WorldWideScience

Sample records for shot fast spin

  1. Kinematic MRI using short TR single shot fast spin echo (SSFSE) in evaluating swallowing

    Energy Technology Data Exchange (ETDEWEB)

    Isogai, Satoshi; Takehara, Yasuo; Isoda, Haruo; Kodaira, Nami; Masunaga, Hatsuko; Ozawa, Fukujirou; Kaneko, Masao [Hamamatsu Univ. School of Medicine, Shizuoka (Japan); Nozaki, Atsushi; Kabasawa, Hiroyuki

    1999-03-01

    The utility of short TR single shot fast spin echo (SSFSE) MR imaging for evaluating swallowing was determined. Five healthy volunteers underwent kinematic MR imaging of swallowing with a 1.5 T MR scanner using the short TR (300 ms) SSFSE sequence. Twenty phases of sagittal sections were acquired within 6 sec, where the temporal resolution was 300 ms. For oral contrast medium, we used prune yogurt juice with Fe added. The image contrast of short TR SSFSE was found to be somewhere like that of T1-weighted images. In all cases, both the buccal and pharyngeal stages of swallowing were successfully depicted. The Fe-added prune yogurt juice performed as a positive contrast medium and helped determine anatomical structures in the buccal stage. Short TR (300 ms) SSFSE was useful in evaluating swallowing. The combined use of Fe-added prune yogurt juice was helpful in enhancing the surface of the oropharynx. (author)

  2. Kinematic MRI using short TR single shot fast spin echo (SSFSE) in evaluating swallowing

    International Nuclear Information System (INIS)

    Isogai, Satoshi; Takehara, Yasuo; Isoda, Haruo; Kodaira, Nami; Masunaga, Hatsuko; Ozawa, Fukujirou; Kaneko, Masao; Nozaki, Atsushi; Kabasawa, Hiroyuki

    1999-01-01

    The utility of short TR single shot fast spin echo (SSFSE) MR imaging for evaluating swallowing was determined. Five healthy volunteers underwent kinematic MR imaging of swallowing with a 1.5 T MR scanner using the short TR (300 ms) SSFSE sequence. Twenty phases of sagittal sections were acquired within 6 sec, where the temporal resolution was 300 ms. For oral contrast medium, we used prune yogurt juice with Fe added. The image contrast of short TR SSFSE was found to be somewhere like that of T1-weighted images. In all cases, both the buccal and pharyngeal stages of swallowing were successfully depicted. The Fe-added prune yogurt juice performed as a positive contrast medium and helped determine anatomical structures in the buccal stage. Short TR (300 ms) SSFSE was useful in evaluating swallowing. The combined use of Fe-added prune yogurt juice was helpful in enhancing the surface of the oropharynx. (author)

  3. Self-Calibrating Wave-Encoded Variable-Density Single-Shot Fast Spin Echo Imaging.

    Science.gov (United States)

    Chen, Feiyu; Taviani, Valentina; Tamir, Jonathan I; Cheng, Joseph Y; Zhang, Tao; Song, Qiong; Hargreaves, Brian A; Pauly, John M; Vasanawala, Shreyas S

    2018-04-01

    It is highly desirable in clinical abdominal MR scans to accelerate single-shot fast spin echo (SSFSE) imaging and reduce blurring due to T 2 decay and partial-Fourier acquisition. To develop and investigate the clinical feasibility of wave-encoded variable-density SSFSE imaging for improved image quality and scan time reduction. Prospective controlled clinical trial. With Institutional Review Board approval and informed consent, the proposed method was assessed on 20 consecutive adult patients (10 male, 10 female, range, 24-84 years). A wave-encoded variable-density SSFSE sequence was developed for clinical 3.0T abdominal scans to enable high acceleration (3.5×) with full-Fourier acquisitions by: 1) introducing wave encoding with self-refocusing gradient waveforms to improve acquisition efficiency; 2) developing self-calibrated estimation of wave-encoding point-spread function and coil sensitivity to improve motion robustness; and 3) incorporating a parallel imaging and compressed sensing reconstruction to reconstruct highly accelerated datasets. Image quality was compared pairwise with standard Cartesian acquisition independently and blindly by two radiologists on a scale from -2 to 2 for noise, contrast, confidence, sharpness, and artifacts. The average ratio of scan time between these two approaches was also compared. A Wilcoxon signed-rank tests with a P value under 0.05 considered statistically significant. Wave-encoded variable-density SSFSE significantly reduced the perceived noise level and improved the sharpness of the abdominal wall and the kidneys compared with standard acquisition (mean scores 0.8, 1.2, and 0.8, respectively, P variable-density sampling SSFSE achieves improved image quality with clinically relevant echo time and reduced scan time, thus providing a fast and robust approach for clinical SSFSE imaging. 1 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:954-966. © 2017 International Society for Magnetic Resonance in Medicine.

  4. Comparison of respiratory-triggered 3-D fast spin-echo and single-shot fast spin-echo radial slab MR cholangiopancreatography images in children

    Energy Technology Data Exchange (ETDEWEB)

    Chavhan, Govind B.; Almehdar, Abeer; Gupta, Sumeet [The Hospital for Sick Children and University of Toronto, Department of Diagnostic Imaging, Toronto (Canada); Moineddin, Rahim [University of Toronto, Department of Family and Community Medicine, Toronto (Canada); Babyn, Paul S. [Royal University Hospital, Department of Medical Imaging, Saskatoon (Canada)

    2013-09-15

    The two most commonly performed magnetic resonance cholangiopancreatography (MRCP) sequences, 3-D fast spin-echo (3-D FSE) and single-shot fast spin-echo radial slabs (radial slabs), have not been compared in children. The purpose of this study was to compare 3-D FSE and radial slabs MRCP sequences on a 3-T scanner to determine their ability to show various segments of pancreaticobiliary tree and presence of artifacts in children. We reviewed 79 consecutive MRCPs performed in 74 children on a 3-T scanner. We noted visibility of major ducts on 3-D FSE and radial slabs. We noted the order of branching of ducts in the right and left hepatic ducts and the degree of visibility of the pancreatic duct. Statistical analysis was performed using McNemar and signed rank tests. There was no significant difference in the visibility of major bile ducts and the order of branching in the right hepatic lobe between sequences. A higher order of branching in the left lobe was seen on radial slabs than 3-D FSE (mean order of branching 2.82 versus 2.27; P-value = 0.0002). The visibility of pancreatic duct was better on radial slabs as compared to 3-D FSE (mean value of 1.53 vs. 0.90; P-value < 0.0001). 3-D FSE sequence was artifact-free in 25/79 (31.6%) MRCP exams as compared to radial slabs, which were artifact-free in 18/79 (22.8%) MRCP exams (P-value = 0.0001). There is no significant difference in the visibility of major bile ducts between 3-D FSE and radial slab MRCP sequences at 3-T in children. However, radial slab MRCP shows a higher order of branching in the left hepatic lobe and superior visibility of the pancreatic duct than 3-D FSE. (orig.)

  5. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    Science.gov (United States)

    England, Troy; Lilly, Michael; Curry, Matthew; Carr, Stephen; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will introduce two new amplifier topologies that provide excellent gain versus power tradeoffs using silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The AC HBT allows in-situ adjustment of power dissipation during an experiment and can provide gain in the millikelvin temperature regime while dissipating less than 500 nW. The AC Current Amplifier maximizes gain at nearly 800 A/A. We will also show results of using these amplifiers with SETs at 4 K. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout.

  6. Comparing SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    Science.gov (United States)

    England, Troy; Curry, Matthew; Carr, Stephen; Mounce, Andrew; Jock, Ryan; Sharma, Peter; Bureau-Oxton, Chloe; Rudolph, Martin; Hardin, Terry; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will compare two amplifiers based on single-transistor circuits implemented with silicon germanium heterojunction bipolar transistors. Both amplifiers provide gain at low power levels, but the dynamics of each circuit vary significantly. We will explore the gain mechanisms, linearity, and noise of each circuit and explain the situations in which each amplifier is best used. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  7. Comparison of single-shot fast spin-echo sequence and T2-weighted fast spin-echo sequence in MR imaging of the brain

    International Nuclear Information System (INIS)

    Cha, Sung Ho; Seo, Jeong Jin; Jeong, Gwang Woo; Kim, Jae Kyu; Kim, Yun Hyeon; Jeong, Yong Yeon; Kang, Heoung Keun; Oh, Hee Yeon; Yoon, Jong Hoon

    1998-01-01

    The purpose of this study was to evaluate the usefulness of the single-shot fast spinecho (SS-FSE) sequence in comparison with the T2-weighted fast spin-echo (T2-FSE) sequence in brain MR imaging. In 41 patients aged 15-75 years with intracranial lesion, both SS-FSE and T2-FES images were obtained using a 1.5-T MR system. Lesions included cerebral ischemia or infarcts (n=3D23), tumors (n=3D10), hemorrhages (n=3D3), inflammatory diseases (n=3D2), arachnoid cysts(n=3D2), and vascular disease (n=3D1), and the MR images were retrospectively evaluated. To calculate contrast-to-noise ratio (CNR), percentage contrast, and signal-to-noise ratio (SNR)-and thus make a quantitative comparison-the mean signal intensities of lesions, normal brain tissue, and noise out-side the patient were measured. For qualitative comparison, the visibility, margin, and extent of the lesions were rated using a five-grade system, and the degree of MR artifacts was also evaluated. Wilcoxon's signed ranks test was used for statistical analysis. The mean CNR of lesions was significantly higher on SS-FSE (31.3) than on T2-FSE images (27.5) (p=3D0.0131). Mean percentage contrast was also higher on SS-FSE (159.0) than on T2-FSE images (108.5) (p=3D0.0222), but mean SNR was higher on T2-FSE (80.3) than on SS-FSE images (53.5) (p=3D0.0000). No significant differences in lesion visibility were observed between the two imaging sequences, though margin and extent of the lesion were worse on SS-FSE images. For MR artifacts, no significant differences were demonstrated. For the evaluation of most intracranial lesions, MR imaging using the SS-FSE sequence appears to be slightly inferior to the T2-FSE sequence, but may be useful where patients are ill or uncooperative, or where children require sedation.=20

  8. MR imaging of the gastrointestinal tract with half-fourier single-shot fast spin echo (SSFSE)

    International Nuclear Information System (INIS)

    Boku, Houjun; Takehara, Yasuo; Isoda, Haruo; Isogai, Satoshi; Kaneko, Masao

    1999-01-01

    Our objective was to implement a non-invasive magnetic resonance imaging (MRI) technique combined with concentrated milk ingestion for depicting the gastrointestinal (GI) tract and detecting gastrointestinal motility and transit. The half-Fourier SSFSE (single-shot fast spin echo) sequence was optimized on the basis of a phantom study. In order to determine the feasibility of milk ingestion as a substitute for contrast medium, ten human volunteers were examined with SSFSE after two types of liquid ingestion (i.e., milk and water). The snapshot images provided subsecond data acquisition for each coronal plane, allowing visualization of peristalsis in the gastrointestinal tract in an almost real-time fashion, without motion-related image degradation, as would normally be seen using conventional MRI. There was no significant difference between concentrated milk and water in terms of depiction of the upper gastrointestinal tract; however, 10 min and 30 min after ingestion, concentrated milk showed better delineation of the intestine than that observed after water ingestion (p<0.01). MR gastrointestinal imaging is a non-invasive method that allows gastrointestinal depiction as well as analysis of motility and passage. Especially with concentrated milk ingestion, the distal intestines were well depicted with adequate contrast filling and distention. (author)

  9. Moderately T2-weighted images obtained with the single-shot fast spin-echo technique. Differentiating between malignant and benign urinary obstructions

    International Nuclear Information System (INIS)

    Obuchi, Masao; Sugimoto, Hideharu; Kubota, Hayato; Yamamoto, Wakako; Kinebuchi, Yuko; Honda, Minoru; Takahara, Taro

    2002-01-01

    The purpose of this study was to determine whether a distinction could be made between benign and malignant urinary obstructions in moderately T 2 -weighted images obtained with the single-shot fast spin-echo technique. Forty-four lesions in 39 patients with urinary obstruction were evaluated with the single-shot fast spin-echo (SSFSE) technique with an effective TE of 90-100 ms and without fat saturation. Benign and malignant lesions were compared for the presence of ureteral wall thickening and a signal intensity relative to the proximal ureteral wall. Statistically significant differences were found between benign and malignant lesions in both morphologic change (P 2 -weighted SSFSE technique without fat saturation can accurately distinguish between benign and malignant urinary obstructions. (author)

  10. Utility of single shot fast spin echo technique in evaluating pancreaticobiliary diseases: T2-weighted image and magnetic resonance cholangiopancreatography

    International Nuclear Information System (INIS)

    Choi, Byoung Wook; Kim, Myeong Jin; Chung, Jae Bok; Ko, Heung Kyu; Kim, Dong Joon; Kim, Joo Hee; Chung, Jae Joon; Yoo, Hyung Sik; Lee, Jong Tae

    1999-01-01

    To evaluate the accuracy of T2-weighted imaging an MR cholangiopancreatography using the single shot fast spin-echo technique for evaluating pancreaticobiliary disease. Between March and July 1997, axial and coronal T2-weighted images(TE: 80-200 msec) and MR cholangiopancreatograms (TE: 800-1200 msec) were obtained in two ways [single slab (thickness: 30-50 mm) and multislice acquisition under chemical fat saturation] using SSFSE pulse sequencing in 131 cases of suspected pancreati-cobiliary disease. The accuracy of SSFSE MR imaging was assessed in 89 lesions of 74 patients [male, 48; female, 26; age range, 30-86 (mean, 59) years] confirmed surgicopathologically (50 lesions in 39 patients) and clinically (39 lesions in 35 patients). Two radiologists reviewed the MR images and diagnosis was determined by consensus. Correct diagnosis was confirmed in 84 of 89 lesions (94%). Seven lesions were falsely interpreted, false positive and false negative results accounting for two and five cases, respectively. Two pancreatic cancers were misdiagnosed as pancreatitis and a cancer of the proximal common bile duct(CBD) was interpreted as a distal CBD cancer. The sensitivity of SSFSE MR imaging for malignancy was 93 %. One CBD stone revealed by endoscopic retrograde cholangiopancreatography (ERCP) was not detected on MR images. In contrast, a stone in the CBD seen on MR images was not apparent on subsequent ERCP. Sensitivity and specificity for calculous disease were 96% and 99.7%, respectively. A benign stricture of the ampulla of Vater was falsely interpreted as normal, and correct diagnosis was possible in two falsely diagnosed cases when MR images were reviewed retrospectively. The combination of T2-weighted and cholangiographic images using SSFSE is an accurate method for diagnosing pancreatcobiliary diseases

  11. Differential diagnosis of pituitary adenomas and Rathke's cleft cysts by diffusion-weighted MRI using single-shot fast spin echo technique

    International Nuclear Information System (INIS)

    Abe, Takumi; Izumiyama, Hitoshi; Fukuda, Ataru; Tanioka, Daisuke; Kunii, Norihiko; Komatsu, Daisuke; Fujita, Shogo; Ukisu, Ryutaro; Moritani, Toshio

    2002-01-01

    The purpose of the present study was to prospectively evaluate the diagnostic ability of diffusion-weighted magnetic resonance imaging (DWI) using single-shot fast spin echo (SSFSE) technique to discriminate pituitary adenomas from Rathke's cleft cysts. DWIs were obtained from 40 patients with pathologically proven pituitary macroadenomas and 15 patients with proven Rathke's cleft cysts. Pituitary adenomas were divided into 27 cases with solid components alone, five with non-hemorrhagic large cysts, and eight with intratumoral hemorrhage. On SSFSE DWI, solid components of pituitary adenomas revealed iso or slightly increased intensity and intratumoral hemorrhage showed higher intensity than normal brain parenchyma, whereas Rathke's cleft cysts and intratumoral cysts demonstrated very low intensity. SSFSE DWI did not display the susceptibility artifacts that are seen close to the skull base and sinonasal cavities on echo planar diffusion imaging. On the basis of our preliminary findings, DWI may enable us to differentiate pituitary adenomas with only solid components and hemorrhagic pituitary adenomas appearing hyperintense on T1-weighted images from Rathke's cleft cysts without administration of gadolinium-DTPA. SSFSE DWI appears to be a useful technique for characterizing pituitary diseases without the susceptibility artifacts. Our study is the first report to demonstrate the identification of pituitary disorders on SSFSE DWI. (author)

  12. Differential diagnosis of pituitary adenomas and Rathke's cleft cysts by diffusion-weighted MRI using single-shot fast spin echo technique

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Takumi; Izumiyama, Hitoshi; Fukuda, Ataru; Tanioka, Daisuke; Kunii, Norihiko; Komatsu, Daisuke; Fujita, Shogo; Ukisu, Ryutaro; Moritani, Toshio [Showa Univ., Tokyo (Japan). School of Medicine

    2002-09-01

    The purpose of the present study was to prospectively evaluate the diagnostic ability of diffusion-weighted magnetic resonance imaging (DWI) using single-shot fast spin echo (SSFSE) technique to discriminate pituitary adenomas from Rathke's cleft cysts. DWIs were obtained from 40 patients with pathologically proven pituitary macroadenomas and 15 patients with proven Rathke's cleft cysts. Pituitary adenomas were divided into 27 cases with solid components alone, five with non-hemorrhagic large cysts, and eight with intratumoral hemorrhage. On SSFSE DWI, solid components of pituitary adenomas revealed iso or slightly increased intensity and intratumoral hemorrhage showed higher intensity than normal brain parenchyma, whereas Rathke's cleft cysts and intratumoral cysts demonstrated very low intensity. SSFSE DWI did not display the susceptibility artifacts that are seen close to the skull base and sinonasal cavities on echo planar diffusion imaging. On the basis of our preliminary findings, DWI may enable us to differentiate pituitary adenomas with only solid components and hemorrhagic pituitary adenomas appearing hyperintense on T1-weighted images from Rathke's cleft cysts without administration of gadolinium-DTPA. SSFSE DWI appears to be a useful technique for characterizing pituitary diseases without the susceptibility artifacts. Our study is the first report to demonstrate the identification of pituitary disorders on SSFSE DWI. (author)

  13. Faster pediatric 3-T abdominal magnetic resonance imaging: comparison between conventional and variable refocusing flip-angle single-shot fast spin-echo sequences

    Energy Technology Data Exchange (ETDEWEB)

    Ruangwattanapaisarn, Nichanan [Mahidol University, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Bangkok (Thailand); Stanford University, LPCH Department of Radiology, Stanford, CA (United States); Loening, Andreas M.; Saranathan, Manojkumar; Vasanawala, Shreyas S. [Stanford University, LPCH Department of Radiology, Stanford, CA (United States); Litwiller, Daniel V. [GE Healthcare, Rochester, MN (United States)

    2015-06-15

    Single-shot fast spin echo (SSFSE) is particularly appealing in pediatric patients because of its motion robustness. However radiofrequency energy deposition at 3 tesla forces long pauses between slices, leading to longer scans, longer breath-holds and more between-slice motion. We sought to learn whether modulation of the SSFSE refocusing flip-angle train could reduce radiofrequency energy deposition without degrading image quality, thereby reducing inter-slice pauses and overall scan times. We modulated the refocusing flip-angle train for SSFSE to minimize energy deposition while minimizing blurring and motion-related signal loss. In a cohort of 50 consecutive patients (25 boys, mean age 5.5 years, range 1 month to 17 years) referred for abdominal MRI we obtained standard SSFSE and variable refocusing flip-angle (vrfSSFSE) images and recorded sequence scan times. Two readers independently scored the images in blinded, randomized order for noise, tissue contrast, sharpness, artifacts and left lobe hepatic signal uniformity on a four-point scale. The null hypothesis of no difference between SSFSE and vrfSSFSE image-quality was assessed with a Mann-Whitney U test, and the null hypothesis of no scan time difference was assessed with the paired t-test. SSFSE and vrfSSFSE mean acquisition times were 54.3 and 26.2 s, respectively (P-value <0.0001). For each reader, SSFSE and vrfSSFSE noise, tissue contrast, sharpness and artifacts were not significantly different (P-values 0.18-0.86). However, SSFSE had better left lobe hepatic signal uniformity (P < 0.01, both readers). vrfSSFSE is twice as fast as SSFSE, with equivalent image quality with the exception of left hepatic lobe signal heterogeneity. (orig.)

  14. Shot noise of spin current and spin transfer torque

    Science.gov (United States)

    Yu, Yunjin; Zhan, Hongxin; Wan, Langhui; Wang, Bin; Wei, Yadong; Sun, Qingfeng; Wang, Jian

    2013-04-01

    We report the theoretical investigation of the shot noise of the spin current (Sσ) and the spin transfer torque (Sτ) for non-collinear spin polarized transport in a spin-valve device which consists of a normal scattering region connected by two ferromagnetic electrodes (MNM system). Our theory was developed using the non-equilibrium Green’s function method, and general nonlinear Sσ - V and Sτ - V relations were derived as a function of the angle θ between the magnetizations of two leads. We have applied our theory to a quantum dot system with a resonant level coupled with two ferromagnetic electrodes. It was found that, for the MNM system, the auto-correlation of the spin current is enough to characterize the fluctuation of the spin current. For a system with three ferromagnetic layers, however, both auto-correlation and cross-correlation of the spin current are needed to characterize the noise of the spin current. For a quantum dot with a resonant level, the derivative of spin torque with respect to bias voltage is proportional to sinθ when the system is far away from resonance. When the system is near resonance, the spin transfer torque becomes a non-sinusoidal function of θ. The derivative of the noise of the spin transfer torque with respect to the bias voltage Nτ behaves differently when the system is near or far away from resonance. Specifically, the differential shot noise of the spin transfer torque Nτ is a concave function of θ near resonance while it becomes a convex function of θ far away from resonance. For certain bias voltages, the period Nτ(θ) becomes π instead of 2π. For small θ, it was found that the differential shot noise of the spin transfer torque is very sensitive to the bias voltage and the other system parameters.

  15. Shot noise of spin current and spin transfer torque

    International Nuclear Information System (INIS)

    Yu Yunjin; Zhan Hongxin; Wan Langhui; Wang Bin; Wei Yadong; Sun Qingfeng; Wang Jian

    2013-01-01

    We report the theoretical investigation of the shot noise of the spin current (S σ ) and the spin transfer torque (S τ ) for non-collinear spin polarized transport in a spin-valve device which consists of a normal scattering region connected by two ferromagnetic electrodes (MNM system). Our theory was developed using the non-equilibrium Green’s function method, and general nonlinear S σ − V and S τ − V relations were derived as a function of the angle θ between the magnetizations of two leads. We have applied our theory to a quantum dot system with a resonant level coupled with two ferromagnetic electrodes. It was found that, for the MNM system, the auto-correlation of the spin current is enough to characterize the fluctuation of the spin current. For a system with three ferromagnetic layers, however, both auto-correlation and cross-correlation of the spin current are needed to characterize the noise of the spin current. For a quantum dot with a resonant level, the derivative of spin torque with respect to bias voltage is proportional to sinθ when the system is far away from resonance. When the system is near resonance, the spin transfer torque becomes a non-sinusoidal function of θ. The derivative of the noise of the spin transfer torque with respect to the bias voltage N τ behaves differently when the system is near or far away from resonance. Specifically, the differential shot noise of the spin transfer torque N τ is a concave function of θ near resonance while it becomes a convex function of θ far away from resonance. For certain bias voltages, the period N τ (θ) becomes π instead of 2π. For small θ, it was found that the differential shot noise of the spin transfer torque is very sensitive to the bias voltage and the other system parameters. (paper)

  16. Value of MR cisternography using three-dimensional half-fourier single-shot fast spin-echo sequences in the diagnosis of diseases related to cranial nerves VII and VIII

    Energy Technology Data Exchange (ETDEWEB)

    Yamakami, Norio [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1999-05-01

    The purpose of this study was to evaluate the value of MR cisternography using three-dimensional half-Fourier single-shot fast spin-echo sequences in the diagnosis of diseasea related to cranial nerves VII and VIII. With a 0.5-T imager, the most appropriate setting of echo time and section thickness was first assessed in five volunteers. This resulted in echo time of 250 msec and section thickness of 2 mm as the most effective parameters. Second, using echo time of 120 msec and section thickness of 1.5 mm that were available from the beginning of this study, the demonstration of four nerves within the audistory canal was assessed in seven volunteers. In all of the volunteers, the facial, cochlear, and vestibular nerves were determined with demonstration of each of superior and inferior vestibular nerves in four of them. Next, MR cisternography using the same echo time and section thickness was applied in 368 patients with suspicion of acoustic neurinoma and 14 with hemifacial spasm. In 28 of the 368 patients, MR cisternograms depicted an acoustic neurinoma that was confirmed on postcontrast T1-weighted images. Meanwhile, in five of the 14 patients with hemifacial spasm, MR cisternograms revealed a vessel compressing the root exit zone of the affected facial nerve. It is concluded that MR cisternography using three-dimensional half-Fourier single-shot fast spin-echo sequences can be a useful means for demonstrating nerves within the auditory nerve as well as for the screening of acoustic neurionoma. (author)

  17. Value of MR cisternography using three-dimensional half-fourier single-shot fast spin-echo sequences in the diagnosis of diseases related to cranial nerves VII and VIII

    International Nuclear Information System (INIS)

    Yamakami, Norio

    1999-01-01

    The purpose of this study was to evaluate the value of MR cisternography using three-dimensional half-Fourier single-shot fast spin-echo sequences in the diagnosis of diseasea related to cranial nerves VII and VIII. With a 0.5-T imager, the most appropriate setting of echo time and section thickness was first assessed in five volunteers. This resulted in echo time of 250 msec and section thickness of 2 mm as the most effective parameters. Second, using echo time of 120 msec and section thickness of 1.5 mm that were available from the beginning of this study, the demonstration of four nerves within the audistory canal was assessed in seven volunteers. In all of the volunteers, the facial, cochlear, and vestibular nerves were determined with demonstration of each of superior and inferior vestibular nerves in four of them. Next, MR cisternography using the same echo time and section thickness was applied in 368 patients with suspicion of acoustic neurinoma and 14 with hemifacial spasm. In 28 of the 368 patients, MR cisternograms depicted an acoustic neurinoma that was confirmed on postcontrast T1-weighted images. Meanwhile, in five of the 14 patients with hemifacial spasm, MR cisternograms revealed a vessel compressing the root exit zone of the affected facial nerve. It is concluded that MR cisternography using three-dimensional half-Fourier single-shot fast spin-echo sequences can be a useful means for demonstrating nerves within the auditory nerve as well as for the screening of acoustic neurionoma. (author)

  18. Single-shot readout of accumulation mode Si/SiGe spin qubits using RF reflectometry

    Science.gov (United States)

    Volk, Christian; Martins, Frederico; Malinowski, Filip; Marcus, Charles M.; Kuemmeth, Ferdinand

    Spin qubits based on gate-defined quantum dots are promising systems for realizing quantum computation. Due to their low concentration of nuclear-spin-carrying isotopes, Si/SiGe heterostructures are of particular interest. While high fidelities have been reported for single-qubit and two-qubit gate operations, qubit initialization and measurement times are relatively slow. In order to develop fast read-out techniques compatible with the operation of spin qubits, we characterize double and triple quantum dots confined in undoped Si/Si0.7Ge0.3 heterostructures using accumulation and depletion gates and a nearby RF charge sensor dot. We implement a RF reflectometry technique that allows single-shot charge read-out at integration times on the order of a few μs. We show our recent advancement towards implementing spin qubits in these structures, including spin-selective single-shot read-out.

  19. Shot noise as a probe of spin-correlated transport through single atoms

    Science.gov (United States)

    Pradhan, S.; Fransson, J.

    2018-03-01

    We address the shot noise in the tunneling current through a local spin, pertaining to recent experiments on magnetic adatoms and single molecular magnets. We show that both uncorrelated and spin-correlated scattering processes contribute vitally to the noise spectrum. The spin-correlated scattering processes provide an additional contribution to the Landauer-Büttiker shot noise expression, accounting for correlations between the tunneling electrons and the localized spin moment. By calculating the Fano factor, we show that both super- and sub-Poissonian shot noise can be described within our approach. Our theory provides transparent insights into noise spectroscopy, consistent with recent experiments using local probing techniques on magnetic atoms.

  20. Fast spin-echo imaging

    International Nuclear Information System (INIS)

    Mackey, K.; Zoarski, G.; Bentson, J.R.; Lufkin, R.B.; Melki, P.; Jolesz, F.

    1991-01-01

    This paper reports on a partial radio-frequency (RF) echo-planar pulse sequence called contiguous slice fast spin echo (CSFSE) which is undergoing clinical trials for spine MR imaging. In this variation of rapid acquisition relaxation enhanced (RARE) spin-echo imaging, rapid 180 degrees RF pulse generated refocused echoes, producing T2-weighted images in about one-third the time of conventional double-echo technique. Forty patients with suspected pathology of the spine were imaged with conventional double-echo and closely matched CSFSE techniques on a GE Signa 1.5-T Advantage system. Cases were reviewed by two board-certified neuroradiologists. In all cases the CSFSE images were of equal or superior quality compared with those obtained with the conventional double-echo technique. Pathologic processes that were imaged consisted of inflammatory, neoplastic, posttraumatic, and degenerative conditions

  1. Berry phase and shot noise for spin-polarized and entangled electrons

    International Nuclear Information System (INIS)

    Wang Pei; Tang Weihua; Lu Dinghui; Jiang Lixia; Zhao Xuean

    2007-01-01

    Shot noise for entangled and spin-polarized states in a four-probe geometric setup has been studied by adding two rotating magnetic fields in an incoming channel. Our results show that the noise power oscillates as the magnetic fields vary. The singlet, entangled triplet and polarized states can be distinguished by adjusting the magnetic fields. The Berry phase can be derived by measuring the shot noise power

  2. Super-Poissonian Shot Noise of Squeezed-Magnon Mediated Spin Transport.

    Science.gov (United States)

    Kamra, Akashdeep; Belzig, Wolfgang

    2016-04-08

    The magnetization of a ferromagnet (F) driven out of equilibrium injects pure spin current into an adjacent conductor (N). Such F|N bilayers have become basic building blocks in a wide variety of spin-based devices. We evaluate the shot noise of the spin current traversing the F|N interface when F is subjected to a coherent microwave drive. We find that the noise spectrum is frequency independent up to the drive frequency, and increases linearly with frequency thereafter. The low frequency noise indicates super-Poissonian spin transfer, which results from quasiparticles with effective spin ℏ^{*}=ℏ(1+δ). For typical ferromagnetic thin films, δ∼1 is related to the dipolar interaction-mediated squeezing of F eigenmodes.

  3. Ultrafast bold fMRI using single-shot spin-echo echo planar imaging

    Directory of Open Access Journals (Sweden)

    Boujraf Said

    2009-01-01

    Full Text Available The choice of imaging parameters for functional MRI can have an impact on the accuracy of functional localization by affecting the image quality and the degree of blood oxygenation-dependent (BOLD contrast achieved. By improving sampling efficiency, parallel acquisition techniques such as sensitivity encoding (SENSE have been used to shorten readout trains in single-shot (SS echo planar imaging (EPI. This has been applied to susceptibility artifact reduction and improving spatial resolution. SENSE together with single-shot spin-echo (SS-SE imaging may also reduce off-resonance artifacts. The goal of this work was to investigate the BOLD response of a SENSE-adapted SE-EPI on a three Tesla scanner. Whole-brain fMRI studies of seven healthy right hand-dominant volunteers were carried out in a three Tesla scanner. fMRI was performed using an SS-SE EPI sequence with SENSE. The data was processed using statistical parametric mapping. Both, group and individual subject data analyses were performed. Individual average percentage and maximal percentage signal changes attributed to the BOLD effect in M1 were calculated for all the subjects as a function of echo time. Corresponding activation maps and the sizes of the activated clusters were also calculated. Our results show that susceptibility artifacts were reduced with the use of SENSE; and the acquired BOLD images were free of the typical quadrature artifacts of SS-EPI. Such measures are crucial at high field strengths. SS SE-EPI with SENSE offers further benefits in this regard and is more specific for oxygenation changes in the microvasculature bed. Functional brain activity can be investigated with the help of single-shot spin echo EPI using SENSE at high magnetic fields.

  4. Estimation of post disruption plasma temperature for fast current quench Aditya plasma shots

    International Nuclear Information System (INIS)

    Purohit, S.; Chowdhuri, M.B.; Joisa, Y.S.; Raval, J.V.; Ghosh, J.; Jha, R.

    2013-01-01

    Characteristics of tokamak current quenches are an important issue for the determination of electromagnetic forces that act on the in-vessel components and vacuum vessel during major disruptions. It is observed that thermal quench is followed by a sharp current decay. Fast current quench disruptive plasma shots were investigated for ADITYA tokamak. The current decay time was determined for the selected shots, which were in the range of 0.8 msec to 2.5 msec. This current decay information was then applied to L/R model, frequently employed for the estimation of the current decay time in tokamak plasmas, considering plasma inductance and plasma resistivity. This methodology was adopted for the estimation of the post disruption plasma temperature using the experimentally observed current decay time for the fast current quench disruptive ADITYA plasma shots. The study reveals that for the identified shots there is a constant increase in the current decay time with the post disruption plasma temperature. The investigations also explore the behavior post disruption plasma temperature and the current decay time as a function of the edge safety factor, Q. Post disruption plasma temperature and the current decay time exhibits a decrease with the increase in the value Q. (author)

  5. Cavity Exciton-Polariton mediated, Single-Shot Quantum Non-Demolition measurement of a Quantum Dot Electron Spin

    Science.gov (United States)

    Puri, Shruti; McMahon, Peter; Yamamoto, Yoshihisa

    2014-03-01

    The quantum non-demolition (QND) measurement of a single electron spin is of great importance in measurement-based quantum computing schemes. The current single-shot readout demonstrations exhibit substantial spin-flip backaction. We propose a QND readout scheme for quantum dot (QD) electron spins in Faraday geometry, which differs from previous proposals and implementations in that it relies on a novel physical mechanism: the spin-dependent Coulomb exchange interaction between a QD spin and optically-excited quantum well (QW) microcavity exciton-polaritons. The Coulomb exchange interaction causes a spin-dependent shift in the resonance energy of the polarized polaritons, thus causing the phase and intensity response of left circularly polarized light to be different to that of the right circularly polarized light. As a result the QD electron's spin can be inferred from the response to a linearly polarized probe. We show that by a careful design of the system, any spin-flip backaction can be eliminated and a QND measurement of the QD electron spin can be performed within a few 10's of nanoseconds with fidelity 99:95%. This improves upon current optical QD spin readout techniques across multiple metrics, including fidelity, speed and scalability. National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.

  6. Spin-polarized current and shot noise in the presence of spin flip in a quantum dot via nonequilibrium Green's functions

    DEFF Research Database (Denmark)

    De Souza, Fabricio; Jauho, Antti-Pekka; Egues, J.C.

    2008-01-01

    Using nonequilibrium Green's functions we calculate the spin-polarized current and shot noise in a ferromagnet-quantum-dot-ferromagnet system. Both parallel (P) and antiparallel (AP) magnetic configurations are considered. Coulomb interaction and coherent spin flip (similar to a transverse magnetic...... field) are taken into account within the dot. We find that the interplay between Coulomb interaction and spin accumulation in the dot can result in a bias-dependent current polarization p. In particular, p can be suppressed in the P alignment and enhanced in the AP case depending on the bias voltage....... The coherent spin flip can also result in a switch of the current polarization from the emitter to the collector lead. Interestingly, for a particular set of parameters it is possible to have a polarized current in the collector and an unpolarized current in the emitter lead. We also found a suppression...

  7. Fast Detection of Airports on Remote Sensing Images with Single Shot MultiBox Detector

    Science.gov (United States)

    Xia, Fei; Li, HuiZhou

    2018-01-01

    This paper introduces a method for fast airport detection on remote sensing images (RSIs) using Single Shot MultiBox Detector (SSD). To our knowledge, this could be the first study which introduces an end-to-end detection model into airport detection on RSIs. Based on the common low-level features between natural images and RSIs, a convolution neural network trained on large amounts of natural images was transferred to tackle the airport detection problem with limited annotated data. To deal with the specific characteristics of RSIs, some related parameters in the SSD, such as the scales and layers, were modified for more accurate and rapider detection. The experiments show that the proposed method could achieve 83.5% Average Recall at 8 FPS on RSIs with the size of 1024*1024. In contrast to Faster R-CNN, an improvement on AP and speed could be obtained.

  8. Magnetic resonance urography in pediatrics: utilization of ultrafast single-shot spin echo sequences

    International Nuclear Information System (INIS)

    Martin, C.; Martin, J.; Duran, C.; Rigol, S.; Rojo, J. C.

    1999-01-01

    To determine the value of magnetic resonance urography (MRU) using ultrafast single-shot (SS) rapid acquisition with relaxation enhancement (RARE) and half-Fourier (HF) SS-RARE (SS-HF-RARE or HASTE) in the evaluation of congenital urinary tract anomalies in pediatric patients, and their possible application as alternatives to intravenous urography (IVU). Eighteen children (11 boys and 7 girls) aged 2 months to 15 years (mean: 5 years) with a total of 19 congenital urinary tract anomalies were studies by MU using SS-RARE and HASTE sequences in a 1 Tesla scanner. All the patients had previously been studies by ultrasound (US) and IVU. Twelve patients required anesthesia. The images were acquired by means of a HASTE sequence with multisection technique (TR, infinite; TE e f, 87 msec; echo train, 128; interval between echoes, 10.9 msec; total acquisition time, 13 sections/12 seconds), and SS-RARE (TR, infinite; TE e f, 1.100 msec; echo train, 240, and acquisition time, 7 seconds). Four radiologists evaluated the images independently; two who reviewed the IV images in consensus and two who reviewed the MRU images in consensus. The images were evaluated to assess the dilatation of the urinary tract and their utility in detecting the level and cause of the obstruction. MRU images revealed the urinary tract dilation, the level of the obstruction and the type of anomaly in 18 patients (100%), while IVU provided this information in only 10 [ sensitivity, 53%, 95% confidence interval (29%, 76%)]. The mean time required for MRU was 20 minutes (range: 7 to 30 minutes), while that of IVU was 1,242 minutes (range: 45 to 1,440 minutes). MRU using ultrafast single-short spin echo sequences is a rapid and effective technique that permits and excellent evaluation of congenital urinary tract anomalies in pediatric patients and does not require the administration of contrast media or ionizing radiation. (Author) 10 refs

  9. Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout

    Science.gov (United States)

    Sukachev, D. D.; Sipahigil, A.; Nguyen, C. T.; Bhaskar, M. K.; Evans, R. E.; Jelezko, F.; Lukin, M. D.

    2017-12-01

    The negatively charged silicon-vacancy (SiV- ) color center in diamond has recently emerged as a promising system for quantum photonics. Its symmetry-protected optical transitions enable the creation of indistinguishable emitter arrays and deterministic coupling to nanophotonic devices. Despite this, the longest coherence time associated with its electronic spin achieved to date (˜250 ns ) has been limited by coupling to acoustic phonons. We demonstrate coherent control and suppression of phonon-induced dephasing of the SiV- electronic spin coherence by 5 orders of magnitude by operating at temperatures below 500 mK. By aligning the magnetic field along the SiV- symmetry axis, we demonstrate spin-conserving optical transitions and single-shot readout of the SiV- spin with 89% fidelity. Coherent control of the SiV- spin with microwave fields is used to demonstrate a spin coherence time T2 of 13 ms and a spin relaxation time T1 exceeding 1 s at 100 mK. These results establish the SiV- as a promising solid-state candidate for the realization of quantum networks.

  10. Single-shot quantum nondemolition measurement of a quantum-dot electron spin using cavity exciton-polaritons

    Science.gov (United States)

    Puri, Shruti; McMahon, Peter L.; Yamamoto, Yoshihisa

    2014-10-01

    We propose a scheme to perform single-shot quantum nondemolition (QND) readout of the spin of an electron trapped in a semiconductor quantum dot (QD). Our proposal relies on the interaction of the QD electron spin with optically excited, quantum well (QW) microcavity exciton-polaritons. The spin-dependent Coulomb exchange interaction between the QD electron and cavity polaritons causes the phase and intensity response of left circularly polarized light to be different than that of right circularly polarized light, in such a way that the QD electron's spin can be inferred from the response to a linearly polarized probe reflected or transmitted from the cavity. We show that with careful device design it is possible to essentially eliminate spin-flip Raman transitions. Thus a QND measurement of the QD electron spin can be performed within a few tens of nanoseconds with fidelity ˜99.95%. This improves upon current optical QD spin readout techniques across multiple metrics, including speed and scalability.

  11. Sub-Shot-Noise Magnetometry with a Correlated Spin-Relaxation Dominated Alkali-Metal Vapor

    International Nuclear Information System (INIS)

    Kominis, I. K.

    2008-01-01

    Spin noise sets fundamental limits to the precision of measurements using spin-polarized atomic vapors, such as performed with sensitive atomic magnetometers. Spin squeezing offers the possibility to extend the measurement precision beyond the standard quantum limit of uncorrelated atoms. Contrary to current understanding, we show that, even in the presence of spin relaxation, spin squeezing can lead to a significant reduction of spin noise, and hence an increase in magnetometric sensitivity, for a long measurement time. This is the case when correlated spin relaxation due to binary alkali-atom collisions dominates independently acting decoherence processes, a situation realized in thermal high atom-density magnetometers and clocks

  12. Shot noise as a probe of spin-polarized transport through single atoms

    DEFF Research Database (Denmark)

    Burtzlaff, Andreas; Weismann, Alexander; Brandbyge, Mads

    2015-01-01

    Single atoms on Au(111) surfaces have been contacted with the Au tip of a low temperature scanning tunneling microscope. The shot noise of the current through these contacts has been measured up to frequencies of 120 kHz and Fano factors have been determined to characterize the transport channels...

  13. Ultrafast T2-weighted single shot spin-echo sequences: applications on abdominal and pelvic pathologies

    International Nuclear Information System (INIS)

    Martin, J.; Martin, C.; Falco, J.; Esteban, L.

    1999-01-01

    The magnetic resonance imaging (MRI) sequences that obtain all the data using a sole excitation pulse of 90 degree centigrade, filling the K space in a single repetition time (TR) is known as snap shot or single shot (SS). The SS sequence based on the rapid acquisition with relaxation enhancement (SS-RARE) method, designed by Hening (1) and a variation of it with a half-Fourier reconstruction (SS-HF-RARE (HASTEL)) (2, 3) are capable of obtaining high contrast images in T2, in very short times, that oscillate between one to several seconds. The clinical application of these sequences to abdominal and pelvic pathologies is increasing, providing and improvement in the contrast resolution, but also in the spatial resolution, with a high relation signal/noise ratio, high contrast and absence of movement artifacts. (Author)

  14. Characteristics of spondylotic myelopathy on 3D driven-equilibrium fast spin echo and 2D fast spin echo magnetic resonance imaging: a retrospective cross-sectional study.

    Science.gov (United States)

    Abdulhadi, Mike A; Perno, Joseph R; Melhem, Elias R; Nucifora, Paolo G P

    2014-01-01

    In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures. However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as 2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for quantitative signal measurements in the spinal cord.

  15. A Fast Track towards the `Higgs' Spin and Parity

    CERN Document Server

    Ellis, John; Sanz, Veronica; You, Tevong

    2012-01-01

    The LHC experiments ATLAS and CMS have discovered a new boson that resembles the long-sought Higgs boson: it cannot have spin one, and has couplings to other particles that increase with their masses, but the spin and parity remain to be determined. We show here that the `Higgs' + gauge boson invariant-mass distribution in `Higgs'-strahlung events at the Tevatron or the LHC would be very different under the J^P = 0+, 0- and 2+ hypotheses, and could provide a fast-track indicator of the `Higgs' spin and parity. Our analysis is based on simulations of the experimental event selections and cuts using PYTHIA and Delphes, and incorporates statistical samples of `toy' experiments.

  16. Fast switching of bistable magnetic nanowires through collective spin reversal

    Science.gov (United States)

    Vindigni, Alessandro; Rettori, Angelo; Bogani, Lapo; Caneschi, Andrea; Gatteschi, Dante; Sessoli, Roberta; Novak, Miguel A.

    2005-08-01

    The use of magnetic nanowires as memory units is made possible by the exponential divergence of the characteristic time for magnetization reversal at low temperature, but the slow relaxation makes the manipulation of the frozen magnetic states difficult. We suggest that finite-size segments can show a fast switching if collective reversal of the spins is taken into account. This mechanism gives rise at low temperatures to a scaling law for the dynamic susceptibility that has been experimentally observed for the dilute molecular chain Co(hfac)2NitPhOMe. These results suggest a possible way of engineering nanowires for fast switching of the magnetization.

  17. Clinical application of Half Fourier Acquisition Single Shot Turbo Spin Echo (HASTE) imaging accelerated by simultaneous multi-slice acquisition.

    Science.gov (United States)

    Schulz, Jenni; P Marques, José; Ter Telgte, Annemieke; van Dorst, Anouk; de Leeuw, Frank-Erik; Meijer, Frederick J A; Norris, David G

    2018-01-01

    As a single-shot sequence with a long train of refocusing pulses, Half-Fourier Acquisition Single-Shot Turbo-Spin-Echo (HASTE) suffers from high power deposition limiting use at high resolutions and high field strengths, particularly if combined with acceleration techniques such as simultaneous multi-slice (SMS) imaging. Using a combination of multiband (MB)-excitation and PINS-refocusing pulses will effectively accelerate the acquisition time while staying within the SAR limitations. In particular, uncooperative and young patients will profit from the speed of the MB-PINS HASTE sequence, as clinical diagnosis can be possible without sedation. Materials and MethodsMB-excitation and PINS-refocusing pulses were incorporated into a HASTE-sequence with blipped CAIPIRINHA and TRAPS including an internal FLASH reference scan for online reconstruction. Whole brain MB-PINS HASTE data were acquired on a Siemens 3T-Prisma system from 10 individuals and compared to a clinical HASTE protocol. ResultsThe proposed MB-PINS HASTE protocol accelerates the acquisition by about a factor 2 compared to the clinical HASTE. The diagnostic image quality proved to be comparable for both sequences for the evaluation of the overall aspect of the brain, the detection of white matter changes and areas of tissue loss, and for the evaluation of the CSF spaces although artifacts were more frequently encountered with MB-PINS HASTE. ConclusionsMB-PINS HASTE enables acquisition of slice accelerated highly T2-weighted images and provides good diagnostic image quality while reducing acquisition time. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Fast spin-echo MR imaging of the eye

    International Nuclear Information System (INIS)

    Hosten, N.; Lemke, A.J.; Bornfeld, N.; Wassmuth, R.; Schweiger, U.; Terstegge, K.; Felix, R.

    1996-01-01

    Magnetic resonance imaging of the eye usually includes T2-weighted images both for screening purposes and for characterization of melanoma. Conventional T2-weighted spin-echo (SE) imaging suffers both from long acquisition times and incomplete recovery of the virteous' signal. A fast SE sequence was therefore compared prospectively with conventional sequences in 29 consecutive patients with lesions of the eye. Fast SE images delineated melanoma and other lesions of the eye from vitreous better than conventional T2-weighted images. Image quality and lesion conspicuity were improved on the fast sequence. Whereas melanoma appeared hypointense to vitreous on both types of images, subretinal effusion was hypointense on fast images and hyperintense on conventional T2-weighted images. Ghosting of the globe, which, however, did not decrease diagnostic value, was more pronounced on fast images. Conventional T2-weighted images may be replaced by fast SE images in MR studies of the eye with a gain in lesion conspicuity and significant time saving. (orig.)

  19. Fast spin echo MRI techniques. Contrast characteristics and clinical potential

    International Nuclear Information System (INIS)

    Melki, P.; Mulkern, R.V.; Dacher, J.N.; Helenon, O.; Higuchi, N.; Oshio, K.; Jolesz, F.; Pourcelot, L.; Einstein, S.

    1993-01-01

    Based on partial RF echo planar principles, Fast Spin Echo techniques (FSE) were implemented on high field systems. These methods produce image quality and contrast which resemble to conventional spin echo (SE) techniques. By reducing acquisition times by factors between 1.4 and 16 over SE methods, FSE allows for several imaging options usually prohibitive with conventional spin echo (SE) sequences. These include fast scans (especially breathold acquisitions); improved T2 contrast with longer TR intervals; increased spatial resolution with the use of larger image matrices and/or smaller fields of view; and 3D volume imaging with a 3D multislab FSE technique. Contrast features of FSE techniques are directly comparable to those of multiple echo SE sequences using the same echo spacing than FSE methods. However, essential contrast differences existing between the FSE sequences and their routine asymmetric dual SE counterpart can be identified. Decreased magnetic susceptibility effects and increased fat signal present within T2 weighted images compared to conventional dual SE images are due to the use of shorter echo spacings employed in FSE sequences. Off-resonance irradiation inherent to the use of a large number of radio frequency pulses in shown to results in dramatic magnetization contrast transfer effects in FSE images acquired in multislice mode

  20. Imaging of the brain using the fast-spin-echo and gradient-spin-echo techniques

    International Nuclear Information System (INIS)

    Umek, W.; Ba-Ssalamah, A.; Prokesch, R.; Mallek, R.; Heimberger, K.; Hittmair, K.

    1998-01-01

    The aim of our study was to compare gradient-spin-echo (GRASE) to fast-spin-echo (FSE) sequences for fast T2-weighted MR imaging of the brain. Thirty-one patients with high-signal-intensity lesions on T2-weighted images were examined on a 1.5-T MR system. The FSE and GRASE sequences with identical sequence parameters were obtained and compared side by side. Image assessment criteria included lesion conspicuity, contrast between different types of normal tissue, and image artifacts. In addition, signal-to-noise, contrast-to-noise, and contrast ratios and were determined. The FSE technique demonstrated more lesions than GRASE and with generally better conspicuity. Smaller lesions in particular were better demonstrated on FSE because of lower image noise and slightly weaker image artifacts. Gray-white differentiation was better on FSE. Ferritin and hemosiderin depositions appeared darker on GRASE, which resulted in better contrast. Fatty tissue was less bright on GRASE. With current standard hardware equipment, the FSE technique seems preferable to GRASE for fast T2-weighted routine MR imaging of the brain. For the assessment of hemosiderin or ferritin depositions, GRASE might be considered. (orig.)

  1. Calculation of T2 relaxation time from ultrafast single shot sequences for differentiation of liver tumors. Comparison of echo-planar, HASTE, and spin-echo sequences

    International Nuclear Information System (INIS)

    Abe, Yasuko; Yamashita, Yasuyuki; Tang, Yi; Namimoto, Tomohiro; Takahashi, Mutsumasa

    2000-01-01

    The purpose of this study was to evaluate the accuracy of T2 calculation from single shot imaging sequences such as echo-planar imaging (EPI) and half-Fourier single shot turbo spin-echo (HASTE) imaging. For the phantom study, we prepared vials containing different concentrations of agarose, copper sulfate, and nickel chloride. The temperature of the phantom was kept at 22 deg C. MR images were obtained with a 1.5-Tesla superconductive magnet. Spin-echo (SE)-type EPI and HASTE sequences with different TEs were obtained for T2 calculation, and the T2 values were compared with those obtained from the Carr-Purcell-Meiborm-Gill (CPMG) sequence. The clinical study group consisted of 30 consecutive patients referred for MR imaging to characterize focal liver lesions. A total of 40 focal liver lesions were evaluated, including 25 primary or metastatic solid masses and 15 non-solid lesions. Single shot SE-type EPI and HASTE were both performed with TEs of 64 and 90 msec. In the phantom study, the T2 values obtained from both single shot sequences showed significant correlations with those from the CPMG sequence (T2 on EPI vs. T2 on CPMG: r=0.98, p<0.01; T2 on HASTE vs. T2 on CPMG: r=0.99, p<0.01). In the clinical study, mean T2 values for liver calculated from EPI (42 msec) were significantly shorter than those calculated from the HASTE sequence (58 msec) (p<0.001). Mean T2 values for solid tumors were 95 msec with HASTE and 72 msec with EPI, and mean T2 values for non-solid lesions were 128 msec with HASTE and 159 msec with EPI. Although mean T2 values between solid and non-solid lesions were significantly different for both EPI and HASTE sequences (p=0.01 for HASTE, p<0.001 for EPI), the overlap of solid and non-solid lesions was less frequent in EPI than in HASTE. With single shot sequences, it is possible to obtain the T2 values that show excellent correlation with the CPMG sequence. Although both HASTE and EPI are useful to calculate T2 values, EPI appears to be more

  2. High-spatial-resolution isotropic three-dimensional fast-recovery fast spin-echo magnetic resonance dacryocystography combined with topical administration of sterile saline solution

    International Nuclear Information System (INIS)

    Jing, Zhang; Lang, Chen; Qiu-Xia, Wang; Rong, Liu; Xin, Luo; Wen-Zhen, Zhu; Li-Ming, Xia; Jian-Pin, Qi; He, Wang

    2013-01-01

    Objective: This study aims to investigate the clinical performance of three-dimensional (3D) fast-recovery fast spin-echo (FRFSE) magnetic resonance dacryocystography (MRD) with topical administration of sterile saline solution for the assessment of the lacrimal drainage system (LDS). Methods: A total of 13 healthy volunteers underwent both 3D-FRFSE MRD and two-dimensional (2D)-impulse recovery (IR)-single-shot fast spin-echo (SSFSE) MRD after topical administration of sterile saline solution, and 31 patients affected by primary LDS outflow impairment or postsurgical recurrent epiphora underwent 3D-FRFSE MRD and conventional T1- and T2-weighted sequences. All patients underwent lacrimal endoscopy or surgery, which served as a standard of reference for confirming the MRD findings. Results: 3D-FRFSE MRD detected more visualized superior and inferior canaliculi and nasolacrimal duct than 2D-IR-SSFSE MRD. Compared with 2D-IR-SSFSE MRD, 3D-FRFSE MRD showed more visualized segments per LDS, although the difference was not statistically significant. Significant improvements in the inferior canaliculus and nasolacrimal duct visibility grades were achieved using 3D-FRFSE MRD. 3D-FRFSE MRD had 100% sensitivity and 63.6% specificity for detecting LDS obstruction. In 51 out of the 62 LDSs that were assessed, a 90% agreement was noted between the findings of 3D-FRFSE MRD and lacrimal endoscopy in detecting the obstruction level. Conclusion: 3D-FRFSE MRD combined with topical administration of sterile saline solution is a simple and noninvasive method of obtaining detailed morphological and functional information on the LDS. Overall, 3D-FRFSE MRD could be used as a reliable diagnostic method in many patients with epiphora prior to surgery

  3. Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo sequence: improvement of the image quality of oxygen-enhanced MRI

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Hatabu, Hiroto; Higashino, Takanori; Kawamitsu, Hideaki; Watanabe, Hirokazu; Takenaka, Daisuke; Cauteren, Marc van; Sugimura, Kazuro

    2004-01-01

    Purpose: The purpose of the study presented here was to determine the improvement in image quality of oxygen-enhanced magnetic resonance (MR) subtraction imaging obtained with a centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence compared with that obtained with a conventional sequentially reordered inversion recovery single-shot HASTE (s-IR-HASTE) sequence for pulmonary imaging. Materials and methods: Oxygen-enhanced MR imaging using a 1.5 T whole body scanner was performed on 12 healthy, non-smoking volunteers. Oxygen-enhanced MR images were obtained with the coronal two-dimensional (2D) c-IR-HASTE sequence and 2D s-IR-HASTE sequence combined with respiratory triggering. For a 256x256 matrix, 132 phase-encoding steps were acquired including four steps for phase correction. Inter-echo spacing for each sequence was 4.0 ms. The effective echo time (TE) for c-IR-HASTE was 4.0 ms, and 16 ms for s-IR-HASTE. The inversion time (TI) was 900 ms. To determine the improvement in oxygen-enhanced MR subtraction imaging by c-IR-HASTE, CNRs of subtraction image, overall image quality, and image degradation of the c-IR-HASTE and s-IR-HASTE techniques were statistically compared. Results: CNR, overall image quality, and image degradation of c-IR-HASTE images showed significant improvement compared to those s-IR-HASTE images (P<0.05). Conclusion: Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence enhanced the signal from the lung and improved the image quality of oxygen-enhanced MR subtraction imaging

  4. High signal intensity of fat on fast spin echo imaging

    International Nuclear Information System (INIS)

    Ogura, Akio; Yamazaki, Masaru; Hongoh, Takaharu; Inoue, Hiroshi; Ishikuro, Akihiro

    2000-01-01

    The fast spin echo (FSE) technique of producing T 2 -weighted images in greatly reduced imaging times has recently been used for routine clinical study. FSE images show contrast that is very similar in most tissues to that of conventional SE images. However, fat shows a high signal intensity that is influenced by j-coupling and the magnetization transfer effect. The purpose of this study was to assess whether the higher signal intensity of fat is different among MRI systems and to examine the effects of j-coupling and magnetization transfer on the high signal intensity of fat on FSE. The contrast in signal intensity between fat and water was measured for various echo train lengths (ETL) with and without multislicing on FSE using a contrast phantom. Measurements were obtained with four different MRI systems. In addition, the effective T 2 values of fat were calculated for the above conditions. Results indicated that contrast for fat and water was reduced with increased ETL and by using multislicing and was different among the four MRI systems. The effective T 2 values of fat were extended for increased ETL and were not dependent on multislicing. They also differed among the four MRI systems. The extent of effective T 2 values was affected by j-coupling. In this study, it was indicated that the degree of the high signal intensity of fat on FSE differed for different MRI systems. In addition, the reasons for the high signal intensity of fat on FSE were related to the effects of j-coupling and magnetization transfer. (author)

  5. Isotropic three-dimensional fast spin-echo Cube magnetic resonance dacryocystography: comparison with the three-dimensional fast-recovery fast spin-echo technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Chen, Lang; Wang, Qiu-Xia; Zhu, Wen-Zhen; Luo, Xin; Peng, Li [Huazhong University of Science and Technology, Department of Radiology, Tongji Hospital, Wuhan (China); Liu, Rong [Huazhong University of Science and Technology, Department of Ophthalmology, Tongji Hospital, Wuhan (China); Xiong, Wei [GE Healthcare China Wuhan Office, Wuhan (China)

    2015-04-01

    Three-dimensional fast spin-echo Cube (3D-FSE-Cube) uses modulated refocusing flip angles and autocalibrates two dimensional (2D)-accelerated parallel and nonlinear view ordering to produce high-quality volumetric image sets with high-spatial resolution. Furthermore, 3D-FSE-Cube with topical instillation of fluid can also be used for magnetic resonance dacryocystography (MRD) with good soft tissue contrast. The purpose of this study was to evaluate the technical quality and visualization of the lacrimal drainage system (LDS) when using the 3D-FSE-Cube sequence and the 3D fast-recovery fast spin-echo (FRFSE) sequence. In total, 75 patients with primary LDS outflow impairment or postsurgical recurrent epiphora underwent 3D-FSE-Cube MRD and 3D-FRFSE MRD at 3.0 T after topical administration of compound sodium chloride eye drops. Two radiologists graded the images from either of the two sequences in a blinded fashion, and appropriate statistical tests were used to assess differences in technical quality, visibility of ductal segments, and number of segments visualized per LDS. Obstructions were confirmed in 90 of the 150 LDSs assessed. The technical quality of 3D-FSE-Cube MRD and 3D-FRFSE MRD was statistically equivalent (P = 0.871). However, compared with 3D-FRFSE MRD, 3D-FSE-Cube MRD improved the overall visibility and the visibility of the upper drainage segments in normal and obstructed LDSs (P < 0.001). There was a corresponding increase in the number of segments visualized per LDS in both groups (P < 0.001). Compared with 3D-FRFSE MRD, 3D-FSE-Cube MRD potentially improves the visibility of the LDS. (orig.)

  6. Fast nanoscale addressability of nitrogen-vacancy spins via coupling to a dynamic ferromagnetic vortex

    Science.gov (United States)

    Wolf, M. S.; Badea, R.; Berezovsky, J.

    2016-01-01

    The core of a ferromagnetic vortex domain creates a strong, localized magnetic field, which can be manipulated on nanosecond timescales, providing a platform for addressing and controlling individual nitrogen-vacancy centre spins in diamond at room temperature, with nanometre-scale resolution. Here, we show that the ferromagnetic vortex can be driven into proximity with a nitrogen-vacancy defect using small applied magnetic fields, inducing significant nitrogen-vacancy spin splitting. We also find that the magnetic field gradient produced by the vortex is sufficient to address spins separated by nanometre-length scales. By applying a microwave-frequency magnetic field, we drive both the vortex and the nitrogen-vacancy spins, resulting in enhanced coherent rotation of the spin state. Finally, we demonstrate that by driving the vortex on fast timescales, sequential addressing and coherent manipulation of spins is possible on ∼100 ns timescales. PMID:27296550

  7. Proposed design for a fast (parallel) preprocessor for the spin spectrometer and other eventful albatrosses

    International Nuclear Information System (INIS)

    Hensley, D.C.

    1981-01-01

    Because devices like the Spin Spectrometer described in a previous paper to this conference can produce an extremely fast but fairly simple-to-process data stream, it seems reasonable to consider front-end preprocessors having special characteristics. In general, the kinds of transformations being considered do not require floating point calculations or extensive calculations. In order to be somewhat specific, the particular data acquisition/processing problems posed by the Spin Spectrometer at the Holifield Heavy Ion Facility will be discussed

  8. Inverse engineering for fast transport and spin control of spin-orbit-coupled Bose-Einstein condensates in moving harmonic traps

    Science.gov (United States)

    Chen, Xi; Jiang, Ruan-Lei; Li, Jing; Ban, Yue; Sherman, E. Ya.

    2018-01-01

    We investigate fast transport and spin manipulation of tunable spin-orbit-coupled Bose-Einstein condensates in a moving harmonic trap. Motivated by the concept of shortcuts to adiabaticity, we design inversely the time-dependent trap position and spin-orbit-coupling strength. By choosing appropriate boundary conditions we obtain fast transport and spin flip simultaneously. The nonadiabatic transport and relevant spin dynamics are illustrated with numerical examples and compared with the adiabatic transport with constant spin-orbit-coupling strength and velocity. Moreover, the influence of nonlinearity induced by interatomic interaction is discussed in terms of the Gross-Pitaevskii approach, showing the robustness of the proposed protocols. With the state-of-the-art experiments, such an inverse engineering technique paves the way for coherent control of spin-orbit-coupled Bose-Einstein condensates in harmonic traps.

  9. Distortion-free diffusion tensor imaging for evaluation of lumbar nerve roots: Utility of direct coronal single-shot turbo spin-echo diffusion sequence.

    Science.gov (United States)

    Sakai, Takayuki; Doi, Kunio; Yoneyama, Masami; Watanabe, Atsuya; Miyati, Tosiaki; Yanagawa, Noriyuki

    2018-06-01

    Diffusion tensor imaging (DTI) based on a single-shot echo planer imaging (EPI-DTI) is an established method that has been used for evaluation of lumbar nerve disorders in previous studies, but EPI-DTI has problems such as a long acquisition time, due to a lot of axial slices, and geometric distortion. To solve these problems, we attempted to apply DTI based on a single-shot turbo spin echo (TSE-DTI) with direct coronal acquisition. Our purpose in this study was to investigate whether TSE-DTI may be more useful for evaluation of lumbar nerve disorders than EPI-DTI. First, lumbar nerve roots of five healthy volunteers were evaluated for optimization of imaging parameters with TSE-DTI including b-values and the number of motion proving gradient (MPG) directions. Subsequently, optimized TSE-DTI was quantitatively compared with conventional EPI-DTI by using fractional anisotropy (FA) values and visual scores in subjective visual evaluation of tractography. Lumbar nerve roots of six patients, who had unilateral neurologic symptoms in one leg, were evaluated by the optimized TSE-DTI. TSE-DTI with b-value of 400 s/mm 2 and 32 diffusion-directions could reduce the image distortion compared with EPI-DTI, and showed that the average FA values on the symptomatic side for six patients were significantly lower than those on the non-symptomatic side (P DTI might show damaged areas of lumbar nerve roots without severe image distortion. TSE-DTI might improve the reproducibility in measurements of FA values for quantification of a nerve disorder, and would become a useful tool for diagnosis of low back pain. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Optimal spin current pattern for fast domain wall propagation in nanowires

    Science.gov (United States)

    Yan, Peng; Sun, Zhouzhou; Schliemann, John; Wang, Xiangrong

    2011-03-01

    One of the important issues in nanomagnetism is to lower the current needed for a technologically useful domain wall (DW) propagation speed. Based on the modified Landau-Lifshitz-Gilbert (LLG) equation with both Slonczewski spin-transfer torque and the field-like torque, we derive an optimal temporally and spatially varying spin current pattern for fast DW propagation along nanowires. Under such conditions, the DW velocity in biaxial wires can be enhanced as much as tens of times higher than that achieved in experiments so far. Moreover, the fast variation of spin polarization can efficiently help DW depinning. Possible experimental realizations are discussed. This work is supported by Hong Kong RGC grants (#603508, 604109, RPC10SC05 and HKU10/CRF/08-HKUST17/CRF/08), and by Deutsche Forschungsgemeinschaft via SFB 689. ZZS thanks the Alexander von Humboldt Foundation (Germany) for a grant.

