WorldWideScience

Sample records for shorter alkyl chains

  1. One long chain among shorter chains : the Flory approach revisited

    OpenAIRE

    Raphaël , E.; Fredrickson , G.; Pincus , P.

    1992-01-01

    We consider the mean square end-to-end distance of a long chain immersed in a monodisperse, concentrated solution of shorter, chemically identical chains. In contrast with the earlier work of Flory, no simplifying assumption on the wave vector dependence of the effective potential between segments is made. In order to obtain a closed form expression for the dimension of the long chain, we first derive a general expression for the mean square end-to-end distance of a flexible chain with arbitr...

  2. Optimization of the alkyl side chain length of fluorine-18-labeled 7α-alkyl-fluoroestradiol

    International Nuclear Information System (INIS)

    Okamoto, Mayumi; Shibayama, Hiromitsu; Naka, Kyosuke; Kitagawa, Yuya; Ishiwata, Kiichi; Shimizu, Isao; Toyohara, Jun

    2016-01-01

    Introduction: Several lines of evidence suggest that 7α-substituted estradiol derivatives bind to the estrogen receptor (ER). In line with this hypothesis, we designed and synthesized 18 F-labeled 7α-fluoroalkylestradiol (Cn-7α-[ 18 F]FES) derivatives as molecular probes for visualizing ERs. Previously, we successfully synthesized 7α-(3-[ 18 F]fluoropropyl)estradiol (C3-7α-[ 18 F]FES) and showed promising results for quantification of ER density in vivo, although extensive metabolism was observed in rodents. Therefore, optimization of the alkyl side chain length is needed to obtain suitable radioligands based on Cn-7α-substituted estradiol pharmacophores. Methods: We synthesized fluoromethyl (23; C1-7α-[ 18 F]FES) to fluorohexyl (26; C6-7α-[ 18 F]FES) derivatives, except fluoropropyl (C3-7α-[ 18 F]FES) and fluoropentyl derivatives (C5-7α-[ 18 F]FES), which have been previously synthesized. In vitro binding to the α-subtype (ERα) isoform of ERs and in vivo biodistribution studies in mature female mice were carried out. Results: The in vitro IC 50 value of Cn-7α-FES tended to gradually decrease depending on the alkyl side chain length. C1-7α-[ 18 F]FES (23) showed the highest uptake in ER-rich tissues such as the uterus. Uterus uptake also gradually decreased depending on the alkyl side chain length. As a result, in vivo uterus uptake reflected the in vitro ERα affinity of each compound. Bone uptake, which indicates de-fluorination, was marked in 7α-(2-[ 18 F]fluoroethyl)estradiol (C2-7α-[ 18 F]FES) (24) and 7α-(4-[ 18 F]fluorobutyl)estradiol (C4-7α-[ 18 F]FES) (25) derivatives. However, C1-7α-[ 18 F]FES (23) and C6-7α-[ 18 F]FES (26) showed limited uptake in bone. As a result, in vivo bone uptake (de-fluorination) showed a bell-shaped pattern, depending on the alkyl side chain length. C1-7α-[ 18 F]FES (23) showed the same levels of uptake in uterus and bone compared with those of 16α-[ 18 F]fluoro-17β-estradiol. Conclusions: The optimal alkyl

  3. Effect of Amphiphilic Alkyl Chain Length Upon Purified LATEX Stability

    International Nuclear Information System (INIS)

    Amira Amir Hassan; Amir Hashim Mohd Yatim

    2015-01-01

    Rubber particles in purified latex (PL) are stabilized by a film of protein and fatty acid soap (surfactant). Saturated straight-chain fatty acid soaps can assist an enhancement of latex stability. However, whether the alkyl chain length plays an important role in increasing the stability is still an issue. The aim of this study is to investigate the effect of alkyl chain length of anionic surfactant on the stability of purified latex. The fatty acid soap of decanoate (9), laurate (11), sodium dodecyl sulphate (SDS) (12) and palmitate (15) were used. The numbers in parentheses indicating the number of carbon present in alkyl chain of the soap. The results showed that the impact of alkyl chain length on the stability of latex is in the order of laurate > decanoate > SDS > palmitate > purified latex accordingly. The alkyl chain length does giving a significant effect on latex stability after longer stirring time. The particle size of latex with the presence of surfactant is greater compare to a single particle itself due to extension of particles diameter. Thus suitable interaction of the nonpolar tail of surfactant with the hydrophobic regions of latex surface played a major role in maintaining a stable latex system. (author)

  4. Investigations of model polymers: Dynamics of melts and statics of a long chain in a dilute melt of shorter chains

    International Nuclear Information System (INIS)

    Bishop, M.; Ceperley, D.; Frisch, H.L.; Kalos, M.H.

    1982-01-01

    We report additional results on a simple model of polymers, namely the diffusion in concentrated polymer systems and the static properties of one long chain in a dilute melt of shorter chains. It is found, for the polymer sizes and time scales amenable to our computer calculations, that there is as yet no evidence for a ''reptation'' regime in a melt. There is some indication of reptation in the case of a single chain moving through fixed obstacles. No statistically significant effect of the change, from excluded volume behavior of the long chain to ideal behavior as the shorter chains grow, is observed

  5. The effect of the cation alkyl chain length on density and diffusion in dialkylpyrrolidinium bis(mandelato)borate ionic liquids.

    Science.gov (United States)

    Filippov, Andrei; Taher, Mamoun; Shah, Faiz Ullah; Glavatskih, Sergei; Antzutkin, Oleg N

    2014-12-28

    The physicochemical properties of ionic liquids are strongly affected by the selective combination of the cations and anions comprising the ionic liquid. In particular, the length of the alkyl chains of ions has a clear influence on the ionic liquid's performance. In this paper, we study the self-diffusion of ions in a series of halogen-free boron-based ionic liquids (hf-BILs) containing bis(mandelato)borate anions and dialkylpyrrolidinium cations with long alkyl chains CnH2n+1 with n from 4 to 14 within a temperature range of 293-373 K. It was found that the hf-BILs with n = 4-7 have very similar diffusion coefficients, while hf-BILs with n = 10-14 exhibit two liquid sub-phases in almost the entire temperature range studied (293-353 K). Both liquid sub-phases differ in their diffusion coefficients, while values of the slower diffusion coefficients are close to those of hf-BILs with shorter alkyl chains. To explain the particular dependence of diffusion on the alkyl chain length, we examined the densities of the hf-BILs studied here. It was shown that the dependence of the density on the number of CH2 groups in long alkyl chains of cations can be accurately described using a "mosaic type" model, where regions of long alkyl chains of cations (named 'aliphatic' regions) and the residual chemical moieties in both cations and anions (named 'ionic' regions) give additive contributions. Changes in density due to an increase in temperature and the number of CH2 groups in the long alkyl chains of cations are determined predominantly by changes in the free volume of the 'ionic' regions, while 'aliphatic' regions are already highly compressed by van der Waals forces, which results in only infinitesimal changes in their free volumes with temperature.

  6. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.

    Directory of Open Access Journals (Sweden)

    Jiqian Wang

    Full Text Available BACKGROUND: Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. METHODOLOGY/PRINCIPAL FINDINGS: Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18 modified Fe(3O(4 were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. CONCLUSIONS/SIGNIFICANCE: The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for

  7. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.

    Science.gov (United States)

    Wang, Jiqian; Meng, Gang; Tao, Kai; Feng, Min; Zhao, Xiubo; Li, Zhen; Xu, Hai; Xia, Daohong; Lu, Jian R

    2012-01-01

    Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18) modified Fe(3)O(4) were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for enzyme immobilization enabling efficient enzyme recovery and recycling.

  8. An in-situ FTIR study of the side-chain alkylation of toluene with methanol

    International Nuclear Information System (INIS)

    King, S.T.; Garces, J.

    1985-01-01

    The side-chain alkylation of toluene with methanol to styrene and ethylbenzene can be an economically attractive industrial process if it has high enough conversion and selectivity. This process has been investigated by many others using zeolites or metal oxides as the catalyst. It has been generally accepted that high basicity in certain size pores in the catalyst is required for such side-chain alkylation. However, the actual reaction mechanism is still not understood. In this paper the results of an in-situ FT-IR study of the side-chain alkylation in Li, Na, K, Rb and Cs exchanged X zeolites is discussed. It was found that the KX, RbX and CsX zeolites, which are capable of side-chain alkylation, also form surface formate and a surface precursor of formate from methanol decomposition. While the surface formate itself is not the alkylation agent, the observed formate precursor may be the intermediate for side-chain alkylation

  9. Vaporization enthalpies of imidazolium based ionic liquids. A thermogravimetric study of the alkyl chain length dependence

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Zaitsau, Dzmitry H.; Emel’yanenko, Vladimir N.; Ralys, Ricardas V.; Yermalayeu, Andrei V.; Schick, Christoph

    2012-01-01

    Highlights: ► Enthalpies of vaporization of ionic liquids were measured with thermogravimetry. ► We studied 1-alkyl-3-methyl-imidazolium bis(trifluoromethanesulfonyl)imide. ► The linear alkyl chain length was 4, 6, 8, 10, 12, 14, 16, and 18 C-atoms. ► A linear dependence on the chain length of the alkyl-imidazolium cation was found. - Abstract: Vaporization enthalpies for a series of ten ionic liquids (ILs) 1-alkyl-3-methyl-imidazolium bis(trifluoromethanesulfonyl)imide [C n mim][NTf 2 ], with the alkyl chain length n = 4, 6, 8, 10, 12, 14, 16, and 18 were determined using the thermogravimetric method. An internally consistent set of experimental data and vaporization enthalpies at 540 K was obtained. Vaporization enthalpies at 540 K have shown a linear dependence on the chain length of the alkyl-imidazolium cation in agreement with the experimental results measured previously with a quartz crystal microbalance. Ambiguity of Δ l g C pm o -values required for the extrapolation of experimental vaporization enthalpies to the reference temperature 298 K has been discussed.

  10. Effect of foamability index of short chain alkyl amines on flotation of quartz

    Directory of Open Access Journals (Sweden)

    Szczerkowska Sabina

    2016-01-01

    Full Text Available Amines can be used for flotation of various minerals, especially quartz. The flotation efficiency of quartz depends on the amine type and dose. It was proved that the shorter alkyl amine, higher amine concentration has to be used to recover quartz at the same level. In flotation amines play a role of both collectors and frothers. The ability of a amine to collect particles can be expressed in the form of contact angle, while the foaming properties by different parameters including dynamic foamability index (DFI and critical coalescence concentration (CCC. Determination of DFI and CCC requires advanced techniques and methods. Therefore, in this paper a rapid and facile method for determination of foaming properties of amines and also other surfactants was used. It was based on measuring the initial foam and froth heights in a conventional flotation machine at different concentrations of surfactants. The foam height-concentration curve was described by utilizing an empirical equation which was based on one-adjustable parameter called the foamability index (FI. In this work the foamability index was determined for butylamine (ButNH2, hexylamine (HexNH2 and octylamine (OctNH2 as examples of short chain alkyl amines. The determined foamability indices were 92, 12 and 4 mg/dm3 for ButNH2, HexNH2 and OctNH2, respectively. It was shown that when the flotation results of quartz were presented in the form of recovery versus normalized amine concentration in relation to the foamability index (c/FI, all the experimental data points converged to one curve. It indicates that amines act similarly but at different concentrations expressed as FI. The foamability index seems to be a useful parameter for characterizing any flotation frother.

  11. Alkyl chain length impacts the antioxidative effect of lipophilized ferulic acid in fish oil enriched milk

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Lyneborg, Karina Sieron; Villeneuve, Pierre

    2015-01-01

    Lipophilization of phenolics by esterification with fatty alcohols may alter their localization in an emulsion and thereby their antioxidant efficacy. In this study, synthesized unbranched alkyl ferulates were evaluated as antioxidants in fish oil enriched milk. Lipid oxidation was determined...... by peroxide values and concentration of volatile oxidation products. A cut-off effect in the antioxidant efficacy in relation to the alkyl chain length was observed. The most efficient alkyl ferulate was methyl ferulate followed by ferulic acid and butyl ferulate, whereas octyl ferulate was prooxidative...

  12. Dependence of micelle size and shape on detergent alkyl chain length and head group.

    Directory of Open Access Journals (Sweden)

    Ryan C Oliver

    Full Text Available Micelle-forming detergents provide an amphipathic environment that can mimic lipid bilayers and are important tools for solubilizing membrane proteins for functional and structural investigations in vitro. However, the formation of a soluble protein-detergent complex (PDC currently relies on empirical screening of detergents, and a stable and functional PDC is often not obtained. To provide a foundation for systematic comparisons between the properties of the detergent micelle and the resulting PDC, a comprehensive set of detergents commonly used for membrane protein studies are systematically investigated. Using small-angle X-ray scattering (SAXS, micelle shapes and sizes are determined for phosphocholines with 10, 12, and 14 alkyl carbons, glucosides with 8, 9, and 10 alkyl carbons, maltosides with 8, 10, and 12 alkyl carbons, and lysophosphatidyl glycerols with 14 and 16 alkyl carbons. The SAXS profiles are well described by two-component ellipsoid models, with an electron rich outer shell corresponding to the detergent head groups and a less electron dense hydrophobic core composed of the alkyl chains. The minor axis of the elliptical micelle core from these models is constrained by the length of the alkyl chain, and increases by 1.2-1.5 Å per carbon addition to the alkyl chain. The major elliptical axis also increases with chain length; however, the ellipticity remains approximately constant for each detergent series. In addition, the aggregation number of these detergents increases by ∼16 monomers per micelle for each alkyl carbon added. The data provide a comprehensive view of the determinants of micelle shape and size and provide a baseline for correlating micelle properties with protein-detergent interactions.

  13. Effects of alkyl chain positioning on conjugated polymer microstructure and field-effect mobilities

    KAUST Repository

    Schroeder, Bob C.

    2015-07-02

    Solubilizing alkyl chains play a crucial role in the design of semiconducting polymers because they define the materials solubility and processability as well as both the crystallinity and solid-state microstructure. In this paper, we present a scarcely explored design approach by attaching the alkyl side chains on one side (cis-) or on both sides (trans-) of the conjugated backbone. We further investigate the effects of this structural modification on the solid-state properties of the polymers and on the charge-carrier mobilities in organic thin-film transistors. Copyright © Materials Research Society 2015

  14. Effects of alkyl chain positioning on conjugated polymer microstructure and field-effect mobilities

    KAUST Repository

    Schroeder, Bob C.; Nielsen, Christian B.; Westacott, Paul; Smith, Jeremy; Rossbauer, Stephan; Anthopoulos, Thomas D.; Stingelin, Natalie; McCulloch, Iain

    2015-01-01

    Solubilizing alkyl chains play a crucial role in the design of semiconducting polymers because they define the materials solubility and processability as well as both the crystallinity and solid-state microstructure. In this paper, we present a scarcely explored design approach by attaching the alkyl side chains on one side (cis-) or on both sides (trans-) of the conjugated backbone. We further investigate the effects of this structural modification on the solid-state properties of the polymers and on the charge-carrier mobilities in organic thin-film transistors. Copyright © Materials Research Society 2015

  15. MgO encapsulated mesoporous zeolite for the side chain alkylation of toluene with methanol.

    Science.gov (United States)

    Jiang, Nanzhe; Jin, Hailian; Jeong, Eun-Young; Park, Sang-Eon

    2010-01-01

    Side chain alkylation of toluene with methanol was studied over mesoporous zeolite supported MgO catalysts. MgO were supported onto the carbon templated mesoporous silicalite-1 by direct synthesis route under microwave conditions. This direct synthesis route yields the majority of MgO highly dispersed into the mesopores of the silicalite-1 crystals. The vapor phase alkylation of toluene with methanol was performed over these catalysts under vapor phase conditions at atmospheric pressure. Mesoporous silicalite-1 supported MgO catalysts gave improved yields towards side chain alkylated products compared to the bulk MgO. The higher activity exhibited by 5% MgO supported on mesoporous silicalite compared to the one with 1% MgO can be attributed to the large number of weak basic sites observed from the CO2 TPD.

  16. Effects of alkyl chain length and substituent pattern of fullerene bis-adducts on film structures and photovoltaic properties of bulk heterojunction solar cells.

    Science.gov (United States)

    Tao, Ran; Umeyama, Tomokazu; Kurotobi, Kei; Imahori, Hiroshi

    2014-10-08

    A series of alkoxycarbonyl-substituted dihydronaphthyl-based [60]fullerene bis-adduct derivatives (denoted as C2BA, C4BA, and C6BA with the alkyl chain of ethyl, n-butyl, and n-hexyl, respectively) have been synthesized to investigate the effects of alkyl chain length and substituent pattern of fullerene bis-adducts on the film structures and photovoltaic properties of bulk heterojunction polymer solar cells. The shorter alkyl chain length caused lower solubility of the fullerene bis-adducts (C6BA > C4BA > C2BA), thereby resulting in the increased separation difficulty of respective bis-adduct isomers. The device performance based on poly(3-hexylthiophene) (P3HT) and the fullerene bis-adduct regioisomer mixtures was enhanced by shortening the alkyl chain length. When using the regioisomerically separated fullerene bis-adducts, the devices based on trans-2 and a mixture of trans-4 and e of C4BA exhibited the highest power conversion efficiencies of ca. 2.4%, which are considerably higher than those of the C6BA counterparts (ca. 1.4%) and the C4BA regioisomer mixture (1.10%). The film morphologies as well as electron mobilities of the P3HT:bis-adduct blend films were found to affect the photovoltaic properties considerably. These results reveal that the alkyl chain length and substituent pattern of fullerene bis-adducts significantly influence the photovoltaic properties as well as the film structures of bulk heterojunction solar cells.

  17. NMR study of 1,4-dihydropyridine derivatives endowed with long alkyl and functionalized chains

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, Margarita; Salfran, Esperanza; Rodriguez, Hortensia; Coro, Julieta, E-mail: msuarez@fq.uh.c [Universidad de La Habana (Cuba). Facultad de Quimica. Lab. de Sintesis Organica; Molero, Dolores; Saez, Elena [Universidad Complutense, Madrid (Spain). CAI-RMN; Martinez-Alvarez, Roberto; Martin, Nazario [Universidad Complutense, Madrid (Spain). Facultad de Quimica. Dept. de Quimica Organica I

    2011-07-01

    The {sup 1}H , {sup 13}C and {sup 15}N NMR spectroscopic data for 1,4-dihydropyridine endowed with long alkyl and functionalized chain on C-3 and C-5, have been fully assigned by combination of one- and two dimensional experiments (DEPT, HMBC, HMQC, COSY, nOe). (author)

  18. Molecular structure, supramolecular organization and thermotropic phase behavior of N-acylglycine alkyl esters with matched acyl and alkyl chains.

    Science.gov (United States)

    Reddy, S Thirupathi; Swamy, Musti J

    2017-11-01

    N-Acylglycines (NAGs), the endogenous single-tailed lipids present in rat brain and other mammalian tissues, play significant roles in cell physiology and exhibit interesting pharmacological properties. In the present study, a homologous series of N-acylglycine alkyl esters (NAGEs) with matched chains were synthesized and characterized. Results of differential scanning calorimetric studies revealed that all NAGEs exhibit a single sharp phase transition and that the transition enthalpy and entropy show a linear dependence on the N-acyl and ester alkyl chain length. The structure of N-myristoylglycine myristyl ester (NMGME), solved by single-crystal X-ray diffraction, showed that the molecule adopts a linear geometry and revealed that the structure of N-myristoyl glycyl moiety in NMGME is identical to that in N-myristoylglycine. The molecules are packed in layers with the polar functional groups of the ester and amide functionalities located at the center of the layer. The crystal packing is stabilized by NH⋯O hydrogen bonds between the amide CO and NH groups of adjacent molecules as well as by CH⋯O hydrogen bonds between the amide carbonyl and the methylene CH adjacent to the ester carbonyl of neighboring molecules as well as between ester carbonyl and methylene group of the glycine moiety of adjacent molecules. Powder X-ray diffraction studies showed a linear dependence of the d-spacings on the acyl chain length, suggesting that all NAGEs adopt a structure similar to the packing exhibited in the crystal lattice of NMGME. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Photoluminescence decay lifetime measurements of hemicyanine derivatives of different alkyl chain lengths

    International Nuclear Information System (INIS)

    Shim, Taekyu; Lee, Myounghee; Kim, Sungho; Sung, Jaeho; Rhee, Bum Ku; Kim, Doseok; Kim, Hyunsung; Yoon, Kyung Byung

    2004-01-01

    The fluorescence upconversion setup for the detection of photoluminescence (PL) decay lifetime with subpicosecond time resolution was constructed, and the photoluminescence phenomena of several hemicyanine dyes with alkyl chains of different chain lengths tethered to the N atom of the pyridine moiety (HC-n, n=6, 15, 22) in methanol were investigated. The average decay lifetimes of the solutions determined from the measured data by multi-order exponential decay curve fitting were ∼27 ps at the PL peak wavelength. It was found that the PL decay properties did not depend on the alkyl chain length in the molecule, implying that the twist of the alkylpyridinium ring of the molecule is not possible as a nonfluorescing relaxation pathway. The time-dependent PL spectra constructed from the PL lifetime data showed the dynamic Stokes shift of ∼1000 cm -1

  20. Does alkyl chain length really matter? Structure–property relationships in thermochemistry of ionic liquids

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Zaitsau, Dzmitry H.; Emel’yanenko, Vladimir N.; Ralys, Ricardas V.; Yermalayeu, Andrei V.; Schick, Christoph

    2013-01-01

    Graphical abstract: We have shown that enthalpies of formation, enthalpies of vaporization, and lattice potential energies of alkylsubstituted imidazolium, pyridinium, and pyrrolidinium based ionic liquids with Cl and Br anions are linearly dependant on the alkyl chain length. The thermochemical properties of ILs are generally obey the group additivity rules and the values of the additivity parameters for enthalpies of formation and vaporization are very close to those for molecular compounds. - Highlights: • Alkyl substituted imidazolium, pyridinium, and pyrrolidinium based ionic liquids with anions [Cl] and [Br] were studied using DSC and ab initio methods. • The thermochemical properties of ILs generally obey the group additivity rules. • A linear dependence on the chain length of the alkyl chain of cation was found. - Abstract: DSC was used for determination of reaction enthalpies of synthesis of ionic liquids [C n mim][Cl]. A combination of DSC with quantum chemical calculations presents an indirect way to study thermodynamics of ionic liquids. The indirect procedure for vaporization enthalpy was validated with the direct experimental measurements by using thermogravimetry. First-principles calculations of the enthalpy of formation in the gaseous phase have been performed for the ionic species using the CBS-QB3 and G3 (MP2) theory. Experimental DSC data for homologous series of alkyl substituted imidazolium, pyridinium, and pyrrolidinium based ionic liquids with anions [Cl] and [Br] were collected from the literature. We have shown that enthalpies of formation, enthalpies of vaporization, and lattice potential energies are linearly dependant on the alkyl chain length. The thermochemical properties of ILs generally obey the group additivity rules and the values of the additivity parameters for enthalpies of formation and vaporization seem to be very close to those for molecular compounds

  1. Chain length effects on the vibrational structure and molecular interactions in the liquid normal alkyl alcohols

    Science.gov (United States)

    Kiefer, Johannes; Wagenfeld, Sabine; Kerlé, Daniela

    2018-01-01

    Alkyl alcohols are widely used in academia, industry, and our everyday lives, e.g. as cleaning agents and solvents. Vibrational spectroscopy is commonly used to identify and quantify these compounds, but also to study their structure and behavior. However, a comprehensive investigation and comparison of all normal alkanols that are liquid at room temperature has not been performed, surprisingly. This study aims at bridging this gap with a combined experimental and computational effort. For this purpose, the alkyl alcohols from methanol to undecan-1-ol have been analyzed using infrared and Raman spectroscopy. A detailed assignment of the individual peaks is presented and the influence of the alkyl chain length on the hydrogen bonding network is discussed. A 2D vibrational mapping allows a straightforward visualization of the effects. The conclusions drawn from the experimental data are backed up with results from Monte Carlo simulations using the simulation package Cassandra.

  2. Sources and proxy potential of long chain alkyl diols in lacustrine environments

    Science.gov (United States)

    Rampen, Sebastiaan W.; Datema, Mariska; Rodrigo-Gámiz, Marta; Schouten, Stefan; Reichart, Gert-Jan; Sinninghe Damsté, Jaap S.

    2014-11-01

    Long chain 1,13- and 1,15-alkyl diols form the base of a number of recently proposed proxies used for climate reconstruction. However, the sources of these lipids and environmental controls on their distribution are still poorly constrained. We have analyzed the long chain alkyl diol (LCD) composition of cultures of ten eustigmatophyte species, with three species from different families grown at various temperatures, to identify the effect of species composition and growth temperature on the LCD distribution. The results were compared with the LCD distribution of sixty-two lake surface sediments, and with previously reported LCD distributions from marine environments. The different families within the Eustigmatophyceae show distinct LCD patterns, with the freshwater family Eustigmataceae most closely resembling LCD distributions in both marine and lake environments. Unlike the other two eustigmatophyte families analyzed (Monodopsidaceae and Goniochloridaceae), C28 and C30 1,13-alkyl diols and C30 and C32 1,15-alkyl diols are all relatively abundant in the family Eustigmataceae, while the mono-unsaturated C32 1,15-alkyl diol was below detection limit. In contrast to the marine environment, LCD distributions in lakes did not show a clear relationship with temperature. The Long chain Diol Index (LDI), a proxy previously proposed for sea surface temperature reconstruction, showed a relatively weak correlation (R2 = 0.33) with mean annual air temperature used as an approximation for annual mean surface temperature of the lakes. A much-improved correlation (R2 = 0.74, p-value cultures of the family Eustigmataceae, suggesting that algae belonging to this family have an important role as a source for LCDs in lacustrine environments, or, alternatively, that the main sources of LCDs are similarly affected by temperature as the Eustigmataceae. The results suggest that LCDs may have the potential to be applicable as a palaeotemperature proxy for lacustrine environments

  3. Effects of alkyl chain length and solvents on thermodynamic dissociation constants of the ionic liquids with one carboxyl group in the alkyl chain of imidazolium cations.

    Science.gov (United States)

    Chen, Yuehua; Wang, Huiyong; Wang, Jianji

    2014-05-01

    Thermodynamic dissociation constants of the Brønsted acidic ionic liquids (ILs) are important for their catalytic and separation applications. In this work, a series of imidazolium bromides with one carboxylic acid substitute group in their alkyl chain ([{(CH2)nCOOH}mim]Br, n = 1,3,5,7) have been synthesized, and their dissociation constants (pKa) at different ionic strengths have been determined in aqueous and aqueous organic solvents at 0.1 mole fraction (x) of ethanol, glycol, iso-propanol, and dimethyl sulfoxide by potentiometric titrations at 298.2 K. The standard thermodynamic dissociation constants (pKa(T)) of the ILs in these solvents were calculated from the extended Debye-Hückel equation. It was found that the pKa values increased with the increase of ionic strength of the media and of the addition of organic solvent in water. The pKa(T) values also increased with the increase of the alkyl chain length of cations of the ILs. In addition, the effect of solvent nature on pKa(T) values is interpreted from solvation of the dissociation components and their Gibbs energy of transfer from water to aqueous organic solutions.

  4. Thermodynamic Interactions between Polystyrene and Long-Chain Poly(n-Alkyl Acrylates) Derived from Plant Oils.

    Science.gov (United States)

    Wang, Shu; Robertson, Megan L

    2015-06-10

    Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter χ. We have investigated the χ parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the χ parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The χ parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the χ parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between

  5. Physicochemical properties of phosphatidylcholine (PC) monolayers with different alkyl chains, at the air/water interface

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hee Jung; Choi, Young Wook [Hanyang Univ., Seoul (Korea, Republic of); Kim, Nam Jeong; Sohn, Dae Won [Sahmyook Univ., Seoul (Korea, Republic of)

    2003-03-01

    Physicochemical properties of a series of PC monolayers with different alkyl chains (C24, C20, C16, and C8), at the air/water interface were investigated. The surface pressure is influenced mainly by the hydrophobicity of the PCs, which is confirmed by the curve shape and the on-set value of {pi}-A isotherms at the air/water interface by increasing the number of alkyl chain. The on-set values of surface pressure were 125 A{sup 2}/molecule for DOPC(C8), 87 A{sup 2}/molecule for DPPC(C16), 75 A{sup 2}/molecule for DAPC(C20), and 55 A{sup 2}/molecule for DLPC(C24), respectively. The orientations of alkyl chains at the air/water interface are closely connected with the rigidity of the monolayers, and it was confirmed by the tendency of monolayer thickness in ellipsometry data. The temperature dependence of a series of PCs shows that the surface pressure decreases by increasing temperature, because the longer the alkyl chain length, the larger the hydrophobic interaction in surface pressure. The temperature effects and the conformational changes of unsaturated and saturated PCs were confirmed by the computer simulation study of the cis-trans transition with POPC and DPPC(C16). The cis-trans conformational energy difference of POPC is 62.06 kcal/mol and that of DPPC(C16) is 6.75 kcal/mol. Due to the high conformational energy barrier of POPC, phase transition of POPC is limited in comparison with DPPC(C16)

  6. Physicochemical properties of phosphatidylcholine (PC) monolayers with different alkyl chains, at the air/water interface

    International Nuclear Information System (INIS)

    Yun, Hee Jung; Choi, Young Wook; Kim, Nam Jeong; Sohn, Dae Won

    2003-01-01

    Physicochemical properties of a series of PC monolayers with different alkyl chains (C24, C20, C16, and C8), at the air/water interface were investigated. The surface pressure is influenced mainly by the hydrophobicity of the PCs, which is confirmed by the curve shape and the on-set value of π-A isotherms at the air/water interface by increasing the number of alkyl chain. The on-set values of surface pressure were 125 A 2 /molecule for DOPC(C8), 87 A 2 /molecule for DPPC(C16), 75 A 2 /molecule for DAPC(C20), and 55 A 2 /molecule for DLPC(C24), respectively. The orientations of alkyl chains at the air/water interface are closely connected with the rigidity of the monolayers, and it was confirmed by the tendency of monolayer thickness in ellipsometry data. The temperature dependence of a series of PCs shows that the surface pressure decreases by increasing temperature, because the longer the alkyl chain length, the larger the hydrophobic interaction in surface pressure. The temperature effects and the conformational changes of unsaturated and saturated PCs were confirmed by the computer simulation study of the cis-trans transition with POPC and DPPC(C16). The cis-trans conformational energy difference of POPC is 62.06 kcal/mol and that of DPPC(C16) is 6.75 kcal/mol. Due to the high conformational energy barrier of POPC, phase transition of POPC is limited in comparison with DPPC(C16)

  7. Ultrasonic Relaxation Study of 1-Alkyl-3-methylimidazolium-Based Room-Temperature Ionic Liquids: Probing the Role of Alkyl Chain Length in the Cation.

    Science.gov (United States)

    Zorębski, Michał; Zorębski, Edward; Dzida, Marzena; Skowronek, Justyna; Jężak, Sylwia; Goodrich, Peter; Jacquemin, Johan

    2016-04-14

    Ultrasound absorption spectra of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides were determined as a function of the alkyl chain length on the cation from 1-propyl to 1-hexyl from 293.15 to 323.15 K at ambient pressure. Herein, the ultrasound absorption measurements were carried out using a standard pulse technique within a frequency range from 10 to 300 MHz. Additionally, the speed of sound, density, and viscosity have been measured. The presence of strong dissipative processes during the ultrasound wave propagation was found experimentally, i.e., relaxation processes in the megahertz range were observed for all compounds over the whole temperature range. The relaxation spectra (both relaxation amplitude and relaxation frequency) were shown to be dependent on the alkyl side chain length of the 1-alkyl-3-methylimidazolium ring. In most cases, a single-Debye model described the absorption spectra very well. However, a comparison of the determined spectra with the spectra of a few other imidazolium-based ionic liquids reported in the literature (in part recalculated in this work) shows that the complexity of the spectra increases rapidly with the elongation of the alkyl chain length on the cation. This complexity indicates that both the volume viscosity and the shear viscosity are involved in relaxation processes even in relatively low frequency ranges. As a consequence, the sound velocity dispersion is present at relatively low megahertz frequencies.

  8. Long Alkyl Chain Organophosphorus Coupling Agents for in Situ Surface Functionalization by Reactive Milling

    Directory of Open Access Journals (Sweden)

    Annika Betke

    2014-08-01

    Full Text Available Innovative synthetic approaches should be simple and environmentally friendly. Here, we present the surface modification of inorganic submicrometer particles with long alkyl chain organophosphorus coupling agents without the need of a solvent, which makes the technique environmentally friendly. In addition, it is of great benefit to realize two goals in one step: size reduction and, simultaneously, surface functionalization. A top-down approach for the synthesis of metal oxide particles with in situ surface functionalization is used to modify titania with long alkyl chain organophosphorus coupling agents. A high energy planetary ball mill was used to perform reactive milling using titania as inorganic pigment and long alkyl chain organophosphorus coupling agents like dodecyl and octadecyl phosphonic acid. The final products were characterized by IR, NMR and X-ray fluorescence spectroscopy, thermal and elemental analysis as well as by X-ray powder diffraction and scanning electron microscopy. The process entailed a tribochemical phase transformation from the starting material anatase to a high-pressure modification of titania and the thermodynamically more stable rutile depending on the process parameters. Furthermore, the particles show sizes between 100 nm and 300 nm and a degree of surface coverage up to 0.8 mmol phosphonate per gram.

  9. Effect of the alkyl chain length of the ionic liquid anion on polymer electrolytes properties

    International Nuclear Information System (INIS)

    Leones, Rita; Sentanin, Franciani; Nunes, Sílvia Cristina; Esperança, José M.S.S.; Gonçalves, Maria Cristina

    2015-01-01

    New polymer electrolytes (PEs) based on chitosan and three ionic liquid (IL) families ([C 2 mim][C n SO 3 ], [C 2 mim][C n SO 4 ] and [C 2 mim][diC n PO 4 ]) were synthesized by the solvent casting method. The effect of the length of the alkyl chain of the IL anion on the thermal, morphological and electrochemical properties of the PEs was studied. The solid polymer electrolytes SPE membranes were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), polarized optical microscopy (POM), atomic force microscopy (AFM), complex impedance spectroscopy (ionic conductivity) and cyclic voltammetry (CV). The obtained results evidenced an influence of the alkyl chain length of the IL anion on the temperature of degradation, birefringence, surface roughness and ionic conductivity of the membranes. The DSC, XRD and CV results showed independency from the length of the IL-anion-alkyl chain. The PEs displayed an predominantly amorphous morphology, a minimum temperature of degradation of 135 °C, a room temperature (T = 25 °C) ionic conductivity of 7.78 × 10 −4 S cm −1 and a wide electrochemical window of ∼ 4.0 V.

  10. Effect of alkyl chain length on the rotational diffusion of nonpolar and ionic solutes in 1-alkyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imides.

    Science.gov (United States)

    Gangamallaiah, V; Dutt, G B

    2013-10-10

    Rotational diffusion of a nonpolar solute 9-phenylanthracene (9-PA) and a cationic solute rhodamine 110 (R110) has been examined in a series of 1-alkyl-3-methylimidazolium (alkyl = octyl, decyl, dodecyl, tetradecyl, hexadecyl, and octadecyl) bis(trifluoromethylsulfonyl)imides to understand the influence of alkyl chain length on solute rotation. In this study, reorientation times (τr) have been measured as a function of viscosity (η) by varying the temperature (T) of the solvents. These results have been analyzed using the Stokes-Einstein-Debye (SED) hydrodynamic theory along with the ones obtained for the same solutes in 1-alkyl-3-methylimidazolium (alkyl = methyl, ethyl, propyl, butyl, and hexyl) bis(trifluoromethylsulfonyl)imides (Gangamallaiah and Dutt, J. Phys. Chem. B 2012, 116, 12819-12825). It has been noticed that the data for 9-PA and R110 follows the relation τr = A(η/T)(n) with A being the ratio of hydrodynamic volume of the solute to the Boltzmann constant and n = 1 as envisaged by the SED theory. However, upon increasing the alkyl chain length from methyl to octadecyl significant deviations from the SED theory have been observed especially from the octyl derivative onward. From methyl to octadecyl derivatives, the value of A decreases by a factor of 3 for both the solutes and n by a factor of 1.4 and 1.6 for 9-PA and R110, respectively. These observations have been rationalized by taking into consideration the organized structure of the ionic liquids, whose influence appears to be pronounced when the number of carbon atoms in the alkyl chain attached to the imidazolium cation exceeds eight.

  11. Long alkyl-chain imidazolium ionic liquids: Antibiofilm activity against phototrophic biofilms.

    Science.gov (United States)

    Reddy, G Kiran Kumar; Nancharaiah, Y V; Venugopalan, V P

    2017-07-01

    Biofilm formation is problematic and hence undesirable in medical and industrial settings. In addition to bacteria, phototrophic organisms are an integral component of biofilms that develop on surfaces immersed in natural waters. 1-Alkyl-3-methyl imidazolium ionic liquids (IL) with varying alkyl chain length were evaluated for their influence on the formation of monospecies (Navicula sp.) and multispecies biofilms under phototrophic conditions. An IL with a long alkyl side chain, 1-hexadecyl-3-methylimidaazolium chloride ([C 16 (MIM)][Cl]) retarded growth, adhesion and biofilm formation of Navicula sp. at concentrations as low as 5μM. Interestingly, [C 16 (MIM)][Cl] was very effective in preventing multispecies phototrophic biofilms on fibre reinforced plastic surfaces immersed in natural waters (fresh and seawater). SYTOX ® Green staining and chlorophyll leakage assay confirmed that the biocidal activity of the IL was exerted through cell membrane disruption. The data show that [C 16 (MIM)][Cl] is a potent inhibitor of phototrophic biofilms at micromolar concentrations and a promising agent for biofilm control in re-circulating cooling water systems. This is the first report that ionic liquids inhibit biofilm formation by phototrophic organisms which are important members of biofilms in streams and cooling towers. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Tailoring the self-assembly of linear alkyl chains for the design of advanced materials with technological applications.

    Science.gov (United States)

    Hoppe, Cristina E; Williams, Roberto J J

    2018-03-01

    The self-assembly of n-alkyl chains at the bulk or at the interface of different types of materials and substrates has been extensively studied in the past. The packing of alkyl chains is driven by Van der Waals interactions and can generate crystalline or disordered domains, at the bulk of the material, or self-assembled monolayers at an interface. This natural property of alkyl chains has been employed in recent years to develop a new generation of materials for technological applications. These studies are dispersed in a variety of journals. The purpose of this article was to discuss some selected examples where these advanced properties arise from a process involving the self-assembly of alkyl chains. We included a description of electronic devices and new-generation catalysts with properties derived from a controlled two-dimensional (2D) or three-dimensional (3D) self-assembly of alkyl chains at an interface. Then, we showed that controlling the crystallization of alkyl chains at the bulk can be used to generate a variety of advanced materials such as superhydrophobic coatings, shape memory hydrogels, hot-melt adhesives, thermally reversible light scattering (TRLS) films for intelligent windows and form-stable phase change materials (FS-PCMs) for the storage of thermal energy. Finally, we discussed two examples where advanced properties derive from the formation of disordered domains by physical association of alkyl chains. This was the case of photoluminescent nanocomposites and materials used for reversible optical storage. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Synthetic Method for Oligonucleotide Block by Using Alkyl-Chain-Soluble Support.

    Science.gov (United States)

    Matsuno, Yuki; Shoji, Takao; Kim, Shokaku; Chiba, Kazuhiro

    2016-02-19

    A straightforward method for the synthesis of oligonucleotide blocks using a Cbz-type alkyl-chain-soluble support (Z-ACSS) attached to the 3'-OH group of 3'-terminal nucleosides was developed. The Z-ACSS allowed for the preparation of fully protected deoxyribo- and ribo-oligonucleotides without chromatographic purification and released dimer- to tetramer-size oligonucleotide blocks via hydrogenation using a Pd/C catalyst without significant loss or migration of protective groups such as 5'-end 4,4'-dimethoxtrityl, 2-cyanoethyl on internucleotide bonds, or 2'-TBS.

  14. Influence of Odd and Even Alkyl Chains on Supramolecular Nanoarchitecture via Self-Assembly of Tetraphenylethylene-Based AIEgens

    Directory of Open Access Journals (Sweden)

    Mina Salimimarand

    2017-10-01

    Full Text Available The Tetraphenylethylene (TPE based dumbbell shaped molecules TPE-Pi, TPE-Su, TPE-Az, and TPE-Se were synthesised bearing odd-even alkyl chains containing 7, 8, 9 and 10 carbons respectively. These molecules reveal typical Aggregation Induced Emission (AIE behaviour. The influence of the odd or even alkyl chain length was shown by studying the morphology of self-assembled nanostructures formed in a range of tetrahydrofuran (THF/water solvent systems. For example, with a water fraction of 80%, TPE derivatives with odd alkyl chains (TPE-Pi and TPE-Az self-assembled into nanosphere structures, while TPE-Su with 8 alkyl chains formed microbelts and TPE-Se with 10 alkyl chains aggregated into flower-like superstructures. These TPE derivatives also revealed interesting mechanochromic properties upon grinding, fuming and heating, which reveal the importance of molecular stacking in the crystal structure to the luminescent properties of the aggregates .The mechanochromic properties of TPE-Pi, TPE-Su, and TPE-Az were also demonstrated by the process of grounding, fuming, and heating.

  15. Effect of the Alkyl Chain Length on the Adsorption Properties of Malonamide Chelating Resins

    International Nuclear Information System (INIS)

    Ismail, I.M.; Nogami, M.; Suzuki, K.

    2004-01-01

    In order to investigate the effect of the alkyl chain length of malonamide chelating resins on the rate of uptake of U(VI) ions and Ce(III) Ions, lV,N,N',N'-tetraethyl malonamide (TEMA), N,N,N',N'-tetra-n-propyl malonamide (TPrMA), lV,lV,N',N'-tetra-n-butyl malonamide (TBMA) and N,l V,N',N'-tetra-n-pentyl malonamide (Tamp) chelating resins were synthesized by chemically bonding these function groups to CMS-DVB co-polymer beads. N,lV,N',N'-tetraphenyl malonamide (TPhMA) chelating resin was also investigated and the results of these resins were compared with those of N,lY,N',N-tetra methylmalonamide (TMMA) previously reported. The batch technique was used to study the thermodynamic equilibrium, in terms of distribution coefficient, and the kinetics of the adsorption U(VI) and Ce(III) ions from 3 M HNO 3 , Acid, and 3 M NaNO 3 + 0.05 M HNO 3 , Salt, media. The introduction ratio of the function group into the polymer base and the uptake of U(VI) ions and C(III) ions were found to decrease with the increase in the alkyl chain length. The uptake was found to diminish in case of TPhMA resin due to the decrease of the function group ratio and the steric-hinder effect

  16. Pseudomonas aeruginosa cytochrome c551 denaturation by five systematic urea derivatives that differ in the alkyl chain length.

    Science.gov (United States)

    Kobayashi, Shinya; Fujii, Sotaro; Koga, Aya; Wakai, Satoshi; Matubayasi, Nobuyuki; Sambongi, Yoshihiro

    2017-07-01

    Reversible denaturation of Pseudomonas aeruginosa cytochrome c 551 (PAc 551 ) could be followed using five systematic urea derivatives that differ in the alkyl chain length, i.e. urea, N-methylurea (MU), N-ethylurea (EU), N-propylurea (PU), and N-butylurea (BU). The BU concentration was the lowest required for the PAc 551 denaturation, those of PU, EU, MU, and urea being gradually higher. Furthermore, the accessible surface area difference upon PAc 551 denaturation caused by BU was found to be the highest, those by PU, EU, MU, and urea being gradually lower. These findings indicate that urea derivatives with longer alkyl chains are stronger denaturants. In this study, as many as five systematic urea derivatives could be applied for the reversible denaturation of a single protein, PAc 551 , for the first time, and the effects of the alkyl chain length on protein denaturation were systematically verified by means of thermodynamic parameters.

  17. Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes

    Science.gov (United States)

    Zhu, Liang; Yu, Xuedi; Hickner, Michael A.

    2018-01-01

    In order to systematically study how the arrangement of cations on the side chain and length of alkyl spacers between cations impact the performance of multi-cation AEMs for alkaline fuel cells, a series of polyphenylene oxide (PPO)-based AEMs with different cationic side chains were synthesized. This work resulted in samples with two or three cations in a side chain pendant to the PPO backbone. More importantly, the length of the spacer between cations varied from 3 methylene (-CH2-) (C3) groups to 8 methylene (C8) groups. The highest conductivity, up to 99 mS/cm in liquid water at room temperature, was observed for the triple-cation side chain AEM with pentyl (C5) or hexyl (C6) spacers. The multi-cation AEMs were found to have decreased water uptake and ionic conductivity when the spacer chains between cations were lengthened from pentyl (C5) or hexyl (C6) to octyl (C8) linking groups. The triple-cation membranes with pentyl (C5) or hexyl (C6) groups between cations showed greatest stability after immersion in 1 M NaOH at 80 °C for 500 h.

  18. Computational study of chain transfer to monomer reactions in high-temperature polymerization of alkyl acrylates.

    Science.gov (United States)

    Moghadam, Nazanin; Liu, Shi; Srinivasan, Sriraj; Grady, Michael C; Soroush, Masoud; Rappe, Andrew M

    2013-03-28

    This article presents a computational study of chain transfer to monomer (CTM) reactions in self-initiated high-temperature homopolymerization of alkyl acrylates (methyl, ethyl, and n-butyl acrylate). Several mechanisms of CTM are studied. The effects of the length of live polymer chains and the type of monoradical that initiated the live polymer chains on the energy barriers and rate constants of the involved reaction steps are investigated theoretically. All calculations are carried out using density functional theory. Three types of hybrid functionals (B3LYP, X3LYP, and M06-2X) and four basis sets (6-31G(d), 6-31G(d,p), 6-311G(d), and 6-311G(d,p)) are applied to predict the molecular geometries of the reactants, products and transition sates, and energy barriers. Transition state theory is used to estimate rate constants. The results indicate that abstraction of a hydrogen atom (by live polymer chains) from the methyl group in methyl acrylate, the methylene group in ethyl acrylate, and methylene groups in n-butyl acrylate are the most likely mechanisms of CTM. Also, the rate constants of CTM reactions calculated using M06-2X are in good agreement with those estimated from polymer sample measurements using macroscopic mechanistic models. The rate constant values do not change significantly with the length of live polymer chains. Abstraction of a hydrogen atom by a tertiary radical has a higher energy barrier than abstraction by a secondary radical, which agrees with experimental findings. The calculated and experimental NMR spectra of dead polymer chains produced by CTM reactions are comparable. This theoretical/computational study reveals that CTM occurs most likely via hydrogen abstraction by live polymer chains from the methyl group of methyl acrylate and methylene group(s) of ethyl (n-butyl) acrylate.

  19. Development of Long Chain Alkyl Diol δD as a Paleohydrological Proxy

    Science.gov (United States)

    Neary, A.; Russell, J. M.; Cordero, D.

    2017-12-01

    Understanding past hydroclimate is important to better understand and prepare for future climate changes. Past hydrological change is often studied through δD of lipid biomarkers preserved in sediment. Long chain alkyl diols are lipid biomarkers that are widely distributed in lake and marine sediments. These compounds are produced by certain species of diatoms and algae (Eustigmatophytes). Diol δD is expected to record relative precipitation and evaporation, and other lake surface processes. This would be a valuable addition to the repertoire of organic compounds used for hydrologic reconstruction, such as leaf waxes which record precipitation. While long chain alkyl diols present an opportunity to expand the range of compounds available for compound specific isotope analysis, studies of diol δD are scarce. This study aims to compare diol and leaf wax δD records from Lake Tanganyika spanning approximately the past 20 kyrs in order to elucidate the controlling factors on diol δD values and evaluate the effectiveness of such a record as a paleohydrological proxy. If viable, diol δD records could be used to gain a deeper understanding of past climates. δD leaf wax records have been previously measured in Lake Tanganyika cores (Tierney et al., 2008). This study measures δD of long chain alkyl diols from the same cores in order to compare records. Our current measurements show significant deviations of the diol record from the leaf wax record at times when large magnitude changes in the leaf wax record are occurring, such as a less pronounced Younger Dryas and a more gradual decrease in δD values after Heinrich 1 than the sudden shift expressed by the leaf wax record. In addition to generating a diol δD record through time at Lake Tanganyika, we have also measured diol δD in surface sediments from several east African lakes in order to examine the potential for a proxy calibration. A positive correlation between diol and lake water δD has been observed

  20. Impact of culturing conditions on the abundance and composition of long chain alkyl diols in species of the genus

    NARCIS (Netherlands)

    Balzano, S.; Villanueva, L.; de Bar, M.; Sinninghe Damsté, J.S.; Schouten, S.

    2017-01-01

    Long chain alkyl diols (LCDs) are widespread in sediments and are synthesized, among others, by microalgae of the genus Nannochloropsis. The factors regulating the synthesis of LCDs and their biological function are, however, unclear. We investigated the changes in abundance of free + ester-bound

  1. Novel Pyridinium Surfactants with Unsaturated Alkyl Chains : Aggregation Behavior and Interactions with Methyl Orange in Aqueous Solution

    NARCIS (Netherlands)

    Kuiper, Johanna M.; Buwalda, Rixt T.; Hulst, Ron; Engberts, Jan B.F.N.

    2001-01-01

    This paper presents the synthesis and a study of the aggregation behavior of 4-undecyl-1-methyl- and 4-undecenyl-1-methylpyridinium iodide surfactants. The effect of the position of the double bond in the alkyl chain of the surfactant on the critical micelle concentration (cmc), degree of counterion

  2. The inhibition performance of long-chain alkyl-substituted benzimidazole derivatives for corrosion of mild steel in HCl

    International Nuclear Information System (INIS)

    Zhang, Dongqin; Tang, Yongming; Qi, Sijun; Dong, Dawei; Cang, Hui; Lu, Gang

    2016-01-01

    Highlights: • Inhibition performance of long-chain alkyl-substituted benzimidazole. • Benzimidazole segment donating electrons to metal surface. • Non-polar long chain enhancing inhibition by the barrier effect. • Molecular form of DBI more tightly adsorbs on the steel than its protonated form. - Abstract: The corrosion inhibition of a new benzimidazole derivative, 6-(dodecyloxy)-1H-benzo[d]imidazole (DBI), for mild steel in 1 M HCl was investigated in this paper. Computational chemistry was performed to explore the adsorption of DBI on metal surface. Inhibition performance of DBI is attributed to both the direct interaction of benzimidazole segment with iron surface and the barrier effect of the non-polar long chain against aggressive solution. Compared to the protonated form, the molecular form of DBI could more tightly interact with iron surface. These results show that the long-chain alkyl-substituted benzimidazole derivative is of great potential application as corrosion inhibitor.

  3. The effect of the alkyl chain length on physicochemical features of (ionic liquids + γ-butyrolactone) binary mixtures

    International Nuclear Information System (INIS)

    Papović, Snežana; Bešter-Rogač, Marija; Vraneš, Milan; Gadžurić, Slobodan

    2016-01-01

    Highlights: • Influence of alkyl substituent length on IL properties was studied. • Nature of interactions between studied [C_nC_1im][NTf_2] and GBL were discussed. • Angell strength parameter indicates [C_nC_1im][NTf_2] are fragile liquids. • ILs properties regularly change with increase of the alkyl chain length. • Absence of GBL self-association upon addition of IL is observed. - Abstract: Densities and viscosities were determined and analysed for γ-butyrolactone (GBL) binary mixtures with 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids (where alkyl = ethyl, hexyl, octyl) as a function of temperature at atmospheric pressure (p = 0.1 MPa) and over the whole composition range. Excess molar volumes have been calculated from the experimental densities and were fitted using Redlich–Kister’s polynomial equation. Other volumetric parameters have been also calculated in order to obtain information about interactions between GBL and imidazolium based ionic liquids with different alkyl chain length. From the viscosity measurements, the Angell strength parameter was calculated for pure ionic liquids indicating that all investigated electrolytes are “fragile” liquids.

  4. Density functional theory with van der waals corrections study of the adsorption of alkyl, alkylthiol, alkoxyl, and amino-alkyl chains on the H:Si(111) surface.

    Science.gov (United States)

    Arefi, Hadi H; Nolan, Michael; Fagas, Giorgos

    2014-11-11

    Surface modification of silicon with organic monolayers tethered to the surface by different linkers is an important process in realizing future miniaturized electronic and sensor devices. Understanding the roles played by the nature of the linking group and the chain length on the adsorption structures and stabilities of these assemblies is vital to advance this technology. This paper presents a density functional theory (DFT) study of the hydrogen passivated Si(111) surface modified with alkyl chains of the general formula H:Si-(CH2)n-CH2 and H:Si-X-(CH2)n-CH3, where X = NH, O, S and n = (0, 1, 3, 5, 7, 9, 11), at half coverage. For (X)-hexane and (X)-dodecane functionalization, we also examined various coverages up to full monolayer grafting in order to validate the result of half covered surface and the linker effect on the coverage. We find that it is necessary to take into account the van der Waals interaction between the alkyl chains. The strongest binding is for the oxygen linker, followed by S, N, and C, irrespective of chain length. The result revealed that the sequence of the stability is independent of coverage; however, linkers other than carbon can shift the optimum coverage considerably and allow further packing density. For all linkers apart from sulfur, structural properties, in particular, surface-linker-chain angles, saturate to a single value once n > 3. For sulfur, we identify three regimes, namely, n = 0-3, n = 5-7, and n = 9-11, each with its own characteristic adsorption structures. Where possible, our computational results are shown to be consistent with the available experimental data and show how the fundamental structural properties of modified Si surfaces can be controlled by the choice of linking group and chain length.

  5. The Effects of Alkyl Chain Combinations on the Structural and Mechanical Properties of Biomimetic Ion Pair Amphiphile Bilayers

    Directory of Open Access Journals (Sweden)

    Cheng-hao Chen

    2017-10-01

    Full Text Available Ion pair amphiphile (IPA, a lipid-like complex composed of a pair of cationic and anionic surfactants, has great potentials in various pharmaceutical applications. In this work, we utilized molecular dynamics (MD simulation to systematically examine the structural and mechanical properties of the biomimetic bilayers consist of alkyltrimethyl-ammonium-alkylsulfate (CmTMA+-CnS− IPAs with various alkyl chain combinations. Our simulations show an intrinsic one-atom offset for the CmTMA+ and CnS− alignment, leading to the asymmetric index definition of ΔC = m − (n + 1. Larger |ΔC| gives rise to higher conformational fluctuations of the alkyl chains with the reduced packing order and mechanical strength. In contrast, increasing the IPA chain length enhances the van der Waals interactions within the bilayer and thus improves the bilayer packing order and mechanical properties. Further elongating the CmTMA+-CnS− alkyl chains to m and n ≥ 12 causes the liquid disorder to gel phase transition of the bilayer at 298 K, with the threshold membrane properties of 0.45 nm2 molecular area, deuterium order parameter value of 0.31, and effective bending rigidity of 20 kBT, etc. The combined results provide molecular insights into the design of biomimetic IPA bilayers with wide structural and mechanical characteristics for various applications.

  6. Alkyl Chain Growth on a Transition Metal Center: How Does Iron Compare to Ruthenium and Osmium?

    Directory of Open Access Journals (Sweden)

    Mala A. Sainna

    2015-09-01

    Full Text Available Industrial Fischer-Tropsch processes involve the synthesis of hydrocarbons usually on metal surface catalysts. On the other hand, very few homogeneous catalysts are known to perform a Fischer-Tropsch style of reaction. In recent work, we established the catalytic properties of a diruthenium-platinum carbene complex, [(CpRu2(μ2-H (μ2-NHCH3(μ3-CPtCH3(P(CH332](COn+ with n = 0, 2 and Cp = η5-C5(CH35, and showed it to react efficiently by initial hydrogen atom transfer followed by methyl transfer to form an alkyl chain on the Ru-center. In particular, the catalytic efficiency was shown to increase after the addition of two CO molecules. As such, this system could be viewed as a potential homogeneous Fischer-Tropsch catalyst. Herein, we have engineered the catalytic center of the catalyst and investigated the reactivity of trimetal carbene complexes of the same type using iron, ruthenium and osmium at the central metal scaffold. The work shows that the reactivity should increase from diosmium to diruthenium to diiron; however, a non-linear trend is observed due to multiple factors contributing to the individual barrier heights. We identified all individual components of these reaction steps in detail and established the difference in reactivity of the various complexes.

  7. Alkyl Chain Growth on a Transition Metal Center: How Does Iron Compare to Ruthenium and Osmium?

    Science.gov (United States)

    Sainna, Mala A.; de Visser, Sam P.

    2015-01-01

    Industrial Fischer-Tropsch processes involve the synthesis of hydrocarbons usually on metal surface catalysts. On the other hand, very few homogeneous catalysts are known to perform a Fischer-Tropsch style of reaction. In recent work, we established the catalytic properties of a diruthenium-platinum carbene complex, [(CpRu)2(μ2-H)(μ2-NHCH3)(μ3-C)PtCH3(P(CH3)3)2](CO)n+ with n = 0, 2 and Cp = η5-C5(CH3)5, and showed it to react efficiently by initial hydrogen atom transfer followed by methyl transfer to form an alkyl chain on the Ru-center. In particular, the catalytic efficiency was shown to increase after the addition of two CO molecules. As such, this system could be viewed as a potential homogeneous Fischer-Tropsch catalyst. Herein, we have engineered the catalytic center of the catalyst and investigated the reactivity of trimetal carbene complexes of the same type using iron, ruthenium and osmium at the central metal scaffold. The work shows that the reactivity should increase from diosmium to diruthenium to diiron; however, a non-linear trend is observed due to multiple factors contributing to the individual barrier heights. We identified all individual components of these reaction steps in detail and established the difference in reactivity of the various complexes. PMID:26426009

  8. A chiroptical switch based on supramolecular chirality transfer through alkyl chain entanglement and dynamic covalent bonding.

    Science.gov (United States)

    Lv, Kai; Qin, Long; Wang, Xiufeng; Zhang, Li; Liu, Minghua

    2013-12-14

    Chirality transfer is an interesting phenomenon in Nature, which represents an important step to understand the evolution of chiral bias and the amplification of the chirality. In this paper, we report the chirality transfer via the entanglement of the alkyl chains between chiral gelator molecules and achiral amphiphilic Schiff base. We have found that although an achiral Schiff base amphiphile could not form organogels in any kind of organic solvents, it formed co-organogels when mixed with a chiral gelator molecule. Interestingly, the chirality of the gelator molecules was transferred to the Schiff base chromophore in the mixed co-gels and there was a maximum mixing ratio for the chirality transfer. Furthermore, the supramolecular chirality was also produced based on a dynamic covalent chemistry of an imine formed by the reaction between an aldehyde and an amine. Such a covalent bond of imine was formed reversibly depending on the pH variation. When the covalent bond was formed the chirality transfer occurred, when it was destroyed, the transfer stopped. Thus, a supramolecular chiroptical switch is obtained based on supramolecular chirality transfer and dynamic covalent chemistry.

  9. Effect of alkyl side chain location and cyclicity on the aerobic biotransformation of naphthenic acids.

    Science.gov (United States)

    Misiti, Teresa M; Tezel, Ulas; Pavlostathis, Spyros G

    2014-07-15

    Aerobic biodegradation of naphthenic acids is of importance to the oil industry for the long-term management and environmental impact of process water and wastewater. The effect of structure, particularly the location of the alkyl side chain as well as cyclicity, on the aerobic biotransformation of 10 model naphthenic acids (NAs) was investigated. Using an aerobic, mixed culture, enriched with a commercial NA mixture (NA sodium salt; TCI Chemicals), batch biotransformation assays were conducted with individual model NAs, including eight 8-carbon isomers. It was shown that NAs with a quaternary carbon at the α- or β-position or a tertiary carbon at the β- and/or β'-position are recalcitrant or have limited biodegradability. In addition, branched NAs exhibited lag periods and lower degradation rates than nonbranched or simple cyclic NAs. Two NA isomers used in a closed bottle, aerobic biodegradation assay were mineralized, while 21 and 35% of the parent compound carbon was incorporated into the biomass. The NA biodegradation probability estimated by two widely used models (BIOWIN 2 and 6) and a recently developed model (OCHEM) was compared to the biodegradability of the 10 model NAs tested in this study as well as other related NAs. The biodegradation probability estimated by the OCHEM model agreed best with the experimental data and was best correlated with the measured NA biodegradation rate.

  10. Occurrence of fatty acid short-chain-alkyl esters in fruits of Celastraceae plants.

    Science.gov (United States)

    Sidorov, Roman A; Zhukov, Anatoly V; Pchelkin, Vasily P; Vereshchagin, Andrei G; Tsydendambaev, Vladimir D

    2013-06-01

    Small amounts of a mixture of fatty acid short-chain-alkyl esters (FASCAEs) were obtained from the fruits of twelve plant species of Celastraceae family, and in five of them the FASCAEs were present not only in the arils but also in the seeds. These mixtures contained 32 individual FASCAE species, which formed four separate fractions, viz. FA methyl, ethyl, isopropyl, and butyl esters (FAMEs, FAEEs, FAIPEs, and FABEs, resp.). The FASCAE acyl components included the residues of 16 individual C₁₄-C₂₄ saturated, mono-, di-, and trienoic FAs. Linoleic, oleic, and palmitic acids, and, in some cases, also α-linolenic acid predominated in FAMEs and FAEEs, while myristic acid was predominant in FAIPEs. It can be suggested that, in the fruit arils of some plant species, FAMEs and FAEEs were formed at the expense of a same FA pool characteristic of a given species and were strongly different from FAIPEs and FABEs esters regarding the mechanism of their biosynthesis. However, as a whole, the qualitative and quantitative composition of various FASCAE fractions, as well as their FA composition, varied considerably depending on various factors. Therefore, separate FASCAE fractions seem to be synthesized from different FA pools other than those used for triacylglycerol formation. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  11. Impact of the alkyl chain length on binding of imidazolium-based ionic liquids to bovine serum albumin

    Science.gov (United States)

    Zhang, Mengyue; Wang, Ying; Zhang, Hongmei; Cao, Jian; Fei, Zhenghao; Wang, Yanqing

    2018-05-01

    The effects of six imidazolium-based ionic liquids (ILs) with different alkyl chain length ([CnMim]Cl, n = 2, 4, 6, 8, 10, 12) on the structure and functions of bovine serum albumin (BSA) were studied by multi-spectral methods and molecular docking. ILs with the longer alkyl chain length have the stronger binding interaction with BSA and the greater conformational damage to protein. The effects of ILs on the functional properties of BSA were further studied by the determination of non-enzyme esterase activity, β-fibrosis and other properties of BSA. The thermal stability of BSA was reduced, the rate of the formation of beta sheet structures of BSA was lowered, and the esterase-like activity of BSA were decreased with the increase of ILs concentration. Simultaneous molecular modeling technique revealed the favorable binding sites of ILs on protein. The hydrophobic force and polar interactions were the mainly binding forces of them. The calculated results are in a good agreement with the spectroscopic experiments. These studies on the impact of the alkyl chain length on binding of imidazolium-based ionic liquids to BSA are of great significance for understanding and developing the application of ionic liquid in life and physiological system.

  12. Orientational diffusion of n-alkyl cyanides

    International Nuclear Information System (INIS)

    Zhu Xiang; Farrer, Richard A; Zhong Qin; Fourkas, John T

    2005-01-01

    Ultrafast optical Kerr effect spectroscopy has been used to study the temperature-dependent orientational dynamics of a series of nitriles with n-alkyl chains ranging from one to 11 carbons in length. In all cases the orientational diffusion is found to be described by a single-exponential decay. Analysis of the orientational correlation times using the Debye-Stokes-Einstein equation suggests that the molecules adopt extended configurations and reorient as rigid rods. The liquids with shorter alkyl chains undergo an apparent ordering transition as they are cooled

  13. Mechanism of the protective effects of long chain n-alkyl glucopyranosides against ultrasound-induced cytolysis of HL-60 cells

    OpenAIRE

    Cheng, Jason Y.; Riesz, Peter

    2007-01-01

    Recently it has been shown that long chain (C5 to C8) n-alkyl glucopyranosides completely inhibit ultrasound-induced cytolysis [1]. This protective effect has possible applications in HIFU (high intensity focused ultrasound) for tumor treatment, and in ultrasound assisted drug delivery and gene therapy. n-Alkyl glucopyranosides with hexyl (5mM), heptyl (3mM), octyl (2mM) n-alkyl chains protected 100% of HL-60 cells in-vitro from 1.057 MHz ultrasound induced cytolysis under a range of conditio...

  14. Nation-Scale Adoption of Shorter Breast Radiation Therapy Schedules Can Increase Survival in Resource Constrained Economies: Results From a Markov Chain Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Atif J., E-mail: atif.j.khan@rutgers.edu [Department of Radiation Oncology, Robert Wood Johnson Medical School/Cancer Institute of New Jersey, New Brunswick, New Jersey (United States); Rafique, Raza [Suleman Dawood School of Business, Lahore University of Management Sciences, Lahore (Pakistan); Zafar, Waleed [Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore (Pakistan); Shah, Chirag [Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio (United States); Haffty, Bruce G. [Department of Radiation Oncology, Robert Wood Johnson Medical School/Cancer Institute of New Jersey, New Brunswick, New Jersey (United States); Vicini, Frank [Michigan HealthCare Professionals, Farmington Hills, Michigan (United States); Jamshed, Arif [Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore (Pakistan); Zhao, Yao [Rutgers University School of Business, Newark, New Jersey (United States)

    2017-02-01

    Purpose: Hypofractionated whole breast irradiation and accelerated partial breast irradiation (APBI) offer women options for shorter courses of breast radiation therapy. The impact of these shorter schedules on the breast cancer populations of emerging economies with limited radiation therapy resources is unknown. We hypothesized that adoption of these schedules would improve throughput in the system and, by allowing more women access to life-saving treatments, improve patient survival within the system. Methods and Materials: We designed a Markov chain model to simulate the different health states that a postlumpectomy or postmastectomy patient could enter over the course of a 20-year follow-up period. Transition rates between health states were adapted from published data on recurrence rates. We used primary data from a tertiary care hospital in Lahore, Pakistan, to populate the model with proportional use of mastectomy versus breast conservation and to estimate the proportion of patients suitable for APBI. Sensitivity analyses on the use of APBI and relative efficacy of APBI were conducted to study the impact on the population. Results: The shorter schedule resulted in more women alive and more women remaining without evidence of disease (NED) compared with the conventional schedule, with an absolute difference of about 4% and 7% at 15 years, respectively. Among women who had lumpectomies, the chance of remaining alive and with an intact breast was 62% in the hypofractionation model and 54% in the conventional fractionation model. Conclusions: Increasing throughput in the system can result in improved survival, improved chances of remaining without evidence of disease, and improved chances of remaining alive with a breast. These findings are significant and suggest that adoption of hypofractionation in emerging economies is not simply a question of efficiency and cost but one of access to care and patient survivorship.

