiang Yujie

    2012-03-01

    Full Text Available Abstract Mitochondria are the most complex and the most important organelles of eukaryotic cells, which are involved in many cellular processes, including energy metabolism, apoptosis, and aging. And mitochondria have been identified as the "hot spot" by researchers for exploring relevant associated dysfunctions in many fields. The emergence of comparative proteomics enables us to have a close look at the mitochondrial proteome in a comprehensive and effective manner under various conditions and cellular circumstances. Two-dimensional electrophoresis combined with mass spectrometry is still the most popular techniques to study comparative mitochondrial proteomics. Furthermore, many new techniques, such as ICAT, MudPIT, and SILAC, equip researchers with more flexibilities inselecting proper methods. This article also reviews the recent development of comparative mitochondrial proteomics on diverse human diseases. And the results of mitochondrial proteomics enhance a better understanding of the pathogenesis associated with mitochondria and provide promising therapeutic targets.

  19. Proteomic Analyses of the Vitreous Humour

    Directory of Open Access Journals (Sweden)

    Martina Angi

    2012-01-01

    Full Text Available The human vitreous humour (VH is a transparent, highly hydrated gel, which occupies the posterior segment of the eye between the lens and the retina. Physiological and pathological conditions of the retina are reflected in the protein composition of the VH, which can be sampled as part of routine surgical procedures. Historically, many studies have investigated levels of individual proteins in VH from healthy and diseased eyes. In the last decade, proteomics analyses have been performed to characterise the proteome of the human VH and explore networks of functionally related proteins, providing insight into the aetiology of diabetic retinopathy and proliferative vitreoretinopathy. Recent proteomic studies on the VH from animal models of autoimmune uveitis have identified new signalling pathways associated to autoimmune triggers and intravitreal inflammation. This paper aims to guide biological scientists through the different proteomic techniques that have been used to analyse the VH and present future perspectives for the study of intravitreal inflammation using proteomic analyses.

  20. Quantitative proteomics using the high resolution accurate mass capabilities of the quadrupole-orbitrap mass spectrometer.

    Science.gov (United States)

    Gallien, Sebastien; Domon, Bruno

    2014-08-01

    High resolution/accurate mass hybrid mass spectrometers have considerably advanced shotgun proteomics and the recent introduction of fast sequencing capabilities has expanded its use for targeted approaches. More specifically, the quadrupole-orbitrap instrument has a unique configuration and its new features enable a wide range of experiments. An overview of the analytical capabilities of this instrument is presented, with a focus on its application to quantitative analyses. The high resolution, the trapping capability and the versatility of the instrument have allowed quantitative proteomic workflows to be redefined and new data acquisition schemes to be developed. The initial proteomic applications have shown an improvement of the analytical performance. However, as quantification relies on ion trapping, instead of ion beam, further refinement of the technique can be expected.

  1. Proteomics-grade de novo sequencing approach

    DEFF Research Database (Denmark)

    Savitski, Mikhail M; Nielsen, Michael L; Kjeldsen, Frank

    2005-01-01

    The conventional approach in modern proteomics to identify proteins from limited information provided by molecular and fragment masses of their enzymatic degradation products carries an inherent risk of both false positive and false negative identifications. For reliable identification of even...

  2. Comparative Proteomic Analysis of Wild-Type and SAP Domain Mutant Foot-and-Mouth Disease Virus-Infected Porcine Cells Identifies the Ubiquitin-Activating Enzyme UBE1 Required for Virus Replication.

    Science.gov (United States)

    Zhu, Zixiang; Yang, Fan; Zhang, Keshan; Cao, Weijun; Jin, Ye; Wang, Guoqing; Mao, Ruoqing; Li, Dan; Guo, Jianhong; Liu, Xiangtao; Zheng, Haixue

    2015-10-02

    Leader protein (L(pro)) of foot-and-mouth disease virus (FMDV) manipulates the activities of several host proteins to promote viral replication and pathogenicity. L(pro) has a conserved protein domain SAP that is suggested to subvert interferon (IFN) production to block antiviral responses. However, apart from blocking IFN production, the roles of the SAP domain during FMDV infection in host cells remain unknown. Therefore, we identified host proteins associated with the SAP domain of L(pro) by a high-throughput quantitative proteomic approach [isobaric tags for relative and absolute quantitation (iTRAQ) in conjunction with liquid chromatography/electrospray ionization tandem mass spectrometry]. Comparison of the differentially regulated proteins in rA/FMDVΔmSAP- versus rA/FMDV-infected SK6 cells revealed 45 down-regulated and 32 up-regulated proteins that were mostly associated with metabolic, ribosome, spliceosome, and ubiquitin-proteasome pathways. The results also imply that the SAP domain has a function similar to SAF-A/B besides its potential protein inhibitor of activated signal transducer and activator of transcription (PIAS) function. One of the identified proteins UBE1 was further analyzed and displayed a novel role for the SAP domain of L(pro). Overexpression of UBE1 enhanced the replication of FMDV, and knockdown of UBE1 decreased FMDV replication. This shows that FMDV manipulates UBE1 for increased viral replication, and the SAP domain was involved in this process.

  3. Proteomic interrogation of human chromatin.

    Directory of Open Access Journals (Sweden)

    Mariana P Torrente

    Full Text Available Chromatin proteins provide a scaffold for DNA packaging and a basis for epigenetic regulation and genomic maintenance. Despite understanding its functional roles, mapping the chromatin proteome (i.e. the "Chromatome" is still a continuing process. Here, we assess the biological specificity and proteomic extent of three distinct chromatin preparations by identifying proteins in selected chromatin-enriched fractions using mass spectrometry-based proteomics. These experiments allowed us to produce a chromatin catalog, including several proteins ranging from highly abundant histone proteins to less abundant members of different chromatin machinery complexes. Using a Normalized Spectral Abundance Factor approach, we quantified relative abundances of the proteins across the chromatin enriched fractions giving a glimpse into their chromosomal abundance. The large-scale data sets also allowed for the discovery of a variety of novel post-translational modifications on the identified chromatin proteins. With these comparisons, we find one of the probed methods to be qualitatively superior in specificity for chromatin proteins, but inferior in proteomic extent, evidencing a compromise that must be made between biological specificity and broadness of characterization. Additionally, we attempt to identify proteins in eu- and heterochromatin, verifying the enrichments by characterizing the post-translational modifications detected on histone proteins from these chromatin regions. In summary, our results provide insights into the value of different methods to extract chromatin-associated proteins and provide starting points to study the factors that may be involved in directing gene expression and other chromatin-related processes.

  4. Quantitative proteomics as a tool to identify resistance mechanisms in erlotinib-resistant subclones of the non-small cell lung cancer cell line HCC827

    DEFF Research Database (Denmark)

    Jacobsen, Kirstine

    of erlotinib, and in biological triplicates on a Q-Exactive mass spectrometer. Only proteins identified with minimum 2 unique peptides and in minimum 2 of 3 replicates were accepted. Results: Importantly, the resistant clones did not acquire the T790M or other EGFR or KRAS mutations, potentiating...

  5. A proteomics method using immunoaffinity fluorogenic derivatization-liquid chromatography/tandem mass spectrometry (FD-LC-MS/MS) to identify a set of interacting proteins.

    Science.gov (United States)

    Nakata, Katsunori; Saitoh, Ryoichi; Ishigai, Masaki; Imai, Kazuhiro

    2018-02-01

    Biological functions in organisms are usually controlled by a set of interacting proteins, and identifying the proteins that interact is useful for understanding the mechanism of the functions. Immunoprecipitation is a method that utilizes the affinity of an antibody to isolate and identify the proteins that have interacted in a biological sample. In this study, the FD-LC-MS/MS method, which involves fluorogenic derivatization followed by separation and quantification by HPLC and finally identification of proteins by HPLC-tandem mass spectrometry, was used to identify proteins in immunoprecipitated samples, using heat shock protein 90 (HSP90) as a model of an interacting protein in HepaRG cells. As a result, HSC70 protein, which was known to form a complex with HSP90, was isolated, together with three different types of HSP90-beta. The results demonstrated that the proposed immunoaffinity-FD-LC-MS/MS method could be useful for simultaneously detecting and identifying the proteins that interact with a certain protein. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Whole-genome shotgun optical mapping of Rhodobacter sphaeroides strain 2.4. 1 and its use for whole-genome shotgun sequence assembly

    Energy Technology Data Exchange (ETDEWEB)

    Shou, S. [Univ. Wisc.-Madison; Kvikstad, E. [Univ. Wisc.-Madison; Kile, A. [Univ. Wisc.-Madison; Severin, J. [Whole-genome shotgun optical mapping of Rhodobacter sphaeroides strain 2.4. 1 and its use for whole-genome shotgun sequence assembly; Forrest, D. [Univ. Wisc.-Madison; Runnheim, R. [Univ. Wisc.-Madison; Churas, C. [Univ. Wisc.-Madison; Hickman, J. W. [Univ. Wisc.-Madison; Mackenzie, C. [University of Texas–Houston Medical School; Choudhary, M. [University of Texas–Houston Medical School; Donohue, T. [Univ. Wisc.-Madison; Kaplan, S. [University of Texas–Houston Medical School; Schwartz, D. C. [Univ. Wisc.-Madison

    2003-09-01

    Rhodobacter sphaeroides 2.4.1 is a facultative photoheterotrophic bacterium with tremendous metabolic diversity, which has significantly contributed to our understanding of the molecular genetics of photosynthesis, photoheterotrophy, nitrogen fixation, hydrogen metabolism, carbon dioxide fixation, taxis, and tetrapyrrole biosynthesis. To further understand this remarkable bacterium, and to accelerate an ongoing sequencing project, two whole-genome restriction maps (EcoRI and HindIII) of R. sphaeroides strain 2.4.1 were constructed using shotgun optical mapping. The approach directly mapped genomic DNA by the random mapping of single molecules. The two maps were used to facilitate sequence assembly by providing an optical scaffold for high-resolution alignment and verification of sequence contigs. Our results show that such maps facilitated the closure of sequence gaps by the early detection of nascent sequence contigs during the course of the whole-genome shotgun sequencing process.