  11. Fast spin echo MRI techniques. Contrast characteristics and clinical potential. Techniques d'IRM en fast spin echo. Caracteristiques de contraste et potentiels cliniques

    Energy Technology Data Exchange (ETDEWEB)

    Melki, P.; Mulkern, R.V.; Dacher, J.N.; Helenon, O.; Higuchi, N. (Harvard Medical School, Boston, MA (United States)); Oshio, K.; Jolesz, F. (Keio Univ., Tokyo (Japan)); Pourcelot, L. (Hopital Bretonneau, 37 - Tours (France)); Einstein, S. (General Electric Medical System, Milwaukee, WI (United States))

    1993-03-01

    Based on partial RF echo planar principles, Fast Spin Echo techniques (FSE) were implemented on high field systems. These methods produce image quality and contrast which resemble to conventional spin echo (SE) techniques. By reducing acquisition times by factors between 1.4 and 16 over SE methods, FSE allows for several imaging options usually prohibitive with conventional spin echo (SE) sequences. These include fast scans (especially breathold acquisitions); improved T2 contrast with longer TR intervals; increased spatial resolution with the use of larger image matrices and/or smaller fields of view; and 3D volume imaging with a 3D multislab FSE technique. Contrast features of FSE techniques are directly comparable to those of multiple echo SE sequences using the same echo spacing than FSE methods. However, essential contrast differences existing between the FSE sequences and their routine asymmetric dual SE counterpart can be identified. Decreased magnetic susceptibility effects and increased fat signal present within T2 weighted images compared to conventional dual SE images are due to the use of shorter echo spacings employed in FSE sequences. Off-resonance irradiation inherent to the use of a large number of radio frequency pulses in shown to results in dramatic magnetization contrast transfer effects in FSE images acquired in multislice mode.

  12. AGS Fast spin resonance jump, magnets and power supplies

    International Nuclear Information System (INIS)

    Glenn, J.W.; Huang, H.; Liaw, C. J.; Marneris, I.; Meng, W.; Mi, J. L.; Rosas, P.; Sandberg, J.; Tuozzolo, J.; Zhang, A.

    2009-01-01

    In order to cross more rapidly the 82 weak spin resonances caused by the horizontal tune and the partial snakes, we plan to jump the horizontal tune 82 times during the acceleration of polarized protons. The current in the magnets creating this tune jump will rise in 100 (micro)s, hold flat for about 4 ms and fan to zero in 100 (micro)s. Laminated beam transport quadrupole magnets have been recycled by installing new two turn coils and longitudinal laminated pole tip shims that reduce inductance and power supply current. The power supply uses a high voltage capacitor discharge to raise the magnet current, which is then switched to a low voltage supply, and then the current is switched back to the high voltage capacitor to zero the current. The current in each of the magnet pulses must match the order of magnitude change in proton momentum during the acceleration cycle. The magnet, power supply and operational experience are described

  13. Proton T2 relaxation effect of superparamagnetic iron oxide. Comparison between fast spin echo and conventional spin echo sequence

    International Nuclear Information System (INIS)

    Tanimoto, Akihiro; Satoh, Yoshinori; Higuchi, Nobuya; Izutsu, Mutsumu; Yuasa, Yuji; Hiramatsu, Kyoichi

    1995-01-01

    Superparamagnetic iron oxide (SPIO) particles have been known to show a great T 2 relaxation effect in the liver, which contributes to significant liver signal decrease and detection of hepatic neoplasms. Recently, fast spin echo (FSE) sequence with less scanning time than conventional spin echo (SE) sequence has been rapidly introduced in clinical MR imaging. To investigate whether SPIO would show decreased T 2 relaxation effect on FSE, we obtained T 2 relaxivity (R2) of SPIO in vitro and liver signal decrease caused by SPIO in vivo. SPIO showed 20% less R2 on Carr-Purcell-Meiboom-Gill (CPMG) sequence than on SE. Relative liver signal-to-noise ratio (SNR) decrease caused by SPIO was significantly smaller (p 2 relaxation effect on FSE than on SE. However, further studies will be required to assess the diagnostic capability of SPIO on FSE, in the detection of hepatic neoplasms. (author)

  14. Ultra-fast magnetization reversal in magnetic nano-pillars by spin-polarized current

    Energy Technology Data Exchange (ETDEWEB)

    Devolder, T. [Institut d' Electronique Fondamentale, UMR 8622 CNRS, Universite Paris Sud, Ba-circumflex timent 220, 91405 Orsay (France)]. E-mail: thibaut.devolder@ief.u-psud.fr; Tulapurkar, A. [NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568 (Japan); CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 (Japan); Yagami, K. [SSNC, Semiconductor Technology Development Group, SONY Corporation, Atsugi, Kanagawa 243-0014 (Japan); Crozat, P. [Institut d' Electronique Fondamentale, UMR 8622 CNRS, Universite Paris Sud, Ba-circumflex timent 220, 91405 Orsay (France); Chappert, C. [Institut d' Electronique Fondamentale, UMR 8622 CNRS, Universite Paris Sud, Ba-circumflex timent 220, 91405 Orsay (France); Fukushima, A. [NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568 (Japan); CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 (Japan); Suzuki, Y. [NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568 (Japan); CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 (Japan)

    2005-02-01

    We study the speed limitations of the magnetization switching resulting from spin transfer in pillar-shaped CoFe/Cu/CoFe spin valves. The quasi-static critical currents are Ic-=-2mA for the antiparallel (AP) to parallel (P) configuration and Ic+=+4.6mA for the P to AP transition. Current pulses of duration down to 100ps and amplitude of 4I{sub c} trigger switching at 300K. The switching is probabilistic for lower current pulses. The P to AP transition speed is not much temperature dependant from 50 to 300K. In contrast, the AP to P transition is thermally inhibited and is much faster at 150K than at 300K. This thermal inhibition highlights the importance of the macrospin coherency and of the thermally excited spin waves with finite wave vector parallel to the magnetization. Our results validate spin-transfer switching for fast memory applications.

  15. Ultra-fast magnetization reversal in magnetic nano-pillars by spin-polarized current

    International Nuclear Information System (INIS)

    Devolder, T.; Tulapurkar, A.; Yagami, K.; Crozat, P.; Chappert, C.; Fukushima, A.; Suzuki, Y.

    2005-01-01

    We study the speed limitations of the magnetization switching resulting from spin transfer in pillar-shaped CoFe/Cu/CoFe spin valves. The quasi-static critical currents are Ic-=-2mA for the antiparallel (AP) to parallel (P) configuration and Ic+=+4.6mA for the P to AP transition. Current pulses of duration down to 100ps and amplitude of 4I c trigger switching at 300K. The switching is probabilistic for lower current pulses. The P to AP transition speed is not much temperature dependant from 50 to 300K. In contrast, the AP to P transition is thermally inhibited and is much faster at 150K than at 300K. This thermal inhibition highlights the importance of the macrospin coherency and of the thermally excited spin waves with finite wave vector parallel to the magnetization. Our results validate spin-transfer switching for fast memory applications

  16. A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Holley, A. T.; Pattie, R. W.; Young, A. R. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States); Broussard, L. J. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Davis, J. L.; Ito, T. M.; Lyles, J. T. M.; Makela, M.; Morris, C. L.; Mortensen, R.; Saunders, A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hickerson, K.; Mendenhall, M. P. [W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (United States); Liu, C.-Y. [Department of Physics, Indiana University, Bloomington, Indiana 47405 (United States); Mammei, R. R. [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States); Rios, R. [Department of Physics, Idaho State University, Pocatello, Idaho 83209 (United States)

    2012-07-15

    The UCNA collaboration is making a precision measurement of the {beta} asymmetry (A) in free neutron decay using polarized ultracold neutrons (UCN). A critical component of this experiment is an adiabatic fast passage neutron spin flipper capable of efficient operation in ambient magnetic fields on the order of 1 T. The requirement that it operate in a high field necessitated the construction of a free neutron spin flipper based, for the first time, on a birdcage resonator. The design, construction, and initial testing of this spin flipper prior to its use in the first measurement of A with UCN during the 2007 run cycle of the Los Alamos Neutron Science Center's 800 MeV proton accelerator is detailed. These studies determined the flipping efficiency of the device, averaged over the UCN spectrum present at the location of the spin flipper, to be {epsilon}=0.9985(4).

  17. Three-dimensional fast recovery fast spin-echo imaging of the inner ear and the vestibulocochlear nerve

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, K.; Morikawa, M.; Ishimaru, H.; Ochi, M.; Hayashi, K. [Department of Radiology, Nagasaki University School of Medicine, 1-7-1 Sakamoto, Nagasaki 852-8501 (Japan); Kabasawa, H. [GE Yokogawa Medical Systems, Tokyo (Japan)

    2002-11-01

    The aim of this study was to assess the performance of three-dimensional fast recovery fast spin-echo (3DFRFSE) for imaging of the inner ear as well as the facial and vestibulocochlear nerves. We evaluated 3DFRFSE sequences, comparing it with 3D fast spin-echo (3DFSE) in a water phantom and in 12 normal volunteers. We also examined 66 patients using 3DFRFSE sequence and assessed the visualization of their pathologies. In a water phantom study, signal intensity (SI) on 3DFRFSE was higher than that on 3DFSE at the same TR ranging from 1500 to 6000 ms. In normal volunteers, 3DFRFSE with TR of 2800 ms showed comparable SI, and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) superior to those on 3DFSE with TR of 5000 ms. In clinical setting, 3DFRFSE was useful in demonstrating anatomic details in the labyrinth and pathologic findings of inner ear. The 3DFRFSE can provide high-resolution heavily T2-weighted images (T2WI) with shorter scan time than 3DFSE without significant disadvantage. The 3DFRFSE is a beneficial technique for evaluation of lesions in the inner ear as well as the facial and vestibulocochlear nerves. (orig.)

  18. The role of MR imaging with Half Fourier Acquired Single Shot Turbo Spin Echo sequence in the diagnosis of lung lesions in comparison with multislice CT

    International Nuclear Information System (INIS)

    Hekimoglu, B.; Gurgen, F.; Tatar, I.G.; Aydin, H.; Kizilgoz, V.; Keyik, B.

    2013-01-01

    Objective: To compare the diagnostic values of magnetic resonance imaging using Half Fourier Acquired Single Shot Turbo Spin Echo sequence and multidetector computed tomography in patients with pathologically examined pulmonary lesions. Methods: The retrospective, descriptive study was conducted at Radiology Department, Diskapi Research Hospital, Ankara, Turkey, and comprised records of patients with pathologically examined pulmonary lesions between May 2009 and March 2012. Patients were divided into three groups and examined by both multi dedector computed tomography and magnetic resonance imaging. During the imaging, patients were not administered any intravenous contrast medium. Electrocardiogram gating and breath holding were not performed in echo sequence. Pulmonary lesions were evaluated on the basis of their dimensions, numbers, differentiation from atelectasis and consolidation, invasion to the thoracic wall-mediastinal structures and presence of lymphadenopathies. Results: Sensitivity of all patients was 50% (p=0.214) and specificity of CT and MRI were 82.5% (p=0.134) for the detectability of submilimetric nodules . For differentiation of the mass from atelectasis and consolidation, the sensitivity of computed tomography was statistically more significant compared to magnetic resonance imaging (86.6%; p=0.035). For the invasion of the mass to the mediastinal structures and the thoracic wall, the sensitivity of magnetic resonance imaging was statistically more significant compared to tomography (86.6%; p=0.035). Conclusion: HASTE sequence can be used to determine the invasion of the pulmonary mass to the mediastinal structures and the thoracic wall since it is more sensitive than computed tomography. It can also be used to detect submilimetric nodules. It has equal sensitivity and specificity compared to computed tomography. But computed tomography is superior for the differentiation of the mass from atelectasis and consolidation. (author)

  19. Fast triple-spin-echo Dixon (FTSED) sequence for water and fat imaging

    Czech Academy of Sciences Publication Activity Database

    Kořínek, Radim; Bartušek, Karel; Starčuk jr., Zenon

    2017-01-01

    Roč. 37, APR (2017), s. 164-170 ISSN 0730-725X R&D Projects: GA MŠk ED0017/01/01; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : fast triple-spin-echo Dixon * sequence * MRI * fat fraction * water-fat * ultra-high field * 9.4 T * FTSED Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Radiology, nuclear medicine and medical imaging Impact factor: 2.225, year: 2016

  20. MR cholangiography using a fast spin-echo technique: prospective evaluation in 20 patients

    International Nuclear Information System (INIS)

    Rondeau, Y.; Meduri, B.; Spelle, L.; Gouhiri, M.; Aubert, A.; Scherrer, A.; Soyer, Ph.; Rymer, R.

    1998-01-01

    To evaluate a MR cholangiographic technique using a non breath-hold fast spin-echo technique in patients with suspected bile duct obstruction. Twenty patients with suspected bile duct obstruction were prospectively investigated with MR cholangiography using a T2-weighted non breath-hold fast spin-echo technique (TR 8000-9000 msec, effective TE 120-266 msec, ETL = 16-32, acquisition time = 1-3 min) with a body coil. Results of MR cholangiography were compared to those obtained with endoscopic retrograde cholangiography (n = 20 patients) and endoscopic sonography (n 12 patients) that were considered as reference. MR cholangiography provided high-quality images in 19 out of 20 cases (95 %). MR cholangiography had 100 % sensitivity, 100 % specificity and 73 % accuracy in the diagnosis of bile duct obstruction. MR cholangiography failed to depict small stones (< 3 mm) of the main bile duct in 4 cases in which no bile duct dilation was found. MR cholangiography using a non breath-hold fast spin-echo technique depicts bile duct dilatation with a degree of accuracy comparable to that achieved with endoscopic examination. In the absence of bile duct dilatation, small stones of the main bile duct may be undetected with MR cholangiography. (author)

  1. Fast fluid-attenuated inversion-recovery MR image in the intracranial tumors: comparison with fast spin-echo image

    International Nuclear Information System (INIS)

    Choi, Hye Young; Kwang, Hyoen Joo; Baek, Seoung Yeon; Lee, Sun Wha

    1997-01-01

    To evaluate the significance of fluid-attenuated inversion recovery(FLAIR) magnetic resonance(MR) images for the diagnosis of intracranial tumors. MR imaging was used to study 15 patients with various intracranial tumors and were compared the findings according to fast spin echo and fast FLAIR images. In 12 of 15 patients, tumor signal intensities on FLAIR images were consistent with those shown on T2-weighted(T2W) images. In seven of eight patients who had cystic or necrotic components within the mass, FLAIR images showed isosignal intensity and in the other patient, high signal intensity was seen. There was variation in the signal intensity from cerebrospinal fluid(CSF). In 12 of 13 patients in whom edema was associated with tumor, FLAIR images were clearer than T2W images as their signal intensity was brighter. In eight patients, however, FLAIR and T2W images provided a similar definition of the margin between edema and tumor. In six patients with intratumoral hemorrhage except the chronic cystic stage. We concluded that in the diagnosis of intracranial tumors, FLAIR images can supplement conventional spin-echo images

  2. Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning

    KAUST Repository

    Parthasarathy, Sudhakar; Nishiyama, Yusuke; Ishii, Yoshitaka

    2013-01-01

    Recent research in fast magic angle spinning (MAS) methods has drastically improved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In this Account, we summarize recent and ongoing developments

  3. Fast FLAIR MR imaging finidngs of cerebral infarction : comparison with T2-weighted spin echo imaging

    International Nuclear Information System (INIS)

    Kong, Keun Young; Choi, Woo Suk; Kim, Eui Jong

    1997-01-01

    To evaluate the utility of FLAIR(Fluid Attenuated Inversion Recovery) MR imaging in cerebral infarction by comparing its results with those of T2-weighted spin-echo imaging. We retrospectively evaluated fast FLAIR images and conventional spin echo images of 82 patients (47 men and 20 women ; median age 60.9 years) with cerebral infarction. MR imaging used a 1.5T MR unit with conventional T2(TR 3900, TE 90) and fast FLAIR sequence (TR 8000, TE 105, TI 2400). We analysed the size of the main lesion and number of lesions, and discrimination between old and new lesions and between small infarction and perivascular space. When T2-weighted and FLAIR imaging were compared, the latter showed that the main lesion was larger in 38 cases (46%), similar in 38 (46%), and smaller in six (7%). The number of lesions was greater in 23 cases(28%), similar in 52 (63%), and fewer in seven (9%). FLAIR images discriminated between old and new lesions in 31 cases ; perivascular space and small infarotion were differentiated in eight cases, and CSF inflowing artifact was observed in 66 (80%). In the diagnosis of cerebral infaretion, fast FLAIR provides images that are equal or superior to T2-weighted images. The fast FLAIR sequence may therefore be used as a part of routine MR brain study in the diagnosis of cerebral infarction

  4. A Gene Family Coding for Salivary Proteins (SHOT) of the Polyphagous Spider Mite Tetranychus urticae Exhibits Fast Host-Dependent Transcriptional Plasticity.

    Science.gov (United States)

    Jonckheere, Wim; Dermauw, Wannes; Khalighi, Mousaalreza; Pavlidi, Nena; Reubens, Wim; Baggerman, Geert; Tirry, Luc; Menschaert, Gerben; Kant, Merijn R; Vanholme, Bartel; Van Leeuwen, Thomas

    2018-01-01

    The salivary protein repertoire released by the herbivorous pest Tetranychus urticae is assumed to hold keys to its success on diverse crops. We report on a spider mite-specific protein family that is expanded in T. urticae. The encoding genes have an expression pattern restricted to the anterior podocephalic glands, while peptide fragments were found in the T. urticae secretome, supporting the salivary nature of these proteins. As peptide fragments were identified in a host-dependent manner, we designated this family as the SHOT (secreted host-responsive protein of Tetranychidae) family. The proteins were divided in three groups based on sequence similarity. Unlike TuSHOT3 genes, TuSHOT1 and TuSHOT2 genes were highly expressed when feeding on a subset of family Fabaceae, while expression was depleted on other hosts. TuSHOT1 and TuSHOT2 expression was induced within 24 h after certain host transfers, pointing toward transcriptional plasticity rather than selection as the cause. Transfer from an 'inducer' to a 'noninducer' plant was associated with slow yet strong downregulation of TuSHOT1 and TuSHOT2, occurring over generations rather than hours. This asymmetric on and off regulation points toward host-specific effects of SHOT proteins, which is further supported by the diversity of SHOT genes identified in Tetranychidae with a distinct host repertoire.

  5. Contrast-enhanced dynamic MR imaging of parasellar tumor using fast spin-echo sequence

    International Nuclear Information System (INIS)

    Kusunoki, Katsusuke; Ohue, Shiro; Ichikawa, Haruhisa; Saito, Masahiro; Sadamoto, Kazuhiko; Sakaki, Saburo; Miki, Hitoshi.

    1995-01-01

    We have applied a new dynamic MRI technique that uses a fast spin-echo sequence to parasellar tumors. This sequence has less susceptible effect and better spatial resolution than a gradient echo sequence, providing faster images than a short spin-echo sequence does. Image was obtained in the coronal or sagittal plane using a 1.5T clinical MRI system, and then, dynamic MR images were acquired every 10 to 20 sec after administration of Gd-DTPA (0.1 mmol/kg). The subjects were 12 patients (5 microadenomas, 5 macroadenomas and 2 Rathke's cleft cysts) and 5 normal volunteers. As for volunteers, the cavernous sinus, pituitary stalk and posterior pituitary gland were contrasted on the first image, followed by visualization of the proximal portion adjacent to the junction of the infundibulum and the anterior pituitary gland, and finally by contrasting the distal portion of the anterior pituitary gland. There was a difference with respect to tumor contrast between microadenomas and macroadenomas. In the case of the macroadenomas, the tumor was contrasted at the same time as, or faster than the anterior pituitary gland, while with the microadenomas the tumor was enhanced later than the anterior pituitary gland. No enhancement with contrast medium was seen in Rathke's cleft cysts. In addition, it was possible to differentiate a recurrent tumor from a piece of muscle placed at surgery since the images obtained by the fast spin-echo sequence were clearer than those obtained by gradient echo sequence. (author)

  6. Spinning like a blue straggler: the population of fast rotating blue straggler stars in ω Centauri

    Energy Technology Data Exchange (ETDEWEB)

    Mucciarelli, A.; Lovisi, L.; Ferraro, F. R.; Dalessandro, E.; Lanzoni, B. [Dipartimento di Fisica and Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Monaco, L. [European Southern Observatory, Casilla 19001, Santiago (Chile)

    2014-12-10

    By using high-resolution spectra acquired with FLAMES-GIRAFFE at the ESO/VLT, we measured the radial and rotational velocities for 110 blue straggler stars (BSSs) in ω Centauri, the globular cluster-like stellar system harboring the largest known BSS population. According to their radial velocities, 109 BSSs are members of the system. The rotational velocity distribution is very broad, with the bulk of BSSs spinning at less than ∼40 km s{sup –1} (in agreement with the majority of such stars observed in other globular clusters) and a long tail reaching ∼200 km s{sup –1}. About 40% of the sample has v{sub e} sin i > 40 km s{sup –1} and about 20% has v{sub e} sin i > 70 km s{sup –1}. Such a large fraction is very similar to the percentage of fast rotating BSSs observed in M4. Thus, ω Centauri is the second stellar cluster, beyond M4, with a surprisingly high population of fast spinning BSSs. We found a hint of radial behavior for a fraction of fast rotating BSSs, with a mild peak within one core radius, and a possible rise in the external regions (beyond four core radii). This may suggest that recent formation episodes of mass transfer BSSs occurred preferentially in the outskirts of ω Centauri, or that braking mechanisms able to slow down these stars are least efficient in the lowest density environments.

  7. The role of Gd-enhanced three-dimensional MRI fast low-angle shot (FLASH) in the evaluation of symptomatic lumbosacral nerve roots

    Energy Technology Data Exchange (ETDEWEB)

    Kikkawa, Ichiro; Sugimoto, Hideharu; Saita, Kazuo; Ookami, Hitoshi; Nakama, Sueo; Hoshino, Yuichi [Jichi Medical School, Minamikawachi, Tochigi (Japan)

    2001-07-01

    In the field of lumbar spine disorders, three-dimensional (3-D) magnetic resonance imaging (MRI) can clearly depict a lumbar nerve root from the distal region to the dorsal root ganglion. In this study, we used a gadoliniumdiethylenetriaminepentaacetic acid (Gd-DTPA) enhanced-three-dimensional (3-D) fast low-angle shot (FLASH) sequence when examining lumbosacral disorders. The subjects were 33 patients (14 men and 19 women) in whom lumbosacral neural compression had been diagnosed clinically. Twenty-one patients had lumbar disc herniation, 11 had lumbar spinal stenosis, and 1 had lumbar radiculopathy caused by rheumatoid arthritis. Five subjects with low back pain were also studied as a control group. In all patients and in all 5 of the controls, the dorsal root ganglion of every root was enhanced clearly. There was no root enhancement in the 5 controls. Enhancement of the symptomatic nerve roots, caused by compression, was found in 11 of the 33 patients. All 11 patients had rediculopathy, and muscle weakness was more frequent in patients with enhanced nerve roots than in those without enhancement. There was no enhancement of the cauda equina, even in the patients with cauda syndrome. The enhancement effect may reflect some pathological condition of the compressed nerve root and needs to be studied further. (author)

  8. The role of Gd-enhanced three-dimensional MRI fast low-angle shot (FLASH) in the evaluation of symptomatic lumbosacral nerve roots

    International Nuclear Information System (INIS)

    Kikkawa, Ichiro; Sugimoto, Hideharu; Saita, Kazuo; Ookami, Hitoshi; Nakama, Sueo; Hoshino, Yuichi

    2001-01-01

    In the field of lumbar spine disorders, three-dimensional (3-D) magnetic resonance imaging (MRI) can clearly depict a lumbar nerve root from the distal region to the dorsal root ganglion. In this study, we used a gadoliniumdiethylenetriaminepentaacetic acid (Gd-DTPA) enhanced-three-dimensional (3-D) fast low-angle shot (FLASH) sequence when examining lumbosacral disorders. The subjects were 33 patients (14 men and 19 women) in whom lumbosacral neural compression had been diagnosed clinically. Twenty-one patients had lumbar disc herniation, 11 had lumbar spinal stenosis, and 1 had lumbar radiculopathy caused by rheumatoid arthritis. Five subjects with low back pain were also studied as a control group. In all patients and in all 5 of the controls, the dorsal root ganglion of every root was enhanced clearly. There was no root enhancement in the 5 controls. Enhancement of the symptomatic nerve roots, caused by compression, was found in 11 of the 33 patients. All 11 patients had rediculopathy, and muscle weakness was more frequent in patients with enhanced nerve roots than in those without enhancement. There was no enhancement of the cauda equina, even in the patients with cauda syndrome. The enhancement effect may reflect some pathological condition of the compressed nerve root and needs to be studied further. (author)

  9. Detection of renal arteries with fast spin-echo magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tello, R.; Mitchell, P.J.; Witte, D.J.; Thomson, K.R. [University of Melbourne, Parkville, VIC (Australia). Department of Radiology

    1998-08-01

    With the increasing use of non-invasive imaging with MR and volumetric CT to evaluate renal arteries, the ability to accurately detect the number and state of native renal arteries becomes critical if conventional angiography is to be supplanted in these settings. The present study evaluated the utility of a fast spin-echo (FSE) T2-weighted sequence to detect the number and course of renal arteries and their ostia compared to conventional angiography. Ten patients underwent conventional catheter angiography either for renal artery stenosis evaluation or as potential renal donors. Each patient then had an MR study of the renal arteries and kidneys with FSE MR (TR = 4000 ms, TE = 102 ms, eight- echo train length, 5-mm-thick interleaved 128 phase encodes, superior and inferior saturation pulses, number of excitations (NEX) = 4, on a 1.5-T superconducting magnet). Images were reviewed by two `blinded` radiologists and renal arteries were counted and their ostia were evaluated. Results were compared with angiography and inter- and intra-observer statistics were calculated. All 10 patients underwent MR successfully, nine for renal artery stenosis (RAS) evaluation and one was a renal donor. A total of 24 renal arteries were imaged in 19 kidneys. Fast spin-echo MR is 95% accurate (95%CI: 88-100%) in detection of renal arteries, with no statistical difference between FSE MR and catheter angiography (McNemar P = 0.0). Inter- and intra-observer statistics demonstrate good-to-excellent agreement in renal artery detection (kappa: 0.63-0.90). In one case of RAS evaluation an incidental adrenal mass was detected as the aetiology of the patient`s hypertension. Fast spin-echo MR can be a useful adjunct as part of the imaging for renal arteries with MRI. Copyright (1998) Blackwell Science Pty Ltd 16 refs., 1 fig.

  10. Detection of renal arteries with fast spin-echo magnetic resonance imaging

    International Nuclear Information System (INIS)

    Tello, R.; Mitchell, P.J.; Witte, D.J.; Thomson, K.R.

    1998-01-01

    With the increasing use of non-invasive imaging with MR and volumetric CT to evaluate renal arteries, the ability to accurately detect the number and state of native renal arteries becomes critical if conventional angiography is to be supplanted in these settings. The present study evaluated the utility of a fast spin-echo (FSE) T2-weighted sequence to detect the number and course of renal arteries and their ostia compared to conventional angiography. Ten patients underwent conventional catheter angiography either for renal artery stenosis evaluation or as potential renal donors. Each patient then had an MR study of the renal arteries and kidneys with FSE MR (TR = 4000 ms, TE = 102 ms, eight- echo train length, 5-mm-thick interleaved 128 phase encodes, superior and inferior saturation pulses, number of excitations (NEX) = 4, on a 1.5-T superconducting magnet. Images were reviewed by two 'blinded' radiologists and renal arteries were counted and their ostia were evaluated. Results were compared with angiography and inter- and intra-observer statistics were calculated. All 10 patients underwent MR successfully, nine for renal artery stenosis (RAS) evaluation and one was a renal donor. A total of 24 renal arteries were imaged in 19 kidneys. Fast spin-echo MR is 95% accurate (95%CI: 88-100%) in detection of renal arteries, with no statistical difference between FSE MR and catheter angiography (McNemar P = 0.0). Inter- and intra-observer statistics demonstrate good-to-excellent agreement in renal artery detection (kappa: 0.63-0.90). In one case of RAS evaluation an incidental adrenal mass was detected as the aetiology of the patient's hypertension. Fast spin-echo MR can be a useful adjunct as part of the imaging for renal arteries with MRI. Copyright (1998) Blackwell Science Pty Ltd

  11. Fast method of NMR imaging based on trains of spin echoes

    International Nuclear Information System (INIS)

    Hennel, F.

    1993-01-01

    A theoretical introduction to Fourier NMR imaging and a discussion of fast methods are presented. Then an application of the method of echo-planar imaging (EPI) with spin echoes in a micro-imaging system is described together with introduced modifications of the sequence. A new technique for the measurement of flow profiles in liquids which results from a modification of x-pulsed EPI is presented. The development of new software for a NMR micro-imaging system is described, too. 51 refs, 29 refs

  12. Can a single-shot black-blood T2-weighted spin-echo echo-planar imaging sequence with sensitivity encoding replace the respiratory-triggered turbo spin-echo sequence for the liver? An optimization and feasibility study.

    Science.gov (United States)

    Hussain, Shahid M; De Becker, Jan; Hop, Wim C J; Dwarkasing, Soendersing; Wielopolski, Piotr A

    2005-03-01

    To optimize and assess the feasibility of a single-shot black-blood T2-weighted spin-echo echo-planar imaging (SSBB-EPI) sequence for MRI of the liver using sensitivity encoding (SENSE), and compare the results with those obtained with a T2-weighted turbo spin-echo (TSE) sequence. Six volunteers and 16 patients were scanned at 1.5T (Philips Intera). In the volunteer study, we optimized the SSBB-EPI sequence by interactively changing the parameters (i.e., the resolution, echo time (TE), diffusion weighting with low b-values, and polarity of the phase-encoding gradient) with regard to distortion, suppression of the blood signal, and sensitivity to motion. The influence of each change was assessed. The optimized SSBB-EPI sequence was applied in patients (N = 16). A number of items, including the overall image quality (on a scale of 1-5), were used for graded evaluation. In addition, the signal-to-noise ratio (SNR) of the liver was calculated. Statistical analysis was carried out with the use of Wilcoxon's signed rank test for comparison of the SSBB-EPI and TSE sequences, with P = 0.05 considered the limit for significance. The SSBB-EPI sequence was improved by the following steps: 1) less frequency points than phase-encoding steps, 2) a b-factor of 20, and 3) a reversed polarity of the phase-encoding gradient. In patients, the mean overall image quality score for the optimized SSBB-EPI (3.5 (range: 1-4)) and TSE (3.6 (range: 3-4)), and the SNR of the liver on SSBB-EPI (mean +/- SD = 7.6 +/- 4.0) and TSE (8.9 +/- 4.6) were not significantly different (P > .05). Optimized SSBB-EPI with SENSE proved to be feasible in patients, and the overall image quality and SNR of the liver were comparable to those achieved with the standard respiratory-triggered T2-weighted TSE sequence. (c) 2005 Wiley-Liss, Inc.

  13. Heteronuclear Correlation SSNMR Spectroscopy with Indirect Detection under Fast Magic-Angle Spinning [Book Chapter

    Energy Technology Data Exchange (ETDEWEB)

    Kobayshi, Takeshi [Ames Laboratory (AMES), Ames, IA (United States); Nishiyama, Yusuke [Ames Laboratory (AMES), Ames, IA (United States); Pruski, Marek [Ames Laboratory (AMES), Ames, IA (United States)

    2018-01-01

    The main focus of this chapter is to address experimental strategies on the subject by providing a hands-on guide to fast MAS experiments, with a particular focus on indirect detection. Although our experience is limited to our respective laboratories in Ames and Yokohama, we hope that our descriptions of experimental setups and optimization procedures are sufficiently general to be applicable to all modern instruments. The chapter is organized as follows. Section 2 below introduces briefly the fast MAS technology and its main advantages. In Section 3, we describe the hardware associated with this remarkable technology and provide practical advices on its use, including procedures for loading and unloading the samples, maintaining the probe, reducing t1 noise, etc. In Section 4, we describe the principles and hands-on aspects of experiments involving the indirect detection of spin-1/2 and 14N nuclei

  14. Diagnostic equivalence of conventional and fast spin echo magnetic resonance imaging of the anterior cruciate ligament of the knee

    International Nuclear Information System (INIS)

    Munk, P.L.; Hilborn, M.D.; Vellet, A.D.; University of Calgary, Calgary, Alberta,; Romano, C.C.; University of Calgary, Calgary, Alberta,

    1997-01-01

    Many techniques and pulse sequences have been devised for the assessment of the anterior cruciate ligament. The present study compares fast spin echo (FSE) imaging to conventional spin echo imaging at a field strength of 1.5 T in an effort to determine if these sequences are diagnostically equivalent. Where available, arthroscopy was also done. A total of 52 patients were imaged using both FSE and conventional spin echo sequences. Eight volunteers were used as controls. Arthroscopy was performed on 10 patients. The anterior cruciate ligament was assessed in a blinded fashion by three radiologists. The Kappa statistic was then used to determine the percentage agreement between FSE and conventional spin echo imaging. Fast spin echo sequencing demonstrated a sensitivity of 100%, a specificity of 94.8% and an accuracy of 96.3% when compared to arthroscopy. Conventional spin echo imaging and arthroscopy had a sensitivity of 100%, specificity of 84.6% and an accuracy of 88.9%. The remaining 34 patients who did not undergo arthroscopy were followed clinically because clinical and imaging findings were not suggestive of ACL tears. These demonstrated 72% agreement between FSE and conventional spin echo imaging using the Kappa statistic, with regards to calling ACL normal or having only a low-grade partial tear. Fast spin echo imaging produces images of the anterior cruciate ligament that have similar diagnostic accuracy to conventional spin echo images (P<0.05) within a much shorter scan time. These results however, require further validation in a larger group, preferably with arthroscopic correlation. (author)

  15. Allergy Shots (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Allergy Shots KidsHealth / For Parents / Allergy Shots What's in ... to help a child deal with them. Why Allergy Shots Are Used An allergy occurs when the ...

  16. A comparison between fast and conventional spin-echo in the detection of multiple sclerosis lesions

    International Nuclear Information System (INIS)

    Thorpe, J.W.; Halpin, S.F.; MacManus, D.G.; Barker, G.J.; Kendall, B.E.; Miller, D.H.

    1994-01-01

    Long repetition time (TR) spin-echo (SE) with T 2 - or proton density weighting is the sequence of choice to detect the brain lesions of multiple sclerosis (MS). Fast spin-echo (FSE) permits the generation of T 2 -weighted images with similar contrast to SE but in a fraction of the time. We compared the sensitivity of FSE and SE in the detection of the brain lesions of MS. Six patients with clinically definite MS underwent brain imaging with both dual echo (long TR, long and short echo time (TE) SE and dual echo FSE. The SE and FSE images were first reviewed independently and then compared. A total of 404 lesions was detected on SE and 398 on FSE. Slightly more periventricular lesions were detected using SE than FSE (145 vs 127), whereas more posterior cranial fossa lesions were detected by FSE (77 vs 57). With both SE and FSE the short TE images revealed more lesions than the long echo. These results suggest that FSE could replace SE as the long TR sequence of choice in the investigation of MS. (orig.)

  17. Ultra-fast three terminal perpendicular spin-orbit torque MRAM (Presentation Recording)

    Science.gov (United States)

    Boulle, Olivier; Cubukcu, Murat; Hamelin, Claire; Lamard, Nathalie; Buda-Prejbeanu, Liliana; Mikuszeit, Nikolai; Garello, Kevin; Gambardella, Pietro; Langer, Juergen; Ocker, Berthold; Miron, Mihai; Gaudin, Gilles

    2015-09-01

    The discovery that a current flowing in a heavy metal can exert a torque on a neighboring ferromagnet has opened a new way to manipulate the magnetization at the nanoscale. This "spin orbit torque" (SOT) has been demonstrated in ultrathin magnetic multilayers with structural inversion asymmetry (SIA) and high spin orbit coupling, such as Pt/Co/AlOx multilayers. We have shown that this torque can lead to the magnetization switching of a perpendicularly magnetized nanomagnet by an in-plane current injection. The manipulation of magnetization by SOT has led to a novel concept of magnetic RAM memory, the SOT-MRAM, which combines non volatility, high speed, reliability and large endurance. These features make the SOT-MRAM a good candidate to replace SRAM for non-volatile cache memory application. We will present the proof of concept of a perpendicular SOT-MRAM cell composed of a Ta/FeCoB/MgO/FeCoB magnetic tunnel junction and demonstrate ultra-fast (down to 300 ps) deterministic bipolar magnetization switching. Macrospin and micromagnetic simulations including SOT cannot reproduce the experimental results, which suggests that additional physical mechanisms are at stacks. Our results show that SOT-MRAM is fast, reliable and low power, which is promising for non-volatile cache memory application. We will also discuss recent experiments of magnetization reversal in ultrathin multilayers Pt/Co/AlOx by very short (<200 ps) current pulses. We will show that in this material, the Dzyaloshinskii-Moryia interaction plays a key role in the reversal process.

  18. Application of fast spin-echo T2-weighted imaging for examination of the neurocranium. Comparison with the conventional T2-weighted spin-echo sequence

    International Nuclear Information System (INIS)

    Siewert, C.; Hosten, N.; Felix, R.

    1994-01-01

    T 2 -weighted spin-echo imaging is the standard screening procedure in MR imaging of the neutrocranium. We evaluated fast spin-echo T 2 -weighted imaging (TT 2 ) of the neurocranium in comparison to conventional spin-echo T 2 -weighted imaging (T 2 ). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher than TT 2 than in T 2 (with the exception of grey-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT 2 , Parkinson patients have to be examined by conventional T 2 . If these limitations are taken into account, fast spin-echo T 2 -weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T 2 -weighting achieved in a short acquisition time. (orig.) [de

  19. The evaluation of fat saturation fast spin-echo T2W1 for patients with acute spinal trauma

    International Nuclear Information System (INIS)

    Kim, Sung Gyu; Lee, Chang Jun; Lee, Myung Joon; Kang, Ik Won; Yoo, Jeong Hyun

    2002-01-01

    To determine the usefulness of fat saturation fast spin-echo T2W1 for patients with mild acute trauma of the spine. Between July 1998 and June 2002, 36 patients with acute spinal trauma underwent MRI within four months of injury. One, whose clinal symptoms indicated neurological paralysis, was excluded form our study. A superconductive 1.0-T MRI scanner was used, and conventional T1W1, T2W1, and additional fat-saturation fast spin-echo T2W1 were performed. Two radiologists compared conventional T2-weighted sagittal imaging and fat-saturation T2-weighted sagittal imaging in terms of the extension of increased high signal intensities in soft tissue and vertebral bodies, bone marrow signal change, disk herniation, and signal change of the disk. The detection rate of focal high signal intensities in soft tissue and bone marrow was significantly higher at fat-saturation fast spin-echo T2W1 than at conventional T2W1. Fat-saturation fast spin-echo T2W1 is useful for the evaluation of patients with mild acute spinal trauma without neurological impairment

  20. Instantaneous coherent destruction of tunneling and fast quantum state preparation for strongly pulsed spin qubits in diamond

    DEFF Research Database (Denmark)

    Wubs, Martijn

    2010-01-01

    Qubits driven by resonant strong pulses are studied and a parameter regime is explored in which the dynamics can be solved in closed form. Instantaneous coherent destruction of tunneling can be seen for longer pulses, whereas shorter pulses allow a fast preparation of the qubit state. Results...... are compared with recent experiments of pulsed nitrogen-vacancy center spin qubits in diamond....

  1. Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiong-Peng [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Shao, Bin, E-mail: sbin610@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Hu, Shuai; Zou, Jian [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wu, Lian-Ao [Department of Theoretical Physics and History of Science, The Basque Country University (EHU/UPV), PO Box 644, 48080 Bilbao (Spain); Ikerbasque, Basque Foundation for Science, 48011 Bilbao (Spain)

    2016-12-15

    Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that the scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.

  2. Dipolar Spin Ice States with a Fast Monopole Hopping Rate in CdEr2X4 (X =Se , S)

    Science.gov (United States)

    Gao, Shang; Zaharko, O.; Tsurkan, V.; Prodan, L.; Riordan, E.; Lago, J.; Fâk, B.; Wildes, A. R.; Koza, M. M.; Ritter, C.; Fouquet, P.; Keller, L.; Canévet, E.; Medarde, M.; Blomgren, J.; Johansson, C.; Giblin, S. R.; Vrtnik, S.; Luzar, J.; Loidl, A.; Rüegg, Ch.; Fennell, T.

    2018-03-01

    Excitations in a spin ice behave as magnetic monopoles, and their population and mobility control the dynamics of a spin ice at low temperature. CdEr2 Se4 is reported to have the Pauling entropy characteristic of a spin ice, but its dynamics are three orders of magnitude faster than the canonical spin ice Dy2 Ti2 O7 . In this Letter we use diffuse neutron scattering to show that both CdEr2 Se4 and CdEr2 S4 support a dipolar spin ice state—the host phase for a Coulomb gas of emergent magnetic monopoles. These Coulomb gases have similar parameters to those in Dy2 Ti2 O7 , i.e., dilute and uncorrelated, and so cannot provide three orders faster dynamics through a larger monopole population alone. We investigate the monopole dynamics using ac susceptometry and neutron spin echo spectroscopy, and verify the crystal electric field Hamiltonian of the Er3 + ions using inelastic neutron scattering. A quantitative calculation of the monopole hopping rate using our Coulomb gas and crystal electric field parameters shows that the fast dynamics in CdEr2X4 (X =Se , S) are primarily due to much faster monopole hopping. Our work suggests that CdEr2X4 offer the possibility to study alternative spin ice ground states and dynamics, with equilibration possible at much lower temperatures than the rare earth pyrochlore examples.

  3. Comparison of fast spin echo, fast multiplanner spoiled gradient recalled and conventional T1 and T2 weighted imaging for experimentally induced hepatic tumors in rats

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myeong Jin; Lee, Jong Tae; Suh, Jin Suk; Choi, Pil Sik; Lee, Yeon Hee; Yoo, Hyung Sik; Kim, Ki Whang [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1994-10-15

    To compare the ability of tumor detection and the lesion conspicuity between T1- and T2-weighted fast scanning sequence and T1- and T2-weighted conventional spin echo techniques in MR imaging of hepatic tumors. Hepatic tumors were induced on 13 male Sprague-Dawley rats by feeding 3'-methyl-dimethylethyl aminoazobenzene mixed with Miller's III formula for 12 weeks. MR images were obtained with 1.5 T magnet with dual TMJ coil(Sigma, GE Medical systems, Milwaukee, USA). Animals were anesthetized with 150 mg/kg of ketamine hydrochloride. T2 weighted fast spin echo(FSE), conventional spin echo(CSE) T2- and T1WI, fast multiplanner spoiled gradient recalled(FMPSPGR) imaging were obtained. Number of detected tumors and contrast-to-noise ratio of the tumors were compared for each sequence. Overall 110 tumors were developed. 75% of the tumors were detected on FSE. 65% on FMPSPGR, 41% on conventional T2WI, and 41% on T1WI images. For tumors more than 5 mm in diameter, sensitivity was 88% on FMPSPGR, 65% on conventional T2WI, and 81% on T1WI images respectively. CNR of the tumor was 28.94 {+-} 21.6 on FSE, 13.57 {+-} 8.64 on FMPSPGR, 12.62 {+-} 10.65 on CSE T2WI, and 9.47 {+-} 8.05 on CSE T1WI images, which was significantly high on FSE(p<0.05). Fast spin echo T2WI shows highest sensitivity and tumor-to-liver contrast. FMPSPGR imaging is also favorably comparable with conventional T1WI. Therefore, these two pulse sequences can be useful in clinical condition for hepatic MR imaging.

  4. A fast random walk algorithm for computing the pulsed-gradient spin-echo signal in multiscale porous media.

    Science.gov (United States)

    Grebenkov, Denis S

    2011-02-01

    A new method for computing the signal attenuation due to restricted diffusion in a linear magnetic field gradient is proposed. A fast random walk (FRW) algorithm for simulating random trajectories of diffusing spin-bearing particles is combined with gradient encoding. As random moves of a FRW are continuously adapted to local geometrical length scales, the method is efficient for simulating pulsed-gradient spin-echo experiments in hierarchical or multiscale porous media such as concrete, sandstones, sedimentary rocks and, potentially, brain or lungs. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Cardiac T2-mapping using a fast gradient echo spin echo sequence - first in vitro and in vivo experience

    OpenAIRE

    Baessler, Bettina; Schaarschmidt, Frank; Stehning, Christian; Schnackenburg, Bernhard; Maintz, David; Bunck, Alexander C.

    2015-01-01

    Background: The aim of this study was the evaluation of a fast Gradient Spin Echo Technique (GraSE) for cardiac T2-mapping, combining a robust estimation of T2 relaxation times with short acquisition times. The sequence was compared against two previously introduced T2-mapping techniques in a phantom and in vivo. Methods: Phantom experiments were performed at 1.5 T using a commercially available cylindrical gel phantom. Three different T2-mapping techniques were compared: a Multi Echo Spin Ec...

  6. Evaluation of the chondromalacia patella using a microscopy coil: comparison of the two-dimensional fast spin echo techniques and the three-dimensional fast field echo techniques.

    Science.gov (United States)

    Kim, Hyun-joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung-Ja; Cho, Woo Shin

    2011-01-01

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast field echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FS-PD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p chondromalacia patella.

  7. Differentiation between hepatic haemangiomas and cysts with an inversion recovery single-shot turbo spin-echo (SSTSE) sequence using the TI nulling value of hepatic haemangioma with sensitivity encoding

    International Nuclear Information System (INIS)

    Katada, Yoshiaki; Nozaki, Miwako; Yasumoto, Mayumi; Ishii, Chikako; Tanaka, Hiroshi; Nakamoto, Kazuya; Ohashi, Isamu

    2010-01-01

    To evaluate the additional value of inversion recovery (IR) single-shot turbo spin-echo (SSTSE) imaging with sensitivity encoding (SENSE) using the inversion time (TI) value of hepatic haemangioma as a supplement to conventional T2-weighted turbo spin-echo (TSE) imaging for the discrimination of hepatic haemangiomas and cysts. A total of 134 lesions (77 hepatic haemangiomas, 57 hepatic cysts) in 59 patients were evaluated. Three readers evaluated these images and used a five-point scale to evaluate the lesion status. A receiver operating characteristic (ROC) analysis and 2 x 2 table analysis were used. The ROC analysis for all the readers and all the cases revealed a significantly higher area under the curve (AUC) for the combination of moderately and heavily T2-weighted TSE with IR-SSTSE images (0.945) than for moderately and heavily T2-weighted TSE images alone (0.894) (P < 0.001). For the combination of T2-weighted TSE with IR-SSTSE versus T2-weighted TSE alone, the 2 x 2 table analysis revealed a higher true-positive rate; this difference was statistically significant (P < 0.0001). The introduction of IR-SSTSE with SENSE sequences significantly improves the diagnostic accuracy of the differentiation of hepatic haemangioma and cysts while increasing the time required for routine abdominal imaging by only 20 s. (orig.)

  8. Spatial resolution properties in 3D fast spin-echo using variable refocusing flip angles

    International Nuclear Information System (INIS)

    Ozaki, Masanori; Mizukami, Shinya; Hata, Hirofumi; Sato, Mayumi; Komi, Syotaro; Miyati, Tosiaki; Nozaki, Atsushi

    2011-01-01

    A new 3-dimensional fast spin-echo (3D FSE) method that uses a variable refocusing flip angle technique has recently been applied to imaging. The imaging pulse sequence can inhibit T 2 decay by varying the refocusing flip angle. Use of a long echo train length allows acquisition of 3D T 2 -weighted images with less blurring in a short scan time. The smaller refocusing flip angle in the new 3D FSE method than in the conventional method can reduce the specific absorption rate. However, T 2 decay differs between the new and conventional 3D FSE methods, so the resolution properties of the 2 methods may differ. We investigated the resolution properties of the new 3D FSE method using a variable refocusing flip angle technique. Varying the refocusing flip angle resulted in different resolution properties for the new 3D FSE method compared to the conventional method, a difference particularly noticeable when the imaging parameters were set for obtaining proton density weighted images. (author)

  9. MR cisternography with three-dimensional fast advanced spin-echo (FASE)

    International Nuclear Information System (INIS)

    Ohgi, Kazuyuki; Yamamoto, Hidefumi; Yokote, Hiroyuki

    2000-01-01

    To evaluate the usefulness of MR cisternography (MRC) combined with various postprocessing techniques and three-dimensional (3D) time-of-flight (TOF) MR angiography, MR cisternograms in 212 patients with various cranial nerve symptoms were retrospectively evaluated. MR examinations were performed with a 1.5 T MR imager using a 3D fast advanced spin-echo (FASE) sequence. Maximum intensity projection (MIP) had the advantage of demonstrating fluid-filled structures such as cerebrospinal fluid (CSF)-internal auditory canal (IAC) and Meckel's cave. Minimum intensity projection (Min IP) was especially useful in delineating neurovascular structures (NVS) in wide CSF space. Addition provided the most well-balanced images of NVS, and was superior to Min IP in the depiction of NVS in narrow CSF space. Virtual endoscopy and volume rendering had the potential to provide additional information in the evaluation of the three-dimensional relationships of NVS. Combination of 3D TOF MRA with MRC was helpful in differentiating arteries, veins, and nerves. With the judicious use of various postprocessing techniques and combined MRA, the value of MRC in the evaluation of patients with various cranial nerve symptoms can be further strengthened. (author)

  10. Magnetic resonance cisternography using the fast spin echo method for the evaluation of vestibular schwannoma

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, Shigeru; Yokoyama, Tetsuo; Uemura, Kenichi [Hamamatsu Univ. School of Medicine, Shizuoka (Japan)

    1999-04-01

    Neuroimaging of vestibular schwannoma was performed with the fat-suppression spoiled gradient recalled acquisition in the steady state (SPGR) method and magnetic resonance (MR) cisternography, which is a fast spin echo method using a long echo train length, for the preoperative evaluation of the lateral extension of the tumor in the internal auditory canal, and the anatomical identification of the posterior semicircular canal and the nerves in the canal distal to the tumor. The SPGR method overestimated the lateral extension in eight cases, probably because of enhancement of the nerves adjacent to the tumor in the canal. The posterior semicircular canal could not be clearly identified, and the cranial nerves in the canal were shown only as a nerve bundle. In contrast, MR cisternography showed clear images of the lateral extension of the tumor and the facial and cochlear nerves adjacent to the tumor in the internal auditory canal. The anatomical location of the posterior semicircular canal was also clearly shown. These preoperative findings are very useful to plan the extent to which the internal auditory canal can be opened, and for intraoperative identification of the nerves in the canal. MR cisternography is less invasive since no contrast material or radiation is required, as with thin-slice high-resolution computed tomography (CT). MR cisternography should replace high-resolution CT for the preoperative neuroradiological evaluation of vestibular schwannoma. (author)

  11. MR cisternography with three-dimensional fast advanced spin-echo (FASE)

    Energy Technology Data Exchange (ETDEWEB)

    Ohgi, Kazuyuki; Yamamoto, Hidefumi; Yokote, Hiroyuki [Japanese Red-Cross Medical Center, Tokyo (Japan)] [and others

    2000-06-01

    To evaluate the usefulness of MR cisternography (MRC) combined with various postprocessing techniques and three-dimensional (3D) time-of-flight (TOF) MR angiography, MR cisternograms in 212 patients with various cranial nerve symptoms were retrospectively evaluated. MR examinations were performed with a 1.5 T MR imager using a 3D fast advanced spin-echo (FASE) sequence. Maximum intensity projection (MIP) had the advantage of demonstrating fluid-filled structures such as cerebrospinal fluid (CSF)-internal auditory canal (IAC) and Meckel's cave. Minimum intensity projection (Min IP) was especially useful in delineating neurovascular structures (NVS) in wide CSF space. Addition provided the most well-balanced images of NVS, and was superior to Min IP in the depiction of NVS in narrow CSF space. Virtual endoscopy and volume rendering had the potential to provide additional information in the evaluation of the three-dimensional relationships of NVS. Combination of 3D TOF MRA with MRC was helpful in differentiating arteries, veins, and nerves. With the judicious use of various postprocessing techniques and combined MRA, the value of MRC in the evaluation of patients with various cranial nerve symptoms can be further strengthened. (author)

  12. Adaptive optics in spinning disk microscopy: improved contrast and brightness by a simple and fast method.

    Science.gov (United States)

    Fraisier, V; Clouvel, G; Jasaitis, A; Dimitrov, A; Piolot, T; Salamero, J

    2015-09-01

    Multiconfocal microscopy gives a good compromise between fast imaging and reasonable resolution. However, the low intensity of live fluorescent emitters is a major limitation to this technique. Aberrations induced by the optical setup, especially the mismatch of the refractive index and the biological sample itself, distort the point spread function and further reduce the amount of detected photons. Altogether, this leads to impaired image quality, preventing accurate analysis of molecular processes in biological samples and imaging deep in the sample. The amount of detected fluorescence can be improved with adaptive optics. Here, we used a compact adaptive optics module (adaptive optics box for sectioning optical microscopy), which was specifically designed for spinning disk confocal microscopy. The module overcomes undesired anomalies by correcting for most of the aberrations in confocal imaging. Existing aberration detection methods require prior illumination, which bleaches the sample. To avoid multiple exposures of the sample, we established an experimental model describing the depth dependence of major aberrations. This model allows us to correct for those aberrations when performing a z-stack, gradually increasing the amplitude of the correction with depth. It does not require illumination of the sample for aberration detection, thus minimizing photobleaching and phototoxicity. With this model, we improved both signal-to-background ratio and image contrast. Here, we present comparative studies on a variety of biological samples. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  13. Fast spin-echo MR assessment of patients with poor outcome following spinal cervical surgery

    International Nuclear Information System (INIS)

    Wu, W.; Thuomas, K.AA.; Hedlund, R.; Leszniewski, W.; Vavruch, L.

    1996-01-01

    The aim of the investigation was to evaluate poor outcome following spinal cervical surgery. A total of 146 consecutive patients operated with anterior discectomy and fusion (ADF) with the Cloward technique were investigated. Clinical notes, plain radiography, CT, and fast spin-echo (FSE) images were retrospectively evaluated. Some 30% of the patients had unsatisfactory clinical results within 12 months after surgery; 13% had initial improvement followed by deterioration of the preoperative symptoms, while 14.4% were not improved or worsened. Disc herniation and bony stenosis above, below, or at the fused level were the most common findings. In 45% of patients, surgery failed to decompress the spinal canal. In only 4 patients was no cause of remaining myelopathy and/or radiculopathy found. FSE demonstrated a large variety of pathological findings in the patients with poor clinical outcome after ADF. Postoperatively, patients with good clinical outcome had a lower incidence of pathological changes. FSE is considered the primary imaging modality for the cervical spine. However, CT is a useful complement in the axial projection to visualize bone changes. (orig.)

  14. IceCube constraints on fast-spinning pulsars as high-energy neutrino sources

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ke [Department of Astronomy, University of Maryland, College Park, MD, 20742 (United States); Kotera, Kumiko [Institut d' Astrophysique de Paris, UMR 7095 – CNRS, Université Pierre $ and $ Marie Curie, 98 bis boulevard Arago, 75014, Paris (France); Murase, Kohta [Department of Physics, Department of Astronomy and Astrophysics, Center for Particle and Gravitational Astrophysics, The Pennsylvania State University, PA 16802 (United States); Olinto, Angela V., E-mail: kefang@umd.edu, E-mail: kotera@iap.fr, E-mail: murase@psu.edu, E-mail: olinto@kicp.uchicago.edu [Department of Astronomy and Astrophysics, Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States)

    2016-04-01

    Relativistic winds of fast-spinning pulsars have been proposed as a potential site for cosmic-ray acceleration from very high energies (VHE) to ultrahigh energies (UHE). We re-examine conditions for high-energy neutrino production, considering the interaction of accelerated particles with baryons of the expanding supernova ejecta and the radiation fields in the wind nebula. We make use of the current IceCube sensitivity in diffusive high-energy neutrino background, in order to constrain the parameter space of the most extreme neutron stars as sources of VHE and UHE cosmic rays. We demonstrate that the current non-observation of 10{sup 18} eV neutrinos put stringent constraints on the pulsar scenario. For a given model, birthrates, ejecta mass and acceleration efficiency of the magnetar sources can be constrained. When we assume a proton cosmic ray composition and spherical supernovae ejecta, we find that the IceCube limits almost exclude their significant contribution to the observed UHE cosmic-ray flux. Furthermore, we consider scenarios where a fraction of cosmic rays can escape from jet-like structures piercing the ejecta, without significant interactions. Such scenarios would enable the production of UHE cosmic rays and help remove the tension between their EeV neutrino production and the observational data.

  15. Indirectly detected chemical shift correlation NMR spectroscopy in solids under fast magic angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Kanmi [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The development of fast magic angle spinning (MAS) opened up an opportunity for the indirect detection of insensitive low-γ nuclei (e.g., 13C and 15N) via the sensitive high-{gamma} nuclei (e.g., 1H and 19F) in solid-state NMR, with advanced sensitivity and resolution. In this thesis, new methodology utilizing fast MAS is presented, including through-bond indirectly detected heteronuclear correlation (HETCOR) spectroscopy, which is assisted by multiple RF pulse sequences for 1H-1H homonuclear decoupling. Also presented is a simple new strategy for optimization of 1H-1H homonuclear decoupling. As applications, various classes of materials, such as catalytic nanoscale materials, biomolecules, and organic complexes, are studied by combining indirect detection and other one-dimensional (1D) and two-dimensional (2D) NMR techniques. Indirectly detected through-bond HETCOR spectroscopy utilizing refocused INEPT (INEPTR) mixing was developed under fast MAS (Chapter 2). The time performance of this approach in 1H detected 2D 1H{l_brace}13C{r_brace} spectra was significantly improved, by a factor of almost 10, compared to the traditional 13C detected experiments, as demonstrated by measuring naturally abundant organic-inorganic mesoporous hybrid materials. The through-bond scheme was demonstrated as a new analytical tool, which provides complementary structural information in solid-state systems in addition to through-space correlation. To further benefit the sensitivity of the INEPT transfer in rigid solids, the combined rotation and multiple-pulse spectroscopy (CRAMPS) was implemented for homonuclear 1H decoupling under fast MAS (Chapter 3). Several decoupling schemes (PMLG5m$\\bar{x}$, PMLG5mm$\\bar{x}$x and SAM3) were analyzed to maximize the performance of through-bond transfer based

  16. Birth Control Shot

    Science.gov (United States)

    ... Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Birth Control Shot KidsHealth / For Teens / Birth Control Shot What's ...

  17. The evaluation of fat saturation fast spin-echo T2WI for patients with acute spinal trauma

    International Nuclear Information System (INIS)

    Kim, Sung Gyu; Lee, Chang Jun; Lee, Myung Joon; Kang, Ik Won; Yoo, Jeong Hyun

    2002-01-01

    To determine the usefulness of fat saturation fast spin-echo T2WI for patients with mild acute trauma of the spine. Between July 1998 and June 2002, 36 patients with acute spinal trauma underwent MRI within four months of injury. One, whose clinal symptoms indicated neurological paralysis, was excluded form our study. A superconductive 1.0-T MRI scanner was used, and conventional T1W1, T2W1, and additional fat-saturation fast spin-echo T2W1 were performed. Two radiologists compared conventional T2-weighted sagittal imaging and fat-saturation T2-weighted sagittal imaging in terms of the extension of increased high signal intensities in soft tissue and vertebral bodies, bone marrow signal change, disk herniation, and signal change of the disk. The detection rate of focal high signal intensities in soft tissue and bone marrow was significantly higher at fat-saturation fast spin-echo T2W1 is useful the evaluation of patients with mild acute spinal trauma without neurological impairment

  18. Evaluation of chondromalacia of the patella with axial inversion recovery-fast spin-echo imaging.

    Science.gov (United States)

    Lee, S H; Suh, J S; Cho, J; Kim, S J; Kim, S J

    2001-03-01

    The purpose of our study was to assess the accuracy of inversion recovery-fast spin-echo (IR-FSE) imaging for the evaluation of chondromalacia of the patella. Eighty-six patients were included, they underwent magnetic resonance (MR) examination and subsequent knee arthroscopy. Medial and lateral facets of the patella were evaluated separately. Axial images were obtained by using IR-FSE (TR/TE/TI = 3000/25/150 msec; echo train length, 8; 4-mm thickness; 12-cm field of view; 512 x 256 matrix; two, number of excitations) with a 1.5-T MR machine. MR interpretation of chondromalacia was made on the basis of the arthroscopic grading system. Of a total of 172 facets graded, arthroscopy revealed chondromalacia in 14 facets with various grades (G0, 158; G1, 1; G2, 3; G3, 6; G4, 4). Sensitivity, specificity, and accuracy in the chondromalacia grades were 57.1%, 93.0%, and 90.1%, respectively. There was one false-negative case (G4) and 11 false-positive cases (G1, eight; G2, two; G3, one). Sensitivity and specificity corrected by one grade difference were improved to 85.7% and 98.1%, respectively. When cartilage changes were grouped into early (corresponding to grade 1 and 2) and advanced (grade 3 and 4) diseases, sensitivity and specificity of the early and advanced diseases were 75% and 94% and 80% and 99%, respectively. IR-FSE imaging of the knee revealed high specificity but low sensitivity for the evaluation of chondromalacia of the patella.

  19. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    International Nuclear Information System (INIS)

    Kim, Hyun Joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung Ja; Cho, Woo Shin

    2011-01-01

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast fi eld echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FSPD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella

  20. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung Ja; Cho, Woo Shin [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2011-02-15

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast fi eld echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FSPD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella

  1. Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning

    KAUST Repository

    Parthasarathy, Sudhakar

    2013-09-17

    Recent research in fast magic angle spinning (MAS) methods has drastically improved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In this Account, we summarize recent and ongoing developments in this area by presenting (13)C and (1)H solid-state NMR (SSNMR) studies on paramagnetic systems and biomolecules under fast MAS from our laboratories. First, we describe how very fast MAS (VFMAS) at the spinning speed of at least 20 kHz allows us to overcome major difficulties in (1)H and (13)C high-resolution SSNMR of paramagnetic systems. As a result, we can enhance both sensitivity and resolution by up to a few orders of magnitude. Using fast recycling (∼ms/scan) with short (1)H T1 values, we can perform (1)H SSNMR microanalysis of paramagnetic systems on the microgram scale with greatly improved sensitivity over that observed for diamagnetic systems. Second, we discuss how VFMAS at a spinning speed greater than ∼40 kHz can enhance the sensitivity and resolution of (13)C biomolecular SSNMR measurements. Low-power (1)H decoupling schemes under VFMAS offer excellent spectral resolution for (13)C SSNMR by nominal (1)H RF irradiation at ∼10 kHz. By combining the VFMAS approach with enhanced (1)H T1 relaxation by paramagnetic doping, we can achieve extremely fast recycling in modern biomolecular SSNMR experiments. Experiments with (13)C-labeled ubiquitin doped with 10 mM Cu-EDTA demonstrate how effectively this new approach, called paramagnetic assisted condensed data collection (PACC), enhances the sensitivity. Lastly, we examine (13)C SSNMR measurements for biomolecules under faster MAS at a higher field. Our preliminary (13)C SSNMR data of Aβ amyloid fibrils and GB1 microcrystals acquired at (1)H NMR frequencies of 750-800 MHz suggest that the combined use of the PACC approach and ultrahigh fields could allow for routine multidimensional SSNMR analyses of proteins at the 50-200 nmol level. Also, we briefly discuss the

  2. Comparison of dynamic dual spin-echo and fast-gradient-echo techniques in the evaluation of cardiac diseases

    International Nuclear Information System (INIS)

    Pettigrew, R.I.; Eisner, R.L.; Groen, J.P.; Baron, M.G.