  15. Nation-Scale Adoption of Shorter Breast Radiation Therapy Schedules Can Increase Survival in Resource Constrained Economies: Results From a Markov Chain Analysis

    International Nuclear Information System (INIS)

    Khan, Atif J.; Rafique, Raza; Zafar, Waleed; Shah, Chirag; Haffty, Bruce G.; Vicini, Frank; Jamshed, Arif; Zhao, Yao

    2017-01-01

    Purpose: Hypofractionated whole breast irradiation and accelerated partial breast irradiation (APBI) offer women options for shorter courses of breast radiation therapy. The impact of these shorter schedules on the breast cancer populations of emerging economies with limited radiation therapy resources is unknown. We hypothesized that adoption of these schedules would improve throughput in the system and, by allowing more women access to life-saving treatments, improve patient survival within the system. Methods and Materials: We designed a Markov chain model to simulate the different health states that a postlumpectomy or postmastectomy patient could enter over the course of a 20-year follow-up period. Transition rates between health states were adapted from published data on recurrence rates. We used primary data from a tertiary care hospital in Lahore, Pakistan, to populate the model with proportional use of mastectomy versus breast conservation and to estimate the proportion of patients suitable for APBI. Sensitivity analyses on the use of APBI and relative efficacy of APBI were conducted to study the impact on the population. Results: The shorter schedule resulted in more women alive and more women remaining without evidence of disease (NED) compared with the conventional schedule, with an absolute difference of about 4% and 7% at 15 years, respectively. Among women who had lumpectomies, the chance of remaining alive and with an intact breast was 62% in the hypofractionation model and 54% in the conventional fractionation model. Conclusions: Increasing throughput in the system can result in improved survival, improved chances of remaining without evidence of disease, and improved chances of remaining alive with a breast. These findings are significant and suggest that adoption of hypofractionation in emerging economies is not simply a question of efficiency and cost but one of access to care and patient survivorship.

  16. Production of long chain alkyl esters from carbon dioxide and electricity by a two-stage bacterial process.

    Science.gov (United States)

    Lehtinen, Tapio; Efimova, Elena; Tremblay, Pier-Luc; Santala, Suvi; Zhang, Tian; Santala, Ville

    2017-11-01

    Microbial electrosynthesis (MES) is a promising technology for the reduction of carbon dioxide into value-added multicarbon molecules. In order to broaden the product profile of MES processes, we developed a two-stage process for microbial conversion of carbon dioxide and electricity into long chain alkyl esters. In the first stage, the carbon dioxide is reduced to organic compounds, mainly acetate, in a MES process by Sporomusa ovata. In the second stage, the liquid end-products of the MES process are converted to the final product by a second microorganism, Acinetobacter baylyi in an aerobic bioprocess. In this proof-of-principle study, we demonstrate for the first time the bacterial production of long alkyl esters (wax esters) from carbon dioxide and electricity as the sole sources of carbon and energy. The process holds potential for the efficient production of carbon-neutral chemicals or biofuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Selective binding of carotenoids with a shorter conjugated chain to the LH2 antenna complex and those with a longer conjugated chain to the reaction center from Rubrivivax gelatinosus.

    Science.gov (United States)

    Kakitani, Yoshinori; Fujii, Ritsuko; Hayakawa, Yoshihiro; Kurahashi, Masahiro; Koyama, Yasushi; Harada, Jiro; Shimada, Keizo

    2007-06-19

    Rubrivivax gelatinosus having both the spheroidene and spirilloxanthin biosynthetic pathways produces carotenoids (Cars) with a variety of conjugated chains, which consist of different numbers of conjugated double bonds (n), including the C=C (m) and C=O (o) bonds. When grown under anaerobic conditions, the wild type produces Cars for which n = m = 9-13, whereas under semiaerobic conditions, it additionally produces Cars for which n = m + o = 10 + 1, 13 + 1, and 13 + 2. On the other hand, a mutant, in which the latter pathway is genetically blocked, produces only Cars for which n = 9 and 10 under anaerobic conditions and n = 9, 10, and 10 + 1 under semianaerobic conditions. Those Cars that were extracted from the LH2 complex (LH2) and the reaction center (RC), isolated from the wild-type and the mutant Rvi. gelatinosus, were analyzed by HPLC, and their structures were determined by mass spectrometry and 1H NMR spectroscopy. The selective binding of Cars to those pigment-protein complexes has been characterized as follows. (1) Cars with a shorter conjugated chain are selectively bound to LH2 whereas Cars with a longer conjugated chain to the RC. (2) Shorter chain Cars with a hydroxyl group are bound to LH2 almost exclusively. This rule holds either in the absence or in the presence of the keto group. The natural selection of shorter chain Cars by LH2 and longer chain Cars by the RC is discussed, on the basis of the results now available, in relation to the light-harvesting and photoprotective functions of Cars.

  18. Effect of surfactant alkyl chain length on the dispersion, and thermal and dynamic mechanical properties of LDPE/organo-LDH composites

    Directory of Open Access Journals (Sweden)

    2011-05-01

    Full Text Available Low density polyethylene/layered double hydroxide (LDH composites were prepared via melt compounding using different kinds of organo-LDHs and polyethylene-grafted maleic anhydride as the compatibilizer. The organo-LDHs were successfully prepared by converting a commercial MgAl-carbonate LDH into a MgAl-nitrate LDH, which was later modified by anion exchange with linear and branched sodium alkyl sulfates having different alkyl chain lengths (nc = 6, 12 and 20. It was observed that, depending on the size of the surfactant alkyl chain, different degrees of polymer chain intercalation were achieved, which is a function of the interlayer distance of the organo-LDHs, of the packing level of the alkyl chains, and of the different interaction levels between the surfactant and the polymer chains. In particular, when the number of carbon atoms of the surfactant alkyl chain is larger than 12, the intercalation of polymer chains in the interlayer space and depression of the formation of large aggregates of organo-LDH platelets are favored. A remarkable improvement of the thermal-oxidative degradation was evidenced for all of the composites; whereas only a slight increase of the crystallization temperature and no significant changes of both melting temperature and degree of crystallinity were achieved. By thermodynamic mechanical analysis, it was evidenced that a softening of the matrix is may be due to the plasticizing effect of the surfactant.

  19. Influence of alkyl chain length and temperature on thermophysical properties of ammonium-based ionic liquids with molecular solvent.

    Science.gov (United States)

    Kavitha, T; Attri, Pankaj; Venkatesu, Pannuru; Devi, R S Rama; Hofman, T

    2012-04-19

    Mixing of ionic liquids (ILs) with molecular solvent can expand the range of structural properties and the scope of molecular interactions between the molecules of the solvents. Exploiting of these phenomena essentially require a basic fundamental understanding of mixing behavior of ILs with molecular solvents. In this context, a series of protic ILs possessing tetra-alkyl ammonium cation [R(4)N](+) with commonly used anion hydroxide [OH](-) were synthesized and characterized by temperature dependent thermophysical properties. The ILs [R(4)N](+)[OH](-) are varying only in the length of alkyl chain (R is methyl, ethyl, propyl, or butyl) of tetra-alkyl ammonium on the cationic part. The ILs used for the present study included tetramethyl ammonium hydroxide [(CH(3))(4)N](+)[OH](-) (TMAH), tetraethyl ammonium hydroxide [(C(2)H(5))(4)N](+)[OH](-) (TEAH), tetrapropyl ammonium hydroxide [(C(3)H(7))(4)N](+)[OH](-) (TPAH) and tetrabutyl ammonium hydroxide [(C(4)H(9))(4)N](+)[OH](-) (TBAH). The alkyl chain length effect has been analyzed by precise measurements such as densities (ρ), ultrasonic sound velocity (u), and viscosity (η) of these ILs with polar solvent, N-methyl-2-pyrrolidone (NMP), over the full composition range as a function of temperature. The excess molar volume (V(E)), the deviation in isentropic compressibility (Δκ(s)) and deviation in viscosity (Δη) were predicted using these properties as a function of the concentration of ILs. Redlich-Kister polynomial was used to correlate the results. A qualitative analysis of the results is discussed in terms of the ion-dipole, ion-pair interactions, and hydrogen bonding between ILs and NMP molecules. Later, the hydrogen bonding features between ILs and NMP were also analyzed using a molecular modeling program with the help of HyperChem 7.

  20. Alkylation of amide linkages and cleavage of the C chain in the enzyme-activated-substrate inhibition of alpha-chymotrypsin with N-nitrosamides

    International Nuclear Information System (INIS)

    Donadio, S.; Perks, H.M.; Tsuchiya, K.; White, E.H.

    1985-01-01

    Active-site-directed N-nitrosamides inhibit alpha-chymotrypsin through an enzyme-activated-substrate mechanism. In this work, the activation results in the release--in the active site--of benzyl carbonium ions, which alkylate and inhibit the enzyme. The final ratio of benzyl groups to enzyme molecules is 1.0, but the alkyl groups are scattered over a number of sites. Reduction and alkylation of the inhibited enzyme generate peptides insoluble in most media. Guanidine hydrochloride at 6 M proved a good solvent, and its use as an eluant on G-75 Sephadex permitted separation of the peptides. In the case of 14 C-labeled enzyme, such an approach has shown that all of the alkylation occurs on the C chain of the enzyme, the chain of which the active site is constructed. Chemical modification of the peptides with ethylenediamine and N-[3-(dimethylamino)propyl]-N'-ethylcarbodiimide rendered them soluble in dilute acid, permitting high-performance liquid chromatographic separation. Model studies have shown that the benzyl carbonium ions are highly reactive, alkylating amide linkages at both oxygen and nitrogen. Chromatography of this mixture and also 13 C NMR spectroscopy of the intact inhibited enzyme have shown that three major N-alkylations have occurred. Tryptic digestion of the C chain of chymotrypsin, which contains all of the alkylation sites, provides evidence that the stable N sites are principally located between residue 216 and residue 230

  1. Rotational diffusion of nonpolar and ionic solutes in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides: is solute rotation always influenced by the length of the alkyl chain on the imidazolium cation?

    Science.gov (United States)

    Gangamallaiah, V; Dutt, G B

    2012-10-25

    In an attempt to find out whether the length of the alkyl chain on the imidazolium cation has a bearing on solute rotation, temperature-dependent fluorescence anisotropies of three structurally similar solutes have been measured in a series of 1-alkyl-3-methylimidazolium (alkyl = methyl, ethyl, propyl, butyl, and hexyl) bis(trifluoromethylsulfonyl)imides. Solute-solvent coupling constants obtained from the experimentally measured reorientation times with the aid of Stokes-Einstein-Debye hydrodynamic theory indicate that there is no influence of the length of the alkyl chain on the rotation of nonpolar, anionic, and cationic solutes 9-phenylanthracene (9-PA), fluorescein (FL), and rhodamine 110 (R110), respectively. It has also been noticed that the rotational diffusion of 9-PA is closer to the predictions of slip hydrodynamics, whereas the rotation of negatively charged FL and positively charged R110 is almost identical and follows stick hydrodynamics in these ionic liquids. Despite having similar shape and size, ionic solutes rotate slower by a factor of 3-4 compared to the nonpolar solute. Interplay of specific and electrostatic interactions between FL and the imidazolium cation of the ionic liquids, and between R110 and the bis(trifluoromethylsulfonyl)imide anion, appear to be responsible for the observed behavior. These results are an indication that the length of the alkyl chain on the imidazolium cation does not alter their physical properties in a manner that has an effect on solute rotation.

  2. Novel poly (arylene-ether-ether-ketone)s containing preformed imide unit and pendant long chain alkyl group

    International Nuclear Information System (INIS)

    Sayyed, Maheboob M.; Maldar, Noormahmad N.

    2010-01-01

    The studies were carried out to get preformed imide unit containing PEEKs and Co-PEEKs with pendant long chain alkyl group. Thus two new bisphenols; N,N'-bis (4-hydroxy 2-pentadecyl phenyl) pyromellitimide (HPI) (I) and N,N'-bis (4-hydroxy 2-pentadecyl phenyl 3,3',4,4'-benzophenone tetracarboxylic imide (HBI) (II) containing imide unit, pendant C-15 alkyl substituents were synthesized, characterized by spectral data and polycondensed with 4,4'-difluorobenzophenone (DFB) to yield several PEEK and Co-PEEKs. The polymers were characterized by FTIR, inherent viscosity, solubility, and XRD. The polymers were obtained in good yields and had inherent viscosities up to 0.65 dL/g in NMP. Polymerization of mixture of two bisphenols; [(I) and BPA]; and [(II) and BPA] in various mol%, with DFB gave number of the copolymers viz. Co-PEEK-BPAPI and Co-PEEK-BPABI. Many of the Co-PEEKs had good solubility in polar solvents. The solubility of PEEK containing bulky pendant alkyl substituents did not much improve probably due to simultaneous presence of rigid imide structures. XRD analysis indicated that PEEK and Co-PEEKs were partially crystalline or amorphous depending on the nature and % content of imide-bisphenol. These new PEEK materials can be used as high performance films, coatings, gas separation membranes, in aerospace and nuclear industries.

  3. Fabrication and tribological properties of self-assembled monolayer of n-alkyltrimethoxysilane on silicon: Effect of SAM alkyl chain length

    Energy Technology Data Exchange (ETDEWEB)

    Huo, Lixia [National Key Laboratory of Science and Technology on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou, Gansu 730010 (China); Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu 730000 (China); Du, Pengcheng [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu 730000 (China); Zhou, Hui; Zhang, Kaifeng [National Key Laboratory of Science and Technology on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou, Gansu 730010 (China); Liu, Peng, E-mail: pliu@lzu.edu.cn [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu 730000 (China)

    2017-02-28

    Highlights: • n-Alkyltrimethoxysilanes with various chain lengths were self-assembled on silicon. • Effect of alkyl chain lengths (C6, C12, or C18) on the SAMs was investigated. • Surface roughness of the SAMs decreased with increasing the alkyl chain lengths. • The C{sub 12}-SAM possessed superior friction reduction and wear resistance. - Abstract: It is well known that the self-assembled organic molecules on a solid surface exhibit the friction-reducing performance. However, the effect of the molecular size of the self-assembled organic molecules has not been established. In the present work, self-assembled monolayers (SAMs) of n-alkyltrimethoxysilanes with different alkyl chain lengths (C{sub 6}, C{sub 12}, or C{sub 18}) were fabricated on silicon substrate. The water contact angles of the SAMs increased from 26.8° of the hydroxylated silicon substrate to near 60° after self-assembly. The atomic force microscopy (AFM) analysis results showed that the mean roughness (R{sub a}) of the SAMs decreased with increasing the alkyl chain length. The tribological properties of the SAMs sliding against Al{sub 2}O{sub 3} ball were evaluated on an UMT-2 tribometer, and the worn surfaces of the samples were analyzed by means of Nano Scratch Tester and surface profilometry. It was found that lowest friction coefficient and smallest width of wear were achieved with the SAMs of C{sub 12} alkyl chain (C{sub 12}-SAM). The superior friction reduction and wear resistance of the SAMs in comparison with the bare silicon substrate are attributed to good adhesion of the self-assembled films to the substrate, especially the C{sub 12}-SAM with desirable alkyl chain length.

  4. Fabrication and tribological properties of self-assembled monolayer of n-alkyltrimethoxysilane on silicon: Effect of SAM alkyl chain length

    International Nuclear Information System (INIS)

    Huo, Lixia; Du, Pengcheng; Zhou, Hui; Zhang, Kaifeng; Liu, Peng

    2017-01-01

    Highlights: • n-Alkyltrimethoxysilanes with various chain lengths were self-assembled on silicon. • Effect of alkyl chain lengths (C6, C12, or C18) on the SAMs was investigated. • Surface roughness of the SAMs decreased with increasing the alkyl chain lengths. • The C 12 -SAM possessed superior friction reduction and wear resistance. - Abstract: It is well known that the self-assembled organic molecules on a solid surface exhibit the friction-reducing performance. However, the effect of the molecular size of the self-assembled organic molecules has not been established. In the present work, self-assembled monolayers (SAMs) of n-alkyltrimethoxysilanes with different alkyl chain lengths (C 6 , C 12 , or C 18 ) were fabricated on silicon substrate. The water contact angles of the SAMs increased from 26.8° of the hydroxylated silicon substrate to near 60° after self-assembly. The atomic force microscopy (AFM) analysis results showed that the mean roughness (R a ) of the SAMs decreased with increasing the alkyl chain length. The tribological properties of the SAMs sliding against Al 2 O 3 ball were evaluated on an UMT-2 tribometer, and the worn surfaces of the samples were analyzed by means of Nano Scratch Tester and surface profilometry. It was found that lowest friction coefficient and smallest width of wear were achieved with the SAMs of C 12 alkyl chain (C 12 -SAM). The superior friction reduction and wear resistance of the SAMs in comparison with the bare silicon substrate are attributed to good adhesion of the self-assembled films to the substrate, especially the C 12 -SAM with desirable alkyl chain length.

  5. Fluoroalkyl and Alkyl Chains Have Similar Hydrophobicities in Binding to the “Hydrophobic Wall” of Carbonic Anhydrase

    Energy Technology Data Exchange (ETDEWEB)

    J Mecinovic; P Snyder; K Mirica; S Bai; E Mack; R Kwant; D Moustakas; A Heroux; G Whitesides

    2011-12-31

    The hydrophobic effect, the free-energetically favorable association of nonpolar solutes in water, makes a dominant contribution to binding of many systems of ligands and proteins. The objective of this study was to examine the hydrophobic effect in biomolecular recognition using two chemically different but structurally similar hydrophobic groups, aliphatic hydrocarbons and aliphatic fluorocarbons, and to determine whether the hydrophobicity of the two groups could be distinguished by thermodynamic and biostructural analysis. This paper uses isothermal titration calorimetry (ITC) to examine the thermodynamics of binding of benzenesulfonamides substituted in the para position with alkyl and fluoroalkyl chains (H{sub 2}NSO{sub 2}C{sub 6}H{sub 4}-CONHCH{sub 2}(CX{sub 2}){sub n}CX{sub 3}, n = 0-4, X = H, F) to human carbonic anhydrase II (HCA II). Both alkyl and fluoroalkyl substituents contribute favorably to the enthalpy and the entropy of binding; these contributions increase as the length of chain of the hydrophobic substituent increases. Crystallography of the protein-ligand complexes indicates that the benzenesulfonamide groups of all ligands examined bind with similar geometry, that the tail groups associate with the hydrophobic wall of HCA II (which is made up of the side chains of residues Phe131, Val135, Pro202, and Leu204), and that the structure of the protein is indistinguishable for all but one of the complexes (the longest member of the fluoroalkyl series). Analysis of the thermodynamics of binding as a function of structure is compatible with the hypothesis that hydrophobic binding of both alkyl and fluoroalkyl chains to hydrophobic surface of carbonic anhydrase is due primarily to the release of nonoptimally hydrogen-bonded water molecules that hydrate the binding cavity (including the hydrophobic wall) of HCA II and to the release of water molecules that surround the hydrophobic chain of the ligands. This study defines the balance of enthalpic and

  6. Effect of the number, position and length of alkyl chains on the physical properties of polysubstituted pyridinium ionic liquids

    International Nuclear Information System (INIS)

    Verdía, Pedro; Hernaiz, Marta; González, Emilio J.; Macedo, Eugénia A.; Salgado, Josefa; Tojo, Emilia

    2014-01-01

    Highlights: • Synthesis of five polysubstituted pyridinium based-ionic liquids. • Physical properties of the pure ionic liquids were measured at several temperatures. • Thermal analysis of the pure ionic liquids was carried out by DSC and TGA techniques. • Density, speed of sound, and refractive index were fitted with a linear expression. • Viscosity data were correlated using the VFT equation. -- Abstract: The knowledge of the physical properties of ionic liquids is of high importance in order to evaluate their potential applicability for a given purpose. In the last few years, ionic liquids have been proposed as promising solvents for extractive desulfurization of fuels. Among them, recent studies have shown that ionic liquids derived from pyridinium affords excellent S-compounds removal capacity. In this work, the thermal analysis of five ionic liquids derived from pyridinium cation polysubstituted with different alkyl chains was carried out by Differencial Scanning Calorimetry (DSC) and Thermal Gravimetric Analysis (TGA). Furthermore, the density, speed of sound, refractive index and dynamic viscosity for all the pure ionic liquids were also measured from T = (298.15 to 343.15) K. The effect of the number of cation alkyl chains, their length, and their position on the pyridinium ring, on the ionic liquid physical properties is also analyzed and discussed

  7. Mechanism of the protective effects of long chain n-alkyl glucopyranosides against ultrasound-induced cytolysis of HL-60 cells.

    Science.gov (United States)

    Cheng, Jason Y; Riesz, Peter

    2007-07-01

    Recently it has been shown that long chain (C5-C8) n-alkyl glucopyranosides completely inhibit ultrasound-induced cytolysis [J.Z. Sostaric, N. Miyoshi, P. Riesz, W.G. DeGraff, and J.B. Mitchell, Free Radical Biol. Med., 39 (2005) 1539]. This protective effect has possible applications in HIFU (high intensity focused ultrasound) for tumor treatment, and in ultrasound assisted drug delivery and gene therapy. n-Alkyl glucopyranosides with hexyl (5mM), heptyl (3mM), octyl (2mM) n-alkyl chains protected 100% of HL-60 cells in vitro from 1.057 MHz ultrasound-induced cytolysis under a range of conditions that resulted in 35-100% cytolysis in the absence of glucopyranosides. However the hydrophilic methyl-beta-d-glucopyranoside did not protect cells. The surface active n-alkyl glucopyranosides accumulate at the gas-liquid interface of cavitation bubbles. The OH radicals and H atoms formed in collapsing cavitation bubbles react by H-atom abstraction from either the n-alkyl chain or the glucose moiety of the n-alkyl glucopyranosides. Owing to the high concentration of the long chain surfactants at the gas-liquid interface of cavitation bubbles, the initially formed carbon radicals on the alkyl chains are transferred to the glucose moieties to yield radicals which react with oxygen leading to the formation of hydrogen peroxide. In this work, we find that the sonochemically produced hydrogen peroxide yields from oxygen-saturated solutions of long chain (hexyl, octyl) n-alkyl glucopyranosides at 614 kHz and 1.057 MHz ultrasound increase with increasing n-alkyl glucopyranoside concentration but are independent of concentration for methyl-beta-D-glucopyranoside. These results are consistent with the previously proposed mechanism of sonoprotection [J.Z. Sostaric, N. Miyoshi, P. Riesz, W.G. DeGraff, and J.B. Mitchell, Free Radical Biol. Med., 39 (2005) 1539]. This sequence of events prevents sonodynamic cell killing by initiation of lipid peroxidation chain reactions in cellular

  8. Theoretical model to investigate the alkyl chain and anion dependent interactions of gemini surfactant with bovine serum albumin.

    Science.gov (United States)

    Vishvakarma, Vijay K; Kumari, Kamlesh; Patel, Rajan; Dixit, V S; Singh, Prashant; Mehrotra, Gopal K; Chandra, Ramesh; Chakrawarty, Anand Kumar

    2015-05-15

    Surfactants are used to prevent the irreversible aggregation of partially refolded proteins and they also assist in protein refolding. We have reported the design and screening of gemini surfactant to stabilize bovine serum albumin (BSA) with the help of computational tool (iGEMDOCK). A series of gemini surfactant has been designed based on bis-N-alkyl nicotinate dianion via varying the alkyl group and anion. On changing the alkyl group and anion of the surfactant, the value of Log P changes means polarity of surfactant can be tuned. Further, the virtual screening of the gemini surfactant has been carried out based on generic evolutionary method. Herein, thermodynamic data was studied to determine the potential of gemini surfactant as BSA stabilizer. Computational tools help to find out the efficient gemini surfactant to stabilize the BSA rather than to use the surfactant randomly and directionless for the stabilization. It can be confirmed through the experimental techniques. Previously, researcher synthesized one of the designed and used gemini surfactant to stabilize the BSA and their interactions were confirmed through various techniques and computational docking. But herein, the authors find the most competent gemini surfactant to stabilize BSA using computational tools on the basis of energy score. Different from the single chain surfactant, the gemini surfactants exhibit much stronger electrostatic and hydrophobic interactions with the protein and are thus effective at much lower concentrations. Based on the present study, it is expected that gemini surfactants may prove useful in the protein stabilization operations and may thus be effectively employed to circumvent the problem of misfolding and aggregation. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Modified solution calorimetry approach for determination of vaporization and sublimation enthalpies of branched-chain aliphatic and alkyl aromatic compounds at T = 298.15 K

    International Nuclear Information System (INIS)

    Varfolomeev, Mikhail A.; Novikov, Vladimir B.; Nagrimanov, Ruslan N.; Solomonov, Boris N.

    2015-01-01

    Highlights: • Solution enthalpies of 18 branching-chain alkyl aromatic and aliphatic compounds in cyclohexane were measured. • Group contributions to the enthalpy of solvation due to branching and substitution in carbon chain were evaluated. • Modified solution calorimetry based approach for determination of vaporization/sublimation enthalpies was proposed. • This approach provides vaporization/sublimation enthalpies directly at T = 298.15 K. • Vaporization/sublimation enthalpies of 35 branched-chain alkyl aromatic and aliphatic compounds were determined. - Abstract: The enthalpies of solution, solvation and vaporization/sublimation are interrelated values combined in the simplest thermodynamic circle. Hence, experimental determination of vaporization/sublimation enthalpy can be substituted by experimentally simpler determination of solution enthalpy when solvation enthalpy is known. Previously it was found that solvation enthalpies of a wide range of unbranched aliphatic and aromatic solutes in saturated hydrocarbons are in good linear correlation with their molar refraction values. This allows to estimate the vaporization/sublimation enthalpy of any unbranched organic compound from its solution enthalpy in saturated hydrocarbon and molar refraction. In the present work this approach was modified for determination of vaporization/sublimation enthalpy of branched-chain alkyl aromatic and aliphatic compounds. Group contributions to the enthalpy of solvation due to the branching of carbon chain were evaluated. Enthalpies of solution at infinite dilution of 18 branched-chain aliphatic and alkyl aromatic compounds were measured at T = 298.15 K. Vaporization/sublimation enthalpies for 35 branched aliphatic and alkyl aromatic compounds were determined by using modified solution calorimetry approach. These values are in good agreement with available literature data on vaporization/sublimation enthalpies obtained by conventional methods.

  10. Alkyl chain interaction at the surface of room temperature ionic liquids: systematic variation of alkyl chain length (R = C(1)-C(4), C(8)) in both cation and anion of [RMIM][R-OSO(3)] by sum frequency generation and surface tension.

    Science.gov (United States)

    Santos, Cherry S; Baldelli, Steven

    2009-01-29

    The gas-liquid interface of halide-free 1,3-dialkylimidazolium alkyl sulfates [RMIM][R-OSO(3)] with R chain length from C(1)-C(4) and C(8) has been studied systematically using the surface-specific sum frequency generation (SFG) vibrational spectroscopy and surface tension measurements. From the SFG spectra, vibrational modes from the methyl group of both cation and anion are observed for all ionic liquid samples considered in the present study. These results suggest the presence of both ions at the gas-liquid interface, which is further supported by surface tension measurements. Surface tension data show a decreasing trend as the alkyl chain in the imidazolium cation is varied from methyl to butyl chain, with a specific anion. A similar trend is observed when the alkyl chain of the anion is modified and the cation is fixed.

  11. Design and synthesis of BODIPY sensitizers with long alkyl chains tethered to N-carbazole and their application for dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheema, Hammad [Polymer and Color Chemistry Program, North Carolina State University, Raleigh, NC, 27695 (United States); Younts, Robert; Gautam, Bhoj; Gundogdu, Kenan [Physics Department, North Carolina State University, Raleigh, NC, 27695 (United States); El-Shafei, Ahmed, E-mail: Ahmed_El-Shafei@ncsu.edu [Polymer and Color Chemistry Program, North Carolina State University, Raleigh, NC, 27695 (United States)

    2016-12-01

    In this study, three boron dipyrromethenes (BODIPY) dyes with extended conjugation and electron donating carbazole groups with different alkyl chain lengths tethered to N-carbazole were synthesized and characterized for dye-sensitized solar cells. The goal was to study the effect of different alkyl chain lengths on dye aggregation at TiO{sub 2} surface. The proposed molecular strategy resulted in BODIPY dyes which showed interesting electronic absorption and fluorescence properties. It was observed that intramolecular energy transfer decreases with the increase in alkyl chain length possibly due to induced changes in molecular geometry caused by long alkyl chains. Additionally, interface analysis by impedance spectroscopy in comparison to N719 sensitized TiO{sub 2} solar cell showed significant charge transport related losses (Nyquist plot) most likely due to impedance resulted from aggregated BODIPY dye on TiO{sub 2} surface. Femtosecond transient absorption studies showed the loss of excited electrons by recombination with oxidized ground state of the sensitizers. - Highlights: • BODIPY dyes with carbazole electron donating groups are characterized. • Photophysics is discussed based on transient and steady state spectroscopy results. • Impedance spectroscopy found huge charge transport related losses on TiO{sub 2.}.

  12. Fabrication and tribological properties of self-assembled monolayer of n-alkyltrimethoxysilane on silicon: Effect of SAM alkyl chain length

    Science.gov (United States)

    Huo, Lixia; Du, Pengcheng; Zhou, Hui; Zhang, Kaifeng; Liu, Peng

    2017-02-01

    It is well known that the self-assembled organic molecules on a solid surface exhibit the friction-reducing performance. However, the effect of the molecular size of the self-assembled organic molecules has not been established. In the present work, self-assembled monolayers (SAMs) of n-alkyltrimethoxysilanes with different alkyl chain lengths (C6, C12, or C18) were fabricated on silicon substrate. The water contact angles of the SAMs increased from 26.8° of the hydroxylated silicon substrate to near 60° after self-assembly. The atomic force microscopy (AFM) analysis results showed that the mean roughness (Ra) of the SAMs decreased with increasing the alkyl chain length. The tribological properties of the SAMs sliding against Al2O3 ball were evaluated on an UMT-2 tribometer, and the worn surfaces of the samples were analyzed by means of Nano Scratch Tester and surface profilometry. It was found that lowest friction coefficient and smallest width of wear were achieved with the SAMs of C12 alkyl chain (C12-SAM). The superior friction reduction and wear resistance of the SAMs in comparison with the bare silicon substrate are attributed to good adhesion of the self-assembled films to the substrate, especially the C12-SAM with desirable alkyl chain length.

  13. Probing the effects of the ester functional group, alkyl side chain length and anions on the bulk nanostructure of ionic liquids: a computational study.

    Science.gov (United States)

    Fakhraee, Mostafa; Gholami, Mohammad Reza

    2016-04-14

    The effects of ester addition on nanostructural properties of biodegradable ILs composed of 1-alkoxycarbonyl-3-alkyl-imidazolium cations ([C1COOCnC1im](+), n = 1, 2, 4) combined with [Br](-), [NO3](-), [BF4](-), [PF6](-), [TfO](-), and [Tf2N](-) were explored by using the molecular dynamics (MD) simulations and quantum theory of atoms in molecules (QTAIM) analysis at 400 K. Various thermodynamic properties of these ILs were extensively computed in our earlier work (Ind. Eng. Chem. Res., 2015, 54, 11678-11700). Nano-scale segregation analysis demonstrates the formation of a small spherical island-like hydrocarbon within the continuous ionic domain for ILs with short alkyl side chain ([C1COOC1C1im]), and a sponge-like nanostructure for the compound with long alkyl side chain ([C1COOC4C1im]). Ester-functionalized ILs with ethyl side chain ([C1COOC2C1im]) are the turning point between two different morphologies. Non-polar channels were observed for [C1COOC4C1im] ILs composed of smaller anions such as [Br] and [NO3], whereas clustering organization was found for the other anions. Formation of the spherical micelle-like nanostructure was seen for lengthened cations. Finally, the incorporation of an ester group into the alkyl side chain of the cation leads to stronger segregation between charged and uncharged networks, which consequently increased the possibility of self-assembly and micelle formation.

  14. Design and synthesis of BODIPY sensitizers with long alkyl chains tethered to N-carbazole and their application for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Cheema, Hammad; Younts, Robert; Gautam, Bhoj; Gundogdu, Kenan; El-Shafei, Ahmed

    2016-01-01

    In this study, three boron dipyrromethenes (BODIPY) dyes with extended conjugation and electron donating carbazole groups with different alkyl chain lengths tethered to N-carbazole were synthesized and characterized for dye-sensitized solar cells. The goal was to study the effect of different alkyl chain lengths on dye aggregation at TiO_2 surface. The proposed molecular strategy resulted in BODIPY dyes which showed interesting electronic absorption and fluorescence properties. It was observed that intramolecular energy transfer decreases with the increase in alkyl chain length possibly due to induced changes in molecular geometry caused by long alkyl chains. Additionally, interface analysis by impedance spectroscopy in comparison to N719 sensitized TiO_2 solar cell showed significant charge transport related losses (Nyquist plot) most likely due to impedance resulted from aggregated BODIPY dye on TiO_2 surface. Femtosecond transient absorption studies showed the loss of excited electrons by recombination with oxidized ground state of the sensitizers. - Highlights: • BODIPY dyes with carbazole electron donating groups are characterized. • Photophysics is discussed based on transient and steady state spectroscopy results. • Impedance spectroscopy found huge charge transport related losses on TiO_2_.

  15. Density functional theory study of silodithiophene thiophenepyrrolopyrroledion-based small molecules: The effect of alkyl side chain length in electron donor materials

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong Kyun; Yeo, Hak; Kwak, Kyung Won [Dept. of Chemistry, Chung-Ang University, Seoul (Korea, Republic of); Yoon, Young Woon; Kim, Bong Soo [Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Lee, Kyung Koo [Dept. of Chemistry, Kunsan National University, Gunsan (Korea, Republic of)

    2015-02-15

    Push–pull small molecules are promising electron-donor materials for organic solar cells. Thus, precise prediction of their electronic structures is of paramount importance to control the optical and electrical properties of the solar cells. Various types of alkyl chains are usually introduced to increase solubility and modify the morphology of the resulting molecular films. Here, using density functional theory (DFT) and time-dependent DFT (TD-DFT), we report the precise effect of increasing the length of the alkyl chain on the electronic structure of an electron donor molecule 6,60-((4,4-dialkyl-4H-silolo[3,2-b:4,5-b′]-dithiophene-2,6-diyl) bis(thiophene-5,2-diyl))bis(2,5-alkyl-3-(thiophen-2-yl) -2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) (DTS1TDPP). Alkyl groups were attached to the bridging position (silicon atom) of the fused rings and nitrogen atom of the pyrrolopyrroledione groups. We demonstrate that the alkyl groups do not perturb the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels, π-delocalized backbone structure, and UV–Vis absorption spectrum when they are placed at the least steric effect positions.

  16. Manipulating the morphology and textural property of γ-AlOOH by modulating the alkyl chain length of cation in ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhe, E-mail: tangzhe1983@163.com; Hu, Xiaofu, E-mail: hjj19850922@126.cn; Liang, Jilei, E-mail: liang.jilei_ttplan@126.com; Zhao, Jinchong, E-mail: Dr.zhaojc@gmail.com; Liu, Yunqi, E-mail: liuyq@upc.edu.cn; Liu, Chenguang, E-mail: cgliu@upc.edu.cn

    2013-06-01

    Graphical abstract: - Highlights: • γ-AlOOH was the only product in all experiments. • Different morphology of γ-AlOOH was obtained according to the alkyl chain length. • The textural property of γ-AlOOH was changed according to the alkyl chain length. • The possible formation mechanisms for hollow sphere and microflower were proposed. - Abstract: We demonstrated that the morphology and textural property of γ-AlOOH can be tuned by modulating the alkyl chain length of cation in [C{sub n}mim]{sup +}Cl{sup −} (n = 4, 8, 16). Using the short alkyl chain length-based [C{sub 4}mim]{sup +}Cl{sup −} as the structure-directed reagent, the morphology of γ-AlOOH was not changed and preserved as the hollow sphere structure in all experiments. The specific area and the number of small meso-pores of γ-AlOOH increased with the increase of [C{sub 4}mim]{sup +}Cl{sup −} dosage. While, using the larger alkyl chain length-based ionic liquids as the soft-template, such as [C{sub 8}mim]{sup +}Cl{sup −} and [C{sub 16}mim]{sup +}Cl{sup −}, the morphologies of γ-AlOOH were changed from initiative hollow spheres into the final microflowers. The specific areas of γ-AlOOH firstly increased then decreased with the increase of their dosage. The samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM). Furthermore, the possible formation mechanisms of γ-AlOOH have been proposed.

  17. Nickel-Catalyzed C–O Bond-Cleaving Alkylation of Esters: Direct Replacement of the Ester Moiety by Functionalized Alkyl Chains

    KAUST Repository

    Liu, Xiangqian; Jia, Jiaqi; Rueping, Magnus

    2017-01-01

    Two efficient protocols for the nickel-catalyzed aryl–alkyl cross-coupling reactions using esters as coupling components have been established. The methods enable the selective oxidative addition of nickel to acyl C–O and aryl C–O bonds and allow the aryl–alkyl cross-coupling via decarbonylative bond cleavage or through cleavage of a C–O bond with high efficiency and good functional group compatibility. The protocols allow the streamlined, unconventional utilization of widespread ester groups and their precursors, carboxylic acids and phenols, in synthetic organic chemistry.

  18. Nickel-Catalyzed C–O Bond-Cleaving Alkylation of Esters: Direct Replacement of the Ester Moiety by Functionalized Alkyl Chains

    KAUST Repository

    Liu, Xiangqian

    2017-06-07

    Two efficient protocols for the nickel-catalyzed aryl–alkyl cross-coupling reactions using esters as coupling components have been established. The methods enable the selective oxidative addition of nickel to acyl C–O and aryl C–O bonds and allow the aryl–alkyl cross-coupling via decarbonylative bond cleavage or through cleavage of a C–O bond with high efficiency and good functional group compatibility. The protocols allow the streamlined, unconventional utilization of widespread ester groups and their precursors, carboxylic acids and phenols, in synthetic organic chemistry.

  19. Side chain variations radically alter the diffusion of poly(2-alkyl-2-oxazoline) functionalised nanoparticles through a mucosal barrier.

    Science.gov (United States)

    Mansfield, Edward D H; de la Rosa, Victor R; Kowalczyk, Radoslaw M; Grillo, Isabelle; Hoogenboom, Richard; Sillence, Katy; Hole, Patrick; Williams, Adrian C; Khutoryanskiy, Vitaliy V

    2016-08-16

    Functionalised nanomaterials are gaining popularity for use as drug delivery vehicles and, in particular, mucus penetrating nanoparticles may improve drug bioavailability via the oral route. To date, few polymers have been investigated for their muco-penetration, and the effects of systematic structural changes to polymer architectures on the penetration and diffusion of functionalised nanomaterials through mucosal tissue have not been reported. We investigated the influence of poly(2-oxazoline) alkyl side chain length on nanoparticle diffusion; poly(2-methyl-2-oxazoline), poly(2-ethyl-2-oxazoline), and poly(2-n-propyl-2-oxazoline) were grafted onto the surface of thiolated silica nanoparticles and characterised by FT-IR, Raman and NMR spectroscopy, thermogravimetric analysis, and small angle neutron scattering. Diffusion coefficients were determined in water and in a mucin dispersion (using Nanoparticle Tracking Analysis), and penetration through a mucosal barrier was assessed using an ex vivo fluorescence technique. The addition of a single methylene group in the side chain significantly altered the penetration and diffusion of the materials in both mucin dispersions and mucosal tissue. Nanoparticles functionalised with poly(2-methyl-2-oxazoline) were significantly more diffusive than particles with poly(2-ethyl-2-oxazoline) while particles with poly(2-n-propyl-2-oxazoline) showed no significant increase compared to the unfunctionalised particles. These data show that variations in the polymer structure can radically alter their diffusive properties with clear implications for the future design of mucus penetrating systems.

  20. Effect of the Alkyl Chain Length Incorporated into Donor Part on the Optoelectronic Properties of the Carbazole Based Dyes: Theoretical Study

    Directory of Open Access Journals (Sweden)

    Souad El Mzioui

    2017-12-01

    Full Text Available In this paper, we report a theoretical study using density functional theory (DFT and time-dependent (TD-DFT for R-D-π-A systems with various alkyl chains (R. Results show that the LUMO of the dye lies above the semiconductor conduction band, promoting the injection of electrons; the lower HOMO level promotes dye regeneration. The incorporation of methyl chain (CH3 has a significant reduction in the gap energy, improved red-shift absorption spectrum and increase the molar extinction coefficient at the maximum absorption wavelength compared to D. While, the increase in alkyl chain length from C2H5 to C6H13 present a relatively reduce of gap energies, low effect on the wavelength (438 nm and converged excitation energies. DOI: http://dx.doi.org/10.17807/orbital.v9i5.1003 

  1. Synthesis and Biological Evaluation of N-Alkyl-3-(alkylamino-pyrazine-2-carboxamides

    Directory of Open Access Journals (Sweden)

    Lucia Semelkova

    2015-05-01

    Full Text Available A series of N-alkyl-3-(alkylaminopyrazine-2-carboxamides and their N-alkyl-3-chloropyrazine-2-carboxamide precursors were prepared. All compounds were characterized by analytical methods and tested for antimicrobial and antiviral activity. The antimycobacterial MIC values against Mycobacterium tuberculosis H37Rv of the most effective compounds, 3-(hexylamino-, 3-(heptylamino- and 3-(octylamino-N-methyl-pyrazine-2-carboxamides 14‒16, was 25 μg/mL. The compounds inhibited photosystem 2 photosynthetic electron transport (PET in spinach chloroplasts. This activity was strongly connected with the lipophilicity of the compounds. For effective PET inhibition longer alkyl chains in the 3-(alkylamino substituent in the N-alkyl-3-(alkylaminopyrazine-2-carboxamide molecule were more favourable than two shorter alkyl chains.

  2. Asymmetric Alkyl Side-Chain Engineering of Naphthalene Diimide-Based n-Type Polymers for Efficient All-Polymer Solar Cells.

    Science.gov (United States)

    Jia, Tao; Li, Zhenye; Ying, Lei; Jia, Jianchao; Fan, Baobing; Zhong, Wenkai; Pan, Feilong; He, Penghui; Chen, Junwu; Huang, Fei; Cao, Yong

    2018-02-13

    The design and synthesis of three n-type conjugated polymers based on a naphthalene diimide-thiophene skeleton are presented. The control polymer, PNDI-2HD, has two identical 2-hexyldecyl side chains, and the other polymers have different alkyl side chains; PNDI-EHDT has a 2-ethylhexyl and a 2-decyltetradecyl side chain, and PNDI-BOOD has a 2-butyloctyl and a 2-octyldodecyl side chain. These copolymers with different alkyl side chains exhibit higher melting and crystallization temperatures, and stronger aggregation in solution, than the control copolymer PNDI-2HD that has the same side chain. Polymer solar cells based on the electron-donating copolymer PTB7-Th and these novel copolymers exhibit nearly the same open-circuit voltage of 0.77 V. Devices based on the copolymer PNDI-BOOD with different side chains have a power-conversion efficiency of up to 6.89%, which is much higher than the 4.30% obtained with the symmetric PNDI-2HD. This improvement can be attributed to the improved charge-carrier mobility and the formation of favorable film morphology. These observations suggest that the molecular design strategy of incorporating different side chains can provide a new and promising approach to developing n-type conjugated polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Theoretical study of chain transfer to solvent reactions of alkyl acrylates.

    Science.gov (United States)

    Moghadam, Nazanin; Srinivasan, Sriraj; Grady, Michael C; Rappe, Andrew M; Soroush, Masoud

    2014-07-24

    This computational and theoretical study deals with chain transfer to solvent (CTS) reactions of methyl acrylate (MA), ethyl acrylate (EA), and n-butyl acrylate (n-BA) self-initiated homopolymerization in solvents such as butanol (polar, protic), methyl ethyl ketone (MEK) (polar, aprotic), and p-xylene (nonpolar). The results indicate that abstraction of a hydrogen atom from the methylene group next to the oxygen atom in n-butanol, from the methylene group in MEK, and from a methyl group in p-xylene by a live polymer chain are the most likely mechanisms of CTS reactions in MA, EA, and n-BA. Energy barriers and molecular geometries of reactants, products, and transition states are predicted. The sensitivity of the predictions to three hybrid functionals (B3LYP, X3LYP, and M06-2X) and three different basis sets (6-31G(d,p), 6-311G(d), and 6-311G(d,p)) is investigated. Among n-butanol, sec-butanol, and tert-butanol, tert-butanol has the highest CTS energy barrier and the lowest rate constant. Although the application of the conductor-like screening model (COSMO) does not affect the predicted CTS kinetic parameter values, the application of the polarizable continuum model (PCM) results in higher CTS energy barriers. This increase in the predicted CTS energy barriers is larger for butanol and MEK than for p-xylene. The higher rate constants of chain transfer to n-butanol reactions compared to those of chain transfer to MEK and p-xylene reactions suggest the higher CTS reactivity of n-butanol.

  4. Influence of alkyl chain length and anion species on ionic liquid structure at the graphite interface as a function of applied potential

    International Nuclear Information System (INIS)

    Li, Hua; Wood, Ross J; Atkin, Rob; Endres, Frank

    2014-01-01

    Atomic force microscopy (AFM) force measurements elucidate the effect of cation alkyl chain length and the anion species on ionic liquid (IL) interfacial structure at highly ordered pyrolytic graphite (HOPG) surfaces as a function of potential. Three ILs are examined: 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([HMIM] FAP), 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([EMIM] FAP), and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM] TFSA). The step-wise force-distance profiles indicate the ILs adopt a multilayered morphology near the surface. When the surface is biased positively or negatively versus Pt quasireference electrode, both the number of steps, and the force required to rupture each step increase, indicating stronger interfacial structure. At all potentials, push-through forces for [HMIM] FAP are the highest, because the long alkyl chain results in strong cohesive interactions between cations, leading to well-formed layers that resist the AFM tip. The most layers are observed for [EMIM] FAP, because the C 2 chains are relatively rigid and the dimensions of the cation and anion are similar, facilitating neat packing. [EMIM] TFSA has the smallest push-through forces and fewest layers, and thus the weakest interfacial structure. Surface-tip attractive forces are measured for all ILs. At the same potential, the attractions are the strongest for [EMIM] TFSA and the weakest for [HMIM] FAP because the interfacial layers are better formed for the longer alkyl chain cation. This means interfacial forces are stronger, which masks the weak attractive forces. (paper)

  5. Radiolytic crosslinking and chain scission in aliphatic and alkyl-aromatic polyamides: Pt. 2

    International Nuclear Information System (INIS)

    Lyons, B.J.; Glover, L.C. Jr.

    1991-01-01

    Regression analysis of the radiation parameters of nine aliphatic polyamides exposed to ionizing radiation leads to the conclusion that the decline in the ratio of chain scission to crosslinking in higher aliphatic polyamides is best related to the linear increase in the methylene content of, or the number of methylene groups in, the polyamide repeat unit. G(crosslink)[G(X)] and G(chain scission) [G(CS)] values, however, do not correlate well with either of these parameters. Rather it is found that the major determinant of yields [about 80-85% of the variation for G(X), 70% for G(CS)] is the number of hydrogen atoms or methylene groups in the amine residue. Although, logically, the yields of crosslinks and chain scissions in polyamides would be expected to tend to that of polyethylene as the number of methylene groups in the repeat unit increases, use of two models assuming an exponential trend to the G(X) value characteristic of polyethylene in the analysis did not provide better fits to the data than the simple linear model referred to above. Indeed, the assumption of a significant exponential trend factor led to a marked drop in the goodness of fit. (author)

  6. Anchoring of alkyl chain molecules on oxide surface using silicon alkoxide

    Energy Technology Data Exchange (ETDEWEB)

    Narita, Ayumi, E-mail: narita.ayumi@jaea.go.jp [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Graduate School of Science and Engineering, Ibaraki University, Bunnkyo, Mito-shi, Ibaraki-ken 310-8512 (Japan); Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Hirao, Norie [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Yaita, Tsuyoshi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Graduate School of Science and Engineering, Ibaraki University, Bunnkyo, Mito-shi, Ibaraki-ken 310-8512 (Japan)

    2012-01-01

    Chemical states of the interfaces between octadecyl-triethoxy-silane (ODTS) molecules and sapphire surface were measured by X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure (NEXAFS) using synchrotron soft X-rays. The nearly self-assembled monolayer of ODTS was formed on the sapphire surface. For XPS and NEXAFS measurements, it was elucidated that the chemical bond between silicon alkoxide in ODTS and the surface was formed, and the alkane chain of ODTS locates upper side on the surface. As a result, it was elucidated that the silicon alkoxide is a good anchor for the immobilization of organic molecules on oxides.

  7. The effect of the head group on branched-alkyl chain surfactants in glycolipid/n-octane/water ternary system.

    Science.gov (United States)

    Nainggolan, Irwana; Radiman, Shahidan; Hamzah, Ahmad Sazali; Hashim, Rauzah

    2009-10-01

    Two novel glycolipids have been synthesized and their phase behaviour studied. They have been characterized using FT-IR, FAB and 13C NMR and 1H NMR to ensure the purity of novel glycolipids. The two glycolipids are distinguished based on the head group of glycolipids (monosaccharide/glucose and disaccharide/maltose). These two novel glycolipids have been used as surfactant to perform two phase diagrams. Phase behaviours that have been investigated are 2-hexyldecyl-beta-D-glucopyranoside (2-HDG)/n-octane/water ternary system and 2-hexyldecyl-beta-D-maltoside (2-HDM)/n-octane/water ternary system. SAXS and polarizing optical microscope have been used to study the phase behaviours of these two surfactants in ternary phase diagram. Study of effect of the head group on branched-alkyl chain surfactants in ternary system is a strategy to derive the structure-property relationship. For comparison, 2-HDM and 2-HDG have been used as surfactant in the same ternary system. The phase diagram of 2-hexyldecyl-beta-D-maltoside/n-octane/water ternary system exhibited a Lalpha phase at a higher concentration regime, followed with two phases and a micellar solution region in a lower concentration regime. The phase diagram of 2-HDG/water/n-octane ternary system shows hexagonal phase, cubic phase, rectangular ribbon phase, lamellar phase, cubic phase as the surfactant concentration increase.

  8. Effects of Odd–Even Side Chain Length of Alkyl-Substituted Diphenylbithiophenes on First Monolayer Thin Film Packing Structure

    KAUST Repository

    Akkerman, Hylke B.

    2013-07-31

    Because of their preferential two-dimensional layer-by-layer growth in thin films, 5,5′bis(4-alkylphenyl)-2,2′-bithiophenes (P2TPs) are model compounds for studying the effects of systematic chemical structure variations on thin-film structure and morphology, which in turn, impact the charge transport in organic field-effect transistors. For the first time, we observed, by grazing incidence X-ray diffraction (GIXD), a strong change in molecular tilt angle in a monolayer of P2TP, depending on whether the alkyl chain on the P2TP molecules was of odd or even length. The monolayers were deposited on densely packed ultrasmooth self-assembled alkane silane modified SiO2 surfaces. Our work shows that a subtle change in molecular structure can have a significant impact on the molecular packing structure in thin film, which in turn, will have a strong impact on charge transport of organic semiconductors. This was verified by quantum-chemical calculations that predict a corresponding odd-even effect in the strength of the intermolecular electronic coupling. © 2013 American Chemical Society.

  9. Effects of Odd–Even Side Chain Length of Alkyl-Substituted Diphenylbithiophenes on First Monolayer Thin Film Packing Structure

    KAUST Repository

    Akkerman, Hylke B.; Mannsfeld, Stefan C. B.; Kaushik, Ananth P.; Verploegen, Eric; Burnier, Luc; Zoombelt, Arjan P.; Saathoff, Jonathan D.; Hong, Sanghyun; Atahan-Evrenk, Sule; Liu, Xueliang; Aspuru-Guzik, Alá n; Toney, Michael F.; Clancy, Paulette; Bao, Zhenan

    2013-01-01

    Because of their preferential two-dimensional layer-by-layer growth in thin films, 5,5′bis(4-alkylphenyl)-2,2′-bithiophenes (P2TPs) are model compounds for studying the effects of systematic chemical structure variations on thin-film structure and morphology, which in turn, impact the charge transport in organic field-effect transistors. For the first time, we observed, by grazing incidence X-ray diffraction (GIXD), a strong change in molecular tilt angle in a monolayer of P2TP, depending on whether the alkyl chain on the P2TP molecules was of odd or even length. The monolayers were deposited on densely packed ultrasmooth self-assembled alkane silane modified SiO2 surfaces. Our work shows that a subtle change in molecular structure can have a significant impact on the molecular packing structure in thin film, which in turn, will have a strong impact on charge transport of organic semiconductors. This was verified by quantum-chemical calculations that predict a corresponding odd-even effect in the strength of the intermolecular electronic coupling. © 2013 American Chemical Society.

  10. Interaction and dynamics of (alkylamide + electrolyte) deep eutectics: Dependence on alkyl chain-length, temperature, and anion identity

    International Nuclear Information System (INIS)

    Guchhait, Biswajit; Das, Suman; Daschakraborty, Snehasis; Biswas, Ranjit

    2014-01-01

    Here we investigate the solute-medium interaction and solute-centered dynamics in (RCONH 2 + LiX) deep eutectics (DEs) via carrying out time-resolved fluorescence measurements and all-atom molecular dynamics simulations at various temperatures. Alkylamides (RCONH 2 ) considered are acetamide (CH 3 CONH 2 ), propionamide (CH 3 CH 2 CONH 2 ), and butyramide (CH 3 CH 2 CH 2 CONH 2 ); the electrolytes (LiX) are lithium perchlorate (LiClO 4 ), lithium bromide (LiBr), and lithium nitrate (LiNO 3 ). Differential scanning calorimetric measurements reveal glass transition temperatures (T g ) of these DEs are ∼195 K and show a very weak dependence on alkyl chain-length and electrolyte identity. Time-resolved and steady state fluorescence measurements with these DEs have been carried out at six-to-nine different temperatures that are ∼100–150 K above their individual T g s. Four different solute probes providing a good spread of fluorescence lifetimes have been employed in steady state measurements, revealing strong excitation wavelength dependence of probe fluorescence emission peak frequencies. Extent of this dependence, which shows sensitivity to anion identity, has been found to increase with increase of amide chain-length and decrease of probe lifetime. Time-resolved measurements reveal strong fractional power dependence of average rates for solute solvation and rotation with fraction power being relatively smaller (stronger viscosity decoupling) for DEs containing longer amide and larger (weaker decoupling) for DEs containing perchlorate anion. Representative all-atom molecular dynamics simulations of (CH 3 CONH 2 + LiX) DEs at different temperatures reveal strongly stretched exponential relaxation of wavevector dependent acetamide self dynamic structure factor with time constants dependent both on ion identity and temperature, providing justification for explaining the fluorescence results in terms of temporal heterogeneity and amide clustering in these multi

  11. Studies on the solvation dynamics of coumarin 153 in 1-ethyl-3-methylimidazolium alkylsulfate ionic liquids: dependence on alkyl chain length.

    Science.gov (United States)

    Das, Sudhir Kumar; Sarkar, Moloy

    2012-08-06

    Steady-state and time-resolved fluorescence behavior of coumarin 153 (C153) is investigated in a series of 1-ethyl-3-methylimidazolium alkylsulfate ([C(2)mim][C(n)OSO(3)]) ionic liquids differing only in the length of the linear alkyl chain (n = 4, 6, and 8) in the anion. The aim of the present study is to understand the role of alkyl chain length in solute rotation and solvation dynamics of C153 in these ionic liquids. The blueshift observed in the steady-state absorption and emission maxima of C153 on going from the C(4)OSO(3) to the C(8)OSO(3) system indicates increasing nonpolar character of the microenvironment of the solute with increasing length of the alkyl side chain of the anion of the ionic liquids. The average solvation time is also found to increase on changing the substituent from butyl to octyl, and this is attributed to the increase in the bulk viscosity of the ILs. A steady blueshift of the time-zero maximum of the fluorescence spectrum with increasing alkyl chain length also indicates that the probe molecule experiences a less polar environment in the early part of the dynamics. Rotational dynamics of C153 are also analyzed by using the Stokes-Einstein-Debye (SED), Gierer-Wirtz (GW), and Dote-Kivelson-Schwartz (DKS) theories. Analyses of the results seem to suggest decoupling of the rotational motion of the probe from solvent viscosity. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cu sbnd Al sbnd Fe layered double hydroxides with CO32- and anionic surfactants with different alkyl chains in the interlayer

    Science.gov (United States)

    Trujillano, Raquel; Holgado, María Jesús; González, José Luis; Rives, Vicente

    2005-08-01

    Layered double hydroxides (LDHs), with the hydrotalcite-like structure containing Cu(II), Al(III) and Fe(III) in the layers, and different alkyl sulfonates in the interlayer, have been prepared and characterized by powder X-ray diffraction, FT-IR spectroscopy, differential thermal analysis and thermogravimetric analysis. Pure crystalline phases have been obtained in all cases. Upon heating, combustion of the organic chain takes place at lower temperature than the corresponding sodium salts.

  13. Synthesis of a series of soluble main-chain chiral nonracemic poly(alkyl-aryl ketone

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available A series of main-chain chiral polyketones have been synthesized through condensation polymerization of a dihalide and a diketone with optically pure binaphthyl moiety as linkage in the polymer backbone. The solubility of the polymers can be easily enhanced by substituents at the alpha position next to the carbonyl groups. Reducing the steric hindrance of the substituents in the monomers increases the reactivity of the polymerization. The chiral polymers exhibit large optical rotations. Circular Dichroism (CD spectra of the polymers are similar to those of the corresponding monomers. The novel synthetic strategy may have great impact on future development of palladium catalyzed condensation polymerizations. The highly soluble chiral polymers synthesized allow for preparation of materials in the form of thin films and have potentials applications in various areas such as chiral separation and recognition.

  14. Diacyltransferase Activity and Chain Length Specificity of Mycobacterium tuberculosis PapA5 in the Synthesis of Alkyl β-Diol Lipids

    Energy Technology Data Exchange (ETDEWEB)

    Touchette, Megan H.; Bommineni, Gopal R.; Delle Bovi, Richard J.; Gadbery, John; Nicora, Carrie D.; Shukla, Anil K.; Kyle, Jennifer E.; Metz, Thomas O.; Martin, Dwight W.; Sampson, Nicole S.; Miller, W. T.; Tonge, Peter J.; Seeliger, Jessica C.

    2015-09-08

    Although classified as Gram-positive bacteria, Corynebacterineae possess an asymmetric outer membrane that imparts structural and thereby physiological similarity to more distantly related Gram-negative bacteria. Like lipopolysaccharide in Gram-negative bacteria, lipids in the outer membrane of Corynebacterineae have been associated with the virulence of pathogenic species such as Mycobacterium tuberculosis (Mtb). For example, Mtb strains that lack long, branched-chain alkyl esters known as dimycocerosates (DIMs) are significantly attenuated in model infections. The resultant interest in the biosynthetic pathway of these unusual virulence factors has led to the elucidation of many of the steps leading to the final esterification of the alkyl beta-diol, phthiocerol, with branched-chain fatty acids know as mycocerosates. PapA5 is an acyltransferase implicated in these final reactions. We here show that PapA5 is indeed the terminal enzyme in DIM biosynthesis by demonstrating its dual esterification activity and chain-length preference using synthetic alkyl beta-diol substrate analogues. Applying these analogues to a series of PapA5 mutants, we also revise a model for the substrate binding within PapA5. Finally, we demonstrate that the Mtb Ser/Thr kinase PknB modifies PapA5 on three Thr residues, including two (T196, T198) located on an unresolved loop. These results clarify the DIM biosynthetic pathway and suggest possible mechanisms by which DIM biosynthesis may be regulated by the post-translational modification of PapA5.

  15. Bis(thienothiophenyl) diketopyrrolopyrrole-based conjugated polymers with various branched alkyl side chains and their applications in thin-film transistors and polymer solar cells.

    Science.gov (United States)

    Shin, Jicheol; Park, Gi Eun; Lee, Dae Hee; Um, Hyun Ah; Lee, Tae Wan; Cho, Min Ju; Choi, Dong Hoon

    2015-02-11

    New thienothiophene-flanked diketopyrrolopyrrole and thiophene-containing π-extended conjugated polymers with various branched alkyl side-chains were successfully synthesized. 2-Octyldodecyl, 2-decyltetradecyl, 2-tetradecylhexadecyl, 2-hexadecyloctadecyl, and 2-octadecyldocosyl groups were selected as the side-chain moieties and were anchored to the N-positions of the thienothiophene-flanked diketopyrrolopyrrole unit. All five polymers were found to be soluble owing to the bulkiness of the side chains. The thin-film transistor based on the 2-tetradecylhexadecyl-substituted polymer showed the highest hole mobility of 1.92 cm2 V(-1) s(-1) due to it having the smallest π-π stacking distance between the polymer chains, which was determined by grazing incidence X-ray diffraction. Bulk heterojunction polymer solar cells incorporating [6,6]-phenyl-C71-butyric acid methyl ester as the n-type molecule and the additive 1,8-diiodooctane (1 vol %) were also constructed from the synthesized polymers without thermal annealing; the device containing the 2-octyldodecyl-substituted polymer exhibited the highest power conversion efficiency of 5.8%. Although all the polymers showed similar physical properties, their device performance was clearly influenced by the sizes of the branched alkyl side-chain groups.

  16. Enhancement of endotoxin neutralization by coupling of a C12-alkyl chain to a lactoferricin-derived peptide

    Science.gov (United States)

    2004-01-01

    Antibacterial peptide acylation, which mimics the structure of the natural lipopeptide polymyxin B, increases antimicrobial and endotoxin-neutralizing activities. The interaction of the lactoferricin-derived peptide LF11 and its N-terminally acylated analogue, lauryl-LF11, with different chemotypes of bacterial lipopolysaccharide (LPS Re, Ra and smooth S form) was investigated by biophysical means and was related to the peptides' biological activities. Both peptides exhibit high antibacterial activity against the three strains of Salmonella enterica differing in the LPS chemotype. Lauryl-LF11 has one order of magnitude higher activity against Re-type, but activity against Ra- and S-type bacteria is comparable with that of LF11. The alkyl derivative peptide lauryl-LF11 shows a much stronger inhibition of the LPS-induced cytokine induction in human mononuclear cells than LF11. Although peptide–LPS interaction is essentially of electrostatic nature, the lauryl-modified peptide displays a strong hydrophobic component. Such a feature might then explain the fact that saturation of the peptide binding takes place at a much lower peptide/LPS ratio for LF11 than for lauryl-LF11, and that an overcompensation of the negative LPS backbone charges is observed for lauryl-LF11. The influence of LF11 on the gel-to-liquid-crystalline phase-transition of LPS is negligible for LPS Re, but clearly fluidizing for LPS Ra. In contrast, lauryl-LF11 causes a cholesterol-like effect in the two chemotypes, fluidizing in the gel and rigidifying of the hydrocarbon chains in the liquid-crystalline phase. Both peptides convert the mixed unilamellar/non-lamellar aggregate structure of lipid A, the ‘endotoxic principle’ of LPS, into a multilamellar one. These data contribute to the understanding of the mechanisms of the peptide-mediated neutralization of endotoxin and effect of lipid modification of peptides. PMID:15344905

  17. Interaction and dynamics of (alkylamide + electrolyte) deep eutectics: Dependence on alkyl chain-length, temperature, and anion identity

    Energy Technology Data Exchange (ETDEWEB)

    Guchhait, Biswajit; Das, Suman; Daschakraborty, Snehasis; Biswas, Ranjit, E-mail: ranjit@bose.res.in [Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India)

    2014-03-14

    Here we investigate the solute-medium interaction and solute-centered dynamics in (RCONH{sub 2} + LiX) deep eutectics (DEs) via carrying out time-resolved fluorescence measurements and all-atom molecular dynamics simulations at various temperatures. Alkylamides (RCONH{sub 2}) considered are acetamide (CH{sub 3}CONH{sub 2}), propionamide (CH{sub 3}CH{sub 2}CONH{sub 2}), and butyramide (CH{sub 3}CH{sub 2}CH{sub 2}CONH{sub 2}); the electrolytes (LiX) are lithium perchlorate (LiClO{sub 4}), lithium bromide (LiBr), and lithium nitrate (LiNO{sub 3}). Differential scanning calorimetric measurements reveal glass transition temperatures (T{sub g}) of these DEs are ∼195 K and show a very weak dependence on alkyl chain-length and electrolyte identity. Time-resolved and steady state fluorescence measurements with these DEs have been carried out at six-to-nine different temperatures that are ∼100–150 K above their individual T{sub g}s. Four different solute probes providing a good spread of fluorescence lifetimes have been employed in steady state measurements, revealing strong excitation wavelength dependence of probe fluorescence emission peak frequencies. Extent of this dependence, which shows sensitivity to anion identity, has been found to increase with increase of amide chain-length and decrease of probe lifetime. Time-resolved measurements reveal strong fractional power dependence of average rates for solute solvation and rotation with fraction power being relatively smaller (stronger viscosity decoupling) for DEs containing longer amide and larger (weaker decoupling) for DEs containing perchlorate anion. Representative all-atom molecular dynamics simulations of (CH{sub 3}CONH{sub 2} + LiX) DEs at different temperatures reveal strongly stretched exponential relaxation of wavevector dependent acetamide self dynamic structure factor with time constants dependent both on ion identity and temperature, providing justification for explaining the fluorescence results in

  18. Effect of alkyl chain length and temperature on the thermodynamic properties of ionic liquids 1-alkyl-3-methylimidazolium bromide in aqueous and non-aqueous solutions at different temperatures

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Shekaari, Hemayat; Hosseini, Rahim

    2009-01-01

    The alkyl chain length of 1-alkyl-3-methylimidazolium bromide ([Rmim][Br], R = propyl (C 3 ), hexyl (C 6 ), heptyl (C 7 ), and octyl (C 8 )) was varied to prepare a series of room-temperature ionic liquids (RTILs), and experimental measurements of density and speed of sound at different temperatures ranging from (288.15 to 308.15) K for their aqueous and methanolic solutions in the dilute concentration region (0.01 to 0.30) mol . kg -1 were taken. The values of the compressibilities, expansivity and apparent molar properties for [C n mim][Br] in aqueous and methanolic solutions were determined at the investigated temperatures. The obtained apparent molar volumes and apparent molar isentropic compressibilities were fitted to the Redlich-Mayer and the Pitzer's equations from which the corresponding infinite dilution molar properties were obtained. The values of the infinite dilution molar properties were used to obtain some information about solute-solvent and solute-solute interactions. The thermodynamic properties of investigated ionic liquids in aqueous solutions have been compared with those in methanolic solutions. Also, the comparison between thermodynamic properties of investigated solutions and those of electrolyte solutions, polymer solutions, cationic surfactant solutions and tetraalkylammonium salt solutions have been made

  19. Effect of alkyl chain length and temperature on the thermodynamic properties of ionic liquids 1-alkyl-3-methylimidazolium bromide in aqueous and non-aqueous solutions at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)], E-mail: rahsadeghi@yahoo.com; Shekaari, Hemayat [Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Hosseini, Rahim [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2009-02-15

    The alkyl chain length of 1-alkyl-3-methylimidazolium bromide ([Rmim][Br], R = propyl (C{sub 3}), hexyl (C{sub 6}), heptyl (C{sub 7}), and octyl (C{sub 8})) was varied to prepare a series of room-temperature ionic liquids (RTILs), and experimental measurements of density and speed of sound at different temperatures ranging from (288.15 to 308.15) K for their aqueous and methanolic solutions in the dilute concentration region (0.01 to 0.30) mol . kg{sup -1} were taken. The values of the compressibilities, expansivity and apparent molar properties for [C{sub n}mim][Br] in aqueous and methanolic solutions were determined at the investigated temperatures. The obtained apparent molar volumes and apparent molar isentropic compressibilities were fitted to the Redlich-Mayer and the Pitzer's equations from which the corresponding infinite dilution molar properties were obtained. The values of the infinite dilution molar properties were used to obtain some information about solute-solvent and solute-solute interactions. The thermodynamic properties of investigated ionic liquids in aqueous solutions have been compared with those in methanolic solutions. Also, the comparison between thermodynamic properties of investigated solutions and those of electrolyte solutions, polymer solutions, cationic surfactant solutions and tetraalkylammonium salt solutions have been made.