  7. Pigs in sequence space: A 0.66X coverage pig genome survey based on shotgun sequencing

    DEFF Research Database (Denmark)

    Wernersson, Rasmus; Schierup, M.H.; Jorgensen, F.G.

    2005-01-01

    sequences (0.66X coverage) from the pig genome. The data are hereby released (NCBI Trace repository with center name "SDJVP", and project name "Sino-Danish Pig Genome Project") together with an initial evolutionary analysis. The non-repetitive fraction of the sequences was aligned to the UCSC human......-mouse alignment and the resulting three-species alignments were annotated using the human genome annotation. Ultra-conserved elements and miRNAs were identified. The results show that for each of these types of orthologous data, pig is much closer to human than mouse is. Purifying selection has been more...... on the human genome by bisecting the evolutionary branch between human and mouse with the mouse branch being approximately 3 times as long as the human branch. Additionally, the joint alignment of the shot-gun sequences to the human-mouse alignment offers the investigator a rapid way to defining specific...

  8. The toxicity of NaF on BmN cells and a comparative proteomics approach to identify protein expression changes in cells under NaF-stress

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang; Chen, Huiqing [Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Yao, Chun [Department of Stomatology, Zhenjiang First People’s Hospital, Zhenjiang, Jiangsu 212013 (China); Chang, Cheng; Xia, Hengchuan; Zhang, Chunxia; Zhou, Yang; Yao, Qin [Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Chen, Keping, E-mail: kpchen@ujs.edu.cn [Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013 (China)

    2015-04-09

    Highlights: • On the cellular level, we identified IC{sub 50} of NaF on BmN cell by flow cytometry. • High concentration of NaF gives effect on BmN cell morphology. • Five significantly differential proteins were identified by two-dimensional electrophoresis and mass spectrometry. • ALDH2 and WPH were up-regulated, while CRT and SCF were down-regulated, providing new information for metabolic pathway of fluoride. - Abstract: Fluorides negatively affect the development of organisms and are a threat to human health and environmental safety. In this study, Bombyx mori N cell line (BmN) were used to explore effects of NaF on insect cells. We found that 8 h (hrs) culture with high concentration of NaF (≥1 mM) induced significantly morphological changes. Dose-response curves of 72 h continuously cultured BmN treated with NaF showed that the half inhibitory concentration (IC{sub 50}) value was 56.60 μM. Treatment of BmN with 100 and 300 μM of NaF induced apoptosis and necrosis. 2-D electrophoresis of whole cell extracted from BmN showed that treatment with 300 μM NaF up-regulated 32 proteins and down-regulated 11 proteins when compared with controls. We identified 5 different proteins by MALDI-TOF MS, and 4 of them were identified for the first time, including 2 up-regulated proteins (mitochondrial aldehyde dehydrogenase ALDH2 and prohibitin protein WPH) and 2 down-regulated proteins (calreticulin precursor CRT and DNA supercoiling factor SCF). These observations were further confirmed by fluorescence quantitative PCR. Together, our data suggest that these target proteins could be regarded as targets influenced by NaF and also provide clues for studies on the response metabolism pathway under NaF stress.

  9. Proteomic Signatures of Thymomas

    Science.gov (United States)

    Shilo, Konstantin; Hitchcock, Charles L.; Freitas, Michael A.

    2016-01-01

    Based on the histological features and outcome, the current WHO classification separates thymomas into A, AB, B1, B2 and B3 subtypes. It is hypothesized that the type A thymomas are derived from the thymic medulla while the type B thymomas are derived from the cortex. Due to occasional histological overlap between the tumor subtypes creating difficulties in their separation, the aim of this study was to provide their proteomic characterization and identify potential immunohistochemical markers aiding in tissue diagnosis. Pair-wise comparison of neoplastic and normal thymus by liquid chromatography tandem mass spectrometry (LC-MS/MS) of formalin fixed paraffin embedded tissue revealed 61 proteins differentially expressed in thymomas compared to normal tissue. Hierarchical clustering showed distinct segregation of subtypes AB, B1 and B2 from that of A and B3. Most notably, desmoyokin, a protein that is encoded by the AHNAK gene, was associated with type A thymomas and medulla of normal thymus, by LC-MS/MS and immunohistochemistry. In this global proteomic characterization of the thymoma, several proteins unique to different thymic compartments and thymoma subtypes were identified. Among differentially expressed proteins, desmoyokin is a marker specific for thymic medulla and is potentially promising immunohistochemical marker in separation of type A and B3 thymomas. PMID:27832160

  10. Proteomic Signatures of Thymomas.

    Directory of Open Access Journals (Sweden)

    Linan Wang

    Full Text Available Based on the histological features and outcome, the current WHO classification separates thymomas into A, AB, B1, B2 and B3 subtypes. It is hypothesized that the type A thymomas are derived from the thymic medulla while the type B thymomas are derived from the cortex. Due to occasional histological overlap between the tumor subtypes creating difficulties in their separation, the aim of this study was to provide their proteomic characterization and identify potential immunohistochemical markers aiding in tissue diagnosis. Pair-wise comparison of neoplastic and normal thymus by liquid chromatography tandem mass spectrometry (LC-MS/MS of formalin fixed paraffin embedded tissue revealed 61 proteins differentially expressed in thymomas compared to normal tissue. Hierarchical clustering showed distinct segregation of subtypes AB, B1 and B2 from that of A and B3. Most notably, desmoyokin, a protein that is encoded by the AHNAK gene, was associated with type A thymomas and medulla of normal thymus, by LC-MS/MS and immunohistochemistry. In this global proteomic characterization of the thymoma, several proteins unique to different thymic compartments and thymoma subtypes were identified. Among differentially expressed proteins, desmoyokin is a marker specific for thymic medulla and is potentially promising immunohistochemical marker in separation of type A and B3 thymomas.

  11. Proteomic analysis indicates massive changes in metabolism prior to the inhibition of growth and photosynthesis of grapevine (Vitis vinifera L.) in response to water deficit.

    Science.gov (United States)

    Cramer, Grant R; Van Sluyter, Steve C; Hopper, Daniel W; Pascovici, Dana; Keighley, Tim; Haynes, Paul A

    2013-03-21

    Cabernet Sauvignon grapevines were exposed to a progressive, increasing water defict over 16 days. Shoot elongation and photosynthesis were measured for physiological responses to water deficit. The effect of water deficit over time on the abundance of individual proteins in growing shoot tips (including four immature leaves) was analyzed using nanoflow liquid chromatography - tandem mass spectrometry (nanoLC-MS/MS). Water deficit progressively decreased shoot elongation, stomatal conductance and photosynthesis after Day 4; 2277 proteins were identified by shotgun proteomics with an average CV of 9% for the protein abundance of all proteins. There were 472 out of 942 (50%) proteins found in all samples that were significantly affected by water deficit. The 472 proteins were clustered into four groups: increased and decreased abundance of early- and late-responding protein profiles. Vines sensed the water deficit early, appearing to acclimate to stress, because the abundance of many proteins changed before decreases in shoot elongation, stomatal conductance and photosynthesis. Predominant functional categories of the early-responding proteins included photosynthesis, glycolysis, translation, antioxidant defense and growth-related categories (steroid metabolism and water transport), whereas additional proteins for late-responding proteins were largely involved with transport, photorespiration, antioxidants, amino acid and carbohydrate metabolism. Proteomic responses to water deficit were dynamic with early, significant changes in abundance of proteins involved in translation, energy, antioxidant defense and steroid metabolism. The abundance of these proteins changed prior to any detectable decreases in shoot elongation, stomatal conductance or photosynthesis. Many of these early-responding proteins are known to be regulated by post-transcriptional modifications such as phosphorylation. The proteomics analysis indicates massive and substantial changes in plant

  12. Shotgun Metagenomic Sequencing Reveals Functional Genes and Microbiome Associated with Bovine Digital Dermatitis.

    Directory of Open Access Journals (Sweden)

    Martin Zinicola

    Full Text Available Metagenomic methods amplifying 16S ribosomal RNA genes have been used to describe the microbial diversity of healthy skin and lesion stages of bovine digital dermatitis (DD and to detect critical pathogens involved with disease pathogenesis. In this study, we characterized the microbiome and for the first time, the composition of functional genes of healthy skin (HS, active (ADD and inactive (IDD lesion stages using a whole-genome shotgun approach. Metagenomic sequences were annotated using MG-RAST pipeline. Six phyla were identified as the most abundant. Firmicutes and Actinobacteria were the predominant bacterial phyla in the microbiome of HS, while Spirochetes, Bacteroidetes and Proteobacteria were highly abundant in ADD and IDD. T. denticola-like, T. vincentii-like and T. phagedenis-like constituted the most abundant species in ADD and IDD. Recruitment plots comparing sequences from HS, ADD and IDD samples to the genomes of specific Treponema spp., supported the presence of T. denticola and T. vincentii in ADD and IDD. Comparison of the functional composition of HS to ADD and IDD identified a significant difference in genes associated with motility/chemotaxis and iron acquisition/metabolism. We also provide evidence that the microbiome of ADD and IDD compared to that of HS had significantly higher abundance of genes associated with resistance to copper and zinc, which are commonly used in footbaths to prevent and control DD. In conclusion, the results from this study provide new insights into the HS, ADD and IDD microbiomes, improve our understanding of the disease pathogenesis and generate unprecedented knowledge regarding the functional genetic composition of the digital dermatitis microbiome.

  13. Proteome Regulation during Olea europaea Fruit Development

    DEFF Research Database (Denmark)

    Bianco, Linda; Alagna, Fiammetta; Baldoni, Luciana

    2013-01-01

    occurring during these complex physiological processes. Methodology/Principal Findings: In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different...... if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies. Conclusions/Significance: This study identifies a number of proteins responsible for quality traits of cv...