    1987-01-01

    To determine the relative roles of a dynamic spin-echo method and a fast acquisition with multiphase excitations (FAME) technique, ten patients with myocardial infarction (MI), five with myocardial masses, and five healthy patients were studied with both methods. The dynamic dual-spin-echo (DSE) technique allows acquisition of each of seven sections at 14 cardiac phases in 20 minutes. Wall motion abnormalities were seen equally well with both techniques, but FAME usually required a shorter study time (10 minutes). DSE, however, was superior for evaluating cardiac masses and provided superior wall blood contrast. Thus, these techniques are complementary, and both are now a routine part of the authors' study of cardiac patients

  3. Quantitative evaluation of benign and malignant vertebral fractures with diffusion-weighted MRI: what is the optimum combination of b values for ADC-based lesion differentiation with the single-shot turbo spin-echo sequence?

    Science.gov (United States)

    Geith, Tobias; Schmidt, Gerwin; Biffar, Andreas; Dietrich, Olaf; Duerr, Hans Roland; Reiser, Maximilian; Baur-Melnyk, Andrea

    2014-09-01

    The purpose of our study was to determine the optimum combination of b values for calculating the apparent diffusion coefficient (ADC) using a diffusion-weighted (DW) single-shot turbo spin-echo (TSE) sequence in the differentiation between acute benign and malignant vertebral body fractures. Twenty-six patients with osteoporotic (mean age, 69 years; range, 31.5-86.2 years) and 20 patients with malignant vertebral fractures (mean age, 63.4 years; range, 24.7-86.4 years) were studied. T1-weighted, STIR, and T2-weighted sequences were acquired at 1.5 T. A DW single-shot TSE sequence at different b values (100, 250, 400, and 600 s/mm(2)) was applied. On the DW images for each evaluated fracture, an ROI was manually adapted to the area of hyperintense signal intensity on STIR-hypointense signal on T1-weighted images. For each ROI, nine different combinations of two, three, and four b values were used to calculate the ADC using a least-squares algorithm. The Student t test and Mann-Whitney U test were used to determine significant differences between benign and malignant fractures. An ROC analysis and the Youden index were used to determine cutoff values for assessment of the highest sensitivity and specificity for the different ADC values. The positive (PPV) and negative predictive values (NPV) were also determined. All calculated ADCs (except the combination of b = 400 s/mm(2) and b = 600 s/mm(2)) showed statistically significant differences between benign and malignant vertebral body fractures, with benign fractures having higher ADCs than malignant ones. The use of higher b values resulted in lower ADCs than those calculated with low b values. The highest AUC (0.85) showed the ADCs calculated with b = 100 and 400 s/mm(2), and the second highest AUC (0.829) showed the ADCs calculated with b = 100, 250, and 400 s/mm(2). The Youden index with equal weight given to sensitivity and specificity suggests use of an ADC calculated with b = 100, 250, and 400 s/mm(2) (cutoff

  4. Heteronuclear relaxation in time-dependent spin systems: 15N-T1ρ dispersion during adiabatic fast passage

    International Nuclear Information System (INIS)

    Konrat, Robert; Tollinger, Martin

    1999-01-01

    A novel NMR experiment comprising adiabatic fast passage techniques for the measurement of heteronuclear self-relaxation rates in fully 15N-enriched proteins is described. Heteronuclear self-relaxation is monitored by performing adiabatic fast passage (AFP) experiments at variable adiabaticity (e.g., variation of RF spin-lock field intensity). The experiment encompasses gradient- selection and sensitivity-enhancement. It is shown that transverse relaxation rates derived with this method are in good agreement with the ones measured by the classical Carr-Purcell-Meiboom-Gill (CPMG) sequences. An application of this method to the study of the carboxyl-terminal LIM domain of quail cysteine and glycine-rich protein qCRP2(LIM2) is presented

  5. Cross-polarization phenomena in the NMR of fast spinning solids subject to adiabatic sweeps

    Energy Technology Data Exchange (ETDEWEB)

    Wi, Sungsool, E-mail: sungsool@magnet.fsu.edu, E-mail: lucio.frydman@weizmann.ac.il; Gan, Zhehong [National High Magnetic Field Laboratory, Tallahassee, Florida 32304 (United States); Schurko, Robert [Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor N9B 3P4, Ontario (Canada); Frydman, Lucio, E-mail: sungsool@magnet.fsu.edu, E-mail: lucio.frydman@weizmann.ac.il [National High Magnetic Field Laboratory, Tallahassee, Florida 32304 (United States); Department of Chemical Physics, Weizmann Institute of Sciences, 76100 Rehovot (Israel)

    2015-02-14

    Cross-polarization magic-angle spinning (CPMAS) experiments employing frequency-swept pulses are explored within the context of obtaining broadband signal enhancements for rare spin S = 1/2 nuclei at very high magnetic fields. These experiments employ adiabatic inversion pulses on the S-channel ({sup 13}C) to cover a wide frequency offset range, while simultaneously applying conventional spin-locking pulse on the I-channel ({sup 1}H). Conditions are explored where the adiabatic frequency sweep width, Δν, is changed from selectively irradiating a single magic-angle-spinning (MAS) spinning centerband or sideband, to sweeping over multiple sidebands. A number of new physical features emerge upon assessing the swept-CP method under these conditions, including multiple zero- and double-quantum CP transfers happening in unison with MAS-driven rotary resonance phenomena. These were examined using an average Hamiltonian theory specifically designed to tackle these experiments, with extensive numerical simulations, and with experiments on model compounds. Ultrawide CP profiles spanning frequency ranges of nearly 6⋅γB{sub 1}{sup s} were predicted and observed utilizing this new approach. Potential extensions and applications of this extremely broadband transfer conditions are briefly discussed.

  6. Temperature dependence of shot noise in double barrier magnetic tunnel junctions

    Science.gov (United States)

    Niu, Jiasen; Liu, Liang; Feng, J. F.; Han, X. F.; Coey, J. M. D.; Zhang, X.-G.; Wei, Jian

    2018-03-01

    Shot noise reveals spin dependent transport properties in a magnetic tunnel junction. We report measurement of shot noise in CoFeB/MgO/CoFeB/MgO/CoFeB double barrier magnetic tunnel junctions, which shows a strong temperature dependence. The Fano factor used to characterize shot noise increases with decreasing temperature. A sequential tunneling model can be used to account for these results, in which a larger Fano factor results from larger spin relaxation length at lower temperatures.

  7. What is the most suitable MR signal index for quantitative evaluation of placental function using Half-Fourier acquisition single-shot turbo spin-echo compared with T2-relaxation time?

    Science.gov (United States)

    Kameyama, Kyoko Nakao; Kido, Aki; Himoto, Yuki; Moribata, Yusaku; Minamiguchi, Sachiko; Konishi, Ikuo; Togashi, Kaori

    2018-06-01

    Background Half-Fourier acquisition single-shot turbo spin-echo (HASTE) imaging is now widely used for placental and fetal imaging because of its rapidity and low sensitivity to fetal movement. If placental dysfunction is also predicted by quantitative value obtained from HASTE image, then it might be beneficial for evaluating placental wellbeing. Purpose To ascertain the most suitable magnetic resonance (MR) signal indexes reflecting placental function using HASTE imaging. Material and Methods This retrospective study included 37 consequent patients who had given informed consent to MR imaging (MRI) examinations. All had undergone MRI examinations between February 2014 and June 2015. First, the correlation between T2-relaxation time of normal placenta and gestational age (GA) was examined. Second, correlation between signal intensity ratios (SIRs) using HASTE imaging and placental T2-relaxation time were assessed. The SIRs were calculated using placental signal intensity (SI) relative to the SI of the amniotic fluid, fetal ocular globes, gastric fluid, bladder, maternal psoas major muscles, and abdominal subcutaneous adipose tissue. Results Among the 37 patients, the correlation between T2-relaxation time of the 25 normal placentas and GA showed a moderately strong correlation (Spearman rho = -0.447, P = 0.0250). The most significant correlation with placental T2-relaxation time was observed with the placental SIR relative to the maternal psoas major muscles (SIR pl./psoas muscle ) (Spearman rho = -0.531, P = 0.0007). Conclusion This study revealed that SIR pl./psoas muscle showed the best correlation to placental T2-relaxation time. Results show that SIR pl./psoas muscle might be optimal as a clinically available quantitative index of placental function.

  8. Fast spin of the young extrasolar planet β Pictoris b.

    Science.gov (United States)

    Snellen, Ignas A G; Brandl, Bernhard R; de Kok, Remco J; Brogi, Matteo; Birkby, Jayne; Schwarz, Henriette

    2014-05-01

    The spin of a planet arises from the accretion of angular momentum during its formation, but the details of this process are still unclear. In the Solar System, the equatorial rotation velocities and, consequently, spin angular momenta of most of the planets increase with planetary mass; the exceptions to this trend are Mercury and Venus, which, since formation, have significantly spun down because of tidal interactions. Here we report near-infrared spectroscopic observations, at a resolving power of 100,000, of the young extrasolar gas giant planet β Pictoris b (refs 7, 8). The absorption signal from carbon monoxide in the planet's thermal spectrum is found to be blueshifted with respect to that from the parent star by approximately 15 kilometres per second, consistent with a circular orbit. The combined line profile exhibits a rotational broadening of about 25 kilometres per second, meaning that β Pictoris b spins significantly faster than any planet in the Solar System, in line with the extrapolation of the known trend in spin velocity with planet mass.

  9. Comparison of spin echo T1-weighted sequences versus fast spin-echo proton density-weighted sequences for evaluation of meniscal tears at 1.5 T

    International Nuclear Information System (INIS)

    Wolff, Andrew B.; Pesce, Lorenzo L.; Wu, Jim S.; Smart, L.R.; Medvecky, Michael J.; Haims, Andrew H.

    2009-01-01

    At our institution, fast spin-echo (FSE) proton density (PD) imaging is used to evaluate articular cartilage, while conventional spin-echo (CSE) T1-weighted sequences have been traditionally used to characterize meniscal pathology. We sought to determine if FSE PD-weighted sequences are equivalent to CSE T1-weighted sequences in the detection of meniscal tears, obviating the need to perform both sequences. We retrospectively reviewed the records of knee arthroscopies performed by two arthroscopy-focused surgeons from an academic medical center over a 2-year period. The preoperative MRI images were interpreted independently by two fellowship-trained musculoskeletal radiologists who graded the sagittal CSE T1 and FSE PD sequences at different sittings with grades 1-5, where 1 = normal meniscus, 2 = probable normal meniscus, 3 indeterminate, 4 = probable torn meniscus, and 5 = torn meniscus. Each meniscus was divided into an anterior and posterior half, and these halves were graded separately. Operative findings provided the gold standard. Receiver operating characteristic (ROC) analysis was performed to compare the two sequences. There were 131 tears in 504 meniscal halves. Using ROC analysis, the reader 1 area under curve for FSE PD was significantly better than CSE T1 (0.939 vs. 0.902, >95% confidence). For reader 2, the difference met good criteria for statistical non-inferiority but not superiority (0.913 for FSE PD and 0.908 for CSE T1; >95% non-inferiority for difference at most of -0.027). FSE PD-weighted sequences, using our institutional protocol, are not inferior to CSE T1-weighted sequences for the detection of meniscal tears and may be superior. (orig.)

  10. Meniscal tear evaluation. Comparison of a conventional spin-echo proton density sequence with a fast spin-echo sequence utilizing a 512x358 matrix size

    International Nuclear Information System (INIS)

    Hopper, M.A.; Robinson, P.; Grainger, A.J.

    2011-01-01

    Aim: To determine the sensitivities, specificities, and receiver-operating characteristics (ROCs) for sagittal conventional spin-echo proton density (SE-PD) and fast spin-echo proton density (FSE-PD) sequences in the diagnosis of meniscal tears when compared to arthroscopic findings utilizing increased FSE matrix acquisition size. Method and materials: Magnetic resonance imaging (MRI) studies of 97 knees (194 menisci) were independently and prospectively interpreted by two experienced musculoskeletal radiologists over four separate readings at least 3 weeks apart. Readings 1 and 2 included images in all three planes in accordance with the standard protocol with either a SE or FSE sagittal PD, at readings 3 and 4 just the SE or FSE sagittal PD sequences were reported. The FSE sequence was acquired with an increased matrix size, compared to the SE sequence, to provide increased resolution. Menisci were graded for the presence of a tear and statistical analysis to calculate sensitivity and specificity was performed comparing to arthroscopy as the reference standard. ROC analysis for the diagnosis of meniscal tears on the SE and FSE sagittal sequences was also evaluated. Reader concordance for the SE and FSE sequences was calculated. Results: Sixty-seven tears were noted at arthroscopy; 60 were detected on SE and 56 on FSE. The sensitivity and specificity for SE was 90 and 90%, and for FSE was 84 and 94%, respectively, with no significant difference. ROC analysis showed no significant difference between the two sequences and kappa values demonstrated a higher level of reader agreement for the FSE than for the SE reading. Conclusion: Use of a FSE sagittal PD sequence with an increased matrix size provides comparable performance to conventional SE sagittal PD when evaluating meniscal disease with a modern system. The present study indicates an increased level of concordance between readers for the FSE sagittal sequence compared to the conventional SE.

  11. Meniscal tear evaluation. Comparison of a conventional spin-echo proton density sequence with a fast spin-echo sequence utilizing a 512x358 matrix size

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, M.A.; Robinson, P. [Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Grainger, A.J., E-mail: andrew.grainger@leedsth.nhs.u [Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom)

    2011-04-15

    Aim: To determine the sensitivities, specificities, and receiver-operating characteristics (ROCs) for sagittal conventional spin-echo proton density (SE-PD) and fast spin-echo proton density (FSE-PD) sequences in the diagnosis of meniscal tears when compared to arthroscopic findings utilizing increased FSE matrix acquisition size. Method and materials: Magnetic resonance imaging (MRI) studies of 97 knees (194 menisci) were independently and prospectively interpreted by two experienced musculoskeletal radiologists over four separate readings at least 3 weeks apart. Readings 1 and 2 included images in all three planes in accordance with the standard protocol with either a SE or FSE sagittal PD, at readings 3 and 4 just the SE or FSE sagittal PD sequences were reported. The FSE sequence was acquired with an increased matrix size, compared to the SE sequence, to provide increased resolution. Menisci were graded for the presence of a tear and statistical analysis to calculate sensitivity and specificity was performed comparing to arthroscopy as the reference standard. ROC analysis for the diagnosis of meniscal tears on the SE and FSE sagittal sequences was also evaluated. Reader concordance for the SE and FSE sequences was calculated. Results: Sixty-seven tears were noted at arthroscopy; 60 were detected on SE and 56 on FSE. The sensitivity and specificity for SE was 90 and 90%, and for FSE was 84 and 94%, respectively, with no significant difference. ROC analysis showed no significant difference between the two sequences and kappa values demonstrated a higher level of reader agreement for the FSE than for the SE reading. Conclusion: Use of a FSE sagittal PD sequence with an increased matrix size provides comparable performance to conventional SE sagittal PD when evaluating meniscal disease with a modern system. The present study indicates an increased level of concordance between readers for the FSE sagittal sequence compared to the conventional SE.

  12. MR contrast of ferritin and hemosiderin in the brain: comparison among gradient-echo, conventional spin-echo and fast spin-echo sequences

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Tabassum Laz; Miki, Yukio; Kanagaki, Mitsunori; Takahashi, Takahiro; Yamamoto, Akira; Konishi, Junya; Nozaki, Kazuhiko; Hashimoto, Nobuo; Konishi, Junji

    2003-12-01

    Objective: To compare the magnetic resonance image contrasts due to ferritin and hemosiderin in the brain tissue among different pulse sequences. Materials and methods: Fourteen patients with cavernous hemangioma in the brain prospectively underwent MR imaging with T2*-weighted gradient-echo (GRE), T2-weighted conventional spin-echo (SE) and fast spin-echo (FSE) sequences. The relative contrast ratios (CRs) of the hypointense part of cavernous hemangioma, globus pallidus and putamen to the deep frontal white matter were measured on each pulse sequence and statistically analyzed using analysis of variance followed by paired t-test. Results: In the hypointense part of cavernous hemangioma, relative CRs were significantly lower on T2*-weighted GRE than on T2-weighted SE images (P=0.0001), and on T2-weighted SE than on T2-weighted FSE images (P=0.0001). In the globus pallidus, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.002), and on T2*-weighted GRE than on T2-weighted FSE images (P=0.0002). In the putamen, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.001), and there was no significant difference between CRs on T2-weighted FSE and T2*-weighted GRE images (P=0.90). Conclusion: Hemosiderin showed best image contrast on T2*-weighted GRE images but ferritin showed more prominent image contrast on T2-weighted SE than on T2*-weighted GRE images, which may help to determine an appropriate pulse sequence in neurological diseases associated with excessive ferritin accumulation.

  13. MR contrast of ferritin and hemosiderin in the brain: comparison among gradient-echo, conventional spin-echo and fast spin-echo sequences

    International Nuclear Information System (INIS)

    Haque, Tabassum Laz; Miki, Yukio; Kanagaki, Mitsunori; Takahashi, Takahiro; Yamamoto, Akira; Konishi, Junya; Nozaki, Kazuhiko; Hashimoto, Nobuo; Konishi, Junji

    2003-01-01

    Objective: To compare the magnetic resonance image contrasts due to ferritin and hemosiderin in the brain tissue among different pulse sequences. Materials and methods: Fourteen patients with cavernous hemangioma in the brain prospectively underwent MR imaging with T2*-weighted gradient-echo (GRE), T2-weighted conventional spin-echo (SE) and fast spin-echo (FSE) sequences. The relative contrast ratios (CRs) of the hypointense part of cavernous hemangioma, globus pallidus and putamen to the deep frontal white matter were measured on each pulse sequence and statistically analyzed using analysis of variance followed by paired t-test. Results: In the hypointense part of cavernous hemangioma, relative CRs were significantly lower on T2*-weighted GRE than on T2-weighted SE images (P=0.0001), and on T2-weighted SE than on T2-weighted FSE images (P=0.0001). In the globus pallidus, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.002), and on T2*-weighted GRE than on T2-weighted FSE images (P=0.0002). In the putamen, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.001), and there was no significant difference between CRs on T2-weighted FSE and T2*-weighted GRE images (P=0.90). Conclusion: Hemosiderin showed best image contrast on T2*-weighted GRE images but ferritin showed more prominent image contrast on T2-weighted SE than on T2*-weighted GRE images, which may help to determine an appropriate pulse sequence in neurological diseases associated with excessive ferritin accumulation

  14. 3D isotropic T2-weighted fast spin echo (VISTA) versus 2D T2-weighted fast spin echo in evaluation of the calcaneofibular ligament in the oblique coronal plane.

    Science.gov (United States)

    Park, H J; Lee, S Y; Choi, Y J; Hong, H P; Park, S J; Park, J H; Kim, E

    2017-02-01

    To investigate whether the image quality of three-dimensional (3D) volume isotropic fast spin echo acquisition (VISTA) magnetic resonance imaging (MRI) of the calcaneofibular ligament (CFL) view is comparable to that of 2D fast spin echo T2-weighted images (2D T2 FSE) for the evaluation of the CFL, and whether 3D VISTA can replace 2D T2 FSE for the evaluation of CFL injuries. This retrospective study included 76 patients who underwent ankle MRI with CFL views of both 2D T2 FSE MRI and 3D VISTA. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of both techniques were measured. The anatomical identification score and diagnostic performances were evaluated by two readers independently. The diagnostic performances of 3D VISTA and 2D T2 FSE were analysed by sensitivity, specificity, and accuracy for diagnosing CFL injury with reference standards of surgically or clinically confirmed diagnoses. Surgical correlation was performed in 29% of the patients, and clinical examination was used in those who did not have surgery (71%). The SNRs and CNRs of 3D VISTA were significantly higher than those of 2D T2 FSE. The anatomical identification scores on 3D VISTA were inferior to those on 2D T2 FSE, and the differences were statistically significant (pT2 FSE for the anatomical evaluation of CFL, 3D VISTA has a diagnostic performance comparable to that of 2D T2 FSE for the diagnosis of CFL injuries. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  15. Generalised shot noise Cox processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Torrisi, Giovanni Luca

    2005-01-01

    We introduce a class of cox cluster processes called generalised shot noise Cox processes (GSNCPs), which extends the definition of shot noise Cox processes (SNCPs) in two directions: the point process that drives the shot noise is not necessarily Poisson, and the kernel of the shot noise can...

  16. Different types of asynchronous music and effects on performance of basketball foul shot.

    Science.gov (United States)

    Geisler, G; Leith, L M

    2001-12-01

    48 undergraduate women performed basketball foul shots with and without background music. Slow music, fast music, and music personally selected by subjects did not significantly affect shooting performance.

  17. The Usefulness of Fast-Spin-Echo T2-Weighted MR Imaging in Nutcracker Syndrome: a Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Heong Leng; Chen, Matt Chiung Yu; Wu, Cgek Siung; Fu, Kuo An; Lin, Cheng Hao [Yuan' s General Hospital, Kaohsiung (China); Weng, Mei Jui; Liang, Huei Lung; Pan, Huay Ben [National Yang-Ming University, Taipei (Korea, Republic of)

    2010-06-15

    Nutcracker syndrome occurs when the left renal vein (LRV) is compressed between the superior mesenteric artery and the aorta, and this syndrome is often characterized by venous hypertension and related pathologies. However, invasive studies such as phlebography and measuring the reno-caval pressure gradient should be performed to identify venous hypertension. Here we present a case of Nutcracker syndrome where the LRV and intra-renal varicosities appeared homogeneously hyperintense on magnetic resonance (MR) fast-spin-echo T2- weighted imaging, which suggested markedly stagnant intravenous blood flow and the presence of venous hypertension. The patient was diagnosed and treated without obtaining the reno-caval pressure gradient. The discomfort of the patient lessened after treatment. Furthermore, on follow-up evaluation, the LRV displayed a signal void, and this was suggestive of a restoration of the normal LRV flow and a decrease in LRV pressure.

  18. Comparative study between the Spin-echo and 3-D fast imaging techniques in the Knee evaluation with magnetic resonance

    International Nuclear Information System (INIS)

    Oleaga Zufiria, L.; Ibanez Zubiarrain, A.; Grande Icaran, J.; Vela Martin, A.C.; Cintora Leon, E.; Grau Garcia, M.; Grande Icaran, D.

    1993-01-01

    We have carried out a retrospective analysis of the results of magnetic resonance (MR) studies in 20 patients, comparing two different sequences. We compared a 2-D spin-echo (SE2D) sequence with a 3-D fast imaging with steady-state precession (FISP3D) sequence in the attempt to compare the reliability of each in the detection of knee injuries. Arthroscopy was employed as a control technique. Our study revealed no statistically significant difference between the two sequences, although the overall sensitivity for the detection of meniscal lesions was slightly greater with the FISP3D sequence; however, the reliability in the detection of ruptures of the posterior cruciate ligament is less with this sequence than with the SE2D sequence. Both sequences showed very low sensitivity in the detection of hyaline cartilage injuries. (Author) 14 refs

  19. A SEARCH FOR RAPIDLY SPINNING PULSARS AND FAST TRANSIENTS IN UNIDENTIFIED RADIO SOURCES WITH THE NRAO 43 METER TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Deborah; Crawford, Fronefield; Gilpin, Claire [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Langston, Glen [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States)

    2013-04-15

    We have searched 75 unidentified radio sources selected from the NRAO VLA Sky Survey catalog for the presence of rapidly spinning pulsars and short, dispersed radio bursts. The sources are radio bright, have no identifications or optical source coincidences, are more than 5% linearly polarized, and are spatially unresolved in the catalog. If these sources are fast-spinning pulsars (e.g., sub-millisecond pulsars), previous large-scale pulsar surveys may have missed detection due to instrumental and computational limitations, eclipsing effects, or diffractive scintillation. The discovery of a sub-millisecond pulsar would significantly constrain the neutron star equation of state and would have implications for models predicting a rapid slowdown of highly recycled X-ray pulsars to millisecond periods from, e.g., accretion disk decoupling. These same sources were previously searched unsuccessfully for pulsations at 610 MHz with the Lovell Telescope at Jodrell Bank. This new search was conducted at a different epoch with a new 800 MHz backend on the NRAO 43 m Telescope at a center frequency of 1200 MHz. Our search was sensitive to sub-millisecond pulsars in highly accelerated binary systems and to short transient pulses. No periodic or transient signals were detected from any of the target sources. We conclude that diffractive scintillation, dispersive smearing, and binary acceleration are unlikely to have prevented detection of the large majority of the sources if they are pulsars, though we cannot rule out eclipsing, nulling or intermittent emission, or radio interference as possible factors for some non-detections. Other (speculative) possibilities for what these sources might include radio-emitting magnetic cataclysmic variables or older pulsars with aligned magnetic and spin axes.

  20. Lesion discrimination in optic neuritis using high-resolution fat-suppressed fast spin-echo MRI

    International Nuclear Information System (INIS)

    Gass, A.; Moseley, I.F.; Barker, G.J.; Jones, S.; MacManus, D.; McDonald, W.I.; Miller, D.H.

    1996-01-01

    Fast spin-echo (FSE) is a new sequence with acquisition times currently down to one-sixteenth of those obtained with conventional spin-echo sequences, which allows high-resolution (512 x 512 matrix) images to be acquired in an acceptable time. We compared the higher resolution of FSE with the medium resolution of a short inversion-time inversion-recovery (STIR) sequence in depicting the optic nerves of healthy controls and patients with optic neuritis. Optic nerve MRI examinations were performed in 18 patients with optic neuritis and 10 normal controls. Two sequences were obtained coronally: fat-suppressed FSE (FSE TR 3250 ms/TEef 68 ms, echo-train length 16, 4 excitations, 24 cm rectangular field of view, 3 mm interleaved contiguous slices, in-plane resolution 0.5 x 0.5 mm) and STIR (TR 2000 ms/TE 50 ms/TI 175 ms, in-plane resolution 0.8 x 0.8 mm, slice thickness 5 mm). FSE demonstrated much more anatomical detail than STIR, e. g. distinction of optic nerve and sheath. Lesions were seen in 20 of 21 symptomatic nerves using FSE and in 18 of 21 using STIR. Nerve swelling or partial cross-sectional lesions of the optic nerve were each seen only on FSE in 3 cases. Fat-suppressed FSE imaging of the optic nerve improves anatomical definition and increases lesion detection in optic neuritis. (orig.). With 5 figs

  1. MRI of acute cerebral infarction: a comparison of FLAIR and T2-weighted fast spin-echo imaging

    International Nuclear Information System (INIS)

    Noguchi, K.; Ogawa, T.; Inugami, A.; Fujita, H.; Hatazawa, J.; Shimosegawa, E.; Okudera, T.; Uemura, K.; Seto, H.

    1997-01-01

    Fluid-attenuated inversion-recovery (FLAIR) sequences have been reported to provide high sensitivity to a wide range of central nervous system diseases. To our knowledge, however, FLAIR sequences have not been used to study patients with acute cerebral infarcts. We evaluated the usefulness of FLAIR sequences in this context. FLAIR sequences were acquired on a 0.5 T superconducting unit within 8 h of the onset in 19 patients (aged 26-80 years) with a total of 23 ischaemic lesions. The images were reviewed retrospectively by three neuroradiologists, and the FLAIR images were compared with T2-weighted fast spin-echo images. All but one of the ischaemic lesions involving grey matter was clearly demonstrated on FLAIR images as increased signal intensity in cortical or central grey matter. FLAIR images were particularly useful for detecting the hyperacute cortical infarcts within 3 h of onset, which were not readily detected on the spin-echo images. In 9 of 11 patients with complete proximal occlusion, the distal portion of the cerebral artery was visible as an area of high signal intensity on FLAIR images. (orig.). With 4 figs., 1 tab

  2. Comparison of Diffusion-Weighted Imaging in the Human Brain Using Readout-Segmented EPI and PROPELLER Turbo Spin Echo With Single-Shot EPI at 7 T MRI.

    Science.gov (United States)

    Kida, Ikuhiro; Ueguchi, Takashi; Matsuoka, Yuichiro; Zhou, Kun; Stemmer, Alto; Porter, David

    2016-07-01

    The purpose of the present study was to compare periodically rotated overlapping parallel lines with enhanced reconstruction-type turbo spin echo diffusion-weighted imaging (pTSE-DWI) and readout-segmented echo planar imaging (rsEPI-DWI) with single-shot echo planar imaging (ssEPI-DWI) in a 7 T human MR system. We evaluated the signal-to-noise ratio (SNR), image distortion, and apparent diffusion coefficient values in the human brain. Six healthy volunteers were included in this study. The study protocol was approved by our institutional review board. All measurements were performed at 7 T using pTSE-DWI, rsEPI-DWI, and ssEPI-DWI sequences. The spatial resolution was 1.2 × 1.2 mm in-plane with a 3-mm slice thickness. Signal-to-noise ratio was measured using 2 scans. The ssEPI-DWI sequence showed significant image blurring, whereas pTSE-DWI and rsEPI-DWI sequences demonstrated high image quality with low geometrical distortion compared with reference T2-weighted, turbo spin echo images. Signal loss in ventral regions near the air-filled paranasal sinus/nasal cavity was found in ssEPI-DWI and rsEPI-DWI but not pTSE-DWI. The apparent diffusion coefficient values for ssEPI-DWI were 824 ± 17 × 10 and 749 ± 25 × 10 mm/s in the gray matter and white matter, respectively; the values obtained for pTSE-DWI were 798 ± 21 × 10 and 865 ± 40 × 10 mm/s; and the values obtained for rsEPI-DWI were 730 ± 12 × 10 and 722 ± 25 × 10 mm/s. The pTSE-DWI images showed no additional distortion comparison to the T2-weighted images, but had a lower SNR than ssEPI-DWI and rsEPI-DWI. The rsEPI-DWI sequence provided high-quality images with minor distortion and a similar SNR to ssEPI-DWI. Our results suggest that the benefits of the rsEPI-DWI and pTSE-DWI sequences, in terms of SNR, image quality, and image distortion, appear to outweigh those of ssEPI-DWI. Thus, pTSE-DWI and rsEPI-DWI at 7 T have great potential use for clinical diagnoses. However, it is noteworthy that both

  3. Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.

    Science.gov (United States)

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo

    2017-09-22

    Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.

  4. Measurement, modeling, and simulation of cryogenic SiGe HBT amplifier circuits for fast single spin readout

    Science.gov (United States)

    England, Troy; Curry, Matthew; Carr, Steve; Swartzentruber, Brian; Lilly, Michael; Bishop, Nathan; Carrol, Malcolm

    2015-03-01

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance typical of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will discuss calibration data, as well as modeling and simulation of cryogenic silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) circuits connected to a silicon SET and operating at 4 K. We find a continuum of solutions from simple, single-HBT amplifiers to more complex, multi-HBT circuits suitable for integration, with varying noise levels and power vs. bandwidth tradeoffs. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  5. MR Imaging of the Spine at 3.0T with T2-Weighted IDEAL Fast Recovery Fast Spin-Echo Technique

    International Nuclear Information System (INIS)

    Ren, Ai Jun; Guo, Yong; Tian, Shu Ping; Shi, Li Jing; Huang, Min Hua

    2012-01-01

    To compare the iterative decomposition of water and fat with echo asymmetry and the least-squares estimation (IDEAL) method with a fat-saturated T2-weighted (T2W) fast recovery fast spin-echo (FRFSE) imaging of the spine. Images acquired at 3.0 Tesla (T) in 35 patients with different spine lesions using fat-saturated T2W FRFSE imaging were compared with T2W IDEAL FRFSE images. Signal-to-noise ratio (SNR)-efficiencies measurements were made in the vertebral bodies and spinal cord in the mid-sagittal plane or nearest to the mid-sagittal plane. Images were scored with the consensus of two experienced radiologists on a four-point grading scale for fat suppression and overall image quality. Statistical analysis of SNR-efficiency, fat suppression and image quality scores was performed with a paired Student's t test and Wilcoxon's signed rank test. Signal-to-noise ratio-efficiency for both vertebral body and spinal cord was higher with T2W IDEAL FRFSE imaging (p < 0.05) than with T2W FRFSE imaging. T2W IDEAL FRFSE demonstrated superior fat suppression (p < 0.01) and image quality (p < 0.01) compared to fat-saturated T2W FRFSE. As compared with fat-saturated T2W FRFSE, IDEAL can provide a higher image quality, higher SNR-efficiency, and consistent, robust and uniform fat suppression. T2W IDEAL FRFSE is a promising technique for MR imaging of the spine at 3.0T.

  6. Fast Low-Current Spin-Orbit-Torque Switching of Magnetic Tunnel Junctions through Atomic Modifications of the Free-Layer Interfaces

    Science.gov (United States)

    Shi, Shengjie; Ou, Yongxi; Aradhya, S. V.; Ralph, D. C.; Buhrman, R. A.

    2018-01-01

    Future applications of spin-orbit torque will require new mechanisms to improve the efficiency of switching nanoscale magnetic tunnel junctions (MTJs), while also controlling the magnetic dynamics to achieve fast nanosecond-scale performance with low-write-error rates. Here, we demonstrate a strategy to simultaneously enhance the interfacial magnetic anisotropy energy and suppress interfacial spin-memory loss by introducing subatomic and monatomic layers of Hf at the top and bottom interfaces of the ferromagnetic free layer of an in-plane magnetized three-terminal MTJ device. When combined with a β -W spin Hall channel that generates spin-orbit torque, the cumulative effect is a switching current density of 5.4 ×106 A /cm2 .

  7. Reduced dynamics in spin-boson models: A method for both slow and fast bath

    International Nuclear Information System (INIS)

    Golosov, Andrei A.; Friesner, Richard A.; Pechukas, Philip

    2000-01-01

    We study a model for treating dissipative systems, a one dimensional quantum system coupled to a harmonic bath. The dynamics of such a system can be described by Feynman's path integral expression for the reduced density matrix. In this formulation the interaction of the system with the environment is stored in the influence functional. Recently we showed that fast environmental modes that give rise to correlations in the influence functional which are short range in time can be treated efficiently by a memory equation algorithm, which is a discretized version of a master equation. In this work we extend this approach to treat slow environmental modes as well, thereby efficiently linking adiabatic and nonadiabatic regimes. In this extended method the long range correlations in the influence functional arising from slow bath modes are taken into account through Stock's semiclassical self-consistent-field approach. (c) 2000 American Institute of Physics

  8. T2-weighted fast spin-echo MR imaging of the pelvis

    International Nuclear Information System (INIS)

    Francis, I.R.; Steiner, R.M.; Herfkens, R.J.; Jain, K.; Glover, G.H.

    1991-01-01

    A fast Se (FSE) sequence capable of acquiring SE images with a wide range of TRs and TEs in short imaging times has been recently introduced. I this paper, the authors evaluated the value of this technique compared with standard T2-weighted SE imaging. Twenty-five patients were evaluated with T2-weighted SE and FSE images on a 1.5-T GE Signa imager. Imaging times ranged from 3 to 5 minutes for the FSE acquisition and from 12 to 15 minutes for the SE images. Three observers performed a comparison by using a 10-point scale for organ definition and lesion conspicuity, with differences settled by consensus reading. Pelvic organ definition was superior and pelvic tumors and free fluid were also more conspicuous on FSE images. In 2/25 patients ringing artifacts were present

  9. Comparison of a conventional cardiac-triggered dual spin-echo and a fast STIR sequence in detection of spinal cord lesions in multiple sclerosis

    International Nuclear Information System (INIS)

    Bot, J.C.J.; Barkhof, F.; Lycklama a Nijeholt, G.J.; Bergers, E.; Castelijns, J.A.; Polman, C.H.; Ader, H.J.

    2000-01-01

    The current optimal imaging protocol in spinal cord MR imaging in patients with multiple sclerosis includes a long TR conventional spin-echo (CSE) sequence, requiring long acquisition times. Using short tau inversion recovery fast spin-echo (fast STIR) sequences both acquisition time can be shortened and sensitivity in the detection of multiple sclerosis (MS) abnormalities can be increased. This study compares both sequences for the potential to detect both focal and diffuse spinal abnormalities. Spinal cords of 5 volunteers and 20 MS patients were studied at 1.0 T. Magnetic resonance imaging included cardiac-gated sagittal dual-echo CSE and a cardiac-gated fast STIR sequence. Images were scored regarding number, size, and location of focal lesions, diffuse abnormalities and presence/hindrance of artifacts by two experienced radiologists. Examinations were scored as being definitely normal, indeterminate, or definitely abnormal. Interobserver agreement regarding focal lesions was higher for CSE (κ=0.67) than for fast STIR (κ=0.57) but did not differ significantly. Of all focal lesions scored in consensus, 47 % were scored on both sequences, 31 % were only detected by fast STIR, and 22 % only by dual-echo CSE (n. s.). Interobserver agreement for diffuse abnormalities was lower with fast STIR (κ=0.48) than dual-echo CSE (κ=0.65; n. s.). After consensus, fast STIR showed in 10 patients diffuse abnormalities and dual-echo CSE in 3. After consensus, in 19 of 20 patients dual-echo CSE scans were considered as definitely abnormal compared with 17 for fast STIR. The fast STIR sequence is a useful adjunct to dual-echo CSE in detecting focal abnormalities and is helpful in detecting diffuse MS abnormalities in the spinal cord. Due to the frequent occurrence of artifacts and the lower observer concordance, fast STIR cannot be used alone. (orig.)

  10. Shot loading platform analysis

    International Nuclear Information System (INIS)

    Norman, B.F.

    1994-01-01

    This document provides the wind/seismic analysis and evaluation for the shot loading platform. Hand calculations were used for the analysis. AISC and UBC load factors were used in this evaluation. The results show that the actual loads are under the allowable loads and all requirements are met

  11. Kids Guide to Shots

    Science.gov (United States)

    ... First Aid & Safety Doctors & Hospitals Videos Recipes for Kids Kids site Sitio para niños How the Body ... Safe Videos for Educators Search English Español A Kid's Guide to Shots KidsHealth / For Kids / A Kid's ...

  12. Application of fast spin-echo T[sub 2]-weighted imaging for examination of the neurocranium. Comparison with the conventional T[sub 2]-weighted spin-echo sequence. Die Anwendung der T[sub 2]-gewichteten Turbo-Spin-Echo-Sequenz zur Untersuchung des Neurokraniums. Vergleich mit der konventionellen T[sub 2]-gewichteten Spin-Echo-Sequenz

    Energy Technology Data Exchange (ETDEWEB)

    Siewert, C. (Strahlenklinik und Poliklinik, Universitaets-Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany)); Hosten, N. (Strahlenklinik und Poliklinik, Universitaets-Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany)); Felix, R. (Strahlenklinik und Poliklinik, Universitaets-Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany))

    1994-07-01

    T[sub 2]-weighted spin-echo imaging is the standard screening procedure in MR imaging of the neutrocranium. We evaluated fast spin-echo T[sub 2]-weighted imaging (TT[sub 2]) of the neurocranium in comparison to conventional spin-echo T[sub 2]-weighted imaging (T[sub 2]). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher than TT[sub 2] than in T[sub 2] (with the exception of grey-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT[sub 2], Parkinson patients have to be examined by conventional T[sub 2]. If these limitations are taken into account, fast spin-echo T[sub 2]-weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T[sub 2]-weighting achieved in a short acquisition time. (orig.)

  13. Fast spin-echo T2-weighted MR imaging of tongue cancer; the value of fat-suppression

    International Nuclear Information System (INIS)

    Kim, Zu Byoung; Na, Dong Gyu; Ryoo, Jae Wook; Kim, Kyeong Ah; Byun, Hong Sik; Baek, Chung Whan; Son, Yong Ik

    2000-01-01

    To compare the diagnostic efficacy of fast spin-echo (FSE) T2-weighted MR imaging with and without fat suppression. Twelve patients (7 men and 5 women; mean age, 48 years) with pathologically proven cancer of the tongue were included in this study. In all of these, FSE T2-weighted MR images with and without fat suppression were obtained in the same imaging planes before surgery or biopsy. Two radiologists visually compared the images thus obtained in terms of detection, extent, and conspicuity of the tumor, and the contrast-to-noise ratio (CNR) of each tumor was also calculated. In all patients, both imaging modalities were equal in terms of tumor detection. In 4 of 12(33%), the extent of the tumor was greater with fat suppression, while in eight (67%), it was almost the same both with and without. In ten patients (83%), the tumor was more conspicuous with fat suppression, and percentage CNRs were significantly higher with fat suppression than without (180±70% and 113±61%, respectively; p=0.02). For the evaluation of patients with tongue cancer, fat-suppressed FSE T2-weighted MR imaging is superior to its conventional equivalent

  14. Evaluation with fat-suppression fast spin-echo T2-weighted images for bone and soft tissue disorders

    International Nuclear Information System (INIS)

    Kakitsubata, Yousuke; Watanabe, Katsushi; Kakitsubata, Sachiko; Shimizu, Tokiyoshi.

    1997-01-01

    One hundred and sixty-four magnetic resonance (MR) studies of bone or soft tissue disorders were evaluated with T2-weighted fast spin echo (FSE) imaging and T2-weighted fat-suppressed FSE (FS-FSE) imaging. Fifty-two patients with bone contusion of the knee were also evaluated with conventional T2-weighted SE imaging and T2-weighted FS-FSE imaging. In 50 of 71 patients (70.4%), areas of high signal intensity in bone marrow were more clearly demonstrated on T2-weighted FS-FSE images than on T2-weighted FSE image. Edema or inflammation of soft tissues were also clearly revealed on T2-weighted FS-FSE images. In 27 of 32 patients (84%), bone contusions were more apparently shown on T2-weighted FS-FSE images than on conventional T2-weighted SE image. T2-weighted FS-FSE imaging is a sensitive method of evaluating the long T2 lesions of bone or soft tissue disorders. (author)

  15. ZAPP shot summary

    Energy Technology Data Exchange (ETDEWEB)

    Loisel, Guillaume Pascal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    This was the second Z Astrophysical Plasma Properties (ZAPP) fundamental science shot series of 2015. ZAPP experiments measure fundamental properties of atoms in plasmas to solve the following important astrophysical puzzles: Why can’t we accurately model the opacity of Fe at the convection zone boundary in the Sun? How accurate are the photoionization models used to interpret data from xray satellite observations? and Why doesn’t spectral fitting provide the correct properties for White Dwarfs?

  16. One-shot synesthesia

    Directory of Open Access Journals (Sweden)

    Kirschner Alexandra

    2017-11-01

    Full Text Available Synesthesia is commonly thought to be a phenomenon of fixed associations between an outside inducer and a vivid concurrent experience. Hence, it has been proposed that synesthesia occurs due to additional connections in the brain with which synesthetes are born. Here we show that synesthesia can be a much richer and more flexible phenomenon with a capability to creatively construct novel synesthetic experiences as events unfold in people’s lives. We describe here cases of synesthetes who occasionally generate novel synesthetic experience, called one-shot synesthesias. These synesthetic experiences seem to share all the properties with the classical synesthetic associations except that they occur extremely rarely, people recalling only a few events over the lifetime. It appears that these one-shots are not created at random but are instead responses to specific life events. We contrast the properties of those rare synesthetic events with other, more commonly known forms of synesthesia that also create novel synesthetic experiences, but at a high rate—sometimes creating novel experiences every few seconds. We argue that one-shot synesthesias indicate that synesthetic associations are by their nature not prewired at birth but are dynamically constructed through mental operations and according to the needs of a synesthetic mind. Our conclusions have implications for understanding the biological underpinnings of synesthesia and the role the phenomenon plays in the lives of people endowed with synesthetic capacities.

  17. FAST

    DEFF Research Database (Denmark)

    Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.

    2012-01-01

    ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections with aqu...

  18. Hemodynamic analysis of bladder tumors using T1-dynamic contrast-enhanced fast spin-echo MRI

    International Nuclear Information System (INIS)

    Kanazawa, Yuki; Miyati, Tosiaki; Sato, Osamu

    2012-01-01

    Objectives: To evaluate the hemodynamics of bladder tumors, we developed a method to calculate change in R 1 value (ΔR 1 ) from T 1 -dynamic contrast-enhanced fast spin-echo magnetic resonance imaging (T 1 DCE-FSE-MRI). Materials and methods: On a 1.5-T MR system, T 1 DCE-FSE-MRI was performed. This study was applied to 12 patients with urinary bladder tumor, i.e. urothelial carcinoma. We compared ΔR 1 –time and ΔSI–time between a peak in the ΔR 1 –time and ΔSI–time curve occurred during the first pass within 60 s. Next, we assessed the slope of increase for 180 s after CA injection (Slope 0–180 ). Results: The mean slope of the first pass was significantly higher for bladder tumors on both the ΔR 1 –time and the ΔSI–time curve compared with normal bladder walls. Moreover, a significant difference was apparent between bladder tumors and normal bladder walls on the mean Slope 0–180 in the ΔR 1 -time curve. However, no significant difference in the mean Slope 0–180 was observed on the ΔSI-time curve between bladder tumors and normal bladder walls. Conclusion: T 1 DCE-FSE-MRI offers three advantages: quantitative analysis; high-quality (i.e., artifact-free) images; and high temporal resolution even for SE images. Use of ΔR 1 analysis with T 1 DCE-FSE-MRI allows more detailed information on the hemodynamics of bladder tumors to be obtained and assists in differentiation between bladder tumors and the normal bladder wall.

  19. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE).

    Science.gov (United States)

    Zhu, Chengcheng; Tian, Bing; Chen, Luguang; Eisenmenger, Laura; Raithel, Esther; Forman, Christoph; Ahn, Sinyeob; Laub, Gerhard; Liu, Qi; Lu, Jianping; Liu, Jing; Hess, Christopher; Saloner, David

    2018-06-01

    Develop and optimize an accelerated, high-resolution (0.5 mm isotropic) 3D black blood MRI technique to reduce scan time for whole-brain intracranial vessel wall imaging. A 3D accelerated T 1 -weighted fast-spin-echo prototype sequence using compressed sensing (CS-SPACE) was developed at 3T. Both the acquisition [echo train length (ETL), under-sampling factor] and reconstruction parameters (regularization parameter, number of iterations) were first optimized in 5 healthy volunteers. Ten patients with a variety of intracranial vascular disease presentations (aneurysm, atherosclerosis, dissection, vasculitis) were imaged with SPACE and optimized CS-SPACE, pre and post Gd contrast. Lumen/wall area, wall-to-lumen contrast ratio (CR), enhancement ratio (ER), sharpness, and qualitative scores (1-4) by two radiologists were recorded. The optimized CS-SPACE protocol has ETL 60, 20% k-space under-sampling, 0.002 regularization factor with 20 iterations. In patient studies, CS-SPACE and conventional SPACE had comparable image scores both pre- (3.35 ± 0.85 vs. 3.54 ± 0.65, p = 0.13) and post-contrast (3.72 ± 0.58 vs. 3.53 ± 0.57, p = 0.15), but the CS-SPACE acquisition was 37% faster (6:48 vs. 10:50). CS-SPACE agreed with SPACE for lumen/wall area, ER measurements and sharpness, but marginally reduced the CR. In the evaluation of intracranial vascular disease, CS-SPACE provides a substantial reduction in scan time compared to conventional T 1 -weighted SPACE while maintaining good image quality.

  20. Application of three-dimensional fast spin-echo T2-weighted image in lesions of the inner ear

    International Nuclear Information System (INIS)

    Xian Junfang; Wang Zhenchang; Yan Fei; Niu Yantao; Zhu Ye; Wang Yan; Tian Qichang; Lan Baosen

    1999-01-01

    Objective: To investigate the advantage of three-dimensional fast spin-echo T 2 -weighted image (3D FSE T 2 WI) in depicting normal structures and lesions of the inner ear. Methods: 3D FSE T 2 WI and 2D FSE T 2 WI were performed in 10 healthy volunteers and 20 cases with inner ear diseases. Advantages and disadvantages of the two techniques were compared. CT was performed in 6 cases with enlarged endo-lymphatic sac and 1 cases of Mondini malformation. Results: 3D FSE T 2 WI enabled visualization of detailed anatomic structures. Enlarged endo-lymphatic sacs were clearly revealed in 9 cases on 16 sides by 3D FSE T 2 WI, while only a part but not the whole of the enlarged endo-lymphatic sac could be shown on 2D FSE T 2 WI. In 6 cases, 3D FSE T 2 WI displayed enlarged endo-lymphatic sac on 11 sides and normal on 1 side; however, CT revealed enlarged vestibular aqueduct on all 12 sides. One case with small acoustic neuroma (only 4 mm in diameter) was clearly demonstrated on 3D FSE T 2 WI but not well shown on 2D FSE T 2 WI. One case with cochlear Mondini malformation associated with dysplasia of vestibule and semicircular canals was displayed more clearly on 3D FSE T 2 WI than on 2D FSE T 2 WI. Conclusions: 3D FSE T 2 WI can clearly display normal structures and lesions of the inner ear

  1. Detection of cerebrospinal fluid leakage: initial experience with three-dimensional fast spin-echo magnetic resonance myelography.

    Science.gov (United States)

    Tomoda, Y; Korogi, Y; Aoki, T; Morioka, T; Takahashi, H; Ohno, M; Takeshita, I

    2008-03-01

    The pathogenesis of cerebrospinal fluid (CSF) hypovolemia is supposed to be caused by CSF leakage through small dural defects. To compare source three-dimensional (3D) fast spin-echo (FSE) images of magnetic resonance (MR) myelography with radionuclide cisternography findings, and to evaluate the feasibility of MR myelography in the detection of CSF leakage. A total of 67 patients who were clinically suspected of CSF hypovolemia underwent indium-111 radionuclide cisternography, and 27 of those who had direct findings of CSF leakage were selected for evaluation. MR myelography with 3D FSE sequences (TR/TE 6000/203 ms) was performed at the lumbar spine for all patients. We evaluated source images and maximum intensity projection (MIP) images of MR myelography, and the findings were correlated with radionuclide cisternography findings. MR myelography of five healthy volunteers was used as a reference. The MR visibility of the CSF leakage was graded as definite (leakage clearly visible), possible (leakage poorly seen), or absent (not shown). CSF leakage was identified with source 3D FSE images in 22 (81.5%) of 27 patients. Of the 22 patients, 16 were graded as definite and six were graded as possible. For the definite cases, 3D FSE images clearly showed the extent of the leaked CSF in the paraspinal structures. In the remaining five patients with absent findings, radionuclide cisternography showed only slight radionuclide activity out of the arachnoid space. Source 3D FSE images of MR myelography seem useful in the detection of CSF leakage. Invasive radionuclide cisternography may be reserved for equivocal cases only.

  2. Comparing an accelerated 3D fast spin-echo sequence (CS-SPACE) for knee 3-T magnetic resonance imaging with traditional 3D fast spin-echo (SPACE) and routine 2D sequences

    Energy Technology Data Exchange (ETDEWEB)

    Altahawi, Faysal F.; Blount, Kevin J.; Omar, Imran M. [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Morley, Nicholas P. [Marshfield Clinic, Department of Radiology, Marshfield, WI (United States); Raithel, Esther [Siemens Healthcare GmbH, Erlangen (Germany)

    2017-01-15

    To compare a faster, new, high-resolution accelerated 3D-fast-spin-echo (3D-FSE) acquisition sequence (CS-SPACE) to traditional 2D and high-resolution 3D sequences for knee 3-T magnetic resonance imaging (MRI). Twenty patients received knee MRIs that included routine 2D (T1, PD ± FS, T2-FS; 0.5 x 0.5 x 3 mm{sup 3}; ∝10 min), traditional 3D FSE (SPACE-PD-FS; 0.5 x 0.5 x 0.5 mm{sup 3}; ∝7.5 min), and accelerated 3D-FSE prototype (CS-SPACE-PD-FS; 0.5 x 0.5 x 0.5 mm{sup 3}; ∝5 min) acquisitions on a 3-T MRI system (Siemens MAGNETOM Skyra). Three musculoskeletal radiologists (MSKRs) prospectively and independently reviewed the studies with graded surveys comparing image and diagnostic quality. Tissue-specific signal-to-noise ratios (SNR) and contrast-to-noise ratios (CNR) were also compared. MSKR-perceived diagnostic quality of cartilage was significantly higher for CS-SPACE than for SPACE and 2D sequences (p < 0.001). Assessment of diagnostic quality of menisci and synovial fluid was higher for CS-SPACE than for SPACE (p < 0.001). CS-SPACE was not significantly different from SPACE but had lower assessments than 2D sequences for evaluation of bones, ligaments, muscles, and fat (p ≤ 0.004). 3D sequences had higher spatial resolution, but lower overall assessed contrast (p < 0.001). Overall image quality from CS-SPACE was assessed as higher than SPACE (p = 0.007), but lower than 2D sequences (p < 0.001). Compared to SPACE, CS-SPACE had higher fluid SNR and CNR against all other tissues (all p < 0.001). The CS-SPACE prototype allows for faster isotropic acquisitions of knee MRIs over currently used protocols. High fluid-to-cartilage CNR and higher spatial resolution over routine 2D sequences may present a valuable role for CS-SPACE in the evaluation of cartilage and menisci. (orig.)

  3. Fat-suppressed fast spin-echo mid-TE (TE[effective]=34) MR images: comparison with fast spin-echo T2-weighted images for the diagnosis of tears and anatomic variants of the glenoid labrum

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, M J [Dept. of Radiology, Univ. of Wisconsin School of Medicine, Madison (United States); University of Wisconsin Hospital and Clinics, Dept. of Radiology, Madison, WI (United States); Shinners, T J; Hollister, M C [Dept. of Radiology, Univ. of Wisconsin School of Medicine, Madison (United States); Orwin, J F [Dept. of Orthopedic Surgery, University of Wisconsin School of Medicine, Madison (United States)

    1999-12-01

    Objective. To compare the sensitivity, specificity, and accuracy of fat-suppressed fast spin-echo (FSE) mid-TE (TE[effective]=34) images with fat-suppressed FSE T2-weighted images for the diagnosis of labral abnormalities.Design and patients. The study included 27 consecutive patients who had axial fat-suppressed FSE T2-weighted and fat-suppressed FSE mid-TE MR images, and had labral abnormalities diagnosed at arthroscopy. The acquisition time was about 5 min for each sequence, but the mid-TE sequence allowed a higher spatial resolution than the T2-weighted images (256 x 256 versus 256 x 192). Twenty-eight age-matched patients with arthroscopically normal labra were included as a control group. The labrum was graded on the MR images as normal or abnormal separately by two musculoskeletal radiologists who were masked to the history and arthroscopic results. The surgical findings were used as the gold standard for calculating the sensitivity, specificity, and accuracy for interpreting the correct location of a labral abnormality. The sensitivity, specificity, and accuracy for the two sequences were compared with a McNemar test, and significance defined as P<0.05.Results. For observer 1, the sensitivity for labral abnormalities was 0.59 on the T2-weighted images, and 0.78 on the mid-TE images (P=0.12). The specificity was 0.54 for the T2-weighted, and 0.64 for the mid-TE images (P=0.51). The accuracy was 0.56 for the T2-weighted, and 0.71 for the mid-TE images (P=0.08). For observer 2, the sensitivity/specificity/accuracy was 0.67/0.93/0.80 for the T2-weighted, and 0.70/0.86/0.78 for the mid-TE images (all P>0.5).Conclusion. In this small study there is no statistically significant difference for demonstrating labral abnormalities between FSE T2-weighted images, and higher-resolution fat-suppressed FSE mid-TE (TE[effective]=34) images obtained with a similar acquisition time. Although there was a general trend toward higher sensitivity and accuracy with the mid

  4. Comparison of two-dimensional fast spin echo T2 weighted sequences and three-dimensional volume isotropic T2 weighted fast spin echo (VISTA) MRI in the evaluation of triangular fibrocartilage of the wrist.

    Science.gov (United States)

    Park, Hee Jin; Lee, So Yeon; Kang, Kyung A; Kim, Eun Young; Shin, Hun Kyu; Park, Se Jin; Park, Jai Hyung; Kim, Eugene

    2018-04-01

    To compare image quality of three-dimensional volume isotropic T 2 weighted fast spin echo (3D VISTA) and two-dimensional (2D) T 2 weighted images (T2WI) for evaluation of triangular fibrocartilage (TFC) and to investigate whether 3D VISTA can replace 2D T 2 WI in evaluating TFC injury. This retrospective study included 69 patients who received wrist MRIs using both 2D T 2 WI and 3D VISTA techniques for assessment of wrist pathology, including TFC injury. Two radiologists measured the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) of the two sequences. The anatomical identification score and diagnostic performance were independently assessed by two interpreters. The diagnostic abilities of 3D VISTA and 2D T 2 WI were analysed by sensitivity, specificity and accuracy for diagnosing TFC injury using surgically or clinically confirmed diagnostic reference standards. 17 cases (25%) were classified as having TFC injury. 2 cases (12%) were diagnosed surgically, and 15 cases (88%) were diagnosed by physical examination. 52 cases (75%) were diagnosed as having intact TFC. 8 of these cases (15%) were surgically confirmed, while the others were diagnosed by physical examination and clinical findings. The 3D VISTA images had significantly higher SNR and CNR values for the TFC than 2D T 2 WI images. The scores of 3D VISTA's total length, full width and sharpness were similar to those of 2D T 2 WI. We were unable to find a significant difference between 3D VISTA and 2D T 2 WI in the ability to diagnose TFC injury. 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment. Advances in knowledge: 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment.

  5. Centrifugal shot blast system

    International Nuclear Information System (INIS)

    1998-02-01

    This report describes a demonstration of Concrete cleaning, Inc., modified centrifugal shot blast technology to remove the paint coating from concrete flooring. This demonstration is part of the Chicago Pile-5 (CP-5) Large-Scale Demonstration Project (LSDP) sponsored by the US Department of Energy (DOE), office of Science and Technology (OST), Deactivation and Decommissioning Focus Area (DDFA). The objective of the LSDP is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) CP-5 Research Reactor. The purpose of the LSDP is to demonstrate that using innovative and improved decontamination and decommissioning (D and D) technologies from various sources can result in significant benefits, such as decreased cost and increased health and safety, as compared with baseline D and D technologies. Potential markets exist for the innovative centrifugal shot blast system at the following sites: Fernald Environmental Management Project, Los Alamos, Nevada, Oak Ridge Y-12 and K-25, Paducah, Portsmouth Gaseous Diffusion site, and the Savannah River Site. This information is based on a revision to the OST Linkage Tables dated August 4, 1997

  6. Single-shot spiral imaging at 7 T.

    Science.gov (United States)

    Engel, Maria; Kasper, Lars; Barmet, Christoph; Schmid, Thomas; Vionnet, Laetitia; Wilm, Bertram; Pruessmann, Klaas P

    2018-03-25

    The purpose of this work is to explore the feasibility and performance of single-shot spiral MRI at 7 T, using an expanded signal model for reconstruction. Gradient-echo brain imaging is performed on a 7 T system using high-resolution single-shot spiral readouts and half-shot spirals that perform dual-image acquisition after a single excitation. Image reconstruction is based on an expanded signal model including the encoding effects of coil sensitivity, static off-resonance, and magnetic field dynamics. The latter are recorded concurrently with image acquisition, using NMR field probes. The resulting image resolution is assessed by point spread function analysis. Single-shot spiral imaging is achieved at a nominal resolution of 0.8 mm, using spiral-out readouts of 53-ms duration. High depiction fidelity is achieved without conspicuous blurring or distortion. Effective resolutions are assessed as 0.8, 0.94, and 0.98 mm in CSF, gray matter and white matter, respectively. High image quality is also achieved with half-shot acquisition yielding image pairs at 1.5-mm resolution. Use of an expanded signal model enables single-shot spiral imaging at 7 T with unprecedented image quality. Single-shot and half-shot spiral readouts deploy the sensitivity benefit of high field for rapid high-resolution imaging, particularly for functional MRI and arterial spin labeling. © 2018 International Society for Magnetic Resonance in Medicine.

  7. Multishot echo-planar MREIT for fast imaging of conductivity, current density, and electric field distributions.

    Science.gov (United States)

    Chauhan, Munish; Vidya Shankar, Rohini; Ashok Kumar, Neeta; Kodibagkar, Vikram D; Sadleir, Rosalind

    2018-01-01

    Magnetic resonance electrical impedance tomography (MREIT) sequences typically use conventional spin or gradient echo-based acquisition methods for reconstruction of conductivity and current density maps. Use of MREIT in functional and electroporation studies requires higher temporal resolution and faster sequences. Here, single and multishot echo planar imaging (EPI) based MREIT sequences were evaluated to see whether high-quality MREIT phase data could be obtained for rapid reconstruction of current density, conductivity, and electric fields. A gel phantom with an insulating inclusion was used as a test object. Ghost artifact, geometric distortion, and MREIT correction algorithms were applied to the data. The EPI-MREIT-derived phase-projected current density and conductivity images were compared with simulations and spin-echo images as a function of EPI shot number. Good agreement among measures in simulated, spin echo, and EPI data was achieved. Current density errors were stable and below 9% as the shot number decreased from 64 to 2, but increased for single-shot images. Conductivity reconstruction relative contrast ratios were stable as the shot number decreased. The derived electric fields also agreed with the simulated data. The EPI methods can be combined successfully with MREIT reconstruction algorithms to achieve fast imaging of current density, conductivity, and electric field. Magn Reson Med 79:71-82, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Proton T2 Relaxation effect of superparamagnetic iron oxide on fast spin echo sequence. Influence of echo number (even or odd) of effective TE

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Takeshi; Fujita, Isao

    1999-01-01

    The T 2 relaxation effect of the fast spin echo sequence (FSE) was investigated using superparamagnetic iron oxide (SPIO) particles. When even echoes were used as the effective TE of FSE, the signal intensity ratio [signal intensity of FSE/signal intensity of conventional spin echo sequence (CSE)] of FSE and CSE increased, whereas the T 2 relaxation effect of SPIO with FSE was reduced. However, when odd echoes were used, neither signal intensity changed, and weakening of the T 2 relaxation effect, considered a problem with FSE, was reduced. This phenomenon was not observed when the refocusing flip angle was changed to 30 and 60 degrees. However, it was observed when the refocusing flip angle was 120 and 150 degrees. Thus, this phenomenon can be considered to be related to oscillation in longitudinal magnetization when using the Carr-Purcell-Meiboom-Gill (CPMG) technique. (author)

  9. Diagnostic performance of the three-dimensional fast spin echo-Cube sequence in comparison with a conventional imaging protocol in evaluation of the lachrymal drainage system

    International Nuclear Information System (INIS)

    Zhang, Jing; Chen, Lang; Wang, Qiu-Xia; Zhu, Wen-Zhen; Luo, Xin; Peng, Li; Liu, Rong; Xiong, Wei

    2015-01-01

    To compare the three-dimensional (3D)-fast spin-echo (FSE)-Cube with a conventional imaging protocol in evaluation of dacryostenosis. Thirty-three patients with epiphora underwent examinations using Cube magnetic resonance dacryocystography (MRD) and a conventional protocol, which included 3D fast-recovery fast spin-echo (FRFSE) MRD and two-dimensional (2D)-FSE sequences at 3.0 T. Using lachrymal endoscopic findings as the reference standard, we calculated the sensitivity and specificity of both protocols for detecting lachrymal drainage system (LDS) obstruction and their accuracies in depicting the level of obstruction. Comparable coronal and axial images were selected for bot sequences. Two neuroradiologists graded paired images for blurring, artefacts, anatomic details, and overall image quality. The two methods showed no significant difference in sensitivity (89.5 % vs. 94.7 %; p =0.674), specificity (64.3 %; p =1) or accuracy (86.8 %; p =1) in detecting or depicting LDS obstruction. Blurring and artefacts were significantly better on 2D-FSE images (p 0.05). In comparison with the conventional protocol, Cube MRD demonstrates satisfactory image quality and similar diagnostic capability for cases of possible LDS disease. (orig.)