  20. Driving for shorter outages

    International Nuclear Information System (INIS)

    Tritch, S.

    1996-01-01

    Nuclear plant outages are necessary to complete activities that cannot be completed during the operating cycle, such as steam generator inspection and testing, refueling, installing modifications, and performing maintenance tests. The time devoted to performing outages is normally the largest contributor to plant unavailability. Similarly, outage costs are a sizable portion of the total plant budget. The scope and quality of work done during outages directly affects operating reliability and the number of unplanned outages. Improved management and planning of outages enhances the margin of safety during the outage and results in increased plant reliability. The detailed planning and in-depth preparation that has become a necessity for driving shorter outage durations has also produced safer outages and improved post-outage reliability. Short outages require both plant and vendor management to focus on all aspects of the outage. Short outage durations, such as 26 days at South Texas or 29 days at North Anna, require power plant inter-department and intra-department teamwork and communication and vendor participation. In this paper shorter and safer outage at the 3-loop plants in the United States are explained. (J.P.N.)

  1. Synthesis of novel vitamin K derivatives with alkylated phenyl groups introduced at the ω-terminal side chain and evaluation of their neural differentiation activities.

    Science.gov (United States)

    Sakane, Rie; Kimura, Kimito; Hirota, Yoshihisa; Ishizawa, Michiyasu; Takagi, Yuta; Wada, Akimori; Kuwahara, Shigefumi; Makishima, Makoto; Suhara, Yoshitomo

    2017-11-01

    Vitamin K is an essential cofactor of γ-glutamylcarboxylase as related to blood coagulation and bone formation. Menaquinone-4, one of the vitamin K homologues, is biosynthesized in the body and has various biological activities such as being a ligand for steroid and xenobiotic receptors, protection of neuronal cells from oxidative stress, and so on. From this background, we focused on the role of menaquinone in the differentiation activity of progenitor cells into neuronal cells and we synthesized novel vitamin K derivatives with modification of the ω-terminal side chain. We report here new vitamin K analogues, which introduced an alkylated phenyl group at the ω-terminal side chain. These compounds exhibited potent differentiation activity as compared to control. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Critical effects of alkyl chain length on fibril structures in benzene-trans(RR)- or (SS)-N,N'-alkanoyl-1,2-diaminocyclohexane gels.

    Science.gov (United States)

    Sato, Hisako; Nakae, Takahiro; Morimoto, Kazuya; Tamura, Kenji

    2012-02-28

    Vibrational circular dichroism (VCD) spectra were recorded on benzene-d(6) gels formed by chiral low molecular mass gelators (LMGs), trans(RR)- or trans(SS)-N,N'-alkanoyl-1,2-diaminocyclohexane (denoted by RR-C(n) or SS-C(n), respectively; n = the number of carbon atoms in an introduced alkanoyl group). Attention was focused on the effects of alkyl chain length on the structures of the gels. When n was changed from 6 to 12, the signs of the coupled peaks around 1550 cm(-1) in the VCD spectra, which were assigned to the symmetric and asymmetric C=O stretching vibrations from the higher to lower wavenumber, respectively, critically depended on the alkyl chain length. In the case of RR-C(n), for example, the signs of the couplet were plus and minus for n = 8, 9, 10 and 12, while the signs of the same couplet were reversed for n = 6 and 7. The conformations of LMGs in fibrils were determined by comparing the observed IR and VCD spectra with those calculated for a monomeric molecule. The observed reversal of signs in the C=O couplet was rationalized in terms of the different modes of hydrogen bonding. In the case of C(8), C(9), C(10) and C(12), gelator molecules were stacked with their cyclohexyl rings in parallel, forming double anti-parallel chains of intermolecular hydrogen bonds using two pairs of >NH and >C=O groups. In case of C(6) and C(7), gelator molecules were stacked through a single chain of intermolecular hydrogen bonds using a pair of >NH and >C=O groups. The remaining pair of >NH and >C=O groups formed an intramolecular hydrogen bond.

  3. Effect of alkyl chain length of imidazolium cations on the electron transport and recombination kinetics in ionic gel electrolytes based quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Huo, Zhipeng; Tao, Li; Wang, Lu; Zhu, Jun; Chen, Shuanghong; Zhang, Changneng; Dai, Songyuan; Zhang, Bing

    2015-01-01

    Highlights: •A series of novel IGEs based on 12-hydroxystearicacid as LMOG were prepared. •The QS-DSSCs exhibit excellent stability during the accelerated aging tests. •The influence of Im + alkyl chain length on the electron kinetic process is investigated. -- Abstract: A series of stable quasi-solid-state dye-sensitized solar cells (QS-DSSCs) are prepared by the 12-hydroxystearicacid as low molecular mass organogelator (LMOG) to gelate the ionic liquid with different alkyl chain lengths (3, 4, and 7). The influence of alkyl chain length of imidazolium cations (Im + ) on the kinetic processes of electron transport and recombination are investigated by Electrochemical impedance spectroscopy (EIS) and intensity-modulated photocurrent spectroscopy/intensity-modulated photovoltage spectroscopy (IMPS/IMVS). It is found that the ionic gel electrolytes (IGEs) with different alkyl chain lengths of Im + can influence the competitive adsorption effects of imidazolium cations (Im + ) and Li + , and further affect the charge diffusion, the electron recombination/transport processes, the shift of TiO 2 conduction band edge and surface states distribution. The IGE with longer alkyl chain length of Im + can prolong the electron recombination lifetime, promote the incidental photon-to-electron conversion efficiency (IPCE) and the short circuit photocurrent density (J sc ). An excellent QS-DSSC based on the IGE with the longer alkyl chain of Im + gives the highest photoelectric conversion efficiency. Moreover, all the QS-DSSCs based on IGEs exhibit excellent durability without losing their photovoltaic performances during the accelerated thermal and light–soaking test. These results are very important to the researches on the electrochemical mechanism and application of QS-DSSCs based on IGEs

  4. Asymmetric Conjugated Molecules Based on [1]Benzothieno[3,2-b][1]benzothiophene for High-Mobility Organic Thin-Film Transistors: Influence of Alkyl Chain Length.

    Science.gov (United States)

    He, Keqiang; Li, Weili; Tian, Hongkun; Zhang, Jidong; Yan, Donghang; Geng, Yanhou; Wang, Fosong

    2017-10-11

    Herein, we report the synthesis and characterization of a series of [1]benzothieno[3,2-b][1]benzothiophene (BTBT)-based asymmetric conjugated molecules, that is, 2-(5-alkylthiophen-2-yl)[1]benzothieno[3,2-b][1]benzothiophene (BTBT-Tn, in which T and n represent thiophene and the number of carbons in the alkyl group, respectively). All of the molecules with n ≥ 4 show mesomorphism and display smectic A, smectic B (n = 4), or smectic E (n > 4) phases and then crystalline phases in succession upon cooling from the isotropic state. Alkyl chain length has a noticeable influence on the microstructures of vacuum-deposited films and therefore on the performance of the organic thin-film transistors (OTFTs). All molecules except for 2-(thiophen-2-yl)[1]benzothieno[3,2-b][1]benzothiophene and 2-(5-ethylthiophen-2-yl)[1]benzothieno[3,2-b][1]benzothiophene showed OTFT mobilities above 5 cm 2 V -1 s -1 . 2-(5-Hexylthiophen-2-yl)[1]benzothieno[3,2-b][1]benzothiophene and 2-(5-heptylthiophen-2-yl)[1]benzothieno[3,2-b][1]benzothiophene showed the greatest OTFT performance with reliable hole mobilities (μ) up to 10.5 cm 2 V -1 s -1 because they formed highly ordered and homogeneous films with diminished grain boundaries.

  5. The color tuning of PS-b-P2VP lamellar films with changing the alkyl chain length of 1-iodoalkanes.

    Science.gov (United States)

    Shin, Sung-Eui; Kim, Su-Young; Shin, Dong-Myung

    2011-05-01

    Photonic crystals with tunability in the visible or near-infrared region have drawn increasing attention for controlling and processing light for the active components of future display. We prepared polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) lamellar films which is hydrophobic block-hydrophilic polyelectrolyte block polymer of 57 kg/mol-b-57 kg/mol. The lamellar stacks, which is alternating layer of hydrophilic and hydrophobic moiety of PS-b-P2VP, are obtained by exposing the spin coated film under chloroform vapor. The band gaps of the lamellar films interestingly varied after immersion into the quaternizing solvents containing 5 wt% of iodomethane, iodoethane, 1-iodobutane, 1-iodopentane, 1-iodohexane and 1-iodooctane solubilized in n-hexane. The iodoalkanes reacted with pyridine groups in PS-b-P2VP and generated the alkyl pyridinium salts readily. The degree of quaternization, alkyl chain length of iodoalkane and the salt water concentration affects the spacing of layer structure of PS-b-P2VP. The iodomethane and iodohexane produced similar band gaps and salt concentration dependence. These results are very much dependent on the hydrophobic-hydrophilic characters of PS-b-P2VP lamellar surface.

  6. Preparation, physicochemical characterisation and magnetic properties of Cu-Al layered double hydroxides with CO 32- and anionic surfactants with different alkyl chains in the interlayer

    Science.gov (United States)

    Trujillano, Raquel; Holgado, María Jesús; Pigazo, Fernando; Rives, Vicente

    2006-03-01

    Layered double hydroxides with the hydrotalcite-like structure, containing Cu(II) and Al(III) in the layers, and different alkyl sulphonates in the interlayer, have been prepared and characterised by powder X-ray diffraction, FT-IR spectroscopy, differential thermal analysis and thermogravimetric analysis. Their magnetic properties have been also studied. Except for the sample containing octadecanesulphonate in the interlayer, for which an excess of sulphonate exists, pure crystalline phases have been obtained in the other cases. Upon heating, combustion of the organic chain takes place at lower temperature than for the corresponding sodium salts. A two-dimensional antiferromagnetic behaviour is observed at 200 K in all samples containing intercalated sulphonate. The χT value is lower for the samples containing interlayer sulphonates (with layer-layer distances in the 21-31 Å range), than for a carbonate-containing analogue (basal spacing 7.51 Å).

  7. Chain-Length Distribution and Hydrogen Isotopic Fraction of n-alkyl Lipids in Aquatic and Terrestrial Plants: Implications for Paleoclimate Reconstructions

    Science.gov (United States)

    Gao, L.; Littlejohn, S.; Hou, J.; Toney, J.; Huang, Y.

    2008-12-01

    Recent studies demonstrate that in lacustrine sediments, aquatic plant lipids (e.g., C22-fatty acid) record lake water D/H ratio variation, while long-chain fatty acids (C26-C32, major components of terrestrial plant leaf waxes), record D/H ratios of precipitation (especially in arid regions). However, there are insufficient literature data for the distribution and hydrogen isotopic fractionation of n-alkyl lipids in aquatic and terrestrial plants. In this study, we determined the chain-length distributions and D/H ratios of n-alkyl lipids from 17 aquatic plant species (9 emergent, 4 floating and 4 submerge species) and 13 terrestrial plant species (7 grasses and 6 trees) from Blood Pond, Massachusetts. Our results are consistent with previous studies and provide a solid basis for the paleoclimatic reconstruction using D/H ratios of aquatic and terrestrial plant biomarkers. In addition, systematic hydrogen isotopic analyses on leaf waxes, leaf, stem and soil waters from trees and grasses significantly advance our understanding of our previously observed large D/H ratio difference between tree and grass leaf waxes. Our data indicate that the observed difference is not due to differences in leaf water D/H ratios. In comparison with grasses, trees use greater proportion of D-enriched residual or stored carbohydrates (as opposed to current photosynthetic carbohydrates) for leaf wax biosynthesis, resulting in higher leaf wax D/H ratios. The residual carbohydrates are enriched in deuterium because of the preferential consumption of light-hydrogen substrates during plant metabolism.

  8. Tuning the probe location on zwitterionic micellar system with variation of pH and addition of surfactants with different alkyl chains: solvent and rotational relaxation studies.

    Science.gov (United States)

    Banerjee, Chiranjib; Mandal, Sarthak; Ghosh, Surajit; Rao, Vishal Govind; Sarkar, Nilmoni

    2012-09-13

    In this manuscript, we have modulated the location of an anionic probe, Coumarin-343 (C-343) in a zwitterionic (N-hexadecyl-N,N-dimethylammonio-1-propanesulfonate (SB-16)) micellar system by three different approaches. The effect of addition of the surfactant sodium dodecyl sulfate (SDS) and the room temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium octylsulfate (EmimOs) and N,N-dimethylethanol hexanoate (DAH), to the micellar solution has been studied. The effect of pH variation has been studied as well using solvent and rotational measurements. Migration of the anionic probe, C-343, from the palisade layer of SB-16 micelle to the bulk water has been observed to varying extents with the addition of SDS and EmimOs. The effect is much more pronounced in the presence of SDS and can be ascribed to the presence of the long alkyl (dodecyl) chain on SDS which can easily orient itself and fuse inside the SB-16 micelle and facilitate the observed migration of the probe molecule. This phenomenon is confirmed by faster solvation and rotational relaxation of the investigated probe molecule. The analogous fusion process is difficult in case of EmimOs and DAH because of their comparatively smaller alkyl (octyl and hexanoate) chain. However, the direction of C-343 migration is reversed with the decrease of pH of the SB-16 micellar medium. An increase in the average solvation and rotational relaxation time of the probe in acidic medium has been observed. Since experimental conditions are maintained such that the probe molecules and the zwitterionic SB-16 micelles remain oppositely charged, the observed results can be attributed to the increased electrostatic interaction (attractive) between them. Temperature dependent study also supports this finding.

  9. The cmc-value of a bolalipid with two phosphocholine headgroups and a C24 alkyl chain: Unusual binding properties of fluorescence probes to bolalipid aggregates.

    Science.gov (United States)

    Kordts, Martin; Kerth, Andreas; Drescher, Simon; Ott, Maria; Blume, Alfred

    2017-09-01

    Bolalipids with a long alkyl chain and two phosphocholine polar groups self-assemble in water into two different types of aggregate structures, namely helical nanofibers at low temperature and two types of micellar aggregates at higher temperature. We tried to determine the critical aggregation concentration (cac) or critical micellar concentration (cmc) of the bolalipid tetracosane-1,24-bis(phosphocholine) (PC-C24-PC) by using different fluorescent probes. The use of pyrene or pyrene derivatives as fluorophores failed, whereas the probes 1,8-ANS and particularly bis-ANS gave consistent results. The structure of the bolalipid aggregates obviously hinders partitioning or binding of pyrene derivatives into the micellar interior, whereas 1,8-ANS and bis-ANS can bind to the surface of the aggregate structures. The observed large increase in fluorescence intensity of bis-ANS indicates that binding to the hydrophobic surface of the aggregates leads to a reduction of the dye mobility. However, binding of bis-ANS is relatively weak, so that the determination of a cac/cmc-value is difficult. Simulations of the intensity curves for PC-C24-PC lead to estimates of the cac/cmc-value of 0.3-1.0×10 -6 M, depending on the structure of the aggregates. Single molecule fluorescence correlation spectroscopy was used to determine the mobility of bis-ANS as a function of concentration of PC-C24-PC. The dye diffusion time and the molecular brightness are lower at low bolalipid concentration, when only free dye is present, and increase at higher concentration when bis-ANS is bound to the aggregates. The experimental cac/cmc-values are higher than those estimated, using an incremental method for the change in Gibbs free energy for micellization with n-alkyl-phosphocholines with only one polar group as a comparison. Apparently, for PC-C24-PC in micellar or fibrous aggregates, more CH 2 groups are exposed to water than in a conventional micelle of an n-alkyl-phosphocholine. Copyright

  10. Self-Assembly, Interfacial Nanostructure, and Supramolecular Chirality of the Langmuir-Blodgett Films of Some Schiff Base Derivatives without Alkyl Chain

    Directory of Open Access Journals (Sweden)

    Tifeng Jiao

    2013-01-01

    Full Text Available A special naphthyl-containing Schiff base derivative, N,N′-bis(2-hydroxy-1-naphthylidene-1,2-phenylenediamine, was synthesized, and its coordination with various metal ions in situ at the air/water interface has been investigated. Although the ligand contains no alkyl chain, it can be spread on water surface. When metal ions existed in the subphase, an interfacial coordination between the ligand and different metal ions occurred in the spreading film, while different Nanostructures were fabricated in the monolayers. Interestingly to note that among various metal ions, only the in situ coordination-induced Cu(II-complex film showed supramolecular chirality, although the multilayer films from the ligand or preformed complex are achiral. The chirality of the in situ Cu(II-coordinated Langmuir film was developed due to the special distorted coordination reaction and the spatial limitation at the air/water interface. A possible organization mechanism at the air/water interface was suggested.

  11. Synthesis and evaluation of new long alkyl side chain acetamide, isoxazolidine and isoxazoline derivatives as corrosion inhibitors

    International Nuclear Information System (INIS)

    Yildirim, A.; Cetin, M.

    2008-01-01

    2-(Alkylsulfanyl)-N-(pyridin-2-yl) acetamide derivatives were synthesized via amidation reaction of acyl chlorides bearing S atom in the long chain with 2-aminopyridine. Derivatives of isoxazolidine and isoxazoline were synthesized through 1,3-dipolar cycloaddition reactions with three different long chain alkenes containing O or S as hetero atoms and C,N-diphenyl nitrone or benzonitrile-N-oxide, respectively. Synthesized compounds were characterized with their FT-IR, 1 H NMR spectra and then their physical properties and corrosion prevention efficiencies were investigated. All compounds were tested with steel coupons in acidic medium by gravimetric method, and also some of them were tested with steel stripe in paraffin based mineral oil medium via standard method. Acidic test was done with a medium concentration of 2 M HCl for 20 h at room temperature. Mineral oil was used and the test in this medium was done at 60 deg. C constant temperature but varying time from 42 to 63 h. The best inhibition was generally obtained at 50 ppm inhibitor concentration in the acidic medium. All tested inhibitors except two of them in oil medium also showed promising inhibition efficiencies

  12. Alkyl side chain on the 1-methylimidazolium ring of countercation modulating thermal and magnetic properties of metal-dithiolene complexes

    Science.gov (United States)

    Duan, Hai-Bao; Yu, Shan-Shan; Cai, Ying; Zhang, Hui

    2015-05-01

    Two low-dimensional ion-pair compounds [1,5-bis(1-methylimidazolium)pentane][Ni(mnt)2]2 (1) and [1,9-bis(1-methylimidazolium)nonane][Ni(mnt)2]2 (2) (mnt2- = maleonitriledithiolate) were designed and synthesized. The cations and anions formed mixed column along the crystallographic a-axis direction in the crystal of 1·0.5DMF. Two compounds display different thermal and magnetic behaviors. Multi-step solid to solid state phase transition was observed for 1 by DSC. 1 exhibits weak paramagnetism over the temperature range of 2-400 K and 2 shows spin gap in the low-temperature phase. Thus by changing of the alky chain length of the counter-cation allows the modulation thermal and magnetic behaviors for such system.

  13. [Alkylating agents].

    Science.gov (United States)

    Pourquier, Philippe

    2011-11-01

    With the approval of mechlorethamine by the FDA in 1949 for the treatment of hematologic malignancies, alkylating agents are the oldest class of anticancer agents. Even though their clinical use is far beyond the use of new targeted therapies, they still occupy a major place in specific indications and sometimes represent the unique option for the treatment of refractory diseases. Here, we are reviewing the major classes of alkylating agents and their mechanism of action, with a particular emphasis for the new generations of alkylating agents. As for most of the chemotherapeutic agents used in the clinic, these compounds are derived from natural sources. With a complex but original mechanism of action, they represent new interesting alternatives for the clinicians, especially for tumors that are resistant to conventional DNA damaging agents. We also briefly describe the different strategies that have been or are currently developed to potentiate the use of classical alkylating agents, especially the inhibition of pathways that are involved in the repair of DNA lesions induced by these agents. In this line, the development of PARP inhibitors is a striking example of the recent regain of interest towards the "old" alkylating agents.

  14. Aggregation behavior and intermicellar interactions of cationic Gemini surfactants: Effects of alkyl chain, spacer lengths and temperature

    International Nuclear Information System (INIS)

    Hajy Alimohammadi, Marjan; Javadian, Soheila; Gharibi, Hussein; Tehrani-Bagha, Ali reza; Alavijeh, Mohammad Rashidi; Kakaei, Karim

    2012-01-01

    Graphical abstract: Highlights: → Enthalpy-entropy compensation relation was found between and for gemini surfactants. → The intermicellar interaction parameters are influenced with increasing the lengths of the tail and the spacer of gemini surfactants. → Increasing temperature decreases the intermicellar interaction parameters. → The changes in micellar surface charge density, and phase transition between spherical and rod geometries explain the data. - Abstract: The aggregation behavior of the cationic Gemini surfactants C m H 2m+1 N(CH 3 ) 2 (CH 2 ) S (CH 3 ) 2 N C m H 2m+1 ,2Br - with m = 12, 14 and s = 2, 4 were studied by performing surface tension, electrical conductivity, pulsed field gradient nuclear magnetic resonance (PFG-NMR), and cyclic voltammetry (CV) measurements over the temperature range 298 K to 323 K. The critical micelle concentration (CMC), surface excess (Γ max ), mean molecular surface area (A min ), degree of counter ion dissociation (α), and the thermodynamic parameters of micellization were determined from the surface tension and conductance data. An enthalpy-entropy compensation effect was observed and all the plots of enthalpy-entropy compensation exhibit excellent linearity. The micellar self-diffusion coefficients (D m ) and intermicellar interaction parameters (k d ) were obtained from the PFG-NMR and CV measurements. These results are discussed in terms of the intermicellar interactions, the effects of the chain and spacer lengths on the micellar surface charge density, and the phase transition between spherical and rod geometries. The intermicellar interaction parameters were found to decrease slightly with increasing temperature for 14-4-14, which suggests that the micellar surface charge density decreases with increasing temperature. The mean values of the hydrodynamic radius, R h , and the aggregation number, N agg , of the Gemini surfactants'm-4-m micelles were calculated from the micellar self-diffusion coefficient

  15. Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed N-channel organic thin-film transistors with mobility of up to 3.50 cm² V(-1) s(-1).

    Science.gov (United States)

    Zhang, Fengjiao; Hu, Yunbin; Schuettfort, Torben; Di, Chong-an; Gao, Xike; McNeill, Christopher R; Thomsen, Lars; Mannsfeld, Stefan C B; Yuan, Wei; Sirringhaus, Henning; Zhu, Daoben

    2013-02-13

    Substituted side chains are fundamental units in solution processable organic semiconductors in order to achieve a balance of close intermolecular stacking, high crystallinity, and good compatibility with different wet techniques. Based on four air-stable solution-processed naphthalene diimides fused with 2-(1,3-dithiol-2-ylidene)malononitrile groups (NDI-DTYM2) that bear branched alkyl chains with varied side-chain length and different branching position, we have carried out systematic studies on the relationship between film microstructure and charge transport in their organic thin-film transistors (OTFTs). In particular synchrotron measurements (grazing incidence X-ray diffraction and near-edge X-ray absorption fine structure) are combined with device optimization studies to probe the interplay between molecular structure, molecular packing, and OTFT mobility. It is found that the side-chain length has a moderate influence on thin-film microstructure but leads to only limited changes in OTFT performance. In contrast, the position of branching point results in subtle, yet critical changes in molecular packing and leads to dramatic differences in electron mobility ranging from ~0.001 to >3.0 cm(2) V(-1) s(-1). Incorporating a NDI-DTYM2 core with three-branched N-alkyl substituents of C(11,6) results in a dense in-plane molecular packing with an unit cell area of 127 Å(2), larger domain sizes of up to 1000 × 3000 nm(2), and an electron mobility of up to 3.50 cm(2) V(-1) s(-1), which is an unprecedented value for ambient stable n-channel solution-processed OTFTs reported to date. These results demonstrate that variation of the alkyl chain branching point is a powerful strategy for tuning of molecular packing to enable high charge transport mobilities.

  16. Biosynthesis of plasmalogens by the microsomal fraction of Fischer R-3259 sarcoma. Influence of specific 2-acyl chains on the desaturation of 1-alkyl-2-acyl-sn-gycero-3-phosphoethanolamine

    Energy Technology Data Exchange (ETDEWEB)

    Wykle, R.L.; Schremmer, J.M.

    1979-08-07

    In the Fischer R-3259 sarcoma, ethanolamine plasmalogens are synthesized from 1-akyl-2-acyl-sn-glycero-3-phosphoethanolamine by a microsomal desaturase that inserts a ..delta../sup 1/ double bond in the alkyl chain. In the present study, a series of 1-(1-/sup 14/C)hexadecyl-2-acyl-GPE substrates containing specific acyl groups ranging from C/sub 2/ /sub 0/ to C/sub 20/ /sub 4/ at the 2 position were prepared and tested as substrates for the microsomal ..delta../sup 1/-alkyl desaturase. The microsomal preparations contained an acyl hydrolase that removed the C/sub 2/ /sub 0/, C/sub 4/ /sub 0/, and C/sub 7/ /sub 0/ acyl groups from the 2 position. By inhibiting the hydrolase with diisopropyl fluorophosphate, it was possible to test conversion of the unaltered substrates to plasmalogens. The alkyl desaturase exhibited little discrimination among the specific acyl derivatives tested. The highest rate of desaturation was obtained with 1-(1-/sup 14/C)-hexadecyl-2-acyl-GPE synthesized in situ in the microsomes via acylation of 1-(1-/sup 14/C)hexadecyl-GPE; this rate was threefold that observed with exogenously acylated substrates. The 1-(1-/sup 14/C)hexadecyl-2-acyl-GPE synthesized in situ contained highly unsaturated acyl groups; no selectivity of the desaturase for specific acyl chains was detected when the different molecular species of 1-(1-/sup 14/C)alkyl-2-acyl-GPE and 1-(1-/sup 14/C)alk-1'-eyl-2-acyl-GPE were compared. The short-chain substrates, being moe hydrophilic, mimicked the chromatographic behavior of 1-alkyl-GPE, yet they did not resemble the lyso compound in its higher conversion to plasmalogens. Thus, despite their similar R/sub f/ values, the packing of the short-chain acyl homologues in the membrane may be quite different from that of the lyso compound. Binding of 1-hexadecyl-2-acyl-GPE and 1-hexadecyl-GPE to microsomal membranes was similar.

  17. Novel Synthetic Monothiourea Aspirin Derivatives Bearing Alkylated Amines as Potential Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Norsyafikah Asyilla Nordin

    2017-01-01

    Full Text Available A new series of aspirin bearing alkylated amines moieties 1–12 were synthesised by reacting isothiocyanate with a series of aniline derivatives in overall yield of 16–56%. The proposed structures of all the synthesised compounds were confirmed using elemental analysis, FTIR, and 1H and  13C NMR spectroscopy. All compounds were evaluated for antibacterial activities against E. coli and S. aureus via turbidimetric kinetic and Kirby Bauer disc diffusion method. Compound 5 bearing meta -CH3 substituent showed the highest relative inhibition zone diameter against tested bacteria compared to ortho and para substituent. Furthermore, aspirin derivatives bearing shorter chains exhibited better bacterial inhibition than longer alkyl chains.

  18. DNA-directed alkylating ligands as potential antitumor agents: sequence specificity of alkylation by intercalating aniline mustards.

    Science.gov (United States)

    Prakash, A S; Denny, W A; Gourdie, T A; Valu, K K; Woodgate, P D; Wakelin, L P

    1990-10-23

    The sequence preferences for alkylation of a series of novel parasubstituted aniline mustards linked to the DNA-intercalating chromophore 9-aminoacridine by an alkyl chain of variable length were studied by using procedures analogous to Maxam-Gilbert reactions. The compounds alkylate DNA at both guanine and adenine sites. For mustards linked to the acridine by a short alkyl chain through a para O- or S-link group, 5'-GT sequences are the most preferred sites at which N7-guanine alkylation occurs. For analogues with longer chain lengths, the preference of 5'-GT sequences diminishes in favor of N7-adenine alkylation at the complementary 5'-AC sequence. Magnesium ions are shown to selectively inhibit alkylation at the N7 of adenine (in the major groove) by these compounds but not the alkylation at the N3 of adenine (in the minor groove) by the antitumor antibiotic CC-1065. Effects of chromophore variation were also studied by using aniline mustards linked to quinazoline and sterically hindered tert-butyl-9-aminoacridine chromophores. The results demonstrate that in this series of DNA-directed mustards the noncovalent interactions of the carrier chromophores with DNA significantly modify the sequence selectivity of alkylation by the mustard. Relationships between the DNA alkylation patterns of these compounds and their biological activities are discussed.

  19. Dynamics of cyanophenyl alkylbenzoate molecules in the bulk and in a surface layer adsorbed onto aerosil. Variation of the lengths of the alkyl chain

    Energy Technology Data Exchange (ETDEWEB)

    Frunza, Stefan [National Institute of Materials Physics, R-077125 Magurele (Romania); Schoenhals, Andreas [BAM Federal Institute of Materials Research and Testing, D-12205 Berlin (Germany); Frunza, Ligia, E-mail: lfrunza@infim.ro [National Institute of Materials Physics, R-077125 Magurele (Romania); Beica, Traian; Zgura, Irina; Ganea, Paul [National Institute of Materials Physics, R-077125 Magurele (Romania); Stoenescu, Daniel [Telecom-Bretagne, Departement d' Optique, Technopole Brest-Iroise 29238 Cedex (France)

    2010-06-16

    Graphical abstract: The temperature dependence of the molecular mobility in composites shows an Arrhenius-type regime at low temperature and a glassy-type one at higher temperature separated by a crossover phenomenon. - Abstract: The molecular mobility of 4-butyl- and 4-pentyl-4'-cyanophenyl benzoate (CP4B, CP5B) and their composites prepared from aerosil A380 was investigated by broadband dielectric spectroscopy in a large temperature range. Thermogravimetric and infrared investigations were additionally performed. High silica density (larger than 7 g aerosil/1 g of liquid crystal) was selected to observe a thin layer adsorbed on the surface of the silica particles. The data were compared with those of the member of the series with six carbon atoms in the alkyl tail. Bulk CP4B and CP5B show the dielectric behaviour expected for liquid crystals. For the composites one relaxation process is observed at frequencies much lower than those for the corresponding bulk, which was assigned to the dynamics of the molecules in a surface layer. The temperature dependence of the relaxation rates (and of the dielectric strength) shows a crossover behaviour with two distinguished regimes. At higher temperatures the data obey the Vogel-Fulcher-Tammann law, whereas an Arrhenius law is observed at lower temperature, in a close similarity to the behaviour of a constrained dynamic glass transition. The estimated Vogel and crossover temperature is independent on the tail length, while the activation energy for the low temperature branch increases weakly with increasing the alkyl tail.

  20. Nanostructured poly(benzimidazole membranes by N-alkylation

    Directory of Open Access Journals (Sweden)

    J. Weber

    2014-01-01

    Full Text Available Modification of poly(benzimidazole (PBI by N-alkylation leads to polymers capable of undergoing microphase separation. Polymers with different amounts of C18 alkyl chains have been prepared. The polymers were analyzed by spectroscopy, thermal analysis, electron microscopy and X-ray scattering. The impact of the amount of alkyl chains on the observed microphase separation was analyzed. Membranes prepared from the polymers do show microphase separation, as evidenced by scattering experiments. While no clear morphology could be derived for the domains in the native state, evidence for the formation of lamellar morphologies upon doping with phosphoric acid is provided. Finally, the proton conductivity of alkyl-modified PBI is compared with that of pure PBI, showing that the introduction of alkyl side chains does not result in significant conductivity changes.

  1. Graft copolymerization of a series of alkyl acrylates and alkyl methacrylates onto polyethylene

    International Nuclear Information System (INIS)

    Zurakowska-Orszagh, J.; Soerjosoeharto, K.; Busz, W.; Oldziejewski, J.

    1977-01-01

    Graft copolymerization of a series of alkyl acrylates and alkyl methacrylates into polyethylene of Polish production was investigated, using benzoyl peroxide as the initiator as well as preirradiation technique, namely ionizing radiation from a 60 Co γ-source. The effect of α-carbon methyl substituent of methacrylates as well as the influence of the length of alkyl chains in the ester groups of both series of monomers into the grafting process was observed. The ungrafted and some of the grafted polyethylene film obtained was studied by infrared spectrophotometry. (author)

  2. Solid-State Organization and Ambipolar Field-Effect Transistors of Benzothiadiazole-Cyclopentadithiophene Copolymer with Long Branched Alkyl Side Chains

    Directory of Open Access Journals (Sweden)

    Martin Baumgarten

    2013-06-01

    Full Text Available The solid-state organization of a benzothiadiazole-cyclopentadithiophene copolymer with long, branched decyl-tetradecyl side chains (CDT-BTZ-C14,10 is investigated. The C14,10 substituents are sterically demanding and increase the π-stacking distance to 0.40 nm from 0.37 nm for the same polymer with linear hexadecyls (C16. Despite the bulkiness, the C14,10 side chains tend to crystallize, leading to a small chain-to-chain distance between lamellae stacks and to a crystal-like microstructure in the thin film. Interestingly, field-effect transistors based on solution processed layers of CDT-BTZ-C14,10 show ambipolar behavior in contrast to CDT-BTZ-C16 with linear side chains, for which hole transport was previously observed. Due to the increased π-stacking distance, the mobilities are only 6 × 10−4 cm²/Vs for electrons and 6 × 10−5 cm²/Vs for holes, while CDT-BTZ-C16 leads to values up to 5.5 cm²/Vs. The ambipolarity is attributed to a lateral shift between stacked backbones provoked by the bulky C14,10 side chains. This reorganization is supposed to change the transfer integrals between the C16 and C14,10 substituted polymers. This work shows that the electronic behavior in devices of one single conjugated polymer (in this case CDT-BTZ can be controlled by the right choice of the substituents to place the backbones in the desired packing.

  3. Poly(ethyleneoxide) functionalization through alkylation

    Science.gov (United States)

    Sivanandan, Kulandaivelu; Eitouni, Hany Basam; Li, Yan; Pratt, Russell Clayton

    2015-04-21

    A new and efficient method of functionalizing high molecular weight polymers through alkylation using a metal amide base is described. This novel procedure can also be used to synthesize polymer-based macro-initiators containing radical initiating groups at the chain-ends for synthesis of block copolymers.

  4. Isobutane alkylation over solid catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kozorezov, Y.I.; Lisin, V.I.

    1979-05-01

    Commercial alumina modified with 6Vertical Bar3< by wt boron trifluoride was active in isobutane alkylation with ethylene in a flow reactor at 5:1 isobutane-ethylene and 5-20 min reaction time. The reaction rate was first-order in ethylene and increased with increasing temperature (20/sup 0/-80/sup 0/C) and ethylene pressure (0.2-3 atm). The calculated activation energy was 8.4 kj. Kinetic data and the activity of tert.-butyl chloride, but not ethyl chloride as alkylating agents in place of ethylene suggested a carbonium-ion chain mechanism involving both surface and gas-phase reactions. The ethylene-based yield of the alkylate decreased from 132 to 41Vertical Bar3< by wt after nine hours on stream, and its bromine number increased from 0.2 to 1 g Br/sub 2//100 ml. This inhibition was attributed to adsorption on the active acidic sites of the reaction products, particularly C/sub 10//sup +/ olefins. Catalyst stabilization could probably be achieved by selecting an appropriate solvent that would continuously desorb the inhibiting products from the catalyst surface.

  5. Photophysical properties and localization of chlorins substituted with methoxy groups, hydroxyl groups and alkyl chains in liposome-like cellular membrane

    Energy Technology Data Exchange (ETDEWEB)

    Al-Omari, S [Department of Physics, Hashemite University, Zarqa 13115 (Jordan)

    2007-06-01

    Some of the photophysical properties (stationary absorbance and fluorescence, fluorescence decay times and singlet oxygen quantum yields) of chlorins substituted with methoxy groups, hydroxyl groups and hydrocarbonic chains were studied in ethanol and dipalmitoyl-phosphatidylcholine (DPPC) liposomes using steady-state and time-resolved fluorescence spectroscopies. The photophysical behaviors of the chlorins in liposomes like cellular membrane were compared with those obtained from chlorin-liposome systems delivered to Jurkat cells in order to select potent photosensitizers for the photodynamic treatment of cancer. The localization of the studied chlorins inside liposomes was found to depend strongly on the substituents of chlorins. Absorption spectra of chlorins embedded in DPPC-liposomes have been recorded in the temperature range of 20-70 deg. C. It is demonstrated that the location of the chlorin molecules depends on the phase state of the phospholipids. These observations are confirmed by the fluorescence lifetimes, singlet oxygen lifetimes and singlet oxygen quantum yields results.

  6. Photoinduced alkylation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dondi, D.; Fagnoni, M.; Albini, A.

    2002-07-01

    Some {alpha}{beta}-unsaturated aldehydes have been alkylated generating alkyl radicals from alcohols and dioxolanes in mixed aqueous-organic solution though photoinduced hydrogen abstraction by disodium benzophenondisulfonate when exposed to solar light (6 to 14 hours for 10 g amounts). (Author) 8 refs.

  7. Interfce alkylation of ethyldiphenylphosphinylacetate

    International Nuclear Information System (INIS)

    Yarkevich, A.N.; Tsvetkov, E.N.

    1994-01-01

    The paper deals with the alkylation of the methyline group of ethyldiphenylphosphinylacetate (1) by different alkylating agents in the presence of Cs 2 CO 3 . In all cases the application of Cs 2 CO 3 results in a significant increase of reaction rate. 10 refs., 3 tabs

  8. Synthetic high-charge organomica: effect of the layer charge and alkyl chain length on the structure of the adsorbed surfactants.

    Science.gov (United States)

    Pazos, M Carolina; Castro, Miguel A; Orta, M Mar; Pavón, Esperanza; Valencia Rios, Jesús S; Alba, María D

    2012-05-15

    A family of organomicas was synthesized using synthetic swelling micas with high layer charge (Na(n)Si(8-n)Al(n)Mg(6)F(4)O(20)·XH(2)O, where n = 2, 3, and 4) exchanged with dodecylammonium and octadecylammonium cations. The molecular arrangement of the surfactant was elucidated on the basis on XRD patterns and DTA. The ordering conformation of the surfactant molecules into the interlayer space of micas was investigated by (13)C, (27)Al, and (29)Si MAS NMR. The arrangement of alkylammonium ions in these high-charge synthetic micas depends on the combined effects of the layer charge of the mica and the chain length of the cation. In the organomicas with dodecylammonium, a transition from a parallel layer to a bilayer-paraffin arrangement is observed when the layer charge of the mica increases. However, when octadecylammonium is the interlayer cation, the molecular arrangement of the surfactant was found to follow the bilayer-paraffin model for all values of layer charge. The amount of ordered conformation all-trans is directly proportional of layer charge.

  9. Methods, fluxes and sources of gas phase alkyl nitrates in the coastal air.

    Science.gov (United States)

    Dirtu, Alin C; Buczyńska, Anna J; Godoi, Ana F L; Favoreto, Rodrigo; Bencs, László; Potgieter-Vermaak, Sanja S; Godoi, Ricardo H M; Van Grieken, René; Van Vaeck, Luc

    2014-10-01

    The daily and seasonal atmospheric concentrations, deposition fluxes and emission sources of a few C3-C9 gaseous alkyl nitrates (ANs) at the Belgian coast (De Haan) on the Southern North Sea were determined. An adapted sampler design for low- and high-volume air-sampling, optimized sample extraction and clean-up, as well as identification and quantification of ANs in air samples by means of gas chromatography mass spectrometry, are reported. The total concentrations of ANs ranged from 0.03 to 85 pptv and consisted primarily of the nitro-butane and nitro-pentane isomers. Air mass backward trajectories were calculated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to determine the influence of main air masses on AN levels in the air. The shorter chain ANs have been the most abundant in the Atlantic/Channel/UK air masses, while longer chain ANs prevailed in continental air. The overall mean N fluxes of the ANs were slightly higher for summer than those for winter-spring, although their contributions to the total nitrogen flux were low. High correlations between AN and HNO₂ levels were observed during winter/spring. During summer, the shorter chain ANs correlated well with precipitation. Source apportionment by means of principal component analysis indicated that most of the gas phase ANs could be attributed to traffic/combustion, secondary photochemical formation and biomass burning, although marine sources may also have been present and a contributing factor.

  10. L-tryptophan-induced electron transport across supported lipid bilayers: an alkyl-chain tilt-angle, and bilayer-symmetry dependence.

    Science.gov (United States)

    Sarangi, Nirod Kumar; Patnaik, Archita

    2012-12-21

    Molecular orientation-dependent electron transport across supported 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayers (SLBs) on semiconducting indium tin oxide (ITO) is reported with an aim towards potential nanobiotechnological applications. A bifunctional strategy is adopted to form symmetric and asymmetric bilayers of DPPC that interact with L-tryptophan, and are analyzed by surface manometry and atomic force microscopy. Polarization-dependent real-time Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS) analysis of these SLBs reveals electrostatic, hydrogen-bonding, and cation-π interactions between the polar head groups of the lipid and the indole side chains. Consequently, a molecular tilt arises from the effective interface dipole, facilitating electron transport across the ITO-anchored SLBs in the presence of an internal Fe(CN)(6)(4-/3-) redox probe. The incorporation of tryptophan enhances the voltammetric features of the SLBs. The estimated electron-transfer rate constants for symmetric and asymmetric bilayers (k(s) = 2.0×10(-2) and 2.8×10(-2) s(-1)) across the two-dimensional (2D) ordered DPPC/tryptophan SLBs are higher compared to pure DPPC SLBs (k(s) = 3.2×10(-3) and 3.9×10(-3) s(-1)). In addition, they are molecular tilt-dependent, as it is the case with the standard apparent rate constants k(app)(0), estimated from electrochemical impedance spectroscopy and bipotentiostatic experiments with a Pt ultramicroelectrode. Lower magnitudes of k(s) and k(app)(0) imply that electrochemical reactions across the ITO-SLB electrodes are kinetically limited and consequently governed by electron tunneling across the SLBs. Standard theoretical rate constants (k(th)(0)) accrued upon electron tunneling comply with the potential-independent electron-tunneling coefficient β = 0.15 Å(-1). Insulator-semiconductor transitions moving from a liquid-expanded to a condensed 2D-phase state of the SLBs are noted, adding a new dimension

  11. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa).

    Science.gov (United States)

    Felizeter, Sebastian; McLachlan, Michael S; de Voogt, Pim

    2012-11-06

    An uptake study was carried out to assess the potential human exposure to perfluorinated alkyl acids (PFAAs) through the ingestion of vegetables. Lettuce (Lactuca sativa) was grown in PFAA-spiked nutrient solutions at four different concentrations, ranging from 10 ng/L to 10 μg/L. Eleven perfluorinated carboxylic acids (PFCAs) and three perfluorinated sulfonic acids (PFSAs) were analyzed by HPLC-MS/MS. At the end of the experiment, the major part of the total mass of each of the PFAAs (except the short-chain, C4-C7, PFCAs) taken up by plants appeared to be retained in the nonedible part, viz. the roots. Root concentration factors (RCF), foliage/root concentration factors (FRCF), and transpiration stream concentration factors (TSCF) were calculated. For the long chained PFAAs, RCF values were highest, whereas FRCF were lowest. This indicates that uptake by roots is likely governed by sorption of PFAAs to lipid-rich root solids. Translocation from roots to shoots is restricted and highly depending on the hydrophobicity of the compounds. Although the TSCF show that longer-chain PFCAs (e.g., perfluorododecanoic acid) get better transferred from the nutrient solution to the foliage than shorter-chain PFCAs (e.g., perfluoroheptanoic acid), the major fraction of longer-chain PFCAs is found in roots due to additional adsorption from the spiked solution. Due to the strong electron-withdrawing effect of the fluorine atoms the role of the negative charge of the dissociated PFAAs is likely insignificant.

  12. Novel graphene papers with sporadic alkyl brushes on the basal plane as a high-capacity flexible anode for lithium ion batteries

    International Nuclear Information System (INIS)

    Oh, Kyung Min; Cho, Sung-Woo; Kim, Gyeong-Ok; Ryu, Kwang-Sun; Jeong, Han Mo

    2014-01-01

    Graphene paper that exhibits an excellent stabilized capacity, as high as 1300 mAh g −1 at a current rate of 60 mA g −1 , as a lithium ion battery anode is fabricated and evaluated. The few-layer graphene used to make the graphene paper is prepared via the thermal reduction of graphite oxide. The graphene is then modified by a novel method utilizing inherent defects, namely epoxy groups, on the graphene as active sites for a reaction with methanol, 1-butanol, 1-hexanol, and 1-octanol. The density values and X-ray diffraction patterns obtained for the graphene paper demonstrate that the alkyl brushes on the graphene sheets expand the d-spacing and hinder close restacking of the sheets, thereby inducing the formation of extra cavities within the paper. This loose packing due to the alkyl brushes increases sensitively as the alkyl chain length of the alcohol becomes longer. The lithium ion insertion capacity of a graphene paper electrode at the first cycle also increases with the alkyl chain length. However, fading of the capacity at early charge/discharge cycles is accelerated by the modification process because of electrolyte penetration into the gallery and the acceleration of protective solid electrolyte interface film formation due to looser packing. The paper composed of graphene modified with 1-butanol rather than shorter or longer alcohols exhibits the best reversible storage capacity, more than two-fold higher when compared to that of pristine graphene paper, due to a compromise between two conflicting effects on the reversible storage capacity by long alkyl brushes. The tensile properties and electrical conductivity of the graphene papers are also examined

  13. Building blocks for ionic liquids: Vapor pressures and vaporization enthalpies of 1-(n-alkyl)-imidazoles

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Portnova, Svetlana V.; Verevkin, Sergey P.; Skrzypczak, Andrzej; Schubert, Thomas

    2011-01-01

    Highlights: → We measured vapor pressures of the 1-(n-alkyl)-imidazoles by transpiration method. → Variations on the alkyl chain length n were C 3 , C 5 -C 7 , and C 9 -C 10 . → Enthalpies of vaporization were derived from (p, T) dependencies. → Enthalpies of vaporization at 298.15 K were linear dependent on the chain length. - Abstract: Vapor pressures of the linear 1-(n-alkyl)-imidazoles with the alkyl chain C 3 , C 5 -C 7 , and C 9 -C 10 have been measured by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. A linear correlation of enthalpies of vaporization Δ l g H m (298.15 K) of the 1-(n-alkyl)-imidazoles with the chain length has been found.

  14. Isobutane/olefin-alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Waitkamp, J.; Maixner, S.

    1983-11-01

    Isobutane/olefin-alkylation - technology and reaction mechanism of a refinery process for production of high octane gasoline components: The alkylation of i-butane with olefins, especially with butenes, is a process for the conversion of light byproducts of a catalytic cracker to high quality gasoline components. Alkylate is a complex mixture of i-paraffins containing 5 to ca. 12 carbon atoms. Due to their octane numbers the four trimethylpentane isomers are the most desirable product components. Indeed, under optimum process conditions these isomers are the main products. Presently, alkylation capacity in the western world amounts to more than 40x10/sup 6/ t/a. Most units are located in the USA. Two liquid-phase processes using sulfuric acid and hydrofluoric acid, respectively, are of commercial importance. At present, there is a definite trend towards HF-alkylation. The reaction mechanism which proceeds via carbocations, is extremely complex. It is composed of a great variety of individual steps. Modern mechanistic concepts are discussed.

  15. Identify alkylation hazards

    International Nuclear Information System (INIS)

    Scott, B.

    1992-01-01

    This paper reports that extensive experience shows that alkylation plants regardless of acid catalyst choice, can be operated safely, and with minimum process risk to employees or neighbors. Both types of plants require a comprehensive and fully supported hazard management program that accounts for differing physical properties of the acids involved. Control and mitigation cost to refiners will vary considerably from plant to plant and location to location. In the author's experience, the order of magnitude costs will be about $1 to $2 million for a sulfuric acid (SA) alkylation plant, and about $10 to $15 million for a hydrofluoric acid (HF) plant. These costs include water supply systems and impoundment facilities for contaminated runoff water. The alkylation process, which chemically reacts isobutane and light olefins in the presence of a strong acid catalyst into a premium gasoline component is described

  16. Lipophilic triphenylphosphonium cations inhibit mitochondrial electron transport chain and induce mitochondrial proton leak.

    Directory of Open Access Journals (Sweden)

    Jan Trnka

    Full Text Available The lipophilic positively charged moiety of triphenylphosphonium (TPP+ has been used to target a range of biologically active compounds including antioxidants, spin-traps and other probes into mitochondria. The moiety itself, while often considered biologically inert, appears to influence mitochondrial metabolism.We used the Seahorse XF flux analyzer to measure the effect of a range of alkylTPP+ on cellular respiration and further analyzed their effect on mitochondrial membrane potential and the activity of respiratory complexes. We found that the ability of alkylTPP+ to inhibit the respiratory chain and decrease the mitochondrial membrane potential increases with the length of the alkyl chain suggesting that hydrophobicity is an important determinant of toxicity.More hydrophobic TPP+ derivatives can be expected to have a negative impact on mitochondrial membrane potential and respiratory chain activity in addition to the effect of the biologically active moiety attached to them. Using shorter linker chains or adding hydrophilic functional groups may provide a means to decrease this negative effect.

  17. The formation of quasi-alicyclic rings in alkyl-aromatic compounds

    Science.gov (United States)

    Straka, Pavel; Buryan, Petr; Bičáková, Olga

    2018-02-01

    The alkyl side chains of n-alkyl phenols, n-alkyl benzenes and n-alkyl naphthalenes are cyclised, as demonstrated by GC measurements, FTIR spectroscopy and molecular mechanics calculations. Cyclisation occurs due to the intramolecular interaction between an aromatic ring (-δ) and a hydrogen of the terminal methyl group (+δ) of an alkyl chain. In fact, conventional molecules are not aliphatic-aromatic, but quasi-alicyclic-aromatic. With the aromatic molecules formed with a quasi-alicyclic ring, the effect of van der Waals attractive forces increases not only intramolecularly but also intermolecularly. This effect is strong in molecules with propyl and higher alkyl substituents. The increase of intermolecular van der Waals attractive forces results in bi-linearity in the GC retention time of the compounds in question, observed in the dependence of the logarithm of the relative retention time on the number of carbons in a molecule in both polar and nonpolar stationary phases with both capillary and packed columns. The role of van der Waals forces has been demonstrated using the potential energies of covalent and noncovalent interactions for 2-n-alkyl phenols, n-alkyl benzenes and 1-n-alkyl- and 2-n-alkyl naphthalenes.

  18. Implications of shorter cells in PEP

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1975-01-01

    Further studies on the beam-stay-clear requirements in PEP led to the conclusion that the vertical aperture needed to be enlarged. There are two main reasons for that: Observations at SPEAR indicate that the aperture should be large enough for a fully coupled beam. Full coupling of the horizontal and vertical betatron oscillations occurs not only occasionally when the energy, tune or betatron function at the interaction point is changed but also due to the beam/endash/beam effect of two strong colliding beams. The second reason for an increased aperture requirement is the nonlinear perturbation of the particle trajectories by the sextupoles. This perturbation increases a fully coupled beam by another 50% to 80%. Both effects together with a +-5 mm allowance for closed orbit perturbation result in a vertical beam-stay-clear in the bending magnets of +-4.8 to +-5.6 cm, compared to the present +-2.0 cm. This beam-stay-clear, together with additional space for vacuum chamber, etc., leads to very costly bending magnets. In this note, a shorter cell length is proposed which would reduce considerably the vertical beam-stay-clear requirements in the bending magnets. 7 figs

  19. Effect of alkyl length of cationic surfactants on desorption of Cs from contaminated clay

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Hyun; Park, Chan Woo; Yang, Hee Man; Seo, Bum Kyoung; Lee, Kune Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, So Jin [Chungnam National University, Daejeon (Korea, Republic of)

    2017-03-15

    In this study, desorption characteristics of Cs from clay according to the hydrophobic alkyl chain length of the cationic surfactant were investigated. Alkyltrimethylammonium bromide was used as a cationic surfactant, and the length of the hydrophobic alkyl chain of the cationic surfactant was varied from –octyl to –cetyl. The adsorbed amount of the cationic surfactant on montmorillonite increased with the length of the hydrophobic alkyl chain, and intercalation of the cationic surfactant into the clay interlayer increased the interlayer distances. The Cs removal efficiency was also enhanced with increasing alkyl chain length, and the cationic surfactant with the cetyl group showed a maximum Cs removal efficiency of 99±2.9%.

  20. Discovery and identification of a series of alkyl decalin isomers in petroleum geological samples.

    Science.gov (United States)

    Wang, Huitong; Zhang, Shuichang; Weng, Na; Zhang, Bin; Zhu, Guangyou; Liu, Lingyan

    2015-07-07

    The comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC × GC/TOFMS) has been used to characterize a crude oil and a source rock extract sample. During the process, a series of pairwise components between monocyclic alkanes and mono-aromatics have been discovered. After tentative assignments of decahydronaphthalene isomers, a series of alkyl decalin isomers have been synthesized and used for identification and validation of these petroleum compounds. From both the MS and chromatography information, these pairwise compounds were identified as 2-alkyl-decahydronaphthalenes and 1-alkyl-decahydronaphthalenes. The polarity of 1-alkyl-decahydronaphthalenes was stronger. Their long chain alkyl substituent groups may be due to bacterial transformation or different oil cracking events. This systematic profiling of alkyl-decahydronaphthalene isomers provides further understanding and recognition of these potential petroleum biomarkers.

  1. Heterofacial alkylation of alkylenediamines by higher alkyl halides

    International Nuclear Information System (INIS)

    Semenov, V.A.; Kryshko, G.M.; Sokal'skaya, L.I.; Zhukova, N.G.

    1985-01-01

    A study of the physiochemical properties of alkylenediamines substituted by lower alkyls, showed that they possess increased complex-forming ability with respect to salts of different metals as titanium, niobium, zirconium, molybdenum, and zinc. To create a simpler method of synthesis of higher tetraaklyalkylalklyenediamines, based on the use of the accessible domestic raw material, the authors investigated the reaction of alkylenediamines with various alkyl halides. It was established that the best reagents can be obtained using alkyl bromides. It is concluded that the procedure of alkylation of alkylenediamines by higher alkyl halides in the presence of water developed permits the production of terraalkylalkylenediamines in one step with good yield and with purity acceptable for use as extraction reagents

  2. Direct α-alkylation of ketones with alcohols in water.

    Science.gov (United States)

    Xu, Guoqiang; Li, Qiong; Feng, Jiange; Liu, Qiang; Zhang, Zuojun; Wang, Xicheng; Zhang, Xiaoyun; Mu, Xindong

    2014-01-01

    The direct α-alkylation of ketones with alcohols has emerged as a new green protocol to construct C-C bonds with H2 O as the sole byproduct. In this work, a very simple and convenient Pd/C catalytic system for the direct α-alkylation of ketones with primary alcohols in pure water is developed. Based on this catalytic system, aqueous mixtures of dilute acetone, 1-butanol, and ethanol (mimicking ABE fermentation products) can be directly transformed into C5 -C11 or longer-chain ketones and alcohols, which are precursors to fuels. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Selective Hydrodeoxygenation of Alkyl Lactates to Alkyl Propionates with Fe-based Bimetallic Supported Catalysts

    DEFF Research Database (Denmark)

    Khokarale, Santosh Govind; He, Jian; Schill, Leonhard

    2018-01-01

    Hydrodeoxygenation (HDO) of methyl lactate (ML) to methyl propionate (MP) was performed with various base-metal supported catalysts. A high yield of 77 % MP was obtained with bimetallic Fe-Ni/ZrO2 in methanol at 220 °C and 50 bar H2 . A synergistic effect of Ni increased the yield of MP...... of the material. Interestingly, it was observed that Fe-Ni/ZrO2 also effectively catalyzed methanol reforming to produce H2 in situ, followed by HDO of ML, yielding 60 % MP at 220 °C with 50 bar N2 instead of H2. Fe-Ni/ZrO2 also catalyzed HDO of other short-chain alkyl lactates to the corresponding alkyl...

  4. DNA minor groove targeted alkylating agents based on bisbenzimidazole carriers: synthesis, cytotoxicity and sequence-specificity of DNA alkylation.

    Science.gov (United States)

    Smaill, J B; Fan, J Y; Denny, W A

    1998-12-01

    A series of bisbenzimidazoles bearing a variety of alkylating agents [ortho- and meta-mustards, imidazolebis(hydroxymethyl), imidazolebis(methylcarbamate) and pyrrolebis(hydroxymethyl)], appended by a propyl linker chain, were prepared and investigated for sequence-specificity of DNA alkylation and their cytotoxicity. Previous work has shown that, for para-aniline mustards, a propyl linker is optimal for cytotoxicity. Alkaline cleavage assays using a variety of different labelled oligonucleotides showed that the preferred sequences for adenine alkylation were 5'-TTTANANAANN and 5'-ATTANANAANN (underlined bases show the drug alkylation sites), with AT-rich sequences required on both the 5' and 3' sides of the alkylated adenine. The different aniline mustards showed little variation in alkylation pattern and similar efficiencies of DNA cross-link formation despite the changes in orientation and positioning of the mustard, suggesting that the propyl linker has some flexibility. The imidazole- and pyrrolebis(hydroxymethyl) alkylators showed no DNA strand cleavage following base treatment, indicating that no guanine or adenine N3 or N7 adducts were formed. Using the PCR-based polymerase stop assay, these alkylators showed PCR blocks at 5'-C*G sites (the * nucleotide indicates the blocked site), particularly at 5'-TAC*GA 5'-AGC*GGA, and 5'-AGCC*GGT sequences, caused by guanine 2-NH2 lesions on the opposite strand. Only the (more reactive) imidazolebis(methylcarbamoyl) and pyrrolebis(hydroxymethyl) alkylators demonstrated interstrand cross-linking ability. All of the bifunctional mustards showed large (approximately 100-fold) increases in cytotoxicity over chlorambucil, with the corresponding monofunctional mustards being 20- to 60-fold less cytotoxic. These results suggest that in the mustards the propyl linker provides sufficient flexibility to achieve delivery of the alkylator to favoured (adenine N3) sites in the minor groove, regardless of its exact geometry with

  5. Synthesis and Antioxidant Activity of Alkyl Nitroderivatives of Hydroxytyrosol

    Directory of Open Access Journals (Sweden)

    Elena Gallardo

    2016-05-01

    Full Text Available A series of alkyl nitrohydroxytyrosyl ether derivatives has been synthesized from free hydroxytyrosol (HT, the natural olive oil phenol, in order to increase the assortment of compounds with potential neuroprotective activity in Parkinson’s disease. In this work, the antioxidant activity of these novel compounds has been evaluated using Ferric Reducing Antioxidant Power (FRAP, 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt (ABTS, and Oxygen Radical Scavenging Capacity (ORAC assays compared to that of nitrohydroxytyrosol (NO2HT and free HT. New compounds showed variable antioxidant activity depending on the alkyl side chain length; compounds with short chains (2–4 carbon atoms maintained or even improved the antioxidant activity compared to NO2HT and/or HT, whereas those with longer side chains (6–8 carbon atoms showed lower activity than NO2HT but higher than HT.

  6. Antioxidant activity of alkyl gallates and glycosyl alkyl gallates in fish oil in water emulsions: relevance of their surface active properties and of the type of emulsifier.

    Science.gov (United States)

    González, María J; Medina, Isabel; Maldonado, Olivia S; Lucas, Ricardo; Morales, Juan C

    2015-09-15

    The antioxidant activity of gallic acid and a series of alkyl gallates (C4-C18) and glycosylated alkyl gallates (C4-C18) on fish oil-in-water emulsions was studied. Three types of emulsifiers, lecithin, Tween-20 and sodium dodecyl sulphate (SDS) were tested. A nonlinear behavior of the antioxidant activity of alkyl gallates when increasing alkyl chain length was observed for emulsions prepared with lecithin. Medium-size alkyl gallates (C6-C12) were the best antioxidants. In contrast, for emulsions prepared with Tween-20, the antioxidants seem to follow the polar paradox. Glucosyl alkyl gallates were shown previously to be better surfactants than alkyl gallates. Nevertheless, they exhibited a worse antioxidant capacity than their corresponding alkyl gallates, in emulsions prepared with lecithin or Tween-20, indicating the greater relevance of having three OH groups at the polar head in comparison with having improved surfactant properties but just a di-ortho phenolic structure in the antioxidant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Highly Effective Gene Transfection In Vivo by Alkylated Polyethylenimine

    Directory of Open Access Journals (Sweden)

    Jennifer A. Fortune

    2011-01-01

    Full Text Available We mechanistically explored the effect of increased hydrophobicity of the polycation on the efficacy and specificity of gene delivery in mice. N-Alkylated linear PEIs with varying alkyl chain lengths and extent of substitution were synthesized and characterized by biophysical methods. Their in vivo transfection efficiency, specificity, and biodistribution were investigated. N-Ethylation improves the in vivo efficacy of gene expression in the mouse lung 26-fold relative to the parent polycation and more than quadruples the ratio of expression in the lung to that in all other organs. N-Propyl-PEI was the best performer in the liver and heart (581- and 3.5-fold enhancements, resp. while N-octyl-PEI improved expression in the kidneys over the parent polymer 221-fold. As these enhancements in gene expression occur without changing the plasmid biodistribution, alkylation does not alter the cellular uptake but rather enhances transfection subsequent to cellular uptake.

  8. Radiation-chemical alkylation of olefines with adamantane

    International Nuclear Information System (INIS)

    Podkhalyuzin, A.T.; Vikulin, V.V.; Morozov, V.A.; Nazarova, M.P.; Vereshchinskii, I.V.

    1977-01-01

    Radiation-chemical alkylation of C 2 to C 4 olefines with adamantane was studied in gas phase at temperatures 270 to 430 0 C. The main reaction product is monoalkyladamantane. The reaction proceeds by a free radical chain mechanism. The effective activation energy is of the order of 8 to 10 kcal/mole. Thermal alkylation was carried out for comparison and the contribution of the thermal component to the radiation-thermal process was estimated. Liquid phase alkylation of hexafluoropropylene with adamantane was studied in the presence of solvents. Under various conditions mono- and di-substituted adamantanes are produced containing fluorine in end groups. These compounds were converted to corresponding fluoroalkenyladamantanes by dehydrofluorination. The kinetic parameters were calculated and physical-chemical data concerning some of the resulting products were determined. (author)

  9. Liquid crystals with novel terminal chains as ferroelectric liquid crystal hosts

    International Nuclear Information System (INIS)

    Cosquer, G.Y.

    2000-02-01

    Changes to the molecular structure of liquid crystals can have a significant effect upon their mesomorphism and ferroelectric properties. Most of the research in liquid crystal for display applications concentrates on the design and synthesis of novel mesogenic cores to which straight terminal alkyl or alkoxy chains are attached. However, little is known about the effects upon the mesomorphism and ferroelectric properties of varying the terminal chains. The compounds prepared in this work have a common core - a 2,3-difluoroterphenyl unit with a nine-atom alkyl (nonyl) or alkoxy (octyloxy) chain at the 4-position, but with an unusual chain at the 4''-position. In some cases the terminal chain contains hetero atoms such as silicon, oxygen, chlorine and bromine or has a bulky end group. In total 46 final materials were synthesised in an attempt to understand the effect of an unusual terminal chains on mesomorphism and for some of these compounds the effect upon the switching times when added to a standard ferroelectric mixture were investigated. It was found that most compounds containing a bulky end group only displayed a smectic C phase, compounds with a halogen substituent as an end unit displayed a smectic A phase and that increasing the chain flexibility by introducing an oxygen atom in the chain reduces the melting and clearing points. The electro-optical measurements carried out on ferroelectric mixtures containing a bulky end group compound showed that shorter switching times were produced than for the ferroelectric mixture containing a straight chain compound. It is suggested that a bulky end group diminishes te extent of interlayer mixing in the chiral smectic C phase and therefore the molecules move more easily with ferroelectric switching. (author)

  10. DNA modification by alkylating compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kruglyakova, E.E.

    1985-09-01

    Results are given for research on the physico-chemical properties of alkylating compounds - nitroso alkyl ureas (NAU) which possess a broad spectrum of biological activity, such as mutagenic, carcinogenic, and anti-tumor action that is due to the alkylation and carbamoylation of DNA as well as other cellular components. Identified chemical products of NAU interaction with DNA and its components are cited. Structural conversions of a DNA macromolecule resulting from its chemical modification are examined. NAU are used to discuss possible biological consequences of DNA modification. 148 references.

  11. Formation of enamines by alkylation of imines

    NARCIS (Netherlands)

    Heiszwolf, G.J.; Kloosterziel, H.

    1966-01-01

    cf. CA 64, 12473c. With ice-cooling, 1 equiv. alkylating agent was added to one equiv. of the imine in 1M soln. in a solvent in the presence of NaH to give both N- and C-alkylated products. The following summarizes the date (imine, solvent, alkylating agent, % unreacted imine, % N-alkylated product,

  12. 36 CFR 223.81 - Shorter advertising periods in emergencies.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Shorter advertising periods... OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER Timber Sale Contracts Advertisement and Bids § 223.81 Shorter advertising periods in emergencies. In emergency situations where prompt...

  13. Poly(alkyl acrylate) nonparticles

    International Nuclear Information System (INIS)

    Kreuter, J.

    1985-01-01

    This study deals with the preparation of poly(alkyl acrylic) and poly(alkyl cyanocrylic) nanoparticles. Nonoparticles are solid colloidal particles, consisting of macromolecular materials in which drugs or biologically active materials are dissolved, entrapped, and encapsulated, and/or to which the active substance is adsorbed or attached. Poly(alkyl acrylic) nanoparticles are much more slowly biodegradable than poly(alkyl cyanoacrylate) nanoparticles, and are thus more suitable for drug delivery purposes. Poly(methyl methacrylate) is the material of choice for the use of nanoparticles as an adjuvant for vaccines and are produced by emulsifier-free polymerization in aqueous media. The polymerization, which can be initiated with gamma rays or with potassium peroxodisulfate, is described

  14. N- and C-alkylation of seven-membered iminosugars generates potent glucocerebrosidase inhibitors and F508del-CFTR correctors.

    Science.gov (United States)

    Désiré, J; Mondon, M; Fontelle, N; Nakagawa, S; Hirokami, Y; Adachi, I; Iwaki, R; Fleet, G W J; Alonzi, D S; Twigg, G; Butters, T D; Bertrand, J; Cendret, V; Becq, F; Norez, C; Marrot, J; Kato, A; Blériot, Y

    2014-11-28

    The glycosidase inhibitory properties of synthetic C-alkyl and N-alkyl six-membered iminosugars have been extensively studied leading to therapeutic candidates. The related seven-membered iminocyclitols have been less examined despite the report of promising structures. Using an in house ring enlargement/C-alkylation as well as cross-metathesis methodologies as the key steps, we have undertaken the synthesis and biological evaluation of a library of fourteen 2C- and eight N-alkyl tetrahydroxylated azepanes starting from an easily available glucopyranose-derived azidolactol. Four, six, nine and twelve carbon atom alkyl chains have been introduced. The study of two distinct D-gluco and L-ido stereochemistries for the tetrol pattern as well as R and S configurations for the C-2 carbon bearing the C-alkyl chain is reported. We observed that C-alkylation of the L-ido tetrahydroxylated azepane converts it from an α-L-fucosidase to a β-glucosidase and β-galactosidase inhibitor while N-alkylation of the D-gluco iminosugar significantly improves its inhibition profile leading to potent β-glucosidase, β-galactosidase, α-L-rhamnosidase and β-glucuronidase inhibitors whatever the stereochemistry of the alkyl chain. Interestingly, the N-alkyl chain length usually parallels the azepane inhibitor potency as exemplified by the identification of a potent glucocerebrosidase inhibitor (Ki 1 μM) bearing a twelve carbon atom chain. Additionally, several C-alkyl azepanes demonstrated promising F508del-CFTR correction unlike the parent tetrahydroxyazepanes. None of the C-alkyl and N-alkyl azepanes did inhibit ER α-glucosidases I or II.