  14. Accounting for Population Variation in Targeted Proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Grant M.; Monroe, Matthew E.; Rodriguez, Larissa; Wu, Chaochao; MacLean, Brendan; Smith, Richard D.; MacCoss, Michael J.; Payne, Samuel H.

    2014-01-03

    Individual proteomes typically differ from the reference human proteome at ~10,000 single amino acid variants. When viewed at the population scale, this individual variation results in a wide variety of protein sequences. In targeted proteomics experiments, such variability would confound accurate protein quantification. To facilitate researchers in identifying target peptides with high variability within the human population we have created the Population Variation plug-in for Skyline, which provides easy access to the polymorphisms stored in dbSNP. Given a set of peptides, the tool reports minor allele frequency for common polymorphisms. We highlight the importance of considering genetic variation by applying the tool to public datasets.

  15. Quantitative proteomics identifies altered O-GlcNAcylation of structural, synaptic and memory-associated proteins in Alzheimer's disease: Brain protein O-GlcNAcylation in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sheng [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Yang, Feng [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Petyuk, Vladislav A. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Shukla, Anil K. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Monroe, Matthew E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Gritsenko, Marina A. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Rodland, Karin D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Smith, Richard D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Qian, Wei-Jun [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Gong, Cheng-Xin [New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York USA; Liu, Tao [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA

    2017-07-28

    Protein modification by O-linked beta-N-acetylglucosamine (O-GlcNAc) is emerging as an important factor in the pathogenesis of sporadic Alzheimer’s disease. Herein we report the most comprehensive, quantitative proteomics analysis for protein O-GlcNAcylation in post-mortem human brains with and without Alzheimer’s using isobaric tandem mass tags labeling, chemoenzymatic photocleavage enrichment and liquid chromatography coupled to mass spectrometry. A total of 1,850 O-GlcNAc peptides covering 1,094 O-GlcNAcylation sites were identified from 530 proteins in the human brain. 128 O-GlcNAc peptides covering 78 proteins were altered significantly in Alzheimer’s brain as compared to controls (q<0.05). Moreover, alteration of the O-GlcNAc peptide abundance could be attributed more to O-GlcNAcylation level than to protein level changes. The altered O-GlcNAcylated proteins belong to several structural and functional categories, including synaptic proteins, cytoskeleton proteins, and memory-associated proteins. These findings suggest that dysregulation of O-GlcNAcylation of multiple brain proteins may be involved in the development of sporadic Alzheimer’s disease.

  16. Proteomic Analysis of Intact Flagella of Procyclic Trypanosoma brucei Cells Identifies Novel Flagellar Proteins with Unique Sub-localization and Dynamics*

    Science.gov (United States)

    Subota, Ines; Julkowska, Daria; Vincensini, Laetitia; Reeg, Nele; Buisson, Johanna; Blisnick, Thierry; Huet, Diego; Perrot, Sylvie; Santi-Rocca, Julien; Duchateau, Magalie; Hourdel, Véronique; Rousselle, Jean-Claude; Cayet, Nadège; Namane, Abdelkader; Chamot-Rooke, Julia; Bastin, Philippe

    2014-01-01

    Cilia and flagella are complex organelles made of hundreds of proteins of highly variable structures and functions. Here we report the purification of intact flagella from the procyclic stage of Trypanosoma brucei using mechanical shearing. Structural preservation was confirmed by transmission electron microscopy that showed that flagella still contained typical elements such as the membrane, the axoneme, the paraflagellar rod, and the intraflagellar transport particles. It also revealed that flagella severed below the basal body, and were not contaminated by other cytoskeletal structures such as the flagellar pocket collar or the adhesion zone filament. Mass spectrometry analysis identified a total of 751 proteins with high confidence, including 88% of known flagellar components. Comparison with the cell debris fraction revealed that more than half of the flagellum markers were enriched in flagella and this enrichment criterion was taken into account to identify 212 proteins not previously reported to be associated to flagella. Nine of these were experimentally validated including a 14-3-3 protein not yet reported to be associated to flagella and eight novel proteins termed FLAM (FLAgellar Member). Remarkably, they localized to five different subdomains of the flagellum. For example, FLAM6 is restricted to the proximal half of the axoneme, no matter its length. In contrast, FLAM8 is progressively accumulating at the distal tip of growing flagella and half of it still needs to be added after cell division. A combination of RNA interference and Fluorescence Recovery After Photobleaching approaches demonstrated very different dynamics from one protein to the other, but also according to the stage of construction and the age of the flagellum. Structural proteins are added to the distal tip of the elongating flagellum and exhibit slow turnover whereas membrane proteins such as the arginine kinase show rapid turnover without a detectible polarity. PMID:24741115

  17. Proteomic analysis of intact flagella of procyclic Trypanosoma brucei cells identifies novel flagellar proteins with unique sub-localization and dynamics.

    Science.gov (United States)

    Subota, Ines; Julkowska, Daria; Vincensini, Laetitia; Reeg, Nele; Buisson, Johanna; Blisnick, Thierry; Huet, Diego; Perrot, Sylvie; Santi-Rocca, Julien; Duchateau, Magalie; Hourdel, Véronique; Rousselle, Jean-Claude; Cayet, Nadège; Namane, Abdelkader; Chamot-Rooke, Julia; Bastin, Philippe

    2014-07-01

    Cilia and flagella are complex organelles made of hundreds of proteins of highly variable structures and functions. Here we report the purification of intact flagella from the procyclic stage of Trypanosoma brucei using mechanical shearing. Structural preservation was confirmed by transmission electron microscopy that showed that flagella still contained typical elements such as the membrane, the axoneme, the paraflagellar rod, and the intraflagellar transport particles. It also revealed that flagella severed below the basal body, and were not contaminated by other cytoskeletal structures such as the flagellar pocket collar or the adhesion zone filament. Mass spectrometry analysis identified a total of 751 proteins with high confidence, including 88% of known flagellar components. Comparison with the cell debris fraction revealed that more than half of the flagellum markers were enriched in flagella and this enrichment criterion was taken into account to identify 212 proteins not previously reported to be associated to flagella. Nine of these were experimentally validated including a 14-3-3 protein not yet reported to be associated to flagella and eight novel proteins termed FLAM (FLAgellar Member). Remarkably, they localized to five different subdomains of the flagellum. For example, FLAM6 is restricted to the proximal half of the axoneme, no matter its length. In contrast, FLAM8 is progressively accumulating at the distal tip of growing flagella and half of it still needs to be added after cell division. A combination of RNA interference and Fluorescence Recovery After Photobleaching approaches demonstrated very different dynamics from one protein to the other, but also according to the stage of construction and the age of the flagellum. Structural proteins are added to the distal tip of the elongating flagellum and exhibit slow turnover whereas membrane proteins such as the arginine kinase show rapid turnover without a detectible polarity. © 2014 by The

  18. Nm23/nucleoside diphosphate kinase-A as a potent prognostic marker in invasive pancreatic ductal carcinoma identified by proteomic analysis of laser micro-dissected formalin-fixed paraffin-embedded tissue

    Directory of Open Access Journals (Sweden)

    Takadate Tatsuyuki

    2012-06-01

    Full Text Available Abstract Background Pancreatic cancer is among the most lethal malignancies worldwide. This study aimed to identify a novel prognostic biomarker, facilitating treatment selection, using mass spectrometry (MS-based proteomic analysis with formalin-fixed paraffin-embedded (FFPE tissue. Results The two groups with poor prognosis (n = 4 and with better prognosis (n = 4 had been carefully chosen among 96 resected cases of pancreatic cancer during 1998 to 2007 in Tohoku University Hospital. Although those 2 groups had adjusted background (UICC-Stage IIB, Grade2, R0, gemcitabine adjuvant, there was a significant difference in postoperative mean survival time (poor 21.0 months, better 58.1 months, P = 0.0067. Cancerous epithelial cells collected from FFPE tissue sections by laser micro-dissection (LMD were processed for liquid chromatography-tandem mass spectrometry (LC-MS/MS. In total, 1099 unique proteins were identified and 6 proteins showed different expressions in the 2 groups by semi-quantitative comparison. Among these 6 proteins, we focused on Nm23/Nucleoside Diphosphate Kinase A (NDPK-A and immunohistochemically confirmed its expression in the cohort of 96 cases. Kaplan-Meier analysis showed high Nm23/NDPK-A expression to correlate with significantly worse overall survival (P = 0.0103. Moreover, in the multivariate Cox regression model, Nm23/NDPK-A over-expression remained an independent predictor of poor survival with a hazard ratio of 1.97 (95% CI 1.16-3.56, P = 0.0110. Conclusions We identified 6 candidate prognostic markers for postoperative pancreatic cancer using FFPE tissues and immunohistochemically demonstrated high Nm23/NDPK-A expression to be a useful prognostic marker for pancreatic cancer.

  19. [Proteomics and transfusion medicine].

    Science.gov (United States)

    Lion, N; Prudent, M; Crettaz, D; Tissot, J-D

    2011-04-01

    The term "proteomics" covers tools and techniques that are used to analyze and characterize complex mixtures of proteins from various biological samples. In this short review, a typical proteomic approach, related to the study of particular and illustrative situation related to transfusion medicine is reported. This "case report" will allow the reader to be familiar with a practical proteomic approach of a real situation, and will permit to describe the tools that are usually used in proteomic labs, and, in a second part, to present various proteomic applications in transfusion medicine. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  20. A Guide to Instruction in the Shooting Sports-Rifles; Air Rifles; Shotguns; Pistols; Hunter Safety.