  10. Utility of two types of MR cisternography for patency evaluation of aqueduct and third ventriculostomy site: Three dimentsional sagittal fast spin echo sequence and steady-state coherent fast gradient echo sequence

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Hyun; Kim, Eun Hee; Park, Jong Bin; Kim, Jae Hyoung; Choi, Byung Se; Jung, Cheol Kyu; Bae, Yun Jung; Lee, Kyung Mi [Dept. of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2015-07-15

    We aimed to evaluate the utility of two types of MR cisternography [fast spin echo sequence and steady-state coherent gradient echo (GRE) sequence] in addition to phase contrast-cine imaging (PC-cine), for assessing patency at the aqueduct and third ventriculostomy site. 43 patients (35 patients with suspected aqueductal stenosis and 8 patients with third ventriculostomy) were retrospectively analyzed. PC-cine, 3 dimensional sagittal fast spin echo sequence [driven-equilibrium imaging (DRIVE) or volumetric isotrophic T2-weighted acquisition (T2 VISTA)] and steady-state coherent fast GRE sequence (balanced turbo field echo; bTFE) imaging were performed in all patients. The patency of the aqueduct or third ventriculostomy site was scored. Some pitfalls of each sequence were also analyzed in individual cases. 93% of all cases showed consistent scores in PC-cine, DRIVE/T2 VISTA, and bTFE imaging. DRIVE/T2 VISTA imaging provided functional information of cerebrospinal fluid flow with flow-related artifacts, while bTFE imaging allowed direct visualization of the aqueduct or ventriculostomy site. However, evaluation of anatomical structures was difficult in three cases with strong flow-related artifacts on DRIVE/T2 VISTA and in 2 cases with susceptibility artifacts on bTFE. Both DRIVE/T2 VISTA and bTFE imaging have complementary roles in evaluating the patency of the aqueduct and 3rd ventriculostomy site.

  11. Utility of two types of MR cisternography for patency evaluation of aqueduct and third ventriculostomy site: Three dimentsional sagittal fast spin echo sequence and steady-state coherent fast gradient echo sequence

    International Nuclear Information System (INIS)

    Park, Jung Hyun; Kim, Eun Hee; Park, Jong Bin; Kim, Jae Hyoung; Choi, Byung Se; Jung, Cheol Kyu; Bae, Yun Jung; Lee, Kyung Mi

    2015-01-01

    We aimed to evaluate the utility of two types of MR cisternography [fast spin echo sequence and steady-state coherent gradient echo (GRE) sequence] in addition to phase contrast-cine imaging (PC-cine), for assessing patency at the aqueduct and third ventriculostomy site. 43 patients (35 patients with suspected aqueductal stenosis and 8 patients with third ventriculostomy) were retrospectively analyzed. PC-cine, 3 dimensional sagittal fast spin echo sequence [driven-equilibrium imaging (DRIVE) or volumetric isotrophic T2-weighted acquisition (T2 VISTA)] and steady-state coherent fast GRE sequence (balanced turbo field echo; bTFE) imaging were performed in all patients. The patency of the aqueduct or third ventriculostomy site was scored. Some pitfalls of each sequence were also analyzed in individual cases. 93% of all cases showed consistent scores in PC-cine, DRIVE/T2 VISTA, and bTFE imaging. DRIVE/T2 VISTA imaging provided functional information of cerebrospinal fluid flow with flow-related artifacts, while bTFE imaging allowed direct visualization of the aqueduct or ventriculostomy site. However, evaluation of anatomical structures was difficult in three cases with strong flow-related artifacts on DRIVE/T2 VISTA and in 2 cases with susceptibility artifacts on bTFE. Both DRIVE/T2 VISTA and bTFE imaging have complementary roles in evaluating the patency of the aqueduct and 3rd ventriculostomy site

  12. Buster-Jangle Shot Dog

    International Nuclear Information System (INIS)

    Kaul, Dean C.

    1987-01-01

    Shot Dog of the Buster-Jangle Series used a device which had a high-explosive configuration virtually identical to that of the Nagasaki bomb, though with different fissionable components. Dog was detonated at a height of 431.9 m with the mean atmospheric conditions between burst and ground being dry air density 1.027 mg/cc and atmospheric moisture density 0.006 mg/cc. The ground was taken to be that of Nevada test site (NTS) area 9 with a water content of 8% by weight. The yield of the weapon was 21 kt. Results shown here for Buster-Jangle Shot Dog have been scaled from those calculated for Ranger Shot Fox. The design features and burst geometries of the two devices were deemed sufficiently similar to make this substitution in the absence of a radiation leakage spectrum calculated explicitly for Buster-Jangle Shot Dog. However, while the relative atmospheric contents of the two shots were very similar, Shot Fox took place in air of approximately 10% greater density than Shot Dog. Thus, scaled calculated results could not be obtained to compare with the three closest measurement points at Shot Dog

  13. A shot parameter specification subsystem for automated control of PBFA II accelerator shots

    International Nuclear Information System (INIS)

    Spiller, J.L.

    1987-01-01

    The author reports on the shot parameter specification subsystem (SPSS), an integral part of the automatic control system developed for the Particle Beam Fusion Accelerator II (PBFA II). This system has been designed to fully utilize the accelerator by tailoring shot parameters to the needs of the experimenters. The SPSS is the key to this flexibility. Automatic systems will be required on many pulsed power machines for the fastest turnaround, the highest reliability, and most cost effective operation. These systems will require the flexibility and the ease of use that is part of the SPSS. The author discusses how the PBFA II control system has proved to be an effective modular system, flexible enough to meet the demands of both the fast track construction of PBFA II and the control needs of Hermes III. This system is expected to meet the demands of most future machine changes

  14. Lower Extremity Muscle Activity During a Women's Overhand Lacrosse Shot

    Directory of Open Access Journals (Sweden)

    Millard Brianna M.

    2014-07-01

    Full Text Available The purpose of this study was to describe lower extremity muscle activity during the lacrosse shot. Participants (n=5 females, age 22±2 years, body height 162.6±15.2 cm, body mass 63.7±23.6 kg were free from injury and had at least one year of lacrosse experience. The lead leg was instrumented with electromyography (EMG leads to measure muscle activity of the rectus femoris (RF, biceps femoris (BF, tibialis anterior (TA, and medial gastrocnemius (GA. Participants completed five trials of a warm-up speed shot (Slow and a game speed shot (Fast. Video analysis was used to identify the discrete events defining specific movement phases. Full-wave rectified data were averaged per muscle per phase (Crank Back Minor, Crank Back Major, Stick Acceleration, Stick Deceleration. Average EMG per muscle was analyzed using a 4 (Phase x 2 (Speed ANOVA. BF was greater during Fast vs. Slow for all phases (p0.05. RF and GA were each influenced by the interaction of Phase and Speed (p<0.05 with GA being greater during Fast vs. Slow shots during all phases and RF greater during Crank Back Minor and Major as well as Stick Deceleration (p<0.05 but only tended to be greater during Stick Acceleration (p=0.076 for Fast vs. Slow. The greater muscle activity (BF, RF, GA during Fast vs. Slow shots may have been related to a faster approach speed and/or need to create a stiff lower extremity to allow for faster upper extremity movements.

  15. Generalised shot noise Cox processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Torrisi, Giovanni Luca

    We introduce a new class of Cox cluster processes called generalised shot-noise processes (GSNCPs), which extends the definition of shot noise Cox processes (SNCPs) in two directions: the point process which drives the shot noise is not necessarily Poisson, and the kernel of the shot noise can...... be random. Thereby a very large class of models for aggregated or clustered point patterns is obtained. Due to the structure of GSNCPs, a number of useful results can be established. We focus first on deriving summary statistics for GSNCPs and next on how to make simulation for GSNCPs. Particularly, results...... for first and second order moment measures, reduced Palm distributions, the -function, simulation with or without edge effects, and conditional simulation of the intensity function driving a GSNCP are given. Our results are exemplified for special important cases of GSNCPs, and we discuss the relation...

  16. Assessment of diagnosing metastatic bone tumor on T2*-weighted images. Comparison between turbo spin echo (TSE) method and gradient echo (GE) method

    International Nuclear Information System (INIS)

    Hayashi, Takahiko; Sugiyama, Akira; Katayama, Motoyuki

    1996-01-01

    We examined the usefulness of T2 * weighted gradient field echo images for diagnosis for metastatic bone tumors in comparison with T2 weighted turbo spin echo (fast spin echo) images. In T2 * weighted gradient field echo sequence to obtain maximum contrast-to-noise ratio (CNR), we experimentally manipulated flip angle (FA) (5deg-90deg), repetition time (TR) (400, 700 msec), and echo time (TE) (10-50 msec). The best CNR was 16.4 in fast low angle shot (FLASH) (TE: 24 msec, TR: 700 msec, FA: 40deg). Magnetic resonance imaging was carried out in 28 patients with metastatic bone tumors. In addition to conventional T1 weighted spin echo images, T2 weighted turbo spin echo (fast spin echo images) and T2 * weighted gradient field echo images were obtained. T2 * weighted gradient field echo images were superior to T2 weighted turbo spin echo (fast spin echo) images in delineating the tumors, adjacent fat tissues, and bone marrow. (author)

  17. SNR-optimized phase-sensitive dual-acquisition turbo spin echo imaging: a fast alternative to FLAIR.

    Science.gov (United States)

    Lee, Hyunyeol; Park, Jaeseok

    2013-07-01

    Phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo imaging was recently introduced, producing high-resolution isotropic cerebrospinal fluid attenuated brain images without long inversion recovery preparation. Despite the advantages, the weighted-averaging-based technique suffers from noise amplification resulting from different levels of cerebrospinal fluid signal modulations over the two acquisitions. The purpose of this work is to develop a signal-to-noise ratio-optimized version of the phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo. Variable refocusing flip angles in the first acquisition are calculated using a three-step prescribed signal evolution while those in the second acquisition are calculated using a two-step pseudo-steady state signal transition with a high flip-angle pseudo-steady state at a later portion of the echo train, balancing the levels of cerebrospinal fluid signals in both the acquisitions. Low spatial frequency signals are sampled during the high flip-angle pseudo-steady state to further suppress noise. Numerical simulations of the Bloch equations were performed to evaluate signal evolutions of brain tissues along the echo train and optimize imaging parameters. In vivo studies demonstrate that compared with conventional phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo, the proposed optimization yields 74% increase in apparent signal-to-noise ratio for gray matter and 32% decrease in imaging time. The proposed method can be a potential alternative to conventional fluid-attenuated imaging. Copyright © 2012 Wiley Periodicals, Inc.

  18. Comparison of 3D vs. 2D fast spin echo imaging for evaluation of articular cartilage in the knee on a 3 T system scientific research

    International Nuclear Information System (INIS)

    Milewski, Matthew D.; Smitaman, Edward; Moukaddam, Hicham; Katz, Lee D.; Essig, David A.; Medvecky, Michael J.; Haims, Andrew H.

    2012-01-01

    Highlights: ► Compared 3D to 2D MR sequences for articular cartilage in the knee. ► 3D imaging acquired in a single plane, 2D acquired in 3 separate planes. ► No significant difference in accuracy between 3D and 2D sequences. - Abstract: Purpose: We sought to retrospectively compare the accuracy of a three-dimensional fat-suppressed, fast spin-echo sequences acquired in the sagittal plane, with multiplanar reconstructions to that of two-dimensional fat-suppressed, fast spin echo sequences acquired in three planes on a 3 T MR system for the evaluation of articular cartilage in the knee. Materials and methods: Our study group consisted of all patients (N = 34) that underwent 3 T MR imaging of the knee at our institution with subsequent arthroscopy over an 18-month period. There were 21 males and 13 females with an average age of 36 years. MR images were reviewed by 3 musculoskeletal radiologists, blinded to operative results. 3D and 2D sequences were reviewed at different sittings separated by 4 weeks to prevent bias. Six cartilage surfaces were evaluated both with MR imaging and arthroscopically with a modified Noyes scoring system and arthroscopic results were used as the gold standard. Sensitivity, specificity, and accuracy were calculated for each reader along with Fleiss Kappa assessment agreement between the readers. Accuracies for each articular surface were compared using a difference in proportions test with a 95% confidence interval and statistical significance was calculated using a Fisher's Exact Test. Results: Two hundred and four articular surfaces were evaluated and 49 articular cartilage lesions were present at arthroscopy. For the patellofemoral surfaces, the sensitivity, specificity, and accuracy were 76.5%, 83%, and 78.2% for the 3D sequences and were 82.3%, 76%, and 82% respectively for the 2D sequences. For the medial compartment surfaces, the sensitivity, specificity, and accuracy were 81.1%, 65.1%, and 78.5% for the 3D sequences and were

  19. MRI in multiple sclerosis of the spinal cord: evaluation of fast short-tan inversion-recovery and spin-echo sequences

    International Nuclear Information System (INIS)

    Dietemann, J.L.; Thibaut-Menard, A.; Neugroschl, C.; Gillis, C.; Abu Eid, M.; Bogorin, A.; Warter, J.M.; Tranchant, C.

    2000-01-01

    We compared the sensitivity of T2-weighted spin-echo (FSE) and fast short-tau inversion-recovery (fSTIR) sequences in detection of multiple sclerosis of the spinal cord in 100 consecutive patients with clinically confirmed multiple sclerosis (MS); 86 patients underwent also brain MRI. In all, 310 focal lesions were detected on fSTIR and 212 on T2-weighted FSE, spinal cord lesions were seen better on fSTIR images, with a higher contrast between the lesion and the normal spinal cord. In 24 patients in whom cord plaques were shown with both sequences, the cranial study was normal or inconclusive. Assessment of spinal plaques can be particularly important when MRI of the brain is inconclusive, and in there situations fSTIR can be helpful. (orig.)

  20. Energy efficient and fast reversal of a fixed skyrmion two-terminal memory with spin current assisted by voltage controlled magnetic anisotropy

    Science.gov (United States)

    Bhattacharya, Dhritiman; Mamun Al-Rashid, Md; Atulasimha, Jayasimha

    2017-10-01

    Recent work (P-H Jang et al 2015 Appl. Phys. Lett. 107 202401, J. Sampaio et al 2016 Appl. Phys. Lett. 108 112403) suggests that ferromagnetic reversal with spin transfer torque (STT) requires more current in a system in the presence of Dzyaloshinskii-Moriya interaction (DMI) than switching a typical ferromagnet of the same dimensions and perpendicular magnetic anisotropy (PMA). However, DMI promotes the stabilization of skyrmions and we report that when perpendicular anisotropy is modulated (reduced) for both the skyrmion and ferromagnet, it takes a much smaller current to reverse the fixed skyrmion than to reverse the ferromagnet in the same amount of time, or the skyrmion reverses much faster than the ferromagnet at similar levels of current. We show with rigorous micromagnetic simulations that skyrmion switching proceeds along a different path at very low PMA, which results in a significant reduction in the spin current or time required for reversal. This can offer potential for memory applications where a relatively simple modification of the standard STT-RAM (to include a heavy metal adjacent to the soft magnetic layer and with appropriate design of the tunnel barrier) can lead to an energy efficient and fast magnetic memory device based on the reversal of fixed skyrmions.

  1. Comparison of T1-weighted fast spin-echo and T1-weighted fluid-attenuated inversion recovery images of the lumbar spine at 3.0 Tesla

    International Nuclear Information System (INIS)

    Lavdas, Eleftherios; Vlychou, Marianna; Arikidis, Nikos; Kapsalaki, Eftychia; Roka, Violetta; Fezoulidis, Ioannis V.

    2010-01-01

    Background: T1-weighted fluid-attenuated inversion recovery (FLAIR) sequence has been reported to provide improved contrast between lesions and normal anatomical structures compared to T1-weighted fast spin-echo (FSE) imaging at 1.5T regarding imaging of the lumbar spine. Purpose: To compare T1-weighted FSE and fast T1-weighted FLAIR imaging in normal anatomic structures and degenerative and metastatic lesions of the lumbar spine at 3.0T. Material and Methods: Thirty-two consecutive patients (19 females, 13 males; mean age 44 years, range 30-67 years) with lesions of the lumbar spine were prospectively evaluated. Sagittal images of the lumbar spine were obtained using T1-weighted FSE and fast T1-weighted FLAIR sequences. Both qualitative and quantitative analyses measuring the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and relative contrast (ReCon) between degenerative and metastatic lesions and normal anatomic structures were conducted, comparing these sequences. Results: On quantitative evaluation, SNRs of cerebrospinal fluid (CSF), nerve root, and fat around the root of fast T1-weighted FLAIR imaging were significantly lower than those of T1-weighted FSE images (P<0.001). CNRs of normal spinal cord/CSF and disc herniation/ CSF for fast T1-weighted FLAIR images were significantly higher than those for T1-weighted FSE images (P<0.001). ReCon of normal spinal cord/CSF, disc herniation/CSF, and vertebral lesions/CSF for fast T1-weighted FLAIR images were significantly higher than those for T1-weighted FSE images (P<0.001). On qualitative evaluation, it was found that CSF nulling and contrast at the spinal cord (cauda equina)/CSF interface for T1-weighted FLAIR images were significantly superior compared to those for T1-weighted FSE images (P<0.001), and the disc/spinal cord (cauda equina) interface was better for T1-weighted FLAIR images (P<0.05). Conclusion: The T1-weighted FLAIR sequence may be considered as the preferred lumbar spine imaging

  2. RF Shot Noise Measurements in Au Atomic-scale Junctions

    Science.gov (United States)

    Chen, Ruoyu

    Conduction electrons are responsible for many physical or chemical phenomena in condensed matter systems, and their behavior can be directly studied by electronic transport measurements. In conventional transport measurements, conductance or resistance is usually the focus. Such a measurement can be as simple as a quick two terminal DC check by a multi-meter, or a more sophisticated lock-in measurement of multiple higher harmonic signals synchronized to different frequencies. Conductance carries direct information about the quasi-particle density of states and the local electronic distributions, which are usually Fermi-Dirac distribution. Conductance is modified or dominated by scattering from defacts or interfaces, and could also reflect the spin-spin exchange interactions or inelastic couplings with phonons and photons. Naturally one can ask the question: is there anything else we can measure electronically, which carries extra information that a conductance measurement does not provide? One answer to this question is the electronic noise. While the conductance reflects the average charge conduction ability of a system, noise describes how the physical quantities fluctuate around their average values. Some of the fluctuations carry information about their physical origins. This thesis will focus on one particular type of the electronic noise shot noise, but other types of noise will also be introduced and discussed. We choose to measure the radio frequency component of shot noise, combining with a modulated lock-in detection technique, which provides a method to largely get rid of other unwanted low-frequency noise signals. Au atomic-scale junctions are the systems we studied here. Au is relatively well understood and will not generate too many complications, so it's ideal as the first platform for us to understand both shot noise itself and our RF technique. On the other hand, the atomic scale raises fundamental questions about electronic transport and local

  3. Free-breathing black-blood CINE fast-spin echo imaging for measuring abdominal aortic wall distensibility: a feasibility study

    Science.gov (United States)

    Lin, Jyh-Miin; Patterson, Andrew J.; Chao, Tzu-Cheng; Zhu, Chengcheng; Chang, Hing-Chiu; Mendes, Jason; Chung, Hsiao-Wen; Gillard, Jonathan H.; Graves, Martin J.

    2017-05-01

    The paper reports a free-breathing black-blood CINE fast-spin echo (FSE) technique for measuring abdominal aortic wall motion. The free-breathing CINE FSE includes the following MR techniques: (1) variable-density sampling with fast iterative reconstruction; (2) inner-volume imaging; and (3) a blood-suppression preparation pulse. The proposed technique was evaluated in eight healthy subjects. The inner-volume imaging significantly reduced the intraluminal artifacts of respiratory motion (p  =  0.015). The quantitative measurements were a diameter of 16.3  ±  2.8 mm and wall distensibility of 2.0  ±  0.4 mm (12.5  ±  3.4%) and 0.7  ±  0.3 mm (4.1  ±  1.0%) for the anterior and posterior walls, respectively. The cyclic cross-sectional distensibility was 35  ±  15% greater in the systolic phase than in the diastolic phase. In conclusion, we developed a feasible CINE FSE method to measure the motion of the abdominal aortic wall, which will enable clinical scientists to study the elasticity of the abdominal aorta.

  4. Bilateral mesial temporal sclerosis: MRI with high-resolution fast spin-echo and fluid-attenuated inversion-recovery sequences

    Energy Technology Data Exchange (ETDEWEB)

    Oppenheim, C.; Dormont, D.; Lehericy, S.; Marsault, C. [Dept. of Neuroradiology, Groupe Hospitalier Pite-Salpetriere, Paris (France); Hasboun, D. [Dept. of Neuroradiology, Groupe Hospitalier Pite-Salpetriere, Paris (France)]|[Dept. of Neurology, Paris VI Univ. (France); Bazin, B.; Samson, S.; Baulac, M. [Dept. of Neurology, Paris VI Univ. (France)

    1999-07-01

    We report a retrospective analysis of MRI in 206 patients with intractable seizures and describe the findings in bilateral mesial temporal sclerosis (MTS) on fast spin-echo (FSE) and fast fluid-attenuated inversion-recovery (fFLAIR) sequences. Criteria for MTS were atrophy, signal change and loss of the digitations of the head of the hippocampus. In patients with bilateral MRI signs of MTS, correlation with clinical electro, volumetric MRI data and neuropsychological tests, when available, was performed. Bilateral MTS was observed in seven patients. Bilateral loss of the digitations and signal change of fFLAIR was seen in all seven. In three, bilateral atrophy was obvious. In two patients, mild bilateral atrophy was observed and in two others, the hippocampi were: asymmetrical, with obvious atrophy on only one side. Volumetric data confirmed bilateral symmetrical atrophy in five patients, and volumes were at the lowest of the normal range in other two. The EEG showed temporal abnormalities in all patients, unilateral in five and bilateral in two. All patients had memory impairment and neuropsychological data confirmed visual and verbal memory deficits; two patients failed the Wada test on both sides. High-resolution T2-weighted FSE and fFLAIR sequences allow diagnosis of bilateral MTS, which has important therapeutic and prognostic implications. (orig.)

  5. Bilateral mesial temporal sclerosis: MRI with high-resolution fast spin-echo and fluid-attenuated inversion-recovery sequences

    International Nuclear Information System (INIS)

    Oppenheim, C.; Dormont, D.; Lehericy, S.; Marsault, C.; Hasboun, D.; Bazin, B.; Samson, S.; Baulac, M.

    1999-01-01

    We report a retrospective analysis of MRI in 206 patients with intractable seizures and describe the findings in bilateral mesial temporal sclerosis (MTS) on fast spin-echo (FSE) and fast fluid-attenuated inversion-recovery (fFLAIR) sequences. Criteria for MTS were atrophy, signal change and loss of the digitations of the head of the hippocampus. In patients with bilateral MRI signs of MTS, correlation with clinical electro, volumetric MRI data and neuropsychological tests, when available, was performed. Bilateral MTS was observed in seven patients. Bilateral loss of the digitations and signal change of fFLAIR was seen in all seven. In three, bilateral atrophy was obvious. In two patients, mild bilateral atrophy was observed and in two others, the hippocampi were: asymmetrical, with obvious atrophy on only one side. Volumetric data confirmed bilateral symmetrical atrophy in five patients, and volumes were at the lowest of the normal range in other two. The EEG showed temporal abnormalities in all patients, unilateral in five and bilateral in two. All patients had memory impairment and neuropsychological data confirmed visual and verbal memory deficits; two patients failed the Wada test on both sides. High-resolution T2-weighted FSE and fFLAIR sequences allow diagnosis of bilateral MTS, which has important therapeutic and prognostic implications. (orig.)

  6. Fast switching and signature of efficient domain wall motion driven by spin-orbit torques in a perpendicular anisotropy magnetic insulator/Pt bilayer

    Science.gov (United States)

    Avci, Can Onur; Rosenberg, Ethan; Baumgartner, Manuel; Beran, Lukáš; Quindeau, Andy; Gambardella, Pietro; Ross, Caroline A.; Beach, Geoffrey S. D.

    2017-08-01

    We report fast and efficient current-induced switching of a perpendicular anisotropy magnetic insulator thulium iron garnet by using spin-orbit torques (SOT) from the Pt overlayer. We first show that, with quasi-DC (10 ms) current pulses, SOT-induced switching can be achieved with an external field as low as 2 Oe, making TmIG an outstanding candidate to realize efficient switching in heterostructures that produce moderate stray fields without requiring an external field. We then demonstrate deterministic switching with fast current pulses (≤20 ns) with an amplitude of ˜1012 A/m2, similar to all-metallic structures. We reveal that, in the presence of an initially nucleated domain, the critical switching current is reduced by up to a factor of five with respect to the fully saturated initial state, implying efficient current-driven domain wall motion in this system. Based on measurements with 2 ns-long pulses, we estimate the domain wall velocity of the order of ˜400 m/s per j = 1012 A/m2.

  7. Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Songlin; Matsuda, Isamu; Long, Fei; Ishii, Yoshitaka, E-mail: yishii@uic.edu [University of Illinois at Chicago, Department of Chemistry (United States)

    2016-02-15

    This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40–80 kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055–15058, 2015) combines the reverse {sup 13}C, {sup 15}N-isotope labeling strategy and selective signal quenching using the frequency-selective REDOR pulse sequence under fast MAS. The scheme allows one to selectively observe the signals of “highlighted” labeled amino-acid residues that precede or follow unlabeled residues through selectively quenching {sup 13}CO or {sup 15}N signals for a pair of consecutively labeled residues by recoupling {sup 13}CO–{sup 15}N dipolar couplings. Our numerical simulation results showed that the scheme yielded only ∼15 % loss of signals for the highlighted residues while quenching as much as ∼90 % of signals for non-highlighted residues. For lysine-reverse-labeled micro-crystalline GB1 protein, the 2D {sup 15}N/{sup 13}C{sub α} correlation and 2D {sup 13}C{sub α}/{sup 13}CO correlation SSNMR spectra by the HIGHLIGHT approach yielded signals only for six residues following and preceding the unlabeled lysine residues, respectively. The experimental dephasing curves agreed reasonably well with the corresponding simulation results for highlighted and quenched residues at spinning speeds of 40 and 60 kHz. The compatibility of the HIGHLIGHT approach with fast MAS allows for sensitivity enhancement by paramagnetic assisted data collection (PACC) and {sup 1}H detection. We also discuss how the HIGHLIGHT approach facilitates signal assignments using {sup 13}C-detected 3D SSNMR by demonstrating full sequential assignments of lysine-reverse-labeled micro-crystalline GB1 protein (∼300 nmol), for which data collection required only 11 h. The HIGHLIGHT approach offers valuable

  8. Lichtheim’s Golden shot

    NARCIS (Netherlands)

    Eling, P.A.T.M.

    2011-01-01

    Lichtheim belongs to the ranks of most famous aphasiologists, in particular because of a diagram often referred to as ‘Lichtheim’s House’. His single paper on aphasia has drawn the attention of the aphasiological community for many years and may be considered a golden shot. But it became, to

  9. Assessment of the image quality and tumor detectability of breath-hold T2-weighted imaging of liver tumors using a fast gradient MR system

    International Nuclear Information System (INIS)

    Yoshida, Kotaro; Suto, Yuji; Sugihara, Shuji; Tokuda, Yukiko

    1996-01-01

    Fourteen patients with various types of focal liver tumors were imaged with turbo spin-echo (TSE), breath-hold TSE (BH-TSE) and half-Fourier single-shot TSE (HASTE) pulse sequences using a fast gradient magnetic resonance imaging (MRI) system. We compared the T2-weighted images of the liver with the TSE, BH-TSE, HASTE and conventional spin-echo (SE) pulse sequences in order to determine whether those fast T2-weighted images, including fat suppressed images, could replace SE images. In quantitative and qualitative analysis, the fast T2-weighted images were slightly superior to the SE images, but they were inferior in the conspicuousness of liver tumor to the SE images. These findings suggest that the fast T2-weighted images can shorten the examination time of the liver MRI, but cannot replace the T2-weighted SE images because of the low conspicuousness. (author)

  10. Assembly procedure for Shot Loading Platform

    International Nuclear Information System (INIS)

    Routh, R.D.

    1995-01-01

    This supporting document describes the assembly procedure for the Shot Loading Platform. The Shot Loading Platform is used by multiple equipment removal projects to load shielding shot in the annular spaces of the equipment storage containers. The platform height is adjustable to accommodate different sizes of storage containers and transport assemblies

  11. Shot Automation for the National Ignition Facility

    International Nuclear Information System (INIS)

    Lagin, L J; Bettenhausen, R C; Beeler, R G; Bowers, G A; Carey, R.; Casavant, D.D.; Cline, B.D.; Demaret, R.D.; Domyancic, D.M.; Elko, S.D.; Fisher, J.M.; Hermann, M.R.; Krammen, J.E.; Kohut, T.R.; Marshall, C.D.; Mathisen, D.G.; Ludwigsen, A.P.; Patterson, Jr. R.W.; Sanchez, R.J.; Stout, E.A.; Van Arsdall, P.J.; Van Wonterghem, B.M.

    2005-01-01

    A shot automation framework has been developed and deployed during the past year to automate shots performed on the National Ignition Facility (NIF) using the Integrated Computer Control System This framework automates a 4-8 hour shot sequence, that includes inputting shot goals from a physics model, set up of the laser and diagnostics, automatic alignment of laser beams and verification of status. This sequence consists of set of preparatory verification shots, leading to amplified system shots using a 4-minute countdown, triggering during the last 2 seconds using a high-precision timing system, followed by post-shot analysis and archiving. The framework provides for a flexible, model-based execution driven of scriptable automation called macro steps. The framework is driven by high-level shot director software that provides a restricted set of shot life cycle state transitions to 25 collaboration supervisors that automate 8-laser beams (bundles) and a common set of shared resources. Each collaboration supervisor commands approximately 10 subsystem shot supervisors that perform automated control and status verification. Collaboration supervisors translate shot life cycle state commands from the shot director into sequences of ''macro steps'' to be distributed to each of its shot supervisors. Each Shot supervisor maintains order of macro steps for each subsystem and supports collaboration between macro steps. They also manage failure, restarts and rejoining into the shot cycle (if necessary) and manage auto/manual macro step execution and collaborations between other collaboration supervisors. Shot supervisors execute macro step shot functions commanded by collaboration supervisors. Each macro step has database-driven verification phases and a scripted perform phase. This provides for a highly flexible methodology for performing a variety of NIF shot types. Database tables define the order of work and dependencies (workflow) of macro steps to be performed for a

  12. Rotary peening with captive shot

    International Nuclear Information System (INIS)

    1998-02-01

    Roto Peen with captive shot removes coatings and surface contamination from concrete floors. The objective of treating radioactively contaminated concrete floors during the Deactivation and Decommissioning (D and D) process is to reduce the surface contamination levels to meet regulatory criteria for unrestricted use. The US Department of Energy (DOE) Chicago Operations office and DOE's Federal Energy Technology Center (FETC) jointly sponsored a Large-Scale Demonstration Project (LSDP) at the Chicago Pile-5 Research Reactor (CP-5) at Argonne National Laboratory-East (ANL). The objective of the LSDP is to demonstrate potentially beneficial D and D technologies in comparison with current baseline technologies. As part of the LSDP, roto Peen with captive shot was demonstrated March 17--20, 1997, to treat a 20 x 25 ft area of radioactively contaminated concrete floor on the service level of the CP-5 building

  13. The Problem of Shot Selection in Basketball

    Science.gov (United States)

    Skinner, Brian

    2012-01-01

    In basketball, every time the offense produces a shot opportunity the player with the ball must decide whether the shot is worth taking. In this article, I explore the question of when a team should shoot and when they should pass up the shot by considering a simple theoretical model of the shot selection process, in which the quality of shot opportunities generated by the offense is assumed to fall randomly within a uniform distribution. Within this model I derive an answer to the question “how likely must the shot be to go in before the player should take it?” and I show that this lower cutoff for shot quality depends crucially on the number of shot opportunities remaining (say, before the shot clock expires), with larger demanding that only higher-quality shots should be taken. The function is also derived in the presence of a finite turnover rate and used to predict the shooting rate of an optimal-shooting team as a function of time. The theoretical prediction for the optimal shooting rate is compared to data from the National Basketball Association (NBA). The comparison highlights some limitations of the theoretical model, while also suggesting that NBA teams may be overly reluctant to shoot the ball early in the shot clock. PMID:22295109

  14. The problem of shot selection in basketball.

    Directory of Open Access Journals (Sweden)

    Brian Skinner

    Full Text Available In basketball, every time the offense produces a shot opportunity the player with the ball must decide whether the shot is worth taking. In this article, I explore the question of when a team should shoot and when they should pass up the shot by considering a simple theoretical model of the shot selection process, in which the quality of shot opportunities generated by the offense is assumed to fall randomly within a uniform distribution. Within this model I derive an answer to the question "how likely must the shot be to go in before the player should take it?" and I show that this lower cutoff for shot quality f depends crucially on the number n of shot opportunities remaining (say, before the shot clock expires, with larger n demanding that only higher-quality shots should be taken. The function f(n is also derived in the presence of a finite turnover rate and used to predict the shooting rate of an optimal-shooting team as a function of time. The theoretical prediction for the optimal shooting rate is compared to data from the National Basketball Association (NBA. The comparison highlights some limitations of the theoretical model, while also suggesting that NBA teams may be overly reluctant to shoot the ball early in the shot clock.

  15. The problem of shot selection in basketball.

    Science.gov (United States)

    Skinner, Brian

    2012-01-01

    In basketball, every time the offense produces a shot opportunity the player with the ball must decide whether the shot is worth taking. In this article, I explore the question of when a team should shoot and when they should pass up the shot by considering a simple theoretical model of the shot selection process, in which the quality of shot opportunities generated by the offense is assumed to fall randomly within a uniform distribution. Within this model I derive an answer to the question "how likely must the shot be to go in before the player should take it?" and I show that this lower cutoff for shot quality f depends crucially on the number n of shot opportunities remaining (say, before the shot clock expires), with larger n demanding that only higher-quality shots should be taken. The function f(n) is also derived in the presence of a finite turnover rate and used to predict the shooting rate of an optimal-shooting team as a function of time. The theoretical prediction for the optimal shooting rate is compared to data from the National Basketball Association (NBA). The comparison highlights some limitations of the theoretical model, while also suggesting that NBA teams may be overly reluctant to shoot the ball early in the shot clock.

  16. Visual discrimination among patients with depression and schizophrenia and healthy individuals using semiquantitative color-coded fast spin-echo T1-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Makoto; Kudo, Kohsuke; Narumi, Shinsuke [Iwate Medical University, Advanced Medical Research Center, Morioka (Japan); Shibata, Eri; Ohtsuka, Kotaro; Endoh, Jin; Sakai, Akio [Iwate Medical University, Department of Neuropsychiatry, Morioka (Japan)

    2010-02-15

    Fast spin-echo (FSE) T1-weighted (T1W) magnetic resonance imaging (MRI) at 3T, which is sensitive to neuromelanin-related contrast, can quantitatively detect signal alterations in the locus ceruleus (LC) and the substantia nigra pars compacta (SNc) of depressive and schizophrenic patients; however, its qualitative diagnostic performance remains unknown. We investigated whether visual interpretation of semiquantitative color maps can be used for discriminating between depressive and schizophrenic patients and healthy individuals. We retrospectively examined 23 patients with major depression, 23 patients with schizophrenia, and 23 age-matched healthy controls by using a FSE-T1W MRI technique. Semiquantitative color maps of sections through the LC and SNc were visually interpreted by nine raters using a continuous confidence rating scale for receiver operating characteristic (ROC) analysis. The area under the ROC curve (Az), which reflects the performance in differentiating between depressive patients and controls, was 0.88, and the sensitivity and specificity at the maximum likelihood were 76% and 83%, respectively. In contrast, the Az value, sensitivity, and specificity values between schizophrenics and controls and between depressives and schizophrenics were 0.66 and 0.69, 42% and 48%, and 82% and 84%, respectively. Semiquantitative, color-coded FSE-T1W MRI at 3T can be used for visually differentiating depressive patients from healthy individuals with a substantially high likelihood, but this technique cannot be applied to distinguish schizophrenic patients from the other two groups. (orig.)

  17. Visual discrimination among patients with depression and schizophrenia and healthy individuals using semiquantitative color-coded fast spin-echo T1-weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    Sasaki, Makoto; Kudo, Kohsuke; Narumi, Shinsuke; Shibata, Eri; Ohtsuka, Kotaro; Endoh, Jin; Sakai, Akio

    2010-01-01

    Fast spin-echo (FSE) T1-weighted (T1W) magnetic resonance imaging (MRI) at 3T, which is sensitive to neuromelanin-related contrast, can quantitatively detect signal alterations in the locus ceruleus (LC) and the substantia nigra pars compacta (SNc) of depressive and schizophrenic patients; however, its qualitative diagnostic performance remains unknown. We investigated whether visual interpretation of semiquantitative color maps can be used for discriminating between depressive and schizophrenic patients and healthy individuals. We retrospectively examined 23 patients with major depression, 23 patients with schizophrenia, and 23 age-matched healthy controls by using a FSE-T1W MRI technique. Semiquantitative color maps of sections through the LC and SNc were visually interpreted by nine raters using a continuous confidence rating scale for receiver operating characteristic (ROC) analysis. The area under the ROC curve (Az), which reflects the performance in differentiating between depressive patients and controls, was 0.88, and the sensitivity and specificity at the maximum likelihood were 76% and 83%, respectively. In contrast, the Az value, sensitivity, and specificity values between schizophrenics and controls and between depressives and schizophrenics were 0.66 and 0.69, 42% and 48%, and 82% and 84%, respectively. Semiquantitative, color-coded FSE-T1W MRI at 3T can be used for visually differentiating depressive patients from healthy individuals with a substantially high likelihood, but this technique cannot be applied to distinguish schizophrenic patients from the other two groups. (orig.)

  18. Anteroinferior tears of the glenoid labrum: fat-suppressed fast spin-echo T2 versus gradient-recalled echo MR images

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, M J [Department of Radiology, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States); De Smet, A A [Department of Radiology, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States); Norris, M A [Department of Radiology, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States); Orwin, J F [Department of Orthopedic Surgery, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States)

    1997-05-01

    Objective. To compare fat-suppressed fast spin-echo (FSE) T2-weighted images with gradient-recalled echo (GRE) T2*-weighted images in the evaluation of anteroinferior labral tears. Design. MR images were retrospectively reviewed by two radiologists masked to the history and arthroscopic findings. They separately interpreted the anteroinferior labrum as torn or intact, first on one pulse sequence and then, 4 weeks later, on the other sequence. The MR interpretations were correlated with the arthroscopic findings. Patients. Nine patients with anteroinferior labral tears, and nine similarly-aged patients with normal, labra were studied. Results and conclusions. Observer 1 had a sensitivity of 0.56 on the GRE images and 0.67 on the FSE images (P>0.5), with a specificity of 1.0 for both sequences. Observer 2 had a sensitivity of 0.78 and a specificity of 0.89 for both sequences. In this small study there is no significant difference between GRE and fat-suppressed FSE images in their ability to diagnose anteroinferior labral tears. When evaluating the labrum with conventional MRI, axial fat-suppressed FSE T2-weighted images can be used in place of GRE images without a loss of accuracy. (orig.). With 3 figs., 1 tab.

  19. A fast analysis method for non-invasive imaging of blood flow in individual cerebral arteries using vessel-encoded arterial spin labelling angiography

    Science.gov (United States)

    Chappell, Michael A.; Okell, Thomas W.; Payne, Stephen J.; Jezzard, Peter; Woolrich, Mark W.

    2012-01-01

    Arterial spin labelling (ASL) MRI offers a non-invasive means to create blood-borne contrast in vivo for dynamic angiographic imaging. By spatial modulation of the ASL process it is possible to uniquely label individual arteries over a series of measurements, allowing each to be separately identified in the resulting angiographic images. This separation requires appropriate analysis for which a general Bayesian framework has previously been proposed. Here this framework is adapted for clinical dynamic angiographic imaging. This specifically addresses the issues of computational speed of the algorithm and the robustness required to deal with real patient data. An algorithm is proposed that can incorporate planning information about the arteries being imaged whilst adapting for subsequent patient movement. A fast maximum a posteriori solution is adopted and shown to be only marginally less accurate than Monte Carlo sampling under simulation. The final algorithm is demonstrated on in vivo data with analysis on a time scale of the order of 10 min, from both a healthy control and a patient with a vertebro-basilar occlusion. PMID:22322066

  20. Sounding out the logo shot

    OpenAIRE

    Nicolai Jørgensgaard Graakjær

    2013-01-01

    This article focuses on how sound in combination with visuals (i.e. ‘branding by’) may possibly affect the signifying potentials (i.e. ‘branding effect’) of products and corporate brands (i.e. ‘branding of’) during logo shots in television commercials (i.e. ‘branding through’). This particular focus adds both to the understanding of sound in television commercials and to the understanding of sound brands. The article firstly presents a typology of sounds. Secondly, this typology is applied...

  1. Tunnel barrier and noncollinear magnetization effects on shot noise in ferromagnetic/semiconductor/ferromagnetic heterojunctions

    International Nuclear Information System (INIS)

    An Xingtao; Liu Jianjun

    2008-01-01

    Based on the scattering approach, we investigate transport properties of electrons in a one-dimensional waveguide that contains a ferromagnetic/semiconductor/ferromagnetic heterojunction and tunnel barriers in the presence of Rashba and Dresselhaus spin-orbit interactions. We simultaneously consider significant quantum size effects, quantum coherence, Rashba and Dresselhaus spin-orbit interactions and noncollinear magnetizations. It is found that the tunnel barrier plays a decisive role in the transmission coefficient and shot noise of the ballistic spin electron transport through the heterojunction. When the small tunnel barriers are considered, the transport properties of electrons are quite different from those without tunnel barriers

  2. A Shot Parameter Specification Subsystem for automated control of PBFA [Particle Beam Fusion Accelerator] II accelerator shots

    International Nuclear Information System (INIS)

    Spiller, J.L.

    1987-01-01

    The Shot Parameter Specification Subsystem (SPSS) is an integral part of the automatic control system developed for the Particle Beam Fusion Accelerator II (PBFA II) by the Control Monitor (C/M) Software Development Team. This system has been designed to fully utilize the accelerator by tailoring shot parameters to the needs of the experimenters. The SPSS is the key to this flexibility. Automatic systems will be required on many pulsed power machines for the fastest turnaround, the highest reliability, and most cost effective operation. These systems will require the flexibility and the ease of use that is part of the SPSS. The PBFA II control system has proved to be an effective modular system, flexible enough to meet the demands of both the fast track construction of PBFA II and the control needs of Hermes III at the Simulation Technology Laboratory. This system is expected to meet the demands of most future machine changes

  3. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Benjamin Michael [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    As time progresses, the world is using up more of the planet's natural resources. Without technological advances, the day will eventually arrive when these natural resources will no longer be sufficient to supply all of the energy needs. As a result, society is seeing a push for the development of alternative fuel sources such as wind power, solar power, fuel cells, and etc. These pursuits are even occurring in the state of Iowa with increasing social pressure to incorporate larger percentages of ethanol in gasoline. Consumers are increasingly demanding that energy sources be more powerful, more durable, and, ultimately, more cost efficient. Fast Ionic Conducting (FIC) glasses are a material that offers great potential for the development of new batteries and/or fuel cells to help inspire the energy density of battery power supplies. This dissertation probes the mechanisms by which ions conduct in these glasses. A variety of different experimental techniques give a better understanding of the interesting materials science taking place within these systems. This dissertation discusses Nuclear Magnetic Resonance (NMR) techniques performed on FIC glasses over the past few years. These NMR results have been complimented with other measurement techniques, primarily impedance spectroscopy, to develop models that describe the mechanisms by which ionic conduction takes place and the dependence of the ion dynamics on the local structure of the glass. The aim of these measurements was to probe the cause of a non-Arrhenius behavior of the conductivity which has been seen at high temperatures in the silver thio-borosilicate glasses. One aspect that will be addressed is if this behavior is unique to silver containing fast ion conducting glasses. more specifically, this study will determine if a non-Arrhenius correlation time, τ, can be observed in the Nuclear Spin Lattice Relaxation (NSLR) measurements. If so, then can this behavior be modeled with a new single

  4. Shot peening: theory applications and recent development

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    1999-01-01

    Shot peening is a surface treatment process by which the surface of an elastic-plastic target material is subjected to multiple impact by spherical shots made of glass or hard steel in a defined and controlled manner. The multiple impact produces a dynamic compressive stress at the surface of the target, thereby effectively improving its mechanical behavior and eliminates cracks and imperfections hence improving the fatigue life and strength. In this paper, the theory and practice of the shot peening process are reviewed. The main parameters involved in the process and their effects on shot peening are presented and discussed which include: shot material, size and geometry, shot pressure and shot velocity, projection angle, exposure time, table rotational speed, standoff distance coverage, saturation and peening intensity. Furthermore, the effect of shot peening on fatigue life and fatigue strength of ferrous and non-ferrous materials together with other different industrial applications of the process are given. Recent developments in utilizing the shot peening process with welded parts and hard chromium plating aiming at improvement of their fatigue strength and their resistance to stress corrosion cracking are also presented and discussed. Finally, future development of the process are outlined and discussed. (author)

  5. T1-weighted fluid-attenuated inversion recovery and T1-weighted fast spin-echo contrast-enhanced imaging: a comparison in 20 patients with brain lesions

    International Nuclear Information System (INIS)

    Al-Saeed, O.; Athyal, R. P.; Ismail, M.; Rudwan, M.; Khafajee, S.

    2009-01-01

    Full text: Tl-weighted fluid-attenuated inversion recovery (FLAIR) sequence is a relatively new pulse sequence for intracranial MR imaging. This study was performed to compare the image quality of Tl-weighted FLAIR with the Tl-weighted FSE sequence. Twenty patients with brain lesions underwent Tl-weighted fast spin-echo (FSE) and Tl-weighted FLAIR during the same imaging session. Four quantitative and three qualitative criteria were used to compare the two sequences after contrast. Two of four quantitative criteria pertained to lesion characteristics: lesion to white matter (WM) contrast-to-noise ratio (CNR) and lesion to cerebrospinal fluid (CSF) CNR, and two related to signals from normal tissue: grey matter to WM CNR and WM to CSF CNR. The three qualitative criteria were conspicuousness of the lesion, the presence of image artefacts and the overall image contrast. Both Tl-weighted FSE and FLAIR images were effective in demonstrating lesions. Image contrast was superior in Tl-weighted FLAIR images with significantly improved grey matter-WM CNRs and CSF-WM CNRs. The overall image contrast was judged to be superior on Tl-weighted FLAIR images compared with Tl-weighted FSE images by all neuroradiologists. Two of three reviewers considered that the FLAIR images had slightly increased imaging artefacts that, however, did not interfere with image interpretation. Tl-weighted FLAIR imaging provides improved lesion-to-background and grey to WM contrast-to-noise ratios. Superior conspicuity of lesions and overall image contrast is obtained in comparable acquisition times. These indicate an important role for Tl-weighted FLAIR in intracranial imaging and highlight its advantage over the more widely practiced Tl-weighted FSE sequence

  6. Optimization image of magnetic resonance imaging (MRI) T2 fast spin echo (FSE) with variation echo train length (ETL) on the rupture tendon achilles case

    International Nuclear Information System (INIS)

    Muzamil, Akhmad; Firmansyah, Achmad Haries

    2017-01-01

    The research was done the optimization image of Magnetic Resonance Imaging (MRI) T2 Fast Spin Echo (FSE) with variation Echo Train Length (ETL) on the Rupture Tendon Achilles case. This study aims to find the variations Echo Train Length (ETL) from the results of ankle’s MRI image and find out how the value of Echo Train Length (ETL) works on the MRI ankle to produce optimal image. In this research, the used ETL variations were 12 and 20 with the interval 2 on weighting T2 FSE sagittal. The study obtained the influence of Echo Train Length (ETL) on the quality of ankle MRI image sagittal using T2 FSE weighting and analyzed in 25 images of five patients. The data analysis has done quantitatively with the Region of Interest (ROI) directly on computer MRI image planes which conducted statistical tests Signal to Noise Ratio (SNR) and Contras to Noise Ratio (CNR). The Signal to Noise Ratio (SNR) was the highest finding on fat tissue, while the Contras to Noise Ratio (CNR) on the Tendon-Fat tissue with ETL 12 found in two patients. The statistics test showed the significant SNR value of the 0.007 (p<0.05) of Tendon tissue, 0.364 (p>0.05) of the Fat, 0.912 (p>0.05) of the Fibula, and 0.436 (p>0.05) of the Heel Bone. For the contrast to noise ratio (CNR) of the Tendon-FAT tissue was about 0.041 (p>0.05). The results of the study showed that ETL variation with T2 FSE sagittal weighting had difference at Tendon tissue and Tendon-Fat tissue for MRI imaging quality. SNR and CNR were an important aspect on imaging optimization process to give the diagnose information. (paper)

  7. Evaluation of the menisci of the knee joint using three-dimensional isotropic resolution fast spin-echo imaging: diagnostic performance in 250 patients with surgical correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kijowski, Richard; Davis, Kirkland W.; Blankenbaker, Donna G.; Woods, Michael A.; De Smet, Arthur A. [University of Wisconsin School of Medicine and Public Health, Department of Radiology, Madison, WI (United States); Munoz del Rio, Alejandro [University of Wisconsin School of Medicine and Public Health, Department of Radiology, Madison, WI (United States); University of Wisconsin School of Medicine and Public Health, Department of Statistics, Madison, WI (United States)

    2012-02-15

    To compare the diagnostic performance of FSE-Cube, a three-dimensional isotropic resolution intermediate-weighted fast spin-echo sequence, with a routine magnetic resonance (MR) protocol at 3.0 T for detecting surgically confirmed meniscal tears of the knee joint in a large patient population. FSE-Cube was added to a routine MR protocol performed at 3.0 T on 250 patients who underwent subsequent knee arthroscopy. Three radiologists independently used FSE-Cube during one review and the routine MR protocol during a second review to detect medial and lateral meniscal tears. Using arthroscopy as the reference standard, the sensitivity and specificity of FSE-Cube and the routine MR protocol for detecting meniscal tears were determined for all readers combined. McNemar's tests were used to compare diagnostic performance between FSE-Cube and the routine MR protocol. FSE-cube and the routine MR protocol had similar sensitivity (95.5%/95.3% respectively, P=0.94) and similar specificity (69.8%/74.0% respectively, P=0.10) for detecting 156 medial meniscal tears. FSE-Cube had significantly lower sensitivity than the routine MR protocol (79.4%/85.0% respectively, P < 0.05) but similar specificity (83.9%/82.2% respectively, P=0.37) for detecting 89 lateral mensical tears. For lateral meniscal tears, FSE-Cube had significantly lower sensitivity (P < 0.05) than the routine MR protocol for detecting 19 root tears but similar sensitivity (P=0.17-1.00) for detecting all other tear locations and types. FSE-Cube had diagnostic performance similar to a routine MR protocol for detecting meniscal tears except for a significantly lower sensitivity for detecting lateral meniscal tears, which was mainly attributed to decreased ability to identify lateral meniscus root tears. (orig.)

  8. SPAMM, cine phase contrast imaging and fast spin-echo T2-weighted imaging in the study of intracranial cerebrospinal fluid (CSF) flow

    International Nuclear Information System (INIS)

    Connor, S.E.J.; O'Gorman, R.; Summers, P.; Simmons, A.; Moore, E.M.; Chandler, C.; Jarosz, J.M.

    2001-01-01

    AIM: To compare the qualitative assessment of cerebrospinal fluid (CSF) flow using a SPAMM (spatial modulation of magnetization) technique with cine phase contrast images (cine PC) and fast spin echo (FSE) T2-weighted images. MATERIALS AND METHODS: SPAMM, PC and T2-weighted sequences were performed on 22 occasions in 19 patients. Eleven of the studies were performed following a neuroendoscopic third ventriculostomy (NTV), and in these cases, the success of the NTV was determined by clinical follow-up. Two observers used consensus to grade the presence of CSF flow at nine different sites for each study. RESULTS: At 14 of the 178 matched sites, which could be assessed by both SPAMM and cine PC, SPAMM CSF flow grade was higher than that of cine PC. At a further 14/178 matched sites, the cine PC grade was higher than that of SPAMM. There was definite CSF flow at 113/182 (62%) of all the cine PC sites assessed, and 110/181 (61%) of all SPAMM sites assessed whilst 108/198 (54%) of FSE T2-weighted image sites demonstrated flow voids. Cine PC grades were higher than SPAMM at the cerebral aqueduct (P < 0.05, Wilcoxon sign rank test). Definite CSF flow within the anterior third ventricle was present in 4/5 (SPAMM) and 3/5 (cine PC) successful NTVs, 0/2 (SPAMM and cine PC) unsuccessful NTVs and 1/10 (SPAMM and cine PC) patients without NTV. CONCLUSION: SPAMM provides a comparable assessment of intracranial CSF flow to that of cine phase contrast imaging at all CSF sites except the cerebral aqueduct. Connor, S.E.J. et al. (2001)

  9. Evaluation of the menisci of the knee joint using three-dimensional isotropic resolution fast spin-echo imaging: diagnostic performance in 250 patients with surgical correlation

    International Nuclear Information System (INIS)

    Kijowski, Richard; Davis, Kirkland W.; Blankenbaker, Donna G.; Woods, Michael A.; De Smet, Arthur A.; Munoz del Rio, Alejandro

    2012-01-01

    To compare the diagnostic performance of FSE-Cube, a three-dimensional isotropic resolution intermediate-weighted fast spin-echo sequence, with a routine magnetic resonance (MR) protocol at 3.0 T for detecting surgically confirmed meniscal tears of the knee joint in a large patient population. FSE-Cube was added to a routine MR protocol performed at 3.0 T on 250 patients who underwent subsequent knee arthroscopy. Three radiologists independently used FSE-Cube during one review and the routine MR protocol during a second review to detect medial and lateral meniscal tears. Using arthroscopy as the reference standard, the sensitivity and specificity of FSE-Cube and the routine MR protocol for detecting meniscal tears were determined for all readers combined. McNemar's tests were used to compare diagnostic performance between FSE-Cube and the routine MR protocol. FSE-cube and the routine MR protocol had similar sensitivity (95.5%/95.3% respectively, P=0.94) and similar specificity (69.8%/74.0% respectively, P=0.10) for detecting 156 medial meniscal tears. FSE-Cube had significantly lower sensitivity than the routine MR protocol (79.4%/85.0% respectively, P < 0.05) but similar specificity (83.9%/82.2% respectively, P=0.37) for detecting 89 lateral mensical tears. For lateral meniscal tears, FSE-Cube had significantly lower sensitivity (P < 0.05) than the routine MR protocol for detecting 19 root tears but similar sensitivity (P=0.17-1.00) for detecting all other tear locations and types. FSE-Cube had diagnostic performance similar to a routine MR protocol for detecting meniscal tears except for a significantly lower sensitivity for detecting lateral meniscal tears, which was mainly attributed to decreased ability to identify lateral meniscus root tears. (orig.)

  10. High-resolution T2-weighted MR imaging of the inner ear using a long echo-train-length 3D fast spin-echo sequence

    International Nuclear Information System (INIS)

    Naganawa, S.; Yamakawa, K.; Fukatsu, H.; Ishigaki, T.; Nakashima, T.; Sugimoto, H.; Aoki, I.; Miyazaki, M.; Takai, H.

    1996-01-01

    The purpose of this study was to assess the value of a long echo-train-length 3D fast spin-echo (3D-FSE) sequence in visualizing the inner ear structures. Ten normal ears and 50 patient ears were imaged on a 1.5T MR unit using a head coil. Axial high-resolution T2-weighted images of the inner ear and the internal auditory canal (IAC) were obtained in 15 min. In normal ears the reliability of the visualization for the inner ear structures was evaluated on original images and the targeted maximum intensity projection (MIP) images of the labyrinth. In ten normal ears, 3D surface display (3D) images were also created and compared with MIP images. On the original images the cochlear aqueduct, the vessels in the vicinity of the IAC, and more than three branches of the cranial nerves were visualized in the IAC in all the ears. The visibility of the endolympathic duct was 80%. On the MIP images the visibility of the three semicircular canals, anterior and posterior ampulla, and of more than two turns of the cochlea was 100%. The MIP images and 3D images were almost comparable. The visibility of the endolymphatic duct was 80% in normal ears and 0% in the affected ears of the patients with Meniere's disease (p<0.001). In one patient ear a small intracanalicular tumor was depicted clearly. In conclusion, the long echo train length T2-weighted 3D-FSE sequence enables the detailed visualization of the tiny structures of the inner ear and the IAC within a clinically acceptable scan time. Furthermore, obtaining a high contrast between the soft/bony tissue and the cerebrospinal/endolymph/perilymph fluid would be of significant value in the diagnosis of the pathologic conditions around the labyrinth and the IAC. (orig.)

  11. BLADE acquisition method improves T2-weighted MR images of the female pelvis compared with a standard fast spin-echo sequence

    International Nuclear Information System (INIS)

    Fujimoto, Koji; Koyama, Takashi; Tamai, Ken; Morisawa, Nobuko; Okada, Tomohisa; Togashi, Kaori

    2011-01-01

    Purpose: To investigate feasibility of the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER or BLADE) T2-weighted imaging (T2WI) of the female pelvis by comparing it with standard fast spin-echo T2WI (STD-T2WI). Materials and methods: Sagittal STD-T2WI and BLADE-T2WI of the female pelvis were performed with (36 patients) or without (15 patients) administration of butylscopolamine on a 1.5 T MR unit. Two radiologists independently rated depiction of the uterus, ovary, intestines, bladder, gynecological lesions, overall quality, and artifacts using a four-point scale. Results were compared between STD-T2WI vs. BLADE-T2WI either with (B+) or without (B−) administration of butylscopolamine, BLADE-T2WI (B−) vs. BLADE-T2WI (B+), and STD-T2WI (B+) vs. BLADE-T2WI (B−). Results: When butylscopolamine was administrated, depiction of the uterus, ovary, intestines, gynecological lesions, and overall image quality was rated higher and artifacts were rated fewer for BLADE-T2WI with significance compared with STD-T2WI. When the drug was not administrated, significant difference was observed in depiction of the lesion, overall quality, and artifacts. Depiction of the uterus, gynecological lesion, and overall quality was rated significantly higher and artifacts were fewer in BLADE-T2WI (B+) than in BLADE-T2WI (B−). Conclusion: BLADE method was feasible for female pelvic MRI, with best image quality in BLADE-T2WI (B+).

  12. Basketball Shot Types and Shot Success in Different Levels of Competitive Basketball

    OpenAIRE

    Er?ulj, Frane; ?trumbelj, Erik

    2015-01-01

    The purpose of our research was to investigate the relative frequencies of different types of basketball shots (above head, hook shot, layup, dunk, tip-in), some details about their technical execution (one-legged, two-legged, drive, cut, …), and shot success in different levels of basketball competitions. We analysed video footage and categorized 5024 basketball shots from 40 basketball games and 5 different levels of competitive basketball (National Basketball Association (NBA), Euroleague,...

  13. Shot Noise Suppression in a Quantum Point Contact with Short Channel Length

    International Nuclear Information System (INIS)

    Jeong, Heejun

    2015-01-01

    An experimental study on the current shot noise of a quantum point contact with short channel length is reported. The experimentally measured maximum energy level spacing between the ground and the first excited state of the device reached up to 7.5 meV, probably due to the hard wall confinement by using shallow electron gas and sharp point contact geometry. The two-dimensional non-equilibrium shot noise contour map shows noise suppression characteristics in a wide range of bias voltage. Fano factor analysis indicates spin-polarized transport through a short quantum point contact. (paper)

  14. Qualitative and quantitative assessment of wrist MRI at 3.0T - Comparison between isotropic 3D turbo spin echo and isotropic 3D fast field echo and 2D turbo spin echo

    International Nuclear Information System (INIS)

    Jung, Jee Young; Yoon, Young Cheol; Jung, Jin Young; Choe, Bong-Keun

    2013-01-01

    Background: Isotropic three-dimensional (3D) magnetic resonance imaging (MRI) has been applied to various joints. However, comparison for image quality between isotropic 3D MRI and two-dimensional (2D) turbo spin echo (TSE) sequence of the wrist at a 3T MR system has not been investigated. Purpose: To compare the image quality of isotropic 3D MRI including TSE intermediate-weighted (VISTA) sequence and fast field echo (FFE) sequence with 2D TSE intermediate-weighted sequence of the wrist joint at 3.0 T. Material and Methods: MRI was performed in 10 wrists of 10 healthy volunteers with isotropic 3D sequences (VISTA and FFE) and 2D TSE intermediate-weighted sequences at 3.0 T. The signal-to-noise ratio (SNR) was obtained by imaging phantom and noise-only image. Contrast ratios (CRs) were calculated between fluid and cartilage, triangular fibrocartilage complex (TFCC), and the scapholunate ligament. Two radiologists independently assessed the visibility of TFCC, carpal ligaments, cartilage, tendons and nerves with a four-point grading scale. Statistical analysis to compare CRs (one way ANOVA with a Tukey test) and grades of visibility (Kruskal-Wallis test) between three sequences and those for inter-observer agreement (kappa analysis) were performed. Results: The SNR of 2D TSE (46.26) was higher than those of VISTA (23.34) and 3D FFE (19.41). CRs were superior in 2D TSE than VISTA (P = 0.02) for fluid-cartilage and in 2D TSE than 3D FFE (P < 0.01) for fluid-TFCC. The visibility was best in 2D TSE (P < 0.01) for TFCC and in VISTA (P = 0.01) for scapholunate ligament. The visibility was better in 2D TSE and 3D FFE (P 0.04) for cartilage and in VISTA than 3D FFE (P < 0.01) for TFCC. The inter-observer agreement for the visibility of anatomic structures was moderate or substantial. Conclusion: Image quality of 2D TSE was superior to isotropic 3D MR imaging for cartilage, and TFCC. 3D FFE has better visibility for cartilage than VISTA and VISTA has superior visibility for

  15. Qualitative and quantitative assessment of wrist MRI at 3.0T - Comparison between isotropic 3D turbo spin echo and isotropic 3D fast field echo and 2D turbo spin echo

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jee Young [Dept. of Radiology, Chungang Univ. Hospital, School of Medicine, Chungang Univ. (Korea, Republic of); Yoon, Young Cheol [Dept. of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan Univ. (Korea, Republic of)], e-mail: ycyoon@skku.edu; Jung, Jin Young [Dept. of Radiology, Saint Paul' s Hospital, The Catholic Univ. (Korea, Republic of); Choe, Bong-Keun [Dept. of Preventive Medicine, School of Medicine, Kyung Hee Univ., Seoul (Korea, Republic of)

    2013-04-15

    Background: Isotropic three-dimensional (3D) magnetic resonance imaging (MRI) has been applied to various joints. However, comparison for image quality between isotropic 3D MRI and two-dimensional (2D) turbo spin echo (TSE) sequence of the wrist at a 3T MR system has not been investigated. Purpose: To compare the image quality of isotropic 3D MRI including TSE intermediate-weighted (VISTA) sequence and fast field echo (FFE) sequence with 2D TSE intermediate-weighted sequence of the wrist joint at 3.0 T. Material and Methods: MRI was performed in 10 wrists of 10 healthy volunteers with isotropic 3D sequences (VISTA and FFE) and 2D TSE intermediate-weighted sequences at 3.0 T. The signal-to-noise ratio (SNR) was obtained by imaging phantom and noise-only image. Contrast ratios (CRs) were calculated between fluid and cartilage, triangular fibrocartilage complex (TFCC), and the scapholunate ligament. Two radiologists independently assessed the visibility of TFCC, carpal ligaments, cartilage, tendons and nerves with a four-point grading scale. Statistical analysis to compare CRs (one way ANOVA with a Tukey test) and grades of visibility (Kruskal-Wallis test) between three sequences and those for inter-observer agreement (kappa analysis) were performed. Results: The SNR of 2D TSE (46.26) was higher than those of VISTA (23.34) and 3D FFE (19.41). CRs were superior in 2D TSE than VISTA (P = 0.02) for fluid-cartilage and in 2D TSE than 3D FFE (P < 0.01) for fluid-TFCC. The visibility was best in 2D TSE (P < 0.01) for TFCC and in VISTA (P = 0.01) for scapholunate ligament. The visibility was better in 2D TSE and 3D FFE (P 0.04) for cartilage and in VISTA than 3D FFE (P < 0.01) for TFCC. The inter-observer agreement for the visibility of anatomic structures was moderate or substantial. Conclusion: Image quality of 2D TSE was superior to isotropic 3D MR imaging for cartilage, and TFCC. 3D FFE has better visibility for cartilage than VISTA and VISTA has superior visibility for

  16. Fast MR imaging and ultrafast MR imaging of fetal central nervous system abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Shakudo, Miyuki; Manabe, Takao; Murata, Katsuko; Matsuo, Ryoichi; Oda, Junro [Osaka City General Hospital (Japan); Inoue, Yuichi; Mochizuki, Kunizo; Yamada, Ryusaku

    2001-12-01

    The aims of this study were two: to compare the efficacy of fast MRI (breath-hold fast spin-echo T2-weighted and fast gradient-echo T1-weighted sequence) and ultrafast MRI (half-Fourier acquisition single-shot turbo spin-echo sequence) in evaluation of fetal central nervous system (CNS) abnormalities at late gestational age, and to compare the capability of fast MRI and ultrafast MRI to assess fetal CNS abnormalities with that of prenatal ultrasonography (US). Forty-nine women with fetuses at gestational ages of 26-39 weeks underwent fast MRI (29 patients) or ultrafast MRI (20 patients). In detection of motion artifact, visualization of the lateral and 4th ventricles, and differentiation between gray and white matter in cerebral hemispheres, ultrafast MRI was significantly superior to fast MRI (p<0.0001, Mann-Whitney U test). In 25 of 43 cases, US and MR diagnoses were the same and consistent with postnatal diagnosis. In 10 of 43 cases, MRI demonstrated findings additional to or different from those of US, and MR findings were confirmed postnatally. MRI, particularly ultrafast MRI, is useful for demonstrating CNS abnormalities in situations in which US is suggestive but not definitive. (author)

  17. SunShot Initiative Portfolio Book 2014

    Energy Technology Data Exchange (ETDEWEB)

    Solar Energy Technologies Office

    2014-05-01

    The 2014 SunShot Initiative Portfolio Book outlines the progress towards the goals outlined in the SunShot Vision Study. Contents include overviews of each of SunShot’s five subprogram areas, as well as a description of every active project in the SunShot’s project portfolio as of May 2014.