  15. Synthesis of no-carrier-added radiobrominated n-alkylated analogues of spiperone

    International Nuclear Information System (INIS)

    Moerlein, S.M.; Laufer, P.; Stoecklin, G.

    1985-01-01

    The synthesis of a series of p-bromo-3-N-alkyl spiperone analogues is described. N-alkylation was achieved via reaction of the potassium salt of the spiperone lactam ring with alkyl iodide; subsequent reactions with elemental bromine gave the p-brominated isomers. Optimization studies using no-carrier-added (n.c.a.) 77 Br - indicated that radio-bromination of N-alkyl spiperone analogues occurs with higher yields and in shorter reaction times when dichloramine-T (DCT) is used rather than H 2 0 2 /acetic acid as an oxidant. The production of the title compounds in high effective specific activity with radiochemical yields of 20-30 % using n.c.a. 77 Br - and DCT is reported. (author)

  16. Aldehydes react with scribed silicon to form alkyl monolayers Characterization by ToF-SIMS suggests an even-odd effect

    International Nuclear Information System (INIS)

    Lua, Y.-Y.; Fillmore, W. Jonathan J.; Linford, Matthew R.

    2004-01-01

    Alkyl monolayers are formed when silicon is chemomechanically scribed in the presence of aldehydes (from butanal to nonanal). X-ray photoelectron spectroscopy (XPS), wetting, and time-of-flight secondary ion mass spectrometry (ToF-SIMS) suggest increasingly thick and hydrophobic monolayers with increasing aldehyde chain length. Superimposed on the general trend of stronger ToF-SIMS signals for hydrocarbon fragments from longer aldehyde precursors is an even-odd effect. This effect is most pronounced for smaller (one- and two-carbon) hydrocarbon fragments and for monolayers prepared with shorter aldehyde precursors. This is the first time than an even-odd effect has been demonstrated for monolayers on scribed silicon

  17. Aldehydes react with scribed silicon to form alkyl monolayers Characterization by ToF-SIMS suggests an even-odd effect

    Energy Technology Data Exchange (ETDEWEB)

    Lua, Y.-Y.; Fillmore, W. Jonathan J.; Linford, Matthew R

    2004-06-15

    Alkyl monolayers are formed when silicon is chemomechanically scribed in the presence of aldehydes (from butanal to nonanal). X-ray photoelectron spectroscopy (XPS), wetting, and time-of-flight secondary ion mass spectrometry (ToF-SIMS) suggest increasingly thick and hydrophobic monolayers with increasing aldehyde chain length. Superimposed on the general trend of stronger ToF-SIMS signals for hydrocarbon fragments from longer aldehyde precursors is an even-odd effect. This effect is most pronounced for smaller (one- and two-carbon) hydrocarbon fragments and for monolayers prepared with shorter aldehyde precursors. This is the first time than an even-odd effect has been demonstrated for monolayers on scribed silicon.

  18. Conversion of 1-alkyl-2-acetyl-sn-glycerols to platelet activating factor and related phospholipids by rabbit platelets

    International Nuclear Information System (INIS)

    Blank, M.L.; Lee, T.; Cress, E.A.; Malone, B.; Fitzgerald, V.; Snyder, F.

    1984-01-01

    The metabolic pathway for 1-alkyl-2-acetyl-sn-glycerols, a recently discovered biologically active neutral lipid class, was elucidated in experiments conducted with rabbit platelets. The total lipid extract obtained from platelets incubated with 1-[1-,2- 3 H]alkyl-2-acetyl-sn-glycerols or 1-alkyl-2-[ 3 H]acetyl-sn-glycerols contained at least six metabolic products. The six metabolites, identified on the basis of chemical and enzymatic reactions combined with thin-layer or high-performance liquid chromatographic analyses, corresponded to 1-alkyl-sn-glycerols, 1-alkyl-2-acetyl-sn-glycero-3-phosphates, 1-alkyl-2-acyl(long-chain)-sn-glycero-3-phosphoethanolamines, 1-alkyl-2-acetyl-sn-glycero-3-phosphoethanolamines, 1-alkyl-2-acyl(long-chain)-sn-glycero-3-phosphocholines, and 1-alkyl-2-actyl-sn-glycero-3-phosphocholines (platelet activating factor). These results indicate that the metabolic pathway for alkylacetylglycerols involves reaction steps catalyzed by the following enzymatic activities: choline- and ethanolamine- phosphotransferases, acetyl-hydrolase, an acyltransferase, and a phosphotransferase. The step responsible for the biosynthesis of platelet activating factor would appear to be the most important reaction in this pathway and this product could explain the hypotensive activities previously described for alkylacetyl-(or propionyl)-glycerols. Of particular interest was the preference exhibited for the utilization of the 1-hexadecyl-2-acetyl-sn-glycerol species in the formation of platelet activating factor

  19. Kinetic study of the anaerobic biodegradation of alkyl polyglucosides and the influence of their structural parameters.

    Science.gov (United States)

    Ríos, Francisco; Fernández-Arteaga, Alejandro; Lechuga, Manuela; Jurado, Encarnación; Fernández-Serrano, Mercedes

    2016-05-01

    This paper reports a study of the anaerobic biodegradation of non-ionic surfactants alkyl polyglucosides applying the method by measurement of the biogas production in digested sludge. Three alkyl polyglucosides with different length alkyl chain and degree of polymerization of the glucose units were tested. The influence of their structural parameters was evaluated, and the characteristics parameters of the anaerobic biodegradation were determined. Results show that alkyl polyglucosides, at the standard initial concentration of 100 mgC L(-1), are not completely biodegradable in anaerobic conditions because they inhibit the biogas production. The alkyl polyglucoside having the shortest alkyl chain showed the fastest biodegradability and reached the higher percentage of final mineralization. The anaerobic process was well adjusted to a pseudo first-order equation using the carbon produced as gas during the test; also, kinetics parameters and a global rate constant for all the involved metabolic process were determined. This modeling is helpful to evaluate the biodegradation or the persistence of alkyl polyglucosides under anaerobic conditions in the environment and in the wastewater treatment.

  20. Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells

    KAUST Repository

    Yiu, Alan T.; Beaujuge, Pierre; Lee, Olivia P.; Woo, Claire; Toney, Michael F.; Frechet, Jean

    2012-01-01

    The solution-processability of conjugated polymers in organic solvents has classically been achieved by modulating the size and branching of alkyl substituents appended to the backbone. However, these substituents impact structural order and charge transport properties in thin-film devices. As a result, a trade-off must be found between material solubility and insulating alkyl content. It was recently shown that the substitution of furan for thiophene in the backbone of the polymer PDPP2FT significantly improves polymer solubility, allowing for the use of shorter branched side chains while maintaining high device efficiency. In this report, we use PDPP2FT to demonstrate that linear alkyl side chains can be used to promote thin-film nanostructural order. In particular, linear side chains are shown to shorten π-π stacking distances between backbones and increase the correlation lengths of both π-π stacking and lamellar spacing, leading to a substantial increase in the efficiency of bulk heterojunction solar cells. © 2011 American Chemical Society.

  1. Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells

    KAUST Repository

    Yiu, Alan T.

    2012-02-01

    The solution-processability of conjugated polymers in organic solvents has classically been achieved by modulating the size and branching of alkyl substituents appended to the backbone. However, these substituents impact structural order and charge transport properties in thin-film devices. As a result, a trade-off must be found between material solubility and insulating alkyl content. It was recently shown that the substitution of furan for thiophene in the backbone of the polymer PDPP2FT significantly improves polymer solubility, allowing for the use of shorter branched side chains while maintaining high device efficiency. In this report, we use PDPP2FT to demonstrate that linear alkyl side chains can be used to promote thin-film nanostructural order. In particular, linear side chains are shown to shorten π-π stacking distances between backbones and increase the correlation lengths of both π-π stacking and lamellar spacing, leading to a substantial increase in the efficiency of bulk heterojunction solar cells. © 2011 American Chemical Society.

  2. A new phenylethyl alkyl amide from the Ambrostoma quadriimpressum Motschulsky

    Directory of Open Access Journals (Sweden)

    Guolei Zhao

    2011-09-01

    Full Text Available A new phenylethyl alkyl amide, (10R-10-hydroxy-N-phenethyloctadecanamide (1, was isolated from the beetle Ambrostoma quadriimpressum Motschulsky. The structure of the amide was determined by NMR and MS. The absolute configuration of compound 1 was confirmed by an asymmetric total synthesis, which was started from L-glutamic acid. The construction of the aliphatic chain was accomplished by the selective protection of the hydroxy groups and two-time implementation of the Wittig olefination reaction.

  3. The Napoleon Complex: When Shorter Men Take More.

    Science.gov (United States)

    Knapen, Jill E P; Blaker, Nancy M; Van Vugt, Mark

    2018-05-01

    Inspired by an evolutionary psychological perspective on the Napoleon complex, we hypothesized that shorter males are more likely to show indirect aggression in resource competitions with taller males. Three studies provide support for our interpretation of the Napoleon complex. Our pilot study shows that men (but not women) keep more resources for themselves when they feel small. When paired with a taller male opponent (Study 1), shorter men keep more resources to themselves in a game in which they have all the power (dictator game) versus a game in which the opponent also has some power (ultimatum game). Furthermore, shorter men are not more likely to show direct, physical aggression toward a taller opponent (Study 2). As predicted by the Napoleon complex, we conclude that (relatively) shorter men show greater behavioral flexibility in securing resources when presented with cues that they are physically less competitive. Theoretical and practical implications are discussed.

  4. Alkyl and aryl phosphorodiiodidites. Pt. 2

    International Nuclear Information System (INIS)

    Feshchenko, N.G.; Kostina, V.G.

    1976-01-01

    Alkyl phosphorodiiodidites are formed in the reactions of alkyl phosphorodichloridites with lithium iodide. They are stable at -60 to -50 0 . When warmed to 20 0 , they disproportionate with conversion into trialkyl phosphites and phosphorus triiodide. The latter also react together and give alkyl iodides, diphosphorus tetraiodide, and a polymer of unestablished structure. Diaryl and dialkyl phosphoriodidites are stable only in solution at low temperatures. They disproportionate in a similar way to aryl and alkyl phosphorodiiodidites. Alkyl phosphorodiiodidites react with iodine with the formation of alkyl iodides and phosphoryl iodide

  5. DNA minor groove alkylating agents.

    Science.gov (United States)

    Denny, W A

    2001-04-01

    Recent work on a number of different classes of anticancer agents that alkylate DNA in the minor groove is reviewed. There has been much work with nitrogen mustards, where attachment of the mustard unit to carrier molecules can change the normal patterns of both regio- and sequence-selectivity, from reaction primarily at most guanine N7 sites in the major groove to a few adenine N3 sites at the 3'-end of poly(A/T) sequences in the minor groove. Carrier molecules discussed for mustards are intercalators, polypyrroles, polyimidazoles, bis(benzimidazoles), polybenzamides and anilinoquinolinium salts. In contrast, similar targeting of pyrrolizidine alkylators by a variety of carriers has little effect of their patterns of alkylation (at the 2-amino group of guanine). Recent work on the pyrrolobenzodiazepine and cyclopropaindolone classes of natural product minor groove binders is also reviewed.

  6. Alkylating agents for Waldenstrom's macroglobulinaemia.

    Science.gov (United States)

    Yang, Kun; Tan, Jianlong; Wu, Taixiang

    2009-01-21

    Waldenstrom's macroglobulinaemia (WM) is an uncommon B-cell lymphoproliferative disorder characterized by bone marrow infiltration and production of monoclonal immunoglobulin. Uncertainty remains if alkylating agents, such as chlorambucil, melphalan or cyclophosphamide, are an effective form of management. To assess the effects and safety of the alkylating agents on Waldenstrom's macroglobulinaemia (WM). We searched the Cochrane Central Register of Controlled Trials (Issue 1, 2008), MEDLINE (1966 to 2008), EMBASE (1980 to 2008), the Chinese Biomedical Base (1982 to 2008) and reference lists of articles.We also handsearched relevant conference proceedings from 1990 to 2008. Randomised controlled trials (RCTs) comparing alkylating agents given concomitantly with radiotherapy, splenectomy, plasmapheresis, stem-cell transplantation in patients with a confirmed diagnosis of WM. Two authors independently assessed trial quality and extracted data. We contacted study authors for additional information. We collected adverse effects information from the trials. One trial involving 92 participants with pretreated/relapsed WM compared the effect of fludarabine versus the combination of cyclophosphamide (the alkylating agent), doxorubicin and prednisone (CAP). Compared to CAP, the Hazard ratio (HR) for deaths of treatment with fludarabine was estimated to be 1.04, with a standard error of 0.30 (95% CI 0.58 to 1.48) and it indicated that the mean difference of median survival time was -4.00 months, and 16.00 months for response duration. The relative risks (RR) of response rate was 2.80 (95% CI 1.10 to 7.12). There were no statistically difference in overall survival rate and median survival months, while on the basis of response rate and response duration, fludarabine seemed to be superior to CAP for pretreated/relapsed patients with macroglobulinaemia. Although alkylating agents have been used for decades they have never actually been tested in a proper randomised trial. This

  7. Chain-modified radioiodinated fatty acids

    International Nuclear Information System (INIS)

    Otto, C.A.

    1987-01-01

    Several carbon chain manipulations have been studied in terms of their effects on myocardial activity levels and residence time. The manipulations examined included: chain length, chain branching, chain unsaturation, and carbon-iodine bond stabilization. It was found that chain length affects myocardial activity levels for both straight-chain alkyl acids and branched chain alkyl and aryl acids. Similar results have been reported for the straight-chain aryl acids. Generally, the longer chain lengths correlated with higher myocardial activity levels and longer residence times. This behavior is attributed to storage as triglycerides. Branched chain acids are designed to be anti-metabolites but only the aryl β-methyl acids possessed the expected time course of constant or very slowly decreasing activity levels. The alkyl β-methyl acids underwent rapid deiodination - a process apparently independent of β-oxidation. Inhibition of β-oxidation by incorporation of carbon-carbon double and triple bonds was studied. Deiodination of ω-iodo alkyl fatty acids prevented an assessment of suicide inhibition using an unsaturated alkynoic acid. Stabilization of the carbon-iodine bond by attachment of iodine to a vinylic or aryl carbon was studied. The low myocardial values and high blood values observed for an eleven carbon ω-iodo vinylic fatty acid were not encouraging but ω-iodo aryl fatty acids appear to avoid the problems of rapid deiodination. (Auth.)

  8. Thioimidazolium Ionic Liquids as Tunable Alkylating Agents.

    Science.gov (United States)

    Guterman, Ryan; Miao, Han; Antonietti, Markus

    2018-01-19

    Alkylating ionic liquids based on the thioimidazolium structure combine the conventional properties of ionic liquids, including low melting point and nonvolatility, with the alkylating function. Alkyl transfer occurs exclusively from the S-alkyl position, thus allowing for easy derivatization of the structure without compromising specificity. We apply this feature to tune the electrophilicty of the cation to profoundly affect the reactivity of these alkylating ionic liquids, with a caffeine-derived compound possessing the highest reactivity. Anion choice was found to affect reaction rates, with iodide anions assisting in the alkylation reaction through a "shuttling" process. The ability to tune the properties of the alkylating agent using the toolbox of ionic liquid chemistry highlights the modular nature of these compounds as a platform for alkylating agent design and integration in to future systems.

  9. Chichibabin-type direct alkylation of pyridyl alcohols with alkyl lithium reagents.

    Science.gov (United States)

    Jeffrey, Jenna L; Sarpong, Richmond

    2012-11-02

    Direct C(6) alkylation of pyridyl alcohols can be achieved following an initial deprotonation of the hydroxy group. This transformation, which is believed to occur by a Chichibabin-type alkylation, avoids lateral deprotonation prior to pyridine ring alkylation and gives increased regioselectivity for C(6) over C(4) alkylation.

  10. Structure activity correlations in the inhibition of brain synaptosomal 3H-norepinephrine uptake by phenethylamine analogs. The role of α-alkyl side chain and methoxyl ring substitutions

    International Nuclear Information System (INIS)

    Makriyannis, A.; Bowerman, D.; Sze, P.Y.; Fournier, D.; Jong, A.P. de

    1982-01-01

    α-Ethylphenethylamine proved to be a weaker inhibitor of rat brain synaptosomal [ 3 H]norepinephrine ([ 3 H]NE) uptake than amphetamine, while 2-amino-tetralin and 2-amino-1,2-dihydronaphtalene, compounds in which the α-side chain ethyl group is tied to the aromatic ring have a similar inhibiting potency as amphetamine. Hallucinogenic polymethoxy substituted phenethylamine analogs have very low inhibitory potencies indicating that inhibition of NE-reuptake in brain noradrenergic neurons is not associated with the drug-induced hallucinogenic syndrome. (Auth.)

  11. 40 CFR 721.9892 - Alkylated urea.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated urea. 721.9892 Section 721... Alkylated urea. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkylated urea (PMN P-93-1649) is subject to reporting under this...

  12. Synthesis and evaluation of sequence-specific DNA alkylating agents: effect of alkylation subunits.

    Science.gov (United States)

    Shimizu, Tatsuhiko; Sasaki, Shunta; Minoshima, Masafumi; Shinohara, Ken-ichi; Bando, Toshikazu; Sugiyama, Hiroshi

    2006-01-01

    We have demonstrated that hairpin pyrrole (Py)- imidazole (Im) polyamide-CBI conjugates selectively alkylate predetermined sequences. In this study, we investigated the effect of alkylation subunits, for example conjugates 1-4 with three types of DNA alkylating units, and Py-Im polyamides with indole linker. Conjugate 3 and 4 selectively alkylated the predetermined sequences as described previously, while conjugates 1 and 2 alkylate at mismatched sites.

  13. Different hydrogen-bonded chains in the crystal structures of three alkyl N-[(E-1-(2-benzylidene-1-methylhydrazinyl-3-hydroxy-1-oxopropan-2-yl]carbamates

    Directory of Open Access Journals (Sweden)

    Thais C. M. Noguiera

    2015-07-01

    Full Text Available The crystal structures of three methylated hydrazine carbamate derivatives prepared by multi-step syntheses from l-serine are presented, namely benzyl N-{(E-1-[2-(4-cyanobenzylidene-1-methylhydrazinyl]-3-hydroxy-1-oxopropan-2-yl}carbamate, C20H20N4O4, tert-butyl N-{(E-1-[2-(4-cyanobenzylidene-1-methylhydrazinyl]-3-hydroxy-1-oxopropan-2-yl}carbamate, C17H22N4O4, and tert-butyl N-[(E-1-(2-benzylidene-1-methylhydrazinyl-3-hydroxy-1-oxopropan-2-yl]carbamate, C16H23N3O4. One of them shows that an unexpected racemization has occurred during the mild-condition methylation reaction. In each crystal structure, the molecules are linked into chains by O—H...O hydrogen bonds, but with significant differences between them.

  14. Selective Hydrodeoxygenation of Alkyl Lactates to Alkyl Propionates with Fe-based Bimetallic Supported Catalysts.

    Science.gov (United States)

    Khokarale, Santosh Govind; He, Jian; Schill, Leonhard; Yang, Song; Riisager, Anders; Saravanamurugan, Shunmugavel

    2018-02-22

    Hydrodeoxygenation (HDO) of methyl lactate (ML) to methyl propionate (MP) was performed with various base-metal supported catalysts. A high yield of 77 % MP was obtained with bimetallic Fe-Ni/ZrO 2 in methanol at 220 °C and 50 bar H 2 . A synergistic effect of Ni increased the yield of MP significantly when using Fe-Ni/ZrO 2 instead of Fe/ZrO 2 alone. Moreover, the ZrO 2 support contributed to improve the yield as a phase transition of ZrO 2 from tetragonal to monoclinic occurred after metal doping giving rise to fine dispersion of the Fe and Ni on the ZrO 2 , resulting in a higher catalytic activity of the material. Interestingly, it was observed that Fe-Ni/ZrO 2 also effectively catalyzed methanol reforming to produce H 2 in situ, followed by HDO of ML, yielding 60 % MP at 220 °C with 50 bar N 2 instead of H 2 . Fe-Ni/ZrO 2 also catalyzed HDO of other short-chain alkyl lactates to the corresponding alkyl propionates in high yields around 70 %. No loss of activity of Fe-Ni/ZrO 2 occurred in five consecutive reaction runs demonstrating the high durability of the catalyst system. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis of Alkyl-Glycerolipids Standards for Gas Chromatography Analysis: Application for Chimera and Shark Liver Oils

    Science.gov (United States)

    Pinault, Michelle; Guimaraes, Cyrille; Couthon, Hélène; Thibonnet, Jérôme; Fontaine, Delphine; Chantôme, Aurélie; Chevalier, Stephan; Jaffrès, Paul-Alain; Vandier, Christophe

    2018-01-01

    Natural O-alkyl-glycerolipids, also known as alkyl-ether-lipids (AEL), feature a long fatty alkyl chain linked to the glycerol unit by an ether bond. AEL are ubiquitously found in different tissues but, are abundant in shark liver oil, breast milk, red blood cells, blood plasma, and bone marrow. Only a few AEL are commercially available, while many others with saturated or mono-unsaturated alkyl chains of variable length are not available. These compounds are, however, necessary as standards for analytical methods. Here, we investigated different reported procedures and we adapted some of them to prepare a series of 1-O-alkyl-glycerols featuring mainly saturated alkyl chains of various lengths (14:0, 16:0, 17:0, 19:0, 20:0, 22:0) and two monounsaturated chains (16:1, 18:1). All of these standards were fully characterized by NMR and GC-MS. Finally, we used these standards to identify the AEL subtypes in shark and chimera liver oils. The distribution of the identified AEL were: 14:0 (20–24%), 16:0 (42–54%) and 18:1 (6–16%) and, to a lesser extent, (0.2–2%) for each of the following: 16:1, 17:0, 18:0, and 20:0. These standards open the possibilities to identify AEL subtypes in tumours and compare their composition to those of non-tumour tissues. PMID:29570630

  16. Complex responses to alkylating agents

    International Nuclear Information System (INIS)

    Samson, L.D.

    2003-01-01

    Using Affymetrix oligonucleotide GeneChip analysis, we previously found that, upon exposure to the simple alkylating agent methylmethane sulfonate, the transcript levels for about one third of the Saccharomyces cerevisiae genome (∼2,000 transcripts) are induced or repressed during the first hour or two after exposure. In order to determine whether the responsiveness of these genes has any relevance to the protection of cells against alkylating agents we have undertaken several follow-up studies. First, we explored the specificity of this global transcriptional response to MMS by measuring the global response of S. cerevisiae to a broad range of agents that are known to induce DNA damage. We found that each agent produced a very different mRNA transcript profile, even though the exposure doses produced similar levels of toxicity. We also found that the selection of genes that respond to MMS is highly dependent upon what cell cycle phase the cells are in at the time of exposure. Computational clustering analysis of the dataset derived from a large number of exposures identified several promoter motifs that are likely to control some of the regulons that comprise this large set of genes that are responsive to DNA damaging agents. However, it should be noted that these agents damage cellular components other than DNA, and that the responsiveness of each gene need not be in response to DNA damage per se. We have also begun to study the response of other organisms to alkylating agents, and these include E. coli, cultured mouse and human cells, and mice. Finally, we have developed a high throughput phenotypic screening method to interrogate the role of all non-essential S. cerevisiae genes (about 4,800) in protecting S. cerevisiae against the deleterious effects of alkylating agents; we have termed this analysis 'genomic phenotyping'. This study has uncovered a plethora of new pathways that play a role in the recovery of eukaryotic cells after exposure to toxic

  17. Evaluation of the influence of base and alkyl bromide on synthesis of pyrazinoic acid esters through factorial design

    International Nuclear Information System (INIS)

    Fernandes, Joao Paulo dos Santos; Felli, Veni Maria Andres

    2009-01-01

    Pyrazinoic acid esters have been synthesized as prodrugs of pyrazinoic acid. In the literature, its preparation is reported through the reaction of pyrazinoyl chloride with alcohols and the reaction with DCC/DMAP. In this work, it is reported a 22 factorial design to evaluate the preparation of these esters through the substitution of alkyl bromides with carboxylate anion. The controlled factors were alkyl chain length of bromides (ethyl and hexyl) and the used base (triethylamine and DBU). Results revealed that the used base used has significant effect on yield, and alkyl bromide used has neither significant influence, nor its interaction effect with base. (author)

  18. Dynamic adsorption properties of n-alkyl glucopyranosides determine their ability to inhibit cytolysis mediated by acoustic cavitation

    OpenAIRE

    Sostaric, Joe Z.; Miyoshi, Norio; Cheng, Jason Y.; Riesz, Peter

    2008-01-01

    Suspensions of human leukemia (HL-60) cells readily undergo cytolysis when exposed ultrasound above the acoustic cavitation threshold. However, n-alkyl glucopyranosides (hexyl-,heptyl- and octyl-) completely inhibit ultrasound-induced (1057 kHz) cytolysis (Sostaric, et al., Free Radic. Biol. Med. 2005, 39, 1539–1548). The efficacy of protection from ultrasound-induced cytolysis was determined by the n-alkyl chain length of the glucopyranosides, indicating that protection efficacy depended on ...

  19. The formation of quasi-alicyclic rings in alkyl-aromatic compounds

    Czech Academy of Sciences Publication Activity Database

    Straka, Pavel; Buryan, P.; Bičáková, Olga

    2018-01-01

    Roč. 1154, 15 February (2018), s. 455-462 ISSN 0022-2860 Institutional support: RVO:67985891 Keywords : alkyl chain * retention times * molecular mechanics * Van der Waals interactions Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 1.753, year: 2016

  20. Selective synthesis of linear alkylbenzene by alkylation of benzene with 1-dodecene over desilicated zeolites

    Czech Academy of Sciences Publication Activity Database

    Aslam, W.; Siddiqui, M. A. B.; Jermy, B. R.; Aitani, A.; Čejka, Jiří; Al-Khattaf, S.

    2014-01-01

    Roč. 227, MAY 2014 (2014), s. 187-197 ISSN 0920-5861 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : zeolites * benzene alkylation * long-chain olefin Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.893, year: 2014

  1. The Scarlet Letter of Alkylation: A Mini Review of Selective Alkylating Agents

    OpenAIRE

    Oronsky, Bryan T; Reid, Tony; Knox, Susan J; Scicinski, Jan J

    2012-01-01

    If there were a stigma scale for chemotherapy, alkylating agents would be ranked at the top of the list. The chemical term alkylation is associated with nonselective toxicity, an association that dates back to the use of nitrogen mustards during World War I as chemical warfare agents. That this stigma persists and extends to compounds that, through selectivity, attempt to “tame” the indiscriminate destructive potential of alkylation is the subject of this review. Selective alkylation, as it i...

  2. Experimental and QSAR study on the surface activities of alkyl imidazoline surfactants

    Science.gov (United States)

    Kong, Xiangjun; Qian, Chengduo; Fan, Weiyu; Liang, Zupei

    2018-03-01

    15 alkyl imidazoline surfactants with different structures were synthesized and their critical micelle concentration (CMC) and surface tension under the CMC (σcmc) in aqueous solution were measured at 298 K. 54 kinds of molecular structure descriptors were selected as independent variables and the quantitative structure-activity relationship (QSAR) between surface activities of alkyl imidazoline and molecular structure were built through the genetic function approximation (GFA) method. Experimental results showed that the maximum surface excess of alkyl imidazoline molecules at the gas-liquid interface increased and the area occupied by each surfactant molecule and the free energies of micellization ΔGm decreased with increasing carbon number (NC) of the hydrophobic chain or decreasing hydrophilicity of counterions, which resulted in a CMC and σcmc decrease, while the log CMC and NC had a linear relationship and a negative correlation. The GFA-QSAR model, which was generated by a training set composed of 13 kinds of alkyl imidazoline though GFA method regression analysis, was highly correlated with predicted values and experimental values of the CMC. The correlation coefficient R was 0.9991, which means high prediction accuracy. The prediction error of 2 kinds of alkyl imidazoline CMCs in the Validation Set that quantitatively analyzed the influence of the alkyl imidazoline molecular structure on the CMC was less than 4%.

  3. Monolayer structures of alkyl aldehydes: Odd-membered homologues

    International Nuclear Information System (INIS)

    Phillips, T.K.; Clarke, S.M.; Bhinde, T.; Castro, M.A.; Millan, C.; Medina, S.

    2011-01-01

    Crystalline monolayers of three aldehydes with an odd number of carbon atoms in the alkyl chain (C 7 , C 9 and C 11 ) at low coverages are observed by a combination of X-ray and neutron diffraction. Analysis of the diffraction data is discussed and possible monolayer crystal structures are proposed; although unique structures could not be ascertained for all molecules. We conclude that the structures are flat on the surface, with the molecules lying in the plane of the layer. The C 11 homologue is determined to have a plane group of either p2, pgb or pgg, and for the C 7 homologue the p2 plane group is preferred.

  4. Alkyl caffeates improve the antioxidant activity, antitumor property and oxidation stability of edible oil.

    Directory of Open Access Journals (Sweden)

    Jun Wang

    Full Text Available Caffeic acid (CA is distributed widely in nature and possesses strong antioxidant activity. However, CA has lower solubility in non-polar media, which limits its application in fat-soluble food. To increase the lipophilicity of natural antioxidant CA, a series of alkyl caffeates were synthesized and their antioxidant and antitumor activities were investigated. The antioxidant parameters, including the induction period, acid value and unsaturated fatty acid content, of the alkyl caffeates in edible oil were firstly investigated. The results indicated that alkyl caffeates had a lower DPPH IC₅₀ (14-23 µM compared to CA, dibutyl hydroxy toluene (BHT and Vitamin C (24-51 µM, and significantly inhibited four human cancer cells (SW620, SW480, SGC7901 and HepG2 with inhibition ratio of 71.4-78.0% by a MTT assay. With regard to the induction period and acid value assays, methyl and butyl caffeates had higher abilities than BHT to restrain the oxidation process and improve the stability of edible oil. The addition of ethyl caffeate to oil allowed maintenance of a higher unsaturated fatty acid methyl ester content (68.53% at high temperatures. Overall, the alkyl caffeats with short chain length (n<5 assessed better oxidative stability than those with long chain length. To date, this is the first report to the correlations among the antioxidant activity, anticancer activity and oxidative stability of alkyl caffeates.

  5. TRANSPORT PROPERTIES FOR 1-ETHYL-3-METHYLIMIDAZOLIUM n-ALKYL SULFATES: POSSIBLE EVIDENCE OF GROTTHUSS MECHANISM

    International Nuclear Information System (INIS)

    García-Garabal, S.; Vila, J.; Rilo, E.; Domínguez-Pérez, M.; Segade, L.; Tojo, E.; Verdía, P.; Varela, L.M.; Cabeza, O.

    2017-01-01

    The objective of this work was to study the effect of the temperature and the lengthening of the linear alkyl chain of the anion in the transport physical properties of the pure ionic liquids 1-ethyl-3-methyl imidazolium n-alkyl sulphate (being n = 0, 1, 2, 4, 6 and 8). Density, viscosity and electrical conductivities were measured at atmospheric pressure in a wide temperature range. In the bibliography, data existed for these magnitudes for all ionic liquids studied but none of these had information about the electrical conductivity of 1-ethyl-3-methyl imidazolium n-alkyl sulfate whith n = 0, 4, 6 and 8. The experimental results show clearly 1-ethyl-3-methyl imidazolium hydrogen sulphate cannot be considered part of the 1-ethyl-3-methyl imidazolium n-alkyl sulphate family because of its hydrogen bonding ability. Results of density and viscosity behave as expected. However, in the case of the electrical conductivity due to the lack of alkyl chain in the hydrogen sulfate we expected to get extreme values but in practise, we obtained intermediate values between 1-ethyl-3-methyl imidazolium butyl sulphate and 1-ethyl-3-methyl imidazolium hexyl sulphate. This suggests that a Grotthus mechanism exists as result of a protonic current in addition to ionic conductivity, being Waldeńs plot consistent with this idea.

  6. Alkyl Caffeates Improve the Antioxidant Activity, Antitumor Property and Oxidation Stability of Edible Oil

    Science.gov (United States)

    Wang, Jun; Gu, Shuang-Shuang; Pang, Na; Wang, Fang-Qin; Pang, Fei; Cui, Hong-Sheng; Wu, Xiang-Yang; Wu, Fu-An

    2014-01-01

    Caffeic acid (CA) is distributed widely in nature and possesses strong antioxidant activity. However, CA has lower solubility in non-polar media, which limits its application in fat-soluble food. To increase the lipophilicity of natural antioxidant CA, a series of alkyl caffeates were synthesized and their antioxidant and antitumor activities were investigated. The antioxidant parameters, including the induction period, acid value and unsaturated fatty acid content, of the alkyl caffeates in edible oil were firstly investigated. The results indicated that alkyl caffeates had a lower DPPH IC50 (14–23 µM) compared to CA, dibutyl hydroxy toluene (BHT) and Vitamin C (24–51 µM), and significantly inhibited four human cancer cells (SW620, SW480, SGC7901 and HepG2) with inhibition ratio of 71.4–78.0% by a MTT assay. With regard to the induction period and acid value assays, methyl and butyl caffeates had higher abilities than BHT to restrain the oxidation process and improve the stability of edible oil. The addition of ethyl caffeate to oil allowed maintenance of a higher unsaturated fatty acid methyl ester content (68.53%) at high temperatures. Overall, the alkyl caffeats with short chain length (n<5) assessed better oxidative stability than those with long chain length. To date, this is the first report to the correlations among the antioxidant activity, anticancer activity and oxidative stability of alkyl caffeates. PMID:24760050

  7. hf alkylation in the 1980's: the role of isobutane/olefin ratio

    Energy Technology Data Exchange (ETDEWEB)

    Hutson, T. Jr.

    1978-08-01

    Research devoted to maximizing no-lead octane numbers in motor fuel is reported. Results of the studies are the basis for the following conclusions: 1. Isobutane alkylate made from either propylene, butene-2, or C/sub 3/--C/sub 4/ mixed olefins is a low sensitivity, high motor octane product. Typically, C/sub 3/--C/sub 4/ mixed olefin alkylate has a clear motor octane number of about 92.2 and a clear Research octane number of about 93.5. 2. In separate studies with propylene, butene-2 and C/sub 3/--C/sub 4/ mixed olefins, increasing the isobutane-to-olefin ratio suppressed the formation of high molecular weight residue, indicating a substantial reduction in the role of olefin polymerization to large ions. The overall result of increasing ratio was an improvement in selectivity to high-octane components in the alkylate. 3. When alkylating isobutane with propylene, increasing the ratio resulted in a decrease in the concentration of C/sub 7/-fraction (primary product) and an increase in the C/sub 8/-fraction (from chain initiation and subsequent hydrogen transfer). At the same time, the production of chain-termination-product propane also increased. 4. When alkylating isobutane with C/sub 3/--C/sub 4/ mixed olefins, increasing the ratio showed the same trend obtained in separate alkylation tests with propylene and butene-2. As the ratio increased, the concentration of C/sub 7/-fraction (primary propylene--isobutane product) decreased and the concentration of C/sub 8/-fraction increased markedly. Thus, increasing isobutane-to-olefin ratio exerted a strong effect on alkylate quality in the area of about 5 to 1 to 20 to 1; this effect diminished at ratios 20:1.

  8. alkylation of toluene over basic catalysts - key requirements for side chain alkylation

    NARCIS (Netherlands)

    Palomares gimeno, A.E.; Palomares, A.E.; Eder-Mirth, G.; Mirth, G.C.; Rep, M.; Rep, M.; Lercher, J.A.

    1998-01-01

    In situinfrared spectroscopy was used to study sorption and reaction of toluene and methanol over various basic catalysts (MgO, hydrotalcites, and basic zeolites). The size of the metal cations controls the preference of sorbing methanol or toluene; i.e., the larger the metal cation, the higher the

  9. Serum Free Light Chains

    Science.gov (United States)

    ... lab's website in order to provide you with background information about the test(s) you had performed. You will need to return ... the free light chains have a much shorter half-life (3-5 hours) than ... cell disorders, the test is also used for assessing response and minimal ...

  10. Do shorter wavelengths improve contrast in optical mammography?

    International Nuclear Information System (INIS)

    Taroni, P; Pifferi, A; Torricelli, A; Spinelli, L; Danesini, G M; Cubeddu, R

    2004-01-01

    The detection of tumours with time-resolved transmittance imaging relies essentially on blood absorption. Previous theoretical and phantom studies have shown that both contrast and spatial resolution of optical images are affected by the optical properties of the background medium, and high absorption and scattering are generally beneficial. Based on these observations, wavelengths shorter than presently used (680-780 nm) could be profitable for optical mammography. A study was thus performed analysing time-resolved transmittance images at 637, 656, 683 and 785 nm obtained from 26 patients bearing 16 tumours and 15 cysts. The optical contrast proved to increase upon decreasing wavelengths for the detection of cancers in late-gated intensity images, with higher gain in contrast for lesions of smaller size (<1.5 cm diameter). For cysts either a progressive increase or decrease in contrast with wavelength was observed in scattering images

  11. The risk of shorter fasting time for pediatric deep sedation.

    Science.gov (United States)

    Clark, Mathew; Birisci, Esma; Anderson, Jordan E; Anliker, Christina M; Bryant, Micheal A; Downs, Craig; Dalabih, Abdallah

    2016-01-01

    Current guidelines adopted by the American Academy of Pediatrics calls for prolonged fasting times before performing pediatric procedural sedation and analgesia (PSA). PSA is increasingly provided to children outside of the operating theater by sedation trained pediatric providers and does not require airway manipulation. We investigated the safety of a shorter fasting time compared to a longer and guideline compliant fasting time. We tried to identify the association between fasting time and sedation-related complications. This is a prospective observational study that included children 2 months to 18 years of age and had an American Society of Anesthesiologists physical status classification of I or II, who underwent deep sedation for elective procedures, performed by pediatric critical care providers. Procedures included radiologic imaging studies, electroencephalograms, auditory brainstem response, echocardiograms, Botox injections, and other minor surgical procedures. Subjects were divided into two groups depending on the length of their fasting time (4-6 h and >6 h). Complication rates were calculated and compared between the three groups. In the studied group of 2487 subjects, 1007 (40.5%) had fasting time of 4-6 h and the remaining 1480 (59.5%) subjects had fasted for >6 h. There were no statistically significant differences in any of the studied complications between the two groups. This study found no difference in complication rate in regard to the fasting time among our subjects cohort, which included only healthy children receiving elective procedures performed by sedation trained pediatric critical care providers. This suggests that using shorter fasting time may be safe for procedures performed outside of the operating theater that does not involve high-risk patients or airway manipulation.

  12. S-alkylation of soft scorpionates.

    Science.gov (United States)

    Rajasekharan-Nair, Rajeev; Moore, Dean; Chalmers, Kirsten; Wallace, Dawn; Diamond, Louise M; Darby, Lisa; Armstrong, David R; Reglinski, John; Spicer, Mark D

    2013-02-11

    The alkylation reactions of soft scorpionates are reported. The hydrotris(S-alkyl-methimazolyl)borate dications (alkyl = methyl, allyl, benzyl), which were prepared by the reaction of Tm(Me) anion and primary alkyl halides, have been isolated and structurally characterised. The reaction is, however, not universally successful. DFT analysis of these alkylation reactions (C=S versus B-H alkylation) indicates that the observed outcome is driven by kinetic factors. Extending the study to incorporate alternative imine thiones (mercaptobenzothiazole, bz; thiazoline, tz) led to the structural characterisation of di[aquo-μ-aquohydrotris(mercaptobenzothiazolyl)boratosodium], which contains sodium atoms in the κ(3)-S,S,S coordination mode. Alkylation of Na[Tbz] and Na[tzTtz] leads to decomposition resulting in the formation of the simple S-alkylated heterocycles. The analysis of the species involved in these reactions shows an inherent weakness in the B-N bond in soft scorpionates, which has implications for their use in more advanced chemistry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Process for production of an alkyl methacrylate

    NARCIS (Netherlands)

    Eastham, Graham Ronald; Johnson, David William; Fraaije, Marco; Winter, Remko

    2015-01-01

    A process for the production of an alkyl methacrylate, particularly methyl methacrylate, is provided, in which a Baeyer-Villiger Monooxygenase enzyme is used to convert an alkylisopropenylketone substrate to the relevant alkyl methacrylate by abnormal asymmetric oxygen insertion. The invention

  14. Isobutane alkylation. Recent developments and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Hommeltoft, Sven Ivar [Haldor Topsoe A/S, Nymoellevej 55, DK-2800 Lyngby (Denmark)

    2001-11-30

    In the isobutane alkylation, alkylated gasoline is obtained which is a valuable blending component for the gasoline pool. Thereby the C{sub 3}-C{sub 4} cut from the FCC units can be extensively used. Established technologies and recent developments will be reviewed and future perspectives will be given.

  15. Charge properties and bacterial contact-killing of hyperbranched polyurea-polyethyleneimine coatings with various degrees of alkylation

    Science.gov (United States)

    Roest, Steven; van der Mei, Henny C.; Loontjens, Ton J. A.; Busscher, Henk J.

    2015-11-01

    Coatings of immobilized-quaternary-ammonium-ions (QUAT) uniquely kill adhering bacteria upon contact. QUAT-coatings require a minimal cationic-charge surface density for effective contact-killing of adhering bacteria of around 1014 cm-2. Quaternization of nitrogen is generally achieved through alkylation. Here, we investigate the contribution of additional alkylation with methyl-iodide to the cationic-charge density of hexyl-bromide alkylated, hyperbranched polyurea-polyethyleneimine coatings measuring charge density with fluorescein staining. X-ray-photoelectron-spectroscopy was used to determine the at.% alkylated-nitrogen. Also streaming potentials, water contact-angles and bacterial contact-killing were measured. Cationic-charge density increased with methyl-iodide alkylation times up to 18 h, accompanied by an increase in the at.% alkylated-nitrogen. Zeta-potentials became more negative upon alkylation as a result of shielding of cationiccharges by hydrophobic alkyl-chains. Contact-killing of Gram-positive Staphylococci only occurred when the cationic-charge density exceeded 1016 cm-2 and was carried by alkylated-nitrogen (electron-binding energy 401.3 eV). Gram-negative Escherichia coli was not killed upon contact with the coatings. There with this study reveals that cationic-charge density is neither appropriate nor sufficient to determine the ability of QUAT-coatings to kill adhering bacteria. Alternatively, the at.% of alkylated-nitrogen at 401.3 eV is proposed, as it reflects both cationic-charge and its carrier. The at.% N401.3 eV should be above 0.45 at.% for Gram-positive bacterial contact-killing.

  16. Microwave heating in peptide side chain modification via cysteine alkylation.

    Science.gov (United States)

    Calce, Enrica; De Luca, Stefania

    2016-09-01

    Microwave irradiation has been successfully applied to a selective synthetic procedure for introducing molecular substituents on peptides, providing a noticeable reduction of the reaction time and also an increased crude peptide purity for some compounds.

  17. Cyclic 3-alkyl pyridinium alkaloid monomers from a New Zealand Haliclona sp. marine sponge.

    Science.gov (United States)

    Damodaran, Vidhiya; Ryan, Jason L; Keyzers, Robert A

    2013-10-25

    Bioassay and NMR approaches have been used to guide the isolation of one known and two new cyclic 3-alkyl pyridinium alkaloid (3-APA) monomers from the New Zealand marine sponge Haliclona sp. The new compounds, dehydrohaliclocyclins C (3) and F (4), are the first reported examples of cyclic 3-APA monomers with unsaturation in the alkyl chain. The known compound haliclocyclin C (2) was also isolated from a mixture with 4. The structures of compounds 2-4 were elucidated using NMR spectroscopy, mass spectrometry, and chemical degradation.

  18. FTIR and dielectric studies of molecular interaction between alkyl methacrylates and primary alcohols

    International Nuclear Information System (INIS)

    Dharmalingam, K.; Ramachandran, K.; Sivagurunathan, P.

    2007-01-01

    The molecular interaction between alkyl methacrylates (methyl methacrylate, ethyl methacrylate and butyl methacrylate) and primary alcohols (1-propanol, 1-butanol, 1-pentanol, 1-heptanol, 1-octanol and 1-decanol) has been studied in carbon tetrachloride by FTIR spectroscopic and dielectric methods. The results show that the most likely association between alcohol and ester is 1:1 complex through the free hydroxyl group of the alcohol and the carbonyl group of ester, and the alkyl chain length of both the alcohols and esters plays an important role in the determination of the strength of hydrogen bond (O-H:O=C) formed

  19. Dissolution Behavior of Cellulose in IL + DMSO Solvent: Effect of Alkyl Length in Imidazolium Cation on Cellulose Dissolution

    Directory of Open Access Journals (Sweden)

    Airong Xu

    2015-01-01

    Full Text Available Four cellulose solvents including [C2mim][CH3COO] + DMSO, [C4mim][CH3COO] + DMSO, [C6mim][CH3COO] + DMSO, and [C8mim][CH3COO] + DMSO were prepared by adding dimethyl sulfoxide DMSO in 1-ethyl-3-methylimidazolium acetate [C2mim][CH3COO], 1-butyl-3-methylimidazolium acetate [C4mim][CH3COO], 1-hexyl-3-methylimidazolium acetate [C6mim][CH3COO], and 1-octyl-3-methylimidazolium acetate [C8mim][CH3COO], respectively. The solubilities of cellulose in these solvents were determined at 25°C. The effect of the alkyl chain length in imidazolium cation on cellulose solubility was investigated. With increasing alkyl chain length in imidazolium cation, the solubility of cellulose increases, but further increase in alkyl chain length results in decreases in cellulose.

  20. Amino acid nitrosation products as alkylating agents.

    Science.gov (United States)

    García-Santos, M del P; Calle, E; Casado, J

    2001-08-08

    Nitrosation reactions of alpha-, beta-, and gamma-amino acids whose reaction products can act as alkylating agents of DNA were investigated. To approach in vivo conditions for the two-step mechanism (nitrosation and alkylation), nitrosation reactions were carried out in aqueous acid conditions (mimicking the conditions of the stomach lumen) while the alkylating potential of the nitrosation products was investigated at neutral pH, as in the stomach lining cells into which such products can diffuse. These conclusions were drawn: (i) The alkylating species resulting from the nitrosation of amino acids with an -NH(2) group are the corresponding lactones; (ii) the sequence of alkylating power is: alpha-lactones > beta-lactones > gamma-lactones, coming respectively from the nitrosation of alpha-, beta-, and gamma-amino acids; and (iii) the results obtained may be useful in predicting the mutagenic effectiveness of the nitrosation products of amino acids.

  1. Isolation of the antibiotic pseudopyronine B and SAR evaluation of C3/C6 alkyl analogs.

    Science.gov (United States)

    Bouthillette, Leah M; Darcey, Catherine A; Handy, Tess E; Seaton, Sarah C; Wolfe, Amanda L

    2017-06-15

    Natural products are an abundant source of structurally diverse compounds with antibacterial activity that can be used to develop new and potent antibiotics. One such class of natural products is the pseudopyronines. Here we present the isolation of pseudopyronine B (2) from a Pseudomonas species found in garden soil in Western North Carolina, and SAR evaluation of C3 and C6 alkyl analogs of the natural product for antibacterial activity against Gram-positive and Gram-negative bacteria. We found a direct relationship between antibacterial activity and C3/C6 alkyl chain length. For inhibition of Gram-positive bacteria, alkyl chain lengths between 6 and 7 carbons were found to be the most active (IC 50 =0.04-3.8µg/mL) whereas short alkyl chain analogs showed modest activity against Gram-negative bacteria (IC 50 =223-304µg/mL). This demonstrates the potential for this class of natural products to be optimized for selective activity against either Gram-positive or Gram-negative bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Protic ammonium carboxylate ionic liquids: insight into structure, dynamics and thermophysical properties by alkyl group functionalization.

    Science.gov (United States)

    Reddy, Th Dhileep N; Mallik, Bhabani S

    2017-04-19

    This study is aimed at characterising the structure, dynamics and thermophysical properties of five alkylammonium carboxylate ionic liquids (ILs) from classical molecular dynamics simulations. The structural features of these ILs were characterised by calculating the site-site radial distribution functions, g(r), spatial distribution functions and structure factors. The structural properties demonstrate that ILs show greater interaction between cations and anions when alkyl chain length increases on the cation or anion. In all ILs, spatial distribution functions show that the anion is close to the acidic hydrogen atoms of the ammonium cation. We determined the role of alkyl group functionalization of the charged entities, cations and anions, in the dynamical behavior and the transport coefficients of this family of ionic liquids. The dynamics of ILs are described by studying the mean square displacement (MSD) of the centres of mass of the ions, diffusion coefficients, ionic conductivities and hydrogen bonds as well as residence dynamics. The diffusion coefficients and ionic conductivity decrease with an increase in the size of the cation or anion. The effect of alkyl chain length on ionic conductivity calculated in this article is consistent with the findings of other experimental studies. Hydrogen bond lifetimes and residence times along with structure factors were also calculated, and are related to alkyl chain length.

  3. Differential alkylation-based redox proteomics - Lessons learnt

    DEFF Research Database (Denmark)

    Wojdyla, Katarzyna; Rogowska-Wrzesinska, Adelina

    2015-01-01

    Cysteine is one of the most reactive amino acids. This is due to the electronegativity of sulphur atom in the side chain of thiolate group. It results in cysteine being present in several distinct redox forms inside the cell. Amongst these, reversible oxidations, S-nitrosylation and S-sulfenylati......Cysteine is one of the most reactive amino acids. This is due to the electronegativity of sulphur atom in the side chain of thiolate group. It results in cysteine being present in several distinct redox forms inside the cell. Amongst these, reversible oxidations, S-nitrosylation and S......-sulfenylation are crucial mediators of intracellular redox signalling, with known associations to health and disease. Study of their functionalities has intensified thanks to the development of various analytical strategies, with particular contribution from differential alkylation-based proteomics methods. Presented here...... is a critical evaluation of differential alkylation-based strategies for the analysis of S-nitrosylation and S-sulfenylation. The aim is to assess the current status and to provide insights for future directions in the dynamically evolving field of redox proteomics. To achieve that we collected 35 original...

  4. Ionic conductivity of N-alkyl pyridinium halides mesophases

    International Nuclear Information System (INIS)

    Meftah, Ahmed

    1980-01-01

    The quasi anhydrous N-alkyl pyridinium halides undergo at a temperature T c a phase transition from a crystalline isolating state to a conducting mesophase (σ = 3.10 -2 Ω -1 cm -1 ). The transition temperature depends on the nature on counter-ion and on the aliphatic chain length. The present study is devoted to the N-alkyl pyridinium chlorides, bromides and iodides varying the number of carbon atoms in the chain from ten to twenty two. The transition temperatures T c were found to increase from 30 deg. C up to 110 deg. C by a step of 10 deg. C for two added carbon atoms in the chain. The electrical measurements have shown that the conductivity of the mesophases which is ionic in origin is due to a large mobility of counter-ions in hydrophilic parts. At high frequencies (F > 10 3 Hz) ionic conductivity predominates in the bulk and does not depend on frequency. At low frequencies (F 3 Hz) the most important are interface phenomena depending on the square root of inverse frequency (ω -1/2 ) and being due to an electronic exchange limited by diffusion velocity of counter-ions. The electrical conductivity depends weekly on the chain length and the mesophases textures. The most conducting mesophase is the optically isotropic. The conductivity increases with increasing water content of the system and decreases with increasing atomic number of counter-ion. The diffusion measurements by radioactive tracers confirm the ionic character of charge carriers although the diffusion factors obtained by this method are largely higher than the calculated ones from the conductivity values. (author) [fr

  5. Liposomes containing alkylated methotrexate analogues for phospholipase A(2) mediated tumor targeted drug delivery

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Andresen, Thomas Lars; Jensen, Simon Skøde

    2009-01-01

    of alkylated compounds in liposomes, it was demonstrated that the MTX-analogue partitioned into the water phase and thereby became available for cell uptake. It was concluded that liposomes containing alkylated MTX-analogues show promise as a drug delivery system, although the MTX-analogue needs to be more......Two lipophilic methotrexate analogues have been synthesized and evaluated for cytotoxicity against KATO III and HT-29 human colon cancer cells. Both analogues contained a C-16-alkyl chain attached to the gamma-carboxylic acid and one of the analogues had an additional benzyl group attached...... cytotoxicity was incorporated into liposomes that were designed to be particularly Susceptible to a liposome degrading enzyme, secretory phospholipase A(2) (sPLA(2)), which is found in high concentrations in tumors of several different cancer types. Liposome incorporation was investigated by differential...

  6. Alkylation of organic aromatic compounds

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1989-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  7. Alkylation of organic aromatic compounds

    Science.gov (United States)

    Smith, L.A. Jr.

    1989-07-18

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  8. Alkylation of N-substituted 2-phenylacetamides

    Directory of Open Access Journals (Sweden)

    SLOBODAN D. PETROVIC

    2004-10-01

    Full Text Available Various N-substituted phenylacetamides were alkylated using different alkylating agents under neutral and basic conditions. Reactions were performed at different reaction temperatures and in various solvents. Also, a number of various catalysts were used including phase-transfer catalysts. Reactions were followed using GC or GC-MS technique and the presence as well as the yields of the alkylation products were established. Generally, the best yield and high selectivity in the studied reactions were achieved under basic conditions where in the certain cases some products, mostly N-product, were obtained solely in quantitative yields.

  9. The alkylation of imine anions formation of enamines

    NARCIS (Netherlands)

    Heiszwolf, G.J.; Kloosterziel, H.

    1970-01-01

    The ambident anions derived from imines were alkylated using a variety of solvents and alkylating agents. Under reactive conditions enamines (N-alkylation) are formed as the main products instead of the usually obsd. homologous imines (C-alkylation). The influence of the type of imine, solvent, and

  10. Alkylation of enolate anions formation of enol ethers

    NARCIS (Netherlands)

    Heiszwolf, G.J.; Kloosterziel, H.

    1970-01-01

    The alkylation of ambident enolate anions-obtained from aliphatic ketones (and one particular type of aldehyde)-was studied using various solvents, bases, alkylating agents and substrates. Alkylation with a reactive alkylating agent (dialkyl sulfates, triethyloxonium fluoroborate) in an aprotic

  11. N-Alkylation Using Sodium Triacetoxyborohydride with Carboxylic Acids as Alkyl Sources.

    Science.gov (United States)

    Tamura, Satoru; Sato, Keigo; Kawano, Tomikazu

    2018-01-01

    A versatile N-alkylation was performed using sodium triacetoxyborohydride and carboxylic acid as an alkyl source. The combination of these reagents furnished products different from those given previously by a similar reaction. Moreover, the mild conditions of our method allowed some functional groups to remain through the reaction, whereas they would react and be converted into other moieties in the similar reductive N-alkylation reported previously. Herein, we provide a new procedure for the preparation of various compounds containing nitrogen atoms.

  12. Composition of the epicuticular waxes coating the adaxial side of Phyllostachys aurea leaves: Identification of very-long-chain primary amides.

    Science.gov (United States)

    Racovita, Radu C; Jetter, Reinhard

    2016-10-01

    The present study presents comprehensive chemical analyses of cuticular wax mixtures of the bamboo Phyllostachys aurea. The epicuticular and intracuticular waxes were sampled selectively from the adaxial side of leaves on young and old plants and investigated by gas chromatography-mass spectrometry and flame ionization detection. The epi- and intracuticular layers on young and old leaves had wax loads ranging from 1.7 μg/cm(2) to 1.9 μg/cm(2). Typical very-long-chain aliphatic wax constituents were found with characteristic chain length patterns, including alkyl esters (primarily C48), alkanes (primarily C29), fatty acids (primarily C28 and C16), primary alcohols (primarily C28) and aldehydes (primarily C30). Alicyclic wax components were identified as tocopherols and triterpenoids, including substantial amounts of triterpenoid esters. Alkyl esters, alkanes, fatty acids and aldehydes were found in greater amounts in the epicuticular layer, while primary alcohols and most terpenoids accumulated more in the intracuticular wax. Alkyl esters occurred as mixtures of metamers, combining C20 alcohol with various acids into shorter ester homologs (C36C40), and a wide range of alcohols with C22 and C24 acids into longer esters (C42C52). Primary amides were identified, with a characteristic chain length profile peaking at C30. The amides were present exclusively in the epicuticular layer and thus at or near the surface, where they may affect plant-herbivore or plant-pathogen interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Alkylation of Zwitterionic Thiooxalic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Manfred Michalik

    2001-05-01

    Full Text Available The new S-alkyl thiooxal-1-hydrazono-2-amidrazonium halides 2-4 were synthesized by reaction of the corresponding zwitterionic thiooxalic acid derivatives 1 with alkyl halides in methanol. The structures of compounds 4b and 4d were proven by X-ray structural analysis. Both compounds form an interesting intermolecular network of hydrogen bonds in the solid state.

  14. Mechanochemical N-alkylation of imides

    Directory of Open Access Journals (Sweden)

    Anamarija Briš

    2017-08-01

    Full Text Available The mechanochemical N-alkylation of imide derivatives was studied. Reactions under solvent-free conditions in a ball mill gave good yields and could be put in place of the classical solution conditions. The method is general and can be applied to various imides and alkyl halides. Phthalimides prepared under ball milling conditions were used in a mechanochemical Gabriel synthesis of amines by their reaction with 1,2-diaminoethane.

  15. N-Alkylation by Hydrogen Autotransfer Reactions.

    Science.gov (United States)

    Ma, Xiantao; Su, Chenliang; Xu, Qing

    2016-06-01

    Owing to the importance of amine/amide derivatives in all fields of chemistry, and also the green and environmentally benign features of using alcohols as alkylating reagents, the relatively high atom economic dehydrative N-alkylation reactions of amines/amides with alcohols through hydrogen autotransfer processes have received much attention and have developed rapidly in recent decades. Various efficient homogeneous and heterogeneous transition metal catalysts, nano materials, electrochemical methods, biomimetic methods, asymmetric N-alkylation reactions, aerobic oxidative methods, and even certain transition metal-free, catalyst-free, or autocatalyzed methods, have also been developed in recent years. With a brief introduction to the background and developments in this area of research, this chapter focuses mainly on recent progress and technical and conceptual advances contributing to the development of this research in the last decade. In addition to mainstream research on homogeneous and heterogeneous transition metal-catalyzed reactions, possible mechanistic routes for hydrogen transfer and alcohol activation, which are key processes in N-alkylation reactions but seldom discussed in the past, the recent reports on computational mechanistic studies of the N-alkylation reactions, and the newly emerged N-alkylation methods based on novel alcohol activation protocols such as air-promoted reactions and transition metal-free methods, are also reviewed in this chapter. Problems and bottlenecks that remained to be solved in the field, and promising new research that deserves greater future attention and effort, are also reviewed and discussed.

  16. Alkylation of reticular polymers of ethynyl piperidol by alkyl halogen and investigation of the swelling of the products in water

    International Nuclear Information System (INIS)

    Khakimkhodjaev, S.N.; Khalikov, D.Kh.

    1999-01-01

    In the paper the results of investigation on alkylation of reticular polymer of ethyl piperidol by methyl Iodide and ethyl Iodide are adduced. It have been shown that in the first case the reaction of an alkylation proceeds up to 100% of a degree of completion. In the second case of an alkylation the highest degree of alkylation reaches only 60% which is connected with formation of secondary structures. In both cases the process of an alkylation results in deriving highly swelled system

  17. Marital disruption is associated with shorter salivary telomere length in a probability sample of older adults.

    Science.gov (United States)

    Whisman, Mark A; Robustelli, Briana L; Sbarra, David A

    2016-05-01

    Marital disruption (i.e., marital separation, divorce) is associated with a wide range of poor mental and physical health outcomes, including increased risk for all-cause mortality. One biological intermediary that may help explain the association between marital disruption and poor health is accelerated cellular aging. This study examines the association between marital disruption and salivary telomere length in a United States probability sample of adults ≥50 years of age. Participants were 3526 individuals who participated in the 2008 wave of the Health and Retirement Study. Telomere length assays were performed using quantitative real-time polymerase chain reaction (qPCR) on DNA extracted from saliva samples. Health and lifestyle factors, traumatic and stressful life events, and neuroticism were assessed via self-report. Linear regression analyses were conducted to examine the associations between predictor variables and salivary telomere length. Based on their marital status data in the 2006 wave, people who were separated or divorced had shorter salivary telomeres than people who were continuously married or had never been married, and the association between marital disruption and salivary telomere length was not moderated by gender or neuroticism. Furthermore, the association between marital disruption and salivary telomere length remained statistically significant after adjusting for demographic and socioeconomic variables, neuroticism, cigarette use, body mass, traumatic life events, and other stressful life events. Additionally, results revealed that currently married adults with a history of divorce evidenced shorter salivary telomeres than people who were continuously married or never married. Accelerated cellular aging, as indexed by telomere shortening, may be one pathway through which marital disruption is associated with morbidity and mortality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The formation of [M-H]+ ions in N-alkyl-substituted thieno[3,4-c]-pyrrole-4,6-dione derivatives during atmospheric pressure photoionization mass spectrometry

    KAUST Repository

    Sioud, Salim; Kharbatia, Najeh M.; Amad, Maan H.; Zhu, Zhiyong; Cabanetos, Clement; Lesimple, Alain; Beaujuge, Pierre

    2014-01-01

    under APPI conditions.METHODS Multiple experimental parameters, including the type of ionization source, the composition of the solvent, the type of dopant, the infusion flow rate, and the length of the alkyl side chain were investigated to determine

  19. Rational Design of Coordination Polymers with Flexible Oxyethylene Side Chains

    International Nuclear Information System (INIS)

    Choi, Eun Young; Gao, Chunji; Lee, Suck Hyun; Kwon, O Pil

    2012-01-01

    We rationally designed and synthesized metallopolymers with organic 1,4-benzenedicarboxylic acid (BDC) linkers with different lengths of oxyethylene side chains in order to examine the influence of side chains on the coordination characteristics. While in a previous report the BDC linkers with alkyl side chains were found to form three-dimensional (3D) isoreticular metal-organic framework (IRMOF) structures or one-dimensional (1D) coordination polymeric structures with short -O(CH 2 ) 6 CH 3 or long -O(CH 2 ) 9 CH 3 side chains, respectively, new BDC linkers with oxyethylene side chains of the same lengths, -(OCH 2 CH 2 ) 2 CH 3 and -(OCH 2 CH 2 ) 3 CH 3 , form only 3D IRMOF structures. This result is attributed to the higher flexibility and smaller volume of oxyethylene side chains compared to alkyl side chains

  20. Lewis Acid Assisted Nickel-Catalyzed Cross-Coupling of Aryl Methyl Ethers by C−O Bond-Cleaving Alkylation: Prevention of Undesired β-Hydride Elimination

    KAUST Repository

    Liu, Xiangqian

    2016-04-10

    In the presence of trialkylaluminum reagents, diverse aryl methyl ethers can be transformed into valuable products by C-O bond-cleaving alkylation, for the first time without the limiting β-hydride elimination. This new nickel-catalyzed dealkoxylative alkylation method enables powerful orthogonal synthetic strategies for the transformation of a variety of naturally occurring and easily accessible anisole derivatives. The directing and/or activating properties of aromatic methoxy groups are utilized first, before they are replaced by alkyl chains in a subsequent coupling process.

  1. Molecular design of sequence specific DNA alkylating agents.

    Science.gov (United States)

    Minoshima, Masafumi; Bando, Toshikazu; Shinohara, Ken-ichi; Sugiyama, Hiroshi

    2009-01-01

    Sequence-specific DNA alkylating agents have great interest for novel approach to cancer chemotherapy. We designed the conjugates between pyrrole (Py)-imidazole (Im) polyamides and DNA alkylating chlorambucil moiety possessing at different positions. The sequence-specific DNA alkylation by conjugates was investigated by using high-resolution denaturing polyacrylamide gel electrophoresis (PAGE). The results showed that polyamide chlorambucil conjugates alkylate DNA at flanking adenines in recognition sequences of Py-Im polyamides, however, the reactivities and alkylation sites were influenced by the positions of conjugation. In addition, we synthesized conjugate between Py-Im polyamide and another alkylating agent, 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI). DNA alkylation reactivies by both alkylating polyamides were almost comparable. In contrast, cytotoxicities against cell lines differed greatly. These comparative studies would promote development of appropriate sequence-specific DNA alkylating polyamides against specific cancer cells.

  2. A STUDY ON THE DEGRADATION MECHANISM OF PHOTOCROSSLINKING PRODUCTS FORMED BY CYCLIZED POLYISOPRENE-DIAZIDE SYSTEM UNDER THE INFLUENCE OF ALKYL BENZENE SULFONIC ACIDS

    Institute of Scientific and Technical Information of China (English)

    HUANG Junlian; SUN Meng

    1989-01-01

    The degradation mechanism of photocrosslinking products formed by cyclized polyisoprene-diazide system under the influence of the different alkyl benzene sulfonic acids was studied. The effects ofalkyl chain length and the concentration of alkyl benzene sulfonic acids on the rate of degradation reaction were discussed. It was found that in the initial stage of degradation, the cyclicity ratio and the average fused ring number did not change considerably, but the percentage of uncyclized parts content varied significantly. The suitable mechanism was supposed.

  3. Differential alkylation-based redox proteomics – Lessons learnt

    Science.gov (United States)

    Wojdyla, Katarzyna; Rogowska-Wrzesinska, Adelina

    2015-01-01

    Cysteine is one of the most reactive amino acids. This is due to the electronegativity of sulphur atom in the side chain of thiolate group. It results in cysteine being present in several distinct redox forms inside the cell. Amongst these, reversible oxidations, S-nitrosylation and S-sulfenylation are crucial mediators of intracellular redox signalling, with known associations to health and disease. Study of their functionalities has intensified thanks to the development of various analytical strategies, with particular contribution from differential alkylation-based proteomics methods. Presented here is a critical evaluation of differential alkylation-based strategies for the analysis of S-nitrosylation and S-sulfenylation. The aim is to assess the current status and to provide insights for future directions in the dynamically evolving field of redox proteomics. To achieve that we collected 35 original research articles published since 2010 and analysed them considering the following parameters, (i) resolution of modification site, (ii) quantitative information, including correction of modification levels by protein abundance changes and determination of modification site occupancy, (iii) throughput, including the amount of starting material required for analysis. The results of this meta-analysis are the core of this review, complemented by issues related to biological models and sample preparation in redox proteomics, including conditions for free thiol blocking and labelling of target cysteine oxoforms. PMID:26282677

  4. Differential alkylation-based redox proteomics--Lessons learnt.

    Science.gov (United States)

    Wojdyla, Katarzyna; Rogowska-Wrzesinska, Adelina

    2015-12-01

    Cysteine is one of the most reactive amino acids. This is due to the electronegativity of sulphur atom in the side chain of thiolate group. It results in cysteine being present in several distinct redox forms inside the cell. Amongst these, reversible oxidations, S-nitrosylation and S-sulfenylation are crucial mediators of intracellular redox signalling, with known associations to health and disease. Study of their functionalities has intensified thanks to the development of various analytical strategies, with particular contribution from differential alkylation-based proteomics methods. Presented here is a critical evaluation of differential alkylation-based strategies for the analysis of S-nitrosylation and S-sulfenylation. The aim is to assess the current status and to provide insights for future directions in the dynamically evolving field of redox proteomics. To achieve that we collected 35 original research articles published since 2010 and analysed them considering the following parameters, (i) resolution of modification site, (ii) quantitative information, including correction of modification levels by protein abundance changes and determination of modification site occupancy, (iii) throughput, including the amount of starting material required for analysis. The results of this meta-analysis are the core of this review, complemented by issues related to biological models and sample preparation in redox proteomics, including conditions for free thiol blocking and labelling of target cysteine oxoforms. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  5. The isobutylene-isobutane alkylation process in liquid HF revisited.