    Science.gov (United States)

    Niemeyer, Roy K.; And Others

    Prepared for instruction in the use of rifles, air guns, shotguns, pistols, and hunter safety, this guide supplements other materials which are available from the National Rifle Association of America, the National Shooting Sports Foundation, the American Association for Health, Physical Education, and Recreation, industry, and other sources. The…

  1. Proteomic screen in the simple metazoan Hydra identifies 14-3-3 binding proteins implicated in cellular metabolism, cytoskeletal organisation and Ca2+ signalling

    Directory of Open Access Journals (Sweden)

    Imhof Axel

    2007-07-01

    Full Text Available Abstract Background 14-3-3 proteins have been implicated in many signalling mechanisms due to their interaction with Ser/Thr phosphorylated target proteins. They are evolutionarily well conserved in eukaryotic organisms from single celled protozoans and unicellular algae to plants and humans. A diverse array of target proteins has been found in higher plants and in human cell lines including proteins involved in cellular metabolism, apoptosis, cytoskeletal organisation, secretion and Ca2+ signalling. Results We found that the simple metazoan Hydra has four 14-3-3 isoforms. In order to investigate whether the diversity of 14-3-3 target proteins is also conserved over the whole animal kingdom we isolated 14-3-3 binding proteins from Hydra vulgaris using a 14-3-3-affinity column. We identified 23 proteins that covered most of the above-mentioned groups. We also isolated several novel 14-3-3 binding proteins and the Hydra specific secreted fascin-domain-containing protein PPOD. In addition, we demonstrated that one of the 14-3-3 isoforms, 14-3-3 HyA, interacts with one Hydra-Bcl-2 like protein in vitro. Conclusion Our results indicate that 14-3-3 proteins have been ubiquitous signalling components since the start of metazoan evolution. We also discuss the possibility that they are involved in the regulation of cell numbers in response to food supply in Hydra.

  2. Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing

    Directory of Open Access Journals (Sweden)

    Chia Sing eChan

    2015-03-01

    Full Text Available The Sungai Klah (SK hot spring is the second hottest geothermal spring in Malaysia. This hot spring is a shallow, 150-meter-long, fast-flowing stream, with temperatures varying from 50 to 110°C and a pH range of 7.0 to 9.0. Hidden within a wooded area, the SK hot spring is continually fed by plant litter, resulting in a relatively high degree of total organic content (TOC. In this study, a sample taken from the middle of the stream was analyzed at the 16S rRNA V3−V4 region by amplicon metagenome sequencing. Over 35 phyla were detected by analyzing the 16S rRNA data. Firmicutes and Proteobacteria represented approximately 57% of the microbiome. Approximately 70% of the detected thermophiles were strict anaerobes; however, Hydrogenobacter spp., obligate chemolithotrophic thermophiles, represented one of the major taxa. Several thermophilic photosynthetic microorganisms and acidothermophiles were also detected. Most of the phyla identified by 16S rRNA were also found using the shotgun metagenome approaches. The carbon, sulfur, and nitrogen metabolism within the SK hot spring community were evaluated by shotgun metagenome sequencing, and the data revealed diversity in terms of metabolic activity and dynamics. This hot spring has a rich diversified phylogenetic community partly due to its natural environment (plant litter, high TOC, and a shallow stream and geochemical parameters (broad temperature and pH range. It is speculated that symbiotic relationships occur between the members of the community.

  3. Pigs in sequence space: A 0.66X coverage pig genome survey based on shotgun sequencing

    Directory of Open Access Journals (Sweden)

    Li Wei

    2005-05-01

    Full Text Available Abstract Background Comparative whole genome analysis of Mammalia can benefit from the addition of more species. The pig is an obvious choice due to its economic and medical importance as well as its evolutionary position in the artiodactyls. Results We have generated ~3.84 million shotgun sequences (0.66X coverage from the pig genome. The data are hereby released (NCBI Trace repository with center name "SDJVP", and project name "Sino-Danish Pig Genome Project" together with an initial evolutionary analysis. The non-repetitive fraction of the sequences was aligned to the UCSC human-mouse alignment and the resulting three-species alignments were annotated using the human genome annotation. Ultra-conserved elements and miRNAs were identified. The results show that for each of these types of orthologous data, pig is much closer to human than mouse is. Purifying selection has been more efficient in pig compared to human, but not as efficient as in mouse, and pig seems to have an isochore structure most similar to the structure in human. Conclusion The addition of the pig to the set of species sequenced at low coverage adds to the understanding of selective pressures that have acted on the human genome by bisecting the evolutionary branch between human and mouse with the mouse branch being approximately 3 times as long as the human branch. Additionally, the joint alignment of the shot-gun sequences to the human-mouse alignment offers the investigator a rapid way to defining specific regions for analysis and resequencing.

  4. Identification of carbonylated lipids from different phospholipid classes by shotgun and LC-MS lipidomics.

    Science.gov (United States)

    Ni, Zhixu; Milic, Ivana; Fedorova, Maria

    2015-07-01

    Oxidized lipids play a significant role in the pathogenesis of numerous oxidative stress-related human disorders, such as atherosclerosis, obesity, inflammation, and autoimmune diseases. Lipid peroxidation, induced by reactive oxygen and nitrogen species, yields a high variety of modified lipids. Among them, carbonylated lipid peroxidation products (oxoLPP), formed by oxidation of the fatty acid moiety yielding aldehydes or ketones (carbonyl groups), are electrophilic compounds that are able to modify nucleophilic substrates like proteins, nucleic acid, and aminophospholipids. Some carbonylated phosphatidylcholines possess even pro-inflammatory activities. However, little is known about oxoLPP derived from other phospholipid (PL) classes. Here, we present a new analytical strategy based on the mass spectrometry (MS) of PL-oxoLPP derivatized with 7-(diethylamino)coumarin-3-carbohydrazide (CHH). Shotgun MS revealed many oxoLPP derived from in vitro oxidized glycerophosphatidylglycerols (PG, 31), glycerophosphatidylcholine (PC, 23), glycerophosphatidylethanolamine (PE, 34), glycerophosphatidylserines (PS, 7), glycerophosphatidic acids (PA, 17), and phosphatidylinositiolphosphates (PIP, 6) vesicles. This data were used to optimize LipidXplorer-assisted identification, and a python-based post-processing script was developed to increase both throughput and accuracy. When applied to full lipid extracts from rat primary cardiomyocytes treated with peroxynitrite donor SIN-1, ten PL-bound oxoLPP were unambiguously identified by LC-MS, including two PC-, two PE-, one PG-, two PS-, and three PA-derived species. Some of the well-known carbonylated PC were detected, while most PL-oxoLPP were shown for the first time.

  5. Proteome Analysis Identifies the Dpr Protein of Streptococcus mutans as an Important Factor in the Presence of Early Streptococcal Colonizers of Tooth Surfaces

    Science.gov (United States)

    Yoshida, Akihiro; Niki, Mamiko; Yamamoto, Yuji; Yasunaga, Ai; Ansai, Toshihiro

    2015-01-01

    Oral streptococci are primary colonizers of tooth surfaces and Streptococcus mutans is the principal causative agent of dental caries in humans. A number of proteins are involved in the formation of monospecies biofilms by S. mutans. This study analyzed the protein expression profiles of S. mutans biofilms formed in the presence or absence of S. gordonii, a pioneer colonizer of the tooth surface, by two-dimensional gel electrophoresis (2-DE). After identifying S. mutans proteins by Mass spectrometric analysis, their expression in the presence of S. gordonii was analyzed. S. mutans was inoculated with or without S. gordonii DL1. The two species were compartmentalized using 0.2-μl Anopore membranes. The biofilms on polystyrene plates were harvested, and the solubilized proteins were separated by 2-DE. When S. mutans biofilms were formed in the presence of S. gordonii, the peroxide resistance protein Dpr of the former showed 4.3-fold increased expression compared to biofilms that developed in the absence of the pioneer colonizer. In addition, we performed a competition assay using S. mutans antioxidant protein mutants together with S. gordonii and other initial colonizers. Growth of the dpr-knockout S. mutans mutant was significantly inhibited by S. gordonii, as well as by S. sanguinis. Furthermore, a cell viability assay revealed that the viability of the dpr-defective mutant was significantly attenuated compared to the wild-type strain when co-cultured with S. gordonii. Therefore, these results suggest that Dpr might be one of the essential proteins for S. mutans survival on teeth in the presence of early colonizing oral streptococci. PMID:25816242

  6. Network-based analysis of proteomic profiles

    KAUST Repository

    Wong, Limsoon

    2016-01-26

    Mass spectrometry (MS)-based proteomics is a widely used and powerful tool for profiling systems-wide protein expression changes. It can be applied for various purposes, e.g. biomarker discovery in diseases and study of drug responses. Although RNA-based high-throughput methods have been useful in providing glimpses into the underlying molecular processes, the evidences they provide are indirect. Furthermore, RNA and corresponding protein levels have been known to have poor correlation. On the other hand, MS-based proteomics tend to have consistency issues (poor reproducibility and inter-sample agreement) and coverage issues (inability to detect the entire proteome) that need to be urgently addressed. In this talk, I will discuss how these issues can be addressed by proteomic profile analysis techniques that use biological networks (especially protein complexes) as the biological context. In particular, I will describe several techniques that we have been developing for network-based analysis of proteomics profile. And I will present evidence that these techniques are useful in identifying proteomics-profile analysis results that are more consistent, more reproducible, and more biologically coherent, and that these techniques allow expansion of the detected proteome to uncover and/or discover novel proteins.

  7. Embryology in the era of proteomics.

    Science.gov (United States)

    Katz-Jaffe, Mandy G; McReynolds, Susanna

    2013-03-15

    Proteomic technologies have begun providing evidence that viable embryos possess unique protein profiles. Some of these potential protein biomarkers have been identified as extracellular and could be used in the development of a noninvasive quantitative method for embryo assessment. The field of assisted reproductive technologies would benefit from defining the human embryonic proteome and secretome, thereby expanding our current knowledge of embryonic cellular processes. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Integration of conventional quantitative and phospho-proteomics reveals new elements in activated Jurkat T-cell receptor pathway maintenance.

