WorldWideScience

Sample records for shot fast spin

  1. Moderately T2-weighted images obtained with the single-shot fast spin-echo technique. Differentiating between malignant and benign urinary obstructions

    International Nuclear Information System (INIS)

    Obuchi, Masao; Sugimoto, Hideharu; Kubota, Hayato; Yamamoto, Wakako; Kinebuchi, Yuko; Honda, Minoru; Takahara, Taro

    2002-01-01

    The purpose of this study was to determine whether a distinction could be made between benign and malignant urinary obstructions in moderately T 2 -weighted images obtained with the single-shot fast spin-echo technique. Forty-four lesions in 39 patients with urinary obstruction were evaluated with the single-shot fast spin-echo (SSFSE) technique with an effective TE of 90-100 ms and without fat saturation. Benign and malignant lesions were compared for the presence of ureteral wall thickening and a signal intensity relative to the proximal ureteral wall. Statistically significant differences were found between benign and malignant lesions in both morphologic change (P 2 -weighted SSFSE technique without fat saturation can accurately distinguish between benign and malignant urinary obstructions. (author)

  2. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    Science.gov (United States)

    England, Troy; Lilly, Michael; Curry, Matthew; Carr, Stephen; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will introduce two new amplifier topologies that provide excellent gain versus power tradeoffs using silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The AC HBT allows in-situ adjustment of power dissipation during an experiment and can provide gain in the millikelvin temperature regime while dissipating less than 500 nW. The AC Current Amplifier maximizes gain at nearly 800 A/A. We will also show results of using these amplifiers with SETs at 4 K. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout.

  3. Shot noise of spin current and spin transfer torque

    Science.gov (United States)

    Yu, Yunjin; Zhan, Hongxin; Wan, Langhui; Wang, Bin; Wei, Yadong; Sun, Qingfeng; Wang, Jian

    2013-04-01

    We report the theoretical investigation of the shot noise of the spin current (Sσ) and the spin transfer torque (Sτ) for non-collinear spin polarized transport in a spin-valve device which consists of a normal scattering region connected by two ferromagnetic electrodes (MNM system). Our theory was developed using the non-equilibrium Green’s function method, and general nonlinear Sσ - V and Sτ - V relations were derived as a function of the angle θ between the magnetizations of two leads. We have applied our theory to a quantum dot system with a resonant level coupled with two ferromagnetic electrodes. It was found that, for the MNM system, the auto-correlation of the spin current is enough to characterize the fluctuation of the spin current. For a system with three ferromagnetic layers, however, both auto-correlation and cross-correlation of the spin current are needed to characterize the noise of the spin current. For a quantum dot with a resonant level, the derivative of spin torque with respect to bias voltage is proportional to sinθ when the system is far away from resonance. When the system is near resonance, the spin transfer torque becomes a non-sinusoidal function of θ. The derivative of the noise of the spin transfer torque with respect to the bias voltage Nτ behaves differently when the system is near or far away from resonance. Specifically, the differential shot noise of the spin transfer torque Nτ is a concave function of θ near resonance while it becomes a convex function of θ far away from resonance. For certain bias voltages, the period Nτ(θ) becomes π instead of 2π. For small θ, it was found that the differential shot noise of the spin transfer torque is very sensitive to the bias voltage and the other system parameters.

  4. Single-shot readout of accumulation mode Si/SiGe spin qubits using RF reflectometry

    Science.gov (United States)

    Volk, Christian; Martins, Frederico; Malinowski, Filip; Marcus, Charles M.; Kuemmeth, Ferdinand

    Spin qubits based on gate-defined quantum dots are promising systems for realizing quantum computation. Due to their low concentration of nuclear-spin-carrying isotopes, Si/SiGe heterostructures are of particular interest. While high fidelities have been reported for single-qubit and two-qubit gate operations, qubit initialization and measurement times are relatively slow. In order to develop fast read-out techniques compatible with the operation of spin qubits, we characterize double and triple quantum dots confined in undoped Si/Si0.7Ge0.3 heterostructures using accumulation and depletion gates and a nearby RF charge sensor dot. We implement a RF reflectometry technique that allows single-shot charge read-out at integration times on the order of a few μs. We show our recent advancement towards implementing spin qubits in these structures, including spin-selective single-shot read-out.

  5. Shot noise of spin current and spin transfer torque

    International Nuclear Information System (INIS)

    Yu Yunjin; Zhan Hongxin; Wan Langhui; Wang Bin; Wei Yadong; Sun Qingfeng; Wang Jian

    2013-01-01

    We report the theoretical investigation of the shot noise of the spin current (S σ ) and the spin transfer torque (S τ ) for non-collinear spin polarized transport in a spin-valve device which consists of a normal scattering region connected by two ferromagnetic electrodes (MNM system). Our theory was developed using the non-equilibrium Green’s function method, and general nonlinear S σ − V and S τ − V relations were derived as a function of the angle θ between the magnetizations of two leads. We have applied our theory to a quantum dot system with a resonant level coupled with two ferromagnetic electrodes. It was found that, for the MNM system, the auto-correlation of the spin current is enough to characterize the fluctuation of the spin current. For a system with three ferromagnetic layers, however, both auto-correlation and cross-correlation of the spin current are needed to characterize the noise of the spin current. For a quantum dot with a resonant level, the derivative of spin torque with respect to bias voltage is proportional to sinθ when the system is far away from resonance. When the system is near resonance, the spin transfer torque becomes a non-sinusoidal function of θ. The derivative of the noise of the spin transfer torque with respect to the bias voltage N τ behaves differently when the system is near or far away from resonance. Specifically, the differential shot noise of the spin transfer torque N τ is a concave function of θ near resonance while it becomes a convex function of θ far away from resonance. For certain bias voltages, the period N τ (θ) becomes π instead of 2π. For small θ, it was found that the differential shot noise of the spin transfer torque is very sensitive to the bias voltage and the other system parameters. (paper)

  6. Comparison of respiratory-triggered 3-D fast spin-echo and single-shot fast spin-echo radial slab MR cholangiopancreatography images in children

    Energy Technology Data Exchange (ETDEWEB)

    Chavhan, Govind B.; Almehdar, Abeer; Gupta, Sumeet [The Hospital for Sick Children and University of Toronto, Department of Diagnostic Imaging, Toronto (Canada); Moineddin, Rahim [University of Toronto, Department of Family and Community Medicine, Toronto (Canada); Babyn, Paul S. [Royal University Hospital, Department of Medical Imaging, Saskatoon (Canada)

    2013-09-15

    The two most commonly performed magnetic resonance cholangiopancreatography (MRCP) sequences, 3-D fast spin-echo (3-D FSE) and single-shot fast spin-echo radial slabs (radial slabs), have not been compared in children. The purpose of this study was to compare 3-D FSE and radial slabs MRCP sequences on a 3-T scanner to determine their ability to show various segments of pancreaticobiliary tree and presence of artifacts in children. We reviewed 79 consecutive MRCPs performed in 74 children on a 3-T scanner. We noted visibility of major ducts on 3-D FSE and radial slabs. We noted the order of branching of ducts in the right and left hepatic ducts and the degree of visibility of the pancreatic duct. Statistical analysis was performed using McNemar and signed rank tests. There was no significant difference in the visibility of major bile ducts and the order of branching in the right hepatic lobe between sequences. A higher order of branching in the left lobe was seen on radial slabs than 3-D FSE (mean order of branching 2.82 versus 2.27; P-value = 0.0002). The visibility of pancreatic duct was better on radial slabs as compared to 3-D FSE (mean value of 1.53 vs. 0.90; P-value < 0.0001). 3-D FSE sequence was artifact-free in 25/79 (31.6%) MRCP exams as compared to radial slabs, which were artifact-free in 18/79 (22.8%) MRCP exams (P-value = 0.0001). There is no significant difference in the visibility of major bile ducts between 3-D FSE and radial slab MRCP sequences at 3-T in children. However, radial slab MRCP shows a higher order of branching in the left hepatic lobe and superior visibility of the pancreatic duct than 3-D FSE. (orig.)

  7. Kinematic MRI using short TR single shot fast spin echo (SSFSE) in evaluating swallowing

    Energy Technology Data Exchange (ETDEWEB)

    Isogai, Satoshi; Takehara, Yasuo; Isoda, Haruo; Kodaira, Nami; Masunaga, Hatsuko; Ozawa, Fukujirou; Kaneko, Masao [Hamamatsu Univ. School of Medicine, Shizuoka (Japan); Nozaki, Atsushi; Kabasawa, Hiroyuki

    1999-03-01

    The utility of short TR single shot fast spin echo (SSFSE) MR imaging for evaluating swallowing was determined. Five healthy volunteers underwent kinematic MR imaging of swallowing with a 1.5 T MR scanner using the short TR (300 ms) SSFSE sequence. Twenty phases of sagittal sections were acquired within 6 sec, where the temporal resolution was 300 ms. For oral contrast medium, we used prune yogurt juice with Fe added. The image contrast of short TR SSFSE was found to be somewhere like that of T1-weighted images. In all cases, both the buccal and pharyngeal stages of swallowing were successfully depicted. The Fe-added prune yogurt juice performed as a positive contrast medium and helped determine anatomical structures in the buccal stage. Short TR (300 ms) SSFSE was useful in evaluating swallowing. The combined use of Fe-added prune yogurt juice was helpful in enhancing the surface of the oropharynx. (author)

  8. Kinematic MRI using short TR single shot fast spin echo (SSFSE) in evaluating swallowing

    International Nuclear Information System (INIS)

    Isogai, Satoshi; Takehara, Yasuo; Isoda, Haruo; Kodaira, Nami; Masunaga, Hatsuko; Ozawa, Fukujirou; Kaneko, Masao; Nozaki, Atsushi; Kabasawa, Hiroyuki

    1999-01-01

    The utility of short TR single shot fast spin echo (SSFSE) MR imaging for evaluating swallowing was determined. Five healthy volunteers underwent kinematic MR imaging of swallowing with a 1.5 T MR scanner using the short TR (300 ms) SSFSE sequence. Twenty phases of sagittal sections were acquired within 6 sec, where the temporal resolution was 300 ms. For oral contrast medium, we used prune yogurt juice with Fe added. The image contrast of short TR SSFSE was found to be somewhere like that of T1-weighted images. In all cases, both the buccal and pharyngeal stages of swallowing were successfully depicted. The Fe-added prune yogurt juice performed as a positive contrast medium and helped determine anatomical structures in the buccal stage. Short TR (300 ms) SSFSE was useful in evaluating swallowing. The combined use of Fe-added prune yogurt juice was helpful in enhancing the surface of the oropharynx. (author)

  9. Self-Calibrating Wave-Encoded Variable-Density Single-Shot Fast Spin Echo Imaging.

    Science.gov (United States)

    Chen, Feiyu; Taviani, Valentina; Tamir, Jonathan I; Cheng, Joseph Y; Zhang, Tao; Song, Qiong; Hargreaves, Brian A; Pauly, John M; Vasanawala, Shreyas S

    2018-04-01

    It is highly desirable in clinical abdominal MR scans to accelerate single-shot fast spin echo (SSFSE) imaging and reduce blurring due to T 2 decay and partial-Fourier acquisition. To develop and investigate the clinical feasibility of wave-encoded variable-density SSFSE imaging for improved image quality and scan time reduction. Prospective controlled clinical trial. With Institutional Review Board approval and informed consent, the proposed method was assessed on 20 consecutive adult patients (10 male, 10 female, range, 24-84 years). A wave-encoded variable-density SSFSE sequence was developed for clinical 3.0T abdominal scans to enable high acceleration (3.5×) with full-Fourier acquisitions by: 1) introducing wave encoding with self-refocusing gradient waveforms to improve acquisition efficiency; 2) developing self-calibrated estimation of wave-encoding point-spread function and coil sensitivity to improve motion robustness; and 3) incorporating a parallel imaging and compressed sensing reconstruction to reconstruct highly accelerated datasets. Image quality was compared pairwise with standard Cartesian acquisition independently and blindly by two radiologists on a scale from -2 to 2 for noise, contrast, confidence, sharpness, and artifacts. The average ratio of scan time between these two approaches was also compared. A Wilcoxon signed-rank tests with a P value under 0.05 considered statistically significant. Wave-encoded variable-density SSFSE significantly reduced the perceived noise level and improved the sharpness of the abdominal wall and the kidneys compared with standard acquisition (mean scores 0.8, 1.2, and 0.8, respectively, P variable-density sampling SSFSE achieves improved image quality with clinically relevant echo time and reduced scan time, thus providing a fast and robust approach for clinical SSFSE imaging. 1 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:954-966. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Shot noise as a probe of spin-correlated transport through single atoms

    Science.gov (United States)

    Pradhan, S.; Fransson, J.

    2018-03-01

    We address the shot noise in the tunneling current through a local spin, pertaining to recent experiments on magnetic adatoms and single molecular magnets. We show that both uncorrelated and spin-correlated scattering processes contribute vitally to the noise spectrum. The spin-correlated scattering processes provide an additional contribution to the Landauer-Büttiker shot noise expression, accounting for correlations between the tunneling electrons and the localized spin moment. By calculating the Fano factor, we show that both super- and sub-Poissonian shot noise can be described within our approach. Our theory provides transparent insights into noise spectroscopy, consistent with recent experiments using local probing techniques on magnetic atoms.

  11. MR imaging of the gastrointestinal tract with half-fourier single-shot fast spin echo (SSFSE)

    International Nuclear Information System (INIS)

    Boku, Houjun; Takehara, Yasuo; Isoda, Haruo; Isogai, Satoshi; Kaneko, Masao

    1999-01-01

    Our objective was to implement a non-invasive magnetic resonance imaging (MRI) technique combined with concentrated milk ingestion for depicting the gastrointestinal (GI) tract and detecting gastrointestinal motility and transit. The half-Fourier SSFSE (single-shot fast spin echo) sequence was optimized on the basis of a phantom study. In order to determine the feasibility of milk ingestion as a substitute for contrast medium, ten human volunteers were examined with SSFSE after two types of liquid ingestion (i.e., milk and water). The snapshot images provided subsecond data acquisition for each coronal plane, allowing visualization of peristalsis in the gastrointestinal tract in an almost real-time fashion, without motion-related image degradation, as would normally be seen using conventional MRI. There was no significant difference between concentrated milk and water in terms of depiction of the upper gastrointestinal tract; however, 10 min and 30 min after ingestion, concentrated milk showed better delineation of the intestine than that observed after water ingestion (p<0.01). MR gastrointestinal imaging is a non-invasive method that allows gastrointestinal depiction as well as analysis of motility and passage. Especially with concentrated milk ingestion, the distal intestines were well depicted with adequate contrast filling and distention. (author)

  12. Comparison of single-shot fast spin-echo sequence and T2-weighted fast spin-echo sequence in MR imaging of the brain

    International Nuclear Information System (INIS)

    Cha, Sung Ho; Seo, Jeong Jin; Jeong, Gwang Woo; Kim, Jae Kyu; Kim, Yun Hyeon; Jeong, Yong Yeon; Kang, Heoung Keun; Oh, Hee Yeon; Yoon, Jong Hoon

    1998-01-01

    The purpose of this study was to evaluate the usefulness of the single-shot fast spinecho (SS-FSE) sequence in comparison with the T2-weighted fast spin-echo (T2-FSE) sequence in brain MR imaging. In 41 patients aged 15-75 years with intracranial lesion, both SS-FSE and T2-FES images were obtained using a 1.5-T MR system. Lesions included cerebral ischemia or infarcts (n=3D23), tumors (n=3D10), hemorrhages (n=3D3), inflammatory diseases (n=3D2), arachnoid cysts(n=3D2), and vascular disease (n=3D1), and the MR images were retrospectively evaluated. To calculate contrast-to-noise ratio (CNR), percentage contrast, and signal-to-noise ratio (SNR)-and thus make a quantitative comparison-the mean signal intensities of lesions, normal brain tissue, and noise out-side the patient were measured. For qualitative comparison, the visibility, margin, and extent of the lesions were rated using a five-grade system, and the degree of MR artifacts was also evaluated. Wilcoxon's signed ranks test was used for statistical analysis. The mean CNR of lesions was significantly higher on SS-FSE (31.3) than on T2-FSE images (27.5) (p=3D0.0131). Mean percentage contrast was also higher on SS-FSE (159.0) than on T2-FSE images (108.5) (p=3D0.0222), but mean SNR was higher on T2-FSE (80.3) than on SS-FSE images (53.5) (p=3D0.0000). No significant differences in lesion visibility were observed between the two imaging sequences, though margin and extent of the lesion were worse on SS-FSE images. For MR artifacts, no significant differences were demonstrated. For the evaluation of most intracranial lesions, MR imaging using the SS-FSE sequence appears to be slightly inferior to the T2-FSE sequence, but may be useful where patients are ill or uncooperative, or where children require sedation.=20

  13. Value of MR cisternography using three-dimensional half-fourier single-shot fast spin-echo sequences in the diagnosis of diseases related to cranial nerves VII and VIII

    Energy Technology Data Exchange (ETDEWEB)

    Yamakami, Norio [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1999-05-01

    The purpose of this study was to evaluate the value of MR cisternography using three-dimensional half-Fourier single-shot fast spin-echo sequences in the diagnosis of diseasea related to cranial nerves VII and VIII. With a 0.5-T imager, the most appropriate setting of echo time and section thickness was first assessed in five volunteers. This resulted in echo time of 250 msec and section thickness of 2 mm as the most effective parameters. Second, using echo time of 120 msec and section thickness of 1.5 mm that were available from the beginning of this study, the demonstration of four nerves within the audistory canal was assessed in seven volunteers. In all of the volunteers, the facial, cochlear, and vestibular nerves were determined with demonstration of each of superior and inferior vestibular nerves in four of them. Next, MR cisternography using the same echo time and section thickness was applied in 368 patients with suspicion of acoustic neurinoma and 14 with hemifacial spasm. In 28 of the 368 patients, MR cisternograms depicted an acoustic neurinoma that was confirmed on postcontrast T1-weighted images. Meanwhile, in five of the 14 patients with hemifacial spasm, MR cisternograms revealed a vessel compressing the root exit zone of the affected facial nerve. It is concluded that MR cisternography using three-dimensional half-Fourier single-shot fast spin-echo sequences can be a useful means for demonstrating nerves within the auditory nerve as well as for the screening of acoustic neurionoma. (author)

  14. Value of MR cisternography using three-dimensional half-fourier single-shot fast spin-echo sequences in the diagnosis of diseases related to cranial nerves VII and VIII

    International Nuclear Information System (INIS)

    Yamakami, Norio

    1999-01-01

    The purpose of this study was to evaluate the value of MR cisternography using three-dimensional half-Fourier single-shot fast spin-echo sequences in the diagnosis of diseasea related to cranial nerves VII and VIII. With a 0.5-T imager, the most appropriate setting of echo time and section thickness was first assessed in five volunteers. This resulted in echo time of 250 msec and section thickness of 2 mm as the most effective parameters. Second, using echo time of 120 msec and section thickness of 1.5 mm that were available from the beginning of this study, the demonstration of four nerves within the audistory canal was assessed in seven volunteers. In all of the volunteers, the facial, cochlear, and vestibular nerves were determined with demonstration of each of superior and inferior vestibular nerves in four of them. Next, MR cisternography using the same echo time and section thickness was applied in 368 patients with suspicion of acoustic neurinoma and 14 with hemifacial spasm. In 28 of the 368 patients, MR cisternograms depicted an acoustic neurinoma that was confirmed on postcontrast T1-weighted images. Meanwhile, in five of the 14 patients with hemifacial spasm, MR cisternograms revealed a vessel compressing the root exit zone of the affected facial nerve. It is concluded that MR cisternography using three-dimensional half-Fourier single-shot fast spin-echo sequences can be a useful means for demonstrating nerves within the auditory nerve as well as for the screening of acoustic neurionoma. (author)

  15. Berry phase and shot noise for spin-polarized and entangled electrons

    International Nuclear Information System (INIS)

    Wang Pei; Tang Weihua; Lu Dinghui; Jiang Lixia; Zhao Xuean

    2007-01-01

    Shot noise for entangled and spin-polarized states in a four-probe geometric setup has been studied by adding two rotating magnetic fields in an incoming channel. Our results show that the noise power oscillates as the magnetic fields vary. The singlet, entangled triplet and polarized states can be distinguished by adjusting the magnetic fields. The Berry phase can be derived by measuring the shot noise power

  16. Super-Poissonian Shot Noise of Squeezed-Magnon Mediated Spin Transport.

    Science.gov (United States)

    Kamra, Akashdeep; Belzig, Wolfgang

    2016-04-08

    The magnetization of a ferromagnet (F) driven out of equilibrium injects pure spin current into an adjacent conductor (N). Such F|N bilayers have become basic building blocks in a wide variety of spin-based devices. We evaluate the shot noise of the spin current traversing the F|N interface when F is subjected to a coherent microwave drive. We find that the noise spectrum is frequency independent up to the drive frequency, and increases linearly with frequency thereafter. The low frequency noise indicates super-Poissonian spin transfer, which results from quasiparticles with effective spin ℏ^{*}=ℏ(1+δ). For typical ferromagnetic thin films, δ∼1 is related to the dipolar interaction-mediated squeezing of F eigenmodes.

  17. Comparing SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    Science.gov (United States)

    England, Troy; Curry, Matthew; Carr, Stephen; Mounce, Andrew; Jock, Ryan; Sharma, Peter; Bureau-Oxton, Chloe; Rudolph, Martin; Hardin, Terry; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will compare two amplifiers based on single-transistor circuits implemented with silicon germanium heterojunction bipolar transistors. Both amplifiers provide gain at low power levels, but the dynamics of each circuit vary significantly. We will explore the gain mechanisms, linearity, and noise of each circuit and explain the situations in which each amplifier is best used. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  18. Differential diagnosis of pituitary adenomas and Rathke's cleft cysts by diffusion-weighted MRI using single-shot fast spin echo technique

    International Nuclear Information System (INIS)

    Abe, Takumi; Izumiyama, Hitoshi; Fukuda, Ataru; Tanioka, Daisuke; Kunii, Norihiko; Komatsu, Daisuke; Fujita, Shogo; Ukisu, Ryutaro; Moritani, Toshio

    2002-01-01

    The purpose of the present study was to prospectively evaluate the diagnostic ability of diffusion-weighted magnetic resonance imaging (DWI) using single-shot fast spin echo (SSFSE) technique to discriminate pituitary adenomas from Rathke's cleft cysts. DWIs were obtained from 40 patients with pathologically proven pituitary macroadenomas and 15 patients with proven Rathke's cleft cysts. Pituitary adenomas were divided into 27 cases with solid components alone, five with non-hemorrhagic large cysts, and eight with intratumoral hemorrhage. On SSFSE DWI, solid components of pituitary adenomas revealed iso or slightly increased intensity and intratumoral hemorrhage showed higher intensity than normal brain parenchyma, whereas Rathke's cleft cysts and intratumoral cysts demonstrated very low intensity. SSFSE DWI did not display the susceptibility artifacts that are seen close to the skull base and sinonasal cavities on echo planar diffusion imaging. On the basis of our preliminary findings, DWI may enable us to differentiate pituitary adenomas with only solid components and hemorrhagic pituitary adenomas appearing hyperintense on T1-weighted images from Rathke's cleft cysts without administration of gadolinium-DTPA. SSFSE DWI appears to be a useful technique for characterizing pituitary diseases without the susceptibility artifacts. Our study is the first report to demonstrate the identification of pituitary disorders on SSFSE DWI. (author)

  19. Faster pediatric 3-T abdominal magnetic resonance imaging: comparison between conventional and variable refocusing flip-angle single-shot fast spin-echo sequences

    Energy Technology Data Exchange (ETDEWEB)

    Ruangwattanapaisarn, Nichanan [Mahidol University, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Bangkok (Thailand); Stanford University, LPCH Department of Radiology, Stanford, CA (United States); Loening, Andreas M.; Saranathan, Manojkumar; Vasanawala, Shreyas S. [Stanford University, LPCH Department of Radiology, Stanford, CA (United States); Litwiller, Daniel V. [GE Healthcare, Rochester, MN (United States)

    2015-06-15

    Single-shot fast spin echo (SSFSE) is particularly appealing in pediatric patients because of its motion robustness. However radiofrequency energy deposition at 3 tesla forces long pauses between slices, leading to longer scans, longer breath-holds and more between-slice motion. We sought to learn whether modulation of the SSFSE refocusing flip-angle train could reduce radiofrequency energy deposition without degrading image quality, thereby reducing inter-slice pauses and overall scan times. We modulated the refocusing flip-angle train for SSFSE to minimize energy deposition while minimizing blurring and motion-related signal loss. In a cohort of 50 consecutive patients (25 boys, mean age 5.5 years, range 1 month to 17 years) referred for abdominal MRI we obtained standard SSFSE and variable refocusing flip-angle (vrfSSFSE) images and recorded sequence scan times. Two readers independently scored the images in blinded, randomized order for noise, tissue contrast, sharpness, artifacts and left lobe hepatic signal uniformity on a four-point scale. The null hypothesis of no difference between SSFSE and vrfSSFSE image-quality was assessed with a Mann-Whitney U test, and the null hypothesis of no scan time difference was assessed with the paired t-test. SSFSE and vrfSSFSE mean acquisition times were 54.3 and 26.2 s, respectively (P-value <0.0001). For each reader, SSFSE and vrfSSFSE noise, tissue contrast, sharpness and artifacts were not significantly different (P-values 0.18-0.86). However, SSFSE had better left lobe hepatic signal uniformity (P < 0.01, both readers). vrfSSFSE is twice as fast as SSFSE, with equivalent image quality with the exception of left hepatic lobe signal heterogeneity. (orig.)

  20. Characteristics of spondylotic myelopathy on 3D driven-equilibrium fast spin echo and 2D fast spin echo magnetic resonance imaging: a retrospective cross-sectional study.

    Science.gov (United States)

    Abdulhadi, Mike A; Perno, Joseph R; Melhem, Elias R; Nucifora, Paolo G P

    2014-01-01

    In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures. However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as 2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for quantitative signal measurements in the spinal cord.

  1. Differential diagnosis of pituitary adenomas and Rathke's cleft cysts by diffusion-weighted MRI using single-shot fast spin echo technique

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Takumi; Izumiyama, Hitoshi; Fukuda, Ataru; Tanioka, Daisuke; Kunii, Norihiko; Komatsu, Daisuke; Fujita, Shogo; Ukisu, Ryutaro; Moritani, Toshio [Showa Univ., Tokyo (Japan). School of Medicine

    2002-09-01

    The purpose of the present study was to prospectively evaluate the diagnostic ability of diffusion-weighted magnetic resonance imaging (DWI) using single-shot fast spin echo (SSFSE) technique to discriminate pituitary adenomas from Rathke's cleft cysts. DWIs were obtained from 40 patients with pathologically proven pituitary macroadenomas and 15 patients with proven Rathke's cleft cysts. Pituitary adenomas were divided into 27 cases with solid components alone, five with non-hemorrhagic large cysts, and eight with intratumoral hemorrhage. On SSFSE DWI, solid components of pituitary adenomas revealed iso or slightly increased intensity and intratumoral hemorrhage showed higher intensity than normal brain parenchyma, whereas Rathke's cleft cysts and intratumoral cysts demonstrated very low intensity. SSFSE DWI did not display the susceptibility artifacts that are seen close to the skull base and sinonasal cavities on echo planar diffusion imaging. On the basis of our preliminary findings, DWI may enable us to differentiate pituitary adenomas with only solid components and hemorrhagic pituitary adenomas appearing hyperintense on T1-weighted images from Rathke's cleft cysts without administration of gadolinium-DTPA. SSFSE DWI appears to be a useful technique for characterizing pituitary diseases without the susceptibility artifacts. Our study is the first report to demonstrate the identification of pituitary disorders on SSFSE DWI. (author)

  2. Estimation of post disruption plasma temperature for fast current quench Aditya plasma shots

    International Nuclear Information System (INIS)

    Purohit, S.; Chowdhuri, M.B.; Joisa, Y.S.; Raval, J.V.; Ghosh, J.; Jha, R.

    2013-01-01

    Characteristics of tokamak current quenches are an important issue for the determination of electromagnetic forces that act on the in-vessel components and vacuum vessel during major disruptions. It is observed that thermal quench is followed by a sharp current decay. Fast current quench disruptive plasma shots were investigated for ADITYA tokamak. The current decay time was determined for the selected shots, which were in the range of 0.8 msec to 2.5 msec. This current decay information was then applied to L/R model, frequently employed for the estimation of the current decay time in tokamak plasmas, considering plasma inductance and plasma resistivity. This methodology was adopted for the estimation of the post disruption plasma temperature using the experimentally observed current decay time for the fast current quench disruptive ADITYA plasma shots. The study reveals that for the identified shots there is a constant increase in the current decay time with the post disruption plasma temperature. The investigations also explore the behavior post disruption plasma temperature and the current decay time as a function of the edge safety factor, Q. Post disruption plasma temperature and the current decay time exhibits a decrease with the increase in the value Q. (author)

  3. Single-shot quantum nondemolition measurement of a quantum-dot electron spin using cavity exciton-polaritons

    Science.gov (United States)

    Puri, Shruti; McMahon, Peter L.; Yamamoto, Yoshihisa

    2014-10-01

    We propose a scheme to perform single-shot quantum nondemolition (QND) readout of the spin of an electron trapped in a semiconductor quantum dot (QD). Our proposal relies on the interaction of the QD electron spin with optically excited, quantum well (QW) microcavity exciton-polaritons. The spin-dependent Coulomb exchange interaction between the QD electron and cavity polaritons causes the phase and intensity response of left circularly polarized light to be different than that of right circularly polarized light, in such a way that the QD electron's spin can be inferred from the response to a linearly polarized probe reflected or transmitted from the cavity. We show that with careful device design it is possible to essentially eliminate spin-flip Raman transitions. Thus a QND measurement of the QD electron spin can be performed within a few tens of nanoseconds with fidelity ˜99.95%. This improves upon current optical QD spin readout techniques across multiple metrics, including speed and scalability.

  4. Spin-polarized current and shot noise in the presence of spin flip in a quantum dot via nonequilibrium Green's functions

    DEFF Research Database (Denmark)

    De Souza, Fabricio; Jauho, Antti-Pekka; Egues, J.C.

    2008-01-01

    Using nonequilibrium Green's functions we calculate the spin-polarized current and shot noise in a ferromagnet-quantum-dot-ferromagnet system. Both parallel (P) and antiparallel (AP) magnetic configurations are considered. Coulomb interaction and coherent spin flip (similar to a transverse magnetic...... field) are taken into account within the dot. We find that the interplay between Coulomb interaction and spin accumulation in the dot can result in a bias-dependent current polarization p. In particular, p can be suppressed in the P alignment and enhanced in the AP case depending on the bias voltage....... The coherent spin flip can also result in a switch of the current polarization from the emitter to the collector lead. Interestingly, for a particular set of parameters it is possible to have a polarized current in the collector and an unpolarized current in the emitter lead. We also found a suppression...

  5. Ultrafast bold fMRI using single-shot spin-echo echo planar imaging

    Directory of Open Access Journals (Sweden)

    Boujraf Said

    2009-01-01

    Full Text Available The choice of imaging parameters for functional MRI can have an impact on the accuracy of functional localization by affecting the image quality and the degree of blood oxygenation-dependent (BOLD contrast achieved. By improving sampling efficiency, parallel acquisition techniques such as sensitivity encoding (SENSE have been used to shorten readout trains in single-shot (SS echo planar imaging (EPI. This has been applied to susceptibility artifact reduction and improving spatial resolution. SENSE together with single-shot spin-echo (SS-SE imaging may also reduce off-resonance artifacts. The goal of this work was to investigate the BOLD response of a SENSE-adapted SE-EPI on a three Tesla scanner. Whole-brain fMRI studies of seven healthy right hand-dominant volunteers were carried out in a three Tesla scanner. fMRI was performed using an SS-SE EPI sequence with SENSE. The data was processed using statistical parametric mapping. Both, group and individual subject data analyses were performed. Individual average percentage and maximal percentage signal changes attributed to the BOLD effect in M1 were calculated for all the subjects as a function of echo time. Corresponding activation maps and the sizes of the activated clusters were also calculated. Our results show that susceptibility artifacts were reduced with the use of SENSE; and the acquired BOLD images were free of the typical quadrature artifacts of SS-EPI. Such measures are crucial at high field strengths. SS SE-EPI with SENSE offers further benefits in this regard and is more specific for oxygenation changes in the microvasculature bed. Functional brain activity can be investigated with the help of single-shot spin echo EPI using SENSE at high magnetic fields.

  6. Utility of single shot fast spin echo technique in evaluating pancreaticobiliary diseases: T2-weighted image and magnetic resonance cholangiopancreatography

    International Nuclear Information System (INIS)

    Choi, Byoung Wook; Kim, Myeong Jin; Chung, Jae Bok; Ko, Heung Kyu; Kim, Dong Joon; Kim, Joo Hee; Chung, Jae Joon; Yoo, Hyung Sik; Lee, Jong Tae

    1999-01-01

    To evaluate the accuracy of T2-weighted imaging an MR cholangiopancreatography using the single shot fast spin-echo technique for evaluating pancreaticobiliary disease. Between March and July 1997, axial and coronal T2-weighted images(TE: 80-200 msec) and MR cholangiopancreatograms (TE: 800-1200 msec) were obtained in two ways [single slab (thickness: 30-50 mm) and multislice acquisition under chemical fat saturation] using SSFSE pulse sequencing in 131 cases of suspected pancreati-cobiliary disease. The accuracy of SSFSE MR imaging was assessed in 89 lesions of 74 patients [male, 48; female, 26; age range, 30-86 (mean, 59) years] confirmed surgicopathologically (50 lesions in 39 patients) and clinically (39 lesions in 35 patients). Two radiologists reviewed the MR images and diagnosis was determined by consensus. Correct diagnosis was confirmed in 84 of 89 lesions (94%). Seven lesions were falsely interpreted, false positive and false negative results accounting for two and five cases, respectively. Two pancreatic cancers were misdiagnosed as pancreatitis and a cancer of the proximal common bile duct(CBD) was interpreted as a distal CBD cancer. The sensitivity of SSFSE MR imaging for malignancy was 93 %. One CBD stone revealed by endoscopic retrograde cholangiopancreatography (ERCP) was not detected on MR images. In contrast, a stone in the CBD seen on MR images was not apparent on subsequent ERCP. Sensitivity and specificity for calculous disease were 96% and 99.7%, respectively. A benign stricture of the ampulla of Vater was falsely interpreted as normal, and correct diagnosis was possible in two falsely diagnosed cases when MR images were reviewed retrospectively. The combination of T2-weighted and cholangiographic images using SSFSE is an accurate method for diagnosing pancreatcobiliary diseases

  7. Cavity Exciton-Polariton mediated, Single-Shot Quantum Non-Demolition measurement of a Quantum Dot Electron Spin

    Science.gov (United States)

    Puri, Shruti; McMahon, Peter; Yamamoto, Yoshihisa

    2014-03-01

    The quantum non-demolition (QND) measurement of a single electron spin is of great importance in measurement-based quantum computing schemes. The current single-shot readout demonstrations exhibit substantial spin-flip backaction. We propose a QND readout scheme for quantum dot (QD) electron spins in Faraday geometry, which differs from previous proposals and implementations in that it relies on a novel physical mechanism: the spin-dependent Coulomb exchange interaction between a QD spin and optically-excited quantum well (QW) microcavity exciton-polaritons. The Coulomb exchange interaction causes a spin-dependent shift in the resonance energy of the polarized polaritons, thus causing the phase and intensity response of left circularly polarized light to be different to that of the right circularly polarized light. As a result the QD electron's spin can be inferred from the response to a linearly polarized probe. We show that by a careful design of the system, any spin-flip backaction can be eliminated and a QND measurement of the QD electron spin can be performed within a few 10's of nanoseconds with fidelity 99:95%. This improves upon current optical QD spin readout techniques across multiple metrics, including fidelity, speed and scalability. National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.

  8. Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout

    Science.gov (United States)

    Sukachev, D. D.; Sipahigil, A.; Nguyen, C. T.; Bhaskar, M. K.; Evans, R. E.; Jelezko, F.; Lukin, M. D.

    2017-12-01

    The negatively charged silicon-vacancy (SiV- ) color center in diamond has recently emerged as a promising system for quantum photonics. Its symmetry-protected optical transitions enable the creation of indistinguishable emitter arrays and deterministic coupling to nanophotonic devices. Despite this, the longest coherence time associated with its electronic spin achieved to date (˜250 ns ) has been limited by coupling to acoustic phonons. We demonstrate coherent control and suppression of phonon-induced dephasing of the SiV- electronic spin coherence by 5 orders of magnitude by operating at temperatures below 500 mK. By aligning the magnetic field along the SiV- symmetry axis, we demonstrate spin-conserving optical transitions and single-shot readout of the SiV- spin with 89% fidelity. Coherent control of the SiV- spin with microwave fields is used to demonstrate a spin coherence time T2 of 13 ms and a spin relaxation time T1 exceeding 1 s at 100 mK. These results establish the SiV- as a promising solid-state candidate for the realization of quantum networks.

  9. Fast spin-echo imaging

    International Nuclear Information System (INIS)

    Mackey, K.; Zoarski, G.; Bentson, J.R.; Lufkin, R.B.; Melki, P.; Jolesz, F.

    1991-01-01

    This paper reports on a partial radio-frequency (RF) echo-planar pulse sequence called contiguous slice fast spin echo (CSFSE) which is undergoing clinical trials for spine MR imaging. In this variation of rapid acquisition relaxation enhanced (RARE) spin-echo imaging, rapid 180 degrees RF pulse generated refocused echoes, producing T2-weighted images in about one-third the time of conventional double-echo technique. Forty patients with suspected pathology of the spine were imaged with conventional double-echo and closely matched CSFSE techniques on a GE Signa 1.5-T Advantage system. Cases were reviewed by two board-certified neuroradiologists. In all cases the CSFSE images were of equal or superior quality compared with those obtained with the conventional double-echo technique. Pathologic processes that were imaged consisted of inflammatory, neoplastic, posttraumatic, and degenerative conditions

  10. Temperature dependence of shot noise in double barrier magnetic tunnel junctions

    Science.gov (United States)

    Niu, Jiasen; Liu, Liang; Feng, J. F.; Han, X. F.; Coey, J. M. D.; Zhang, X.-G.; Wei, Jian

    2018-03-01

    Shot noise reveals spin dependent transport properties in a magnetic tunnel junction. We report measurement of shot noise in CoFeB/MgO/CoFeB/MgO/CoFeB double barrier magnetic tunnel junctions, which shows a strong temperature dependence. The Fano factor used to characterize shot noise increases with decreasing temperature. A sequential tunneling model can be used to account for these results, in which a larger Fano factor results from larger spin relaxation length at lower temperatures.

  11. High-spatial-resolution isotropic three-dimensional fast-recovery fast spin-echo magnetic resonance dacryocystography combined with topical administration of sterile saline solution

    International Nuclear Information System (INIS)

    Jing, Zhang; Lang, Chen; Qiu-Xia, Wang; Rong, Liu; Xin, Luo; Wen-Zhen, Zhu; Li-Ming, Xia; Jian-Pin, Qi; He, Wang

    2013-01-01

    Objective: This study aims to investigate the clinical performance of three-dimensional (3D) fast-recovery fast spin-echo (FRFSE) magnetic resonance dacryocystography (MRD) with topical administration of sterile saline solution for the assessment of the lacrimal drainage system (LDS). Methods: A total of 13 healthy volunteers underwent both 3D-FRFSE MRD and two-dimensional (2D)-impulse recovery (IR)-single-shot fast spin-echo (SSFSE) MRD after topical administration of sterile saline solution, and 31 patients affected by primary LDS outflow impairment or postsurgical recurrent epiphora underwent 3D-FRFSE MRD and conventional T1- and T2-weighted sequences. All patients underwent lacrimal endoscopy or surgery, which served as a standard of reference for confirming the MRD findings. Results: 3D-FRFSE MRD detected more visualized superior and inferior canaliculi and nasolacrimal duct than 2D-IR-SSFSE MRD. Compared with 2D-IR-SSFSE MRD, 3D-FRFSE MRD showed more visualized segments per LDS, although the difference was not statistically significant. Significant improvements in the inferior canaliculus and nasolacrimal duct visibility grades were achieved using 3D-FRFSE MRD. 3D-FRFSE MRD had 100% sensitivity and 63.6% specificity for detecting LDS obstruction. In 51 out of the 62 LDSs that were assessed, a 90% agreement was noted between the findings of 3D-FRFSE MRD and lacrimal endoscopy in detecting the obstruction level. Conclusion: 3D-FRFSE MRD combined with topical administration of sterile saline solution is a simple and noninvasive method of obtaining detailed morphological and functional information on the LDS. Overall, 3D-FRFSE MRD could be used as a reliable diagnostic method in many patients with epiphora prior to surgery

  12. Inverse engineering for fast transport and spin control of spin-orbit-coupled Bose-Einstein condensates in moving harmonic traps

    Science.gov (United States)

    Chen, Xi; Jiang, Ruan-Lei; Li, Jing; Ban, Yue; Sherman, E. Ya.

    2018-01-01

    We investigate fast transport and spin manipulation of tunable spin-orbit-coupled Bose-Einstein condensates in a moving harmonic trap. Motivated by the concept of shortcuts to adiabaticity, we design inversely the time-dependent trap position and spin-orbit-coupling strength. By choosing appropriate boundary conditions we obtain fast transport and spin flip simultaneously. The nonadiabatic transport and relevant spin dynamics are illustrated with numerical examples and compared with the adiabatic transport with constant spin-orbit-coupling strength and velocity. Moreover, the influence of nonlinearity induced by interatomic interaction is discussed in terms of the Gross-Pitaevskii approach, showing the robustness of the proposed protocols. With the state-of-the-art experiments, such an inverse engineering technique paves the way for coherent control of spin-orbit-coupled Bose-Einstein condensates in harmonic traps.

  13. Assessment of diagnosing metastatic bone tumor on T2*-weighted images. Comparison between turbo spin echo (TSE) method and gradient echo (GE) method

    International Nuclear Information System (INIS)

    Hayashi, Takahiko; Sugiyama, Akira; Katayama, Motoyuki

    1996-01-01

    We examined the usefulness of T2 * weighted gradient field echo images for diagnosis for metastatic bone tumors in comparison with T2 weighted turbo spin echo (fast spin echo) images. In T2 * weighted gradient field echo sequence to obtain maximum contrast-to-noise ratio (CNR), we experimentally manipulated flip angle (FA) (5deg-90deg), repetition time (TR) (400, 700 msec), and echo time (TE) (10-50 msec). The best CNR was 16.4 in fast low angle shot (FLASH) (TE: 24 msec, TR: 700 msec, FA: 40deg). Magnetic resonance imaging was carried out in 28 patients with metastatic bone tumors. In addition to conventional T1 weighted spin echo images, T2 weighted turbo spin echo (fast spin echo images) and T2 * weighted gradient field echo images were obtained. T2 * weighted gradient field echo images were superior to T2 weighted turbo spin echo (fast spin echo) images in delineating the tumors, adjacent fat tissues, and bone marrow. (author)

  14. Isotropic three-dimensional fast spin-echo Cube magnetic resonance dacryocystography: comparison with the three-dimensional fast-recovery fast spin-echo technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Chen, Lang; Wang, Qiu-Xia; Zhu, Wen-Zhen; Luo, Xin; Peng, Li [Huazhong University of Science and Technology, Department of Radiology, Tongji Hospital, Wuhan (China); Liu, Rong [Huazhong University of Science and Technology, Department of Ophthalmology, Tongji Hospital, Wuhan (China); Xiong, Wei [GE Healthcare China Wuhan Office, Wuhan (China)

    2015-04-01

    Three-dimensional fast spin-echo Cube (3D-FSE-Cube) uses modulated refocusing flip angles and autocalibrates two dimensional (2D)-accelerated parallel and nonlinear view ordering to produce high-quality volumetric image sets with high-spatial resolution. Furthermore, 3D-FSE-Cube with topical instillation of fluid can also be used for magnetic resonance dacryocystography (MRD) with good soft tissue contrast. The purpose of this study was to evaluate the technical quality and visualization of the lacrimal drainage system (LDS) when using the 3D-FSE-Cube sequence and the 3D fast-recovery fast spin-echo (FRFSE) sequence. In total, 75 patients with primary LDS outflow impairment or postsurgical recurrent epiphora underwent 3D-FSE-Cube MRD and 3D-FRFSE MRD at 3.0 T after topical administration of compound sodium chloride eye drops. Two radiologists graded the images from either of the two sequences in a blinded fashion, and appropriate statistical tests were used to assess differences in technical quality, visibility of ductal segments, and number of segments visualized per LDS. Obstructions were confirmed in 90 of the 150 LDSs assessed. The technical quality of 3D-FSE-Cube MRD and 3D-FRFSE MRD was statistically equivalent (P = 0.871). However, compared with 3D-FRFSE MRD, 3D-FSE-Cube MRD improved the overall visibility and the visibility of the upper drainage segments in normal and obstructed LDSs (P < 0.001). There was a corresponding increase in the number of segments visualized per LDS in both groups (P < 0.001). Compared with 3D-FRFSE MRD, 3D-FSE-Cube MRD potentially improves the visibility of the LDS. (orig.)

  15. Evaluation of cardiac function using multi-shot echo planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Tadashi; Tanitame, Nobuko; Hata, Ryoichiro; Hirai, Nobuhiko; Ikeda, Midori; Ono, Chiaki; Fukuoka, Haruhito; Ito, Katsuhide [Hiroshima Univ. (Japan). School of Medicine

    1998-01-01

    In this study, we performed multi-shot echo planar imaging (8 shot, TR/TE/FL=55 ms/18 ms/60 degrees) and k-space segmented fast gradient echo sequence (8 views per segment, TR/TE/FL=9.9 ms/1.8 ms/30 degrees) to assess cardiac function in healthy volunteers. Transaxial sections of the entire heart were obtained with both sequences in ECG triggered, breath hold, and with a 256 x 128 matrix. Resulting temporal resolution was 55 ms for echo planar imaging, and 71 ms for k-space segmented fast gradient echo sequence, respectively. Ventricular volume and ejection fraction of both ventricles and left ventricular mass obtained with multi-shot echo planar imaging were assessed in comparison with k-space segmented fast gradient echo sequence. Measurements of left ventricular volume, ejection fraction and mass obtained with multi-shot echo planar imaging demonstrated close correlation with those obtained with k-space segmented fast gradient echo sequence. Right ventricular volumes obtained with echo planar imaging were significantly higher than those obtained with k-space segmented fast gradient echo sequence. This tendency is considered to be due to differing contrast between right ventricular myocardium and fat tissue observed with echo planar imaging relative to that observed with fast gradient echo sequence, because fat suppression is always performed in echo planar images. Multi-shot echo planar imaging can be a reliable tool for measurement of cardiac functional parameters, although wall motion analysis of the left ventricle requires higher temporal resolution and a short axial section. (K.H.)

  16. Fast spin-echo MR imaging of the eye

    International Nuclear Information System (INIS)

    Hosten, N.; Lemke, A.J.; Bornfeld, N.; Wassmuth, R.; Schweiger, U.; Terstegge, K.; Felix, R.

    1996-01-01

    Magnetic resonance imaging of the eye usually includes T2-weighted images both for screening purposes and for characterization of melanoma. Conventional T2-weighted spin-echo (SE) imaging suffers both from long acquisition times and incomplete recovery of the virteous' signal. A fast SE sequence was therefore compared prospectively with conventional sequences in 29 consecutive patients with lesions of the eye. Fast SE images delineated melanoma and other lesions of the eye from vitreous better than conventional T2-weighted images. Image quality and lesion conspicuity were improved on the fast sequence. Whereas melanoma appeared hypointense to vitreous on both types of images, subretinal effusion was hypointense on fast images and hyperintense on conventional T2-weighted images. Ghosting of the globe, which, however, did not decrease diagnostic value, was more pronounced on fast images. Conventional T2-weighted images may be replaced by fast SE images in MR studies of the eye with a gain in lesion conspicuity and significant time saving. (orig.)

  17. Imaging of the brain using the fast-spin-echo and gradient-spin-echo techniques

    International Nuclear Information System (INIS)

    Umek, W.; Ba-Ssalamah, A.; Prokesch, R.; Mallek, R.; Heimberger, K.; Hittmair, K.

    1998-01-01

    The aim of our study was to compare gradient-spin-echo (GRASE) to fast-spin-echo (FSE) sequences for fast T2-weighted MR imaging of the brain. Thirty-one patients with high-signal-intensity lesions on T2-weighted images were examined on a 1.5-T MR system. The FSE and GRASE sequences with identical sequence parameters were obtained and compared side by side. Image assessment criteria included lesion conspicuity, contrast between different types of normal tissue, and image artifacts. In addition, signal-to-noise, contrast-to-noise, and contrast ratios and were determined. The FSE technique demonstrated more lesions than GRASE and with generally better conspicuity. Smaller lesions in particular were better demonstrated on FSE because of lower image noise and slightly weaker image artifacts. Gray-white differentiation was better on FSE. Ferritin and hemosiderin depositions appeared darker on GRASE, which resulted in better contrast. Fatty tissue was less bright on GRASE. With current standard hardware equipment, the FSE technique seems preferable to GRASE for fast T2-weighted routine MR imaging of the brain. For the assessment of hemosiderin or ferritin depositions, GRASE might be considered. (orig.)

  18. Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo sequence: improvement of the image quality of oxygen-enhanced MRI

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Hatabu, Hiroto; Higashino, Takanori; Kawamitsu, Hideaki; Watanabe, Hirokazu; Takenaka, Daisuke; Cauteren, Marc van; Sugimura, Kazuro

    2004-01-01

    Purpose: The purpose of the study presented here was to determine the improvement in image quality of oxygen-enhanced magnetic resonance (MR) subtraction imaging obtained with a centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence compared with that obtained with a conventional sequentially reordered inversion recovery single-shot HASTE (s-IR-HASTE) sequence for pulmonary imaging. Materials and methods: Oxygen-enhanced MR imaging using a 1.5 T whole body scanner was performed on 12 healthy, non-smoking volunteers. Oxygen-enhanced MR images were obtained with the coronal two-dimensional (2D) c-IR-HASTE sequence and 2D s-IR-HASTE sequence combined with respiratory triggering. For a 256x256 matrix, 132 phase-encoding steps were acquired including four steps for phase correction. Inter-echo spacing for each sequence was 4.0 ms. The effective echo time (TE) for c-IR-HASTE was 4.0 ms, and 16 ms for s-IR-HASTE. The inversion time (TI) was 900 ms. To determine the improvement in oxygen-enhanced MR subtraction imaging by c-IR-HASTE, CNRs of subtraction image, overall image quality, and image degradation of the c-IR-HASTE and s-IR-HASTE techniques were statistically compared. Results: CNR, overall image quality, and image degradation of c-IR-HASTE images showed significant improvement compared to those s-IR-HASTE images (P<0.05). Conclusion: Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence enhanced the signal from the lung and improved the image quality of oxygen-enhanced MR subtraction imaging

  19. Multishot echo-planar MREIT for fast imaging of conductivity, current density, and electric field distributions.

    Science.gov (United States)

    Chauhan, Munish; Vidya Shankar, Rohini; Ashok Kumar, Neeta; Kodibagkar, Vikram D; Sadleir, Rosalind

    2018-01-01

    Magnetic resonance electrical impedance tomography (MREIT) sequences typically use conventional spin or gradient echo-based acquisition methods for reconstruction of conductivity and current density maps. Use of MREIT in functional and electroporation studies requires higher temporal resolution and faster sequences. Here, single and multishot echo planar imaging (EPI) based MREIT sequences were evaluated to see whether high-quality MREIT phase data could be obtained for rapid reconstruction of current density, conductivity, and electric fields. A gel phantom with an insulating inclusion was used as a test object. Ghost artifact, geometric distortion, and MREIT correction algorithms were applied to the data. The EPI-MREIT-derived phase-projected current density and conductivity images were compared with simulations and spin-echo images as a function of EPI shot number. Good agreement among measures in simulated, spin echo, and EPI data was achieved. Current density errors were stable and below 9% as the shot number decreased from 64 to 2, but increased for single-shot images. Conductivity reconstruction relative contrast ratios were stable as the shot number decreased. The derived electric fields also agreed with the simulated data. The EPI methods can be combined successfully with MREIT reconstruction algorithms to achieve fast imaging of current density, conductivity, and electric field. Magn Reson Med 79:71-82, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.

    Science.gov (United States)

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo

    2017-09-22

    Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.

  1. A Fast Track towards the `Higgs' Spin and Parity

    CERN Document Server

    Ellis, John; Sanz, Veronica; You, Tevong

    2012-01-01

    The LHC experiments ATLAS and CMS have discovered a new boson that resembles the long-sought Higgs boson: it cannot have spin one, and has couplings to other particles that increase with their masses, but the spin and parity remain to be determined. We show here that the `Higgs' + gauge boson invariant-mass distribution in `Higgs'-strahlung events at the Tevatron or the LHC would be very different under the J^P = 0+, 0- and 2+ hypotheses, and could provide a fast-track indicator of the `Higgs' spin and parity. Our analysis is based on simulations of the experimental event selections and cuts using PYTHIA and Delphes, and incorporates statistical samples of `toy' experiments.

  2. Lower Extremity Muscle Activity During a Women's Overhand Lacrosse Shot

    Directory of Open Access Journals (Sweden)

    Millard Brianna M.

    2014-07-01

    Full Text Available The purpose of this study was to describe lower extremity muscle activity during the lacrosse shot. Participants (n=5 females, age 22±2 years, body height 162.6±15.2 cm, body mass 63.7±23.6 kg were free from injury and had at least one year of lacrosse experience. The lead leg was instrumented with electromyography (EMG leads to measure muscle activity of the rectus femoris (RF, biceps femoris (BF, tibialis anterior (TA, and medial gastrocnemius (GA. Participants completed five trials of a warm-up speed shot (Slow and a game speed shot (Fast. Video analysis was used to identify the discrete events defining specific movement phases. Full-wave rectified data were averaged per muscle per phase (Crank Back Minor, Crank Back Major, Stick Acceleration, Stick Deceleration. Average EMG per muscle was analyzed using a 4 (Phase x 2 (Speed ANOVA. BF was greater during Fast vs. Slow for all phases (p0.05. RF and GA were each influenced by the interaction of Phase and Speed (p<0.05 with GA being greater during Fast vs. Slow shots during all phases and RF greater during Crank Back Minor and Major as well as Stick Deceleration (p<0.05 but only tended to be greater during Stick Acceleration (p=0.076 for Fast vs. Slow. The greater muscle activity (BF, RF, GA during Fast vs. Slow shots may have been related to a faster approach speed and/or need to create a stiff lower extremity to allow for faster upper extremity movements.

  3. Optimal spin current pattern for fast domain wall propagation in nanowires

    Science.gov (United States)

    Yan, Peng; Sun, Zhouzhou; Schliemann, John; Wang, Xiangrong

    2011-03-01

    One of the important issues in nanomagnetism is to lower the current needed for a technologically useful domain wall (DW) propagation speed. Based on the modified Landau-Lifshitz-Gilbert (LLG) equation with both Slonczewski spin-transfer torque and the field-like torque, we derive an optimal temporally and spatially varying spin current pattern for fast DW propagation along nanowires. Under such conditions, the DW velocity in biaxial wires can be enhanced as much as tens of times higher than that achieved in experiments so far. Moreover, the fast variation of spin polarization can efficiently help DW depinning. Possible experimental realizations are discussed. This work is supported by Hong Kong RGC grants (#603508, 604109, RPC10SC05 and HKU10/CRF/08-HKUST17/CRF/08), and by Deutsche Forschungsgemeinschaft via SFB 689. ZZS thanks the Alexander von Humboldt Foundation (Germany) for a grant.

  4. Fast spin echo MRI techniques. Contrast characteristics and clinical potential. Techniques d'IRM en fast spin echo. Caracteristiques de contraste et potentiels cliniques

    Energy Technology Data Exchange (ETDEWEB)

    Melki, P.; Mulkern, R.V.; Dacher, J.N.; Helenon, O.; Higuchi, N. (Harvard Medical School, Boston, MA (United States)); Oshio, K.; Jolesz, F. (Keio Univ., Tokyo (Japan)); Pourcelot, L. (Hopital Bretonneau, 37 - Tours (France)); Einstein, S. (General Electric Medical System, Milwaukee, WI (United States))

    1993-03-01

    Based on partial RF echo planar principles, Fast Spin Echo techniques (FSE) were implemented on high field systems. These methods produce image quality and contrast which resemble to conventional spin echo (SE) techniques. By reducing acquisition times by factors between 1.4 and 16 over SE methods, FSE allows for several imaging options usually prohibitive with conventional spin echo (SE) sequences. These include fast scans (especially breathold acquisitions); improved T2 contrast with longer TR intervals; increased spatial resolution with the use of larger image matrices and/or smaller fields of view; and 3D volume imaging with a 3D multislab FSE technique. Contrast features of FSE techniques are directly comparable to those of multiple echo SE sequences using the same echo spacing than FSE methods. However, essential contrast differences existing between the FSE sequences and their routine asymmetric dual SE counterpart can be identified. Decreased magnetic susceptibility effects and increased fat signal present within T2 weighted images compared to conventional dual SE images are due to the use of shorter echo spacings employed in FSE sequences. Off-resonance irradiation inherent to the use of a large number of radio frequency pulses in shown to results in dramatic magnetization contrast transfer effects in FSE images acquired in multislice mode.

  5. Single-shot spiral imaging at 7 T.

    Science.gov (United States)

    Engel, Maria; Kasper, Lars; Barmet, Christoph; Schmid, Thomas; Vionnet, Laetitia; Wilm, Bertram; Pruessmann, Klaas P

    2018-03-25

    The purpose of this work is to explore the feasibility and performance of single-shot spiral MRI at 7 T, using an expanded signal model for reconstruction. Gradient-echo brain imaging is performed on a 7 T system using high-resolution single-shot spiral readouts and half-shot spirals that perform dual-image acquisition after a single excitation. Image reconstruction is based on an expanded signal model including the encoding effects of coil sensitivity, static off-resonance, and magnetic field dynamics. The latter are recorded concurrently with image acquisition, using NMR field probes. The resulting image resolution is assessed by point spread function analysis. Single-shot spiral imaging is achieved at a nominal resolution of 0.8 mm, using spiral-out readouts of 53-ms duration. High depiction fidelity is achieved without conspicuous blurring or distortion. Effective resolutions are assessed as 0.8, 0.94, and 0.98 mm in CSF, gray matter and white matter, respectively. High image quality is also achieved with half-shot acquisition yielding image pairs at 1.5-mm resolution. Use of an expanded signal model enables single-shot spiral imaging at 7 T with unprecedented image quality. Single-shot and half-shot spiral readouts deploy the sensitivity benefit of high field for rapid high-resolution imaging, particularly for functional MRI and arterial spin labeling. © 2018 International Society for Magnetic Resonance in Medicine.

  6. Fast spin echo MRI techniques. Contrast characteristics and clinical potential

    International Nuclear Information System (INIS)

    Melki, P.; Mulkern, R.V.; Dacher, J.N.; Helenon, O.; Higuchi, N.; Oshio, K.; Jolesz, F.; Pourcelot, L.; Einstein, S.

    1993-01-01

    Based on partial RF echo planar principles, Fast Spin Echo techniques (FSE) were implemented on high field systems. These methods produce image quality and contrast which resemble to conventional spin echo (SE) techniques. By reducing acquisition times by factors between 1.4 and 16 over SE methods, FSE allows for several imaging options usually prohibitive with conventional spin echo (SE) sequences. These include fast scans (especially breathold acquisitions); improved T2 contrast with longer TR intervals; increased spatial resolution with the use of larger image matrices and/or smaller fields of view; and 3D volume imaging with a 3D multislab FSE technique. Contrast features of FSE techniques are directly comparable to those of multiple echo SE sequences using the same echo spacing than FSE methods. However, essential contrast differences existing between the FSE sequences and their routine asymmetric dual SE counterpart can be identified. Decreased magnetic susceptibility effects and increased fat signal present within T2 weighted images compared to conventional dual SE images are due to the use of shorter echo spacings employed in FSE sequences. Off-resonance irradiation inherent to the use of a large number of radio frequency pulses in shown to results in dramatic magnetization contrast transfer effects in FSE images acquired in multislice mode

  7. Calculation of T2 relaxation time from ultrafast single shot sequences for differentiation of liver tumors. Comparison of echo-planar, HASTE, and spin-echo sequences

    International Nuclear Information System (INIS)

    Abe, Yasuko; Yamashita, Yasuyuki; Tang, Yi; Namimoto, Tomohiro; Takahashi, Mutsumasa

    2000-01-01

    The purpose of this study was to evaluate the accuracy of T2 calculation from single shot imaging sequences such as echo-planar imaging (EPI) and half-Fourier single shot turbo spin-echo (HASTE) imaging. For the phantom study, we prepared vials containing different concentrations of agarose, copper sulfate, and nickel chloride. The temperature of the phantom was kept at 22 deg C. MR images were obtained with a 1.5-Tesla superconductive magnet. Spin-echo (SE)-type EPI and HASTE sequences with different TEs were obtained for T2 calculation, and the T2 values were compared with those obtained from the Carr-Purcell-Meiborm-Gill (CPMG) sequence. The clinical study group consisted of 30 consecutive patients referred for MR imaging to characterize focal liver lesions. A total of 40 focal liver lesions were evaluated, including 25 primary or metastatic solid masses and 15 non-solid lesions. Single shot SE-type EPI and HASTE were both performed with TEs of 64 and 90 msec. In the phantom study, the T2 values obtained from both single shot sequences showed significant correlations with those from the CPMG sequence (T2 on EPI vs. T2 on CPMG: r=0.98, p<0.01; T2 on HASTE vs. T2 on CPMG: r=0.99, p<0.01). In the clinical study, mean T2 values for liver calculated from EPI (42 msec) were significantly shorter than those calculated from the HASTE sequence (58 msec) (p<0.001). Mean T2 values for solid tumors were 95 msec with HASTE and 72 msec with EPI, and mean T2 values for non-solid lesions were 128 msec with HASTE and 159 msec with EPI. Although mean T2 values between solid and non-solid lesions were significantly different for both EPI and HASTE sequences (p=0.01 for HASTE, p<0.001 for EPI), the overlap of solid and non-solid lesions was less frequent in EPI than in HASTE. With single shot sequences, it is possible to obtain the T2 values that show excellent correlation with the CPMG sequence. Although both HASTE and EPI are useful to calculate T2 values, EPI appears to be more

  8. Fast MR imaging and ultrafast MR imaging of fetal central nervous system abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Shakudo, Miyuki; Manabe, Takao; Murata, Katsuko; Matsuo, Ryoichi; Oda, Junro [Osaka City General Hospital (Japan); Inoue, Yuichi; Mochizuki, Kunizo; Yamada, Ryusaku

    2001-12-01

    The aims of this study were two: to compare the efficacy of fast MRI (breath-hold fast spin-echo T2-weighted and fast gradient-echo T1-weighted sequence) and ultrafast MRI (half-Fourier acquisition single-shot turbo spin-echo sequence) in evaluation of fetal central nervous system (CNS) abnormalities at late gestational age, and to compare the capability of fast MRI and ultrafast MRI to assess fetal CNS abnormalities with that of prenatal ultrasonography (US). Forty-nine women with fetuses at gestational ages of 26-39 weeks underwent fast MRI (29 patients) or ultrafast MRI (20 patients). In detection of motion artifact, visualization of the lateral and 4th ventricles, and differentiation between gray and white matter in cerebral hemispheres, ultrafast MRI was significantly superior to fast MRI (p<0.0001, Mann-Whitney U test). In 25 of 43 cases, US and MR diagnoses were the same and consistent with postnatal diagnosis. In 10 of 43 cases, MRI demonstrated findings additional to or different from those of US, and MR findings were confirmed postnatally. MRI, particularly ultrafast MRI, is useful for demonstrating CNS abnormalities in situations in which US is suggestive but not definitive. (author)

  9. MR cholangiography using a fast spin-echo technique: prospective evaluation in 20 patients

    International Nuclear Information System (INIS)

    Rondeau, Y.; Meduri, B.; Spelle, L.; Gouhiri, M.; Aubert, A.; Scherrer, A.; Soyer, Ph.; Rymer, R.

    1998-01-01

    To evaluate a MR cholangiographic technique using a non breath-hold fast spin-echo technique in patients with suspected bile duct obstruction. Twenty patients with suspected bile duct obstruction were prospectively investigated with MR cholangiography using a T2-weighted non breath-hold fast spin-echo technique (TR 8000-9000 msec, effective TE 120-266 msec, ETL = 16-32, acquisition time = 1-3 min) with a body coil. Results of MR cholangiography were compared to those obtained with endoscopic retrograde cholangiography (n = 20 patients) and endoscopic sonography (n 12 patients) that were considered as reference. MR cholangiography provided high-quality images in 19 out of 20 cases (95 %). MR cholangiography had 100 % sensitivity, 100 % specificity and 73 % accuracy in the diagnosis of bile duct obstruction. MR cholangiography failed to depict small stones (< 3 mm) of the main bile duct in 4 cases in which no bile duct dilation was found. MR cholangiography using a non breath-hold fast spin-echo technique depicts bile duct dilatation with a degree of accuracy comparable to that achieved with endoscopic examination. In the absence of bile duct dilatation, small stones of the main bile duct may be undetected with MR cholangiography. (author)

  10. Spectrometer for shot-to-shot photon energy characterization in the multi-bunch mode of the free electron laser at Hamburg

    International Nuclear Information System (INIS)

    Palutke, S.; Wurth, W.; Gerken, N. C.; Mertens, K.; Klumpp, S.; Martins, M.; Mozzanica, A.; Schmitt, B.; Wunderer, C.; Graafsma, H.; Meiwes-Broer, K.-H.