    Science.gov (United States)

    Esteves, P M; Araújo, C L; Horta, B A C; Alvarez, L J; Zicovich-Wilson, C M; Ramírez-Solís, A

    2005-07-07

    Details on the mechanism of HF catalyzed isobutylene-isobutane alkylation were investigated. On the basis of available experimental data and high-level quantum chemical calculations, a detailed reaction mechanism is proposed taking into account solvation effects of the medium. On the basis of our computational results, we explain why the density of the liquid media and stirring rates are the most important parameters to achieve maximum yield of alkylate, in agreement with experimental findings. The ab initio Car-Parrinello molecular dynamics calculations show that isobutylene is irreversibly protonated in the liquid HF medium at higher densities, leading to the ion pair formation, which is shown to be a minimum on the potential energy surface after optimization using periodic boundary conditions. The HF medium solvates preferentially the fluoride anion, which is found as solvated [FHF](-) or solvated F(-.)(HF)(3). On the other hand, the tert-butyl cation is weakly solvated, where the closest HF molecules appear at a distance of about 2.9 Angstrom with the fluorine termination of an HF chain.

  6. Surface mobility and structural transitions of poly(n-alkyl methacrylates) probed by dynamic contact angle measurements

    NARCIS (Netherlands)

    van Damme, H.S.; Hogt, A.H.; Feijen, Jan

    1986-01-01

    Dynamic contact angles and contact-angle hysteresis of a series of poly(n-alkyl methacrylates) (PAMA) were investigated using the Wilhelmy plate technique. The mobility of polymer surface chains, segments, and side groups affected the measured contact angles and their hysteresis. A model is

  7. Charge transport across metal/molecular (alkyl) monolayer-Si junctions is dominated by the LUMO level

    NARCIS (Netherlands)

    Yaffe, O.; Qi, Y.; Scheres, L.M.W.; Puniredd, S.R.; Segev, L.; Ely, T.; Haick, H.; Zuilhof, H.; Vilan, A.; Kronik, L.; Kahn, A.; Cahen, D.

    2012-01-01

    We compare the charge transport characteristics of heavy-doped p(++)- and n(++)-Si-alkyl chain/Hg junctions. Based on negative differential resistance in an analogous semiconductor-inorganic insulator/metal junction we suggest that for both p(++)- and n(++)-type junctions, the energy difference

  8. The scarlet letter of alkylation: a mini review of selective alkylating agents.

    Science.gov (United States)

    Oronsky, Bryan T; Reid, Tony; Knox, Susan J; Scicinski, Jan J

    2012-08-01

    If there were a stigma scale for chemotherapy, alkylating agents would be ranked at the top of the list. The chemical term alkylation is associated with nonselective toxicity, an association that dates back to the use of nitrogen mustards during World War I as chemical warfare agents. That this stigma persists and extends to compounds that, through selectivity, attempt to "tame" the indiscriminate destructive potential of alkylation is the subject of this review. Selective alkylation, as it is referred to herein, constitutes an extremely nascent and dynamic field in oncology. The pharmacodynamic response to this selective strategy depends on a delicate kinetic balance between specificity and the rate and extent of binding. Three representative compounds are presented: RRx-001, 3-bromopyruvate, and TH-302. The main impetus for the development of these compounds has been the avoidance of the serious complications of traditional alkylating agents; therefore, it is the thesis of this review that they should not experience stigma by association.

  9. Alkylation of isobutane with light olefins: Yields of alkylates for different olefins

    Energy Technology Data Exchange (ETDEWEB)

    Albright, L.F. [Purdue Univ., West Lafayette, IN (United States); Kranz, K.E.; Masters, K.R. [STRATCO, Inc., Leawood, KS (United States)

    1993-12-01

    For alkylation of isobutane with C{sub 3}-C{sub 5} olefins using sulfuric acid as the catalyst, the yields of alkylates with different olefins are compared as the operating conditions are changed. The results of recent pilot plant experiments with propylene, C{sub 4} olefins, and C{sub 5} olefins permit such comparisons. The yields expressed as weight of alkylate produced per 100 wt of olefin consumed varied from about 201:100 to 220:100. Weight ratios of the isobutane consumed per olefin consumed vary from about 101:100 to 120:100. differences of yield values are explained by the changes in the overall chemistry. The procedure employed to calculate yields with good accuracy is based on the analysis of the alkylate and the amount of conjunct polymers produced. Based on literature data, yields are also reported for alkylations using HF as the catalyst.

  10. Tribochemical behaviors of phosphite esters and their combinations with alkyl amines

    International Nuclear Information System (INIS)

    Fu, Xisheng; Sun, Lingguo; Zhou, Xuguang; Li, Jianchang; Fan, Bingji; Ren, Tianhui

    2015-01-01

    Highlights: • Investigating the differences of tribological performance between phosphite ester and their combinations with alkyl amines. • The combination of SEM and EDS was used to investigate the worn surface morphology and detect the element distributions and content on the steel surface. • The chemical compositions of the thermal films and tribofilms were characterized by TEY P L-edge and FY P K-edge XANES spectroscopy. • A phosphate and polyphosphate tribofilm was formed after rubbing times of even 10 s, and being formed completely after rubbing times of 10 min. • Phosphite ester forms short-chain polyphosphates, and ammonium phosphite produces medium-chain polyphosphates in the tribfilm. - Abstract: The tribochemical behaviors of dioctylphosphite ester and ditetradecylphosphite ester together with their corresponding combinations with alkyl amines were studied. The results of tribological evaluations showed that the phosphite ester with long alkyl chain exhibited better antiwear performance but worse extreme pressure property than that of the phosphite ester with short alkyl chain. The combinations showed better antiwear performance but worse extreme pressure property than their corresponding phosphite esters. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to investigate the worn surface morphology and the content as well as the distribution of active elements. It can be found that the prorupt edges of worn surface are enriched with phosphoric-oxygenic compounds and less phosphoric-oxygenic compounds were detected in the valley. X-ray absorption near-edge structure (XANES) spectroscopy was employed to explore the chemical nature of the worn surface. The results show that a tribofilm composed of phosphates and polyphosphates is formed on the worn surface. Furthermore, the tribofilm is generated even in a rubbing of 10 s and is formed completely after 10 min rubbing.

  11. Alkylating HIV-1 Nef - a potential way of HIV intervention

    Directory of Open Access Journals (Sweden)

    Cai Catherine

    2010-07-01

    Full Text Available Abstract Background Nef is a 27 KDa HIV-1 accessory protein. It downregulates CD4 from infected cell surface, a mechanism critical for efficient viral replication and pathogenicity. Agents that antagonize the Nef-mediated CD4 downregulation may offer a new class of drug to combat HIV infection and disease. TPCK (N-α-p-tosyl-L-phenylalanine chloromethyl ketone and TLCK (N-α-p-tosyl-L-lysine chloromethyl ketone are alkylation reagents that chemically modify the side chain of His or Cys residues in a protein. In search of chemicals that inhibit Nef function, we discovered that TPCK and TLCK alkylated HIV Nef. Methods Nef modification by TPCK was demonstrated on reducing SDS-PAGE. The specific cysteine residues modified were determined by site-directed mutagenesis and mass spectrometry (MS. The effect of TPCK modification on Nef-CD4 interaction was studied using fluorescence titration of a synthetic CD4 tail peptide with recombinant Nef-His protein. The conformational change of Nef-His protein upon TPCK-modification was monitored using CD spectrometry Results Incubation of Nef-transfected T cells, or recombinant Nef-His protein, with TPCK resulted in mobility shift of Nef on SDS-PAGE. Mutagenesis analysis indicated that the modification occurred at Cys55 and Cys206 in Nef. Mass spectrometry demonstrated that the modification was a covalent attachment (alkylation of TPCK at Cys55 and Cys206. Cys55 is next to the CD4 binding motif (A56W57L58 in Nef required for Nef-mediated CD4 downregulation and for AIDS development. This implies that the addition of a bulky TPCK molecule to Nef at Cys55 would impair Nef function and reduce HIV pathogenicity. As expected, Cys55 modification reduced the strength of the interaction between Nef-His and CD4 tail peptide by 50%. Conclusions Our data suggest that this Cys55-specific alkylation mechanism may be exploited to develop a new class of anti HIV drugs.

  12. Facile alkylation of 4-nitrobenzotriazole and its platelet aggregation inhibitory activity.

    Science.gov (United States)

    Singh, Dhandeep; Silakari, Om

    2017-10-15

    We explored the facile alkylation of 4-nitrobenzotriazole under basic conditions and the synthesized derivatives were tested for their potential ADP induced platelet aggregation inhibition activity in comparison with standard drug ticagrelor (selective P2Y12 inhibitor). The nitro group at 4-position is highly activating toward alkylation reactions (under strong basic conditions) and resulted in formation of degradation product like 3-nitrobenzene-1,2-diamine which make isolation of alkyl products very difficult. We optimized the reaction under mild basic condition (potassium carbonate and DMF) which is devoid of any degradation product. This is perhaps the first report of 4-nitrobenzotriazole derivatives possessing platelet aggregation inhibitory activity. Generally activity increases with increase in length of alkyl chain and 1-alkyl positional isomers were found to be more potent than 2-alkyl isomers. The benzoyl derivative was found to be the most potent [compound 22; (4-Nitro-1H-benzotriazol-1-yl)(phenyl)methanone; IC 50 =0.65±0.10mM] which may be attributed to electronegative oxygen atom and aromatic ring. Benzyl derivatives [compound 20; 1-Benzyl-4-nitro-1H-benzotriazole; IC 50 =0.81±0.08mM, compound 21; 2-Benzyl-4-nitro-2H-benzotriazole; IC 50 =0.82±0.19mM] and sulfonyl derivative [compound 23; 1-[(4-Methylphenyl)sulfonyl]-4-nitro-1H-benzotriazole; IC 50 =0.82±0.19mM] are also found to be highly active. Furthermore, all compounds possess P2Y12 binding affinity as confirmed by VASP/P2Y12 phosphorylation assay. Copyright © 2017. Published by Elsevier Ltd.

  13. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    Science.gov (United States)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  14. Read-across of ready biodegradability based on the substrate specificity of N-alkyl polypropylene polyamine-degrading microorganisms.

    Science.gov (United States)

    Geerts, R; van Ginkel, C G; Plugge, C M

    2017-04-01

    The biodegradation of N-alkyl polypropylene polyamines (NAPPs) was studied using pure and mixed cultures to enable read-across of ready biodegradability test results. Two Pseudomonas spp. were isolated from activated sludge with N-oleyl alkyl propylene diamine and N-coco alkyl dipropylene triamine, respectively. Both strains utilized all NAPPs tested as the sole source of carbon, nitrogen and energy for growth. Mineralization of NAPPs was independent of the alkyl chain length and the size of the polyamine moiety. NAPPs degraded in closed bottle tests (CBTs) using both river water and activated sludge. However, ready biodegradability of NAPPs with alkyl chain lengths of 16-18 carbon atoms and polyamine moieties with three and four nitrogen atoms could not be demonstrated. Biodegradation in the CBT was hampered by their limited bioavailability, making assessment of the true ready biodegradability of these highly adsorptive surfactants impossible. All NAPPs are therefore classified as readily biodegradable through read-across. Read-across is justified by the broad substrate specificity of NAPP-degrading microorganisms, their omnipresence and the mineralization of NAPPs.

  15. The light activated alkylation of glycine

    International Nuclear Information System (INIS)

    Knowles, H.S.

    2001-04-01

    The work contained in this thesis focuses on the light-initiated alkylation of the α-centre of glycine compounds. The elaboration of the glycines in this manner represents a versatile, clean and cost effective alternative to ionic routes to higher α-amino acids. Preliminary investigations demonstrated that a range of nitrogen protecting groups were compatible with the radical alkylation. A variety of solvents could also be used although solvents with easily removable hydrogen atoms were found to interfere with the alkylation. Furthermore, a number of photo-initiators were investigated and the use of di-tert-butyl peroxide was found to afford the desired phenylalanine products in up to 27% yield (54% based on recovered starting material) when toluene was used as the alkylating agent. A range of different precursor concentrations was investigated and it was found that the optimum concentration of the glycine precursor was 0.13 mol dm -3 ; the phenylalanine yields were reduced when the concentration was less than this value. Owing to the poor UV absorption by di-tert-butyl peroxide, benzophenone (an effective photosensitiser) was added to the reaction mixture and this was shown to increase the alkylation yields. The ratio of reagents which produced the highest yield of phenylalanine products was found to be 1 : 5 : 5 : 10 for glycine : di-tert-butyl peroxide : benzophenone : toluene. This produced the phenylalanine product in up to 37% yield (57% based on recovered starting material). A number of substituents. (e.g. F, Cl etc.) could be attached to the aromatic ring of the toluene alkylating agent, affording substituted phenylalanines in 5 - 36% under these conditions. The formation of chiral phenylalanine products was probed by reacting glycine precursors bearing chiral auxiliaries. However, low diastereoselectivities were observed; the d.r. ranged from 1 : 1.1 to 1 : 1.5 only when chiral ester and amide protecting groups were used. In the final chapter, the α-alkylation

  16. Tripodal (N-alkylated) CMP(O) and malonamide ligands: synthesis, extraction of metal ions, and potentiometric studies

    Energy Technology Data Exchange (ETDEWEB)

    Janczewski, D.; Reinhoudt, D.N.; Verboom, W. [Twente Univ., Lab. of Supramolecular Chemistry and Technology, Mesa Research Institute for Nanotechnology, Enschede (Netherlands); Malinowska, E.; Pietrzak, M. [Warsaw Univ. of Technology, Dept. of Analytical Chemistry, Faculty of Chemistry (Poland); Hill, C.; Allignol, C. [CEA Valrho, 30 - Marcoule (France)

    2007-01-15

    Tripodal ligands build on the C-pivot (9b-e, 13b-d, and 17a-d) and tri-alkyl-benzene platforms (10a,b, 11, 12, 14a,b, and 18a,b) bearing (N-alkylated) carbamoyl-methyl-phosphine oxide (CMPO), carbamoyl-methyl-phosphonate (CMP), and malonamide moieties were synthesized. Extraction studies with Am{sup 3+} and Eu{sup 3+} show that in general there is a positive influence of the N-alkyl substituents in C-pivot CMP(O) ligands on the D(distribution) coefficients. The tri-alkyl-benzene CMPO ligands 10a,b, 11, and 12 have considerably larger D coefficients than the corresponding C-pivot analogues 9a-e, although hardly having any selectivity, while N-alkylation gives rise to smaller D coefficients. Although less effective the extraction behavior of the C-pivot CMP analogues 13b-d shows more or less the same trend as the corresponding CMPO ligands 9b-e upon substitution of the carboxamide N-atom with different alkyl chains. The different malonamide ligands 17a-d and 18a,b are bad extractants, while N-alkylation makes them even worse. Potentiometric studies of CMP(O) and malonamide ligands in polymeric membranes on Pb{sup 2+}, Cu{sup 2+}, Ca{sup 2+}, Mg{sup 2+}, Na{sup +}, and K{sup +} salts revealed that N-alkyl substituents increase the stability constants of ion-ionophore complexes compared to unsubstituted ligands. In polymeric membrane electrodes the ligands induce a selectivity pattern that differs significantly from the so-called Hofmeister series, giving the highest selectivity coefficients for UO{sub 2}{sup 2+} among all examined cations (Pb{sup 2+}, Cu{sup 2+}, Ca{sup 2+}, Mg{sup 2+}, Na{sup +}, K{sup +}). (authors)

  17. Tripodal (N-alkylated) CMP(O) and malonamide ligands: synthesis, extraction of metal ions, and potentiometric studies

    International Nuclear Information System (INIS)

    Janczewski, D.; Reinhoudt, D.N.; Verboom, W.; Malinowska, E.; Pietrzak, M.; Hill, C.; Allignol, C.

    2007-01-01

    Tripodal ligands build on the C-pivot (9b-e, 13b-d, and 17a-d) and tri-alkyl-benzene platforms (10a,b, 11, 12, 14a,b, and 18a,b) bearing (N-alkylated) carbamoyl-methyl-phosphine oxide (CMPO), carbamoyl-methyl-phosphonate (CMP), and malonamide moieties were synthesized. Extraction studies with Am 3+ and Eu 3+ show that in general there is a positive influence of the N-alkyl substituents in C-pivot CMP(O) ligands on the D(distribution) coefficients. The tri-alkyl-benzene CMPO ligands 10a,b, 11, and 12 have considerably larger D coefficients than the corresponding C-pivot analogues 9a-e, although hardly having any selectivity, while N-alkylation gives rise to smaller D coefficients. Although less effective the extraction behavior of the C-pivot CMP analogues 13b-d shows more or less the same trend as the corresponding CMPO ligands 9b-e upon substitution of the carboxamide N-atom with different alkyl chains. The different malonamide ligands 17a-d and 18a,b are bad extractants, while N-alkylation makes them even worse. Potentiometric studies of CMP(O) and malonamide ligands in polymeric membranes on Pb 2+ , Cu 2+ , Ca 2+ , Mg 2+ , Na + , and K + salts revealed that N-alkyl substituents increase the stability constants of ion-ionophore complexes compared to unsubstituted ligands. In polymeric membrane electrodes the ligands induce a selectivity pattern that differs significantly from the so-called Hofmeister series, giving the highest selectivity coefficients for UO 2 2+ among all examined cations (Pb 2+ , Cu 2+ , Ca 2+ , Mg 2+ , Na + , K + ). (authors)

  18. Systematic Evaluation of Protein Reduction and Alkylation Reveals Massive Unspecific Side Effects by Iodine-containing Reagents.

    Science.gov (United States)

    Müller, Torsten; Winter, Dominic

    2017-07-01

    Reduction and alkylation of cysteine residues is part of virtually any proteomics workflow. Despite its frequent use, up to date no systematic investigation of the impact of different conditions on the outcome of proteomics studies has been performed. In this study, we compared common reduction reagents (dithiothreitol, tris-(2-carboxyethyl)-phosphine, and β-mercaptoethanol) and alkylation reagents (iodoacetamide, iodoacetic acid, acrylamide, and chloroacetamide). Using in-gel digests as well as SAX fractionated in-solution digests of cytosolic fractions of HeLa cells, we evaluated 13 different reduction and alkylation conditions resulting in considerably varying identification rates. We observed strong differences in offsite alkylation reactions at 7 amino acids as well as at the peptide N terminus, identifying single and double adducts of all reagents. Using dimethyl labeling, mass tolerant searches, and synthetic peptide experiments, we identified alkylation of methionine residues by iodine-containing alkylation reagents as one of the major factors for the differences. We observed differences of more than 9-fold in numbers of identified methionine-containing peptide spectral matches for in-gel digested samples between iodine- and noniodine-containing alkylation reagents. This was because of formation of carbamidomethylated and carboxymethylated methionine side chains and a resulting prominent neutral loss during ESI ionization or in MS/MS fragmentation, strongly decreasing identification rates of methionine-containing peptides. We achieved best results with acrylamide as alkylation reagent, whereas the highest numbers of peptide spectral matches were obtained when reducing with dithiothreitol and β-mercaptoethanol for the in-solution and the in-gel digested samples, respectively. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Aryl sulfonate based anticancer alkylating agents.

    Science.gov (United States)

    Sheikh, Hamdullah Khadim; Arshad, Tanzila; Kanwal, Ghazala

    2018-05-01

    This research work revolves around synthesis of antineoplastic alkylating sulfonate esters with dual alkylating sites for crosslinking of the DNA strands. These molecules were evaluated as potential antineoplastic cross linking alkylating agents by reaction with the nucleoside of Guanine DNA nucleobase at both ends of the synthesized molecule. Synthesis of the alkylating molecules and the crosslinking with the guanosine nucleoside was monitored by MALDITOF mass spectroscopy. The synthesized molecule's crosslinking or adduct forming rate with the nucleoside was compared with that of 1,4 butane disulfonate (busulfan), in form of time taken for the appearance of [M+H] + . It was found that aryl sulfonate leaving group was causing higher rate of nucleophilic attack by the Lewis basic site of the nucleobase. Furthermore, the rate was also found to be a function of electron withdrawing or donating nature of the substituent on the aryl ring. Compound with strong electron withdrawing substituent on the para position of the ring reacted fastest. Hence, new alkylating agents were synthesized with optimized or desired reactivity.

  20. Some features of formation and dissolution of a series of Pu(IV) and Zr alkyl and butyl alkyl phosphates in the system TBP -n-dodecane - nitric acid - water

    International Nuclear Information System (INIS)

    Markov, G.S.; Moshkov, M.M.; Kokina, S.A.

    1990-01-01

    The formation and composition of salts produced on interaction of a series of alkyl- and butylalkylphosphoric acids having alkyl radical chain lengths from C 4 to C 1 0 with Pu(IV) and Zr in organic and aqueous phases of the system TBP - n-dodecane -nitric acid - water were studied. The composition of compounds was found to depend on the conditions of their formation, defined first of all by the HNO 3 concentration in aqueous and organic phases. (author) 12 refs.; 4 figs.; 1 tab

  1. Enzymatic production of alkyl esters through alcoholysis: A critical evaluation of lipases and alcohols

    DEFF Research Database (Denmark)

    Li, Deng; Xu, Xuebing; Gudmundur G, Haraldsson

    2005-01-01

    This paper focuses on a detailed evaluation of commercially available immobilized lipases and simple monohydric alcohols for the production of alkyl esters from sunflower oil by enzymatic alcoholysis. Six lipases were tested with seven alcohols, including straight and branched-chain primary...... in an increased degree of conversion for all lipases except Novozym 435. The secondary alcohol 2-propanol significantly reduced the alcoholysis reaction with all lipases; however, the branch-chain isobutanol was more advantageous than linear 1-butanol for Novozym 435, Lipozyme RM IM, and Lipase PS-C. Many...

  2. Outlook for the U.S. alkylation industry

    International Nuclear Information System (INIS)

    Felten, J.R.; Bradshaw, T.; McCarthy, K.

    1994-01-01

    Alkylation has long been recognized in the refining industry as one of the best options to convert refinery olefins into valuable, clean, high octane blending components. In fact, refinery alkylation is a preferred source of blending stocks for reformulated gasoline. However, the hydrofluoric acid (HF) alkylation process and, to a lesser extent, the sulfuric acid (SA) process have come under increasing pressure in the US due to safety and environmental concerns. This paper examines the current outlook for the US alkylation industry including: key trends and driving forces in the industry, the impact of environmental issues on both HF and SA alkylation, US alkylation supply/demand forecast including the outlook for oxygenates, how US refines will respond to the increased demand and restricted supply for alkylates, and the outlook for new solid acid alkylation (SAC) technology

  3. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    Science.gov (United States)

    Ginosar, Daniel M.; Petkovic, Lucia M.

    2010-12-28

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  4. Mechanisms of resistance to alkylating agents

    OpenAIRE

    Damia, G.; D‘Incalci, M.

    1998-01-01

    Alkylating agents are the most widely used anticancer drugs whose main target is the DNA, although how exactly the DNA lesions cause cell death is still not clear. The emergence of resistance to this class of drugs as well as to other antitumor agents is one of the major causes of failure of cancer treatment. This paper reviews some of the best characterized mechanisms of resistance to alkylating agents. Pre- and post-target mechanisms are recognized, the former able to limit the formation of...

  5. Pulse radiolysis of alkanes: a time-resolved EPR study - Part I. Alkyl radicals

    International Nuclear Information System (INIS)

    Shkrob, I.A.; Trifunac, A.D.

    1995-01-01

    Time-resolved EPR was applied to detect short-lived alkyl radicals in pulse radiolysis of liquid alkanes. Two problems were addressed: (i) the mechanism of radical formation and (ii) the mechanism of chemically-induced spin polarization in these radicals. (i) The ratio of yields of penultimate and interior radicals in n-alkanes at the instant of their generation was found to be ≅ 1.25 times greater than the statistical quantity. This higher-than-statistical production of penultimate radicals indicates that the proton transfer reaction involving excited radical cations must be a prevailing route of radical generation. The relative yields of hydrogen abstraction and fragmentation for various branched alkanes are estimated. It is concluded that the fragmentation occurs prior to the formation of radicals in an excited precursor species. (ii) The analysis of spin-echo kinetics in n-alkanes suggests that the alkyl radicals gain the emissive polarization in spur reactions. This initial polarization increases with shortening of the aliphatic chain. We suggest that the origin of this polarization is the ST mechanism operating in the pairs of alkyl radicals and hydrogen atoms generated in dissociation of excited alkane molecules. It is also found that a long-chain structure of alkyl radicals results in much higher rate of Heisenberg spin exchange relative to the recombination rate (up to 30 times). That suggests prominent steric effects in recombination or the occurrence of through-chain electron exchange. The significance of these results in the context of cross-linking in polyethylene and higher paraffins is discussed. (Author)

  6. Nanophase separation in side chain polymers: new evidence from structure and dynamics

    International Nuclear Information System (INIS)

    Hiller, S; Pascui, O; Budde, H; Kabisch, O; Reichert, D; Beiner, M

    2004-01-01

    New evidence for a nanophase separation of incompatible main and side chain parts in amorphous poly(n-alkyl methacrylates) with long alkyl groups are presented. Independent indications for the existence of alkyl nanodomains with a typical dimension in the 1 nm range from studies on dynamics and structure are reported. Results from nuclear magnetic resonance (NMR) experiments are compared with data from different relaxation spectroscopy methods on poly(n-decyl methacrylate). The NMR results in combination with relaxation spectroscopy data support the existence of an independent polyethylene-like glass transition, α PE , within the alkyl nanodomains in addition to the conventional glass transition a at higher temperatures. X-ray scattering data show that the situation in homopolymers is similar to that for random poly(n-alkyl methacrylate) copolymers with the same average length of the alkyl group in the side chains. Scattering data for a series of n-butyl methacrylate samples with polymerization degrees reaching from P=1 to 405 indicate that nanophase separation is chain-length independent above P=25, while the nanophase separation tends to disappear below P=6. Insensitivity of structural aspects in nanophase-separated poly(n-alkyl methacrylates) to changes in the molecular microstructure and consistency of NMR results with independent conclusions from relaxation spectroscopy underline the general importance of nanophase separation effects in a broad class of side chain polymers

  7. IONIC LIQUID-CATALYZED ALKYLATION OF ISOBUTANE WITH 2-BUTENE

    Science.gov (United States)

    A detailed study of the alkylation of isobutane with 2-butene in ionic liquid media has been conducted using 1-alkyl-3-methylimidazolium halides?aluminum chloride encompassing various alkyl groups (butyl-, hexyl-, and octyl-) and halides (Cl, Br, and I) on its cations and anions,...

  8. 40 CFR 721.555 - Alkyl amino nitriles (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl amino nitriles (generic). 721... Substances § 721.555 Alkyl amino nitriles (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as alkyl amino nitriles (PMNs P-96...

  9. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for the...

  10. Quantitative estimation of the extent of alkylation of DNA following treatment of mammalian cells with non-radioactive alkylating agents

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, R.D. (Univ. of Tennessee, Oak Ridge); Regan, J.D.

    1981-01-01

    Alkaline sucrose sedimentation has been used to quantitate phosphotriester formation following treatment of human cells with the monofunctional alkylating agents methyl and ethyl methanesulfonate. These persistent alkaline-labile lesions are not repaired during short-term culture conditions and thus serve as a useful and precise index of the total alkylation of the DNA.Estimates of alkylation by this procedure compare favorably with direct estimates by use of labeled alkylating agents.

  11. Williamson alkylation approach to the synthesis of poly(alkyl vinyl ether) copolymers

    International Nuclear Information System (INIS)

    Markova, D.; Christova, D.; Velichkova, R.

    2008-01-01

    A method for synthesis of poly(alkyl vinyl ether-co-vinyl alcohol) copolymers was developed based on the Williamson's alkylation of poly(vinyl acetate) (PVAc) with alkyl iodides. The influence of the alkylating agent and the reaction conditions on the efficiency of the modification reaction was investigated. The copolymers obtained were characterized by means of 1 H NMR and GPC. It was proved that by applying the proposed method copolymers of different composition and properties containing methyl vinyl ether, ethyl vinyl ether as well as n-butyl vinyl ether units could be prepared. Poly(methyl vinyl ether-co-vinyl alcohol)s of high degree of methylation exhibit sharp temperature response at 38-39 deg C in aqueous solution typical of the so-called smart polymers. (authors)

  12. Stereoselective Alkylation of Thiacalix[4]arenes

    Czech Academy of Sciences Publication Activity Database

    Himl, M.; Pojarová, M.; Stibor, I.; Sýkora, Jan; Lhoták, P.

    2005-01-01

    Roč. 46, č. 3 (2005), s. 461-464 ISSN 0040-4039 R&D Projects: GA ČR(CZ) GA104/00/1722 Institutional research plan: CEZ:AV0Z40720504 Keywords : calixarene * alkylation * conformations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.477, year: 2005

  13. Polypyrrole Doped with Alkyl Benzene Sulphonates

    DEFF Research Database (Denmark)

    Bay, Lasse; Mogensen, Naja; Skaarup, Steen

    2002-01-01

    The properties of polypyrrole (PPy) are to a large extent determined by the condition of synthesis and especially by the counterion incorporated as dopant during synthesis. In this work, PPy doped with different alkyl benzenesulfonates are compared. The polymer films are prepared by constant curr...

  14. Biodesulfurization of dibenzothiophene and its alkylated derivatives ...

    African Journals Online (AJOL)

    RIPI-S81 is a new dibenzothiophene (DBT)-desulfurizing bacterium, which was isolated by Research Institute of Petroleum Industry in Iran. Resting cells and growing cells of RIPI-S81 was able to convert alkylated dibenzothiophenes (Cx DBTs) to hydroxybiphenyls such that they were almost stoichiometrically accumulated ...

  15. Spurious cooperativity in alkylated succinic acids

    Science.gov (United States)

    Ben-Naim, A.

    1998-03-01

    The proton-proton correlation, as measured by the ratio between the second and the first dissociation constants of dibasic acid, is sometimes very large and far beyond what could be explained by electrostatic theories. We propose a novel interpretation of this phenomenon based on the idea of spurious cooperativity. The general theoretical framework underlying the onset of spurious cooperativity is developed first. The basic result is that whenever a binding (or dissociating) two-site (or more) system splits into a mixture of noninterconverting isomers the binding isotherm (or the titration curve) behaves as if it is more negatively cooperative compared with the genuine cooperativities of the individual isomer. The theory is applied to a specific system of α-α' dialkyl succinic acid. It is known that the Meso form of these alkylated derivatives show a normal correlation of the same order of magnitude as in succinic acid. On the other hand, the Racemic form of these alkylated derivatives shows anomalous strong negative correlations when the alkyl groups become large (e.g., isopropyl and tert butyl). It is shown that the theory of spurious cooperativity can explain the different behavior of the Racemic and the Meso forms, as well as the onset of anomalous strong negative correlations when the alkyl groups become large.

  16. Recent developments in isobutane/olefin alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Lercher, J.A.; Feller, A. [Inst. fuer Technische Chemie, Technische Univ. Muenchen (Germany)

    2002-07-01

    The isobutane/alkene alkylation is reviewed with respect to recent process developments based on liquid and solid acid catalysts. A brief overview about the established processes is given followed by the description of new processes based on solid acids under development. (orig.)

  17. Catalytic Asymmetric Alkylation of Aryl Heteroaryl Ketones

    NARCIS (Netherlands)

    Ortiz, Pablo; Harutyunyan, Syuzanna; del Hoyo, Ana

    Tertiary diarylmethanols are highly bioactive structural motifs. A new strategy to access chiral tertiary diarylmethanols through copper-catalyzed direct alkylation of (di)(hetero)aryl ketones by using Grignard reagents was developed. The low reactivity and the similarity of the enantiotopic faces

  18. Mechanisms of action of quinone-containing alkylating agents: DNA alkylation by aziridinylquinones.

    Science.gov (United States)

    Hargreaves, R H; Hartley, J A; Butler, J

    2000-11-01

    Aziridinyl quinones can be activated by cellular reductases eg. DT-diaphorase and cytochrome P450 reductase to form highly reactive DNA alkylating agents. The mechanisms by which this activation and alkylation take place are many and varied. Using clinically relevant and experimental agents this review will describe many of these mechanisms. The agents discussed are Mitomycin C, EO9 and analogues, diaziridinylbenzoquinones and the pyrrolo[1, 2-alpha]benzimidazolequinones.

  19. Bis(trialkylsilyl) peroxides as alkylating agents in the copper-catalyzed selective mono-N-alkylation of primary amides.

    Science.gov (United States)

    Sakamoto, Ryu; Sakurai, Shunya; Maruoka, Keiji

    2017-06-13

    The copper-catalyzed selective mono-N-alkylation of primary amides with bis(trialkylsilyl) peroxides as alkylating agents was reported. The results of a mechanistic study suggest that this reaction should proceed via a free radical process that includes the generation of alkyl radicals from bis(trialkylsilyl) peroxides.

  20. Sulfonium Salts as Alkylating Agents for Palladium-Catalyzed Direct Ortho Alkylation of Anilides and Aromatic Ureas.

    Science.gov (United States)

    Simkó, Dániel Cs; Elekes, Péter; Pázmándi, Vivien; Novák, Zoltán

    2018-02-02

    A novel method for the ortho alkylation of acetanilide and aromatic urea derivatives via C-H activation was developed. Alkyl dibenzothiophenium salts are considered to be new reagents for the palladium-catalyzed C-H activation reaction, which enables the transfer of methyl and other alkyl groups from the sulfonium salt to the aniline derivatives under mild catalytic conditions.

  1. Mutagenesis by alkylating agents: coding properties for DNA polymerase of poly (dC) template containing 3-methylcytosine

    Energy Technology Data Exchange (ETDEWEB)

    Boiteux, S.; Laval, J. (Institut Gustave-Roussy, 94 - Villejuif (France))

    After treatment of poly(dC) by the simple alkylating agent (/sup 3/H)dimethylsulfate, 90 percent of the radioactivity cochromatographed with 3-methylcytosine and 10 percent with 5-methylcytosine which is the normally occurring methylated base. In order to study the influence of 3-methylcytosine on DNA replication, untreated and MDS-treated poly(dC) were used as templates for E. coli DNA polymerase I. The alkylation of poly(dC) inhibits DNA chain elongation, and does not induce any mispairing under high fidelity conditions. The alteration of DNA polymerase I fidelity by manganese ions allows some replication of 3-methylcytosine which mispairs with either dAMP or dTMP. Our results suggest that 3-methylcytosine could be responsible, at least partially, for killing and the mutagenesis observed after cell treatment by alkylating agents.

  2. Effects of 1-Alkyl-3-Methylimidazolium Nitrate on Soil Physical and Chemical Properties and Microbial Biomass.

    Science.gov (United States)

    Zhou, Tongtong; Wang, Jun; Ma, Zhiqiang; Du, Zhongkun; Zhang, Cheng; Zhu, Lusheng; Wang, Jinhua

    2018-05-01

    Ionic liquids (ILs), also called room temperature ILs, are widely applied in many fields on the basis of their unique physical and chemical properties. However, numerous ILs may be released into and gradually accumulate in the environment due to their extensive use and absolute solubility. The effects of 1-alkyl-3-methylimidazolium nitrate ([C n mim]NO 3 , n = 4, 6, 8) on soil pH, conductivity, cation exchange capacity, microbial biomass carbon, and microbial biomass nitrogen were examined at the doses of 1, 10, and 100 mg/kg on days 10, 20, 30, and 40. The results demonstrated that the soil pH decreased and the conductivity increased with increasing IL doses. No significant differences were observed in the soil cation-exchange capacity. All three of the tested ILs decreased the soil microbial biomass carbon and nitrogen. Additionally, there were few differences among the ILs with different alkyl chain lengths on the tested indicators except for the microbial biomass nitrogen. The present study addressed a gap in the literature regarding the effects of the aforementioned ILs with different alkyl side chains on the physicochemical properties of soil, and the results could provide the basic data for future studies on their toxicity to soil organisms, such as earthworms and soil microbes.

  3. Antibiotic Potency against E. coli Is Enhanced by Channel-Forming Alkyl Lariat Ethers.

    Science.gov (United States)

    Negin, Saeedeh; Patel, Mohit B; Gokel, Michael R; Meisel, Joseph W; Gokel, George W

    2016-11-17

    Several N,N'-bis(n-alkyl-4,13-diaza[18]crown-6) lariat ethers were found to significantly enhance the potency of rifampicin and tetracycline, but not erythromycin and kanamycin, against the non-pathogenic DH5α and K-12 strains of Escherichia coli when administered at levels below their minimum inhibitory concentrations (MICs). The enhancements in antibiotic potency observed for the lariat ethers ranged from three- to 20-fold, depending on the strain of E. coli, the antibiotic, and the lengths of the alkyl chains attached at the macroring nitrogen atoms. The dialkyl lariat ethers, previously thought to only be cation carriers, formed well-behaved, ion-conducting pores in soybean asolectin membranes, as judged by planar bilayer conductance measurements. The ability of lariat ethers to form stable pores, which appeared to be aggregated, depended in part on alkyl chain length and in part on the composition of the bilayer membrane in which they were studied. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Charge properties and bacterial contact-killing of hyperbranched polyurea-polyethyleneimine coatings with various degrees of alkylation

    International Nuclear Information System (INIS)

    Roest, Steven; Mei, Henny C. van der; Loontjens, Ton J.A.; Busscher, Henk J.

    2015-01-01

    Highlights: • Cationic charge density does not reflect bacterial contact-killing by QUAT coatings. • Charge carrier and density reflect bacterial killing by QUAT coatings. • Fluorescein staining cannot distinguish charge carriers in cationic coatings. • Charge carrier and density of QUAT coatings are reflected in the N401.3 eV XPS peak. • The at.% N401.3 eV should be more than 0.45% for effective bacterial contact-killing. - Abstract: Coatings of immobilized-quaternary-ammonium-ions (QUAT) uniquely kill adhering bacteria upon contact. QUAT-coatings require a minimal cationic-charge surface density for effective contact-killing of adhering bacteria of around 10 14 cm −2 . Quaternization of nitrogen is generally achieved through alkylation. Here, we investigate the contribution of additional alkylation with methyl-iodide to the cationic-charge density of hexyl-bromide alkylated, hyperbranched polyurea-polyethyleneimine coatings measuring charge density with fluorescein staining. X-ray-photoelectron-spectroscopy was used to determine the at.% alkylated-nitrogen. Also streaming potentials, water contact-angles and bacterial contact-killing were measured. Cationic-charge density increased with methyl-iodide alkylation times up to 18 h, accompanied by an increase in the at.% alkylated-nitrogen. Zeta-potentials became more negative upon alkylation as a result of shielding of cationiccharges by hydrophobic alkyl-chains. Contact-killing of Gram-positive Staphylococci only occurred when the cationic-charge density exceeded 10 16 cm −2 and was carried by alkylated-nitrogen (electron-binding energy 401.3 eV). Gram-negative Escherichia coli was not killed upon contact with the coatings. There with this study reveals that cationic-charge density is neither appropriate nor sufficient to determine the ability of QUAT-coatings to kill adhering bacteria. Alternatively, the at.% of alkylated-nitrogen at 401.3 eV is proposed, as it reflects both cationic-charge and its

  5. Charge properties and bacterial contact-killing of hyperbranched polyurea-polyethyleneimine coatings with various degrees of alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Roest, Steven [University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, AntoniusDeusinglaan 1, 9713 AV Groningen (Netherlands); Mei, Henny C. van der, E-mail: h.c.van.der.mei@umcg.nl [University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, AntoniusDeusinglaan 1, 9713 AV Groningen (Netherlands); Loontjens, Ton J.A. [University of Groningen, Zernike Institute for Advanced Materials, Department of Polymer Chemistry, Nijenborgh 4, 9747 AG Groningen (Netherlands); Busscher, Henk J. [University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, AntoniusDeusinglaan 1, 9713 AV Groningen (Netherlands)

    2015-11-30

    Highlights: • Cationic charge density does not reflect bacterial contact-killing by QUAT coatings. • Charge carrier and density reflect bacterial killing by QUAT coatings. • Fluorescein staining cannot distinguish charge carriers in cationic coatings. • Charge carrier and density of QUAT coatings are reflected in the N401.3 eV XPS peak. • The at.% N401.3 eV should be more than 0.45% for effective bacterial contact-killing. - Abstract: Coatings of immobilized-quaternary-ammonium-ions (QUAT) uniquely kill adhering bacteria upon contact. QUAT-coatings require a minimal cationic-charge surface density for effective contact-killing of adhering bacteria of around 10{sup 14} cm{sup −2}. Quaternization of nitrogen is generally achieved through alkylation. Here, we investigate the contribution of additional alkylation with methyl-iodide to the cationic-charge density of hexyl-bromide alkylated, hyperbranched polyurea-polyethyleneimine coatings measuring charge density with fluorescein staining. X-ray-photoelectron-spectroscopy was used to determine the at.% alkylated-nitrogen. Also streaming potentials, water contact-angles and bacterial contact-killing were measured. Cationic-charge density increased with methyl-iodide alkylation times up to 18 h, accompanied by an increase in the at.% alkylated-nitrogen. Zeta-potentials became more negative upon alkylation as a result of shielding of cationiccharges by hydrophobic alkyl-chains. Contact-killing of Gram-positive Staphylococci only occurred when the cationic-charge density exceeded 10{sup 16} cm{sup −2} and was carried by alkylated-nitrogen (electron-binding energy 401.3 eV). Gram-negative Escherichia coli was not killed upon contact with the coatings. There with this study reveals that cationic-charge density is neither appropriate nor sufficient to determine the ability of QUAT-coatings to kill adhering bacteria. Alternatively, the at.% of alkylated-nitrogen at 401.3 eV is proposed, as it reflects both

  6. Reactivity patterns of transition metal hydrides and alkyls

    International Nuclear Information System (INIS)

    Jones, W.D. II.

    1979-05-01

    The complex PPN + CpV(CO) 3 H - (Cp=eta 5 -C 5 H 5 and PPN = (Ph 3 P) 2 ) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN + CpV(CO) 3 H - reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN + [CpV(C) 3 X] - and in some cases the binuclear bridging hydride PPN + [CpV(CO) 3 ] 2 H - . The borohydride salt PPN + [CpV(CO) 3 BH 4 ] - has also been prepared. The reaction between CpV(CO) 3 H - and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO) 3 H - . Sodium amalgam reduction of CpRh(CO) 2 or a mixture of CpRh(CO) 2 and CpCo(CO) 2 affords two new anions, PPN + [Cp 2 Rh 3 (CO) 4 ] - and PPN + [Cp 2 RhCo(CO) 2 ] - . CpMo(CO) 3 H reacts with CpMo(CO) 3 R (R=CH 3 ,C 2 H 5 , CH 2 C 6 H 5 ) at 25 to 50 0 C to produce aldehyde RCHO and the dimers [CpMo(CO) 3 ] 2 and [CpMo(CO) 2 ] 2 . In general, CpV(CO) 3 H - appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO) 3 H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO) 3 H - generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO) 3 H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species

  7. Reactivity patterns of transition metal hydrides and alkyls

    Energy Technology Data Exchange (ETDEWEB)

    Jones, W.D. II

    1979-05-01

    The complex PPN/sup +/ CpV(CO)/sub 3/H/sup -/ (Cp=eta/sup 5/-C/sub 5/H/sub 5/ and PPN = (Ph/sub 3/P)/sub 2/) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN/sup +/ CpV(CO)/sub 3/H/sup -/ reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN/sup +/(CpV(C)/sub 3/X)/sup -/ and in some cases the binuclear bridging hydride PPN/sup +/ (CpV(CO)/sub 3/)/sub 2/H/sup -/. The borohydride salt PPN/sup +/(CpV(CO)/sub 3/BH/sub 4/)/sup -/ has also been prepared. The reaction between CpV(CO)/sub 3/H/sup -/ and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO)/sub 3/H/sup -/. Sodium amalgam reduction of CpRh(CO)/sub 2/ or a mixture of CpRh(CO)/sub 2/ and CpCo(CO)/sub 2/ affords two new anions, PPN/sup +/ (Cp/sub 2/Rh/sub 3/(CO)/sub 4/)/sup -/ and PPN/sup +/(Cp/sub 2/RhCo(CO)/sub 2/)/sup -/. CpMo(CO)/sub 3/H reacts with CpMo(CO)/sub 3/R (R=CH/sub 3/,C/sub 2/H/sub 5/, CH/sub 2/C/sub 6/H/sub 5/) at 25 to 50/sup 0/C to produce aldehyde RCHO and the dimers (CpMo(CO)/sub 3/)/sub 2/ and (CpMo(CO)/sub 2/)/sub 2/. In general, CpV(CO)/sub 3/H/sup -/ appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO)/sub 3/H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO)/sub 3/H/sup -/ generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO)/sub 3/H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species.

  8. Embryotoxicity induced by alkylating agents. Some methodological aspects of DNA alkylation studies in murine embryos using ethylmethanesulfonate.

    Science.gov (United States)

    Platzek, T; Bochert, G; Rahm, U; Neubert, D

    1987-05-01

    Synthesis and spectroscopic analysis of some alkylated DNA purine bases are described. HPLC separation methods are developed for the determination of DNA alkylation rates in mammalian embryonic tissues. Following treatment of pregnant mice with the ethylating agent ethylmethanesulfonate (EMS), an appreciable amount of alkylation (ethylation and methylation) was found in the nuclear DNA of the embryos during organogenesis. The results are discussed in context of our thesis that a certain amount of DNA alkylation in the embryos is correlated to the teratogenic potential of alkylating agents.

  9. The Cysteine S-Alkylation Reaction as a Synthetic Method to Covalently Modify Peptide Sequences.

    Science.gov (United States)

    Calce, Enrica; De Luca, Stefania

    2017-01-05

    Synthetic methodologies to chemically modify peptide molecules have long been investigated for their impact in the field of chemical biology. They allow the introduction of biochemical probes useful for studying protein functions, for manipulating peptides with therapeutic potential, and for structure-activity relationship investigations. The commonly used approach was the derivatization of an amino acid side chain. In this regard, the cysteine, for its unique reactivity, has been widely employed as the substrate for such modifications. Herein, we report on methodologies developed to modify the cysteine thiol group through the S-alkylation reaction. Some procedures perform the alkylation of cysteine derivatives, in order to prepare building blocks to be used during the peptide synthesis, whilst some others selectively modify peptide sequences containing a cysteine residue with a free thiol group, both in solution and in the solid phase. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Order in poly(di-n-alkyl itaconate)s revealed by X-ray scattering experiments

    International Nuclear Information System (INIS)

    Holmes, P.F.; Arrighi, V.; McEwen, I.J.; Qian, H.; Terrill, N.J.

    2003-01-01

    The effects of both blending and copolymersiation on local ordering in poly(di-n-alkyl itaconate)s is investigated, as a function of side chain length, using small-angle X-ray scattering. Preliminary results show that local ordering is unaffected by blending in these immiscible materials, however copolymerisation leads to different behaviour. For short side chains the characteristic distance varies smoothly with copolymer composition, but with longer side chains the characteristic separations found for the homopolymers are observed, and these remain unchanged with composition

  11. Order in poly(di-n-alkyl itaconate)s revealed by X-ray scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, P.F.; Arrighi, V. E-mail: v.arrighi@hw.ac.uk; McEwen, I.J.; Qian, H.; Terrill, N.J

    2003-01-01

    The effects of both blending and copolymersiation on local ordering in poly(di-n-alkyl itaconate)s is investigated, as a function of side chain length, using small-angle X-ray scattering. Preliminary results show that local ordering is unaffected by blending in these immiscible materials, however copolymerisation leads to different behaviour. For short side chains the characteristic distance varies smoothly with copolymer composition, but with longer side chains the characteristic separations found for the homopolymers are observed, and these remain unchanged with composition.

  12. The acute toxic effects of 1-alkyl-3-methylimidazolium nitrate ionic liquids on Chlorella vulgaris and Daphnia magna.

    Science.gov (United States)

    Zhang, Cheng; Zhang, Shuai; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Zhou, Tongtong

    2017-10-01

    Given their increasingly widespread application, the toxic effects of ionic liquids (ILs) have become the subject of significant attention in recent years. Therefore, the present study assessed the acute toxic effects of 1-alkyl-3-methylimidazolium nitrate ([C n mim]NO 3 (n = 2, 4, 6, 8, 10, 12)) on Chlorella vulgaris and Daphnia magna. The sensitivity of the tested organism Daphnia magna and the investigated IL concentrations in water using high-performance liquid chromatography (HPLC) were also evaluated to demonstrate the reliability of the present study. The results illustrated that Daphnia magna is indeed sensitive to the reference toxicant and the investigated ILs were stable in the aquatic environment. The 50% effect concentration (EC 50 ) was used to represent the acute toxic effects on Chlorella vulgaris and Daphnia magna. With the increasing alkyl-chain lengths, the toxicity of the investigated ILs increased in both the test organisms. Accordingly, the alkyl-chain lengths can cause significantly toxic effects on aquatic organisms, and Daphnia magna are much more sensitive than Chlorella vulgaris to the imidazolium-based ILs used in the present study. Furthermore, the present study provides more information on the acute toxic effects of 1-alkyl-3-methylimidazolium nitrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Radioiodination of proteins by reductive alkylation

    International Nuclear Information System (INIS)

    Panuska, J.R.; Parker, C.W.

    1987-01-01

    The use of the aliphatic aldehyde, para-hydroxyphenylacetaldehyde as the reactive moiety in the radioiodination of proteins by reductive alkylation is described. The para-hydroxyphenyl group is radiolabeled with 125 I, reacted through its aliphatic aldehyde group with primary amino groups on proteins to form a reversible Schiff base linkage which can then be stabilized with the mild reducing agent NaCNBH 3 . The introduction of the methylene group between the benzene ring and the aldehyde group increases its reactivity with protein amino groups permitting efficient labeling at low aldehyde concentrations. Using this method, radioiodinated proteins with high specific activity can be produced. The reductive alkylation procedure is advantageous in that the labeling conditions are mild, the reaction is specific for lysyl residues, and the modification of the epsilon-ammonium group of lysine results in ionizable secondary amino groups avoiding major changes in protein charge

  14. Palladium Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Engelin, Casper Junker; Fristrup, Peter

    2011-01-01

    are highlighted with emphasis on those leading to C-C bond formation, but where it was deemed necessary for the general understanding of the process closely related C-H oxidations and aminations are also included. It is found that C-H cleavage is most likely achieved by ligand participation which could involve......-H alkylation reaction which is the topic of the current review. Particular emphasis is put on current mechanistic proposals for the three reaction types comprising the overall transformation: C-H activation, nucleophillic addition, and re-oxidation of the active catalyst. Recent advances in C-H bond activation...... an acetate ion coordinated to Pd. Several of the reported systems rely on benzoquinone for re-oxidation of the active catalyst. The scope for nucleophilic addition in allylic C-H alkylation is currently limited, due to demands on pKa of the nucleophile. This limitation could be due to the pH dependence...

  15. The Scarlet Letter of Alkylation: A Mini Review of Selective Alkylating Agents

    Science.gov (United States)

    Oronsky, Bryan T; Reid, Tony; Knox, Susan J; Scicinski, Jan J

    2012-01-01

    If there were a stigma scale for chemotherapy, alkylating agents would be ranked at the top of the list. The chemical term alkylation is associated with nonselective toxicity, an association that dates back to the use of nitrogen mustards during World War I as chemical warfare agents. That this stigma persists and extends to compounds that, through selectivity, attempt to “tame” the indiscriminate destructive potential of alkylation is the subject of this review. Selective alkylation, as it is referred to herein, constitutes an extremely nascent and dynamic field in oncology. The pharmacodynamic response to this selective strategy depends on a delicate kinetic balance between specificity and the rate and extent of binding. Three representative compounds are presented: RRx-001, 3-bromopyruvate, and TH-302. The main impetus for the development of these compounds has been the avoidance of the serious complications of traditional alkylating agents; therefore, it is the thesis of this review that they should not experience stigma by association. PMID:22937173

  16. Photoinduced, copper-catalyzed alkylation of amides with unactivated secondary alkyl halides at room temperature.

    Science.gov (United States)

    Do, Hien-Quang; Bachman, Shoshana; Bissember, Alex C; Peters, Jonas C; Fu, Gregory C

    2014-02-05

    The development of a mild and general method for the alkylation of amides with relatively unreactive alkyl halides (i.e., poor substrates for SN2 reactions) is an ongoing challenge in organic synthesis. We describe herein a versatile transition-metal-catalyzed approach: in particular, a photoinduced, copper-catalyzed monoalkylation of primary amides. A broad array of alkyl and aryl amides (as well as a lactam and a 2-oxazolidinone) couple with unactivated secondary (and hindered primary) alkyl bromides and iodides using a single set of comparatively simple and mild conditions: inexpensive CuI as the catalyst, no separate added ligand, and C-N bond formation at room temperature. The method is compatible with a variety of functional groups, such as an olefin, a carbamate, a thiophene, and a pyridine, and it has been applied to the synthesis of an opioid receptor antagonist. A range of mechanistic observations, including reactivity and stereochemical studies, are consistent with a coupling pathway that includes photoexcitation of a copper-amidate complex, followed by electron transfer to form an alkyl radical.

  17. Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents.

    Science.gov (United States)

    Beranek, D T

    1990-07-01

    Alkylating agents, because of their ability to react directly with DNA either in vitro or in vivo, or following metabolic activation as in the case of the dialkylnitrosamines, have been used extensively in studying the mechanisms of mutagenicity and carcinogenicity. Their occurrence is widespread in the environment and human exposure from natural and pollutant sources is universal. Since most of these chemicals show varying degrees of both carcinogenicity and mutagenicity, and exhibit compound-specific binding patterns, they provide an excellent model for studying molecular dosimetry. Molecular dosimetry defines dose as the number of adducts bound per macromolecule and relates the binding of these adducts to the human mutagenic or carcinogenic response. This review complies DNA alkylation data for both methylating and ethylating agents in a variety of systems and discusses the role these alkylation products plays in molecular mutagenesis.

  18. Manganese-catalyzed Dehydrogenative Alkylation or α-Olefination of Alkyl-N-Heteroaromatics by Alcohols.

    Science.gov (United States)

    Kempe, Rhett; Zhang, Guoying; Irrgang, Torsten; Dietel, Thomas; Kallmeier, Fabian

    2018-05-02

    Catalysis involving earth-abundant transition metals is an option to help save our rare noble metal resources and is especially interesting if novel reactivity or selectivity patterns are observed. We report here on a novel reaction: the dehydrogenative alkylation or α-olefination of alkyl-N-heteroaromatics by alcohols. Manganese complexes developed in our laboratory catalyze the reaction efficiently. Fe and Co complexes stabilized by such ligands are essentially inactive. Hydrogen is liberated during the reaction and bromo or iodo functional groups and olefins can be tolerated. A variety of alkyl-N-heteroaromatics can be functionalized, and benzyl and aliphatic alcohols undergo the reaction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Visible light- and radiation-induced alkylation of pyridine ring with alkanoic acid

    International Nuclear Information System (INIS)

    Sugimori, Akira; Yamada, Tetsuo

    1986-01-01

    Quinoline and 4-methylquinoline are efficiently alkylated with alkanoic acid in the presence of iron(III) sulfate upon visible light-irradiation. Iron(III) sulfate not only accelerates the photoreaction but also increases the yield of alkylation. Gamma-irradiation also brings about the alkylation. In the photo- and radiation-induced alkylation with alkanoic acid, alkyl radicals play important roles. (author)

  20. Alkylation damage by lipid electrophiles targets functional protein systems.

    Science.gov (United States)

    Codreanu, Simona G; Ullery, Jody C; Zhu, Jing; Tallman, Keri A; Beavers, William N; Porter, Ned A; Marnett, Lawrence J; Zhang, Bing; Liebler, Daniel C

    2014-03-01

    Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions.

  1. Alkylation Damage by Lipid Electrophiles Targets Functional Protein Systems*

    Science.gov (United States)

    Codreanu, Simona G.; Ullery, Jody C.; Zhu, Jing; Tallman, Keri A.; Beavers, William N.; Porter, Ned A.; Marnett, Lawrence J.; Zhang, Bing; Liebler, Daniel C.

    2014-01-01

    Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions. PMID:24429493

  2. Conformational explosion: Understanding the complexity of short chain para-dialkylbenzene potential energy surfaces

    Science.gov (United States)

    Mishra, Piyush; Hewett, Daniel M.; Zwier, Timothy S.

    2018-05-01

    The single-conformation ultraviolet and infrared spectroscopy of three short-chain para-dialkylbenzenes (para-diethylbenzene, para-dipropylbenzene, and para-dibutylbenzene) is reported for the jet-cooled, isolated molecules. The present study builds off previous work on single-chain n-alkylbenzenes, where an anharmonic local mode Hamiltonian method was developed to account for stretch-bend Fermi resonance in the alkyl CH stretch region [D. P. Tabor et al., J. Chem. Phys. 144, 224310 (2016)]. The jet-cooled molecules are interrogated using laser-induced fluorescence (LIF) excitation, fluorescence dip infrared spectroscopy, and dispersed fluorescence. The LIF spectra in the S1 ← S0 origin region show a dramatic increase in the number of resolved transitions with increasing length of the alkyl chains, reflecting an explosion in the number of unique low-energy conformations formed when two independent alkyl chains are present. Since the barriers to isomerization of the alkyl chain are similar in size, this results in an "egg carton" shaped potential energy surface. A combination of electronic frequency shift and alkyl CH stretch infrared spectra is used to generate a consistent set of conformational assignments. Using these experimental techniques in conjunction with computational methods, subsets of origin transitions in the LIF excitation spectrum can be classified into different conformational families. Two conformations are resolved in para-diethylbenzene, seven in para-dipropylbenzene, and about nineteen in para-dibutylbenzene. These chains are largely independent of each other as there are no new single-chain conformations induced by the presence of a second chain. A cursory LIF excitation scan of para-dioctylbenzene shows a broad congested spectrum at frequencies consistent with interactions of alkyl chains with the phenyl π cloud.

  3. Copper-catalyzed radical carbooxygenation: alkylation and alkoxylation of styrenes.

    Science.gov (United States)

    Liao, Zhixiong; Yi, Hong; Li, Zheng; Fan, Chao; Zhang, Xu; Liu, Jie; Deng, Zixin; Lei, Aiwen

    2015-01-01

    A simple copper-catalyzed direct radical carbooxygenation of styrenes is developed utilizing alkyl bromides as radical resources. This catalytic radical difunctionalization accomplishes both alkylation and alkoxylation of styrenes in one pot. A broad range of styrenes and alcohols are well tolerated in this transformation. The EPR experiment shows that alkyl halides could oxidize Cu(I) to Cu(II) in this transformation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A new strategy for aromatic ring alkylation in cylindrocyclophane biosynthesis.

    Science.gov (United States)

    Nakamura, Hitomi; Schultz, Erica E; Balskus, Emily P

    2017-08-01

    Alkylation of aromatic rings with alkyl halides is an important transformation in organic synthesis, yet an enzymatic equivalent is unknown. Here, we report that cylindrocyclophane biosynthesis in Cylindrospermum licheniforme ATCC 29412 involves chlorination of an unactivated carbon center by a novel halogenase, followed by a previously uncharacterized enzymatic dimerization reaction featuring sequential, stereospecific alkylations of resorcinol aromatic rings. Discovery of the enzymatic machinery underlying this unique biosynthetic carbon-carbon bond formation has implications for biocatalysis and metabolic engineering.

  5. Toward Efficient Palladium-Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Jensen, Thomas; Fristrup, Peter

    2009-01-01

    Recent breakthroughs have proved that direct palladium (II)-catalyzed allylic C-H alkylation can be achieved. This new procedure shows that the inherent requirement for a leaving group in the Tsuji-Trost palladium-catalyzed allylic alkylation can be lifted. These initial reports hold great promise...... for the development of allylic C-H alkylation into a widely applicable methodology, thus providing a means to enhance synthetic efficiency in these reactions....

  6. Possible targets for the aneugenic activity of alkylating agents

    Energy Technology Data Exchange (ETDEWEB)

    Pellerano, P. [IST-National Institute for Research on Cancer, Genova (Italy); Abbondandolo, A. [Univ. of Genova (Italy); Bonatti, S.; Simili, M. [CNR Institute of Mutagenesis and Differentiation, Pisa (Italy)

    1993-12-31

    Alkylating agents have been of invaluable help in mutation research for half a century. In all tested organisms, they have proved able to induce a large variety of genetic effects, including aneuploidy. Credible molecular models exist to explain the ability of alkylating agents to induce gene mutation and to act as initiators in carcinogenesis as a consequence of DNA alkylation at specific sites. On the contrary, neither the mechanism of aneuploidy induction nor the relevant cellular targets are known.

  7. Falling chains

    OpenAIRE

    Wong, Chun Wa; Yasui, Kosuke

    2005-01-01

    The one-dimensional fall of a folded chain with one end suspended from a rigid support and a chain falling from a resting heap on a table is studied. Because their Lagrangians contain no explicit time dependence, the falling chains are conservative systems. Their equations of motion are shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is inco...

  8. SHORTER MENSTRUAL CYCLES ASSOCIATED WITH CHLORINATION BY-PRODUCTS IN DRINKING WATER

    Science.gov (United States)

    Shorter Menstrual Cycles Associated with Chlorination by-Products in Drinking Water. Gayle Windham, Kirsten Waller, Meredith Anderson, Laura Fenster, Pauline Mendola, Shanna Swan. California Department of Health Services.In previous studies of tap water consumption we...

  9. Development of novel alkylating drugs as anticancer agents.

    Science.gov (United States)

    Izbicka, Elzbieta; Tolcher, Anthony W

    2004-06-01

    Although conventional alkylating drugs have proven efficacy in the treatment of malignancies, the agents themselves are not selective. Therefore, non-specific alkylation of cellular nucleophilic targets may contribute to many of the observed toxic effects. Novel approaches to drug discovery have resulted in candidate agents that are focused on 'soft alkylation'--alkylators with greater target selectivity. This review highlights the discovery of small molecule drugs that bind to DNA with higher selectivity, act in a unique hypoxic tumor environment, or covalently bind specific protein targets overexpressed in cancer, such as topoisomerase II, glutathione transferase pi1, beta-tubulin and histone deacetylase.

  10. Diphenylphosphino Styrene-Containing Homopolymers: Influence of Alkylation and Mobile Anions on Physical Properties.

    Science.gov (United States)

    Jangu, Chainika; Schultz, Alison R; Wall, Candace E; Esker, Alan R; Long, Timothy E

    2016-07-01

    Conventional free radical polymerization and post-alkylation of 4-diphenylphosphino styrene (DPPS) generate a new class of high-molecular-weight phosphonium-containing homopolymers with tunable thermal, viscoelastic, and wetting properties. Post-alkylation and subsequent anion exchange provide an effective method for tuning Tg values and thermal stability as a function of alkyl chain length and counteranion selection (X(-) , BF4 (-) , TfO(-) , and Tf2 N(-) ). Rheological characterization facilitates the generation of time-temperature-superposition (TTS) pseudomaster curves and subsequent analysis of frequency sweeps at various temperatures reveals two relaxation modes corresponding to long-range segmental motion and the onset of viscous flow. Contact angle measurements reveal the influence of counteranion selection on wetting properties, revealing increased contact angles for homopolymers containing nucleophilic counteranions. These investigations provide fundamental insight into phosphonium-containing polymers, aiming to guide future research and applications involving electro-active polymeric devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of side chain position on solar cell performance in cyclopentadithiophene-based copolymers

    International Nuclear Information System (INIS)

    Lee, Sang Kyu; Seo, Jung Hwa; Cho, Nam Sung; Cho, Shinuk

    2012-01-01

    The photovoltaic properties of a series of low band-gap conjugated copolymers, in which alkyl side chains were substituted at various positions, were investigated using donor–acceptor (D–A) conjugated copolymers consisting of a cyclopentadithiophene derivative and dithienyl-benzothiadiazole. The base polymer, which has no alkyl side chains, yielded promising power conversion efficiency of 3.8%. Polymers with alkyl side chains, however, exhibited significantly decreased performance. In addition, the effects of processing additive became negligible. The results indicate that substituted side chains, which were introduced to improve solubility, critically affected the optical and electronic properties of D–A conjugated copolymers. Furthermore, the position of the side chain was also very important for controlling the morphological properties of the D–A conjugated copolymers. - Highlights: ► Effect of side chain position on solar cell performance was investigated. ► Polymer without alkyl chains yielded promising power conversion efficiency of 3.8%. ► Position of side chains critically affected the optical and electronic properties.

  12. Determination of reaction rate constants for alkylation of 4-(p-nitrobenzyl) pyridine by different alkylating agents.

    Science.gov (United States)

    Walles, S A

    1980-02-01

    The rate constants have been determined for the reaction between some different alkylating agents and 4-(p-nitrobenzyl) pyridine (NBP) in methanol. These constants have been compared with those for alkylation of aniline in water. All the constants were lower in methanol than in water but in different degrees. The rate constants of the different alkylating agents have been calculated at a nucleophilic strength n=2. The genetic risk defined as the degree of alkylation of a nucleophile (n=2) is equivalent to the rate constant kn=2 and the target dose. The dependence of the genetic risk on the rate constant (kn=2) is discussed.

  13. Thermogravimetric studies on alkyl methacrylate polymers and poly(alkyl methacrylate)-grafted polypropylene fibers

    International Nuclear Information System (INIS)

    Hayakawa, Kiyoshi; Taoda, Hiroshi; Kawase, Kaoru; Tazawa, Masato; Yamakita, Hiromi

    1986-01-01

    Thermal behavior of several kinds of poly (alkyl methacrylate) and polypropylene-g-poly (alkyl methacrylate) fibers prepared by γ-irradiation was investigated by thermogravimetric measurements with the intermittent analysis of the gaseous products. The degradation of poly (methyl methacrylate) proceeded according to the deploymerization mechanism reproducing the pristine monomer exclusively. The thermogram in inert atmosphere showed the features of a two-step depolymerization, while in air it showed no such a stepwise decrease with the elevating temperature. The dissolution-precipitation treatment of polymer seemed to affect the decomposition behavior. On other alkyl methacrylate polymers, the thermal decomposition generally proceeded also according to the depolymerization mechanism. But, for instance, at least two kinds of products besides its own monomer were formed from poly (isobutyl methacrylate), and their relative fractions differed with the temperature. Polypropylene-g-poly (alkyl methacrylate) fibers showed lowering of initiation temperature of decomposition with the increase in extent of the grafting, and their initiation temperatures of decomposition in air were lower than those in inert atmosphere. (author)

  14. Hydration of urea and alkylated urea derivatives

    Science.gov (United States)

    Kaatze, Udo

    2018-01-01

    Compressibility data and broadband dielectric spectra of aqueous solutions of urea and some of its alkylated derivatives have been evaluated to yield their numbers Nh of hydration water molecules per molecule of solute. Nh values in a broad range of solute concentrations are discussed and are compared to hydration numbers of other relevant molecules and organic ions. Consistent with previous results, it is found that urea differs from other solutes in its unusually small hydration number, corresponding to just one third of the estimated number of nearest neighbor molecules. This remarkable hydration behavior is explained by the large density φH of hydrogen bonding abilities offered by the urea molecule. In terms of currently discussed models of reorientational motions and allied dynamics in water and related associating liquids, the large density φH causes a relaxation time close to that of undisturbed water with most parts of water encircling the solute. Therefore only a small part of disturbed ("hydration") water is left around each urea molecule. Adding alkyl groups to the basic molecule leads to Nh values which, within the series of n-alkylurea derivatives, progressively increase with the number of methyl groups per solute. With n-butylurea, Nh from dielectric spectra, in conformity with many other organic solutes, slightly exceeds the number of nearest neighbors. Compared to such Nh values, hydration numbers from compressibility data are substantially smaller, disclosing incorrect assumptions in the formula commonly used to interpret the experimental compressibilities. Similar to other series of organic solutes, effects of isomerization have been found with alkylated urea derivatives, indicating that factors other than the predominating density φH of hydrogen bond abilities contribute also to the hydration properties.