    Science.gov (United States)

    Jouy, Florent; Müller, Stephan A; Wagner, Juliane; Otto, Wolfgang; von Bergen, Martin; Tomm, Janina M

    2015-01-01

    Recent years have seen a constant development of tools for the global assessment of phosphoproteins. Here, we outline a concept for integrating approaches for quantitative proteomics and phosphoproteomics. The strategy was applied to the analysis of changes in signalling and protein synthesis occurring after activation of the T-cell receptor (TCR) pathway in a T-cell line (Jurkat cells). For this purpose, peptides were obtained from four biological replicates of activated and control Jurkat T-cells and phosphopeptides enriched via a TiO2-based chromatographic step. Both phosphopeptide-enriched and flow-through fractions were analyzed by LC-MS. We observed 1314 phosphopeptides in the enriched fraction whereas 19 were detected in the flow-through, enabling the quantification of 414 and eight phosphoproteins in the respective fractions. Pathway analysis revealed the differential regulation of many metabolic pathways. Among the quantified proteins, 11 kinases with known TCR-related function were detected. A kinase-substrate database search for the phosphosites identified also confirmed the activity of a further ten kinases. In total, these two approaches provided evidence of 19 unique TCR-related kinases. The combination of phosphoproteomics and conventional quantitative shotgun analysis leads to a more comprehensive assessment of the signalling networks needed for the maintenance of the activated status of Jurkat T-cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Comparative proteomic analysis of the aging soleus and extensor digitorum longus rat muscles using TMT labeling and mass spectrometry.

    Science.gov (United States)

    Chaves, Daniela F S; Carvalho, Paulo C; Lima, Diogo B; Nicastro, Humberto; Lorenzeti, Fábio M; Siqueira-Filho, Mário; Hirabara, Sandro M; Alves, Paulo H M; Moresco, James J; Yates, John R; Lancha, Antonio H

    2013-10-04

    Sarcopenia describes an age-related decline in skeletal muscle mass, strength, and function that ultimately impairs metabolism and leads to poor balance, frequent falling, limited mobility, and a reduction in quality of life. Here we investigate the pathogenesis of sarcopenia through a proteomic shotgun approach. In brief, we employed tandem mass tags to quantitate and compare the protein profiles obtained from young versus old rat slow-twitch type of muscle (soleus) and a fast-twitch type of muscle (extensor digitorum longus, EDL). Our results disclose 3452 and 1848 proteins identified from soleus and EDL muscles samples, of which 78 and 174 were found to be differentially expressed, respectively. In general, most of the proteins were structural related and involved in energy metabolism, oxidative stress, detoxification, or transport. Aging affected soleus and EDL muscles differently, and several proteins were regulated in opposite ways. For example, pyruvate kinase had its expression and activity different in both soleus and EDL muscles. We were able to verify with existing literature many of our differentially expressed proteins as candidate aging biomarkers and, most importantly, disclose several new candidate biomarkers such as the glioblastoma amplified sequence, zero β-globin, and prolargin.

  10. ChromEval: a software application for the rapid evaluation of HPLC system performance in proteomic applications.

    Science.gov (United States)

    Sigmon, Ian; Lee, Lik Wee; Chang, Deborah K; Krusberski, Nicolle; Cohen, Daniella; Eng, Jimmy K; Martin, Daniel B

    2010-06-15

    Mass spectrometry-based proteomics is typically performed using high performance liquid chromatography (HPLC) to introduce peptides into the instrument via electrospray ionization. A variety of configurations exist with varying degrees of precision and cost, but the ultimate goal is the reproducible delivery of peptides in well-separated elution peaks. It is well-known that the quality of chromatography can have a dramatic effect on sample identification as well as run-to-run reproducibility, which is especially important for quantitative analyses. Despite the importance of the HPLC system for both shotgun and targeted proteomics, there are few tools available to monitor HPLC performance. In this paper, we describe a new open-source software application, named ChromEval, to allow rapid assessment of HPLC performance, as well as to provide other metrics of mass spectrometer performance, including mass accuracy calibration. ChromEval permits the user to visually monitor the elution of a set of standard peptides in quality control runs interspersed among a regular workflow. To perform these tasks, ChromEval searches mzXML files using Tandem and presents the peptide results in a graphical user interface (GUI) that allows fast assessment of chromatography by visualization of superimposed elution peaks. This tool facilitates the identification and troubleshooting of chromatography problems such as retention time shifts and variance in sample loading due to autosampler error. It also provides crude but consistent metrics of instrument performance including mass accuracy calibration and number of peptides identified from the standard mixture. ChromEval generates easily interpretable data quickly and thereby enables go/no-go decision making during intensive instrument operation.

  11. Proteomic analysis of the secretory response of Aspergillus niger to D-maltose and D-xylose.

    Directory of Open Access Journals (Sweden)

    José Miguel P Ferreira de Oliveira

    Full Text Available Fungi utilize polysaccharide substrates through extracellular digestion catalyzed by secreted enzymes. Thus far, protein secretion by the filamentous fungus Aspergillus niger has mainly been studied at the level of individual proteins and by genome and transcriptome analyses. To extend these studies, a complementary proteomics approach was applied with the aim to investigate the changes in secretome and microsomal protein composition resulting from a shift to a high level secretion condition. During growth of A. niger on D-sorbitol, small amounts of D-maltose or D-xylose were used as inducers of the extracellular amylolytic and xylanolytic enzymes. Upon induction, protein compositions in the extracellular broth as well as in enriched secretory organelle (microsomal fractions were analyzed using a shotgun proteomics approach. In total 102 secreted proteins and 1,126 microsomal proteins were identified in this study. Induction by D-maltose or D-xylose resulted in the increase in specific extracellular enzymes, such as glucoamylase A on D-maltose and β-xylosidase D on D-xylose, as well as of microsomal proteins. This reflects the differential expression of selected genes coding for dedicated extracellular enzymes. As expected, the addition of extra D-sorbitol had no effect on the expression of carbohydrate-active enzymes, compared to addition of D-xylose or D-maltose. Furthermore, D-maltose induction caused an increase in microsomal proteins related to translation (e.g., Rpl15 and vesicular transport (e.g., the endosomal-cargo receptor Erv14. Millimolar amounts of the inducers D-maltose and D-xylose are sufficient to cause a direct response in specific protein expression levels. Also, after induction by D-maltose or D-xylose, the induced enzymes were found in microsomes and extracellular. In agreement with our previous findings for D-xylose induction, D-maltose induction leads to recruitment of proteins involved in proteasome-mediated degradation.

  12. Proteomics: a subcellular look at spermatozoa

    Directory of Open Access Journals (Sweden)

    Yadav Satya P

    2011-03-01

    Full Text Available Abstract Background Male-factor infertility presents a vexing problem for many reproductively active couples. Many studies have focused on abnormal sperm parameters. Recent advances in proteomic techniques, especially in mass spectrometry, have aided in the study of sperm and more specifically, sperm proteins. The aim of this study was to review the current literature on the various proteomic techniques, and their usefulness in diagnosing sperm dysfunction and potential applications in the clinical setting. Methods Review of PubMed database. Key words: spermatozoa, proteomics, protein, proteome, 2D-PAGE, mass spectrometry. Results Recently employed proteomic methods, such as two-dimensional polyacrylamide gel electrophoresis, mass spectrometry, and differential in gel electrophoresis, have identified numerous sperm-specific proteins. They also have provided a further understanding of protein function involved in sperm processes and for the differentiation between normal and abnormal states. In addition, studies on the sperm proteome have demonstrated the importance of post-translational modifications, and their ability to bring about physiological changes in sperm function. No longer do researchers believe that in order for them to elucidate the biochemical functions of genes, mere knowledge of the human genome sequence is sufficient. Moreover, a greater understanding of the physiological function of every protein in the tissue-specific proteome is essential in order to unravel the biological display of the human genome. Conclusion Recent advances in proteomic techniques have provided insight into sperm function and dysfunction. Several multidimensional separation techniques can be utilized to identify and characterize spermatozoa. Future developments in bioinformatics can further assist researchers in understanding the vast amount of data collected in proteomic studies. Moreover, such advances in proteomics may help to decipher metabolites

  13. Elucidation of taste- and odor-producing bacteria and toxigenic cyanobacteria in a Midwestern drinking water supply reservoir by shotgun metagenomics analysis

    Science.gov (United States)

    Otten, Timothy; Graham, Jennifer L.; Harris, Theodore D.; Dreher, Theo

    2016-01-01

    While commonplace in clinical settings, DNA-based assays for identification or enumeration of drinking water pathogens and other biological contaminants remain widely unadopted by the monitoring community. In this study, shotgun metagenomics was used to identify taste-and-odor producers and toxin-producing cyanobacteria over a 2-year period in a drinking water reservoir. The sequencing data implicated several cyanobacteria, including Anabaena spp.,Microcystis spp., and an unresolved member of the order Oscillatoriales as the likely principal producers of geosmin, microcystin, and 2-methylisoborneol (MIB), respectively. To further demonstrate this, quantitative PCR (qPCR) assays targeting geosmin-producing Anabaena and microcystin-producing Microcystis were utilized, and these data were fitted using generalized linear models and compared with routine monitoring data, including microscopic cell counts, sonde-based physicochemical analyses, and assays of all inorganic and organic nitrogen and phosphorus forms and fractions. The qPCR assays explained the greatest variation in observed geosmin (adjusted R2 = 0.71) and microcystin (adjusted R2 = 0.84) concentrations over the study period, highlighting their potential for routine monitoring applications. The origin of the monoterpene cyclase required for MIB biosynthesis was putatively linked to a periphytic cyanobacterial mat attached to the concrete drinking water inflow structure. We conclude that shotgun metagenomics can be used to identify microbial agents involved in water quality deterioration and to guide PCR assay selection or design for routine monitoring purposes. Finally, we offer estimates of microbial diversity and metagenomic coverage of our data sets for reference to others wishing to apply shotgun metagenomics to other lacustrine systems.