  18. A review on the basketball jump shot.

    Science.gov (United States)

    Okazaki, Victor H A; Rodacki, André L F; Satern, Miriam N

    2015-06-01

    The ability to shoot an effective jump shot in the sport of basketball is critical to a player's success. In an attempt to better understand the aspects related to expert performance, researchers have investigated successful free throws and jump shots of various basketball players and identified movement variables that contribute to their success. The purpose of this study was to complete a systematic review of the scientific literature on the basketball free throw and jump shot for the purpose of revealing the critical components of shooting that coaches, teachers, and players should focus on when teaching, learning, practising, and performing a jump shot. The results of this review are presented in three sections: (a) variables that affect ball trajectory, (b) phases of the jump shot, and (c) additional variables that influence shooting.

  19. Hepatitis A and the Vaccine (Shot) to Prevent It

    Science.gov (United States)

    ... Resources Maternal Immunization Resources Related Links Vaccines & Immunizations Hepatitis A and the Vaccine (Shot) to Prevent It ... the vaccine. Why should my child get the hepatitis A shot? The hepatitis A shot: Protects your ...

  20. Shot noise of charge current in a quantum dot responded by rotating and oscillating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hong-Kang, E-mail: zhaohonk@yahoo.com; Zou, Wei-Ke [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Chen, Qiao [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)

    2014-09-07

    We have investigated the shot noise and Fano factor of the dynamic spin-polarized quantum dot under the perturbations of a rotating magnetic field (RMF), and an oscillating magnetic field (OMF) by employing the non-equilibrium Green's function approach. The shot noise is enhanced from sub-Poissonian to super-Poissonian due to the application of RMF and OMF, and it is controlled sensitively by the tilt angle θ of RMF. The magnitude of shot noise increases as the photon energy ℏω of OMF increases, and its valley eventually is reversed to peaks as the photon energy is large enough. Double-peak structure of Fano factor is exhibited as the frequency of OMF increases to cover a large regime. The Zeeman energy μ{sub 0}B{sub 0} acts as an effective gate bias to exhibit resonant behavior, and novel peak emerges associated with the applied OMF.

  1. A fundamental study of non-contrast enhanced MR angiography using ECG gated-3D fast spin echo at 3.0 T

    International Nuclear Information System (INIS)

    Nakato, Kengo; Hiai, Yasuhiro; Tomiguchi, Seiji

    2010-01-01

    Contrast-enhanced magnetic resonance angiography (CE-MRA) is frequently performed in body and extremity studies because of its superior ability to detect the vascular stenosis. However, nephrotoxicity of the contrast medium has been emphasized in recent years. Non-contrast MRA using the three-dimensional electrocardiogram-synchronized fast spin echo method (fresh blood imaging (FBI), non-contrast MRA of arteries and veins (NATIVE) and triggered acquisition non contrast enhancement MRA (TRANCE)) is recommended as a substitute for CE-MRA. There are a few reports in the literature that evaluate the detectability of vascular stenosis using non-contrast MRA on 3.0 T MRI. The purpose of this study was to evaluate the detectability of vascular stenosis using non-contrast MRA at 3.0 T with an original vascular phantom. The vascular phantom consisted of silicon tubes. 30% and 70% stenosis of luminal diameter were made. Each silicon tube connected a pump producing a pulsatile flow. A flowing material to was used in this study to show the similarity of the intensity to blood on MRI. MRA without a contrast medium (NATIVE sequence) were performed in the vascular phantom by changing the image matrix, static magnetic field strength and flow velocity. In addition, the NATIVE sequence was used with or without flow compensation. Vascular stenosis was quantitatively estimated by measurement of the signal intensities in non-contrast MRA images. MRA with NATIVE sequence demonstrated an accurate estimation of 30% vascular stenosis at slow flow velocity. However, 30% stenosis was overestimated in cases of high flow velocity. Estimation was improved by using a flow compensation sequence. 70% stenosis was overestimated on MRA with NATIVE sequence. Estimation of 70% stenosis was improved by using a flow compensation sequence. Accurate estimation of vascular stenosis in MRA with a NATIVE sequence is improved by using the flow compensation technique. MRA with NATIVE sequence is considered to

  2. Evaluation of cardiac function using multi-shot echo planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Tadashi; Tanitame, Nobuko; Hata, Ryoichiro; Hirai, Nobuhiko; Ikeda, Midori; Ono, Chiaki; Fukuoka, Haruhito; Ito, Katsuhide [Hiroshima Univ. (Japan). School of Medicine

    1998-01-01

    In this study, we performed multi-shot echo planar imaging (8 shot, TR/TE/FL=55 ms/18 ms/60 degrees) and k-space segmented fast gradient echo sequence (8 views per segment, TR/TE/FL=9.9 ms/1.8 ms/30 degrees) to assess cardiac function in healthy volunteers. Transaxial sections of the entire heart were obtained with both sequences in ECG triggered, breath hold, and with a 256 x 128 matrix. Resulting temporal resolution was 55 ms for echo planar imaging, and 71 ms for k-space segmented fast gradient echo sequence, respectively. Ventricular volume and ejection fraction of both ventricles and left ventricular mass obtained with multi-shot echo planar imaging were assessed in comparison with k-space segmented fast gradient echo sequence. Measurements of left ventricular volume, ejection fraction and mass obtained with multi-shot echo planar imaging demonstrated close correlation with those obtained with k-space segmented fast gradient echo sequence. Right ventricular volumes obtained with echo planar imaging were significantly higher than those obtained with k-space segmented fast gradient echo sequence. This tendency is considered to be due to differing contrast between right ventricular myocardium and fat tissue observed with echo planar imaging relative to that observed with fast gradient echo sequence, because fat suppression is always performed in echo planar images. Multi-shot echo planar imaging can be a reliable tool for measurement of cardiac functional parameters, although wall motion analysis of the left ventricle requires higher temporal resolution and a short axial section. (K.H.)

  3. 78 FR 65573 - Migratory Bird Hunting; Application for Approval of Copper-Clad Iron Shot and Fluoropolymer Shot...

    Science.gov (United States)

    2013-11-01

    ... shot, causing sediment/soil and water contamination and the direct ingestion of shot by aquatic and.... Shot[supreg]. * Coatings of copper, nickel, tin, zinc, zinc chloride, zinc chrome, and fluoropolymers...

  4. Basketball shot types and shot success in different levels of competitive basketball.

    Directory of Open Access Journals (Sweden)

    Frane Erčulj

    Full Text Available The purpose of our research was to investigate the relative frequencies of different types of basketball shots (above head, hook shot, layup, dunk, tip-in, some details about their technical execution (one-legged, two-legged, drive, cut, …, and shot success in different levels of basketball competitions. We analysed video footage and categorized 5024 basketball shots from 40 basketball games and 5 different levels of competitive basketball (National Basketball Association (NBA, Euroleague, Slovenian 1st Division, and two Youth basketball competitions. Statistical analysis with hierarchical multinomial logistic regression models reveals that there are substantial differences between competitions. However, most differences decrease or disappear entirely after we adjust for differences in situations that arise in different competitions (shot location, player type, and attacks in transition. Differences after adjustment are mostly between the Senior and Youth competitions: more shots executed jumping or standing on one leg, more uncategorised shot types, and more dribbling or cutting to the basket in the Youth competitions, which can all be attributed to lesser technical and physical ability of developing basketball players. The two discernible differences within the Senior competitions are that, in the NBA, dunks are more frequent and hook shots are less frequent compared to European basketball, which can be attributed to better athleticism of NBA players. The effect situational variables have on shot types and shot success are found to be very similar for all competitions.

  5. Basketball shot types and shot success in different levels of competitive basketball.

    Science.gov (United States)

    Erčulj, Frane; Štrumbelj, Erik

    2015-01-01

    The purpose of our research was to investigate the relative frequencies of different types of basketball shots (above head, hook shot, layup, dunk, tip-in), some details about their technical execution (one-legged, two-legged, drive, cut, …), and shot success in different levels of basketball competitions. We analysed video footage and categorized 5024 basketball shots from 40 basketball games and 5 different levels of competitive basketball (National Basketball Association (NBA), Euroleague, Slovenian 1st Division, and two Youth basketball competitions). Statistical analysis with hierarchical multinomial logistic regression models reveals that there are substantial differences between competitions. However, most differences decrease or disappear entirely after we adjust for differences in situations that arise in different competitions (shot location, player type, and attacks in transition). Differences after adjustment are mostly between the Senior and Youth competitions: more shots executed jumping or standing on one leg, more uncategorised shot types, and more dribbling or cutting to the basket in the Youth competitions, which can all be attributed to lesser technical and physical ability of developing basketball players. The two discernible differences within the Senior competitions are that, in the NBA, dunks are more frequent and hook shots are less frequent compared to European basketball, which can be attributed to better athleticism of NBA players. The effect situational variables have on shot types and shot success are found to be very similar for all competitions.

  6. Spectrometer for shot-to-shot photon energy characterization in the multi-bunch mode of the free electron laser at Hamburg

    International Nuclear Information System (INIS)

    Palutke, S.; Wurth, W.; Gerken, N. C.; Mertens, K.; Klumpp, S.; Martins, M.; Mozzanica, A.; Schmitt, B.; Wunderer, C.; Graafsma, H.; Meiwes-Broer, K.-H.

    2015-01-01

    The setup and first results from commissioning of a fast online photon energy spectrometer for the vacuum ultraviolet free electron laser at Hamburg (FLASH) at DESY are presented. With the use of the latest advances in detector development, the presented spectrometer reaches readout frequencies up to 1 MHz. In this paper, we demonstrate the ability to record online photon energy spectra on a shot-to-shot base in the multi-bunch mode of FLASH. Clearly resolved shifts in the mean wavelength over the pulse train as well as shot-to-shot wavelength fluctuations arising from the statistical nature of the photon generating self-amplified spontaneous emission process have been observed. In addition to an online tool for beam calibration and photon diagnostics, the spectrometer enables the determination and selection of spectral data taken with a transparent experiment up front over the photon energy of every shot. This leads to higher spectral resolutions without the loss of efficiency or photon flux by using single-bunch mode or monochromators

  7. Geotomography using refraction fan shots

    Science.gov (United States)

    Pavlis, Gary L.

    1986-05-01

    This paper introduces a new method for imaging lateral variations in the seismic velocity structure of the earth. The discussion is centered around the geometry of a pilot experiment conducted in Salt Creek valley near Bloomington, Indiana, but the methodology is more general in scope. In the pilot experiment, 24 explosions were fired at equal intervals around a circular area 190 m in diameter and recorded by geophones positioned diametrically opposite the source. Travel time residuals for the fan shots are inverted to estimate lateral velocity variations in a two-dimensional, bowl-shaped image reconstruction region under the circular array. A simple damped least squares inversion worked poorly when delay times were included as additional free parameters in the solution. A parameter separation procedure was more successful. The value of these data in determining structure was analyzed using synthetic data and resolving power calculations. Structure could be determined to high accuracy with little distortion in the center of the circular region where rays crossed from all directions, but results were comparatively poor near the fringes of the region where angular coverage was more limited. Inversion of the Salt Creek data indicates the observed variations in the residuals can be almost completely accounted for by variations in the weathered layer. The refractor velocity is nearly constant to a precision of 0.005 s/km, but there is a suggestion of a slight velocity decrease in the refractor at higher elevations above the water table.

  8. The single-shot opto-digitizer

    International Nuclear Information System (INIS)

    Nail, M.; Gibert, Ph.

    2000-01-01

    Laser-plasma experiments need to measure signals provided either by X-ray, photonic or neutronic detector. The measurement should have 50 GHz bandwidth and up to several hundred of Giga-Hertz for sub picosecond plasmas. For this purpose, a 35 GHz single shot opto-digitizer (10 ps risetime) has been studied and built. The device is made up of a 50 ohms microstrip propagation line, periodically lined by 100 sampled gates. The propagation line is long enough to measure a 400 ps duration. The sampling rate is 250 Gsa/s (every 4 ps). The sampled gates are made with fast recombining photo-material and turn on by a subpicosecond laser pulse which is synchronized exactly with the analysed phenomena. Every gate is recording to a storing capacitor. After the recording, every capacitor charge is needed to built the signal that was displayed on the propagation line. The dynamic range of measurement is 47 for the entire device. The device can measure positive or negative signals from 1.5 to 70 Volts. To increase the bandwidth, two another kinds of opto-digitizer were studied: one is a buried stripline with 56 GHz band width, the other a 70 GHz coplanar transmission line. For the purpose of subpicosecond plasmas, a 30 coplanar waveguide opto-digitizer was studied. Characteristics are as followed: window of measurement 40 ps, sampling rate 1 ps, bandwidth 230 GHz. Finally, a bundle of optical fibers was used to propagate the laser beam on semiconductor gates. If the gates are lighted at the same time, i.e. if the optical fibers have the same length, we get a simultaneous addressing. By using different lengths of optical fibers, we can do a sequential addressing. So, the sampling rate becomes a combination of the distance between two adjacent sampled channels, and the difference in length of optical fibers. (author)

  9. Shot noise enhancement from non-equilibrium plasmons in Luttinger liquid junctions

    International Nuclear Information System (INIS)

    Kim, Jaeuk U; Kinaret, Jari M; Choi, Mahn-Soo

    2005-01-01

    We consider a quantum wire double junction system with each wire segment described by a spinless Luttinger model, and study theoretically shot noise in this system in the sequential tunnelling regime. We find that the non-equilibrium plasmonic excitations in the central wire segment give rise to qualitatively different behaviour compared to the case with equilibrium plasmons. In particular, shot noise is greatly enhanced by them, and exceeds the Poisson limit. We show that the enhancement can be explained by the emergence of several current-carrying processes, and that the effect disappears if the channels effectively collapse to one because of fast plasmon relaxation processes, for example

  10. 3D hybrid profile order technique in a single breath-hold 3D T2-weighted fast spin-echo sequence: Usefulness in diagnosis of small liver lesions.

    Science.gov (United States)

    Hirata, Kenichiro; Nakaura, Takeshi; Okuaki, Tomoyuki; Tsuda, Noriko; Taguchi, Narumi; Oda, Seitaro; Utsunomiya, Daisuke; Yamashita, Yasuyuki

    2018-01-01

    We compared the efficacy of three-dimensional (3D) isotropic T2-weighted fast spin-echo imaging using a 3D hybrid profile order technique with a single-breath-hold (3D-Hybrid BH) with a two-dimensional (2D) T2-weighted fast spin-echo conventional respiratory-gated (2D-Conventional RG) technique for visualising small liver lesions. This study was approved by our institutional review board. The requirement to obtain written informed consent was waived. Fifty patients with small (≤15mm) hepatocellular carcinomas (HCC) (n=26), or benign cysts (n=24), had undergone hepatic MRI including both 2D-Conventional RG and 3D-Hybrid BH. We calculated the signal-to-noise ratio (SNR) and tumour-to-liver contrast (TLC). The diagnostic performance of the two protocols was analysed. The image acquisition time was 89% shorter with the 3D-Hybrid BH than with 2D-Conventional RG. There was no significant difference in the SNR between the two protocols. The area under the curve (AUC) of the TLC was significantly higher on 3D-Hybrid BH than on 2D-Conventional RG. The 3D-Hybrid BH sequence significantly improved diagnostic performance for small liver lesions with a shorter image acquisition time without sacrificing accuracy. Copyright © 2017. Published by Elsevier B.V.

  11. Degenerative disc disease of the lumbar spine: a prospective comparison of fast T1-weighted fluid-attenuated inversion recovery and T1-weighted turbo spin echo MR imaging

    International Nuclear Information System (INIS)

    Erdem, L. Oktay; Erdem, C. Zuhal; Acikgoz, Bektas; Gundogdu, Sadi

    2005-01-01

    Objective: To compare fast T1-weighted fluid-attenuated inversion recovery (FLAIR) and T1-weighted turbo spin-echo (TSE) imaging of the degenerative disc disease of the lumbar spine. Materials and methods: Thirty-five consecutive patients (19 females, 16 males; mean age 41 years, range 31-67 years) with suspected degenerative disc disease of the lumbar spine were prospectively evaluated. Sagittal images of the lumbar spine were obtained using T1-weighted TSE and fast T1-weighted FLAIR sequences. Two radiologists compared these sequences both qualitatively and quantitatively. Results: On qualitative evaluation, CSF nulling, contrast at the disc-CSF interface, the disc-spinal cord (cauda equina) interface, and the spinal cord (cauda equina)-CSF interface of fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P < 0.001). On quantitative evaluation of the first 15 patients, signal-to-noise ratios of cerebrospinal fluid of fast T1-weighted FLAIR imaging were significantly lower than those for T1-weighted TSE images (P < 0.05). Contrast-to-noise ratios of spinal cord/CSF and normal bone marrow/disc for fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P < 0.05). Conclusion: Results in our study have shown that fast T1-weighted FLAIR imaging may be a valuable imaging modality in the armamentarium of lumbar spinal T1-weighted MR imaging, because the former technique has definite superior advantages such as CSF nulling, conspicuousness of the normal anatomic structures and changes in the lumbar spinal discogenic disease and image contrast and also almost equally acquisition times

  12. Degenerative disc disease of the lumbar spine: a prospective comparison of fast T1-weighted fluid-attenuated inversion recovery and T1-weighted turbo spin echo MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Erdem, L. Oktay [Department of Radiology, Zonguldak Karaelmas University, School of Medicine, 6700 Kozlu, Zonguldak (Turkey)]. E-mail: sunarerdem@yahoo.com; Erdem, C. Zuhal [Department of Radiology, Zonguldak Karaelmas University, School of Medicine, 6700 Kozlu, Zonguldak (Turkey); Acikgoz, Bektas [Department of Neurosurgery, Zonguldak Karaelmas University, School of Medicine, Zonguldak (Turkey); Gundogdu, Sadi [Department of Radiology, Zonguldak Karaelmas University, School of Medicine, 6700 Kozlu, Zonguldak (Turkey)

    2005-08-01

    Objective: To compare fast T1-weighted fluid-attenuated inversion recovery (FLAIR) and T1-weighted turbo spin-echo (TSE) imaging of the degenerative disc disease of the lumbar spine. Materials and methods: Thirty-five consecutive patients (19 females, 16 males; mean age 41 years, range 31-67 years) with suspected degenerative disc disease of the lumbar spine were prospectively evaluated. Sagittal images of the lumbar spine were obtained using T1-weighted TSE and fast T1-weighted FLAIR sequences. Two radiologists compared these sequences both qualitatively and quantitatively. Results: On qualitative evaluation, CSF nulling, contrast at the disc-CSF interface, the disc-spinal cord (cauda equina) interface, and the spinal cord (cauda equina)-CSF interface of fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P < 0.001). On quantitative evaluation of the first 15 patients, signal-to-noise ratios of cerebrospinal fluid of fast T1-weighted FLAIR imaging were significantly lower than those for T1-weighted TSE images (P < 0.05). Contrast-to-noise ratios of spinal cord/CSF and normal bone marrow/disc for fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P < 0.05). Conclusion: Results in our study have shown that fast T1-weighted FLAIR imaging may be a valuable imaging modality in the armamentarium of lumbar spinal T1-weighted MR imaging, because the former technique has definite superior advantages such as CSF nulling, conspicuousness of the normal anatomic structures and changes in the lumbar spinal discogenic disease and image contrast and also almost equally acquisition times.

  13. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.; Letzring, S.; Skupsky, S.

    1993-01-01

    Our experimental efforts over the past 5 years have been aimed at cazrying out ICF shots with spin-polarized 0 fuel. We successfully prepared polarized 0 in HD, and solved the problems of loading target shells with our carefully prepared isotopic -rnixt.l.l?-es, polarizing them so that the 0 polarization remains metastably frozen-in for about half a day, and carrying out the various cold transfer requirements at Syracuse, where the target is prepared, and at Rochester, where the cold target is inserted fusion chamber. Upon shooting the accurately positioned unpolarized high density cold target, no neutron yield was observed. Inspection inside the OMEGA tank after the shot indicated the absence of neutron yield was dus to mal-timing or insufficient retraction rate of OMEGA'S fast shroud mechanism, resulting in interception of at least 20 of the 24 laser beams by the faulty shroud. In spits of this, all alements of the complex experiment we originally undertook have been successfully demonstrated, and the cold retrieval concepts and methods we developed are being utilized on the ICF upgrades at Rochester and at Livermore. In addition to the solution of the interface problems, we obtained novel results on polymer shell characteristics at low temperatures, and continuation of these experiments is c = ently supported by KLUP. Extensive additional mappings were ca=ied out of nuclear spin relaxation rates of H and D in solid HD in the temperature-magnetic field rangs of 0.01 to 4.2K and 0 - 13 Tesla. New phenomena were discovered, such as association of impurity clustering with very low temperature motion, and inequality of the growth-rate and decay-rate of the magnetization

  14. High-Fidelity Single-Shot Toffoli Gate via Quantum Control.

    Science.gov (United States)

    Zahedinejad, Ehsan; Ghosh, Joydip; Sanders, Barry C

    2015-05-22

    A single-shot Toffoli, or controlled-controlled-not, gate is desirable for classical and quantum information processing. The Toffoli gate alone is universal for reversible computing and, accompanied by the Hadamard gate, forms a universal gate set for quantum computing. The Toffoli gate is also a key ingredient for (nontopological) quantum error correction. Currently Toffoli gates are achieved by decomposing into sequentially implemented single- and two-qubit gates, which require much longer times and yields lower overall fidelities compared to a single-shot implementation. We develop a quantum-control procedure to construct a single-shot Toffoli gate for three nearest-neighbor-coupled superconducting transmon systems such that the fidelity is 99.9% and is as fast as an entangling two-qubit gate under the same realistic conditions. The gate is achieved by a nongreedy quantum control procedure using our enhanced version of the differential evolution algorithm.

  15. Resonance fluorescence and electron spin in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yong

    2009-11-18

    The work presented in this dissertation contains the first observation of spin-resolved resonance fluorescence from a single quantum dot and its application of direct measurement of electron spin dynamics. The Mollow triplet and the Mollow quintuplet, which are the hallmarks of resonance fluorescence, are presented as the non-spin-resolved and spin-resolved resonance fluorescence spectrum, respectively. The negligible laser background contribution, the near pure radiative broadened spectrum and the anti-bunching photon statistics imply the sideband photons are background-free and near transform-limited single photons. This demonstration is a promising step towards the heralded single photon generation and electron spin readout. Instead of resolving spectrum, an alternative spin-readout scheme by counting resonance fluorescence photons under moderate laser power is demonstrated. The measurements of n-shot time-resolved resonance fluorescence readout are carried out to reveal electron spin dynamics of the measurement induced back action and the spin relaxation. Hyperfine interaction and heavy-light hole mixing are identified as the relevant mechanisms for the back action and phonon-assistant spin-orbit interaction dominates the spin relaxation. After a detailed discussion on charge-spin configurations in coupled quantum dots system, the single-shot readout on electron spin are proposed. (orig.)

  16. Resonance fluorescence and electron spin in semiconductor quantum dots

    International Nuclear Information System (INIS)

    Zhao, Yong

    2009-01-01

    The work presented in this dissertation contains the first observation of spin-resolved resonance fluorescence from a single quantum dot and its application of direct measurement of electron spin dynamics. The Mollow triplet and the Mollow quintuplet, which are the hallmarks of resonance fluorescence, are presented as the non-spin-resolved and spin-resolved resonance fluorescence spectrum, respectively. The negligible laser background contribution, the near pure radiative broadened spectrum and the anti-bunching photon statistics imply the sideband photons are background-free and near transform-limited single photons. This demonstration is a promising step towards the heralded single photon generation and electron spin readout. Instead of resolving spectrum, an alternative spin-readout scheme by counting resonance fluorescence photons under moderate laser power is demonstrated. The measurements of n-shot time-resolved resonance fluorescence readout are carried out to reveal electron spin dynamics of the measurement induced back action and the spin relaxation. Hyperfine interaction and heavy-light hole mixing are identified as the relevant mechanisms for the back action and phonon-assistant spin-orbit interaction dominates the spin relaxation. After a detailed discussion on charge-spin configurations in coupled quantum dots system, the single-shot readout on electron spin are proposed. (orig.)

  17. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  18. Spin dynamics in electron synchrotrons

    International Nuclear Information System (INIS)

    Schmidt, Jan Felix

    2017-01-01

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  19. Nuclear moments, spins and charge radii of copper isotopes from N=28 to N=50 by collinear fast-beam laser spectroscopy

    CERN Document Server

    2002-01-01

    We aim at establishing an unambiguous spin determination of the ground and isomeric states in the neutron rich Cu-isotopes from A=72 up to A=78 and to measure the magnetic and quadrupole moments between the N=28 and N=50 shell closures. This study will provide information on the double-magicity of $^{56}$Ni and $^{78}$Ni, both at the extremes of nuclear stability. It will provide evidence on the suggested inversion of ground state spin around A$\\approx$74, due to the monopole migration of the $\\pi f_{5/2}$ level. The collinear laser spectroscopy technique will be used, which furthermore provides information on the changes in mean square charge radii between both neutron shell closures, probing a possible onset of deformation in this region.

  20. Spin-orbit mediated control of spin qubits

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A.S; Flensberg, Karsten

    2006-01-01

    We propose to use the spin-orbit interaction as a means to control electron spins in quantum dots, enabling both single-qubit and two-qubit operations. Very fast single-qubit operations may be achieved by temporarily displacing the electrons. For two-qubit operations the coupling mechanism is bas...... on a combination of the spin-orbit coupling and the mutual long-ranged Coulomb interaction. Compared to existing schemes using the exchange coupling, the spin-orbit induced coupling is less sensitive to random electrical fluctuations in the electrodes defining the quantum dots....

  1. Geometrical spin symmetry and spin

    International Nuclear Information System (INIS)

    Pestov, I. B.

    2011-01-01

    Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.

  2. SunShot Initiative Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    DOE Solar Energy Technologies Office

    2015-04-01

    The U.S. Department of Energy (DOE) SunShot Initiative is a collaborative national effort launched in 2011 that aggressively drives innovation to make solar energy fully cost competitive with traditional energy sources before the end of the decade. The SunShot fact sheet outlines goals and successes of the program as it works with private companies, universities, non-profit organizations, state and local governments, and national laboratories to drive down the cost of solar electricity to $0.06 per kilowatt-hour, without incentives, by the year 2020.

  3. Spin and tunneling dynamics in an asymmetrical double quantum dot with spin-orbit coupling: Selective spin transport device

    Science.gov (United States)

    Singh, Madhav K.; Jha, Pradeep K.; Bhattacherjee, Aranya B.

    2017-09-01

    In this article, we study the spin and tunneling dynamics as a function of magnetic field in a one-dimensional GaAs double quantum dot with both the Dresselhaus and Rashba spin-orbit coupling. In particular, we consider different spatial widths for the spin-up and spin-down electronic states. We find that the spin dynamics is a superposition of slow as well as fast Rabi oscillations. It is found that the Rashba interaction strength as well as the external magnetic field strongly modifies the slow Rabi oscillations which is particularly useful for implementing solid state selective spin transport device.

  4. Accurate and fast creep test for viscoelastic fluids using disk-probe-type and quadrupole-arrangement-type electromagnetically spinning systems

    Science.gov (United States)

    Hirano, Taichi; Sakai, Keiji

    2017-07-01

    Viscoelasticity is a unique characteristic of soft materials and describes its dynamic response to mechanical stimulations. A creep test is an experimental method for measuring the strain ratio/rate against an applied stress, thereby assessing the viscoelasticity of the materials. We propose two advanced experimental systems suitable for the creep test, adopting our original electromagnetically spinning (EMS) technique. This technique can apply a constant torque by a noncontact mechanism, thereby allowing more sensitive and rapid measurements. The viscosity and elasticity of a semidilute wormlike micellar solution were determined using two setups, and the consistency between the results was assessed.

  5. SnapShot: The Bacterial Cytoskeleton.

    Science.gov (United States)

    Fink, Gero; Szewczak-Harris, Andrzej; Löwe, Jan

    2016-07-14

    Most bacteria and archaea contain filamentous proteins and filament systems that are collectively known as the bacterial cytoskeleton, though not all of them are cytoskeletal, affect cell shape, or maintain intracellular organization. To view this SnapShot, open or download the PDF. Copyright © 2016. Published by Elsevier Inc.

  6. Shot noise of a quantum shuttle

    DEFF Research Database (Denmark)

    Novotny, Tomas; Donarini, Andrea; Flindt, Christian

    2004-01-01

    We formulate a theory for shot noise in quantum nanoelectromechanical systems. As a specific example, the theory is applied to a quantum shuttle, and the zero-frequency noise, measured by the Fano factor F, is computed. F reaches very low values (Fsimilar or equal to10(-2)) in the shuttling regim...

  7. Get Your Flu Shot!| NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: Flu Shot Get Your Flu Shot! Past Issues / Winter 2011 Table of Contents ... failure, or lung disease "For the 2010–2011 flu season, the flu vaccine provides protection against the ...

  8. Research of shot noise based on realistic nano-MOSFETs

    Directory of Open Access Journals (Sweden)

    Xiaofei Jia

    2017-05-01

    Full Text Available Experimental measurements and simulation results have shown that the dominant noise source of current noise changes from thermal noise to shot noise with scaling of MOSFET, and shot noise were suppressed by Fermi and Coulomb interactions. In this paper, Shot noise test system is established, and experimental results proved that shot noise were suppressed, and the expressions of shot noise in realistic nano-MOSFETs are derived with considering Fermi effect, Coulomb interaction and the combination of the both co-existence, respectively. On this basis, the variation of shot noise with voltage, temperature and source-drain doping were researched. The results we obtained are consistent with those from experiments and the theoretically explanation is given. At the same time, the shot noise test system is suitable for traditional nanoscale electronic components; the shot noise model is suitable for nanoscale MOSFET.

  9. What You Can Expect with a Cortisone Shot

    Science.gov (United States)

    ... should avoid before your cortisone shot. What you can expect During the cortisone shot Your doctor might ... ll then be positioned so that your doctor can easily insert the needle. The area around the ...

  10. Shot-to-shot reproducibility of a self-magnetically insulated ion diode

    International Nuclear Information System (INIS)

    Pushkarev, A. I.; Isakova, Yu. I.; Khailov, I. P.

    2012-01-01

    In this paper we present the analysis of shot to shot reproducibility of the ion beam which is formed by a self-magnetically insulated ion diode with an explosive emission graphite cathode. The experiments were carried out with the TEMP-4M accelerator operating in double-pulse mode: the first pulse is of negative polarity (300–500 ns, 100–150 kV), and this is followed by a second pulse of positive polarity (150 ns, 250–300 kV). The ion current density was 10–70 A/cm 2 depending on the diode geometry. The beam was composed from carbon ions (80%–85%) and protons. It was found that shot to shot variation in the ion current density was about 35%–40%, whilst the diode voltage and current were comparatively stable with the variation limited to no more than 10%. It was shown that focusing of the ion beam can improve the stability of the ion current generation and reduces the variation to 18%–20%. In order to find out the reason for the shot-to-shot variation in ion current density we examined the statistical correlation between the current density of the accelerated beam and other measured characteristics of the diode, such as the accelerating voltage, total current, and first pulse duration. The correlation between the ion current density measured simultaneously at different positions within the cross-section of the beam was also investigated. It was shown that the shot-to-shot variation in ion current density is mainly attributed to the variation in the density of electrons diffusing from the drift region into the A-K gap.

  11. Fast MR imaging for evaluating the pancreaticobiliary system

    International Nuclear Information System (INIS)

    Takehara, Yasuo

    1999-01-01

    Due to physiological movement clinical MR applications for abdominal organs got off to a very slow start compared to MR imaging of other organs. However, with recent cutting-edge hardware technologies such as high performance gradient systems and phased-array capability, as well as software innovations including short TR fast spoiled gradient recalled acquisition in the steady state (GRASS), snapshot imaging such as single shot fast spin echo sequence (SSFSE) and echo planar imaging (EPI), scan times have been further reduced to make breath-hold imaging clinically viable and to enable semi-fluoroscopic, kinematic imaging recognition. The elimination of physiological motion has contributed to the significant improvement in image quality, or more specifically, the physiological motion that had long been problematic has been turned into a source of physiological information about pancreaticobiliary pathologies. In this article, the author reviewed the current status of fast MR technologies for examining pancreaticobiliary pathologies, stressing the functional and physiological aspects of the corresponding anatomy. The technologies included secretin MRCP, which became a powerful tool when combined with kinematic imaging

  12. Shot-by-shot spectrum model for rod-pinch, pulsed radiography machines

    Directory of Open Access Journals (Sweden)

    Wm M. Wood

    2018-02-01

    Full Text Available A simplified model of bremsstrahlung production is developed for determining the x-ray spectrum output of a rod-pinch radiography machine, on a shot-by-shot basis, using the measured voltage, V(t, and current, I(t. The motivation for this model is the need for an agile means of providing shot-by-shot spectrum prediction, from a laptop or desktop computer, for quantitative radiographic analysis. Simplifying assumptions are discussed, and the model is applied to the Cygnus rod-pinch machine. Output is compared to wedge transmission data for a series of radiographs from shots with identical target objects. Resulting model enables variation of parameters in real time, thus allowing for rapid optimization of the model across many shots. “Goodness of fit” is compared with output from LSP Particle-In-Cell code, as well as the Monte Carlo Neutron Propagation with Xrays (“MCNPX” model codes, and is shown to provide an excellent predictive representation of the spectral output of the Cygnus machine. Improvements to the model, specifically for application to other geometries, are discussed.

  13. Shot-by-shot spectrum model for rod-pinch, pulsed radiography machines

    Science.gov (United States)

    Wood, Wm M.

    2018-02-01

    A simplified model of bremsstrahlung production is developed for determining the x-ray spectrum output of a rod-pinch radiography machine, on a shot-by-shot basis, using the measured voltage, V(t), and current, I(t). The motivation for this model is the need for an agile means of providing shot-by-shot spectrum prediction, from a laptop or desktop computer, for quantitative radiographic analysis. Simplifying assumptions are discussed, and the model is applied to the Cygnus rod-pinch machine. Output is compared to wedge transmission data for a series of radiographs from shots with identical target objects. Resulting model enables variation of parameters in real time, thus allowing for rapid optimization of the model across many shots. "Goodness of fit" is compared with output from LSP Particle-In-Cell code, as well as the Monte Carlo Neutron Propagation with Xrays ("MCNPX") model codes, and is shown to provide an excellent predictive representation of the spectral output of the Cygnus machine. Improvements to the model, specifically for application to other geometries, are discussed.

  14. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond

    Science.gov (United States)

    Epstein, R. J.; Mendoza, F. M.; Kato, Y. K.; Awschalom, D. D.

    2005-11-01

    Experiments on single nitrogen-vacancy (N-V) centres in diamond, which include electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby13C nuclear spin, show the potential of this spin system for solid-state quantum information processing. Moreover, N-V centre ensembles can have spin-coherence times exceeding 50 μs at room temperature. We have developed an angle-resolved magneto-photoluminescence microscope apparatus to investigate the anisotropic electron-spin interactions of single N-V centres at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic-field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin-level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighbouring `dark' nitrogen spins, otherwise undetected by photoluminescence. These results demonstrate the capability of our spectroscopic technique for measuring small numbers of dark spins by means of a single bright spin under ambient conditions.

  15. The time window of MRI of murine atherosclerotic plaques after administration of CB2 receptor targeted micelles: inter-scan variability and relation between plaque signal intensity increase and gadolinium content of inversion recovery prepared versus non-prepared fast spin echo

    NARCIS (Netherlands)

    te Boekhorst, B. C. M.; Bovens, S. M.; van de Kolk, C. W. A.; Cramer, M. J. M.; Doevendans, P. A. F. M.; ten Hove, M.; van der Weerd, L.; Poelmann, R.; Strijkers, G. J.; Pasterkamp, G.; van Echteld, C. J. A.

    2010-01-01

    Single fast spin echo scans covering limited time frames are mostly used for contrast-enhanced MRI of atherosclerotic plaque biomarkers. Knowledge on inter-scan variability of the normalized enhancement ratio of plaque (NER(plaque)) and relation between NER(plaque) and gadolinium content for

  16. Fast T1 mapping of the brain at high field using Look-Locker and fast imaging.

    Science.gov (United States)

    Jiang, Ke; Zhu, Yanjie; Jia, Sen; Wu, Yin; Liu, Xin; Chung, Yiu-Cho

    2017-02-01

    This study aims to develop and evaluate a new method for fast high resolution T1 mapping of the brain based on the Look-Locker technique. Single-shot turboflash sequence with high temporal acceleration is used to sample the recovery of inverted magnetization. Multi-slice interleaved acquisition within one inversion slab is used to reduce the number of inversion pulses and hence SAR. Accuracy of the proposed method was studied using simulation and validated in phantoms. It was then evaluated in healthy volunteers and stroke patients. In-vivo results were compared to values obtained by inversion recovery fast spin echo (IR-FSE) and literatures. With the new method, T 1 values in phantom experiments agreed with reference values with median error map was acquired in 3.35s and the T1 maps of the whole brain were acquired in 2min with two-slice interleaving, with a spatial resolution of 1.1×1.1×4mm 3 . The T 1 values obtained were comparable to those measured with IR-FSE and those reported in literatures. These results demonstrated the feasibility of the proposed method for fast T1 mapping of the brain in both healthy volunteers and stroke patients at 3T. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Beam and spin dynamics in the fast ramping storage ring ELSA: Concepts and measures to increase beam energy, current and polarization

    Science.gov (United States)

    Hillert, Wolfgang; Balling, Andreas; Boldt, Oliver; Dieckmann, Andreas; Eberhardt, Maren; Frommberger, Frank; Heiliger, Dominik; Heurich, Nikolas; Koop, Rebecca; Klarner, Fabian; Preisner, Oliver; Proft, Dennis; Pusch, Thorsten; Roth, André; Sauerland, Dennis; Schedler, Manuel; Schmidt, Jan Felix; Switka, Michael; Thiry, Jens-Peter; Wittschen, Jürgen; Zander, Sven

    2017-01-01

    The electron accelerator facility ELSA has been operated for almost 30 years serving nuclear physics experiments investigating the sub-nuclear structure of matter. Within the 12 years funding period of the collaborative research center SFB/TR 16, linearly and circularly polarized photon beams with energies up to more than 3 GeV were successfully delivered to photoproduction experiments. In order to fulfill the increasing demands on beam polarization and intensity, a comprehensive research and upgrade program has been carried out. Beam and spin dynamics have been studied theoretically and experimentally, and sophisticated new devices have been developed and installed. The improvements led to a significant increase of the available beam polarization and intensity. A further increase of beam energy seems feasible with the implementation of superconducting cavities.

  18. Optimized quantum sensing with a single electron spin using real-time adaptive measurements

    Science.gov (United States)

    Bonato, C.; Blok, M. S.; Dinani, H. T.; Berry, D. W.; Markham, M. L.; Twitchen, D. J.; Hanson, R.

    2016-03-01

    Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz-1/2 over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

  19. Comparative study between the Spin-echo and 3-D fast imaging techniques in the Knee evaluation with magnetic resonance. Estudio comparativo entre las tecnicas de Spin-Eco ecogradiente 3D, en la evaluacion de la rodilla con resonancia magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Oleaga Zufiria, L.; Ibaez Zubiarrain, A.; Grande Icaran, J.; Vela Martin, A.C.; Cintora Leon, E.; Grau Garcia, M.; Grande Icaran, D. (Hospital Civil de Bilbao. Servicio de Radiodiagnostico. Bilbao (Spain))

    1993-01-01

    We have carried out a retrospective analysis of the results of magnetic resonance (MR) studies in 20 patients, comparing two different sequences. We compared a 2-D spin-echo (SE2D) sequence with a 3-D fast imaging with steady-state precession (FISP3D) sequence in the attempt to compare the reliability of each in the detection of knee injuries. Arthroscopy was employed as a control technique. Our study revealed no statistically significant difference between the two sequences, although the overall sensitivity for the detection of meniscal lesions was slightly greater with the FISP3D sequence; however, the reliability in the detection of ruptures of the posterior cruciate ligament is less with this sequence than with the SE2D sequence. Both sequences showed very low sensitivity in the detection of hyaline cartilage injuries. (Author) 14 refs.

  20. Shot peening of doel 3 plant

    International Nuclear Information System (INIS)

    Slama, G.; Sort, M.

    1985-12-01

    The process implementation for DOEL consisted in: developing tooling and test procedures for an industrial application including ALARA considerations; qualifying process, tooling and procedures using representative conditions (full size mock-up, of steam generator channel head and associated working area); Establishing the reliability of tooling and procedures to comply permanently with the required criteria (chiefly Almen Intensity); and training and qualifying personnel. A variety of tests were performed by FRAMATOME and BELGATOM to qualify the process and characterize its effects on both inside and outside diameters of the tubes. These are: Mg Cl 2 ; 10% caustic tests at high temperature and pressure; tetrathionate; strain gauges and X rays stresses measurements; effects on precracked tubes; Leak tests after shot peening. The operation was performed at Doel in July 1985. Laboratory tests performed on mockups by FRAMATOME and BELGATOM could demonstrate that on tubes without cracks no difference was found between Eddy current signals from tubes shot-peened or not

  1. Shot peening speed measurements using lidar technology

    DEFF Research Database (Denmark)

    Angelou, Nikolas; Zhang, Xiaodan; Sjöholm, Mikael

    The shot peening technique is used for the surface modification of metallic components that are part of wind turbines, such as gears, bolts and blade coatings to prevent erosion. An important parameter of this technique is the dynamic energy of emitted shots. In this context the objective......, the risk of damaging the peening machine by installing an instrument inside the chamber during operation is eliminated by this approach. Laser anemometers are being researched and developed in the department of Wind Energy, mainly in the framework of the WindScanner.dk infrastructure project [1], but also...... validated and used in monitoring the wind conditions around wind turbines (wake and inflow), over complex terrain as well as offshore....

  2. Externally placed vs intravaginally positioned radio frequency coils for quantitative spin-spin relaxometry of ovarian follicular fluid

    International Nuclear Information System (INIS)

    Sarty, G.E.; Baerwald, A.R.; Loewy, J.; Pierson, R.A.

    2005-01-01

    To evaluate different imaging protocols, especially with respect to radio frequency (RF) receiver coil location, for Their suitability in providing least squares derived quantitative T 2 values of ovarian follicular fluid for investigations of basic ovarian physiology. Methods: The ovaries of 10 women were imaged via magnetic resonance imaging (MRI) using externally positioned and intravaginally placed RF receiver coils. Half-Fourier acquisition with single-shot turbo spin-echo (HASTE), multiple-echo T 2 , Dixon, turbo spin-echo, and 3-dimensional (3D) fast imaging with steady-state precession (FISP) and time-reversed FISP (PSIF) sequences were used. Quantitative T 2 nuclear spin relaxation rate information from the ovarian follicles between data acquired with the external and intravaginal coils were compared. Additionally, the amount of ovarian follicle and corpora lutea structural detail visible was qualitatively assessed. Results: The T 2 computations indicated that there was no difference in the follicular fluid T 2 values or in the heterogeneity (spatial variance) of the T 2 values between data acquired with the external RF coil and date acquired with the intravaginal RF coil. The best sequences for the visualization of ovarian internal structure were the 3D PSIF sequences and the multiple-echo T 2 -weighted images, confirming our earlier imaging work on excised cow ovaries. Conclusion: It is best to use an externally placed RF coil for quantitative MRI study of ovarian physiology given the lack of difference in quantitative T 2 information and the difficulty associated with imaging the ovaries using an intravaginal RF probe. (author)

  3. Beauty and science in a shot

    Science.gov (United States)

    Ciceri, Piera

    2017-04-01

    Taking pictures has become a daily action for young. Photography is an essential component of many areas of science, has played a crucial role in the study of anatomy, botany, archeology, ... Still today it is a "scientific tool" in the school textbooks: pictures describe, make reality larger or smaller, faster or slower, show evidence and experimental results. But a photograph has the ability to move, engage and inspire viewers. That means that a photograph can build an emotional bridge between science and people. People and students can get closer to science through beautiful, evocative and expressive shot. In this project students are involved in taking pictures with a scientific and aesthetic content looking around, setting an experiment, watching nature, playing with light, point of wiew, colors and perspective. They have to write a short text and a title that explains the scientific content, why and how they have taken the picture. Both description and title should let increase curiosity, could looks fun or stress artistic aspects. Student show their shots in an official public event in Milan managed by a committee of science and photograph experts and in a local event to parents and local community. "Shots of science" is a project promoted by the italian national association "Scienza under 18", the Physic Department of "Università degli Studi di Milano" and the "Museo di fotografia contemporanea" of Cinisello Balsamo (MI) that help students in discussing about scientific and artistic aspects of their shots. This project contributes to develop digital skills (such as to manage digital images, to share documents, to learn about copyright and creative commons license), communication skills (such as to write a caption, public speaking, to use a picture to communicate), collaboration skills (such as to work with pairs, to respect scheduled times, to be positive in giving and taking into account suggestions) and artistic skills (to learn how to compose a good

  4. Empathy in One-Shot Prisoner Dilemma

    OpenAIRE

    Rossi, Giulia; Tcheukam, Alain; Tembine, Hamidou

    2017-01-01

    Strategic decision making involves affective and cognitive functions like reasoning, cognitive and emotional empathy which may be subject to age and gender differences. However, empathy-related changes in strategic decision-making and their relation to age, gender and neuropsychological functions have not been studied widely. In this article, we study a one-shot prisoner dilemma from a psychological game theory viewpoint. Forty seven participants (28 women and 19 men), aged 18 to 42 years, we...

  5. Centrifugal shot blasting. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-07-01

    At the US Department of Energy (DOE) Fernald Environmental Management Project (FEMP), the Facilities Closure and Demolition Projects Integrated Remedial Design/Remedial Action (RD/RA) work plan calls for the removal of one inch (1 in) depth of concrete surface in areas where contamination with technetium-99 has been identified. This report describes a comparative demonstration between two concrete removal technologies: an innovative system using Centrifugal Shot Blasting (CSB) and a modified baseline technology called a rotary drum planer

  6. Osseointegration improvement by shot peening in titanium dental implants

    International Nuclear Information System (INIS)

    Aparicio, C.; Gil, F.J.; Planell, J.A.; Padros, A.; Peraire, C.

    1998-01-01

    In order to optimize the implant-bone fixation, different shot peening treatments with different shot particles (TiO 2 , Al 2 O 3 ; SiC) have been made. The influence that each type of shot particle has in the bone colonization on the different treatment surfaces has been determined by means of osteoblast-like cells culture. Commercially pure titanium discs have been shot peened. Their qualitative and quantitative surface roughness have been characterized; as well as their surface contamination caused by the shot particles. Particle size has also been determined, before and after the treatment, in order to evaluate their breaking averages. Finally, a TiO 2 shot particles manufacture process by sintering has been developed. The manufacture has been necessary since this type of shot particles are not available in the market with the adequate size. (Author) 10 refs

  7. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2017-01-01

    Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.

  8. Surface severe plastic deformation of AISI 304 via conventional shot peening, severe shot peening and repeening

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Okan, E-mail: unalokan78@gmail.com [Mechanical Engineering Department, Bartın University, Bartın 74100 (Turkey); Varol, Remzi [Mechanical Engineering Department, Suleyman Demirel University, Isparta 32200 (Turkey)

    2015-10-01

    Highlights: • CSP and SSP treatments transform austenite to metastable martensite structure. • Nanograin layer thickness after CSP and SSP is 8 μm and 22 μm, respectively. • Shot peening leads to carbon segregation from coarse to nano grain layer. • Repeening is an effective way to reduce surface roughness. - Abstract: Air blast conventional shot peening (CSP), severe shot peening (SSP) and repeening (RP) as a severe plastic deformation applications on AISI 304 austenitic stainless steel is addressed. Shot peened specimens are investigated based on optical, FESEM and digital microscope. The investigations present the austenite transformation to metastable martensite via mechanical twinning due to plastic deformation with high strain rates. It is found that SSP induces thicker nanograin layer with compared to CSP. In XRD studies, the austenite peaks broaden by means of severe shot peening and FWHM increase reveals the grain size reduction below 25 nm regimes on the surface. In EDAX line analysis of CSP specimen, carbon content increase has been detected from deformed layer through the nanocrystalline layer then the content reduces. The carbon segregation takes place due to the energy level distinction between dislocations and Fe−C bonds. 3d contour digital microscope studies and roughness investigations reveal that SSP has deleterious side effect on the surface roughness and surface flatness. However, RP is an effective way to reduce the surface roughness to reasonable values.

  9. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.; Letzring, S.; Skupsky, S.

    1993-01-01

    The experimental efforts over the past 5 years have been aimed at carrying out ICF shots with spin-polarized D fuel. The authors successfully prepared polarized D in HD, and solved the problems of loading target shells with their carefully prepared isotopic mixtures, polarizing them so that the D polarization remains metastably frozen-in for about half a day, and carrying out the various cold transfer requirements at Syracuse, where the target is prepared, and at Rochester, where the cold target is inserted into the OMEGA fusion chamber. A principal concern during this past year was overcoming difficulties encountered in maintaining the integrity of the fragile cold target during the multitude of cold-transfers required for the experiment. These difficulties arose from insufficient rigidity of the cold transfer systems, which were constrained to be of small diameter by the narrow central access bore of the dilution refrigerator, and were exacerbated by the multitude of required target shell manipulations between different environments, each with different coupling geometry, including target shell permeation, polarization, storage, transport, retrieval and insertion into OMEGA. The authors did solve all of these problems, and were able to position a cold, high density but unpolarized target with required precision in OMEGA. Upon shooting the accurately positioned unpolarized high density cold target, no neutron yield was observed. Inspection inside the OMEGA tank after the shot indicated the absence of neutron yield was due to mal-timing or insufficient retraction rate of OMEGA's fast shroud mechanism, resulting in interception of at least 20 of the 24 laser beams by the faulty shroud. In spite of this, all elements of the complex experiment the authors originally undertook have been successfully demonstrated, and the cold retrieval concepts and methods they developed are being utilized on the ICF upgrades at Rochester and at Livermore

  10. Femtosecond Single-Shot Imaging of Nanoscale Ferromagnetic Order in Co/Pd Multilayers using Resonant X-ray Holography

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianhan; Zhu, Diling; Benny Wu,; Graves, Catherine; Schaffert, Stefan; Rander, Torbjorn; Muller, leonard; Vodungbo, Boris; Baumier, Cedric; Bernstein, David P.; Brauer, Bjorn; Cros, Vincent; Jong, Sanne de; Delaunay, Renaud; Fognini, Andreas; Kukreja, Roopali; Lee, Sooheyong; Lopez-Flores, Victor; Mohanty, Jyoti; Pfau, Bastian; Popescu, 5 Horia

    2012-05-15

    We present the first single-shot images of ferromagnetic, nanoscale spin order taken with femtosecond x-ray pulses. X-ray-induced electron and spin dynamics can be outrun with pulses shorter than 80 fs in the investigated fluence regime, and no permanent aftereffects in the samples are observed below a fluence of 25 mJ/cm{sup 2}. Employing resonant spatially-muliplexed x-ray holography results in a low imaging threshold of 5 mJ/cm{sup 2}. Our results open new ways to combine ultrafast laser spectroscopy with sequential snapshot imaging on a single sample, generating a movie of excited state dynamics.

  11. Spin doctoring

    OpenAIRE

    Vozková, Markéta

    2011-01-01

    1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...

  12. Performance of a fast and high-resolution multi-echo spin-echo sequence for prostate T2 mapping across multiple systems.

    Science.gov (United States)

    van Houdt, Petra J; Agarwal, Harsh K; van Buuren, Laurens D; Heijmink, Stijn W T P J; Haack, Søren; van der Poel, Henk G; Ghobadi, Ghazaleh; Pos, Floris J; Peeters, Johannes M; Choyke, Peter L; van der Heide, Uulke A

    2018-03-01

    To evaluate the performance of a multi-echo spin-echo sequence with k-t undersampling scheme (k-t T 2 ) in prostate cancer. Phantom experiments were performed at five systems to estimate the bias, short-term repeatability, and reproducibility across all systems expressed with the within-subject coefficient of variation (wCV). Monthly measurements were performed on two systems for long-term repeatability estimation. To evaluate clinical repeatability, two T 2 maps (voxel size 0.8 × 0.8 × 3 mm 3 ; 5 min) were acquired at separate visits on one system for 13 prostate cancer patients. Repeatability was assessed per patient in relation to spatial resolution. T 2 values were compared for tumor, peripheral zone, and transition zone. Phantom measurements showed a small bias (median = -0.9 ms) and good short-term repeatability (median wCV = 0.5%). Long-term repeatability was 0.9 and 1.1% and reproducibility between systems was 1.7%. The median bias observed in patients was -1.1 ms. At voxel level, the median wCV was 15%, dropping to 4% for structures of 0.5 cm 3 . The median tumor T 2 values (79 ms) were significantly lower (P < 0.001) than in the peripheral zone (149 ms), but overlapped with the transition zone (91 ms). Reproducible T 2 mapping of the prostate is feasible with good spatial resolution in a clinically reasonable scan time, allowing reliable measurement of T 2 in structures as small as 0.5 cm 3 . Magn Reson Med 79:1586-1594, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Separating inverse spin Hall voltage and spin rectification voltage by inverting spin injection direction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenxu, E-mail: xwzhang@uestc.edu.cn; Peng, Bin; Han, Fangbin; Wang, Qiuru; Zhang, Wanli [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Soh, Wee Tee; Ong, Chong Kim [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore)

    2016-03-07

    We develop a method for universally resolving the important issue of separating the inverse spin Hall effect (ISHE) from the spin rectification effect (SRE) signal. This method is based on the consideration that the two effects depend on the spin injection direction: The ISHE is an odd function of the spin injection direction while the SRE is independent on it. Thus, the inversion of the spin injection direction changes the ISHE voltage signal, while the SRE voltage remains. It applies generally to analyzing the different voltage contributions without fitting them to special line shapes. This fast and simple method can be used in a wide frequency range and has the flexibility of sample preparation.

  14. Spin 1990

    International Nuclear Information System (INIS)

    Anton, Gisela

    1990-01-01

    The idea of the intrinsic angular momentum, or 'spin', of a particle has played an essential part in fundamental physics for more than 60 years, and its continuing importance was underlined at the 9th International Symposium on High Energy Spin Physics, held in September in Bonn.

  15. Spin 1990

    Energy Technology Data Exchange (ETDEWEB)

    Anton, Gisela

    1990-12-15

    The idea of the intrinsic angular momentum, or 'spin', of a particle has played an essential part in fundamental physics for more than 60 years, and its continuing importance was underlined at the 9th International Symposium on High Energy Spin Physics, held in September in Bonn.

  16. Spin tomography

    Energy Technology Data Exchange (ETDEWEB)

    D' Ariano, G M [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy); Maccone, L [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy); Paini, M [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy)

    2003-02-01

    We propose a tomographic reconstruction scheme for spin states. The experimental set-up, which is a modification of the Stern-Gerlach scheme, can be easily performed with currently available technology. The method is generalized to multiparticle states, analysing the spin-1/2 case for indistinguishable particles. Some Monte Carlo numerical simulations are given to illustrate the technique.

  17. Spin tomography

    International Nuclear Information System (INIS)

    D'Ariano, G M; Maccone, L; Paini, M

    2003-01-01

    We propose a tomographic reconstruction scheme for spin states. The experimental set-up, which is a modification of the Stern-Gerlach scheme, can be easily performed with currently available technology. The method is generalized to multiparticle states, analysing the spin-1/2 case for indistinguishable particles. Some Monte Carlo numerical simulations are given to illustrate the technique

  18. Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling

    KAUST Repository

    Wang, Songlin

    2015-04-09

    We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems.

  19. Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling

    KAUST Repository

    Wang, Songlin; Parthasarathy, Sudhakar; Nishiyama, Yusuke; Endo, Yuki; Nemoto, Takahiro; Yamauchi, Kazuo; Asakura, Tetsuo; Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune; Ishii, Yoshitaka

    2015-01-01

    We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems.

  20. Fast and simultaneous determination of 1 H-1 H and 1 H-19 F scalar couplings in complex spin systems: Application of PSYCHE homonuclear broadband decoupling.

    Science.gov (United States)

    Kakita, Veera Mohana Rao; Rachineni, Kavitha; Hosur, Ramakrishna V

    2017-07-21

    The present manuscript focuses on fast and simultaneous determination of 1 H- 1 H and 1 H- 19 F scalar couplings in fluorinated complex steroid molecules. Incorporation of broadband PSYCHE homonuclear decoupling in the indirect dimension of zero-quantum filtered diagonal experiments (F1-PSYCHE-DIAG) suppresses 1 H- 1 H scalar couplings; however, it retains 1 H- 19 F scalar couplings (along F1 dimension) for the 19 F coupled protons while preserving the pure-shift nature for 1 H resonances uncoupled to 19 F. In such cases, along the direct dimensions, 1 H- 1 H scalar coupling multiplets deconvolute and they appear as duplicated multiplets for the 19 F coupled protons, which facilitates unambiguous discrimination of 19 F coupled 1 H chemical sites from the others. Further, as an added advantage, data acquisition has been accelerated by invoking the known ideas of spectral aliasing in the F1-PSYCHE-DIAG scheme and experiments demand only ~10 min of spectrometer times. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Single-shot echo-planar imaging of multiple sclerosis: effects of varying echo time

    International Nuclear Information System (INIS)

    Wolansky, L.J.; Chong, S.; Liu, W.C.; Kang, E.; Simpson, S.W.; Karimi, S.; Akbari, H.

    1999-01-01

    Our aim was to determine the relative merits of short and long echo times (TE) with single-shot echo-planar imaging for imaging cerebral lesions such as multiple sclerosis. We examined seven patients with clinically definite multiple sclerosis were imaged at 1.5 T. Patients were scanned with spin-echo, single-shot echo-planar imaging, using TEs of 45, 75, 105, and 135 ms. Region of interest (ROI) measurements were performed on 36 lesions at or above the level of the corona radiata. The mean image contrast (IC) was highest (231.1) for a TE of 45 ms, followed by 75 ms (218.9), 105 ms (217.9), and 135 ms (191.6). When mean contrast-to-noise ratios (C/N) were compared, the value was again highest (29.7) for TE 45 ms, followed by 75 ms (28.9), 105 ms (28.5), and 135 ms (26.3). In a lesion-by-lesion comparison, TE 45 ms had the highest IC and C/N in the largest number of cases (50 % and 47.2 %, respectively). IC and C/N for TE 45 ms were superior to those of 75 ms in 64 % and 58 %, respectively. These results support the use of relatively short TEs for single-shot echo-planar imaging in the setting of cerebral lesions such as multiple sclerosis. (orig.) (orig.)

  2. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  3. Spin symposium

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-01-15

    The recent 8th International Symposium on High Energy Spin Physics at the University of Minnesota in Minneapolis, Minnesota, opened with a bang when L. Pondrom (Wisconsin), donning a hard hat borrowed from construction workers, ventured that 'spin, the notorious inessential complication of hadronic physics, is finally telling us what real QCD (quantum chromodynamics, the field theory of quarks and gluons) looks like.' He was referring to an animated discussion on the meaning of the recent spin oriented (polarized) scattering results from the European Muon Collaboration (EMC) at CERN and reported at the Symposium by R. Garnet (Liverpool) and P. Schuler (Yale) which show that the proton spin is not simply a reflection of the spins of its constituent quarks.

  4. Single-shot echo-planar MR sequences in the diagnosis of intracranial infectious diseases

    International Nuclear Information System (INIS)

    Tsuchiya, Kazuhiro; Katase, Shichiro; Yoshino, Ayako; Yamakami, Norio; Hachiya, Junichi

    1998-01-01

    The purpose of this study was to present our preliminary experience in the application of echo-planar-imaging (EPI) MR sequences for the diagnosis of intracranial infectious diseases and to assess the value of these sequences. We reviewed single-shot EPI MR images obtained at 1.5 T in 17 patients and compared these images with conventional or fast spin-echo (SE) or fluid attenuated inversion-recovery (FLAIR) images. The clinical diagnoses for the 17 patients were meningitis (2 patients), encephalitis or meningoencephalitis (7 patients), brain abscess (5 patients), epidural empyema (2 patients) and Creutzfeldt-Jakob disease (1 patient). We obtained EPI-T 2 -weighted (T 2 W) images in 8 patients, EPI-FLAIR images in 13 patients and EPI-diffusion-weighted (DW) images in 14 patients. Among the 8 patients for whom EPI-T 2 W imaging was performed, EPI-T 2 W imaging yielded superior results compared with SE-T 2 W imaging in 3 patients as a consequence of patient motion and equal results compared with SE-T 2 W imaging in 5 patients. Among the 13 patients for whom EPI-FLAIR imaging was performed, the EPI-FLAIR images were superior to conventional FLAIR images in 3 unstable patients. In the remaining 10 patients for whom EPI-FLAIR imaging was performed, EPI-FLAIR images were equivalent or inferior to conventional FLAIR images. In 6 patients with encephalitis or meningoencephalitis, the encephalitic lesions showed hyperintensity in EPI-DW images to a greater extent than in images obtained with the other techniques. In 3 patients, EPI-DW images also demonstrated hyperintensity for the contents of abscesses or areas of empyema that was not seen with the other imaging techniques. The value of EPI-T 2 W and EPI-FLAIR imaging is limited in uncooperative patients. EPI-DW imaging was found to be of value for the evaluation of several intracranial infectious diseases. (author)

  5. Single-shot echo-planar MR sequences in the diagnosis of intracranial infectious diseases

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Kazuhiro; Katase, Shichiro; Yoshino, Ayako; Yamakami, Norio; Hachiya, Junichi [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1998-06-01

    The purpose of this study was to present our preliminary experience in the application of echo-planar-imaging (EPI) MR sequences for the diagnosis of intracranial infectious diseases and to assess the value of these sequences. We reviewed single-shot EPI MR images obtained at 1.5 T in 17 patients and compared these images with conventional or fast spin-echo (SE) or fluid attenuated inversion-recovery (FLAIR) images. The clinical diagnoses for the 17 patients were meningitis (2 patients), encephalitis or meningoencephalitis (7 patients), brain abscess (5 patients), epidural empyema (2 patients) and Creutzfeldt-Jakob disease (1 patient). We obtained EPI-T{sub 2}-weighted (T{sub 2}W) images in 8 patients, EPI-FLAIR images in 13 patients and EPI-diffusion-weighted (DW) images in 14 patients. Among the 8 patients for whom EPI-T{sub 2}W imaging was performed, EPI-T{sub 2}W imaging yielded superior results compared with SE-T{sub 2}W imaging in 3 patients as a consequence of patient motion and equal results compared with SE-T{sub 2}W imaging in 5 patients. Among the 13 patients for whom EPI-FLAIR imaging was performed, the EPI-FLAIR images were superior to conventional FLAIR images in 3 unstable patients. In the remaining 10 patients for whom EPI-FLAIR imaging was performed, EPI-FLAIR images were equivalent or inferior to conventional FLAIR images. In 6 patients with encephalitis or meningoencephalitis, the encephalitic lesions showed hyperintensity in EPI-DW images to a greater extent than in images obtained with the other techniques. In 3 patients, EPI-DW images also demonstrated hyperintensity for the contents of abscesses or areas of empyema that was not seen with the other imaging techniques. The value of EPI-T{sub 2}W and EPI-FLAIR imaging is limited in uncooperative patients. EPI-DW imaging was found to be of value for the evaluation of several intracranial infectious diseases. (author)

  6. SnapShot: Phosphoregulation of Mitosis.

    Science.gov (United States)

    Burgess, Andrew; Vuong, Jenny; Rogers, Samuel; Malumbres, Marcos; O'Donoghue, Seán I

    2017-06-15

    During mitosis, a cell divides its duplicated genome into two identical daughter cells. This process must occur without errors to prevent proliferative diseases (e.g., cancer). A key mechanism controlling mitosis is the precise timing of more than 32,000 phosphorylation and dephosphorylation events by a network of kinases and counterbalancing phosphatases. The identity, magnitude, and temporal regulation of these events have emerged recently, largely from advances in mass spectrometry. Here, we show phosphoevents currently believed to be key regulators of mitosis. For an animated version of this SnapShot, please see http://www.cell.com/cell/enhanced/odonoghue2. Copyright © 2017. Published by Elsevier Inc.