  15. Multifunctional poly(alkyl methacrylate) films for dental care

    International Nuclear Information System (INIS)

    Nielsen, Birthe V; Nevell, Thomas G; Barbu, Eugen; Smith, James R; Tsibouklis, John; Rees, Gareth D

    2011-01-01

    Towards the evaluation of non-permanent dental coatings for their capacity to impart dental-care benefits, thin films of a homologous series of comb-like poly(alkyl methacrylate)s (ethyl to octadecyl) have been deposited, from aqueous latex formulations, onto dentally relevant substrates. AFM studies have shown that the thickness (40-300 nm) and surface roughness (8-12 nm) of coherent polymer films are influenced by the degree of polymerization and by the length of the pendant chain. Of the polymers under consideration, poly(butyl methacrylate) formed a close-packed film that conferred to dental substrates a high degree of inhibition to acid-mediated erosion (about 27%), as evaluated by released-phosphate determinations. The potential utility of the coatings to act as anti-sensitivity barriers has been evaluated by determining the hydraulic conductance of coated bovine-dentine substrates; single treatments of dentine discs with poly(butyl methacrylate) or with poly(ethyl methacrylate) effected mean respective reductions in fluid flow of about 23% with respect to water-treated controls; repeated applications of the poly(butyl methacrylate) latex led to mean reductions in fluid flow of about 80%. Chromometric measurements have shown that pellicle-coated hydroxyapatite discs treated with poly(butyl methacrylate), poly(hexyl methacrylate) or poly(lauryl methacrylate) exhibit significant resistance to staining by food chromogens.

  16. Perfluorinated alkylated substances (PFAS) in the European Nordic environment

    Energy Technology Data Exchange (ETDEWEB)

    Berger, U. [Norwegian Institute of Air Research (NILU), Tromso (Norway); Jaernberg, U. [Institute of Applied Environmental Research (ITM), Stockholm (Sweden); Kallenborn, R. [Norwegian Institute of Air Research (NILU), Kjeller (Norway)

    2004-09-15

    Perfluorinated alkylated substances (PFAS) have been industrially produced for several decades and are applied as stain and water repellents for surface treatment of textiles, carpets, leather and paper products. Perfluorooctane sulfonate (PFOS), a degradation product of several PFAS, has recently gained considerable attention because of its ubiquitous distribution in the environment and its presence in human blood plasma. Though most of the production volume of PFOS-based chemicals has been voluntarily phased out by the manufacturers, similar compounds with perfluorinated chains, including perfluorinated carboxylic acids, continue to be employed for comparable applications. A first screening project on the distribution of PFAS in the environment of five Nordic countries was supported and financed by the Nordic Council of Ministers through the Chemicals Group and the Environmental Monitoring Group and national institutions. The aim of the study was to assess the levels and distribution of PFAS in the Nordic environment and to trace differences in contaminant concentrations and patterns between different countries and types of matrices.

  17. Multifunctional poly(alkyl methacrylate) films for dental care

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Birthe V; Nevell, Thomas G; Barbu, Eugen; Smith, James R; Tsibouklis, John [School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DT (United Kingdom); Rees, Gareth D [GlaxoSmithKline R and D, St George' s Avenue, Weybridge, Surrey, KT13 0DE (United Kingdom)

    2011-02-15

    Towards the evaluation of non-permanent dental coatings for their capacity to impart dental-care benefits, thin films of a homologous series of comb-like poly(alkyl methacrylate)s (ethyl to octadecyl) have been deposited, from aqueous latex formulations, onto dentally relevant substrates. AFM studies have shown that the thickness (40-300 nm) and surface roughness (8-12 nm) of coherent polymer films are influenced by the degree of polymerization and by the length of the pendant chain. Of the polymers under consideration, poly(butyl methacrylate) formed a close-packed film that conferred to dental substrates a high degree of inhibition to acid-mediated erosion (about 27%), as evaluated by released-phosphate determinations. The potential utility of the coatings to act as anti-sensitivity barriers has been evaluated by determining the hydraulic conductance of coated bovine-dentine substrates; single treatments of dentine discs with poly(butyl methacrylate) or with poly(ethyl methacrylate) effected mean respective reductions in fluid flow of about 23% with respect to water-treated controls; repeated applications of the poly(butyl methacrylate) latex led to mean reductions in fluid flow of about 80%. Chromometric measurements have shown that pellicle-coated hydroxyapatite discs treated with poly(butyl methacrylate), poly(hexyl methacrylate) or poly(lauryl methacrylate) exhibit significant resistance to staining by food chromogens.

  18. Self-Assembly of Alkylammonium Chains on Montmorillonite: Effect of Interlayer Cations, CEC, and Chain Length

    Science.gov (United States)

    Chen, Hua; Li, Yingjun; Zhou, Yuanlin; Wang, Shanqiang; Zheng, Jian; He, Jiacai

    2017-12-01

    Recently, polymeric materials have been filled with synthetic or natural inorganic compounds in order to improve their properties. Especially, polymer clay nanocomposites have attracted both academic and industrial attention. Currently, the structure and physical phenomena of organoclays at molecular level are difficultly explained by existing experimental techniques. In this work, molecular dynamics (MD) simulation was executed using the CLAYFF and CHARMM force fields to evaluate the structural properties of organoclay such as basal spacing, interlayer density, energy and the arrangement of alkyl chains in the interlayer spacing. Our results are in good agreement with available experimental or other simulation data. The effects of interlayer cations (Na+, K+, Ca2+), the cation exchange capacity, and the alkyl chain length on the basal spacing and the structural properties are estimated. These simulations are expected to presage the microstructure of organo-montmorillonite and lead relevant engineering applications.

  19. Sorbate-nitrite interactions: acetonitrile oxide as an alkylating agent.

    Science.gov (United States)

    Pérez-Prior, M Teresa; Gómez-Bombarelli, Rafael; González-Pérez, Marina; Manso, José A; García-Santos, M Pilar; Calle, Emilio; Casado, Julio

    2009-07-01

    Because chemical species with DNA-damaging and mutagenic activity are formed in sorbate-nitrite mixtures and because sorbic acid sometimes coexists with nitrite occurring naturally or incorporated as a food additive, the study of sorbate-nitrite interactions is important. Here, the alkylating potential of the products resulting from such interactions was investigated. Drawn were the following conclusions: (i) Acetonitrile oxide (ACNO) is the compound responsible for the alkylating capacity of sorbate-nitrite mixtures; (ii) ACNO alkylates 4-(p-nitrobenzyl)pyridine (NBP), a trap for alkylating agents with nucleophilic characteristics similar to those of DNA bases, forming an adduct (AD; epsilon = 1.4 x 10(4) M(-1) cm(-1); lambda = 519 nm); (iii) the NBP alkylation reaction complies with the rate equation, r = d[AD]/dt = k(alk)(ACNO)[ACNO][NBP]-k(hyd)(AD)[AD], k(alk)(ACNO) being the NBP alkylation rate constant for ACNO and k(hyd)(AD) the rate constant for the adduct hydrolysis reaction; (iv) the small fraction of ACNO forming the adduct with NBP, as well as the small magnitude of the quotient (k(alk) (ACNO)/k(hyd)(ACNO)) as compared with those reported for other alkylating agents, such as some lactones and N-alkyl-N-nitrosoureas, reveals the ACNO effective alkylating capacity to be less significant; (v) the low value of the NBP-ACNO adduct life (defined as the total amount of adduct present along the progression of the NBP alkylation per unit of alkylating agent concentration) points to the high instability of this adduct; and (vi) the obtained results are in accordance with the low carcinogenicity of ACNO.

  20. Partitioning behaviour of perfluorinated alkyl contaminants between water, sediment and fish in the Orge River (nearby Paris, France)

    International Nuclear Information System (INIS)

    Labadie, Pierre; Chevreuil, Marc

    2011-01-01

    This paper reports on the partitioning behaviour of 15 perfluorinated compounds (PFCs), including C 4 -C 10 sulfonates and C 5 -C 14 carboxylic acids, between water, sediment and fish (European chub, Leuciscus cephalus) in the Orge River (nearby Paris). Total PFC levels were 73.0 ± 3.0 ng L -1 in water and 8.4 ± 0.5 ng g -1 in sediment. They were in the range 43.1-4997.2 ng g -1 in fish, in which PFC tissue distribution followed the order plasma > liver > gills > gonads > muscle. Sediment-water distribution coefficients (log K d ) and bioaccumulation factors (log BAF) were in the range 0.8-4.3 and 0.9-6.7, respectively. Both distribution coefficients positively correlated with perfluoroalkyl chain length. Field-based biota-sediment accumulation factors (BSAFs) are also reported, for the first time for PFCs other than perfluorooctane sulfonate. log BSAF ranged between -1.3 and 1.5 and was negatively correlated with the perfluoroalkyl chain length in the case of carboxylic acids. - Research highlights: → PFC tissue distribution in European chub followed the order plasma > liver > gills > gonads > muscle. → K d and BAF correlated with PFC alkyl chain length. → BSAF negatively correlated with the perfluoroalkyl chain length in the case of carboxylic acids. → BSAF did not correlate with alkyl chain length of sulfonates. - Sediment-water, biota-water and biota-sediment partitioning coefficients were determined for perfluorinated acids and sulfonates and were generally correlated with alkyl chain length.

  1. N-Terminal Domains in Two-Domain Proteins Are Biased to Be Shorter and Predicted to Fold Faster Than Their C-Terminal Counterparts

    Directory of Open Access Journals (Sweden)

    Etai Jacob

    2013-04-01

    Full Text Available Computational analysis of proteomes in all kingdoms of life reveals a strong tendency for N-terminal domains in two-domain proteins to have shorter sequences than their neighboring C-terminal domains. Given that folding rates are affected by chain length, we asked whether the tendency for N-terminal domains to be shorter than their neighboring C-terminal domains reflects selection for faster-folding N-terminal domains. Calculations of absolute contact order, another predictor of folding rate, provide additional evidence that N-terminal domains tend to fold faster than their neighboring C-terminal domains. A possible explanation for this bias, which is more pronounced in prokaryotes than in eukaryotes, is that faster folding of N-terminal domains reduces the risk for protein aggregation during folding by preventing formation of nonnative interdomain interactions. This explanation is supported by our finding that two-domain proteins with a shorter N-terminal domain are much more abundant than those with a shorter C-terminal domain.

  2. Direct, Regioselective N-Alkylation of 1,3-Azoles.

    Science.gov (United States)

    Chen, Shuai; Graceffa, Russell F; Boezio, Alessandro A

    2016-01-04

    Regioselective N-alkylation of 1,3-azoles is a valuable transformation. Organomagnesium reagents were discovered to be competent bases to affect regioselective alkylation of various 1,3-azoles. Counterintuitively, substitution selectively occurred at the more sterically hindered nitrogen atom. Numerous examples are provided, on varying 1,3-azole scaffolds, with yields ranging from 25 to 95%.

  3. Alkylation of hydrothiophosphoryl compounds in conditions of interphase catalysis

    International Nuclear Information System (INIS)

    Aladzheva, I.M.; Odinets, I.L.; Petrovskij, P.V.; Mastryukova, T.A.; Kabachkin, M.I.

    1993-01-01

    A method of interphase catalysis permitted to develop a common method for synthesis of compounds with thiophosphoryl group. The effect of nature of hydrothiophosphoryl compound, alkylating agent, two-phase system and reaction conditions on alkylation product yields was investigated in detail

  4. Oxidative Umpolung α‐Alkylation of Ketones

    DEFF Research Database (Denmark)

    Shneider, O. Svetlana; Pisarevsky, Evgeni; Fristrup, Peter

    2015-01-01

    We disclose a hypervalent iodine mediated α-alkylative umpolung reaction of carbonyl compounds with dialkylzinc as the alkyl source. The reaction is applicable to all common classes of ketones including 1,3-dicarbonyl compounds and regular ketones via their lithium enolates. The α...

  5. Grafting C8-C16 alkyl groups altered the self-assembly and curcumin –loading properties of sodium caseinate in water

    OpenAIRE

    Yaqiong Zhang; Puyu Yang; Fangyi Yao; Jie Liu; Liangli (Lucy) Yu

    2018-01-01

    The data presented here are related to the research article entitled “Synthesis and characterization of alkylated caseinate, and its structure-curcumin loading property relationship in water” (Zhang et al., 2018) [1]. This data article reports the detailed spectra information for 1H NMR, 13C NMR and UPLC-Q-TOF MS of the N-succinimidyl fatty acid esters with various alkyl chain lengths (Cn-NHSs, n = 8, 12, 14 and 16). 1H NMR, 13C NMR and UPLC-Q-TOF MS spectra for C16-NHS are shown as an exampl...

  6. 1-O-alkyl-2-(omega-oxo)acyl-sn-glycerols from shark oil and human milk fat are potential precursors of PAF mimics and GHR

    DEFF Research Database (Denmark)

    Hartvigsen, Karsten; Ravandi, A.; Harkewicz, R.

    2006-01-01

    This study examines the feasibility that peroxidation and lipolysis of 1-O-alkyl-2,3-diacyl-sn-glycerols (DAGE) found in shark liver oil and human milk fat constitutes a potential source of dietary precursors of platelet activating factor (PAF) mimics and of gamma-hydroxybutyrate (GHB). Purified...... yielded 1-O-octadecyl-2-(9-oxo)nonanoyl-sn-glycerol, as the major core aldehyde. Because diradylglycerols with short fatty chains are absorbed in the intestine and react with cytidine diphosphate-choline in the enterocytes, it is concluded that formation of such PAF mimics as 1-O-alkyl-2-(omega...

  7. Preparation of trialkylindium by alkylation of metallic indium

    International Nuclear Information System (INIS)

    Eremeev, I.V.; Danov, S.M.; Sakhipov, V.R.

    1995-01-01

    The investigation results on production of trialkyl indium by alkylation of metallic indium are presented. In contradistinction to the known techniques for the production of trialkyls on indium by alkylation it is suggested to separate the synthesis into two steps. At the first step indium is alkylated by alkylhalide to alkyl indium halide, and at the second alkylation is carried out using. Grignard reagent. The techniques for preparation of trimethyl- and triethylindium, developed on the bases of this scheme, are noted for good reproducibility, allow to preclude, agglomeration of indium during the synthesis, as well as to reduce the consumption coefficients, and amounts, of the introduced starting reagents, i.e. magnesium and alkylhalide. Refs. 16

  8. Shorter height is related to lower cardiovascular disease risk – A narrative review

    Directory of Open Access Journals (Sweden)

    Thomas T. Samaras

    2013-01-01

    Full Text Available Numerous Western studies have shown a negative correlation between height and cardiovascular disease. However, these correlations do not prove causation. This review provides a variety of studies showing short people have little to no cardiovascular disease. When shorter people are compared to taller people, a number of biological mechanisms evolve favoring shorter people, including reduced telomere shortening, lower atrial fibrillation, higher heart pumping efficiency, lower DNA damage, lower risk of blood clots, lower left ventricular hypertrophy and superior blood parameters. The causes of increased heart disease among shorter people in the developed world are related to lower income, excessive weight, poor diet, lifestyle factors, catch-up growth, childhood illness and poor environmental conditions. For short people in developed countries, the data indicate that a plant-based diet, leanness and regular exercise can substantially reduce the risk of cardiovascular disease.

  9. Using ethane and butane as probes to the molecular structure of 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide ionic liquids.

    Science.gov (United States)

    Costa Gomes, Margarida F; Pison, Laure; Pensado, Alfonso S; Pádua, Agilio A H

    2012-01-01

    In this work, we have studied the solubility and the thermodynamic properties of solvation, between 298 and 343 K and at pressures close to atmospheric, of ethane and n-butane in several ionic liquids based on the bis[(trifluoromethyl) sulfonyl]imide anion and on 1-alkyl-3-methylimidazolium cations, [CnC1Im] [NTf2], with alkyl side-chains varying from two to ten carbon atoms. The solubility of butane is circa one order of magnitude larger than that of ethane with mole fractions as high as 0.15 in [C10C1Im][NTf2] at 300 K. The solubilities of both n-butane and ethane gases are higher for ionic liquids with longer alkyl chains. The behaviour encountered is explained by the preferential solvation of the gases in the non-polar domains of the solvents, the larger solubility of n-butane being attributed to the dispersive contributions to the interaction energy. The rise in solubility with increasing size of the alkyl-side chain is explained by a more favourable entropy of solvation in the ionic liquids with larger cations. These conclusions are corroborated by molecular dynamics simulation studies.

  10. UV absorption spectra, kinetics and mechanism for alkyl and alkyl peroxy radicals originating from t-butyl alcohol

    DEFF Research Database (Denmark)

    Langer, S.; Ljungström, E.; Sehested, J.

    1994-01-01

    Alkyl and alkyl peroxy radicals from 1-butyl alcohol (TBA), HOC (CH3)2CH2. and HOC(CH3)2CH2O2. have been studied in the ps phase at 298 K. Two techniques were used: pulse radiolysis UV absorption to measure the spectra and kinetics, and long path-length Fourier transform infrared spectroscopy (FTIR...

  11. Alkylation of terminal alkynes with transient σ-alkylpalladium(II) complexes: a carboalkynylation route to alkyl-substituted alkynes.

    Science.gov (United States)

    Zhou, Ming-Bo; Huang, Xiao-Cheng; Liu, Yan-Yun; Song, Ren-Jie; Li, Jin-Heng

    2014-02-10

    A mild and general alkylation of terminal alkynes with transient σ-alkylpalladium(II) complexes for assembling alkyl-substituted alkynes is described. This method represents a new way to the use of transient σ-alkylpalladium(II) complexes in organic synthesis through 1,2-carboalkynylation of alkenes. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cu(I)-Catalyzed Enantioselective Friedel-Crafts Alkylation of Indoles with 2-Aryl-N-sulfonylaziridines as Alkylating Agents.

    Science.gov (United States)

    Ge, Chen; Liu, Ren-Rong; Gao, Jian-Rong; Jia, Yi-Xia

    2016-07-01

    A highly enantioselective Friedel-Crafts alkylation of indoles with N-sulfonylaziridines as alkylating agents has been developed by utilizing the complex of Cu(CH3CN)4BF4/(S)-Segphos as a catalyst. A range of optically active tryptamine derivatives are obtained in good to excellent yields and enantioselectivities (up to >99% ee) via a kinetic resolution process.

  13. Shorter telomeres in peripheral blood mononuclear cells from older persons with sarcopenia: results from an exploratory study

    Directory of Open Access Journals (Sweden)

    Emanuele eMarzetti

    2014-08-01

    Full Text Available Background. Telomere shortening in peripheral blood mononuclear cells (PBMCs has been associated with biological age and several chronic degenerative diseases. However, the relationship between telomere length and sarcopenia, a hallmark of the aging process, is unknown. The aim of the present study was therefore to determine whether PBMC telomeres obtained from sarcopenic older persons were shorter relative to non-sarcopenic peers. We further explored if PBMC telomere length was associated with frailty, a major clinical correlate of sarcopenia.Methods. Analyses were conducted in 142 persons aged >/= 65 years referred to a geriatric outpatient clinic (University Hospital. The presence of sarcopenia was established according to the European Working Group on Sarcopenia in Older People criteria, with bioelectrical impedance analysis used for muscle mass estimation. The frailty status was determined by both the Fried’s criteria (physical frailty, PF and a modified Rockwood’s frailty index (FI. Telomere length was measured in PBMCs by quantitative real-time polymerase chain reaction according to the Telomere/Single copy gene ratio (T/S method.Results. Among 142 outpatients (mean age 75.0 ± 6.5 years, 59.2% women, sarcopenia was diagnosed in 23 individuals (19.3%. The PF phenotype was detected in 74 participants (52.1%. The average FI score was 0.46 ± 0.17. PBMC telomeres were shorter in sarcopenic subjects (T/S = 0.21; 95% CI: 0.18 – 0.24 relative to non-sarcopenic individuals (T/S = 0.26; 95%: CI: 0.24 – 0.28; p = 0.01, independent of age, gender, smoking habit, or comorbidity. No significant associations were determined between telomere length and either PF or FI.Conclusion. PBMC telomere length, expressed as T/S values, is shorter in older outpatients with sarcopenia. The cross-sectional assessment of PBMC telomere length is not sufficient at capturing the complex, multidimensional syndrome of frailty.

  14. Dynamic studies of poly(di-n-alkyl itaconate)s

    CERN Document Server

    Arrighi, V; Gagliardi, S; McEwen, I J; Telling, M T F

    2002-01-01

    We report a preliminary dynamic study of poly(di-n-alkyl itaconate)s with varying side chain length n. QENS measurements were carried out on two backscattering spectrometers, IRIS at ISIS and IN10 at the ILL in the temperature range of 4 to 350 K. We show that molecular motion can be detected well below the polymer glass transition for all samples. It is possible to distinguish different dynamic processes. The temperature range over which these are observed is dependent on the length of the side chain, n. The intermediate scattering function, I(Q,t), was determined from the IRIS and found to obey time-temperature superposition. We show that the I(Q,t) data at different temperatures can be overlapped using the same time-scale shift factors, indicating that the relaxation process is common to all the polymers investigated. (orig.)

  15. Synthesis and evaluation of N,N-di-alkyl-2-methoxyacetamides for the separation of U(VI) and Pu(IV) from nitric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Kumaresan, R.; Prathibha, T.; Selvan, B. Robert; Venkatesan, K.A.; Antony, M.P. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Fuel Chemistry Div.

    2017-07-01

    The homologs of N,N-di-alkyl-2-methoxyacetamides (DAMeOA) having three different alkyl chains varying from hexyl to decyl (C{sub 6}, C{sub 8} and C{sub 10}) were synthesized and characterized by NMR and IR spectral analyses. Extraction behavior of U(VI) and Pu(IV) from nitric acid medium in a solution of 0.5 M of DAMeOA in n-dodecane (n-DD) was studied and the results were compared with those obtained using N,N-di-hexyloctanamide (DHOA) in n-dodecane. The effect of various parameters on the distribution ratio of U(VI) and Pu(IV) in DAMeOA was studied. The extraction of nitric acid increased with decrease in chain length of alkyl group attached to amidic nitrogen atom of DAMeOA and the conditional nitric acid extraction constant was determined. The extraction of nitric acid in DAMeOA/n-DD resulted in the formation of third phase in organic phase and the third phase occurred early with DAMeOA having smaller alkyl chain length. In contrast to this, the distribution ratio (D) of U(VI) and Pu(IV) in DAMeOA/n-DD increased with increase in the concentration of nitric acid and with increase in the chain length of alkyl group attached to amidic nitrogen atom of DAMeOA. The stoichiometry of the metal - solvate was determined from the slope of extraction data. Quantitative recovery of uranium and plutonium from the loaded organic phase was achieved using dilute nitric acid.

  16. Globular, Sponge-like to Layer-like Morphological Transition in 1-n-Alkyl-3-methylimidazolium Octylsulfate Ionic Liquid Homologous Series.

    Science.gov (United States)

    Kapoor, Utkarsh; Shah, Jindal K

    2018-01-11

    Segregation of polar and nonpolar domains in ionic liquids for which either the cation or anion is responsible for inducing nonpolar domains is well understood. On the other hand, information regarding the nanoscale heterogeneities originating due to the presence of nonpolar content on both the ions is rudimentary at this point. The present contribution is aimed at addressing this question and focuses on a molecular dynamics simulation study to probe nanoscale structural and aggregation features of the 1-n-alkyl-3-methylimidazolium [C n mim] octylsulfate [C 8 SO 4 ] ionic liquid homologous series (n = 2, 4, 6, 8, 10, and 12). The objective of this work is to determine the effect of increasing alkyl chain length in the cation on nonpolar domain formation, especially when the alkyl chain lengths from both the ions participate in defining such domains. The results indicate that all the ionic liquids form nonpolar domains, morphology of which gradually changes from globular, sponge-like to layer-like structure with increase in the cationic alkyl chain length. The length of the nonpolar domains calculated from the total structure factor for [C 10 mim][C 8 SO 4 ] is considerably higher than that reported for other imidazolium-based ionic liquid containing smaller anions. The structure factor for [C 12 mim][C 8 SO 4 ] ionic liquid contains multiple intermediate peaks separating the charge alternation peak and pre-peak, which points to nonpolar domains of varying lengths, an observation that remains to be validated. Analysis of the heterogeneous order parameters and orientational correlation functions of the alkyl chains further suggests an increase in the spatial heterogeneity and long-range order along the homologous series. The origin of rich diversity of structures obtained by introducing nonpolar content on both the ions is discussed.

  17. Impact of the long chain omega-acylceramides on the stratum corneum lipid nanostructure. Part 1: Thermotropic phase behaviour of CER[EOS] and CER[EOP] studied using X-ray powder diffraction and FT-Raman spectroscopy.

    Science.gov (United States)

    Kessner, Doreen; Brezesinski, Gerald; Funari, Sergio S; Dobner, Bodo; Neubert, Reinhard H H

    2010-01-01

    The stratum corneum (SC), the outermost layer of the mammalian skin, is the main skin barrier. Ceramides (CERs) as the major constituent of the SC lipid matrix are of particular interest. At the moment, 11 classes of CERs are identified, but the effect of each single ceramide species is still not known. Therefore in this article, the thermotropic behaviour of the long chain omega-acylceramides CER[EOS] and CER[EOP] was studied using X-ray powder diffraction and FT-Raman spectroscopy. It was found that the omega-acylceramides CER[EOS] and CER[EOP] do not show a pronounced polymorphism which is observed for shorter chain ceramides as a significant feature. The phase behaviour of both ceramides is strongly influenced by the extremely long acyl-chain residue. The latter has a much stronger influence compared with the structure of the polar head group, which is discussed as extremely important for the appearance of a rich polymorphism. Despite the strong influence of the long chain, the additional OH-group of the phyto-sphingosine type CER[EOP] influences the lamellar repeat distance and the chain packing. The less polar sphingosine type CER[EOS] is stronger influenced by the long acyl-chain residue. Hydration is necessary for the formation of an extended hydrogen-bonding network between the polar head groups leading to the appearance of a long-periodicity phase (LPP). In contrast, the more polar CER[EOP] forms the LPP with densely packed alkyl chains already in the dry state.

  18. Antimitotic antitumor agents: synthesis, structure-activity relationships, and biological characterization of N-aryl-N'-(2-chloroethyl)ureas as new selective alkylating agents.

    Science.gov (United States)

    Mounetou, E; Legault, J; Lacroix, J; C-Gaudreault, R

    2001-03-01

    A series of N-aryl-N'-(2-chloroethyl)ureas (CEUs) and derivatives were synthesized and evaluated for antiproliferative activity against a wide panel of tumor cell lines. Systematic structure--activity relationship (SAR) studies indicated that: (i) a branched alkyl chain or a halogen at the 4-position of the phenyl ring or a fluorenyl/indanyl group, (ii) an exocyclic urea function, and (iii) a N'-2-chloroethyl moiety were required to ensure significant cytotoxicity. Biological experiments, such as immunofluorescence microscopy, confirmed that these promising compounds alter the cytoskeleton by inducing microtubule depolymerization via selective alkylation of beta-tubulin. Subsequent evaluations demonstrated that potent CEUs were weak alkylators, were non-DNA-damaging agents, and did not interact with the thiol function of either glutathione or glutathione reductase. Therefore, CEUs are part of a new class of antimitotic agents. Finally, among the series of CEUs evaluated, compounds 12, 15, 16, and 27 were selected for further in vivo trials.

  19. Cytotoxicity of Poly(Alkyl Cyanoacrylate Nanoparticles

    Directory of Open Access Journals (Sweden)

    Einar Sulheim

    2017-11-01

    Full Text Available Although nanotoxicology has become a large research field, assessment of cytotoxicity is often reduced to analysis of one cell line only. Cytotoxicity of nanoparticles is complex and should, preferentially, be evaluated in several cell lines with different methods and on multiple nanoparticle batches. Here we report the toxicity of poly(alkyl cyanoacrylate nanoparticles in 12 different cell lines after synthesizing and analyzing 19 different nanoparticle batches and report that large variations were obtained when using different cell lines or various toxicity assays. Surprisingly, we found that nanoparticles with intermediate degradation rates were less toxic than particles that were degraded faster or more slowly in a cell-free system. The toxicity did not vary significantly with either the three different combinations of polyethylene glycol surfactants or with particle size (range 100–200 nm. No acute pro- or anti-inflammatory activity on cells in whole blood was observed.

  20. Novel Profluorescent Nitroxides for Monitoring Alkyl Radical Reactions During Radiation Degradation

    International Nuclear Information System (INIS)

    George, G.

    2006-01-01

    Hindered amine stabilizers (HAS) are effective at retarding the photo-oxidative and high energy radiation degradation of PP and in certain circumstances, also thermo-oxidative degradation. The effectiveness of HAS as retarders of oxidation relies on the oxidation of the N-C bond by polymer hydroperoxide, ROOH, to form the nitroxyl group -NO which is the scavenger of polymer alkyl radicals, R. This reaction, which produces the alkoxy amine: -NO-R, must be competitive with the reaction of R with oxygen (which gives the chain-carrying peroxy radical, RO 2 ) if this stabilization mechanism is to be important in the inhibition of radiation-induced oxidative degradation of polyolefins by HAS. The rate of this reaction is high and in solution the rate coefficient is from 1 to 9x10 8 l mol - 1 s - 1. The efficient radical trapping by nitroxides has been widely employed in spin-trapping studies by electron spin resonance (esr) spectroscopy]. In addition to the hindered piperidine structure of commercial HAS, more rigid aromatic systems have been studied that are more stable to oxidative degradation and are more efficient at scavenging alkyl radicals. One such family is the iso-indoline nitroxide system, TMDBIO, shown below which, as it contains the phenanthrene fluorophore, is termed phenanthrene nitroxide. This nitroxide only becomes fluorescent when it reacts with alkyl radicals or is reduced and is termed profluorescent. TMDBIO has a vanishingly small fluorescence quantum yield (φ∼10 - 4) due to the enhanced intersystem crossing from the first excited singlet state to the ground state due to electron exchange interactions of the nitroxyl radical. When the nitroxide traps an alkyl radical, R, the resulting alkoxy amine is fluorescent (φ∼10 - 1) and the emission intensity is a measure of the number of reactions that have occurred. This property may be exploited by using quantitative fluorescence spectroscopy to follow the reaction of the nitroxide with alkyl radicals

  1. Summertime C1-C5 alkyl nitrates over Beijing, northern China: Spatial distribution, regional transport, and formation mechanisms

    Science.gov (United States)

    Sun, Jingjing; Li, Zeyuan; Xue, Likun; Wang, Tao; Wang, Xinfeng; Gao, Jian; Nie, Wei; Simpson, Isobel J.; Gao, Rui; Blake, Donald R.; Chai, Fahe; Wang, Wenxing

    2018-05-01

    Alkyl nitrates (RONO2) are an important class of nitrogen oxides reservoirs in the atmosphere and play a key role in tropospheric photochemistry. Despite the increasing concern for photochemical air pollution over China, the knowledge of characteristics and formation mechanisms of alkyl nitrates in this region is limited. We analyzed C1-C5 alkyl nitrates measured in Beijing at a polluted urban site in summer 2008 and at a downwind rural site in summers of both 2005 and 2008. Although the abundances of NOx and hydrocarbons were much lower at the rural site, the mixing ratios of RONO2 were comparable between both sites, emphasizing the regional nature of alkyl nitrate pollution. Regional transport of urban plumes governed the elevated RONO2 levels at the rural site. The concentrations of C1-C2 RONO2 were significantly higher at the rural site in 2008 compared to 2005 despite a decline in NOx and anthropogenic VOCs, mainly owing to enhanced contributions from biogenic VOCs. The photochemical formation regimes of RONO2 were evaluated by both a simplified sequential reaction model and a detailed master chemical mechanism box model. The observed C4-C5 RONO2 levels can be well explained by the photochemical degradation of n-butane and n-pentane, while the sources of C1-C3 RONO2 were rather complex. In addition to the C1-C3 alkanes, biogenic VOCs and reactive aromatics were also important precursors of methyl nitrate, and alkenes and long-chain alkanes contributed to the formation of C2-C3 RONO2. This study provides insights into the spatial distribution, inter-annual variation and photochemical formation mechanisms of alkyl nitrate pollution over the Beijing area.

  2. An adaptive response to alkylating agents in Aspergillus nidulans.

    Science.gov (United States)

    Hooley, P; Shawcross, S G; Strike, P

    1988-11-01

    A simple method is described for demonstrating adaptation to alkylation damage in Aspergillus nidulans. One wild type, two MNNG-sensitive, and one MNNG-resistant strain all showed improvement in colony growth when challenged with MNNG following appropriate inducing pretreatments. Other alkylating agents (MMS, EMS) could also adapt mycelium to later MNNG challenge, while 4NQO and UV could not. The inducible effect was not transmissible through conidia. A standard reversion assay based upon methG proved impractical for studying mutation frequencies during alkylation treatments owing to variations in MNNG resistance amongst revertants.

  3. A yeast mutant specifically sensitive to bifunctional alkylation

    International Nuclear Information System (INIS)

    Ruhland, A.; Kircher, M.; Wilborn, F.; Brendel, M.

    1981-01-01

    A mutation that specifically confers sensitivity to bi- and tri-functional alkylating agents is presented. No or little cross-sensitivity to radiation or monofunctional agents could be detected. Sensitivity does not seem to be due to preferential alkylation of mutant DNA as parent and mutant strain exhibit the same amount of DNA alkylation and the same pattern of DNA lesions including interstrand crosslinks. The mutation is due to a defect in a nuclear gene which has been designated SNM1 (sensitive to nitrogen mustard); it may control an important step in the repair of DNA interstrand crosslinks (orig.(AJ)

  4. Grafting C8-C16 alkyl groups altered the self-assembly and curcumin –loading properties of sodium caseinate in water

    Directory of Open Access Journals (Sweden)

    Yaqiong Zhang

    2018-02-01

    Full Text Available The data presented here are related to the research article entitled “Synthesis and characterization of alkylated caseinate, and its structure-curcumin loading property relationship in water” (Zhang et al., 2018 [1]. This data article reports the detailed spectra information for 1H NMR, 13C NMR and UPLC-Q-TOF MS of the N-succinimidyl fatty acid esters with various alkyl chain lengths (Cn-NHSs, n = 8, 12, 14 and 16. 1H NMR, 13C NMR and UPLC-Q-TOF MS spectra for C16-NHS are shown as an example. Then the stacked 1H NMR spectra of the obtained alkylated caseinates (Cn-caseinates, n = 8, 12, 14 and 16 are provided. The surface hydrophobicity index (S0 of Cn-caseinates with different substitution degrees (SD of alkyl groups is shown. Additionally, Visual appearances for the formed aqueous dispersions of curcumin-loaded native caseinate (NaCas and Cn-caseinates self-assemblies are shown. X-ray diffraction patterns of curcumin, C16-caseinate, its physical mixture and curcumin-loaded C16-caseinate self-assemblies are examined. The re-dispersibility and short-term storage stability of the curcumin-loaded NaCas and C16-caseinate self-assemblies are also studied. Keywords: Caseinate, Alkylated caseinate, Self-assembly, Curcumin-loading property

  5. Chemistry of alkali cation exchanged faujasite and mesoporous NaX using alkyl halides and phosphates

    Science.gov (United States)

    Lee, Min-Hong

    the length of the alkyl chain. Although introduced mesopores alleviated the limited reagent diffusion to reactive sites due to the microporosity of the NaX zeolites, no marked improvement in the product yields was achieved with either the 1-chloroalkanes or the trialkyl phosphates test compounds, regardless of alkyl chain length. The disappointing results have been attributed to lack of substantial net increase in the numbers of zeolite nucleophilic sites accompanying mesopore introduction.

  6. Extending 3D near-cloud corrections from shorter to longer wavelengths

    International Nuclear Information System (INIS)

    Marshak, Alexander; Evans, K. Frank; Várnai, Tamás; Wen, Guoyong

    2014-01-01

    Satellite observations have shown a positive correlation between cloud amount and aerosol optical thickness (AOT) that can be explained by the humidification of aerosols near clouds, and/or by cloud contamination by sub-pixel size clouds and the cloud adjacency effect. The last effect may substantially increase reflected radiation in cloud-free columns, leading to overestimates in the retrieved AOT. For clear-sky areas near boundary layer clouds the main contribution to the enhancement of clear sky reflectance at shorter wavelengths comes from the radiation scattered into clear areas by clouds and then scattered to the sensor by air molecules. Because of the wavelength dependence of air molecule scattering, this process leads to a larger reflectance increase at shorter wavelengths, and can be corrected using a simple two-layer model [18]. However, correcting only for molecular scattering skews spectral properties of the retrieved AOT. Kassianov and Ovtchinnikov [9] proposed a technique that uses spectral reflectance ratios to retrieve AOT in the vicinity of clouds; they assumed that the cloud adjacency effect influences the spectral ratio between reflectances at two wavelengths less than it influences the reflectances themselves. This paper combines the two approaches: It assumes that the 3D correction for the shortest wavelength is known with some uncertainties, and then it estimates the 3D correction for longer wavelengths using a modified ratio method. The new approach is tested with 3D radiances simulated for 26 cumulus fields from Large-Eddy Simulations, supplemented with 40 aerosol profiles. The results showed that (i) for a variety of cumulus cloud scenes and aerosol profiles over ocean the 3D correction due to cloud adjacency effect can be extended from shorter to longer wavelengths and (ii) the 3D corrections for longer wavelengths are not very sensitive to unbiased random uncertainties in the 3D corrections at shorter wavelengths. - Highlights:

  7. Thiolated alkyl-modified carbomers: Novel excipients for mucoadhesive emulsions.

    Science.gov (United States)

    Bonengel, Sonja; Hauptstein, Sabine; Leonaviciute, Gintare; Griessinger, Julia; Bernkop-Schnürch, Andreas

    2015-07-30

    The aim of this study was the design and evaluation of mucoadhesive emulsifying polymeric excipients. Three thiol bearing ligands with increasing pKa values of their sulfhydryl group, namely 4-aminothiophenol (pKa=6.86), l-cysteine (pKa=8.4) and d/l-homocysteine (pKa=10.0) were coupled to the polymeric backbone of alkyl-modified carbomer (PA1030). Resulting conjugates displayed 818.5μmol 4-aminothiophenol, 698.5μmol cysteine and 651.5μmol homocysteine per gram polymer and were evaluated regarding the reactivity of thiol groups, emulsifying and mucoadhesive properties. In general, the synthesized conjugates showed a pH dependent reactivity, whereby the fastest oxidation occurred in PA1030-cysteine, as almost no free thiol groups could be detected after 120min. Emulsification of medium chain triglycerides was feasible with all synthesized conjugates leading to oil-in-water-emulsions. Emulsions with PA1030-cysteine displayed the highest stability and the smallest droplet size among the tested formulations. Oxidation and consequently cross-linking of the thiomers prior to the emulsification process led to an overall decreased emulsion stability. Evaluating mucosal residence time of thiomer emulsions on porcine buccal mucosa, a 9.2-fold higher amount of formulation based on PA1030-cysteine remained on the mucosal tissue within 3h compared to the unmodified polymer. According to these results, the highest reactive ligand l-cysteine seems to be most promising in order to obtain thiolated polymers for the preparation of mucoadhesive o/w-emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Alkylsilyl Peroxides as Alkylating Agents in the Copper-Catalyzed Selective Mono-N-Alkylation of Primary Amides and Arylamines.

    Science.gov (United States)

    Sakamoto, Ryu; Sakurai, Shunya; Maruoka, Keiji

    2017-07-06

    The copper-catalyzed selective mono-N-alkylation of primary amides or arylamines using alkylsilyl peroxides as alkylating agents is reported. The reaction proceeds under mild reaction conditions and exhibits a broad substrate scope with respect to the alkylsilyl peroxides, as well as to the primary amides and arylamines. Mechanistic studies suggest that the present reaction should proceed through a free-radical process that includes alkyl radicals generated from the alkylsilyl peroxides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effect of side chain length on charge transport, morphology, and photovoltaic performance of conjugated polymers in bulk heterojunction solar cells

    NARCIS (Netherlands)

    Duan, C.; Willems, R.E.M.; van Franeker, J.J.; Bruijnaers, B.J.; Wienk, M.M.; Janssen, R.A.J.

    2016-01-01

    The effect of side chain length on the photovoltaic properties of conjugated polymers is systematically investigated with two sets of polymers that bear different alkyl side chain lengths based on benzodithiophene and benzo[2,1,3]thiadiazole or 5,6-difluorobenzo[2,1,3]thiadiazole. Characterization

  10. The Influence of Side-Chain Position on the Optoelectronic Properties of a Red-Emitting Conjugated Polymer

    NARCIS (Netherlands)

    Lu, Li Ping; Finlayson, Chris E.; Kabra, Dinesh; Albert-Seifried, Sebastian; Song, Myoung Hoon; Havenith, Remco W. A.; Tu, Guoli; Huck, Wilhelm T. S.; Friend, Richard H.

    2013-01-01

    A study of the organic semiconductor F8TBT is presented, directly comparing a conventional form (F8TBT-out) with a form with varied alkyl side-chain position (F8TBT-in), in terms of optical properties and device performance in light-emitting-diodes (LEDs). Computational simulations of the side-chain

  11. YAOPBM-II: extension to higher degrees and to shorter time series

    Energy Technology Data Exchange (ETDEWEB)

    Korzennik, S G [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)], E-mail: skorzennik@cfa.harvard.edu

    2008-10-15

    In 2005, I presented a new fitting methodology (Yet AnOther Peak Bagging Method -YAOPBM), derived for very-long time series (2088-day-long) and applied it to low degree modes, {iota} {<=} 25. That very-long time series was also sub-divided into shorter segments (728-day-long) that were each fitted over the same range of degrees, to estimate changes with solar activity levels. I present here the extension of this method in several 'directions': a) to substantially higher degrees ({iota} {<=} 125); b) to shorter time series (364- and 182-day-long); and c) to additional 728-day-long segments, covering now some 10 years of observations. I discuss issues with the fitting, namely the leakage matrix, and the f- and p1 mode at very low frequencies, and I present some of the characteristics of the observed temporal changes.

  12. Detection of Alkylating Agents using Electrical and Mechanical Means

    Science.gov (United States)

    Gerchikov, Yulia; Borzin, Elena; Gannot, Yair; Shemesh, Ariel; Meltzman, Shai; Hertzog-Ronen, Carmit; Tal, Shay; Stolyarova, Sara; Nemirovsky, Yael; Tessler, Nir; Eichen, Yoav

    2011-08-01

    Alkylating agents are reactive molecules having at least one polar bond between a carbon atom and a good leaving group. These often simple molecules are frequently used in organic synthesis, as sterilizing agents in agriculture and even as anticancer agents in medicine. Unfortunately, for over a century, some of the highly reactive alkylating agents are also being used as blister chemical warfare agents. Being relatively simple to make, the risk is that these will be applied by terrorists as poor people warfare agents. The detection and identification of such alkylating agents is not a simple task because of their high reactivity and simple structure of the reactive site. Here we report on new approaches to the detection and identification of such alkylating agents using electrical (organic field effect transistors) and mechanical (microcantilevers) means.

  13. Detection of Alkylating Agents using Electrical and Mechanical Means

    International Nuclear Information System (INIS)

    Gerchikov, Yulia; Borzin, Elena; Gannot, Yair; Shemesh, Ariel; Meltzman, Shai; Hertzog-Ronen, Carmit; Eichen, Yoav; Tal, Shay; Stolyarova, Sara; Nemirovsky, Yael; Tessler, Nir

    2011-01-01

    Alkylating agents are reactive molecules having at least one polar bond between a carbon atom and a good leaving group. These often simple molecules are frequently used in organic synthesis, as sterilizing agents in agriculture and even as anticancer agents in medicine. Unfortunately, for over a century, some of the highly reactive alkylating agents are also being used as blister chemical warfare agents. Being relatively simple to make, the risk is that these will be applied by terrorists as poor people warfare agents. The detection and identification of such alkylating agents is not a simple task because of their high reactivity and simple structure of the reactive site. Here we report on new approaches to the detection and identification of such alkylating agents using electrical (organic field effect transistors) and mechanical (microcantilevers) means.

  14. Regulation of DNA Alkylation Damage Repair: Lessons and Therapeutic Opportunities.

    Science.gov (United States)

    Soll, Jennifer M; Sobol, Robert W; Mosammaparast, Nima

    2017-03-01

    Alkylation chemotherapy is one of the most widely used systemic therapies for cancer. While somewhat effective, clinical responses and toxicities of these agents are highly variable. A major contributing factor for this variability is the numerous distinct lesions that are created upon alkylation damage. These adducts activate multiple repair pathways. There is mounting evidence that the individual pathways function cooperatively, suggesting that coordinated regulation of alkylation repair is critical to prevent toxicity. Furthermore, some alkylating agents produce adducts that overlap with newly discovered methylation marks, making it difficult to distinguish between bona fide damaged bases and so-called 'epigenetic' adducts. Here, we discuss new efforts aimed at deciphering the mechanisms that regulate these repair pathways, emphasizing their implications for cancer chemotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. 21 CFR 176.120 - Alkyl ketene dimers.

    Science.gov (United States)

    2010-04-01

    ..., processing, preparing, treating, packaging, transporting, or holding food, subject to the provisions of this... paperboard. (c) The alkyl ketene dimers may be used in the form of an aqueous emulsion which may contain...

  16. Detection of Alkylating Agents using Electrical and Mechanical Means

    Energy Technology Data Exchange (ETDEWEB)

    Gerchikov, Yulia; Borzin, Elena; Gannot, Yair; Shemesh, Ariel; Meltzman, Shai; Hertzog-Ronen, Carmit; Eichen, Yoav [Schulich Department of Chemistry, Technion-Israel Institute of Technology, Technion City, 32000, Haifa (Israel) (Israel); Tal, Shay [Present address: Systems Biology Department, Harvard Medical School, Boston, MA 02115 (United States); Stolyarova, Sara; Nemirovsky, Yael; Tessler, Nir, E-mail: chryoav@tx.technion.ac.il [Department of Electrical Engineering, Technion-Israel Institute of Technology, Technion City, 32000, Haifa (Israel)

    2011-08-17

    Alkylating agents are reactive molecules having at least one polar bond between a carbon atom and a good leaving group. These often simple molecules are frequently used in organic synthesis, as sterilizing agents in agriculture and even as anticancer agents in medicine. Unfortunately, for over a century, some of the highly reactive alkylating agents are also being used as blister chemical warfare agents. Being relatively simple to make, the risk is that these will be applied by terrorists as poor people warfare agents. The detection and identification of such alkylating agents is not a simple task because of their high reactivity and simple structure of the reactive site. Here we report on new approaches to the detection and identification of such alkylating agents using electrical (organic field effect transistors) and mechanical (microcantilevers) means.

  17. Regeneration of a deactivated USY alkylation catalyst using supercritical isobutane

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar; David N. Ghompson; Kyle C. Burch

    2005-01-01

    Off-line, in-situ alkylation activity recovery from a completely deactivated solid acid catalyst was examined in a continuous-flow reaction system employing supercritical isobutane. A USY zeolite catalyst was initially deactivated during the liquid phase alkylation of butene with isobutane in a single-pass reactor and then varying amounts of alkylation activity were recovered by passing supercritical isobutane over the catalyst bed at different reactivation conditions. Temperature, pressure and regeneration time were found to play important roles in the supercritical isobutane regeneration process when applied to a completely deactivated USY zeolite alkylation catalyst. Manipulation of the variables that influence solvent strength, diffusivity, surface desorption, hydride transfer rates, and coke aging, strongly influence regeneration effectiveness.

  18. Is equity confined to the shorter term projects - and if not, what does it need?

    International Nuclear Information System (INIS)

    Cryan, T.

    1996-01-01

    There are two types of equity investor generally found in shorter term energy projects: energy project developers or sponsors who view a given project as buying or building a business; and financial investors who have viewed an investment as buying a stream of cash flows. This article examines the objectives and needs of these two investor groups, and discusses the principal issues which govern their respective decision-making process. (author)

  19. How do shorter working hours affect employee wellbeing? : Shortening working time in Finland

    OpenAIRE

    Lahdenperä, Netta

    2017-01-01

    The way work is done is dramatically changing due to digital breakthroughs. Generation Y is entering the workforce with a changed attitude towards work as organizations are increasing their focus towards employee wellbeing. Organizations who adopt the new model of work and understand the importance of the wellbeing of their staff are leading the transition to a more efficient business, better working life and a healthier planet. The thesis explores the numerous effects of shorter working...

  20. Biophysical characterization of the strong stabilization of the RNA triplex poly(U•poly(A*poly(U by 9-O-(ω-amino alkyl ether berberine analogs.

    Directory of Open Access Journals (Sweden)

    Debipreeta Bhowmik

    Full Text Available Binding of two 9-O-(ω-amino alkyl ether berberine analogs BC1 and BC2 to the RNA triplex poly(U(•poly(A(*poly(U was studied by various biophysical techniques.Berberine analogs bind to the RNA triplex non-cooperatively. The affinity of binding was remarkably high by about 5 and 15 times, respectively, for BC1 and BC2 compared to berberine. The site size for the binding was around 4.3 for all. Based on ferrocyanide quenching, fluorescence polarization, quantum yield values and viscosity results a strong intercalative binding of BC1 and BC2 to the RNA triplex has been demonstrated. BC1 and BC2 stabilized the Hoogsteen base paired third strand by about 18.1 and 20.5 °C compared to a 17.5 °C stabilization by berberine. The binding was entropy driven compared to the enthalpy driven binding of berbeine, most likely due to additional contacts within the grooves of the triplex and disruption of the water structure by the alkyl side chain.Remarkably higher binding affinity and stabilization effect of the RNA triplex by the amino alkyl berberine analogs was achieved compared to berberine. The length of the alkyl side chain influence in the triplex stabilization phenomena.

  1. Iminium Salts by Meerwein Alkylation of Ehrlich’s Aldehyde

    Directory of Open Access Journals (Sweden)

    Gerhard Laus

    2013-03-01

    Full Text Available 4-(Dimethylaminobenzaldehyde is alkylated at the N atom by dialkyl sulfates, MeI, or Me3O BF4. In contrast, ethylation by Et3O BF4 occurs selectively at the O atom yielding a quinoid iminium ion. 4-(Diethylaminobenzaldehyde is alkylated only at O by either Et or Me oxonium reagent. The iminium salts are prone to hydrolysis giving the corresponding hydrotetrafluoroborates. Five crystal structures were determined.

  2. Solid acid zeolite catalysts for benzene/ ethylene alkylation reactions

    OpenAIRE

    2011-01-01

    Alkylation of benzene with ethylene to ethylbenzene is widely used in the petrochemical industry. Ethylbenzene is an important raw material in the petrochemical industry. It is used as feedstock for the production of styrene, an important material for plastic and rubber production.The conventional catalyst for this alkylation process is AlCl₃, which accounted for 24% of the worldwide ethylbenzene production in 2009.As utilization of this catalyst involves problems with separation, handling, s...

  3. Enantioselective γ-Alkylation of α,β-Unsaturated Malonates and Ketoesters by a Sequential Ir-Catalyzed Asymmetric Allylic Alkylation/Cope Rearrangement

    OpenAIRE

    Liu, Wen-Bo; Okamoto, Noriko; Alexy, Eric J.; Hong, Allen Y.; Tran, Kristy; Stoltz, Brian M.

    2016-01-01

    A catalytic, enantioselective ? -alkylation of ?,?-unsaturated malonates and ketoesters is reported. This strategy entails a highly regio- and enantioselective iridium-catalyzed ?-alkylation of an extended enolate, and a subsequent translocation of chirality to the ?-position via a Cope rearrangement.

  4. Mechanisms of chemoresistance to alkylating agents in malignant glioma.

    Science.gov (United States)

    Sarkaria, Jann N; Kitange, Gaspar J; James, C David; Plummer, Ruth; Calvert, Hilary; Weller, Michael; Wick, Wolfgang

    2008-05-15

    Intrinsic or acquired chemoresistance to alkylating agents is a major cause of treatment failure in patients with malignant brain tumors. Alkylating agents, the mainstay of treatment for brain tumors, damage the DNA and induce apoptosis, but the cytotoxic activity of these agents is dependent on DNA repair pathways. For example, O6-methylguanine DNA adducts can cause double-strand breaks, but this is dependent on a functional mismatch repair pathway. Thus, tumor cell lines deficient in mismatch repair are resistant to alkylating agents. Perhaps the most important mechanism of resistance to alkylating agents is the DNA repair enzyme O6-methylguanine methyltransferase, which can eliminate the cytotoxic O6-methylguanine DNA adduct before it causes harm. Another mechanism of resistance to alkylating agents is the base excision repair (BER) pathway. Consequently, efforts are ongoing to develop effective inhibitors of BER. Poly(ADP-ribose)polymerase plays a pivotal role in BER and is an important therapeutic target. Developing effective strategies to overcome chemoresistance requires the identification of reliable preclinical models that recapitulate human disease and which can be used to facilitate drug development. This article describes the diverse mechanisms of chemoresistance operating in malignant glioma and efforts to develop reliable preclinical models and novel pharmacologic approaches to overcome resistance to alkylating agents.

  5. Alcohols as alkylating agents in heteroarene C-H functionalization

    Science.gov (United States)

    Jin, Jian; MacMillan, David W. C.

    2015-09-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of `spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.

  6. Salvage of failed protein targets by reductive alkylation.

    Science.gov (United States)

    Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej

    2014-01-01

    The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins.

  7. Salvage of Failed Protein Targets by Reductive Alkylation

    Science.gov (United States)

    Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej

    2014-01-01

    The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins. PMID:24590719

  8. Regioselective 1-N-Alkylation and Rearrangement of Adenosine Derivatives.

    Science.gov (United States)

    Oslovsky, Vladimir E; Drenichev, Mikhail S; Mikhailov, Sergey N

    2015-01-01

    Several methods for the preparation of some N(6)-substituted adenosines based on selective 1-N-alkylation with subsequent Dimroth rearrangement were developed. The proposed methods seem to be effective for the preparation of natural N(6)-isopentenyl- and N(6)-benzyladenosines, which are known to possess pronounced biological activities. Direct 1-N-alkylation of 2',3',5'-tri-O-acetyladenosine and 3',5'-di-O-acetyl-2'-deoxyadenosine with alkyl halides in N,N-dimethylformamide (DMF) in the presence of BaCO3 and KI gave 1-N-substituted derivatives with quantitative yields, whereas 1-N-alkylation of adenosine was accompanied by significant O-alkylation. Moreover, the reaction of trimethylsilyl derivatives of N(6)-acetyl-2',3',5'-tri-O-acetyladenosine and N(6)-acetyl-3',5'-di-O-acetyl-2'-deoxyadenosine with alkyl halides leads to the formation of the stable 1-N-substituted adenosines. Dimroth rearrangement of 1-N-substituted adenosines in aqueous ammonia yields pure N(6)-substituted adenosines.

  9. Alcohols as alkylating agents in heteroarene C–H functionalization

    Science.gov (United States)

    Jin, Jian; MacMillan, David W. C.

    2015-01-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage1. One of the core principles that underlies DNA biosynthesis is the radical-mediated elimnation of H2O to deoxygenate ribonucleotides, an example of ‘spin-center shift’ (SCS)2, during which an alcohol C–O bond is cleaved, resulting in a carbon-centered radical intermediate. While SCS is a well-understood biochemical process, it is underutilized by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylations using alcohols as radical precursors. Considering traditional radical-based alkylation methods require the use of stoichiometric oxidants, elevated temperatures, or peroxides3–7, the development of a mild protocol using simple and abundant alkylating agents would have significant utility in the synthesis of diversely functionalized pharmacophores. In this manuscript, we describe the successful execution of this idea via the development of a dual catalytic alkylation of heteroarenes using alcohols as mild alkylating reagents. This method represents the first broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer (HAT) catalysis. The utility of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone. PMID:26308895

  10. Final Technical Report [Development of Catalytic Alkylation and Fluoroalkylation Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vicic, David A.

    2014-05-01

    In the early stages of this DOE-funded research project, we sought to prepare and study a well-defined nickel-alkyl complex containing tridentate nitrogen donor ligands. We found that reaction of (TMEDA)NiMe2 (1) with terpyridine ligand cleanly led to the formation of (terpyridyl)NiMe (2), which we also determined to be an active alkylation catalyst. The thermal stability of 2 was unlike that seen for any of the active pybox ligands, and enabled a number of key studies on alkyl transfer reactions to be performed, providing new insights into the mechanism of nickel-mediated alkyl-alkyl cross-coupling reactions. In addition to the mechanistic studies, we showed that the terpyridyl nickel compounds can catalytically cross-couple alkyl iodides in yields up to 98% and bromides in yields up to 46 %. The yields for the bromides can be increased up to 67 % when the new palladium catalyst [(tpy’)Pd-Ph]I is used. The best route to the targeted [(tpy)NiBr] (1) was found to involve the comproportionation reaction of [(dme)NiBr{sub 2}] and [Ni(COD){sub 2}] in the presence of two equivalents of terpyridine. This reaction was driven to high yields of product formation (72 % isolated) by the precipitation of 1 from THF solvent.

  11. Alcohols as alkylating agents in heteroarene C-H functionalization.

    Science.gov (United States)

    Jin, Jian; MacMillan, David W C

    2015-09-03

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of 'spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.

  12. CHAIN 2

    International Nuclear Information System (INIS)

    Bailey, D.

    1998-04-01

    The Second Processing Chain (CHAIN2) consists of a suite of ten programs which together provide a full local analysis of the bulk plasma physics within the JET Tokamak. In discussing these ten computational models this report is intended to fulfil two broad purposes. Firstly it is meant to be used as a reference source for any user of CHAIN2 data, and secondly it provides a basic User Manual sufficient to instruct anyone in running the CHAIN2 suite of codes. In the main report text each module is described in terms of its underlying physics and any associated assumptions or limitations, whilst deliberate emphasis is put on highlighting the physics and mathematics of the calculations required in deriving each individual datatype in the standard module PPF output. In fact each datatype of the CHAIN2 PPF output listed in Appendix D is cross referenced to the point in the main text where its evaluation is discussed. An effort is made not only to give the equation used to derive a particular data profile but also to explicitly define which external data sources are involved in the computational calculation

  13. Anticancer activity of botanical alkyl hydroquinones attributed to topoisomerase II poisoning

    International Nuclear Information System (INIS)

    Huang, C.-P.; Fang, W.-H.; Lin, L.-I.; Chiou, Robin Y.; Kan, L.-S.; Chi, N.-H.; Chen, Y.-R.; Lin, T.-Y.; Lin, S.-B.

    2008-01-01

    Cytotoxic alkyl hydroquinone compounds have been isolated from many plants. We previously isolated 3 structurally similar cytotoxic alkyl hydroquinone compounds from the sap of the lacquer tree Rhus succedanea L. belonging to the sumac family, which have a long history of medicinal use in Asia. Each has an unsaturated alkyl chain attached to the 2-position of a hydroquinone ring. One of these isolates, 10'(Z),13'(E),15'(E)-heptadecatrienylhydroquinone [HQ17(3)], being the most cytotoxic, was chosen for studying the anticancer mechanism of these compounds. We found that HQ17(3) was a topoisomerase (Topo) II poison. It irreversibly inhibited Topo IIα activity through the accumulation of Topo II-DNA cleavable complexes. A cell-based assay showed that HQ17(3) inhibited the growth of leukemia HL-60 cells with an EC 50 of 0.9 μM, inhibited the topoisomerase-II-deficient cells HL-60/MX2 with an EC 50 of 9.6 μM, and exerted no effect on peripheral blood mononuclear cells at concentrations up to 50 μM. These results suggest that Topo II is the cellular drug target. In HL-60 cells, HQ17(3) promptly inhibited DNA synthesis, induced chromosomal breakage, and led to cell death with an EC 50 about one-tenth that of hydroquinone. Pretreatment of the cells with N-acetylcysteine could not attenuate the cytotoxicity and DNA damage induced by HQ17(3). However, N-acetylcysteine did significantly reduce the cytotoxicity of hydroquinone. In F344 rats, intraperitoneal injection of HQ17(3) for 28 days induced no clinical signs of toxicity. These results indicated that HQ17(3) is a potential anticancer agent, and its structural features could be a model for anticancer drug design

  14. Dynamic interfacial tension behavior of alkyl amino sulfonate in crude oil-brine system

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhao Hua; Luo, Yue [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering

    2013-09-15

    The compatibility of surfactants, a series of alkyl amino sulfonate containing various the length of alkyl chain (dodecyl, tetradecyl, hexadecyl and octadecyl, developed in our laboratory), with formation water matching the Xinjiang Oil Field reservoir water and the dynamic interfacial tensions (DIT) behaviors between the crude oil and the formation water for a number of alkaline flooding systems were measured. These surfactants are found to be well compatible with formation water up to 0.10g L{sup -1} surfactant concentration, especially Dodec-AS and Tetradec-AS show a good compatibility with formation water over the full range of surfactant concentration investigated (0.01-0.20g L{sup -1}). All surfactants exhibit the dynamic interfacial tension behavior, and can reach and maintain low interfacial tension at very low concentration. The time for reaching the equilibrium DIT (DIT{sub eq}) is longer for surfactant with stronger lipophilicity, e.g. octadecyl-AS. It is interestingly found that the ratio value between DIT{sub eq} and the tension at crude oil/reservoir water interface in the absence of surfactant is in the range of 10{sup -4}-10{sup -3} mN m{sup -1}, accordingly based on which and the previous results, four surfactants individually or with other additives together may become potent candidates for enhanced oil recovery. Fortunately, the alkyl amino sulfonate combinational systems without alkali designed by our group can reduce the interfacial tension even to 10{sup -4} mN m{sup -1} at very low surfactant concentration. These surfactants or their systems have characteristic of 'Green', in addition to the excellent salt-tolerance and the less expensive cost for enhanced oil recovery, and therefore they are good oil-displacing reagents for enhanced oil recovery. (orig.)

  15. Temperature-Dependent Alkyl Glycerol Ether Lipid Composition of Mesophilic and Thermophilic Sulfate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Arnauld Vinçon-Laugier

    2017-08-01

    Full Text Available The occurrence of non-isoprenoid alkyl glycerol ether lipids in Bacteria and natural environments is increasingly being reported and the specificity and diagenetic stability of these lipids make them powerful biomarkers for biogeochemical and environmental studies. Yet the environmental controls on the biosynthesis of these peculiar membrane lipids remain poorly documented. Here, the lipid content of two mesophilic (Desulfatibacillum aliphaticivorans and Desulfatibacillum alkenivorans and one thermophilic (Thermodesulfobacterium commune sulfate-reducing bacteria—whose membranes are mostly composed of ether lipids—was investigated as a function of growth temperature (20–40°C and 54–84°C, respectively. For all strains, the cellular lipid content was lower at sub- or supra-optimal growth temperature, but the relative proportions of dialkyl glycerols, monoalkyl glycerols and fatty acids remained remarkably stable whatever the growth temperature. Rather than changing the proportions of the different lipid classes, the three strains responded to temperature changes by modifying the average structural composition of the alkyl and acyl chains constitutive of their membrane lipids. Major adaptive mechanisms concerned modifications of the level of branching and of the proportions of the different methyl branched lipids. Specifically, an increase in temperature induced mesophilic strains to produce less dimethyl branched dialkyl glycerols and 10-methyl branched lipids relative to linear structures, and the thermophilic strain to decrease the proportion of anteiso relative to iso methyl branched compounds. These modifications were in agreement with a regulation of the membrane fluidity. In one mesophilic and the thermophilic strains, a modification of the growth temperature further induced changes in the relative proportions of sn-2 vs sn-1 monoalkyl glycerols, suggesting an unprecedented mechanism of homeoviscous adaptation in Bacteria. Strong

  16. Alkyl-halogenide promoted ionic liquid catalysis of isobutane/butene-alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Schilder, L.; Korth, W.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2011-07-01

    The effect of two different types of promoters on the performance of Lewis-acidic chloroaluminate ionic liquid catalysts was studied for liquid liquid biphasic isobutane/2-butene alkylation. In particular, the activity and selectivity of such catalytic systems was investigated. Experimental results obtained from a batch reactor show, that tert-butyl halides increase the reaction rate significantly and shift the C8-selectivity towards the desired high-octane trimethylpentanes (TMPs). But, secondary reactions like oligomerization and cracking are not affected by the use of these promoters. (orig.)

  17. UV absorption spectra and kinetics for alkyl and alkyl peroxy radicals originating from di-tert-butyl ether

    DEFF Research Database (Denmark)

    Nielsen, O.J.; Sehested, J.; Langer, S.

    1995-01-01

    Alkyl, (CH3)(3)COC(CH3)(2)CH2, and alkyl peroxy, (CH3)(3)COC(CH3)(2)CH2O2, radicals from di-tert-butyl ether (DTBE), have been studied in the gas phase at 296 K. A pulse radiolysis UV absorption technique was used to measure the spectra and kinetics. Absorption cross sections were quantified over...

  18. Propargyl organometallic compounds. II. Alkylation of sodium derivatives of 1-alkyl-1-aryl-2-alkynes in liquid ammonia

    International Nuclear Information System (INIS)

    Libman, N.M.; Sevryukov, Yu.P.

    1987-01-01

    In most cases the alkylation of the sodium derivatives of 1-phenyl-1-alkyl-2-alkynes by methyl, ethyl, isopropyl, and tert-butyl bromides in liquid ammonia takes place preferentially at the sp 2 -hybridized carbon atom, and this leads to the formation of the corresponding acetylenes, The regioselectivity of the reaction is explained by the greater softness of the trigonal atom of the ambient propargyl anion and its smaller screening by the solvate shell compared with the diagonal atom

  19. Beyond Alkylating Agents for Gliomas: Quo Vadimus?

    Science.gov (United States)

    Puduvalli, Vinay K; Chaudhary, Rekha; McClugage, Samuel G; Markert, James

    2017-01-01

    Recent advances in therapies have yielded notable success in terms of improved survival in several cancers. However, such treatments have failed to improve outcome in patients with gliomas for whom surgery followed by radiation therapy and chemotherapy with alkylating agents remain the standard of care. Genetic and epigenetic studies have helped identify several alterations specific to gliomas. Attempts to target these altered pathways have been unsuccessful due to various factors, including tumor heterogeneity, adaptive resistance of tumor cells, and limitations of access across the blood-brain barrier. Novel therapies that circumvent such limitations have been the focus of intense study and include approaches such as immunotherapy, targeting of signaling hubs and metabolic pathways, and use of biologic agents. Immunotherapeutic approaches including tumor-targeted vaccines, immune checkpoint blockade, antibody-drug conjugates, and chimeric antigen receptor-expressing cell therapies are in various stages of clinical trials. Similarly, identification of key metabolic pathways or converging hubs of signaling pathways that are tumor specific have yielded novel targets for therapy of gliomas. In addition, the failure of conventional therapies against gliomas has led to a growing interest among patients in the use of alternative therapies, which in turn has necessitated developing evidence-based approaches to the application of such therapies in clinical studies. The development of these novel approaches bears potential for providing breakthroughs in treatment of more meaningful and improved outcomes for patients with gliomas.