  14. Label-Free Quantitative Proteomics of Embryogenic and Non-Embryogenic Callus during Sugarcane Somatic Embryogenesis.

    Science.gov (United States)

    Heringer, Angelo Schuabb; Barroso, Tatiana; Macedo, Amanda Ferreira; Santa-Catarina, Claudete; Souza, Gustavo Henrique Martins Ferreira; Floh, Eny Iochevet Segal; de Souza-Filho, Gonçalo Apolinário; Silveira, Vanildo

    2015-01-01

    The development of somatic cells in to embryogenic cells occurs in several stages and ends in somatic embryo formation, though most of these biochemical and molecular changes have yet to be elucidated. Somatic embryogenesis coupled with genetic transformation could be a biotechnological tool to improve potential crop yields potential in sugarcane cultivars. The objective of this study was to observe somatic embryo development and to identify differentially expressed proteins in embryogenic (E) and non-embryogenic (NE) callus during maturation treatment. E and NE callus were cultured on maturation culture medium supplemented with different concentrations (0.0, 0.75, 1.5 and 2.0 g L(-1)) of activated charcoal (AC). Somatic embryo formation and differential protein expression were evaluated at days 0 and 21 using shotgun proteomic analyses. Treatment with 1.5 g L(-1) AC resulted in higher somatic embryo maturation rates (158 somatic embryos in 14 days) in E callus but has no effect in NE callus. A total of 752 co-expressed proteins were identified through the SUCEST (The Sugarcane EST Project), including many housekeeping proteins. E callus showed 65 exclusive proteins on day 0, including dehydrogenase, desiccation-related protein, callose synthase 1 and nitric oxide synthase. After 21 days on maturation treatment, 14 exclusive proteins were identified in E callus, including catalase and secreted protein. NE callus showed 23 exclusive proteins on day 0 and 10 exclusive proteins after 21 days on maturation treatment, including many proteins related to protein degradation. The induction of maturation leads to somatic embryo development, which likely depends on the expression of specific proteins throughout the process, as seen in E callus under maturation treatment. On the other hand, some exclusive proteins can also specifically prevent of somatic embryos development, as seen in the NE callus.

  15. Label-Free Quantitative Proteomics of Embryogenic and Non-Embryogenic Callus during Sugarcane Somatic Embryogenesis.

    Directory of Open Access Journals (Sweden)

    Angelo Schuabb Heringer

    Full Text Available The development of somatic cells in to embryogenic cells occurs in several stages and ends in somatic embryo formation, though most of these biochemical and molecular changes have yet to be elucidated. Somatic embryogenesis coupled with genetic transformation could be a biotechnological tool to improve potential crop yields potential in sugarcane cultivars. The objective of this study was to observe somatic embryo development and to identify differentially expressed proteins in embryogenic (E and non-embryogenic (NE callus during maturation treatment. E and NE callus were cultured on maturation culture medium supplemented with different concentrations (0.0, 0.75, 1.5 and 2.0 g L(-1 of activated charcoal (AC. Somatic embryo formation and differential protein expression were evaluated at days 0 and 21 using shotgun proteomic analyses. Treatment with 1.5 g L(-1 AC resulted in higher somatic embryo maturation rates (158 somatic embryos in 14 days in E callus but has no effect in NE callus. A total of 752 co-expressed proteins were identified through the SUCEST (The Sugarcane EST Project, including many housekeeping proteins. E callus showed 65 exclusive proteins on day 0, including dehydrogenase, desiccation-related protein, callose synthase 1 and nitric oxide synthase. After 21 days on maturation treatment, 14 exclusive proteins were identified in E callus, including catalase and secreted protein. NE callus showed 23 exclusive proteins on day 0 and 10 exclusive proteins after 21 days on maturation treatment, including many proteins related to protein degradation. The induction of maturation leads to somatic embryo development, which likely depends on the expression of specific proteins throughout the process, as seen in E callus under maturation treatment. On the other hand, some exclusive proteins can also specifically prevent of somatic embryos development, as seen in the NE callus.

  16. The Drosophila melanogaster PeptideAtlas facilitates the use of peptide data for improved fly proteomics and genome annotation

    Directory of Open Access Journals (Sweden)

    King Nichole L

    2009-02-01

    Full Text Available Abstract Background Crucial foundations of any quantitative systems biology experiment are correct genome and proteome annotations. Protein databases compiled from high quality empirical protein identifications that are in turn based on correct gene models increase the correctness, sensitivity, and quantitative accuracy of systems biology genome-scale experiments. Results In this manuscript, we present the Drosophila melanogaster PeptideAtlas, a fly proteomics and genomics resource of unsurpassed depth. Based on peptide mass spectrometry data collected in our laboratory the portal http://www.drosophila-peptideatlas.org allows querying fly protein data observed with respect to gene model confirmation and splice site verification as well as for the identification of proteotypic peptides suited for targeted proteomics studies. Additionally, the database provides consensus mass spectra for observed peptides along with qualitative and quantitative information about the number of observations of a particular peptide and the sample(s in which it was observed. Conclusion PeptideAtlas is an open access database for the Drosophila community that has several features and applications that support (1 reduction of the complexity inherently associated with performing targeted proteomic studies, (2 designing and accelerating shotgun proteomics experiments, (3 confirming or questioning gene models, and (4 adjusting gene models such that they are in line with observed Drosophila peptides. While the database consists of proteomic data it is not required that the user is a proteomics expert.

  17. Elucidation of Taste- and Odor-Producing Bacteria and Toxigenic Cyanobacteria in a Midwestern Drinking Water Supply Reservoir by Shotgun Metagenomic Analysis.

    Science.gov (United States)

    Otten, Timothy G; Graham, Jennifer L; Harris, Theodore D; Dreher, Theo W

    2016-09-01

    While commonplace in clinical settings, DNA-based assays for identification or enumeration of drinking water pathogens and other biological contaminants remain widely unadopted by the monitoring community. In this study, shotgun metagenomics was used to identify taste-and-odor producers and toxin-producing cyanobacteria over a 2-year period in a drinking water reservoir. The sequencing data implicated several cyanobacteria, including Anabaena spp., Microcystis spp., and an unresolved member of the order Oscillatoriales as the likely principal producers of geosmin, microcystin, and 2-methylisoborneol (MIB), respectively. To further demonstrate this, quantitative PCR (qPCR) assays targeting geosmin-producing Anabaena and microcystin-producing Microcystis were utilized, and these data were fitted using generalized linear models and compared with routine monitoring data, including microscopic cell counts, sonde-based physicochemical analyses, and assays of all inorganic and organic nitrogen and phosphorus forms and fractions. The qPCR assays explained the greatest variation in observed geosmin (adjusted R(2) = 0.71) and microcystin (adjusted R(2) = 0.84) concentrations over the study period, highlighting their potential for routine monitoring applications. The origin of the monoterpene cyclase required for MIB biosynthesis was putatively linked to a periphytic cyanobacterial mat attached to the concrete drinking water inflow structure. We conclude that shotgun metagenomics can be used to identify microbial agents involved in water quality deterioration and to guide PCR assay selection or design for routine monitoring purposes. Finally, we offer estimates of microbial diversity and metagenomic coverage of our data sets for reference to others wishing to apply shotgun metagenomics to other lacustrine systems. Cyanobacterial toxins and microbial taste-and-odor compounds are a growing concern for drinking water utilities reliant upon surface water resources. Specific

  18. Proteomic survey of metabolic pathways in rice.

    Science.gov (United States)

    Koller, Antonius; Washburn, Michael P; Lange, B Markus; Andon, Nancy L; Deciu, Cosmin; Haynes, Paul A; Hays, Lara; Schieltz, David; Ulaszek, Ryan; Wei, Jing; Wolters, Dirk; Yates, John R

    2002-09-03

    A systematic proteomic analysis of rice (Oryza sativa) leaf, root, and seed tissue using two independent technologies, two-dimensional gel electrophoresis followed by tandem mass spectrometry and multidimensional protein identification technology, allowed the detection and identification of 2,528 unique proteins, which represents the most comprehensive proteome exploration to date. A comparative display of the expression patterns indicated that enzymes involved in central metabolic pathways are present in all tissues, whereas metabolic specialization is reflected in the occurrence of a tissue-specific enzyme complement. For example, tissue-specific and subcellular compartment-specific isoforms of ADP-glucose pyrophosphorylase were detected, thus providing proteomic confirmation of the presence of distinct regulatory mechanisms involved in the biosynthesis and breakdown of separate starch pools in different tissues. In addition, several previously characterized allergenic proteins were identified in the seed sample, indicating the potential of proteomic approaches to survey food samples with regard to the occurrence of allergens.

  19. Online coupling of hydrophilic interaction/strong cation exchange/reversed-phase liquid chromatography with porous graphitic carbon liquid chromatography for simultaneous proteomics and N-glycomics analysis.

    Science.gov (United States)

    Zhao, Yun; Law, Henry C H; Zhang, Zaijun; Lam, Herman C; Quan, Quan; Li, Guohui; Chu, Ivan K

    2015-10-09

    In this study we developed a fully automated three-dimensional (3D) liquid chromatography methodology-comprising hydrophilic interaction separation as the first dimension, strong cation exchange fractionation as the second dimension, and low-pH reversed-phase (RP) separation as the third dimension-in conjunction downstream with additional complementary porous graphitic carbon separation, to capture non-retained hydrophilic analytes, for both shotgun proteomics and N-glycomics analyses. The performance of the 3D system alone was benchmarked through the analysis of the total lysate of Saccharomyces cerevisiae, leading to improved hydrophilic peptide coverage, from which we identified 19% and 24% more proteins and peptides, respectively, relative to those identified from a two-dimensional hydrophilic interaction liquid chromatography and low-pH RP chromatography (HILIC-RP) system over the same mass spectrometric acquisition time; consequently, the 3D platform also provided enhanced proteome and protein coverage. When we applied the integrated technology to analyses of the total lysate of primary cerebellar granule neurons, we characterized a total of 2201 proteins and 16,937 unique peptides for this primary cell line, providing one of its most comprehensive datasets. Our new integrated technology also exhibited excellent performance in the first N-glycomics analysis of cynomolgus monkey plasma; we successfully identified 122 proposed N-glycans and 135 N-glycosylation sites from 122 N-glycoproteins, and confirmed the presence of 38 N-glycolylneuraminic acid-containing N-glycans, a rare occurrence in human plasma, through tandem mass spectrometry for the first time. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Proteome analysis of Aspergillus ochraceus.