    2015-01-01

    The setup and first results from commissioning of a fast online photon energy spectrometer for the vacuum ultraviolet free electron laser at Hamburg (FLASH) at DESY are presented. With the use of the latest advances in detector development, the presented spectrometer reaches readout frequencies up to 1 MHz. In this paper, we demonstrate the ability to record online photon energy spectra on a shot-to-shot base in the multi-bunch mode of FLASH. Clearly resolved shifts in the mean wavelength over the pulse train as well as shot-to-shot wavelength fluctuations arising from the statistical nature of the photon generating self-amplified spontaneous emission process have been observed. In addition to an online tool for beam calibration and photon diagnostics, the spectrometer enables the determination and selection of spectral data taken with a transparent experiment up front over the photon energy of every shot. This leads to higher spectral resolutions without the loss of efficiency or photon flux by using single-bunch mode or monochromators

  11. Three-dimensional fast recovery fast spin-echo imaging of the inner ear and the vestibulocochlear nerve

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, K.; Morikawa, M.; Ishimaru, H.; Ochi, M.; Hayashi, K. [Department of Radiology, Nagasaki University School of Medicine, 1-7-1 Sakamoto, Nagasaki 852-8501 (Japan); Kabasawa, H. [GE Yokogawa Medical Systems, Tokyo (Japan)

    2002-11-01

    The aim of this study was to assess the performance of three-dimensional fast recovery fast spin-echo (3DFRFSE) for imaging of the inner ear as well as the facial and vestibulocochlear nerves. We evaluated 3DFRFSE sequences, comparing it with 3D fast spin-echo (3DFSE) in a water phantom and in 12 normal volunteers. We also examined 66 patients using 3DFRFSE sequence and assessed the visualization of their pathologies. In a water phantom study, signal intensity (SI) on 3DFRFSE was higher than that on 3DFSE at the same TR ranging from 1500 to 6000 ms. In normal volunteers, 3DFRFSE with TR of 2800 ms showed comparable SI, and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) superior to those on 3DFSE with TR of 5000 ms. In clinical setting, 3DFRFSE was useful in demonstrating anatomic details in the labyrinth and pathologic findings of inner ear. The 3DFRFSE can provide high-resolution heavily T2-weighted images (T2WI) with shorter scan time than 3DFSE without significant disadvantage. The 3DFRFSE is a beneficial technique for evaluation of lesions in the inner ear as well as the facial and vestibulocochlear nerves. (orig.)

  12. The evaluation of fat saturation fast spin-echo T2W1 for patients with acute spinal trauma

    International Nuclear Information System (INIS)

    Kim, Sung Gyu; Lee, Chang Jun; Lee, Myung Joon; Kang, Ik Won; Yoo, Jeong Hyun

    2002-01-01

    To determine the usefulness of fat saturation fast spin-echo T2W1 for patients with mild acute trauma of the spine. Between July 1998 and June 2002, 36 patients with acute spinal trauma underwent MRI within four months of injury. One, whose clinal symptoms indicated neurological paralysis, was excluded form our study. A superconductive 1.0-T MRI scanner was used, and conventional T1W1, T2W1, and additional fat-saturation fast spin-echo T2W1 were performed. Two radiologists compared conventional T2-weighted sagittal imaging and fat-saturation T2-weighted sagittal imaging in terms of the extension of increased high signal intensities in soft tissue and vertebral bodies, bone marrow signal change, disk herniation, and signal change of the disk. The detection rate of focal high signal intensities in soft tissue and bone marrow was significantly higher at fat-saturation fast spin-echo T2W1 than at conventional T2W1. Fat-saturation fast spin-echo T2W1 is useful for the evaluation of patients with mild acute spinal trauma without neurological impairment

  13. High-fidelity projective read-out of a solid-state spin quantum register.

    Science.gov (United States)

    Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald

    2011-09-21

    Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved

  14. Fast switching of bistable magnetic nanowires through collective spin reversal

    Science.gov (United States)

    Vindigni, Alessandro; Rettori, Angelo; Bogani, Lapo; Caneschi, Andrea; Gatteschi, Dante; Sessoli, Roberta; Novak, Miguel A.

    2005-08-01

    The use of magnetic nanowires as memory units is made possible by the exponential divergence of the characteristic time for magnetization reversal at low temperature, but the slow relaxation makes the manipulation of the frozen magnetic states difficult. We suggest that finite-size segments can show a fast switching if collective reversal of the spins is taken into account. This mechanism gives rise at low temperatures to a scaling law for the dynamic susceptibility that has been experimentally observed for the dilute molecular chain Co(hfac)2NitPhOMe. These results suggest a possible way of engineering nanowires for fast switching of the magnetization.

  15. Detection of renal arteries with fast spin-echo magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tello, R.; Mitchell, P.J.; Witte, D.J.; Thomson, K.R. [University of Melbourne, Parkville, VIC (Australia). Department of Radiology

    1998-08-01

    With the increasing use of non-invasive imaging with MR and volumetric CT to evaluate renal arteries, the ability to accurately detect the number and state of native renal arteries becomes critical if conventional angiography is to be supplanted in these settings. The present study evaluated the utility of a fast spin-echo (FSE) T2-weighted sequence to detect the number and course of renal arteries and their ostia compared to conventional angiography. Ten patients underwent conventional catheter angiography either for renal artery stenosis evaluation or as potential renal donors. Each patient then had an MR study of the renal arteries and kidneys with FSE MR (TR = 4000 ms, TE = 102 ms, eight- echo train length, 5-mm-thick interleaved 128 phase encodes, superior and inferior saturation pulses, number of excitations (NEX) = 4, on a 1.5-T superconducting magnet). Images were reviewed by two `blinded` radiologists and renal arteries were counted and their ostia were evaluated. Results were compared with angiography and inter- and intra-observer statistics were calculated. All 10 patients underwent MR successfully, nine for renal artery stenosis (RAS) evaluation and one was a renal donor. A total of 24 renal arteries were imaged in 19 kidneys. Fast spin-echo MR is 95% accurate (95%CI: 88-100%) in detection of renal arteries, with no statistical difference between FSE MR and catheter angiography (McNemar P = 0.0). Inter- and intra-observer statistics demonstrate good-to-excellent agreement in renal artery detection (kappa: 0.63-0.90). In one case of RAS evaluation an incidental adrenal mass was detected as the aetiology of the patient`s hypertension. Fast spin-echo MR can be a useful adjunct as part of the imaging for renal arteries with MRI. Copyright (1998) Blackwell Science Pty Ltd 16 refs., 1 fig.

  16. Detection of renal arteries with fast spin-echo magnetic resonance imaging

    International Nuclear Information System (INIS)

    Tello, R.; Mitchell, P.J.; Witte, D.J.; Thomson, K.R.

    1998-01-01

    With the increasing use of non-invasive imaging with MR and volumetric CT to evaluate renal arteries, the ability to accurately detect the number and state of native renal arteries becomes critical if conventional angiography is to be supplanted in these settings. The present study evaluated the utility of a fast spin-echo (FSE) T2-weighted sequence to detect the number and course of renal arteries and their ostia compared to conventional angiography. Ten patients underwent conventional catheter angiography either for renal artery stenosis evaluation or as potential renal donors. Each patient then had an MR study of the renal arteries and kidneys with FSE MR (TR = 4000 ms, TE = 102 ms, eight- echo train length, 5-mm-thick interleaved 128 phase encodes, superior and inferior saturation pulses, number of excitations (NEX) = 4, on a 1.5-T superconducting magnet. Images were reviewed by two 'blinded' radiologists and renal arteries were counted and their ostia were evaluated. Results were compared with angiography and inter- and intra-observer statistics were calculated. All 10 patients underwent MR successfully, nine for renal artery stenosis (RAS) evaluation and one was a renal donor. A total of 24 renal arteries were imaged in 19 kidneys. Fast spin-echo MR is 95% accurate (95%CI: 88-100%) in detection of renal arteries, with no statistical difference between FSE MR and catheter angiography (McNemar P = 0.0). Inter- and intra-observer statistics demonstrate good-to-excellent agreement in renal artery detection (kappa: 0.63-0.90). In one case of RAS evaluation an incidental adrenal mass was detected as the aetiology of the patient's hypertension. Fast spin-echo MR can be a useful adjunct as part of the imaging for renal arteries with MRI. Copyright (1998) Blackwell Science Pty Ltd

  17. Assessment of the image quality and tumor detectability of breath-hold T2-weighted imaging of liver tumors using a fast gradient MR system

    International Nuclear Information System (INIS)

    Yoshida, Kotaro; Suto, Yuji; Sugihara, Shuji; Tokuda, Yukiko

    1996-01-01

    Fourteen patients with various types of focal liver tumors were imaged with turbo spin-echo (TSE), breath-hold TSE (BH-TSE) and half-Fourier single-shot TSE (HASTE) pulse sequences using a fast gradient magnetic resonance imaging (MRI) system. We compared the T2-weighted images of the liver with the TSE, BH-TSE, HASTE and conventional spin-echo (SE) pulse sequences in order to determine whether those fast T2-weighted images, including fat suppressed images, could replace SE images. In quantitative and qualitative analysis, the fast T2-weighted images were slightly superior to the SE images, but they were inferior in the conspicuousness of liver tumor to the SE images. These findings suggest that the fast T2-weighted images can shorten the examination time of the liver MRI, but cannot replace the T2-weighted SE images because of the low conspicuousness. (author)

  18. Fast Detection of Airports on Remote Sensing Images with Single Shot MultiBox Detector

    Science.gov (United States)

    Xia, Fei; Li, HuiZhou

    2018-01-01

    This paper introduces a method for fast airport detection on remote sensing images (RSIs) using Single Shot MultiBox Detector (SSD). To our knowledge, this could be the first study which introduces an end-to-end detection model into airport detection on RSIs. Based on the common low-level features between natural images and RSIs, a convolution neural network trained on large amounts of natural images was transferred to tackle the airport detection problem with limited annotated data. To deal with the specific characteristics of RSIs, some related parameters in the SSD, such as the scales and layers, were modified for more accurate and rapider detection. The experiments show that the proposed method could achieve 83.5% Average Recall at 8 FPS on RSIs with the size of 1024*1024. In contrast to Faster R-CNN, an improvement on AP and speed could be obtained.

  19. Fast nanoscale addressability of nitrogen-vacancy spins via coupling to a dynamic ferromagnetic vortex

    Science.gov (United States)

    Wolf, M. S.; Badea, R.; Berezovsky, J.

    2016-01-01

    The core of a ferromagnetic vortex domain creates a strong, localized magnetic field, which can be manipulated on nanosecond timescales, providing a platform for addressing and controlling individual nitrogen-vacancy centre spins in diamond at room temperature, with nanometre-scale resolution. Here, we show that the ferromagnetic vortex can be driven into proximity with a nitrogen-vacancy defect using small applied magnetic fields, inducing significant nitrogen-vacancy spin splitting. We also find that the magnetic field gradient produced by the vortex is sufficient to address spins separated by nanometre-length scales. By applying a microwave-frequency magnetic field, we drive both the vortex and the nitrogen-vacancy spins, resulting in enhanced coherent rotation of the spin state. Finally, we demonstrate that by driving the vortex on fast timescales, sequential addressing and coherent manipulation of spins is possible on ∼100 ns timescales. PMID:27296550

  20. Ultra-fast magnetization reversal in magnetic nano-pillars by spin-polarized current

    Energy Technology Data Exchange (ETDEWEB)

    Devolder, T. [Institut d' Electronique Fondamentale, UMR 8622 CNRS, Universite Paris Sud, Ba-circumflex timent 220, 91405 Orsay (France)]. E-mail: thibaut.devolder@ief.u-psud.fr; Tulapurkar, A. [NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568 (Japan); CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 (Japan); Yagami, K. [SSNC, Semiconductor Technology Development Group, SONY Corporation, Atsugi, Kanagawa 243-0014 (Japan); Crozat, P. [Institut d' Electronique Fondamentale, UMR 8622 CNRS, Universite Paris Sud, Ba-circumflex timent 220, 91405 Orsay (France); Chappert, C. [Institut d' Electronique Fondamentale, UMR 8622 CNRS, Universite Paris Sud, Ba-circumflex timent 220, 91405 Orsay (France); Fukushima, A. [NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568 (Japan); CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 (Japan); Suzuki, Y. [NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568 (Japan); CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 (Japan)

    2005-02-01

    We study the speed limitations of the magnetization switching resulting from spin transfer in pillar-shaped CoFe/Cu/CoFe spin valves. The quasi-static critical currents are Ic-=-2mA for the antiparallel (AP) to parallel (P) configuration and Ic+=+4.6mA for the P to AP transition. Current pulses of duration down to 100ps and amplitude of 4I{sub c} trigger switching at 300K. The switching is probabilistic for lower current pulses. The P to AP transition speed is not much temperature dependant from 50 to 300K. In contrast, the AP to P transition is thermally inhibited and is much faster at 150K than at 300K. This thermal inhibition highlights the importance of the macrospin coherency and of the thermally excited spin waves with finite wave vector parallel to the magnetization. Our results validate spin-transfer switching for fast memory applications.

  1. Ultra-fast magnetization reversal in magnetic nano-pillars by spin-polarized current

    International Nuclear Information System (INIS)

    Devolder, T.; Tulapurkar, A.; Yagami, K.; Crozat, P.; Chappert, C.; Fukushima, A.; Suzuki, Y.

    2005-01-01

    We study the speed limitations of the magnetization switching resulting from spin transfer in pillar-shaped CoFe/Cu/CoFe spin valves. The quasi-static critical currents are Ic-=-2mA for the antiparallel (AP) to parallel (P) configuration and Ic+=+4.6mA for the P to AP transition. Current pulses of duration down to 100ps and amplitude of 4I c trigger switching at 300K. The switching is probabilistic for lower current pulses. The P to AP transition speed is not much temperature dependant from 50 to 300K. In contrast, the AP to P transition is thermally inhibited and is much faster at 150K than at 300K. This thermal inhibition highlights the importance of the macrospin coherency and of the thermally excited spin waves with finite wave vector parallel to the magnetization. Our results validate spin-transfer switching for fast memory applications

  2. Diagnostic equivalence of conventional and fast spin echo magnetic resonance imaging of the anterior cruciate ligament of the knee

    International Nuclear Information System (INIS)

    Munk, P.L.; Hilborn, M.D.; Vellet, A.D.; University of Calgary, Calgary, Alberta,; Romano, C.C.; University of Calgary, Calgary, Alberta,

    1997-01-01

    Many techniques and pulse sequences have been devised for the assessment of the anterior cruciate ligament. The present study compares fast spin echo (FSE) imaging to conventional spin echo imaging at a field strength of 1.5 T in an effort to determine if these sequences are diagnostically equivalent. Where available, arthroscopy was also done. A total of 52 patients were imaged using both FSE and conventional spin echo sequences. Eight volunteers were used as controls. Arthroscopy was performed on 10 patients. The anterior cruciate ligament was assessed in a blinded fashion by three radiologists. The Kappa statistic was then used to determine the percentage agreement between FSE and conventional spin echo imaging. Fast spin echo sequencing demonstrated a sensitivity of 100%, a specificity of 94.8% and an accuracy of 96.3% when compared to arthroscopy. Conventional spin echo imaging and arthroscopy had a sensitivity of 100%, specificity of 84.6% and an accuracy of 88.9%. The remaining 34 patients who did not undergo arthroscopy were followed clinically because clinical and imaging findings were not suggestive of ACL tears. These demonstrated 72% agreement between FSE and conventional spin echo imaging using the Kappa statistic, with regards to calling ACL normal or having only a low-grade partial tear. Fast spin echo imaging produces images of the anterior cruciate ligament that have similar diagnostic accuracy to conventional spin echo images (P<0.05) within a much shorter scan time. These results however, require further validation in a larger group, preferably with arthroscopic correlation. (author)

  3. A shot parameter specification subsystem for automated control of PBFA II accelerator shots

    International Nuclear Information System (INIS)

    Spiller, J.L.

    1987-01-01

    The author reports on the shot parameter specification subsystem (SPSS), an integral part of the automatic control system developed for the Particle Beam Fusion Accelerator II (PBFA II). This system has been designed to fully utilize the accelerator by tailoring shot parameters to the needs of the experimenters. The SPSS is the key to this flexibility. Automatic systems will be required on many pulsed power machines for the fastest turnaround, the highest reliability, and most cost effective operation. These systems will require the flexibility and the ease of use that is part of the SPSS. The author discusses how the PBFA II control system has proved to be an effective modular system, flexible enough to meet the demands of both the fast track construction of PBFA II and the control needs of Hermes III. This system is expected to meet the demands of most future machine changes

  4. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond

    Science.gov (United States)

    Epstein, R. J.; Mendoza, F. M.; Kato, Y. K.; Awschalom, D. D.

    2005-11-01

    Experiments on single nitrogen-vacancy (N-V) centres in diamond, which include electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby13C nuclear spin, show the potential of this spin system for solid-state quantum information processing. Moreover, N-V centre ensembles can have spin-coherence times exceeding 50 μs at room temperature. We have developed an angle-resolved magneto-photoluminescence microscope apparatus to investigate the anisotropic electron-spin interactions of single N-V centres at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic-field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin-level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighbouring `dark' nitrogen spins, otherwise undetected by photoluminescence. These results demonstrate the capability of our spectroscopic technique for measuring small numbers of dark spins by means of a single bright spin under ambient conditions.

  5. Resonance fluorescence and electron spin in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yong

    2009-11-18

    The work presented in this dissertation contains the first observation of spin-resolved resonance fluorescence from a single quantum dot and its application of direct measurement of electron spin dynamics. The Mollow triplet and the Mollow quintuplet, which are the hallmarks of resonance fluorescence, are presented as the non-spin-resolved and spin-resolved resonance fluorescence spectrum, respectively. The negligible laser background contribution, the near pure radiative broadened spectrum and the anti-bunching photon statistics imply the sideband photons are background-free and near transform-limited single photons. This demonstration is a promising step towards the heralded single photon generation and electron spin readout. Instead of resolving spectrum, an alternative spin-readout scheme by counting resonance fluorescence photons under moderate laser power is demonstrated. The measurements of n-shot time-resolved resonance fluorescence readout are carried out to reveal electron spin dynamics of the measurement induced back action and the spin relaxation. Hyperfine interaction and heavy-light hole mixing are identified as the relevant mechanisms for the back action and phonon-assistant spin-orbit interaction dominates the spin relaxation. After a detailed discussion on charge-spin configurations in coupled quantum dots system, the single-shot readout on electron spin are proposed. (orig.)

  6. Resonance fluorescence and electron spin in semiconductor quantum dots

    International Nuclear Information System (INIS)

    Zhao, Yong

    2009-01-01

    The work presented in this dissertation contains the first observation of spin-resolved resonance fluorescence from a single quantum dot and its application of direct measurement of electron spin dynamics. The Mollow triplet and the Mollow quintuplet, which are the hallmarks of resonance fluorescence, are presented as the non-spin-resolved and spin-resolved resonance fluorescence spectrum, respectively. The negligible laser background contribution, the near pure radiative broadened spectrum and the anti-bunching photon statistics imply the sideband photons are background-free and near transform-limited single photons. This demonstration is a promising step towards the heralded single photon generation and electron spin readout. Instead of resolving spectrum, an alternative spin-readout scheme by counting resonance fluorescence photons under moderate laser power is demonstrated. The measurements of n-shot time-resolved resonance fluorescence readout are carried out to reveal electron spin dynamics of the measurement induced back action and the spin relaxation. Hyperfine interaction and heavy-light hole mixing are identified as the relevant mechanisms for the back action and phonon-assistant spin-orbit interaction dominates the spin relaxation. After a detailed discussion on charge-spin configurations in coupled quantum dots system, the single-shot readout on electron spin are proposed. (orig.)

  7. Fast fluid-attenuated inversion-recovery MR image in the intracranial tumors: comparison with fast spin-echo image

    International Nuclear Information System (INIS)

    Choi, Hye Young; Kwang, Hyoen Joo; Baek, Seoung Yeon; Lee, Sun Wha

    1997-01-01

    To evaluate the significance of fluid-attenuated inversion recovery(FLAIR) magnetic resonance(MR) images for the diagnosis of intracranial tumors. MR imaging was used to study 15 patients with various intracranial tumors and were compared the findings according to fast spin echo and fast FLAIR images. In 12 of 15 patients, tumor signal intensities on FLAIR images were consistent with those shown on T2-weighted(T2W) images. In seven of eight patients who had cystic or necrotic components within the mass, FLAIR images showed isosignal intensity and in the other patient, high signal intensity was seen. There was variation in the signal intensity from cerebrospinal fluid(CSF). In 12 of 13 patients in whom edema was associated with tumor, FLAIR images were clearer than T2W images as their signal intensity was brighter. In eight patients, however, FLAIR and T2W images provided a similar definition of the margin between edema and tumor. In six patients with intratumoral hemorrhage except the chronic cystic stage. We concluded that in the diagnosis of intracranial tumors, FLAIR images can supplement conventional spin-echo images

  8. Shot Noise Suppression in a Quantum Point Contact with Short Channel Length

    International Nuclear Information System (INIS)

    Jeong, Heejun

    2015-01-01

    An experimental study on the current shot noise of a quantum point contact with short channel length is reported. The experimentally measured maximum energy level spacing between the ground and the first excited state of the device reached up to 7.5 meV, probably due to the hard wall confinement by using shallow electron gas and sharp point contact geometry. The two-dimensional non-equilibrium shot noise contour map shows noise suppression characteristics in a wide range of bias voltage. Fano factor analysis indicates spin-polarized transport through a short quantum point contact. (paper)

  9. Application of fast spin-echo T2-weighted imaging for examination of the neurocranium. Comparison with the conventional T2-weighted spin-echo sequence

    International Nuclear Information System (INIS)

    Siewert, C.; Hosten, N.; Felix, R.

    1994-01-01

    T 2 -weighted spin-echo imaging is the standard screening procedure in MR imaging of the neutrocranium. We evaluated fast spin-echo T 2 -weighted imaging (TT 2 ) of the neurocranium in comparison to conventional spin-echo T 2 -weighted imaging (T 2 ). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher than TT 2 than in T 2 (with the exception of grey-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT 2 , Parkinson patients have to be examined by conventional T 2 . If these limitations are taken into account, fast spin-echo T 2 -weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T 2 -weighting achieved in a short acquisition time. (orig.) [de

  10. RF Shot Noise Measurements in Au Atomic-scale Junctions

    Science.gov (United States)

    Chen, Ruoyu

    Conduction electrons are responsible for many physical or chemical phenomena in condensed matter systems, and their behavior can be directly studied by electronic transport measurements. In conventional transport measurements, conductance or resistance is usually the focus. Such a measurement can be as simple as a quick two terminal DC check by a multi-meter, or a more sophisticated lock-in measurement of multiple higher harmonic signals synchronized to different frequencies. Conductance carries direct information about the quasi-particle density of states and the local electronic distributions, which are usually Fermi-Dirac distribution. Conductance is modified or dominated by scattering from defacts or interfaces, and could also reflect the spin-spin exchange interactions or inelastic couplings with phonons and photons. Naturally one can ask the question: is there anything else we can measure electronically, which carries extra information that a conductance measurement does not provide? One answer to this question is the electronic noise. While the conductance reflects the average charge conduction ability of a system, noise describes how the physical quantities fluctuate around their average values. Some of the fluctuations carry information about their physical origins. This thesis will focus on one particular type of the electronic noise shot noise, but other types of noise will also be introduced and discussed. We choose to measure the radio frequency component of shot noise, combining with a modulated lock-in detection technique, which provides a method to largely get rid of other unwanted low-frequency noise signals. Au atomic-scale junctions are the systems we studied here. Au is relatively well understood and will not generate too many complications, so it's ideal as the first platform for us to understand both shot noise itself and our RF technique. On the other hand, the atomic scale raises fundamental questions about electronic transport and local

  11. The evaluation of fat saturation fast spin-echo T2WI for patients with acute spinal trauma

    International Nuclear Information System (INIS)

    Kim, Sung Gyu; Lee, Chang Jun; Lee, Myung Joon; Kang, Ik Won; Yoo, Jeong Hyun

    2002-01-01

    To determine the usefulness of fat saturation fast spin-echo T2WI for patients with mild acute trauma of the spine. Between July 1998 and June 2002, 36 patients with acute spinal trauma underwent MRI within four months of injury. One, whose clinal symptoms indicated neurological paralysis, was excluded form our study. A superconductive 1.0-T MRI scanner was used, and conventional T1W1, T2W1, and additional fat-saturation fast spin-echo T2W1 were performed. Two radiologists compared conventional T2-weighted sagittal imaging and fat-saturation T2-weighted sagittal imaging in terms of the extension of increased high signal intensities in soft tissue and vertebral bodies, bone marrow signal change, disk herniation, and signal change of the disk. The detection rate of focal high signal intensities in soft tissue and bone marrow was significantly higher at fat-saturation fast spin-echo T2W1 is useful the evaluation of patients with mild acute spinal trauma without neurological impairment

  12. Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiong-Peng [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Shao, Bin, E-mail: sbin610@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Hu, Shuai; Zou, Jian [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wu, Lian-Ao [Department of Theoretical Physics and History of Science, The Basque Country University (EHU/UPV), PO Box 644, 48080 Bilbao (Spain); Ikerbasque, Basque Foundation for Science, 48011 Bilbao (Spain)

    2016-12-15

    Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that the scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.

  13. Fast MR imaging for evaluating the pancreaticobiliary system

    International Nuclear Information System (INIS)

    Takehara, Yasuo

    1999-01-01

    Due to physiological movement clinical MR applications for abdominal organs got off to a very slow start compared to MR imaging of other organs. However, with recent cutting-edge hardware technologies such as high performance gradient systems and phased-array capability, as well as software innovations including short TR fast spoiled gradient recalled acquisition in the steady state (GRASS), snapshot imaging such as single shot fast spin echo sequence (SSFSE) and echo planar imaging (EPI), scan times have been further reduced to make breath-hold imaging clinically viable and to enable semi-fluoroscopic, kinematic imaging recognition. The elimination of physiological motion has contributed to the significant improvement in image quality, or more specifically, the physiological motion that had long been problematic has been turned into a source of physiological information about pancreaticobiliary pathologies. In this article, the author reviewed the current status of fast MR technologies for examining pancreaticobiliary pathologies, stressing the functional and physiological aspects of the corresponding anatomy. The technologies included secretin MRCP, which became a powerful tool when combined with kinematic imaging

  14. Comparison of fast spin echo, fast multiplanner spoiled gradient recalled and conventional T1 and T2 weighted imaging for experimentally induced hepatic tumors in rats

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myeong Jin; Lee, Jong Tae; Suh, Jin Suk; Choi, Pil Sik; Lee, Yeon Hee; Yoo, Hyung Sik; Kim, Ki Whang [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1994-10-15

    To compare the ability of tumor detection and the lesion conspicuity between T1- and T2-weighted fast scanning sequence and T1- and T2-weighted conventional spin echo techniques in MR imaging of hepatic tumors. Hepatic tumors were induced on 13 male Sprague-Dawley rats by feeding 3'-methyl-dimethylethyl aminoazobenzene mixed with Miller's III formula for 12 weeks. MR images were obtained with 1.5 T magnet with dual TMJ coil(Sigma, GE Medical systems, Milwaukee, USA). Animals were anesthetized with 150 mg/kg of ketamine hydrochloride. T2 weighted fast spin echo(FSE), conventional spin echo(CSE) T2- and T1WI, fast multiplanner spoiled gradient recalled(FMPSPGR) imaging were obtained. Number of detected tumors and contrast-to-noise ratio of the tumors were compared for each sequence. Overall 110 tumors were developed. 75% of the tumors were detected on FSE. 65% on FMPSPGR, 41% on conventional T2WI, and 41% on T1WI images. For tumors more than 5 mm in diameter, sensitivity was 88% on FMPSPGR, 65% on conventional T2WI, and 81% on T1WI images respectively. CNR of the tumor was 28.94 {+-} 21.6 on FSE, 13.57 {+-} 8.64 on FMPSPGR, 12.62 {+-} 10.65 on CSE T2WI, and 9.47 {+-} 8.05 on CSE T1WI images, which was significantly high on FSE(p<0.05). Fast spin echo T2WI shows highest sensitivity and tumor-to-liver contrast. FMPSPGR imaging is also favorably comparable with conventional T1WI. Therefore, these two pulse sequences can be useful in clinical condition for hepatic MR imaging.

  15. A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Holley, A. T.; Pattie, R. W.; Young, A. R. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States); Broussard, L. J. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Davis, J. L.; Ito, T. M.; Lyles, J. T. M.; Makela, M.; Morris, C. L.; Mortensen, R.; Saunders, A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hickerson, K.; Mendenhall, M. P. [W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (United States); Liu, C.-Y. [Department of Physics, Indiana University, Bloomington, Indiana 47405 (United States); Mammei, R. R. [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States); Rios, R. [Department of Physics, Idaho State University, Pocatello, Idaho 83209 (United States)

    2012-07-15

    The UCNA collaboration is making a precision measurement of the {beta} asymmetry (A) in free neutron decay using polarized ultracold neutrons (UCN). A critical component of this experiment is an adiabatic fast passage neutron spin flipper capable of efficient operation in ambient magnetic fields on the order of 1 T. The requirement that it operate in a high field necessitated the construction of a free neutron spin flipper based, for the first time, on a birdcage resonator. The design, construction, and initial testing of this spin flipper prior to its use in the first measurement of A with UCN during the 2007 run cycle of the Los Alamos Neutron Science Center's 800 MeV proton accelerator is detailed. These studies determined the flipping efficiency of the device, averaged over the UCN spectrum present at the location of the spin flipper, to be {epsilon}=0.9985(4).

  16. Clinical application of Half Fourier Acquisition Single Shot Turbo Spin Echo (HASTE) imaging accelerated by simultaneous multi-slice acquisition.

    Science.gov (United States)

    Schulz, Jenni; P Marques, José; Ter Telgte, Annemieke; van Dorst, Anouk; de Leeuw, Frank-Erik; Meijer, Frederick J A; Norris, David G

    2018-01-01

    As a single-shot sequence with a long train of refocusing pulses, Half-Fourier Acquisition Single-Shot Turbo-Spin-Echo (HASTE) suffers from high power deposition limiting use at high resolutions and high field strengths, particularly if combined with acceleration techniques such as simultaneous multi-slice (SMS) imaging. Using a combination of multiband (MB)-excitation and PINS-refocusing pulses will effectively accelerate the acquisition time while staying within the SAR limitations. In particular, uncooperative and young patients will profit from the speed of the MB-PINS HASTE sequence, as clinical diagnosis can be possible without sedation. Materials and MethodsMB-excitation and PINS-refocusing pulses were incorporated into a HASTE-sequence with blipped CAIPIRINHA and TRAPS including an internal FLASH reference scan for online reconstruction. Whole brain MB-PINS HASTE data were acquired on a Siemens 3T-Prisma system from 10 individuals and compared to a clinical HASTE protocol. ResultsThe proposed MB-PINS HASTE protocol accelerates the acquisition by about a factor 2 compared to the clinical HASTE. The diagnostic image quality proved to be comparable for both sequences for the evaluation of the overall aspect of the brain, the detection of white matter changes and areas of tissue loss, and for the evaluation of the CSF spaces although artifacts were more frequently encountered with MB-PINS HASTE. ConclusionsMB-PINS HASTE enables acquisition of slice accelerated highly T2-weighted images and provides good diagnostic image quality while reducing acquisition time. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Proposed design for a fast (parallel) preprocessor for the spin spectrometer and other eventful albatrosses

    International Nuclear Information System (INIS)

    Hensley, D.C.

    1981-01-01

    Because devices like the Spin Spectrometer described in a previous paper to this conference can produce an extremely fast but fairly simple-to-process data stream, it seems reasonable to consider front-end preprocessors having special characteristics. In general, the kinds of transformations being considered do not require floating point calculations or extensive calculations. In order to be somewhat specific, the particular data acquisition/processing problems posed by the Spin Spectrometer at the Holifield Heavy Ion Facility will be discussed

  18. Tunnel barrier and noncollinear magnetization effects on shot noise in ferromagnetic/semiconductor/ferromagnetic heterojunctions

    International Nuclear Information System (INIS)

    An Xingtao; Liu Jianjun

    2008-01-01

    Based on the scattering approach, we investigate transport properties of electrons in a one-dimensional waveguide that contains a ferromagnetic/semiconductor/ferromagnetic heterojunction and tunnel barriers in the presence of Rashba and Dresselhaus spin-orbit interactions. We simultaneously consider significant quantum size effects, quantum coherence, Rashba and Dresselhaus spin-orbit interactions and noncollinear magnetizations. It is found that the tunnel barrier plays a decisive role in the transmission coefficient and shot noise of the ballistic spin electron transport through the heterojunction. When the small tunnel barriers are considered, the transport properties of electrons are quite different from those without tunnel barriers

  19. High-Fidelity Single-Shot Toffoli Gate via Quantum Control.

    Science.gov (United States)

    Zahedinejad, Ehsan; Ghosh, Joydip; Sanders, Barry C

    2015-05-22

    A single-shot Toffoli, or controlled-controlled-not, gate is desirable for classical and quantum information processing. The Toffoli gate alone is universal for reversible computing and, accompanied by the Hadamard gate, forms a universal gate set for quantum computing. The Toffoli gate is also a key ingredient for (nontopological) quantum error correction. Currently Toffoli gates are achieved by decomposing into sequentially implemented single- and two-qubit gates, which require much longer times and yields lower overall fidelities compared to a single-shot implementation. We develop a quantum-control procedure to construct a single-shot Toffoli gate for three nearest-neighbor-coupled superconducting transmon systems such that the fidelity is 99.9% and is as fast as an entangling two-qubit gate under the same realistic conditions. The gate is achieved by a nongreedy quantum control procedure using our enhanced version of the differential evolution algorithm.

  20. Fast triple-spin-echo Dixon (FTSED) sequence for water and fat imaging

    Czech Academy of Sciences Publication Activity Database

    Kořínek, Radim; Bartušek, Karel; Starčuk jr., Zenon

    2017-01-01

    Roč. 37, APR (2017), s. 164-170 ISSN 0730-725X R&D Projects: GA MŠk ED0017/01/01; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : fast triple-spin-echo Dixon * sequence * MRI * fat fraction * water-fat * ultra-high field * 9.4 T * FTSED Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Radiology, nuclear medicine and medical imaging Impact factor: 2.225, year: 2016

  1. Contrast-enhanced dynamic MR imaging of parasellar tumor using fast spin-echo sequence

    International Nuclear Information System (INIS)

    Kusunoki, Katsusuke; Ohue, Shiro; Ichikawa, Haruhisa; Saito, Masahiro; Sadamoto, Kazuhiko; Sakaki, Saburo; Miki, Hitoshi.

    1995-01-01

    We have applied a new dynamic MRI technique that uses a fast spin-echo sequence to parasellar tumors. This sequence has less susceptible effect and better spatial resolution than a gradient echo sequence, providing faster images than a short spin-echo sequence does. Image was obtained in the coronal or sagittal plane using a 1.5T clinical MRI system, and then, dynamic MR images were acquired every 10 to 20 sec after administration of Gd-DTPA (0.1 mmol/kg). The subjects were 12 patients (5 microadenomas, 5 macroadenomas and 2 Rathke's cleft cysts) and 5 normal volunteers. As for volunteers, the cavernous sinus, pituitary stalk and posterior pituitary gland were contrasted on the first image, followed by visualization of the proximal portion adjacent to the junction of the infundibulum and the anterior pituitary gland, and finally by contrasting the distal portion of the anterior pituitary gland. There was a difference with respect to tumor contrast between microadenomas and macroadenomas. In the case of the macroadenomas, the tumor was contrasted at the same time as, or faster than the anterior pituitary gland, while with the microadenomas the tumor was enhanced later than the anterior pituitary gland. No enhancement with contrast medium was seen in Rathke's cleft cysts. In addition, it was possible to differentiate a recurrent tumor from a piece of muscle placed at surgery since the images obtained by the fast spin-echo sequence were clearer than those obtained by gradient echo sequence. (author)

  2. Fast method of NMR imaging based on trains of spin echoes

    International Nuclear Information System (INIS)

    Hennel, F.

    1993-01-01

    A theoretical introduction to Fourier NMR imaging and a discussion of fast methods are presented. Then an application of the method of echo-planar imaging (EPI) with spin echoes in a micro-imaging system is described together with introduced modifications of the sequence. A new technique for the measurement of flow profiles in liquids which results from a modification of x-pulsed EPI is presented. The development of new software for a NMR micro-imaging system is described, too. 51 refs, 29 refs

  3. Sub-Shot-Noise Magnetometry with a Correlated Spin-Relaxation Dominated Alkali-Metal Vapor

    International Nuclear Information System (INIS)

    Kominis, I. K.

    2008-01-01

    Spin noise sets fundamental limits to the precision of measurements using spin-polarized atomic vapors, such as performed with sensitive atomic magnetometers. Spin squeezing offers the possibility to extend the measurement precision beyond the standard quantum limit of uncorrelated atoms. Contrary to current understanding, we show that, even in the presence of spin relaxation, spin squeezing can lead to a significant reduction of spin noise, and hence an increase in magnetometric sensitivity, for a long measurement time. This is the case when correlated spin relaxation due to binary alkali-atom collisions dominates independently acting decoherence processes, a situation realized in thermal high atom-density magnetometers and clocks

  4. Fast T1 mapping of the brain at high field using Look-Locker and fast imaging.

    Science.gov (United States)

    Jiang, Ke; Zhu, Yanjie; Jia, Sen; Wu, Yin; Liu, Xin; Chung, Yiu-Cho

    2017-02-01

    This study aims to develop and evaluate a new method for fast high resolution T1 mapping of the brain based on the Look-Locker technique. Single-shot turboflash sequence with high temporal acceleration is used to sample the recovery of inverted magnetization. Multi-slice interleaved acquisition within one inversion slab is used to reduce the number of inversion pulses and hence SAR. Accuracy of the proposed method was studied using simulation and validated in phantoms. It was then evaluated in healthy volunteers and stroke patients. In-vivo results were compared to values obtained by inversion recovery fast spin echo (IR-FSE) and literatures. With the new method, T 1 values in phantom experiments agreed with reference values with median error map was acquired in 3.35s and the T1 maps of the whole brain were acquired in 2min with two-slice interleaving, with a spatial resolution of 1.1×1.1×4mm 3 . The T 1 values obtained were comparable to those measured with IR-FSE and those reported in literatures. These results demonstrated the feasibility of the proposed method for fast T1 mapping of the brain in both healthy volunteers and stroke patients at 3T. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Different types of asynchronous music and effects on performance of basketball foul shot.

    Science.gov (United States)

    Geisler, G; Leith, L M

    2001-12-01

    48 undergraduate women performed basketball foul shots with and without background music. Slow music, fast music, and music personally selected by subjects did not significantly affect shooting performance.

  6. Shot noise as a probe of spin-polarized transport through single atoms

    DEFF Research Database (Denmark)

    Burtzlaff, Andreas; Weismann, Alexander; Brandbyge, Mads

    2015-01-01

    Single atoms on Au(111) surfaces have been contacted with the Au tip of a low temperature scanning tunneling microscope. The shot noise of the current through these contacts has been measured up to frequencies of 120 kHz and Fano factors have been determined to characterize the transport channels...

  7. Evaluation of the chondromalacia patella using a microscopy coil: comparison of the two-dimensional fast spin echo techniques and the three-dimensional fast field echo techniques.

    Science.gov (United States)

    Kim, Hyun-joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung-Ja; Cho, Woo Shin

    2011-01-01

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast field echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FS-PD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p chondromalacia patella.

  8. A Shot Parameter Specification Subsystem for automated control of PBFA [Particle Beam Fusion Accelerator] II accelerator shots

    International Nuclear Information System (INIS)

    Spiller, J.L.

    1987-01-01

    The Shot Parameter Specification Subsystem (SPSS) is an integral part of the automatic control system developed for the Particle Beam Fusion Accelerator II (PBFA II) by the Control Monitor (C/M) Software Development Team. This system has been designed to fully utilize the accelerator by tailoring shot parameters to the needs of the experimenters. The SPSS is the key to this flexibility. Automatic systems will be required on many pulsed power machines for the fastest turnaround, the highest reliability, and most cost effective operation. These systems will require the flexibility and the ease of use that is part of the SPSS. The PBFA II control system has proved to be an effective modular system, flexible enough to meet the demands of both the fast track construction of PBFA II and the control needs of Hermes III at the Simulation Technology Laboratory. This system is expected to meet the demands of most future machine changes

  9. Basketball shot types and shot success in different levels of competitive basketball.

    Directory of Open Access Journals (Sweden)

    Frane Erčulj

    Full Text Available The purpose of our research was to investigate the relative frequencies of different types of basketball shots (above head, hook shot, layup, dunk, tip-in, some details about their technical execution (one-legged, two-legged, drive, cut, …, and shot success in different levels of basketball competitions. We analysed video footage and categorized 5024 basketball shots from 40 basketball games and 5 different levels of competitive basketball (National Basketball Association (NBA, Euroleague, Slovenian 1st Division, and two Youth basketball competitions. Statistical analysis with hierarchical multinomial logistic regression models reveals that there are substantial differences between competitions. However, most differences decrease or disappear entirely after we adjust for differences in situations that arise in different competitions (shot location, player type, and attacks in transition. Differences after adjustment are mostly between the Senior and Youth competitions: more shots executed jumping or standing on one leg, more uncategorised shot types, and more dribbling or cutting to the basket in the Youth competitions, which can all be attributed to lesser technical and physical ability of developing basketball players. The two discernible differences within the Senior competitions are that, in the NBA, dunks are more frequent and hook shots are less frequent compared to European basketball, which can be attributed to better athleticism of NBA players. The effect situational variables have on shot types and shot success are found to be very similar for all competitions.

  10. Basketball shot types and shot success in different levels of competitive basketball.

    Science.gov (United States)

    Erčulj, Frane; Štrumbelj, Erik

    2015-01-01

    The purpose of our research was to investigate the relative frequencies of different types of basketball shots (above head, hook shot, layup, dunk, tip-in), some details about their technical execution (one-legged, two-legged, drive, cut, …), and shot success in different levels of basketball competitions. We analysed video footage and categorized 5024 basketball shots from 40 basketball games and 5 different levels of competitive basketball (National Basketball Association (NBA), Euroleague, Slovenian 1st Division, and two Youth basketball competitions). Statistical analysis with hierarchical multinomial logistic regression models reveals that there are substantial differences between competitions. However, most differences decrease or disappear entirely after we adjust for differences in situations that arise in different competitions (shot location, player type, and attacks in transition). Differences after adjustment are mostly between the Senior and Youth competitions: more shots executed jumping or standing on one leg, more uncategorised shot types, and more dribbling or cutting to the basket in the Youth competitions, which can all be attributed to lesser technical and physical ability of developing basketball players. The two discernible differences within the Senior competitions are that, in the NBA, dunks are more frequent and hook shots are less frequent compared to European basketball, which can be attributed to better athleticism of NBA players. The effect situational variables have on shot types and shot success are found to be very similar for all competitions.

  11. Proton T2 relaxation effect of superparamagnetic iron oxide. Comparison between fast spin echo and conventional spin echo sequence

    International Nuclear Information System (INIS)

    Tanimoto, Akihiro; Satoh, Yoshinori; Higuchi, Nobuya; Izutsu, Mutsumu; Yuasa, Yuji; Hiramatsu, Kyoichi

    1995-01-01

    Superparamagnetic iron oxide (SPIO) particles have been known to show a great T 2 relaxation effect in the liver, which contributes to significant liver signal decrease and detection of hepatic neoplasms. Recently, fast spin echo (FSE) sequence with less scanning time than conventional spin echo (SE) sequence has been rapidly introduced in clinical MR imaging. To investigate whether SPIO would show decreased T 2 relaxation effect on FSE, we obtained T 2 relaxivity (R2) of SPIO in vitro and liver signal decrease caused by SPIO in vivo. SPIO showed 20% less R2 on Carr-Purcell-Meiboom-Gill (CPMG) sequence than on SE. Relative liver signal-to-noise ratio (SNR) decrease caused by SPIO was significantly smaller (p 2 relaxation effect on FSE than on SE. However, further studies will be required to assess the diagnostic capability of SPIO on FSE, in the detection of hepatic neoplasms. (author)

  12. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.; Letzring, S.; Skupsky, S.

    1993-01-01

    Our experimental efforts over the past 5 years have been aimed at cazrying out ICF shots with spin-polarized 0 fuel. We successfully prepared polarized 0 in HD, and solved the problems of loading target shells with our carefully prepared isotopic -rnixt.l.l?-es, polarizing them so that the 0 polarization remains metastably frozen-in for about half a day, and carrying out the various cold transfer requirements at Syracuse, where the target is prepared, and at Rochester, where the cold target is inserted fusion chamber. Upon shooting the accurately positioned unpolarized high density cold target, no neutron yield was observed. Inspection inside the OMEGA tank after the shot indicated the absence of neutron yield was dus to mal-timing or insufficient retraction rate of OMEGA'S fast shroud mechanism, resulting in interception of at least 20 of the 24 laser beams by the faulty shroud. In spits of this, all alements of the complex experiment we originally undertook have been successfully demonstrated, and the cold retrieval concepts and methods we developed are being utilized on the ICF upgrades at Rochester and at Livermore. In addition to the solution of the interface problems, we obtained novel results on polymer shell characteristics at low temperatures, and continuation of these experiments is c = ently supported by KLUP. Extensive additional mappings were ca=ied out of nuclear spin relaxation rates of H and D in solid HD in the temperature-magnetic field rangs of 0.01 to 4.2K and 0 - 13 Tesla. New phenomena were discovered, such as association of impurity clustering with very low temperature motion, and inequality of the growth-rate and decay-rate of the magnetization

  13. Fast FLAIR MR imaging finidngs of cerebral infarction : comparison with T2-weighted spin echo imaging

    International Nuclear Information System (INIS)

    Kong, Keun Young; Choi, Woo Suk; Kim, Eui Jong

    1997-01-01

    To evaluate the utility of FLAIR(Fluid Attenuated Inversion Recovery) MR imaging in cerebral infarction by comparing its results with those of T2-weighted spin-echo imaging. We retrospectively evaluated fast FLAIR images and conventional spin echo images of 82 patients (47 men and 20 women ; median age 60.9 years) with cerebral infarction. MR imaging used a 1.5T MR unit with conventional T2(TR 3900, TE 90) and fast FLAIR sequence (TR 8000, TE 105, TI 2400). We analysed the size of the main lesion and number of lesions, and discrimination between old and new lesions and between small infarction and perivascular space. When T2-weighted and FLAIR imaging were compared, the latter showed that the main lesion was larger in 38 cases (46%), similar in 38 (46%), and smaller in six (7%). The number of lesions was greater in 23 cases(28%), similar in 52 (63%), and fewer in seven (9%). FLAIR images discriminated between old and new lesions in 31 cases ; perivascular space and small infarotion were differentiated in eight cases, and CSF inflowing artifact was observed in 66 (80%). In the diagnosis of cerebral infaretion, fast FLAIR provides images that are equal or superior to T2-weighted images. The fast FLAIR sequence may therefore be used as a part of routine MR brain study in the diagnosis of cerebral infarction

  14. A Gene Family Coding for Salivary Proteins (SHOT) of the Polyphagous Spider Mite Tetranychus urticae Exhibits Fast Host-Dependent Transcriptional Plasticity.

    Science.gov (United States)

    Jonckheere, Wim; Dermauw, Wannes; Khalighi, Mousaalreza; Pavlidi, Nena; Reubens, Wim; Baggerman, Geert; Tirry, Luc; Menschaert, Gerben; Kant, Merijn R; Vanholme, Bartel; Van Leeuwen, Thomas

    2018-01-01

    The salivary protein repertoire released by the herbivorous pest Tetranychus urticae is assumed to hold keys to its success on diverse crops. We report on a spider mite-specific protein family that is expanded in T. urticae. The encoding genes have an expression pattern restricted to the anterior podocephalic glands, while peptide fragments were found in the T. urticae secretome, supporting the salivary nature of these proteins. As peptide fragments were identified in a host-dependent manner, we designated this family as the SHOT (secreted host-responsive protein of Tetranychidae) family. The proteins were divided in three groups based on sequence similarity. Unlike TuSHOT3 genes, TuSHOT1 and TuSHOT2 genes were highly expressed when feeding on a subset of family Fabaceae, while expression was depleted on other hosts. TuSHOT1 and TuSHOT2 expression was induced within 24 h after certain host transfers, pointing toward transcriptional plasticity rather than selection as the cause. Transfer from an 'inducer' to a 'noninducer' plant was associated with slow yet strong downregulation of TuSHOT1 and TuSHOT2, occurring over generations rather than hours. This asymmetric on and off regulation points toward host-specific effects of SHOT proteins, which is further supported by the diversity of SHOT genes identified in Tetranychidae with a distinct host repertoire.

  15. Ultra-fast three terminal perpendicular spin-orbit torque MRAM (Presentation Recording)

    Science.gov (United States)

    Boulle, Olivier; Cubukcu, Murat; Hamelin, Claire; Lamard, Nathalie; Buda-Prejbeanu, Liliana; Mikuszeit, Nikolai; Garello, Kevin; Gambardella, Pietro; Langer, Juergen; Ocker, Berthold; Miron, Mihai; Gaudin, Gilles

    2015-09-01

    The discovery that a current flowing in a heavy metal can exert a torque on a neighboring ferromagnet has opened a new way to manipulate the magnetization at the nanoscale. This "spin orbit torque" (SOT) has been demonstrated in ultrathin magnetic multilayers with structural inversion asymmetry (SIA) and high spin orbit coupling, such as Pt/Co/AlOx multilayers. We have shown that this torque can lead to the magnetization switching of a perpendicularly magnetized nanomagnet by an in-plane current injection. The manipulation of magnetization by SOT has led to a novel concept of magnetic RAM memory, the SOT-MRAM, which combines non volatility, high speed, reliability and large endurance. These features make the SOT-MRAM a good candidate to replace SRAM for non-volatile cache memory application. We will present the proof of concept of a perpendicular SOT-MRAM cell composed of a Ta/FeCoB/MgO/FeCoB magnetic tunnel junction and demonstrate ultra-fast (down to 300 ps) deterministic bipolar magnetization switching. Macrospin and micromagnetic simulations including SOT cannot reproduce the experimental results, which suggests that additional physical mechanisms are at stacks. Our results show that SOT-MRAM is fast, reliable and low power, which is promising for non-volatile cache memory application. We will also discuss recent experiments of magnetization reversal in ultrathin multilayers Pt/Co/AlOx by very short (<200 ps) current pulses. We will show that in this material, the Dzyaloshinskii-Moryia interaction plays a key role in the reversal process.

  16. Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning

    KAUST Repository

    Parthasarathy, Sudhakar

    2013-09-17

    Recent research in fast magic angle spinning (MAS) methods has drastically improved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In this Account, we summarize recent and ongoing developments in this area by presenting (13)C and (1)H solid-state NMR (SSNMR) studies on paramagnetic systems and biomolecules under fast MAS from our laboratories. First, we describe how very fast MAS (VFMAS) at the spinning speed of at least 20 kHz allows us to overcome major difficulties in (1)H and (13)C high-resolution SSNMR of paramagnetic systems. As a result, we can enhance both sensitivity and resolution by up to a few orders of magnitude. Using fast recycling (∼ms/scan) with short (1)H T1 values, we can perform (1)H SSNMR microanalysis of paramagnetic systems on the microgram scale with greatly improved sensitivity over that observed for diamagnetic systems. Second, we discuss how VFMAS at a spinning speed greater than ∼40 kHz can enhance the sensitivity and resolution of (13)C biomolecular SSNMR measurements. Low-power (1)H decoupling schemes under VFMAS offer excellent spectral resolution for (13)C SSNMR by nominal (1)H RF irradiation at ∼10 kHz. By combining the VFMAS approach with enhanced (1)H T1 relaxation by paramagnetic doping, we can achieve extremely fast recycling in modern biomolecular SSNMR experiments. Experiments with (13)C-labeled ubiquitin doped with 10 mM Cu-EDTA demonstrate how effectively this new approach, called paramagnetic assisted condensed data collection (PACC), enhances the sensitivity. Lastly, we examine (13)C SSNMR measurements for biomolecules under faster MAS at a higher field. Our preliminary (13)C SSNMR data of Aβ amyloid fibrils and GB1 microcrystals acquired at (1)H NMR frequencies of 750-800 MHz suggest that the combined use of the PACC approach and ultrahigh fields could allow for routine multidimensional SSNMR analyses of proteins at the 50-200 nmol level. Also, we briefly discuss the

  17. Basketball Shot Types and Shot Success in Different Levels of Competitive Basketball

    OpenAIRE

    Er?ulj, Frane; ?trumbelj, Erik

    2015-01-01

    The purpose of our research was to investigate the relative frequencies of different types of basketball shots (above head, hook shot, layup, dunk, tip-in), some details about their technical execution (one-legged, two-legged, drive, cut, …), and shot success in different levels of basketball competitions. We analysed video footage and categorized 5024 basketball shots from 40 basketball games and 5 different levels of competitive basketball (National Basketball Association (NBA), Euroleague,...

  18. Shot-by-shot spectrum model for rod-pinch, pulsed radiography machines

    Directory of Open Access Journals (Sweden)

    Wm M. Wood

    2018-02-01

    Full Text Available A simplified model of bremsstrahlung production is developed for determining the x-ray spectrum output of a rod-pinch radiography machine, on a shot-by-shot basis, using the measured voltage, V(t, and current, I(t. The motivation for this model is the need for an agile means of providing shot-by-shot spectrum prediction, from a laptop or desktop computer, for quantitative radiographic analysis. Simplifying assumptions are discussed, and the model is applied to the Cygnus rod-pinch machine. Output is compared to wedge transmission data for a series of radiographs from shots with identical target objects. Resulting model enables variation of parameters in real time, thus allowing for rapid optimization of the model across many shots. “Goodness of fit” is compared with output from LSP Particle-In-Cell code, as well as the Monte Carlo Neutron Propagation with Xrays (“MCNPX” model codes, and is shown to provide an excellent predictive representation of the spectral output of the Cygnus machine. Improvements to the model, specifically for application to other geometries, are discussed.

  19. Shot-by-shot spectrum model for rod-pinch, pulsed radiography machines

    Science.gov (United States)

    Wood, Wm M.

    2018-02-01

    A simplified model of bremsstrahlung production is developed for determining the x-ray spectrum output of a rod-pinch radiography machine, on a shot-by-shot basis, using the measured voltage, V(t), and current, I(t). The motivation for this model is the need for an agile means of providing shot-by-shot spectrum prediction, from a laptop or desktop computer, for quantitative radiographic analysis. Simplifying assumptions are discussed, and the model is applied to the Cygnus rod-pinch machine. Output is compared to wedge transmission data for a series of radiographs from shots with identical target objects. Resulting model enables variation of parameters in real time, thus allowing for rapid optimization of the model across many shots. "Goodness of fit" is compared with output from LSP Particle-In-Cell code, as well as the Monte Carlo Neutron Propagation with Xrays ("MCNPX") model codes, and is shown to provide an excellent predictive representation of the spectral output of the Cygnus machine. Improvements to the model, specifically for application to other geometries, are discussed.

  20. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    International Nuclear Information System (INIS)

    Kim, Hyun Joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung Ja; Cho, Woo Shin

    2011-01-01

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast fi eld echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FSPD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella

  1. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung Ja; Cho, Woo Shin [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2011-02-15

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast fi eld echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FSPD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella

  2. Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning

    KAUST Repository

    Parthasarathy, Sudhakar; Nishiyama, Yusuke; Ishii, Yoshitaka

    2013-01-01

    Recent research in fast magic angle spinning (MAS) methods has drastically improved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In this Account, we summarize recent and ongoing developments

  3. Externally placed vs intravaginally positioned radio frequency coils for quantitative spin-spin relaxometry of ovarian follicular fluid

    International Nuclear Information System (INIS)

    Sarty, G.E.; Baerwald, A.R.; Loewy, J.; Pierson, R.A.

    2005-01-01

    To evaluate different imaging protocols, especially with respect to radio frequency (RF) receiver coil location, for Their suitability in providing least squares derived quantitative T 2 values of ovarian follicular fluid for investigations of basic ovarian physiology. Methods: The ovaries of 10 women were imaged via magnetic resonance imaging (MRI) using externally positioned and intravaginally placed RF receiver coils. Half-Fourier acquisition with single-shot turbo spin-echo (HASTE), multiple-echo T 2 , Dixon, turbo spin-echo, and 3-dimensional (3D) fast imaging with steady-state precession (FISP) and time-reversed FISP (PSIF) sequences were used. Quantitative T 2 nuclear spin relaxation rate information from the ovarian follicles between data acquired with the external and intravaginal coils were compared. Additionally, the amount of ovarian follicle and corpora lutea structural detail visible was qualitatively assessed. Results: The T 2 computations indicated that there was no difference in the follicular fluid T 2 values or in the heterogeneity (spatial variance) of the T 2 values between data acquired with the external RF coil and date acquired with the intravaginal RF coil. The best sequences for the visualization of ovarian internal structure were the 3D PSIF sequences and the multiple-echo T 2 -weighted images, confirming our earlier imaging work on excised cow ovaries. Conclusion: It is best to use an externally placed RF coil for quantitative MRI study of ovarian physiology given the lack of difference in quantitative T 2 information and the difficulty associated with imaging the ovaries using an intravaginal RF probe. (author)

  4. Fast Low-Current Spin-Orbit-Torque Switching of Magnetic Tunnel Junctions through Atomic Modifications of the Free-Layer Interfaces

    Science.gov (United States)

    Shi, Shengjie; Ou, Yongxi; Aradhya, S. V.; Ralph, D. C.; Buhrman, R. A.

    2018-01-01

    Future applications of spin-orbit torque will require new mechanisms to improve the efficiency of switching nanoscale magnetic tunnel junctions (MTJs), while also controlling the magnetic dynamics to achieve fast nanosecond-scale performance with low-write-error rates. Here, we demonstrate a strategy to simultaneously enhance the interfacial magnetic anisotropy energy and suppress interfacial spin-memory loss by introducing subatomic and monatomic layers of Hf at the top and bottom interfaces of the ferromagnetic free layer of an in-plane magnetized three-terminal MTJ device. When combined with a β -W spin Hall channel that generates spin-orbit torque, the cumulative effect is a switching current density of 5.4 ×106 A /cm2 .

  5. Buster-Jangle Shot Dog

    International Nuclear Information System (INIS)

    Kaul, Dean C.

    1987-01-01

    Shot Dog of the Buster-Jangle Series used a device which had a high-explosive configuration virtually identical to that of the Nagasaki bomb, though with different fissionable components. Dog was detonated at a height of 431.9 m with the mean atmospheric conditions between burst and ground being dry air density 1.027 mg/cc and atmospheric moisture density 0.006 mg/cc. The ground was taken to be that of Nevada test site (NTS) area 9 with a water content of 8% by weight. The yield of the weapon was 21 kt. Results shown here for Buster-Jangle Shot Dog have been scaled from those calculated for Ranger Shot Fox. The design features and burst geometries of the two devices were deemed sufficiently similar to make this substitution in the absence of a radiation leakage spectrum calculated explicitly for Buster-Jangle Shot Dog. However, while the relative atmospheric contents of the two shots were very similar, Shot Fox took place in air of approximately 10% greater density than Shot Dog. Thus, scaled calculated results could not be obtained to compare with the three closest measurement points at Shot Dog

  6. Shot noise enhancement from non-equilibrium plasmons in Luttinger liquid junctions

    International Nuclear Information System (INIS)

    Kim, Jaeuk U; Kinaret, Jari M; Choi, Mahn-Soo

    2005-01-01

    We consider a quantum wire double junction system with each wire segment described by a spinless Luttinger model, and study theoretically shot noise in this system in the sequential tunnelling regime. We find that the non-equilibrium plasmonic excitations in the central wire segment give rise to qualitatively different behaviour compared to the case with equilibrium plasmons. In particular, shot noise is greatly enhanced by them, and exceeds the Poisson limit. We show that the enhancement can be explained by the emergence of several current-carrying processes, and that the effect disappears if the channels effectively collapse to one because of fast plasmon relaxation processes, for example

  7. Spin-orbit mediated control of spin qubits

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A.S; Flensberg, Karsten

    2006-01-01

    We propose to use the spin-orbit interaction as a means to control electron spins in quantum dots, enabling both single-qubit and two-qubit operations. Very fast single-qubit operations may be achieved by temporarily displacing the electrons. For two-qubit operations the coupling mechanism is bas...... on a combination of the spin-orbit coupling and the mutual long-ranged Coulomb interaction. Compared to existing schemes using the exchange coupling, the spin-orbit induced coupling is less sensitive to random electrical fluctuations in the electrodes defining the quantum dots....

  8. Shot-to-shot reproducibility of a self-magnetically insulated ion diode

    International Nuclear Information System (INIS)

    Pushkarev, A. I.; Isakova, Yu. I.; Khailov, I. P.

    2012-01-01

    In this paper we present the analysis of shot to shot reproducibility of the ion beam which is formed by a self-magnetically insulated ion diode with an explosive emission graphite cathode. The experiments were carried out with the TEMP-4M accelerator operating in double-pulse mode: the first pulse is of negative polarity (300–500 ns, 100–150 kV), and this is followed by a second pulse of positive polarity (150 ns, 250–300 kV). The ion current density was 10–70 A/cm 2 depending on the diode geometry. The beam was composed from carbon ions (80%–85%) and protons. It was found that shot to shot variation in the ion current density was about 35%–40%, whilst the diode voltage and current were comparatively stable with the variation limited to no more than 10%. It was shown that focusing of the ion beam can improve the stability of the ion current generation and reduces the variation to 18%–20%. In order to find out the reason for the shot-to-shot variation in ion current density we examined the statistical correlation between the current density of the accelerated beam and other measured characteristics of the diode, such as the accelerating voltage, total current, and first pulse duration. The correlation between the ion current density measured simultaneously at different positions within the cross-section of the beam was also investigated. It was shown that the shot-to-shot variation in ion current density is mainly attributed to the variation in the density of electrons diffusing from the drift region into the A-K gap.

  9. Allergy Shots (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Allergy Shots KidsHealth / For Parents / Allergy Shots What's in ... to help a child deal with them. Why Allergy Shots Are Used An allergy occurs when the ...

  10. A fast random walk algorithm for computing the pulsed-gradient spin-echo signal in multiscale porous media.

    Science.gov (United States)

    Grebenkov, Denis S

    2011-02-01

    A new method for computing the signal attenuation due to restricted diffusion in a linear magnetic field gradient is proposed. A fast random walk (FRW) algorithm for simulating random trajectories of diffusing spin-bearing particles is combined with gradient encoding. As random moves of a FRW are continuously adapted to local geometrical length scales, the method is efficient for simulating pulsed-gradient spin-echo experiments in hierarchical or multiscale porous media such as concrete, sandstones, sedimentary rocks and, potentially, brain or lungs. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Fast spine echo and fast fluid attenuated inversion recovery sequences in multiple sclerosis

    International Nuclear Information System (INIS)

    Paolillo, Andrea; Giugni, Elisabetta; Bozzao, Alessandro; Bastianello, Stefano

    1997-01-01

    Fast spin echo (FSE) and fast fluid attenuated inversion recovery (fast-FLAIR) sequences, were compared with conventional spin echo (CSE) in quantitating multiple sclerosis (MS) lesion burden. For each sequence, the total number and volume of MS lesions were calculated in 38 remitting multiple sclerosis patients using a semiautomated lesion detection program. Conventional spin echo, fast spin echo, and fast fluid attenuated inversion recovery image were reported on randomly and at different times by two expert observers. Interobserver differences, the time needed to quantitative multiple sclerosis lesions and lesion signal intensity (contrast-to-noise ratio and overall contrast) were considered. The lesions were classified by site into infratentorial, white matter and cortical/subcortical. A total of 2970 lesions with a volume of 961.7 cm 3 was calculated on conventional spin echo images. Fast spin echo images depicted fewer (16.6%; p < .005) and smaller (24.9%; p < .0001) lesions and the differences were statistically significant. Despite an overall nonsignificant reduction for fast-FLAIR images (-5% and 4.8% for lesion number and volume, respectively), significantly lower values (lesion number: p < 0.1; volume: p < .04)were observed for infratentorial lesions, while significantly higher values were seen for cortical/subcortical lesions (lesion number: p < .01; volume: p < .02). A higher lesion/white matter contrast (p < .002), a significant time saving for lesion burden quantitation (p < .05) and very low interobserver variability were found in favor of fast-FLAIR. Our data suggest that, despite the limitations regarding infratentorial lesions, fast-FLAIR sequences are indicated in R studies because of their good identification of cortical/subcortical lesions, almost complete interobserver agreement, higher contrast-to-noise ratio and limited time needed for semiautomated quantitation

  12. Microwave Amplitude Modulation Technique to Measure Spin-Lattice (T 1) and Spin-Spin (T 2) Relaxation Times

    Science.gov (United States)

    Misra, Sushil K.

    The measurement of very short spin-lattice, or longitudinal, relaxation (SLR) times (i.e., 10-10 Misra, 1998), and polymer resins doped with rare-earth ions (Pescia et al., 1999a; Pescia et al. 1999b). The ability to measure such fast SLR data on amorphous Si and copper-chromium-tin spinel led to an understanding of the role of exchange interaction in affecting spin-lattice relaxation, while the data on polymer resins doped with rare-earth ions provided evidence of spin-fracton relaxation (Pescia et al., 1999a, b). But such fast SLR times are not measurable by the most commonly used techniques of saturation- and inversion-recovery (Poole, 1982; Alger, 1968), which only measure spin-lattice relaxation times longer than 10-6 s. A summary of relevant experimental data is presented in Table 1.

  13. Generalised shot noise Cox processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Torrisi, Giovanni Luca

    2005-01-01

    We introduce a class of cox cluster processes called generalised shot noise Cox processes (GSNCPs), which extends the definition of shot noise Cox processes (SNCPs) in two directions: the point process that drives the shot noise is not necessarily Poisson, and the kernel of the shot noise can...

  14. Optimized quantum sensing with a single electron spin using real-time adaptive measurements

    Science.gov (United States)

    Bonato, C.; Blok, M. S.; Dinani, H. T.; Berry, D. W.; Markham, M. L.; Twitchen, D. J.; Hanson, R.

    2016-03-01

    Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz-1/2 over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

  15. Ultrafast T2-weighted single shot spin-echo sequences: applications on abdominal and pelvic pathologies

    International Nuclear Information System (INIS)

    Martin, J.; Martin, C.; Falco, J.; Esteban, L.

    1999-01-01

    The magnetic resonance imaging (MRI) sequences that obtain all the data using a sole excitation pulse of 90 degree centigrade, filling the K space in a single repetition time (TR) is known as snap shot or single shot (SS). The SS sequence based on the rapid acquisition with relaxation enhancement (SS-RARE) method, designed by Hening (1) and a variation of it with a half-Fourier reconstruction (SS-HF-RARE (HASTEL)) (2, 3) are capable of obtaining high contrast images in T2, in very short times, that oscillate between one to several seconds. The clinical application of these sequences to abdominal and pelvic pathologies is increasing, providing and improvement in the contrast resolution, but also in the spatial resolution, with a high relation signal/noise ratio, high contrast and absence of movement artifacts. (Author)

  16. Shot noise of charge current in a quantum dot responded by rotating and oscillating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hong-Kang, E-mail: zhaohonk@yahoo.com; Zou, Wei-Ke [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Chen, Qiao [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)

    2014-09-07

    We have investigated the shot noise and Fano factor of the dynamic spin-polarized quantum dot under the perturbations of a rotating magnetic field (RMF), and an oscillating magnetic field (OMF) by employing the non-equilibrium Green's function approach. The shot noise is enhanced from sub-Poissonian to super-Poissonian due to the application of RMF and OMF, and it is controlled sensitively by the tilt angle θ of RMF. The magnitude of shot noise increases as the photon energy ℏω of OMF increases, and its valley eventually is reversed to peaks as the photon energy is large enough. Double-peak structure of Fano factor is exhibited as the frequency of OMF increases to cover a large regime. The Zeeman energy μ{sub 0}B{sub 0} acts as an effective gate bias to exhibit resonant behavior, and novel peak emerges associated with the applied OMF.