  7. Shuttlecock Velocity of a Badminton Drop Shot

    Directory of Open Access Journals (Sweden)

    Ampharin Ongvises

    2013-01-01

    Full Text Available In a badminton ‘drop shot’, the shuttlecock is struck by a non-rotating racquet at low speed. In this investigation, a shuttlecock was hit by a badminton racquet in a linear collision, simulating a drop shot. The collision was recorded with high-speed video and the velocities of the racquet and shuttlecock determined. The relationship between the impact velocity of the racquet and the velocity of the shuttlecock as it leaves the badminton racquet after collision was found to be proportional over the range tested.

  8. Shuttlecock Velocity of a Badminton Drop Shot

    Directory of Open Access Journals (Sweden)

    Ampharin Ongvises

    2013-12-01

    Full Text Available In a badminton ‘drop shot’, the shuttlecock is struck by a non-rotating racquet at low speed. In this investigation, a shuttlecock was hit by a badminton racquet in a linear collision, simulating a drop shot. The collision was recorded with high-speed video and the velocities of the racquet and shuttlecock determined. The relationship between the impact velocity of the racquet and the velocity of the shuttlecock as it leaves the badminton racquet after collision was found to be proportional over the range tested.

  9. A prospective comparison study of fast T1 weighted fluid attenuation inversion recovery and T1 weighted turbo spin echo sequence at 3 T in degenerative disease of the cervical spine.

    Science.gov (United States)

    Ganesan, K; Bydder, G M

    2014-09-01

    This study compared T1 fluid attenuation inversion recovery (FLAIR) and T1 turbo spin echo (TSE) sequences for evaluation of cervical spine degenerative disease at 3 T. 72 patients (44 males and 28 females; mean age of 39 years; age range, 27-75 years) with suspected cervical spine degenerative disease were prospectively evaluated. Sagittal images of the spine were obtained using T1 FLAIR and T1 TSE sequences. Two experienced neuroradiologists compared the sequences qualitatively and quantitatively. On qualitative evaluation, cerebrospinal fluid (CSF) nulling and contrast at cord-CSF, disc-CSF and disc-cord interfaces were significantly higher on fast T1 FLAIR images than on T1 TSE images (p degenerative disease, owing to higher cord-CSF, disc-cord and disc-CSF contrast. However, intrinsic cord contrast is low on T1 FLAIR images. T1 FLAIR is more promising and sensitive than T1 TSE for evaluation of degenerative spondyloarthropathy and may provide a foundation for development of MR protocols for early detection of degenerative and neoplastic diseases.

  10. Influence of Running on Pistol Shot Hit Patterns.

    Science.gov (United States)

    Kerkhoff, Wim; Bolck, Annabel; Mattijssen, Erwin J A T

    2016-01-01

    In shooting scene reconstructions, risk assessment of the situation can be important for the legal system. Shooting accuracy and precision, and thus risk assessment, might be correlated with the shooter's physical movement and experience. The hit patterns of inexperienced and experienced shooters, while shooting stationary (10 shots) and in running motion (10 shots) with a semi-automatic pistol, were compared visually (with confidence ellipses) and statistically. The results show a significant difference in precision (circumference of the hit patterns) between stationary shots and shots fired in motion for both inexperienced and experienced shooters. The decrease in precision for all shooters was significantly larger in the y-direction than in the x-direction. The precision of the experienced shooters is overall better than that of the inexperienced shooters. No significant change in accuracy (shift in the hit pattern center) between stationary shots and shots fired in motion can be seen for all shooters. © 2015 American Academy of Forensic Sciences.

  11. Concrete Cleaning, Inc. centrifugal shot blaster: Baseline report; Summary

    International Nuclear Information System (INIS)

    1997-01-01

    The centrifugal shot blaster is an electronically operated shot-blast machine that removes layer of concrete of varying depths. Hardened steel shot propelled at a high rate of speed abrades the surface of the concrete. The depth of material removed is determined by the rate of speed the machine is traveling and the volume of shot being fired into the blast chamber. The steel shot is reused until it is pulverized to dust, which is deposited in the waste container with the concrete being removed. Debris is continually vacuumed by a large dust collection system attached to the shot blaster. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust

  12. Removal of Retained Lead Shot Through Laparoscopic Appendectomy

    Science.gov (United States)

    Lloyd, D. M.

    2003-01-01

    We describe a patient presenting with lead shot in his appendix. A plain radiograph of his lumbar spine was performed for back pain, and an incidental finding of lead shot retained within the appendix was seen. Lead shot in the appendix is associated with appendicitis, and 2 cases have been reported of lead intoxication. We suggest that an elective laparoscopic appendectomy should be offered to patients as a possible management option. PMID:12856854

  13. Advantages of T2 reversed fast spin-echo image and enhanced three-dimensional surface MR angiography for the diagnosis of cerebral arteriovenous malformations

    International Nuclear Information System (INIS)

    Tanabe, Sumiyoshi; Honmou, Osamu; Minamida, Yoshihiro; Hashi, Kazuo

    2001-01-01

    Although the anatomical investigation of cerebral arteriovenous malformation (AVM) with conventional neuro-imagings considerably supports the preoperative evaluation, it is still hard to dissect the detailed anatomical conformations of AVMs such as location of nidus, identification of feeding arteries or draining veins, and the three-dimensional configuration of nidus in sulci or gyri. In this study, we investigated the efficacy of enhanced three-dimensional surface MR angiography (surface MRA) and T2 reversed image (T2R image) in the diagnosis and surgical planning for cerebral AVMs. The diagnostic accuracy was studied in twelve AVMs: four AVMs closed to motor area, one to Broca area, one to Wernicke area, four in temporal lobe, and two in occipital lobe. Images were obtained with a SIGNA HORIZON LX 1.5T VER 8.2. To construct T2R, the brain is scanned by fast SE method with long TR and was displayed with the reversed gray scale, which seemed similar to T1WI. Surface MRA is a fusion image of MRA and surface image in the workstation. The original data was obtained by enhanced 3D-SPGR method. MRA image was reconstructed with MIP method, and surface image was manipulated with a volume rendering method. T2R images demonstrated seven sulcal AVMs, three gyral AVMs, and two sulco-gyral AVMs; five AVMs located on cortex, four extended to subcortex, and three to paraventricular brain. The images clearly showed six AVMs had hypervascular network such as modja-modja vascular formation. Surface MRA represented nidus adjacent to eloquent area. They were present in central sulcus, precentral sulcus, intraparietal sulcus, inferior frontal sulcus, sylvian fissure, superior temporal sulcus, inferior temporal sulcus, superior temporal gyrus, inferior temporal gyrus, medial temporal gyrus, premotor area and superior frontal sulcus, precuneus and parieto-occipital sulcus. It was easy to identify the point of feeding arteries going down into the sulcus and the junction-point of nidus

  14. Advantages of T2 reversed fast spin-echo image and enhanced three-dimensional surface MR angiography for the diagnosis of cerebral arteriovenous malformations

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Sumiyoshi; Honmou, Osamu; Minamida, Yoshihiro; Hashi, Kazuo [Sapporo Medical Univ. (Japan). School of Medicine

    2001-09-01

    Although the anatomical investigation of cerebral arteriovenous malformation (AVM) with conventional neuro-imagings considerably supports the preoperative evaluation, it is still hard to dissect the detailed anatomical conformations of AVMs such as location of nidus, identification of feeding arteries or draining veins, and the three-dimensional configuration of nidus in sulci or gyri. In this study, we investigated the efficacy of enhanced three-dimensional surface MR angiography (surface MRA) and T2 reversed image (T2R image) in the diagnosis and surgical planning for cerebral AVMs. The diagnostic accuracy was studied in twelve AVMs: four AVMs closed to motor area, one to Broca area, one to Wernicke area, four in temporal lobe, and two in occipital lobe. Images were obtained with a SIGNA HORIZON LX 1.5T VER 8.2. To construct T2R, the brain is scanned by fast SE method with long TR and was displayed with the reversed gray scale, which seemed similar to T1WI. Surface MRA is a fusion image of MRA and surface image in the workstation. The original data was obtained by enhanced 3D-SPGR method. MRA image was reconstructed with MIP method, and surface image was manipulated with a volume rendering method. T2R images demonstrated seven sulcal AVMs, three gyral AVMs, and two sulco-gyral AVMs; five AVMs located on cortex, four extended to subcortex, and three to paraventricular brain. The images clearly showed six AVMs had hypervascular network such as modja-modja vascular formation. Surface MRA represented nidus adjacent to eloquent area. They were present in central sulcus, precentral sulcus, intraparietal sulcus, inferior frontal sulcus, sylvian fissure, superior temporal sulcus, inferior temporal sulcus, superior temporal gyrus, inferior temporal gyrus, medial temporal gyrus, premotor area and superior frontal sulcus, precuneus and parieto-occipital sulcus. It was easy to identify the point of feeding arteries going down into the sulcus and the junction-point of nidus

  15. Experiments and Analysis of Close-Shot Identification of On-Branch Citrus Fruit with RealSense

    Directory of Open Access Journals (Sweden)

    Jizhan Liu

    2018-05-01

    Full Text Available Fruit recognition based on depth information has been a hot topic due to its advantages. However, the present equipment and methods cannot meet the requirements of rapid and reliable recognition and location of fruits in close shot for robot harvesting. To solve this problem, we propose a recognition algorithm for citrus fruit based on RealSense. This method effectively utilizes depth-point cloud data in a close-shot range of 160 mm and different geometric features of the fruit and leaf to recognize fruits with a intersection curve cut by the depth-sphere. Experiments with close-shot recognition of six varieties of fruit under different conditions were carried out. The detection rates of little occlusion and adhesion were from 80–100%. However, severe occlusion and adhesion still have a great influence on the overall success rate of on-branch fruits recognition, the rate being 63.8%. The size of the fruit has a more noticeable impact on the success rate of detection. Moreover, due to close-shot near-infrared detection, there was no obvious difference in recognition between bright and dark conditions. The advantages of close-shot limited target detection with RealSense, fast foreground and background removal and the simplicity of the algorithm with high precision may contribute to high real-time vision-servo operations of harvesting robots.

  16. Spin systems

    CERN Document Server

    Caspers, W J

    1989-01-01

    This book is about spin systems as models for magnetic materials, especially antiferromagnetic lattices. Spin-systems are well-defined models, for which, in special cases, exact properties may be derived. These special cases are for the greater part, one- dimensional and restricted in their applicability, but they may give insight into general properties that also exist in higher dimension. This work pays special attention to qualitative differences between spin lattices of different dimensions. It also replaces the traditional picture of an (ordered) antiferromagnetic state of a Heisenberg sy

  17. [Contact shot from infantry weapons with a flash-suppressor].

    Science.gov (United States)

    Perdekamp, Markus Grosse; Braunwarth, Roland; Schmidt, Ulrike; Schmidt, Wolfgang; Pollak, Stefan

    2003-01-01

    The number of reports on contact shots from firearms with a flash suppressor attached to the muzzle is small. On the basis of a case report (suicidal shot to the forehead with a Kalschnikow AKMS 47 assault rifle) the morphological peculiarities (characteristics soot pattern, relatively small powder cavity and only minor skin tears in the presence of a bony support) are presented and the conclusions to be drawn from the findings regarding the flash-suppressor, the shot distance, the angle of the shot and the way of holding the weapon are discussed.

  18. Entrance, exit, and reentrance of one shot with a shotgun

    DEFF Research Database (Denmark)

    Gulmann, C; Hougen, H P

    1999-01-01

    The case being reported is one of a homicidal shotgun fatality with an unusual wound pattern. A 34-year-old man was shot at close range with a 12-gauge shotgun armed with No. 5 birdshot ammunition. The shot entered the left axillary region, exited through the left infraclavicular region, and ther......The case being reported is one of a homicidal shotgun fatality with an unusual wound pattern. A 34-year-old man was shot at close range with a 12-gauge shotgun armed with No. 5 birdshot ammunition. The shot entered the left axillary region, exited through the left infraclavicular region...

  19. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  20. Spin Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The 5th International Symposium on High Energy Spin Physics met in September at Brookhaven. The symposium has evolved to include a number of diverse specialities: theory, including parity violations and proposed quantum chromodynamics (QCD) tests with polarized beams; experiment, including the large spin effects discovered in high transverse momentum elastic scattering and hyperon production, dibaryons, and magnetic moments; acceleration and storage of polarized protons and electrons; and development of polarized sources and targets

  1. Fully refocused multi-shot spatiotemporally encoded MRI: robust imaging in the presence of metallic implants.

    Science.gov (United States)

    Ben-Eliezer, Noam; Solomon, Eddy; Harel, Elad; Nevo, Nava; Frydman, Lucio

    2012-12-01

    An approach has been recently introduced for acquiring arbitrary 2D NMR spectra or images in a single scan, based on the use of frequency-swept RF pulses for the sequential excitation and acquisition of the spins response. This spatiotemporal-encoding (SPEN) approach enables a unique, voxel-by-voxel refocusing of all frequency shifts in the sample, for all instants throughout the data acquisition. The present study investigates the use of this full-refocusing aspect of SPEN-based imaging in the multi-shot MRI of objects, subject to sizable field inhomogeneities that complicate conventional imaging approaches. 2D MRI experiments were performed at 7 T on phantoms and on mice in vivo, focusing on imaging in proximity to metallic objects. Fully refocused SPEN-based spin echo imaging sequences were implemented, using both Cartesian and back-projection trajectories, and compared with k-space encoded spin echo imaging schemes collected on identical samples under equal bandwidths and acquisition timing conditions. In all cases assayed, the fully refocused spatiotemporally encoded experiments evidenced a ca. 50 % reduction in signal dephasing in the proximity of the metal, as compared to analogous results stemming from the k-space encoded spin echo counterparts. The results in this study suggest that SPEN-based acquisition schemes carry the potential to overcome strong field inhomogeneities, of the kind that currently preclude high-field, high-resolution tissue characterizations in the neighborhood of metallic implants.

  2. Electric dipole spin resonance in a quantum spin dimer system driven by magnetoelectric coupling

    Science.gov (United States)

    Kimura, Shojiro; Matsumoto, Masashige; Akaki, Mitsuru; Hagiwara, Masayuki; Kindo, Koichi; Tanaka, Hidekazu

    2018-04-01

    In this Rapid Communication, we propose a mechanism for electric dipole active spin resonance caused by spin-dependent electric polarization in a quantum spin gapped system. This proposal was successfully confirmed by high-frequency electron spin resonance (ESR) measurements of the quantum spin dimer system KCuCl3. ESR measurements by an illuminating linearly polarized electromagnetic wave reveal that the optical transition between the singlet and triplet states in KCuCl3 is driven by an ac electric field. The selection rule of the observed transition agrees with the calculation by taking into account spin-dependent electric polarization. We suggest that spin-dependent electric polarization is effective in achieving fast control of quantum spins by an ac electric field.

  3. Collider shot setup for Run 2 observations and suggestions

    International Nuclear Information System (INIS)

    Annala, J.; Joshel, B.

    1996-01-01

    This note is intended to provoke discussion on Collider Run II shot setup. We hope this is a start of activities that will converge on a functional description of what is needed for shot setups in Collider Run II. We will draw on observations of the present shot setup to raise questions and make suggestions for the next Collider run. It is assumed that the reader has some familiarity with the Collider operational issues. Shot setup is defined to be the time between the end of a store and the time the Main Control Room declares colliding beams. This is the time between Tevatron clock events SCE and SCB. This definition does not consider the time experiments use to turn on their detectors. This analysis was suggested by David Finley. The operational scenarios for Run II will require higher levels of reliability and speed for shot setup. See Appendix I and II. For example, we estimate that a loss of 3 pb -1 /week (with 8 hour stores) will occur if shot setups take 90 minutes instead of 30 minutes. In other words: If you do 12 shots for one week and accept an added delay of one minute in each shot, you will loose more than 60 nb -1 for that week alone (based on a normal shot setup of 30 minutes). These demands should lead us to be much more pedantic about all the factors that affect shot setups. Shot setup will be viewed as a distinct process that is composed of several inter- dependent 'components': procedures, hardware, controls, and sociology. These components don't directly align with the different Accelerator Division departments, but are topical groupings of the needed accelerator functions. Defining these components, and categorizing our suggestions within them, are part of the goal of this document. Of course, some suggestions span several of these components

  4. Slow Manifold and Hannay Angle in the Spinning Top

    Science.gov (United States)

    Berry, M. V.; Shukla, P.

    2011-01-01

    The spin of a top can be regarded as a fast variable, coupled to the motion of the axis which is slow. In pure precession, the rotation of the axis round a cone (without nutation), can be considered as the result of a reaction from the fast spin. The resulting restriction of the total state space of the top is an illustrative example, at…

  5. Shot-to-shot reproducibility in the emission of fast highly charged metal ions from a laser ion source

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Velyhan, Andriy; Margarone, Daniele; Krouský, Eduard; Láska, Leoš; Jungwirth, Karel; Rohlena, Karel; Ullschmied, Jiří; Parys, P.; Ryc, L.; Wolowski, J.

    2012-01-01

    Roč. 83, č. 2 (2012), , "02B302-1"-"02B302-3" ISSN 0034-6748 R&D Projects: GA ČR(CZ) GAP205/11/1165; GA MŠk(CZ) 7E09092; GA MŠk(CZ) LC528 EU Projects: European Commission(XE) 228334 - LASERLAB-EUROPE Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : ion sources * palladium * plasma sources * gold * plasma production by laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.602, year: 2012

  6. Multi-shot type pellet injection device

    International Nuclear Information System (INIS)

    Onozuka, Masaki; Uchikawa, Takashi; Kuribayashi, Shitomi.

    1988-01-01

    Purpose: To inject pellets at high speed without melting or sublimating not-injected pellets even at a long pellet injection interval. Constitution: In the conventional multi-shot pellet injection device, the pellet injection interval is set depending on the plasma retention time. However, as the pellet injection interval is increased, not-injected pellets are melted or sublimated due to the introduced heat of acceleration gases supplied from an acceleration gas introduction pipe to give an effect on the dimensional shape of the pellets. In view of the above, a plurality of pellet forming and injection portions each comprising a carrier, an injection pipe and a holder are disposed independently of each other and pellets are formed and injected independently to thereby prevent the thermal effects of the acceleration gases. (Kamimura, M.)

  7. Multi-shot type pellet injection device

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masaki; Uchikawa, Takashi; Kuribayashi, Shitomi.

    1988-07-27

    Purpose: To inject pellets at high speed without melting or sublimating not-injected pellets even at a long pellet injection interval. Constitution: In the conventional multi-shot pellet injection device, the pellet injection interval is set depending on the plasma retention time. However, as the pellet injection interval is increased, not-injected pellets are melted or sublimated due to the introduced heat of acceleration gases supplied from an acceleration gas introduction pipe to give an effect on the dimensional shape of the pellets. In view of the above, a plurality of pellet forming and injection portions each comprising a carrier, an injection pipe and a holder are disposed independently of each other and pellets are formed and injected independently to thereby prevent the thermal effects of the acceleration gases. (Kamimura, M.).

  8. Mumps and the Vaccine (Shot) to Prevent It

    Science.gov (United States)

    ... as measles and rubella. Prevents your child from getting a fever and swollen glands under the ears or jaw from mumps. Keeps your child from missing school or child care (and keeps you from missing work to care for your sick child). Is the MMR shot safe? Yes. The MMR shot is very safe, and it ...

  9. Toxicity of Lead and Proposed Substitute Shot to Mallards

    Science.gov (United States)

    Longcore, J.R.; Andrews, R.; Locke, L.N.; Bagley, George E.; Young, L.T.

    1974-01-01

    Poisoning of North American waterfowl resulting from the ingestion of lead shot by ducks, geese, and swans causes an estimated annual mortality of 2 to 3% of the population (Bellrose 1959). To alleviate this problem the search for a suitable substitute for lead has been underway since the early 1950's. Proposed substitutes for lead shot were evaluated in a series of acute toxicity tests with pen-reared mallards (Anas platyrhynchos). Most candidate materials were as toxic to ducks as commercial lead shot. Coating or alloying lead with other metals only delayed mortality among dosed ducks. The reputedly 'disintegrable' lead shot with the water-soluble binder and the lead containing biochemical additives were also as toxic to mallards as the commercial lead shot. Mortality was not significantly different among lead-dosed adult or first-year hen and drake pen-reared mallards; lead-dosed adult, wild mallards of both sexes; and lead-dosed adult, male black ducks (Anas rubripes). The ingestion of one lead shot, size 4, by each of 80 pen-reared mallards caused an average 19% mortality. The presence and type of grit in the gizzard had a measurable effect on erosion of ingested shot and on shot retention among dosed mallards. Significantly fewer lead-dosed ducks died when fed crushed oystershell grit than when fed either quartz grit or no grit.

  10. Single-shot fluctuations in waveguided high-harmonic generation

    NARCIS (Netherlands)

    Goh, S.J.; Tao, Y.; van der Slot, Petrus J.M.; Bastiaens, Hubertus M.J.; Herek, Jennifer Lynn; Biedron, S.G.; Danailov, M.B.; Milton, S.V.; Boller, Klaus J.

    2015-01-01

    For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic

  11. Equilibrium and shot noise in mesoscopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, T.

    1994-10-01

    Within the last decade, there has been a resurgence of interest in the study of noise in Mesoscopic devices, both experimentally and theoretically. Noise in solid state devices can have different origins: there is 1/f noise, which is believed to arise from fluctuations in the resistance of the sample due to the motion of impurities. On top of this contribution is a frequency independent component associated with the stochastic nature of electron transport, which will be the focus of this paper. If the sample considered is small enough that dephasing and inelastic effects can be neglected, equilibrium (thermal) and excess noise can be completely described in terms of the elastic scattering properties of the sample. As mentioned above, noise arises as a consequence of random processes governing the transport of electrons. Here, there are two sources of randomness: first, electrons incident on the sample occupy a given energy state with a probability given by the Fermi-Dirac distribution function. Secondly, electrons can be transmitted across the sample or reflected in the same reservoir where they came from with a probability given by the quantum mechanical transmission/reflection coefficients. Equilibrium noise refers to the case where no bias voltage is applied between the leads connected to the sample, where thermal agitation alone allows the electrons close to the Fermi level to tunnel through the sample. In general, equilibrium noise is related to the conductance of the sample via the Johnson-Nyquist formula. In the presence of a bias, in the classical regime, one expects to recover the full shot noise < {Delta}{sup 2}I >= 2I{Delta}{mu} as was observed a long time ago in vacuum diodes. In the Mesoscopic regime, however, excess noise is reduced below the shot noise level. The author introduces a more intuitive picture, where the current passing through the device is a superposition of pulses, or electron wave packets, which can be transmitted or reflected.

  12. Quantification of renal allograft perfusion using arterial spin labeling MRI: initial results.

    Science.gov (United States)

    Lanzman, Rotem S; Wittsack, Hans-Jörg; Martirosian, Petros; Zgoura, Panagiota; Bilk, Philip; Kröpil, Patric; Schick, Fritz; Voiculescu, Adina; Blondin, Dirk

    2010-06-01

    To quantify renal allograft perfusion in recipients with stable allograft function and acute decrease in allograft function using nonenhanced flow-sensitive alternating inversion recovery (FAIR)-TrueFISP arterial spin labeling (ASL) MR imaging. Following approval of the local ethics committee, 20 renal allograft recipients were included in this study. ASL perfusion measurement and an anatomical T2-weighted single-shot fast spin-echo (HASTE) sequence were performed on a 1.5-T scanner (Magnetom Avanto, Siemens, Erlangen, Germany). T2-weighted MR urography was performed in patients with suspected ureteral obstruction. Patients were assigned to three groups: group a, 6 patients with stable allograft function over the previous 4 months; group b, 7 patients with good allograft function who underwent transplantation during the previous 3 weeks; group c, 7 allograft recipients with an acute deterioration of renal function. Mean cortical perfusion values were 304.8 +/- 34.4, 296.5 +/- 44.1, and 181.9 +/- 53.4 mg/100 ml/min for groups a, b and c, respectively. Reduction in cortical perfusion in group c was statistically significant. Our results indicate that ASL is a promising technique for nonenhanced quantification of cortical perfusion of renal allografts. Further studies are required to determine the clinical value of ASL for monitoring renal allograft recipients.

  13. Quantification of renal allograft perfusion using arterial spin labeling MRI: initial results

    International Nuclear Information System (INIS)

    Lanzman, Rotem S.; Wittsack, Hans-Joerg; Bilk, Philip; Kroepil, Patric; Blondin, Dirk; Martirosian, Petros; Schick, Fritz; Zgoura, Panagiota; Voiculescu, Adina

    2010-01-01

    To quantify renal allograft perfusion in recipients with stable allograft function and acute decrease in allograft function using nonenhanced flow-sensitive alternating inversion recovery (FAIR)-TrueFISP arterial spin labeling (ASL) MR imaging. Following approval of the local ethics committee, 20 renal allograft recipients were included in this study. ASL perfusion measurement and an anatomical T2-weighted single-shot fast spin-echo (HASTE) sequence were performed on a 1.5-T scanner (Magnetom Avanto, Siemens, Erlangen, Germany). T2-weighted MR urography was performed in patients with suspected ureteral obstruction. Patients were assigned to three groups: group a, 6 patients with stable allograft function over the previous 4 months; group b, 7 patients with good allograft function who underwent transplantation during the previous 3 weeks; group c, 7 allograft recipients with an acute deterioration of renal function. Mean cortical perfusion values were 304.8 ± 34.4, 296.5 ± 44.1, and 181.9 ± 53.4 mg/100 ml/min for groups a, b and c, respectively. Reduction in cortical perfusion in group c was statistically significant. Our results indicate that ASL is a promising technique for nonenhanced quantification of cortical perfusion of renal allografts. Further studies are required to determine the clinical value of ASL for monitoring renal allograft recipients. (orig.)

  14. Spin transport in epitaxial graphene

    Science.gov (United States)

    Tbd, -

    2014-03-01

    Spintronics is a paradigm focusing on spin as the information vector in fast and ultra-low-power non volatile devices such as the new STT-MRAM. Beyond its widely distributed application in data storage it aims at providing more complex architectures and a powerful beyond CMOS solution for information processing. The recent discovery of graphene has opened novel exciting opportunities in terms of functionalities and performances for spintronics devices. We will present experimental results allowing us to assess the potential of graphene for spintronics. We will show that unprecedented highly efficient spin information transport can occur in epitaxial graphene leading to large spin signals and macroscopic spin diffusion lengths (~ 100 microns), a key enabler for the advent of envisioned beyond-CMOS spin-based logic architectures. We will also show that how the device behavior is well explained within the framework of the Valet-Fert drift-diffusion equations. Furthermore, we will show that a thin graphene passivation layer can prevent the oxidation of a ferromagnet, enabling its use in novel humide/ambient low-cost processes for spintronics devices, while keeping its highly surface sensitive spin current polarizer/analyzer behavior and adding new enhanced spin filtering property. These different experiments unveil promising uses of graphene for spintronics.

  15. Inter- and intra-rater reliability of patellofemoral kinematic and contact area quantification by fast spin echo MRI and correlation with cartilage health by quantitative T1ρ MRI.

    Science.gov (United States)

    Lau, Brian C; Thuillier, Daniel U; Pedoia, Valentina; Chen, Ellison Y; Zhang, Zhihong; Feeley, Brian T; Souza, Richard B

    2016-01-01

    Patellar maltracking is a leading cause of patellofemoral pain syndrome (PFPS). The aim of this study was to determine the inter- and intra-rater reliability of a semi-automated program for magnetic resonance imaging (MRI) based patellofemoral kinematics. Sixteen subjects (10 with PFPS [mean age 32.3; SD 5.2; eight females] and six controls without PFPS 19 [mean age 28.6; SD 2.8; three females]) participated in the study. One set of T2-weighted, fat-saturated fast spin-echo (FSE) MRIs were acquired from each subject in full extension and 30° of knee flexion. MRI including axial T1ρ relaxation time mapping sequences was also performed on each knee. Following image acquisitions, regions of interest for kinematic MRI, and patellar and trochlear cartilage were segmented and quantified with in-house designed spline- based MATLAB semi-automated software. Intraclass Correlations Coefficients (ICC) of calculated kinematic parameters were good to excellent, ICC > 0.8 in patellar flexion, rotation, tilt, and translation (anterior -posterior, medial -lateral, and superior -inferior), and contact area translation. Only patellar tilt in the flexed position and motion from extended to flexed state was significantly different between PFPS and control patients (p=0.002 and p=0.006, respectively). No significant correlations were identified between patellofemoral kinematics and contact area with T1ρ relaxation times. A semi-automated, spline-based kinematic MRI technique for patellofemoral kinematic and contact area quantification is highly reproducible with the potential to help better understand the role of patellofemoral maltracking in PFPS and other knee disorders. Level IV. Published by Elsevier B.V.

  16. MRI of the anterior talofibular ligament, talar cartilage and os subfibulare: Comparison of isotropic resolution 3D and conventional 2D T2-weighted fast spin-echo sequences at 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jisook; Cha, Jang Gyu [Soonchunhyang University Bucheon Hospital, Department of Radiology, Wonmi-gu, Bucheon-si (Korea, Republic of); Lee, Young Koo [Soonchunhyang University Bucheon Hospital, Department of Orthopedics, Wonmi-gu, Bucheon-si (Korea, Republic of); Lee, Bo Ra [Soonchunhyang University Bucheon Hospital, Department of Biomedical Statistics, Wonmi-gu, Bucheon-si (Korea, Republic of); Jeon, Chan Hong [Soonchunhyang University Bucheon Hospital, Division of Rheumatology, Department of Internal Medicine, Wonmi-gu, Bucheon-si (Korea, Republic of)

    2016-07-15

    To determine the accuracy of a three-dimensional (3D) T2-weighted fast spin-echo (FSE) magnetic resonance (MR) sequence compared with two-dimensional (2D) sequence for diagnosing anterior talofibular ligament (ATFL) tears, chondral lesion of the talus (CLT) and os subfibulare/avulsion fracture of the distal fibula (OSF). Thirty-five patients were included, who had undergone ankle MRI with 3D T2-weighted FSE and 2D T2-weighted FSE sequences, as well as subsequent ankle arthroscopy, between November 2013 and July 2014. Each MR imaging sequence was independently scored by two readers retrospectively for the presence of ATFL tears, CLT and OSF. The area under the receiver operating curve (AUC) was compared to determine the discriminatory power of the two image sequences. Interobserver agreement was expressed as unweighted kappa value. Arthroscopic findings confirmed 21 complete tears of the ATFL, 14 partial tears of the ATFL, 17 CLTs and 7 OSFs. There were no significant differences in the diagnoses of ATFL tears (p = 0.074-0.501), CLT (p = 0.090-0.450) and OSF (p = 0.317) obtained from the 2D and 3D sequences by either reader. The interobserver agreement rates between two readers using the 3D T2-weighted FSE sequence versus those obtained with the 2D sequence were substantial (κ = 0.659) versus moderate (κ = 0.553) for ATFL tears, moderate (κ = 0.499) versus substantial (κ = 0.676) for CLT and substantial (κ = 0.621) versus substantial (κ = 0.689) for OSF. Three-dimensional isotropic T2-weighted FSE MRI of the ankle resulted in no statistically significant difference in diagnostic performance compared to two-dimensional T2-weighted FSE MRI in the evaluation of ATFL tears, CLTs and OSFs. (orig.)

  17. Inter- and intra-rater reliability of patellofemoral kinematic and contact area quantification by fast spin echo MRI and correlation with cartilage health by quantitative T1ρ MRI☆

    Science.gov (United States)

    Lau, Brian C.; Thuillier, Daniel U.; Pedoia, Valentina; Chen, Ellison Y.; Zhang, Zhihong; Feeley, Brian T.; Souza, Richard B.

    2016-01-01

    Background Patellar maltracking is a leading cause of patellofemoral pain syndrome (PFPS). The aim of this study was to determine the inter- and intra-rater reliability of a semi-automated program for magnetic resonance imaging (MRI) based patellofemoral kinematics. Methods Sixteen subjects (10 with PFPS [mean age 32.3; SD 5.2; eight females] and six controls without PFPS 19 [mean age 28.6; SD 2.8; three females]) participated in the study. One set of T2-weighted, fat-saturated fast spin-echo (FSE) MRIs were acquired from each subject in full extension and 30° of knee flexion. MRI including axial T1ρ relaxation time mapping sequences was also performed on each knee. Following image acquisitions, regions of interest for kinematic MRI, and patellar and trochlear cartilage were segmented and quantified with in-house designed spline- based MATLAB semi-automated software. Results Intraclass Correlations Coefficients (ICC) of calculated kinematic parameters were good to excellent, ICC > 0.8 in patellar flexion, rotation, tilt, and translation (anterior -posterior, medial -lateral, and superior -inferior), and contact area translation. Only patellar tilt in the flexed position and motion from extended to flexed state was significantly different between PFPS and control patients (p = 0.002 and p = 0.006, respectively). No significant correlations were identified between patellofemoral kinematics and contact area with T1ρ relaxation times. Conclusions A semi-automated, spline-based kinematic MRI technique for patellofemoral kinematic and contact area quantification is highly reproducible with the potential to help better understand the role of patellofemoral maltracking in PFPS and other knee disorders. PMID:26746045

  18. MRI of the anterior talofibular ligament, talar cartilage and os subfibulare: Comparison of isotropic resolution 3D and conventional 2D T2-weighted fast spin-echo sequences at 3.0 T

    International Nuclear Information System (INIS)

    Yi, Jisook; Cha, Jang Gyu; Lee, Young Koo; Lee, Bo Ra; Jeon, Chan Hong

    2016-01-01

    To determine the accuracy of a three-dimensional (3D) T2-weighted fast spin-echo (FSE) magnetic resonance (MR) sequence compared with two-dimensional (2D) sequence for diagnosing anterior talofibular ligament (ATFL) tears, chondral lesion of the talus (CLT) and os subfibulare/avulsion fracture of the distal fibula (OSF). Thirty-five patients were included, who had undergone ankle MRI with 3D T2-weighted FSE and 2D T2-weighted FSE sequences, as well as subsequent ankle arthroscopy, between November 2013 and July 2014. Each MR imaging sequence was independently scored by two readers retrospectively for the presence of ATFL tears, CLT and OSF. The area under the receiver operating curve (AUC) was compared to determine the discriminatory power of the two image sequences. Interobserver agreement was expressed as unweighted kappa value. Arthroscopic findings confirmed 21 complete tears of the ATFL, 14 partial tears of the ATFL, 17 CLTs and 7 OSFs. There were no significant differences in the diagnoses of ATFL tears (p = 0.074-0.501), CLT (p = 0.090-0.450) and OSF (p = 0.317) obtained from the 2D and 3D sequences by either reader. The interobserver agreement rates between two readers using the 3D T2-weighted FSE sequence versus those obtained with the 2D sequence were substantial (κ = 0.659) versus moderate (κ = 0.553) for ATFL tears, moderate (κ = 0.499) versus substantial (κ = 0.676) for CLT and substantial (κ = 0.621) versus substantial (κ = 0.689) for OSF. Three-dimensional isotropic T2-weighted FSE MRI of the ankle resulted in no statistically significant difference in diagnostic performance compared to two-dimensional T2-weighted FSE MRI in the evaluation of ATFL tears, CLTs and OSFs. (orig.)

  19. Bond strength investigation of two shot moulded polymer

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul

    This report on the project “Bond strength investigation of two shot moulded polymers” has been submitted for fulfilling the requirements for the course “Experimental Plastic Technology – 42234” at IPL-DTU. Two shot moulding is a classic manufacturing process to combine two different polymers...... in a single product and it is getting more and more importance day by day. One of the biggest challenges of two shot moulding is to achieve a reasonably good bonding between two polymers. The purpose of this project is to investigate the effects of different process, material and machine parameters...... on the bond strength of two shot moulded polymers. For the experiments two engineering polymers (PS and ABS) were used. After all the experimental work, several parameters were found which could effectively control the bond strength of two shot moulded polymers. This report also presents different aspects...

  20. Catastrophe Insurance Modeled by Shot-Noise Processes

    Directory of Open Access Journals (Sweden)

    Thorsten Schmidt

    2014-02-01

    Full Text Available Shot-noise processes generalize compound Poisson processes in the following way: a jump (the shot is followed by a decline (noise. This constitutes a useful model for insurance claims in many circumstances; claims due to natural disasters or self-exciting processes exhibit similar features. We give a general account of shot-noise processes with time-inhomogeneous drivers inspired by recent results in credit risk. Moreover, we derive a number of useful results for modeling and pricing with shot-noise processes. Besides this, we obtain some highly tractable examples and constitute a useful modeling tool for dynamic claims processes. The results can in particular be used for pricing Catastrophe Bonds (CAT bonds, a traded risk-linked security. Additionally, current results regarding the estimation of shot-noise processes are reviewed.

  1. Investigation of kinematics of knuckling shot in soccer

    Science.gov (United States)

    Asai, T.; Hong, S.

    2017-02-01

    In this study, we use four high-speed video cameras to investigate the swing characteristics of the kicking leg while delivering the knuckling shot in soccer. We attempt to elucidate the impact process of the kicking foot at the instant of its impact with the ball and the technical mechanisms of the knuckling shot via comparison of its curved motion with that of the straight and curved shots. Two high-speed cameras (Fastcam, Photron Inc., Tokyo, Japan; 1000 fps, 1024 × 1024 pixels) are set up 2 m away from the site of impact with a line of sight perpendicular to the kicking-leg side. In addition, two semi-high-speed cameras (EX-F1, Casio Computer Co., Ltd., Tokyo, Japan; 300 fps; 720 × 480 pixels) are positioned, one at the rear and the other on the kicking-leg side, to capture the kicking motion. We observe that the ankle joint at impact in the knuckling shot flexes in an approximate L-shape in a manner similar to the joint flexing for the curve shot. The hip's external rotation torque in the knuckling shot is greater than those of other shots, which suggests the tendency of the kicker to push the heel forward and impact with the inside of the foot. The angle of attack in the knuckling shot is smaller than that in other shots, and we speculate that this small attack angle is a factor in soccer kicks which generate shots with smaller rotational frequencies of the ball.

  2. Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors

    Science.gov (United States)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2017-06-01

    We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1 /√{t } . Based on the numerical results, we devise a simple formula describing the effect quantitatively.

  3. Orchestrating Shots for the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Mathisen, D G; Bettenhausen, R C; Beeler, R G; Bowers, G A; Carey, R W; Casavant, D D; Cline, B D; Demaret, R D; Domyancic, D M; Elko, S D; Fisher, J M; Krammen, J E; Lagin, L J; Ludwigsen, A P; Patterson, R W; Sanchez, R J; Stout, E A

    2005-01-01

    The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8 Megajoule, 500-Terawatt, ultra-violet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and physics of matter at extreme densities and pressures. The NIF is operated by the Integrated Computer Control System (ICCS), which is a layered architecture of over 700 lower-level front-end processors attached to nearly 60,000 control points and coordinated by higher-level supervisory subsystems in the main control room. A shot automation framework has been developed and deployed during the past year to orchestrate and automate shots performed at the NIF using the ICCS. The Shot Automation framework is designed to automate 4-8 hour shot sequences, that includes deriving shot goals from an experiment definition, set up of the laser and diagnostics, automatic alignment of laser beams, and a countdown to charge and fire the lasers. These sequences consist of set of preparatory verification shots, leading to amplified system shots followed by post-shot analysis and archiving. The framework provides for a flexible, model-based work-flow execution, driven by scripted automation called macro steps. The shot director software is the orchestrating component of a very flexible automation layer which allows us to define, coordinate and reuse simpler automation sequences. This software provides a restricted set of shot life cycle state transitions to 26 collaboration supervisors that automate 8-laser beams (bundle) and a common set of shared resources. Each collaboration supervisor commands approximately 10 subsystem shot supervisors that perform automated control and status verification

  4. Reference-free unwarping of single-shot spatiotemporally encoded MRI using asymmetric self-refocused echoes acquisition

    Science.gov (United States)

    Chen, Ying; Chen, Song; Zhong, Jianhui; Chen, Zhong

    2015-05-01

    This paper presents a phase evolution rewinding algorithm for correcting the geometric and intensity distortions in single-shot spatiotemporally encoded (SPEN) MRI with acquisition of asymmetric self-refocused echo trains. Using the field map calculated from the phase distribution of the source image, the off-resonance induced phase errors are successfully rewound through deconvolution. The alias-free partial Fourier transform reconstruction helps improve the signal-to-noise ratio of the field maps and the output images. The effectiveness of the proposed algorithm was validated through 7 T MRI experiments on a lemon, a water phantom, and in vivo rat head. SPEN imaging was evaluated using rapid acquisition by sequential excitation and refocusing (RASER) which produces uniform T2 weighting. The results indicate that the new technique can more robustly deal with the cases in which the images obtained with conventional single-shot spin-echo EPI are difficult to be restored due to serious field variations.

  5. Spin modes

    International Nuclear Information System (INIS)

    Gaarde, C.

    1985-01-01

    An analysis of spectra of (p,n) reactions showed that they were very selective in exciting spin modes. Charge exchange reactions at intermediate energies give important new understanding of the M1-type of excitations and of the spin structure of continuum p spectra in general. In this paper, the author discusses three charge exchange reactions: (p,n); ( 3 H,t); and (d,2p) at several targets. Low-lying states and the Δ region are discussed separately. Finally, the charge exchange reaction with heavy ion beams is briefly discussed. (G.J.P./Auth.)

  6. The pseudo‐brookite spin‐glass system studied by means of muon spin relaxation

    NARCIS (Netherlands)

    Brabers, V.A.M.; Boekema, C.; Lichti, R.L.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Schillaci, M.E.; MacLaughlin, D.E.

    1987-01-01

    Zero-field muon spin relaxation (µSR) experiments have been performed on the spin glass Fe1.75Ti1.25O5. Above the spin-glass temperature of 44 K a distinct exponential µSR rate (¿) is observed, while below Tg a square-root exponential decay occurs, indicating fast spin fluctuations. Near 8 K, a

  7. Spinning worlds

    NARCIS (Netherlands)

    Schwarz, H.

    2017-01-01

    The thesis "Spinning Worlds" is about the characterisation of two types of gas-giant exoplanets: Hot Jupiters, with orbital periods of fewer than five days, and young, wide-orbit gas giants, with orbital periods as long as thousands of years. The thesis is based on near-infrared observations of 1

  8. High frequency spin torque oscillators with composite free layer spin valve

    International Nuclear Information System (INIS)

    Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda

    2016-01-01

    We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.

  9. High frequency spin torque oscillators with composite free layer spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda

    2016-07-15

    We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.

  10. Evaluation of shoulder pathology: three-dimensional enhanced T1 high-resolution isotropic volume excitation MR vs two-dimensional fast spin echo T2 fat saturation MR.

    Science.gov (United States)

    Park, H J; Lee, S Y; Kim, M S; Choi, S H; Chung, E C; Kook, S H; Kim, E

    2015-03-01

    To evaluate the diagnostic accuracy of three-dimensional (3D) enhanced T1 high-resolution isotropic volume excitation (eTHRIVE) shoulder MR for the detection of rotator cuff tears, labral lesions and calcific tendonitis of the rotator cuff in comparison with two-dimensional (2D) fast spin echo T2 fat saturation (FS) MR. This retrospective study included 73 patients who underwent shoulder MRI using the eTHRIVE technique. Shoulder MR images were interpreted separately by two radiologists. They evaluated anatomic identification and image quality of the shoulder joint on routine MRI sequences (axial and oblique coronal T2 FS images) and compared them with the reformatted eTHRIVE images. The images were scored on a four-point scale (0, poor; 1, questionable; 2, adequate; 3, excellent) according to the degree of homogeneous and sufficient fat saturation to penetrate bone and soft tissue, visualization of the glenoid labrum and distinction of the supraspinatus tendon (SST). The diagnostic accuracy of eTHRIVE images compared with routine MRI sequences was evaluated in the setting of rotator cuff tears, glenoid labral injuries and calcific tendonitis of the SST. Fat saturation scores for eTHRIVE were significantly higher than those of the T2 FS for both radiologists. The sensitivity and accuracy of the T2 FS in diagnosing rotor cuff tears were >90%, whereas sensitivity and accuracy of the eTHRIVE method were significantly lower. The sensitivity, specificity and accuracy of both images in diagnosing labral injuries and calcific tendonitis were similar and showed no significant differences. The specificity of both images for the diagnosis of labral injuries and calcific tendonitis was higher than the sensitivities. The accuracy of 3D eTHRIVE imaging was comparable to that of 2D FSE T2 FS for the diagnosis of glenoid labral injury and calcific tendonitis of SST. The 3D eTHRIVE technique was superior to 2D FSE T2 FS in terms of fat saturation. Overall, 3D eTHRIVE was inferior

  11. Polio and the Vaccine (Shot) to Prevent It

    Science.gov (United States)

    ... and Teen Vaccine Resources Related Links Vaccines & Immunizations Polio and the Vaccine (Shot) to Prevent It Language: ... recommend all children get the vaccine. What is polio? Polio (or poliomyelitis) is a disease caused by ...

  12. Shot Noise in Negative-Differential-Conductance Devices

    National Research Council Canada - National Science Library

    Song, W

    2003-01-01

    The authors have compared the shot-noise properties at T = 4.2 K of a double-barrier resonant-tunneling diode and a superlattice tunnel diode, both of which exhibit negative differential-conductance (NDC...

  13. Flu shots and the characteristics of unvaccinated elderly Medicare beneficiaries.

    Science.gov (United States)

    Lochner, Kimberly A; Wynne, Marc

    2011-12-21

    Data from the Medicare Current Beneficiary Survey, 2009. • Overall, 73% of Medicare beneficiaries aged 65 years and older reported receiving a flu shot for the 2008 flu season, but vaccination rates varied by socio-demographic characteristics. Flu vaccination was lowest for beneficiaries aged 65-74 years old, who were non-Hispanic Blacks and Hispanics, were not married, had less than a high school education, or who were eligible for Medicaid (i.e., dual eligibles). • Healthcare utilization and personal health behavior were also related to vaccination rates, with current smokers and those with no hospitalizations or physician visits being less likely to be vaccinated. • Among those beneficiaries who reported receiving a flu shot, 59% received it in a physician's office or clinic, with the next most common setting being in the community (21%); e.g., grocery store, shopping mall, library, or church. • Among those beneficiaries who did not receive a flu shot, the most common reasons were beliefs that the shot could cause side effects or disease (20%), that they didn't think the shot could prevent the flu (17%), or that the shot wasn't needed (16%). Less than 1% reported that they didn't get the flu shot because of cost. Elderly persons (aged 65 years and older) are at increased risk of complications from influenza, with the majority of influenza-related hospitalizations and deaths occurring among the elderly (Fiore et al., 2010). Most physicians recommend their elderly patients get a flu shot each year, and many hospitals inquire about elderly patient's immunization status upon admission, providing a vaccination if requested. The importance of getting a flu shot is underscored by the Department of Health and Human Services' Healthy People initiative, which has set a vaccination goal of 90% for the Nation's elderly by the year 2020 (Department of Health and Human Services [DHHS], 2011). Although all costs related to flu shots are covered by Medicare, requiring

  14. SunShot Vision Study: February 2012 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2012-02-01

    The objective of the SunShot Vision Study is to provide an in-depth assessment of the potential for solar technologies to meet a significant share of electricity demand in the United States during the next several decades. Specifically, it explores a future in which the price of solar technologies declines by about 75% between 2010 and 2020 - in line with the U.S. Department of Energy (DOE) SunShot Initiative's targets.

  15. Single-shot measurement of nonlinear absorption and nonlinear refraction.

    Science.gov (United States)

    Jayabalan, J; Singh, Asha; Oak, Shrikant M

    2006-06-01

    A single-shot method for measurement of nonlinear optical absorption and refraction is described and analyzed. A spatial intensity variation of an elliptical Gaussian beam in conjugation with an array detector is the key element of this method. The advantages of this single-shot technique were demonstrated by measuring the two-photon absorption and free-carrier absorption in GaAs as well as the nonlinear refractive index of CS2 using a modified optical Kerr setup.

  16. Microwave Amplitude Modulation Technique to Measure Spin-Lattice (T 1) and Spin-Spin (T 2) Relaxation Times

    Science.gov (United States)

    Misra, Sushil K.

    The measurement of very short spin-lattice, or longitudinal, relaxation (SLR) times (i.e., 10-10 Misra, 1998), and polymer resins doped with rare-earth ions (Pescia et al., 1999a; Pescia et al. 1999b). The ability to measure such fast SLR data on amorphous Si and copper-chromium-tin spinel led to an understanding of the role of exchange interaction in affecting spin-lattice relaxation, while the data on polymer resins doped with rare-earth ions provided evidence of spin-fracton relaxation (Pescia et al., 1999a, b). But such fast SLR times are not measurable by the most commonly used techniques of saturation- and inversion-recovery (Poole, 1982; Alger, 1968), which only measure spin-lattice relaxation times longer than 10-6 s. A summary of relevant experimental data is presented in Table 1.

  17. Role of EPI in diagnosing cavernous hemangioma and small HCC : comparison with fast T2-weighted MR Imaging

    International Nuclear Information System (INIS)

    Kim, Suk; Lee, Jun Woo; Kim, Chang Won; Jung, Hyun Woo; Choi, Sang Yoel; Lee, Suck Hong; Kim, Byung Soo

    1998-01-01

    The purpose of this study is to compare single-shot echo-planar MR imaging (EPI) with breath-hold fast T2-weighted imaging (HASTE or Turbo spin-echo T2WI) for evaluation of the role of EPI in distinguishing small hepatocellular carcinoma from cavernous hemangioma. We retrospectively evaluated MR images of 35 patients (21 cases of small HCC and 14 cases of cavernous hemangioma). EPI and breath-hold fast T2WI images were obtained and compared on the basis of lesion detection sensitivity, lesion-to-liver signal intensity ratio (SIR), contrast ratio (CR), and lesion-to-liver contrast to noise ratio (CNR). For the detection of small HCC, the sensitivity of EPI and breath-hold fast T2WI were equal in 14 of 21 cases (71.4%). The detection sensitivity of cavernous hemangioma with EPI and breath-hold fast T2WI was 100 % (14/14). Mean SIR on breath-hold fast T2WI was 2.02 ± 0.45 for small HCC and 3.65 ± 0.97 for cavernous hemangioma; on EPI, the corresponding figures were 2.91 ± 0.57 for cavernous hemangioma; On EPI, the figures obtained were 2.27 ± 0.52 and 6.26 ± 2.19, respectively. Mean CNR on breath-hold fast T2WI was 14.24 ± 4.098 for small HCC and 50.28 ± 10.96 for cavernous hemangioma, while on EPI, the corresponding figures were 13.84 ± 3.02 and 45.44 ± 11.21. In detecting focal hepatic mass, the sensitivity of EPI and breath-hold fast T2WI are comparable for the diagnosis of small HCC and cavernous hemangioma, EPI can provided additional information. (author). 20 refs., 2 tabs., 4 figs

  18. Biomechanical Analysis of the Jump Shot in Basketball

    Directory of Open Access Journals (Sweden)

    Struzik Artur

    2014-10-01

    Full Text Available Basketball players usually score points during the game using the jump shot. For this reason, the jump shot is considered to be the most important element of technique in basketball and requires a high level of performance. The aim of this study was to compare the biomechanical characteristics of the lower limbs during a jump shot without the ball and a countermovement jump without an arm swing. The differences between variables provide information about the potential that an athlete can utilise during a game when performing a jump shot. The study was conducted among 20 second-league basketball players by means of a Kistler force plate and the BTS SMART system for motion analysis. The variables measured included the take-off time, mean power, peak power, relative mean power, jump height, maximum landing force and calculated impact ratio. Surprisingly, more advantageous variables were found for the jump shot. This finding suggests a very high performance level in the jump shot in the studied group and a maximum utilisation of their motor abilities. Both types of jumps were characterised by high mean and peak power values and average heights. The high forces at landing, which result in considerable impact ratios, may have prompted the studied group to land softly. Use of the countermovement jump without an arm swing is recommended to assess and predict the progression of player’s jumping ability

  19. Spin Coherence in Semiconductor Nanostructures

    National Research Council Canada - National Science Library

    Flatte, Michael E

    2006-01-01

    ... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...

  20. The effect of spin in swing bowling in cricket: model trajectories for spin alone

    Science.gov (United States)

    Robinson, Garry; Robinson, Ian

    2015-02-01

    In ‘swing’ bowling, as employed by fast and fast-medium bowlers in cricket, back-spin along the line of the seam is normally applied in order to keep the seam vertical and to provide stability against ‘wobble’ of the seam. Whilst spin is normally thought of as primarily being the slow bowler's domain, the spin applied by the swing bowler has the side-effect of generating a lift or Magnus force. This force, depending on the orientation of the seam and hence that of the back-spin, can have a side-ways component as well as the expected vertical ‘lift’ component. The effect of the spin itself, in influencing the trajectory of the fast bowler's delivery, is normally not considered, presumably being thought of as negligible. The purpose of this paper is to investigate, using calculated model trajectories, the amount of side-ways movement due to the spin and to see how this predicted movement compares with the total observed side-ways movement. The size of the vertical lift component is also estimated. It is found that, although the spin is an essential part of the successful swing bowler's delivery, the amount of side-ways movement due to the spin itself amounts to a few centimetres or so, and is therefore small, but perhaps not negligible, compared to the total amount of side-ways movement observed. The spin does, however, provide a considerable amount of lift compared to the equivalent delivery bowled without spin, altering the point of pitching by up to 3 m, a very large amount indeed. Thus, for example, bowling a ball with the seam pointing directly down the pitch and not designed to swing side-ways at all, but with the amount of back-spin varied, could provide a very powerful additional weapon in the fast bowler's arsenal. So-called ‘sling bowlers’, who use a very low arm action, can take advantage of spin since effectively they can apply side-spin to the ball, giving rise to a large side-ways movement, ˜ 20{}^\\circ cm or more, which certainly is

  1. Circuit quantum electrodynamics with a spin qubit.

    Science.gov (United States)

    Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R

    2012-10-18

    Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.

  2. Shot reproducibility of the self-magnetic-pinch diode at 4.5 MV

    OpenAIRE

    Nichelle Bennett; M. Dale Crain; Darryl W. Droemer; Raymond E. Gignac; Greg Lare; Isidro Molina; Robert Obregon; Chase C. Smith; Frank L. Wilkins; Dale R. Welch; Steve Cordova; Manuel L. Gallegos; Mark D. Johnston; Mark L. Kiefer; Joshua J. Leckbee

    2014-01-01

    In experiments conducted at Sandia National Laboratories’ RITS-6 accelerator, the self-magnetic-pinch diode exhibits significant shot-to-shot variability. Specifically, for identical hardware operated at the same voltage, some shots exhibit a catastrophic drop in diode impedance. A study is underway to identify sources of shot-to-shot variations which correlate with diode impedance collapse. The scope of this report is limited to data collected at 4.5-MV peak voltage and sources of variabilit...

  3. Eating a planet and spinning up

    Science.gov (United States)

    Qureshi, Ahmed; Naoz, Smadar; Shkolnik, Evgenya L.

    2018-01-01

    One of the predictions of high eccentricity planetary migration is that many planets will end up plunging into their host stars. We investigate the consequence of planetary mergers on their stellar hosts’ spin-period. Energy and angular momentum conservation yield that a planet consumption by a star will spin-up of the star. We find that our calculations align with the observed bifurcation in the stellar spin-period in young clusters. After a Sun-like star has eaten a planet, it will then, spin down due to magnetic braking, consistent with the observed lack of fast rotators in old clusters. The agreement between the calculations presented here and the observed spin-period of stars in young clusters provides circumstantial evidence that planetary accretion onto their host stars is a generic feature in planetary-system evolution.

  4. Spin glasses

    International Nuclear Information System (INIS)

    Mookerjee, Abhijit

    1976-01-01

    ''Spin glasses'', are entire class of magnetic alloys of moderate dilution, in which the magnetic atoms are far enough apart to be unlike the pure metal, but close enough so that the indirect exchange energy between them (mediated by the s-d interaction between local moments and conduction electrons) dominates all other energies. Characteristic critical phenomena displayed such as freezing of spin orientation at 'Tsub(c)' and spreading of magnetic ordering, are pointed out. Anomalous behaviour, associated with these critical phenomena, as reflected in : (i) Moessbauer spectroscopy giving hyperfine splitting at Tsub(c), (ii) maxima in susceptibility and remanent magnetism, (iii) thermopower maxima and change in slope, (iv) Characteristic cusp in susceptibility and its removal by very small magnetic fields, and (v) conductivity-resistivity measurements, are discussed. Theoretical developments aimed at explaining these phenomena, in particular, the ideas from percolation and localisation theories, and the approach based on the gellations of polymers, are discussed. Finally, a new approach based on renormalisation group in disordered systems is also briefly mentioned. (K.B.)

  5. Effect of shot peening on metastable austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Fargas, G., E-mail: gemma.fargas@upc.edu [CIEFMA - Departament de Ciència dels Materials i Enginyeria Metallúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); CRnE, Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); Roa, J.J.; Mateo, A. [CIEFMA - Departament de Ciència dels Materials i Enginyeria Metallúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); CRnE, Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain)

    2015-08-12

    In this work, shot peening was performed in a metastable austenitic stainless steel EN 1.4318 (AISI 301LN) in order to evaluate its effect on austenite to martensite phase transformation and also the influence on the fatigue limit. Two different steel conditions were considered: annealed, i.e., with a fully austenitic microstructure, and cold rolled, consisting of a mixture of austenite and martensite. X-ray diffraction, electron back-scattered diffraction and focus ion beam, as well as nanoindentation techniques, were used to elucidate deformation mechanisms activated during shot peening and correlate with fatigue response. Results pointed out that extensive plastic deformation and phase transformation developed in annealed specimens as a consequence of shot peening. However, the increase of roughness and the generation of microcracks led to a limited fatigue limit improvement. In contrast, shot peened cold rolled specimens exhibited enhanced fatigue limit. In the latter case, the main factor that determined the influence on the fatigue response was the distance from the injector, followed successively by the exit speed of the shots and the coverage factor.

  6. Heat and spin interconversion

    International Nuclear Information System (INIS)

    Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji

    2017-01-01

    Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)

  7. Entangled spins and ghost-spins

    Directory of Open Access Journals (Sweden)

    Dileep P. Jatkar

    2017-09-01

    Full Text Available We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves, the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.

  8. SPINS OF LARGE ASTEROIDS: A HINT OF A PRIMORDIAL DISTRIBUTION IN THEIR SPIN RATES

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Elad; Sari, Re’em [The Hebrew University of Jerusalem, Jerusalem (Israel)

    2015-04-15

    The Asteroid Belt and the Kuiper Belt are relics from the formation of our solar system. Understanding the size and spin distribution of the two belts is crucial for a deeper understanding of the formation of our solar system and the dynamical processes that govern it. In this paper, we investigate the effect of collisions on the evolution of the spin distribution of asteroids and KBOs. We find that the power law nature of the impactors’ size distribution leads to a Lévy distribution of the spin rates. This results in a power law tail in the spin distribution, in stark contrast to the usually quoted Maxwellian distribution. We show that for bodies larger than 10 km, collisions alone lead to spin rates peaking at 0.15–0.5 revolutions per day. Comparing that to the observed spin rates of large asteroids (R > 50 km), we find that the spins of large asteroids, peaking at ∼1–2 revolutions per day, are dominated by a primordial component that reflects the formation mechanism of the asteroids. Similarly, the Kuiper Belt has undergone virtually no collisional spin evolution, assuming current densities. Collisions contribute a spin rate of ∼0.01 revolutions per day, thus the observed fast spin rates of KBOs are also primordial in nature.

  9. Spin transport in nanowires

    OpenAIRE

    Pramanik, S.; bandyopadhyay, S.; Cahay, M.

    2003-01-01

    We study high-field spin transport of electrons in a quasi one-dimensional channel of a $GaAs$ gate controlled spin interferometer (SPINFET) using a semiclassical formalism (spin density matrix evolution coupled with Boltzmann transport equation). Spin dephasing (or depolarization) is predominantly caused by D'yakonov-Perel' relaxation associated with momentum dependent spin orbit coupling effects that arise due to bulk inversion asymmetry (Dresselhaus spin orbit coupling) and structural inve...

  10. High-fidelity projective read-out of a solid-state spin quantum register.

    Science.gov (United States)

    Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald

    2011-09-21

    Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved

  11. Intra-shot MSE Calibration Technique For LHCD Experiments

    International Nuclear Information System (INIS)

    Ko, Jinseok; Scott, Steve; Shiraiwa, Syun'ichi; Greenwald, Martin; Parker, Ronald; Wallace, Gregory

    2009-01-01

    The spurious drift in pitch angle of order several degrees measured by the Motional Stark Effect (MSE) diagnostic in the Alcator C-Mod tokamak1 over the course of an experimental run day has precluded direct utilization of independent absolute calibrations. Recently, the underlying cause of the drift has been identified as thermal stress-induced birefringence in a set of in-vessel lenses. The shot-to-shot drift can be avoided by using MSE to measure only the change in pitch angle between a reference phase and a phase of physical interest within a single plasma discharge. This intra-shot calibration technique has been applied to the Lower Hybrid Current Drive (LHCD) experiments and the measured current profiles qualitatively demonstrate several predictions of LHCD theory such as an inverse dependence of current drive efficiency on the parallel refractive index and the presence of off-axis current drive.

  12. Shot H3837: Darht's First Dual-Axis Explosive Experiment

    Science.gov (United States)

    Mendez, Jacob; McNeil, Wendy Vogan; Harsh, James; Hull, Lawrence

    2011-06-01

    Test H3837 was the first explosive shot performed in front of both flash x-ray axes at the Los Alamos Dual Axis Radiographic HydroTest (DARHT) facility. Executed in November 2009, the shot was an explosively-driven metal flyer plate in a series of experiments designed to explore equation-of-state properties of shocked materials. Imaging the initial shock wave traveling through the flyer plate, DARHT Axis II captured the range of motion from the shock front emergence in the flyer to breakout at the free surface; the Axis I pulse provided a perpendicular perspective of the shot at a time coinciding with the third pulse of Axis II. Since the days of the Manhattan Project, penetrating radiography with multiple frames from different viewing angles has remained a high-profile goal at the Laboratory. H3837 is merely the beginning of a bright future for two-axis penetrating radiography.