    Science.gov (United States)

    Rizwan, Muhammad; Miller, Ingrid; Tasneem, Fareeha; Böhm, Josef; Gemeiner, Manfred; Razzazi-Fazeli, Ebrahim

    2010-08-01

    Genome sequencing for many important fungi has begun during recent years; however, there is still some deficiency in proteome profiling of aspergilli. To obtain a comprehensive overview of proteins and their expression, a proteomic approach based on 2D gel electrophoresis and MALDI-TOF/TOF mass spectrometry was used to investigate A. ochraceus. The cell walls of fungi are exceptionally resistant to destruction, therefore two lysis protocols were tested: (1) lysis via manual grinding using liquid nitrogen, and (2) mechanical lysis via rapid agitation with glass beads using MagNalyser. Mechanical grinding with mortar and pestle using liquid nitrogen was found to be a more efficient extraction method for our purpose, resulting in extracts with higher protein content and a clear band pattern in SDS-PAGE. Two-dimensional electrophoresis gave a complex spot pattern comprising proteins of a broad range of isoelectric points and molecular masses. The most abundant spots were subjected to mass spectrometric analysis. We could identify 31 spots representing 26 proteins, most of them involved in metabolic processes and response to stress. Seventeen spots were identified by de novo sequencing due to a lack of DNA and protein database sequences of A. ochraceus. The proteins identified in our study have been reported for the first time in A. ochraceus and this represents the first proteomic approach with identification of major proteins, when the fungus was grown under submerged culture.

  1. Toward defining the anatomo-proteomic puzzle of the human brain: An integrative analysis.

    Science.gov (United States)

    Fernandez-Irigoyen, Joaquín; Labarga, Alberto; Zabaleta, Aintzane; de Morentin, Xabier Martínez; Perez-Valderrama, Estela; Zelaya, María Victoria; Santamaria, Enrique

    2015-10-01

    The human brain is exceedingly complex, constituted by billions of neurons and trillions of synaptic connections that, in turn, define ∼900 neuroanatomical subdivisions in the adult brain (Hawrylycz et al. An anatomically comprehensive atlas of the human brain transcriptome. Nature 2012, 489, 391-399). The human brain transcriptome has revealed specific regional transcriptional signatures that are regulated in a spatiotemporal manner, increasing the complexity of the structural and molecular organization of this organ (Kang et al. Spatio-temporal transcriptome of the human brain. Nature 2011, 478, 483-489). During the last decade, neuroproteomics has emerged as a powerful approach to profile neural proteomes using shotgun-based MS, providing complementary information about protein content and function at a global level. Here, we revise recent proteome profiling studies performed in human brain, with special emphasis on proteome mapping of anatomical macrostructures, specific subcellular compartments, and cerebrospinal fluid. Moreover, we have performed an integrative functional analysis of the protein compilation derived from these large-scale human brain proteomic studies in order to obtain a comprehensive view of human brain biology. Finally, we also discuss the potential contribution of our meta-analysis to the Chromosome-centric Human Proteome Project initiative. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. MULTI-DIMENSIONAL MASS SPECTROMETRY-BASED SHOTGUN LIPIDOMICS AND NOVEL STRATEGIES FOR LIPIDOMIC ANALYSES

    Science.gov (United States)

    Han, Xianlin; Yang, Kui; Gross, Richard W.

    2011-01-01

    Since our last comprehensive review on multi-dimensional mass spectrometry-based shotgun lipidomics (Mass Spectrom. Rev. 24 (2005), 367), many new developments in the field of lipidomics have occurred. These developments include new strategies and refinements for shotgun lipidomic approaches that use direct infusion, including novel fragmentation strategies, identification of multiple new informative dimensions for mass spectrometric interrogation, and the development of new bioinformatic approaches for enhanced identification and quantitation of the individual molecular constituents that comprise each cell’s lipidome. Concurrently, advances in liquid chromatography-based platforms and novel strategies for quantitative matrix-assisted laser desorption/ionization mass spectrometry for lipidomic analyses have been developed. Through the synergistic use of this repertoire of new mass spectrometric approaches, the power and scope of lipidomics has been greatly expanded to accelerate progress toward the comprehensive understanding of the pleiotropic roles of lipids in biological systems. PMID:21755525

  3. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads

    DEFF Research Database (Denmark)

    Wang, Zhiwen; Hobson, Neil; Galindo, Leonardo

    2012-01-01

    Flax (Linum usitatissimum) is an ancient crop that is widely cultivated as a source of fiber, oil and medicinally relevant compounds. To accelerate crop improvement, we performed whole-genome shotgun sequencing of the nuclear genome of flax. Seven paired-end libraries ranging in size from 300 bp ...... these results show that de novo assembly, based solely on whole-genome shotgun short-sequence reads, is an efficient means of obtaining nearly complete genome sequence information for some plant species....

  4. High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Ståhlman, Marcus; Ejsing, Christer S.; Tarasov, Kirill

    2009-01-01

    the absolute quantification of hundreds of molecular glycerophospholipid species, glycerolipid species, sphingolipid species and sterol lipids. Future applications in clinical cohort studies demand detailed lipid molecule information and the application of high-throughput lipidomics platforms. In this review...... we describe a novel high-throughput shotgun lipidomic platform based on 96-well robot-assisted lipid extraction, automated sample infusion by mircofluidic-based nanoelectrospray ionization, and quantitative multiple precursor ion scanning analysis on a quadrupole time-of-flight mass spectrometer...

  5. Comprehensive Evaluation of Toxoplasma gondii VEG and Neospora caninum LIV Genomes with Tachyzoite Stage Transcriptome and Proteome Defines Novel Transcript Features

    KAUST Repository

    Ramaprasad, Abhinay

    2015-04-13

    Toxoplasma gondii is an important protozoan parasite that infects all warm-blooded animals and causes opportunistic infections in immuno-compromised humans. Its closest relative, Neospora caninum, is an important veterinary pathogen that causes spontaneous abortion in livestock. Comparative genomics of these two closely related coccidians has been of particular interest to identify genes that contribute to varied host cell specificity and disease. Here, we describe a manual evaluation of these genomes based on strand-specific RNA sequencing and shotgun proteomics from the invasive tachyzoite stages of these two parasites. We have corrected predicted structures of over one third of the previously annotated gene models and have annotated untranslated regions (UTRs) in over half of the predicted protein-coding genes. We observe distinctly long UTRs in both the organisms, almost four times longer than other model eukaryotes. We have also identified a putative set of cis-natural antisense transcripts (cis-NATs) and long intergenic non-coding RNAs (lincRNAs). We have significantly improved the annotation quality in these genomes that would serve as a manually curated dataset for Toxoplasma and Neospora research communities.

  6. Comprehensive evaluation of Toxoplasma gondii VEG and Neospora caninum LIV genomes with tachyzoite stage transcriptome and proteome defines novel transcript features.

    Science.gov (United States)

    Ramaprasad, Abhinay; Mourier, Tobias; Naeem, Raeece; Malas, Tareq B; Moussa, Ehab; Panigrahi, Aswini; Vermont, Sarah J; Otto, Thomas D; Wastling, Jonathan; Pain, Arnab

    2015-01-01

    Toxoplasma gondii is an important protozoan parasite that infects all warm-blooded animals and causes opportunistic infections in immuno-compromised humans. Its closest relative, Neospora caninum, is an important veterinary pathogen that causes spontaneous abortion in livestock. Comparative genomics of these two closely related coccidians has been of particular interest to identify genes that contribute to varied host cell specificity and disease. Here, we describe a manual evaluation of these genomes based on strand-specific RNA sequencing and shotgun proteomics from the invasive tachyzoite stages of these two parasites. We have corrected predicted structures of over one third of the previously annotated gene models and have annotated untranslated regions (UTRs) in over half of the predicted protein-coding genes. We observe distinctly long UTRs in both the organisms, almost four times longer than other model eukaryotes. We have also identified a putative set of cis-natural antisense transcripts (cis-NATs) and long intergenic non-coding RNAs (lincRNAs). We have significantly improved the annotation quality in these genomes that would serve as a manually curated dataset for Toxoplasma and Neospora research communities.

  7. Proteomics of survival structures of fungal pathogens.

    Science.gov (United States)

    Loginov, Dmitry; Šebela, Marek

    2016-09-25

    Fungal pathogens are causal agents of numerous human, animal, and plant diseases. They employ various infection modes to overcome host defense systems. Infection mechanisms of different fungi have been subjected to many comprehensive studies. These investigations have been facilitated by the development of various '-omics' techniques, and proteomics has one of the leading roles in this regard. Fungal conidia and sclerotia could be considered the most important structures for pathogenesis as their germination is one of the first steps towards a host infection. They represent interesting objects for proteomic studies because of the presence of unique proteins with unexplored biotechnological potential required for pathogen viability, development and the subsequent host infection. Proteomic peculiarities of survival structures of different fungi, including those of biotechnological significance (e.g., Asperillus fumigatus, A. nidulans, Metarhizium anisopliae), in a dormant state, as well as changes in the protein production during early stages of fungal development are the subjects of the present review. We focused on biological aspects of proteomic studies of fungal survival structures rather than on an evaluation of proteomic approaches. For that reason, proteins that have been identified in this context are discussed from the point of view of their involvement in different biological processes and possible functions assigned to them. This is the first review paper summarizing recent advances in proteomics of fungal survival structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Embryology in the era of proteomics.