  17. Birth Control Shot

    Science.gov (United States)

    ... Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Birth Control Shot KidsHealth / For Teens / Birth Control Shot What's ...

  18. Distortion-free diffusion tensor imaging for evaluation of lumbar nerve roots: Utility of direct coronal single-shot turbo spin-echo diffusion sequence.

    Science.gov (United States)

    Sakai, Takayuki; Doi, Kunio; Yoneyama, Masami; Watanabe, Atsuya; Miyati, Tosiaki; Yanagawa, Noriyuki

    2018-06-01

    Diffusion tensor imaging (DTI) based on a single-shot echo planer imaging (EPI-DTI) is an established method that has been used for evaluation of lumbar nerve disorders in previous studies, but EPI-DTI has problems such as a long acquisition time, due to a lot of axial slices, and geometric distortion. To solve these problems, we attempted to apply DTI based on a single-shot turbo spin echo (TSE-DTI) with direct coronal acquisition. Our purpose in this study was to investigate whether TSE-DTI may be more useful for evaluation of lumbar nerve disorders than EPI-DTI. First, lumbar nerve roots of five healthy volunteers were evaluated for optimization of imaging parameters with TSE-DTI including b-values and the number of motion proving gradient (MPG) directions. Subsequently, optimized TSE-DTI was quantitatively compared with conventional EPI-DTI by using fractional anisotropy (FA) values and visual scores in subjective visual evaluation of tractography. Lumbar nerve roots of six patients, who had unilateral neurologic symptoms in one leg, were evaluated by the optimized TSE-DTI. TSE-DTI with b-value of 400 s/mm 2 and 32 diffusion-directions could reduce the image distortion compared with EPI-DTI, and showed that the average FA values on the symptomatic side for six patients were significantly lower than those on the non-symptomatic side (P DTI might show damaged areas of lumbar nerve roots without severe image distortion. TSE-DTI might improve the reproducibility in measurements of FA values for quantification of a nerve disorder, and would become a useful tool for diagnosis of low back pain. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Magnetic resonance urography in pediatrics: utilization of ultrafast single-shot spin echo sequences

    International Nuclear Information System (INIS)

    Martin, C.; Martin, J.; Duran, C.; Rigol, S.; Rojo, J. C.

    1999-01-01

    To determine the value of magnetic resonance urography (MRU) using ultrafast single-shot (SS) rapid acquisition with relaxation enhancement (RARE) and half-Fourier (HF) SS-RARE (SS-HF-RARE or HASTE) in the evaluation of congenital urinary tract anomalies in pediatric patients, and their possible application as alternatives to intravenous urography (IVU). Eighteen children (11 boys and 7 girls) aged 2 months to 15 years (mean: 5 years) with a total of 19 congenital urinary tract anomalies were studies by MU using SS-RARE and HASTE sequences in a 1 Tesla scanner. All the patients had previously been studies by ultrasound (US) and IVU. Twelve patients required anesthesia. The images were acquired by means of a HASTE sequence with multisection technique (TR, infinite; TE e f, 87 msec; echo train, 128; interval between echoes, 10.9 msec; total acquisition time, 13 sections/12 seconds), and SS-RARE (TR, infinite; TE e f, 1.100 msec; echo train, 240, and acquisition time, 7 seconds). Four radiologists evaluated the images independently; two who reviewed the IV images in consensus and two who reviewed the MRU images in consensus. The images were evaluated to assess the dilatation of the urinary tract and their utility in detecting the level and cause of the obstruction. MRU images revealed the urinary tract dilation, the level of the obstruction and the type of anomaly in 18 patients (100%), while IVU provided this information in only 10 [ sensitivity, 53%, 95% confidence interval (29%, 76%)]. The mean time required for MRU was 20 minutes (range: 7 to 30 minutes), while that of IVU was 1,242 minutes (range: 45 to 1,440 minutes). MRU using ultrafast single-short spin echo sequences is a rapid and effective technique that permits and excellent evaluation of congenital urinary tract anomalies in pediatric patients and does not require the administration of contrast media or ionizing radiation. (Author) 10 refs

  20. Cardiac T2-mapping using a fast gradient echo spin echo sequence - first in vitro and in vivo experience

    OpenAIRE

    Baessler, Bettina; Schaarschmidt, Frank; Stehning, Christian; Schnackenburg, Bernhard; Maintz, David; Bunck, Alexander C.

    2015-01-01

    Background: The aim of this study was the evaluation of a fast Gradient Spin Echo Technique (GraSE) for cardiac T2-mapping, combining a robust estimation of T2 relaxation times with short acquisition times. The sequence was compared against two previously introduced T2-mapping techniques in a phantom and in vivo. Methods: Phantom experiments were performed at 1.5 T using a commercially available cylindrical gel phantom. Three different T2-mapping techniques were compared: a Multi Echo Spin Ec...

  1. Spin and tunneling dynamics in an asymmetrical double quantum dot with spin-orbit coupling: Selective spin transport device

    Science.gov (United States)

    Singh, Madhav K.; Jha, Pradeep K.; Bhattacherjee, Aranya B.

    2017-09-01

    In this article, we study the spin and tunneling dynamics as a function of magnetic field in a one-dimensional GaAs double quantum dot with both the Dresselhaus and Rashba spin-orbit coupling. In particular, we consider different spatial widths for the spin-up and spin-down electronic states. We find that the spin dynamics is a superposition of slow as well as fast Rabi oscillations. It is found that the Rashba interaction strength as well as the external magnetic field strongly modifies the slow Rabi oscillations which is particularly useful for implementing solid state selective spin transport device.

  2. Separating inverse spin Hall voltage and spin rectification voltage by inverting spin injection direction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenxu, E-mail: xwzhang@uestc.edu.cn; Peng, Bin; Han, Fangbin; Wang, Qiuru; Zhang, Wanli [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Soh, Wee Tee; Ong, Chong Kim [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore)

    2016-03-07

    We develop a method for universally resolving the important issue of separating the inverse spin Hall effect (ISHE) from the spin rectification effect (SRE) signal. This method is based on the consideration that the two effects depend on the spin injection direction: The ISHE is an odd function of the spin injection direction while the SRE is independent on it. Thus, the inversion of the spin injection direction changes the ISHE voltage signal, while the SRE voltage remains. It applies generally to analyzing the different voltage contributions without fitting them to special line shapes. This fast and simple method can be used in a wide frequency range and has the flexibility of sample preparation.

  3. The effect of spin in swing bowling in cricket: model trajectories for spin alone

    Science.gov (United States)

    Robinson, Garry; Robinson, Ian

    2015-02-01

    In ‘swing’ bowling, as employed by fast and fast-medium bowlers in cricket, back-spin along the line of the seam is normally applied in order to keep the seam vertical and to provide stability against ‘wobble’ of the seam. Whilst spin is normally thought of as primarily being the slow bowler's domain, the spin applied by the swing bowler has the side-effect of generating a lift or Magnus force. This force, depending on the orientation of the seam and hence that of the back-spin, can have a side-ways component as well as the expected vertical ‘lift’ component. The effect of the spin itself, in influencing the trajectory of the fast bowler's delivery, is normally not considered, presumably being thought of as negligible. The purpose of this paper is to investigate, using calculated model trajectories, the amount of side-ways movement due to the spin and to see how this predicted movement compares with the total observed side-ways movement. The size of the vertical lift component is also estimated. It is found that, although the spin is an essential part of the successful swing bowler's delivery, the amount of side-ways movement due to the spin itself amounts to a few centimetres or so, and is therefore small, but perhaps not negligible, compared to the total amount of side-ways movement observed. The spin does, however, provide a considerable amount of lift compared to the equivalent delivery bowled without spin, altering the point of pitching by up to 3 m, a very large amount indeed. Thus, for example, bowling a ball with the seam pointing directly down the pitch and not designed to swing side-ways at all, but with the amount of back-spin varied, could provide a very powerful additional weapon in the fast bowler's arsenal. So-called ‘sling bowlers’, who use a very low arm action, can take advantage of spin since effectively they can apply side-spin to the ball, giving rise to a large side-ways movement, ˜ 20{}^\\circ cm or more, which certainly is

  4. Spinning like a blue straggler: the population of fast rotating blue straggler stars in ω Centauri

    Energy Technology Data Exchange (ETDEWEB)

    Mucciarelli, A.; Lovisi, L.; Ferraro, F. R.; Dalessandro, E.; Lanzoni, B. [Dipartimento di Fisica and Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Monaco, L. [European Southern Observatory, Casilla 19001, Santiago (Chile)

    2014-12-10

    By using high-resolution spectra acquired with FLAMES-GIRAFFE at the ESO/VLT, we measured the radial and rotational velocities for 110 blue straggler stars (BSSs) in ω Centauri, the globular cluster-like stellar system harboring the largest known BSS population. According to their radial velocities, 109 BSSs are members of the system. The rotational velocity distribution is very broad, with the bulk of BSSs spinning at less than ∼40 km s{sup –1} (in agreement with the majority of such stars observed in other globular clusters) and a long tail reaching ∼200 km s{sup –1}. About 40% of the sample has v{sub e} sin i > 40 km s{sup –1} and about 20% has v{sub e} sin i > 70 km s{sup –1}. Such a large fraction is very similar to the percentage of fast rotating BSSs observed in M4. Thus, ω Centauri is the second stellar cluster, beyond M4, with a surprisingly high population of fast spinning BSSs. We found a hint of radial behavior for a fraction of fast rotating BSSs, with a mild peak within one core radius, and a possible rise in the external regions (beyond four core radii). This may suggest that recent formation episodes of mass transfer BSSs occurred preferentially in the outskirts of ω Centauri, or that braking mechanisms able to slow down these stars are least efficient in the lowest density environments.

  5. Shot Automation for the National Ignition Facility

    International Nuclear Information System (INIS)

    Lagin, L J; Bettenhausen, R C; Beeler, R G; Bowers, G A; Carey, R.; Casavant, D.D.; Cline, B.D.; Demaret, R.D.; Domyancic, D.M.; Elko, S.D.; Fisher, J.M.; Hermann, M.R.; Krammen, J.E.; Kohut, T.R.; Marshall, C.D.; Mathisen, D.G.; Ludwigsen, A.P.; Patterson, Jr. R.W.; Sanchez, R.J.; Stout, E.A.; Van Arsdall, P.J.; Van Wonterghem, B.M.

    2005-01-01

    A shot automation framework has been developed and deployed during the past year to automate shots performed on the National Ignition Facility (NIF) using the Integrated Computer Control System This framework automates a 4-8 hour shot sequence, that includes inputting shot goals from a physics model, set up of the laser and diagnostics, automatic alignment of laser beams and verification of status. This sequence consists of set of preparatory verification shots, leading to amplified system shots using a 4-minute countdown, triggering during the last 2 seconds using a high-precision timing system, followed by post-shot analysis and archiving. The framework provides for a flexible, model-based execution driven of scriptable automation called macro steps. The framework is driven by high-level shot director software that provides a restricted set of shot life cycle state transitions to 25 collaboration supervisors that automate 8-laser beams (bundles) and a common set of shared resources. Each collaboration supervisor commands approximately 10 subsystem shot supervisors that perform automated control and status verification. Collaboration supervisors translate shot life cycle state commands from the shot director into sequences of ''macro steps'' to be distributed to each of its shot supervisors. Each Shot supervisor maintains order of macro steps for each subsystem and supports collaboration between macro steps. They also manage failure, restarts and rejoining into the shot cycle (if necessary) and manage auto/manual macro step execution and collaborations between other collaboration supervisors. Shot supervisors execute macro step shot functions commanded by collaboration supervisors. Each macro step has database-driven verification phases and a scripted perform phase. This provides for a highly flexible methodology for performing a variety of NIF shot types. Database tables define the order of work and dependencies (workflow) of macro steps to be performed for a

  6. Application of fast spin-echo T[sub 2]-weighted imaging for examination of the neurocranium. Comparison with the conventional T[sub 2]-weighted spin-echo sequence. Die Anwendung der T[sub 2]-gewichteten Turbo-Spin-Echo-Sequenz zur Untersuchung des Neurokraniums. Vergleich mit der konventionellen T[sub 2]-gewichteten Spin-Echo-Sequenz

    Energy Technology Data Exchange (ETDEWEB)

    Siewert, C. (Strahlenklinik und Poliklinik, Universitaets-Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany)); Hosten, N. (Strahlenklinik und Poliklinik, Universitaets-Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany)); Felix, R. (Strahlenklinik und Poliklinik, Universitaets-Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany))

    1994-07-01

    T[sub 2]-weighted spin-echo imaging is the standard screening procedure in MR imaging of the neutrocranium. We evaluated fast spin-echo T[sub 2]-weighted imaging (TT[sub 2]) of the neurocranium in comparison to conventional spin-echo T[sub 2]-weighted imaging (T[sub 2]). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher than TT[sub 2] than in T[sub 2] (with the exception of grey-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT[sub 2], Parkinson patients have to be examined by conventional T[sub 2]. If these limitations are taken into account, fast spin-echo T[sub 2]-weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T[sub 2]-weighting achieved in a short acquisition time. (orig.)

  7. Femtosecond Single-Shot Imaging of Nanoscale Ferromagnetic Order in Co/Pd Multilayers using Resonant X-ray Holography

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianhan; Zhu, Diling; Benny Wu,; Graves, Catherine; Schaffert, Stefan; Rander, Torbjorn; Muller, leonard; Vodungbo, Boris; Baumier, Cedric; Bernstein, David P.; Brauer, Bjorn; Cros, Vincent; Jong, Sanne de; Delaunay, Renaud; Fognini, Andreas; Kukreja, Roopali; Lee, Sooheyong; Lopez-Flores, Victor; Mohanty, Jyoti; Pfau, Bastian; Popescu, 5 Horia

    2012-05-15

    We present the first single-shot images of ferromagnetic, nanoscale spin order taken with femtosecond x-ray pulses. X-ray-induced electron and spin dynamics can be outrun with pulses shorter than 80 fs in the investigated fluence regime, and no permanent aftereffects in the samples are observed below a fluence of 25 mJ/cm{sup 2}. Employing resonant spatially-muliplexed x-ray holography results in a low imaging threshold of 5 mJ/cm{sup 2}. Our results open new ways to combine ultrafast laser spectroscopy with sequential snapshot imaging on a single sample, generating a movie of excited state dynamics.

  8. 3D isotropic T2-weighted fast spin echo (VISTA) versus 2D T2-weighted fast spin echo in evaluation of the calcaneofibular ligament in the oblique coronal plane.

    Science.gov (United States)

    Park, H J; Lee, S Y; Choi, Y J; Hong, H P; Park, S J; Park, J H; Kim, E

    2017-02-01

    To investigate whether the image quality of three-dimensional (3D) volume isotropic fast spin echo acquisition (VISTA) magnetic resonance imaging (MRI) of the calcaneofibular ligament (CFL) view is comparable to that of 2D fast spin echo T2-weighted images (2D T2 FSE) for the evaluation of the CFL, and whether 3D VISTA can replace 2D T2 FSE for the evaluation of CFL injuries. This retrospective study included 76 patients who underwent ankle MRI with CFL views of both 2D T2 FSE MRI and 3D VISTA. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of both techniques were measured. The anatomical identification score and diagnostic performances were evaluated by two readers independently. The diagnostic performances of 3D VISTA and 2D T2 FSE were analysed by sensitivity, specificity, and accuracy for diagnosing CFL injury with reference standards of surgically or clinically confirmed diagnoses. Surgical correlation was performed in 29% of the patients, and clinical examination was used in those who did not have surgery (71%). The SNRs and CNRs of 3D VISTA were significantly higher than those of 2D T2 FSE. The anatomical identification scores on 3D VISTA were inferior to those on 2D T2 FSE, and the differences were statistically significant (pT2 FSE for the anatomical evaluation of CFL, 3D VISTA has a diagnostic performance comparable to that of 2D T2 FSE for the diagnosis of CFL injuries. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  9. Comparison of dynamic dual spin-echo and fast-gradient-echo techniques in the evaluation of cardiac diseases

    International Nuclear Information System (INIS)

    Pettigrew, R.I.; Eisner, R.L.; Groen, J.P.; Baron, M.G.

    1987-01-01

    To determine the relative roles of a dynamic spin-echo method and a fast acquisition with multiphase excitations (FAME) technique, ten patients with myocardial infarction (MI), five with myocardial masses, and five healthy patients were studied with both methods. The dynamic dual-spin-echo (DSE) technique allows acquisition of each of seven sections at 14 cardiac phases in 20 minutes. Wall motion abnormalities were seen equally well with both techniques, but FAME usually required a shorter study time (10 minutes). DSE, however, was superior for evaluating cardiac masses and provided superior wall blood contrast. Thus, these techniques are complementary, and both are now a routine part of the authors' study of cardiac patients

  10. Instantaneous coherent destruction of tunneling and fast quantum state preparation for strongly pulsed spin qubits in diamond

    DEFF Research Database (Denmark)

    Wubs, Martijn

    2010-01-01

    Qubits driven by resonant strong pulses are studied and a parameter regime is explored in which the dynamics can be solved in closed form. Instantaneous coherent destruction of tunneling can be seen for longer pulses, whereas shorter pulses allow a fast preparation of the qubit state. Results...... are compared with recent experiments of pulsed nitrogen-vacancy center spin qubits in diamond....

  11. Production and Detection of Spin-Entangled Electrons in Mesoscopic Conductors

    Science.gov (United States)

    Burkard, Guido

    2006-03-01

    Electron spins are an extremely versatile form of quantum bits. When localized in quantum dots, they can form a register for quantum computation. Moreover, being attached to a charge in a mesoscopic conductor allows the electron spin to play the role of a mobile carrier of quantum information similarly to photons in optical quantum communication. Since entanglement is a basic resource in quantum communication, the production and detection of spin-entangled Einstein-Podolsky-Rosen (EPR) pairs of electrons are of great interest. Besides the practical importance, it is of fundamental interest to test quantum non-locality for electrons. I review the theoretical schemes for the entanglement production in superconductor-normal junctions [1] and other systems. The electron spin entanglement can be detected and quantified from measurements of the fluctuations (shot noise) of the charge current after the electrons have passed through an electronic beam splitter [2,3]. This two-particle interference effect is related to the Hanbury-Brown and Twiss experiment and leads to a doubling of the shot noise SI=φ=0 for spin-entangled states, allowing their differentiation from unentangled pairs. I report on the role of spin-orbit coupling (Rashba and Dresselhaus) in a complete characterization of the spin entanglement [4]. Finally, I address the effects of a discrete level spectrum in the mesoscopic leads and of backscattering and decoherence.[1] P. Recher, E. V. Sukhorukov, D. Loss, Phys. Rev. B 63, 165314 (2001)[2] G. Burkard, D. Loss, E. V. Sukhorukov, Phys. Rev. B 61, R16303 (2000)[3] G. Burkard and D. Loss, Phys. Rev. Lett.91, 087903 (2003)[4] J. C. Egues, G. Burkard, D. Saraga, J. Schliemann, D. Loss, cond-mat/0509038, to appear in Phys.Rev.B (2005).

  12. Heteronuclear Correlation SSNMR Spectroscopy with Indirect Detection under Fast Magic-Angle Spinning [Book Chapter

    Energy Technology Data Exchange (ETDEWEB)

    Kobayshi, Takeshi [Ames Laboratory (AMES), Ames, IA (United States); Nishiyama, Yusuke [Ames Laboratory (AMES), Ames, IA (United States); Pruski, Marek [Ames Laboratory (AMES), Ames, IA (United States)

    2018-01-01

    The main focus of this chapter is to address experimental strategies on the subject by providing a hands-on guide to fast MAS experiments, with a particular focus on indirect detection. Although our experience is limited to our respective laboratories in Ames and Yokohama, we hope that our descriptions of experimental setups and optimization procedures are sufficiently general to be applicable to all modern instruments. The chapter is organized as follows. Section 2 below introduces briefly the fast MAS technology and its main advantages. In Section 3, we describe the hardware associated with this remarkable technology and provide practical advices on its use, including procedures for loading and unloading the samples, maintaining the probe, reducing t1 noise, etc. In Section 4, we describe the principles and hands-on aspects of experiments involving the indirect detection of spin-1/2 and 14N nuclei

  13. 78 FR 65573 - Migratory Bird Hunting; Application for Approval of Copper-Clad Iron Shot and Fluoropolymer Shot...

    Science.gov (United States)

    2013-11-01

    ... shot, causing sediment/soil and water contamination and the direct ingestion of shot by aquatic and.... Shot[supreg]. * Coatings of copper, nickel, tin, zinc, zinc chloride, zinc chrome, and fluoropolymers...

  14. The Problem of Shot Selection in Basketball

    Science.gov (United States)

    Skinner, Brian

    2012-01-01

    In basketball, every time the offense produces a shot opportunity the player with the ball must decide whether the shot is worth taking. In this article, I explore the question of when a team should shoot and when they should pass up the shot by considering a simple theoretical model of the shot selection process, in which the quality of shot opportunities generated by the offense is assumed to fall randomly within a uniform distribution. Within this model I derive an answer to the question “how likely must the shot be to go in before the player should take it?” and I show that this lower cutoff for shot quality depends crucially on the number of shot opportunities remaining (say, before the shot clock expires), with larger demanding that only higher-quality shots should be taken. The function is also derived in the presence of a finite turnover rate and used to predict the shooting rate of an optimal-shooting team as a function of time. The theoretical prediction for the optimal shooting rate is compared to data from the National Basketball Association (NBA). The comparison highlights some limitations of the theoretical model, while also suggesting that NBA teams may be overly reluctant to shoot the ball early in the shot clock. PMID:22295109

  15. The problem of shot selection in basketball.

    Directory of Open Access Journals (Sweden)

    Brian Skinner

    Full Text Available In basketball, every time the offense produces a shot opportunity the player with the ball must decide whether the shot is worth taking. In this article, I explore the question of when a team should shoot and when they should pass up the shot by considering a simple theoretical model of the shot selection process, in which the quality of shot opportunities generated by the offense is assumed to fall randomly within a uniform distribution. Within this model I derive an answer to the question "how likely must the shot be to go in before the player should take it?" and I show that this lower cutoff for shot quality f depends crucially on the number n of shot opportunities remaining (say, before the shot clock expires, with larger n demanding that only higher-quality shots should be taken. The function f(n is also derived in the presence of a finite turnover rate and used to predict the shooting rate of an optimal-shooting team as a function of time. The theoretical prediction for the optimal shooting rate is compared to data from the National Basketball Association (NBA. The comparison highlights some limitations of the theoretical model, while also suggesting that NBA teams may be overly reluctant to shoot the ball early in the shot clock.

  16. The problem of shot selection in basketball.

    Science.gov (United States)

    Skinner, Brian

    2012-01-01

    In basketball, every time the offense produces a shot opportunity the player with the ball must decide whether the shot is worth taking. In this article, I explore the question of when a team should shoot and when they should pass up the shot by considering a simple theoretical model of the shot selection process, in which the quality of shot opportunities generated by the offense is assumed to fall randomly within a uniform distribution. Within this model I derive an answer to the question "how likely must the shot be to go in before the player should take it?" and I show that this lower cutoff for shot quality f depends crucially on the number n of shot opportunities remaining (say, before the shot clock expires), with larger n demanding that only higher-quality shots should be taken. The function f(n) is also derived in the presence of a finite turnover rate and used to predict the shooting rate of an optimal-shooting team as a function of time. The theoretical prediction for the optimal shooting rate is compared to data from the National Basketball Association (NBA). The comparison highlights some limitations of the theoretical model, while also suggesting that NBA teams may be overly reluctant to shoot the ball early in the shot clock.

  17. Spin dynamics in electron synchrotrons

    International Nuclear Information System (INIS)

    Schmidt, Jan Felix

    2017-01-01

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  18. Heteronuclear relaxation in time-dependent spin systems: 15N-T1ρ dispersion during adiabatic fast passage

    International Nuclear Information System (INIS)

    Konrat, Robert; Tollinger, Martin

    1999-01-01

    A novel NMR experiment comprising adiabatic fast passage techniques for the measurement of heteronuclear self-relaxation rates in fully 15N-enriched proteins is described. Heteronuclear self-relaxation is monitored by performing adiabatic fast passage (AFP) experiments at variable adiabaticity (e.g., variation of RF spin-lock field intensity). The experiment encompasses gradient- selection and sensitivity-enhancement. It is shown that transverse relaxation rates derived with this method are in good agreement with the ones measured by the classical Carr-Purcell-Meiboom-Gill (CPMG) sequences. An application of this method to the study of the carboxyl-terminal LIM domain of quail cysteine and glycine-rich protein qCRP2(LIM2) is presented

  19. Quantification of renal allograft perfusion using arterial spin labeling MRI: initial results.

    Science.gov (United States)

    Lanzman, Rotem S; Wittsack, Hans-Jörg; Martirosian, Petros; Zgoura, Panagiota; Bilk, Philip; Kröpil, Patric; Schick, Fritz; Voiculescu, Adina; Blondin, Dirk

    2010-06-01

    To quantify renal allograft perfusion in recipients with stable allograft function and acute decrease in allograft function using nonenhanced flow-sensitive alternating inversion recovery (FAIR)-TrueFISP arterial spin labeling (ASL) MR imaging. Following approval of the local ethics committee, 20 renal allograft recipients were included in this study. ASL perfusion measurement and an anatomical T2-weighted single-shot fast spin-echo (HASTE) sequence were performed on a 1.5-T scanner (Magnetom Avanto, Siemens, Erlangen, Germany). T2-weighted MR urography was performed in patients with suspected ureteral obstruction. Patients were assigned to three groups: group a, 6 patients with stable allograft function over the previous 4 months; group b, 7 patients with good allograft function who underwent transplantation during the previous 3 weeks; group c, 7 allograft recipients with an acute deterioration of renal function. Mean cortical perfusion values were 304.8 +/- 34.4, 296.5 +/- 44.1, and 181.9 +/- 53.4 mg/100 ml/min for groups a, b and c, respectively. Reduction in cortical perfusion in group c was statistically significant. Our results indicate that ASL is a promising technique for nonenhanced quantification of cortical perfusion of renal allografts. Further studies are required to determine the clinical value of ASL for monitoring renal allograft recipients.

  20. Quantification of renal allograft perfusion using arterial spin labeling MRI: initial results

    International Nuclear Information System (INIS)

    Lanzman, Rotem S.; Wittsack, Hans-Joerg; Bilk, Philip; Kroepil, Patric; Blondin, Dirk; Martirosian, Petros; Schick, Fritz; Zgoura, Panagiota; Voiculescu, Adina

    2010-01-01

    To quantify renal allograft perfusion in recipients with stable allograft function and acute decrease in allograft function using nonenhanced flow-sensitive alternating inversion recovery (FAIR)-TrueFISP arterial spin labeling (ASL) MR imaging. Following approval of the local ethics committee, 20 renal allograft recipients were included in this study. ASL perfusion measurement and an anatomical T2-weighted single-shot fast spin-echo (HASTE) sequence were performed on a 1.5-T scanner (Magnetom Avanto, Siemens, Erlangen, Germany). T2-weighted MR urography was performed in patients with suspected ureteral obstruction. Patients were assigned to three groups: group a, 6 patients with stable allograft function over the previous 4 months; group b, 7 patients with good allograft function who underwent transplantation during the previous 3 weeks; group c, 7 allograft recipients with an acute deterioration of renal function. Mean cortical perfusion values were 304.8 ± 34.4, 296.5 ± 44.1, and 181.9 ± 53.4 mg/100 ml/min for groups a, b and c, respectively. Reduction in cortical perfusion in group c was statistically significant. Our results indicate that ASL is a promising technique for nonenhanced quantification of cortical perfusion of renal allografts. Further studies are required to determine the clinical value of ASL for monitoring renal allograft recipients. (orig.)

  1. Dipolar Spin Ice States with a Fast Monopole Hopping Rate in CdEr2X4 (X =Se , S)

    Science.gov (United States)

    Gao, Shang; Zaharko, O.; Tsurkan, V.; Prodan, L.; Riordan, E.; Lago, J.; Fâk, B.; Wildes, A. R.; Koza, M. M.; Ritter, C.; Fouquet, P.; Keller, L.; Canévet, E.; Medarde, M.; Blomgren, J.; Johansson, C.; Giblin, S. R.; Vrtnik, S.; Luzar, J.; Loidl, A.; Rüegg, Ch.; Fennell, T.

    2018-03-01

    Excitations in a spin ice behave as magnetic monopoles, and their population and mobility control the dynamics of a spin ice at low temperature. CdEr2 Se4 is reported to have the Pauling entropy characteristic of a spin ice, but its dynamics are three orders of magnitude faster than the canonical spin ice Dy2 Ti2 O7 . In this Letter we use diffuse neutron scattering to show that both CdEr2 Se4 and CdEr2 S4 support a dipolar spin ice state—the host phase for a Coulomb gas of emergent magnetic monopoles. These Coulomb gases have similar parameters to those in Dy2 Ti2 O7 , i.e., dilute and uncorrelated, and so cannot provide three orders faster dynamics through a larger monopole population alone. We investigate the monopole dynamics using ac susceptometry and neutron spin echo spectroscopy, and verify the crystal electric field Hamiltonian of the Er3 + ions using inelastic neutron scattering. A quantitative calculation of the monopole hopping rate using our Coulomb gas and crystal electric field parameters shows that the fast dynamics in CdEr2X4 (X =Se , S) are primarily due to much faster monopole hopping. Our work suggests that CdEr2X4 offer the possibility to study alternative spin ice ground states and dynamics, with equilibration possible at much lower temperatures than the rare earth pyrochlore examples.

  2. Electric dipole spin resonance in a quantum spin dimer system driven by magnetoelectric coupling

    Science.gov (United States)

    Kimura, Shojiro; Matsumoto, Masashige; Akaki, Mitsuru; Hagiwara, Masayuki; Kindo, Koichi; Tanaka, Hidekazu

    2018-04-01

    In this Rapid Communication, we propose a mechanism for electric dipole active spin resonance caused by spin-dependent electric polarization in a quantum spin gapped system. This proposal was successfully confirmed by high-frequency electron spin resonance (ESR) measurements of the quantum spin dimer system KCuCl3. ESR measurements by an illuminating linearly polarized electromagnetic wave reveal that the optical transition between the singlet and triplet states in KCuCl3 is driven by an ac electric field. The selection rule of the observed transition agrees with the calculation by taking into account spin-dependent electric polarization. We suggest that spin-dependent electric polarization is effective in achieving fast control of quantum spins by an ac electric field.

  3. Experiments and Analysis of Close-Shot Identification of On-Branch Citrus Fruit with RealSense

    Directory of Open Access Journals (Sweden)

    Jizhan Liu

    2018-05-01

    Full Text Available Fruit recognition based on depth information has been a hot topic due to its advantages. However, the present equipment and methods cannot meet the requirements of rapid and reliable recognition and location of fruits in close shot for robot harvesting. To solve this problem, we propose a recognition algorithm for citrus fruit based on RealSense. This method effectively utilizes depth-point cloud data in a close-shot range of 160 mm and different geometric features of the fruit and leaf to recognize fruits with a intersection curve cut by the depth-sphere. Experiments with close-shot recognition of six varieties of fruit under different conditions were carried out. The detection rates of little occlusion and adhesion were from 80–100%. However, severe occlusion and adhesion still have a great influence on the overall success rate of on-branch fruits recognition, the rate being 63.8%. The size of the fruit has a more noticeable impact on the success rate of detection. Moreover, due to close-shot near-infrared detection, there was no obvious difference in recognition between bright and dark conditions. The advantages of close-shot limited target detection with RealSense, fast foreground and background removal and the simplicity of the algorithm with high precision may contribute to high real-time vision-servo operations of harvesting robots.

  4. Comparison of a conventional cardiac-triggered dual spin-echo and a fast STIR sequence in detection of spinal cord lesions in multiple sclerosis

    International Nuclear Information System (INIS)

    Bot, J.C.J.; Barkhof, F.; Lycklama a Nijeholt, G.J.; Bergers, E.; Castelijns, J.A.; Polman, C.H.; Ader, H.J.

    2000-01-01

    The current optimal imaging protocol in spinal cord MR imaging in patients with multiple sclerosis includes a long TR conventional spin-echo (CSE) sequence, requiring long acquisition times. Using short tau inversion recovery fast spin-echo (fast STIR) sequences both acquisition time can be shortened and sensitivity in the detection of multiple sclerosis (MS) abnormalities can be increased. This study compares both sequences for the potential to detect both focal and diffuse spinal abnormalities. Spinal cords of 5 volunteers and 20 MS patients were studied at 1.0 T. Magnetic resonance imaging included cardiac-gated sagittal dual-echo CSE and a cardiac-gated fast STIR sequence. Images were scored regarding number, size, and location of focal lesions, diffuse abnormalities and presence/hindrance of artifacts by two experienced radiologists. Examinations were scored as being definitely normal, indeterminate, or definitely abnormal. Interobserver agreement regarding focal lesions was higher for CSE (κ=0.67) than for fast STIR (κ=0.57) but did not differ significantly. Of all focal lesions scored in consensus, 47 % were scored on both sequences, 31 % were only detected by fast STIR, and 22 % only by dual-echo CSE (n. s.). Interobserver agreement for diffuse abnormalities was lower with fast STIR (κ=0.48) than dual-echo CSE (κ=0.65; n. s.). After consensus, fast STIR showed in 10 patients diffuse abnormalities and dual-echo CSE in 3. After consensus, in 19 of 20 patients dual-echo CSE scans were considered as definitely abnormal compared with 17 for fast STIR. The fast STIR sequence is a useful adjunct to dual-echo CSE in detecting focal abnormalities and is helpful in detecting diffuse MS abnormalities in the spinal cord. Due to the frequent occurrence of artifacts and the lower observer concordance, fast STIR cannot be used alone. (orig.)

  5. Shot peening: theory applications and recent development

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    1999-01-01

    Shot peening is a surface treatment process by which the surface of an elastic-plastic target material is subjected to multiple impact by spherical shots made of glass or hard steel in a defined and controlled manner. The multiple impact produces a dynamic compressive stress at the surface of the target, thereby effectively improving its mechanical behavior and eliminates cracks and imperfections hence improving the fatigue life and strength. In this paper, the theory and practice of the shot peening process are reviewed. The main parameters involved in the process and their effects on shot peening are presented and discussed which include: shot material, size and geometry, shot pressure and shot velocity, projection angle, exposure time, table rotational speed, standoff distance coverage, saturation and peening intensity. Furthermore, the effect of shot peening on fatigue life and fatigue strength of ferrous and non-ferrous materials together with other different industrial applications of the process are given. Recent developments in utilizing the shot peening process with welded parts and hard chromium plating aiming at improvement of their fatigue strength and their resistance to stress corrosion cracking are also presented and discussed. Finally, future development of the process are outlined and discussed. (author)

  6. Assembly procedure for Shot Loading Platform

    International Nuclear Information System (INIS)

    Routh, R.D.

    1995-01-01

    This supporting document describes the assembly procedure for the Shot Loading Platform. The Shot Loading Platform is used by multiple equipment removal projects to load shielding shot in the annular spaces of the equipment storage containers. The platform height is adjustable to accommodate different sizes of storage containers and transport assemblies

  7. Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors

    Science.gov (United States)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2017-06-01

    We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1 /√{t } . Based on the numerical results, we devise a simple formula describing the effect quantitatively.

  8. Single-shot echo-planar imaging of multiple sclerosis: effects of varying echo time

    International Nuclear Information System (INIS)

    Wolansky, L.J.; Chong, S.; Liu, W.C.; Kang, E.; Simpson, S.W.; Karimi, S.; Akbari, H.

    1999-01-01

    Our aim was to determine the relative merits of short and long echo times (TE) with single-shot echo-planar imaging for imaging cerebral lesions such as multiple sclerosis. We examined seven patients with clinically definite multiple sclerosis were imaged at 1.5 T. Patients were scanned with spin-echo, single-shot echo-planar imaging, using TEs of 45, 75, 105, and 135 ms. Region of interest (ROI) measurements were performed on 36 lesions at or above the level of the corona radiata. The mean image contrast (IC) was highest (231.1) for a TE of 45 ms, followed by 75 ms (218.9), 105 ms (217.9), and 135 ms (191.6). When mean contrast-to-noise ratios (C/N) were compared, the value was again highest (29.7) for TE 45 ms, followed by 75 ms (28.9), 105 ms (28.5), and 135 ms (26.3). In a lesion-by-lesion comparison, TE 45 ms had the highest IC and C/N in the largest number of cases (50 % and 47.2 %, respectively). IC and C/N for TE 45 ms were superior to those of 75 ms in 64 % and 58 %, respectively. These results support the use of relatively short TEs for single-shot echo-planar imaging in the setting of cerebral lesions such as multiple sclerosis. (orig.) (orig.)

  9. Full counting statistics in a serially coupled double quantum dot system with spin-orbit coupling

    Science.gov (United States)

    Wang, Qiang; Xue, Hai-Bin; Xie, Hai-Qing

    2018-04-01

    We study the full counting statistics of electron transport through a serially coupled double quantum dot (QD) system with spin-orbit coupling (SOC) weakly coupled to two electrodes. We demonstrate that the spin polarizations of the source and drain electrodes determine whether the shot noise maintains super-Poissonian distribution, and whether the sign transitions of the skewness from positive to negative values and of the kurtosis from negative to positive values take place. In particular, the interplay between the spin polarizations of the source and drain electrodes and the magnitude of the external magnetic field, can give rise to a gate-voltage-tunable strong negative differential conductance (NDC) and the shot noise in this NDC region is significantly enhanced. Importantly, for a given SOC parameter, the obvious variation of the high-order current cumulants as a function of the energy-level detuning in a certain range, especially the dip position of the Fano factor of the skewness can be used to qualitatively extract the information about the magnitude of the SOC.

  10. High frequency spin torque oscillators with composite free layer spin valve

    International Nuclear Information System (INIS)

    Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda

    2016-01-01

    We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.

  11. High frequency spin torque oscillators with composite free layer spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda

    2016-07-15

    We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.

  12. A comparison between fast and conventional spin-echo in the detection of multiple sclerosis lesions

    International Nuclear Information System (INIS)

    Thorpe, J.W.; Halpin, S.F.; MacManus, D.G.; Barker, G.J.; Kendall, B.E.; Miller, D.H.

    1994-01-01

    Long repetition time (TR) spin-echo (SE) with T 2 - or proton density weighting is the sequence of choice to detect the brain lesions of multiple sclerosis (MS). Fast spin-echo (FSE) permits the generation of T 2 -weighted images with similar contrast to SE but in a fraction of the time. We compared the sensitivity of FSE and SE in the detection of the brain lesions of MS. Six patients with clinically definite MS underwent brain imaging with both dual echo (long TR, long and short echo time (TE) SE and dual echo FSE. The SE and FSE images were first reviewed independently and then compared. A total of 404 lesions was detected on SE and 398 on FSE. Slightly more periventricular lesions were detected using SE than FSE (145 vs 127), whereas more posterior cranial fossa lesions were detected by FSE (77 vs 57). With both SE and FSE the short TE images revealed more lesions than the long echo. These results suggest that FSE could replace SE as the long TR sequence of choice in the investigation of MS. (orig.)

  13. Differentiation between hepatic haemangiomas and cysts with an inversion recovery single-shot turbo spin-echo (SSTSE) sequence using the TI nulling value of hepatic haemangioma with sensitivity encoding

    International Nuclear Information System (INIS)

    Katada, Yoshiaki; Nozaki, Miwako; Yasumoto, Mayumi; Ishii, Chikako; Tanaka, Hiroshi; Nakamoto, Kazuya; Ohashi, Isamu

    2010-01-01

    To evaluate the additional value of inversion recovery (IR) single-shot turbo spin-echo (SSTSE) imaging with sensitivity encoding (SENSE) using the inversion time (TI) value of hepatic haemangioma as a supplement to conventional T2-weighted turbo spin-echo (TSE) imaging for the discrimination of hepatic haemangiomas and cysts. A total of 134 lesions (77 hepatic haemangiomas, 57 hepatic cysts) in 59 patients were evaluated. Three readers evaluated these images and used a five-point scale to evaluate the lesion status. A receiver operating characteristic (ROC) analysis and 2 x 2 table analysis were used. The ROC analysis for all the readers and all the cases revealed a significantly higher area under the curve (AUC) for the combination of moderately and heavily T2-weighted TSE with IR-SSTSE images (0.945) than for moderately and heavily T2-weighted TSE images alone (0.894) (P < 0.001). For the combination of T2-weighted TSE with IR-SSTSE versus T2-weighted TSE alone, the 2 x 2 table analysis revealed a higher true-positive rate; this difference was statistically significant (P < 0.0001). The introduction of IR-SSTSE with SENSE sequences significantly improves the diagnostic accuracy of the differentiation of hepatic haemangioma and cysts while increasing the time required for routine abdominal imaging by only 20 s. (orig.)

  14. Generalised shot noise Cox processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Torrisi, Giovanni Luca

    We introduce a new class of Cox cluster processes called generalised shot-noise processes (GSNCPs), which extends the definition of shot noise Cox processes (SNCPs) in two directions: the point process which drives the shot noise is not necessarily Poisson, and the kernel of the shot noise can...... be random. Thereby a very large class of models for aggregated or clustered point patterns is obtained. Due to the structure of GSNCPs, a number of useful results can be established. We focus first on deriving summary statistics for GSNCPs and next on how to make simulation for GSNCPs. Particularly, results...... for first and second order moment measures, reduced Palm distributions, the -function, simulation with or without edge effects, and conditional simulation of the intensity function driving a GSNCP are given. Our results are exemplified for special important cases of GSNCPs, and we discuss the relation...

  15. Reference-free unwarping of single-shot spatiotemporally encoded MRI using asymmetric self-refocused echoes acquisition

    Science.gov (United States)

    Chen, Ying; Chen, Song; Zhong, Jianhui; Chen, Zhong

    2015-05-01

    This paper presents a phase evolution rewinding algorithm for correcting the geometric and intensity distortions in single-shot spatiotemporally encoded (SPEN) MRI with acquisition of asymmetric self-refocused echo trains. Using the field map calculated from the phase distribution of the source image, the off-resonance induced phase errors are successfully rewound through deconvolution. The alias-free partial Fourier transform reconstruction helps improve the signal-to-noise ratio of the field maps and the output images. The effectiveness of the proposed algorithm was validated through 7 T MRI experiments on a lemon, a water phantom, and in vivo rat head. SPEN imaging was evaluated using rapid acquisition by sequential excitation and refocusing (RASER) which produces uniform T2 weighting. The results indicate that the new technique can more robustly deal with the cases in which the images obtained with conventional single-shot spin-echo EPI are difficult to be restored due to serious field variations.

  16. Orchestrating Shots for the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Mathisen, D G; Bettenhausen, R C; Beeler, R G; Bowers, G A; Carey, R W; Casavant, D D; Cline, B D; Demaret, R D; Domyancic, D M; Elko, S D; Fisher, J M; Krammen, J E; Lagin, L J; Ludwigsen, A P; Patterson, R W; Sanchez, R J; Stout, E A

    2005-01-01

    The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8 Megajoule, 500-Terawatt, ultra-violet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and physics of matter at extreme densities and pressures. The NIF is operated by the Integrated Computer Control System (ICCS), which is a layered architecture of over 700 lower-level front-end processors attached to nearly 60,000 control points and coordinated by higher-level supervisory subsystems in the main control room. A shot automation framework has been developed and deployed during the past year to orchestrate and automate shots performed at the NIF using the ICCS. The Shot Automation framework is designed to automate 4-8 hour shot sequences, that includes deriving shot goals from an experiment definition, set up of the laser and diagnostics, automatic alignment of laser beams, and a countdown to charge and fire the lasers. These sequences consist of set of preparatory verification shots, leading to amplified system shots followed by post-shot analysis and archiving. The framework provides for a flexible, model-based work-flow execution, driven by scripted automation called macro steps. The shot director software is the orchestrating component of a very flexible automation layer which allows us to define, coordinate and reuse simpler automation sequences. This software provides a restricted set of shot life cycle state transitions to 26 collaboration supervisors that automate 8-laser beams (bundle) and a common set of shared resources. Each collaboration supervisor commands approximately 10 subsystem shot supervisors that perform automated control and status verification

  17. Utility of two types of MR cisternography for patency evaluation of aqueduct and third ventriculostomy site: Three dimentsional sagittal fast spin echo sequence and steady-state coherent fast gradient echo sequence

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Hyun; Kim, Eun Hee; Park, Jong Bin; Kim, Jae Hyoung; Choi, Byung Se; Jung, Cheol Kyu; Bae, Yun Jung; Lee, Kyung Mi [Dept. of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2015-07-15

    We aimed to evaluate the utility of two types of MR cisternography [fast spin echo sequence and steady-state coherent gradient echo (GRE) sequence] in addition to phase contrast-cine imaging (PC-cine), for assessing patency at the aqueduct and third ventriculostomy site. 43 patients (35 patients with suspected aqueductal stenosis and 8 patients with third ventriculostomy) were retrospectively analyzed. PC-cine, 3 dimensional sagittal fast spin echo sequence [driven-equilibrium imaging (DRIVE) or volumetric isotrophic T2-weighted acquisition (T2 VISTA)] and steady-state coherent fast GRE sequence (balanced turbo field echo; bTFE) imaging were performed in all patients. The patency of the aqueduct or third ventriculostomy site was scored. Some pitfalls of each sequence were also analyzed in individual cases. 93% of all cases showed consistent scores in PC-cine, DRIVE/T2 VISTA, and bTFE imaging. DRIVE/T2 VISTA imaging provided functional information of cerebrospinal fluid flow with flow-related artifacts, while bTFE imaging allowed direct visualization of the aqueduct or ventriculostomy site. However, evaluation of anatomical structures was difficult in three cases with strong flow-related artifacts on DRIVE/T2 VISTA and in 2 cases with susceptibility artifacts on bTFE. Both DRIVE/T2 VISTA and bTFE imaging have complementary roles in evaluating the patency of the aqueduct and 3rd ventriculostomy site.

  18. Utility of two types of MR cisternography for patency evaluation of aqueduct and third ventriculostomy site: Three dimentsional sagittal fast spin echo sequence and steady-state coherent fast gradient echo sequence

    International Nuclear Information System (INIS)

    Park, Jung Hyun; Kim, Eun Hee; Park, Jong Bin; Kim, Jae Hyoung; Choi, Byung Se; Jung, Cheol Kyu; Bae, Yun Jung; Lee, Kyung Mi

    2015-01-01

    We aimed to evaluate the utility of two types of MR cisternography [fast spin echo sequence and steady-state coherent gradient echo (GRE) sequence] in addition to phase contrast-cine imaging (PC-cine), for assessing patency at the aqueduct and third ventriculostomy site. 43 patients (35 patients with suspected aqueductal stenosis and 8 patients with third ventriculostomy) were retrospectively analyzed. PC-cine, 3 dimensional sagittal fast spin echo sequence [driven-equilibrium imaging (DRIVE) or volumetric isotrophic T2-weighted acquisition (T2 VISTA)] and steady-state coherent fast GRE sequence (balanced turbo field echo; bTFE) imaging were performed in all patients. The patency of the aqueduct or third ventriculostomy site was scored. Some pitfalls of each sequence were also analyzed in individual cases. 93% of all cases showed consistent scores in PC-cine, DRIVE/T2 VISTA, and bTFE imaging. DRIVE/T2 VISTA imaging provided functional information of cerebrospinal fluid flow with flow-related artifacts, while bTFE imaging allowed direct visualization of the aqueduct or ventriculostomy site. However, evaluation of anatomical structures was difficult in three cases with strong flow-related artifacts on DRIVE/T2 VISTA and in 2 cases with susceptibility artifacts on bTFE. Both DRIVE/T2 VISTA and bTFE imaging have complementary roles in evaluating the patency of the aqueduct and 3rd ventriculostomy site

  19. Catastrophe Insurance Modeled by Shot-Noise Processes

    Directory of Open Access Journals (Sweden)

    Thorsten Schmidt

    2014-02-01

    Full Text Available Shot-noise processes generalize compound Poisson processes in the following way: a jump (the shot is followed by a decline (noise. This constitutes a useful model for insurance claims in many circumstances; claims due to natural disasters or self-exciting processes exhibit similar features. We give a general account of shot-noise processes with time-inhomogeneous drivers inspired by recent results in credit risk. Moreover, we derive a number of useful results for modeling and pricing with shot-noise processes. Besides this, we obtain some highly tractable examples and constitute a useful modeling tool for dynamic claims processes. The results can in particular be used for pricing Catastrophe Bonds (CAT bonds, a traded risk-linked security. Additionally, current results regarding the estimation of shot-noise processes are reviewed.

  20. A review on the basketball jump shot.

    Science.gov (United States)

    Okazaki, Victor H A; Rodacki, André L F; Satern, Miriam N

    2015-06-01

    The ability to shoot an effective jump shot in the sport of basketball is critical to a player's success. In an attempt to better understand the aspects related to expert performance, researchers have investigated successful free throws and jump shots of various basketball players and identified movement variables that contribute to their success. The purpose of this study was to complete a systematic review of the scientific literature on the basketball free throw and jump shot for the purpose of revealing the critical components of shooting that coaches, teachers, and players should focus on when teaching, learning, practising, and performing a jump shot. The results of this review are presented in three sections: (a) variables that affect ball trajectory, (b) phases of the jump shot, and (c) additional variables that influence shooting.

  1. Research of shot noise based on realistic nano-MOSFETs

    Directory of Open Access Journals (Sweden)

    Xiaofei Jia

    2017-05-01

    Full Text Available Experimental measurements and simulation results have shown that the dominant noise source of current noise changes from thermal noise to shot noise with scaling of MOSFET, and shot noise were suppressed by Fermi and Coulomb interactions. In this paper, Shot noise test system is established, and experimental results proved that shot noise were suppressed, and the expressions of shot noise in realistic nano-MOSFETs are derived with considering Fermi effect, Coulomb interaction and the combination of the both co-existence, respectively. On this basis, the variation of shot noise with voltage, temperature and source-drain doping were researched. The results we obtained are consistent with those from experiments and the theoretically explanation is given. At the same time, the shot noise test system is suitable for traditional nanoscale electronic components; the shot noise model is suitable for nanoscale MOSFET.

  2. Investigation of kinematics of knuckling shot in soccer

    Science.gov (United States)

    Asai, T.; Hong, S.

    2017-02-01

    In this study, we use four high-speed video cameras to investigate the swing characteristics of the kicking leg while delivering the knuckling shot in soccer. We attempt to elucidate the impact process of the kicking foot at the instant of its impact with the ball and the technical mechanisms of the knuckling shot via comparison of its curved motion with that of the straight and curved shots. Two high-speed cameras (Fastcam, Photron Inc., Tokyo, Japan; 1000 fps, 1024 × 1024 pixels) are set up 2 m away from the site of impact with a line of sight perpendicular to the kicking-leg side. In addition, two semi-high-speed cameras (EX-F1, Casio Computer Co., Ltd., Tokyo, Japan; 300 fps; 720 × 480 pixels) are positioned, one at the rear and the other on the kicking-leg side, to capture the kicking motion. We observe that the ankle joint at impact in the knuckling shot flexes in an approximate L-shape in a manner similar to the joint flexing for the curve shot. The hip's external rotation torque in the knuckling shot is greater than those of other shots, which suggests the tendency of the kicker to push the heel forward and impact with the inside of the foot. The angle of attack in the knuckling shot is smaller than that in other shots, and we speculate that this small attack angle is a factor in soccer kicks which generate shots with smaller rotational frequencies of the ball.

  3. MR cisternography with three-dimensional fast advanced spin-echo (FASE)

    International Nuclear Information System (INIS)

    Ohgi, Kazuyuki; Yamamoto, Hidefumi; Yokote, Hiroyuki

    2000-01-01

    To evaluate the usefulness of MR cisternography (MRC) combined with various postprocessing techniques and three-dimensional (3D) time-of-flight (TOF) MR angiography, MR cisternograms in 212 patients with various cranial nerve symptoms were retrospectively evaluated. MR examinations were performed with a 1.5 T MR imager using a 3D fast advanced spin-echo (FASE) sequence. Maximum intensity projection (MIP) had the advantage of demonstrating fluid-filled structures such as cerebrospinal fluid (CSF)-internal auditory canal (IAC) and Meckel's cave. Minimum intensity projection (Min IP) was especially useful in delineating neurovascular structures (NVS) in wide CSF space. Addition provided the most well-balanced images of NVS, and was superior to Min IP in the depiction of NVS in narrow CSF space. Virtual endoscopy and volume rendering had the potential to provide additional information in the evaluation of the three-dimensional relationships of NVS. Combination of 3D TOF MRA with MRC was helpful in differentiating arteries, veins, and nerves. With the judicious use of various postprocessing techniques and combined MRA, the value of MRC in the evaluation of patients with various cranial nerve symptoms can be further strengthened. (author)

  4. MR cisternography with three-dimensional fast advanced spin-echo (FASE)

    Energy Technology Data Exchange (ETDEWEB)

    Ohgi, Kazuyuki; Yamamoto, Hidefumi; Yokote, Hiroyuki [Japanese Red-Cross Medical Center, Tokyo (Japan)] [and others

    2000-06-01

    To evaluate the usefulness of MR cisternography (MRC) combined with various postprocessing techniques and three-dimensional (3D) time-of-flight (TOF) MR angiography, MR cisternograms in 212 patients with various cranial nerve symptoms were retrospectively evaluated. MR examinations were performed with a 1.5 T MR imager using a 3D fast advanced spin-echo (FASE) sequence. Maximum intensity projection (MIP) had the advantage of demonstrating fluid-filled structures such as cerebrospinal fluid (CSF)-internal auditory canal (IAC) and Meckel's cave. Minimum intensity projection (Min IP) was especially useful in delineating neurovascular structures (NVS) in wide CSF space. Addition provided the most well-balanced images of NVS, and was superior to Min IP in the depiction of NVS in narrow CSF space. Virtual endoscopy and volume rendering had the potential to provide additional information in the evaluation of the three-dimensional relationships of NVS. Combination of 3D TOF MRA with MRC was helpful in differentiating arteries, veins, and nerves. With the judicious use of various postprocessing techniques and combined MRA, the value of MRC in the evaluation of patients with various cranial nerve symptoms can be further strengthened. (author)

  5. Analysis of shot-to-shot variability in post-disruption runaway electron currents for diverted DIII-D discharges

    International Nuclear Information System (INIS)

    Izzo, V A; Humphreys, D A; Kornbluth, M

    2012-01-01

    In DIII-D experiments, rapid termination by Ar-pellet injection sometimes produces a post-termination runaway electron (RE) current plateau, but this effect is highly non-reproducible on a shot-to-shot basis, particularly for diverted target plasmas. A set of DIII-D discharges is analyzed with two MHD codes to understand the relationship between the current profile of the target plasma and the amplitude of the RE current plateau. Using the linear stability code GATO, a correlation between the radial profile of the unstable n = 1 mode just after Ar-pellet injection and the observed appearance of an RE plateau is identified. Nonlinear NIMROD simulations with RE test-particle calculations directly predict RE confinement times during the disruption. With one exception, NIMROD predicts better RE confinement for shots in which higher RE currents were observed in DIII-D. But, the variation in confinement is primarily connected to the saturated n = 1 mode amplitude and not its radial profile. Still, both sets of analyses support the hypothesis that RE deconfinement by MHD fluctuations is a major factor in the shot-to-shot variability of RE plateaus, though additional factors such as seed current amplitude cannot be ruled out. (paper)

  6. Osseointegration improvement by shot peening in titanium dental implants

    International Nuclear Information System (INIS)

    Aparicio, C.; Gil, F.J.; Planell, J.A.; Padros, A.; Peraire, C.

    1998-01-01

    In order to optimize the implant-bone fixation, different shot peening treatments with different shot particles (TiO 2 , Al 2 O 3 ; SiC) have been made. The influence that each type of shot particle has in the bone colonization on the different treatment surfaces has been determined by means of osteoblast-like cells culture. Commercially pure titanium discs have been shot peened. Their qualitative and quantitative surface roughness have been characterized; as well as their surface contamination caused by the shot particles. Particle size has also been determined, before and after the treatment, in order to evaluate their breaking averages. Finally, a TiO 2 shot particles manufacture process by sintering has been developed. The manufacture has been necessary since this type of shot particles are not available in the market with the adequate size. (Author) 10 refs

  7. Slow Manifold and Hannay Angle in the Spinning Top

    Science.gov (United States)

    Berry, M. V.; Shukla, P.

    2011-01-01

    The spin of a top can be regarded as a fast variable, coupled to the motion of the axis which is slow. In pure precession, the rotation of the axis round a cone (without nutation), can be considered as the result of a reaction from the fast spin. The resulting restriction of the total state space of the top is an illustrative example, at…

  8. Concrete Cleaning, Inc. centrifugal shot blaster: Baseline report; Summary

    International Nuclear Information System (INIS)

    1997-01-01

    The centrifugal shot blaster is an electronically operated shot-blast machine that removes layer of concrete of varying depths. Hardened steel shot propelled at a high rate of speed abrades the surface of the concrete. The depth of material removed is determined by the rate of speed the machine is traveling and the volume of shot being fired into the blast chamber. The steel shot is reused until it is pulverized to dust, which is deposited in the waste container with the concrete being removed. Debris is continually vacuumed by a large dust collection system attached to the shot blaster. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust

  9. Influence of Running on Pistol Shot Hit Patterns.

    Science.gov (United States)

    Kerkhoff, Wim; Bolck, Annabel; Mattijssen, Erwin J A T

    2016-01-01

    In shooting scene reconstructions, risk assessment of the situation can be important for the legal system. Shooting accuracy and precision, and thus risk assessment, might be correlated with the shooter's physical movement and experience. The hit patterns of inexperienced and experienced shooters, while shooting stationary (10 shots) and in running motion (10 shots) with a semi-automatic pistol, were compared visually (with confidence ellipses) and statistically. The results show a significant difference in precision (circumference of the hit patterns) between stationary shots and shots fired in motion for both inexperienced and experienced shooters. The decrease in precision for all shooters was significantly larger in the y-direction than in the x-direction. The precision of the experienced shooters is overall better than that of the inexperienced shooters. No significant change in accuracy (shift in the hit pattern center) between stationary shots and shots fired in motion can be seen for all shooters. © 2015 American Academy of Forensic Sciences.

  10. Spin dynamics in electron synchrotrons; Spindynamik in Elektronensynchrotronen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jan Felix

    2017-07-14

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  11. Placenta accreta: MRI antenatal diagnosis and surgical correlation.

    Science.gov (United States)

    Ha, T P; Li, K C

    1998-01-01

    We describe a case of a placenta previa accreta that was diagnosed antenatally by MRI with subsequent surgical confirmation. We show the advantages of ultrafast MRI single shot (SS) fast spin echo (FSE) techniques for accurate diagnosis with minimal scan time and fetal motion artifacts.

  12. Surface severe plastic deformation of AISI 304 via conventional shot peening, severe shot peening and repeening

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Okan, E-mail: unalokan78@gmail.com [Mechanical Engineering Department, Bartın University, Bartın 74100 (Turkey); Varol, Remzi [Mechanical Engineering Department, Suleyman Demirel University, Isparta 32200 (Turkey)

    2015-10-01

    Highlights: • CSP and SSP treatments transform austenite to metastable martensite structure. • Nanograin layer thickness after CSP and SSP is 8 μm and 22 μm, respectively. • Shot peening leads to carbon segregation from coarse to nano grain layer. • Repeening is an effective way to reduce surface roughness. - Abstract: Air blast conventional shot peening (CSP), severe shot peening (SSP) and repeening (RP) as a severe plastic deformation applications on AISI 304 austenitic stainless steel is addressed. Shot peened specimens are investigated based on optical, FESEM and digital microscope. The investigations present the austenite transformation to metastable martensite via mechanical twinning due to plastic deformation with high strain rates. It is found that SSP induces thicker nanograin layer with compared to CSP. In XRD studies, the austenite peaks broaden by means of severe shot peening and FWHM increase reveals the grain size reduction below 25 nm regimes on the surface. In EDAX line analysis of CSP specimen, carbon content increase has been detected from deformed layer through the nanocrystalline layer then the content reduces. The carbon segregation takes place due to the energy level distinction between dislocations and Fe−C bonds. 3d contour digital microscope studies and roughness investigations reveal that SSP has deleterious side effect on the surface roughness and surface flatness. However, RP is an effective way to reduce the surface roughness to reasonable values.

  13. Single-shot beam size measurements using visible-light interferometry at CESR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.T., E-mail: sw565@cornell.edu [Cornell Laboratory for Accelerator-based Science and Education, Cornell University, Ithaca, NY 14853 (United States); Holtzapple, R. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States); Rubin, D.L. [Cornell Laboratory for Accelerator-based Science and Education, Cornell University, Ithaca, NY 14853 (United States)

    2017-03-01

    A new primary mirror for a visible-light beam size monitor (vBSM) was designed and installed in the Cornell Electron-Positron Storage Ring (CESR). The vertical angular acceptance of the mirror was doubled to allow double-slit interferometry with large slit separation (>12 mm). In addition, the diffraction associated with the first generation mirror has been eliminated. The resolution of the vertical beam size measurements has been dramatically improved but is ultimately limited by the beam motion. Two fast-response detectors, a Photomultiplier Tube (PMT) array and a gated camera, were employed to study the beam motion. The advantages and limitations of both devices are discussed in this paper. The gated camera was also used to measure single-shot beam width and motion of each bunch in a multi-bunch train. We measured significantly more horizontal motion of electron as compared to positron bunch trains in otherwise identical machine condition. This difference may be a signature for the difference between electron cloud build-up for positron bunch trains versus ions effects characteristic of electron bunch trains. - Highlights: • A new extraction mirror for synchrotron radiation was designed and installed in CESR. • The sensitivity of interferometer was increased and the diffraction effect was eliminated. • Two fast-response detectors were employed to study the effect of beam motion. • First time single-shot bunch-by-bunch horizontal beam size measurements using interferometry was observed from gated camera. • The difference in single bunch horizontal dynamics was observed between a positron and an electron train.

  14. RF power diagnostics and control on the DIII-D, 4 MW 30--120 MHz fast wave current drive system (FWCD)

    International Nuclear Information System (INIS)

    Ferguson, S.W.; Allen, J.C.; Callis, R.W.; Cary, W.P.; Harris, T.E.

    1995-10-01

    The Fast Wave Current Drive System uses three 2 MW transmitters to drive three antennas inside the DIII-D vacuum vessel. This paper describes the diagnostics for this system. The diagnostics associated with the General Atomics Fast Wave Current Drive System allow the system tuning to be analyzed and modified on a between shot basis. The transmitters can be exactly tuned to match the plasma with only one tuning shot into the plasma. This facilitates maximum rf power utilization

  15. Lesion discrimination in optic neuritis using high-resolution fat-suppressed fast spin-echo MRI

    International Nuclear Information System (INIS)

    Gass, A.; Moseley, I.F.; Barker, G.J.; Jones, S.; MacManus, D.; McDonald, W.I.; Miller, D.H.

    1996-01-01

    Fast spin-echo (FSE) is a new sequence with acquisition times currently down to one-sixteenth of those obtained with conventional spin-echo sequences, which allows high-resolution (512 x 512 matrix) images to be acquired in an acceptable time. We compared the higher resolution of FSE with the medium resolution of a short inversion-time inversion-recovery (STIR) sequence in depicting the optic nerves of healthy controls and patients with optic neuritis. Optic nerve MRI examinations were performed in 18 patients with optic neuritis and 10 normal controls. Two sequences were obtained coronally: fat-suppressed FSE (FSE TR 3250 ms/TEef 68 ms, echo-train length 16, 4 excitations, 24 cm rectangular field of view, 3 mm interleaved contiguous slices, in-plane resolution 0.5 x 0.5 mm) and STIR (TR 2000 ms/TE 50 ms/TI 175 ms, in-plane resolution 0.8 x 0.8 mm, slice thickness 5 mm). FSE demonstrated much more anatomical detail than STIR, e. g. distinction of optic nerve and sheath. Lesions were seen in 20 of 21 symptomatic nerves using FSE and in 18 of 21 using STIR. Nerve swelling or partial cross-sectional lesions of the optic nerve were each seen only on FSE in 3 cases. Fat-suppressed FSE imaging of the optic nerve improves anatomical definition and increases lesion detection in optic neuritis. (orig.). With 5 figs

  16. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.; Letzring, S.; Skupsky, S.

    1993-01-01

    The experimental efforts over the past 5 years have been aimed at carrying out ICF shots with spin-polarized D fuel. The authors successfully prepared polarized D in HD, and solved the problems of loading target shells with their carefully prepared isotopic mixtures, polarizing them so that the D polarization remains metastably frozen-in for about half a day, and carrying out the various cold transfer requirements at Syracuse, where the target is prepared, and at Rochester, where the cold target is inserted into the OMEGA fusion chamber. A principal concern during this past year was overcoming difficulties encountered in maintaining the integrity of the fragile cold target during the multitude of cold-transfers required for the experiment. These difficulties arose from insufficient rigidity of the cold transfer systems, which were constrained to be of small diameter by the narrow central access bore of the dilution refrigerator, and were exacerbated by the multitude of required target shell manipulations between different environments, each with different coupling geometry, including target shell permeation, polarization, storage, transport, retrieval and insertion into OMEGA. The authors did solve all of these problems, and were able to position a cold, high density but unpolarized target with required precision in OMEGA. Upon shooting the accurately positioned unpolarized high density cold target, no neutron yield was observed. Inspection inside the OMEGA tank after the shot indicated the absence of neutron yield was due to mal-timing or insufficient retraction rate of OMEGA's fast shroud mechanism, resulting in interception of at least 20 of the 24 laser beams by the faulty shroud. In spite of this, all elements of the complex experiment the authors originally undertook have been successfully demonstrated, and the cold retrieval concepts and methods they developed are being utilized on the ICF upgrades at Rochester and at Livermore

  17. Diagnostic performance of the three-dimensional fast spin echo-Cube sequence in comparison with a conventional imaging protocol in evaluation of the lachrymal drainage system

    International Nuclear Information System (INIS)

    Zhang, Jing; Chen, Lang; Wang, Qiu-Xia; Zhu, Wen-Zhen; Luo, Xin; Peng, Li; Liu, Rong; Xiong, Wei

    2015-01-01

    To compare the three-dimensional (3D)-fast spin-echo (FSE)-Cube with a conventional imaging protocol in evaluation of dacryostenosis. Thirty-three patients with epiphora underwent examinations using Cube magnetic resonance dacryocystography (MRD) and a conventional protocol, which included 3D fast-recovery fast spin-echo (FRFSE) MRD and two-dimensional (2D)-FSE sequences at 3.0 T. Using lachrymal endoscopic findings as the reference standard, we calculated the sensitivity and specificity of both protocols for detecting lachrymal drainage system (LDS) obstruction and their accuracies in depicting the level of obstruction. Comparable coronal and axial images were selected for bot sequences. Two neuroradiologists graded paired images for blurring, artefacts, anatomic details, and overall image quality. The two methods showed no significant difference in sensitivity (89.5 % vs. 94.7 %; p =0.674), specificity (64.3 %; p =1) or accuracy (86.8 %; p =1) in detecting or depicting LDS obstruction. Blurring and artefacts were significantly better on 2D-FSE images (p 0.05). In comparison with the conventional protocol, Cube MRD demonstrates satisfactory image quality and similar diagnostic capability for cases of possible LDS disease. (orig.)