  13. The Effect of Multiple Shot Peening on the Corrosion Behavior of Duplex Stainless Steel

    Science.gov (United States)

    Feng, Qiang; She, Jia; Wu, Xueyan; Wang, Chengxi; Jiang, Chuanhai

    2018-03-01

    Various types of shot peening treatments were applied to duplex stainless steel. The effects of shot peening intensity and working procedures on the microstructure were investigated. The domain size and microstrain evolution in the surface layer were characterized utilizing the Rietveld method. As the shot peening intensity increased, the surface roughness increased in the surface layer; however, it decreased after multiple (dual and triple) shot peening. The mole fraction of strain-induced martensite as a function of the intensity of shot peening was evaluated by XRD measurements. Both potentiodynamic polarization curves and salt spray tests of shot-peened samples in NaCl solution were investigated. The results indicate that traditional shot peening has negative effects on corrosion resistance with increasing shot peening intensity; however, the corrosion rate can be reduced by means of multiple shot peening.

  14. Eight-shot pellet injector and fueling experiments at the HL-1M tokamak

    International Nuclear Information System (INIS)

    Xiao Zhenggui; Li Bo; Li Li

    2001-01-01

    An Eight-shot Pellet Injection (EPI) system has been proposed and developed in collaboration between STU (St. Petersburg State Technical University) of Russia and SWIP. In the EPI, the I n-situ c ondensation technique was used to produce the pellets in eight gun barrels respectively. The nominal pellet size (diameter of 1.0 mm and of 1.4 mm or 1.2 mm) is limited by the gun barrel inner diameter. The pellet length is adjusted by changing the g radient temperature o n the gun barrels and the amounts of filling fuel gas. Pellets are fired at speed range of 200 - 1200 m/s by He propellant with pressure of 2 - 6 MPa and then transferred to HL-1M vessel through an injection line that consists of two set of differential vacuum pumped chambers and guide tube combined with fast valves. In addition, this unit is equipped with diagnostics for pellet velocity and shape measure. The EPI has installed on HL-1M since 1996 for the multi-shot pellet fueling experiments. The typical characteristics including the peaked density profile and improved confinement, the deep penetration and suppression of soft X-ray sawteeth, the variance of rotation and flow of plasma in edge region as well as the photographing of pellet ablation clouds are presented

  15. Analysis of shot-to-shot variability in post-disruption runaway electron currents for diverted DIII-D discharges

    International Nuclear Information System (INIS)

    Izzo, V A; Humphreys, D A; Kornbluth, M

    2012-01-01

    In DIII-D experiments, rapid termination by Ar-pellet injection sometimes produces a post-termination runaway electron (RE) current plateau, but this effect is highly non-reproducible on a shot-to-shot basis, particularly for diverted target plasmas. A set of DIII-D discharges is analyzed with two MHD codes to understand the relationship between the current profile of the target plasma and the amplitude of the RE current plateau. Using the linear stability code GATO, a correlation between the radial profile of the unstable n = 1 mode just after Ar-pellet injection and the observed appearance of an RE plateau is identified. Nonlinear NIMROD simulations with RE test-particle calculations directly predict RE confinement times during the disruption. With one exception, NIMROD predicts better RE confinement for shots in which higher RE currents were observed in DIII-D. But, the variation in confinement is primarily connected to the saturated n = 1 mode amplitude and not its radial profile. Still, both sets of analyses support the hypothesis that RE deconfinement by MHD fluctuations is a major factor in the shot-to-shot variability of RE plateaus, though additional factors such as seed current amplitude cannot be ruled out. (paper)

  16. Study on Plastic Deformation Characteristics of Shot Peening of Ni-Based Superalloy GH4079

    Science.gov (United States)

    Zhong, L. Q.; Liang, Y. L.; Hu, H.

    2017-09-01

    In this paper, the X-ray stress diffractometer, surface roughness tester, field emission scanning electron microscope(SEM), dynamic ultra-small microhardness tester were used to measure the surface residual stress and roughness, topography and surface hardness changes of GH4079 superalloy, which was processed by metallographic grinding, turning, metallographic grinding +shot peening and turning + shot peening. Analysized the effects of shot peening parameters on shot peening plastic deformation features; and the effects of the surface state before shot peening on shot peening plastic deformation characteristics. Results show that: the surface residual compressive stress, surface roughness and surface hardness of GH4079 superalloy were increased by shot peening, in addition, the increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening increased with increasing shot peening intensity, shot peening time, shot peening pressure and shot hardness, but harden layer depth was not affected considerably. The more plastic deformation degree of before shot peening surface state, the less increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening.

  17. The polarization of fast neutrons

    International Nuclear Information System (INIS)

    Talov, V.V.

    2001-01-01

    It is insufficient to know coordinates and momentum to describe a state of a neutron. It is necessary to define a spin orientation. As far as it is known from quantum mechanics, a half spin has a projection in the positive direction or in the negative direction. The probability of both projections in an unpolarized beam is equal. If a direction exists, in which the projection is more probably then beam is called polarized in this direction. It is essential to know polarization of neutrons for characteristics of a neutron source, which is emitting it. The question of polarization of fast neutrons came up in 50's. The present work is the review of polarization of fast neutrons and methods of polarization analysis. This also includes information about polarization of fast neutrons from first papers, which described polarization in the D(d,n) 3 He, 7 Li (p,n) 7 Be, T(p,n) 3 He reactions. (authors)

  18. Preparation of Ultracold Atom Clouds at the Shot Noise Level

    DEFF Research Database (Denmark)

    Gajdacz, M.; Hilliard, A. J.; Kristensen, Mick

    2016-01-01

    We prepare number stabilized ultracold atom clouds through the real-time analysis of nondestructive images and the application of feedback. In our experiments, the atom number N∼10^6 is determined by high precision Faraday imaging with uncertainty ΔN below the shot noise level, i.e., ΔN... on this measurement, feedback is applied to reduce the atom number to a user-defined target, whereupon a second imaging series probes the number stabilized cloud. By this method, we show that the atom number in ultracold clouds can be prepared below the shot noise level....

  19. The Influence of Stellar Spin on Ignition of Thermonuclear Runaways

    DEFF Research Database (Denmark)

    Galloway, Duncan K.; In't Zand, Jean J. M.; Chenevez, Jérôme

    2018-01-01

    timescales of hours to days. We measured the burst rate as a function of accretion rate, from seven neutron stars with known spin rates, using a burst sample accumulated over several decades. At the highest accretion rates, the burst rate is lower for faster spinning stars. The observations imply that fast...

  20. Fast polarizers installation for ECRH and ECE in TCV

    NARCIS (Netherlands)

    Silva, M.; Goodman, T.P.; Felici, F.; Porte, L.

    2011-01-01

    We report on the installation of fast polarizers for ECRH injection and ECE diagnostics, in the TCV tokamak. The main goal is to change the polarization during a plasma shot and react to changing conditions such as: plasma current and position, ECRH injection angles as well as ECE oblique

  1. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  2. 3 ns single-shot read-out in a quantum dot-based memory structure

    International Nuclear Information System (INIS)

    Nowozin, T.; Bimberg, D.; Beckel, A.; Lorke, A.; Geller, M.

    2014-01-01

    Fast read-out of two to six charges per dot from the ground and first excited state in a quantum dot (QD)-based memory is demonstrated using a two-dimensional electron gas. Single-shot measurements on modulation-doped field-effect transistor structures with embedded InAs/GaAs QDs show read-out times as short as 3 ns. At low temperature (T = 4.2 K) this read-out time is still limited by the parasitics of the setup and the device structure. Faster read-out times and a larger read-out signal are expected for an improved setup and device structure

  3. Single-shot beam size measurements using visible-light interferometry at CESR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.T., E-mail: sw565@cornell.edu [Cornell Laboratory for Accelerator-based Science and Education, Cornell University, Ithaca, NY 14853 (United States); Holtzapple, R. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States); Rubin, D.L. [Cornell Laboratory for Accelerator-based Science and Education, Cornell University, Ithaca, NY 14853 (United States)

    2017-03-01

    A new primary mirror for a visible-light beam size monitor (vBSM) was designed and installed in the Cornell Electron-Positron Storage Ring (CESR). The vertical angular acceptance of the mirror was doubled to allow double-slit interferometry with large slit separation (>12 mm). In addition, the diffraction associated with the first generation mirror has been eliminated. The resolution of the vertical beam size measurements has been dramatically improved but is ultimately limited by the beam motion. Two fast-response detectors, a Photomultiplier Tube (PMT) array and a gated camera, were employed to study the beam motion. The advantages and limitations of both devices are discussed in this paper. The gated camera was also used to measure single-shot beam width and motion of each bunch in a multi-bunch train. We measured significantly more horizontal motion of electron as compared to positron bunch trains in otherwise identical machine condition. This difference may be a signature for the difference between electron cloud build-up for positron bunch trains versus ions effects characteristic of electron bunch trains. - Highlights: • A new extraction mirror for synchrotron radiation was designed and installed in CESR. • The sensitivity of interferometer was increased and the diffraction effect was eliminated. • Two fast-response detectors were employed to study the effect of beam motion. • First time single-shot bunch-by-bunch horizontal beam size measurements using interferometry was observed from gated camera. • The difference in single bunch horizontal dynamics was observed between a positron and an electron train.

  4. Micro-MID Manufacturing By Two-Shot Injection Moulding

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2008-01-01

    a specific MID process chain is used for micro products, many technical challenges are encountered which would not be problems for macro scale products. This paper investigates on a specific MID process chain (two shot moulding) and discusses the technical difficulties associated with the production process...

  5. Flu Shots, Mammogram, and the Perception of Probabilities

    NARCIS (Netherlands)

    Carman, K.G.; Kooreman, P.

    2010-01-01

    We study individuals’ decisions to decline or accept preventive health care interventions such as flu shots and mammograms. In particular, we analyze the role of perceptions of the effectiveness of the intervention, by eliciting individuals' subjective probabilities of sickness and survival, with

  6. Opening Shots and Loose Slots: adapting Las Vegas

    NARCIS (Netherlands)

    Goggin, J.

    2015-01-01

    Anyone who has ever seen a film set in Las Vegas will be familiar with opening shots of sensational neon signage clustered against the night sky. This montage sequence, now an established convention, leads the viewer on a thrilling joy-ride, generally beginning on Fremont Street in the old city

  7. SnapShot: O-Glycosylation Pathways across Kingdoms

    DEFF Research Database (Denmark)

    Joshi, Hiren J.; Narimatsu, Yoshiki; Schjoldager, Katrine T.

    2018-01-01

    O-glycosylation is one of the most abundant and diverse types of post-translational modifications of proteins. O-glycans modulate the structure, stability, and function of proteins and serve generalized as well as highly specific roles in most biological processes. This ShapShot presents types of......-glycans found in different organisms and their principle biosynthetic pathways...

  8. Assessment for One-Shot Library Instruction: A Conceptual Approach

    Science.gov (United States)

    Wang, Rui

    2016-01-01

    The purpose of this study is to explore a conceptual approach to assessment for one-shot library instruction. This study develops a new assessment instrument based on Carol Kuhlthau's information search process (ISP) model. The new instrument focuses on measuring and identifying changes in student readiness to do research along three…

  9. SunShot Catalyst Prize Competition Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Solar Energy Technologies Office

    2015-04-01

    This fact sheet is an overview of the Catalyst Energy Innovation Prize, an open innovation program launched in 2014 by the U.S. Department of Energy SunShot Initiative. This program aims to catalyze the rapid creation and development of products and solutions that address near-term challenges in the U.S. solar energy marketplace.

  10. One-shot valve may be remotely actuated

    Science.gov (United States)

    Kami, S.

    1965-01-01

    One-shot valve, with spring-loaded plunger and sealing diaphragm, incorporates an emergency release actuated by a remote sensor. The plunger is released by the electrical melting of a fuse link and pierces the valve seal. The valve lowers fluid pressure in a container without losing the contained fluid.

  11. Improvement of Surface Layer Characteristics by Shot Lining

    Science.gov (United States)

    Harada, Yasunori

    In the present study, lining of the metal with foils using shot peening was investigated to improve the surface layer characteristics. In the shot peening experiment, the foils set on the metal are pelted with hard particles traveling at a high velocity. The foils are bonded to the metal surface due to plastic deformation induced by the collision of the particles. The foils and the metal are heated to heighten the bondability because of the reduction of flow stress. Lining the metal with the hard powder sandwiched between two aluminum foil sheets was also attempted. In this experiment, a centrifugal shot peening machine wite an electrical heater was employed. The metals are commercially aluminium alloys and magnesium alloys, and the foils are commercially aluminum, titanium and nickel. The effects of shot speed and the heating temperature on the bondability were examined. Wear resistance was also evaluated by grinding. The foils were successfully bonded to the metal surface. It was found that the present method is effective in improving of surface layer characteristics.

  12. ON THE USE OF SHOT NOISE FOR PHOTON COUNTING

    Energy Technology Data Exchange (ETDEWEB)

    Zmuidzinas, Jonas, E-mail: jonas@caltech.edu [Division of Physics, Mathematics, and Astronomy, California Institute Institute of Technology, Pasadena, CA 91125 (United States)

    2015-11-01

    Lieu et al. have recently claimed that it is possible to substantially improve the sensitivity of radio-astronomical observations. In essence, their proposal is to make use of the intensity of the photon shot noise as a measure of the photon arrival rate. Lieu et al. provide a detailed quantum-mechanical calculation of a proposed measurement scheme that uses two detectors and conclude that this scheme avoids the sensitivity degradation that is associated with photon bunching. If correct, this result could have a profound impact on radio astronomy. Here I present a detailed analysis of the sensitivity attainable using shot-noise measurement schemes that use either one or two detectors, and demonstrate that neither scheme can avoid the photon bunching penalty. I perform both semiclassical and fully quantum calculations of the sensitivity, obtaining consistent results, and provide a formal proof of the equivalence of these two approaches. These direct calculations are furthermore shown to be consistent with an indirect argument based on a correlation method that establishes an independent limit to the sensitivity of shot-noise measurement schemes. Furthermore, these calculations are directly applicable to the regime of interest identified by Lieu et al. Collectively, these results conclusively demonstrate that the photon-bunching sensitivity penalty applies to shot-noise measurement schemes just as it does to ordinary photon counting, in contradiction to the fundamental claim made by Lieu et al. The source of this contradiction is traced to a logical fallacy in their argument.

  13. Gaze Embeddings for Zero-Shot Image Classification

    NARCIS (Netherlands)

    Karessli, N.; Akata, Z.; Schiele, B.; Bulling, A.

    2017-01-01

    Zero-shot image classification using auxiliary information, such as attributes describing discriminative object properties, requires time-consuming annotation by domain experts. We instead propose a method that relies on human gaze as auxiliary information, exploiting that even non-expert users have

  14. Movement symmetry and asymmetry of goal shots in female football ...

    African Journals Online (AJOL)

    This study examined the phenomenon of symmetrical skills in goal shot technique in female football players, of nine video recorded matches. The recording was taken during the 2nd Under 19 female football World Cup in 2004 and the 6th European female Championships of female seniors in 2005. The study comprised ...

  15. Optical properties (bidirectional reflectance distribution function) of shot fabric.

    Science.gov (United States)

    Lu, R; Koenderink, J J; Kappers, A M

    2000-11-01

    To study the optical properties of materials, one needs a complete set of the angular distribution functions of surface scattering from the materials. Here we present a convenient method for collecting a large set of bidirectional reflectance distribution function (BRDF) samples in the hemispherical scattering space. Material samples are wrapped around a right-circular cylinder and irradiated by a parallel light source, and the scattered radiance is collected by a digital camera. We tilted the cylinder around its center to collect the BRDF samples outside the plane of incidence. This method can be used with materials that have isotropic and anisotropic scattering properties. We demonstrate this method in a detailed investigation of shot fabrics. The warps and the fillings of shot fabrics are dyed different colors so that the fabric appears to change color at different viewing angles. These color-changing characteristics are found to be related to the physical and geometrical structure of shot fabric. Our study reveals that the color-changing property of shot fabrics is due mainly to an occlusion effect.

  16. Single shot fringe pattern phase demodulation using Hilbert-Huang transform aided by the principal component analysis.

    Science.gov (United States)

    Trusiak, Maciej; Służewski, Łukasz; Patorski, Krzysztof

    2016-02-22

    Hybrid single shot algorithm for accurate phase demodulation of complex fringe patterns is proposed. It employs empirical mode decomposition based adaptive fringe pattern enhancement (i.e., denoising, background removal and amplitude normalization) and subsequent boosted phase demodulation using 2D Hilbert spiral transform aided by the Principal Component Analysis method for novel, correct and accurate local fringe direction map calculation. Robustness to fringe pattern significant noise, uneven background and amplitude modulation as well as local fringe period and shape variations is corroborated by numerical simulations and experiments. Proposed automatic, adaptive, fast and comprehensive fringe analysis solution compares favorably with other previously reported techniques.

  17. Spin dynamics in electron synchrotrons; Spindynamik in Elektronensynchrotronen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jan Felix

    2017-07-14

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  18. Circuit Simulation of All-Spin Logic

    KAUST Repository

    Alawein, Meshal

    2016-05-01

    With the aggressive scaling of complementary metal-oxide semiconductor (CMOS) nearing an inevitable physical limit and its well-known power crisis, the quest for an alternative/augmenting technology that surpasses the current semiconductor electronics is needed for further technological progress. Spintronic devices emerge as prime candidates for Beyond CMOS era by utilizing the electron spin as an extra degree of freedom to decrease the power consumption and overcome the velocity limit connected with the charge. By using the nonvolatility nature of magnetization along with its direction to represent a bit of information and then manipulating it by spin-polarized currents, routes are opened for combined memory and logic. This would not have been possible without the recent discoveries in the physics of nanomagnetism such as spin-transfer torque (STT) whereby a spin-polarized current can excite magnetization dynamics through the transfer of spin angular momentum. STT have expanded the available means of switching the magnetization of magnetic layers beyond old classical techniques, promising to fulfill the need for a new generation of dense, fast, and nonvolatile logic and storage devices. All-spin logic (ASL) is among the most promising spintronic logic switches due to its low power consumption, logic-in-memory structure, and operation on pure spin currents. The device is based on a lateral nonlocal spin valve and STT switching. It utilizes two nanomagnets (whereby information is stored) that communicate with pure spin currents through a spin-coherent nonmagnetic channel. By using the well-known spin physics and the recently proposed four-component spin circuit formalism, ASL can be thoroughly studied and simulated. Previous attempts to model ASL in the linear and diffusive regime either neglect the dynamic characteristics of transport or do not provide a scalable and robust platform for full micromagnetic simulations and inclusion of other effects like spin Hall

  19. Restricted active space spin-flip configuration interaction: theory and examples for multiple spin flips with odd numbers of electrons.

    Science.gov (United States)

    Zimmerman, Paul M; Bell, Franziska; Goldey, Matthew; Bell, Alexis T; Head-Gordon, Martin

    2012-10-28

    The restricted active space spin flip (RAS-SF) method is extended to allow ground and excited states of molecular radicals to be described at low cost (for small numbers of spin flips). RAS-SF allows for any number of spin flips and a flexible active space while maintaining pure spin eigenfunctions for all states by maintaining a spin complete set of determinants and using spin-restricted orbitals. The implementation supports both even and odd numbers of electrons, while use of resolution of the identity integrals and a shared memory parallel implementation allow for fast computation. Examples of multiple-bond dissociation, excited states in triradicals, spin conversions in organic multi-radicals, and mixed-valence metal coordination complexes demonstrate the broad usefulness of RAS-SF.

  20. The effect of shot peening on notched low cycle fatigue

    International Nuclear Information System (INIS)

    Soady, K.A.; Mellor, B.G.; Shackleton, J.; Morris, A.; Reed, P.A.S.

    2011-01-01

    Highlights: → Shot peening improves notched component three point bend low cycle fatigue life. → Notch shape does not affect the efficacy of the peening process. → Strain hardening and residual stress effects need separate consideration. → Loading direction residual stresses do not relax under bend load. - Abstract: The improvement in low cycle fatigue life created by shot peening ferritic heat resistant steel was investigated in components of varying geometries based on those found in conventional power station steam turbine blades. It was found that the shape of the component did not affect the efficacy of the shot peening process, which was found to be beneficial even under the high stress amplitude three point bend loads applied. Furthermore, by varying the shot peening process parameters and considering fatigue life it has been shown that the three surface effects of shot peening; roughening, strain hardening and the generation of a compressive residual stress field must be included in remnant life models as physically separate entities. The compressive residual stress field during plane bending low cycle fatigue has been experimentally determined using X-ray diffraction at varying life fractions and found to be retained in a direction parallel to that of loading and to only relax to 80% of its original magnitude in a direction orthogonal to loading. This result, which contributes to the retention of fatigue life improvement in low cycle fatigue conditions, has been discussed in light of the specific stress distribution applied to the components. The ultimate aim of the research is to apply these results in a life assessment methodology which can be used to justify a reduction in the length of scheduled plant overhauls. This will result in significant cost savings for the generating utility.

  1. Spin-polarized spin excitation spectroscopy

    International Nuclear Information System (INIS)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2010-01-01

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  2. Some properties of focus points in one-shot decision theory

    OpenAIRE

    Guo, Peijun

    2011-01-01

    One-shot (one-time) decision problems concern the situations where a decision is experienced only once. Such one-shot decision problems are commonly encountered in business, economics and social systems. One-shot decision theory has been initially proposed by Guo [4]. The one-shot decision procedure comprises two steps. In the first step, a decision maker identifies which state of nature should be taken into account for each alternative amongst all available states of nature. These identified...

  3. Fast spine echo and fast fluid attenuated inversion recovery sequences in multiple sclerosis

    International Nuclear Information System (INIS)

    Paolillo, Andrea; Giugni, Elisabetta; Bozzao, Alessandro; Bastianello, Stefano

    1997-01-01

    Fast spin echo (FSE) and fast fluid attenuated inversion recovery (fast-FLAIR) sequences, were compared with conventional spin echo (CSE) in quantitating multiple sclerosis (MS) lesion burden. For each sequence, the total number and volume of MS lesions were calculated in 38 remitting multiple sclerosis patients using a semiautomated lesion detection program. Conventional spin echo, fast spin echo, and fast fluid attenuated inversion recovery image were reported on randomly and at different times by two expert observers. Interobserver differences, the time needed to quantitative multiple sclerosis lesions and lesion signal intensity (contrast-to-noise ratio and overall contrast) were considered. The lesions were classified by site into infratentorial, white matter and cortical/subcortical. A total of 2970 lesions with a volume of 961.7 cm 3 was calculated on conventional spin echo images. Fast spin echo images depicted fewer (16.6%; p < .005) and smaller (24.9%; p < .0001) lesions and the differences were statistically significant. Despite an overall nonsignificant reduction for fast-FLAIR images (-5% and 4.8% for lesion number and volume, respectively), significantly lower values (lesion number: p < 0.1; volume: p < .04)were observed for infratentorial lesions, while significantly higher values were seen for cortical/subcortical lesions (lesion number: p < .01; volume: p < .02). A higher lesion/white matter contrast (p < .002), a significant time saving for lesion burden quantitation (p < .05) and very low interobserver variability were found in favor of fast-FLAIR. Our data suggest that, despite the limitations regarding infratentorial lesions, fast-FLAIR sequences are indicated in R studies because of their good identification of cortical/subcortical lesions, almost complete interobserver agreement, higher contrast-to-noise ratio and limited time needed for semiautomated quantitation

  4. Spin nematics next to spin singlets

    Science.gov (United States)

    Yokoyama, Yuto; Hotta, Chisa

    2018-05-01

    We provide a route to generate nematic order in a spin-1/2 system. Unlike the well-known magnon-binding mechanism, our spin nematics requires neither the frustration effect nor spin polarization in a high field or in the vicinity of a ferromagnet, but instead appears next to the spin singlet phase. We start from a state consisting of a quantum spin-1/2 singlet dimer placed on each site of a triangular lattice, and show that interdimer ring exchange interactions efficiently dope the SU(2) triplets that itinerate and interact, easily driving a stable singlet state to either Bose-Einstein condensates or a triplet crystal, some hosting a spin nematic order. A variety of roles the ring exchange serves includes the generation of a bilinear-biquadratic interaction between nearby triplets, which is responsible for the emergent nematic order separated from the singlet phase by a first-order transition.

  5. A focal-spot diagnostic for on-shot characterization of high-energy petawatt lasers.

    Science.gov (United States)

    Bromage, J; Bahk, S-W; Irwin, D; Kwiatkowski, J; Pruyne, A; Millecchia, M; Moore, M; Zuegel, J D

    2008-10-13

    An on-shot focal-spot diagnostic for characterizing high-energy, petawatt-class laser systems is presented. Accurate measurements at full energy are demonstrated using high-resolution wavefront sensing in combination with techniques to calibrate on-shot measurements with low-power sample beams. Results are shown for full-energy activation shots of the OMEGA EP Laser System.

  6. An investigation of the properties of conventional and severe shot peened low alloy steel

    Science.gov (United States)

    Quang Trung, Pham; Butler, David Lee; Win Khun, Nay

    2017-07-01

    The effects of the conventional shot peening and severe shot peening process on the mechanical and tribological properties of shot peened AISI 4340 high strength steel were systematically investigated. Compared with the conventional shot peened sample, the ultrafine grain surface layer with a depth of about 20 µm generated by the severe shot peening process can enhance the hardness and wear resistance of the treated material. However, deeper dimples generated by the high media velocity in the severe shot peening process resulted in a higher surface roughness, which is considered as a side effect of this method reducing the fatigue life of the material. Applying a smaller shot size with an appropriate intensity can be used to peen the severe shot peened samples to not only reduce the surface roughness and friction coefficient but also improve the wear resistance for these samples. This work was presented in the shot peening section during ‘The 30th International Conference on Surface Modification Technologies, 2016, Milan, Italy’ (SMT30, ID 61, entitled ‘Comparison of the effects of conventional shot peening and severe shot peening processes on the mechanical and tribological properties of shot peened AISI 4340’) and the authors were encouraged to submit a manuscript to the Materials Research Express journal after adding some nessesary information.

  7. Networks of ·/G/∞ queues with shot-noise-driven arrival intensities

    NARCIS (Netherlands)

    Koops, D.T.; Boxma, O.J.; Mandjes, M.R.H.

    2017-01-01

    We study infinite-server queues in which the arrival process is a Cox process (or doubly stochastic Poisson process), of which the arrival rate is given by a shot-noise process. A shot-noise rate emerges naturally in cases where the arrival rate tends to exhibit sudden increases (or shots) at random

  8. Spin-Mechatronics

    Science.gov (United States)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  9. RF power diagnostics and control on the DIII-D, 4 MW 30--120 MHz fast wave current drive system (FWCD)

    International Nuclear Information System (INIS)

    Ferguson, S.W.; Allen, J.C.; Callis, R.W.; Cary, W.P.; Harris, T.E.

    1995-10-01

    The Fast Wave Current Drive System uses three 2 MW transmitters to drive three antennas inside the DIII-D vacuum vessel. This paper describes the diagnostics for this system. The diagnostics associated with the General Atomics Fast Wave Current Drive System allow the system tuning to be analyzed and modified on a between shot basis. The transmitters can be exactly tuned to match the plasma with only one tuning shot into the plasma. This facilitates maximum rf power utilization

  10. Single-shot positron annihilation lifetime spectroscopy with LYSO scintillators

    Science.gov (United States)

    Alonso, A. M.; Cooper, B. S.; Deller, A.; Cassidy, D. B.

    2016-08-01

    We have evaluated the application of a lutetium yttrium oxyorthosilicate (LYSO) based detector to single-shot positron annihilation lifetime spectroscopy. We compare this detector directly with a similarly configured PbWO4 scintillator, which is the usual choice for such measurements. We find that the signal to noise ratio obtained using LYSO is around three times higher than that obtained using PbWO4 for measurements of Ps excited to longer-lived (Rydberg) levels, or when they are ionized soon after production. This is due to the much higher light output for LYSO (75% and 1% of NaI for LYSO and PbWO4 respectively). We conclude that LYSO is an ideal scintillator for single-shot measurements of positronium production and excitation performed using a low-intensity pulsed positron beam.

  11. Single-shot positron annihilation lifetime spectroscopy with LYSO scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, A.M., E-mail: a.alonso@ucl.ac.uk; Cooper, B.S.; Deller, A.; Cassidy, D.B.

    2016-08-21

    We have evaluated the application of a lutetium yttrium oxyorthosilicate (LYSO) based detector to single-shot positron annihilation lifetime spectroscopy. We compare this detector directly with a similarly configured PbWO{sub 4} scintillator, which is the usual choice for such measurements. We find that the signal to noise ratio obtained using LYSO is around three times higher than that obtained using PbWO{sub 4} for measurements of Ps excited to longer-lived (Rydberg) levels, or when they are ionized soon after production. This is due to the much higher light output for LYSO (75% and 1% of NaI for LYSO and PbWO{sub 4} respectively). We conclude that LYSO is an ideal scintillator for single-shot measurements of positronium production and excitation performed using a low-intensity pulsed positron beam.

  12. On the Path to SunShot - Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-05-01

    The halfway mark of the SunShot Initiative’s 2020 target date is a good time to take stock: How much progress has been made? What have we learned? What barriers and opportunities must still be addressed to ensure that solar technologies achieve cost parity in 2020 and realize their full potential in the decades beyond? To answer these questions, the Solar Energy Technology Office launched the On the Path to SunShot series in early 2015 in collaboration with the National Renewable Energy Laboratory (NREL) and with contributions from Lawrence Berkeley National Laboratory (LBNL), Sandia National Laboratories (SNL), and Argonne National Laboratory (ANL). The reports focus on the areas of technology development, systems integration, and market enablers.

  13. Short wavelength limits of current shot noise suppression

    International Nuclear Information System (INIS)

    Nause, Ariel; Dyunin, Egor; Gover, Avraham

    2014-01-01

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasma wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect

  14. Short wavelength limits of current shot noise suppression

    Energy Technology Data Exchange (ETDEWEB)

    Nause, Ariel, E-mail: arielnau@post.tau.ac.il [Faculty of Exact Sciences, Department of Physics, Tel Aviv University, Tel Aviv (Israel); Dyunin, Egor; Gover, Avraham [Faculty of Engineering, Department of Physical Electronics, Tel Aviv University, Tel Aviv (Israel)

    2014-08-15

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasma wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect.

  15. The Distribution of the Interval between Events of a Cox Process with Shot Noise Intensity

    Directory of Open Access Journals (Sweden)

    Angelos Dassios

    2008-01-01

    Full Text Available Applying piecewise deterministic Markov processes theory, the probability generating function of a Cox process, incorporating with shot noise process as the claim intensity, is obtained. We also derive the Laplace transform of the distribution of the shot noise process at claim jump times, using stationary assumption of the shot noise process at any times. Based on this Laplace transform and from the probability generating function of a Cox process with shot noise intensity, we obtain the distribution of the interval of a Cox process with shot noise intensity for insurance claims and its moments, that is, mean and variance.

  16. Music video shot segmentation using independent component analysis and keyframe extraction based on image complexity

    Science.gov (United States)

    Li, Wei; Chen, Ting; Zhang, Wenjun; Shi, Yunyu; Li, Jun

    2012-04-01

    In recent years, Music video data is increasing at an astonishing speed. Shot segmentation and keyframe extraction constitute a fundamental unit in organizing, indexing, retrieving video content. In this paper a unified framework is proposed to detect the shot boundaries and extract the keyframe of a shot. Music video is first segmented to shots by illumination-invariant chromaticity histogram in independent component (IC) analysis feature space .Then we presents a new metric, image complexity, to extract keyframe in a shot which is computed by ICs. Experimental results show the framework is effective and has a good performance.

  17. Multivariate Product-Shot-noise Cox Point Process Models

    DEFF Research Database (Denmark)

    Jalilian, Abdollah; Guan, Yongtao; Mateu, Jorge

    We introduce a new multivariate product-shot-noise Cox process which is useful for model- ing multi-species spatial point patterns with clustering intra-specific interactions and neutral, negative or positive inter-specific interactions. The auto and cross pair correlation functions of the process...... can be obtained in closed analytical forms and approximate simulation of the process is straightforward. We use the proposed process to model interactions within and among five tree species in the Barro Colorado Island plot....

  18. SnapShot: Hormones of the gastrointestinal tract.

    Science.gov (United States)

    Coate, Katie C; Kliewer, Steven A; Mangelsdorf, David J

    2014-12-04

    Specialized endocrine cells secrete a variety of peptide hormones all along the gastrointestinal (GI) tract, making it one of the largest endocrine organs in the body. Nutrients and developmental and neural cues trigger the secretion of gastrointestinal (GI) hormones from specialized endocrine cells along the GI tract. These hormones act in target tissues to facilitate digestion and regulate energy homeostasis. This SnapShot summarizes the production and functions of GI hormones. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Distributions of Conductance and Shot Noise and Associated Phase Transitions

    International Nuclear Information System (INIS)

    Vivo, Pierpaolo; Majumdar, Satya N.; Bohigas, Oriol

    2008-01-01

    For a chaotic cavity with two identical leads each supporting N channels, we compute analytically, for large N, the full distribution of the conductance and the shot noise power and show that in both cases there is a central Gaussian region flanked on both sides by non-Gaussian tails. The distribution is weakly singular at the junction of Gaussian and non-Gaussian regimes, a direct consequence of two phase transitions in an associated Coulomb gas problem

  20. Project Rulison: post-shot plans and evaluations

    Energy Technology Data Exchange (ETDEWEB)

    1969-12-01

    Project Rulison post-shot plans and evaluations are discussed and include physical characteristics of the Rulison cavity; pressure and temperature expected in the cavity; amount, nature, and distribution of radioactivity in the cavity; reentry plan; radioactive species which may be encountered during reentry; public safety considerations arising from release of radioactivity; procedures to assure public safety; and the radiological safety plan. Maximum hypothetical accidents and ecological considerations are discussed in the appendices.

  1. SnapShot: Fanconi anemia and associated proteins.

    Science.gov (United States)

    Wang, Anderson T; Smogorzewska, Agata

    2015-01-15

    Fanconi anemia is a genetic disorder resulting from biallelic mutations in one of the 17 FANC genes. It is characterized by congenital abnormalities, bone marrow failure, and cancer predisposition. The underlying cause is genomic instability resulting from the deficiency in replication-dependent DNA interstrand crosslink repair pathway commonly referred to as the Fanconi anemia-BRCA pathway. This SnapShot presents the key factors involved. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Zero-Shot Learning by Generating Pseudo Feature Representations

    OpenAIRE

    Lu, Jiang; Li, Jin; Yan, Ziang; Zhang, Changshui

    2017-01-01

    Zero-shot learning (ZSL) is a challenging task aiming at recognizing novel classes without any training instances. In this paper we present a simple but high-performance ZSL approach by generating pseudo feature representations (GPFR). Given the dataset of seen classes and side information of unseen classes (e.g. attributes), we synthesize feature-level pseudo representations for novel concepts, which allows us access to the formulation of unseen class predictor. Firstly we design a Joint Att...

  3. Transfer of mechanical energy during the shot put

    Directory of Open Access Journals (Sweden)

    Błażkiewicz Michalina

    2016-09-01

    Full Text Available The aim of this study was to analyse transfer of mechanical energy between body segments during the glide shot put. A group of eight elite throwers from the Polish National Team was analysed in the study. Motion analysis of each throw was recorded using an optoelectronic Vicon system composed of nine infrared camcorders and Kistler force plates. The power and energy were computed for the phase of final acceleration of the glide shot put. The data were normalized with respect to time using the algorithm of the fifth order spline and their values were interpolated with respect to the percentage of total time, assuming that the time of the final weight acceleration movement was different for each putter. Statistically significant transfer was found in the study group between the following segments: Right Knee – Right Hip (p = 0.0035, Left Hip - Torso (p = 0.0201, Torso – Right Shoulder (p = 0.0122 and Right Elbow – Right Wrist (p = 0.0001. Furthermore, the results of cluster analysis showed that the kinetic chain used during the final shot acceleration movement had two different models. Differences between the groups were revealed mainly in the energy generated by the hips and trunk.

  4. First-time viewers' comprehension of films: bridging shot transitions.

    Science.gov (United States)

    Ildirar, Sermin; Schwan, Stephan

    2015-02-01

    Which perceptual and cognitive prerequisites must be met in order to be able to comprehend a film is still unresolved and a controversial issue. In order to gain some insights into this issue, our field experiment investigates how first-time adult viewers extract and integrate meaningful information across film cuts. Three major types of commonalities between adjacent shots were differentiated, which may help first-time viewers with bridging the shots: pictorial, causal, and conceptual. Twenty first-time, 20 low-experienced and 20 high-experienced viewers from Turkey were shown a set of short film clips containing these three kinds of commonalities. Film clips conformed also to the principles of continuity editing. Analyses of viewers' spontaneous interpretations show that first-time viewers indeed are able to notice basic pictorial (object identity), causal (chains of activity), as well as conceptual (links between gaze direction and object attention) commonalities between shots due to their close relationship with everyday perception and cognition. However, first-time viewers' comprehension of the commonalities is to a large degree fragile, indicating the lack of a basic notion of what constitutes a film. © 2014 The British Psychological Society.

  5. IMPACT OF SHOTS ON FINAL SCORE OF A FOOTBALL MATCH

    Directory of Open Access Journals (Sweden)

    Miroslav Radoman

    2008-08-01

    Full Text Available The research has been done on a sample of 64 played games on the World championship FIFA, World Cup Germany 2006 and 128 results of the games divided in three integrals according to the score (win, defeat and unresolved score . The analysis is done according to the total number of shots during the game. Considering the results that are got and their interpretations, we could conclude that the results of data analysis in which is used the multi-method of MANOVA analysis and discriminative analysis, has shown that there are significant difference in frequency of the games result (win, defeat or unresolved score in shots element during the game. Even thou the noticed difference in frequency are not equally expressed, the results that are got have insinuated that there are significant differences in followed elements of the football game. Implemented analysis (royev test i T-test have confirmed that in every analyzed elements of the shot there are statistically significant differences in the result of the game (win, defeat, unresolved score and that the differences in shot’s elements are consequence different selection of the tactics and techniques also the ability of their realization in the stage of at tack and defense.

  6. Spin in hadron physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The following topics were ealt with: Hadron physics with proton and deuteron probes, physics projects with Georgian participation, spin physics with antiprotons and leptons, spin filtering experiments, ISTC projects, technical issues for FAIR. (HSI)

  7. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  8. Muscular power, neuromuscular activation, and performance in shot put athletes at preseason and at competition period.

    Science.gov (United States)

    Kyriazis, Thomas A; Terzis, Gerasimos; Boudolos, Konstantinos; Georgiadis, Georgios

    2009-09-01

    The aim of this study was to investigate changes in shot put performance, muscular power, and neuromuscular activation of the lower extremities, between the preseason and the competition period, in skilled shot put athletes using the rotational technique. Shot put performance was assessed at the start of the pre-season period as well as after 12 weeks, at the competition period, in nine shot putters. Electromyographic (EMG) activity of the right vastus lateralis muscle was recorded during all shot put trials. Maximum squat strength (1RM) and mechanical parameters during the countermovement jump (CMJ) on a force platform were also determined at pre-season and at competition period. Shot put performance increased 4.7% (p phase was increased significantly (p training period. Shot put performance was significantly related with muscular power and takeoff velocity during the CMJ, at competition period (r = 0.66, p competition period.

  9. A Beautiful Spin

    International Nuclear Information System (INIS)

    Ji Xiangdong

    2003-01-01

    Spin is a beautiful concept that plays an ever important role in modern physics. In this talk, I start with a discussion of the origin of spin, and then turn to three themes in which spin has been crucial in subatomic physics: a lab to explore physics beyond the standard model, a tool to measure physical observables that are hard to obtain otherwise, a probe to unravel nonperturbative QCD. I conclude with some remarks on a world without spin

  10. Non-Arrhenius conductivity in the fast ionic conductor Li0.5La0.5TiO3: Reconciling spin-lattice and electrical-conductivity relaxations

    International Nuclear Information System (INIS)

    Leon, C.; Santamaria, J.; Paris, M.A.; Sanz, J.; Ibarra, J.; Torres, L.M.

    1997-01-01

    Nuclear magnetic resonance and electrical conductivity measurements are conducted to study the dynamics of the ionic diffusion process in the crystalline ionic conductor Li 0.5 La 0.5 TiO 3 . dc conductivity shows a non-Arrhenius temperature dependence, similar to the one recently reported for some ionic conducting glasses. Spin-lattice and conductivity relaxations are analyzed in the same frequency and temperature range in terms of the non-Arrhenius dependence of the correlation time. Both relaxations are then described using a single correlation function of the form f(t)=exp(-(t/τ) β ), with β=0.4 over the whole temperature range. copyright 1997 The American Physical Society

  11. Spin at Lausanne

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    From 25 September to 1 October, some 150 spin enthusiasts gathered in Lausanne for the 1980 International Symposium on High Energy Physics with Polarized Beams and Polarized Targets. The programme was densely packed, covering physics interests with spin as well as the accelerator and target techniques which make spin physics possible

  12. Spin-Caloritronic Batteries

    DEFF Research Database (Denmark)

    Yu, Xiao-Qin; Zhu, Zhen-Gang; Su, Gang

    2017-01-01

    The thermoelectric performance of a topological energy converter is analyzed. The H-shaped device is based on a combination of transverse topological effects involving the spin: the inverse spin Hall effect and the spin Nernst effect. The device can convert a temperature drop in one arm into an e...

  13. Spinning Eggs and Ballerinas

    Science.gov (United States)

    Cross, Rod

    2013-01-01

    Measurements are presented on the rise of a spinning egg. It was found that the spin, the angular momentum and the kinetic energy all decrease as the egg rises, unlike the case of a ballerina who can increase her spin and kinetic energy by reducing her moment of inertia. The observed effects can be explained, in part, in terms of rolling friction…

  14. Semiclassical treatment of transport and spin relaxation in spin-orbit coupled systems

    Energy Technology Data Exchange (ETDEWEB)

    Lueffe, Matthias Clemens

    2012-02-10

    The coupling of orbital motion and spin, as derived from the relativistic Dirac equation, plays an important role not only in the atomic spectra but as well in solid state physics. Spin-orbit interactions are fundamental for the young research field of semiconductor spintronics, which is inspired by the idea to use the electron's spin instead of its charge for fast and power saving information processing in the future. However, on the route towards a functional spin transistor there is still some groundwork to be done, e.g., concerning the detailed understanding of spin relaxation in semiconductors. The first part of the present thesis can be placed in this context. We have investigated the processes contributing to the relaxation of a particularly long-lived spin-density wave, which can exist in semiconductor heterostructures with Dresselhaus and Rashba spin-orbit coupling of precisely the same magnitude. We have used a semiclassical spindiffusion equation to study the influence of the Coulomb interaction on the lifetime of this persistent spin helix. We have thus established that, in the presence of perturbations that violate the special symmetry of the problem, electron-electron scattering can have an impact on the relaxation of the spin helix. The resulting temperature-dependent lifetime reproduces the experimentally observed one in a satisfactory manner. It turns out that cubic Dresselhaus spin-orbit coupling is the most important symmetry-breaking element. The Coulomb interaction affects the dynamics of the persistent spin helix also via an Hartree-Fock exchange field. As a consequence, the individual spins precess about the vector of the surrounding local spin density, thus causing a nonlinear dynamics. We have shown that, for an experimentally accessible degree of initial spin polarization, characteristic non-linear effects such as a dramatic increase of lifetime and the appearance of higher harmonics can be expected. Another fascinating solid

  15. Effects of Rayleigh damping, friction and rate-dependency on 3D residual stress simulation of angled shot peening

    International Nuclear Information System (INIS)

    Kim, Taehyung; Lee, Hyungyil; Hyun, Hong Chul; Jung, Sunghwan

    2013-01-01

    Highlights: ► We propose a 3D FE model to study peening residual stress involving angled shots. ► The FE model set with plastic shot are found to best match the X-ray diffraction data. ► The model provides 3D multi-shot impact FE solution with various incidence angles. - Abstract: In this study, we propose a 3D finite element (FE) model to study shot peening involving angled shots. Using the FE model for angled shot peening, we examine relationships with the residual stress introduced by shot peening of the factors such as the Rayleigh damping in the material, dynamic friction, and the rate dependency of the material and systematically integrate them with the FE model. The FE model is set with rigid shot, elastic shot, and plastic shot respectively. Plastic deformation of the shot is also explored with the FE model. The FE model is applied to study angled multi-shots. The FE results are verified with experimental data using X-ray diffraction (XRD). The FE model set with plastic shot are found to best match the XRD results validating accuracy of the 3D FE model properly integrated with the factors and plastically deformable shot ball. The proposed model will serve to simulate actual shot peening cases, which generally involve multi-shots with various incidence angles

  16. Spin physics in semiconductors

    CERN Document Server

    2017-01-01

    This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.

  17. Dynamical decoupling assisted acceleration of two-spin evolution in XY spin-chain environment

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yong-Bo; Zou, Jian [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wang, Zhao-Ming [Department of Physics, Ocean University of China, Qingdao 266100 (China); Shao, Bin, E-mail: sbin610@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Li, Hai [School of Information and Electronic Engineering, Shandong Institute of Business and Technology, Yantai 264000 (China)

    2016-01-28

    We study the speed-up role of dynamical decoupling in an open system, which is modeled as two central spins coupled to their own XY spin-chain environment. We show that the fast bang–bang pulses can suppress the system evolution, which manifests the quantum Zeno effect. In contrast, with the increasing of the pulse interval time, the bang–bang pulses can enhance the decay of the quantum speed limit time and induce the speed-up process, which displays the quantum anti-Zeno effect. In addition, we show that the random pulses can also induce the speed-up of quantum evolution. - Highlights: • We propose a scheme to accelerate the dynamical evolution of central spins in an open system. • The quantum speed limit of central spins can be modulated by changing pulse frequency. • The random pulses can play the same role as the regular pulses do for small perturbation.

  18. Effects of single antegrade hot shot in comparison with no hot shot administration during coronary artery bypass grafting

    Directory of Open Access Journals (Sweden)

    Pouya Mirmohammadsadeghi

    2015-05-01

    Full Text Available BACKGROUND: Superior results will be achieved from cardiac surgery by minimizing the effect of ischemia/reperfusion injury during cross-clamping of the aorta. Different cardioplegia solutions have been introduced, but the optimum one is still ambiguous. The aim of this study is to determine the effect of single antegrade hot shot terminal warm blood cardioplegia (TWBC on patients who had undergone coronary artery bypass grafting (CABG. METHODS: In total, 2488 patients who had CABG surgery in Sina Hospital, Isfahan, Iran, from 2003 to 2011 were enrolled in this case-control study. They were divided into two groups, those who received cold cardioplegia only and those who received a hot shot following cold cardioplegia. Demographics, and clinical data, such as; premature atrial contraction (PAC arrhythmia, diabetes treatment, and left ventricular ejection fraction (EF, were collected and logistic regression analysis was used to analyze the data. RESULTS: There were significant differences found between subjects receiving antegrade hot shot based on direct current (DC shocks, with regard to; female, EF levels, diabetes treatment (P < 0.050. Those who did not receive the hot shot and were not diabetic received more DC shock (P = 0.019. The prevalence of subjects who did no need DC shock was significantly higher among male subjects who had good EF and acceptable diabetic treatment. Multiple logistic regression showed that PAC arrhythmia did not have a significant effect on receiving DC shock during CAGB [0.84 (0.25, 2.85, (P = 0.780]. Having poor EF increased the risk of receiving DC shock among subjects by 2.81 [(1.69, 4.69, (P ≤ 0.001] (P < 0.001. Among the diabetic subjects, receiving insulin decreased the risk of receiving DC shock by 0.54 (0.29, 0.98 (P = 0.042. CONCLUSION: It was concluded that single antegrade hot shot following cold cardioplegia was not particularly effective in the CABG group. TWBC will decrease the need for DC shock.   

  19. Inverse spin Hall effect by spin injection

    Science.gov (United States)

    Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.

    2007-09-01

    Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.

  20. Bulk electron spin polarization generated by the spin Hall current

    OpenAIRE

    Korenev, V. L.

    2005-01-01

    It is shown that the spin Hall current generates a non-equilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known equilibrium polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  1. Bulk electron spin polarization generated by the spin Hall current

    Science.gov (United States)

    Korenev, V. L.

    2006-07-01

    It is shown that the spin Hall current generates a nonequilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known “equilibrium” polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  2. Methodology for calculating guideline concentrations for safety shot sites

    International Nuclear Information System (INIS)

    1997-06-01

    Residual plutonium (Pu), with trace quantities of depleted uranium (DU) or weapons grade uranium (WU), exists in surficial soils at the Nevada Test Site (NTS), Nellis Air Force Range (NAFR), and the Tonopah Test Range (TTR) as the result of the above-ground testing of nuclear weapons and special experiments involving the detonation of plutonium-bearing devices. The special experiments (referred to as safety shots) involving plutonium-bearing devices were conducted to study the behavior of Pu as it was being explosively compressed; ensure that the accidental detonation of the chemical explosive in a production weapon would not result in criticality; evaluate the ability of personnel to manage large-scale Pu dispersal accidents; and develop criteria for transportation and storage of nuclear weapons. These sites do not pose a health threat to either workers or the general public because they are under active institutional control. The DOE is committed to remediating the safety shot sites so that radiation exposure to the public, both now and in the future, will be maintained within the established limits and be as low as reasonably achievable. Remediation requires calculation of a guideline concentration for the Pu, U, and their decay products that are present in the surface soil. This document presents the methodology for calculating guideline concentrations of weapons grade plutonium, weapons grade uranium, and depleted uranium in surface soils at the safety shot sites. Emphasis is placed on obtaining site-specific data for use in calculating dose to potential residents from the residual soil contamination

  3. Ranking TEM cameras by their response to electron shot noise

    International Nuclear Information System (INIS)

    Grob, Patricia; Bean, Derek; Typke, Dieter; Li, Xueming; Nogales, Eva; Glaeser, Robert M.

    2013-01-01

    We demonstrate two ways in which the Fourier transforms of images that consist solely of randomly distributed electrons (shot noise) can be used to compare the relative performance of different electronic cameras. The principle is to determine how closely the Fourier transform of a given image does, or does not, approach that of an image produced by an ideal camera, i.e. one for which single-electron events are modeled as Kronecker delta functions located at the same pixels where the electrons were incident on the camera. Experimentally, the average width of the single-electron response is characterized by fitting a single Lorentzian function to the azimuthally averaged amplitude of the Fourier transform. The reciprocal of the spatial frequency at which the Lorentzian function falls to a value of 0.5 provides an estimate of the number of pixels at which the corresponding line-spread function falls to a value of 1/e. In addition, the excess noise due to stochastic variations in the magnitude of the response of the camera (for single-electron events) is characterized by the amount to which the appropriately normalized power spectrum does, or does not, exceed the total number of electrons in the image. These simple measurements provide an easy way to evaluate the relative performance of different cameras. To illustrate this point we present data for three different types of scintillator–coupled camera plus a silicon-pixel (direct detection) camera. - Highlights: ► Fourier amplitude spectra of noise are well fitted by a single Lorentzian. ► This measures how closely, or not, the response approaches the single-pixel ideal. ► Noise in the Fourier amplitudes is (1−π/4) times the shot noise power spectrum. ► Finite variance in the single-electron responses adds to the output noise. ► This excess noise may be equal to or greater than shot noise itself

  4. Methodology for calculating guideline concentrations for safety shot sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    Residual plutonium (Pu), with trace quantities of depleted uranium (DU) or weapons grade uranium (WU), exists in surficial soils at the Nevada Test Site (NTS), Nellis Air Force Range (NAFR), and the Tonopah Test Range (TTR) as the result of the above-ground testing of nuclear weapons and special experiments involving the detonation of plutonium-bearing devices. The special experiments (referred to as safety shots) involving plutonium-bearing devices were conducted to study the behavior of Pu as it was being explosively compressed; ensure that the accidental detonation of the chemical explosive in a production weapon would not result in criticality; evaluate the ability of personnel to manage large-scale Pu dispersal accidents; and develop criteria for transportation and storage of nuclear weapons. These sites do not pose a health threat to either workers or the general public because they are under active institutional control. The DOE is committed to remediating the safety shot sites so that radiation exposure to the public, both now and in the future, will be maintained within the established limits and be as low as reasonably achievable. Remediation requires calculation of a guideline concentration for the Pu, U, and their decay products that are present in the surface soil. This document presents the methodology for calculating guideline concentrations of weapons grade plutonium, weapons grade uranium, and depleted uranium in surface soils at the safety shot sites. Emphasis is placed on obtaining site-specific data for use in calculating dose to potential residents from the residual soil contamination.

  5. Muon spin relaxation in random spin systems

    International Nuclear Information System (INIS)

    Toshimitsu Yamazaki

    1981-01-01

    The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)

  6. Single-shot positron annihilation lifetime spectroscopy with LYSO scintillators

    OpenAIRE

    Alonso, A. M.; Cooper, B. S.; Deller, A.; Cassidy, D. B.

    2016-01-01

    We have evaluated the application of a lutetium yttrium oxyorthosilicate (LYSO) based detector to single-shot positron annihilation lifetime spectroscopy. We compare this detector directly with a similarly configured PbWO4 scintillator, which is the usual choice for such measurements. We find that the signal to noise ratio obtained using LYSO is around three times higher than that obtained using PbWO4 for measurements of Ps excited to longer-lived (Rydberg) levels, or when they are ionized so...

  7. Multi-shot analysis of the gamma reaction history diagnostic

    International Nuclear Information System (INIS)

    Sayre, D. B.; Bernstein, L. A.; Church, J. A.; Stoeffl, W.; Herrmann, H. W.

    2012-01-01

    The gamma reaction history diagnostic at the National Ignition Facility has the capability to determine a number of important performance metrics for cryogenic deuterium-tritium implosions: the fusion burn width, bang time and yield, as well as the areal density of the compressed ablator. Extracting those values from the measured γ rays of an implosion, requires accounting for a γ-ray background in addition to the impulse response function of the instrument. To address these complications, we have constructed a model of the γ-ray signal, and are developing a simultaneous multi-shot fitting routine to constrain its parameter space.

  8. The example of the UK SHOT haemovigilance system

    Directory of Open Access Journals (Sweden)

    Perla Eleftheriou

    2014-12-01

    Full Text Available SHOT (Serious Hazards of Transfusion scheme is the UK’s National confidential haemovigilance system, and was set up in 1996. It is an independent, confidential, professionally led haemovigilance scheme. Initially the reporting was voluntary but now required by several professional bodies. SHOT publishes annual reports with recommendations and circulates to all relevant organizations including the 4 UK Blood services, Departments of Health in England, Wales, Scotland and Northern Ireland, all relevant professional bodies and reporting hospitals. Over the 17 years of reporting, the evidence gathered has prompted changes in transfusion practice from the selection and management of donors to changes in hospital practice, better education and training. Acute transfusion reactions and transfusion-associated circulatory overload carry the highest risk for morbidity and death. Greatest risk to patients remain errors in the process at the point of blood sampling, in the laboratory and at bedside administration. SHOT’s objectives are to use findings to improve standards of hospital transfusion practice, to educate users on transfusion hazards and prevention, to aid production of clinical guidelines in blood transfusion and to inform national policy on transfusion safety. MHRA is the UK competent authority to which serious adverse reactions and events have to be reported annually. Overall the most common adverse incidents are caused by errors, resulting in the transfusion of an incorrect component or one that does not meet the specific requirements of the patient (e.g. not irradiated or not appropriately antigen matched. TACO (transfusion associated circulatory overload accounts for most deaths and major morbidity reported to SHOT but is overall underreported. Transfusions are not always given appropriately. This may be due to wrong haemoglobin results, failure to assess patients appropriately, or avoidable use of emergency O RhD negative units because

  9. One-shot service searches: Preprint repositories at a mouseclick

    International Nuclear Information System (INIS)

    Canessa, E.; Pastore, G.

    1996-09-01

    In this article we introduce the ICTP-International Centre for Theoretical Physics's prototype for a ''One-Shot World-Wide Preprints Search'' on the Web. This is a new centralized interface for a global search throughout the most popular scientific preprint repositories. Herein, we briefly discuss our experience with the implementation of this service and propose it as a possible alternative solution to the problem of getting access to the information without being either overloaded with lots of new documents or not being informed at all. (author). 13 refs, 3 figs

  10. Start-Up of FEL Oscillator from Shot Noise

    International Nuclear Information System (INIS)

    Kumar, V.; Krishnagopal, S.; Fawley, W.M.

    2007-01-01

    In free-electron laser (FEL) oscillators, as in self-amplified spontaneous emission (SASE) FELs, the buildup of cavity power starts from shot noise resulting from the discreteness of electronic charge. It is important to do the start-up analysis for the build-up of cavity power in order to fix the macropulse width from the electron accelerator such that the system reaches saturation. In this paper, we use the time-dependent simulation code GINGER [1]to perform this analysis. We present results of this analysis for the parameters of the Compact Ultrafast TErahertz FEL (CUTE-FEL) [2] being built at RRCAT

  11. The effect of controlled shot peening on fusion welded joints

    International Nuclear Information System (INIS)

    Lah, Nur Azida Che; Ali, Aidy; Ismail, Napsiah; Chai, Lim Poon; Mohamed, Abdul Aziz

    2010-01-01

    This work examines the effect of controlled shot peening (CSP) treatment on the fatigue strength of an ASTM A516 grade 70 carbon steel welded joint. Metallurgical modifications, hardness, elemental compositions, and internal discontinuities, such as porosity, inclusions, lack of penetration, and undercut found in treated and untreated fusion welded joints, were characterized. The fatigue results of as-welded and peened skimmed joints were compared. It was observed that the effect of the CSP and skimming processes improved the fatigue life of the fusion weld by 50% on MMA-welded, 63% on MIG-welded, and 60% on TIG-welded samples.

  12. Modeling Microbunching from Shot Noise Using Vlasov Solvers

    International Nuclear Information System (INIS)

    Venturini, Marco; Venturini, Marco; Zholents, Alexander

    2008-01-01

    Unlike macroparticle simulations, which are sensitive to unphysical statistical fluctuations when the number of macroparticles is smaller than the bunch population, direct methods for solving the Vlasov equation are free from sampling noise and are ideally suited for studying microbunching instabilities evolving from shot noise. We review a 2D (longitudinal dynamics) Vlasov solver we have recently developed to study the microbunching instability in the beam delivery systems for x-ray FELs and present an application to FERMI(at)Elettra. We discuss, in particular, the impact of the spreader design on microbunching

  13. One-shot service searches: Preprint repositories at a mouseclick

    Energy Technology Data Exchange (ETDEWEB)

    Canessa, E [International Centre for Theoretical Physics, Trieste (Italy); Pastore, G [Trieste Univ., Trieste (Italy). Dipt. di Fisica

    1996-09-01

    In this article we introduce the ICTP-International Centre for Theoretical Physics`s prototype for a ``One-Shot World-Wide Preprints Search`` on the Web. This is a new centralized interface for a global search throughout the most popular scientific preprint repositories. Herein, we briefly discuss our experience with the implementation of this service and propose it as a possible alternative solution to the problem of getting access to the information without being either overloaded with lots of new documents or not being informed at all. (author). 13 refs, 3 figs.

  14. Single-shot 35 fs temporal resolution electron shadowgraphy

    Energy Technology Data Exchange (ETDEWEB)

    Scoby, C. M.; Li, R. K.; Threlkeld, E.; To, H.; Musumeci, P. [Department of Physics and Astronomy, UCLA, Los Angeles, California 90095 (United States)

    2013-01-14

    We obtain single-shot time-resolved shadowgraph images of the electromagnetic fields resulting from the interaction of a high intensity ultrashort laser pulse with a metal surface. Using a high brightness relativistic electron beam and a high streaking speed radiofrequency deflector, we report <35 fs temporal resolution enabling a direct visualization of the retarded-time dominated field evolution which follows the laser-induced charge emission. A model including the finite signal propagation speed well reproduces the data and yields measurements of fundamental parameters in short pulse laser-matter interaction such as the amount of emitted charge and the emission time scale.

  15. Single-shot 35 fs temporal resolution electron shadowgraphy

    International Nuclear Information System (INIS)

    Scoby, C. M.; Li, R. K.; Threlkeld, E.; To, H.; Musumeci, P.

    2013-01-01

    We obtain single-shot time-resolved shadowgraph images of the electromagnetic fields resulting from the interaction of a high intensity ultrashort laser pulse with a metal surface. Using a high brightness relativistic electron beam and a high streaking speed radiofrequency deflector, we report <35 fs temporal resolution enabling a direct visualization of the retarded-time dominated field evolution which follows the laser-induced charge emission. A model including the finite signal propagation speed well reproduces the data and yields measurements of fundamental parameters in short pulse laser-matter interaction such as the amount of emitted charge and the emission time scale.

  16. The finite element analysis for prediction of residual stresses induced by shot peening

    International Nuclear Information System (INIS)

    Kim, Cheol; Yang, Won Ho; Sung, Ki Deug; Cho, Myoung Rae; Ko, Myung Hoon

    2000-01-01

    The shot peening is largely used for a surface treatment in which small spherical parts called shots are blasted on a surface of a metallic components with velocities up to 100m/s. This treatment leads to an improvement of fatigue behavior due to the developed compressive residual stresses, and so it has gained widespread acceptance in the automobile and aerospace industries. The residual stress profile on surface layer depends on the parameters of shot peening, which are, shot velocity, shot diameter, coverage, impact angle, material properties etc. and the method to confirm this profile is only measurement by X-ray diffractometer. Despite its importance to automobile and aerospace industries, little attention has been devoted to the accurate modeling of the process. In this paper, the simulation technique is applied to predict the magnitude and distribution of the residual stress and plastic deformation caused by shot peening with the help of the finite element analysis

  17. Numerical investigation of a shot peening process by a finite element approach

    DEFF Research Database (Denmark)

    Liu, Hongsheng; Zhang, Xiaodan; Hansen, Niels

    2014-01-01

    Shot peening is a surface impact treatment widely used to improve the performance of a metal or a component. The better performance of the shot peened part is controlled by compressive residual stresses resulting from the plastic deformation of the surface layers by impacts of shot. The compressive...... residual stress is generally measured by X-ray diffraction. However, considerable cost and time are needed for such measurements. For this reason, in this work a 3D finite element (FE) model is introduced for a shot peening process. Through the FE simulations, the effect of process parameters...... such as damping ratio of material, friction coefficient, shot velocity and shot angle on the magnitude and distribution of the compressive residual stress is examined....

  18. Clinical application of multi-shot diffusion EPI in neurological disease

    International Nuclear Information System (INIS)

    Ishihara, Tetsuya; Hirata, Koichi; Kubo, Jin; Yamazaki, Kaoru; Sato, Toshihiko

    1998-01-01

    Using the multi-shot EPI method we investigated the clinical application of diffusion weighted imaging (DWI) in the diagnosis of neurological disease. The multi-shot method provided better susceptibility artifact-free DWI than the single-shot method particularly in the region of the posterior cranial fossa. DWI using the multi-shot EPI method readily shows the pyramidal tract extending from the internal capsule to the brainstems which is inaccessible by the conventional single-shot EPI method, and providing three-dimensional and distinct images of pyramidal tract changes in amyotrophic lateral sclerosis or cerebral infarction with pyramidal tract disturbance. Our findings suggest that the use of DWI with the multi-shot EPI method would provide a technique for the easy diagnosis and evaluation of various neurological diseases. (author)

  19. Clinical application of multi-shot diffusion EPI in neurological disease

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Tetsuya; Hirata, Koichi; Kubo, Jin; Yamazaki, Kaoru [Dokkyo Univ., Mibu, Tochigi (Japan). School of Medicine; Sato, Toshihiko

    1998-05-01

    Using the multi-shot EPI method we investigated the clinical application of diffusion weighted imaging (DWI) in the diagnosis of neurological disease. The multi-shot method provided better susceptibility artifact-free DWI than the single-shot method particularly in the region of the posterior cranial fossa. DWI using the multi-shot EPI method readily shows the pyramidal tract extending from the internal capsule to the brainstems which is inaccessible by the conventional single-shot EPI method, and providing three-dimensional and distinct images of pyramidal tract changes in amyotrophic lateral sclerosis or cerebral infarction with pyramidal tract disturbance. Our findings suggest that the use of DWI with the multi-shot EPI method would provide a technique for the easy diagnosis and evaluation of various neurological diseases. (author)

  20. IMPACT OF VIBRATORY AND ROTATIONAL SHOT PEENING ONTO SELECTED PROPERTIES OF TITANIUM ALLOY SURFACE LAYER

    Directory of Open Access Journals (Sweden)

    Kazimierz Zaleski

    2014-06-01

    Full Text Available This study presents the results of tests on impact of vibratory and rotational shot peening of the Ti6A12Mo2Cr titanium alloy onto the processed object surface roughness and surface layer microhardness. The external surfaces of ring-shaped samples were shot peened. The preceding process consisted of turning with a cubic boron nitride blade knife. Steel beads, having a diameter of 6 mm, were used as a processing medium. The variable parameters of shot peening were vibrator amplitude and shot peening time. The range of recommended technological parameters for vibratory and rotational shot peening was determined. As a result of shot peening, the surface roughness could be reduced by approximately 4 times and the surface layer could be hardened to the depth of approximately 0.4 mm.