    Science.gov (United States)

    Katz-Jaffe, M G; Gardner, D K

    2007-09-01

    Currently, relatively little is known regarding the protein production of mammalian embryos. Unlike the genome, the proteome itself is dynamic reflecting both internal and external environmental stimuli. Until now the lack of sensitivity has remained a stumbling block for the global introduction of proteomics into the field of mammalian embryology. However, new developments in mass spectrometry have been revolutionary, utilizing protein profiling and peptide sequencing to elucidate underlying biological processes. The sensitivity of these platforms have allowed for the development of new protocols that are capable of profiling the proteome of individual mammalian oocytes and embryos. This information is fundamental to unravelling the complexity of embryo physiology including the dialogue between the developing embryo and its maternal environment. Such proteomic approaches are also assisting in the optimization of ART techniques, including oocyte cryopreservation and in vitro maturation. Embryo selection for transfer is another area of ART that should benefit in this era of proteomics. Currently, mammalian embryos are selected for transfer based on morphological grading systems. Although of great value, analysis of morphology alone cannot determine the embryo's physiological state or chromosomal complement. Subsequently, there is a need to identify in culture those embryos with the highest implantation potential. Proteomic analysis of the embryonic secretome (proteins produced by the embryo and secreted into the surrounding medium) followed by the identification of specific proteins critical for implantation, may lead to the development of a non-invasive viability assay to assist in the selection of embryos for transfer.

  9. Discovering and differentiating new and emerging clonal populations of Chlamydia trachomatis with a novel shotgun cell culture harvest assay.

    Science.gov (United States)

    Somboonna, Naraporn; Mead, Sally; Liu, Jessica; Dean, Deborah

    2008-03-01

    Chlamydia trachomatis is the leading cause of preventable blindness and bacterial sexually transmitted diseases worldwide. Plaque assays have been used to clonally segregate laboratory-adapted C. trachomatis strains from mixed infections, but no assays have been reported to segregate clones from recent clinical samples. We developed a novel shotgun cell culture harvest assay for this purpose because we found that recent clinical samples do not form plaques. Clones were strain-typed by using outer membrane protein A and 16S rRNA sequences. Surprisingly, ocular trachoma reference strain A/SA-1 contained clones of Chlamydophila abortus. C. abortus primarily infects ruminants and pigs and has never been identified in populations where trachoma is endemic. Three clonal variants of reference strain Ba/Apache-2 were also identified. Our findings reflect the importance of clonal isolation in identifying constituents of mixed infections containing new or emerging strains and of viable clones for research to more fully understand the dynamics of in vivo strain-mixing, evolution, and disease pathogenesis.

  10. Midpregnancy Marriage and Divorce: Why the Death of Shotgun Marriage Has Been Greatly Exaggerated.

    Science.gov (United States)

    Gibson-Davis, Christina M; Ananat, Elizabeth O; Gassman-Pines, Anna

    2016-12-01

    Conventional wisdom holds that births following the colloquially termed "shotgun marriage"-that is, births to parents who married between conception and the birth-are nearing obsolescence. To investigate trends in shotgun marriage, we matched North Carolina administrative data on nearly 800,000 first births among white and black mothers to marriage and divorce records. We found that among married births, midpregnancy-married births (our preferred term for shotgun-married births) have been relatively stable at about 10 % over the past quarter-century while increasing substantially for vulnerable population subgroups. In 2012, among black and white less-educated and younger women, midpregnancy-married births accounted for approximately 20 % to 25 % of married first births. The increasing representation of midpregnancy-married births among married births raises concerns about well-being among at-risk families because midpregnancy marriages may be quite fragile. Our analysis revealed, however, that midpregnancy marriages were more likely to dissolve only among more advantaged groups. Of those groups considered to be most at risk of divorce-namely, black women with lower levels of education and who were younger-midpregnancy marriages had the same or lower likelihood of divorce as preconception marriages. Our results suggest an overlooked resiliency in a type of marriage that has only increased in salience.

  11. The Succinated Proteome

    Energy Technology Data Exchange (ETDEWEB)

    Merkley, Eric D.; Metz, Thomas O.; Smith, Richard D.; Baynes, John; Frizell, Norma

    2014-03-30

    Succination is a chemical modification of cysteine in protein by the Krebs cycle intermediate, fumarate, yielding S-(2-succino)cysteine (2SC). Intracellular fumarate concentration and succination of proteins are increased by hyperpolarization of the inner mitochondrial membrane, in concert with mitochondrial, endoplasmic reticulum (ER) and oxidative stress in adipocytes grown in high glucose medium and in adipose tissue in obesity and diabetes. Increased succination of proteins is also detected in the kidney of a fumarase conditional knock-out mouse which develops renal tumors. Keap1, the gatekeeper of the antioxidant response, was identified as a major succinated protein in renal cancer cells, suggesting that succination may play a role in activation of the antioxidant response. A wide range of proteins is subject to succination, including enzymes, adipokines, cytoskeletal proteins and ER chaperones with functional cysteine residues. There is also significant overlap between succinated and glutathionylated proteins, and with proteins containing cysteine residues that are readily oxidized to the sulfenic (cysteic) acid. Succination of adipocyte proteins is inhibited by uncouplers, which discharge the mitochondrial membrane potential (Δψm) and by ER stress inhibitors. 2SC serves as a biomarker of mitochondrial stress or dysfunction in chronic diseases, such as obesity, diabetes and cancer, and recent studies suggest that succination is a mechanistic link between mitochondrial dysfunction, oxidative and ER stress, and cellular progression toward apoptosis. In this article, we review the history of the succinated proteome and the challenges associated with measuring this non-enzymatic post-translational modification of proteins by proteomics approaches.

  12. Proteomic analysis of Fusarium solani isolated from the Asian longhorned beetle, Anoplophora glabripennis.

    Directory of Open Access Journals (Sweden)

    Erin D Scully

    Full Text Available Wood is a highly intractable food source, yet many insects successfully colonize and thrive in this challenging niche. Overcoming the lignin barrier of wood is a key challenge in nutrient acquisition, but full depolymerization of intact lignin polymers has only been conclusively demonstrated in fungi and is not known to occur by enzymes produced by insects or bacteria. Previous research validated that lignocellulose and hemicellulose degradation occur within the gut of the wood boring insect, Anoplophora glabripennis (Asian longhorned beetle, and that a fungal species, Fusarium solani (ATCC MYA 4552, is consistently associated with the larval stage. While the nature of this relationship is unresolved, we sought to assess this fungal isolate's ability to degrade lignocellulose and cell wall polysaccharides and to extract nutrients from woody tissue. This gut-derived fungal isolate was inoculated onto a wood-based substrate and shotgun proteomics using Multidimensional Protein Identification Technology (MudPIT was employed to identify 400 expressed proteins. Through this approach, we detected proteins responsible for plant cell wall polysaccharide degradation, including proteins belonging to 28 glycosyl hydrolase families and several cutinases, esterases, lipases, pectate lyases, and polysaccharide deacetylases. Proteinases with broad substrate specificities and ureases were observed, indicating that this isolate has the capability to digest plant cell wall proteins and recycle nitrogenous waste under periods of nutrient limitation. Additionally, several laccases, peroxidases, and enzymes involved in extracellular hydrogen peroxide production previously implicated in lignin depolymerization were detected. In vitro biochemical assays were conducted to corroborate MudPIT results and confirmed that cellulases, glycosyl hydrolases, xylanases, laccases, and Mn- independent peroxidases were active in culture; however, lignin- and Mn- dependent

  13. Deciphering Clostridium tyrobutyricum Metabolism Based on the Whole-Genome Sequence and Proteome Analyses

    Science.gov (United States)

    Lee, Joungmin; Jang, Yu-Sin; Han, Mee-Jung; Kim, Jin Young

    2016-01-01

    ABSTRACT Clostridium tyrobutyricum is a Gram-positive anaerobic bacterium that efficiently produces butyric acid and is considered a promising host for anaerobic production of bulk chemicals. Due to limited knowledge on the genetic and metabolic characteristics of this strain, however, little progress has been made in metabolic engineering of this strain. Here we report the complete genome sequence of C. tyrobutyricum KCTC 5387 (ATCC 25755), which consists of a 3.07-Mbp chromosome and a 63-kbp plasmid. The results of genomic analyses suggested that C. tyrobutyricum produces butyrate from butyryl-coenzyme A (butyryl-CoA) through acetate reassimilation by CoA transferase, differently from Clostridium acetobutylicum, which uses the phosphotransbutyrylase-butyrate kinase pathway; this was validated by reverse transcription-PCR (RT-PCR) of related genes, protein expression levels, in vitro CoA transferase assay, and fed-batch fermentation. In addition, the changes in protein expression levels during the course of batch fermentations on glucose were examined by shotgun proteomics. Unlike C. acetobutylicum, the expression levels of proteins involved in glycolytic and fermentative pathways in C. tyrobutyricum did not decrease even at the stationary phase. Proteins related to energy conservation mechanisms, including Rnf complex, NfnAB, and pyruvate-phosphate dikinase that are absent in C. acetobutylicum, were identified. Such features explain why this organism can produce butyric acid to a much higher titer and better tolerate toxic metabolites. This study presenting the complete genome sequence, global protein expression profiles, and genome-based metabolic characteristics during the batch fermentation of C. tyrobutyricum will be valuable in designing strategies for metabolic engineering of this strain. PMID:27302759

  14. Characterisation of the canine faecal virome in healthy dogs and dogs with acute diarrhoea using shotgun metagenomics.

    Science.gov (United States)

    Moreno, Paloma S; Wagner, Josef; Mansfield, Caroline S; Stevens, Matthew; Gilkerson, James R; Kirkwood, Carl D

    2017-01-01

    The virome has been increasingly investigated in numerous animal species and in different sites of the body, facilitating the identification and discovery of a variety of viruses. In spite of this, the faecal virome of healthy dogs has not been investigated. In this study we describe the faecal virome of healthy dogs and dogs with acute diarrhoea in Australia, using a shotgun metagenomic approach. Viral sequences from a range of different virus families, including both RNA and DNA families, and known pathogens implicated in enteric disease were documented. Twelve viral families were identified, of which fou