  18. Collider shot setup for Run 2 observations and suggestions

    International Nuclear Information System (INIS)

    Annala, J.; Joshel, B.

    1996-01-01

    This note is intended to provoke discussion on Collider Run II shot setup. We hope this is a start of activities that will converge on a functional description of what is needed for shot setups in Collider Run II. We will draw on observations of the present shot setup to raise questions and make suggestions for the next Collider run. It is assumed that the reader has some familiarity with the Collider operational issues. Shot setup is defined to be the time between the end of a store and the time the Main Control Room declares colliding beams. This is the time between Tevatron clock events SCE and SCB. This definition does not consider the time experiments use to turn on their detectors. This analysis was suggested by David Finley. The operational scenarios for Run II will require higher levels of reliability and speed for shot setup. See Appendix I and II. For example, we estimate that a loss of 3 pb -1 /week (with 8 hour stores) will occur if shot setups take 90 minutes instead of 30 minutes. In other words: If you do 12 shots for one week and accept an added delay of one minute in each shot, you will loose more than 60 nb -1 for that week alone (based on a normal shot setup of 30 minutes). These demands should lead us to be much more pedantic about all the factors that affect shot setups. Shot setup will be viewed as a distinct process that is composed of several inter- dependent 'components': procedures, hardware, controls, and sociology. These components don't directly align with the different Accelerator Division departments, but are topical groupings of the needed accelerator functions. Defining these components, and categorizing our suggestions within them, are part of the goal of this document. Of course, some suggestions span several of these components

  19. Hepatitis A and the Vaccine (Shot) to Prevent It

    Science.gov (United States)

    ... Resources Maternal Immunization Resources Related Links Vaccines & Immunizations Hepatitis A and the Vaccine (Shot) to Prevent It ... the vaccine. Why should my child get the hepatitis A shot? The hepatitis A shot: Protects your ...

  20. Measurement, modeling, and simulation of cryogenic SiGe HBT amplifier circuits for fast single spin readout

    Science.gov (United States)

    England, Troy; Curry, Matthew; Carr, Steve; Swartzentruber, Brian; Lilly, Michael; Bishop, Nathan; Carrol, Malcolm

    2015-03-01

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance typical of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will discuss calibration data, as well as modeling and simulation of cryogenic silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) circuits connected to a silicon SET and operating at 4 K. We find a continuum of solutions from simple, single-HBT amplifiers to more complex, multi-HBT circuits suitable for integration, with varying noise levels and power vs. bandwidth tradeoffs. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  1. Dark states in spin-polarized transport through triple quantum dot molecules

    Science.gov (United States)

    Wrześniewski, K.; Weymann, I.

    2018-02-01

    We study the spin-polarized transport through a triple-quantum-dot molecule weakly coupled to ferromagnetic leads. The analysis is performed by means of the real-time diagrammatic technique, including up to the second order of perturbation expansion with respect to the tunnel coupling. The emphasis is put on the impact of dark states on spin-resolved transport characteristics. It is shown that the interplay of coherent population trapping and cotunneling processes results in a highly nontrivial behavior of the tunnel magnetoresistance, which can take negative values. Moreover, a super-Poissonian shot noise is found in transport regimes where the current is blocked by the formation of dark states, which can be additionally enhanced by spin dependence of tunneling processes, depending on the magnetic configuration of the device. The mechanisms leading to those effects are thoroughly discussed.

  2. SunShot Initiative Portfolio Book 2014

    Energy Technology Data Exchange (ETDEWEB)

    Solar Energy Technologies Office

    2014-05-01

    The 2014 SunShot Initiative Portfolio Book outlines the progress towards the goals outlined in the SunShot Vision Study. Contents include overviews of each of SunShot’s five subprogram areas, as well as a description of every active project in the SunShot’s project portfolio as of May 2014.

  3. Bond strength investigation of two shot moulded polymer

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul

    This report on the project “Bond strength investigation of two shot moulded polymers” has been submitted for fulfilling the requirements for the course “Experimental Plastic Technology – 42234” at IPL-DTU. Two shot moulding is a classic manufacturing process to combine two different polymers...... in a single product and it is getting more and more importance day by day. One of the biggest challenges of two shot moulding is to achieve a reasonably good bonding between two polymers. The purpose of this project is to investigate the effects of different process, material and machine parameters...... on the bond strength of two shot moulded polymers. For the experiments two engineering polymers (PS and ABS) were used. After all the experimental work, several parameters were found which could effectively control the bond strength of two shot moulded polymers. This report also presents different aspects...

  4. Restricted active space spin-flip configuration interaction: theory and examples for multiple spin flips with odd numbers of electrons.

    Science.gov (United States)

    Zimmerman, Paul M; Bell, Franziska; Goldey, Matthew; Bell, Alexis T; Head-Gordon, Martin

    2012-10-28

    The restricted active space spin flip (RAS-SF) method is extended to allow ground and excited states of molecular radicals to be described at low cost (for small numbers of spin flips). RAS-SF allows for any number of spin flips and a flexible active space while maintaining pure spin eigenfunctions for all states by maintaining a spin complete set of determinants and using spin-restricted orbitals. The implementation supports both even and odd numbers of electrons, while use of resolution of the identity integrals and a shared memory parallel implementation allow for fast computation. Examples of multiple-bond dissociation, excited states in triradicals, spin conversions in organic multi-radicals, and mixed-valence metal coordination complexes demonstrate the broad usefulness of RAS-SF.

  5. MR Imaging of the Spine at 3.0T with T2-Weighted IDEAL Fast Recovery Fast Spin-Echo Technique

    International Nuclear Information System (INIS)

    Ren, Ai Jun; Guo, Yong; Tian, Shu Ping; Shi, Li Jing; Huang, Min Hua

    2012-01-01

    To compare the iterative decomposition of water and fat with echo asymmetry and the least-squares estimation (IDEAL) method with a fat-saturated T2-weighted (T2W) fast recovery fast spin-echo (FRFSE) imaging of the spine. Images acquired at 3.0 Tesla (T) in 35 patients with different spine lesions using fat-saturated T2W FRFSE imaging were compared with T2W IDEAL FRFSE images. Signal-to-noise ratio (SNR)-efficiencies measurements were made in the vertebral bodies and spinal cord in the mid-sagittal plane or nearest to the mid-sagittal plane. Images were scored with the consensus of two experienced radiologists on a four-point grading scale for fat suppression and overall image quality. Statistical analysis of SNR-efficiency, fat suppression and image quality scores was performed with a paired Student's t test and Wilcoxon's signed rank test. Signal-to-noise ratio-efficiency for both vertebral body and spinal cord was higher with T2W IDEAL FRFSE imaging (p < 0.05) than with T2W FRFSE imaging. T2W IDEAL FRFSE demonstrated superior fat suppression (p < 0.01) and image quality (p < 0.01) compared to fat-saturated T2W FRFSE. As compared with fat-saturated T2W FRFSE, IDEAL can provide a higher image quality, higher SNR-efficiency, and consistent, robust and uniform fat suppression. T2W IDEAL FRFSE is a promising technique for MR imaging of the spine at 3.0T.

  6. Toxicity of Lead and Proposed Substitute Shot to Mallards

    Science.gov (United States)

    Longcore, J.R.; Andrews, R.; Locke, L.N.; Bagley, George E.; Young, L.T.

    1974-01-01

    Poisoning of North American waterfowl resulting from the ingestion of lead shot by ducks, geese, and swans causes an estimated annual mortality of 2 to 3% of the population (Bellrose 1959). To alleviate this problem the search for a suitable substitute for lead has been underway since the early 1950's. Proposed substitutes for lead shot were evaluated in a series of acute toxicity tests with pen-reared mallards (Anas platyrhynchos). Most candidate materials were as toxic to ducks as commercial lead shot. Coating or alloying lead with other metals only delayed mortality among dosed ducks. The reputedly 'disintegrable' lead shot with the water-soluble binder and the lead containing biochemical additives were also as toxic to mallards as the commercial lead shot. Mortality was not significantly different among lead-dosed adult or first-year hen and drake pen-reared mallards; lead-dosed adult, wild mallards of both sexes; and lead-dosed adult, male black ducks (Anas rubripes). The ingestion of one lead shot, size 4, by each of 80 pen-reared mallards caused an average 19% mortality. The presence and type of grit in the gizzard had a measurable effect on erosion of ingested shot and on shot retention among dosed mallards. Significantly fewer lead-dosed ducks died when fed crushed oystershell grit than when fed either quartz grit or no grit.

  7. Fast polarizers installation for ECRH and ECE in TCV

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Miguel, E-mail: miguel.silva@epfl.ch [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association EURATOM-Confederation Suisse, CH-1015 Lausanne (Switzerland); Goodman, Timothy; Felici, Federico; Porte, Laurie [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association EURATOM-Confederation Suisse, CH-1015 Lausanne (Switzerland)

    2011-10-15

    We report on the installation of fast polarizers for ECRH injection and ECE diagnostics, in the TCV tokamak. The main goal is to change the polarization during a plasma shot and react to changing conditions such as: plasma current and position, ECRH injection angles as well as ECE oblique observation angle and correlation ECE frequency. This will allow tracking of plasma variations, find optimum parameters to maximize ECRH absorption and improve the quality and consistency of ECE measurements. The polarization is varied using two fast polarizers, from General Atomics, positioned either in the evacuated transmission line for ECRH, or in a similar non-evacuated line near a real-time moveable directional antenna for ECE. A programmable driver is used to control a servo-motor and allows three operation modes during a plasma shot: fixed angle position, pre-programmed reference waveform and following of a real-time reference waveform. Preliminary tests of the motor controller achieved an 8 Hz bandwidth for a {+-}4{sup o} amplitude motion and a 2.2 Hz bandwidth for a {+-}4{sup o} amplitude motion. The fast polarizers are presently in the ECE system and the control hardware is being installed.

  8. Can a single-shot black-blood T2-weighted spin-echo echo-planar imaging sequence with sensitivity encoding replace the respiratory-triggered turbo spin-echo sequence for the liver? An optimization and feasibility study.

    Science.gov (United States)

    Hussain, Shahid M; De Becker, Jan; Hop, Wim C J; Dwarkasing, Soendersing; Wielopolski, Piotr A

    2005-03-01

    To optimize and assess the feasibility of a single-shot black-blood T2-weighted spin-echo echo-planar imaging (SSBB-EPI) sequence for MRI of the liver using sensitivity encoding (SENSE), and compare the results with those obtained with a T2-weighted turbo spin-echo (TSE) sequence. Six volunteers and 16 patients were scanned at 1.5T (Philips Intera). In the volunteer study, we optimized the SSBB-EPI sequence by interactively changing the parameters (i.e., the resolution, echo time (TE), diffusion weighting with low b-values, and polarity of the phase-encoding gradient) with regard to distortion, suppression of the blood signal, and sensitivity to motion. The influence of each change was assessed. The optimized SSBB-EPI sequence was applied in patients (N = 16). A number of items, including the overall image quality (on a scale of 1-5), were used for graded evaluation. In addition, the signal-to-noise ratio (SNR) of the liver was calculated. Statistical analysis was carried out with the use of Wilcoxon's signed rank test for comparison of the SSBB-EPI and TSE sequences, with P = 0.05 considered the limit for significance. The SSBB-EPI sequence was improved by the following steps: 1) less frequency points than phase-encoding steps, 2) a b-factor of 20, and 3) a reversed polarity of the phase-encoding gradient. In patients, the mean overall image quality score for the optimized SSBB-EPI (3.5 (range: 1-4)) and TSE (3.6 (range: 3-4)), and the SNR of the liver on SSBB-EPI (mean +/- SD = 7.6 +/- 4.0) and TSE (8.9 +/- 4.6) were not significantly different (P > .05). Optimized SSBB-EPI with SENSE proved to be feasible in patients, and the overall image quality and SNR of the liver were comparable to those achieved with the standard respiratory-triggered T2-weighted TSE sequence. (c) 2005 Wiley-Liss, Inc.

  9. Quasiparticle semiconductor band structures including spin-orbit interactions.

    Science.gov (United States)

    Malone, Brad D; Cohen, Marvin L

    2013-03-13

    We present first-principles calculations of the quasiparticle band structure of the group IV materials Si and Ge and the group III-V compound semiconductors AlP, AlAs, AlSb, InP, InAs, InSb, GaP, GaAs and GaSb. Calculations are performed using the plane wave pseudopotential method and the 'one-shot' GW method, i.e. G(0)W(0). Quasiparticle band structures, augmented with the effects of spin-orbit, are obtained via a Wannier interpolation of the obtained quasiparticle energies and calculated spin-orbit matrix. Our calculations explicitly treat the shallow semicore states of In and Ga, which are known to be important in the description of the electronic properties, as valence states in the quasiparticle calculation. Our calculated quasiparticle energies, combining both the ab initio evaluation of the electron self-energy and the vector part of the pseudopotential representing the spin-orbit effects, are in generally very good agreement with experimental values. These calculations illustrate the predictive power of the methodology as applied to group IV and III-V semiconductors.

  10. One-shot synesthesia

    Directory of Open Access Journals (Sweden)

    Kirschner Alexandra

    2017-11-01

    Full Text Available Synesthesia is commonly thought to be a phenomenon of fixed associations between an outside inducer and a vivid concurrent experience. Hence, it has been proposed that synesthesia occurs due to additional connections in the brain with which synesthetes are born. Here we show that synesthesia can be a much richer and more flexible phenomenon with a capability to creatively construct novel synesthetic experiences as events unfold in people’s lives. We describe here cases of synesthetes who occasionally generate novel synesthetic experience, called one-shot synesthesias. These synesthetic experiences seem to share all the properties with the classical synesthetic associations except that they occur extremely rarely, people recalling only a few events over the lifetime. It appears that these one-shots are not created at random but are instead responses to specific life events. We contrast the properties of those rare synesthetic events with other, more commonly known forms of synesthesia that also create novel synesthetic experiences, but at a high rate—sometimes creating novel experiences every few seconds. We argue that one-shot synesthesias indicate that synesthetic associations are by their nature not prewired at birth but are dynamically constructed through mental operations and according to the needs of a synesthetic mind. Our conclusions have implications for understanding the biological underpinnings of synesthesia and the role the phenomenon plays in the lives of people endowed with synesthetic capacities.

  11. The role of Gd-enhanced three-dimensional MRI fast low-angle shot (FLASH) in the evaluation of symptomatic lumbosacral nerve roots

    Energy Technology Data Exchange (ETDEWEB)

    Kikkawa, Ichiro; Sugimoto, Hideharu; Saita, Kazuo; Ookami, Hitoshi; Nakama, Sueo; Hoshino, Yuichi [Jichi Medical School, Minamikawachi, Tochigi (Japan)

    2001-07-01

    In the field of lumbar spine disorders, three-dimensional (3-D) magnetic resonance imaging (MRI) can clearly depict a lumbar nerve root from the distal region to the dorsal root ganglion. In this study, we used a gadoliniumdiethylenetriaminepentaacetic acid (Gd-DTPA) enhanced-three-dimensional (3-D) fast low-angle shot (FLASH) sequence when examining lumbosacral disorders. The subjects were 33 patients (14 men and 19 women) in whom lumbosacral neural compression had been diagnosed clinically. Twenty-one patients had lumbar disc herniation, 11 had lumbar spinal stenosis, and 1 had lumbar radiculopathy caused by rheumatoid arthritis. Five subjects with low back pain were also studied as a control group. In all patients and in all 5 of the controls, the dorsal root ganglion of every root was enhanced clearly. There was no root enhancement in the 5 controls. Enhancement of the symptomatic nerve roots, caused by compression, was found in 11 of the 33 patients. All 11 patients had rediculopathy, and muscle weakness was more frequent in patients with enhanced nerve roots than in those without enhancement. There was no enhancement of the cauda equina, even in the patients with cauda syndrome. The enhancement effect may reflect some pathological condition of the compressed nerve root and needs to be studied further. (author)

  12. The role of Gd-enhanced three-dimensional MRI fast low-angle shot (FLASH) in the evaluation of symptomatic lumbosacral nerve roots

    International Nuclear Information System (INIS)

    Kikkawa, Ichiro; Sugimoto, Hideharu; Saita, Kazuo; Ookami, Hitoshi; Nakama, Sueo; Hoshino, Yuichi

    2001-01-01

    In the field of lumbar spine disorders, three-dimensional (3-D) magnetic resonance imaging (MRI) can clearly depict a lumbar nerve root from the distal region to the dorsal root ganglion. In this study, we used a gadoliniumdiethylenetriaminepentaacetic acid (Gd-DTPA) enhanced-three-dimensional (3-D) fast low-angle shot (FLASH) sequence when examining lumbosacral disorders. The subjects were 33 patients (14 men and 19 women) in whom lumbosacral neural compression had been diagnosed clinically. Twenty-one patients had lumbar disc herniation, 11 had lumbar spinal stenosis, and 1 had lumbar radiculopathy caused by rheumatoid arthritis. Five subjects with low back pain were also studied as a control group. In all patients and in all 5 of the controls, the dorsal root ganglion of every root was enhanced clearly. There was no root enhancement in the 5 controls. Enhancement of the symptomatic nerve roots, caused by compression, was found in 11 of the 33 patients. All 11 patients had rediculopathy, and muscle weakness was more frequent in patients with enhanced nerve roots than in those without enhancement. There was no enhancement of the cauda equina, even in the patients with cauda syndrome. The enhancement effect may reflect some pathological condition of the compressed nerve root and needs to be studied further. (author)

  13. Clinical application of multi-shot diffusion EPI in neurological disease

    International Nuclear Information System (INIS)

    Ishihara, Tetsuya; Hirata, Koichi; Kubo, Jin; Yamazaki, Kaoru; Sato, Toshihiko

    1998-01-01

    Using the multi-shot EPI method we investigated the clinical application of diffusion weighted imaging (DWI) in the diagnosis of neurological disease. The multi-shot method provided better susceptibility artifact-free DWI than the single-shot method particularly in the region of the posterior cranial fossa. DWI using the multi-shot EPI method readily shows the pyramidal tract extending from the internal capsule to the brainstems which is inaccessible by the conventional single-shot EPI method, and providing three-dimensional and distinct images of pyramidal tract changes in amyotrophic lateral sclerosis or cerebral infarction with pyramidal tract disturbance. Our findings suggest that the use of DWI with the multi-shot EPI method would provide a technique for the easy diagnosis and evaluation of various neurological diseases. (author)

  14. Clinical application of multi-shot diffusion EPI in neurological disease

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Tetsuya; Hirata, Koichi; Kubo, Jin; Yamazaki, Kaoru [Dokkyo Univ., Mibu, Tochigi (Japan). School of Medicine; Sato, Toshihiko

    1998-05-01

    Using the multi-shot EPI method we investigated the clinical application of diffusion weighted imaging (DWI) in the diagnosis of neurological disease. The multi-shot method provided better susceptibility artifact-free DWI than the single-shot method particularly in the region of the posterior cranial fossa. DWI using the multi-shot EPI method readily shows the pyramidal tract extending from the internal capsule to the brainstems which is inaccessible by the conventional single-shot EPI method, and providing three-dimensional and distinct images of pyramidal tract changes in amyotrophic lateral sclerosis or cerebral infarction with pyramidal tract disturbance. Our findings suggest that the use of DWI with the multi-shot EPI method would provide a technique for the easy diagnosis and evaluation of various neurological diseases. (author)

  15. Novel fast-neutron activation counter for high repetition rate measurements

    International Nuclear Information System (INIS)

    Mahmood, S.; Springham, S. V.; Zhang, T.; Rawat, R. S.; Tan, T. L.; Krishnan, M.; Beg, F. N.; Lee, S.; Schmidt, H.; Lee, P.

    2006-01-01

    A fast-neutron beryllium activation counter has been constructed for neutron measurements on a high repetition rate deuterium plasma focus. Beryllium activation is especially suitable for measurements of DD neutron yields. The cross section for the relevant reaction, 9 Be(n,α) 6 He, results in a maximum sensitivity at the characteristic energy of the DD neutrons (∼2.5 MeV) and practically no sensitivity to neutrons with energies 6 He enabled the shot-to-shot neutron yield from the plasma focus to be measured for repetition rates from 0.2 to 3 Hz (and for a range of deuterium gas pressures). With careful analysis, the shot-to-shot yield can be measured up to a maximum repetition rate of 3 Hz, beyond which the pileup of counts from the previous shots reduces the accuracy of the measurements to an unacceptable level. This new beryllium activation counter has been cross-checked against an indium activation counter to obtain absolute neutron yields. At a charging voltage of 12.5 kV (bank energy of 2.2 kJ), the average neutron yield was found to be (7.9±0.7)x10 7 per shot (standard deviation of 4x10 7 ). It was found that activation of the plasma focus construction materials (especially aluminum) must be taken into account

  16. Spent shot availability and ingestion on areas managed for mourning doves

    Science.gov (United States)

    Schulz, J.H.; Millspaugh, J.J.; Washburn, B.E.; Wester, G.R.; Lanigan, J. T.; Franson, J.C.

    2002-01-01

    Mourning dove (Zenaida macroura) hunting is becoming increasingly popular, especially in managed shooting fields. Given the possible increase in the availability of lead (Pb) shot on these areas, our objective was to estimate availability and ingestion of spent shot at the Eagle Bluffs Conservation Area (EBCA, hunted with nontoxic shot) and the James A. Reed Memorial Wildlife Area (JARWA, hunted with Pb shot) in Missouri. During 1998, we collected soil samples one or 2 weeks prior to the hunting season (prehunt) and after 4 days of dove hunting (posthunt). We also collected information on number of doves harvested, number of shots fired, shotgun gauge, and shotshell size used. Dove carcasses were collected on both areas during 1998-99. At EBCA, 60 hunters deposited an estimated 64,775 pellets/ha of nontoxic shot on or around the managed field. At JARWA, approximately 1,086,275 pellets/ha of Pb shot were deposited by 728 hunters. Our posthunt estimates of spent-shot availability from soil sampling were 0 pellets/ha for EBCA and 6,342 pellets/ha for JARWA. Our findings suggest that existing soil sampling protocols may not provide accurate estimates of spent-shot availability in managed dove shooting fields. During 1998-99, 15 of 310 (4.8%) mourning doves collected from EBCA had ingested nontoxic shot. Of those doves, 6 (40.0%) contained a?Y7 shot pellets. In comparison, only 2 of 574 (0.3%) doves collected from JARWA had ingested Pb shot. Because a greater proportion of doves ingested multiple steel pellets compared to Pb pellets, we suggest that doves feeding in fields hunted with Pb shot may succumb to acute Pb toxicosis and thus become unavailable to harvest, resulting in an underestimate of ingestion rates. Although further research is needed to test this hypothesis, our findings may partially explain why previous studies have shown few doves with ingested Pb shot despite their feeding on areas with high Pb shot availability.

  17. Removal of Retained Lead Shot Through Laparoscopic Appendectomy

    Science.gov (United States)

    Lloyd, D. M.

    2003-01-01

    We describe a patient presenting with lead shot in his appendix. A plain radiograph of his lumbar spine was performed for back pain, and an incidental finding of lead shot retained within the appendix was seen. Lead shot in the appendix is associated with appendicitis, and 2 cases have been reported of lead intoxication. We suggest that an elective laparoscopic appendectomy should be offered to patients as a possible management option. PMID:12856854

  18. [Contact shot from infantry weapons with a flash-suppressor].

    Science.gov (United States)

    Perdekamp, Markus Grosse; Braunwarth, Roland; Schmidt, Ulrike; Schmidt, Wolfgang; Pollak, Stefan

    2003-01-01

    The number of reports on contact shots from firearms with a flash suppressor attached to the muzzle is small. On the basis of a case report (suicidal shot to the forehead with a Kalschnikow AKMS 47 assault rifle) the morphological peculiarities (characteristics soot pattern, relatively small powder cavity and only minor skin tears in the presence of a bony support) are presented and the conclusions to be drawn from the findings regarding the flash-suppressor, the shot distance, the angle of the shot and the way of holding the weapon are discussed.

  19. Fast polarizers installation for ECRH and ECE in TCV

    NARCIS (Netherlands)

    Silva, M.; Goodman, T.P.; Felici, F.; Porte, L.

    2011-01-01

    We report on the installation of fast polarizers for ECRH injection and ECE diagnostics, in the TCV tokamak. The main goal is to change the polarization during a plasma shot and react to changing conditions such as: plasma current and position, ECRH injection angles as well as ECE oblique

  20. Fully refocused multi-shot spatiotemporally encoded MRI: robust imaging in the presence of metallic implants.

    Science.gov (United States)

    Ben-Eliezer, Noam; Solomon, Eddy; Harel, Elad; Nevo, Nava; Frydman, Lucio

    2012-12-01

    An approach has been recently introduced for acquiring arbitrary 2D NMR spectra or images in a single scan, based on the use of frequency-swept RF pulses for the sequential excitation and acquisition of the spins response. This spatiotemporal-encoding (SPEN) approach enables a unique, voxel-by-voxel refocusing of all frequency shifts in the sample, for all instants throughout the data acquisition. The present study investigates the use of this full-refocusing aspect of SPEN-based imaging in the multi-shot MRI of objects, subject to sizable field inhomogeneities that complicate conventional imaging approaches. 2D MRI experiments were performed at 7 T on phantoms and on mice in vivo, focusing on imaging in proximity to metallic objects. Fully refocused SPEN-based spin echo imaging sequences were implemented, using both Cartesian and back-projection trajectories, and compared with k-space encoded spin echo imaging schemes collected on identical samples under equal bandwidths and acquisition timing conditions. In all cases assayed, the fully refocused spatiotemporally encoded experiments evidenced a ca. 50 % reduction in signal dephasing in the proximity of the metal, as compared to analogous results stemming from the k-space encoded spin echo counterparts. The results in this study suggest that SPEN-based acquisition schemes carry the potential to overcome strong field inhomogeneities, of the kind that currently preclude high-field, high-resolution tissue characterizations in the neighborhood of metallic implants.

  1. MRI of acute cerebral infarction: a comparison of FLAIR and T2-weighted fast spin-echo imaging

    International Nuclear Information System (INIS)

    Noguchi, K.; Ogawa, T.; Inugami, A.; Fujita, H.; Hatazawa, J.; Shimosegawa, E.; Okudera, T.; Uemura, K.; Seto, H.

    1997-01-01

    Fluid-attenuated inversion-recovery (FLAIR) sequences have been reported to provide high sensitivity to a wide range of central nervous system diseases. To our knowledge, however, FLAIR sequences have not been used to study patients with acute cerebral infarcts. We evaluated the usefulness of FLAIR sequences in this context. FLAIR sequences were acquired on a 0.5 T superconducting unit within 8 h of the onset in 19 patients (aged 26-80 years) with a total of 23 ischaemic lesions. The images were reviewed retrospectively by three neuroradiologists, and the FLAIR images were compared with T2-weighted fast spin-echo images. All but one of the ischaemic lesions involving grey matter was clearly demonstrated on FLAIR images as increased signal intensity in cortical or central grey matter. FLAIR images were particularly useful for detecting the hyperacute cortical infarcts within 3 h of onset, which were not readily detected on the spin-echo images. In 9 of 11 patients with complete proximal occlusion, the distal portion of the cerebral artery was visible as an area of high signal intensity on FLAIR images. (orig.). With 4 figs., 1 tab

  2. SunShot Initiative Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    DOE Solar Energy Technologies Office

    2015-04-01

    The U.S. Department of Energy (DOE) SunShot Initiative is a collaborative national effort launched in 2011 that aggressively drives innovation to make solar energy fully cost competitive with traditional energy sources before the end of the decade. The SunShot fact sheet outlines goals and successes of the program as it works with private companies, universities, non-profit organizations, state and local governments, and national laboratories to drive down the cost of solar electricity to $0.06 per kilowatt-hour, without incentives, by the year 2020.

  3. Eating a planet and spinning up

    Science.gov (United States)

    Qureshi, Ahmed; Naoz, Smadar; Shkolnik, Evgenya L.

    2018-01-01

    One of the predictions of high eccentricity planetary migration is that many planets will end up plunging into their host stars. We investigate the consequence of planetary mergers on their stellar hosts’ spin-period. Energy and angular momentum conservation yield that a planet consumption by a star will spin-up of the star. We find that our calculations align with the observed bifurcation in the stellar spin-period in young clusters. After a Sun-like star has eaten a planet, it will then, spin down due to magnetic braking, consistent with the observed lack of fast rotators in old clusters. The agreement between the calculations presented here and the observed spin-period of stars in young clusters provides circumstantial evidence that planetary accretion onto their host stars is a generic feature in planetary-system evolution.

  4. Electron spin exchange of shallow donor muonium states

    International Nuclear Information System (INIS)

    Senba, Masayoshi

    2005-01-01

    Shallow donor muonium states with small hyperfine frequencies, recently observed in II-VI semiconductor compounds, have a number of unique features that present both opportunities and challenges in understanding muon spin dynamics in the presence of Heisenberg spin exchange. First, the shallow muonium state in CdSe with hyperfine frequency ω 0 /2π ∼ 0.1 MHz is already in the high field regime even in the earth's magnetic field, where only two precession frequencies are observable by the muon spin rotation (μSR) technique. Second, unlike in the case of more conventional muonium species with a larger hyperfine frequency, the μSR signal of shallow muonium states can be observed even in the transition region, between the slow spin-flip regime and the fast spin-flip regime, where the spin-flip rate and the hyperfine frequency are comparable. The muon spin dynamics in the transition region has not been theoretically explored previously, mainly because normal muonium in vacuum gives no observable signal in this region. Third, in the case of shallow muonium states, the incoherent process defined to be those spin-flip collisions that cause changes in muon spin precession frequencies, becomes crucially important in the transition region, where the incoherent process is entirely negligible in more conventional muonium species. By taking incoherent multiple collisions into account, an analytical expression for the time evolution of the muon spin polarization in Mu is derived, where Mu undergoes repeated spin-flip collisions. Comparisons with Monte Carlo calculations show that the analytical expression obtained in this work can reliably be used to analyse experimental data for shallow donor states not only in the slow spin-flip regime, but also in the transition region up to the onset of the fast regime. The present work confirms a recent experimental finding that, in the transition region, the initial phases of the two precession components of shallow donor states

  5. SPINS OF LARGE ASTEROIDS: A HINT OF A PRIMORDIAL DISTRIBUTION IN THEIR SPIN RATES

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Elad; Sari, Re’em [The Hebrew University of Jerusalem, Jerusalem (Israel)

    2015-04-15

    The Asteroid Belt and the Kuiper Belt are relics from the formation of our solar system. Understanding the size and spin distribution of the two belts is crucial for a deeper understanding of the formation of our solar system and the dynamical processes that govern it. In this paper, we investigate the effect of collisions on the evolution of the spin distribution of asteroids and KBOs. We find that the power law nature of the impactors’ size distribution leads to a Lévy distribution of the spin rates. This results in a power law tail in the spin distribution, in stark contrast to the usually quoted Maxwellian distribution. We show that for bodies larger than 10 km, collisions alone lead to spin rates peaking at 0.15–0.5 revolutions per day. Comparing that to the observed spin rates of large asteroids (R > 50 km), we find that the spins of large asteroids, peaking at ∼1–2 revolutions per day, are dominated by a primordial component that reflects the formation mechanism of the asteroids. Similarly, the Kuiper Belt has undergone virtually no collisional spin evolution, assuming current densities. Collisions contribute a spin rate of ∼0.01 revolutions per day, thus the observed fast spin rates of KBOs are also primordial in nature.

  6. What You Can Expect with a Cortisone Shot

    Science.gov (United States)

    ... should avoid before your cortisone shot. What you can expect During the cortisone shot Your doctor might ... ll then be positioned so that your doctor can easily insert the needle. The area around the ...

  7. Dynamical decoupling assisted acceleration of two-spin evolution in XY spin-chain environment

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yong-Bo; Zou, Jian [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wang, Zhao-Ming [Department of Physics, Ocean University of China, Qingdao 266100 (China); Shao, Bin, E-mail: sbin610@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Li, Hai [School of Information and Electronic Engineering, Shandong Institute of Business and Technology, Yantai 264000 (China)

    2016-01-28

    We study the speed-up role of dynamical decoupling in an open system, which is modeled as two central spins coupled to their own XY spin-chain environment. We show that the fast bang–bang pulses can suppress the system evolution, which manifests the quantum Zeno effect. In contrast, with the increasing of the pulse interval time, the bang–bang pulses can enhance the decay of the quantum speed limit time and induce the speed-up process, which displays the quantum anti-Zeno effect. In addition, we show that the random pulses can also induce the speed-up of quantum evolution. - Highlights: • We propose a scheme to accelerate the dynamical evolution of central spins in an open system. • The quantum speed limit of central spins can be modulated by changing pulse frequency. • The random pulses can play the same role as the regular pulses do for small perturbation.

  8. MR contrast of ferritin and hemosiderin in the brain: comparison among gradient-echo, conventional spin-echo and fast spin-echo sequences

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Tabassum Laz; Miki, Yukio; Kanagaki, Mitsunori; Takahashi, Takahiro; Yamamoto, Akira; Konishi, Junya; Nozaki, Kazuhiko; Hashimoto, Nobuo; Konishi, Junji

    2003-12-01

    Objective: To compare the magnetic resonance image contrasts due to ferritin and hemosiderin in the brain tissue among different pulse sequences. Materials and methods: Fourteen patients with cavernous hemangioma in the brain prospectively underwent MR imaging with T2*-weighted gradient-echo (GRE), T2-weighted conventional spin-echo (SE) and fast spin-echo (FSE) sequences. The relative contrast ratios (CRs) of the hypointense part of cavernous hemangioma, globus pallidus and putamen to the deep frontal white matter were measured on each pulse sequence and statistically analyzed using analysis of variance followed by paired t-test. Results: In the hypointense part of cavernous hemangioma, relative CRs were significantly lower on T2*-weighted GRE than on T2-weighted SE images (P=0.0001), and on T2-weighted SE than on T2-weighted FSE images (P=0.0001). In the globus pallidus, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.002), and on T2*-weighted GRE than on T2-weighted FSE images (P=0.0002). In the putamen, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.001), and there was no significant difference between CRs on T2-weighted FSE and T2*-weighted GRE images (P=0.90). Conclusion: Hemosiderin showed best image contrast on T2*-weighted GRE images but ferritin showed more prominent image contrast on T2-weighted SE than on T2*-weighted GRE images, which may help to determine an appropriate pulse sequence in neurological diseases associated with excessive ferritin accumulation.

  9. MR contrast of ferritin and hemosiderin in the brain: comparison among gradient-echo, conventional spin-echo and fast spin-echo sequences

    International Nuclear Information System (INIS)

    Haque, Tabassum Laz; Miki, Yukio; Kanagaki, Mitsunori; Takahashi, Takahiro; Yamamoto, Akira; Konishi, Junya; Nozaki, Kazuhiko; Hashimoto, Nobuo; Konishi, Junji

    2003-01-01

    Objective: To compare the magnetic resonance image contrasts due to ferritin and hemosiderin in the brain tissue among different pulse sequences. Materials and methods: Fourteen patients with cavernous hemangioma in the brain prospectively underwent MR imaging with T2*-weighted gradient-echo (GRE), T2-weighted conventional spin-echo (SE) and fast spin-echo (FSE) sequences. The relative contrast ratios (CRs) of the hypointense part of cavernous hemangioma, globus pallidus and putamen to the deep frontal white matter were measured on each pulse sequence and statistically analyzed using analysis of variance followed by paired t-test. Results: In the hypointense part of cavernous hemangioma, relative CRs were significantly lower on T2*-weighted GRE than on T2-weighted SE images (P=0.0001), and on T2-weighted SE than on T2-weighted FSE images (P=0.0001). In the globus pallidus, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.002), and on T2*-weighted GRE than on T2-weighted FSE images (P=0.0002). In the putamen, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.001), and there was no significant difference between CRs on T2-weighted FSE and T2*-weighted GRE images (P=0.90). Conclusion: Hemosiderin showed best image contrast on T2*-weighted GRE images but ferritin showed more prominent image contrast on T2-weighted SE than on T2*-weighted GRE images, which may help to determine an appropriate pulse sequence in neurological diseases associated with excessive ferritin accumulation

  10. Indirectly detected chemical shift correlation NMR spectroscopy in solids under fast magic angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Kanmi [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The development of fast magic angle spinning (MAS) opened up an opportunity for the indirect detection of insensitive low-γ nuclei (e.g., 13C and 15N) via the sensitive high-{gamma} nuclei (e.g., 1H and 19F) in solid-state NMR, with advanced sensitivity and resolution. In this thesis, new methodology utilizing fast MAS is presented, including through-bond indirectly detected heteronuclear correlation (HETCOR) spectroscopy, which is assisted by multiple RF pulse sequences for 1H-1H homonuclear decoupling. Also presented is a simple new strategy for optimization of 1H-1H homonuclear decoupling. As applications, various classes of materials, such as catalytic nanoscale materials, biomolecules, and organic complexes, are studied by combining indirect detection and other one-dimensional (1D) and two-dimensional (2D) NMR techniques. Indirectly detected through-bond HETCOR spectroscopy utilizing refocused INEPT (INEPTR) mixing was developed under fast MAS (Chapter 2). The time performance of this approach in 1H detected 2D 1H{l_brace}13C{r_brace} spectra was significantly improved, by a factor of almost 10, compared to the traditional 13C detected experiments, as demonstrated by measuring naturally abundant organic-inorganic mesoporous hybrid materials. The through-bond scheme was demonstrated as a new analytical tool, which provides complementary structural information in solid-state systems in addition to through-space correlation. To further benefit the sensitivity of the INEPT transfer in rigid solids, the combined rotation and multiple-pulse spectroscopy (CRAMPS) was implemented for homonuclear 1H decoupling under fast MAS (Chapter 3). Several decoupling schemes (PMLG5m$\\bar{x}$, PMLG5mm$\\bar{x}$x and SAM3) were analyzed to maximize the performance of through-bond transfer based

  11. Some properties of focus points in one-shot decision theory

    OpenAIRE

    Guo, Peijun

    2011-01-01

    One-shot (one-time) decision problems concern the situations where a decision is experienced only once. Such one-shot decision problems are commonly encountered in business, economics and social systems. One-shot decision theory has been initially proposed by Guo [4]. The one-shot decision procedure comprises two steps. In the first step, a decision maker identifies which state of nature should be taken into account for each alternative amongst all available states of nature. These identified...

  12. Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect

    Science.gov (United States)

    Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo

    2018-05-01

    We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.

  13. Comparison of optimization algorithms for the slow shot phase in HPDC

    Science.gov (United States)

    Frings, Markus; Berkels, Benjamin; Behr, Marek; Elgeti, Stefanie

    2018-05-01

    High-pressure die casting (HPDC) is a popular manufacturing process for aluminum processing. The slow shot phase in HPDC is the first phase of this process. During this phase, the molten metal is pushed towards the cavity under moderate plunger movement. The so-called shot curve describes this plunger movement. A good design of the shot curve is important to produce high-quality cast parts. Three partially competing process goals characterize the slow shot phase: (1) reducing air entrapment, (2) avoiding temperature loss, and (3) minimizing oxide caused by the air-aluminum contact. Due to the rough process conditions with high pressure and temperature, it is hard to design the shot curve experimentally. There exist a few design rules that are based on theoretical considerations. Nevertheless, the quality of the shot curve design still depends on the experience of the machine operator. To improve the shot curve it seems to be natural to use numerical optimization. This work compares different optimization strategies for the slow shot phase optimization. The aim is to find the best optimization approach on a simple test problem.

  14. Biomechanical Analysis of the Jump Shot in Basketball

    Directory of Open Access Journals (Sweden)

    Struzik Artur

    2014-10-01

    Full Text Available Basketball players usually score points during the game using the jump shot. For this reason, the jump shot is considered to be the most important element of technique in basketball and requires a high level of performance. The aim of this study was to compare the biomechanical characteristics of the lower limbs during a jump shot without the ball and a countermovement jump without an arm swing. The differences between variables provide information about the potential that an athlete can utilise during a game when performing a jump shot. The study was conducted among 20 second-league basketball players by means of a Kistler force plate and the BTS SMART system for motion analysis. The variables measured included the take-off time, mean power, peak power, relative mean power, jump height, maximum landing force and calculated impact ratio. Surprisingly, more advantageous variables were found for the jump shot. This finding suggests a very high performance level in the jump shot in the studied group and a maximum utilisation of their motor abilities. Both types of jumps were characterised by high mean and peak power values and average heights. The high forces at landing, which result in considerable impact ratios, may have prompted the studied group to land softly. Use of the countermovement jump without an arm swing is recommended to assess and predict the progression of player’s jumping ability

  15. Fast spin of the young extrasolar planet β Pictoris b.

    Science.gov (United States)

    Snellen, Ignas A G; Brandl, Bernhard R; de Kok, Remco J; Brogi, Matteo; Birkby, Jayne; Schwarz, Henriette

    2014-05-01

    The spin of a planet arises from the accretion of angular momentum during its formation, but the details of this process are still unclear. In the Solar System, the equatorial rotation velocities and, consequently, spin angular momenta of most of the planets increase with planetary mass; the exceptions to this trend are Mercury and Venus, which, since formation, have significantly spun down because of tidal interactions. Here we report near-infrared spectroscopic observations, at a resolving power of 100,000, of the young extrasolar gas giant planet β Pictoris b (refs 7, 8). The absorption signal from carbon monoxide in the planet's thermal spectrum is found to be blueshifted with respect to that from the parent star by approximately 15 kilometres per second, consistent with a circular orbit. The combined line profile exhibits a rotational broadening of about 25 kilometres per second, meaning that β Pictoris b spins significantly faster than any planet in the Solar System, in line with the extrapolation of the known trend in spin velocity with planet mass.

  16. Fast-acting calorimeter measures heat output of plasma gun accelerator

    Science.gov (United States)

    Dethlefson, R.; Larson, A. V.; Liebing, L.

    1967-01-01

    Calorimeter measures the exhaust energy from a shot of a pulsed plasma gun accelerator. It has a fast response time and requires only one measurement to determine the total energy. It uses a long ribbon of copper foil wound around a glass frame to form a reentrant cavity.

  17. Role of EPI in diagnosing cavernous hemangioma and small HCC : comparison with fast T2-weighted MR Imaging

    International Nuclear Information System (INIS)

    Kim, Suk; Lee, Jun Woo; Kim, Chang Won; Jung, Hyun Woo; Choi, Sang Yoel; Lee, Suck Hong; Kim, Byung Soo

    1998-01-01

    The purpose of this study is to compare single-shot echo-planar MR imaging (EPI) with breath-hold fast T2-weighted imaging (HASTE or Turbo spin-echo T2WI) for evaluation of the role of EPI in distinguishing small hepatocellular carcinoma from cavernous hemangioma. We retrospectively evaluated MR images of 35 patients (21 cases of small HCC and 14 cases of cavernous hemangioma). EPI and breath-hold fast T2WI images were obtained and compared on the basis of lesion detection sensitivity, lesion-to-liver signal intensity ratio (SIR), contrast ratio (CR), and lesion-to-liver contrast to noise ratio (CNR). For the detection of small HCC, the sensitivity of EPI and breath-hold fast T2WI were equal in 14 of 21 cases (71.4%). The detection sensitivity of cavernous hemangioma with EPI and breath-hold fast T2WI was 100 % (14/14). Mean SIR on breath-hold fast T2WI was 2.02 ± 0.45 for small HCC and 3.65 ± 0.97 for cavernous hemangioma; on EPI, the corresponding figures were 2.91 ± 0.57 for cavernous hemangioma; On EPI, the figures obtained were 2.27 ± 0.52 and 6.26 ± 2.19, respectively. Mean CNR on breath-hold fast T2WI was 14.24 ± 4.098 for small HCC and 50.28 ± 10.96 for cavernous hemangioma, while on EPI, the corresponding figures were 13.84 ± 3.02 and 45.44 ± 11.21. In detecting focal hepatic mass, the sensitivity of EPI and breath-hold fast T2WI are comparable for the diagnosis of small HCC and cavernous hemangioma, EPI can provided additional information. (author). 20 refs., 2 tabs., 4 figs

  18. Study on Plastic Deformation Characteristics of Shot Peening of Ni-Based Superalloy GH4079

    Science.gov (United States)

    Zhong, L. Q.; Liang, Y. L.; Hu, H.

    2017-09-01

    In this paper, the X-ray stress diffractometer, surface roughness tester, field emission scanning electron microscope(SEM), dynamic ultra-small microhardness tester were used to measure the surface residual stress and roughness, topography and surface hardness changes of GH4079 superalloy, which was processed by metallographic grinding, turning, metallographic grinding +shot peening and turning + shot peening. Analysized the effects of shot peening parameters on shot peening plastic deformation features; and the effects of the surface state before shot peening on shot peening plastic deformation characteristics. Results show that: the surface residual compressive stress, surface roughness and surface hardness of GH4079 superalloy were increased by shot peening, in addition, the increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening increased with increasing shot peening intensity, shot peening time, shot peening pressure and shot hardness, but harden layer depth was not affected considerably. The more plastic deformation degree of before shot peening surface state, the less increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening.

  19. The polarization of fast neutrons

    International Nuclear Information System (INIS)

    Talov, V.V.

    2001-01-01

    It is insufficient to know coordinates and momentum to describe a state of a neutron. It is necessary to define a spin orientation. As far as it is known from quantum mechanics, a half spin has a projection in the positive direction or in the negative direction. The probability of both projections in an unpolarized beam is equal. If a direction exists, in which the projection is more probably then beam is called polarized in this direction. It is essential to know polarization of neutrons for characteristics of a neutron source, which is emitting it. The question of polarization of fast neutrons came up in 50's. The present work is the review of polarization of fast neutrons and methods of polarization analysis. This also includes information about polarization of fast neutrons from first papers, which described polarization in the D(d,n) 3 He, 7 Li (p,n) 7 Be, T(p,n) 3 He reactions. (authors)

  20. Accelerating proton spin diffusion in perdeuterated proteins at 100 kHz MAS

    Energy Technology Data Exchange (ETDEWEB)

    Wittmann, Johannes J.; Agarwal, Vipin; Hellwagner, Johannes; Lends, Alons; Cadalbert, Riccardo; Meier, Beat H., E-mail: beme@ethz.ch; Ernst, Matthias, E-mail: maer@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland)

    2016-12-15

    Fast magic-angle spinning (>60 kHz) has many advantages but makes spin-diffusion-type proton–proton long-range polarization transfer inefficient and highly dependent on chemical-shift offset. Using 100%-HN-[{sup 2}H,{sup 13}C,{sup 15}N]-ubiquitin as a model substance, we quantify the influence of the chemical-shift difference on the spin diffusion between proton spins and compare two experiments which lead to an improved chemical-shift compensation of the transfer: rotating-frame spin diffusion and a new experiment, reverse amplitude-modulated MIRROR. Both approaches enable broadband spin diffusion, but the application of the first variant is limited due to fast spin relaxation in the rotating frame. The reverse MIRROR experiment, in contrast, is a promising candidate for the determination of structurally relevant distance restraints. The applied tailored rf-irradiation schemes allow full control over the range of recoupled chemical shifts and efficiently drive spin diffusion. Here, the relevant relaxation time is the larger longitudinal relaxation time, which leads to a higher signal-to-noise ratio in the spectra.

  1. Single-shot fluctuations in waveguided high-harmonic generation

    NARCIS (Netherlands)

    Goh, S.J.; Tao, Y.; van der Slot, Petrus J.M.; Bastiaens, Hubertus M.J.; Herek, Jennifer Lynn; Biedron, S.G.; Danailov, M.B.; Milton, S.V.; Boller, Klaus J.

    2015-01-01

    For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic

  2. The pseudo‐brookite spin‐glass system studied by means of muon spin relaxation

    NARCIS (Netherlands)

    Brabers, V.A.M.; Boekema, C.; Lichti, R.L.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Schillaci, M.E.; MacLaughlin, D.E.

    1987-01-01

    Zero-field muon spin relaxation (µSR) experiments have been performed on the spin glass Fe1.75Ti1.25O5. Above the spin-glass temperature of 44 K a distinct exponential µSR rate (¿) is observed, while below Tg a square-root exponential decay occurs, indicating fast spin fluctuations. Near 8 K, a

  3. Manifold corrections on spinning compact binaries

    International Nuclear Information System (INIS)

    Zhong Shuangying; Wu Xin

    2010-01-01

    This paper deals mainly with a discussion of three new manifold correction methods and three existing ones, which can numerically preserve or correct all integrals in the conservative post-Newtonian Hamiltonian formulation of spinning compact binaries. Two of them are listed here. One is a new momentum-position scaling scheme for complete consistency of both the total energy and the magnitude of the total angular momentum, and the other is the Nacozy's approach with least-squares correction of the four integrals including the total energy and the total angular momentum vector. The post-Newtonian contributions, the spin effects, and the classification of orbits play an important role in the effectiveness of these six manifold corrections. They are all nearly equivalent to correct the integrals at the level of the machine epsilon for the pure Kepler problem. Once the third-order post-Newtonian contributions are added to the pure orbital part, three of these corrections have only minor effects on controlling the errors of these integrals. When the spin effects are also included, the effectiveness of the Nacozy's approach becomes further weakened, and even gets useless for the chaotic case. In all cases tested, the new momentum-position scaling scheme always shows the optimal performance. It requires a little but not much expensive additional computational cost when the spin effects exist and several time-saving techniques are used. As an interesting case, the efficiency of the correction to chaotic eccentric orbits is generally better than one to quasicircular regular orbits. Besides this, the corrected fast Lyapunov indicators and Lyapunov exponents of chaotic eccentric orbits are large as compared with the uncorrected counterparts. The amplification is a true expression of the original dynamical behavior. With the aid of both the manifold correction added to a certain low-order integration algorithm as a fast and high-precision device and the fast Lyapunov

  4. Hole spin coherence in a Ge/Si heterostructure nanowire

    DEFF Research Database (Denmark)

    Higginbotham, Andrew P; Larsen, Thorvald Wadum; Yao, Jun

    2014-01-01

    Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si nanowire double quantum dot using a fast pulsed-gate method and dispersive readout. An inhomogeneous dephasing time T2(*)≈ 0.18 μs exceeds corresponding measurements in III-V semiconductors by more than an order of magnit......Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si nanowire double quantum dot using a fast pulsed-gate method and dispersive readout. An inhomogeneous dephasing time T2(*)≈ 0.18 μs exceeds corresponding measurements in III-V semiconductors by more than an order...

  5. Entrance, exit, and reentrance of one shot with a shotgun

    DEFF Research Database (Denmark)

    Gulmann, C; Hougen, H P

    1999-01-01

    The case being reported is one of a homicidal shotgun fatality with an unusual wound pattern. A 34-year-old man was shot at close range with a 12-gauge shotgun armed with No. 5 birdshot ammunition. The shot entered the left axillary region, exited through the left infraclavicular region, and ther......The case being reported is one of a homicidal shotgun fatality with an unusual wound pattern. A 34-year-old man was shot at close range with a 12-gauge shotgun armed with No. 5 birdshot ammunition. The shot entered the left axillary region, exited through the left infraclavicular region...

  6. Effect of shot peening on metastable austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Fargas, G., E-mail: gemma.fargas@upc.edu [CIEFMA - Departament de Ciència dels Materials i Enginyeria Metallúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); CRnE, Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); Roa, J.J.; Mateo, A. [CIEFMA - Departament de Ciència dels Materials i Enginyeria Metallúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); CRnE, Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain)

    2015-08-12

    In this work, shot peening was performed in a metastable austenitic stainless steel EN 1.4318 (AISI 301LN) in order to evaluate its effect on austenite to martensite phase transformation and also the influence on the fatigue limit. Two different steel conditions were considered: annealed, i.e., with a fully austenitic microstructure, and cold rolled, consisting of a mixture of austenite and martensite. X-ray diffraction, electron back-scattered diffraction and focus ion beam, as well as nanoindentation techniques, were used to elucidate deformation mechanisms activated during shot peening and correlate with fatigue response. Results pointed out that extensive plastic deformation and phase transformation developed in annealed specimens as a consequence of shot peening. However, the increase of roughness and the generation of microcracks led to a limited fatigue limit improvement. In contrast, shot peened cold rolled specimens exhibited enhanced fatigue limit. In the latter case, the main factor that determined the influence on the fatigue response was the distance from the injector, followed successively by the exit speed of the shots and the coverage factor.

  7. High signal intensity of fat on fast spin echo imaging

    International Nuclear Information System (INIS)

    Ogura, Akio; Yamazaki, Masaru; Hongoh, Takaharu; Inoue, Hiroshi; Ishikuro, Akihiro

    2000-01-01

    The fast spin echo (FSE) technique of producing T 2 -weighted images in greatly reduced imaging times has recently been used for routine clinical study. FSE images show contrast that is very similar in most tissues to that of conventional SE images. However, fat shows a high signal intensity that is influenced by j-coupling and the magnetization transfer effect. The purpose of this study was to assess whether the higher signal intensity of fat is different among MRI systems and to examine the effects of j-coupling and magnetization transfer on the high signal intensity of fat on FSE. The contrast in signal intensity between fat and water was measured for various echo train lengths (ETL) with and without multislicing on FSE using a contrast phantom. Measurements were obtained with four different MRI systems. In addition, the effective T 2 values of fat were calculated for the above conditions. Results indicated that contrast for fat and water was reduced with increased ETL and by using multislicing and was different among the four MRI systems. The effective T 2 values of fat were extended for increased ETL and were not dependent on multislicing. They also differed among the four MRI systems. The extent of effective T 2 values was affected by j-coupling. In this study, it was indicated that the degree of the high signal intensity of fat on FSE differed for different MRI systems. In addition, the reasons for the high signal intensity of fat on FSE were related to the effects of j-coupling and magnetization transfer. (author)

  8. Kids Guide to Shots

    Science.gov (United States)

    ... First Aid & Safety Doctors & Hospitals Videos Recipes for Kids Kids site Sitio para niños How the Body ... Safe Videos for Educators Search English Español A Kid's Guide to Shots KidsHealth / For Kids / A Kid's ...

  9. Spin transport in epitaxial graphene

    Science.gov (United States)

    Tbd, -

    2014-03-01

    Spintronics is a paradigm focusing on spin as the information vector in fast and ultra-low-power non volatile devices such as the new STT-MRAM. Beyond its widely distributed application in data storage it aims at providing more complex architectures and a powerful beyond CMOS solution for information processing. The recent discovery of graphene has opened novel exciting opportunities in terms of functionalities and performances for spintronics devices. We will present experimental results allowing us to assess the potential of graphene for spintronics. We will show that unprecedented highly efficient spin information transport can occur in epitaxial graphene leading to large spin signals and macroscopic spin diffusion lengths (~ 100 microns), a key enabler for the advent of envisioned beyond-CMOS spin-based logic architectures. We will also show that how the device behavior is well explained within the framework of the Valet-Fert drift-diffusion equations. Furthermore, we will show that a thin graphene passivation layer can prevent the oxidation of a ferromagnet, enabling its use in novel humide/ambient low-cost processes for spintronics devices, while keeping its highly surface sensitive spin current polarizer/analyzer behavior and adding new enhanced spin filtering property. These different experiments unveil promising uses of graphene for spintronics.

  10. Relativistic spin-orbit interactions of photons and electrons

    Science.gov (United States)

    Smirnova, D. A.; Travin, V. M.; Bliokh, K. Y.; Nori, F.

    2018-04-01

    Laboratory optics, typically dealing with monochromatic light beams in a single reference frame, exhibits numerous spin-orbit interaction phenomena due to the coupling between the spin and orbital degrees of freedom of light. Similar phenomena appear for electrons and other spinning particles. Here we examine transformations of paraxial photon and relativistic-electron states carrying the spin and orbital angular momenta (AM) under the Lorentz boosts between different reference frames. We show that transverse boosts inevitably produce a rather nontrivial conversion from spin to orbital AM. The converted part is then separated between the intrinsic (vortex) and extrinsic (transverse shift or Hall effect) contributions. Although the spin, intrinsic-orbital, and extrinsic-orbital parts all point in different directions, such complex behavior is necessary for the proper Lorentz transformation of the total AM of the particle. Relativistic spin-orbit interactions can be important in scattering processes involving photons, electrons, and other relativistic spinning particles, as well as when studying light emitted by fast-moving bodies.

  11. Next-order spin-orbit contributions to chaos in compact binaries

    International Nuclear Information System (INIS)

    Wang Yuzhao; Wu Xin

    2011-01-01

    This paper is mainly devoted to numerically investigating the effects of the next-order spin-orbit interactions including the 2.5 post-Newtonian order term of the equations of motion and the second post-Newtonian order terms of the spin precession equations on chaos in the conservative Lagrangian dynamics of a spinning compact binary system. It is shown sufficiently through individual orbit simulations, the dependence of the invariant fast Lyapunov indicators on the variations of initial spin angles and the phase space scans for chaos, that the next-order spin-orbit contributions do play an important role in the amplification of chaos.

  12. IceCube constraints on fast-spinning pulsars as high-energy neutrino sources

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ke [Department of Astronomy, University of Maryland, College Park, MD, 20742 (United States); Kotera, Kumiko [Institut d' Astrophysique de Paris, UMR 7095 – CNRS, Université Pierre $ and $ Marie Curie, 98 bis boulevard Arago, 75014, Paris (France); Murase, Kohta [Department of Physics, Department of Astronomy and Astrophysics, Center for Particle and Gravitational Astrophysics, The Pennsylvania State University, PA 16802 (United States); Olinto, Angela V., E-mail: kefang@umd.edu, E-mail: kotera@iap.fr, E-mail: murase@psu.edu, E-mail: olinto@kicp.uchicago.edu [Department of Astronomy and Astrophysics, Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States)

    2016-04-01

    Relativistic winds of fast-spinning pulsars have been proposed as a potential site for cosmic-ray acceleration from very high energies (VHE) to ultrahigh energies (UHE). We re-examine conditions for high-energy neutrino production, considering the interaction of accelerated particles with baryons of the expanding supernova ejecta and the radiation fields in the wind nebula. We make use of the current IceCube sensitivity in diffusive high-energy neutrino background, in order to constrain the parameter space of the most extreme neutron stars as sources of VHE and UHE cosmic rays. We demonstrate that the current non-observation of 10{sup 18} eV neutrinos put stringent constraints on the pulsar scenario. For a given model, birthrates, ejecta mass and acceleration efficiency of the magnetar sources can be constrained. When we assume a proton cosmic ray composition and spherical supernovae ejecta, we find that the IceCube limits almost exclude their significant contribution to the observed UHE cosmic-ray flux. Furthermore, we consider scenarios where a fraction of cosmic rays can escape from jet-like structures piercing the ejecta, without significant interactions. Such scenarios would enable the production of UHE cosmic rays and help remove the tension between their EeV neutrino production and the observational data.

  13. 3 ns single-shot read-out in a quantum dot-based memory structure

    International Nuclear Information System (INIS)

    Nowozin, T.; Bimberg, D.; Beckel, A.; Lorke, A.; Geller, M.

    2014-01-01

    Fast read-out of two to six charges per dot from the ground and first excited state in a quantum dot (QD)-based memory is demonstrated using a two-dimensional electron gas. Single-shot measurements on modulation-doped field-effect transistor structures with embedded InAs/GaAs QDs show read-out times as short as 3 ns. At low temperature (T = 4.2 K) this read-out time is still limited by the parasitics of the setup and the device structure. Faster read-out times and a larger read-out signal are expected for an improved setup and device structure

  14. Feedback-tuned, noise resilient gates for encoded spin qubits

    Science.gov (United States)

    Bluhm, Hendrik

    Spin 1/2 particles form native two level systems and thus lend themselves as a natural qubit implementation. However, encoding a single qubit in several spins entails benefits, such as reducing the resources necessary for qubit control and protection from certain decoherence channels. While several varieties of such encoded spin qubits have been implemented, accurate control remains challenging, and leakage out of the subspace of valid qubit states is a potential issue. Optimal performance typically requires large pulse amplitudes for fast control, which is prone to systematic errors and prohibits standard control approaches based on Rabi flopping. Furthermore, the exchange interaction typically used to electrically manipulate encoded spin qubits is inherently sensitive to charge noise. I will discuss all-electrical, high-fidelity single qubit operations for a spin qubit encoded in two electrons in a GaAs double quantum dot. Starting from a set of numerically optimized control pulses, we employ an iterative tuning procedure based on measured error syndromes to remove systematic errors.Randomized benchmarking yields an average gate fidelity exceeding 98 % and a leakage rate into invalid states of 0.2 %. These gates exhibit a certain degree of resilience to both slow charge and nuclear spin fluctuations due to dynamical correction analogous to a spin echo. Furthermore, the numerical optimization minimizes the impact of fast charge noise. Both types of noise make relevant contributions to gate errors. The general approach is also adaptable to other qubit encodings and exchange based two-qubit gates.

  15. Numerical investigation of a shot peening process by a finite element approach

    DEFF Research Database (Denmark)

    Liu, Hongsheng; Zhang, Xiaodan; Hansen, Niels

    2014-01-01

    Shot peening is a surface impact treatment widely used to improve the performance of a metal or a component. The better performance of the shot peened part is controlled by compressive residual stresses resulting from the plastic deformation of the surface layers by impacts of shot. The compressive...... residual stress is generally measured by X-ray diffraction. However, considerable cost and time are needed for such measurements. For this reason, in this work a 3D finite element (FE) model is introduced for a shot peening process. Through the FE simulations, the effect of process parameters...... such as damping ratio of material, friction coefficient, shot velocity and shot angle on the magnitude and distribution of the compressive residual stress is examined....

  16. Investigations of shot reproducibility for the SMP diode at 4.5 MV.

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Nichelle [National Security Technologies, LLC, Las Vegas, NV (United States); Crain, Marlon D. [National Security Technologies, LLC, Las Vegas, NV (United States); Droemer, Darryl W. [National Security Technologies, LLC, Las Vegas, NV (United States); Gignac, Raymond Edward [National Security Technologies, LLC, Las Vegas, NV (United States); Lare, Gregory A. [National Security Technologies, LLC, Las Vegas, NV (United States); Molina, Isidro [National Security Technologies, LLC, Las Vegas, NV (United States); Obregon, Rafael [National Security Technologies, LLC, Las Vegas, NV (United States); Smith, Chase C. [National Security Technologies, LLC, Las Vegas, NV (United States); Wilkins, Frank Lee [National Security Technologies, LLC, Las Vegas, NV (United States); Welch, Dale Robert [Voss Scientific, LLC, Albuquerque, NM (United States); Cordova, Steve Ray; Gallegos, M.; Johnston, Mark D.; Kiefer, Mark Linden; Leckbee, Joshua J.; Nielsen, Daniel Scott; Oliver, Bryan Velten; Renk, Timothy Jerome; Romero, Tobias; Webb, Timothy Jay; Ziska, Derek Raymond

    2013-11-01

    In experiments conducted on the RITS-6 accelerator, the SMP diode exhibits sig- ni cant shot-to-shot variability. Speci cally, for identical hardware operated at the same voltage, some shots exhibit a catastrophic drop in diode impedance. A study is underway to identify sources of shot-to-shot variations which correlate with diode impedance collapse. To remove knob emission as a source, only data from a shot series conducted with a 4.5-MV peak voltage are considered. The scope of this report is limited to sources of variability which occur away from the diode, such as power ow emission and trajectory changes, variations in pulsed power, dustbin and transmission line alignment, and di erent knob shapes. We nd no changes in the transmission line hardware, alignment, or hardware preparation methods which correlate with impedance collapse. However, in classifying good versus poor shots, we nd that there is not a continuous spectrum of diode impedance behavior but that the good and poor shots can be grouped into two distinct impedance pro les. This result forms the basis of a follow-on study focusing on the variability resulting from diode physics. 3

  17. SunShot Vision Study: February 2012 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2012-02-01

    The objective of the SunShot Vision Study is to provide an in-depth assessment of the potential for solar technologies to meet a significant share of electricity demand in the United States during the next several decades. Specifically, it explores a future in which the price of solar technologies declines by about 75% between 2010 and 2020 - in line with the U.S. Department of Energy (DOE) SunShot Initiative's targets.

  18. Spatial resolution properties in 3D fast spin-echo using variable refocusing flip angles

    International Nuclear Information System (INIS)

    Ozaki, Masanori; Mizukami, Shinya; Hata, Hirofumi; Sato, Mayumi; Komi, Syotaro; Miyati, Tosiaki; Nozaki, Atsushi

    2011-01-01

    A new 3-dimensional fast spin-echo (3D FSE) method that uses a variable refocusing flip angle technique has recently been applied to imaging. The imaging pulse sequence can inhibit T 2 decay by varying the refocusing flip angle. Use of a long echo train length allows acquisition of 3D T 2 -weighted images with less blurring in a short scan time. The smaller refocusing flip angle in the new 3D FSE method than in the conventional method can reduce the specific absorption rate. However, T 2 decay differs between the new and conventional 3D FSE methods, so the resolution properties of the 2 methods may differ. We investigated the resolution properties of the new 3D FSE method using a variable refocusing flip angle technique. Varying the refocusing flip angle resulted in different resolution properties for the new 3D FSE method compared to the conventional method, a difference particularly noticeable when the imaging parameters were set for obtaining proton density weighted images. (author)

  19. Fast spin-echo MR assessment of patients with poor outcome following spinal cervical surgery

    International Nuclear Information System (INIS)

    Wu, W.; Thuomas, K.AA.; Hedlund, R.; Leszniewski, W.; Vavruch, L.

    1996-01-01

    The aim of the investigation was to evaluate poor outcome following spinal cervical surgery. A total of 146 consecutive patients operated with anterior discectomy and fusion (ADF) with the Cloward technique were investigated. Clinical notes, plain radiography, CT, and fast spin-echo (FSE) images were retrospectively evaluated. Some 30% of the patients had unsatisfactory clinical results within 12 months after surgery; 13% had initial improvement followed by deterioration of the preoperative symptoms, while 14.4% were not improved or worsened. Disc herniation and bony stenosis above, below, or at the fused level were the most common findings. In 45% of patients, surgery failed to decompress the spinal canal. In only 4 patients was no cause of remaining myelopathy and/or radiculopathy found. FSE demonstrated a large variety of pathological findings in the patients with poor clinical outcome after ADF. Postoperatively, patients with good clinical outcome had a lower incidence of pathological changes. FSE is considered the primary imaging modality for the cervical spine. However, CT is a useful complement in the axial projection to visualize bone changes. (orig.)