  20. The alkyl amines effect on the optical properties of inorganic perovskite quantum dot

    Science.gov (United States)

    Yang, Ya-Zhu; Chung, Shu-Ru

    2017-08-01

    Perovskite quantum dots (P-QDs) is a new kind of optoelectronic materials in recent years. Compared with organic perovskite QDs (MAPbX3), inorganic perovskite QDs (CsPbX3) have a better stability. Inorganic P-QDs can be prepared at low temperature. Those novel QDs can be applied in solar cells, light-emitting diodes (LEDs), display, and biolables. Typical synthesis process to prepare CsPbX3 QDs is used oleic acid (OA) and cesium carbonate (Cs2CO3) to form Cs-oleate complex first. Moreover, the oleylamine (OLA) and octadecene (ODE) are used as capping agents. Cs-oleate complex then reacts with PbX2 to form CsPbX3 QDs (reacts for 5 s). As we know that the CsPbBr3 QDs emits green light, and its emission wavelength can be tuned by adding Cland Iions to replace Brion. However, the reaction rate of CsPbX3 QDs is fast, and it is not easy to control the emission wavelength by particle size. In this study, we use the saturated alkyl amines with difference of carbon chain length such as dodecylamine (DDA), hexadecylamine (HDA), and octadecylamine (ODA) to prepare CsPbBr3 QDs. The result shows that the emission spectra for all samples range from 489 (ODA) to 514 nm (DDA), the full width at half-maximum (FWHM) is between 23 to 28 nm, the surface morphologies of all samples are nearly spherical, and the quantum yields (QYs) are higher up to 130 % (compared with R6G and the excitation wavelength is 450 nm). Based on emission spectra we can find that the emission peaks are fixed even under different excitation wavelength, imply that the particle size distribution of QDs is uniform. Moreover, the emission wavelength blue shifts with increasing carbon chain length of amines. The stability of alkyl amine-capped CsPbBr3 QDs is good, especially for DDA-capped sample. We also find that a small emission peak around 462 nm can be only observed for DDA-capped sample. Furthermore, this small peak also can be observed even prolong the reaction time to 10 min. The emission wavelengths of Cs

  1. Thermal phase behaviour of N-alkyl-N-methylpyrrolidinium and piperidinium bis(trifluoromethanesulfonyl)imide salts

    International Nuclear Information System (INIS)

    Henderson, W A; Jr, V G Young; Pearson, W; Passerini, S; Long, H C De; Trulove, P C

    2006-01-01

    The phases, ion crystal packing and thermal properties of the N-alkyl-N-methylpyrrolidinium and piperidinium bis(trifluoromethanesulfonyl)imide (PYR 1R TFSI and PIP 1R TFSI (subscript R = 1 for methyl and 2 for ethyl), respectively) salts are compared using powder and single-crystal x-ray diffraction (XRD) and differential scanning calorimetry (DSC). The crystal structure of PIP 12 TFSI has been determined at 123 K. The salt crystallizes in the triclinic space group P1-bar with Z 8. Structural data are also reported for PYR 11 TFSI at 153 K and PIP 12 TFSI at 223 K. PIP 11 TFSI has identical ion crystal packing to the analogous pyrrolidinium salt PYR 11 TFSI. Since increasing the cation alkyl chain length to propyl or butyl (R = 3 or 4) reduces the melting point of the salts below room temperature, this study may provide valuable insight into why these pyrrolidinium and piperidinium salts form room-temperature ionic liquids

  2. Structuring of Amide Cross-Linked Non-Bridged and Bridged Alkyl-Based Silsesquioxanes.

    Science.gov (United States)

    Nunes, S C; de Zea Bermudez, V

    2018-02-06

    The development of sophisticated organized materials exhibiting enhanced properties is a challenging topic of the domain of organic/inorganic hybrid materials. This review, composed of four sections, reports the work we have carried out over the last 10 years on the synthesis of amide cross-linked alkyl/siloxane hybrids by means of sol-gel chemistry and self-directed assembly/self-organization routes relying on weak interactions (hydrophobic interactions and hydrogen bonding). The various as-produced lamellar structures displaying a myriad of morphologies, often closely resembling those found in natural materials, are discussed. The major role played by the synthetic conditions (pH, water content, co-solvent(s) nature/concentration and dopant presence/concentration), the alkyl chains (length and presence of ramification or not) and the number of the amide cross-links present in the precursor, is evidenced. Examples of highly organized hybrids structures incorporating ionic species (alkali and alkaline earth metal salts) and optically-active centers (organic dyes and lanthanide ions) are described. A useful qualitative relationship deduced between the emission quantum yield of the ordered hybrid materials and the degree of order of the hydrogen-bonded network is highlighted. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Acids and alkali resistant sticky superhydrophobic surfaces by one-pot electropolymerization of perfluoroalkyl alkyl pyrrole.

    Science.gov (United States)

    Nicolas, Mael

    2010-03-15

    Over the past few years, electropolymerization of semifluorinated monomers like thiophene or pyrrole has been used as a gentle and effective method to generate, in one step, stable superhydrophobic surfaces. The synthetic route mostly involves the coupling reaction between a carboxylic acid and an alcohol, using a carboxy group-activated reagent and a catalyst. As a consequence, the electroformed surfaces present high liquid repellency due to the concomitant effect of roughness and low surface energy. Nevertheless, the ester connector can be cleaved under acidic and basic conditions, preventing its use under a range of environmental conditions. To overcome this drawback, a new perfluoroalkyl alkyl pyrrole has been synthesized, the fluorinated segment being connected to the electropolymerizable part via an alkyl chain, and electropolymerized, leading to surfaces that exhibit a static contact angle with water superior to 150 degrees and no sliding angle, over a wide pH range and with a long lifetime. This represents the first example of a pure conducting polymer surface with sticky superhydrophobicity not only in pure water but also in corrosive solutions such as acids and bases, giving rise to new prospects in practical applications. 2009 Elsevier Inc. All rights reserved.

  4. Physical activity during video capsule endoscopy correlates with shorter bowel transit time.

    Science.gov (United States)

    Stanich, Peter P; Peck, Joshua; Murphy, Christopher; Porter, Kyle M; Meyer, Marty M

    2017-09-01

     Video capsule endoscopy (VCE) is limited by reliance on bowel motility for propulsion, and lack of physical activity has been proposed as a cause of incomplete studies. Our aim was to prospectively investigate the association between physical activity and VCE bowel transit.  Ambulatory outpatients receiving VCE were eligible for the study. A pedometer was attached at the time of VCE ingestion and step count was recorded at the end of the procedure. VCE completion was assessed by logistic regression models, which included step count (500 steps as one unit). Total transit time was analyzed by Cox proportional hazards models. The hazard ratios (HR) with 95 % confidence interval (CI) indicated the "hazard" of completion, such that HRs > 1 indicated a reduced transit time.  A total of 100 patients were included. VCE was completed in 93 patients (93 %). The median step count was 2782 steps. Step count was not significantly associated with VCE completion (odds ratio 1.45, 95 %CI 0.84, 2.49). Pedometer step count was significantly associated with shorter total, gastric, and small-bowel transit times (HR 1.09, 95 %CI 1.03, 1.16; HR 1.05, 95 %CI 1.00, 1.11; HR 1.07, 95 %CI 1.01, 1.14, respectively). Higher body mass index (BMI) was significantly associated with VCE completion (HR 1.87, 95 %CI 1.18, 2.97) and shorter bowel transit times (HR 1.05, 95 %CI 1.02, 1.08).  Increased physical activity during outpatient VCE was associated with shorter bowel transit times but not with study completion. In addition, BMI was a previously unreported clinical characteristic associated with VCE completion and should be included as a variable of interest in future studies.

  5. Depolymerization of coal by oxidation and alkylation; Sanka bunkai to alkyl ka ni yoru sekitan kaijugo

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, H.; Isoda, T.; Kusakabe, K.; Morooka, S. [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Hayashi, J. [Hokkaido University, Sapporo (Japan). Center for Advanced Research of Energy Technology

    1996-10-28

    Change in depolymerization degree and coal structure was studied for depolymerization treatment of coal in various alcohol containing aqueous hydrogen peroxide. In experiment, the mixture of Yallourn coal, alcohol and aqueous hydrogen peroxide was agitated in nitrogen atmosphere of normal pressure at 70{degree}C for 12 hours. As the experimental result, the methanol solubility of only 5% of raw coal increased up to 35.2% by hydrogen peroxide treatment, while the yield of insoluble matters also decreased from 94% to 62%. Most of the gas produced during treatment was composed of inorganic gases such as CO and CO2, and its carbon loss was extremely decreased by adding alcohol. From the analytical result of carbon loss in hydrogen peroxide treatment, it was clarified that alkylation advances with introduction of alkyl group derived from alcohol into coal by hydrogen peroxide treatment under a coexistence of alcohol, and depolymerization reaction of coal itself is thus promoted by alcohol. 4 refs., 7 figs., 1 tab.

  6. Homework schedule: an important factor associated with shorter sleep duration among Chinese school-aged children.

    Science.gov (United States)

    Li, Shenghui; Yang, Qian; Chen, Zhe; Jin, Xingming; Jiang, Fan; Shen, Xiaoming

    2014-09-03

    This study was designed to examine the hypothesis that homework schedule has adverse impacts on Chinese children's sleep-wake habits and sleep duration. A random sample of 19,299 children aged 5.08 to 11.99 years old participated in a large, cross-sectional survey. A parent-administered questionnaire was completed to quantify children's homework schedule and sleep behaviors. Generally, it was demonstrated that more homework schedule was significantly associated with later bedtime, later wake time, and shorter sleep duration. Among all sleep variables, bedtime and sleep duration during weekdays appeared to be most affected by homework schedule, especially homework schedule during weekdays.

  7. Reemission spectra and inelastic processes at interaction of attosecond and shorter duration electromagnetic pulses with atoms

    International Nuclear Information System (INIS)

    Makarov, D.N.; Matveev, V.I.

    2017-01-01

    Inelastic processes and the reemission of attosecond and shorter electromagnetic pulses by atoms have been considered within the analytical solution of the Schrödinger equation in the sudden perturbation approximation. A method of calculations with the exact inclusion of spatial inhomogeneity of the field of an ultrashort pulse and the momenta of photons in the reemission processes has been developed. The probabilities of inelastic processes and spectra of reemission of ultrashort electromagnetic pulses by one- and many-electron atoms have been calculated. The results have been presented in the form of analytical formulas.

  8. Tribology of monolayer films: comparison between n-alkanethiols on gold and n-alkyl trichlorosilanes on silicon.

    Science.gov (United States)

    Booth, Brandon D; Vilt, Steven G; McCabe, Clare; Jennings, G Kane

    2009-09-01

    This Article presents a quantitative comparison of the frictional performance for monolayers derived from n-alkanethiolates on gold and n-alkyl trichlorosilanes on silicon. Monolayers were characterized by pin-on-disk tribometry, contact angle analysis, ellipsometry, and electrochemical impedance spectroscopy (EIS). Pin-on-disk microtribometry provided frictional analysis at applied normal loads from 10 to 1000 mN at a speed of 0.1 mm/s. At low loads (10 mN), methyl-terminated n-alkanethiolate self-assembled monolayers (SAMs) exhibited a 3-fold improvement in coefficient of friction over SAMs with hydroxyl- or carboxylic-acid-terminated surfaces. For monolayers prepared from both n-alkanethiols on gold and n-alkyl trichlorosilanes on silicon, a critical chain length of at least eight carbons is required for beneficial tribological performance at an applied load of 9.8 mN. Evidence for disruption of chemisorbed alkanethiolate SAMs with chain lengths n tribology wear tracks. The direct comparison between the tribological stability of alkanethiolate and silane monolayers shows that monolayers prepared from n-octadecyl dimethylchlorosilane and n-octadecyl trichlorosilane withstood normal loads at least 30 times larger than those that damaged octadecanethiolate SAMs. Collectively, our results show that the tribological properties of monolayer films are dependent on their internal stabilities, which are influenced by cohesive chain interactions (van der Waals) and the adsorbate-substrate bond.

  9. Ionothermal synthesis and crystal structures of metal phosphate chains

    International Nuclear Information System (INIS)

    Wragg, David S.; Le Ouay, Benjamin; Beale, Andrew M.; O'Brien, Matthew G.; Slawin, Alexandra M.Z.; Warren, John E.; Prior, Timothy J.; Morris, Russell E.

    2010-01-01

    We have prepared isostructural aluminium and gallium phosphate chains by ionothermal reactions in 1-ethyl-3-methylimidazolium bromide and 1-ethylpyridinium bromide under a variety of conditions. The chains can be prepared as pure phases or along with three dimensional framework phases. The chains are favoured at shorter heating times and the crystallinity can be improved by addition of transition metal acetates and amines which are not included in the final structure. The chain can be prepared with or without the presence of hydrofluoric acid. - Graphical abstract: Chain structures prepared from ionic liquid solvents under a wide variety of synthesis conditions.

  10. The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes

    KAUST Repository

    Giovannitti, Alexander

    2018-04-24

    We report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performance in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.

  11. The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes

    KAUST Repository

    Giovannitti, Alexander; Maria, Iuliana P.; Hanifi, David; Donahue, Mary J.; Bryant, Daniel; Barth, Katrina J.; Makdah, Beatrice E.; Savva, Achilleas; Moia, Davide; Zetek, Matyá š; Barnes, Piers R.F.; Reid, Obadiah G.; Inal, Sahika; Rumbles, Garry; Malliaras, George G.; Nelson, Jenny; Rivnay, Jonathan; McCulloch, Iain

    2018-01-01

    We report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performance in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.

  12. Heavy Chain Diseases

    Science.gov (United States)

    ... of heavy chain produced: Alpha Gamma Mu Alpha Heavy Chain Disease Alpha heavy chain disease (IgA heavy ... the disease or lead to a remission. Gamma Heavy Chain Disease Gamma heavy chain disease (IgG heavy ...

  13. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents.

    Science.gov (United States)

    Esteller, M; Garcia-Foncillas, J; Andion, E; Goodman, S N; Hidalgo, O F; Vanaclocha, V; Baylin, S B; Herman, J G

    2000-11-09

    The DNA-repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) inhibits the killing of tumor cells by alkylating agents. MGMT activity is controlled by a promoter; methylation of the promoter silences the gene in cancer, and the cells no longer produce MGMT. We examined gliomas to determine whether methylation of the MGMT promoter is related to the responsiveness of the tumor to alkylating agents. We analyzed the MGMT promoter in tumor DNA by a methylation-specific polymerase-chain-reaction assay. The gliomas were obtained from patients who had been treated with carmustine (1,3-bis(2-chloroethyl)-1-nitrosourea, or BCNU). The molecular data were correlated with the clinical outcome. The MGMT promoter was methylated in gliomas from 19 of 47 patients (40 percent). This finding was associated with regression of the tumor and prolonged overall and disease-free survival. It was an independent and stronger prognostic factor than age, stage, tumor grade, or performance status. Methylation of the MGMT promoter in gliomas is a useful predictor of the responsiveness of the tumors to alkylating agents.

  14. Shorter preschool, leukocyte telomere length is associated with obesity at age 9 in Latino children.

    Science.gov (United States)

    Kjaer, T W; Faurholt-Jepsen, D; Mehta, K M; Christensen, V B; Epel, E; Lin, J; Blackburn, E; Wojcicki, J M

    2018-04-01

    The aim of this study was to determine the potential role of leukocyte telomere length as a biomarker for development of childhood obesity in a low-income Latino population. A birth cohort of Latino children (N = 201) in San Francisco (recruited May 2006-May 2007) was followed until age 9 and assessed annually for obesity and dietary intake. Leukocyte telomere length was measured at 4 and 5 years (n = 102) and assessed as a predictor for obesity at age 9, adjusting for known risk factors. Furthermore, leukocyte telomere length at age 4 and 5 was evaluated as a possible mediator of the relationship between excessive sugar-sweetened beverage consumption and obesity at age 9. Shorter leukocyte telomere length in preschoolers was associated with obesity at age 9 (adjusted odds ratio 0.35, 95% confidence interval 0.13-0.94) after adjustment for known risk factors. Telomere length mediated 11% of the relationship between excessive sugar-sweetened beverage consumption and obesity. Shorter leukocyte telomere length may be an indicator of future obesity risk in high-risk populations as it is particularly sensitive to damage from oxidative stress exposure, including those from sugar-sweetened beverages. © 2017 World Obesity Federation.

  15. Applicability of the shorter ‘Bangladesh regimen’ in high multidrug-resistant tuberculosis settings

    Directory of Open Access Journals (Sweden)

    Giovanni Sotgiu

    2017-03-01

    Full Text Available In spite of the recent introduction of two new drugs (delamanid and bedaquiline and a few repurposed compounds to treat multidrug-resistant and extensively drug-resistant tuberculosis (MDR- and XDR-TB, clinicians are facing increasing problems in designing effective regimens in severe cases. Recently a 9 to 12-month regimen (known as the ‘Bangladesh regimen’ proved to be effective in treating MDR-TB cases. It included an initial phase of 4 to 6 months of kanamycin, moxifloxacin, prothionamide, clofazimine, pyrazinamide, high-dose isoniazid, and ethambutol, followed by 5 months of moxifloxacin, clofazimine, pyrazinamide, and ethambutol. However, recent evidence from Europe and Latin America identified prevalences of resistance to the first-line drugs in this regimen (ethambutol and pyrazinamide exceeding 60%, and of prothionamide exceeding 50%. Furthermore, the proportions of resistance to the two most important pillars of the regimen – quinolones and kanamycin – were higher than 40%. Overall, only 14 out of 348 adult patients (4.0% were susceptible to all of the drugs composing the regimen, and were therefore potentially suitable for the ‘shorter regimen’. A shorter, cheaper, and well-tolerated MDR-TB regimen is likely to impact the number of patients treated and improve adherence if prescribed to the right patients through the systematic use of rapid MTBDRsl testing.

  16. Representativeness of shorter measurement sessions in long-term indoor air monitoring.

    Science.gov (United States)

    Maciejewska, M; Szczurek, A

    2015-02-01

    Indoor air quality (IAQ) considerably influences health, comfort and the overall performance of people who spend most of their lives in confined spaces. For this reason, there is a strong need to develop methods for IAQ assessment. The fundamental issue in the quantitative determination of IAQ is the duration of measurements. Its inadequate choice may result in providing incorrect information and this potentially leads to wrong conclusions. The most complete information may be acquired through long-term monitoring. However it is typically perceived as impractical due to time and cost load. The aim of this study was to determine whether long-term monitoring can be adequately represented by a shorter measurement session. There were considered three measurable quantities: temperature, relative humidity and carbon dioxide concentration. They are commonly recognized as indicatives for IAQ and may be readily monitored. Scaled Kullback-Leibler divergence, also called relative entropy, was applied as a measure of data representativeness. We considered long-term monitoring in a range from 1 to 9 months. Based on our work, the representative data on CO2 concentration may be acquired while performing measurements during 20% of time dedicated to long-term monitoring. In the case of temperature and relative humidity the respective time demand was 50% of long-term monitoring. From our results, in indoor air monitoring strategies, there could be considered shorter measurement sessions, while still collecting data which are representative for long-term monitoring.

  17. Are Shorter Versions of the Positive and Negative Syndrome Scale (PANSS) Doable? A Critical Review.

    Science.gov (United States)

    Lindenmayer, Jean-Pierre

    2017-12-01

    The Positive and Negative Syndrome Scale (PANSS) is a well-established assessment tool for measuring symptom severity in schizophrenia. Researchers and clinicians have been interested in the development of a short version of the PANSS that could reduce the burden of its administration for patients and raters. The author presents a comprehensive overview of existing brief PANSS measures, including their strengths and limitations, and discusses some possible next steps. There are two available scales that offer a reduced number of original PANSS items: PANSS-14 and PANSS-19; and two shorter versions that include six items: Brief PANSS and PANSS-6. The PANSS-6 has been tested quite extensively in established trials and appears to demonstrate high sensitivity to change and an established cut off definition for remission. Prospective testing in new antipsychotic treatment trials is still required for these shorter versions of PANSS. In addition, they need to be supplemented with interview guides, as well as provide conversion formulas to translate total scores from the short PANSS versions to the PANSS-30. Both short versions of the PANSS are essentially designed to evaluate response to antipsychotic treatment. Future PANSS scale development needs to address specific measurement of treatment-responsive positive symptoms by including treatment-sensitive items, as well as illness-phase specific PANSS tools.

  18. SERIES: Genomic instability in cancer Balancing repair and tolerance of DNA damage caused by alkylating agents

    Science.gov (United States)

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D

    2013-01-01

    Alkylating agents comprise a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER), and mismatch repair (MMR) respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for an organism's favorable response to alkylating agents. Furthermore, an individual's response to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity. PMID:22237395

  19. When alcohol is the answer: Trapping, identifying and quantifying simple alkylating species in aqueous environments.

    Science.gov (United States)

    Penketh, Philip G; Shyam, Krishnamurthy; Baumann, Raymond P; Zhu, Rui; Ishiguro, Kimiko; Sartorelli, Alan C; Ratner, Elena S

    2016-09-01

    Alkylating agents are a significant class of environmental carcinogens as well as commonly used anticancer therapeutics. Traditional alkylating activity assays have utilized the colorimetric reagent 4-(4-nitrobenzyl)pyridine (4NBP). However, 4NBP based assays have a relatively low sensitivity towards harder, more oxophilic alkylating species and are not well suited for the identification of the trapped alkyl moiety due to adduct instability. Herein we describe a method using water as the trapping agent which permits the trapping of simple alkylating electrophiles with a comparatively wide range of softness/hardness and permits the identification of donated simple alkyl moieties. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Antibody response to booster vaccination with tetanus and diphtheria in adults exposed to perfluorinated alkylates

    DEFF Research Database (Denmark)

    Kielsen, Katrine; Shamim, Zaiba; Ryder, Lars P.

    2016-01-01

    Recent studies suggest that exposure to perfluorinated alkylate substances (PFASs) may induce immunosuppression in humans and animal models. In this exploratory study, 12 healthy adult volunteers were recruited. With each subject, serum-PFAS concentrations were measured and their antibody responses...... prospectively followed for 30 days after a booster vaccination with diphtheria and tetanus. The results indicated that serum-PFAS concentrations were positively correlated and positively associated with age and male sex. The specific antibody concentrations in serum were increased from Day 4 to Day 10 post......-booster, after which a constant concentration was reached. Serum PFAS concentrations showed significant negative associations with the rate of increase in the antibody responses. Interestingly, this effect was particularly strong for the longer-chain PFASs. All significant associations remained significant after...

  1. Effects of derivatization reagents consisting of n-alkyl chloroformate/n-alcohol combinations in LC-ESI-MS/MS analysis of zwitterionic antiepileptic drugs.

    Science.gov (United States)

    Kostić, Nađa; Dotsikas, Yannis; Malenović, Anđelija; Medenica, Mirjana

    2013-11-15

    In the current study, three antiepileptic drugs with zwitterionic properties, namely vigabatrin, pregabalin and gabapentin, were chosen as model analytes to undergo derivatization by applying various n-alkyl chloroformate/n-alcohol combinations, followed by LC-ESI-MS/MS analysis. The employment of 16 combinations per drug using methyl, ethyl, propyl or butyl chloroformate coupled with methanol, ethanol, propanol or butanol, greatly affected a series of parameters of the derivatives, such as retention time on C8 column, signal expressed via areas, limit of detection values, as well as the yields of the main and side reactions. Practically, even slight modification of n-alkyl group of either chloroformate or alcohol resulted in significant changes in the chromatographic and mass spectrometric behavior of the novel derivative. It was clearly demonstrated that all the estimated parameters were highly correlated with the length of n-alkyl groups of the involved chloroformate and alcohol. The most significant influence was monitored in peak area values, indicating that the length of the n-alkyl chain plays an important role in electrospray ionization efficiency. For this parameter, increasing the n-alkyl chain from methyl to butyl led to increment up to 2089%, 508.7% and 1075% for area values of derivatized vigabatrin, pregabalin and gabapentin, respectively. These changes affected also the corresponding values of limits of detection, with the estimated improvements up to 1553%, 397.7% and 875.0% for the aforementioned derivatized drugs, respectively. Besides the obvious utilization of these conclusions in the development of bioanalytical methods for these analytes with the current protocol, this study offers valuable data which can be useful in more general approaches, giving insights into the effects of this derivatization reaction and its performances. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Extended exposure to alkylator chemotherapy: delayed appearance of myelodysplasia.

    Science.gov (United States)

    Chamberlain, Marc C; Raizer, Jeffrey

    2009-06-01

    A case series of gliomas treated with alkylator-based chemotherapy who subsequently developed myelodysplastic syndrome (tMDS) or acute myelocytic leukemia (AML). Alkylator-based chemotherapy is recognized to be leukemogenic; however, it is infrequently described as a delayed consequence of anti-glioma treatment. Seven patients (4 men; 3 women) ages 34-69 years (median 44), with gliomas (3 Grade 2; 4 Grade 3) were treated with surgery, all but one with involved-field radiotherapy and all with alkylator-based chemotherapy (temozolomide; 6 patients, nitrosoureas; 5 patients, both agents; 5 patients). Exposure to alkylator-based chemotherapy ranged from 8 to 30 months (median 24). The diagnosis of tMDS was determined by bone marrow biopsy in 7 patients. Seven patients showed chromosomal abnormalities consistent with chemotherapy induced MDS. Three patients were diagnosed with AML as well (in two determined by bone marrow and one at autopsy). Interval from last chemotherapy exposure to diagnosis of tMDS/AML ranged from 3 to 31 months (median 24 months). Two patients were treated with bone marrow transplantation and 5 received supportive care only. Five patients have died, 2 as a consequence of recurrent brain tumor, 1 as a complication of transplantation, and 2 due to AML. Although rare, induction of tMDS/AML following extended use of alkylator-based chemotherapy may become more relevant with the evolving practice to treat gliomas for protracted periods. Future work to determine at risk patients would be important.

  3. General Allylic C–H Alkylation with Tertiary Nucleophiles

    Science.gov (United States)

    2015-01-01

    A general method for intermolecular allylic C–H alkylation of terminal olefins with tertiary nucleophiles has been accomplished employing palladium(II)/bis(sulfoxide) catalysis. Allylic C–H alkylation furnishes products in good yields (avg. 64%) with excellent regio- and stereoselectivity (>20:1 linear:branched, >20:1 E:Z). For the first time, the olefin scope encompasses unactivated aliphatic olefins as well as activated aromatic/heteroaromatic olefins and 1,4-dienes. The ease of appending allyl moieties onto complex scaffolds is leveraged to enable this mild and selective allylic C–H alkylation to rapidly diversify phenolic natural products. The tertiary nucleophile scope is broad and includes latent functionality for further elaboration (e.g., aliphatic alcohols, α,β-unsaturated esters). The opportunities to effect synthetic streamlining with such general C–H reactivity are illustrated in an allylic C–H alkylation/Diels–Alder reaction cascade: a reactive diene is generated via intermolecular allylic C–H alkylation and approximated to a dienophile contained within the tertiary nucleophile to furnish a common tricyclic core found in the class I galbulimima alkaloids. PMID:24641574

  4. General allylic C-H alkylation with tertiary nucleophiles.

    Science.gov (United States)

    Howell, Jennifer M; Liu, Wei; Young, Andrew J; White, M Christina

    2014-04-16

    A general method for intermolecular allylic C-H alkylation of terminal olefins with tertiary nucleophiles has been accomplished employing palladium(II)/bis(sulfoxide) catalysis. Allylic C-H alkylation furnishes products in good yields (avg. 64%) with excellent regio- and stereoselectivity (>20:1 linear:branched, >20:1 E:Z). For the first time, the olefin scope encompasses unactivated aliphatic olefins as well as activated aromatic/heteroaromatic olefins and 1,4-dienes. The ease of appending allyl moieties onto complex scaffolds is leveraged to enable this mild and selective allylic C-H alkylation to rapidly diversify phenolic natural products. The tertiary nucleophile scope is broad and includes latent functionality for further elaboration (e.g., aliphatic alcohols, α,β-unsaturated esters). The opportunities to effect synthetic streamlining with such general C-H reactivity are illustrated in an allylic C-H alkylation/Diels-Alder reaction cascade: a reactive diene is generated via intermolecular allylic C-H alkylation and approximated to a dienophile contained within the tertiary nucleophile to furnish a common tricyclic core found in the class I galbulimima alkaloids.

  5. Solubility of gases in 1-alkyl-3methylimidazolium alkyl sulfate ionic liquids: Experimental determination and modeling

    International Nuclear Information System (INIS)

    Bermejo, María Dolores; Fieback, Tobias M.; Martín, Ángel

    2013-01-01

    Highlights: ► The solubility of CO 2 , CH 4 and C 2 H 6 in [emim][EtSO 4 ] is measured with a magnetic suspension balance. ► New data and literature results have been modeled with a Group Contribution equation of state. ► A specific group definition is required to model data of ionic liquids with a [MeSO 4 ] anion. ► Deviations between model and experiments are lower than 10% in most cases. ► Deviations of 34% are observed in the case of the solubility of ethane in the ionic liquid. -- Abstract: The solubility of different gases (carbon dioxide, methane, ethane, carbon monoxide and hydrogen) in ionic liquids with an alkyl sulfate anion has been modeled with the Group Contribution equation of state developed by Skjold-Jørgensen. New gas solubility measurements have been carried out with a high pressure magnetic suspension balance in order to cover pressure and temperature ranges not considered in previous studies and to obtain more experimental information for the correlation of parameters of the equation of state. New solubility measurements include the solubility of carbon dioxide in 1-ethyl 3-methyl imidazolium ethyl sulfate [emim][EtSO 4 ] at temperatures of 298 K and 348 K and pressures ranging from 0.3 MPa to 6.5 MPa, the solubility of methane in [emim][EtSO 4 ] at a temperature of 293 K and pressures ranging from 0.2 MPa to 10.2 MPa, and the solubility of ethane in [emim][EtSO 4 ] at temperatures of 323 K and 350 K and pressures ranging from 0.2 MPa to 4 MPa. Results show that the Group Contribution equation of state can be used to describe the solubility of gases in alkyl sulfate ionic liquids as well as infinite dilution coefficients of alkanes in the ionic liquids, with average deviations between experiments and calculations ranging from 1% to 10% in the case of mixtures with CO 2 , CO, CH 4 and H 2 with the alkyl sulfate ionic liquids to up to 34% in the case of the solubility of ethane in [emim][EtSO 4

  6. Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methyl imidazolium tartrate on Scenedesmus obliquus.

    Science.gov (United States)

    Liu, Huijun; Zhang, Xiaoqiang; Dong, Ying; Chen, Caidong; Zhu, Shimin; Ma, Xiangjuan

    2015-12-01

    Ionic liquids (ILs) are being used in various industries during the last few decades, while the good solubility and high stability of ILs may pose a potential threat to the aquatic environment. Effect of chiral ionic liquids (CILs) 1-alkyl-3-methyl imidazolium tartrate (RMIM T) on Scenedesmus obliquus (S.obliquus) was studied. The growth rate inhibition and cell membrane permeability increased with increasing RMIM T concentration and increasing alkyl chain lengths. The IC50 values of D-(-)-tartrate 1-hexyl-3-methyl imidazolium (D-(-)-HMIM T) were 28.30, 12.23,10.15 and 14.41 mg/L, respectively, at 24, 48, 72 and 96h. While that of L-(+)-tartrate 1-hexyl-3-methyl imidazolium (L-(+)-HMIM T) were 15.97, 7.91, 9.43 and 12.04 mg/L respectively. The concentration of chl a, chl b and chl (a+b) decreased with increasing RMIM T concentration. The chlorophyll fluorescence parameters (F0, Fv/Fm, Fv/F0, Y(II), ETR and NPQ) were affected by RMIM T, indicating that the RMIM T will damage the PSII, inhibit the transmission of excitation energy, decrease the efficiency of photosynthesis. The results showed that there were enantioselective toxicity of RMIM T to algae, and the toxicity of L-(+)-RMIM T was greater than that of D-(-)-RMIM T, but the enantioselective difference becomes smaller with increasing exposure time, and with the increasing carbon chain length of cation, indicating that cation properties may have a larger effect on toxicity than anion properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Dynamic adsorption properties of n-alkyl glucopyranosides determine their ability to inhibit cytolysis mediated by acoustic cavitation.

    Science.gov (United States)

    Sostaric, Joe Z; Miyoshi, Norio; Cheng, Jason Y; Riesz, Peter

    2008-10-09

    Suspensions of human leukemia (HL-60) cells readily undergo cytolysis when exposed to ultrasound above the acoustic cavitation threshold. However, n-alkyl glucopyranosides (hexyl, heptyl, and octyl) completely inhibit ultrasound-induced (1057 kHz) cytolysis (Sostaric, et al. Free Radical Biol. Med. 2005, 39, 1539-1548). The efficacy of protection from ultrasound-induced cytolysis was determined by the n-alkyl chain length of the glucopyranosides, indicating that protection efficacy depended on adsorption of n-alkyl glucopyranosides to the gas/solution interface of cavitation bubbles and/or the lipid membrane of cells. The current study tests the hypothesis that "sonoprotection" (i.e., protection of cells from ultrasound-induced cytolysis) in vitro depends on the adsorption of glucopyranosides at the gas/solution interface of cavitation bubbles. To test this hypothesis, the effect of ultrasound frequency (from 42 kHz to 1 MHz) on the ability of a homologous series of n-alkyl glucopyranosides to protect cells from ultrasound-induced cytolysis was investigated. It is expected that ultrasound frequency will affect sonoprotection ability since the nature of the cavitation bubble field will change. This will affect the relative importance of the possible mechanisms for ultrasound-induced cytolysis. Additionally, ultrasound frequency will affect the lifetime and rate of change of the surface area of cavitation bubbles, hence the dynamically controlled adsorption of glucopyranosides to their surface. The data support the hypothesis that sonoprotection efficiency depends on the ability of glucopyranosides to adsorb at the gas/solution interface of cavitation bubbles.

  8. Side-chain degradation of ultrapure π-conjugated oligomers: implications for organic electronics

    NARCIS (Netherlands)

    Abbel, R.J.; Wolffs, M.; Bovee, R.A.A.; Dongen, van J.L.J.; Lou, X.W.; Henze, O.; Feast, W.J.; Meijer, E.W.; Schenning, A.P.H.J.

    2009-01-01

    The degrdn. of two defect-free pi-conjugated oligomers and the participation of their solubilizing side chains in the process are studied in unprecedented detail. The detected intermediate products reveal a mechanism of successive shortening of alkyl and oligo(ethylene glycol) substituents.

  9. Alkylation of imidazole under ultrasound irradiation over alkaline carbons

    International Nuclear Information System (INIS)

    Costarrosa, L.; Calvino-Casilda, V.; Ferrera-Escudero, S.; Duran-Valle, C.J.; Martin-Aranda, R.M.

    2006-01-01

    N-Alkyl-imidazole has been synthesized by sonochemical irradiation of imidazole and 1-bromobutane using alkaline-promoted carbons (exchanged with the binary combinations of Na, K and Cs). The catalysts were characterized by X-ray photoelectron spectroscopy, thermal analysis and N 2 adsorption isotherms. Under the experimental conditions, N-alkyl-imidazoles can be prepared with a high activity and selectivity. It is observed that imidazole conversion increases in parallel with increasing the basicity of the catalyst. The influence of the alkaline promoter, the reaction temperature, and the amount of catalyst on the catalytic activity has been studied. For comparison, the alkylation of imidazole has also been performed in a batch reactor system under thermal activation

  10. From old alkylating agents to new minor groove binders.

    Science.gov (United States)

    Puyo, Stéphane; Montaudon, Danièle; Pourquier, Philippe

    2014-01-01

    Alkylating agents represent the oldest class of anticancer agents with the approval of mechloretamine by the FDA in 1949. Even though their clinical use is far beyond the use of new targeted therapies, they still occupy a major place in the treatment of specific malignancies, sometimes representing the unique option for the treatment of refractory tumors. Here, we are reviewing the major classes of alkylating agents, with a particular focus on the latest generations of compounds that specifically target the minor groove of the DNA. These naturally occurring derivatives have a unique mechanism of action that explains the recent regain of interest in developing new classes of alkylating agents that could be used in combination with other anticancer drugs to enhance tumor response in the clinic. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Alkylation and arylation of alkenes by transition metal complexes

    International Nuclear Information System (INIS)

    Volkova, L.G.; Levitin, I.Ya.; Vol'pin, M.E.

    1975-01-01

    In this paper are reviewed methods of alkylation and irylation of unsaturated compounds with complexes of transition metals (Rh, Pd). Analysis of alkylation and arylation of olefines with organic derivatives of transition metals, obtained as a result of exchange reactions between organic compounds of transition metals and salts of metals of the 8th group of the periodic system, allows a conclusion as to the wide possibilities of these reactions in the synthesis of various derivatives of unsaturated compounds. In all the reactions under consideration, intermediate formation of sigma-complexes is assumed. Also considered are alkylation and arylation of olefines with organic derivatives of halogens in the presence of compounds of metals of the 8th group of the periodic system, as well as arylation of olefines with aromatic compounds in the presence of salts of transition metals

  12. Alkyl Radicals as Hydrogen Bond Acceptors: Computational Evidence

    DEFF Research Database (Denmark)

    Hammerum, Steen

    2009-01-01

    Spectroscopic, energetic and structural information obtained by DFT and G3-type computational studies demonstrates that charged proton donors can form moderately strong hydrogen bonds to simple alkyl radicals. The presence of these bonds stabilizes the adducts and modifies their structure......, and gives rise to pronounced shifts of IR stretching frequencies and to increased absorption intensities. The hydrogen bond acceptor properties of alkyl radicals equal those of many conventional acceptors, e.g., the bond length changes and IR red-shifts suggest that tert-butyl radicals are slightly better...... acceptors than formaldehyde molecules, while propyl radicals are as good as H2O. The hydrogen bond strength appears to depend on the proton affinity of the proton donor and on the ionization energy of the acceptor alkyl radical, not on the donor-acceptor proton affinity difference, reflecting...

  13. Towards shorter wavelength x-ray lasers using a high power, short pulse pump laser

    International Nuclear Information System (INIS)

    Tighe, W.; Krushelnick, K.; Valeo, E.; Suckewer, S.

    1991-05-01

    A near-terawatt, KrF* laser system, focussable to power densities >10 18 W/cm 2 has been constructed for use as a pump laser in various schemes aimed at the development of x-ray lasing below 5nm. The laser system along with output characteristics such as the pulse duration, the focal spot size, and the percentage of amplified spontaneous emission (ASE) emitted along with the laser pulse will be presented. Schemes intended to lead to shorter wavelength x-ray emission will be described. The resultant requirements on the pump laser characteristics and the target design will be outlined. Results from recent solid target experiments and two-laser experiments, showing the interaction of a high-power, short pulse laser with a preformed plasma, will be presented. 13 refs., 5 figs

  14. Shorter epilepsy duration is associated with better seizure outcome in temporal lobe epilepsy surgery

    Directory of Open Access Journals (Sweden)

    Lucas Crociati Meguins

    2015-03-01

    Full Text Available Objective To investigate the influence of patient’s age and seizure onset on surgical outcome of temporal lobe epilepsy (TLE. Method A retrospective observational investigation performed from a cohort of patients from 2000 to 2012. Results A total of 229 patients were included. One-hundred and eleven of 179 patients (62% were classified as Engel I in the group with < 50 years old, whereas 33 of 50 (66% in the group with ≥ 50 years old group (p = 0.82. From those Engel I, 88 (61% reported epilepsy duration inferior to 10 years and 56 (39% superior to 10 years (p < 0.01. From the total of patients not seizure free, 36 (42% reported epilepsy duration inferior to 10 years and 49 (58% superior to 10 years (p < 0.01. Conclusion Patients with shorter duration of epilepsy before surgery had better postoperative seizure control than patients with longer duration of seizures.

  15. Association of mutations in the hemochromatosis gene with shorter life expectancy

    DEFF Research Database (Denmark)

    Bathum, L; Christiansen, L; Nybo, H

    2001-01-01

    BACKGROUND: To investigate whether the frequency of carriers of mutations in the HFE gene associated with hereditary hemochromatosis diminishes with age as an indication that HFE mutations are associated with increased mortality. It is of value in the debate concerning screening for hereditary...... hemochromatosis to determine the significance of heterozygosity. METHODS: Genotyping for mutations in exons 2 and 4 of the HFE gene using denaturing gradient gel electrophoresis in 1784 participants aged 45 to 100 years from 4 population-based studies: all 183 centenarians from the Danish Centenarian Study, 601...... in the distribution of mutations in exon 2 in the different age groups. CONCLUSIONS: In a high-carrier frequency population like Denmark, mutations in HFE show an age-related reduction in the frequency of heterozygotes for C282Y, which suggests that carrier status is associated with shorter life expectancy....

  16. Shorter Decentralized Attribute-Based Encryption via Extended Dual System Groups

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2017-01-01

    Full Text Available Decentralized attribute-based encryption (ABE is a special form of multiauthority ABE systems, in which no central authority and global coordination are required other than creating the common reference parameters. In this paper, we propose a new decentralized ABE in prime-order groups by using extended dual system groups. We formulate some assumptions used to prove the security of our scheme. Our proposed scheme is fully secure under the standard k-Lin assumption in random oracle model and can support any monotone access structures. Compared with existing fully secure decentralized ABE systems, our construction has shorter ciphertexts and secret keys. Moreover, fast decryption is achieved in our system, in which ciphertexts can be decrypted with a constant number of pairings.

  17. Shorter preschool, leukocyte telomere length is associated with obesity at age 9 in Latino children

    DEFF Research Database (Denmark)

    Kjaer, Thora Wesenberg; Faurholt-Jepsen, D; Mehta, K M

    2018-01-01

    The aim of this study was to determine the potential role of leukocyte telomere length as a biomarker for development of childhood obesity in a low-income Latino population. A birth cohort of Latino children (N = 201) in San Francisco (recruited May 2006-May 2007) was followed until age 9...... and assessed annually for obesity and dietary intake. Leukocyte telomere length was measured at 4 and 5 years (n = 102) and assessed as a predictor for obesity at age 9, adjusting for known risk factors. Furthermore, leukocyte telomere length at age 4 and 5 was evaluated as a possible mediator...... of the relationship between excessive sugar-sweetened beverage consumption and obesity at age 9. Shorter leukocyte telomere length in preschoolers was associated with obesity at age 9 (adjusted odds ratio 0.35, 95% confidence interval 0.13-0.94) after adjustment for known risk factors. Telomere length mediated 11...

  18. Hereditary angioedema attacks resolve faster and are shorter after early icatibant treatment.

    Directory of Open Access Journals (Sweden)

    Marcus Maurer

    Full Text Available BACKGROUND: Attacks of hereditary angioedema (HAE are unpredictable and, if affecting the upper airway, can be lethal. Icatibant is used for physician- or patient self-administered symptomatic treatment of HAE attacks in adults. Its mode of action includes disruption of the bradykinin pathway via blockade of the bradykinin B(2 receptor. Early treatment is believed to shorten attack duration and prevent severe outcomes; however, evidence to support these benefits is lacking. OBJECTIVE: To examine the impact of timing of icatibant administration on the duration and resolution of HAE type I and II attacks. METHODS: The Icatibant Outcome Survey is an international, prospective, observational study for patients treated with icatibant. Data on timings and outcomes of icatibant treatment for HAE attacks were collected between July 2009-February 2012. A mixed-model of repeated measures was performed for 426 attacks in 136 HAE type I and II patients. RESULTS: Attack duration was significantly shorter in patients treated <1 hour of attack onset compared with those treated ≥ 1 hour (6.1 hours versus 16.8 hours [p<0.001]. Similar significant effects were observed for <2 hours versus ≥ 2 hours (7.2 hours versus 20.2 hours [p<0.001] and <5 hours versus ≥ 5 hours (8.0 hours versus 23.5 hours [p<0.001]. Treatment within 1 hour of attack onset also significantly reduced time to attack resolution (5.8 hours versus 8.8 hours [p<0.05]. Self-administrators were more likely to treat early and experience shorter attacks than those treated by a healthcare professional. CONCLUSION: Early blockade of the bradykinin B(2 receptor with icatibant, particularly within the first hour of attack onset, significantly reduced attack duration and time to attack resolution.

  19. Smoking Topography among Korean Smokers: Intensive Smoking Behavior with Larger Puff Volume and Shorter Interpuff Interval.

    Science.gov (United States)

    Kim, Sungroul; Yu, Sol

    2018-05-18

    The difference of smoker's topography has been found to be a function many factors, including sex, personality, nicotine yield, cigarette type (i.e., flavored versus non-flavored) and ethnicity. We evaluated the puffing behaviors of Korean smokers and its association with smoking-related biomarker levels. A sample of 300 participants was randomly recruited from metropolitan areas in South Korea. Topography measures during a 24-hour period were obtained using a CReSS pocket device. Korean male smokers smoked two puffs less per cigarette compared to female smokers (15.0 (13.0⁻19.0) vs. 17.5 (15.0⁻21.0) as the median (Interquartile range)), but had a significantly larger puff volume (62.7 (52.7⁻75.5) mL vs. 53.5 (42.0⁻64.2) mL); p = 0.012). The interpuff interval was similar between men and women (8.9 (6.5⁻11.2) s vs. 8.3 (6.2⁻11.0) s; p = 0.122) but much shorter than other study results. A dose-response association ( p = 0.0011) was observed between daily total puff volumes and urinary cotinine concentrations, after controlling for sex, age, household income level and nicotine addiction level. An understanding of the difference of topography measures, particularly the larger puff volume and shorter interpuff interval of Korean smokers, may help to overcome a potential underestimation of internal doses of hazardous byproducts of smoking.

  20. ATM/RB1 mutations predict shorter overall survival in urothelial cancer.

    Science.gov (United States)

    Yin, Ming; Grivas, Petros; Emamekhoo, Hamid; Mendiratta, Prateek; Ali, Siraj; Hsu, JoAnn; Vasekar, Monali; Drabick, Joseph J; Pal, Sumanta; Joshi, Monika

    2018-03-30

    Mutations of DNA repair genes, e.g. ATM/RB1 , are frequently found in urothelial cancer (UC) and have been associated with better response to cisplatin-based chemotherapy. Further external validation of the prognostic value of ATM/RB1 mutations in UC can inform clinical decision making and trial designs. In the discovery dataset, ATM/RB1 mutations were present in 24% of patients and were associated with shorter OS (adjusted HR 2.67, 95% CI, 1.45-4.92, p = 0.002). There was a higher mutation load in patients carrying ATM/RB1 mutations (median mutation load: 6.7 versus 5.5 per Mb, p = 0.072). In the validation dataset, ATM/RB1 mutations were present in 22.2% of patients and were non-significantly associated with shorter OS (adjusted HR 1.87, 95% CI, 0.97-3.59, p = 0.06) and higher mutation load (median mutation load: 8.1 versus 7.2 per Mb, p = 0.126). Exome sequencing data of 130 bladder UC patients from The Cancer Genome Atlas (TCGA) dataset were analyzed as a discovery cohort to determine the prognostic value of ATM/RB1 mutations. Results were validated in an independent cohort of 81 advanced UC patients. Cox proportional hazard regression analysis was performed to calculate the hazard ratio (HR) and 95% confidence interval (CI) to compare overall survival (OS). ATM/RB1 mutations may be a biomarker of poor prognosis in unselected UC patients and may correlate with higher mutational load. Further studies are required to determine factors that can further stratify prognosis and evaluate predictive role of ATM/RB1 mutation status to immunotherapy and platinum-based chemotherapy.

  1. A shorter and more specific oral sensitization-based experimental model of food allergy in mice.

    Science.gov (United States)

    Bailón, Elvira; Cueto-Sola, Margarita; Utrilla, Pilar; Rodríguez-Ruiz, Judith; Garrido-Mesa, Natividad; Zarzuelo, Antonio; Xaus, Jordi; Gálvez, Julio; Comalada, Mònica

    2012-07-31

    Cow's milk protein allergy (CMPA) is one of the most prevalent human food-borne allergies, particularly in children. Experimental animal models have become critical tools with which to perform research on new therapeutic approaches and on the molecular mechanisms involved. However, oral food allergen sensitization in mice requires several weeks and is usually associated with unspecific immune responses. To overcome these inconveniences, we have developed a new food allergy model that takes only two weeks while retaining the main characters of allergic response to food antigens. The new model is characterized by oral sensitization of weaned Balb/c mice with 5 doses of purified cow's milk protein (CMP) plus cholera toxin (CT) for only two weeks and posterior challenge with an intraperitoneal administration of the allergen at the end of the sensitization period. In parallel, we studied a conventional protocol that lasts for seven weeks, and also the non-specific effects exerted by CT in both protocols. The shorter protocol achieves a similar clinical score as the original food allergy model without macroscopically affecting gut morphology or physiology. Moreover, the shorter protocol caused an increased IL-4 production and a more selective antigen-specific IgG1 response. Finally, the extended CT administration during the sensitization period of the conventional protocol is responsible for the exacerbated immune response observed in that model. Therefore, the new model presented here allows a reduction not only in experimental time but also in the number of animals required per experiment while maintaining the features of conventional allergy models. We propose that the new protocol reported will contribute to advancing allergy research. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Alkylation sensitivity screens reveal a conserved cross-species functionome

    Science.gov (United States)

    Svilar, David; Dyavaiah, Madhu; Brown, Ashley R.; Tang, Jiang-bo; Li, Jianfeng; McDonald, Peter R.; Shun, Tong Ying; Braganza, Andrea; Wang, Xiao-hong; Maniar, Salony; St Croix, Claudette M.; Lazo, John S.; Pollack, Ian F.; Begley, Thomas J.; Sobol, Robert W.

    2013-01-01

    To identify genes that contribute to chemotherapy resistance in glioblastoma, we conducted a synthetic lethal screen in a chemotherapy-resistant glioblastoma derived cell line with the clinical alkylator temozolomide (TMZ) and an siRNA library tailored towards “druggable” targets. Select DNA repair genes in the screen were validated independently, confirming the DNA glycosylases UNG and MYH as well as MPG to be involved in the response to high dose TMZ. The involvement of UNG and MYH is likely the result of a TMZ-induced burst of reactive oxygen species. We then compared the human TMZ sensitizing genes identified in our screen with those previously identified from alkylator screens conducted in E. coli and S. cerevisiae. The conserved biological processes across all three species composes an Alkylation Functionome that includes many novel proteins not previously thought to impact alkylator resistance. This high-throughput screen, validation and cross-species analysis was then followed by a mechanistic analysis of two essential nodes: base excision repair (BER) DNA glycosylases (UNG, human and mag1, S. cerevisiae) and protein modification systems, including UBE3B and ICMT in human cells or pby1, lip22, stp22 and aim22 in S. cerevisiae. The conserved processes of BER and protein modification were dual targeted and yielded additive sensitization to alkylators in S. cerevisiae. In contrast, dual targeting of BER and protein modification genes in human cells did not increase sensitivity, suggesting an epistatic relationship. Importantly, these studies provide potential new targets to overcome alkylating agent resistance. PMID:23038810

  3. Solid-Phase S-Alkylation Promoted by Molecular Sieves.

    Science.gov (United States)

    Calce, Enrica; Leone, Marilisa; Mercurio, Flavia Anna; Monfregola, Luca; De Luca, Stefania

    2015-11-20

    A solid-phase S-alkylation procedure to introduce chemical modification on the cysteine sulfhydryl group of a peptidyl resin is reported. The reaction is promoted by activated molecular sieves and consists of a solid-solid process, since both the catalyst and the substrate are in a solid state. The procedure was revealed to be efficient and versatile, particularly when used in combination with the solution S-alkylation approach, allowing for the introduction of different molecular diversities on the same peptide molecule.

  4. The effect of alkylating agents on model supported metal clusters

    Energy Technology Data Exchange (ETDEWEB)

    Erdem-Senatalar, A.; Blackmond, D.G.; Wender, I. (Pittsburgh Univ., PA (USA). Dept. of Chemical and Petroleum Engineering); Oukaci, R. (CERHYD, Algiers (Algeria))

    1988-01-01

    Interactions between model supported metal clusters and alkylating agents were studied in an effort to understand a novel chemical trapping technique developed for identifying species adsorbed on catalyst surfaces. It was found that these interactions are more complex than had previously been suggested. Studies were completed using deuterium-labeled dimethyl sulfate (DMS), (CH{sub 3}){sub 2}SO{sub 4}, as a trapping agent to interact with the supported metal cluster ethylidyne tricobalt enneacarbonyl. Results showed that oxygenated products formed during the trapping reaction contained {minus}OCD{sub 3} groups from the DMS, indicating that the interaction was not a simple alkylation. 18 refs., 1 fig., 3 tabs.

  5. Regeneration of zeolite catalysts of isobutane alkylation with butenes

    Energy Technology Data Exchange (ETDEWEB)

    Manza, I.A.; Tsupryk, I.N.; Bartyshevskii, V.A.; Gaponenko, O.I.; Petrilyak, K.I.

    1986-12-10

    The industrial adoption of alkylation of isoalkanes with alkenes is held back by the rapid and irreversible deactivation of the zeolite catalysts appropriate to the process. This paper is aimed specifically at the restoration of the catalytic activity and increase in the service life of zeolite alkylation catalysts. The catalyst chosen for the investigation was HLaCaNaX zeolite both unmodified and modified with various multivalence cations. The thermochemical and oxidative regeneration process as well as the equipment utilized are described. Both the advantages and the drawbacks of the method are given; explanations for the possibly irreversible losses of the catalytic properties in the regenerated zeolites are also put forward.

  6. Grafting C8-C16 alkyl groups altered the self-assembly and curcumin -loading properties of sodium caseinate in water.

    Science.gov (United States)

    Zhang, Yaqiong; Yang, Puyu; Yao, Fangyi; Liu, Jie; Yu, Liangli Lucy

    2018-02-01

    The data presented here are related to the research article entitled "Synthesis and characterization of alkylated caseinate, and its structure-curcumin loading property relationship in water" (Zhang et al., 2018) [1]. This data article reports the detailed spectra information for 1 H NMR, 13 C NMR and UPLC-Q-TOF MS of the N-succinimidyl fatty acid esters with various alkyl chain lengths (Cn-NHSs, n = 8, 12, 14 and 16). 1 H NMR, 13 C NMR and UPLC-Q-TOF MS spectra for C16-NHS are shown as an example. Then the stacked 1 H NMR spectra of the obtained alkylated caseinates (Cn-caseinates, n = 8, 12, 14 and 16) are provided. The surface hydrophobicity index (S 0 ) of Cn-caseinates with different substitution degrees (SD) of alkyl groups is shown. Additionally, Visual appearances for the formed aqueous dispersions of curcumin-loaded native caseinate (NaCas) and Cn-caseinates self-assemblies are shown. X-ray diffraction patterns of curcumin, C16-caseinate, its physical mixture and curcumin-loaded C16-caseinate self-assemblies are examined. The re-dispersibility and short-term storage stability of the curcumin-loaded NaCas and C16-caseinate self-assemblies are also studied.

  7. A Theoretical Study of the Mechanism of the Alkylation of Guanine by N- Nitroso Compounds.

    Science.gov (United States)

    1992-01-01

    these chemical agents alkylate DNA, but, as yet, the precise mechanism is unknown. What is known is that the result is a DNA-mutagen adduct with an alkyl ... nitrosoureas , Singer et. al. found that about 25% of the alkylation caused by MNU was on the DNA phospate backbone while, for ENU, phosphate...sites. 1.3 Mutagenicity of N-Nitroso Compounds In early experimental work with agents which alkylate DNA, comparisons of ultraviolet absorption

  8. Odd-even effect on the formation of aqueous biphasic systems formed by 1-alkyl-3-methylimidazolium chloride ionic liquids and salts

    Science.gov (United States)

    Belchior, Diana C. V.; Sintra, Tânia E.; Carvalho, Pedro J.; Soromenho, Mário R. C.; Esperança, José M. S. S.; Ventura, Sónia P. M.; Rogers, Robin D.; Coutinho, João A. P.; Freire, Mara G.

    2018-05-01

    This work provides a comprehensive evaluation of the effect of the cation alkyl side chain length of the 1-alkyl-3-methylimidazolium chloride series ([CnC1im]Cl, n = 2-14) of ionic liquids (ILs) on their capability to form aqueous biphasic systems (ABSs) with salts and self-aggregation derived properties. The liquid-liquid phase behavior of ternary systems composed of [CnC1im]Cl, water, and K3PO4 or K2CO3 and the respective Setschenow salting-out coefficients (ks), a quantitative measure of the two-phase formation ability, were determined. An odd-even effect in the ks values along the number of methylene groups of the longest IL cation alkyl side chain was identified for the ABS formed by K2CO3, a weaker salting-out agent where the phenomenon is clearly identified. In general, cations with even alkyl side chains, being likely to display higher molar volumes, are more easily salted-out and thus more prone to undergo phase separation. The odd-even effect in the ks values is, however, more significant in ILs up to n = 6, where the nanostructuration/nanosegregation of ILs plays a less relevant role. Still, with the [CnC1im]Cl (n = 7-14) series of ILs, an odd-even effect was also identified in the ILs' ionization degree, molar conductivity, and conductivity at infinite dilution. In summary, it is shown here that the ILs' odd-even effect occurs in IL aqueous solutions and not just in neat ILs, an already well-established phenomenon occurring in a series of ILs' properties described as a result of the orientation of the terminal methyl groups to the imidazolium ring cation and consequent effect in the ILs' cohesive energy.

  9. 40 CFR 721.10143 - Amines, bis (C11-14-branched and linear alkyl).

    Science.gov (United States)

    2010-07-01

    ... linear alkyl). 721.10143 Section 721.10143 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10143 Amines, bis (C11-14-branched and linear alkyl). (a) Chemical..., bis (C11-14-branched and linear alkyl) (PMN P-06-733; CAS No. 900169-60-0) is subject to reporting...

  10. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alanine, N-(2-carboxyethyl)-N-alkyl... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical substance... alanine, N-(2-carboxyethyl)-N- alkyl-, salt (P-89-336) is subject to reporting under this section for the...

  11. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...

  12. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Science.gov (United States)

    2010-07-01

    ..., alkali and amine salts. 721.2565 Section 721.2565 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...

  13. Oxidative stability of fatty acid alkyl esters: a review.

    Directory of Open Access Journals (Sweden)

    Michal Angelovič

    2015-12-01

    Full Text Available The purpose of this study was to investigate and to process the current literary knowledge of the physico-chemical properties of vegetable oil raw used for biodiesel production in terms of its qualitative stability. An object of investigation was oxidative stability of biodiesel. In the study, we focused on the qualitative physico-chemical properties of vegetable oils used for biodiesel production, oxidative degradation and its mechanisms, oxidation of lipids, mechanisms of autooxidation, effectivennes of different synthetic antioxidants in relation to oxidative stability of biodiesel and methods of oxidative stability determination. Knowledge of the physical and chemical properties of vegetable oil as raw material and the factors affecting these properties is critical for the production of quality biodiesel and its sustainability. According to the source of oilseed, variations in the chemical composition of the vegetable oil are expressed by variations in the molar ratio among different fatty acids in the structure. The relative ratio of fatty acids present in the raw material is kept relatively constant after the transesterification reaction. The quality of biodiesel physico-chemical properties is influenced by the chain length and the level of unsaturation of the produced fatty acid alkyl esters. A biodiesel is thermodynamically stable. Its instability primarily occurs from contact of oxygen present in the ambient air that is referred to as oxidative instability. For biodiesel is oxidation stability a general term. It is necessary to distinguish ‘storage stability' and ‘thermal stability', in relation to oxidative degradation, which may occur during extended periods of storage, transportation and end use. Fuel instability problems can be of two related types, short-term oxidative instability and long-term storage instability. Storage instability is defined in terms of solid formation, which can plug nozzles, filters, and degrade engine

  14. Isobutane as a probe of the structure of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids

    International Nuclear Information System (INIS)

    Pison, Laure; Bernales, Varinia; Fuentealba, Patricio; Padua, Agilio A.H.

    2015-01-01

    Highlights: • The solubility of isobutane was determined in [C n C 1 Im][NTf 2 ] (n = 2, 4, 6, 8 and 10). • Iso-C 4 H 10 solubility decreases with T and increases with n to reach x = 0.1 (n = 10, T = 303 K). • Isobutane is, on average, 1.6 times less soluble than n-butane in this family of ionic liquids. • Solubility increase with n is due to a more negative enthalpy of dissolution (n ⩾ 6). - Abstract: An experimental study of the solubility and of the thermodynamic properties of solvation, between temperatures (303 and 343) K and at pressures close to atmospheric, of 2-methylpropane (isobutane) in several ionic liquids based on the bis(trifluoromethylsulfonyl)imide anion and on 1-alkyl-3-methylimidazolium cations, [C n C 1 Im][NTf 2 ], with alkyl side-chains varying from two to ten carbon atoms is presented. The isobutane solubility increases with increasing size of the alkyl side-chain of the cation in the ionic liquid and decreases with increasing temperature (as typical of an exothermal dissolution process). The mole fraction solubility of isobutane varies from 0.904 · 10 −2 in [C 2 C 1 Im][NTf 2 ] at T = 343 K to 1.002 · 10 −1 in [C 10 C 1 Im][NTf 2 ] at T = 303 K. The values measured in this work are compared to the behaviour of n-butane in the same ionic liquids published in a previous study (Costa Gomes et al., 2012). Isobutane was found to be significantly less soluble than n-butane in all the ionic liquids. The differences found are interpreted in relation to the molecular structures obtained by molecular dynamics simulations for the solutions of n-butane and isobutane in the studied [C n C 1 Im][NTf 2 ] ionic liquids

  15. Shorter Fallow Cycles Affect the Availability of Noncrop Plant Resources in a Shifting Cultivation System

    Directory of Open Access Journals (Sweden)

    Sarah Paule. Dalle

    2006-12-01

    Full Text Available Shifting cultivation systems, one of the most widely distributed forms of agriculture in the tropics, provide not only crops of cultural significance, but also medicinal, edible, ritual, fuel, and forage resources, which contribute to the livelihoods, health, and cultural identity of local people. In many regions across the globe, shifting cultivation systems are undergoing important changes, one of the most pervasive being a shortening of the fallow cycle. Although there has been much attention drawn to declines in crop yields in conjunction with reductions in fallow times, little if any research has focused on the dynamics of noncrop plant resources. In this paper, we use a data set of 26 fields of the same age, i.e., ~1.5 yr, but differing in the length and frequency of past fallow cycles, to examine the impact of shorter fallow periods on the availability of noncrop plant resources. The resources examined are collected in shifting cultivation fields by the Yucatec Maya in Quintana Roo, Mexico. These included firewood, which is cut from remnant trees and stumps spared at the time of felling, and 17 forage species that form part of the weed vegetation. Firewood showed an overall decrease in basal area with shorter fallow cycles, which was mostly related to the smaller diameter of the spared stumps and trees in short-fallow milpas. In contrast, forage species showed a mixed response. Species increasing in abundance in short-fallow milpas tended to be short-lived herbs and shrubs often with weedy habits, whereas those declining in abundance were predominantly pioneer trees and animal-dispersed species. Coppicing tree species showed a neutral response to fallow intensity. Within the cultural and ecological context of our study area, we expect that declines in firewood availability will be most significant for livelihoods because of the high reliance on firewood for local fuel needs and the fact that the main alternative source of firewood, forest

  16. Minimally invasive oesophagectomy more expensive than open despite shorter length of stay.

    Science.gov (United States)

    Dhamija, Anish; Dhamija, Ankit; Hancock, Jacquelyn; McCloskey, Barbara; Kim, Anthony W; Detterbeck, Frank C; Boffa, Daniel J

    2014-05-01

    The minimally invasive oesophagectomy (MIO) approach offers a number of advantages over open approaches including reduced discomfort, shorter length of stay and a faster recovery to baseline status. On the other hand, minimally invasive procedures typically are longer and consume greater disposable instrumentation, potentially resulting in a greater overall cost. The objective of this study was to compare costs associated with various oesophagectomy approaches for oesophageal cancer. An institutional Resource Information Management System (RIMS) was queried for cost data relating to hospital expenditures (as opposed to billings or collections). The RIMS was searched for patients undergoing oesophagectomy for oesophageal cancer between 2003 and 2012 via minimally invasive, open transthoracic (OTT) (including Ivor Lewis, modified McKeown or thoracoabdominal) or transhiatal approaches. Patients that were converted from minimally invasive to open, or involved hybrid procedures, were excluded. A total of 160 oesophagectomies were identified, including 61 minimally invasive, 35 open transthoracic and 64 transhiatal. Costs on the day of surgery averaged higher in the MIO group ($12 476 ± 2190) compared with the open groups, OTT ($8202 ± 2512, P < 0.0001) or OTH ($5809 ± 2575, P < 0.0001). The median costs associated with the entire hospitalization also appear to be higher in the MIO group ($25 935) compared with OTT ($24 440) and OTH ($15 248). The average length of stay was lowest in the MIO group (11 ± 9 days) compared with OTT (19 ± 18 days, P = 0.006) and OTH (18 ± 28 days P = 0.07). The operative mortality was similar in the three groups (MIO = 3%, OTT = 9% and OTH = 3%). The operating theatre costs associated with minimally invasive oesophagectomy are significantly higher than OTT or OTH approaches. Unfortunately, a shorter hospital stay after MIO does not consistently offset higher surgical expense, as total hospital costs trend higher in the MIO patients. In

  17. The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate

    Directory of Open Access Journals (Sweden)

    Paulina Arellanes-Lozada

    2014-08-01

    Full Text Available Compounds of poly(ionic liquids (PILs, derived from imidazole with different alkylic chain lengths located in the third position of the imidazolium ring (poly(1-vinyl-3-dodecyl-imidazolium (PImC12, poly(1-vinyl-3-octylimidazolium (PImC8 and poly(1-vinyl-3-butylimidazolium (PImC4 hexafluorophosphate were synthesized. These compounds were tested as corrosion inhibitors on aluminum alloy AA6061 in diluted sulfuric acid (0.1–1 M H2SO4 by weight loss tests, polarization resistance measurements and inductively coupled plasma optical emission spectroscopy. Langmuir’s isotherms suggested film formation on bare alloy while standard free energy indicated inhibition by a physisorption process. However, compound efficiencies as inhibitors ranked low (PImC12 > PImC8 > PImC4 to reach 61% for PImC12 in highly diluted acidic solution. Apparently, the high mobility of sulfates favored their adsorption in comparison to PILs. The surface film displayed general corrosion, and pitting occurred as a consequence of PILs’ partial inhibition along with a continuous dissolution of defective patchy film on formation. A slight improvement in efficiency was displayed by compounds having high molecular weight and a long alkyl chain, as a consequence of steric hindrance and PIL interactions.