  1. Analysis of artefacts and detail resolution of lung MRI with breath-hold T1-weighted gradient-echo and T2-weighted fast spin-echo sequences with respiratory triggering

    International Nuclear Information System (INIS)

    Biederer, J.; Reuter, M.; Both, M.; Grimm, J.; Heller, M.; Muhle, C.; Graessner, J.

    2002-01-01

    The aim of this study was to evaluate feasibility and limitations of two MR sequences for imaging of the lung using a semi-quantitative rating scale. Ten healthy volunteers were assessed with a breath-hold T1-weighted gradient-recalled-echo (TR/TE=129/2.2 ms, matrix 173 x 256) and a T2-weighted turbo spin-echo (TSE) sequence with respiratory triggering (TR/TE=3000-5000/120 ms, matrix 270 x 512) in axial 6-mm slices. The T1-weighted GRE protocol included a pre-saturation pulse over the mediastinal structures. Artefacts and resolution of vessel/airway structures in each lung segment were evaluated by two observers (10 volunteers, 180 segments). Cardiac and vessel pulsation artefacts predominated on T1-weighted GRE, respiration artefacts on T2-weighted TSE (lingula and middle lobe). Pre-saturation of the mediastinum reduced pulsation artefacts on T1-weighted GRE. T1-weighted GRE images were improved by bright flow signal of vessels, whereas image quality of T2-weighted TSE was reduced by black-blood effects in central parts of the lung. Delineation of lung periphery and the mediastinum was superior with T2-weighted TSE. Segmental/sub-segmental vessels (up to fourth/fifth order) and bronchi (up to third order) were identified. All 180 lung segments were imaged in diagnostic quality with at least one of the two sequences (T1-weighted GRE not diagnostic in 9 of 180, T2-weighted TSE in 4 of 180). Both sequences were found to be complementary: superior identification of gross lung anatomy with T1-weighted GRE and higher detail resolution in the periphery and the mediastinum with T2-weighted TSE. (orig.)

  2. Spin Hall effects

    Science.gov (United States)

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical

  3. The susceptibilities in the spin-S Ising model

    International Nuclear Information System (INIS)

    Ainane, A.; Saber, M.

    1995-08-01

    The susceptibilities of the spin-S Ising model are evaluated using the effective field theory introduced by Tucker et al. for studying general spin-S Ising model. The susceptibilities are studied for all spin values from S = 1/2 to S = 5/2. (author). 12 refs, 4 figs

  4. Neutron spin quantum precession using multilayer spin splitters and a phase-spin echo interferometer

    International Nuclear Information System (INIS)

    Ebisawa, Toru; Tasaki, Seiji; Kawai, Takeshi; Hino, Masahiro; Akiyoshi, Tsunekazu; Achiwa, Norio; Otake, Yoshie; Funahashi, Haruhiko.

    1996-01-01

    Neutron spin quantum precession by multilayer spin splitter has been demonstrated using a new spin interferometer. The multilayer spin splitter consists of a magnetic multilayer mirror on top, followed by a gap layer and a non magnetic multilayer mirror which are evaporated on a silicon substrate. Using the multilayer spin splitter, a polarized neutron wave in a magnetic field perpendicular to the polarization is split into two spin eigenstates with a phase shift in the direction of the magnetic field. The spin quantum precession is equal to the phase shift, which depends on the effective thickness of the gap layer. The demonstration experiments verify the multilayer spin splitter as a neutron spin precession device as well as the coherent superposition principle of the two spin eigenstates. We have developed a new phase-spin echo interferometer using the multilayer spin splitters. We present successful performance tests of the multilayer spin splitter and the phase-spin echo interferometer. (author)

  5. Higher spin gauge theories

    CERN Document Server

    Henneaux, Marc; Vasiliev, Mikhail A

    2017-01-01

    Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...

  6. Electron spin exchange of shallow donor muonium states

    International Nuclear Information System (INIS)

    Senba, Masayoshi

    2005-01-01

    Shallow donor muonium states with small hyperfine frequencies, recently observed in II-VI semiconductor compounds, have a number of unique features that present both opportunities and challenges in understanding muon spin dynamics in the presence of Heisenberg spin exchange. First, the shallow muonium state in CdSe with hyperfine frequency ω 0 /2π ∼ 0.1 MHz is already in the high field regime even in the earth's magnetic field, where only two precession frequencies are observable by the muon spin rotation (μSR) technique. Second, unlike in the case of more conventional muonium species with a larger hyperfine frequency, the μSR signal of shallow muonium states can be observed even in the transition region, between the slow spin-flip regime and the fast spin-flip regime, where the spin-flip rate and the hyperfine frequency are comparable. The muon spin dynamics in the transition region has not been theoretically explored previously, mainly because normal muonium in vacuum gives no observable signal in this region. Third, in the case of shallow muonium states, the incoherent process defined to be those spin-flip collisions that cause changes in muon spin precession frequencies, becomes crucially important in the transition region, where the incoherent process is entirely negligible in more conventional muonium species. By taking incoherent multiple collisions into account, an analytical expression for the time evolution of the muon spin polarization in Mu is derived, where Mu undergoes repeated spin-flip collisions. Comparisons with Monte Carlo calculations show that the analytical expression obtained in this work can reliably be used to analyse experimental data for shallow donor states not only in the slow spin-flip regime, but also in the transition region up to the onset of the fast regime. The present work confirms a recent experimental finding that, in the transition region, the initial phases of the two precession components of shallow donor states

  7. Lead shot pellets dispersed by hunters: ingested by ducks

    Energy Technology Data Exchange (ETDEWEB)

    Danell, K [Univ. of Umea, Sweden; Andersson, A; Marcstrom, V

    1977-01-01

    Many of the lead pellets shot by waterfowl hunters over shores and waters fall on the feeding grounds of ducks and geese. These pellets, picked up and ingested by the birds, can remain in the gizzard where they are eroded by mechanical and chemical action. In some cases the bird absorbs enough lead to cause lead poisoning. This report describes the incidence of ingested lead shot pellets found in 928 ducks collected in Sweden during hunting season. Pellets were found in both dabbling and diving ducks and were present in birds from six of the eight localities sampled. Usually one or two pellets were found but some ducks contained up to 62 pellets. As the incidence of ingested pellets in the present study is approximately the same as that found in North America, where the annual duck loss due to lead poisoning is estimated to be 2 to 3 percent of the population, it may be assumed that lead poisoning is a mortality factor for Swedish ducks also.

  8. Single-Shot MR Spectroscopic Imaging with Partial Parallel Imaging

    Science.gov (United States)

    Posse, Stefan; Otazo, Ricardo; Tsai, Shang-Yueh; Yoshimoto, Akio Ernesto; Lin, Fa-Hsuan

    2010-01-01

    An MR spectroscopic imaging (MRSI) pulse sequence based on Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI) is introduced that measures 2-dimensional metabolite maps in a single excitation. Echo-planar spatial-spectral encoding was combined with interleaved phase encoding and parallel imaging using SENSE to reconstruct absorption mode spectra. The symmetrical k-space trajectory compensates phase errors due to convolution of spatial and spectral encoding. Single-shot MRSI at short TE was evaluated in phantoms and in vivo on a 3 T whole body scanner equipped with 12-channel array coil. Four-step interleaved phase encoding and 4-fold SENSE acceleration were used to encode a 16×16 spatial matrix with 390 Hz spectral width. Comparison with conventional PEPSI and PEPSI with 4-fold SENSE acceleration demonstrated comparable sensitivity per unit time when taking into account g-factor related noise increases and differences in sampling efficiency. LCModel fitting enabled quantification of Inositol, Choline, Creatine and NAA in vivo with concentration values in the ranges measured with conventional PEPSI and SENSE-accelerated PEPSI. Cramer-Rao lower bounds were comparable to those obtained with conventional SENSE-accelerated PEPSI at the same voxel size and measurement time. This single-shot MRSI method is therefore suitable for applications that require high temporal resolution to monitor temporal dynamics or to reduce sensitivity to tissue movement. PMID:19097245

  9. Caffeine Content in Popular Energy Drinks and Energy Shots.

    Science.gov (United States)

    Attipoe, Selasi; Leggit, Jeffrey; Deuster, Patricia A

    2016-09-01

    The use of energy beverages is high among the general population and military personnel. Previous studies have reported discrepancies between the actual amount of caffeine in products and the amount of caffeine on stated labels. Thus, the purpose of this study was to examine the content of caffeine listed on the labels of various energy drinks and energy shots. Top-selling energy drinks (n = 9) and energy shots (n = 5) were purchased from retail stores. Three of each of the 14 products were purchased and analyzed for caffeine content by an independent laboratory. Of the 14 products tested, 5 did not provide caffeine amounts on their facts panel-of those, 3 listed caffeine as an ingredient and 2 listed caffeine as part of a proprietary blend. The remaining 9 (of 14) products stated the amounts of caffeine on their labels, all of which were within 15% of the amount indicated on the label. In this study, although the energy beverages that indicated the amount of caffeine it contained had values within ±15% of the amount listed on the label, a potentially acceptable range, this finding is not acceptable with regard to current labeling regulations, which require added ingredients to total 100%. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  10. Shot-Noise Limited Time-Encoded Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Sebastian Karpf

    2017-01-01

    Full Text Available Raman scattering, an inelastic scattering mechanism, provides information about molecular excitation energies and can be used to identify chemical compounds. Albeit being a powerful analysis tool, especially for label-free biomedical imaging with molecular contrast, it suffers from inherently low signal levels. This practical limitation can be overcome by nonlinear enhancement techniques like stimulated Raman scattering (SRS. In SRS, an additional light source stimulates the Raman scattering process. This can lead to orders of magnitude increase in signal levels and hence faster acquisition in biomedical imaging. However, achieving a broad spectral coverage in SRS is technically challenging and the signal is no longer background-free, as either stimulated Raman gain (SRG or loss (SRL is measured, turning a sensitivity limit into a dynamic range limit. Thus, the signal has to be isolated from the laser background light, requiring elaborate methods for minimizing detection noise. Here, we analyze the detection sensitivity of a shot-noise limited broadband stimulated time-encoded Raman (TICO-Raman system in detail. In time-encoded Raman, a wavelength-swept Fourier domain mode locking (FDML laser covers a broad range of Raman transition energies while allowing a dual-balanced detection for lowering the detection noise to the fundamental shot-noise limit.

  11. Finding the gap: An empirical study of the most effective shots in elite goalball.

    Directory of Open Access Journals (Sweden)

    Daniel Link

    Full Text Available This research identifies which shots types in goalball are most likely to lead to a goal and herby provides background information for improving training and competition. Therefore, we observed 117 elite level matches including 20,541 shots played in the regular situation (3 vs. 3 using notational analysis. We characterized the shots by using their target sector (A-E, technique (traditional, rotation, trajectory (flat, bounce, angle (straight, diagonal and outcome (goal, violation, out, blocked. In our data, a χ2-test showed a significantly higher goal rate for men (3.9% compared to women (3.0%. For men, we found a significantly higher goal rate in the intersection sectors between players C (5.6%, D (4.9%, and in the outer sector A. In sector A, goal rate was higher only for straight shots (6.6%. Technique and trajectory did not affect goal rate for men, but flat shots showed a higher violation rate (3.2% compared to bounce shouts (2.0%. In women's goalball, goal rate was higher only on sector D (4.4%. Bounce-rotation shots were the most successful (5.5%. We conclude that men should focus on shots to sectors C and D (called pocket and straight shots to sector A, as long as there are no other tactical considerations. Women should shoot primarily towards the pocket. It might also be worth playing more bounce-rotation shots and practicing them in training.

  12. Finding the gap: An empirical study of the most effective shots in elite goalball.

    Science.gov (United States)

    Link, Daniel; Weber, Christoph

    2018-01-01

    This research identifies which shots types in goalball are most likely to lead to a goal and herby provides background information for improving training and competition. Therefore, we observed 117 elite level matches including 20,541 shots played in the regular situation (3 vs. 3) using notational analysis. We characterized the shots by using their target sector (A-E), technique (traditional, rotation), trajectory (flat, bounce), angle (straight, diagonal and outcome (goal, violation, out, blocked). In our data, a χ2-test showed a significantly higher goal rate for men (3.9%) compared to women (3.0%). For men, we found a significantly higher goal rate in the intersection sectors between players C (5.6%), D (4.9%), and in the outer sector A. In sector A, goal rate was higher only for straight shots (6.6%). Technique and trajectory did not affect goal rate for men, but flat shots showed a higher violation rate (3.2%) compared to bounce shouts (2.0%). In women's goalball, goal rate was higher only on sector D (4.4%). Bounce-rotation shots were the most successful (5.5%). We conclude that men should focus on shots to sectors C and D (called pocket) and straight shots to sector A, as long as there are no other tactical considerations. Women should shoot primarily towards the pocket. It might also be worth playing more bounce-rotation shots and practicing them in training.

  13. Study on the use of types of shots in Valencian Handball on professional players

    Directory of Open Access Journals (Sweden)

    José Antonio Martínez Carbonell

    2013-01-01

    Full Text Available Due to the shortage of studies of analysis in Valencian ball, we have centred this study on this sport. The aim of study has been to analyze and to quantify the types of shots , and to compare the same ones between the positions of game of 1st game line (resto and 2nd game line (medio. Analysis of 6 games of the 19th Professional League of Stand and rope 2009-2010 was carried out so i, and specifically of 12 players, using Sports Code analysis software. The results indicate significant differences (p<0.05 between the shots carried out by first game line player and second game line in the rebound and rebound-shot all of them of right and left hand,and stand shot right hand; being almost realitzados only by players from the first game line position. At the same time we find data which demonstrate us by another band used mainly by second game line players beatings, these have been volley shot, volley shot after bounce, volley shot under the line of the shoulders, palm shot and horizontal shot all of them of right hand. As conclusion of the study, we have obtained that depending on the position of game the players use a few types of I throb or others. Therefore, we affirm, that the analysis of the high performance in stand and rope from the advances of the technologies, a valuable information contributes us to establish specific bosses of training.

  14. The Numerical FEM Model of the Kinematics of the Vibratory Shot Peening Process

    Directory of Open Access Journals (Sweden)

    Stanisław Bławucki

    2017-12-01

    Full Text Available The paper presents the results of numerical calculations, with the finite element method in the ABAQUS program environment, of the vibratory shot peening process with loose peening elements. The behaviour of shot peening elements was analysed in the kinematic aspect. The impact of the initial deployment of vibratory shot peening elements on their behaviour during processing was investigated, including the displacement, velocity, acceleration and the number of collisions. The way of determining the effectiveness of the processing with the vibratory shot peening was illustrated.

  15. A study on corrosive behavior of spring steel by shot-peening process

    International Nuclear Information System (INIS)

    An, Jae Pil; Park, Keyung Dong

    2004-01-01

    In this study, the influence of shot peening on the corrosion was investigated on spring steel immersed in 3.5% NaCl. The immersion test was performed on the two kinds of specimens. Corrosion potential, polarization curve, residual stress and etc. were investigated from experimental results. From test results, the effect of shot peening on the corrosion was evaluated. In case of corrosion potential, shot peened specimen shows more activated negative direction as compared with parent metal. Surface of specimen, which is treated with the shot peened, is placed as more activated state against inner base metal. It can cause the anti-corrosion effect on the base metal

  16. The Nuclear Spin Nanomagnet

    OpenAIRE

    Korenev, V. L.

    2007-01-01

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei brings the optical transition energy into resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of...

  17. A controllable spin prism

    International Nuclear Information System (INIS)

    Hakioglu, T

    2009-01-01

    Based on Khodas et al (2004 Phys. Rev. Lett. 92 086602), we propose a device acting like a controllable prism for an incident spin. The device is a large quantum well where Rashba and Dresselhaus spin-orbit interactions are present and controlled by the plunger gate potential, the electric field and the barrier height. A totally destructive interference can be manipulated externally between the Rashba and Dresselhaus couplings. The spin-dependent transmission/reflection amplitudes are calculated as the control parameters are changed. The device operates as a spin prism/converter/filter in different regimes and may stimulate research in promising directions in spintronics in analogy with linear optics.

  18. Operator spin foam models

    International Nuclear Information System (INIS)

    Bahr, Benjamin; Hellmann, Frank; Kaminski, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy

    2011-01-01

    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as our main tool. A set of moves we define in the set of the operator spin foams (among other operations) allows us to split the faces and the edges of the foams. We assign to each operator spin foam a contracted operator, by using the contractions at the vertices and suitably adjusted face amplitudes. The emergence of the face amplitudes is the consequence of assuming the invariance of the contracted operator with respect to the moves. Next, we define spin foam models and consider the class of models assumed to be symmetric with respect to the moves we have introduced, and assuming their partition functions (state sums) are defined by the contracted operators. Briefly speaking, those operator spin foam models are invariant with respect to the cellular decomposition, and are sensitive only to the topology and colouring of the foam. Imposing an extra symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with assumed invariance with respect to the edge splitting move, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on a spin(4) BF spin foam model is exactly the way we tend to view 4D quantum gravity, starting with the BC model and continuing with the Engle-Pereira-Rovelli-Livine (EPRL) or Freidel-Krasnov (FK) models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. Among our natural spin foam models there are the BF spin foam model, the BC model, and a model corresponding to the EPRL intertwiners. Our operator spin foam framework can also be used for more general spin

  19. PREFACE: Spin Electronics

    Science.gov (United States)

    Dieny, B.; Sousa, R.; Prejbeanu, L.

    2007-04-01

    Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic

  20. Topologically Massive Higher Spin Gravity

    NARCIS (Netherlands)

    Bagchi, A.; Lal, S.; Saha, A.; Sahoo, B.

    2011-01-01

    We look at the generalisation of topologically massive gravity (TMG) to higher spins, specifically spin-3. We find a special "chiral" point for the spin-three, analogous to the spin-two example, which actually coincides with the usual spin-two chiral point. But in contrast to usual TMG, there is the

  1. Next-order spin-orbit contributions to chaos in compact binaries

    International Nuclear Information System (INIS)

    Wang Yuzhao; Wu Xin

    2011-01-01

    This paper is mainly devoted to numerically investigating the effects of the next-order spin-orbit interactions including the 2.5 post-Newtonian order term of the equations of motion and the second post-Newtonian order terms of the spin precession equations on chaos in the conservative Lagrangian dynamics of a spinning compact binary system. It is shown sufficiently through individual orbit simulations, the dependence of the invariant fast Lyapunov indicators on the variations of initial spin angles and the phase space scans for chaos, that the next-order spin-orbit contributions do play an important role in the amplification of chaos.

  2. Fast reactors

    International Nuclear Information System (INIS)

    Vasile, A.

    2001-01-01

    Fast reactors have capacities to spare uranium natural resources by their breeding property and to propose solutions to the management of radioactive wastes by limiting the inventory of heavy nuclei. This article highlights the role that fast reactors could play for reducing the radiotoxicity of wastes. The conversion of 238 U into 239 Pu by neutron capture is more efficient in fast reactors than in light water reactors. In fast reactors multi-recycling of U + Pu leads to fissioning up to 95% of the initial fuel ( 238 U + 235 U). 2 strategies have been studied to burn actinides: - the multi-recycling of heavy nuclei is made inside the fuel element (homogeneous option); - the unique recycling is made in special irradiation targets placed inside the core or at its surroundings (heterogeneous option). Simulations have shown that, for the same amount of energy produced (400 TWhe), the mass of transuranium elements (Pu + Np + Am + Cm) sent to waste disposal is 60,9 Kg in the homogeneous option and 204.4 Kg in the heterogeneous option. Experimental programs are carried out in Phenix and BOR60 reactors in order to study the feasibility of such strategies. (A.C.)

  3. Fast ejendom

    DEFF Research Database (Denmark)

    Pagh, Peter

    Bogen omfatter en gennemgang af lovgivning, praksis og teori vedrørende køb af fast ejendom og offentligretlig og privatretlig regulering. Bogen belyser bl.a. de privatretlige emner: købers misligholdelsesbeføjelser, servitutter, naboret, hævd og erstatningsansvar for miljøskader samt den...

  4. Spin-orbit and spin-lattice coupling

    International Nuclear Information System (INIS)

    Bauer, Gerrit E.W.; Ziman, Timothy; Mori, Michiyasu

    2014-01-01

    We pursued theoretical research on the coupling of electron spins in the condensed matter to the lattice as mediated by the spin-orbit interaction with special focus on the spin and anomalous Hall effects. (author)

  5. Spin Current Noise of the Spin Seebeck Effect and Spin Pumping

    Science.gov (United States)

    Matsuo, M.; Ohnuma, Y.; Kato, T.; Maekawa, S.

    2018-01-01

    We theoretically investigate the fluctuation of a pure spin current induced by the spin Seebeck effect and spin pumping in a normal-metal-(NM-)ferromagnet(FM) bilayer system. Starting with a simple ferromagnet-insulator-(FI-)NM interface model with both spin-conserving and non-spin-conserving processes, we derive general expressions of the spin current and the spin-current noise at the interface within second-order perturbation of the FI-NM coupling strength, and estimate them for a yttrium-iron-garnet-platinum interface. We show that the spin-current noise can be used to determine the effective spin carried by a magnon modified by the non-spin-conserving process at the interface. In addition, we show that it provides information on the effective spin of a magnon, heating at the interface under spin pumping, and spin Hall angle of the NM.

  6. Feedback-tuned, noise resilient gates for encoded spin qubits

    Science.gov (United States)

    Bluhm, Hendrik

    Spin 1/2 particles form native two level systems and thus lend themselves as a natural qubit implementation. However, encoding a single qubit in several spins entails benefits, such as reducing the resources necessary for qubit control and protection from certain decoherence channels. While several varieties of such encoded spin qubits have been implemented, accurate control remains challenging, and leakage out of the subspace of valid qubit states is a potential issue. Optimal performance typically requires large pulse amplitudes for fast control, which is prone to systematic errors and prohibits standard control approaches based on Rabi flopping. Furthermore, the exchange interaction typically used to electrically manipulate encoded spin qubits is inherently sensitive to charge noise. I will discuss all-electrical, high-fidelity single qubit operations for a spin qubit encoded in two electrons in a GaAs double quantum dot. Starting from a set of numerically optimized control pulses, we employ an iterative tuning procedure based on measured error syndromes to remove systematic errors.Randomized benchmarking yields an average gate fidelity exceeding 98 % and a leakage rate into invalid states of 0.2 %. These gates exhibit a certain degree of resilience to both slow charge and nuclear spin fluctuations due to dynamical correction analogous to a spin echo. Furthermore, the numerical optimization minimizes the impact of fast charge noise. Both types of noise make relevant contributions to gate errors. The general approach is also adaptable to other qubit encodings and exchange based two-qubit gates.

  7. Prediction of shot success for basketball free throws: visual search strategy.

    Science.gov (United States)

    Uchida, Yusuke; Mizuguchi, Nobuaki; Honda, Masaaki; Kanosue, Kazuyuki

    2014-01-01

    In ball games, players have to pay close attention to visual information in order to predict the movements of both the opponents and the ball. Previous studies have indicated that players primarily utilise cues concerning the ball and opponents' body motion. The information acquired must be effective for observing players to select the subsequent action. The present study evaluated the effects of changes in the video replay speed on the spatial visual search strategy and ability to predict free throw success. We compared eye movements made while observing a basketball free throw by novices and experienced basketball players. Correct response rates were close to chance (50%) at all video speeds for the novices. The correct response rate of experienced players was significantly above chance (and significantly above that of the novices) at the normal speed, but was not different from chance at both slow and fast speeds. Experienced players gazed more on the lower part of the player's body when viewing a normal speed video than the novices. The players likely detected critical visual information to predict shot success by properly moving their gaze according to the shooter's movements. This pattern did not change when the video speed was decreased, but changed when it was increased. These findings suggest that temporal information is important for predicting action outcomes and that such outcomes are sensitive to video speed.

  8. Spent shot availability and ingestion on areas managed for mourning doves

    Science.gov (United States)

    Schulz, J.H.; Millspaugh, J.J.; Washburn, B.E.; Wester, G.R.; Lanigan, J. T.; Franson, J.C.

    2002-01-01

    Mourning dove (Zenaida macroura) hunting is becoming increasingly popular, especially in managed shooting fields. Given the possible increase in the availability of lead (Pb) shot on these areas, our objective was to estimate availability and ingestion of spent shot at the Eagle Bluffs Conservation Area (EBCA, hunted with nontoxic shot) and the James A. Reed Memorial Wildlife Area (JARWA, hunted with Pb shot) in Missouri. During 1998, we collected soil samples one or 2 weeks prior to the hunting season (prehunt) and after 4 days of dove hunting (posthunt). We also collected information on number of doves harvested, number of shots fired, shotgun gauge, and shotshell size used. Dove carcasses were collected on both areas during 1998-99. At EBCA, 60 hunters deposited an estimated 64,775 pellets/ha of nontoxic shot on or around the managed field. At JARWA, approximately 1,086,275 pellets/ha of Pb shot were deposited by 728 hunters. Our posthunt estimates of spent-shot availability from soil sampling were 0 pellets/ha for EBCA and 6,342 pellets/ha for JARWA. Our findings suggest that existing soil sampling protocols may not provide accurate estimates of spent-shot availability in managed dove shooting fields. During 1998-99, 15 of 310 (4.8%) mourning doves collected from EBCA had ingested nontoxic shot. Of those doves, 6 (40.0%) contained a?Y7 shot pellets. In comparison, only 2 of 574 (0.3%) doves collected from JARWA had ingested Pb shot. Because a greater proportion of doves ingested multiple steel pellets compared to Pb pellets, we suggest that doves feeding in fields hunted with Pb shot may succumb to acute Pb toxicosis and thus become unavailable to harvest, resulting in an underestimate of ingestion rates. Although further research is needed to test this hypothesis, our findings may partially explain why previous studies have shown few doves with ingested Pb shot despite their feeding on areas with high Pb shot availability.

  9. Effect of spin rotation coupling on spin transport

    International Nuclear Information System (INIS)

    Chowdhury, Debashree; Basu, B.

    2013-01-01

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied

  10. Effect of spin rotation coupling on spin transport

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com

    2013-12-15

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k{sup →}⋅p{sup →} perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k{sup →}⋅p{sup →} framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied.

  11. Spin temperature concept verified by optical magnetometry of nuclear spins

    Science.gov (United States)

    Vladimirova, M.; Cronenberger, S.; Scalbert, D.; Ryzhov, I. I.; Zapasskii, V. S.; Kozlov, G. G.; Lemaître, A.; Kavokin, K. V.

    2018-01-01

    We develop a method of nonperturbative optical control over adiabatic remagnetization of the nuclear spin system and apply it to verify the spin temperature concept in GaAs microcavities. The nuclear spin system is shown to exactly follow the predictions of the spin temperature theory, despite the quadrupole interaction that was earlier reported to disrupt nuclear spin thermalization. These findings open a way for the deep cooling of nuclear spins in semiconductor structures, with the prospect of realizing nuclear spin-ordered states for high-fidelity spin-photon interfaces.

  12. Spin labels. Applications in biology

    International Nuclear Information System (INIS)

    Frangopol, T.P.; Frangopol, M.; Ionescu, S.M.; Pop, I.V.; Benga, G.

    1980-11-01

    The main applications of spin labels in the study of biomembranes, enzymes, nucleic acids, in pharmacology, spin immunoassay are reviewed along with the fundamentals of the spin label method. 137 references. (author)

  13. Spin Switching via Quantum Dot Spin Valves

    Science.gov (United States)

    Gergs, N. M.; Bender, S. A.; Duine, R. A.; Schuricht, D.

    2018-01-01

    We develop a theory for spin transport and magnetization dynamics in a quantum dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot. Our theory is able to take into account effects of strong correlations. We demonstrate that, as a result of these strong correlations, the dot gate voltage enables control over the current-induced torques on the magnets and, in particular, enables voltage-controlled magnetic switching. The electrical resistance of the structure can be used to read out the magnetic state. Our model may be realized by a number of experimental systems, including magnetic scanning-tunneling microscope tips and artificial quantum dot systems.

  14. Physics lab in spin

    CERN Multimedia

    Hawkes, N

    1999-01-01

    RAL is fostering commerical exploitation of its research and facilities in two main ways : spin-out companies exploit work done at the lab, spin-in companies work on site taking advantage of the facilities and the expertise available (1/2 page).

  15. Summary: Symmetries and spin

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1988-01-01

    I discuss a number of the themes of the Symmetries and Spin session of the 8th International Symposium on High Energy Spin Physics: parity nonconservation, CP/T nonconservation, and tests of charge symmetry and charge independence. 28 refs., 1 fig

  16. Spin, mass, and symmetry

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1994-01-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics

  17. Classical spins in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, H [Tokyo Univ.; Maki, K

    1968-08-01

    It is shown that there exists a localized excited state in the energy gap in a superconductor with a classical spin. At finite concentration localized excited states around classical spins form an impurity band. The process of growth of the impurity band and its effects on observable quantities are investigated.

  18. Spin, mass, and symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E. [Stanford Univ., CA (United States)

    1994-12-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.

  19. More spinoff from spin

    International Nuclear Information System (INIS)

    Masaike, Akira

    1993-01-01

    Despite playing a major role in today's Standard Model, spin - the intrinsic angular momentum carried by particles - is sometimes dismissed as an inessential complication. However several major spin questions with important implications for the Standard Model remain unanswered, and recent results and new technological developments made the 10th International Symposium on High Energy Spin Physics, held in Nagoya, Japan, in November, highly topical. The symposium covered a wide range of physics, reflecting the diversity of spin effects, however four main themes were - the spin content of the nucleon, tests of symmetries and physics beyond standard models, intermediate energy physics, and spin technologies. Opening the meeting, T. Kinoshita reviewed the status of measurements of the anomalous magnetic moment (g-2) of the electron and the muon. The forthcoming experiment at Brookhaven (September 1991, page 23) will probe beyond the energy ranges open to existing electronpositron colliders. For example muon substructure will be opened up to 5 TeV and Ws to 2 TeV. R.L. Jaffe classified quark-parton distributions in terms of their spin dependence, pointing out their leftright attributes, and emphasized the importance of measuring transverse spin distributions through lepton pair production

  20. Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography.

    Science.gov (United States)

    Bianco, V; Paturzo, M; Memmolo, P; Finizio, A; Ferraro, P; Javidi, B

    2013-03-01

    Holographic imaging may become severely degraded by a mixture of speckle and incoherent additive noise. Bayesian approaches reduce the incoherent noise, but prior information is needed on the noise statistics. With no prior knowledge, one-shot reduction of noise is a highly desirable goal, as the recording process is simplified and made faster. Indeed, neither multiple acquisitions nor a complex setup are needed. So far, this result has been achieved at the cost of a deterministic resolution loss. Here we propose a fast non-Bayesian denoising method that avoids this trade-off by means of a numerical synthesis of a moving diffuser. In this way, only one single hologram is required as multiple uncorrelated reconstructions are provided by random complementary resampling masks. Experiments show a significant incoherent noise reduction, close to the theoretical improvement bound, resulting in image-contrast improvement. At the same time, we preserve the resolution of the unprocessed image.

  1. Spin-Wave Diode

    Directory of Open Access Journals (Sweden)

    Jin Lan (兰金

    2015-12-01

    Full Text Available A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound states in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. Our findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.

  2. Spin physics at BNL

    International Nuclear Information System (INIS)

    Lowenstein, D.I.

    1985-01-01

    Spin Physics at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory is the most recent of new capabilities being explored at this facility. During the summer of 1984 the AGS accelerated beams of polarized protons to 16.5 GeV/c at 40% polarization to two experiments (E782, E785). These experiments; single spin asymmetry in inclusive polarized pp interactions; and spin-spin effects in polarized pp elastic scattering, operated at the highest polarized proton energy ever achieved by any accelerator in the world. These experiments are reviewed after the complementary spin physics program with unpolarized protons, and the future possibilities with a booster injector for the AGS and the secondary benefits of a Relativisitic Heavy Ion Collider (RHIC), are placed within the context of the present physics program

  3. Superconductivity and spin fluctuations

    International Nuclear Information System (INIS)

    Scalapino, D.J.

    1999-01-01

    The organizers of the Memorial Session for Herman Rietschel asked that the author review some of the history of the interplay of superconductivity and spin fluctuations. Initially, Berk and Schrieffer showed how paramagnon spin fluctuations could suppress superconductivity in nearly-ferromagnetic materials. Following this, Rietschel and various co-workers wrote a number of papers in which they investigated the role of spin fluctuations in reducing the Tc of various electron-phonon superconductors. Paramagnon spin fluctuations are also believed to provide the p-wave pairing mechanism responsible for the superfluid phases of 3 He. More recently, antiferromagnetic spin fluctuations have been proposed as the mechanism for d-wave pairing in the heavy-fermion superconductors and in some organic materials as well as possibly the high-Tc cuprates. Here the author will review some of this early history and discuss some of the things he has learned more recently from numerical simulations

  4. Single-shot polarimetry imaging of multicore fiber.

    Science.gov (United States)

    Sivankutty, Siddharth; Andresen, Esben Ravn; Bouwmans, Géraud; Brown, Thomas G; Alonso, Miguel A; Rigneault, Hervé

    2016-05-01

    We report an experimental test of single-shot polarimetry applied to the problem of real-time monitoring of the output polarization states in each core within a multicore fiber bundle. The technique uses a stress-engineered optical element, together with an analyzer, and provides a point spread function whose shape unambiguously reveals the polarization state of a point source. We implement this technique to monitor, simultaneously and in real time, the output polarization states of up to 180 single-mode fiber cores in both conventional and polarization-maintaining fiber bundles. We demonstrate also that the technique can be used to fully characterize the polarization properties of each individual fiber core, including eigen-polarization states, phase delay, and diattenuation.

  5. Study of transient turbine shot without bypass in a BWR

    International Nuclear Information System (INIS)

    Vallejo Q, J. A.; Martin del Campo M, C.; Fuentes M, L.; Francois L, J. L.

    2015-09-01

    The study and analysis of operational transients are important for predicting the behavior of a system to short-terms events and the impact that would cause this transition. For the nuclear industry these studies are indispensable due to economic, environmental and social impacts that could result in an accident during the operation of a nuclear reactor. In this paper the preparation, simulation and analysis of results of a turbine shot transient, which is not taken into operation the bypass is presented. The study is realized for a BWR of 2027 MWt, to an intermediate cycle life and using the computer code Simulate-3K a depressurization stage of the vessel is created which shows the response of other security systems and gives a coherent prediction to the event presented type. (Author)

  6. Shot noise in systems with semi-Dirac points

    International Nuclear Information System (INIS)

    Zhai, Feng; Wang, Juan

    2014-01-01

    We calculate the ballistic conductance and shot noise of electrons through a two-dimensional stripe system (width W ≫ length L) with semi-Dirac band-touching points. We find that the ratio between zero-temperature noise power and mean current (the Fano factor) is highly anisotropic. When the transport is along the linear-dispersion direction and the Fermi energy is fixed at the semi-Dirac point, the Fano factor has a universal value F = 0.179 while a minimum conductivity exists and scales with L 1∕2 . Along the parabolic dispersion direction, the Fano factor at the semi-Dirac point has a contact-independent limit exceeding 0.9, which varies weakly with L due to the common-path interference of evanescent waves. Our findings suggest a way to discern the type of band-touching points

  7. Fast-acting calorimeter measures heat output of plasma gun accelerator

    Science.gov (United States)

    Dethlefson, R.; Larson, A. V.; Liebing, L.

    1967-01-01

    Calorimeter measures the exhaust energy from a shot of a pulsed plasma gun accelerator. It has a fast response time and requires only one measurement to determine the total energy. It uses a long ribbon of copper foil wound around a glass frame to form a reentrant cavity.

  8. Spin Hall and spin swapping torques in diffusive ferromagnets

    KAUST Repository

    Pauyac, C. O.

    2017-12-08

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  9. Spin Hall and spin swapping torques in diffusive ferromagnets

    KAUST Repository

    Pauyac, C. O.; Chshiev, M.; Manchon, Aurelien; Nikolaev, S. A.

    2017-01-01

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  10. Comparison of optimization algorithms for the slow shot phase in HPDC

    Science.gov (United States)

    Frings, Markus; Berkels, Benjamin; Behr, Marek; Elgeti, Stefanie

    2018-05-01

    High-pressure die casting (HPDC) is a popular manufacturing process for aluminum processing. The slow shot phase in HPDC is the first phase of this process. During this phase, the molten metal is pushed towards the cavity under moderate plunger movement. The so-called shot curve describes this plunger movement. A good design of the shot curve is important to produce high-quality cast parts. Three partially competing process goals characterize the slow shot phase: (1) reducing air entrapment, (2) avoiding temperature loss, and (3) minimizing oxide caused by the air-aluminum contact. Due to the rough process conditions with high pressure and temperature, it is hard to design the shot curve experimentally. There exist a few design rules that are based on theoretical considerations. Nevertheless, the quality of the shot curve design still depends on the experience of the machine operator. To improve the shot curve it seems to be natural to use numerical optimization. This work compares different optimization strategies for the slow shot phase optimization. The aim is to find the best optimization approach on a simple test problem.

  11. Who Takes Advantage of Free Flu Shots? Examining the Effects of an Expansion in Coverage

    NARCIS (Netherlands)

    Carman, K.G.; Mosca, I.

    2011-01-01

    Because of the high risk of costly complications (including death) and the externalities of contagious diseases, many countries provide free flu shots to certain populations free of charge. This paper examines the expansion of the free flu shot program in the Netherlands. This program expanded in

  12. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    Science.gov (United States)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  13. Shot reproducibility of the self-magnetic-pinch diode at 4.5 MV

    Directory of Open Access Journals (Sweden)

    Nichelle Bennett

    2014-05-01

    Full Text Available In experiments conducted at Sandia National Laboratories’ RITS-6 accelerator, the self-magnetic-pinch diode exhibits significant shot-to-shot variability. Specifically, for identical hardware operated at the same voltage, some shots exhibit a catastrophic drop in diode impedance. A study is underway to identify sources of shot-to-shot variations which correlate with diode impedance collapse. The scope of this report is limited to data collected at 4.5-MV peak voltage and sources of variability which occur away from the diode, such as sheath electron emission and trajectories, variations in pulsed power, load and transmission line alignment, and different field shapers. We find no changes in the transmission line hardware, alignment, or hardware preparation methods which correlate with impedance collapse. However, in classifying good versus poor shots, we find that there is not a continuous spectrum of diode impedance behavior but that the good and poor shots can be grouped into two distinct impedance profiles. In poor shots, the sheath current in the load region falls from 16%–30% of the total current to less than 10%. This result will form the basis of a follow-up study focusing on the variability resulting from diode physics.

  14. Pumped shot noise in adiabatically modulated graphene-based double-barrier structures.

    Science.gov (United States)

    Zhu, Rui; Lai, Maoli

    2011-11-16

    Quantum pumping processes are accompanied by considerable quantum noise. Based on the scattering approach, we investigated the pumped shot noise properties in adiabatically modulated graphene-based double-barrier structures. It is found that compared with the Poisson processes, the pumped shot noise is dramatically enhanced where the dc pumped current changes flow direction, which demonstrates the effect of the Klein paradox.

  15. Pumped shot noise in adiabatically modulated graphene-based double-barrier structures

    Science.gov (United States)

    Zhu, Rui; Lai, Maoli

    2011-11-01

    Quantum pumping processes are accompanied by considerable quantum noise. Based on the scattering approach, we investigated the pumped shot noise properties in adiabatically modulated graphene-based double-barrier structures. It is found that compared with the Poisson processes, the pumped shot noise is dramatically enhanced where the dc pumped current changes flow direction, which demonstrates the effect of the Klein paradox.

  16. 77 FR 36272 - SunShot Prize: America's Most Affordable Rooftop

    Science.gov (United States)

    2012-06-18

    ...The Department of Energy (DOE) announces in this notice the release of the SunShot Prize: America's Most Affordable Rooftop Solar for public comment. Interested persons are encouraged to learn about the SunShot Prize: America's Most Affordable Rooftop rules at eere.energy.gov/solar/sunshot/prize.html.

  17. Investigations of shot reproducibility for the SMP diode at 4.5 MV.

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Nichelle [National Security Technologies, LLC, Las Vegas, NV (United States); Crain, Marlon D. [National Security Technologies, LLC, Las Vegas, NV (United States); Droemer, Darryl W. [National Security Technologies, LLC, Las Vegas, NV (United States); Gignac, Raymond Edward [National Security Technologies, LLC, Las Vegas, NV (United States); Lare, Gregory A. [National Security Technologies, LLC, Las Vegas, NV (United States); Molina, Isidro [National Security Technologies, LLC, Las Vegas, NV (United States); Obregon, Rafael [National Security Technologies, LLC, Las Vegas, NV (United States); Smith, Chase C. [National Security Technologies, LLC, Las Vegas, NV (United States); Wilkins, Frank Lee [National Security Technologies, LLC, Las Vegas, NV (United States); Welch, Dale Robert [Voss Scientific, LLC, Albuquerque, NM (United States); Cordova, Steve Ray; Gallegos, M.; Johnston, Mark D.; Kiefer, Mark Linden; Leckbee, Joshua J.; Nielsen, Daniel Scott; Oliver, Bryan Velten; Renk, Timothy Jerome; Romero, Tobias; Webb, Timothy Jay; Ziska, Derek Raymond

    2013-11-01

    In experiments conducted on the RITS-6 accelerator, the SMP diode exhibits sig- ni cant shot-to-shot variability. Speci cally, for identical hardware operated at the same voltage, some shots exhibit a catastrophic drop in diode impedance. A study is underway to identify sources of shot-to-shot variations which correlate with diode impedance collapse. To remove knob emission as a source, only data from a shot series conducted with a 4.5-MV peak voltage are considered. The scope of this report is limited to sources of variability which occur away from the diode, such as power ow emission and trajectory changes, variations in pulsed power, dustbin and transmission line alignment, and di erent knob shapes. We nd no changes in the transmission line hardware, alignment, or hardware preparation methods which correlate with impedance collapse. However, in classifying good versus poor shots, we nd that there is not a continuous spectrum of diode impedance behavior but that the good and poor shots can be grouped into two distinct impedance pro les. This result forms the basis of a follow-on study focusing on the variability resulting from diode physics. 3

  18. Space based lidar shot pattern targeting strategies for small targets such as streams

    Science.gov (United States)

    Spiers, Gary D.

    2001-01-01

    An analysis of the effectiveness of four different types of lidar shot distribution is conducted to determine which is best for concentrating shots in a given location. A simple preemptive targeting strategy is found to work as adequately as a more involved dynamic strategy for most target sizes considered.

  19. The wear and corrosion resistance of shot peened-nitrided 316L austenitic stainless steel

    International Nuclear Information System (INIS)

    Hashemi, B.; Rezaee Yazdi, M.; Azar, V.

    2011-01-01

    Research highlights: → Shot peening-nitriding increased the wear resistance and surface hardness of samples. → This treatment improved the surface mechanical properties. → Shot peening alleviates the adverse effects of nitriding on the corrosion behavior. -- Abstract: 316L austenitic stainless steel was gas nitrided at 570 o C with pre-shot peening. Shot peening and nitriding are surface treatments that enhance the mechanical properties of surface layers by inducing compressive residual stresses and formation of hard phases, respectively. The structural phases, micro-hardness, wear behavior and corrosion resistance of specimens were investigated by X-ray diffraction, Vickers micro-hardness, wear testing, scanning electron microscopy and cyclic polarization tests. The effects of shot peening on the nitride layer formation and corrosion resistance of specimens were studied. The results showed that shot peening enhanced the nitride layer formation. The shot peened-nitrided specimens had higher wear resistance and hardness than other specimens. On the other hand, although nitriding deteriorated the corrosion resistance of the specimens, cyclic polarization tests showed that shot peening before the nitriding treatment could alleviate this adverse effect.

  20. Effects of Laser Peening, and Shot Peening, on Friction Stir Welding

    Science.gov (United States)

    Hatamleh, Omar; Hackel, Lloyd; Rankin, Jon; Truong, Chanh; Walter, Matt

    2006-01-01

    A viewgraph presentation describing the effects of laser peening and shot peening on friction stir welding is shown. The topics include: 1) Background; 2) Friction Stir Welding (FSW); 3) Microstructure; 4) Laser & Shot Peening; 5) Residual Stresses; 6) Tensile Behavior; 7) Fatigue Life & Surface Roughness; 8) Crack Growth; and 9) Benefits.

  1. Novel fast-neutron activation counter for high repetition rate measurements

    International Nuclear Information System (INIS)

    Mahmood, S.; Springham, S. V.; Zhang, T.; Rawat, R. S.; Tan, T. L.; Krishnan, M.; Beg, F. N.; Lee, S.; Schmidt, H.; Lee, P.

    2006-01-01

    A fast-neutron beryllium activation counter has been constructed for neutron measurements on a high repetition rate deuterium plasma focus. Beryllium activation is especially suitable for measurements of DD neutron yields. The cross section for the relevant reaction, 9 Be(n,α) 6 He, results in a maximum sensitivity at the characteristic energy of the DD neutrons (∼2.5 MeV) and practically no sensitivity to neutrons with energies 6 He enabled the shot-to-shot neutron yield from the plasma focus to be measured for repetition rates from 0.2 to 3 Hz (and for a range of deuterium gas pressures). With careful analysis, the shot-to-shot yield can be measured up to a maximum repetition rate of 3 Hz, beyond which the pileup of counts from the previous shots reduces the accuracy of the measurements to an unacceptable level. This new beryllium activation counter has been cross-checked against an indium activation counter to obtain absolute neutron yields. At a charging voltage of 12.5 kV (bank energy of 2.2 kJ), the average neutron yield was found to be (7.9±0.7)x10 7 per shot (standard deviation of 4x10 7 ). It was found that activation of the plasma focus construction materials (especially aluminum) must be taken into account

  2. The effect of court location and available time on the tactical shot selection of elite squash players.

    Science.gov (United States)

    Vučković, Goran; James, Nic; Hughes, Mike; Murray, Stafford; Sporiš, Goran; Perš, Janez

    2013-01-01

    No previous research in squash has considered the time between shots or the proximity of the ball to a wall, which are two important variables that influence shot outcomes. The aim of this paper was to analyse shot types to determine the extent to which they are played in different court areas and a more detailed analysis to determine whether the time available had an influence on the shot selected. Ten elite matches, contested by fifteen of the world's top right handed squash players (age 27 ± 3.2, height 1.81 ± 0.06 m, weight 76.3 ± 3.7 kg), at the men's World Team Championships were processed using the SAGIT/Squash tracking system with shot information manually added to the system. Results suggested that shot responses were dependent upon court location and the time between shots. When these factors were considered repeatable performance existed to the extent that one of two shots was typically played when there was limited time to play the shot (tactics affect shot selections. Key pointsPrevious research has suggested that a playing strategy, elements decided in advance of the match, may be evident for elite players by examining court location and preceding shot type, however these parameters alone are unlikely to be sufficient predictors.At present there is no known analysis in squash, or indeed in any of the racket sports, that has quantified the time available to respond to different shot types. An understanding of the time interval between shots and the movement characteristics of the player responding to different shots according to the court positions might facilitate a better understanding of the dynamics that determine shot selection.Some elements of a general playing strategy were evident e.g. predominately hitting to the back left of the court, but tactical differences in shot selection were also evident on the basis of court location and time available to play a shot.

  3. Upper body strength and power are associated with shot speed in men's ice hockey

    Directory of Open Access Journals (Sweden)

    Juraj Bežák

    2017-06-01

    Full Text Available Background: Recent studies that addressed shot speed in ice hockey have focused on the relationship between shot speed and variables such as a player's skills or hockey stick construction and its properties. There has been a lack of evidence that considers the relationship between shot speed and player strength, particularly in players at the same skill level. Objective: The aim of this study was to identify the relationship between maximal puck velocity of two shot types (the wrist shot and the slap shot and players' upper body strength and power. Methods: Twenty male professional and semi-professional ice hockey players (mean age 23.3 ± 2.4 years participated in this study. The puck velocity was measured in five trials of the wrist shot and five trials of the slap shot performed by every subject. All of the shots were performed on ice in a stationary position 11.6 meters in front of an electronic device that measures the speed of the puck. The selected strength and power variables were: muscle power in concentric contraction in the countermovement bench press with 40 kg and 50 kg measured with the FiTRODyne Premium device; bench press one-repetition maximum; and grip strength measured by digital hand dynamometer. Results: The correlations between strength/power variables and the puck velocity in the wrist shot and the slap shot ranged between .29-.72 and .16-.62, respectively. Puck velocities produced by wrist shots showed significant correlations with bench press muscle power with 40 kg (p = .004 and 50 kg (p < .001; and one-repetition maximum in bench press (p = .004. The slap shot puck velocity was significantly associated with bench press muscle power with 40 kg (p = .014 and 50 kg (p = .004. Conclusions: This study provides evidence that there are significant associations between shot speed and upper body strength and power.

  4. High human exposure to lead through consumption of birds hunted with lead shot

    International Nuclear Information System (INIS)

    Johansen, P.; Asmund, G.; Riget, F.

    2004-01-01

    Lead shot contaminates the edible parts of birds so that tolerable human lead intake is exceeded. - We assess lead contamination of Greenland seabirds killed with lead shot having studied thick-billed murre and common eider, the two most important species in the diet. The lead concentration is very high in meat of eiders killed with lead shot (mean 6.1 μg/g-wet wt, 95% CL 2.1-12). This level is about 44 times higher than in drowned eiders and eight times higher than in shot murres. Analyzing whole breasts instead of sub-samples reveals about seven times higher lead levels in birds' meat. We conclude that in some cases the lead intake by Greenland bird eaters will largely exceed the FAO/WHO tolerable lead intake guideline and that lead shot is a more important source of lead in the diet than previously estimated

  5. Mug shot exposure prior to lineup identification: interference, transference, and commitment effects.

    Science.gov (United States)

    Dysart, J E; Lindsay, R C; Hammond, R; Dupuis, P

    2001-12-01

    The effects of viewing mug shots on subsequent identification performance are as yet unclear. Two experiments used a live staged-crime paradigm to determine if interpolated eyewitness exposure to mug shots caused interference, unconscious transference, or commitment effects influencing subsequent lineup accuracy. Experiment 1 (N = 104) tested interference effects. Similar correct decision rates were obtained for the mug shot and no mug shot groups from both perpetrator-present and absent lineups. Experiment 2 (N = 132) tested for commitment and transference effects. Results showed that the commitment group made significantly more incorrect identifications than either the control or the transference group, which had similar false-identification rates. Commitment effects present a serious threat to identification accuracy from lineups following mug shot searches.

  6. Finite element modelling of coverage effects during shot peening of IN718

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Marc; Hoffmeister, Juergen [Inst. fuer Werkstoffkunde I, Karlsruhe Inst. of Tech. (Germany); Schulze, Volker [Inst. fur Produktionstechnik, Karlsruhe Inst. of Tech. (Germany)

    2010-08-15

    Current 3D shot peening simulation models proposed in literature do not take into account coverage as a process parameter influencing the residual state after shot peening. In this study a classic approach, using an ordered dimple pattern, and a new approach, using a stochastic dimple pattern were tested to describe the correlation between coverage, the surface topography and the residual stress state. Model verification was conducted based on X-ray and confocal white light microscopy measurements on shot peened test specimens. The test material was age hardened IN718. Simulations showed that the dimple pattern and the impact order of the shots can have a strong influence on the calculated macroscopic residual stress state. The stochastic approach enabled a realistic prediction of the surface topography and the residual stress state for arbitrary values of coverage while the classic approach strongly underestimated the number of shot impacts needed to achieve a certain value of coverage. (orig.)

  7. Effect of shot peening process on fatigue behavior of an alloyed austempered ductile iron

    Directory of Open Access Journals (Sweden)

    Amir Sadighzadeh Benam

    2011-08-01

    Full Text Available Shot peening is one of the most common surface treatments to improve the fatigue behavior of metallic parts. In this study the effect of shot peening process on the fatigue behavior of an alloyed austempered ductile iron (ADI has been studied. Austempering heat treatment consisted of austenitizing at 875℃ for 90 min followed by austempering at three different temperatures of 320, 365 and 400℃. Rotating-bending fatigue test was carried out on samples after shot peening by 0.4 – 0.6 mm shots. XRD and SEM analysis, micro hardness and roughness tests were carried out to study the fatigue behavior of the samples. Results indicate that the fatigue strengths of samples austempered at 320, 365 and 400℃ are increased by 27.3%, 33.3% and 48.4%, respectively, after shot peening process.

  8. Design and Implementation of Video Shot Detection on Field Programmable Gate Arrays

    Directory of Open Access Journals (Sweden)

    Jharna Majumdar

    2012-09-01

    Full Text Available Video has become an interactive medium of communication in everyday life. The sheer volume of video makes it extremely difficult to browse through and find the required data. Hence extraction of key frames from the video which represents the abstract of the entire video becomes necessary. The aim of the video shot detection is to find the position of the shot boundaries, so that key frames can be selected from each shot for subsequent processing such as video summarization, indexing etc. For most of the surveillance applications like video summery, face recognition etc., the hardware (real time implementation of these algorithms becomes necessary. Here in this paper we present the architecture for simultaneous accessing of consecutive frames, which are then used for the implementation of various Video Shot Detection algorithms. We also present the real time implementation of three video shot detection algorithms using the above mentioned architecture on FPGA (Field Programmable Gate Arrays.

  9. Acceptance test procedure, 241-SY-101/241-C-106 shot loading system

    International Nuclear Information System (INIS)

    Ostrom, M.J.

    1994-01-01

    This Acceptance Test Procedure is for the 241-SY-101/241-C-106 Shot Loading System. The procedure will test the components of the Shot Loading System and its capability of adequately loading shot into the annular space of the Container. The loaded shot will provide shielding as required for transporting and storage of a contaminated pump after removal from the tank. This test serves as verification that the SLS is acceptable for use in the pump removal operations for Tanks 241-SY-101, 241-C-106 and 241-AY-102. The pump removal operation for these three tanks will be performed by two different organizations with different equipment, but the Shot Loading System will be compatible between the two operations

  10. A General Protocol for Temperature Calibration of MAS NMR Probes at Arbitrary Spinning Speeds

    Science.gov (United States)

    Guan, Xudong; Stark, Ruth E.

    2010-01-01

    A protocol using 207Pb NMR of solid lead nitrate was developed to determine the temperature of magic-angle spinning (MAS) NMR probes over a range of nominal set temperatures and spinning speeds. Using BioMAS and fastMAS probes with typical sample spinning rates of 8 and 35 kHz, respectively, empirical equations were devised to predict the respective sample temperatures. These procedures provide a straightforward recipe for temperature calibration of any MAS probe. PMID:21036557

  11. Spin tunnelling dynamics for spin-1 Bose-Einstein condensates in a swept magnetic field

    International Nuclear Information System (INIS)

    Wang Guanfang; Fu Libin; Liu Jie

    2008-01-01

    We investigate the spin tunnelling of spin-1 Bose-Einstein condensates in a linearly swept magnetic field with a mean-field treatment. We focus on the two typical alkali Bose atoms 87 Rb and 23 Na condensates and study their tunnelling dynamics according to the sweep rates of the external magnetic fields. In the adiabatic (i.e. slowly sweeping) and sudden (i.e. fast sweeping) limits, no tunnelling is observed. For the case of moderate sweep rates, the tunnelling dynamics is found to be very sensitive to the sweep rates, so the plots of tunnelling probability versus sweep rate only become resolvable at a resolution of 10 -4 G s -1 . Moreover, a conserved quantity standing for the magnetization in experiments is found to affect dramatically the dynamics of the spin tunnelling. Theoretically we have given a complete interpretation of the above findings, and our studies could stimulate the experimental study of spinor Bose-Einstein condensates

  12. Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect

    Science.gov (United States)

    Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo

    2018-05-01

    We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.

  13. Diffusion-weighted single shot echo planar imaging of colorectal cancer using a sensitivity-encoding technique

    International Nuclear Information System (INIS)

    Nasu, Katsuhiro; Kuroki, Yoshihumi; Murakami, Koji; Nawano, Shigeru; Kuroki, Seiko; Moriyama, Noriyuki

    2004-01-01

    We wanted to determine the feasibility of diffusion-weighted single shot echo planar imaging using a sensitivity encoding diffusion weighted imaging (SENSE-DWI) technique in depicting colorectal cancer. Forty-two patients with sigmoid colon cancer and rectal cancer, all proven pathologically, were examined on T2-turbo spin echo (TSE) and SENSE-DWI. No bowel preparation was performed before examination. The b-factors used in SENSE-DWI were zero and 1000 s/mm 2 . In 10 randomly selected cases, the images whose b-factors were 250 and 500 s/mm 2 were also obtained. The reduction factor of SENSE was 2.0 in all sequences. Two radiologists evaluated the obtained images from the viewpoints of tumor detectability, image distortion and misregistration of the tumors. The apparent diffusion coefficients (ADCs) of the tumors and urine in the urinary bladders in each patient were measured to evaluate the correlation between ADC and pathological classification of each tumor. All tumors were depicted hyperintensely on SENSE-DWI. Even though single shot echo planar imaging (EPI) was used, the image distortion and misregistration was quite pronounced because of simultaneous use of SENSE. On SENSE-DWI whose b-factor was 1000 s/mm 2 , the normal colon wall and feces were always hypointense and easily differentiated from the tumors. The mean ADC value of each tumor was 1.02±0.1 (x 10 -3 ) mm 2 /s. No overt correlation can be pointed out between ADC and pathological classification of each tumor. SENSE-DWI is a feasible method for depicting colorectal cancer. SENSE-DWI provides strong contrast among colorectal cancers, normal rectal wall and feces. (authors)

  14. Relativistic spin-orbit interactions of photons and electrons

    Science.gov (United States)

    Smirnova, D. A.; Travin, V. M.; Bliokh, K. Y.; Nori, F.

    2018-04-01

    Laboratory optics, typically dealing with monochromatic light beams in a single reference frame, exhibits numerous spin-orbit interaction phenomena due to the coupling between the spin and orbital degrees of freedom of light. Similar phenomena appear for electrons and other spinning particles. Here we examine transformations of paraxial photon and relativistic-electron states carrying the spin and orbital angular momenta (AM) under the Lorentz boosts between different reference frames. We show that transverse boosts inevitably produce a rather nontrivial conversion from spin to orbital AM. The converted part is then separated between the intrinsic (vortex) and extrinsic (transverse shift or Hall effect) contributions. Although the spin, intrinsic-orbital, and extrinsic-orbital parts all point in different directions, such complex behavior is necessary for the proper Lorentz transformation of the total AM of the particle. Relativistic spin-orbit interactions can be important in scattering processes involving photons, electrons, and other relativistic spinning particles, as well as when studying light emitted by fast-moving bodies.

  15. Spin-orbit qubit in a semiconductor nanowire.

    Science.gov (United States)

    Nadj-Perge, S; Frolov, S M; Bakkers, E P A M; Kouwenhoven, L P

    2010-12-23

    Motion of electrons can influence their spins through a fundamental effect called spin-orbit interaction. This interaction provides a way to control spins electrically and thus lies at the foundation of spintronics. Even at the level of single electrons, the spin-orbit interaction has proven promising for coherent spin rotations. Here we implement a spin-orbit quantum bit (qubit) in an indium arsenide nanowire, where the spin-orbit interaction is so strong that spin and motion can no longer be separated. In this regime, we realize fast qubit rotations and universal single-qubit control using only electric fields; the qubits are hosted in single-electron quantum dots that are individually addressable. We enhance coherence by dynamically decoupling the qubits from the environment. Nanowires offer various advantages for quantum computing: they can serve as one-dimensional templates for scalable qubit registers, and it is possible to vary the material even during wire growth. Such flexibility can be used to design wires with suppressed decoherence and to push semiconductor qubit fidelities towards error correction levels. Furthermore, electrical dots can be integrated with optical dots in p-n junction nanowires. The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, which can serve as a flying qubit for long-distance quantum communication.

  16. Resonant Tunneling Spin Pump

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  17. Nuclear spins in nanostructures

    International Nuclear Information System (INIS)

    Coish, W.A.; Baugh, J.

    2009-01-01

    We review recent theoretical and experimental advances toward understanding the effects of nuclear spins in confined nanostructures. These systems, which include quantum dots, defect centers, and molecular magnets, are particularly interesting for their importance in quantum information processing devices, which aim to coherently manipulate single electron spins with high precision. On one hand, interactions between confined electron spins and a nuclear-spin environment provide a decoherence source for the electron, and on the other, a strong effective magnetic field that can be used to execute local coherent rotations. A great deal of effort has been directed toward understanding the details of the relevant decoherence processes and to find new methods to manipulate the coupled electron-nuclear system. A sequence of spectacular new results have provided understanding of spin-bath decoherence, nuclear spin diffusion, and preparation of the nuclear state through dynamic polarization and more general manipulation of the nuclear-spin density matrix through ''state narrowing.'' These results demonstrate the richness of this physical system and promise many new mysteries for the future. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  18. Production and Detection of Spin-Entangled Electrons in Mesoscopic Conductors

    Science.gov (United States)

    Burkard, Guido

    2006-03-01

    Electron spins are an extremely versatile form of quantum bits. When localized in quantum dots, they can form a register for quantum computation. Moreover, being attached to a charge in a mesoscopic conductor allows the electron spin to play the role of a mobile carrier of quantum information similarly to photons in optical quantum communication. Since entanglement is a basic resource in quantum communication, the production and detection of spin-entangled Einstein-Podolsky-Rosen (EPR) pairs of electrons are of great interest. Besides the practical importance, it is of fundamental interest to test quantum non-locality for electrons. I review the theoretical schemes for the entanglement production in superconductor-normal junctions [1] and other systems. The electron spin entanglement can be detected and quantified from measurements of the fluctuations (shot noise) of the charge current after the electrons have passed through an electronic beam splitter [2,3]. This two-particle interference effect is related to the Hanbury-Brown and Twiss experiment and leads to a doubling of the shot noise SI=φ=0 for spin-entangled states, allowing their differentiation from unentangled pairs. I report on the role of spin-orbit coupling (Rashba and Dresselhaus) in a complete characterization of the spin entanglement [4]. Finally, I address the effects of a discrete level spectrum in the mesoscopic leads and of backscattering and decoherence.[1] P. Recher, E. V. Sukhorukov, D. Loss, Phys. Rev. B 63, 165314 (2001)[2] G. Burkard, D. Loss, E. V. Sukhorukov, Phys. Rev. B 61, R16303 (2000)[3] G. Burkard and D. Loss, Phys. Rev. Lett.91, 087903 (2003)[4] J. C. Egues, G. Burkard, D. Saraga, J. Schliemann, D. Loss, cond-mat/0509038, to appear in Phys.Rev.B (2005).

  19. On the residual stress modeling of shot-peened AISI 4340 steel: finite element and response surface methods

    Science.gov (United States)

    Asgari, Ali; Dehestani, Pouya; Poruraminaie, Iman

    2018-02-01

    Shot peening is a well-known process in applying the residual stress on the surface of industrial parts. The induced residual stress improves fatigue life. In this study, the effects of shot peening parameters such as shot diameter, shot speed, friction coefficient, and the number of impacts on the applied residual stress will be evaluated. To assess these parameters effect, firstly the shot peening process has been simulated by finite element method. Then, effects of the process parameters on the residual stress have been evaluated by response surface method as a statistical approach. Finally, a strong model is presented to predict the maximum residual stress induced by shot peening process in AISI 4340 steel. Also, the optimum parameters for the maximum residual stress are achieved. The results indicate that effect of shot diameter on the induced residual stress is increased by increasing the shot speed. Also, enhancing the friction coefficient magnitude always cannot lead to increase in the residual stress.

  20. Spin drift and spin diffusion currents in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)], E-mail: m.miah@griffith.edu.au

    2008-09-15

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.