  20. Improvement of Surface Layer Characteristics by Shot Lining

    Science.gov (United States)

    Harada, Yasunori

    In the present study, lining of the metal with foils using shot peening was investigated to improve the surface layer characteristics. In the shot peening experiment, the foils set on the metal are pelted with hard particles traveling at a high velocity. The foils are bonded to the metal surface due to plastic deformation induced by the collision of the particles. The foils and the metal are heated to heighten the bondability because of the reduction of flow stress. Lining the metal with the hard powder sandwiched between two aluminum foil sheets was also attempted. In this experiment, a centrifugal shot peening machine wite an electrical heater was employed. The metals are commercially aluminium alloys and magnesium alloys, and the foils are commercially aluminum, titanium and nickel. The effects of shot speed and the heating temperature on the bondability were examined. Wear resistance was also evaluated by grinding. The foils were successfully bonded to the metal surface. It was found that the present method is effective in improving of surface layer characteristics.

  1. Get Your Flu Shot!| NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: Flu Shot Get Your Flu Shot! Past Issues / Winter 2011 Table of Contents ... failure, or lung disease "For the 2010–2011 flu season, the flu vaccine provides protection against the ...

  2. The Effect of Multiple Shot Peening on the Corrosion Behavior of Duplex Stainless Steel

    Science.gov (United States)

    Feng, Qiang; She, Jia; Wu, Xueyan; Wang, Chengxi; Jiang, Chuanhai

    2018-03-01

    Various types of shot peening treatments were applied to duplex stainless steel. The effects of shot peening intensity and working procedures on the microstructure were investigated. The domain size and microstrain evolution in the surface layer were characterized utilizing the Rietveld method. As the shot peening intensity increased, the surface roughness increased in the surface layer; however, it decreased after multiple (dual and triple) shot peening. The mole fraction of strain-induced martensite as a function of the intensity of shot peening was evaluated by XRD measurements. Both potentiodynamic polarization curves and salt spray tests of shot-peened samples in NaCl solution were investigated. The results indicate that traditional shot peening has negative effects on corrosion resistance with increasing shot peening intensity; however, the corrosion rate can be reduced by means of multiple shot peening.

  3. Fetal MRI: An approach to practice: A review

    OpenAIRE

    Saleem, Sahar N.

    2013-01-01

    MRI has been increasingly used for detailed visualization of the fetus in utero as well as pregnancy structures. Yet, the familiarity of radiologists and clinicians with fetal MRI is still limited. This article provides a practical approach to fetal MR imaging. Fetal MRI is an interactive scanning of the moving fetus owed to the use of fast sequences. Single-shot fast spin-echo (SSFSE) T2-weighted imaging is a standard sequence. T1-weighted sequences are primarily used to demonstrate fat, cal...

  4. Flu shots and the characteristics of unvaccinated elderly Medicare beneficiaries.

    Science.gov (United States)

    Lochner, Kimberly A; Wynne, Marc

    2011-12-21

    Data from the Medicare Current Beneficiary Survey, 2009. • Overall, 73% of Medicare beneficiaries aged 65 years and older reported receiving a flu shot for the 2008 flu season, but vaccination rates varied by socio-demographic characteristics. Flu vaccination was lowest for beneficiaries aged 65-74 years old, who were non-Hispanic Blacks and Hispanics, were not married, had less than a high school education, or who were eligible for Medicaid (i.e., dual eligibles). • Healthcare utilization and personal health behavior were also related to vaccination rates, with current smokers and those with no hospitalizations or physician visits being less likely to be vaccinated. • Among those beneficiaries who reported receiving a flu shot, 59% received it in a physician's office or clinic, with the next most common setting being in the community (21%); e.g., grocery store, shopping mall, library, or church. • Among those beneficiaries who did not receive a flu shot, the most common reasons were beliefs that the shot could cause side effects or disease (20%), that they didn't think the shot could prevent the flu (17%), or that the shot wasn't needed (16%). Less than 1% reported that they didn't get the flu shot because of cost. Elderly persons (aged 65 years and older) are at increased risk of complications from influenza, with the majority of influenza-related hospitalizations and deaths occurring among the elderly (Fiore et al., 2010). Most physicians recommend their elderly patients get a flu shot each year, and many hospitals inquire about elderly patient's immunization status upon admission, providing a vaccination if requested. The importance of getting a flu shot is underscored by the Department of Health and Human Services' Healthy People initiative, which has set a vaccination goal of 90% for the Nation's elderly by the year 2020 (Department of Health and Human Services [DHHS], 2011). Although all costs related to flu shots are covered by Medicare, requiring

  5. The Influence of Stellar Spin on Ignition of Thermonuclear Runaways

    DEFF Research Database (Denmark)

    Galloway, Duncan K.; In't Zand, Jean J. M.; Chenevez, Jérôme

    2018-01-01

    timescales of hours to days. We measured the burst rate as a function of accretion rate, from seven neutron stars with known spin rates, using a burst sample accumulated over several decades. At the highest accretion rates, the burst rate is lower for faster spinning stars. The observations imply that fast...

  6. Mumps and the Vaccine (Shot) to Prevent It

    Science.gov (United States)

    ... as measles and rubella. Prevents your child from getting a fever and swollen glands under the ears or jaw from mumps. Keeps your child from missing school or child care (and keeps you from missing work to care for your sick child). Is the MMR shot safe? Yes. The MMR shot is very safe, and it ...

  7. Kinematic Differences between Set- and Jump-Shot Motions in Basketball

    Directory of Open Access Journals (Sweden)

    Hiroki Okubo

    2018-02-01

    Full Text Available Shooting arm motions at release in one-hand set and jump basketball shots have been analyzed using a kinematic model. Set and jump shots are classified by the vertical velocity and acceleration of the shooter’s shooting-side shoulder at release. The two-dimensional three-segment model includes the vertical shooting-side shoulder velocity and acceleration. Numerical simulation investigates the effect of shoulder motion. Release backspin angular velocity can be described as a function of the vertical shoulder acceleration and the vertical fingertip acceleration relative to the shoulder. For proper backspin, jump shots require large vertical fingertip acceleration relative to the shoulder. The upward shoulder speed at release contributes to the vertical fingertip velocity relative to the shoulder for a given desired ball release speed, angle and backspin. On the other hand, upward shoulder motion does not contribute to the horizontal direction. As horizontal shot distance increases, upper arm angular speed also increases to produce the ball release conditions. Ball release with upward shoulder speed reduces the magnitudes of the upper arm, forearm and hand angular velocities. All these facts imply that the shooting arm motion in the jump shot is different from that of the set shot.

  8. Shot reproducibility of the self-magnetic-pinch diode at 4.5 MV

    OpenAIRE

    Nichelle Bennett; M. Dale Crain; Darryl W. Droemer; Raymond E. Gignac; Greg Lare; Isidro Molina; Robert Obregon; Chase C. Smith; Frank L. Wilkins; Dale R. Welch; Steve Cordova; Manuel L. Gallegos; Mark D. Johnston; Mark L. Kiefer; Joshua J. Leckbee

    2014-01-01

    In experiments conducted at Sandia National Laboratories’ RITS-6 accelerator, the self-magnetic-pinch diode exhibits significant shot-to-shot variability. Specifically, for identical hardware operated at the same voltage, some shots exhibit a catastrophic drop in diode impedance. A study is underway to identify sources of shot-to-shot variations which correlate with diode impedance collapse. The scope of this report is limited to data collected at 4.5-MV peak voltage and sources of variabilit...

  9. Bilateral mesial temporal sclerosis: MRI with high-resolution fast spin-echo and fluid-attenuated inversion-recovery sequences

    Energy Technology Data Exchange (ETDEWEB)

    Oppenheim, C.; Dormont, D.; Lehericy, S.; Marsault, C. [Dept. of Neuroradiology, Groupe Hospitalier Pite-Salpetriere, Paris (France); Hasboun, D. [Dept. of Neuroradiology, Groupe Hospitalier Pite-Salpetriere, Paris (France)]|[Dept. of Neurology, Paris VI Univ. (France); Bazin, B.; Samson, S.; Baulac, M. [Dept. of Neurology, Paris VI Univ. (France)

    1999-07-01

    We report a retrospective analysis of MRI in 206 patients with intractable seizures and describe the findings in bilateral mesial temporal sclerosis (MTS) on fast spin-echo (FSE) and fast fluid-attenuated inversion-recovery (fFLAIR) sequences. Criteria for MTS were atrophy, signal change and loss of the digitations of the head of the hippocampus. In patients with bilateral MRI signs of MTS, correlation with clinical electro, volumetric MRI data and neuropsychological tests, when available, was performed. Bilateral MTS was observed in seven patients. Bilateral loss of the digitations and signal change of fFLAIR was seen in all seven. In three, bilateral atrophy was obvious. In two patients, mild bilateral atrophy was observed and in two others, the hippocampi were: asymmetrical, with obvious atrophy on only one side. Volumetric data confirmed bilateral symmetrical atrophy in five patients, and volumes were at the lowest of the normal range in other two. The EEG showed temporal abnormalities in all patients, unilateral in five and bilateral in two. All patients had memory impairment and neuropsychological data confirmed visual and verbal memory deficits; two patients failed the Wada test on both sides. High-resolution T2-weighted FSE and fFLAIR sequences allow diagnosis of bilateral MTS, which has important therapeutic and prognostic implications. (orig.)

  10. Bilateral mesial temporal sclerosis: MRI with high-resolution fast spin-echo and fluid-attenuated inversion-recovery sequences

    International Nuclear Information System (INIS)

    Oppenheim, C.; Dormont, D.; Lehericy, S.; Marsault, C.; Hasboun, D.; Bazin, B.; Samson, S.; Baulac, M.

    1999-01-01

    We report a retrospective analysis of MRI in 206 patients with intractable seizures and describe the findings in bilateral mesial temporal sclerosis (MTS) on fast spin-echo (FSE) and fast fluid-attenuated inversion-recovery (fFLAIR) sequences. Criteria for MTS were atrophy, signal change and loss of the digitations of the head of the hippocampus. In patients with bilateral MRI signs of MTS, correlation with clinical electro, volumetric MRI data and neuropsychological tests, when available, was performed. Bilateral MTS was observed in seven patients. Bilateral loss of the digitations and signal change of fFLAIR was seen in all seven. In three, bilateral atrophy was obvious. In two patients, mild bilateral atrophy was observed and in two others, the hippocampi were: asymmetrical, with obvious atrophy on only one side. Volumetric data confirmed bilateral symmetrical atrophy in five patients, and volumes were at the lowest of the normal range in other two. The EEG showed temporal abnormalities in all patients, unilateral in five and bilateral in two. All patients had memory impairment and neuropsychological data confirmed visual and verbal memory deficits; two patients failed the Wada test on both sides. High-resolution T2-weighted FSE and fFLAIR sequences allow diagnosis of bilateral MTS, which has important therapeutic and prognostic implications. (orig.)

  11. An investigation of the properties of conventional and severe shot peened low alloy steel

    Science.gov (United States)

    Quang Trung, Pham; Butler, David Lee; Win Khun, Nay

    2017-07-01

    The effects of the conventional shot peening and severe shot peening process on the mechanical and tribological properties of shot peened AISI 4340 high strength steel were systematically investigated. Compared with the conventional shot peened sample, the ultrafine grain surface layer with a depth of about 20 µm generated by the severe shot peening process can enhance the hardness and wear resistance of the treated material. However, deeper dimples generated by the high media velocity in the severe shot peening process resulted in a higher surface roughness, which is considered as a side effect of this method reducing the fatigue life of the material. Applying a smaller shot size with an appropriate intensity can be used to peen the severe shot peened samples to not only reduce the surface roughness and friction coefficient but also improve the wear resistance for these samples. This work was presented in the shot peening section during ‘The 30th International Conference on Surface Modification Technologies, 2016, Milan, Italy’ (SMT30, ID 61, entitled ‘Comparison of the effects of conventional shot peening and severe shot peening processes on the mechanical and tribological properties of shot peened AISI 4340’) and the authors were encouraged to submit a manuscript to the Materials Research Express journal after adding some nessesary information.

  12. Shot loading platform analysis

    International Nuclear Information System (INIS)

    Norman, B.F.

    1994-01-01

    This document provides the wind/seismic analysis and evaluation for the shot loading platform. Hand calculations were used for the analysis. AISC and UBC load factors were used in this evaluation. The results show that the actual loads are under the allowable loads and all requirements are met

  13. Circuit quantum electrodynamics with a spin qubit.

    Science.gov (United States)

    Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R

    2012-10-18

    Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.

  14. Maximum one-shot dissipated work from Rényi divergences

    Science.gov (United States)

    Yunger Halpern, Nicole; Garner, Andrew J. P.; Dahlsten, Oscar C. O.; Vedral, Vlatko

    2018-05-01

    Thermodynamics describes large-scale, slowly evolving systems. Two modern approaches generalize thermodynamics: fluctuation theorems, which concern finite-time nonequilibrium processes, and one-shot statistical mechanics, which concerns small scales and finite numbers of trials. Combining these approaches, we calculate a one-shot analog of the average dissipated work defined in fluctuation contexts: the cost of performing a protocol in finite time instead of quasistatically. The average dissipated work has been shown to be proportional to a relative entropy between phase-space densities, to a relative entropy between quantum states, and to a relative entropy between probability distributions over possible values of work. We derive one-shot analogs of all three equations, demonstrating that the order-infinity Rényi divergence is proportional to the maximum possible dissipated work in each case. These one-shot analogs of fluctuation-theorem results contribute to the unification of these two toolkits for small-scale, nonequilibrium statistical physics.

  15. Intrinsic spin-relaxation induced negative tunnel magnetoresistance in a single-molecule magnet

    Science.gov (United States)

    Xie, Haiqing; Wang, Qiang; Xue, Hai-Bin; Jiao, HuJun; Liang, J.-Q.

    2013-06-01

    We investigate theoretically the effects of intrinsic spin-relaxation on the spin-dependent transport through a single-molecule magnet (SMM), which is weakly coupled to ferromagnetic leads. The tunnel magnetoresistance (TMR) is obtained by means of the rate-equation approach including not only the sequential but also the cotunneling processes. It is shown that the TMR is strongly suppressed by the fast spin-relaxation in the sequential region and can vary from a large positive to slight negative value in the cotunneling region. Moreover, with an external magnetic field along the easy-axis of SMM, a large negative TMR is found when the relaxation strength increases. Finally, in the high bias voltage limit the TMR for the negative bias is slightly larger than its characteristic value of the sequential region; however, it can become negative for the positive bias caused by the fast spin-relaxation.

  16. Effects of single antegrade hot shot in comparison with no hot shot administration during coronary artery bypass grafting

    Directory of Open Access Journals (Sweden)

    Pouya Mirmohammadsadeghi

    2015-05-01

    Full Text Available BACKGROUND: Superior results will be achieved from cardiac surgery by minimizing the effect of ischemia/reperfusion injury during cross-clamping of the aorta. Different cardioplegia solutions have been introduced, but the optimum one is still ambiguous. The aim of this study is to determine the effect of single antegrade hot shot terminal warm blood cardioplegia (TWBC on patients who had undergone coronary artery bypass grafting (CABG. METHODS: In total, 2488 patients who had CABG surgery in Sina Hospital, Isfahan, Iran, from 2003 to 2011 were enrolled in this case-control study. They were divided into two groups, those who received cold cardioplegia only and those who received a hot shot following cold cardioplegia. Demographics, and clinical data, such as; premature atrial contraction (PAC arrhythmia, diabetes treatment, and left ventricular ejection fraction (EF, were collected and logistic regression analysis was used to analyze the data. RESULTS: There were significant differences found between subjects receiving antegrade hot shot based on direct current (DC shocks, with regard to; female, EF levels, diabetes treatment (P < 0.050. Those who did not receive the hot shot and were not diabetic received more DC shock (P = 0.019. The prevalence of subjects who did no need DC shock was significantly higher among male subjects who had good EF and acceptable diabetic treatment. Multiple logistic regression showed that PAC arrhythmia did not have a significant effect on receiving DC shock during CAGB [0.84 (0.25, 2.85, (P = 0.780]. Having poor EF increased the risk of receiving DC shock among subjects by 2.81 [(1.69, 4.69, (P ≤ 0.001] (P < 0.001. Among the diabetic subjects, receiving insulin decreased the risk of receiving DC shock by 0.54 (0.29, 0.98 (P = 0.042. CONCLUSION: It was concluded that single antegrade hot shot following cold cardioplegia was not particularly effective in the CABG group. TWBC will decrease the need for DC shock.   

  17. Comparison of 3D vs. 2D fast spin echo imaging for evaluation of articular cartilage in the knee on a 3 T system scientific research

    International Nuclear Information System (INIS)

    Milewski, Matthew D.; Smitaman, Edward; Moukaddam, Hicham; Katz, Lee D.; Essig, David A.; Medvecky, Michael J.; Haims, Andrew H.

    2012-01-01

    Highlights: ► Compared 3D to 2D MR sequences for articular cartilage in the knee. ► 3D imaging acquired in a single plane, 2D acquired in 3 separate planes. ► No significant difference in accuracy between 3D and 2D sequences. - Abstract: Purpose: We sought to retrospectively compare the accuracy of a three-dimensional fat-suppressed, fast spin-echo sequences acquired in the sagittal plane, with multiplanar reconstructions to that of two-dimensional fat-suppressed, fast spin echo sequences acquired in three planes on a 3 T MR system for the evaluation of articular cartilage in the knee. Materials and methods: Our study group consisted of all patients (N = 34) that underwent 3 T MR imaging of the knee at our institution with subsequent arthroscopy over an 18-month period. There were 21 males and 13 females with an average age of 36 years. MR images were reviewed by 3 musculoskeletal radiologists, blinded to operative results. 3D and 2D sequences were reviewed at different sittings separated by 4 weeks to prevent bias. Six cartilage surfaces were evaluated both with MR imaging and arthroscopically with a modified Noyes scoring system and arthroscopic results were used as the gold standard. Sensitivity, specificity, and accuracy were calculated for each reader along with Fleiss Kappa assessment agreement between the readers. Accuracies for each articular surface were compared using a difference in proportions test with a 95% confidence interval and statistical significance was calculated using a Fisher's Exact Test. Results: Two hundred and four articular surfaces were evaluated and 49 articular cartilage lesions were present at arthroscopy. For the patellofemoral surfaces, the sensitivity, specificity, and accuracy were 76.5%, 83%, and 78.2% for the 3D sequences and were 82.3%, 76%, and 82% respectively for the 2D sequences. For the medial compartment surfaces, the sensitivity, specificity, and accuracy were 81.1%, 65.1%, and 78.5% for the 3D sequences and were

  18. The Usefulness of Fast-Spin-Echo T2-Weighted MR Imaging in Nutcracker Syndrome: a Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Heong Leng; Chen, Matt Chiung Yu; Wu, Cgek Siung; Fu, Kuo An; Lin, Cheng Hao [Yuan' s General Hospital, Kaohsiung (China); Weng, Mei Jui; Liang, Huei Lung; Pan, Huay Ben [National Yang-Ming University, Taipei (Korea, Republic of)

    2010-06-15

    Nutcracker syndrome occurs when the left renal vein (LRV) is compressed between the superior mesenteric artery and the aorta, and this syndrome is often characterized by venous hypertension and related pathologies. However, invasive studies such as phlebography and measuring the reno-caval pressure gradient should be performed to identify venous hypertension. Here we present a case of Nutcracker syndrome where the LRV and intra-renal varicosities appeared homogeneously hyperintense on magnetic resonance (MR) fast-spin-echo T2- weighted imaging, which suggested markedly stagnant intravenous blood flow and the presence of venous hypertension. The patient was diagnosed and treated without obtaining the reno-caval pressure gradient. The discomfort of the patient lessened after treatment. Furthermore, on follow-up evaluation, the LRV displayed a signal void, and this was suggestive of a restoration of the normal LRV flow and a decrease in LRV pressure.

  19. Lichtheim’s Golden shot

    NARCIS (Netherlands)

    Eling, P.A.T.M.

    2011-01-01

    Lichtheim belongs to the ranks of most famous aphasiologists, in particular because of a diagram often referred to as ‘Lichtheim’s House’. His single paper on aphasia has drawn the attention of the aphasiological community for many years and may be considered a golden shot. But it became, to

  20. Generalized extended Navier-Stokes theory: multiscale spin relaxation in molecular fluids.

    Science.gov (United States)

    Hansen, J S

    2013-09-01

    This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia per unit mass. In the regime of large moment of inertia the fast relaxation is wave-vector independent and dominated by the coupling between spin and the fluid streaming velocity, whereas for small inertia the relaxation is slow and spin diffusion plays a significant role. The fast wave-vector-independent relaxation is also observed for highly packed systems. The transverse and longitudinal spin modes have, to a good approximation, identical relaxation, indicating that the longitudinal and transverse spin viscosities have same value. The relaxation is also shown to be isomorphic invariant. Finally, the effect of the coupling in the zero frequency and wave-vector limit is quantified by a characteristic length scale; if the system dimension is comparable to this length the coupling must be included into the fluid dynamical description. It is found that the length scale is independent of moment of inertia but dependent on the state point.

  1. Mug shot exposure prior to lineup identification: interference, transference, and commitment effects.

    Science.gov (United States)

    Dysart, J E; Lindsay, R C; Hammond, R; Dupuis, P

    2001-12-01

    The effects of viewing mug shots on subsequent identification performance are as yet unclear. Two experiments used a live staged-crime paradigm to determine if interpolated eyewitness exposure to mug shots caused interference, unconscious transference, or commitment effects influencing subsequent lineup accuracy. Experiment 1 (N = 104) tested interference effects. Similar correct decision rates were obtained for the mug shot and no mug shot groups from both perpetrator-present and absent lineups. Experiment 2 (N = 132) tested for commitment and transference effects. Results showed that the commitment group made significantly more incorrect identifications than either the control or the transference group, which had similar false-identification rates. Commitment effects present a serious threat to identification accuracy from lineups following mug shot searches.

  2. Acceptance test procedure, 241-SY-101/241-C-106 shot loading system

    International Nuclear Information System (INIS)

    Ostrom, M.J.

    1994-01-01

    This Acceptance Test Procedure is for the 241-SY-101/241-C-106 Shot Loading System. The procedure will test the components of the Shot Loading System and its capability of adequately loading shot into the annular space of the Container. The loaded shot will provide shielding as required for transporting and storage of a contaminated pump after removal from the tank. This test serves as verification that the SLS is acceptable for use in the pump removal operations for Tanks 241-SY-101, 241-C-106 and 241-AY-102. The pump removal operation for these three tanks will be performed by two different organizations with different equipment, but the Shot Loading System will be compatible between the two operations

  3. Asteroid spin-rate studies using large sky-field surveys

    Science.gov (United States)

    Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen; Prince, Thomas A.; Kulkarni, Shrinivas R.; Levitan, David; Laher, Russ; Surace, Jason

    2017-12-01

    Eight campaigns to survey asteroid rotation periods have been carried out using the intermediate Palomar Transient Factory in the past 3 years. 2780 reliable rotation periods were obtained, from which we identified two new super-fast rotators (SFRs), (335433) 2005 UW163 and (40511) 1999 RE88, and 23 candidate SFRs. Along with other three known super-fast rotators, there are five known SFRs so far. Contrary to the case of rubble-pile asteroids (i.e., bounded aggregations by gravity only), an internal cohesion, ranging from 100 to 1000 Pa, is required to prevent these five SFRs from flying apart because of their super-fast rotations. This cohesion range is comparable with that of lunar regolith. However, some candidates of several kilometers in size require unusually high cohesion (i.e., a few thousands of Pa). Therefore, the confirmation of these kilometer-sized candidates can provide important information about asteroid interior structure. From the rotation periods we collected, we also found that the spin-rate limit of C-type asteroids, which has a lower bulk density, is lower than for S-type asteroids. This result is in agreement with the general picture of rubble-pile asteroids (i.e., lower bulk density, lower spin-rate limit). Moreover, the spin-rate distributions of asteroids of 3 5 rev/day, regardless of the location in the main belt. The YORP effect is indicated to be less efficient in altering asteroid spin rates from our results when compared with the flat distribution found by Pravec et al. (Icarus 197:497-504, 2008. doi: 10.1016/j.icarus.2008.05.012). We also found a significant number drop at f = 5 rev/day in the spin-rate distributions of asteroids of D < 3 km.

  4. Upper body strength and power are associated with shot speed in men's ice hockey

    Directory of Open Access Journals (Sweden)

    Juraj Bežák

    2017-06-01

    Full Text Available Background: Recent studies that addressed shot speed in ice hockey have focused on the relationship between shot speed and variables such as a player's skills or hockey stick construction and its properties. There has been a lack of evidence that considers the relationship between shot speed and player strength, particularly in players at the same skill level. Objective: The aim of this study was to identify the relationship between maximal puck velocity of two shot types (the wrist shot and the slap shot and players' upper body strength and power. Methods: Twenty male professional and semi-professional ice hockey players (mean age 23.3 ± 2.4 years participated in this study. The puck velocity was measured in five trials of the wrist shot and five trials of the slap shot performed by every subject. All of the shots were performed on ice in a stationary position 11.6 meters in front of an electronic device that measures the speed of the puck. The selected strength and power variables were: muscle power in concentric contraction in the countermovement bench press with 40 kg and 50 kg measured with the FiTRODyne Premium device; bench press one-repetition maximum; and grip strength measured by digital hand dynamometer. Results: The correlations between strength/power variables and the puck velocity in the wrist shot and the slap shot ranged between .29-.72 and .16-.62, respectively. Puck velocities produced by wrist shots showed significant correlations with bench press muscle power with 40 kg (p = .004 and 50 kg (p < .001; and one-repetition maximum in bench press (p = .004. The slap shot puck velocity was significantly associated with bench press muscle power with 40 kg (p = .014 and 50 kg (p = .004. Conclusions: This study provides evidence that there are significant associations between shot speed and upper body strength and power.

  5. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    Science.gov (United States)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  6. Characteristics of magnetically insulated diode in a multi-shot operation

    Energy Technology Data Exchange (ETDEWEB)

    Chishiro, E; Masugata, K; Yatsui, K [Nagaoka Univ. of Technology (Japan). Laboratory of Beam Technology

    1997-12-31

    The beam characteristics in a multi-shot operation were evaluated. The MID utilized in the experiment is a racetrack type diode, where flat anode and cathode electrodes are utilized. On the anode, a polyethylene sheet of 1 mm thickness is attached as an ion source. The MID is successively operated without breaking the vacuum. An ion current density (J{sub i}) of 350 A/cm{sup 2} is observed at the first shot when the diode gap is 5 mm. The value decreases with increasing number of shots and at the 7th shot, J{sub i} is less than 150 A/cm{sup 2}. After 7 shots, the anode surface is inspected and found to be covered with stuck matter of metallic materials such as Zn, Al, Fe, Cu. These materials seem to be produced by the ablation of the MID electrode. By eliminating the stuck matter from the surface, J{sub i} is recovered to the initial value. The decrease in J{sub i} is due to the fact that the anode is covered with the stuck matter, which prevents the growth of anode plasma. (author). 6 figs., 8 refs.

  7. Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Songlin; Matsuda, Isamu; Long, Fei; Ishii, Yoshitaka, E-mail: yishii@uic.edu [University of Illinois at Chicago, Department of Chemistry (United States)

    2016-02-15

    This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40–80 kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055–15058, 2015) combines the reverse {sup 13}C, {sup 15}N-isotope labeling strategy and selective signal quenching using the frequency-selective REDOR pulse sequence under fast MAS. The scheme allows one to selectively observe the signals of “highlighted” labeled amino-acid residues that precede or follow unlabeled residues through selectively quenching {sup 13}CO or {sup 15}N signals for a pair of consecutively labeled residues by recoupling {sup 13}CO–{sup 15}N dipolar couplings. Our numerical simulation results showed that the scheme yielded only ∼15 % loss of signals for the highlighted residues while quenching as much as ∼90 % of signals for non-highlighted residues. For lysine-reverse-labeled micro-crystalline GB1 protein, the 2D {sup 15}N/{sup 13}C{sub α} correlation and 2D {sup 13}C{sub α}/{sup 13}CO correlation SSNMR spectra by the HIGHLIGHT approach yielded signals only for six residues following and preceding the unlabeled lysine residues, respectively. The experimental dephasing curves agreed reasonably well with the corresponding simulation results for highlighted and quenched residues at spinning speeds of 40 and 60 kHz. The compatibility of the HIGHLIGHT approach with fast MAS allows for sensitivity enhancement by paramagnetic assisted data collection (PACC) and {sup 1}H detection. We also discuss how the HIGHLIGHT approach facilitates signal assignments using {sup 13}C-detected 3D SSNMR by demonstrating full sequential assignments of lysine-reverse-labeled micro-crystalline GB1 protein (∼300 nmol), for which data collection required only 11 h. The HIGHLIGHT approach offers valuable

  8. Rotary peening with captive shot

    International Nuclear Information System (INIS)

    1998-02-01

    Roto Peen with captive shot removes coatings and surface contamination from concrete floors. The objective of treating radioactively contaminated concrete floors during the Deactivation and Decommissioning (D and D) process is to reduce the surface contamination levels to meet regulatory criteria for unrestricted use. The US Department of Energy (DOE) Chicago Operations office and DOE's Federal Energy Technology Center (FETC) jointly sponsored a Large-Scale Demonstration Project (LSDP) at the Chicago Pile-5 Research Reactor (CP-5) at Argonne National Laboratory-East (ANL). The objective of the LSDP is to demonstrate potentially beneficial D and D technologies in comparison with current baseline technologies. As part of the LSDP, roto Peen with captive shot was demonstrated March 17--20, 1997, to treat a 20 x 25 ft area of radioactively contaminated concrete floor on the service level of the CP-5 building

  9. Single shot fringe pattern phase demodulation using Hilbert-Huang transform aided by the principal component analysis.

    Science.gov (United States)

    Trusiak, Maciej; Służewski, Łukasz; Patorski, Krzysztof

    2016-02-22

    Hybrid single shot algorithm for accurate phase demodulation of complex fringe patterns is proposed. It employs empirical mode decomposition based adaptive fringe pattern enhancement (i.e., denoising, background removal and amplitude normalization) and subsequent boosted phase demodulation using 2D Hilbert spiral transform aided by the Principal Component Analysis method for novel, correct and accurate local fringe direction map calculation. Robustness to fringe pattern significant noise, uneven background and amplitude modulation as well as local fringe period and shape variations is corroborated by numerical simulations and experiments. Proposed automatic, adaptive, fast and comprehensive fringe analysis solution compares favorably with other previously reported techniques.

  10. Central Limit Theorem for Exponentially Quasi-local Statistics of Spin Models on Cayley Graphs

    Science.gov (United States)

    Reddy, Tulasi Ram; Vadlamani, Sreekar; Yogeshwaran, D.

    2018-04-01

    Central limit theorems for linear statistics of lattice random fields (including spin models) are usually proven under suitable mixing conditions or quasi-associativity. Many interesting examples of spin models do not satisfy mixing conditions, and on the other hand, it does not seem easy to show central limit theorem for local statistics via quasi-associativity. In this work, we prove general central limit theorems for local statistics and exponentially quasi-local statistics of spin models on discrete Cayley graphs with polynomial growth. Further, we supplement these results by proving similar central limit theorems for random fields on discrete Cayley graphs taking values in a countable space, but under the stronger assumptions of α -mixing (for local statistics) and exponential α -mixing (for exponentially quasi-local statistics). All our central limit theorems assume a suitable variance lower bound like many others in the literature. We illustrate our general central limit theorem with specific examples of lattice spin models and statistics arising in computational topology, statistical physics and random networks. Examples of clustering spin models include quasi-associated spin models with fast decaying covariances like the off-critical Ising model, level sets of Gaussian random fields with fast decaying covariances like the massive Gaussian free field and determinantal point processes with fast decaying kernels. Examples of local statistics include intrinsic volumes, face counts, component counts of random cubical complexes while exponentially quasi-local statistics include nearest neighbour distances in spin models and Betti numbers of sub-critical random cubical complexes.

  11. Networks of ·/G/∞ queues with shot-noise-driven arrival intensities

    NARCIS (Netherlands)

    Koops, D.T.; Boxma, O.J.; Mandjes, M.R.H.

    2017-01-01

    We study infinite-server queues in which the arrival process is a Cox process (or doubly stochastic Poisson process), of which the arrival rate is given by a shot-noise process. A shot-noise rate emerges naturally in cases where the arrival rate tends to exhibit sudden increases (or shots) at random

  12. A SEARCH FOR RAPIDLY SPINNING PULSARS AND FAST TRANSIENTS IN UNIDENTIFIED RADIO SOURCES WITH THE NRAO 43 METER TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Deborah; Crawford, Fronefield; Gilpin, Claire [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Langston, Glen [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States)

    2013-04-15

    We have searched 75 unidentified radio sources selected from the NRAO VLA Sky Survey catalog for the presence of rapidly spinning pulsars and short, dispersed radio bursts. The sources are radio bright, have no identifications or optical source coincidences, are more than 5% linearly polarized, and are spatially unresolved in the catalog. If these sources are fast-spinning pulsars (e.g., sub-millisecond pulsars), previous large-scale pulsar surveys may have missed detection due to instrumental and computational limitations, eclipsing effects, or diffractive scintillation. The discovery of a sub-millisecond pulsar would significantly constrain the neutron star equation of state and would have implications for models predicting a rapid slowdown of highly recycled X-ray pulsars to millisecond periods from, e.g., accretion disk decoupling. These same sources were previously searched unsuccessfully for pulsations at 610 MHz with the Lovell Telescope at Jodrell Bank. This new search was conducted at a different epoch with a new 800 MHz backend on the NRAO 43 m Telescope at a center frequency of 1200 MHz. Our search was sensitive to sub-millisecond pulsars in highly accelerated binary systems and to short transient pulses. No periodic or transient signals were detected from any of the target sources. We conclude that diffractive scintillation, dispersive smearing, and binary acceleration are unlikely to have prevented detection of the large majority of the sources if they are pulsars, though we cannot rule out eclipsing, nulling or intermittent emission, or radio interference as possible factors for some non-detections. Other (speculative) possibilities for what these sources might include radio-emitting magnetic cataclysmic variables or older pulsars with aligned magnetic and spin axes.

  13. Optical properties (bidirectional reflectance distribution function) of shot fabric.

    Science.gov (United States)

    Lu, R; Koenderink, J J; Kappers, A M

    2000-11-01

    To study the optical properties of materials, one needs a complete set of the angular distribution functions of surface scattering from the materials. Here we present a convenient method for collecting a large set of bidirectional reflectance distribution function (BRDF) samples in the hemispherical scattering space. Material samples are wrapped around a right-circular cylinder and irradiated by a parallel light source, and the scattered radiance is collected by a digital camera. We tilted the cylinder around its center to collect the BRDF samples outside the plane of incidence. This method can be used with materials that have isotropic and anisotropic scattering properties. We demonstrate this method in a detailed investigation of shot fabrics. The warps and the fillings of shot fabrics are dyed different colors so that the fabric appears to change color at different viewing angles. These color-changing characteristics are found to be related to the physical and geometrical structure of shot fabric. Our study reveals that the color-changing property of shot fabrics is due mainly to an occlusion effect.

  14. Centrifugal shot blast system

    International Nuclear Information System (INIS)

    1998-02-01

    This report describes a demonstration of Concrete cleaning, Inc., modified centrifugal shot blast technology to remove the paint coating from concrete flooring. This demonstration is part of the Chicago Pile-5 (CP-5) Large-Scale Demonstration Project (LSDP) sponsored by the US Department of Energy (DOE), office of Science and Technology (OST), Deactivation and Decommissioning Focus Area (DDFA). The objective of the LSDP is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) CP-5 Research Reactor. The purpose of the LSDP is to demonstrate that using innovative and improved decontamination and decommissioning (D and D) technologies from various sources can result in significant benefits, such as decreased cost and increased health and safety, as compared with baseline D and D technologies. Potential markets exist for the innovative centrifugal shot blast system at the following sites: Fernald Environmental Management Project, Los Alamos, Nevada, Oak Ridge Y-12 and K-25, Paducah, Portsmouth Gaseous Diffusion site, and the Savannah River Site. This information is based on a revision to the OST Linkage Tables dated August 4, 1997

  15. Shot reproducibility of the self-magnetic-pinch diode at 4.5 MV

    Directory of Open Access Journals (Sweden)

    Nichelle Bennett

    2014-05-01

    Full Text Available In experiments conducted at Sandia National Laboratories’ RITS-6 accelerator, the self-magnetic-pinch diode exhibits significant shot-to-shot variability. Specifically, for identical hardware operated at the same voltage, some shots exhibit a catastrophic drop in diode impedance. A study is underway to identify sources of shot-to-shot variations which correlate with diode impedance collapse. The scope of this report is limited to data collected at 4.5-MV peak voltage and sources of variability which occur away from the diode, such as sheath electron emission and trajectories, variations in pulsed power, load and transmission line alignment, and different field shapers. We find no changes in the transmission line hardware, alignment, or hardware preparation methods which correlate with impedance collapse. However, in classifying good versus poor shots, we find that there is not a continuous spectrum of diode impedance behavior but that the good and poor shots can be grouped into two distinct impedance profiles. In poor shots, the sheath current in the load region falls from 16%–30% of the total current to less than 10%. This result will form the basis of a follow-up study focusing on the variability resulting from diode physics.

  16. Proton T2 Relaxation effect of superparamagnetic iron oxide on fast spin echo sequence. Influence of echo number (even or odd) of effective TE

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Takeshi; Fujita, Isao

    1999-01-01

    The T 2 relaxation effect of the fast spin echo sequence (FSE) was investigated using superparamagnetic iron oxide (SPIO) particles. When even echoes were used as the effective TE of FSE, the signal intensity ratio [signal intensity of FSE/signal intensity of conventional spin echo sequence (CSE)] of FSE and CSE increased, whereas the T 2 relaxation effect of SPIO with FSE was reduced. However, when odd echoes were used, neither signal intensity changed, and weakening of the T 2 relaxation effect, considered a problem with FSE, was reduced. This phenomenon was not observed when the refocusing flip angle was changed to 30 and 60 degrees. However, it was observed when the refocusing flip angle was 120 and 150 degrees. Thus, this phenomenon can be considered to be related to oscillation in longitudinal magnetization when using the Carr-Purcell-Meiboom-Gill (CPMG) technique. (author)

  17. Fetal magnetic resonance imaging: indications, technique, anatomical considerations and a review of fetal abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Ertl-Wagner, Birgit [Department of Radiology, Klinikum Grosshadern, University of Munich, Marchioninistrasse 15, 81377 Munich (Germany); Present address: Institute of Clinical Radiology, Klinikum Grosshadern, University of Munich, Marchioninistrasse 15, 81377 Munich (Germany); Lienemann, Andreas; Reiser, Maximilian F. [Department of Radiology, Klinikum Grosshadern, University of Munich, Marchioninistrasse 15, 81377 Munich (Germany); Strauss, Alexander [Department of Obstetrics and Gynecology, Klinikum Grosshadern, University of Munich, Marchioninistrasse 15, 81377 Munich (Germany)

    2002-08-01

    Fetal MR imaging often poses a diagnostic challenge for the radiologist. Both fetal anatomy and pathology differ decidedly from pediatric and adult MR imaging. While ultrasound remains the method of choice for screening examinations of the fetus, MR imaging is playing an increasingly important role in the detection and classification of malformations not diagnosable by ultrasonography alone. Recently, advances in fast single-shot MR sequences have allowed high-resolution, high-quality imaging of the moving fetus. Preferable sequences to be applied are a true fast imaging steady precession (true-FISP) or a half-Fourier acquired single-shot turbo spin-echo (HASTE) sequence. Premedication is generally no longer required. In all fetal MR imaging, every aspect of fetal anatomy has to be scrutinized. Subsequently, any abnormalities need to be described and classified. A close collaboration with the referring obstetrician is of paramount importance. (orig.)

  18. Free-breathing black-blood CINE fast-spin echo imaging for measuring abdominal aortic wall distensibility: a feasibility study

    Science.gov (United States)

    Lin, Jyh-Miin; Patterson, Andrew J.; Chao, Tzu-Cheng; Zhu, Chengcheng; Chang, Hing-Chiu; Mendes, Jason; Chung, Hsiao-Wen; Gillard, Jonathan H.; Graves, Martin J.

    2017-05-01

    The paper reports a free-breathing black-blood CINE fast-spin echo (FSE) technique for measuring abdominal aortic wall motion. The free-breathing CINE FSE includes the following MR techniques: (1) variable-density sampling with fast iterative reconstruction; (2) inner-volume imaging; and (3) a blood-suppression preparation pulse. The proposed technique was evaluated in eight healthy subjects. The inner-volume imaging significantly reduced the intraluminal artifacts of respiratory motion (p  =  0.015). The quantitative measurements were a diameter of 16.3  ±  2.8 mm and wall distensibility of 2.0  ±  0.4 mm (12.5  ±  3.4%) and 0.7  ±  0.3 mm (4.1  ±  1.0%) for the anterior and posterior walls, respectively. The cyclic cross-sectional distensibility was 35  ±  15% greater in the systolic phase than in the diastolic phase. In conclusion, we developed a feasible CINE FSE method to measure the motion of the abdominal aortic wall, which will enable clinical scientists to study the elasticity of the abdominal aorta.

  19. Semiclassical treatment of transport and spin relaxation in spin-orbit coupled systems

    Energy Technology Data Exchange (ETDEWEB)

    Lueffe, Matthias Clemens

    2012-02-10

    The coupling of orbital motion and spin, as derived from the relativistic Dirac equation, plays an important role not only in the atomic spectra but as well in solid state physics. Spin-orbit interactions are fundamental for the young research field of semiconductor spintronics, which is inspired by the idea to use the electron's spin instead of its charge for fast and power saving information processing in the future. However, on the route towards a functional spin transistor there is still some groundwork to be done, e.g., concerning the detailed understanding of spin relaxation in semiconductors. The first part of the present thesis can be placed in this context. We have investigated the processes contributing to the relaxation of a particularly long-lived spin-density wave, which can exist in semiconductor heterostructures with Dresselhaus and Rashba spin-orbit coupling of precisely the same magnitude. We have used a semiclassical spindiffusion equation to study the influence of the Coulomb interaction on the lifetime of this persistent spin helix. We have thus established that, in the presence of perturbations that violate the special symmetry of the problem, electron-electron scattering can have an impact on the relaxation of the spin helix. The resulting temperature-dependent lifetime reproduces the experimentally observed one in a satisfactory manner. It turns out that cubic Dresselhaus spin-orbit coupling is the most important symmetry-breaking element. The Coulomb interaction affects the dynamics of the persistent spin helix also via an Hartree-Fock exchange field. As a consequence, the individual spins precess about the vector of the surrounding local spin density, thus causing a nonlinear dynamics. We have shown that, for an experimentally accessible degree of initial spin polarization, characteristic non-linear effects such as a dramatic increase of lifetime and the appearance of higher harmonics can be expected. Another fascinating solid

  20. The wear and corrosion resistance of shot peened-nitrided 316L austenitic stainless steel

    International Nuclear Information System (INIS)

    Hashemi, B.; Rezaee Yazdi, M.; Azar, V.

    2011-01-01

    Research highlights: → Shot peening-nitriding increased the wear resistance and surface hardness of samples. → This treatment improved the surface mechanical properties. → Shot peening alleviates the adverse effects of nitriding on the corrosion behavior. -- Abstract: 316L austenitic stainless steel was gas nitrided at 570 o C with pre-shot peening. Shot peening and nitriding are surface treatments that enhance the mechanical properties of surface layers by inducing compressive residual stresses and formation of hard phases, respectively. The structural phases, micro-hardness, wear behavior and corrosion resistance of specimens were investigated by X-ray diffraction, Vickers micro-hardness, wear testing, scanning electron microscopy and cyclic polarization tests. The effects of shot peening on the nitride layer formation and corrosion resistance of specimens were studied. The results showed that shot peening enhanced the nitride layer formation. The shot peened-nitrided specimens had higher wear resistance and hardness than other specimens. On the other hand, although nitriding deteriorated the corrosion resistance of the specimens, cyclic polarization tests showed that shot peening before the nitriding treatment could alleviate this adverse effect.

  1. ZAPP shot summary

    Energy Technology Data Exchange (ETDEWEB)

    Loisel, Guillaume Pascal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    This was the second Z Astrophysical Plasma Properties (ZAPP) fundamental science shot series of 2015. ZAPP experiments measure fundamental properties of atoms in plasmas to solve the following important astrophysical puzzles: Why can’t we accurately model the opacity of Fe at the convection zone boundary in the Sun? How accurate are the photoionization models used to interpret data from xray satellite observations? and Why doesn’t spectral fitting provide the correct properties for White Dwarfs?

  2. Spin tunnelling dynamics for spin-1 Bose-Einstein condensates in a swept magnetic field

    International Nuclear Information System (INIS)

    Wang Guanfang; Fu Libin; Liu Jie

    2008-01-01

    We investigate the spin tunnelling of spin-1 Bose-Einstein condensates in a linearly swept magnetic field with a mean-field treatment. We focus on the two typical alkali Bose atoms 87 Rb and 23 Na condensates and study their tunnelling dynamics according to the sweep rates of the external magnetic fields. In the adiabatic (i.e. slowly sweeping) and sudden (i.e. fast sweeping) limits, no tunnelling is observed. For the case of moderate sweep rates, the tunnelling dynamics is found to be very sensitive to the sweep rates, so the plots of tunnelling probability versus sweep rate only become resolvable at a resolution of 10 -4 G s -1 . Moreover, a conserved quantity standing for the magnetization in experiments is found to affect dramatically the dynamics of the spin tunnelling. Theoretically we have given a complete interpretation of the above findings, and our studies could stimulate the experimental study of spinor Bose-Einstein condensates

  3. Intra-shot MSE Calibration Technique For LHCD Experiments

    International Nuclear Information System (INIS)

    Ko, Jinseok; Scott, Steve; Shiraiwa, Syun'ichi; Greenwald, Martin; Parker, Ronald; Wallace, Gregory

    2009-01-01

    The spurious drift in pitch angle of order several degrees measured by the Motional Stark Effect (MSE) diagnostic in the Alcator C-Mod tokamak1 over the course of an experimental run day has precluded direct utilization of independent absolute calibrations. Recently, the underlying cause of the drift has been identified as thermal stress-induced birefringence in a set of in-vessel lenses. The shot-to-shot drift can be avoided by using MSE to measure only the change in pitch angle between a reference phase and a phase of physical interest within a single plasma discharge. This intra-shot calibration technique has been applied to the Lower Hybrid Current Drive (LHCD) experiments and the measured current profiles qualitatively demonstrate several predictions of LHCD theory such as an inverse dependence of current drive efficiency on the parallel refractive index and the presence of off-axis current drive.

  4. Spin injection, transport, and read/write operation in spin-based MOSFET

    International Nuclear Information System (INIS)

    Saito, Yoshiaki; Marukame, Takao; Inokuchi, Tomoaki; Ishikawa, Mizue; Sugiyama, Hideyuki; Tanamoto, Tetsufumi

    2011-01-01

    We proposed a novel spin-based MOSFET 'Spin-Transfer-torque-Switching MOSFET (STS-MOSFET)' that offers non-volatile memory and transistor functions with complementary metal-oxide-semiconductor (CMOS) compatibility, high endurance and fast write time using STS. The STS-MOSFETs with Heusler alloy (Co 2 Fe 1 Al 0.5 Si 0.5 ) were prepared and reconfigurability of a novel spintronics-based MOSFET, STS-MOSFET, was successfully realized for the transport properties owing to reduction of the contact resistance in ferromagnetic metal/thin insulator tunnel barrier/Si junctions. The device showed magnetocurrent (MC) and write characteristics with the endurance of over 10 5 cycles. It was also clarified that the read characteristic can be improved in terms of MC ratio, however, is deteriorated in terms of the mobility by choosing connection configurations of the source and the drain in the STS-MOSFETs.

  5. Eight-shot pellet injector and fueling experiments at the HL-1M tokamak

    International Nuclear Information System (INIS)

    Xiao Zhenggui; Li Bo; Li Li

    2001-01-01

    An Eight-shot Pellet Injection (EPI) system has been proposed and developed in collaboration between STU (St. Petersburg State Technical University) of Russia and SWIP. In the EPI, the I n-situ c ondensation technique was used to produce the pellets in eight gun barrels respectively. The nominal pellet size (diameter of 1.0 mm and of 1.4 mm or 1.2 mm) is limited by the gun barrel inner diameter. The pellet length is adjusted by changing the g radient temperature o n the gun barrels and the amounts of filling fuel gas. Pellets are fired at speed range of 200 - 1200 m/s by He propellant with pressure of 2 - 6 MPa and then transferred to HL-1M vessel through an injection line that consists of two set of differential vacuum pumped chambers and guide tube combined with fast valves. In addition, this unit is equipped with diagnostics for pellet velocity and shape measure. The EPI has installed on HL-1M since 1996 for the multi-shot pellet fueling experiments. The typical characteristics including the peaked density profile and improved confinement, the deep penetration and suppression of soft X-ray sawteeth, the variance of rotation and flow of plasma in edge region as well as the photographing of pellet ablation clouds are presented

  6. Comparison of spin echo T1-weighted sequences versus fast spin-echo proton density-weighted sequences for evaluation of meniscal tears at 1.5 T

    International Nuclear Information System (INIS)

    Wolff, Andrew B.; Pesce, Lorenzo L.; Wu, Jim S.; Smart, L.R.; Medvecky, Michael J.; Haims, Andrew H.

    2009-01-01

    At our institution, fast spin-echo (FSE) proton density (PD) imaging is used to evaluate articular cartilage, while conventional spin-echo (CSE) T1-weighted sequences have been traditionally used to characterize meniscal pathology. We sought to determine if FSE PD-weighted sequences are equivalent to CSE T1-weighted sequences in the detection of meniscal tears, obviating the need to perform both sequences. We retrospectively reviewed the records of knee arthroscopies performed by two arthroscopy-focused surgeons from an academic medical center over a 2-year period. The preoperative MRI images were interpreted independently by two fellowship-trained musculoskeletal radiologists who graded the sagittal CSE T1 and FSE PD sequences at different sittings with grades 1-5, where 1 = normal meniscus, 2 = probable normal meniscus, 3 indeterminate, 4 = probable torn meniscus, and 5 = torn meniscus. Each meniscus was divided into an anterior and posterior half, and these halves were graded separately. Operative findings provided the gold standard. Receiver operating characteristic (ROC) analysis was performed to compare the two sequences. There were 131 tears in 504 meniscal halves. Using ROC analysis, the reader 1 area under curve for FSE PD was significantly better than CSE T1 (0.939 vs. 0.902, >95% confidence). For reader 2, the difference met good criteria for statistical non-inferiority but not superiority (0.913 for FSE PD and 0.908 for CSE T1; >95% non-inferiority for difference at most of -0.027). FSE PD-weighted sequences, using our institutional protocol, are not inferior to CSE T1-weighted sequences for the detection of meniscal tears and may be superior. (orig.)

  7. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    Science.gov (United States)

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  8. The finite element analysis for prediction of residual stresses induced by shot peening

    International Nuclear Information System (INIS)

    Kim, Cheol; Yang, Won Ho; Sung, Ki Deug; Cho, Myoung Rae; Ko, Myung Hoon

    2000-01-01

    The shot peening is largely used for a surface treatment in which small spherical parts called shots are blasted on a surface of a metallic components with velocities up to 100m/s. This treatment leads to an improvement of fatigue behavior due to the developed compressive residual stresses, and so it has gained widespread acceptance in the automobile and aerospace industries. The residual stress profile on surface layer depends on the parameters of shot peening, which are, shot velocity, shot diameter, coverage, impact angle, material properties etc. and the method to confirm this profile is only measurement by X-ray diffractometer. Despite its importance to automobile and aerospace industries, little attention has been devoted to the accurate modeling of the process. In this paper, the simulation technique is applied to predict the magnitude and distribution of the residual stress and plastic deformation caused by shot peening with the help of the finite element analysis

  9. Shot-peening of carbonitrided steel: influence of the process on the mechanical state

    Directory of Open Access Journals (Sweden)

    François M.

    2010-06-01

    Full Text Available Residual stresses have a significant role in affecting engineering properties of materials and shot peening process is an effective production technique to ensure required residual stress levels. This paper presents an analysis of an orthogonal design of experiment to establish an empirical relationship between main parameters of shot peening process and residual stress profiles for a carbonitrided steel. The hardening / softening evolution of the material is followed using hardness and diffraction peak width. Four critical peening parameters, i.e. shot size, incident angle, exposure time, airblast pressure, have been chosen and the range of peening conditions are established by using the Taguchi technique. In this study, a shot velocity measurement system is used to obtain the on-line velocity during the peening process and the relationship between the maximum compressive residual stresses and the shot velocity is also developed. Analysis of the experimental data showed that it is possible to optimize the shot peening process by an effective control of process parameters.

  10. Cross-polarization phenomena in the NMR of fast spinning solids subject to adiabatic sweeps

    Energy Technology Data Exchange (ETDEWEB)

    Wi, Sungsool, E-mail: sungsool@magnet.fsu.edu, E-mail: lucio.frydman@weizmann.ac.il; Gan, Zhehong [National High Magnetic Field Laboratory, Tallahassee, Florida 32304 (United States); Schurko, Robert [Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor N9B 3P4, Ontario (Canada); Frydman, Lucio, E-mail: sungsool@magnet.fsu.edu, E-mail: lucio.frydman@weizmann.ac.il [National High Magnetic Field Laboratory, Tallahassee, Florida 32304 (United States); Department of Chemical Physics, Weizmann Institute of Sciences, 76100 Rehovot (Israel)

    2015-02-14

    Cross-polarization magic-angle spinning (CPMAS) experiments employing frequency-swept pulses are explored within the context of obtaining broadband signal enhancements for rare spin S = 1/2 nuclei at very high magnetic fields. These experiments employ adiabatic inversion pulses on the S-channel ({sup 13}C) to cover a wide frequency offset range, while simultaneously applying conventional spin-locking pulse on the I-channel ({sup 1}H). Conditions are explored where the adiabatic frequency sweep width, Δν, is changed from selectively irradiating a single magic-angle-spinning (MAS) spinning centerband or sideband, to sweeping over multiple sidebands. A number of new physical features emerge upon assessing the swept-CP method under these conditions, including multiple zero- and double-quantum CP transfers happening in unison with MAS-driven rotary resonance phenomena. These were examined using an average Hamiltonian theory specifically designed to tackle these experiments, with extensive numerical simulations, and with experiments on model compounds. Ultrawide CP profiles spanning frequency ranges of nearly 6⋅γB{sub 1}{sup s} were predicted and observed utilizing this new approach. Potential extensions and applications of this extremely broadband transfer conditions are briefly discussed.

  11. A study on corrosive behavior of spring steel by shot-peening process

    International Nuclear Information System (INIS)

    An, Jae Pil; Park, Keyung Dong

    2004-01-01

    In this study, the influence of shot peening on the corrosion was investigated on spring steel immersed in 3.5% NaCl. The immersion test was performed on the two kinds of specimens. Corrosion potential, polarization curve, residual stress and etc. were investigated from experimental results. From test results, the effect of shot peening on the corrosion was evaluated. In case of corrosion potential, shot peened specimen shows more activated negative direction as compared with parent metal. Surface of specimen, which is treated with the shot peened, is placed as more activated state against inner base metal. It can cause the anti-corrosion effect on the base metal

  12. Spin-orbit qubit in a semiconductor nanowire.

    Science.gov (United States)

    Nadj-Perge, S; Frolov, S M; Bakkers, E P A M; Kouwenhoven, L P

    2010-12-23

    Motion of electrons can influence their spins through a fundamental effect called spin-orbit interaction. This interaction provides a way to control spins electrically and thus lies at the foundation of spintronics. Even at the level of single electrons, the spin-orbit interaction has proven promising for coherent spin rotations. Here we implement a spin-orbit quantum bit (qubit) in an indium arsenide nanowire, where the spin-orbit interaction is so strong that spin and motion can no longer be separated. In this regime, we realize fast qubit rotations and universal single-qubit control using only electric fields; the qubits are hosted in single-electron quantum dots that are individually addressable. We enhance coherence by dynamically decoupling the qubits from the environment. Nanowires offer various advantages for quantum computing: they can serve as one-dimensional templates for scalable qubit registers, and it is possible to vary the material even during wire growth. Such flexibility can be used to design wires with suppressed decoherence and to push semiconductor qubit fidelities towards error correction levels. Furthermore, electrical dots can be integrated with optical dots in p-n junction nanowires. The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, which can serve as a flying qubit for long-distance quantum communication.

  13. 77 FR 36272 - SunShot Prize: America's Most Affordable Rooftop

    Science.gov (United States)

    2012-06-18

    ...The Department of Energy (DOE) announces in this notice the release of the SunShot Prize: America's Most Affordable Rooftop Solar for public comment. Interested persons are encouraged to learn about the SunShot Prize: America's Most Affordable Rooftop rules at eere.energy.gov/solar/sunshot/prize.html.

  14. The Numerical FEM Model of the Kinematics of the Vibratory Shot Peening Process

    Directory of Open Access Journals (Sweden)

    Stanisław Bławucki

    2017-12-01

    Full Text Available The paper presents the results of numerical calculations, with the finite element method in the ABAQUS program environment, of the vibratory shot peening process with loose peening elements. The behaviour of shot peening elements was analysed in the kinematic aspect. The impact of the initial deployment of vibratory shot peening elements on their behaviour during processing was investigated, including the displacement, velocity, acceleration and the number of collisions. The way of determining the effectiveness of the processing with the vibratory shot peening was illustrated.

  15. Radiologically contaminated lead shot reuse at the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Heileson, W.M.; Grant, R.P.

    1995-01-01

    This project involved the utilization of radioactively contaminated lead shot located at the Radioactive Waste Management Complex (RWMC) for radiation shielding on a radioactive liquid process tank located at Argonne National Laboratory-West (ANL-W). The use of previously contaminated shot precludes the radioactive contamination of clean shot. With limited treatment and disposal options for contaminated lead shot, the reuse of lead for shielding is significant due to the inherent characteristic of becoming a mixed waste when radiologically contaminated. The INEL conducted a lead cleanup campaign in 1990. This was designed to ensure control of potential Resource Conservation and Recovery Act (RCRA) regulated waste. Contaminated lead from throughout the INEL, was containerized per the lead Waste Acceptance Criteria at the generator sites. Limited areas at the INEL are designated for mixed waste storage. As a result, some of the lead was stored at the RWMC in the air support weather shield (ASWS). This lead was contaminated with small amounts of fission product contamination. The lead was in the form of shot, brick, sheet, casks, and other various sized pieces. In 1993, ANL-W identified a need for lead shot to be used as shielding in a radioactive liquid waste storage and processing tank at the Fuel Cycle Facility (FCF). The contaminated lead used on this project had been in storage as mixed waste at the RWMC. This paper will focus on the processes and problems encountered to utilize the contaminated lead shot

  16. Robust shot-noise measurement for continuous-variable quantum key distribution

    Science.gov (United States)

    Kunz-Jacques, Sébastien; Jouguet, Paul

    2015-02-01

    We study a practical method to measure the shot noise in real time in continuous-variable quantum key distribution systems. The amount of secret key that can be extracted from the raw statistics depends strongly on this quantity since it affects in particular the computation of the excess noise (i.e., noise in excess of the shot noise) added by an eavesdropper on the quantum channel. Some powerful quantum hacking attacks relying on faking the estimated value of the shot noise to hide an intercept and resend strategy were proposed. Here, we provide experimental evidence that our method can defeat the saturation attack and the wavelength attack.

  17. MRI in multiple sclerosis of the spinal cord: evaluation of fast short-tan inversion-recovery and spin-echo sequences

    International Nuclear Information System (INIS)

    Dietemann, J.L.; Thibaut-Menard, A.; Neugroschl, C.; Gillis, C.; Abu Eid, M.; Bogorin, A.; Warter, J.M.; Tranchant, C.

    2000-01-01

    We compared the sensitivity of T2-weighted spin-echo (FSE) and fast short-tau inversion-recovery (fSTIR) sequences in detection of multiple sclerosis of the spinal cord in 100 consecutive patients with clinically confirmed multiple sclerosis (MS); 86 patients underwent also brain MRI. In all, 310 focal lesions were detected on fSTIR and 212 on T2-weighted FSE, spinal cord lesions were seen better on fSTIR images, with a higher contrast between the lesion and the normal spinal cord. In 24 patients in whom cord plaques were shown with both sequences, the cranial study was normal or inconclusive. Assessment of spinal plaques can be particularly important when MRI of the brain is inconclusive, and in there situations fSTIR can be helpful. (orig.)

  18. [The use of the T2-weighted turbo-spin-echo sequence in studying the neurocranium. A comparison with the conventional T2-weighted spin-echo sequence].

    Science.gov (United States)

    Siewert, C; Hosten, N; Felix, R

    1994-07-01

    T2-weighted spin-echo imaging is the standard screening procedure in MR imaging of the neurocranium. We evaluated fast spin-echo T2-weighted imaging (TT2) of the neurocranium in comparison to conventional spin-echo T2-weighted imaging (T2). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher in TT2 than in T2 (with the exception of gray-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT2, Parkinson patients have to be examined by conventional T2. If these limitations are taken into account, fast spin-echo T2-weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T2-weighting achieved in a short acquisition time.

  19. Finite element modelling of coverage effects during shot peening of IN718

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Marc; Hoffmeister, Juergen [Inst. fuer Werkstoffkunde I, Karlsruhe Inst. of Tech. (Germany); Schulze, Volker [Inst. fur Produktionstechnik, Karlsruhe Inst. of Tech. (Germany)

    2010-08-15

    Current 3D shot peening simulation models proposed in literature do not take into account coverage as a process parameter influencing the residual state after shot peening. In this study a classic approach, using an ordered dimple pattern, and a new approach, using a stochastic dimple pattern were tested to describe the correlation between coverage, the surface topography and the residual stress state. Model verification was conducted based on X-ray and confocal white light microscopy measurements on shot peened test specimens. The test material was age hardened IN718. Simulations showed that the dimple pattern and the impact order of the shots can have a strong influence on the calculated macroscopic residual stress state. The stochastic approach enabled a realistic prediction of the surface topography and the residual stress state for arbitrary values of coverage while the classic approach strongly underestimated the number of shot impacts needed to achieve a certain value of coverage. (orig.)

  20. Design and Implementation of Video Shot Detection on Field Programmable Gate Arrays

    Directory of Open Access Journals (Sweden)

    Jharna Majumdar

    2012-09-01

    Full Text Available Video has become an interactive medium of communication in everyday life. The sheer volume of video makes it extremely difficult to browse through and find the required data. Hence extraction of key frames from the video which represents the abstract of the entire video becomes necessary. The aim of the video shot detection is to find the position of the shot boundaries, so that key frames can be selected from each shot for subsequent processing such as video summarization, indexing etc. For most of the surveillance applications like video summery, face recognition etc., the hardware (real time implementation of these algorithms becomes necessary. Here in this paper we present the architecture for simultaneous accessing of consecutive frames, which are then used for the implementation of various Video Shot Detection algorithms. We also present the real time implementation of three video shot detection algorithms using the above mentioned architecture on FPGA (Field Programmable Gate Arrays.

  1. Beauty and science in a shot

    Science.gov (United States)

    Ciceri, Piera

    2017-04-01

    Taking pictures has become a daily action for young. Photography is an essential component of many areas of science, has played a crucial role in the study of anatomy, botany, archeology, ... Still today it is a "scientific tool" in the school textbooks: pictures describe, make reality larger or smaller, faster or slower, show evidence and experimental results. But a photograph has the ability to move, engage and inspire viewers. That means that a photograph can build an emotional bridge between science and people. People and students can get closer to science through beautiful, evocative and expressive shot. In this project students are involved in taking pictures with a scientific and aesthetic content looking around, setting an experiment, watching nature, playing with light, point of wiew, colors and perspective. They have to write a short text and a title that explains the scientific content, why and how they have taken the picture. Both description and title should let increase curiosity, could looks fun or stress artistic aspects. Student show their shots in an official public event in Milan managed by a committee of science and photograph experts and in a local event to parents and local community. "Shots of science" is a project promoted by the italian national association "Scienza under 18", the Physic Department of "Università degli Studi di Milano" and the "Museo di fotografia contemporanea" of Cinisello Balsamo (MI) that help students in discussing about scientific and artistic aspects of their shots. This project contributes to develop digital skills (such as to manage digital images, to share documents, to learn about copyright and creative commons license), communication skills (such as to write a caption, public speaking, to use a picture to communicate), collaboration skills (such as to work with pairs, to respect scheduled times, to be positive in giving and taking into account suggestions) and artistic skills (to learn how to compose a good

  2. Finding the gap: An empirical study of the most effective shots in elite goalball.

    Directory of Open Access Journals (Sweden)

    Daniel Link

    Full Text Available This research identifies which shots types in goalball are most likely to lead to a goal and herby provides background information for improving training and competition. Therefore, we observed 117 elite level matches including 20,541 shots played in the regular situation (3 vs. 3 using notational analysis. We characterized the shots by using their target sector (A-E, technique (traditional, rotation, trajectory (flat, bounce, angle (straight, diagonal and outcome (goal, violation, out, blocked. In our data, a χ2-test showed a significantly higher goal rate for men (3.9% compared to women (3.0%. For men, we found a significantly higher goal rate in the intersection sectors between players C (5.6%, D (4.9%, and in the outer sector A. In sector A, goal rate was higher only for straight shots (6.6%. Technique and trajectory did not affect goal rate for men, but flat shots showed a higher violation rate (3.2% compared to bounce shouts (2.0%. In women's goalball, goal rate was higher only on sector D (4.4%. Bounce-rotation shots were the most successful (5.5%. We conclude that men should focus on shots to sectors C and D (called pocket and straight shots to sector A, as long as there are no other tactical considerations. Women should shoot primarily towards the pocket. It might also be worth playing more bounce-rotation shots and practicing them in training.

  3. Finding the gap: An empirical study of the most effective shots in elite goalball.

    Science.gov (United States)

    Link, Daniel; Weber, Christoph

    2018-01-01

    This research identifies which shots types in goalball are most likely to lead to a goal and herby provides background information for improving training and competition. Therefore, we observed 117 elite level matches including 20,541 shots played in the regular situation (3 vs. 3) using notational analysis. We characterized the shots by using their target sector (A-E), technique (traditional, rotation), trajectory (flat, bounce), angle (straight, diagonal and outcome (goal, violation, out, blocked). In our data, a χ2-test showed a significantly higher goal rate for men (3.9%) compared to women (3.0%). For men, we found a significantly higher goal rate in the intersection sectors between players C (5.6%), D (4.9%), and in the outer sector A. In sector A, goal rate was higher only for straight shots (6.6%). Technique and trajectory did not affect goal rate for men, but flat shots showed a higher violation rate (3.2%) compared to bounce shouts (2.0%). In women's goalball, goal rate was higher only on sector D (4.4%). Bounce-rotation shots were the most successful (5.5%). We conclude that men should focus on shots to sectors C and D (called pocket) and straight shots to sector A, as long as there are no other tactical considerations. Women should shoot primarily towards the pocket. It might also be worth playing more bounce-rotation shots and practicing them in training.

  4. Evaluation with fat-suppression fast spin-echo T2-weighted images for bone and soft tissue disorders

    International Nuclear Information System (INIS)

    Kakitsubata, Yousuke; Watanabe, Katsushi; Kakitsubata, Sachiko; Shimizu, Tokiyoshi.

    1997-01-01

    One hundred and sixty-four magnetic resonance (MR) studies of bone or soft tissue disorders were evaluated with T2-weighted fast spin echo (FSE) imaging and T2-weighted fat-suppressed FSE (FS-FSE) imaging. Fifty-two patients with bone contusion of the knee were also evaluated with conventional T2-weighted SE imaging and T2-weighted FS-FSE imaging. In 50 of 71 patients (70.4%), areas of high signal intensity in bone marrow were more clearly demonstrated on T2-weighted FS-FSE images than on T2-weighted FSE image. Edema or inflammation of soft tissues were also clearly revealed on T2-weighted FS-FSE images. In 27 of 32 patients (84%), bone contusions were more apparently shown on T2-weighted FS-FSE images than on conventional T2-weighted SE image. T2-weighted FS-FSE imaging is a sensitive method of evaluating the long T2 lesions of bone or soft tissue disorders. (author)

  5. Numerical simulation of the shot peening process under previous loading conditions

    International Nuclear Information System (INIS)

    Romero-Ángeles, B; Urriolagoitia-Sosa, G; Torres-San Miguel, C R; Molina-Ballinas, A; Benítez-García, H A; Vargas-Bustos, J A; Urriolagoitia-Calderón, G

    2015-01-01

    This research presents a numerical simulation of the shot peening process and determines the residual stress field induced into a component with a previous loading history. The importance of this analysis is based on the fact that mechanical elements under shot peening are also subjected to manufacturing processes, which convert raw material into finished product. However, material is not provided in a virgin state, it has a previous loading history caused by the manner it is fabricated. This condition could alter some beneficial aspects of the residual stress induced by shot peening and could accelerate the crack nucleation and propagation progression. Studies were performed in beams subjected to strain hardening in tension (5ε y ) before shot peening was applied. Latter results were then compared in a numerical assessment of an induced residual stress field by shot peening carried out in a component (beam) without any previous loading history. In this paper, it is clearly shown the detrimental or beneficial effect that previous loading history can bring to the mechanical component and how it can be controlled to improve the mechanical behavior of the material

  6. Effects of Rayleigh damping, friction and rate-dependency on 3D residual stress simulation of angled shot peening

    International Nuclear Information System (INIS)

    Kim, Taehyung; Lee, Hyungyil; Hyun, Hong Chul; Jung, Sunghwan

    2013-01-01

    Highlights: ► We propose a 3D FE model to study peening residual stress involving angled shots. ► The FE model set with plastic shot are found to best match the X-ray diffraction data. ► The model provides 3D multi-shot impact FE solution with various incidence angles. - Abstract: In this study, we propose a 3D finite element (FE) model to study shot peening involving angled shots. Using the FE model for angled shot peening, we examine relationships with the residual stress introduced by shot peening of the factors such as the Rayleigh damping in the material, dynamic friction, and the rate dependency of the material and systematically integrate them with the FE model. The FE model is set with rigid shot, elastic shot, and plastic shot respectively. Plastic deformation of the shot is also explored with the FE model. The FE model is applied to study angled multi-shots. The FE results are verified with experimental data using X-ray diffraction (XRD). The FE model set with plastic shot are found to best match the XRD results validating accuracy of the 3D FE model properly integrated with the factors and plastically deformable shot ball. The proposed model will serve to simulate actual shot peening cases, which generally involve multi-shots with various incidence angles

  7. SnapShot: The Bacterial Cytoskeleton.

    Science.gov (United States)

    Fink, Gero; Szewczak-Harris, Andrzej; Löwe, Jan

    2016-07-14

    Most bacteria and archaea contain filamentous proteins and filament systems that are collectively known as the bacterial cytoskeleton, though not all of them are cytoskeletal, affect cell shape, or maintain intracellular organization. To view this SnapShot, open or download the PDF. Copyright © 2016. Published by Elsevier Inc.

  8. Design and calibration of a fast-time resolution charge exchange analyzer

    International Nuclear Information System (INIS)

    Scime, E.; Hokin, S.

    1992-04-01

    A five channel, fast time resolution, scanning charge exchange analyzer has been developed for the Madison Symmetric Torus (MST). The analyzer consists of an iron vacuum vessel, a gas stripping cell, an electrostatic bending field, and five continuous electron multiplier detectors. The incident neutral flux and operation of the detectors in current mode limits the time resolution of the analyzer to 10 μs. The analyzer was absolutely calibrated over the energy range of interest (500--2000 eV) with an H + beam, so that the charge exchange power loss could also be measured. The analyzer can be swiveled on a shot-to-shot basis for measurements of T i (r), where 0.3 < r/a < 0.7. The mechanical design was driven by the need for a low cost, expandable ion temperature diagnostic

  9. Use and Perceptions of Caffeinated Energy Drinks and Energy Shots in Canada.

    Science.gov (United States)

    Wiggers, Danielle; Reid, Jessica L; White, Christine M; Hammond, David

    2017-12-01

    In Canada, energy drinks and energy shots are currently classified and regulated differently (food and drugs versus natural health products, respectively), on the assumption that they are used and perceived differently. The current study examined potential differences in use and perceptions of energy drinks and shots. An online survey was conducted in 2015 using a national commercial online panel of youth and young adults aged 12-24 years (n=2,040 retained for analysis in 2016). Participants were randomized to view an image of an energy shot or drink, and were asked about 14 potential reasons for using the product. Past consumption of each product was also assessed. Chi-square and t-tests were conducted to examine differences in use and perceptions between products. Overall, 15.6% of respondents reported using both energy shots and drinks. Of all respondents, ordering of the reasons for use of each product was comparable. Despite differences in prevalence of ever-use of energy shots and drinks, consumption patterns and perceived reasons for using the products are similar. The findings provide little support for regulating energy shots differently than energy drinks. Copyright © 2017 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  10. A focal-spot diagnostic for on-shot characterization of high-energy petawatt lasers.

    Science.gov (United States)

    Bromage, J; Bahk, S-W; Irwin, D; Kwiatkowski, J; Pruyne, A; Millecchia, M; Moore, M; Zuegel, J D

    2008-10-13

    An on-shot focal-spot diagnostic for characterizing high-energy, petawatt-class laser systems is presented. Accurate measurements at full energy are demonstrated using high-resolution wavefront sensing in combination with techniques to calibrate on-shot measurements with low-power sample beams. Results are shown for full-energy activation shots of the OMEGA EP Laser System.

  11. Neural computations mediating one-shot learning in the human brain.

    Directory of Open Access Journals (Sweden)

    Sang Wan Lee

    2015-04-01

    Full Text Available Incremental learning, in which new knowledge is acquired gradually through trial and error, can be distinguished from one-shot learning, in which the brain learns rapidly from only a single pairing of a stimulus and a consequence. Very little is known about how the brain transitions between these two fundamentally different forms of learning. Here we test a computational hypothesis that uncertainty about the causal relationship between a stimulus and an outcome induces rapid changes in the rate of learning, which in turn mediates the transition between incremental and one-shot learning. By using a novel behavioral task in combination with functional magnetic resonance imaging (fMRI data from human volunteers, we found evidence implicating the ventrolateral prefrontal cortex and hippocampus in this process. The hippocampus was selectively "switched" on when one-shot learning was predicted to occur, while the ventrolateral prefrontal cortex was found to encode uncertainty about the causal association, exhibiting increased coupling with the hippocampus for high-learning rates, suggesting this region may act as a "switch," turning on and off one-shot learning as required.

  12. Preparing Pseudo-Pure States in a Quadrupolar Spin System Using Optimal Control

    International Nuclear Information System (INIS)

    Tan Yi-Peng; Li Jun; Zhou Xian-Yi; Peng Xin-Hua; Du Jiang-Feng; Nie Xin-Fang; Chen Hong-Wei

    2012-01-01

    Pseudo-pure state (PPS) preparation is crucial in nuclear magnetic resonance quantum computation. There have been some methods in spin-1/2 systems and a few attempts in quadrupolar spin systems. As optimal control via gradient ascent pulses engineering (GRAPE) has been widely used in quantum information science, we apply this technique to PPS preparation in quadrupolar spin systems. This approach shows an effective and fast quantum control method for both the state preparation and the realization of quantum gates in quadrupolar systems

  13. Coherent Operations and Screening in Multielectron Spin Qubits

    DEFF Research Database (Denmark)

    Higginbotham, Andrew Patrick; Kuemmeth, Ferdinand; Hanson, M.P.

    2014-01-01

    Multielectron spin qubits are demonstrated, and performance examined by comparing coherent exchange oscillations in coupled single-electron and multielectron quantum dots, measured in the same device. Fast (>1 GHz) exchange oscillations with a quality factor Q ∼ 15 are found for the multielectron...

  14. The effect of court location and available time on the tactical shot selection of elite squash players.

    Science.gov (United States)

    Vučković, Goran; James, Nic; Hughes, Mike; Murray, Stafford; Sporiš, Goran; Perš, Janez

    2013-01-01

    No previous research in squash has considered the time between shots or the proximity of the ball to a wall, which are two important variables that influence shot outcomes. The aim of this paper was to analyse shot types to determine the extent to which they are played in different court areas and a more detailed analysis to determine whether the time available had an influence on the shot selected. Ten elite matches, contested by fifteen of the world's top right handed squash players (age 27 ± 3.2, height 1.81 ± 0.06 m, weight 76.3 ± 3.7 kg), at the men's World Team Championships were processed using the SAGIT/Squash tracking system with shot information manually added to the system. Results suggested that shot responses were dependent upon court location and the time between shots. When these factors were considered repeatable performance existed to the extent that one of two shots was typically played when there was limited time to play the shot (tactics affect shot selections. Key pointsPrevious research has suggested that a playing strategy, elements decided in advance of the match, may be evident for elite players by examining court location and preceding shot type, however these parameters alone are unlikely to be sufficient predictors.At present there is no known analysis in squash, or indeed in any of the racket sports, that has quantified the time available to respond to different shot types. An understanding of the time interval between shots and the movement characteristics of the player responding to different shots according to the court positions might facilitate a better understanding of the dynamics that determine shot selection.Some elements of a general playing strategy were evident e.g. predominately hitting to the back left of the court, but tactical differences in shot selection were also evident on the basis of court location and time available to play a shot.

  15. Study on the use of types of shots in Valencian Handball on professional players

    Directory of Open Access Journals (Sweden)

    José Antonio Martínez Carbonell

    2013-01-01

    Full Text Available Due to the shortage of studies of analysis in Valencian ball, we have centred this study on this sport. The aim of study has been to analyze and to quantify the types of shots , and to compare the same ones between the positions of game of 1st game line (resto and 2nd game line (medio. Analysis of 6 games of the 19th Professional League of Stand and rope 2009-2010 was carried out so i, and specifically of 12 players, using Sports Code analysis software. The results indicate significant differences (p<0.05 between the shots carried out by first game line player and second game line in the rebound and rebound-shot all of them of right and left hand,and stand shot right hand; being almost realitzados only by players from the first game line position. At the same time we find data which demonstrate us by another band used mainly by second game line players beatings, these have been volley shot, volley shot after bounce, volley shot under the line of the shoulders, palm shot and horizontal shot all of them of right hand. As conclusion of the study, we have obtained that depending on the position of game the players use a few types of I throb or others. Therefore, we affirm, that the analysis of the high performance in stand and rope from the advances of the technologies, a valuable information contributes us to establish specific bosses of training.

  16. Meniscal tear evaluation. Comparison of a conventional spin-echo proton density sequence with a fast spin-echo sequence utilizing a 512x358 matrix size

    International Nuclear Information System (INIS)

    Hopper, M.A.; Robinson, P.; Grainger, A.J.

    2011-01-01

    Aim: To determine the sensitivities, specificities, and receiver-operating characteristics (ROCs) for sagittal conventional spin-echo proton density (SE-PD) and fast spin-echo proton density (FSE-PD) sequences in the diagnosis of meniscal tears when compared to arthroscopic findings utilizing increased FSE matrix acquisition size. Method and materials: Magnetic resonance imaging (MRI) studies of 97 knees (194 menisci) were independently and prospectively interpreted by two experienced musculoskeletal radiologists over four separate readings at least 3 weeks apart. Readings 1 and 2 included images in all three planes in accordance with the standard protocol with either a SE or FSE sagittal PD, at readings 3 and 4 just the SE or FSE sagittal PD sequences were reported. The FSE sequence was acquired with an increased matrix size, compared to the SE sequence, to provide increased resolution. Menisci were graded for the presence of a tear and statistical analysis to calculate sensitivity and specificity was performed comparing to arthroscopy as the reference standard. ROC analysis for the diagnosis of meniscal tears on the SE and FSE sagittal sequences was also evaluated. Reader concordance for the SE and FSE sequences was calculated. Results: Sixty-seven tears were noted at arthroscopy; 60 were detected on SE and 56 on FSE. The sensitivity and specificity for SE was 90 and 90%, and for FSE was 84 and 94%, respectively, with no significant difference. ROC analysis showed no significant difference between the two sequences and kappa values demonstrated a higher level of reader agreement for the FSE than for the SE reading. Conclusion: Use of a FSE sagittal PD sequence with an increased matrix size provides comparable performance to conventional SE sagittal PD when evaluating meniscal disease with a modern system. The present study indicates an increased level of concordance between readers for the FSE sagittal sequence compared to the conventional SE.

  17. Meniscal tear evaluation. Comparison of a conventional spin-echo proton density sequence with a fast spin-echo sequence utilizing a 512x358 matrix size

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, M.A.; Robinson, P. [Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Grainger, A.J., E-mail: andrew.grainger@leedsth.nhs.u [Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom)

    2011-04-15

    Aim: To determine the sensitivities, specificities, and receiver-operating characteristics (ROCs) for sagittal conventional spin-echo proton density (SE-PD) and fast spin-echo proton density (FSE-PD) sequences in the diagnosis of meniscal tears when compared to arthroscopic findings utilizing increased FSE matrix acquisition size. Method and materials: Magnetic resonance imaging (MRI) studies of 97 knees (194 menisci) were independently and prospectively interpreted by two experienced musculoskeletal radiologists over four separate readings at least 3 weeks apart. Readings 1 and 2 included images in all three planes in accordance with the standard protocol with either a SE or FSE sagittal PD, at readings 3 and 4 just the SE or FSE sagittal PD sequences were reported. The FSE sequence was acquired with an increased matrix size, compared to the SE sequence, to provide increased resolution. Menisci were graded for the presence of a tear and statistical analysis to calculate sensitivity and specificity was performed comparing to arthroscopy as the reference standard. ROC analysis for the diagnosis of meniscal tears on the SE and FSE sagittal sequences was also evaluated. Reader concordance for the SE and FSE sequences was calculated. Results: Sixty-seven tears were noted at arthroscopy; 60 were detected on SE and 56 on FSE. The sensitivity and specificity for SE was 90 and 90%, and for FSE was 84 and 94%, respectively, with no significant difference. ROC analysis showed no significant difference between the two sequences and kappa values demonstrated a higher level of reader agreement for the FSE than for the SE reading. Conclusion: Use of a FSE sagittal PD sequence with an increased matrix size provides comparable performance to conventional SE sagittal PD when evaluating meniscal disease with a modern system. The present study indicates an increased level of concordance between readers for the FSE sagittal sequence compared to the conventional SE.

  18. The importance of reliability to the SunShot Initiative (Presentation Recording)

    Science.gov (United States)

    Jones-Albertus, Rebecca

    2015-09-01

    The U.S. Department of Energy's SunShot Initiative was launched in 2011 to make subsidy-free solar electricity cost competitive with conventional energy sources by the end of the decade. Research in reliability can play a major role in realizing the SunShot goal of 0.06/kWh. By improving photovoltaic module lifetime and reducing degradation rates, a system's lifetime energy output is increased. Increasing confidence in photovoltaic performance prediction can lower perceived investment risk and thus the cost of capital. Accordingly, in 2015, SunShot expects to award more than $40 million through its SunShot National Laboratory Multiyear Partnership (SuNLaMP) and Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) 2 funding programs, for research into reliability topics such as determining acceleration factors, modeling degradation rates and failure mechanisms, improving predictive performance models, and developing new test methods and instrumentation.

  19. Nuclear spin bath effects in molecular nanomagnets: Direct quantum mechanical simulations

    Science.gov (United States)

    Sinitsyn, N. A.; Dobrovitski, V. V.

    2004-11-01

    We investigate the influence of nuclear spins on the electronic spin tunneling in magnetic molecules such as Fe8 , focusing on the role of the spin diffusion in the nuclear spin bath. We simulate the quantum spin dynamics by numerically solving the time-dependent Schrödinger equation for the compound system (the electronic spin plus the bath spins). Our results demonstrate that the effect of the spin bath cannot always be modeled as a randomly varying magnetic field acting on the electronic spin. We consider two dynamical regimes: the spin relaxation in a constant magnetic field, and the spin tunneling in the linearly varying magnetic field passing the avoided level crossing, so-called Landau-Zener-Stückelberg (LZS) transition. For the first regime, we confirmed that the hole in the magnetization distribution has the width of the hyperfine fields distribution. For the second regime, we found that the transition probability for moderately slow sweeps deviates from the standard LZS prediction, while for the fast sweeps the deviation is negligible.

  20. Spin transfer in an open ferromagnetic layer: from negative damping to effective temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wegrowe, J-E; Ciornei, M C; Drouhin, H-J [Laboratoire des Solides Irradies, Ecole Polytechnique, CNRS-UMR 7642 and CEA/DSM/DRECAM, 91128 Palaiseau Cedex (France)

    2007-04-23

    Spin transfer is a typical spintronics effect that allows a ferromagnetic layer to be switched by spin injection. All experimental results concerning spin transfer (quasi-static hysteresis loops or AC resonance measurements) are described on the basis of the Landau-Lifshitz-Gilbert equation of the magnetization, in which additional current dependent terms are added, like current dependent effective fields and current dependent damping factors, that can be positive or negative. The origin of these terms can be investigated further by performing stochastic experiments, like one-shot relaxation experiments under spin injection in the activation regime of the magnetization. In this regime, the Neel-Brown activation law is observed which leads to the introduction of a current dependent effective temperature. In order to define these counterintuitive parameters (effective temperature and negative damping), a detailed thermokinetic analysis of the different sub-systems involved is performed. This report presents a thermokinetic description of the different forms of energy exchanged between the electric and the ferromagnetic sub-systems at a normal/ferromagnetic junction. The derivation of the Fokker-Planck equation in the framework of the thermokinetic theory allows the transport parameters to be defined from the entropy variation and refined with the Onsager reciprocity relations and symmetry properties of the magnetic system. The contribution of the spin polarized current is introduced as an external source term in the conservation laws of the ferromagnetic layer. Due to the relaxation time separation, this contribution can be reduced to an effective damping. The flux of energy transferred between the ferromagnet and the spin polarized current can be positive or negative, depending on the spin accumulation configuration. The effective temperature is deduced in the activation (stationary) regime, provided that the relaxation time that couples the magnetization to the

  1. Kinematic and kinetic analysis of overhand, sidearm and underhand lacrosse shot techniques.

    Science.gov (United States)

    Macaulay, Charles A J; Katz, Larry; Stergiou, Pro; Stefanyshyn, Darren; Tomaghelli, Luciano

    2017-12-01

    Lacrosse requires the coordinated performance of many complex skills. One of these skills is shooting on the opponents' net using one of three techniques: overhand, sidearm or underhand. The purpose of this study was to (i) determine which technique generated the highest ball velocity and greatest shot accuracy and (ii) identify kinematic and kinetic variables that contribute to a high velocity and high accuracy shot. Twelve elite male lacrosse players participated in this study. Kinematic data were sampled at 250 Hz, while two-dimensional force plates collected ground reaction force data (1000 Hz). Statistical analysis showed significantly greater ball velocity for the sidearm technique than overhand (P  0.05). Kinematic and kinetic variables were not significantly correlated to shot accuracy or velocity across all shot types; however, when analysed independently, the lead foot horizontal impulse showed a negative correlation with underhand ball velocity (P = 0.042). This study identifies the technique with the highest ball velocity, defines kinematic and kinetic predictors related to ball velocity and provides information to coaches and athletes concerned with improving lacrosse shot performance.

  2. Shot peening speed measurements using lidar technology

    DEFF Research Database (Denmark)

    Angelou, Nikolas; Zhang, Xiaodan; Sjöholm, Mikael

    The shot peening technique is used for the surface modification of metallic components that are part of wind turbines, such as gears, bolts and blade coatings to prevent erosion. An important parameter of this technique is the dynamic energy of emitted shots. In this context the objective......, the risk of damaging the peening machine by installing an instrument inside the chamber during operation is eliminated by this approach. Laser anemometers are being researched and developed in the department of Wind Energy, mainly in the framework of the WindScanner.dk infrastructure project [1], but also...... validated and used in monitoring the wind conditions around wind turbines (wake and inflow), over complex terrain as well as offshore....

  3. Fast switching and signature of efficient domain wall motion driven by spin-orbit torques in a perpendicular anisotropy magnetic insulator/Pt bilayer

    Science.gov (United States)

    Avci, Can Onur; Rosenberg, Ethan; Baumgartner, Manuel; Beran, Lukáš; Quindeau, Andy; Gambardella, Pietro; Ross, Caroline A.; Beach, Geoffrey S. D.

    2017-08-01

    We report fast and efficient current-induced switching of a perpendicular anisotropy magnetic insulator thulium iron garnet by using spin-orbit torques (SOT) from the Pt overlayer. We first show that, with quasi-DC (10 ms) current pulses, SOT-induced switching can be achieved with an external field as low as 2 Oe, making TmIG an outstanding candidate to realize efficient switching in heterostructures that produce moderate stray fields without requiring an external field. We then demonstrate deterministic switching with fast current pulses (≤20 ns) with an amplitude of ˜1012 A/m2, similar to all-metallic structures. We reveal that, in the presence of an initially nucleated domain, the critical switching current is reduced by up to a factor of five with respect to the fully saturated initial state, implying efficient current-driven domain wall motion in this system. Based on measurements with 2 ns-long pulses, we estimate the domain wall velocity of the order of ˜400 m/s per j = 1012 A/m2.

  4. The Distribution of the Interval between Events of a Cox Process with Shot Noise Intensity

    Directory of Open Access Journals (Sweden)

    Angelos Dassios

    2008-01-01

    Full Text Available Applying piecewise deterministic Markov processes theory, the probability generating function of a Cox process, incorporating with shot noise process as the claim intensity, is obtained. We also derive the Laplace transform of the distribution of the shot noise process at claim jump times, using stationary assumption of the shot noise process at any times. Based on this Laplace transform and from the probability generating function of a Cox process with shot noise intensity, we obtain the distribution of the interval of a Cox process with shot noise intensity for insurance claims and its moments, that is, mean and variance.

  5. Music video shot segmentation using independent component analysis and keyframe extraction based on image complexity

    Science.gov (United States)

    Li, Wei; Chen, Ting; Zhang, Wenjun; Shi, Yunyu; Li, Jun

    2012-04-01

    In recent years, Music video data is increasing at an astonishing speed. Shot segmentation and keyframe extraction constitute a fundamental unit in organizing, indexing, retrieving video content. In this paper a unified framework is proposed to detect the shot boundaries and extract the keyframe of a shot. Music video is first segmented to shots by illumination-invariant chromaticity histogram in independent component (IC) analysis feature space .Then we presents a new metric, image complexity, to extract keyframe in a shot which is computed by ICs. Experimental results show the framework is effective and has a good performance.

  6. Spin Relaxation in III-V Semiconductors in various systems: Contribution of Electron-Electron Interaction

    Science.gov (United States)

    Dogan, Fatih; Kesserwan, Hasan; Manchon, Aurelien

    2015-03-01

    In spintronics, most of the phenomena that we are interested happen at very fast time scales and are rich in structure in time domain. Our understanding, on the other hand, is mostly based on energy domain calculations. Many of the theoretical tools use approximations and simplifications that can be perceived as oversimplifications. We compare the structure, material, carrier density and temperature dependence of spin relaxation time in n-doped III-V semiconductors using Elliot-Yafet (EY) and D'yakanov-Perel'(DP) with real time analysis using kinetic spin Bloch equations (KSBE). The EY and DP theories fail to capture details as the system investigated is varied. KSBE, on the other hand, incorporates all relaxation sources as well as electron-electron interaction which modifies the spin relaxation time in a non-linear way. Since el-el interaction is very fast (~ fs) and spin-conserving, it is usually ignored in the analysis of spin relaxation. Our results indicate that electron-electron interaction cannot be neglected and its interplay with the other (spin and momentum) relaxation mechanisms (electron-impurity and electron-phonon scattering) dramatically alters the resulting spin dynamics. We use each interaction explicitly to investigate how, in the presence of others, each relaxation source behaves. We use GaAs and GaN for zinc-blend structure, and GaN and AlN for the wurtzite structure.

  7. High human exposure to lead through consumption of birds hunted with lead shot

    International Nuclear Information System (INIS)

    Johansen, P.; Asmund, G.; Riget, F.

    2004-01-01

    Lead shot contaminates the edible parts of birds so that tolerable human lead intake is exceeded. - We assess lead contamination of Greenland seabirds killed with lead shot having studied thick-billed murre and common eider, the two most important species in the diet. The lead concentration is very high in meat of eiders killed with lead shot (mean 6.1 μg/g-wet wt, 95% CL 2.1-12). This level is about 44 times higher than in drowned eiders and eight times higher than in shot murres. Analyzing whole breasts instead of sub-samples reveals about seven times higher lead levels in birds' meat. We conclude that in some cases the lead intake by Greenland bird eaters will largely exceed the FAO/WHO tolerable lead intake guideline and that lead shot is a more important source of lead in the diet than previously estimated

  8. IMPACT OF VIBRATORY AND ROTATIONAL SHOT PEENING ONTO SELECTED PROPERTIES OF TITANIUM ALLOY SURFACE LAYER

    Directory of Open Access Journals (Sweden)

    Kazimierz Zaleski

    2014-06-01

    Full Text Available This study presents the results of tests on impact of vibratory and rotational shot peening of the Ti6A12Mo2Cr titanium alloy onto the processed object surface roughness and surface layer microhardness. The external surfaces of ring-shaped samples were shot peened. The preceding process consisted of turning with a cubic boron nitride blade knife. Steel beads, having a diameter of 6 mm, were used as a processing medium. The variable parameters of shot peening were vibrator amplitude and shot peening time. The range of recommended technological parameters for vibratory and rotational shot peening was determined. As a result of shot peening, the surface roughness could be reduced by approximately 4 times and the surface layer could be hardened to the depth of approximately 0.4 mm.

  9. Comparative study between the Spin-echo and 3-D fast imaging techniques in the Knee evaluation with magnetic resonance

    International Nuclear Information System (INIS)

    Oleaga Zufiria, L.; Ibanez Zubiarrain, A.; Grande Icaran, J.; Vela Martin, A.C.; Cintora Leon, E.; Grau Garcia, M.; Grande Icaran, D.

    1993-01-01

    We have carried out a retrospective analysis of the results of magnetic resonance (MR) studies in 20 patients, comparing two different sequences. We compared a 2-D spin-echo (SE2D) sequence with a 3-D fast imaging with steady-state precession (FISP3D) sequence in the attempt to compare the reliability of each in the detection of knee injuries. Arthroscopy was employed as a control technique. Our study revealed no statistically significant difference between the two sequences, although the overall sensitivity for the detection of meniscal lesions was slightly greater with the FISP3D sequence; however, the reliability in the detection of ruptures of the posterior cruciate ligament is less with this sequence than with the SE2D sequence. Both sequences showed very low sensitivity in the detection of hyaline cartilage injuries. (Author) 14 refs

  10. Single-shot echo-planar MR sequences in the diagnosis of intracranial infectious diseases

    International Nuclear Information System (INIS)

    Tsuchiya, Kazuhiro; Katase, Shichiro; Yoshino, Ayako; Yamakami, Norio; Hachiya, Junichi

    1998-01-01

    The purpose of this study was to present our preliminary experience in the application of echo-planar-imaging (EPI) MR sequences for the diagnosis of intracranial infectious diseases and to assess the value of these sequences. We reviewed single-shot EPI MR images obtained at 1.5 T in 17 patients and compared these images with conventional or fast spin-echo (SE) or fluid attenuated inversion-recovery (FLAIR) images. The clinical diagnoses for the 17 patients were meningitis (2 patients), encephalitis or meningoencephalitis (7 patients), brain abscess (5 patients), epidural empyema (2 patients) and Creutzfeldt-Jakob disease (1 patient). We obtained EPI-T 2 -weighted (T 2 W) images in 8 patients, EPI-FLAIR images in 13 patients and EPI-diffusion-weighted (DW) images in 14 patients. Among the 8 patients for whom EPI-T 2 W imaging was performed, EPI-T 2 W imaging yielded superior results compared with SE-T 2 W imaging in 3 patients as a consequence of patient motion and equal results compared with SE-T 2 W imaging in 5 patients. Among the 13 patients for whom EPI-FLAIR imaging was performed, the EPI-FLAIR images were superior to conventional FLAIR images in 3 unstable patients. In the remaining 10 patients for whom EPI-FLAIR imaging was performed, EPI-FLAIR images were equivalent or inferior to conventional FLAIR images. In 6 patients with encephalitis or meningoencephalitis, the encephalitic lesions showed hyperintensity in EPI-DW images to a greater extent than in images obtained with the other techniques. In 3 patients, EPI-DW images also demonstrated hyperintensity for the contents of abscesses or areas of empyema that was not seen with the other imaging techniques. The value of EPI-T 2 W and EPI-FLAIR imaging is limited in uncooperative patients. EPI-DW imaging was found to be of value for the evaluation of several intracranial infectious diseases. (author)

  11. Single-shot echo-planar MR sequences in the diagnosis of intracranial infectious diseases

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Kazuhiro; Katase, Shichiro; Yoshino, Ayako; Yamakami, Norio; Hachiya, Junichi [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1998-06-01

    The purpose of this study was to present our preliminary experience in the application of echo-planar-imaging (EPI) MR sequences for the diagnosis of intracranial infectious diseases and to assess the value of these sequences. We reviewed single-shot EPI MR images obtained at 1.5 T in 17 patients and compared these images with conventional or fast spin-echo (SE) or fluid attenuated inversion-recovery (FLAIR) images. The clinical diagnoses for the 17 patients were meningitis (2 patients), encephalitis or meningoencephalitis (7 patients), brain abscess (5 patients), epidural empyema (2 patients) and Creutzfeldt-Jakob disease (1 patient). We obtained EPI-T{sub 2}-weighted (T{sub 2}W) images in 8 patients, EPI-FLAIR images in 13 patients and EPI-diffusion-weighted (DW) images in 14 patients. Among the 8 patients for whom EPI-T{sub 2}W imaging was performed, EPI-T{sub 2}W imaging yielded superior results compared with SE-T{sub 2}W imaging in 3 patients as a consequence of patient motion and equal results compared with SE-T{sub 2}W imaging in 5 patients. Among the 13 patients for whom EPI-FLAIR imaging was performed, the EPI-FLAIR images were superior to conventional FLAIR images in 3 unstable patients. In the remaining 10 patients for whom EPI-FLAIR imaging was performed, EPI-FLAIR images were equivalent or inferior to conventional FLAIR images. In 6 patients with encephalitis or meningoencephalitis, the encephalitic lesions showed hyperintensity in EPI-DW images to a greater extent than in images obtained with the other techniques. In 3 patients, EPI-DW images also demonstrated hyperintensity for the contents of abscesses or areas of empyema that was not seen with the other imaging techniques. The value of EPI-T{sub 2}W and EPI-FLAIR imaging is limited in uncooperative patients. EPI-DW imaging was found to be of value for the evaluation of several intracranial infectious diseases. (author)

  12. Single-shot measurement of nonlinear absorption and nonlinear refraction.

    Science.gov (United States)

    Jayabalan, J; Singh, Asha; Oak, Shrikant M

    2006-06-01

    A single-shot method for measurement of nonlinear optical absorption and refraction is described and analyzed. A spatial intensity variation of an elliptical Gaussian beam in conjugation with an array detector is the key element of this method. The advantages of this single-shot technique were demonstrated by measuring the two-photon absorption and free-carrier absorption in GaAs as well as the nonlinear refractive index of CS2 using a modified optical Kerr setup.

  13. Influence of the shot-peening treatment on the CRF gearing behaviour

    International Nuclear Information System (INIS)

    Molinie, D.; Lemaire, E.; Randrianarivo, L.; Dorier, C.

    1998-01-01

    Surface damage are observed in service on CRF case-hardened cases. Such damage is like surface fatigue which appears in the form of frosting and can come to a micro-spalling or even a spalling damage. Survey and studies realised on gears affected by such damage, led EDF and the manufacturer to search for appropriated solutions since 1985 (optimisation of the gear bottom profile, care of the grinding and the thermochemical processing, use of oils with higher viscosity). Simulations on a running wheel device can reproduce the meshing conditions on simplified specimen. The aim is to study the influence of residual stresses following a severe grinding and shot peening treatments. An empiric selection was realised among different shot peening treatments. Endurance tests are realised on case-hardened gears with or without shot-peening treatments. Compared with standard grinded gears, it appears that the shot-peening selected increases up to 40% the gear lifetime till extended spalling. (authors)

  14. Shot H3837: Darht's First Dual-Axis Explosive Experiment

    Science.gov (United States)

    Mendez, Jacob; McNeil, Wendy Vogan; Harsh, James; Hull, Lawrence

    2011-06-01

    Test H3837 was the first explosive shot performed in front of both flash x-ray axes at the Los Alamos Dual Axis Radiographic HydroTest (DARHT) facility. Executed in November 2009, the shot was an explosively-driven metal flyer plate in a series of experiments designed to explore equation-of-state properties of shocked materials. Imaging the initial shock wave traveling through the flyer plate, DARHT Axis II captured the range of motion from the shock front emergence in the flyer to breakout at the free surface; the Axis I pulse provided a perpendicular perspective of the shot at a time coinciding with the third pulse of Axis II. Since the days of the Manhattan Project, penetrating radiography with multiple frames from different viewing angles has remained a high-profile goal at the Laboratory. H3837 is merely the beginning of a bright future for two-axis penetrating radiography.

  15. Subjective State, Blood Pressure, and Behavioral Control Changes Produced by an "Energy Shot"

    Science.gov (United States)

    Marczinski, Cecile A; Stamates, Amy L; Ossege, Julianne; Maloney, Sarah F; Bardgett, Mark E; Brown, Clifford J

    2014-06-01

    Background: Energy drinks and energy shots are popular consumer beverages that are advertised to increase feelings of alertness. Typically, these products include high levels of caffeine, a mild psychostimulant drug. The scientific evidence demonstrating the specific benefits of energy products to users in terms of subjective state and objective performance is surprisingly lacking. Moreover, there are rising health concerns associated with the use of these products. Therefore, the purpose of this study was to investigate the acute effects of a popular energy shot (5-Hour Energy ® ) on subjective and objective measures that were assessed hourly for 6 hours following consumption. Methods: Participants ( n =14) completed a three-session study where they received the energy shot, a placebo control, and no drink. Following dose administration, participants completed subjective Profile of Mood States ratings hourly for 6 hours. Participants also repeatedly completed a behavioral control task (the cued go/no-go task) and provided blood pressure and pulse rate readings at each hour. Results: Consumption of the energy shot did improve subjective state, as measured by increased ratings of vigor and decreased ratings of fatigue. However, the energy shot did not alter objective performance, which worsened over time. Importantly, the energy shot elevated both systolic and diastolic blood pressure. Conclusions: Consumption of one energy shot may only result in modest benefits to subjective state. Individuals with preexisting hypertension or other medical conditions should be cautious about using these new consumer products.

  16. Energy efficient and fast reversal of a fixed skyrmion two-terminal memory with spin current assisted by voltage controlled magnetic anisotropy

    Science.gov (United States)

    Bhattacharya, Dhritiman; Mamun Al-Rashid, Md; Atulasimha, Jayasimha

    2017-10-01

    Recent work (P-H Jang et al 2015 Appl. Phys. Lett. 107 202401, J. Sampaio et al 2016 Appl. Phys. Lett. 108 112403) suggests that ferromagnetic reversal with spin transfer torque (STT) requires more current in a system in the presence of Dzyaloshinskii-Moriya interaction (DMI) than switching a typical ferromagnet of the same dimensions and perpendicular magnetic anisotropy (PMA). However, DMI promotes the stabilization of skyrmions and we report that when perpendicular anisotropy is modulated (reduced) for both the skyrmion and ferromagnet, it takes a much smaller current to reverse the fixed skyrmion than to reverse the ferromagnet in the same amount of time, or the skyrmion reverses much faster than the ferromagnet at similar levels of current. We show with rigorous micromagnetic simulations that skyrmion switching proceeds along a different path at very low PMA, which results in a significant reduction in the spin current or time required for reversal. This can offer potential for memory applications where a relatively simple modification of the standard STT-RAM (to include a heavy metal adjacent to the soft magnetic layer and with appropriate design of the tunnel barrier) can lead to an energy efficient and fast magnetic memory device based on the reversal of fixed skyrmions.

  17. Neural Computations Mediating One-Shot Learning in the Human Brain

    Science.gov (United States)

    Lee, Sang Wan; O’Doherty, John P.; Shimojo, Shinsuke

    2015-01-01

    Incremental learning, in which new knowledge is acquired gradually through trial and error, can be distinguished from one-shot learning, in which the brain learns rapidly from only a single pairing of a stimulus and a consequence. Very little is known about how the brain transitions between these two fundamentally different forms of learning. Here we test a computational hypothesis that uncertainty about the causal relationship between a stimulus and an outcome induces rapid changes in the rate of learning, which in turn mediates the transition between incremental and one-shot learning. By using a novel behavioral task in combination with functional magnetic resonance imaging (fMRI) data from human volunteers, we found evidence implicating the ventrolateral prefrontal cortex and hippocampus in this process. The hippocampus was selectively “switched” on when one-shot learning was predicted to occur, while the ventrolateral prefrontal cortex was found to encode uncertainty about the causal association, exhibiting increased coupling with the hippocampus for high-learning rates, suggesting this region may act as a “switch,” turning on and off one-shot learning as required. PMID:25919291

  18. Spatially and time-resolved magnetization dynamics driven by spin-orbit torques

    OpenAIRE

    Baumgartner, Manuel; Garello, Kevin; Mendil, Johannes; Avci, Can O.; Grimaldi, Eva; Murer, Christoph; Feng, Junxiao; Gabureac, Mihai; Stamm, Christian; Acremann, Yves; Finizio, Simone; Wintz, Sebastian; Raabe, Jörg; Gambardella, Pietro

    2017-01-01

    Current-induced spin-orbit torques (SOTs) represent one of the most effective ways to manipulate the magnetization in spintronic devices. The orthogonal torque-magnetization geometry, the strong damping, and the large domain wall velocities inherent to materials with strong spin-orbit coupling make SOTs especially appealing for fast switching applications in nonvolatile memory and logic units. So far, however, the timescale and evolution of the magnetization during the switching process have ...

  19. Ultrafast spin injection from Cd1-x Mn x Te magnetic barriers into a CdTe quantum well studied by pump-probe spectroscopy

    International Nuclear Information System (INIS)

    Aoshima, I.; Nishibayashi, K.; Souma, I.; Murayama, A.; Oka, Y.

    2006-01-01

    Spin injection from diluted magnetic semiconductor (DMS) barriers of Cd 1- x Mn x Te into a quantum well (QW) of CdTe is studied, by means of pump-probe absorption spectroscopy in magnetic fields. Fast decay characteristics of circularly polarized differential absorbances of spin-polarized excitons in the DMS barrier show the exciton injection time of 6 ps from the barriers into the QW. In accordance with the fast relaxation of the spin-polarized excitons from the barrier, we observe the rise of circular polarization degree for the differential absorption of the CdTe QW in magnetic fields, evidently indicating the spin injection. In addition, the circular polarization degree up to 0.3 is developed in the well immediately after pumping, originating from the fast relaxation of a heavy hole (hh) spin less than 0.2 ps, due to the giant Zeeman effect caused by the penetration of the hh wave function into the DMS barriers

  20. 3D hybrid profile order technique in a single breath-hold 3D T2-weighted fast spin-echo sequence: Usefulness in diagnosis of small liver lesions.

    Science.gov (United States)

    Hirata, Kenichiro; Nakaura, Takeshi; Okuaki, Tomoyuki; Tsuda, Noriko; Taguchi, Narumi; Oda, Seitaro; Utsunomiya, Daisuke; Yamashita, Yasuyuki

    2018-01-01

    We compared the efficacy of three-dimensional (3D) isotropic T2-weighted fast spin-echo imaging using a 3D hybrid profile order technique with a single-breath-hold (3D-Hybrid BH) with a two-dimensional (2D) T2-weighted fast spin-echo conventional respiratory-gated (2D-Conventional RG) technique for visualising small liver lesions. This study was approved by our institutional review board. The requirement to obtain written informed consent was waived. Fifty patients with small (≤15mm) hepatocellular carcinomas (HCC) (n=26), or benign cysts (n=24), had undergone hepatic MRI including both 2D-Conventional RG and 3D-Hybrid BH. We calculated the signal-to-noise ratio (SNR) and tumour-to-liver contrast (TLC). The diagnostic performance of the two protocols was analysed. The image acquisition time was 89% shorter with the 3D-Hybrid BH than with 2D-Conventional RG. There was no significant difference in the SNR between the two protocols. The area under the curve (AUC) of the TLC was significantly higher on 3D-Hybrid BH than on 2D-Conventional RG. The 3D-Hybrid BH sequence significantly improved diagnostic performance for small liver lesions with a shorter image acquisition time without sacrificing accuracy. Copyright © 2017. Published by Elsevier B.V.

  1. Spin-dependent tunneling recombination in heterostructures with a magnetic layer

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, K. S., E-mail: denisokonstantin@gmail.com; Rozhansky, I. V.; Averkiev, N. S. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Lähderanta, E. [Lappeenranta University of Technology (Finland)

    2017-01-15

    We propose a mechanism for the generation of spin polarization in semiconductor heterostructures with a quantum well and a magnetic impurity layer spatially separated from it. The spin polarization of carriers in a quantum well originates from spin-dependent tunneling recombination at impurity states in the magnetic layer, which is accompanied by a fast linear increase in the degree of circular polarization of photoluminescence from the quantum well. Two situations are theoretically considered. In the first case, resonant tunneling to the spin-split sublevels of the impurity center occurs and spin polarization is caused by different populations of resonance levels in the quantum well for opposite spin projections. In the second, nonresonant case, the spin-split impurity level lies above the occupied states of electrons in the quantum well and plays the role of an intermediate state in the two-stage coherent spin-dependent recombination of an electron from the quantum well and a hole in the impurity layer. The developed theory allows us to explain both qualitatively and quantitatively the kinetics of photoexcited electrons in experiments with photoluminescence with time resolution in Mn-doped InGaAs heterostructures.

  2. Effects of Laser Peening, and Shot Peening, on Friction Stir Welding

    Science.gov (United States)

    Hatamleh, Omar; Hackel, Lloyd; Rankin, Jon; Truong, Chanh; Walter, Matt

    2006-01-01

    A viewgraph presentation describing the effects of laser peening and shot peening on friction stir welding is shown. The topics include: 1) Background; 2) Friction Stir Welding (FSW); 3) Microstructure; 4) Laser & Shot Peening; 5) Residual Stresses; 6) Tensile Behavior; 7) Fatigue Life & Surface Roughness; 8) Crack Growth; and 9) Benefits.

  3. Floquet-Magnus expansion for general N-coupled spins systems in magic-angle spinning nuclear magnetic resonance spectra

    Science.gov (United States)

    Mananga, Eugene Stephane; Charpentier, Thibault

    2015-04-01

    In this paper we present a theoretical perturbative approach for describing the NMR spectrum of strongly dipolar-coupled spin systems under fast magic-angle spinning. Our treatment is based on two approaches: the Floquet approach and the Floquet-Magnus expansion. The Floquet approach is well known in the NMR community as a perturbative approach to get analytical approximations. Numerical procedures are based on step-by-step numerical integration of the corresponding differential equations. The Floquet-Magnus expansion is a perturbative approach of the Floquet theory. Furthermore, we address the " γ -encoding" effect using the Floquet-Magnus expansion approach. We show that the average over " γ " angle can be performed for any Hamiltonian with γ symmetry.

  4. Muscular power, neuromuscular activation, and performance in shot put athletes at preseason and at competition period.

    Science.gov (United States)

    Kyriazis, Thomas A; Terzis, Gerasimos; Boudolos, Konstantinos; Georgiadis, Georgios

    2009-09-01

    The aim of this study was to investigate changes in shot put performance, muscular power, and neuromuscular activation of the lower extremities, between the preseason and the competition period, in skilled shot put athletes using the rotational technique. Shot put performance was assessed at the start of the pre-season period as well as after 12 weeks, at the competition period, in nine shot putters. Electromyographic (EMG) activity of the right vastus lateralis muscle was recorded during all shot put trials. Maximum squat strength (1RM) and mechanical parameters during the countermovement jump (CMJ) on a force platform were also determined at pre-season and at competition period. Shot put performance increased 4.7% (p phase was increased significantly (p training period. Shot put performance was significantly related with muscular power and takeoff velocity during the CMJ, at competition period (r = 0.66, p competition period.

  5. Rapid response and wide range neutronic power measuring systems for fast pulsed reactors

    International Nuclear Information System (INIS)

    Sumita, Kenji; Iida, Toshiyuki; Wakayama, Naoaki.

    1976-01-01

    This paper summarizes our investigation on design principles of the rapid, stable and wide range neutronic power measuring system for fast pulsed reactors. The picoammeter, the logarithmic amplifier, the reactivity meter and the neutron current chamber are the items of investigation. In order to get a rapid response, the method of compensation for the stray capacitance of the feedback circuits and the capacitance of signal cables is applied to the picoammeter, the logarithmic amplifier and the reactivity meter with consideration for the stability margin of a whole detecting system. The response of an ionization current chamber and the method for compensating the ion component of the chamber output to get optimum responses high pass filters are investigated. Statistical fluctuations of the current chamber output are also considered in those works. The optimum thickness of the surrounding moderator of the neutron detector is also discussed from the viewpoint of the pulse shape deformation and the neutron sensitivity increase. The experimental results are reported, which were observed in the pulse operations of the one shot fast pulsed reactor ''YAYOI'' and the one shot TRIGA ''NSRR'' with the measuring systems using those principles. (auth.)

  6. Coherent spin-rotational dynamics of oxygen superrotors

    Science.gov (United States)

    Milner, Alexander A.; Korobenko, Aleksey; Milner, Valery

    2014-09-01

    We use state- and time-resolved coherent Raman spectroscopy to study the rotational dynamics of oxygen molecules in ultra-high rotational states. While it is possible to reach rotational quantum numbers up to N≈ 50 by increasing the gas temperature to 1500 K, low population levels and gas densities result in correspondingly weak optical response. By spinning {{O}2} molecules with an optical centrifuge, we efficiently excite extreme rotational states with N≤slant 109 in high-density room temperature ensembles. Fast molecular rotation results in the enhanced robustness of the created rotational wave packets against collisions, enabling us to observe the effects of weak spin-rotation coupling in the coherent rotational dynamics of oxygen. The decay rate of spin-rotational coherence due to collisions is measured as a function of the molecular angular momentum and its dependence on the collisional adiabaticity parameter is discussed. We find that at high values of N, the rotational decoherence of oxygen is much faster than that of the previously studied non-magnetic nitrogen molecules, pointing at the effects of spin relaxation in paramagnetic gases.

  7. Laser-induced ultrafast demagnetization time and spin moment in ferromagnets: First-principles calculation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G. P., E-mail: gpzhang@indstate.edu [Department of Physics, Indiana State University, Terre Haute, Indiana 47809 (United States); Si, M. S. [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); George, Thomas F. [Office of the Chancellor and Center for Nanoscience, Departments of Chemistry and Biochemistry and Physics and Astronomy, University of Missouri-St. Louis, St. Louis, Missouri 63121 (United States)

    2015-05-07

    When a laser pulse excites a ferromagnet, its spin undergoes a dramatic change. The initial demagnetization process is very fast. Experimentally, it is found that the demagnetization time is related to the spin moment in the sample. In this study, we employ the first-principles method to directly simulate such a process. We use the fixed spin moment method to change the spin moment in ferromagnetic nickel, and then we employ the Liouville equation to couple the laser pulse to the system. We find that in general the dependence of demagnetization time on the spin moment is nonlinear: It decreases with the spin moment up to a point, after which an increase with the spin moment is observed, followed by a second decrease. To understand this, we employ an extended Heisenberg model, which includes both the exchange interaction and spin-orbit coupling. The model directly links the demagnetization rate to the spin moment itself and demonstrates analytically that the spin relaxes more slowly with a small spin moment. A future experimental test of our predictions is needed.

  8. A General Protocol for Temperature Calibration of MAS NMR Probes at Arbitrary Spinning Speeds

    Science.gov (United States)

    Guan, Xudong; Stark, Ruth E.

    2010-01-01

    A protocol using 207Pb NMR of solid lead nitrate was developed to determine the temperature of magic-angle spinning (MAS) NMR probes over a range of nominal set temperatures and spinning speeds. Using BioMAS and fastMAS probes with typical sample spinning rates of 8 and 35 kHz, respectively, empirical equations were devised to predict the respective sample temperatures. These procedures provide a straightforward recipe for temperature calibration of any MAS probe. PMID:21036557

  9. Effect of shot peening process on fatigue behavior of an alloyed austempered ductile iron

    Directory of Open Access Journals (Sweden)

    Amir Sadighzadeh Benam

    2011-08-01

    Full Text Available Shot peening is one of the most common surface treatments to improve the fatigue behavior of metallic parts. In this study the effect of shot peening process on the fatigue behavior of an alloyed austempered ductile iron (ADI has been studied. Austempering heat treatment consisted of austenitizing at 875℃ for 90 min followed by austempering at three different temperatures of 320, 365 and 400℃. Rotating-bending fatigue test was carried out on samples after shot peening by 0.4 – 0.6 mm shots. XRD and SEM analysis, micro hardness and roughness tests were carried out to study the fatigue behavior of the samples. Results indicate that the fatigue strengths of samples austempered at 320, 365 and 400℃ are increased by 27.3%, 33.3% and 48.4%, respectively, after shot peening process.

  10. On the residual stress modeling of shot-peened AISI 4340 steel: finite element and response surface methods

    Science.gov (United States)

    Asgari, Ali; Dehestani, Pouya; Poruraminaie, Iman

    2018-02-01

    Shot peening is a well-known process in applying the residual stress on the surface of industrial parts. The induced residual stress improves fatigue life. In this study, the effects of shot peening parameters such as shot diameter, shot speed, friction coefficient, and the number of impacts on the applied residual stress will be evaluated. To assess these parameters effect, firstly the shot peening process has been simulated by finite element method. Then, effects of the process parameters on the residual stress have been evaluated by response surface method as a statistical approach. Finally, a strong model is presented to predict the maximum residual stress induced by shot peening process in AISI 4340 steel. Also, the optimum parameters for the maximum residual stress are achieved. The results indicate that effect of shot diameter on the induced residual stress is increased by increasing the shot speed. Also, enhancing the friction coefficient magnitude always cannot lead to increase in the residual stress.

  11. Circuit Simulation of All-Spin Logic

    KAUST Repository

    Alawein, Meshal

    2016-05-01

    With the aggressive scaling of complementary metal-oxide semiconductor (CMOS) nearing an inevitable physical limit and its well-known power crisis, the quest for an alternative/augmenting technology that surpasses the current semiconductor electronics is needed for further technological progress. Spintronic devices emerge as prime candidates for Beyond CMOS era by utilizing the electron spin as an extra degree of freedom to decrease the power consumption and overcome the velocity limit connected with the charge. By using the nonvolatility nature of magnetization along with its direction to represent a bit of information and then manipulating it by spin-polarized currents, routes are opened for combined memory and logic. This would not have been possible without the recent discoveries in the physics of nanomagnetism such as spin-transfer torque (STT) whereby a spin-polarized current can excite magnetization dynamics through the transfer of spin angular momentum. STT have expanded the available means of switching the magnetization of magnetic layers beyond old classical techniques, promising to fulfill the need for a new generation of dense, fast, and nonvolatile logic and storage devices. All-spin logic (ASL) is among the most promising spintronic logic switches due to its low power consumption, logic-in-memory structure, and operation on pure spin currents. The device is based on a lateral nonlocal spin valve and STT switching. It utilizes two nanomagnets (whereby information is stored) that communicate with pure spin currents through a spin-coherent nonmagnetic channel. By using the well-known spin physics and the recently proposed four-component spin circuit formalism, ASL can be thoroughly studied and simulated. Previous attempts to model ASL in the linear and diffusive regime either neglect the dynamic characteristics of transport or do not provide a scalable and robust platform for full micromagnetic simulations and inclusion of other effects like spin Hall

  12. Normal anatomy of the fetus at MR imaging.

    Science.gov (United States)

    Amin, R S; Nikolaidis, P; Kawashima, A; Kramer, L A; Ernst, R D

    1999-10-01

    Owing to recent advances in magnetic resonance (MR) imaging, the role of obstetric MR imaging has increased in cases in which the results of ultrasonography are equivocal. Fast MR imaging sequences, such as T2-weighted fast spin-echo (SE), half-Fourier single-shot fast SE, 0.5-signal-acquired single-shot fast SE, and echo-planar imaging, have virtually eliminated the need for fetal premedication, with a concomitant improvement in image resolution and diminished blurring. Artifacts related to maternal respiratory motion and fetal motion no longer limit the anatomic detail that can be demonstrated with MR imaging. With such advances in obstetric MR imaging, knowledge of normal fetal anatomy at MR imaging is essential to detect disease in utero. MR imaging can demonstrate fetal anatomy in detail, especially the brain, thorax, abdomen, pelvis, and vasculature. Major developmental structures of the fetus, particularly the cranial nervous system, naso- and oropharynx, lungs, and major abdominal viscera, can be adequately evaluated with targeted fast MR imaging as early as the beginning of the second trimester. However, MR imaging of the heart remains limited. Fetal MR imaging during the first trimester remains controversial secondary to biosafety issues and is limited due to diminutive fetal size.

  13. Radio-frequency shot-noise measurement in a magnetic tunnel junction with a MgO barrier

    International Nuclear Information System (INIS)

    Rehman, Mushtaq; Park, Junghwan; Song, Woon; Chong, Yonuk; Lee, Yeonsub; Min, Byoungchul; Shin, Kyungho; Ryu, Sangwan; Khim, Zheong

    2010-01-01

    We measured the noise power of a magnetic tunnel junction in the frequency range of 710 ∼ 1200 MHz. A low-noise cryogenic HEMT amplifier was used to measure the small noise signal at a high frequency with wide bandwidth. The MgO-barrier tunnel junction showed large tunnel magnetoresistance ratio of 215% at low temperature, which indicates electronic transport through the tunnel barrier without any significant spin-flip scattering. In the bias-dependent noise measurement, however, the zero-bias shot noise was enhanced compared to the value expected from a perfect tunnel barrier or the value observed from a good Al-AlO x -Al tunnel junction. We assume that this enhanced noise comes from inelastic tunneling processes through the barrier, which may be related to the observed zero-bias anomaly in the differential resistance of the tunnel junctions. We present a simple phenomenological model for how the inelastic scattering process can enhance the zero-bias noise in a tunnel junction.

  14. Shot-noise dominant regime of a nanoparticle in a laser beam

    Science.gov (United States)

    Zhong, Changchun; Robicheaux, Francis

    2017-04-01

    The technique of laser levitation of nanoparticles has become increasingly promising in the study of cooling and controlling mesoscopic quantum systems. Unlike a mechanical system, the levitated nanoparticle is less exposed to thermalization and decoherence due to the absence of direct contact with a thermal environment. In ultrahigh vacuum, the dominant source of decoherence comes from the unavoidable photon recoil from the optical trap which sets an ultimate bound for the control of levitated systems. In this paper, we study the shot noise heating and the parametric feedback cooling of an optically trapped anisotropic nanoparticle in the laser shot noise dominant regime. The rotational trapping frequency and shot noise heating rate have a dependence on the shape of the trapped particle. For an ellipsoidal particle, the ratio of the axis lengths and the overall size controls the shot noise heating rate relative to the rotational frequency. For a near spherical nanoparticle, the effective heating rate for the rotational degrees of freedom is smaller than that for translation suggesting that the librational ground state may be easier to achieve than the vibrational ground state.

  15. Spatially and time-resolved magnetization dynamics driven by spin-orbit torques

    Science.gov (United States)

    Baumgartner, Manuel; Garello, Kevin; Mendil, Johannes; Avci, Can Onur; Grimaldi, Eva; Murer, Christoph; Feng, Junxiao; Gabureac, Mihai; Stamm, Christian; Acremann, Yves; Finizio, Simone; Wintz, Sebastian; Raabe, Jörg; Gambardella, Pietro

    2017-10-01

    Current-induced spin-orbit torques are one of the most effective ways to manipulate the magnetization in spintronic devices, and hold promise for fast switching applications in non-volatile memory and logic units. Here, we report the direct observation of spin-orbit-torque-driven magnetization dynamics in Pt/Co/AlOx dots during current pulse injection. Time-resolved X-ray images with 25 nm spatial and 100 ps temporal resolution reveal that switching is achieved within the duration of a subnanosecond current pulse by the fast nucleation of an inverted domain at the edge of the dot and propagation of a tilted domain wall across the dot. The nucleation point is deterministic and alternates between the four dot quadrants depending on the sign of the magnetization, current and external field. Our measurements reveal how the magnetic symmetry is broken by the concerted action of the damping-like and field-like spin-orbit torques and the Dzyaloshinskii-Moriya interaction, and show that reproducible switching events can be obtained for over 1012 reversal cycles.

  16. Shot Noise in Negative-Differential-Conductance Devices

    National Research Council Canada - National Science Library

    Song, W

    2003-01-01

    The authors have compared the shot-noise properties at T = 4.2 K of a double-barrier resonant-tunneling diode and a superlattice tunnel diode, both of which exhibit negative differential-conductance (NDC...

  17. Entangled spins and ghost-spins

    Directory of Open Access Journals (Sweden)

    Dileep P. Jatkar

    2017-09-01

    Full Text Available We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves, the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.

  18. Fast spin-echo T2-weighted MR imaging of tongue cancer; the value of fat-suppression

    International Nuclear Information System (INIS)

    Kim, Zu Byoung; Na, Dong Gyu; Ryoo, Jae Wook; Kim, Kyeong Ah; Byun, Hong Sik; Baek, Chung Whan; Son, Yong Ik

    2000-01-01

    To compare the diagnostic efficacy of fast spin-echo (FSE) T2-weighted MR imaging with and without fat suppression. Twelve patients (7 men and 5 women; mean age, 48 years) with pathologically proven cancer of the tongue were included in this study. In all of these, FSE T2-weighted MR images with and without fat suppression were obtained in the same imaging planes before surgery or biopsy. Two radiologists visually compared the images thus obtained in terms of detection, extent, and conspicuity of the tumor, and the contrast-to-noise ratio (CNR) of each tumor was also calculated. In all patients, both imaging modalities were equal in terms of tumor detection. In 4 of 12(33%), the extent of the tumor was greater with fat suppression, while in eight (67%), it was almost the same both with and without. In ten patients (83%), the tumor was more conspicuous with fat suppression, and percentage CNRs were significantly higher with fat suppression than without (180±70% and 113±61%, respectively; p=0.02). For the evaluation of patients with tongue cancer, fat-suppressed FSE T2-weighted MR imaging is superior to its conventional equivalent

  19. Resurvey of order and chaos in spinning compact binaries

    International Nuclear Information System (INIS)

    Wu Xin; Xie Yi

    2008-01-01

    This paper is mainly devoted to applying the invariant, fast, Lyapunov indicator to clarify some doubt regarding the apparently conflicting results of chaos in spinning compact binaries at the second-order post-Newtonian approximation of general relativity from previous literatures. It is shown with a number of examples that no single physical parameter or initial condition can be described as responsible for causing chaos, but a complicated combination of all parameters and initial conditions is responsible. In other words, a universal rule for the dependence of chaos on each parameter or initial condition cannot be found in general. Chaos does not depend only on the mass ratio, and the maximal spins do not necessarily bring the strongest effect of chaos. Additionally, chaos does not always become drastic when the initial spin vectors are nearly perpendicular to the orbital plane, and the alignment of spins cannot trigger chaos by itself

  20. ON THE USE OF SHOT NOISE FOR PHOTON COUNTING

    Energy Technology Data Exchange (ETDEWEB)

    Zmuidzinas, Jonas, E-mail: jonas@caltech.edu [Division of Physics, Mathematics, and Astronomy, California Institute Institute of Technology, Pasadena, CA 91125 (United States)

    2015-11-01

    Lieu et al. have recently claimed that it is possible to substantially improve the sensitivity of radio-astronomical observations. In essence, their proposal is to make use of the intensity of the photon shot noise as a measure of the photon arrival rate. Lieu et al. provide a detailed quantum-mechanical calculation of a proposed measurement scheme that uses two detectors and conclude that this scheme avoids the sensitivity degradation that is associated with photon bunching. If correct, this result could have a profound impact on radio astronomy. Here I present a detailed analysis of the sensitivity attainable using shot-noise measurement schemes that use either one or two detectors, and demonstrate that neither scheme can avoid the photon bunching penalty. I perform both semiclassical and fully quantum calculations of the sensitivity, obtaining consistent results, and provide a formal proof of the equivalence of these two approaches. These direct calculations are furthermore shown to be consistent with an indirect argument based on a correlation method that establishes an independent limit to the sensitivity of shot-noise measurement schemes. Furthermore, these calculations are directly applicable to the regime of interest identified by Lieu et al. Collectively, these results conclusively demonstrate that the photon-bunching sensitivity penalty applies to shot-noise measurement schemes just as it does to ordinary photon counting, in contradiction to the fundamental claim made by Lieu et al. The source of this contradiction is traced to a logical fallacy in their argument.

  1. Spin Current Noise of the Spin Seebeck Effect and Spin Pumping

    Science.gov (United States)

    Matsuo, M.; Ohnuma, Y.; Kato, T.; Maekawa, S.

    2018-01-01

    We theoretically investigate the fluctuation of a pure spin current induced by the spin Seebeck effect and spin pumping in a normal-metal-(NM-)ferromagnet(FM) bilayer system. Starting with a simple ferromagnet-insulator-(FI-)NM interface model with both spin-conserving and non-spin-conserving processes, we derive general expressions of the spin current and the spin-current noise at the interface within second-order perturbation of the FI-NM coupling strength, and estimate them for a yttrium-iron-garnet-platinum interface. We show that the spin-current noise can be used to determine the effective spin carried by a magnon modified by the non-spin-conserving process at the interface. In addition, we show that it provides information on the effective spin of a magnon, heating at the interface under spin pumping, and spin Hall angle of the NM.

  2. Feature-fused SSD: fast detection for small objects

    Science.gov (United States)

    Cao, Guimei; Xie, Xuemei; Yang, Wenzhe; Liao, Quan; Shi, Guangming; Wu, Jinjian

    2018-04-01

    Small objects detection is a challenging task in computer vision due to its limited resolution and information. In order to solve this problem, the majority of existing methods sacrifice speed for improvement in accuracy. In this paper, we aim to detect small objects at a fast speed, using the best object detector Single Shot Multibox Detector (SSD) with respect to accuracy-vs-speed trade-off as base architecture. We propose a multi-level feature fusion method for introducing contextual information in SSD, in order to improve the accuracy for small objects. In detailed fusion operation, we design two feature fusion modules, concatenation module and element-sum module, different in the way of adding contextual information. Experimental results show that these two fusion modules obtain higher mAP on PASCAL VOC2007 than baseline SSD by 1.6 and 1.7 points respectively, especially with 2-3 points improvement on some small objects categories. The testing speed of them is 43 and 40 FPS respectively, superior to the state of the art Deconvolutional single shot detector (DSSD) by 29.4 and 26.4 FPS.

  3. Shot peening of doel 3 plant

    International Nuclear Information System (INIS)

    Slama, G.; Sort, M.

    1985-12-01

    The process implementation for DOEL consisted in: developing tooling and test procedures for an industrial application including ALARA considerations; qualifying process, tooling and procedures using representative conditions (full size mock-up, of steam generator channel head and associated working area); Establishing the reliability of tooling and procedures to comply permanently with the required criteria (chiefly Almen Intensity); and training and qualifying personnel. A variety of tests were performed by FRAMATOME and BELGATOM to qualify the process and characterize its effects on both inside and outside diameters of the tubes. These are: Mg Cl 2 ; 10% caustic tests at high temperature and pressure; tetrathionate; strain gauges and X rays stresses measurements; effects on precracked tubes; Leak tests after shot peening. The operation was performed at Doel in July 1985. Laboratory tests performed on mockups by FRAMATOME and BELGATOM could demonstrate that on tubes without cracks no difference was found between Eddy current signals from tubes shot-peened or not

  4. Improved design and durability of aluminum die casting horizontal shot sleeves

    Science.gov (United States)

    Birceanu, Sebastian

    The design and performance of shot sleeves is critical in meeting the engineering requirements of aluminum die cast parts. Improvement in shot sleeve materials have a major impact on dimensional stability, reproducibility and quality of the product. This investigation was undertaken in order to improve the life of aluminum die casting horizontal shot sleeves. Preliminary pin tests were run to evaluate the soldering, wash-out and thermal fatigue behavior of commercially available materials and coatings. An experimental rig was designed and constructed for shot sleeve configuration evaluation. Fabrication and testing of experimental shot sleeves was based upon preliminary results and manufacturing costs. Three shot sleeve designs and materials were compared to a reference nitrided H13 sleeve. Nitrided H13 is the preferred material for aluminum die casting shot sleeves because of wear resistance, strength and relative good soldering and wash-out resistance. The study was directed towards damage evaluation on the area under the pouring hole. This area is the most susceptible to damage because of high temperatures and impingement of molten aluminum. The results of this study showed that tungsten and molybdenum had the least amount of soldering and wash-out damage, and the best thermal fatigue resistance. Low solubility in molten aluminum and stability of intermetallic layers are main factors that determine the soldering and wash-out behavior. Thermal conductivity and thermal expansion coefficient directly influence thermal fatigue behavior. TiAlN nanolayered coating was chosen as the material with the best damage resistance among several commercial PVD coatings, because of relatively large thickness and simple deposition conditions. The results show that molybdenum thermal sprayed coating provided the best protection against damage under the pouring hole. Improved bonding is however required for life extension of the coating. TiAlN PVD coating applied on H13 nitrided

  5. A fast spatial scanning combination emissive and mach probe for edge plasma diagnosis

    International Nuclear Information System (INIS)

    Lehmer, R.D.; LaBombard, B.; Conn, R.W.

    1989-04-01

    A fast spatially scanning emissive and mach probe has been developed for the measurement of plasma profiles in the PISCES facility at UCLA. A pneumatic cylinder is used to drive a multiple tip probe along a 15cm stroke in less than 400msec, giving single shot profiles while limiting power deposition to the probe. A differentially pumped sliding O-ring seal allows the probe to be moved between shots to infer two and three dimensional profiles. The probe system has been used to investigate the plasma potential, density, and parallel mach number profiles of the presheath induced by a wall surface and scrape-off-layer profile modifications in biased limiter simulation experiments. Details of the hardware, data acquisition electronics, and tests of probe reliability are discussed. 30 refs., 24 figs

  6. Microscopic analysis of effect of shot peening on corrosion fatigue behavior of aluminum alloy

    International Nuclear Information System (INIS)

    Kim, Jong Cheon; Cheong, Seong Kyun

    2012-01-01

    The object of this study considers corrosion fatigue improvement of 7075-T6 aluminum by using shot peening treatment on 3.5% NaCl solution at room temperature. Aluminum alloy is generally used in aerospace structural components because of the light weight and high strength characteristics. Many studies have shown that an aluminum alloy can be approximately 50% lighter than other materials. Mostly, corrosion leads to earlier fatigue crack propagation under tensile conditions and severely reduces the life of structures. Therefore, the technique to improve material resistance to corrosion fatigue is required. Shot peening technology is widely used to improve fatigue life and other mechanical properties by induced compressive residual stress. Even the roughness of treated surface causes pitting corrosion, the compressive residual stress, which is induced under the surface layer of material by shot peening, suppersses the corrosion and increases the corrosion resistance. The experimental results for shot peened specimens were compared with previous work for non treated aluminum alloy. The results show that the shot peening treatment affects the corrosion fatigue improvement of aluminum alloys and the induced compressive residual stress by shot peening treatment improves the resistance to corrosion fatigue

  7. Microscopic analysis of effect of shot peening on corrosion fatigue behavior of aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Cheon; Cheong, Seong Kyun [Seoul Nat' l Univ. of Science and Technology, Seoul (Korea, Republic of)

    2012-11-15

    The object of this study considers corrosion fatigue improvement of 7075-T6 aluminum by using shot peening treatment on 3.5% NaCl solution at room temperature. Aluminum alloy is generally used in aerospace structural components because of the light weight and high strength characteristics. Many studies have shown that an aluminum alloy can be approximately 50% lighter than other materials. Mostly, corrosion leads to earlier fatigue crack propagation under tensile conditions and severely reduces the life of structures. Therefore, the technique to improve material resistance to corrosion fatigue is required. Shot peening technology is widely used to improve fatigue life and other mechanical properties by induced compressive residual stress. Even the roughness of treated surface causes pitting corrosion, the compressive residual stress, which is induced under the surface layer of material by shot peening, suppersses the corrosion and increases the corrosion resistance. The experimental results for shot peened specimens were compared with previous work for non treated aluminum alloy. The results show that the shot peening treatment affects the corrosion fatigue improvement of aluminum alloys and the induced compressive residual stress by shot peening treatment improves the resistance to corrosion fatigue.

  8. Field-controllable Spin-Hall Effect of Light in Optical Crystals: A Conoscopic Mueller Matrix Analysis.

    Science.gov (United States)

    Samlan, C T; Viswanathan, Nirmal K

    2018-01-31

    Electric-field applied perpendicular to the direction of propagation of paraxial beam through an optical crystal dynamically modifies the spin-orbit interaction (SOI), leading to the demonstration of controllable spin-Hall effect of light (SHEL). The electro- and piezo-optic effects of the crystal modifies the radially symmetric spatial variation in the fast-axis orientation of the crystal, resulting in a complex pattern with different topologies due to the symmetry-breaking effect of the applied field. This introduces spatially-varying Pancharatnam-Berry type geometric phase on to the paraxial beam of light, leading to the observation of SHEL in addition to the spin-to-vortex conversion. A wave-vector resolved conoscopic Mueller matrix measurement and analysis provides a first glimpse of the SHEL in the biaxial crystal, identified via the appearance of weak circular birefringence. The emergence of field-controllable fast-axis orientation of the crystal and the resulting SHEL provides a new degree of freedom for affecting and controlling the spin and orbital angular momentum of photons to unravel the rich underlying physics of optical crystals and aid in the development of active photonic spin-Hall devices.

  9. Evaluation of the 1Shot Phantom dedicated to the mammography system using FCR

    International Nuclear Information System (INIS)

    Nagashima, Chieko; Uchiyama, Nachiko; Moriyama, Noriyuki; Nagata, Mio; Kobayashi, Hiroyuki; Sankoda, Katsuhiro; Saotome, Shigeru; Tagi, Masahiro; Kusunoki, Tetsurou

    2009-01-01

    Currently daily quality control (QC) tests for mammography systems are generally evaluated by using visual analysis phantoms, which of course means subjective measurement. In our study, however, we evaluated a novel digital phantom, the 1Shot Phantom M plus (1Shot Phantom), together with automatic analysis software dedicated for mammography systems using Fuji computed radiography (FCR). The digital phantom enables objective evaluation by providing for actual physical measurement rather than subjective visual assessment. We measured contrast to noise ratio (CNR), image receptor homogeneity, missed tissue at chest wall side, modulation transfer function (MTF), and geometric distortion utilizing the 1Shot Phantom. We then compared the values obtained using the 1Shot Phantom with values obtained from the European guidelines and International Electrotechnical Commission (IEC) standards. In addition, we evaluated the convenience of using the digital phantom. The values utilizing the 1Shot Phantom and those from the European guidelines and IEC standards were consistent, but the QC tests for the European guidelines and IEC standards methods took about six hours while the same QC tests using the 1Shot Phantom took 10 minutes or less including exposure of the phantom image, measurement, and analysis. In conclusion, the digital phantom and dedicated software proved very useful and produced improved analysis for mammography systems using FCR in clinical daily QC testing because of their objectivity and substantial time-saving convenience. (author)

  10. Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses.

    Science.gov (United States)

    Clark, Susan M; Fu, Kai-Mei C; Ladd, Thaddeus D; Yamamoto, Yoshihisa

    2007-07-27

    We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broadband optical pulses to rotate electron spins and provide the clock signal to the system. Nonlocal two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency.

  11. A novel fast-scanning microwave heterodyne radiometer system for electron cyclotron emission measurements in the HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Wan, Y.X.; Xie, J.K.; Luo, J.R.; Li, J.G.; Kuang, G.L.; Gao, X.; Zhang, X.D.; Wan, B.N.; Wang, K.J.; Mao, J.S.; Gong, X.Z.; Qin, P.J.

    2000-01-01

    Two sets of fast-scanning microwave heterodyne radiometer receiver systems employing backward-wave oscillators in the 78-118 GHz and 118-178 GHz ranges were developed for electron cyclotron emission measurements (ECE) on the HT-7 superconducting tokamak. The double-sideband radiometer in the 78-118 GHz range measures 16 ECE frequency points with a scanning period of 0.65 ms. The novel design of the 2 mm fast-scanning heterodyne radiometer in the 118-178 GHz range enables the unique system to measure 48 ECE frequency points in 0.65 ms periodically. The plasma profile consistency in reproducible ohmic plasmas was used to relatively calibrate each channel by changing the toroidal magnetic field shot-by-shot. The absolute temperature value was obtained by a comparison with the results from the soft x-ray pulse height analysis measurements and Thomson scattering system. A preliminary temperature profile measurement result in pellet injection plasma is presented. (author)

  12. Geometrical spin symmetry and spin

    International Nuclear Information System (INIS)

    Pestov, I. B.

    2011-01-01

    Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.

  13. Pumped shot noise in adiabatically modulated graphene-based double-barrier structures.

    Science.gov (United States)

    Zhu, Rui; Lai, Maoli

    2011-11-16

    Quantum pumping processes are accompanied by considerable quantum noise. Based on the scattering approach, we investigated the pumped shot noise properties in adiabatically modulated graphene-based double-barrier structures. It is found that compared with the Poisson processes, the pumped shot noise is dramatically enhanced where the dc pumped current changes flow direction, which demonstrates the effect of the Klein paradox.

  14. Pumped shot noise in adiabatically modulated graphene-based double-barrier structures

    Science.gov (United States)

    Zhu, Rui; Lai, Maoli

    2011-11-01

    Quantum pumping processes are accompanied by considerable quantum noise. Based on the scattering approach, we investigated the pumped shot noise properties in adiabatically modulated graphene-based double-barrier structures. It is found that compared with the Poisson processes, the pumped shot noise is dramatically enhanced where the dc pumped current changes flow direction, which demonstrates the effect of the Klein paradox.

  15. Shot noise of a quantum shuttle

    DEFF Research Database (Denmark)

    Novotny, Tomas; Donarini, Andrea; Flindt, Christian

    2004-01-01

    We formulate a theory for shot noise in quantum nanoelectromechanical systems. As a specific example, the theory is applied to a quantum shuttle, and the zero-frequency noise, measured by the Fano factor F, is computed. F reaches very low values (Fsimilar or equal to10(-2)) in the shuttling regim...

  16. Kinematic Differences between Set- and Jump-Shot Motions in Basketball

    OpenAIRE

    Hiroki Okubo; Mont Hubbard

    2018-01-01

    Shooting arm motions at release in one-hand set and jump basketball shots have been analyzed using a kinematic model. Set and jump shots are classified by the vertical velocity and acceleration of the shooter’s shooting-side shoulder at release. The two-dimensional three-segment model includes the vertical shooting-side shoulder velocity and acceleration. Numerical simulation investigates the effect of shoulder motion. Release backspin angular velocity can be described as a function of the ve...

  17. On the Path to SunShot - Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-05-01

    The halfway mark of the SunShot Initiative’s 2020 target date is a good time to take stock: How much progress has been made? What have we learned? What barriers and opportunities must still be addressed to ensure that solar technologies achieve cost parity in 2020 and realize their full potential in the decades beyond? To answer these questions, the Solar Energy Technology Office launched the On the Path to SunShot series in early 2015 in collaboration with the National Renewable Energy Laboratory (NREL) and with contributions from Lawrence Berkeley National Laboratory (LBNL), Sandia National Laboratories (SNL), and Argonne National Laboratory (ANL). The reports focus on the areas of technology development, systems integration, and market enablers.

  18. The effect of shot peening on notched low cycle fatigue

    International Nuclear Information System (INIS)

    Soady, K.A.; Mellor, B.G.; Shackleton, J.; Morris, A.; Reed, P.A.S.

    2011-01-01

    Highlights: → Shot peening improves notched component three point bend low cycle fatigue life. → Notch shape does not affect the efficacy of the peening process. → Strain hardening and residual stress effects need separate consideration. → Loading direction residual stresses do not relax under bend load. - Abstract: The improvement in low cycle fatigue life created by shot peening ferritic heat resistant steel was investigated in components of varying geometries based on those found in conventional power station steam turbine blades. It was found that the shape of the component did not affect the efficacy of the shot peening process, which was found to be beneficial even under the high stress amplitude three point bend loads applied. Furthermore, by varying the shot peening process parameters and considering fatigue life it has been shown that the three surface effects of shot peening; roughening, strain hardening and the generation of a compressive residual stress field must be included in remnant life models as physically separate entities. The compressive residual stress field during plane bending low cycle fatigue has been experimentally determined using X-ray diffraction at varying life fractions and found to be retained in a direction parallel to that of loading and to only relax to 80% of its original magnitude in a direction orthogonal to loading. This result, which contributes to the retention of fatigue life improvement in low cycle fatigue conditions, has been discussed in light of the specific stress distribution applied to the components. The ultimate aim of the research is to apply these results in a life assessment methodology which can be used to justify a reduction in the length of scheduled plant overhauls. This will result in significant cost savings for the generating utility.

  19. Shot Boundary Detection in Soccer Video using Twin-comparison Algorithm and Dominant Color Region

    Directory of Open Access Journals (Sweden)

    Matko Šarić

    2008-06-01

    Full Text Available The first step in generic video processing is temporal segmentation, i.e. shot boundary detection. Camera shot transitions can be either abrupt (e.g. cuts or gradual (e.g. fades, dissolves, wipes. Sports video is one of the most challenging domains for robust shot boundary detection. We proposed a shot boundary detection algorithm for soccer video based on the twin-comparison method and the absolute difference between frames in their ratios of dominant colored pixels to total number of pixels. With this approach the detection of gradual transitions is improved by decreasing the number of false positives caused by some camera operations. We also compared performances of our algorithm and the standard twin-comparison method.

  20. Diffusion-weighted single shot echo planar imaging of colorectal cancer using a sensitivity-encoding technique

    International Nuclear Information System (INIS)

    Nasu, Katsuhiro; Kuroki, Yoshihumi; Murakami, Koji; Nawano, Shigeru; Kuroki, Seiko; Moriyama, Noriyuki

    2004-01-01

    We wanted to determine the feasibility of diffusion-weighted single shot echo planar imaging using a sensitivity encoding diffusion weighted imaging (SENSE-DWI) technique in depicting colorectal cancer. Forty-two patients with sigmoid colon cancer and rectal cancer, all proven pathologically, were examined on T2-turbo spin echo (TSE) and SENSE-DWI. No bowel preparation was performed before examination. The b-factors used in SENSE-DWI were zero and 1000 s/mm 2 . In 10 randomly selected cases, the images whose b-factors were 250 and 500 s/mm 2 were also obtained. The reduction factor of SENSE was 2.0 in all sequences. Two radiologists evaluated the obtained images from the viewpoints of tumor detectability, image distortion and misregistration of the tumors. The apparent diffusion coefficients (ADCs) of the tumors and urine in the urinary bladders in each patient were measured to evaluate the correlation between ADC and pathological classification of each tumor. All tumors were depicted hyperintensely on SENSE-DWI. Even though single shot echo planar imaging (EPI) was used, the image distortion and misregistration was quite pronounced because of simultaneous use of SENSE. On SENSE-DWI whose b-factor was 1000 s/mm 2 , the normal colon wall and feces were always hypointense and easily differentiated from the tumors. The mean ADC value of each tumor was 1.02±0.1 (x 10 -3 ) mm 2 /s. No overt correlation can be pointed out between ADC and pathological classification of each tumor. SENSE-DWI is a feasible method for depicting colorectal cancer. SENSE-DWI provides strong contrast among colorectal cancers, normal rectal wall and feces. (authors)

  1. An edge index for the quantum spin-Hall effect

    International Nuclear Information System (INIS)

    Prodan, Emil

    2009-01-01

    Quantum spin-Hall systems are topological insulators displaying dissipationless spin currents flowing at the edges of the samples. In contradistinction to the quantum Hall systems where the charge conductance of the edge modes is quantized, the spin conductance is not and it remained an open problem to find the observable whose edge current is quantized. In this paper, we define a particular observable and the edge current corresponding to this observable. We show that this current is quantized and that the quantization is given by the index of a certain Fredholm operator. This provides a new topological invariant that is shown to take the generic values 0 and 2, in line with the Z 2 topological classification of time-reversal invariant systems. The result gives an effective tool for the investigation of the edge structure in quantum spin-Hall systems. Based on a reasonable assumption, we also show that the edge conducting channels are not destroyed by a random edge. (fast track communication)

  2. Transfer of mechanical energy during the shot put

    Directory of Open Access Journals (Sweden)

    Błażkiewicz Michalina

    2016-09-01

    Full Text Available The aim of this study was to analyse transfer of mechanical energy between body segments during the glide shot put. A group of eight elite throwers from the Polish National Team was analysed in the study. Motion analysis of each throw was recorded using an optoelectronic Vicon system composed of nine infrared camcorders and Kistler force plates. The power and energy were computed for the phase of final acceleration of the glide shot put. The data were normalized with respect to time using the algorithm of the fifth order spline and their values were interpolated with respect to the percentage of total time, assuming that the time of the final weight acceleration movement was different for each putter. Statistically significant transfer was found in the study group between the following segments: Right Knee – Right Hip (p = 0.0035, Left Hip - Torso (p = 0.0201, Torso – Right Shoulder (p = 0.0122 and Right Elbow – Right Wrist (p = 0.0001. Furthermore, the results of cluster analysis showed that the kinetic chain used during the final shot acceleration movement had two different models. Differences between the groups were revealed mainly in the energy generated by the hips and trunk.

  3. Mapping of spin wave propagation in a one-dimensional magnonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ordóñez-Romero, César L., E-mail: cloro@fisica.unam.mx; Lazcano-Ortiz, Zorayda; Aguilar-Huerta, Melisa; Monsivais, Guillermo [Instituto de Física, Universidad Nacional Autónoma de México, CU, México D.F. 04510 (Mexico); Drozdovskii, Andrey; Kalinikos, Boris [St. Petersburg Electrotechnical University, 197376 St. Petersburg (Russian Federation); International laboratory “MultiferrLab,” ITMO University, 197101 St. Petersburg (Russian Federation); Domínguez-Juárez, J. L. [Cátedras CONACyT, CFATA, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230 (Mexico); Lopez-Maldonado, Guillermo [Universidad Autónoma Metropolitana, Lerma de Villada, 52006 Estado de México (Mexico); Qureshi, Naser; Kolokoltsev, Oleg [CCADET, Universidad Nacional Autónoma de México, CU, México D.F. 04510 (Mexico)

    2016-07-28

    The formation and evolution of spin wave band gaps in the transmission spectrum of a magnonic crystal have been studied. A time and space resolved magneto inductive probing system has been used to map the spin wave propagation and evolution in a geometrically structured yttrium iron garnet film. Experiments have been carried out using (1) a chemically etched magnonic crystal supporting the propagation of magnetostatic surface spin waves, (2) a short microwave pulsed excitation of the spin waves, and (3) direct spin wave detection using a movable magneto inductive probe connected to a synchronized fast oscilloscope. The results show that the periodic structure not only modifies the spectra of the transmitted spin waves but also influences the distribution of the spin wave energy inside the magnonic crystal as a function of the position and the transmitted frequency. These results comprise an experimental confirmation of Bloch′s theorem in a spin wave system and demonstrate good agreement with theoretical observations in analogue phononic and photonic systems. Theoretical prediction of the structured transmission spectra is achieved using a simple model based on microwave transmission lines theory. Here, a spin wave system illustrates in detail the evolution of a much more general physical concept: the band gap.

  4. The role of MR imaging with Half Fourier Acquired Single Shot Turbo Spin Echo sequence in the diagnosis of lung lesions in comparison with multislice CT

    International Nuclear Information System (INIS)

    Hekimoglu, B.; Gurgen, F.; Tatar, I.G.; Aydin, H.; Kizilgoz, V.; Keyik, B.

    2013-01-01

    Objective: To compare the diagnostic values of magnetic resonance imaging using Half Fourier Acquired Single Shot Turbo Spin Echo sequence and multidetector computed tomography in patients with pathologically examined pulmonary lesions. Methods: The retrospective, descriptive study was conducted at Radiology Department, Diskapi Research Hospital, Ankara, Turkey, and comprised records of patients with pathologically examined pulmonary lesions between May 2009 and March 2012. Patients were divided into three groups and examined by both multi dedector computed tomography and magnetic resonance imaging. During the imaging, patients were not administered any intravenous contrast medium. Electrocardiogram gating and breath holding were not performed in echo sequence. Pulmonary lesions were evaluated on the basis of their dimensions, numbers, differentiation from atelectasis and consolidation, invasion to the thoracic wall-mediastinal structures and presence of lymphadenopathies. Results: Sensitivity of all patients was 50% (p=0.214) and specificity of CT and MRI were 82.5% (p=0.134) for the detectability of submilimetric nodules . For differentiation of the mass from atelectasis and consolidation, the sensitivity of computed tomography was statistically more significant compared to magnetic resonance imaging (86.6%; p=0.035). For the invasion of the mass to the mediastinal structures and the thoracic wall, the sensitivity of magnetic resonance imaging was statistically more significant compared to tomography (86.6%; p=0.035). Conclusion: HASTE sequence can be used to determine the invasion of the pulmonary mass to the mediastinal structures and the thoracic wall since it is more sensitive than computed tomography. It can also be used to detect submilimetric nodules. It has equal sensitivity and specificity compared to computed tomography. But computed tomography is superior for the differentiation of the mass from atelectasis and consolidation. (author)

  5. Feature Selection Methods for Zero-Shot Learning of Neural Activity

    Directory of Open Access Journals (Sweden)

    Carlos A. Caceres

    2017-06-01

    Full Text Available Dimensionality poses a serious challenge when making predictions from human neuroimaging data. Across imaging modalities, large pools of potential neural features (e.g., responses from particular voxels, electrodes, and temporal windows have to be related to typically limited sets of stimuli and samples. In recent years, zero-shot prediction models have been introduced for mapping between neural signals and semantic attributes, which allows for classification of stimulus classes not explicitly included in the training set. While choices about feature selection can have a substantial impact when closed-set accuracy, open-set robustness, and runtime are competing design objectives, no systematic study of feature selection for these models has been reported. Instead, a relatively straightforward feature stability approach has been adopted and successfully applied across models and imaging modalities. To characterize the tradeoffs in feature selection for zero-shot learning, we compared correlation-based stability to several other feature selection techniques on comparable data sets from two distinct imaging modalities: functional Magnetic Resonance Imaging and Electrocorticography. While most of the feature selection methods resulted in similar zero-shot prediction accuracies and spatial/spectral patterns of selected features, there was one exception; A novel feature/attribute correlation approach was able to achieve those accuracies with far fewer features, suggesting the potential for simpler prediction models that yield high zero-shot classification accuracy.

  6. Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction

    KAUST Repository

    Ortiz Pauyac, Christian

    2016-06-19

    In the present thesis we introduce the reader to the field of spintronics and explore new phenomena, such as spin transfer torques, spin filtering, and three types of spin-orbit torques, Rashba, spin Hall, and spin swapping, which have emerged very recently and are promising candidates for a new generation of memory devices in computer technology. A general overview of these phenomena is presented in Chap. 1. In Chap. 2 we study spin transfer torques in tunnel junctions in the presence of spin filtering. In Chap. 3 we discuss the Rashba torque in ferromagnetic films, and in Chap. 4 we study spin Hall effect and spin swapping in ferromagnetic films, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives are summarized in Chap. 5.

  7. Spin quenching assisted by a strongly anisotropic compression behavior in MnP

    Energy Technology Data Exchange (ETDEWEB)

    Han, Fei; Wang, Di; Wang, Yonggang; Li, Nana; Bao, Jin-Ke; Li, Bing; Botana, Antia S.; Xiao, Yuming; Chow, Paul; Chung, Duck Young; Chen, Jiuhua; Wan, Xiangang; Kanatzidis, Mercouri G.; Yang, Wenge; Mao, Ho-Kwang

    2018-02-01

    We studied the crystal structure and spin state of MnP under high pressure with synchrotron X-ray diffraction and X-ray emission spectroscopy. MnP has an exceedingly strong anisotropy in compressibility, with the primary compressible direction along the b axis of the Pnma structure. X-ray emission spectroscopy reveals a pressure-driven quenching of the spin state in MnP. First-principles calculations suggest that the strongly anisotropic compression behavior significantly enhances the dispersion of the Mn d-orbitals and the splitting of the d-orbital levels compared to the hypothetical isotropic compression behavior. Thus, we propose spin quenching results mainly from the significant enhancement of the itinerancy of d electrons and partly from spin rearrangement occurring in the split d-orbital levels near the Fermi level. This explains the fast suppression of magnetic ordering in MnP under high pressure. The spin quenching lags behind the occurrence of superconductivity at ~8 GPa implying that spin fluctuations govern the electron pairing for superconductivity.

  8. Effects of shot peening on the residual stress of welded SS400 steel

    International Nuclear Information System (INIS)

    Lee, Jong Man; Kim, Tae Hyung; Cheong, Seong Kyun; Lee, Seung Ho

    2002-01-01

    The fatigue life of structures is usually determined by welding zone. The tensile residual stress, which is induced by welding, reduces the fatigue life and fatigue strength of welded structures. If we remove the tensile residual stress or induce the compressive residual stress, the fatigue life of welded structures will be improved. The change of hardness and compressive residual stress of welded zone after shot peening was investigated in this paper. The results show that the hardness was increased by shot peening. The residual stress was reduced by shot peening

  9. Measurements of the divergence of fast electrons in laser-irradiated spherical targets

    International Nuclear Information System (INIS)

    Yaakobi, B.; Solodov, A. A.; Myatt, J. F.; Delettrez, J. A.; Stoeckl, C.; Froula, D. H.

    2013-01-01

    In recent experiments using directly driven spherical targets on the OMEGA laser system, the energy in fast electrons was found to reach ∼1% of the laser energy at an irradiance of ∼1.1 × 10 15 W/cm 2 . The fraction of these fast electrons absorbed in the compressed fuel shell depends on their angular divergence. This paper describes measurements of this divergence deduced from a series of shots where Mo-coated shells of increasing diameter (D) were suspended within an outer CH shell. The intensity of the Mo–Kα line and the hard x-ray radiation were found to increase approximately as ∼D 2 , indicating wide divergence of the fast electrons. Alternative interpretations of these results (electron scattering, radiation excitation of Kα, and an electric field due to return current) are shown to be unimportant

  10. Irreversible Markov chains in spin models: Topological excitations

    Science.gov (United States)

    Lei, Ze; Krauth, Werner

    2018-01-01

    We analyze the convergence of the irreversible event-chain Monte Carlo algorithm for continuous spin models in the presence of topological excitations. In the two-dimensional XY model, we show that the local nature of the Markov-chain dynamics leads to slow decay of vortex-antivortex correlations while spin waves decorrelate very quickly. Using a Fréchet description of the maximum vortex-antivortex distance, we quantify the contributions of topological excitations to the equilibrium correlations, and show that they vary from a dynamical critical exponent z∼ 2 at the critical temperature to z∼ 0 in the limit of zero temperature. We confirm the event-chain algorithm's fast relaxation (corresponding to z = 0) of spin waves in the harmonic approximation to the XY model. Mixing times (describing the approach towards equilibrium from the least favorable initial state) however remain much larger than equilibrium correlation times at low temperatures. We also describe the respective influence of topological monopole-antimonopole excitations and of spin waves on the event-chain dynamics in the three-dimensional Heisenberg model.

  11. Nanosecond-timescale spin transfer using individual electrons in a quadruple-quantum-dot device

    Energy Technology Data Exchange (ETDEWEB)

    Baart, T. A.; Jovanovic, N.; Vandersypen, L. M. K. [QuTech and Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Reichl, C.; Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)

    2016-07-25

    The ability to coherently transport electron-spin states between different sites of gate-defined semiconductor quantum dots is an essential ingredient for a quantum-dot-based quantum computer. Previous shuttles using electrostatic gating were too slow to move an electron within the spin dephasing time across an array. Here, we report a nanosecond-timescale spin transfer of individual electrons across a quadruple-quantum-dot device. Utilizing enhanced relaxation rates at a so-called hot spot, we can upper bound the shuttle time to at most 150 ns. While actual shuttle times are likely shorter, 150 ns is already fast enough to preserve spin coherence in, e.g., silicon based quantum dots. This work therefore realizes an important prerequisite for coherent spin transfer in quantum dot arrays.

  12. Comparison of Diffusion-Weighted Imaging in the Human Brain Using Readout-Segmented EPI and PROPELLER Turbo Spin Echo With Single-Shot EPI at 7 T MRI.

    Science.gov (United States)

    Kida, Ikuhiro; Ueguchi, Takashi; Matsuoka, Yuichiro; Zhou, Kun; Stemmer, Alto; Porter, David

    2016-07-01

    The purpose of the present study was to compare periodically rotated overlapping parallel lines with enhanced reconstruction-type turbo spin echo diffusion-weighted imaging (pTSE-DWI) and readout-segmented echo planar imaging (rsEPI-DWI) with single-shot echo planar imaging (ssEPI-DWI) in a 7 T human MR system. We evaluated the signal-to-noise ratio (SNR), image distortion, and apparent diffusion coefficient values in the human brain. Six healthy volunteers were included in this study. The study protocol was approved by our institutional review board. All measurements were performed at 7 T using pTSE-DWI, rsEPI-DWI, and ssEPI-DWI sequences. The spatial resolution was 1.2 × 1.2 mm in-plane with a 3-mm slice thickness. Signal-to-noise ratio was measured using 2 scans. The ssEPI-DWI sequence showed significant image blurring, whereas pTSE-DWI and rsEPI-DWI sequences demonstrated high image quality with low geometrical distortion compared with reference T2-weighted, turbo spin echo images. Signal loss in ventral regions near the air-filled paranasal sinus/nasal cavity was found in ssEPI-DWI and rsEPI-DWI but not pTSE-DWI. The apparent diffusion coefficient values for ssEPI-DWI were 824 ± 17 × 10 and 749 ± 25 × 10 mm/s in the gray matter and white matter, respectively; the values obtained for pTSE-DWI were 798 ± 21 × 10 and 865 ± 40 × 10 mm/s; and the values obtained for rsEPI-DWI were 730 ± 12 × 10 and 722 ± 25 × 10 mm/s. The pTSE-DWI images showed no additional distortion comparison to the T2-weighted images, but had a lower SNR than ssEPI-DWI and rsEPI-DWI. The rsEPI-DWI sequence provided high-quality images with minor distortion and a similar SNR to ssEPI-DWI. Our results suggest that the benefits of the rsEPI-DWI and pTSE-DWI sequences, in terms of SNR, image quality, and image distortion, appear to outweigh those of ssEPI-DWI. Thus, pTSE-DWI and rsEPI-DWI at 7 T have great potential use for clinical diagnoses. However, it is noteworthy that both

  13. Gaze Embeddings for Zero-Shot Image Classification

    NARCIS (Netherlands)

    Karessli, N.; Akata, Z.; Schiele, B.; Bulling, A.

    2017-01-01

    Zero-shot image classification using auxiliary information, such as attributes describing discriminative object properties, requires time-consuming annotation by domain experts. We instead propose a method that relies on human gaze as auxiliary information, exploiting that even non-expert users have

  14. Quantitative evaluation of benign and malignant vertebral fractures with diffusion-weighted MRI: what is the optimum combination of b values for ADC-based lesion differentiation with the single-shot turbo spin-echo sequence?

    Science.gov (United States)

    Geith, Tobias; Schmidt, Gerwin; Biffar, Andreas; Dietrich, Olaf; Duerr, Hans Roland; Reiser, Maximilian; Baur-Melnyk, Andrea

    2014-09-01

    The purpose of our study was to determine the optimum combination of b values for calculating the apparent diffusion coefficient (ADC) using a diffusion-weighted (DW) single-shot turbo spin-echo (TSE) sequence in the differentiation between acute benign and malignant vertebral body fractures. Twenty-six patients with osteoporotic (mean age, 69 years; range, 31.5-86.2 years) and 20 patients with malignant vertebral fractures (mean age, 63.4 years; range, 24.7-86.4 years) were studied. T1-weighted, STIR, and T2-weighted sequences were acquired at 1.5 T. A DW single-shot TSE sequence at different b values (100, 250, 400, and 600 s/mm(2)) was applied. On the DW images for each evaluated fracture, an ROI was manually adapted to the area of hyperintense signal intensity on STIR-hypointense signal on T1-weighted images. For each ROI, nine different combinations of two, three, and four b values were used to calculate the ADC using a least-squares algorithm. The Student t test and Mann-Whitney U test were used to determine significant differences between benign and malignant fractures. An ROC analysis and the Youden index were used to determine cutoff values for assessment of the highest sensitivity and specificity for the different ADC values. The positive (PPV) and negative predictive values (NPV) were also determined. All calculated ADCs (except the combination of b = 400 s/mm(2) and b = 600 s/mm(2)) showed statistically significant differences between benign and malignant vertebral body fractures, with benign fractures having higher ADCs than malignant ones. The use of higher b values resulted in lower ADCs than those calculated with low b values. The highest AUC (0.85) showed the ADCs calculated with b = 100 and 400 s/mm(2), and the second highest AUC (0.829) showed the ADCs calculated with b = 100, 250, and 400 s/mm(2). The Youden index with equal weight given to sensitivity and specificity suggests use of an ADC calculated with b = 100, 250, and 400 s/mm(2) (cutoff

  15. Developments of optical fast-gated imaging systems

    International Nuclear Information System (INIS)

    Koehler, H.A.; Kotecki, D.

    1984-08-01

    Several fast-gated imaging systems to measure ultra-fast single-transient data have been developed for time-resolved imaging of pulsed radiation sources. These systems were designed to achieve image recording times of 1 to 3 ms and dynamic ranges of >200:1 to produce large two-dimensional images (greater than or equal to 10 4 spatial points) of 1 to 2 ns exposure and small two-dimensional images (less than or equal to 200 spatial points) of less than or equal to 0.5 ns exposure. Both MCP intensified solid-state two-dimensional framing cameras and streak camera/solid-state camera systems were used; the framing camera system provides snap shots with high spatial resolution whereas the streak camera system provides for limited spatial points each with high temporal resolution. Applications of these systems include electron-beam, x-ray, gamma-ray, and neutron diagnostics. This report reviews the characteristics of the major components of fast-gated imaging systems developed at Lawrence Livermore National Laboratory. System performances are described in view of major experiments, and the diagnostic requirements of new experiments in atomic physics (x-ray lasers) and nuclear physics (fusion) are indicated

  16. Using deep neural networks to augment NIF post-shot analysis

    Science.gov (United States)

    Humbird, Kelli; Peterson, Luc; McClarren, Ryan; Field, John; Gaffney, Jim; Kruse, Michael; Nora, Ryan; Spears, Brian

    2017-10-01

    Post-shot analysis of National Ignition Facility (NIF) experiments is the process of determining which simulation inputs yield results consistent with experimental observations. This analysis is typically accomplished by running suites of manually adjusted simulations, or Monte Carlo sampling surrogate models that approximate the response surfaces of the physics code. These approaches are expensive and often find simulations that match only a small subset of observables simultaneously. We demonstrate an alternative method for performing post-shot analysis using inverse models, which map directly from experimental observables to simulation inputs with quantified uncertainties. The models are created using a novel machine learning algorithm which automates the construction and initialization of deep neural networks to optimize predictive accuracy. We show how these neural networks, trained on large databases of post-shot simulations, can rigorously quantify the agreement between simulation and experiment. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Spin-polarized spin excitation spectroscopy

    International Nuclear Information System (INIS)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2010-01-01

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  18. Optimization of mass spectrometric parameters improve the identification performance of capillary zone electrophoresis for single-shot bottom-up proteomics analysis.

    Science.gov (United States)

    Zhang, Zhenbin; Dovichi, Norman J

    2018-02-25

    The effects of MS1 injection time, MS2 injection time, dynamic exclusion time, intensity threshold, and isolation width were investigated on the numbers of peptide and protein identifications for single-shot bottom-up proteomics analysis using CZE-MS/MS analysis of a Xenopus laevis tryptic digest. An electrokinetically pumped nanospray interface was used to couple a linear-polyacrylamide coated capillary to a Q Exactive HF mass spectrometer. A sensitive method that used a 1.4 Th isolation width, 60,000 MS2 resolution, 110 ms MS2 injection time, and a top 7 fragmentation produced the largest number of identifications when the CZE loading amount was less than 100 ng. A programmable autogain control method (pAGC) that used a 1.4 Th isolation width, 15,000 MS2 resolution, 110 ms MS2 injection time, and top 10 fragmentation produced the largest number of identifications for CZE loading amounts greater than 100 ng; 7218 unique peptides and 1653 protein groups were identified from 200 ng by using the pAGC method. The effect of mass spectrometer conditions on the performance of UPLC-MS/MS was also investigated. A fast method that used a 1.4 Th isolation width, 30,000 MS2 resolution, 45 ms MS2 injection time, and top 12 fragmentation produced the largest number of identifications for 200 ng UPLC loading amount (6025 unique peptides and 1501 protein groups). This is the first report where the identification number for CZE surpasses that of the UPLC at the 200 ng loading level. However, more peptides (11476) and protein groups (2378) were identified by using UPLC-MS/MS when the sample loading amount was increased to 2 μg with the fast method. To exploit the fast scan speed of the Q-Exactive HF mass spectrometer, higher sample loading amounts are required for single-shot bottom-up proteomics analysis using CZE-MS/MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Duopoly Market Analysis within One-Shot Decision Framework with Asymmetric Possibilistic Information

    Directory of Open Access Journals (Sweden)

    Peijun Guo

    2010-12-01

    Full Text Available In this paper, a newly emerging duopoly market with a short life cycle is analyzed. The partially known information of market is characterized by the possibility distribution of the parameter in the demand function. Since the life cycle of the new product is short, how many products should be produced by two rival firms is a typical one-shot decision problem. Within the one-shot decision framework, the possibilistic Cournot equilibrium is obtained for the optimal production level of each firm in a duopoly market with asymmetrical possibilistic information. The analysis results show that the proposed approaches are reasonable for one-shot decision problems, which are extensively encountered in business and economics.

  20. Magnetic resonance cisternography using the fast spin echo method for the evaluation of vestibular schwannoma

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, Shigeru; Yokoyama, Tetsuo; Uemura, Kenichi [Hamamatsu Univ. School of Medicine, Shizuoka (Japan)

    1999-04-01

    Neuroimaging of vestibular schwannoma was performed with the fat-suppression spoiled gradient recalled acquisition in the steady state (SPGR) method and magnetic resonance (MR) cisternography, which is a fast spin echo method using a long echo train length, for the preoperative evaluation of the lateral extension of the tumor in the internal auditory canal, and the anatomical identification of the posterior semicircular canal and the nerves in the canal distal to the tumor. The SPGR method overestimated the lateral extension in eight cases, probably because of enhancement of the nerves adjacent to the tumor in the canal. The posterior semicircular canal could not be clearly identified, and the cranial nerves in the canal were shown only as a nerve bundle. In contrast, MR cisternography showed clear images of the lateral extension of the tumor and the facial and cochlear nerves adjacent to the tumor in the internal auditory canal. The anatomical location of the posterior semicircular canal was also clearly shown. These preoperative findings are very useful to plan the extent to which the internal auditory canal can be opened, and for intraoperative identification of the nerves in the canal. MR cisternography is less invasive since no contrast material or radiation is required, as with thin-slice high-resolution computed tomography (CT). MR cisternography should replace high-resolution CT for the preoperative neuroradiological evaluation of vestibular schwannoma. (author)

  1. Zero-Shot Style Transfer in Text Using Recurrent Neural Networks

    OpenAIRE

    Carlson, Keith; Riddell, Allen; Rockmore, Daniel

    2017-01-01

    Zero-shot translation is the task of translating between a language pair where no aligned data for the pair is provided during training. In this work we employ a model that creates paraphrases which are written in the style of another existing text. Since we provide the model with no paired examples from the source style to the target style during training, we call this task zero-shot style transfer. Herein, we identify a high-quality source of aligned, stylistically distinct text in Bible ve...

  2. Temperature dependence of fluctuation time scales in spin glasses

    DEFF Research Database (Denmark)

    Kenning, Gregory G.; Bowen, J.; Sibani, Paolo

    2010-01-01

    Using a series of fast cooling protocols we have probed aging effects in the spin glass state as a function of temperature. Analyzing the logarithmic decay found at very long time scales within a simple phenomenological barrier model, leads to the extraction of the fluctuation time scale of the s...

  3. Spin current and spin transfer torque in ferromagnet/superconductor spin valves

    Science.gov (United States)

    Moen, Evan; Valls, Oriol T.

    2018-05-01

    Using fully self-consistent methods, we study spin transport in fabricable spin valve systems consisting of two magnetic layers, a superconducting layer, and a spacer normal layer between the ferromagnets. Our methods ensure that the proper relations between spin current gradients and spin transfer torques are satisfied. We present results as a function of geometrical parameters, interfacial barrier values, misalignment angle between the ferromagnets, and bias voltage. Our main results are for the spin current and spin accumulation as functions of position within the spin valve structure. We see precession of the spin current about the exchange fields within the ferromagnets, and penetration of the spin current into the superconductor for biases greater than the critical bias, defined in the text. The spin accumulation exhibits oscillating behavior in the normal metal, with a strong dependence on the physical parameters both as to the structure and formation of the peaks. We also study the bias dependence of the spatially averaged spin transfer torque and spin accumulation. We examine the critical-bias effect of these quantities, and their dependence on the physical parameters. Our results are predictive of the outcome of future experiments, as they take into account imperfect interfaces and a realistic geometry.

  4. Different intensities of basketball drills affect jump shot accuracy of expert and junior players

    Directory of Open Access Journals (Sweden)

    Giuseppe Marcolin

    2018-02-01

    Full Text Available Background In basketball a maximum accuracy at every game intensity is required while shooting. The aim of the present study was to investigate the acute effect of three different drill intensity simulation protocols on jump shot accuracy in expert and junior basketball players. Materials & Methods Eleven expert players (age 26 ± 6 yrs, weight 86 ± 11 kg, height 192 ± 8 cm and ten junior players (age 18 ± 1 yrs, weight 75 ± 12 kg, height 184 ± 9 cm completed three series of twenty jump shots at three different levels of exertion. Counter Movement Jump (CMJ height was also measured after each series of jump shots. Exertion’s intensity was induced manipulating the basketball drills. Heart rate was measured for the whole duration of the tests while the rating of perceived exertion (RPE was collected at the end of each series of shots. Results Heart rate and rating of perceived exertion (RPE were statistically different in the three conditions for both expert and junior players. CMJ height remained almost unchanged in both groups. Jump shot accuracy decreased with increasing drills intensity both in experts and junior players. Expert players showed higher accuracy than junior players for all the three levels of exertion (83% vs 64%, p < 0.001; 75% vs 57%, p < 0.05; 76% vs 60%, p < 0.01. Moreover, for the most demanding level of exertion, experts showed a higher accuracy in the last ten shots compared to the first ten shots (82% vs 70%, p < 0.05. Discussion Experts coped better with the different exertion’s intensities, thus maintaining a higher level of performance. The introduction of technical short bouts of high-intensity sport-specific exercises into skill sessions should be proposed to improve jump shot accuracy during matches.

  5. First-time viewers' comprehension of films: bridging shot transitions.

    Science.gov (United States)

    Ildirar, Sermin; Schwan, Stephan

    2015-02-01

    Which perceptual and cognitive prerequisites must be met in order to be able to comprehend a film is still unresolved and a controversial issue. In order to gain some insights into this issue, our field experiment investigates how first-time adult viewers extract and integrate meaningful information across film cuts. Three major types of commonalities between adjacent shots were differentiated, which may help first-time viewers with bridging the shots: pictorial, causal, and conceptual. Twenty first-time, 20 low-experienced and 20 high-experienced viewers from Turkey were shown a set of short film clips containing these three kinds of commonalities. Film clips conformed also to the principles of continuity editing. Analyses of viewers' spontaneous interpretations show that first-time viewers indeed are able to notice basic pictorial (object identity), causal (chains of activity), as well as conceptual (links between gaze direction and object attention) commonalities between shots due to their close relationship with everyday perception and cognition. However, first-time viewers' comprehension of the commonalities is to a large degree fragile, indicating the lack of a basic notion of what constitutes a film. © 2014 The British Psychological Society.

  6. Shot-Peening Effect on High Cycling Fatigue of Al-Cu Alloy

    Science.gov (United States)

    Fouad, Yasser; Metwally, Mostafa El

    2013-12-01

    The present work was aimed at evaluating the effects of shot-peening on the high cycle fatigue performance of the age-hardening aircraft alloy Al 2024 at different almen intensities. Shot-peening to full coverage (100 pct) was performed using spherically conditioned cut wire (SCCW 14) with an average shot size of 0.36 mm and at almen intensities of 0.1, 0.2, and 0.3 mmA. After applying the various mechanical surface treatments, the changes in the surface and near-surface layer properties such as microhardness, residual stress-depth profiles, and surface roughness were determined. The microhardness, surface roughness, and the residual stresses increased proportionally with the almen intensity. Electropolitically polished conditions were used as reference in the mechanically surface treated specimens. A significant improvement was seen in the fatigue performance of the 0.1 mmA.

  7. The single-shot opto-digitizer

    International Nuclear Information System (INIS)

    Nail, M.; Gibert, Ph.

    2000-01-01

    Laser-plasma experiments need to measure signals provided either by X-ray, photonic or neutronic detector. The measurement should have 50 GHz bandwidth and up to several hundred of Giga-Hertz for sub picosecond plasmas. For this purpose, a 35 GHz single shot opto-digitizer (10 ps risetime) has been studied and built. The device is made up of a 50 ohms microstrip propagation line, periodically lined by 100 sampled gates. The propagation line is long enough to measure a 400 ps duration. The sampling rate is 250 Gsa/s (every 4 ps). The sampled gates are made with fast recombining photo-material and turn on by a subpicosecond laser pulse which is synchronized exactly with the analysed phenomena. Every gate is recording to a storing capacitor. After the recording, every capacitor charge is needed to built the signal that was displayed on the propagation line. The dynamic range of measurement is 47 for the entire device. The device can measure positive or negative signals from 1.5 to 70 Volts. To increase the bandwidth, two another kinds of opto-digitizer were studied: one is a buried stripline with 56 GHz band width, the other a 70 GHz coplanar transmission line. For the purpose of subpicosecond plasmas, a 30 coplanar waveguide opto-digitizer was studied. Characteristics are as followed: window of measurement 40 ps, sampling rate 1 ps, bandwidth 230 GHz. Finally, a bundle of optical fibers was used to propagate the laser beam on semiconductor gates. If the gates are lighted at the same time, i.e. if the optical fibers have the same length, we get a simultaneous addressing. By using different lengths of optical fibers, we can do a sequential addressing. So, the sampling rate becomes a combination of the distance between two adjacent sampled channels, and the difference in length of optical fibers. (author)

  8. Single-Shot Spectrometry for X-Ray Free-Electron Lasers

    International Nuclear Information System (INIS)

    Yabashi, Makina; Ishikawa, Tetsuya; Hastings, Jerome B.; Zolotorev, Max S.; Mimura, Hidekazu; Yumoto, Hirokatsu; Matsuyama, Satoshi; Yamauchi, Kazuto

    2006-01-01

    An experimental scheme to realize single-shot spectrometry for the diagnostics of x-ray free-electron lasers (XFELs) is presented. The combination of an ultraprecisely figured mirror and a perfect crystal form a simple, high-precision spectrometer that can cover an energy range from a few eV to a hundred eV with high resolution. The application of the spectrometer to determine XFEL pulse widths was investigated theoretically and experimentally. It has been shown that the present system can determine pulse widths from sub-fs to ps in a single shot even for spontaneous radiation. The system can be easily extended to even shorter pulses

  9. The time window of MRI of murine atherosclerotic plaques after administration of CB2 receptor targeted micelles: inter-scan variability and relation between plaque signal intensity increase and gadolinium content of inversion recovery prepared versus non-prepared fast spin echo

    NARCIS (Netherlands)

    te Boekhorst, B. C. M.; Bovens, S. M.; van de Kolk, C. W. A.; Cramer, M. J. M.; Doevendans, P. A. F. M.; ten Hove, M.; van der Weerd, L.; Poelmann, R.; Strijkers, G. J.; Pasterkamp, G.; van Echteld, C. J. A.

    2010-01-01

    Single fast spin echo scans covering limited time frames are mostly used for contrast-enhanced MRI of atherosclerotic plaque biomarkers. Knowledge on inter-scan variability of the normalized enhancement ratio of plaque (NER(plaque)) and relation between NER(plaque) and gadolinium content for

  10. LARGE SUPER-FAST ROTATOR HUNTING USING THE INTERMEDIATE PALOMAR TRANSIENT FACTORY

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen [Institute of Astronomy, National Central University, Jhongli, Taiwan (China); Prince, Thomas A.; Kulkarni, Shrinivas R.; Levitan, David [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Laher, Russ; Surace, Jason, E-mail: rex@astro.ncu.edu.tw [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States)

    2016-12-01

    In order to look for large super-fast rotators, in late 2014 and early 2015, five dedicated surveys covering ∼188 deg{sup 2} in the ecliptic plane have been carried out in the R -band, with ∼10 minute cadence using the intermediate Palomar Transient Factory. Among 1029 reliable rotation periods obtained from the surveys, we discovered 1 new large super-fast rotator, (40511) 1999 RE88, and 18 other candidates. (40511) 1999 RE88 is an S-type inner main-belt asteroid with a diameter of D  = 1.9 ± 0.3 km, a rotation period of P  = 1.96 ± 0.01 hr, and a light curve amplitude of Δ m  ∼ 1.0 mag. To maintain such fast rotation, an internal cohesive strength of ∼780 Pa is required. Combining all known large super-fast rotators, their cohesive strengths all fall in the range of 100–1000 Pa of lunar regolith. However, the number of large super-fast rotators seems to be far less than the whole asteroid population. This might indicate a peculiar asteroid group for them. Although the detection efficiency for a long rotation period is greatly reduced due to our two-day observation time span, the spin-rate distributions of this work show consistent results with Chang et al. (2015), after considering the possible observational bias in our surveys. It shows a number decrease with an increase of spin rate for asteroids with a diameter of 3 ⩽  D  ⩽ 15 km, and a number drop at a spin rate of f  = 5 rev day{sup −1} for asteroids with D  ⩽ 3 km.

  11. Effect of Shot Peening on Tribological Behaviors of Molybdenum-Thermal Spray Coating using HVOF Method

    Directory of Open Access Journals (Sweden)

    H. Mohassel

    2017-03-01

    Full Text Available We have investigated the influence of post-shot peening on Mo-coating as compared to substrate steel 16MnCr5 (according to ZFN-413 A. Shot peening of carburized steel discs with and without Mo-coating was performed by using Shot size S230, Almen intensity 0.42 mm ’A’ and exposure time 96 sec. Tribological properties were analyzed, using pin-on-disc tribometer apparatus, under dry sliding conditions at different specific applied loads, sliding velocities and distance. Typical standardized methods were used for studying of surface integrity parameters (micro-hardness, topography and surface roughness. Surface morphology of the Mo-coating specimens with and without Shot Peening before and after wear was evaluated by Scanning Electron Microscopy. The results showed that shot peening after Mo-coating has considerable effect on improving wear resistance and because of having low friction coefficient has showed better wear behavior and tribologi cal properties over that of the un-peened Mo-coating.

  12. Shot noise and electronic properties in the inversion-symmetric Weyl semimetal resonant structure

    Science.gov (United States)

    Yang, Yanling; Bai, Chunxu; Xu, Xiaoguang; Jiang, Yong

    2018-02-01

    Using the transfer matrix method, the authors combine the analytical formula with numerical calculation to explore the shot noise and conductance of massless Weyl fermions in the Weyl semimetal resonant junction. By varying the barrier strength, the structure of the junction, the Fermi energy, and the crystallographic angle, the shot noise and conductance can be tuned efficiently. For a quasiperiodic superlattice, in complete contrast to the conventional junction case, the effect of the disorder strength on the shot noise and conductance depends on the competition of classical tunneling and Klein tunneling. Moreover, the delta barrier structure is also vital in determining the shot noise and conductance. In particular, a universal Fano factor has been found in a single delta potential case, whereas the resonant structure of the Fano factor perfectly matches with the number of barriers in a delta potential superlattice. These results are crucial for engineering nanoelectronic devices based on this topological semimetal material.

  13. Preparation of Ultracold Atom Clouds at the Shot Noise Level

    DEFF Research Database (Denmark)

    Gajdacz, M.; Hilliard, A. J.; Kristensen, Mick

    2016-01-01

    We prepare number stabilized ultracold atom clouds through the real-time analysis of nondestructive images and the application of feedback. In our experiments, the atom number N∼10^6 is determined by high precision Faraday imaging with uncertainty ΔN below the shot noise level, i.e., ΔN... on this measurement, feedback is applied to reduce the atom number to a user-defined target, whereupon a second imaging series probes the number stabilized cloud. By this method, we show that the atom number in ultracold clouds can be prepared below the shot noise level....

  14. Polio and the Vaccine (Shot) to Prevent It

    Science.gov (United States)

    ... and Teen Vaccine Resources Related Links Vaccines & Immunizations Polio and the Vaccine (Shot) to Prevent It Language: ... recommend all children get the vaccine. What is polio? Polio (or poliomyelitis) is a disease caused by ...

  15. Clarifying beliefs underlying hunter intentions to support a ban on lead shot

    Science.gov (United States)

    Schroeder, Susan A.; Fulton, David C.; Doncarlos, Kathy

    2016-01-01

    Shot from hunting adds toxic lead to environments worldwide. Existing lead shot regulations have been instituted with little understanding of hunter beliefs and attitudes. This study applied the Theory of Reasoned Action, using a multilevel, multivariate approach, to clarify how positive and negative beliefs relate to attitudes about a ban on lead shot. Structure coefficients and commonality analysis were employed to further examine relationships between beliefs and attitudes. Results suggest that while both positive and negative outcomes influence attitudes, positive outcomes were more influential for supporters and negative beliefs for opposers. Management may need to focus on the results from hunters who indicated that they would be unlikely to support a ban, as these hunters include those who may actively oppose additional efforts to regulate lead.

  16. Space based lidar shot pattern targeting strategies for small targets such as streams

    Science.gov (United States)

    Spiers, Gary D.

    2001-01-01

    An analysis of the effectiveness of four different types of lidar shot distribution is conducted to determine which is best for concentrating shots in a given location. A simple preemptive targeting strategy is found to work as adequately as a more involved dynamic strategy for most target sizes considered.

  17. Coupling between Current and Dynamic Magnetization : from Domain Walls to Spin Waves

    Science.gov (United States)

    Lucassen, M. E.

    2012-05-01

    So far, we have derived some general expressions for domain-wall motion and the spin motive force. We have seen that the β parameter plays a large role in both subjects. In all chapters of this thesis, there is an emphasis on the determination of this parameter. We also know how to incorporate thermal fluctuations for rigid domain walls, as shown above. In Chapter 2, we study a different kind of fluctuations: shot noise. This noise is caused by the fact that an electric current consists of electrons, and therefore has fluctuations. In the process, we also compute transmission and reflection coefficients for a rigid domain wall, and from them the linear momentum transfer. More work on fluctuations is done in Chapter 3. Here, we consider a (extrinsically pinned) rigid domain wall under the influence of thermal fluctuations that induces a current via spin motive force. We compute how the resulting noise in the current is related to the β parameter. In Chapter 4 we look into in more detail into the spin motive forces from field driven domain walls. Using micro magnetic simulations, we compute the spin motive force due to vortex domain walls explicitly. As mentioned before, this gives qualitatively different results than for a rigid domain wall. The final subject in Chapter 5 is the application of the general expression for spin motive forces to magnons. Although this might seem to be unrelated to domain-wall motion, this calculation allows us to relate the β parameter to macroscopic transport coefficients. This work was supported by Stichting voor Fundamenteel Onderzoek der Materie (FOM), the Netherlands Organization for Scientific Research (NWO), and by the European Research Council (ERC) under the Seventh Framework Program (FP7).

  18. Astronomers Discover Fastest-Spinning Pulsar

    Science.gov (United States)

    2006-01-01

    discovered in 1982. For reference, the fastest speeds of common kitchen blenders are 250-500 Hz. The scientists say the object's fast rotation speed means that it cannot be any larger than about 20 miles across. According to Hessels, "If it were any larger, material from the surface would be flung into orbit around the star." The scientists' calculation assumed that the neutron star contains less than two times the mass of the Sun, an assumption that is consistent with the masses of all known neutron stars. The spinning pulsar has a companion star that orbits it once every 26 hours. The companion passes in front of the pulsar, eclipsing the pulsar about 40 percent of the time. The long eclipse period, probably due to bloating of the companion, makes it difficult for the astronomers to learn details of the orbital configuration that would allow them to precisely measure the masses of the pulsar and its companion. "If we could pin down these masses more precisely, we could then get a better limit on the size of the pulsar. That, in turn, would then give us a better figure for the true density inside the neutron star," explained Ingrid Stairs, an assistant professor at the University of British Columbia and another collaborator on the work. Competing theoretical models for the types and distributions of elementary particles inside neutron stars make widely different predictions about the pressure and density of such an object. "We want observational data that shows which models fit the reality of nature," Hessels said. If the scientists can't use PSR J1748-2446ad to do that, they are hopeful some of its near neighbors will yield the data they seek. Using the GBT, the astronomers so far have found 30 new fast "millisecond pulsars" in the cluster Terzan 5, making 33 pulsars known in the cluster in total. This is the largest number of such pulsars ever found in a single globular cluster. Dense globular clusters of stars are excellent places to find fast-rotating millisecond

  19. Gun Shot Wound to the Chest of a Military Working Dog

    Science.gov (United States)

    2009-06-01

    special care ought to be taken when either human or dog is on isolation precautions. Also, animals without airway compromise should be muzzled , as...Gun Shot Wound to Chest of Military Working Dog Military Medicine Radiology Corner, Volume 174, June, 2009 Radiology Corner Gun Shot Wound to...the Chest of a Military Working Dog Guarantor: 2LT Meghan Galer, MSC, USA1 Contributors: 2LT Meghan Galer, MSC, USA1; Donna Magid, MD, MEd2; Les

  20. Attempt to explain black hole spin in X-ray binaries by new physics

    International Nuclear Information System (INIS)

    Bambi, Cosimo

    2015-01-01

    It is widely believed that the spin of black holes in X-ray binaries is mainly natal. A significant spin-up from accretion is not possible. If the secondary has a low mass, the black hole spin cannot change too much even if the black hole swallows the whole stellar companion. If the secondary has a high mass, its lifetime is too short to transfer the necessary amount of matter and spin the black hole up. However, while black holes formed from the collapse of a massive star with solarmetallicity are expected to have low birth spin, current spin measurements show that some black holes in X-ray binaries are rotating very rapidly. Here we show that, if these objects are not the Kerr black holes of general relativity, the accretion of a small amount of matter (∝2 M s un) can make them look like very fast-rotating Kerr black holes. Such a possibility is not in contradiction with any observation and it can explain current spin measurements in a very simple way. (orig.)

  1. A Shot Number Based Approach to Performance Analysis in Table Tennis

    Directory of Open Access Journals (Sweden)

    Tamaki Sho

    2017-01-01

    Full Text Available The current study proposes a novel approach that improves the conventional performance analysis in table tennis by introducing the concept of frequency, or the number of shots, of each shot number. The improvements over the conventional method are as follows: better accuracy of the evaluation of skills and tactics of players, additional insights into scoring and returning skills and ease of understanding the results with a single criterion. The performance analysis of matches played at the 2012 Summer Olympics in London was conducted using the proposed method. The results showed some effects of the shot number and gender differences in table tennis. Furthermore, comparisons were made between Chinese players and players from other countries, what threw light on the skills and tactics of the Chinese players. The present findings demonstrate that the proposed method provides useful information and has some advantages over the conventional method.

  2. Is Attribute-Based Zero-Shot Learning an Ill-Posed Strategy?

    KAUST Repository

    Alabdulmohsin, Ibrahim; Cisse, Moustapha; Zhang, Xiangliang

    2016-01-01

    One transfer learning approach that has gained a wide popularity lately is attribute-based zero-shot learning. Its goal is to learn novel classes that were never seen during the training stage. The classical route towards realizing this goal is to incorporate a prior knowledge, in the form of a semantic embedding of classes, and to learn to predict classes indirectly via their semantic attributes. Despite the amount of research devoted to this subject lately, no known algorithm has yet reported a predictive accuracy that could exceed the accuracy of supervised learning with very few training examples. For instance, the direct attribute prediction (DAP) algorithm, which forms a standard baseline for the task, is known to be as accurate as supervised learning when as few as two examples from each hidden class are used for training on some popular benchmark datasets! In this paper, we argue that this lack of significant results in the literature is not a coincidence; attribute-based zero-shot learning is fundamentally an ill-posed strategy. The key insight is the observation that the mechanical task of predicting an attribute is, in fact, quite different from the epistemological task of learning the “correct meaning” of the attribute itself. This renders attribute-based zero-shot learning fundamentally ill-posed. In more precise mathematical terms, attribute-based zero-shot learning is equivalent to the mirage goal of learning with respect to one distribution of instances, with the hope of being able to predict with respect to any arbitrary distribution. We demonstrate this overlooked fact on some synthetic and real datasets. The data and software related to this paper are available at https://mine. kaust.edu.sa/Pages/zero-shot-learning.aspx. © Springer International Publishing AG 2016.

  3. Is Attribute-Based Zero-Shot Learning an Ill-Posed Strategy?

    KAUST Repository

    Alabdulmohsin, Ibrahim

    2016-09-03

    One transfer learning approach that has gained a wide popularity lately is attribute-based zero-shot learning. Its goal is to learn novel classes that were never seen during the training stage. The classical route towards realizing this goal is to incorporate a prior knowledge, in the form of a semantic embedding of classes, and to learn to predict classes indirectly via their semantic attributes. Despite the amount of research devoted to this subject lately, no known algorithm has yet reported a predictive accuracy that could exceed the accuracy of supervised learning with very few training examples. For instance, the direct attribute prediction (DAP) algorithm, which forms a standard baseline for the task, is known to be as accurate as supervised learning when as few as two examples from each hidden class are used for training on some popular benchmark datasets! In this paper, we argue that this lack of significant results in the literature is not a coincidence; attribute-based zero-shot learning is fundamentally an ill-posed strategy. The key insight is the observation that the mechanical task of predicting an attribute is, in fact, quite different from the epistemological task of learning the “correct meaning” of the attribute itself. This renders attribute-based zero-shot learning fundamentally ill-posed. In more precise mathematical terms, attribute-based zero-shot learning is equivalent to the mirage goal of learning with respect to one distribution of instances, with the hope of being able to predict with respect to any arbitrary distribution. We demonstrate this overlooked fact on some synthetic and real datasets. The data and software related to this paper are available at https://mine. kaust.edu.sa/Pages/zero-shot-learning.aspx. © Springer International Publishing AG 2016.

  4. Spin current evolution in the separated spin-up and spin-down quantum hydrodynamics

    International Nuclear Information System (INIS)

    Trukhanova, Mariya Iv.

    2015-01-01

    We have developed a method of quantum hydrodynamics (QHD) that describes particles with spin-up and with spin-down in separate. We have derived the equation of the spin current evolution as a part of the set of the quantum hydrodynamics equations that treat particles with different projection of spin on the preferable direction as two different species. We have studied orthogonal propagation of waves in the external magnetic field and determined the contribution of quantum corrections due to the Bohm potential and to magnetization energy of particles with different projections of spin in the spin-current wave dispersion. We have analyzed the limits of weak and strong magnetic fields. - Highlights: • We derive the spin current equation for particles with different projection of spin. • We predict the contribution of Bohm potential to the dynamics of spin current. • We derive the spin-current wave in the system of spin-polarized particles. • We study the propagation of spin-acoustic wave in magnetized dielectrics.

  5. Muonium spin exchange in spin-polarized media: Spin-flip and -nonflip collisions

    International Nuclear Information System (INIS)

    Senba, M.

    1994-01-01

    The transverse relaxation of the muon spin in muonium due to electron spin exchange with a polarized spin-1/2 medium is investigated. Stochastic calculations, which assume that spin exchange is a Poisson process, are carried out for the case where the electron spin polarization of the medium is on the same axis as the applied field. Two precession signals of muonium observed in intermediate fields (B>30 G) are shown to have different relaxation rates which depend on the polarization of the medium. Furthermore, the precession frequencies are shifted by an amount which depends on the spin-nonflip rate. From the two relaxation rates and the frequency shift in intermediate fields, one can determine (i) the encounter rate of muonium and the paramagnetic species, (ii) the polarization of the medium, and most importantly (iii) the quantum-mechanical phase shift (and its sign) associated with the potential energy difference between electron singlet and triplet encounters. Effects of spin-nonflip collisions on spin dynamics are discussed for non-Poisson as well as Poisson processes. In unpolarized media, the time evolution of the muon spin in muonium is not influenced by spin-nonflip collisions, if the collision process is Poissonian. This seemingly obvious statement is not true anymore in non-Poissonian processes, i.e., it is necessary to specify both spin-flip and spin-nonflip rates to fully characterize spin dynamics

  6. Evaluation of chondromalacia of the patella with axial inversion recovery-fast spin-echo imaging.

    Science.gov (United States)

    Lee, S H; Suh, J S; Cho, J; Kim, S J; Kim, S J

    2001-03-01

    The purpose of our study was to assess the accuracy of inversion recovery-fast spin-echo (IR-FSE) imaging for the evaluation of chondromalacia of the patella. Eighty-six patients were included, they underwent magnetic resonance (MR) examination and subsequent knee arthroscopy. Medial and lateral facets of the patella were evaluated separately. Axial images were obtained by using IR-FSE (TR/TE/TI = 3000/25/150 msec; echo train length, 8; 4-mm thickness; 12-cm field of view; 512 x 256 matrix; two, number of excitations) with a 1.5-T MR machine. MR interpretation of chondromalacia was made on the basis of the arthroscopic grading system. Of a total of 172 facets graded, arthroscopy revealed chondromalacia in 14 facets with various grades (G0, 158; G1, 1; G2, 3; G3, 6; G4, 4). Sensitivity, specificity, and accuracy in the chondromalacia grades were 57.1%, 93.0%, and 90.1%, respectively. There was one false-negative case (G4) and 11 false-positive cases (G1, eight; G2, two; G3, one). Sensitivity and specificity corrected by one grade difference were improved to 85.7% and 98.1%, respectively. When cartilage changes were grouped into early (corresponding to grade 1 and 2) and advanced (grade 3 and 4) diseases, sensitivity and specificity of the early and advanced diseases were 75% and 94% and 80% and 99%, respectively. IR-FSE imaging of the knee revealed high specificity but low sensitivity for the evaluation of chondromalacia of the patella.

  7. One-shot valve may be remotely actuated

    Science.gov (United States)

    Kami, S.

    1965-01-01

    One-shot valve, with spring-loaded plunger and sealing diaphragm, incorporates an emergency release actuated by a remote sensor. The plunger is released by the electrical melting of a fuse link and pierces the valve seal. The valve lowers fluid pressure in a container without losing the contained fluid.

  8. Mode locking of electron spin coherences in singly charged quantum dots.

    Science.gov (United States)

    Greilich, A; Yakovlev, D R; Shabaev, A; Efros, Al L; Yugova, I A; Oulton, R; Stavarache, V; Reuter, D; Wieck, A; Bayer, M

    2006-07-21

    The fast dephasing of electron spins in an ensemble of quantum dots is detrimental for applications in quantum information processing. We show here that dephasing can be overcome by using a periodic train of light pulses to synchronize the phases of the precessing spins, and we demonstrate this effect in an ensemble of singly charged (In,Ga)As/GaAs quantum dots. This mode locking leads to constructive interference of contributions to Faraday rotation and presents potential applications based on robust quantum coherence within an ensemble of dots.

  9. Neutron spin quantum precession using multilayer spin splitters and a phase-spin echo interferometer

    International Nuclear Information System (INIS)

    Ebisawa, Toru; Tasaki, Seiji; Kawai, Takeshi; Hino, Masahiro; Akiyoshi, Tsunekazu; Achiwa, Norio; Otake, Yoshie; Funahashi, Haruhiko.

    1996-01-01

    Neutron spin quantum precession by multilayer spin splitter has been demonstrated using a new spin interferometer. The multilayer spin splitter consists of a magnetic multilayer mirror on top, followed by a gap layer and a non magnetic multilayer mirror which are evaporated on a silicon substrate. Using the multilayer spin splitter, a polarized neutron wave in a magnetic field perpendicular to the polarization is split into two spin eigenstates with a phase shift in the direction of the magnetic field. The spin quantum precession is equal to the phase shift, which depends on the effective thickness of the gap layer. The demonstration experiments verify the multilayer spin splitter as a neutron spin precession device as well as the coherent superposition principle of the two spin eigenstates. We have developed a new phase-spin echo interferometer using the multilayer spin splitters. We present successful performance tests of the multilayer spin splitter and the phase-spin echo interferometer. (author)

  10. Automatic video shot boundary detection using k-means clustering and improved adaptive dual threshold comparison

    Science.gov (United States)

    Sa, Qila; Wang, Zhihui

    2018-03-01

    At present, content-based video retrieval (CBVR) is the most mainstream video retrieval method, using the video features of its own to perform automatic identification and retrieval. This method involves a key technology, i.e. shot segmentation. In this paper, the method of automatic video shot boundary detection with K-means clustering and improved adaptive dual threshold comparison is proposed. First, extract the visual features of every frame and divide them into two categories using K-means clustering algorithm, namely, one with significant change and one with no significant change. Then, as to the classification results, utilize the improved adaptive dual threshold comparison method to determine the abrupt as well as gradual shot boundaries.Finally, achieve automatic video shot boundary detection system.

  11. Triangle identity and free differential algebra of massless higher spins

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M A [AN SSSR, Moscow. Fizicheskij Inst.

    1989-09-25

    In terms of Berezins's theory of symbols of operators, the integral formulation is suggested for the free differential algebra which gives rise to consistent equations of motion of interacting massless fields of all spins 0{le}s<{infinity} in the frameworks of gravity. In the first nontrivial order of the expansion in powers of curvatures, Frobenius consistency conditions for higher-spin equations of motion are shown to reduce to the simple geometrical fast that there are two ways for splitting any quadrangle in two triangles. To clarify our construction, we illustrate how it works in the simplest case of pure gravity. (orig.).

  12. A Study on the Microstructural Evolution of a Low Alloy Steel by Different Shot Peening Treatments

    Directory of Open Access Journals (Sweden)

    Juan González

    2018-03-01

    Full Text Available Recent studies have shown that severe shot peening can be categorized as a severe plastic deformation surface treatment that is able to strongly modify the microstructure of the surface layer of materials, by both increasing the dislocation density and introducing a large number of defects that define new grain boundaries and form ultrafine structure. In this work, conventional shot peening and severe shot peening treatments were applied to 39NiCrMo3 steel samples. The samples were characterized in terms of microstructure, surface roughness, microhardness, residual stresses, and surface work-hardening as a function of surface coverage. Particular attention was focused on the analysis of the microstructure to assess the evolution of grain size from the surface to the inner material to capture the gradient microstructure. Severe shot peening proved to cause a more remarkable improvement of the general mechanical characteristics compared to conventional shot peening; more significant improvement was associated with the microstructural alteration induced by the treatment. Our datas provide a detailed verification of the relationship between shot peening treatment parameters and the microstructure evolution from the treated surface to the core material.

  13. Sounding out the logo shot

    OpenAIRE

    Nicolai Jørgensgaard Graakjær

    2013-01-01

    This article focuses on how sound in combination with visuals (i.e. ‘branding by’) may possibly affect the signifying potentials (i.e. ‘branding effect’) of products and corporate brands (i.e. ‘branding of’) during logo shots in television commercials (i.e. ‘branding through’). This particular focus adds both to the understanding of sound in television commercials and to the understanding of sound brands. The article firstly presents a typology of sounds. Secondly, this typology is applied...

  14. A practical globalization of one-shot optimization for optimal design of tokamak divertors

    Energy Technology Data Exchange (ETDEWEB)

    Blommaert, Maarten, E-mail: maarten.blommaert@kuleuven.be [Institute of Energy and Climate Research (IEK-4), FZ Jülich GmbH, D-52425 Jülich (Germany); Dekeyser, Wouter; Baelmans, Martine [KU Leuven, Department of Mechanical Engineering, 3001 Leuven (Belgium); Gauger, Nicolas R. [TU Kaiserslautern, Chair for Scientific Computing, 67663 Kaiserslautern (Germany); Reiter, Detlev [Institute of Energy and Climate Research (IEK-4), FZ Jülich GmbH, D-52425 Jülich (Germany)

    2017-01-01

    In past studies, nested optimization methods were successfully applied to design of the magnetic divertor configuration in nuclear fusion reactors. In this paper, so-called one-shot optimization methods are pursued. Due to convergence issues, a globalization strategy for the one-shot solver is sought. Whereas Griewank introduced a globalization strategy using a doubly augmented Lagrangian function that includes primal and adjoint residuals, its practical usability is limited by the necessity of second order derivatives and expensive line search iterations. In this paper, a practical alternative is offered that avoids these drawbacks by using a regular augmented Lagrangian merit function that penalizes only state residuals. Additionally, robust rank-two Hessian estimation is achieved by adaptation of Powell's damped BFGS update rule. The application of the novel one-shot approach to magnetic divertor design is considered in detail. For this purpose, the approach is adapted to be complementary with practical in parts adjoint sensitivities. Using the globalization strategy, stable convergence of the one-shot approach is achieved.

  15. Short wavelength limits of current shot noise suppression

    International Nuclear Information System (INIS)

    Nause, Ariel; Dyunin, Egor; Gover, Avraham

    2014-01-01

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasma wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect

  16. Short wavelength limits of current shot noise suppression

    Energy Technology Data Exchange (ETDEWEB)

    Nause, Ariel, E-mail: arielnau@post.tau.ac.il [Faculty of Exact Sciences, Department of Physics, Tel Aviv University, Tel Aviv (Israel); Dyunin, Egor; Gover, Avraham [Faculty of Engineering, Department of Physical Electronics, Tel Aviv University, Tel Aviv (Israel)

    2014-08-15

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasma wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect.

  17. Spin drift and spin diffusion currents in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)], E-mail: m.miah@griffith.edu.au

    2008-09-15

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  18. Spin drift and spin diffusion currents in semiconductors

    Directory of Open Access Journals (Sweden)

    M Idrish Miah

    2008-01-01

    Full Text Available On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  19. Spin drift and spin diffusion currents in semiconductors

    International Nuclear Information System (INIS)

    Idrish Miah, M

    2008-01-01

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  20. Unconditional violation of the shot-noise limit in photonic quantum metrology

    Science.gov (United States)

    Slussarenko, Sergei; Weston, Morgan M.; Chrzanowski, Helen M.; Shalm, Lynden K.; Verma, Varun B.; Nam, Sae Woo; Pryde, Geoff J.

    2017-11-01

    Interferometric phase measurement is widely used to precisely determine quantities such as length, speed and material properties1-3. Without quantum correlations, the best phase sensitivity Δ ϕ achievable using n photons is the shot-noise limit, Δ ϕ =1 /√{n }. Quantum-enhanced metrology promises better sensitivity, but, despite theoretical proposals stretching back decades3,4, no measurement using photonic (that is, definite photon number) quantum states has truly surpassed the shot-noise limit. Instead, all such demonstrations, by discounting photon loss, detector inefficiency or other imperfections, have considered only a subset of the photons used. Here, we use an ultrahigh-efficiency photon source and detectors to perform unconditional entanglement-enhanced photonic interferometry. Sampling a birefringent phase shift, we demonstrate precision beyond the shot-noise limit without artificially correcting our results for loss and imperfections. Our results enable quantum-enhanced phase measurements at low photon flux and open the door to the next generation of optical quantum metrology advances.

  1. Use of high flip angle in T1-prepared FAST sequences for myocardial perfusion quantification

    International Nuclear Information System (INIS)

    Vallee, Jean-Paul; Ivancevic, Marko; Lazeyras, Francois; Didier, Dominique; Kasuboski, Larry; Chatelain, Pascal; Righetti, Alberto

    2003-01-01

    This study reports on the first use of high flip angle and radio-frequency (RF) spoiling in T1-prepared fast acquisition in steady state (FAST) sequence for myocardial perfusion in patients. T1 dynamic range was measured in vitro with a FAST, an RF FAST and a snapshot fast low-angle shot (FLASH) sequences with a 90 flip angle. Myocardial perfusion was then measured twice in 6 patients during the same MR session. The RF FAST and FLASH, but not the FAST sequence, demonstrated an extended T1 dynamic range; however, the FLASH images were degraded by artifacts not present on the RF FAST images. The myocardial perfusion indices K1 (first-order transfer constant from the blood to the myocardium for the Gd-DTPA) and Vd (distribution volume of Gd-DTPA in myocardium) did not differ significantly between the two injections. K1 was 0.48±0.12 ml/min g -1 and Vd was 12.5±2.9%. With an extended T1 dynamic range and the sensitivity required for myocardial perfusion quantification, the RF FAST sequence with a 90 flip angle outperformed the snapshot FLASH sequence in terms of image quality and the FAST sequence in terms of contrast dynamic range. (orig.)

  2. Effect of high energy shot peening pressure on the stress corrosion cracking of the weld joint of 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Zhiming, Lu; Laimin, Shi; Shenjin, Zhu; Zhidong, Tang; Yazhou, Jiang

    2015-01-01

    The weld joint of 304 stainless steel is treated using high energy shot peening(HESP) with various shot peening pressures. The grain size and metallographic microstructure of the specimen surface layer are analyzed using the X-ray diffraction method, and the surface hardness is measured. Slow strain rate tension tests are then performed to investigate the effect of shot peening pressure on the stress corrosion sensitivity. The results show that in the surface layer of the specimen, the grain refinement, hardness and the strain-induced plastic deformation all increase with the increasing shot peening pressure. Martensitic transformation is observed in the surface layer after being treated with HESP. The martensite phase ratio is found to increase with increasing shot peening pressure. The result also shows that the effects of the shot peening treatment on the stress corrosion sensitivity index depend on the shot peening pressure. When the shot peening pressure is less than 0.4 MPa, the grain refinement effect plays the main role, and the stress corrosion sensitivity index decreases with the increasing shot peening pressure. In contrast, when the shot peening pressure is higher than 0.4 MPa, the martensite transformation effect plays the main role, the stress corrosion sensitivity index increases with increasing shot peening pressure

  3. What is the most suitable MR signal index for quantitative evaluation of placental function using Half-Fourier acquisition single-shot turbo spin-echo compared with T2-relaxation time?

    Science.gov (United States)

    Kameyama, Kyoko Nakao; Kido, Aki; Himoto, Yuki; Moribata, Yusaku; Minamiguchi, Sachiko; Konishi, Ikuo; Togashi, Kaori

    2018-06-01

    Background Half-Fourier acquisition single-shot turbo spin-echo (HASTE) imaging is now widely used for placental and fetal imaging because of its rapidity and low sensitivity to fetal movement. If placental dysfunction is also predicted by quantitative value obtained from HASTE image, then it might be beneficial for evaluating placental wellbeing. Purpose To ascertain the most suitable magnetic resonance (MR) signal indexes reflecting placental function using HASTE imaging. Material and Methods This retrospective study included 37 consequent patients who had given informed consent to MR imaging (MRI) examinations. All had undergone MRI examinations between February 2014 and June 2015. First, the correlation between T2-relaxation time of normal placenta and gestational age (GA) was examined. Second, correlation between signal intensity ratios (SIRs) using HASTE imaging and placental T2-relaxation time were assessed. The SIRs were calculated using placental signal intensity (SI) relative to the SI of the amniotic fluid, fetal ocular globes, gastric fluid, bladder, maternal psoas major muscles, and abdominal subcutaneous adipose tissue. Results Among the 37 patients, the correlation between T2-relaxation time of the 25 normal placentas and GA showed a moderately strong correlation (Spearman rho = -0.447, P = 0.0250). The most significant correlation with placental T2-relaxation time was observed with the placental SIR relative to the maternal psoas major muscles (SIR pl./psoas muscle ) (Spearman rho = -0.531, P = 0.0007). Conclusion This study revealed that SIR pl./psoas muscle showed the best correlation to placental T2-relaxation time. Results show that SIR pl./psoas muscle might be optimal as a clinically available quantitative index of placental function.

  4. Degenerative disc disease of the lumbar spine: a prospective comparison of fast T1-weighted fluid-attenuated inversion recovery and T1-weighted turbo spin echo MR imaging

    International Nuclear Information System (INIS)

    Erdem, L. Oktay; Erdem, C. Zuhal; Acikgoz, Bektas; Gundogdu, Sadi

    2005-01-01

    Objective: To compare fast T1-weighted fluid-attenuated inversion recovery (FLAIR) and T1-weighted turbo spin-echo (TSE) imaging of the degenerative disc disease of the lumbar spine. Materials and methods: Thirty-five consecutive patients (19 females, 16 males; mean age 41 years, range 31-67 years) with suspected degenerative disc disease of the lumbar spine were prospectively evaluated. Sagittal images of the lumbar spine were obtained using T1-weighted TSE and fast T1-weighted FLAIR sequences. Two radiologists compared these sequences both qualitatively and quantitatively. Results: On qualitative evaluation, CSF nulling, contrast at the disc-CSF interface, the disc-spinal cord (cauda equina) interface, and the spinal cord (cauda equina)-CSF interface of fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P < 0.001). On quantitative evaluation of the first 15 patients, signal-to-noise ratios of cerebrospinal fluid of fast T1-weighted FLAIR imaging were significantly lower than those for T1-weighted TSE images (P < 0.05). Contrast-to-noise ratios of spinal cord/CSF and normal bone marrow/disc for fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P < 0.05). Conclusion: Results in our study have shown that fast T1-weighted FLAIR imaging may be a valuable imaging modality in the armamentarium of lumbar spinal T1-weighted MR imaging, because the former technique has definite superior advantages such as CSF nulling, conspicuousness of the normal anatomic structures and changes in the lumbar spinal discogenic disease and image contrast and also almost equally acquisition times

  5. Degenerative disc disease of the lumbar spine: a prospective comparison of fast T1-weighted fluid-attenuated inversion recovery and T1-weighted turbo spin echo MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Erdem, L. Oktay [Department of Radiology, Zonguldak Karaelmas University, School of Medicine, 6700 Kozlu, Zonguldak (Turkey)]. E-mail: sunarerdem@yahoo.com; Erdem, C. Zuhal [Department of Radiology, Zonguldak Karaelmas University, School of Medicine, 6700 Kozlu, Zonguldak (Turkey); Acikgoz, Bektas [Department of Neurosurgery, Zonguldak Karaelmas University, School of Medicine, Zonguldak (Turkey); Gundogdu, Sadi [Department of Radiology, Zonguldak Karaelmas University, School of Medicine, 6700 Kozlu, Zonguldak (Turkey)

    2005-08-01

    Objective: To compare fast T1-weighted fluid-attenuated inversion recovery (FLAIR) and T1-weighted turbo spin-echo (TSE) imaging of the degenerative disc disease of the lumbar spine. Materials and methods: Thirty-five consecutive patients (19 females, 16 males; mean age 41 years, range 31-67 years) with suspected degenerative disc disease of the lumbar spine were prospectively evaluated. Sagittal images of the lumbar spine were obtained using T1-weighted TSE and fast T1-weighted FLAIR sequences. Two radiologists compared these sequences both qualitatively and quantitatively. Results: On qualitative evaluation, CSF nulling, contrast at the disc-CSF interface, the disc-spinal cord (cauda equina) interface, and the spinal cord (cauda equina)-CSF interface of fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P < 0.001). On quantitative evaluation of the first 15 patients, signal-to-noise ratios of cerebrospinal fluid of fast T1-weighted FLAIR imaging were significantly lower than those for T1-weighted TSE images (P < 0.05). Contrast-to-noise ratios of spinal cord/CSF and normal bone marrow/disc for fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P < 0.05). Conclusion: Results in our study have shown that fast T1-weighted FLAIR imaging may be a valuable imaging modality in the armamentarium of lumbar spinal T1-weighted MR imaging, because the former technique has definite superior advantages such as CSF nulling, conspicuousness of the normal anatomic structures and changes in the lumbar spinal discogenic disease and image contrast and also almost equally acquisition times.

  6. Finite element analysis for prediction of the residual stresses induced by shot peening II

    International Nuclear Information System (INIS)

    Kim, Cheol; Seok, Chang Sung; Yang, Won Ho; Ryu, Myung Hai

    2002-01-01

    Shot peening is a surface impact treatment widely used to improve the performance of metal parts and welded details subjected to fatigue loading, contact fatigue, stress corrosion and other damage mechanisms. The better performance of the peened parts is mainly due to the residual stresses resulting from the plastic deformation of the surface layers of the material caused by the impact of the shot. In this paper the simulation technique is applied to predict the magnitude and distribution of the residual stress and plastic deformation caused by shot peening with the help of finite element analysis

  7. AN ECOLOGICAL RISK ASSESSMENT OF LEAD SHOT EXPOSURE IN NON-WATERFOWL AVIAN SPECIES: UPLAND GAME BIRDS AND RAPTORS

    Science.gov (United States)

    There is increasing concern that birds in terrestrial ecosystems may be exposed to spent lead shot. Evidence exists that upland birds, particularly mourning doves (Zenaida macroura), ingest spent lead shot and that raptors ingest lead shot by consuming wounded game. Mortality, ne...

  8. Full report of laser doppler velocimetry (Het-V) data, results , and analysis for pRad shot 0632

    Energy Technology Data Exchange (ETDEWEB)

    Tupa, Dale [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tainter, Amy Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-21

    This was a collaborative shot with AWE investigators Paul Willis-Patel, David Bell, Seth Grant, David Tarr, and James Richley. The shot was assembled in Los Alamos, after which David Bell set up the probe holder and finalized the alignment. The probe holder location and configuration was modified from previous years to make room for the laser illuminated visible imaging diagnostic. The LANL pRad PDV team was Dale Tupa, Amy Tainter, and Patrick Medina. This shot had three PDV probes: one aimed at the center, one aimed at a feature, one aimed at the reverse side of the shot. The shot also had 9 points of a spectroscopy diagnostic. The pRad team helped set up and field the spectroscopy, but did not help with any data analysis. (The support documentation for the PDV results includes a timing map for the spectroscopy.) Please direct questions on the velocimetry to Dale Tupa or Amy Tainter. The shot radiographs were classified, but the data from the optical diagnostics are not.

  9. First-principles calculation of monitoring spin states of small magnetic nanostructures with IR spectrum of CO

    International Nuclear Information System (INIS)

    Li, C; Lefkidis, G; Huebner, W

    2010-01-01

    A fully ab initio controlled ultrafast magnetooptical switching mechanism in small magnetic clusters is achieved through exploiting spin-orbit-coupling enabled Λ processes. The idea is that in the magnetic molecules a fast transition between two almost degenerate states with different spins can be triggered by a laser pulse, which leads to an electron excitation from one of the degenerate states to a highly spin-mixed state and a deexcitation to the state of opposite spin. In this paper a CO molecule is attached to one magnetic center of the clusters, which serves as an experimental marker to map the laser-induced spin manipulation to the IR spectrum of CO. The predicted spin-state-dependent CO frequencies can facilitate experimental monitoring of the processes. We show that spin flip in magnetic atoms can be achieved in structurally optimized magnetic clusters in a subpicosecond regime with linearly polarized light.

  10. Spin Polarization Oscillations without Spin Precession: Spin-Orbit Entangled Resonances in Quasi-One-Dimensional Spin Transport

    Directory of Open Access Journals (Sweden)

    D. H. Berman

    2014-03-01

    Full Text Available Resonant behavior involving spin-orbit entangled states occurs for spin transport along a narrow channel defined in a two-dimensional electron gas, including an apparent rapid relaxation of the spin polarization for special values of the channel width and applied magnetic field (so-called ballistic spin resonance. A fully quantum-mechanical theory for transport using multiple subbands of the one-dimensional system provides the dependence of the spin density on the applied magnetic field and channel width and position along the channel. We show how the spatially nonoscillating part of the spin density vanishes when the Zeeman energy matches the subband energy splittings. The resonance phenomenon persists in the presence of disorder.

  11. Effect of spin rotation coupling on spin transport

    International Nuclear Information System (INIS)

    Chowdhury, Debashree; Basu, B.

    2013-01-01

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied

  12. Effect of spin rotation coupling on spin transport

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com

    2013-12-15

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k{sup →}⋅p{sup →} perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k{sup →}⋅p{sup →} framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied.

  13. Electromyographic Patterns during Golf Swing: Activation Sequence Profiling and Prediction of Shot Effectiveness.

    Science.gov (United States)

    Verikas, Antanas; Vaiciukynas, Evaldas; Gelzinis, Adas; Parker, James; Olsson, M Charlotte

    2016-04-23

    This study analyzes muscle activity, recorded in an eight-channel electromyographic (EMG) signal stream, during the golf swing using a 7-iron club and exploits information extracted from EMG dynamics to predict the success of the resulting shot. Muscles of the arm and shoulder on both the left and right sides, namely flexor carpi radialis, extensor digitorum communis, rhomboideus and trapezius, are considered for 15 golf players (∼5 shots each). The method using Gaussian filtering is outlined for EMG onset time estimation in each channel and activation sequence profiling. Shots of each player revealed a persistent pattern of muscle activation. Profiles were plotted and insights with respect to player effectiveness were provided. Inspection of EMG dynamics revealed a pair of highest peaks in each channel as the hallmark of golf swing, and a custom application of peak detection for automatic extraction of swing segment was introduced. Various EMG features, encompassing 22 feature sets, were constructed. Feature sets were used individually and also in decision-level fusion for the prediction of shot effectiveness. The prediction of the target attribute, such as club head speed or ball carry distance, was investigated using random forest as the learner in detection and regression tasks. Detection evaluates the personal effectiveness of a shot with respect to the player-specific average, whereas regression estimates the value of target attribute, using EMG features as predictors. Fusion after decision optimization provided the best results: the equal error rate in detection was 24.3% for the speed and 31.7% for the distance; the mean absolute percentage error in regression was 3.2% for the speed and 6.4% for the distance. Proposed EMG feature sets were found to be useful, especially when used in combination. Rankings of feature sets indicated statistics for muscle activity in both the left and right body sides, correlation-based analysis of EMG dynamics and features

  14. Electromyographic Patterns during Golf Swing: Activation Sequence Profiling and Prediction of Shot Effectiveness

    Directory of Open Access Journals (Sweden)

    Antanas Verikas

    2016-04-01

    Full Text Available This study analyzes muscle activity, recorded in an eight-channel electromyographic (EMG signal stream, during the golf swing using a 7-iron club and exploits information extracted from EMG dynamics to predict the success of the resulting shot. Muscles of the arm and shoulder on both the left and right sides, namely flexor carpi radialis, extensor digitorum communis, rhomboideus and trapezius, are considered for 15 golf players (∼5 shots each. The method using Gaussian filtering is outlined for EMG onset time estimation in each channel and activation sequence profiling. Shots of each player revealed a persistent pattern of muscle activation. Profiles were plotted and insights with respect to player effectiveness were provided. Inspection of EMG dynamics revealed a pair of highest peaks in each channel as the hallmark of golf swing, and a custom application of peak detection for automatic extraction of swing segment was introduced. Various EMG features, encompassing 22 feature sets, were constructed. Feature sets were used individually and also in decision-level fusion for the prediction of shot effectiveness. The prediction of the target attribute, such as club head speed or ball carry distance, was investigated using random forest as the learner in detection and regression tasks. Detection evaluates the personal effectiveness of a shot with respect to the player-specific average, whereas regression estimates the value of target attribute, using EMG features as predictors. Fusion after decision optimization provided the best results: the equal error rate in detection was 24.3% for the speed and 31.7% for the distance; the mean absolute percentage error in regression was 3.2% for the speed and 6.4% for the distance. Proposed EMG feature sets were found to be useful, especially when used in combination. Rankings of feature sets indicated statistics for muscle activity in both the left and right body sides, correlation-based analysis of EMG

  15. Kinematic magnetic resonance imaging (MRI) of the normal shoulder: assessment of the shapes and signals of the superior and inferior labra with abductive movement using an open-type imager.

    OpenAIRE

    Togami, Izumi; Sasai, Nobuya; Tsunoda, Masatoshi; Sei, Tetsuro; Yabuki, Takayuki; Kitagawa, Takahiro; Mitani, Masahiko; Akaki, Shiro; Kuroda, Masahiro; Hiraki, Yoshio

    2001-01-01

    A preliminary study was conducted to evaluate the superior and inferior glenoid labra with abductive movement using an open-type MR unit in asymptomatic healthy volunteers. Both fast low angle shot (FLASH) and turbo spin echo (TSE) images were obtained to evaluate the shapes of both the superior and inferior labra, as well as to assess changes in signal at these sites. As the abduction angle was increased, the shape of the superior labrum changed from round or triangular to crescentic and a h...

  16. SunShot Catalyst Prize Competition Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Solar Energy Technologies Office

    2015-04-01

    This fact sheet is an overview of the Catalyst Energy Innovation Prize, an open innovation program launched in 2014 by the U.S. Department of Energy SunShot Initiative. This program aims to catalyze the rapid creation and development of products and solutions that address near-term challenges in the U.S. solar energy marketplace.

  17. Flu Shots, Mammogram, and the Perception of Probabilities

    NARCIS (Netherlands)

    Carman, K.G.; Kooreman, P.

    2010-01-01

    We study individuals’ decisions to decline or accept preventive health care interventions such as flu shots and mammograms. In particular, we analyze the role of perceptions of the effectiveness of the intervention, by eliciting individuals' subjective probabilities of sickness and survival, with

  18. Laser Shot Peening System Final Report CRADA No. TC-1369-96

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, B. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Harris, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This CRADA project was established with a primary goal to develop a laser shot peening system which could operate at production throughput rates and produce the desired depth and intensity of induced shots. The first objective was to understand all parameters required for acceptable peening, including pulse energy, pulse temporal format, pulse spatial format, sample configuration and tamping mechanism. The next objective was to demonstrate the technique on representative samples and then on representative parts. The final objective was to implement the technology into a meaningful industrial peen.

  19. SnapShot: O-Glycosylation Pathways across Kingdoms

    DEFF Research Database (Denmark)

    Joshi, Hiren J.; Narimatsu, Yoshiki; Schjoldager, Katrine T.

    2018-01-01

    O-glycosylation is one of the most abundant and diverse types of post-translational modifications of proteins. O-glycans modulate the structure, stability, and function of proteins and serve generalized as well as highly specific roles in most biological processes. This ShapShot presents types of......-glycans found in different organisms and their principle biosynthetic pathways...

  20. Numerical simulation of spin motion in circular accelerators using spinor formulation

    International Nuclear Information System (INIS)

    Nghiem, P.; Tkatchenko, A.

    1992-07-01

    A simple method is presented based on spinor algebra formalism for tracking the spin motion in circular accelerators. Using an analytical expression of the one-turn transformation matrix including the effects of perturbating fields or of siberian snakes, a simple and very fast numerical code has been written for studying spin motion in various circumstances. In particular, effects of synchrotron oscillations on final polarization after one isolated resonance crossing are simulated. Results of these calculations agree very well with those which have been obtained previously from analytical approaches or from other numerical-simulation programs. (author) 8 refs.; 14 figs

  1. Hysteresis, nucleation and growth phenomena in spin-crossover solids

    Science.gov (United States)

    Ridier, Karl; Molnár, Gábor; Salmon, Lionel; Nicolazzi, William; Bousseksou, Azzedine

    2017-12-01

    The observation and the study of first-order phase transitions in cooperative spin-crossover (SCO) solids exhibiting hysteresis behaviours are of particular interest and currently constitute a burgeoning area in the field of bistable molecular materials. The understanding and the control of the transition mechanisms (nucleation and growth processes) and their dynamics within the hysteresis region appear to be a general and appealing problem from a fundamental point of view and for technological applications as well. This review reports on the recent progresses and most important findings made on the spatiotemporal dynamics of the spin transition in SCO solids, particularly through the universal nucleation and growth process. Both thermally induced and light-induced spin transitions are discussed. We open up this review to the central question of the evolution of the transition mechanisms and dynamics in SCO nano-objects, which constitute promising systems to reach ultra-fast switching, and the experimental issues inherent to such studies at the micro- and nanometric scale.

  2. High frequency measurements of shot noise suppression in atomic-scale metal contacts

    Science.gov (United States)

    Wheeler, Patrick J.; Evans, Kenneth; Russom, Jeffrey; King, Nicholas; Natelson, Douglas

    2009-03-01

    Shot noise provides a means of assessing the number and transmission coefficients of transmitting channels in atomic- and molecular-scale junctions. Previous experiments at low temperatures in metal and semiconductor point contacts have demonstrated the expected suppression of shot noise when junction conductance is near an integer multiple of the conductance quantum, G0≡2e^2/h. Using high frequency techniques, we demonstrate the high speed acquisition of such data at room temperature in mechanical break junctions. In clean Au contacts conductance histograms with clear peaks at G0, 2G0, and 3G0 are acquired within hours, and histograms of simultaneous measurements of the shot noise show clear suppression at those conductance values. We describe the dependence of the noise on bias voltage and analyze the noise vs. conductance histograms in terms of a model that averages over transmission coefficients.

  3. From single-shot towards general work extraction in a quantum thermodynamic framework

    International Nuclear Information System (INIS)

    Gemmer, Jochen; Anders, Janet

    2015-01-01

    This paper considers work extraction from a quantum system to a work storage system (or weight) following Horodecki and Oppenheim (2013 Nat. Commun. 4 2059). An alternative approach is here developed that relies on the comparison of subspace dimensions without a need to introduce thermo-majorization used previously. Optimal single shot work for processes where a weight transfers from (a) a single energy level to another single energy level is then re-derived. In addition we discuss the final state of the system after work extraction and show that the system typically ends in its thermal state, while there are cases where the system is only close to it. The work of formation in the single level transfer setting is also re-derived. The approach presented now allows the extension of the single shot work concept to work extraction (b) involving multiple final levels of the weight. A key conclusion here is that the single shot work for case (a) is appropriate only when a resonance of a particular energy is required. When wishing to identify ‘work extraction’ with finding the weight in a specific available energy or any higher energy a broadening of the single shot work concept is required. As a final contribution we consider transformations of the system that (c) result in general weight state transfers. Introducing a transfer-quantity allows us to formulate minimum requirements for transformations to be at all possible in a thermodynamic framework. We show that choosing the free energy difference of the weight as the transfer-quantity one recovers various single shot results including single level transitions (a), multiple final level transitions (b), and recent results on restricted sets of multi-level to multi-level weight transfers. (paper)

  4. Magnetic defects in chemically converted graphene nanoribbons: electron spin resonance investigation

    Energy Technology Data Exchange (ETDEWEB)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu [INPAC – Institute for Nanoscale Physics and Chemistry, Semiconductor Physics Laboratory, K.U. Leuven, Celestijnenlaan 200D, B–3001 Leuven (Belgium); Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Stesmans, Andre [INPAC – Institute for Nanoscale Physics and Chemistry, Semiconductor Physics Laboratory, K.U. Leuven, Celestijnenlaan 200D, B–3001 Leuven (Belgium); Tol, Johan van [National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310 (United States); Kosynkin, D. V. [Department of Chemistry, Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005 (United States); Tour, James M. [Department of Chemistry, Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005 (United States); Department of Mechanical Engineering and Materials Science, Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005 (United States); Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005, USA. (United States)

    2014-04-15

    Electronic spin transport properties of graphene nanoribbons (GNRs) are influenced by the presence of adatoms, adsorbates and edge functionalization. To improve the understanding of the factors that influence the spin properties of GNRs, local (element) spin-sensitive techniques such as electron spin resonance (ESR) spectroscopy are important for spintronics applications. Here, we present results of multi-frequency continuous wave (CW), pulse and hyperfine sublevel correlation (HYSCORE) ESR spectroscopy measurements performed on oxidatively unzipped graphene nanoribbons (GNRs), which were subsequently chemically converted (CCGNRs) with hydrazine. ESR spectra at 336 GHz reveal an isotropic ESR signal from the CCGNRs, of which the temperature dependence of its line width indicates the presence of localized unpaired electronic states. Upon functionalization of CCGNRs with 4-nitrobenzene diazonium tetrafluoroborate, the ESR signal is found to be 2 times narrower than that of pristine ribbons. NH{sub 3} adsorption/desorption on CCGNRs is shown to narrow the signal, while retaining the signal intensity and g value. The electron spin-spin relaxation process at 10 K is found to be characterized by slow (163 ns) and fast (39 ns) components. HYSCORE ESR data demonstrate the explicit presence of protons and {sup 13}C atoms. With the provided identification of intrinsic point magnetic defects such as proton and {sup 13}C has been reported, which are roadblocks to spin travel in graphene-based materials, this work could help in advancing the present fundamental understanding on the edge-spin (or magnetic)-based transport properties of CCGNRs.

  5. Magnetic defects in chemically converted graphene nanoribbons: electron spin resonance investigation

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao Singamaneni

    2014-04-01

    Full Text Available Electronic spin transport properties of graphene nanoribbons (GNRs are influenced by the presence of adatoms, adsorbates and edge functionalization. To improve the understanding of the factors that influence the spin properties of GNRs, local (element spin-sensitive techniques such as electron spin resonance (ESR spectroscopy are important for spintronics applications. Here, we present results of multi-frequency continuous wave (CW, pulse and hyperfine sublevel correlation (HYSCORE ESR spectroscopy measurements performed on oxidatively unzipped graphene nanoribbons (GNRs, which were subsequently chemically converted (CCGNRs with hydrazine. ESR spectra at 336 GHz reveal an isotropic ESR signal from the CCGNRs, of which the temperature dependence of its line width indicates the presence of localized unpaired electronic states. Upon functionalization of CCGNRs with 4-nitrobenzene diazonium tetrafluoroborate, the ESR signal is found to be 2 times narrower than that of pristine ribbons. NH3 adsorption/desorption on CCGNRs is shown to narrow the signal, while retaining the signal intensity and g value. The electron spin-spin relaxation process at 10 K is found to be characterized by slow (163 ns and fast (39 ns components. HYSCORE ESR data demonstrate the explicit presence of protons and 13C atoms. With the provided identification of intrinsic point magnetic defects such as proton and 13C has been reported, which are roadblocks to spin travel in graphene-based materials, this work could help in advancing the present fundamental understanding on the edge-spin (or magnetic-based transport properties of CCGNRs.

  6. Empathy in One-Shot Prisoner Dilemma

    OpenAIRE

    Rossi, Giulia; Tcheukam, Alain; Tembine, Hamidou

    2017-01-01

    Strategic decision making involves affective and cognitive functions like reasoning, cognitive and emotional empathy which may be subject to age and gender differences. However, empathy-related changes in strategic decision-making and their relation to age, gender and neuropsychological functions have not been studied widely. In this article, we study a one-shot prisoner dilemma from a psychological game theory viewpoint. Forty seven participants (28 women and 19 men), aged 18 to 42 years, we...

  7. Cross-correlation measurement of quantum shot noise using homemade transimpedance amplifiers

    International Nuclear Information System (INIS)

    Hashisaka, Masayuki; Ota, Tomoaki; Yamagishi, Masakazu; Fujisawa, Toshimasa; Muraki, Koji

    2014-01-01

    We report a cross-correlation measurement system, based on a new approach, which can be used to measure shot noise in a mesoscopic conductor at milliKelvin temperatures. In contrast to other measurement systems in which high-speed low-noise voltage amplifiers are commonly used, our system employs homemade transimpedance amplifiers (TAs). The low input impedance of the TAs significantly reduces the crosstalk caused by unavoidable parasitic capacitance between wires. The TAs are designed to have a flat gain over a frequency band from 2 kHz to 1 MHz. Low-noise performance is attained by installing the TAs at a 4 K stage of a dilution refrigerator. Our system thus fulfills the technical requirements for cross-correlation measurements: low noise floor, high frequency band, and negligible crosstalk between two signal lines. Using our system, shot noise generated at a quantum point contact embedded in a quantum Hall system is measured. The good agreement between the obtained shot-noise data and theoretical predictions demonstrates the accuracy of the measurements

  8. Single-shot positron annihilation lifetime spectroscopy with LYSO scintillators

    Science.gov (United States)

    Alonso, A. M.; Cooper, B. S.; Deller, A.; Cassidy, D. B.

    2016-08-01

    We have evaluated the application of a lutetium yttrium oxyorthosilicate (LYSO) based detector to single-shot positron annihilation lifetime spectroscopy. We compare this detector directly with a similarly configured PbWO4 scintillator, which is the usual choice for such measurements. We find that the signal to noise ratio obtained using LYSO is around three times higher than that obtained using PbWO4 for measurements of Ps excited to longer-lived (Rydberg) levels, or when they are ionized soon after production. This is due to the much higher light output for LYSO (75% and 1% of NaI for LYSO and PbWO4 respectively). We conclude that LYSO is an ideal scintillator for single-shot measurements of positronium production and excitation performed using a low-intensity pulsed positron beam.

  9. Single-shot positron annihilation lifetime spectroscopy with LYSO scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, A.M., E-mail: a.alonso@ucl.ac.uk; Cooper, B.S.; Deller, A.; Cassidy, D.B.

    2016-08-21

    We have evaluated the application of a lutetium yttrium oxyorthosilicate (LYSO) based detector to single-shot positron annihilation lifetime spectroscopy. We compare this detector directly with a similarly configured PbWO{sub 4} scintillator, which is the usual choice for such measurements. We find that the signal to noise ratio obtained using LYSO is around three times higher than that obtained using PbWO{sub 4} for measurements of Ps excited to longer-lived (Rydberg) levels, or when they are ionized soon after production. This is due to the much higher light output for LYSO (75% and 1% of NaI for LYSO and PbWO{sub 4} respectively). We conclude that LYSO is an ideal scintillator for single-shot measurements of positronium production and excitation performed using a low-intensity pulsed positron beam.

  10. Experimental and Numerical Analysis of Microstructures and Stress States of Shot-Peened GH4169 Superalloys

    Science.gov (United States)

    Hu, Dianyin; Gao, Ye; Meng, Fanchao; Song, Jun; Wang, Rongqiao

    2018-04-01

    Combining experiments and finite element analysis (FEA), a systematic study was performed to analyze the microstructural evolution and stress states of shot-peened GH4169 superalloy over a variety of peening intensities and coverages. A dislocation density evolution model was integrated into the representative volume FEA model to quantitatively predict microstructural evolution in the surface layers and compared with experimental results. It was found that surface roughness and through-depth residual stress profile are more sensitive to shot-peening intensity compared to coverage due to the high kinetic energy involved. Moreover, a surface nanocrystallization layer was discovered in the top surface region of GH4169 for all shot-peening conditions. However, the grain refinement was more intensified under high shot-peening coverage, under which enough time was permitted for grain refinement. The grain size gradient predicted by the numerical framework showed good agreement with experimental observations.

  11. Spin Hall and spin swapping torques in diffusive ferromagnets

    KAUST Repository

    Pauyac, C. O.

    2017-12-08

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  12. Spin Hall and spin swapping torques in diffusive ferromagnets

    KAUST Repository

    Pauyac, C. O.; Chshiev, M.; Manchon, Aurelien; Nikolaev, S. A.

    2017-01-01

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  13. Micro-MID Manufacturing By Two-Shot Injection Moulding

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2008-01-01

    a specific MID process chain is used for micro products, many technical challenges are encountered which would not be problems for macro scale products. This paper investigates on a specific MID process chain (two shot moulding) and discusses the technical difficulties associated with the production process...

  14. Spin-orbit and spin-lattice coupling

    International Nuclear Information System (INIS)

    Bauer, Gerrit E.W.; Ziman, Timothy; Mori, Michiyasu

    2014-01-01

    We pursued theoretical research on the coupling of electron spins in the condensed matter to the lattice as mediated by the spin-orbit interaction with special focus on the spin and anomalous Hall effects. (author)

  15. Software for fast cameras and image handling on MAST

    International Nuclear Information System (INIS)

    Shibaev, S.

    2008-01-01

    The rapid progress in fast imaging gives new opportunities for fusion research. The data obtained by fast cameras play an important and ever-increasing role in analysis and understanding of plasma phenomena. The fast cameras produce a huge amount of data which creates considerable problems for acquisition, analysis, and storage. We use a number of fast cameras on the Mega-Amp Spherical Tokamak (MAST). They cover several spectral ranges: broadband visible, infra-red and narrow band filtered for spectroscopic studies. These cameras are controlled by programs developed in-house. The programs provide full camera configuration and image acquisition in the MAST shot cycle. Despite the great variety of image sources, all images should be stored in a single format. This simplifies development of data handling tools and hence the data analysis. A universal file format has been developed for MAST images which supports storage in both raw and compressed forms, using either lossless or lossy compression. A number of access and conversion routines have been developed for all languages used on MAST. Two movie-style display tools have been developed-Windows native and Qt based for Linux. The camera control programs run as autonomous data acquisition units with full camera configuration set and stored locally. This allows easy porting of the code to other data acquisition systems. The software developed for MAST fast cameras has been adapted for several other tokamaks where it is in regular use

  16. IMPROVING THE MODEL OF EMISSION FROM SPINNING DUST: EFFECTS OF GRAIN WOBBLING AND TRANSIENT SPIN-UP

    International Nuclear Information System (INIS)

    Hoang, Thiem; Lazarian, A.; Draine, B. T.

    2010-01-01

    Observations continue to support the interpretation of the anomalous microwave foreground as electric dipole radiation from spinning dust grains as proposed by Draine and Lazarian. In this paper, we present a refinement of the original model by improving the treatment of a number of physical effects. First, we consider a disk-like grain rotating with angular velocity at an arbitrary angle with respect to the grain symmetry axis (i.e., grain wobbling) and derive the rotational damping and excitation coefficients arising from infrared emission, plasma-grain interactions, and electric dipole emission. The angular velocity distribution and the electric dipole emission spectrum for disk-like grains is calculated using the Langevin equation, for cases both with and without fast internal relaxation. Our results show that for fast internal relaxation, the peak emissivity of spinning dust, compared to earlier studies, increases by a factor of ∼2 for the warm neutral medium (WNM), the warm ionized medium (WIM), the cold neutral medium (CNM), and the photodissociation region, and by a factor ∼4 for reflection nebulae. The frequency at the emission peak also increases by factors ∼1.4 to ∼2 for these media. Without internal relaxation, the increase of emissivity is comparable, but the emission spectrum is more extended to higher frequency. The increased emission results from the non-sphericity of grain shape and from the anisotropy in damping and excitation along directions parallel and perpendicular to the grain symmetry axis. Second, we provide a detailed numerical study including transient spin-up of grains by single-ion collisions. The range of grain size in which single-ion collisions are important is identified. The impulses broaden the emission spectrum and increase the peak emissivity for the CNM, WNM, and WIM, although the increases are not as large as those due to the grain wobbling. In addition, we present an improved treatment of rotational excitation and

  17. Single-shot self-interference incoherent digital holography using off-axis configuration.

    Science.gov (United States)

    Hong, Jisoo; Kim, Myung K

    2013-12-01

    We propose a single-shot incoherent holographic imaging technique that adopts self-interference incoherent digital holography (SIDH) with slight tilt of the plane mirror in the optical configuration. The limited temporal coherence length of the illumination leads the guide-star hologram of the proposed system to have a Gaussian envelope of elliptical ring shape. The observation shows that the reconstruction by cross correlation with the guide-star hologram achieves better quality than the usual propagation methods. Experimentally, we verify that the hologram and 3D reconstruction can be implemented incoherently with the proposed single-shot off-axis SIDH.

  18. Spin rotation after a spin-independent scattering. Spin properties of an electron gas in a solid

    International Nuclear Information System (INIS)

    Zayets, V.

    2014-01-01

    It is shown that spin direction of an electron may not be conserved after a spin-independent scattering. The spin rotations occur due to a quantum-mechanical fact that when a quantum state is occupied by two electrons of opposite spins, the total spin of the state is zero and the spin direction of each electron cannot be determined. It is shown that it is possible to divide all conduction electrons into two group distinguished by their time-reversal symmetry. In the first group the electron spins are all directed in one direction. In the second group there are electrons of all spin directions. The number of electrons in each group is conserved after a spin-independent scattering. This makes it convenient to use these groups for the description of the magnetic properties of conduction electrons. The energy distribution of spins, the Pauli paramagnetism and the spin distribution in the ferromagnetic metals are described within the presented model. The effects of spin torque and spin-torque current are described. The origin of spin-transfer torque is explained within the presented model

  19. Spin injection and spin accumulation in all-metal mesoscopic spin valves

    NARCIS (Netherlands)

    Jedema, FJ; Nijboer, MS; Filip, AT; van Wees, BJ

    2003-01-01

    We study the electrical injection and detection of spin accumulation in lateral ferromagnetic-metal-nonmagnetic-metal-ferromagnetic-metal (F/N/F) spin valve devices with transparent interfaces. Different ferromagnetic metals, Permalloy (Py), cobalt (Co), and nickel (Ni), are used as electrical spin

  20. The susceptibilities in the spin-S Ising model

    International Nuclear Information System (INIS)

    Ainane, A.; Saber, M.

    1995-08-01

    The susceptibilities of the spin-S Ising model are evaluated using the effective field theory introduced by Tucker et al. for studying general spin-S Ising model. The susceptibilities are studied for all spin values from S = 1/2 to S = 5/2. (author). 12 refs, 4 figs

  1. Color-SIFT model: a robust and an accurate shot boundary detection algorithm

    Science.gov (United States)

    Sharmila Kumari, M.; Shekar, B. H.

    2010-02-01

    In this paper, a new technique called color-SIFT model is devised for shot boundary detection. Unlike scale invariant feature transform model that uses only grayscale information and misses important visual information regarding color, here we have adopted different color planes to extract keypoints which are subsequently used to detect shot boundaries. The basic SIFT model has four stages namely scale-space peak selection, keypoint localization, orientation assignment and keypoint descriptor and all these four stages were employed to extract key descriptors in each color plane. The proposed model works on three different color planes and a fusion has been made to take a decision on number of keypoint matches for shot boundary identification and hence is different from the color global scale invariant feature transform that works on quantized images. In addition, the proposed algorithm possess invariance to linear transformation and robust to occlusion and noisy environment. Experiments have been conducted on the standard TRECVID video database to reveal the performance of the proposed model.

  2. Control of electron spin decoherence in nuclear spin baths

    Science.gov (United States)

    Liu, Ren-Bao

    2011-03-01

    Nuclear spin baths are a main mechanism of decoherence of spin qubits in solid-state systems, such as quantum dots and nitrogen-vacancy (NV) centers of diamond. The decoherence results from entanglement between the electron and nuclear spins, established by quantum evolution of the bath conditioned on the electron spin state. When the electron spin is flipped, the conditional bath evolution is manipulated. Such manipulation of bath through control of the electron spin not only leads to preservation of the center spin coherence but also demonstrates quantum nature of the bath. In an NV center system, the electron spin effectively interacts with hundreds of 13 C nuclear spins. Under repeated flip control (dynamical decoupling), the electron spin coherence can be preserved for a long time (> 1 ms) . Thereforesomecharacteristicoscillations , duetocouplingtoabonded 13 C nuclear spin pair (a dimer), are imprinted on the electron spin coherence profile, which are very sensitive to the position and orientation of the dimer. With such finger-print oscillations, a dimer can be uniquely identified. Thus, we propose magnetometry with single-nucleus sensitivity and atomic resolution, using NV center spin coherence to identify single molecules. Through the center spin coherence, we could also explore the many-body physics in an interacting spin bath. The information of elementary excitations and many-body correlations can be extracted from the center spin coherence under many-pulse dynamical decoupling control. Another application of the preserved spin coherence is identifying quantumness of a spin bath through the back-action of the electron spin to the bath. We show that the multiple transition of an NV center in a nuclear spin bath can have longer coherence time than the single transition does, when the classical noises due to inhomogeneous broadening is removed by spin echo. This counter-intuitive result unambiguously demonstrates the quantumness of the nuclear spin bath

  3. IMPACT OF SHOTS ON FINAL SCORE OF A FOOTBALL MATCH

    Directory of Open Access Journals (Sweden)

    Miroslav Radoman

    2008-08-01

    Full Text Available The research has been done on a sample of 64 played games on the World championship FIFA, World Cup Germany 2006 and 128 results of the games divided in three integrals according to the score (win, defeat and unresolved score . The analysis is done according to the total number of shots during the game. Considering the results that are got and their interpretations, we could conclude that the results of data analysis in which is used the multi-method of MANOVA analysis and discriminative analysis, has shown that there are significant difference in frequency of the games result (win, defeat or unresolved score in shots element during the game. Even thou the noticed difference in frequency are not equally expressed, the results that are got have insinuated that there are significant differences in followed elements of the football game. Implemented analysis (royev test i T-test have confirmed that in every analyzed elements of the shot there are statistically significant differences in the result of the game (win, defeat, unresolved score and that the differences in shot’s elements are consequence different selection of the tactics and techniques also the ability of their realization in the stage of at tack and defense.

  4. Fast radio bursts as giant pulses from young rapidly rotating pulsars

    Science.gov (United States)

    Lyutikov, Maxim; Burzawa, Lukasz; Popov, Sergei B.

    2016-10-01

    We discuss possible association of fast radio bursts (FRBs) with supergiant pulses emitted by young pulsars (ages ˜ tens to hundreds of years) born with regular magnetic field but very short - few milliseconds - spin periods. We assume that FRBs are extra-Galactic events coming from distances d ≲ 100 Mpc and that most of the dispersion measure (DM) comes from the material in the freshly ejected SNR shell. We then predict that for a given burst the DM should decrease with time and that FRBs are not expected to be seen below ˜300 MHz due to free-free absorption in the expanding ejecta. A supernova might have been detected years before the burst; FRBs are mostly associated with star-forming galaxies. The model requires that some pulsars are born with very fast spins, of the order of few milliseconds. The observed distribution of spin-down powers dot{E} in young energetic pulsars is consistent with equal birth rate per decade of dot{E}. Accepting this injection distribution and scaling the intrinsic brightness of FRBs with dot{E}, we predict the following properties of a large sample of FRBs: (I) the brightest observed events come from a broad distribution in distances; (II) for repeating bursts brightness either remains nearly constant (if the spin-down time is longer than the age of the pulsar) or decreases with time otherwise; in the latter case DM ∝ dot{E}.

  5. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Kjær, Kasper Skov; Alonso-Mori, Roberto

    2017-01-01

    iron complexes with four cyanide (CN-;) ligands and one 2,2′-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL...... state lifetime of iron based complexes due to spin crossover-the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand...

  6. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%

    Science.gov (United States)

    Yoneda, Jun; Takeda, Kenta; Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Allison, Giles; Honda, Takumu; Kodera, Tetsuo; Oda, Shunri; Hoshi, Yusuke; Usami, Noritaka; Itoh, Kohei M.; Tarucha, Seigo

    2018-02-01

    The isolation of qubits from noise sources, such as surrounding nuclear spins and spin-electric susceptibility1-4, has enabled extensions of quantum coherence times in recent pivotal advances towards the concrete implementation of spin-based quantum computation. In fact, the possibility of achieving enhanced quantum coherence has been substantially doubted for nanostructures due to the characteristic high degree of background charge fluctuations5-7. Still, a sizeable spin-electric coupling will be needed in realistic multiple-qubit systems to address single-spin and spin-spin manipulations8-10. Here, we realize a single-electron spin qubit with an isotopically enriched phase coherence time (20 μs)11,12 and fast electrical control speed (up to 30 MHz) mediated by extrinsic spin-electric coupling. Using rapid spin rotations, we reveal that the free-evolution dephasing is caused by charge noise—rather than conventional magnetic noise—as highlighted by a 1/f spectrum extended over seven decades of frequency. The qubit exhibits superior performance with single-qubit gate fidelities exceeding 99.9% on average, offering a promising route to large-scale spin-qubit systems with fault-tolerant controllability.

  7. Comparison of 2D and 3D sequences for MRCP. Clinical value of the different techniques; Vergleich von 2D- und 3D-Sequenzen fuer die MRCP. Klinischer Stellenwert der einzelnen Techniken

    Energy Technology Data Exchange (ETDEWEB)

    Wallnoefer, A.M.; Herrmann, K.A.; Zech, C.J.; Gourtsoyianni, S.; Reiser, M.F.; Schoenberg, S.O. [Klinikum Grosshadern der Ludwig-Maximilian-Universitaet Muenchen (Germany). Institut fuer Klinische Radiologie; Beuers, U. [Klinikum Grosshadern der Ludwig-Maximilian-Universitaet Muenchen (Germany). Klinik fuer Innere Medizin II

    2005-11-01

    Magnetic resonance cholangio-pancreaticograpy (MRCP) is a non-invasive imaging modality of the pancreatico-biliary system which plays an increasingly important role in the clinical and diagnostic workup of patients with biliary or pancreatic diseases. The present review is designed to give an overview of the currently available and appropriate sequences, their technical background, as well as new developments and their relevance to the various clinical issues and challenges. The impact of the latest technical innovations, such as integrated parallel imaging techniques and navigator-based respiratory triggering, on the diagnostic capacities of MRCP is discussed. In this context, the individual value of RARE, T2w single shot turbo/fast spin echo (SSFSE) and the recently introduced 3D T2w turbo/fast spin echo sequences (T2w 3D-T/FSE) is reviewed. RARE imaging may be preferred in severely ill patients with limitations in cooperation, SSFSE is particularly effective in differentiating benign and malignant stenosis, and 3D-FSE offers additional advantages in the detection of small biliary concrements. (orig.) [German] Die Magnetresonanzcholangiopankreatikographie (MRCP) ist eine nichtinvasive Untersuchungsmethode des pankreatikobiliaeren Systems, die heute einen festen Platz in der klinischen Diagnostik eingenommen hat. Die vorliegende Arbeit gibt einen Ueberblick ueber die derzeit gaengigen Sequenzen, ihre technischen Grundlagen sowie ihre jeweilige Bedeutung in den verschiedenen klinischen Einsatzgebieten und Fragestellungen. Darueber hinaus werden die Bedeutung der parallelen Bildgebung, der navigatorbasierten Atemtriggerung und der neu eingefuehrten dreidimensionalen Sequenzen fuer die MRCP sowie ihre moeglichen Einsatzgebiete behandelt. Fuer die MRCP haben die 3 gaengigen Sequenzen, die SS-RARE-Sequenz, die T2w-single-shot-fast-spin-echo- (SSFSE) und die 3D-FSE-Sequenz spezifische Vor- und Nachteile. Die SS-RARE-Sequenz ist aufgrund der sehr kurzen Messzeit bei

  8. Who Takes Advantage of Free Flu Shots? Examining the Effects of an Expansion in Coverage

    NARCIS (Netherlands)

    Carman, K.G.; Mosca, I.

    2011-01-01

    Because of the high risk of costly complications (including death) and the externalities of contagious diseases, many countries provide free flu shots to certain populations free of charge. This paper examines the expansion of the free flu shot program in the Netherlands. This program expanded in

  9. Non-flipping 13C spins near an NV center in diamond: hyperfine and spatial characteristics by density functional theory simulation of the C510[NV]H252 cluster

    Science.gov (United States)

    Nizovtsev, A. P.; Kilin, S. Ya; Pushkarchuk, A. L.; Pushkarchuk, V. A.; Kuten, S. A.; Zhikol, O. A.; Schmitt, S.; Unden, T.; Jelezko, F.

    2018-02-01

    Single NV centers in diamond coupled by hyperfine interaction (hfi) to neighboring 13C nuclear spins are now widely used in emerging quantum technologies as elements of quantum memory adjusted to a nitrogen-vacancy (NV) center electron spin qubit. For nuclear spins with low flip-flop rate, single shot readout was demonstrated under ambient conditions. Here we report on a systematic search for such stable NV-13C systems using density functional theory to simulate the hfi and spatial characteristics of all possible NV-13C complexes in the H-terminated cluster C510[NV]-H252 hosting the NV center. Along with the expected stable ‘NV-axial-13C’ systems wherein the 13C nuclear spin is located on the NV axis, we found for the first time new families of positions for the 13C nuclear spin exhibiting negligible hfi-induced flipping rates due to near-symmetric local spin density distribution. Spatially, these positions are located in the diamond bilayer passing through the vacancy of the NV center and being perpendicular to the NV axis. Analysis of available publications showed that, apparently, some of the predicted non-axial near-stable NV-13C systems have already been observed experimentally. A special experiment performed on one of these systems confirmed the prediction made.

  10. Hyperpolarized 13C Urea Relaxation Mechanism Reveals Renal Changes in Diabetic Nephropathy

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Stokholm Nørlinger, Thomas; Christoffer Hansen, David

    2016-01-01

    Purpose: Our aim was to assess a novel 13C radial fast spin echo golden ratio single shot method for interrogating early renal changes in the diabetic kidney, using hyperpolarized (HP) [13C,15N2]urea as a T2 relaxation based contrast bio-probe. Methods: A novel HP 13C MR contrast experiment...... saturation level and the relaxation times were observed in the healthy controls. Conclusion: HP [13C,15N2]urea apparent T2 mapping may be a useful for interrogating local renal pO2 status and renal tissue alterations....

  11. Control of lead solubility in soil contaminated with lead shot: Effect of soil pH

    International Nuclear Information System (INIS)

    Rooney, Corinne P.; McLaren, Ronald G.; Condron, Leo M.

    2007-01-01

    An incubation experiment was carried out to assess the rate of oxidation of Pb shot and subsequent transfer of Pb to the soil under a range of soil pH conditions. Lead shot corrosion was rapid, so that soil solution and fine earth ( 3 (CO 3 ) 2 (OH) 2 ), developed in crusts surrounding individual Pb pellets. However, irrespective of pH, Pb 2+ activities in the soil solutions, modelled using WHAM 6, were much lower than would be the case if they were controlled by the solubility of the dominant Pb compounds present in the Pb shot crust material. In contrast, modelling of soil solid-solution phase distribution of Pb, again using WHAM 6, suggested that, at least during the 24 months of the study, soil solution Pb concentrations were more likely to be controlled by sorption of Pb by the soil solid phase. - Sorption processes control Pb 2+ ion activity in soils contaminated with Pb shot

  12. Magnetocaloric effect in quantum spin-s chains

    Directory of Open Access Journals (Sweden)

    A. Honecker

    2009-01-01

    Full Text Available We compute the entropy of antiferromagnetic quantum spin-s chains in an external magnetic field using exact diagonalization and Quantum Monte Carlo simulations. The magnetocaloric effect, i. e., temperature variations during adiabatic field changes, can be derived from the isentropes. First, we focus on the example of the spin-s=1 chain and show that one can cool by closing the Haldane gap with a magnetic field. We then move to quantum spin-s chains and demonstrate linear scaling with s close to the saturation field. In passing, we propose a new method to compute many low-lying excited states using the Lanczos recursion.

  13. Graphene spin diode: Strain-modulated spin rectification

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yunhua; Wang, B., E-mail: stslyl@mail.sysu.edu.cn, E-mail: wangbiao@mail.sysu.edu.cn [Sino-French Institute of Nuclear Engineering and Technology, School of Physics and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275 (China); Liu, Yulan, E-mail: stslyl@mail.sysu.edu.cn, E-mail: wangbiao@mail.sysu.edu.cn [School of Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2014-08-04

    Strain effects on spin transport in a ferromagnetic/strained/normal graphene junction are explored theoretically. It is shown that the spin-resolved Fermi energy range can be controlled by the armchair direction strain because the strain-induced pseudomagnetic field suppresses the current. The spin rectification effect for the bias reversal occurs because of a combination of ferromagnetic exchange splitting and the broken spatial symmetry of the junction. In addition, the spin rectification performance can be tuned remarkably by manipulation of the strains. In view of this strain-modulated spin rectification effect, we propose that the graphene-based ferromagnetic/strained/normal junction can be used as a tunable spin diode.

  14. Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction

    KAUST Repository

    Ortiz Pauyac, Christian

    2016-01-01

    filtering. In Chap. 3 we discuss the Rashba torque in ferromagnetic films, and in Chap. 4 we study spin Hall effect and spin swapping in ferromagnetic films, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives

  15. Self-Consistent Theory of Shot Noise Suppression in Ballistic Conductors

    Science.gov (United States)

    Bulashenko, O. M.; Rubí, J. M.; Kochelap, V. A.

    Shot-noise measurements become a fundamental tool to probe carrier interactions in mesoscopic systems [1]. A matter of particular interest is the significance of Coulomb interaction which may keep nearby electrons more regularly spaced rather than strictly at random and lead to the noise reduction. That effect occurs in different physical situations. Among them are charge-limited ballistic transport, resonant tunneling, single-electron tunneling, etc. In this communication we address the problem of Coulomb correlations in ballistic conductors under the space-charge-limited transport conditions, and present for the first time a semiclassical self-consistent theory of shot noise in these conductors by solving analytically the kinetic equation coupled self-consistently with a Poisson equation. Basing upon this theory, exact results for current noise in a two-terminal ballistic conductor under the action of long-range Coulomb correlations has been derived. The noise reduction factor (in respect to the uncorrelated value) is obtained in a closed analytical form for a full range of biases ranging from thermal to shot-noise limits which describe perfectly the results of the Monte Carlo simulations for a nondegenerate electron gas [2]. The magnitude of the noise reduction exceeds 0.01, which is of interest from the point of view of possible applications. Using these analytical results one may estimate a relative contribution to the noise from different groups of carriers (in energy space and/or real space) and to investigate in great detail the correlations between different groups of carriers. This leads us to suggest an electron energy spectroscopy experiment to probe the Coulomb correlations in ballistic conductors. Indeed, while the injected carriers are uncorrelated, those in the volume of the conductor are strongly correlated, as follows from the derived formulas for the fluctuation of the distribution function. Those correlations may be observed experimentally by

  16. 3-D analysis of fatigue crack behaviour in a shot peened steam turbine blade material

    Energy Technology Data Exchange (ETDEWEB)

    He, B.Y., E-mail: Binyan.he@soton.ac.uk [Engineering Materials, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Katsamenis, O.L. [muVIS X-ray Imaging Centre, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Mellor, B.G.; Reed, P.A.S. [Engineering Materials, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-08-26

    Serial mechanical sectioning and high resolution X-ray tomography have been used to study the three-dimensional morphology of small fatigue cracks growing in a 12 Cr tempered martensitic steam turbine blade material. A range of surface conditions has been studied, namely polished and shot peened (with varying levels of intensity). In the polished (unpeened) condition, inclusions (alumina and manganese sulphide) played an important role in initiating and controlling early fatigue crack behaviour. When fatigue cracks initiated from an alumina stringer, the crack morphology was normally dominated by single stringers, which were always in the centre of the fatigue crack, indicating its primary role in initiation. Manganese sulphide inclusion groups however seemed to dominate and affect the crack path along both the surface and depth crack growth directions. The more intensely shot peened condition did not however evidence inclusion or stringer affected fatigue crack initiation or growth behaviour; sub-surface crack coalescence being clearly observed by both serial sectioning and computed tomography (CT) imaging techniques at a depth of about 150–180 μm. These sub-surface crack coalescences can be linked to both the extent of the compressive residual stress as well as the depth of the plastic deformation arising from the intense shot peening process. Shot peening appears to provide a different defect population that initiates fatigue cracks and competes with the underlying metallurgical defect populations. The most beneficial shot peening process would in this case appear to “deactivate” the original metallurgical defect population and substitute a known defect distribution from the shot peening process from which fatigue cracks grow rather slowly in the strain hardened surface layer which also contains compressive residual stresses. A benefit to fatigue life in bending, even under Low Cycle Fatigue (LCF) conditions, has been observed in these tests if a

  17. Drones, quasi-spin or iso-spin. A comparison of many-body techniques for general spin

    International Nuclear Information System (INIS)

    McKenzie, B.J.; Stedman, G.E.

    1976-01-01

    For an effective-spin system with 2S + 1 levels there are a number of possible mappings of spin onto pseudo-fermion operators. The relative merits of three of these methods are investigated by calculating to second order the dispersion relation for coupled spin-phonon modes in crystals containing S = 1 effective spin impurities. It is found that the drone formalism quickly becomes intractable at higher spin values, as does the related quasi-spin formalism developed in contrast with the iso-spin (or Abrinkosov projection) formalism. (author)

  18. Adaptive optics in spinning disk microscopy: improved contrast and brightness by a simple and fast method.

    Science.gov (United States)

    Fraisier, V; Clouvel, G; Jasaitis, A; Dimitrov, A; Piolot, T; Salamero, J

    2015-09-01

    Multiconfocal microscopy gives a good compromise between fast imaging and reasonable resolution. However, the low intensity of live fluorescent emitters is a major limitation to this technique. Aberrations induced by the optical setup, especially the mismatch of the refractive index and the biological sample itself, distort the point spread function and further reduce the amount of detected photons. Altogether, this leads to impaired image quality, preventing accurate analysis of molecular processes in biological samples and imaging deep in the sample. The amount of detected fluorescence can be improved with adaptive optics. Here, we used a compact adaptive optics module (adaptive optics box for sectioning optical microscopy), which was specifically designed for spinning disk confocal microscopy. The module overcomes undesired anomalies by correcting for most of the aberrations in confocal imaging. Existing aberration detection methods require prior illumination, which bleaches the sample. To avoid multiple exposures of the sample, we established an experimental model describing the depth dependence of major aberrations. This model allows us to correct for those aberrations when performing a z-stack, gradually increasing the amplitude of the correction with depth. It does not require illumination of the sample for aberration detection, thus minimizing photobleaching and phototoxicity. With this model, we improved both signal-to-background ratio and image contrast. Here, we present comparative studies on a variety of biological samples. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  19. Spin-current emission governed by nonlinear spin dynamics.

    Science.gov (United States)

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-10-16

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators.

  20. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    Science.gov (United States)

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-07-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.