  18. The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate).

    Science.gov (United States)

    Arellanes-Lozada, Paulina; Olivares-Xometl, Octavio; Guzmán-Lucero, Diego; Likhanova, Natalya V; Domínguez-Aguilar, Marco A; Lijanova, Irina V; Arce-Estrada, Elsa

    2014-08-07

    Compounds of poly(ionic liquid)s (PILs), derived from imidazole with different alkylic chain lengths located in the third position of the imidazolium ring (poly(1-vinyl-3-dodecyl-imidazolium) (PImC 12 ), poly(1-vinyl-3-octylimidazolium) (PImC₈) and poly(1-vinyl-3-butylimidazolium) (PImC₄) hexafluorophosphate) were synthesized. These compounds were tested as corrosion inhibitors on aluminum alloy AA6061 in diluted sulfuric acid (0.1-1 M H₂SO₄) by weight loss tests, polarization resistance measurements and inductively coupled plasma optical emission spectroscopy. Langmuir's isotherms suggested film formation on bare alloy while standard free energy indicated inhibition by a physisorption process. However, compound efficiencies as inhibitors ranked low (PImC 12 > PImC₈ > PImC₄) to reach 61% for PImC 12 in highly diluted acidic solution. Apparently, the high mobility of sulfates favored their adsorption in comparison to PILs. The surface film displayed general corrosion, and pitting occurred as a consequence of PILs' partial inhibition along with a continuous dissolution of defective patchy film on formation. A slight improvement in efficiency was displayed by compounds having high molecular weight and a long alkyl chain, as a consequence of steric hindrance and PIL interactions.

  19. Fluorinated alkyl substances and technical mixtures used in food paper-packaging exhibit endocrine-related activity in vitro

    DEFF Research Database (Denmark)

    Rosenmai, Anna Kjerstine; Taxvig, Camilla; Svingen, Terje

    2016-01-01

    Migration of chemicals from packaging materials to foods may lead to human exposure. Polyfluoroalkyl substances (PFAS) can be used in technical mixtures (TMs) for use in food packaging of paper and board, and PFAS have been detected in human serum and umbilical cord blood. The specific structures...... of the PFAS in TMs are often unknown, but polyfluorinated alkyl phosphate esters (PAPs) have been characterized in TMs, food packaging, and in food. PAPs can be metabolized into fluorotelomer alcohols (FTOHs) and perfluoroalkyl carboxylic acids (PFCAs). Some PFAS have endocrine activities, highlighting...... the need to investigate these effects. Herein, we studied the endocrine activity of less characterized PFAS, including short-chain PFCAs and FTOHs, PAPs, and TMs of unknown chemical composition. Long-chain PFCAs were also included. We applied seven assays covering effects on estrogen, glucocorticoid...

  20. Fabrication and properties of poly(polyethylene glycol n-alkyl ether vinyl ether)s as polymeric phase change materials

    International Nuclear Information System (INIS)

    Pei, Dong-fang; Chen, Sai; Li, Shu-qin; Shi, Hai-feng; Li, Wei; Li, Xuan; Zhang, Xing-xiang

    2016-01-01

    A series of poly(polyethylene glycol n-alkyl ether vinyl ether)s (PC m E n VEs) with various lengths of alkyl chains and polyethylene glycol spacers as side chain (m = 16,18; n = 1,2) were synthesized via two steps. First, monomers-ethylene glycol hexadecyl ether vinyl ether (C 16 E 1 VE), ethylene glycol octadecyl ether vinyl ether (C 18 E 1 VE), diethylene glycol hexadecyl ether vinyl ether (C 16 E 2 VE) and diethylene glycol octadecyl ether vinyl ether (C 18 E 2 VE) were synthesized by a modified Williamson etherification. Then, four new types of phase change materials were successfully fabricated by a living cationic polymerization. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) were employed to characterize their composition, thermal properties and crystallization behavior. The results show that, the side chains of PC 16 E 1 VE, PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are in a hexagonal lattice, and the onset temperatures for melting of PC 16 E 1 VE, PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are 39.8 °C, 37.4 °C, 51.0 °C and 48.9 °C, the onset temperatures for crystallization are 36.7 °C, 35.2 °C, 47.4 °C and 46.3 °C, respectively. The enthalpy changes of PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are higher than 100 J/g; on the contrary, it is 96 J/g for PC 16 E 1 VE. The enthalpy decrease is no more than 11% after 10 heating and cooling cycles. The 5 wt% mass loss temperatures of PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are higher than 300 °C; on the contrary, it’s 283 °C for PC 16 E 1 VE. Using a weak polarity, flexible alkyl ether chain (-OCH 2 CH 2 O-) as a spacer to link the main chain and side chain is conducive to the crystallization of the alkyl side chain. These new phase change materials can be applied in heat storage, energy conservation, and environmental protection.

  1. Synthesis and Performance of a Biomimetic Indicator for Alkylating Agents.

    Science.gov (United States)

    Provencher, Philip A; Love, Jennifer A

    2015-10-02

    4-(4-Nitrobenzyl)pyridine (NBP) is a colorimetric indicator compound for many types of carcinogenic alkylating agents. Because of the similar reactivity of NBP and guanine in DNA, NBP serves as a DNA model. NBP assays are used in the toxicological screening of pharmaceutical compounds, detection of chemical warfare agents, environmental hygiene technology, preliminary toxicology tests, mutagenicity of medicinal compounds, and other chemical analyses. Nevertheless, the use of NBP as a DNA model suffers from the compound's low water solubility, its lack of reactive oxygen sites, and dissimilar steric encumbrance compared to DNA. We report herein the design and synthesis of NBP derivatives that address some of these issues. These derivatives have been tested in solution and found to be superior in the colorimetric assay of the alkylating anticancer drug cyclophosphamide. The derivatives have also been integrated into a polymeric silica material which changes color upon the exposure to dangerous alkylating agents, such as iodomethane vapor, without the need for an exogenous base. This material modernizes the NBP assay from a time-consuming laboratory analysis to a real-time solid state sensor, which requires neither solvent nor additional reagents and can detect both gas- and solution-phase alkylating agents.

  2. Synthesis and Antiangiogenic Activity of N-Alkylated Levamisole Derivatives

    DEFF Research Database (Denmark)

    Hansen, Anders N.; Bendiksen, Christine D.; Sylvest, Lene

    2012-01-01

    profile, was recently shown to be an inhibitor of angiogenesis in vitro and exhibited tumor growth inhibition in mice. Here we describe the synthesis and in vitro evaluation of a series of N-alkylated analogues of levamisole with the aim of characterizing structure-activity relationships with regard...

  3. Leukemia after therapy with alkylating agents for childhood cancer

    International Nuclear Information System (INIS)

    Tucker, M.A.; Meadows, A.T.; Boice, J.D. Jr.

    1987-01-01

    The risk of leukemia was evaluated in 9,170 2-or-more-year survivors of childhood cancer in the 13 institutions of the Late Effects Study Group. Secondary leukemia occurred in 22 nonreferred individuals compared to 1.52 expected, based on general population rates [relative risk (RR) = 14; 95% confidence interval (CI), 9-22]. The influence of therapy for the first cancer on subsequent leukemia risk was determined by a case-control study conducted on 25 cases and 90 matched controls. Treatment with alkylating agents was associated with a significantly elevated risk of leukemia (RR = 4.8; 95% CI, 1.2-18.9). A strong dose-response relationship was also observed between leukemia risk and total dose of alkylating agents, estimated by an alkylator score. The RR of leukemia reached 23 in the highest dose category. Radiation therapy, however, did not increase risk. Although doxorubicin was also identified as a possible risk factor, the excess risk of leukemia following treatment for childhood cancer appears almost entirely due to alkylating agents

  4. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions

    Science.gov (United States)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2016-03-15

    Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.

  5. Alkyl chitosan film-high strength, functional biomaterials.

    Science.gov (United States)

    Lu, Li; Xing, Cao; Xin, Shen; Shitao, Yu; Feng, Su; Shiwei, Liu; Fusheng, Liu; Congxia, Xie

    2017-11-01

    Biofilm with strong tensile strength is a topic item in the area of tissue engineering, medicine engineering, and so forth. Here we introduced an alkyl chitosan film with strong tensile strength and its possibility for an absorbable anticoagulation material in vivo was tested in the series of blood test, such as dynamic coagulation time, plasma recalcification time and hemolysis. Alkyl chitosan film was a better biomaterial than traditional chitosan film in the anticoagulation, tissue compatibility and cell compatibility. The unique trait of alkyl chitosan film may be for its greater contact angle and hydrophobicity ability to reduce the adsorption capacity for the blood component and the activity of fibrinolytic enzymes, enhance the antibacterial capacity than chitosan film. Moreover, none of chitosan film or butyl chitosan film exhibited quick inflammation or other disadvantage and degraded quickly by implanted test. Therefore, Alkyl chitosan film is of prospective properties as an implantable, absorbable agent for tissue heals, and this material need further research. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3034-3041, 2017. © 2017 Wiley Periodicals, Inc.

  6. A Green Alternative to Aluminum Chloride Alkylation of Xylene

    Science.gov (United States)

    Sereda, Grigoriy A.; Rajpara, Vikul B.

    2007-01-01

    An acutely less toxic 2-bromobutane is used to develop a simple graphite-promoted procedure of alkylation of p-xylene. It is further demonstrated that aluminum chloride is not required, the need for aqueous workup is eliminated, waste solutions are not produced and the multiple use of the catalyst is allowed.

  7. An efficient, heterogeneous and reusable catalyst for -alkylation of ...

    Indian Academy of Sciences (India)

    Fe(HSO4)3(FHS) was used as an efficient catalyst for the heterogeneous addition of a series of benzylic and allylic alcohols to various -dicarbonyl compounds, which afforded moderate to excellent yields of -alkylated products in 1,2-dichloroethane. In comparison with the previous methods, the present research ...

  8. Alkoxy(alkyl)silylalkyl derivatives of nitrogen-containing heterocycles

    International Nuclear Information System (INIS)

    Trofimova, Ol'ga M; Voronkov, Mikhail G; Chernov, Nikolai F

    1999-01-01

    The published data on the synthesis, properties and transformations of alkoxy(alkyl)silylalkyl derivatives of nitrogen-containing heterocycles of the general formula Het(CH 2 ) n SiX 3 are surveyed and systematised. Data on the biological activities and applications of these compounds are presented. The bibliography includes 255 references.

  9. 40 CFR 721.10087 - Substituted alkyl phosphine oxide (generic).

    Science.gov (United States)

    2010-07-01

    ... are: (i) Industrial, commercial, and consumer activities. Requirements as specified in § 721.80(s... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkyl phosphine oxide (generic). 721.10087 Section 721.10087 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  10. Manganese Catalyzed Regioselective C–H Alkylation: Experiment and Computation

    KAUST Repository

    Wang, Chengming

    2018-05-08

    A new efficient manganese-catalyzed selective C2-alkylation of indoles via carbenoid insertion has been achieved. The newly developed C-H functionalization protocol provides access to diverse products and shows good functional group tolerance. Mechanistic and computational studies support the formation of a Mn(CO)3 acetate complex as the catalytically active species.

  11. Alkylation of isobutane with light olefins catalyzed by zeolite beta

    NARCIS (Netherlands)

    Nivarthy, G.S.; Feller, A.P.; Seshan, Kulathuiyer; Lercher, J.A.

    2000-01-01

    Alkylation of isobutane with ethene and propene was studied over an H-BEA catalyst in a well-stirred reactor. Under similar conditions of space velocity and paraffin-to-olefin feed ratio, lower initial olefin conversions were observed with ethene or propene than those reported earlier for butene.

  12. Isobutane/olefin alkylation - present state and recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Feller, A.; Lercher, J.A. [Inst. fuer Technische Chemie, Technische Univ. Muenchen (Germany)

    2002-12-01

    Isobutane/alkene alkylation is reviewed with respect to recent process developments based on liquid and solid acid catalysts. The reaction mechanism and its consequences for both liquid and solid acid based processes is briefly discussed. Established liquid acid catalyzed processes are introduced followed by the description of new processes based on solid acids, which are currently under development. (orig.)

  13. Copper-Catalyzed Synthesis of Mixed Alkyl Aryl Phosphonates

    NARCIS (Netherlands)

    Fañanás-Mastral, Martín; Feringa, Ben L

    2014-01-01

    Copper-catalysis allows the direct oxygenarylation of dialkyl phosphonates with diaryliodonium salts. This novel methodology proceeds with a wide range of phosphonates and phosphoramidates under mild conditions and gives straightforward access to valuable mixed alkyl aryl phosphonates in very good

  14. A new route alpha-alkyl-alpha-fluoromethylenebisphosphonates

    Czech Academy of Sciences Publication Activity Database

    Beier, Petr; Opekar, Stanislav; Zibinsky, M.; Bychinskaya, I.; Prakash, G. K. S.

    2011-01-01

    Roč. 9, č. 11 (2011), s. 4035-4038 ISSN 1477-0520 R&D Projects: GA ČR GP203/08/P310 Institutional research plan: CEZ:AV0Z40550506 Keywords : fluorine * phosphonate * alkylation Subject RIV: CC - Organic Chemistry Impact factor: 3.696, year: 2011

  15. On the Boiling Points of the Alkyl Halides.

    Science.gov (United States)

    Correia, John

    1988-01-01

    Discusses the variety of explanations in organic chemistry textbooks of a physical property of organic compounds. Focuses on those concepts explaining attractive forces between molecules. Concludes that induction interactions play a major role in alkyl halides and other polar organic molecules and should be given wider exposure in chemistry texts.…

  16. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    Science.gov (United States)

    Cruz-Ramirez de Arellano, Daniel

    2013-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  17. Alkyltransferase-like proteins: brokers dealing with alkylated DNA bases.

    Science.gov (United States)

    Schärer, Orlando D

    2012-07-13

    A new pathway for the repair of DNA alkylation damage is described in this issue of Molecular Cell (Latypov et al., 2012). Alkyltransferase-like enzymes mark O(6)-alkylguanine lesions and, depending on adduct size, channel them into global genome or transcription-coupled nucleotide excision repair pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Manganese Catalyzed Regioselective C–H Alkylation: Experiment and Computation

    KAUST Repository

    Wang, Chengming; Maity, Bholanath; Cavallo, Luigi; Rueping, Magnus

    2018-01-01

    A new efficient manganese-catalyzed selective C2-alkylation of indoles via carbenoid insertion has been achieved. The newly developed C-H functionalization protocol provides access to diverse products and shows good functional group tolerance. Mechanistic and computational studies support the formation of a Mn(CO)3 acetate complex as the catalytically active species.

  19. "Taller and Shorter": Human 3-D Spatial Memory Distorts Familiar Multilevel Buildings.

    Directory of Open Access Journals (Sweden)

    Thomas Brandt

    Full Text Available Animal experiments report contradictory findings on the presence of a behavioural and neuronal anisotropy exhibited in vertical and horizontal capabilities of spatial orientation and navigation. We performed a pointing experiment in humans on the imagined 3-D direction of the location of various invisible goals that were distributed horizontally and vertically in a familiar multilevel hospital building. The 21 participants were employees who had worked for years in this building. The hypothesis was that comparison of the experimentally determined directions and the true directions would reveal systematic inaccuracy or dimensional anisotropy of the localizations. The study provides first evidence that the internal representation of a familiar multilevel building was distorted compared to the dimensions of the true building: vertically 215% taller and horizontally 51% shorter. This was not only demonstrated in the mathematical reconstruction of the mental model based on the analysis of the pointing experiments but also by the participants' drawings of the front view and the ground plan of the building. Thus, in the mental model both planes were altered in different directions: compressed for the horizontal floor plane and stretched for the vertical column plane. This could be related to human anisotropic behavioural performance of horizontal and vertical navigation in such buildings.

  20. Risky family processes prospectively forecast shorter telomere length mediated through negative emotions.

    Science.gov (United States)

    Brody, Gene H; Yu, Tianyi; Shalev, Idan

    2017-05-01

    This study was designed to examine prospective associations of risky family environments with subsequent levels of negative emotions and peripheral blood mononuclear cell telomere length (TL), a marker of cellular aging. A second purpose was to determine whether negative emotions mediate the hypothesized link between risky family processes and diminished telomere length. Participants were 293 adolescents (age 17 years at the first assessment) and their primary caregivers. Caregivers provided data on risky family processes when the youths were age 17 years, youths reported their negative emotions at age 18 years, and youths' TL was assayed from a blood sample at age 22 years. The results revealed that (a) risky family processes forecast heightened negative emotions (β = .316, p emotions forecast shorter TL (β = -.187, p = .012), and (c) negative emotions served as a mediator connecting risky family processes with diminished TL (indirect effect = -0.012, 95% CI [-0.036, -0.002]). These findings are consistent with the hypothesis that risky family processes presage premature cellular aging through effects on negative emotions, with potential implications for lifelong health. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Effects of shorter versus longer storage time of transfused red blood cells in adult ICU patients

    DEFF Research Database (Denmark)

    Rygård, Sofie L; Jonsson, Andreas B; Madsen, Martin B

    2018-01-01

    on the effects of shorter versus longer storage time of transfused RBCs on outcomes in ICU patients. METHODS: We conducted a systematic review with meta-analyses and trial sequential analyses (TSA) of randomised clinical trials including adult ICU patients transfused with fresher versus older or standard issue...... blood. RESULTS: We included seven trials with a total of 18,283 randomised ICU patients; two trials of 7504 patients were judged to have low risk of bias. We observed no effects of fresher versus older blood on death (relative risk 1.04, 95% confidence interval (CI) 0.97-1.11; 7349 patients; TSA......-adjusted CI 0.93-1.15), adverse events (1.26, 0.76-2.09; 7332 patients; TSA-adjusted CI 0.16-9.87) or post-transfusion infections (1.07, 0.96-1.20; 7332 patients; TSA-adjusted CI 0.90-1.27). The results were unchanged by including trials with high risk of bias. TSA confirmed the results and the required...

  2. Gain of chromosome arm 1q in atypical meningioma correlates with shorter progression-free survival.

    LENUS (Irish Health Repository)

    2012-02-01

    Aims: Atypical (WHO grade II) meningiomas have moderately high recurrence rates; even for completely resected tumours, approximately one-third will recur. Post-operative radiotherapy (RT) may aid local control and improve survival, but carries the risk of side effects. More accurate prediction of recurrence risk is therefore needed for patients with atypical meningioma. Previously, we used high-resolution array CGH to identify genetic variations in 47 primary atypical meningiomas and found that approximately 60% of tumors show gain of 1q at 1q25.1 and 1q25.3 to 1q32.1 and that 1q gain appeared to correlate with shorter progression-free survival. This study aimed to validate and extend these findings in an independent sample. Methods: 86 completely resected atypical meningiomas (with 25 recurrences) from two neurosurgical centres in Ireland were identified and clinical follow up was obtained. Utilizing a dual-colour interphase FISH assay, 1q gain was assessed using BAC probes directed against 1q25.1 and 1q32.1. Results: The results confirm the high prevalence of 1q gain at these loci in atypical meningiomas. We further show that gain at 1q32.1 and age each correlate with progression-free survival in patients who have undergone complete surgical resection of atypical meningiomas. Conclusions: These independent findings suggest that assessment of 1q copy number status can add clinically useful information for the management of patients with atypical meningiomas.

  3. Greater reproductive investment, but shorter lifespan, in agrosystem than in natural-habitat toads

    Directory of Open Access Journals (Sweden)

    Francisco Javier Zamora-Camacho

    2017-09-01

    Full Text Available Global amphibian decline is due to several factors: habitat loss, anthropization, pollution, emerging diseases, and global warming. Amphibians, with complex life cycles, are particularly susceptible to habitat alterations, and their survival may be impaired in anthropized habitats. Increased mortality is a well-known consequence of anthropization. Life-history theory predicts higher reproductive investment when mortality is increased. In this work, we compared age, body size, and different indicators of reproductive investment, as well as prey availability, in natterjack toads (Epidalea calamita from agrosystems and adjacent natural pine groves in Southwestern Spain. Mean age was lower in agrosystems than in pine groves, possibly as a consequence of increased mortality due to agrosystem environmental stressors. Remarkably, agrosystem toads were larger despite being younger, suggesting accelerated growth rate. Although we detected no differences in prey availability between habitats, artificial irrigation could shorten aestivation in agrosystems, thus increasing energy trade. Moreover, agrosystem toads exhibited increased indicators of reproductive investment. In the light of life-history theory, agrosystem toads might compensate for lesser reproductive events—due to shorter lives—with a higher reproductive investment in each attempt. Our results show that agrosystems may alter demography, which may have complex consequences on both individual fitness and population stability.

  4. "Taller and Shorter": Human 3-D Spatial Memory Distorts Familiar Multilevel Buildings.

    Science.gov (United States)

    Brandt, Thomas; Huber, Markus; Schramm, Hannah; Kugler, Günter; Dieterich, Marianne; Glasauer, Stefan

    2015-01-01

    Animal experiments report contradictory findings on the presence of a behavioural and neuronal anisotropy exhibited in vertical and horizontal capabilities of spatial orientation and navigation. We performed a pointing experiment in humans on the imagined 3-D direction of the location of various invisible goals that were distributed horizontally and vertically in a familiar multilevel hospital building. The 21 participants were employees who had worked for years in this building. The hypothesis was that comparison of the experimentally determined directions and the true directions would reveal systematic inaccuracy or dimensional anisotropy of the localizations. The study provides first evidence that the internal representation of a familiar multilevel building was distorted compared to the dimensions of the true building: vertically 215% taller and horizontally 51% shorter. This was not only demonstrated in the mathematical reconstruction of the mental model based on the analysis of the pointing experiments but also by the participants' drawings of the front view and the ground plan of the building. Thus, in the mental model both planes were altered in different directions: compressed for the horizontal floor plane and stretched for the vertical column plane. This could be related to human anisotropic behavioural performance of horizontal and vertical navigation in such buildings.

  5. Bifunctional Molybdenum Polyoxometalates for the Combined Hydrodeoxygenation and Alkylation of Lignin-Derived Model Phenolics.

    Science.gov (United States)

    Anderson, Eric; Crisci, Anthony; Murugappan, Karthick; Román-Leshkov, Yuriy

    2017-05-22

    Reductive catalytic fractionation of biomass has recently emerged as a powerful lignin extraction and depolymerization method to produce monomeric aromatic oxygenates in high yields. Here, bifunctional molybdenum-based polyoxometalates supported on titania (POM/TiO 2 ) are shown to promote tandem hydrodeoxygenation (HDO) and alkylation reactions, converting lignin-derived oxygenated aromatics into alkylated benzenes and alkylated phenols in high yields. In particular, anisole and 4-propylguaiacol were used as model compounds for this gas-phase study using a packed-bed flow reactor. For anisole, 30 % selectivity for alkylated aromatic compounds (54 % C-alkylation of the methoxy groups by methyl balance) with an overall 72 % selectivity for HDO at 82 % anisole conversion was observed over H 3 PMo 12 O 40 /TiO 2 at 7 h on stream. Under similar conditions, 4-propylguaiacol was mainly converted into 4-propylphenol and alkylated 4-propylphenols with a selectivity to alkylated 4-propylphenols of 42 % (77 % C-alkylation) with a total HDO selectivity to 4-propylbenzene and alkylated 4-propylbenzenes of 4 % at 92 % conversion (7 h on stream). Higher catalyst loadings pushed the 4-propylguaiacol conversion to 100 % and resulted in a higher selectivity to propylbenzene of 41 %, alkylated aromatics of 21 % and alkylated phenols of 17 % (51 % C-alkylation). The reactivity studies coupled with catalyst characterization revealed that Lewis acid sites act synergistically with neighboring Brønsted acid sites to simultaneously promote alkylation and hydrodeoxygenation activity. A reaction mechanism is proposed involving activation of the ether bond on a Lewis acid site, followed by methyl transfer and C-alkylation. Mo-based POMs represent a versatile catalytic platform to simultaneously upgrade lignin-derived oxygenated aromatics into alkylated arenes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Self-Assembly, Supramolecular Organization, and Phase Behavior of L-Alanine Alkyl Esters (n = 9-18) and Characterization of Equimolar L-Alanine Lauryl Ester/Lauryl Sulfate Catanionic Complex.

    Science.gov (United States)

    Sivaramakrishna, D; Swamy, Musti J

    2015-09-08

    A homologous series of l-alanine alkyl ester hydrochlorides (AEs) bearing 9-18 C atoms in the alkyl chain have been synthesized and characterized with respect to self-assembly, supramolecular structure, and phase transitions. The CMCs of AEs bearing 11-18 C atoms were found to range between 0.1 and 10 mM. Differential scanning calorimetric (DSC) studies showed that the transition temperatures (Tt), enthalpies (ΔHt) and entropies (ΔSt) of AEs in the dry state exhibit odd-even alternation, with the odd-chain-length compounds having higher Tt values, but the even-chain-length homologues showing higher values of ΔHt and ΔSt. In DSC measurements on hydrated samples, carried out at pH 5.0 and pH 10.0 (where they exist in cationic and neutral forms, respectively), compounds with 13-18 C atoms in the alkyl chain showed sharp gel-to-liquid crystalline phase transitions, and odd-even alternation was not seen in the thermodynamic parameters. The molecular structure, packing properties, and intermolecular interactions of AEs with 9 and 10 C atoms in the alkyl chain were determined by single crystal X-ray diffraction, which showed that the alkyl chains are packed in a tilted interdigitated bilayer format. d-Spacings obtained from powder X-ray diffraction studies exhibited a linear dependence on the alkyl chain length, suggesting that the other AEs also adopt an interdigitated bilayer structure. Turbidimetric, fluorescence spectroscopic, and isothermal titration calorimetric (ITC) studies established that in aqueous dispersions l-alanine lauryl ester hydrochloride (ALE·HCl) and sodium dodecyl sulfate (SDS) form an equimolar complex. Transmission electron microscopic and DSC studies indicate that the complex exists as unilamellar liposomes, which exhibit a sharp phase transition at ∼39 °C. The aggregates were disrupted at high pH, suggesting that the catanionic complex would be useful to develop a base-labile drug delivery system. ITC studies indicated that ALE·HCl forms

  7. Design of Test Wrapper Scan Chain Based on Differential Evolution

    Directory of Open Access Journals (Sweden)

    Aijun Zhu

    2013-08-01

    Full Text Available Integrated Circuit has entered the era of design of the IP-based SoC (System on Chip, which makes the IP core reuse become a key issue. SoC test wrapper design for scan chain is a NP Hard problem, we propose an algorithm based on Differential Evolution (DE to design wrapper scan chain. Through group’s mutation, crossover and selection operations, the design of test wrapper scan chain is achieved. Experimental verification is carried out according to the international standard benchmark ITC’02. The results show that the algorithm can obtain shorter longest wrapper scan chains, compared with other algorithms.

  8. Tuning Thermoresponsive Properties of Cationic Elastin-like Polypeptides by Varying Counterions and Side-Chains.

    Science.gov (United States)

    Petitdemange, Rosine; Garanger, Elisabeth; Bataille, Laure; Bathany, Katell; Garbay, Bertrand; Deming, Timothy J; Lecommandoux, Sébastien

    2017-05-17

    We report the synthesis of methionine-containing recombinant elastin-like polypeptides (ELPs) of different lengths that contain periodically spaced methionine residues. These ELPs were chemoselectively alkylated at all methionine residues to give polycationic derivatives. Some of these samples were found to possess solubility transitions in water, where the temperature of these transitions varied with ELP concentration, nature of the methionine alkylating group, and nature of the sulfonium counterions. These studies show that introduction and controlled spacing of methionine sulfonium residues into ELPs can be used as a means both to tune their solubility transition temperatures in water using a variety of different parameters and to introduce new side-chain functionality.

  9. Side chain alkylation of toluene with methanol over basic zeolites - novel production route towards styrene?

    NARCIS (Netherlands)

    Rep, M.; Rep, M.

    2002-01-01

    Styrene is an important monomer for the production of different types of (co-) polymers that are used in, e.g., toys, medical devices, food packaging, paper coatings etc. Styrene is produced with several different industrial processes. In 1998, the production of styrene monomer was approximately 21

  10. Synthesis, characterization and antibacterial properties of dihydroxy quaternary ammonium salts with long chain alkyl bromides.

    Science.gov (United States)

    Liu, Wen-Shuai; Wang, Chun-Hua; Sun, Ju-Feng; Hou, Gui-Ge; Wang, Yu-Peng; Qu, Rong-Jun

    2015-01-01

    Five N-methyl-N-R-N,N-bis(2-hydroxyethyl) ammonium bromides (R = -benzyl (chloride, BNQAS), -dodecyl (C12QAS), -tetradecyl (C14QAS), -hexadecyl (C16QAS), -octadecyl (C18QAS)) were prepared based on N-methyldiethanolamine (MDEA) and halohydrocarbon. Five QAS were characterized by FTIR, NMR, and MS. BNQAS, C12QAS, C14QAS, and C16QAS were confirmed by X-ray single-crystal diffraction. Their antibacterial properties indicated good antibacterial abilities against E. coli, S. aureus, B. subtilis, especially C12QAS with the best antibacterial ability (100% to E. coli, 95.65% to S. aureus, and 91.41% to B. subtilis). In addition, C12QAS also displayed the best antifungal activities than BNQAS and C18QAS against Cytospora mandshurica, Botryosphaeria ribis, Physalospora piricola, and Glomerella cingulata with the ratio of full marks. The strategy provides a facile way to design and develop new types of antibacterial drugs for application in preventing the fruit rot, especially apple. © 2014 John Wiley & Sons A/S.

  11. The effect of the alkyl chain length on the mesomorphic properties of new lactic acid derivatives

    Czech Academy of Sciences Publication Activity Database

    Kašpar, Miroslav; Hamplová, Věra; Novotná, Vladimíra; Pacherová, Oliva

    2014-01-01

    Roč. 41, č. 8 (2014), 1179-1187 ISSN 0267-8292 R&D Projects: GA ČR GA13-14133S Institutional support: RVO:68378271 Keywords : liquid crystals * lactate derivatives Subject RIV: JJ - Other Materials Impact factor: 2.486, year: 2014

  12. Alkyl Chain Barriers for Kinetic Optimization in Dye-Sensitized Solar Cells

    NARCIS (Netherlands)

    Kroeze, J.E.; Hirata, N.; Koops, S.; Nazeeruddin, M.K.; Schmidt-Mende, L.; Grätzel, M.; Durrant, J.R.

    2006-01-01

    The optimization of interfacial charge transfer is crucial to the design of dye-sensitized solar cells. In this paper we address the dynamics of the charge separation and recombination in liquid-electrolyte and solid-state cells employing a series of amphiphilic ruthenium dyes with varying

  13. Predicting Alkylate Yield and its Hydrocarbon Composition for Sulfuric Acid Catalyzed Isobutane Alkylation with Olefins Using the Method of Mathematical Modeling

    OpenAIRE

    Nurmakanova, А. Е.; Ivashkina, Elena Nikolaevna; Ivanchina, Emilia Dmitrievna; Dolganov, I. A.; Boychenko, S. S.

    2015-01-01

    The article provides the results of applied mathematical model of isobutane alkylation with olefins catalyzed by sulfuric acid to predict yield and hydrocarbon composition of alkylate caused by the changes in the feedstock composition and process parameters. It is shown that the alkylate produced from feedstock with less mass fraction of isobutane has lower octane value. Wherein the difference in composition of the feedstock contributes to antiknock index by the amount of 1.0-2.0 points.

  14. Design of novel antitumor DNA alkylating agents: the benzacronycine series.

    Science.gov (United States)

    David-Cordonnier, Marie-Hélène; Laine, William; Gaslonde, Thomas; Michel, Sylvie; Tillequin, Francois; Koch, Michel; Léonce, Stéphane; Pierré, Alain; Bailly, Christian

    2004-03-01

    Acronycine, a natural alkaloid originally extracted from the bark of the Australian ash scrub Acronychia baueri, has shown a significant antitumor activity in animal models. Acronycine has been tested against human cancers in the early 1980s, but the clinical trials showed modest therapeutic effects and its development was rapidly discontinued. In order to optimize the antineoplastic effect, different benzoacronycine derivatives were synthesized. Among those, the di-acetate compound S23906-1 was recently identified as a promising anticancer drug candidate and a novel alkylating agent specifically reacting with the exocylic 2-NH2 group of guanines in DNA. The study of DNA bonding capacity of acronycine derivatives leads to the identification of the structural requirements for DNA alkylation. In nearly all cases, the potent alkylating agents, such as S23906-1, were found to be much more cytotoxic than the unreactive analogs such as acronycine itself or diol derivatives. Alkylation of DNA by the monoacetate derivative S28687-1, which is a highly reactive hydrolysis metabolite of S23906-1, occurs with a marked preference for the N2 position of guanine. Other bionucleophiles can react with S23906-1. The benzacronycine derivatives, which efficiently alkylate DNA, also covalently bind to the tripeptide glutathione (GSH) but not to the oxidized product glutathione disulfide. Here we review the reactivity of S23906-1 and some derivatives toward DNA and GSH. The structure-activity relationships in the benzacronycine series validate the reaction mechanism implicating DNA as the main molecular target. S23906-1 stands as the most promising lead of a medicinal chemistry program aimed at discovering novel antitumor drugs based on the acronycine skeleton.

  15. The impact of alkyl sulfate surfactant geometry and electrolyte on the co-adsorption of anionic surfactants with model perfumes at the air-solution interface.

    Science.gov (United States)

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig

    2013-08-01

    The impact of surfactant geometry and electrolyte on the co-adsorption of anionic surfactants and model perfumes at the air-solution interface has been studied by neutron reflectivity. The more hydrophobic perfume linalool, competes more favourably for the surface with sodium dodecylsulfate than was previously reported for the anionic surfactant, sodium dodecyl 6-benzenesulfonate. Due to an increase in surface activity of the sodium dodecylsulfate, the addition of electrolyte results in a reduction in the linalool adsorption. Changing the alkyl chain length affects the relative adsorption of linalool and surfactant at the interface. Similar measurements for the different alkyl sulfates and with electrolyte with the more hydrophilic perfume phenyl ethanol, reveal broadly similar trends. Although the relative adsorption of phenyl ethanol with sodium dodecylsulfate is substantially enhanced compared to sodium dodecyl-6-benzenesulfonate the effects are not as significant as was observed with linalool. The variations with alkyl chain geometry show the importance of the hydrophobic interaction between the perfume and surfactant and changes in the packing constraints on the relative adsorption. The results highlight the importance of the specific interaction between the surfactant and perfume, and the surfactant and perfume geometries on the relative adsorption at the interface. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. C2-Selective Branched Alkylation of Benzimidazoles by Rhodium(I)-Catalyzed C-H Activation.

    Science.gov (United States)

    Tran, Gaël; Confair, Danielle; Hesp, Kevin D; Mascitti, Vincent; Ellman, Jonathan A

    2017-09-01

    Herein, we report a Rh(I)/bisphosphine/K 3 PO 4 catalytic system allowing for the first time the selective branched C-H alkylation of benzimidazoles with Michael acceptors. Branched alkylation with N,N-dimethyl acrylamide was successfully applied to the alkylation of a broad range of benzimidazoles incorporating a variety of N-substituents and with both electron-rich and -poor functionality displayed at different sites of the arene. Moreover, the introduction of a quaternary carbon was achieved by alkylation with ethyl methacrylate. The method was also shown to be applicable to the C2-selective branched alkylation of azabenzimidazoles.

  17. Study of hydrogen mobility by hydrogen-deuterium exchange. II. Theoretical kinetic study in alkyl and amino-alkyl pyrimidines

    International Nuclear Information System (INIS)

    Pompon, Alain

    1975-01-01

    Alkyl groups bound to the pyrimidine ring can be deuterium substituted on the carbon adjacent to the ring, in acidic D 2 O; kinetic equations corresponding to various exchange mechanism hypothesis are established. It is shown that theoretical and experimental results can be compared in order to precise the mechanism and to measure the characteristic parameters of the exchange reaction [fr

  18. 4-Alkyl radical extrusion in the cytochrome P-450-catalyzed oxidation of 4-alkyl-1,4-dihydropyridines

    International Nuclear Information System (INIS)

    Lee, J.S.; Jacobsen, N.E.; Ortiz de Montellano, P.R.

    1988-01-01

    Rat liver microsomal cytochrome P-450 oxidizes the 4-methyl, 4-ethyl (DDEP), and 4-isopropyl derivatives of 3,5-bis(carbethoxy)-2,6-dimethyl-1,4,-dihydropyridine to mixtures of the corresponding 4-alkyl and 4-dealkyl pyridines. A fraction of the total microsomal enzyme is destroyed in the process. The 4-dealkyl to 4-alkyl pyridine metabolite ratio, the extent of cytochrome P-450 destruction, and the rate of spin-trapped radical accumulation are correlated in a linear inverse manner with the homolytic or heterolytic bond energies of the 4-alkyl groups of the 4-alkyl-1,4-dihydropyridines. No isotope effects are observed on the pyridine matabolite ratio, the destruction of cytochrome P-450, or the formation of ethyl radicals when [4- 2 H]DDEP is used instead of DDEP. N-Methyl- and N-ethyl-DDEP undergo N-dealkylation rather than aromatization but N-phenyl-DDEP is oxidized to a mixture of the 4-ethyl and 4-deethyl N-phenylpyridinium metabolites. In contrast to the absence of an isotope effect in the oxidation of DDEP, the 4-deethyl to 4-ethyl N-phenylpyridinium metabolite ratio increases 6-fold when N-phenyl[4- 2 H]DDEP is used. The results support the hypothesis that cytochrome P-450 catalyzes the oxidation of dihydropyridines to radical cations and show that the radical cations decay to nonradical products by multiple, substituent-dependent, mechanisms

  19. Determination of alkylation of bacterial DNA as a rapid test for toxicological evaluation of alkylating xenobiotic agents

    Energy Technology Data Exchange (ETDEWEB)

    Botzenhart, K.; Waldner-Sander, S.; Schweinsberg, F.

    1986-05-01

    Alkylated purine bases from hydrolized DNA can be separated by HPLC and quantified with a fluorescence detector. We applied this method to bacterial DNA. 7-methylguanine was detected after treatment of Serratia marcescens with iodoacetamide, dimethyl sulfate and with polluted air.

  20. Prenatal paracetamol exposure is associated with shorter anogenital distance in male infants

    Science.gov (United States)

    Fisher, B.G.; Thankamony, A.; Hughes, I.A.; Ong, K.K.; Dunger, D.B.; Acerini, C.L.

    2016-01-01

    STUDY QUESTION What is the relationship between maternal paracetamol intake during the masculinisation programming window (MPW, 8–14 weeks of gestation) and male infant anogenital distance (AGD), a biomarker for androgen action during the MPW? SUMMARY ANSWER Intrauterine paracetamol exposure during 8–14 weeks of gestation is associated with shorter AGD from birth to 24 months of age. WHAT IS ALREADY KNOWN The increasing prevalence of male reproductive disorders may reflect environmental influences on foetal testicular development during the MPW. Animal and human xenograft studies have demonstrated that paracetamol reduces foetal testicular testosterone production, consistent with reported epidemiological associations between prenatal paracetamol exposure and cryptorchidism. STUDY DESIGN, SIZE, DURATION Prospective cohort study (Cambridge Baby Growth Study), with recruitment of pregnant women at ~12 post-menstrual weeks of gestation from a single UK maternity unit between 2001 and 2009, and 24 months of infant follow-up. Of 2229 recruited women, 1640 continued with the infancy study after delivery, of whom 676 delivered male infants and completed a medicine consumption questionnaire. PARTICIPANTS/MATERIALS, SETTING, METHOD Mothers self-reported medicine consumption during pregnancy by a questionnaire administered during the perinatal period. Infant AGD (measured from 2006 onwards), penile length and testicular descent were assessed at 0, 3, 12, 18 and 24 months of age, and age-specific Z scores were calculated. Associations between paracetamol intake during three gestational periods (14 weeks) and these outcomes were tested by linear mixed models. Two hundred and twenty-five (33%) of six hundred and eighty-one male infants were exposed to paracetamol during pregnancy, of whom sixty-eight were reported to be exposed during 8–14 weeks. AGD measurements were available for 434 male infants. MAIN RESULTS AND THE ROLE OF CHANCE Paracetamol exposure during 8–14

  1. The Effect of Shorter Treatment Regimens for Hepatitis C on Population Health and Under Fixed Budgets.

    Science.gov (United States)

    Morgan, Jake R; Kim, Arthur Y; Naggie, Susanna; Linas, Benjamin P

    2018-01-01

    Direct acting antiviral hepatitis C virus (HCV) therapies are highly effective but costly. Wider adoption of an 8-week ledipasvir/sofosbuvir treatment regimen could result in significant savings, but may be less efficacious compared with a 12-week regimen. We evaluated outcomes under a constrained budget and cost-effectiveness of 8 vs 12 weeks of therapy in treatment-naïve, noncirrhotic, genotype 1 HCV-infected black and nonblack individuals and considered scenarios of IL28B and NS5A resistance testing to determine treatment duration in sensitivity analyses. We developed a decision tree to use in conjunction with Monte Carlo simulation to investigate the cost-effectiveness of recommended treatment durations and the population health effect of these strategies given a constrained budget. Outcomes included the total number of individuals treated and attaining sustained virologic response (SVR) given a constrained budget and incremental cost-effectiveness ratios. We found that treating eligible (treatment-naïve, noncirrhotic, HCV-RNA budget among both black and nonblack individuals, and our results suggested that NS5A resistance testing is cost-effective. Eight-week therapy provides good value, and wider adoption of shorter treatment could allow more individuals to attain SVR on the population level given a constrained budget. This analysis provides an evidence base to justify movement of the 8-week regimen to the preferred regimen list for appropriate patients in the HCV treatment guidelines and suggests expanding that recommendation to black patients in settings where cost and relapse trade-offs are considered.

  2. MO-E-BRD-02: Accelerated Partial Breast Irradiation in Brachytherapy: Is Shorter Better?

    International Nuclear Information System (INIS)

    Todor, D.

    2015-01-01

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  3. Shorter Ground Contact Time and Better Running Economy: Evidence From Female Kenyan Runners.

    Science.gov (United States)

    Mooses, Martin; Haile, Diresibachew W; Ojiambo, Robert; Sang, Meshack; Mooses, Kerli; Lane, Amy R; Hackney, Anthony C

    2018-06-25

    Mooses, M, Haile, DW, Ojiambo, R, Sang, M, Mooses, K, Lane, AR, and Hackney, AC. Shorter ground contact time and better running economy: evidence from female Kenyan runners. J Strength Cond Res XX(X): 000-000, 2018-Previously, it has been concluded that the improvement in running economy (RE) might be considered as a key to the continued improvement in performance when no further increase in V[Combining Dot Above]O2max is observed. To date, RE has been extensively studied among male East African distance runners. By contrast, there is a paucity of data on the RE of female East African runners. A total of 10 female Kenyan runners performed 3 × 1,600-m steady-state run trials on a flat outdoor clay track (400-m lap) at the intensities that corresponded to their everyday training intensities for easy, moderate, and fast running. Running economy together with gait characteristics was determined. Participants showed moderate to very good RE at the first (202 ± 26 ml·kg·km) and second (188 ± 12 ml·kg·km) run trials, respectively. Correlation analysis revealed significant relationship between ground contact time (GCT) and RE at the second run (r = 0.782; p = 0.022), which represented the intensity of anaerobic threshold. This study is the first to report the RE and gait characteristics of East African female athletes measured under everyday training settings. We provided the evidence that GCT is associated with the superior RE of the female Kenyan runners.

  4. Less is more: latent learning is maximized by shorter training sessions in auditory perceptual learning.

    Science.gov (United States)

    Molloy, Katharine; Moore, David R; Sohoglu, Ediz; Amitay, Sygal

    2012-01-01

    The time course and outcome of perceptual learning can be affected by the length and distribution of practice, but the training regimen parameters that govern these effects have received little systematic study in the auditory domain. We asked whether there was a minimum requirement on the number of trials within a training session for learning to occur, whether there was a maximum limit beyond which additional trials became ineffective, and whether multiple training sessions provided benefit over a single session. We investigated the efficacy of different regimens that varied in the distribution of practice across training sessions and in the overall amount of practice received on a frequency discrimination task. While learning was relatively robust to variations in regimen, the group with the shortest training sessions (∼8 min) had significantly faster learning in early stages of training than groups with longer sessions. In later stages, the group with the longest training sessions (>1 hr) showed slower learning than the other groups, suggesting overtraining. Between-session improvements were inversely correlated with performance; they were largest at the start of training and reduced as training progressed. In a second experiment we found no additional longer-term improvement in performance, retention, or transfer of learning for a group that trained over 4 sessions (∼4 hr in total) relative to a group that trained for a single session (∼1 hr). However, the mechanisms of learning differed; the single-session group continued to improve in the days following cessation of training, whereas the multi-session group showed no further improvement once training had ceased. Shorter training sessions were advantageous because they allowed for more latent, between-session and post-training learning to emerge. These findings suggest that efficient regimens should use short training sessions, and optimized spacing between sessions.

  5. MO-E-BRD-02: Accelerated Partial Breast Irradiation in Brachytherapy: Is Shorter Better?

    Energy Technology Data Exchange (ETDEWEB)

    Todor, D. [Virginia Commonwealth University (United States)

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  6. Are Shorter Article Titles More Attractive for Citations? Cross-sectional Study of 22 Scientific Journals

    Science.gov (United States)

    Habibzadeh, Farrokh; Yadollahie, Mahboobeh

    2010-01-01

    Aim To investigate the correlation between the length of the title of a scientific article and the number of citations it receives, in view of the common editorial call for shorter titles. Methods Title and the number of citations to all articles published in 2005 in 22 arbitrarily chosen English-language journals (n = 9031) were retrieved from citation database Scopus. The 2008 journal impact factors of these 22 journals were also retrieved from Thomson Reuters’ Journal Citation Report (JCR). Assuming the article title length as the independent variable, and the number of citations to the article as the dependent variable, a linear regression model was applied. Results The slope of the regression line for some journals (n = 6, when titles were measured in characters but 7 when titles were measured in words) was negative – none was significantly different from 0. The overall slope for all journals was 0.140 (when titles were measured in characters) and 0.778 (when titles were measured in words), significantly different from 0 (P articles with longer titles received more citations – Spearman ρ = 0.266 – when titles were measured in characters, and ρ = 0.244 when titles were measured in words (P 10 and for 2 out of 14 journals with impact factor <10 (P < 0.001, Fisher exact test). Conclusion Longer titles seem to be associated with higher citation rates. This association is more pronounced for journals with high impact factors. Editors who insist on brief and concise titles should perhaps update the guidelines for authors of their journals and have more flexibility regarding the length of the title. PMID:20401960

  7. Shorter exposures to harder X-rays trigger early apoptotic events in Xenopus laevis embryos.

    Directory of Open Access Journals (Sweden)

    JiaJia Dong

    Full Text Available BACKGROUND: A long-standing conventional view of radiation-induced apoptosis is that increased exposure results in augmented apoptosis in a biological system, with a threshold below which radiation doses do not cause any significant increase in cell death. The consequences of this belief impact the extent to which malignant diseases and non-malignant conditions are therapeutically treated and how radiation is used in combination with other therapies. Our research challenges the current dogma of dose-dependent induction of apoptosis and establishes a new parallel paradigm to the photoelectric effect in biological systems. METHODOLOGY/PRINCIPAL FINDINGS: We explored how the energy of individual X-ray photons and exposure time, both factors that determine the total dose, influence the occurrence of cell death in early Xenopus embryo. Three different experimental scenarios were analyzed and morphological and biochemical hallmarks of apoptosis were evaluated. Initially, we examined cell death events in embryos exposed to increasing incident energies when the exposure time was preset. Then, we evaluated the embryo's response when the exposure time was augmented while the energy value remained constant. Lastly, we studied the incidence of apoptosis in embryos exposed to an equal total dose of radiation that resulted from increasing the incoming energy while lowering the exposure time. CONCLUSIONS/SIGNIFICANCE: Overall, our data establish that the energy of the incident photon is a major contributor to the outcome of the biological system. In particular, for embryos exposed under identical conditions and delivered the same absorbed dose of radiation, the response is significantly increased when shorter bursts of more energetic photons are used. These results suggest that biological organisms display properties similar to the photoelectric effect in physical systems and provide new insights into how radiation-mediated apoptosis should be understood and

  8. Hypermetabolism in ALS is associated with greater functional decline and shorter survival.

    Science.gov (United States)

    Steyn, Frederik J; Ioannides, Zara A; van Eijk, Ruben P A; Heggie, Susan; Thorpe, Kathryn A; Ceslis, Amelia; Heshmat, Saman; Henders, Anjali K; Wray, Naomi R; van den Berg, Leonard H; Henderson, Robert D; McCombe, Pamela A; Ngo, Shyuan T

    2018-04-29

    To determine the prevalence of hypermetabolism, relative to body composition, in amyotrophic lateral sclerosis (ALS) and its relationship with clinical features of disease and survival. Fifty-eight patients with clinically definite or probable ALS as defined by El Escorial criteria, and 58 age and sex-matched control participants underwent assessment of energy expenditure. Our primary outcome was the prevalence of hypermetabolism in cases and controls. Longitudinal changes in clinical parameters between hypermetabolic and normometabolic patients with ALS were determined for up to 12 months following metabolic assessment. Survival was monitored over a 30-month period following metabolic assessment. Hypermetabolism was more prevalent in patients with ALS than controls (41% vs 12%, adjusted OR=5.4; pALS. Mean lower motor neuron score (SD) was greater in hypermetabolic patients when compared with normometabolic patients (4 (0.3) vs 3 (0.7); p=0.04). In the 12 months following metabolic assessment, there was a greater change in Revised ALS Functional Rating Scale score in hypermetabolic patients when compared with normometabolic patients (-0.68 points/month vs -0.39 points/month; p=0.01). Hypermetabolism was inversely associated with survival. Overall, hypermetabolism increased the risk of death during follow-up to 220% (HR 3.2, 95% CI 1.1 to 9.4, p=0.03). Hypermetabolic patients with ALS have a greater level of lower motor neuron involvement, faster rate of functional decline and shorter survival. The metabolic index could be important for informing prognosis in ALS. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Production of n-alkyl lipids in living plants and implications for the geologic past

    Science.gov (United States)

    Diefendorf, Aaron F.; Freeman, Katherine H.; Wing, Scott L.; Graham, Heather V.

    2011-12-01

    Leaf waxes (i.e., n-alkyl lipids or n-alkanes) are land-plant biomarkers widely used to reconstruct changes in climate and the carbon isotopic composition of the atmosphere. There is little information available, however, on how the production of leaf waxes by different kinds of plants might influence the abundance and isotopic composition of n-alkanes in sedimentary archives. This lack of information increases uncertainty in interpreting n-alkyl lipid abundance and δ 13C signals in ancient settings. We provide here n-alkyl abundance distributions and carbon isotope fractionation data for deciduous and evergreen angiosperm and gymnosperm leaves from 46 tree species, representing 24 families. n-Alkane abundances are significantly higher in angiosperms than gymnosperms; many of the gymnosperm species investigated did not produce any n-alkanes. On average, deciduous angiosperms produce 200 times more n-alkanes than deciduous gymnosperms. Although differences between angiosperms and gymnosperms dominate the variance in n-alkane abundance, leaf life-span is also important, with higher n-alkane abundances in longer-lived leaves. n-Alkanol abundances covary with n-alkanes, but n-alkanoic acids have similar abundances across all plant groups. Isotopic fractionation between leaf tissue and individual alkanes ( ɛlipid) varies by as much as 10‰ among different chain lengths. Overall, ɛlipid values are slightly lower (-4.5‰) for angiosperm than for gymnosperm (-2.5‰) n-alkanes. Angiosperms commonly express slightly higher Δleaf (photosynthetic discrimination) relative to gymnosperms under similar growth conditions. As a result, angiosperm n-alkanes are expected to be generally 3-5‰ more depleted in 13C relative to gymnosperm alkanes for the same locality. Differences in n-alkane production indicate the biomarker record will largely (but not exclusively) reflect angiosperms if both groups were present, and also that evergreen plants will likely be overrepresented

  10. Chain reaction

    International Nuclear Information System (INIS)

    Balogh, Brian.

    1991-01-01

    Chain Reaction is a work of recent American political history. It seeks to explain how and why America came to depend so heavily on its experts after World War II, how those experts translated that authority into political clout, and why that authority and political discretion declined in the 1970s. The author's research into the internal memoranda of the Atomic Energy Commission substantiates his argument in historical detail. It was not the ravages of American anti-intellectualism, as so many scholars have argued, that brought the experts back down to earth. Rather, their decline can be traced to the very roots of their success after World War II. The need to over-state anticipated results in order to garner public support, incessant professional and bureaucratic specialization, and the sheer proliferation of expertise pushed arcane and insulated debates between experts into public forums at the same time that a broad cross section of political participants found it easier to gain access to their own expertise. These tendencies ultimately undermined the political influence of all experts. (author)

  11. Relationship between the Composition of Polymer of n-Alkyl Substituted Acrylate and Vinyl Amine and Their Performance on Pour Point Depression

    Institute of Scientific and Technical Information of China (English)

    Jiang Qingzhe; Luo Fangmin; Song Zhaozheng; Ke Ming

    2005-01-01

    Polymer of n-alkyl substituted acrylate (PA) with the alkyl side chains C16- 30 were synthesized.Their crystallinity, solubility and effect on pour point depression were studied. Results showed that only carbon atoms located far away from polar groups of PA pour point depressants participated in crystallization.When the number of carbon atoms that participated in crystallization is about three fourths of the average carbon number of wax in crude, the effect of PA is the best. The molecular weight distribution of PA pour point depressant has little influence on the effect of pour point depression, and the average molecular weight of PA in the range of (1.5- 2.2)× 104 shows the best effect. The introduction of polar groups into the molecule of PA can improve its performance. However, a too high content of polar groups in PA would cause deterioration, and even lead to loss of PA's performance for pour point depression.

  12. Formation of carboxy- and amide-terminated alkyl monolayers on silicon(111) investigated by ATR-FTIR, XPS, and X-ray scattering: Construction of photoswitchable surfaces

    DEFF Research Database (Denmark)

    Rück-Braun, Karola; Petersen, Michael Åxman; Michalik, Fabian

    2013-01-01

    -FTIR and XPS studies of the fulgimide samples revealed closely covered amide-terminated SAMs. Reversible photoswitching of the headgroup was read out by applying XPS, ATR-FTIR, and difference absorption spectra in the mid-IR. In XPS, we observed a reversible breathing of the amide/imide C1s and N1s signals......We have prepared high-quality, densely packed, self-assembled monolayers (SAMs) of carboxy-terminated alkyl chains on Si(111). The samples were made by thermal grafting of methyl undec-10-enoate under an inert atmosphere and subsequent cleavage of the ester functionality to disclose the carboxylic...... zigzag-like substitution pattern for the ester- and carboxy-terminated monolayer. Hydrolysis of the remaining H-Si(111) bonds at the surface furnished HO-Si(111) groups according to XPS and attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) studies. The amide-terminated alkyl...

  13. Enantioseparation and optical rotation of flavor-relevant 4-alkyl-branched fatty acids.

    Science.gov (United States)

    Eibler, Dorothee; Vetter, Walter

    2017-07-07

    Short chain 4-alkyl-branched fatty acids are character impact compounds of the flavor of sheep and goat milk and meat. Due to their methyl or ethyl branches these volatile fatty acids are chiral, and both enantiomers are characterized by different aroma intensities. Recently, it was found that 4-methyloctanoic acid (4-Me-8:0), 4-ethyloctanoic acid (4-Et-8:0), and 4-methylnonanoic acid (4-Me-9:0) are enantiopure in goat and sheep samples, if present. Here we generated enantiopure or enantioenriched standards from racemates by means of (R)-selective esterification with lipase B and verified that 4-Me-8:0, 4-Et-8:0 and 4-Me-9:0 were (R)-enantiopure in these tissues. Determination of the optical rotation and [α] D value was carried out to show that (R)-4-Et-8:0 is dextrorotary and to verify the literature values of (R)-4-methyl-branched fatty acids. The elution order of free acids and the methyl and ethyl esters of 4-Me-8:0, 4-Et-8:0, 4-Me-9:0 and 4-methylhexanoic acid (4-Me-6:0) enantiomers was investigated on different chiral columns as well as the (-)-menthyl ester by indirect enantiomer separation on an ionic liquid phase. Different chiral recognition processes were suggested for free acid and esters of 4-Me-8:0 and 4-Me-9:0 on the one hand (decisive: 4-alkyl branch) compared to 4-Me-6:0 on the other hand (decisive: branch on antepenultimate carbon). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Characterization of Binary Organogels Based on Some Azobenzene Compounds and Alkyloxybenzoic Acids with Different Chain Lengths

    Directory of Open Access Journals (Sweden)

    Yongmei Hu

    2014-01-01

    Full Text Available In this work the gelation behaviors of binary organogels composed of azobenzene amino derivatives and alkyloxybenzoic acids with different lengths of alkyl chains in various organic solvents were investigated and characterized. The corresponding gelation behaviors in 20 solvents were characterized and shown as new binary organic systems. It showed that the lengths of substituent alkyl chains in compounds have played an important role in the gelation formation of gelator mixtures in present tested organic solvents. Longer methylene chains in molecular skeletons in these gelators seem more suitable for the gelation of present solvents. Morphological characterization showed that these gelator molecules have the tendency to self-assemble into various aggregates from lamella, wrinkle, and belt to dot with change of solvents and gelator mixtures. Spectral characterization demonstrated different H-bond formation and hydrophobic force existing in gels, depending on different substituent chains in molecular skeletons. Meanwhile, these organogels can self-assemble to form monomolecular or multilayer nanostructures owing to the different lengths of due to alkyl substituent chains. Possible assembly modes for present xerogels were proposed. The present investigation is perspective to provide new clues for the design of new nanomaterials and functional textile materials with special microstructures.

  15. Deposition of radiation energy in solids as visualized by the distribution, structure and properties of alkyl radicals in γ-irradiated n-alkane single crystals

    International Nuclear Information System (INIS)

    Gillbro, T.; Lund, A.

    1976-01-01

    This paper summarizes results obtained earlier from ESR studies of γ-irradiated n-alkane single crystals. It also contains some new experimental results that serve to give a more complete picture of the deposition of radiation energy in solid alkanes. The experiments performed with solid n-alkanes have thus far provided structural data that permit the nature and even the conformation of alkyl radicals to be clearly understood. Two types of radical exist namely, one where the unpaired electron is located next to the end methyl group and one with the unpaired electron in the interior of the chain. The first type has a conformation which differs from that of the undamaged molecule. Microwave saturation data show that there is a difference in relaxation properties of these radicals which can be understood in terms of a difference in mobility. Relative yield measurements give the distribution of isomeric alkyl, the result differing from that obtained using product analysis in liquids. For protiated n-alkanes n-alkyl is lacking and the 2-alkyl concentration is higher than expected. For deuterated n-alkanes the ESR spectrum is mainly that of radicals with the unpaired electron located in the interior of the carbon chain. This isotope effect is again contrary to observations in liquid n-alkanes. The broad lines observed in protiated alkanes irradiated at 77 K and deuterated alkanes irradiated at 4.2 K are not believed to arise from strong spin-spin interactions. They are thought instead to arise from distorted crystal and radical structures relating to the damaged regions of the crystals. (Auth.)

  16. Shorter Hospital Stays and Lower Costs for Rivaroxaban Compared With Warfarin for Venous Thrombosis Admissions.

    Science.gov (United States)

    Margolis, Jay M; Deitelzweig, Steven; Kline, Jeffrey; Tran, Oth; Smith, David M; Bookhart, Brahim; Crivera, Concetta; Schein, Jeff

    2016-10-06

    % confidence interval, $8035-$8739]; warfarin $10 275 [95% confidence interval, $9842-$10 708]). Rivaroxaban was associated with significantly shorter hospital LOS and lower hospitalization costs compared with warfarin. © 2016 The Authors, Janssen Scientific Affairs, LLC, and Truven Health Analytics. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  17. Pulmonary Embolism Inpatients Treated With Rivaroxaban Had Shorter Hospital Stays and Lower Costs Compared With Warfarin.

    Science.gov (United States)

    Margolis, Jay M; Deitelzweig, Steven; Kline, Jeffrey; Tran, Oth; Smith, David M; Crivera, Concetta; Bookhart, Brahim; Schein, Jeff

    2016-11-01

    Using real-world data, this study compares inpatient length of stay (LOS) and costs for patients with a primary diagnosis of pulmonary embolism (PE) initiating treatment with oral anticoagulation with rivaroxaban versus warfarin. Hospitalizations from MarketScan's Hospital Drug Database were selected from November 1, 2012, through December 31, 2013, for adults with a primary diagnosis of PE initiating treatment with rivaroxaban or warfarin. Warfarin patients were matched 1:1 to rivaroxaban patients using exact and propensity score matching. Hospital LOS, treatment patterns, and hospitalization costs were evaluated. Matched cohorts included 751 rivaroxaban-treated patients and 751 warfarin-treated patients. Adjusted mean LOS was 3.77 days for rivaroxaban patients (95% CI, 3.66-3.87 days) and 5.48 days for warfarin patients (95% CI, 5.33-5.63 days; P < .001). Mean (SD) LOS was shorter for patients taking rivaroxaban whether admission was for provoked PE (rivaroxaban: 5.2 [5.1] days; warfarin: 7.0 [6.5] days; P < .001) or unprovoked PE (rivaroxaban: 3.4 [2.3] days; warfarin: 5.1 [2.7] days; P < .001). Mean (SD) days from first dose to discharge were 2.5 (1.7) (rivaroxaban) and 4.0 (2.9) (warfarin) when initiated with parenteral anticoagulants (P < .001) and 2.7 (1.7) (rivaroxaban) and 4.0 (2.2) (warfarin) without parenteral anticoagulants (P < .001). The rivaroxaban cohort incurred significantly lower unadjusted mean (SD) hospitalization costs (rivaroxaban: $8473 [$9105]; warfarin: $10,291 [$9185]; P < .001), confirmed by covariate adjustment with generalized linear modeling estimating predicted mean hospitalization costs of $8266 for rivaroxaban patients (95% CI, $7851-$8681) and $10,511 for warfarin patients (95% CI, $10,031-$10,992; P < .001). patients with PE treated with rivaroxaban incurred significantly lower hospitalization costs by $2245 per admission compared with patients treated with warfarin, which was attributable to cost offsets from 1.71 fewer days of

  18. Production of high-octane, unleaded motor fuel by alkylation of isobutane with isoamylenes obtained by dehydrogenation of isopentane

    Energy Technology Data Exchange (ETDEWEB)

    Hutson, T. Jr.; Hann, P.D.

    1981-01-31

    A process combination, with inter-cooperation, for producing high-octane alkylates comprising (a) dehydrogenating isopentane to isopentenes (amylenes), (b) introducing the mixture of said amylenes and unconverted isopentane into an HF alkylation unit for reaction with fresh or recycled isobutane, (c) separating the alkylation products into high octane alkylates, isopentane (for recycling to the dehydrogenation reactor) and isobutane (for recycling to the alkylation reactor).

  19. Bolalipid fiber aggregation can be modulated by the introduction of sulfur atoms into the spacer chains.

    Science.gov (United States)

    Graf, Gesche; Drescher, Simon; Meister, Annette; Haramus, Vasyl M; Dobner, Bodo; Blume, Alfred

    2013-03-01

    The aggregation behavior in aqueous suspension of two symmetrical single-chain bolaamphiphiles, namely 12,21-dithiadotriacontane-1,32-diyl-bis [2-(tri-methylammonio)ethylphosphate] (PC-C32SS-PC) and 12,21-dithiadotriacontane-1,32-diyl-bis[2-(dimethylammonio)ethylphosphate] (Me(2)PE-C32SS-Me(2)PE), containing sulfur as heteroatoms in the chains, was studied using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), small angle neutron scattering (SANS), and transmission electron microscopy (TEM). The rheological properties of hydrogels formed by the aggregation into nanofibers were studied by oscillatory rheology. Based on the well-characterized behavior of bolalipids with long alkyl chains which at room temperature can form a network of nanofibers leading to the formation of a hydrogel, we investigated whether the incorporation of two heteroatoms of sulfur into the spacer chain of the molecules has an influence on the aggregation properties. Compared to the analogues without sulfur, the fibrous aggregates formed by sulfur containing compounds are less stable and build weaker viscoelastic gels. This is due to a perturbation of the packing of the chains as the sulfur atoms change the bond angle in the chain compared to the molecules with pure alkyl chains leading to kinks in the chain. For the bolaamphiphile with the Me(2)PE headgroups this effect is less pronounced due to the possibility of forming stabilizing hydrogen bonds between the headgroups. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Alkylating agent (MNU)-induced mutation in space environment

    Science.gov (United States)

    Ohnishi, T.; Takahashi, A.; Ohnishi, K.; Takahashi, S.; Masukawa, M.; Sekikawa, K.; Amano, T.; Nakano, T.; Nagaoka, S.

    2001-01-01

    In recent years, some contradictory data about the effects of microgravity on radiation-induced biological responses in space experiments have been reported. We prepared a damaged template DNA produced with an alkylating agent (N-methyl-N-nitroso urea; MNU) to measure incorrect base-incorporation during DNA replication in microgravity. We examined whether mutation frequency is affected by microgravity during DNA replication for a DNA template damaged by an alkylating agent. Using an in vitro enzymatic reaction system, DNA synthesis by Taq polymerase or polymerase III was done during a US space shuttle mission (Discovery, STS-91). After the flight, DNA replication and mutation frequencies were measured. We found that there was almost no effect of microgravity on DNA replication and mutation frequency. It is suggested that microgravity might not affect at the stage of substrate incorporation in induced-mutation frequency.

  1. Conformational Restriction of Peptides Using Dithiol Bis-Alkylation.

    Science.gov (United States)

    Peraro, L; Siegert, T R; Kritzer, J A

    2016-01-01

    Macrocyclic peptides are highly promising as inhibitors of protein-protein interactions. While many bond-forming reactions can be used to make cyclic peptides, most have limitations that make this chemical space challenging to access. Recently, a variety of cysteine alkylation reactions have been used in rational design and library approaches for cyclic peptide discovery and development. We and others have found that this chemistry is versatile and robust enough to produce a large variety of conformationally constrained cyclic peptides. In this chapter, we describe applications, methods, mechanistic insights, and troubleshooting for dithiol bis-alkylation reactions for the production of cyclic peptides. This method for efficient solution-phase macrocyclization is highly useful for the rapid production and screening of loop-based inhibitors of protein-protein interactions. © 2016 Elsevier Inc. All rights reserved.

  2. Method for reactivating solid catalysts used in alkylation reactions

    Science.gov (United States)

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2003-06-17

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  3. Rapid NIR determination of alkyl esters in virgin olive oil

    International Nuclear Information System (INIS)

    Cayuela, J.A.

    2017-01-01

    The regulation of The European Union for olive oil and olive pomace established the limit of 35 mg·kg-1 for fatty acids ethyl ester contents in extra virgin olive oils, from grinding seasons after 2016. In this work, predictive models have been established for measuring fatty acid ethyl and methyl esters and to measure the total fatty acid alkyl esters based on near infrared spectroscopy (NIRS), and used successfully for this purpose. The correlation coefficients from the external validation exercises carried out with these predictive models ranged from 0.84 to 0.91. Different classification tests using the same models for the thresholds 35 mg·kg-1 for fatty acid ethyl esters and 75 mg·kg-1 for fatty acid alkyl esters provided success percentages from 75.0% to 95.2%. [es

  4. New unit for sulfuric acid alkylation of isobutane by olefins

    Energy Technology Data Exchange (ETDEWEB)

    Khadzhiev, S.N.; Baiburskii, V.L.; Deineko, P.S.; Gruzdev, A.S.; Tagavov, I.T.

    1987-01-01

    The authors describe and illustrate a sulfuric acid alkylation unit with a horizontal contact. As a result of the use of this design solution, the isobutane/olefin ratio is 10/1 in comparison with 4/1 to 5/1 in the other types of units, namely vertical reactors and cascade tank reactors. The unit was designed to process the butane-butylene cut (BBC) and part of the propane-propylene cut (PPC) from the G-43-107 cat cracker. The unit design includes provisions for controlled caustic washing of the feed and dehydration in an electric field. The authors present the basic data obtained in the three months of unit operation after startup, in comparison with the operating indexes of a sulfuric acid alkylation unit.

  5. Alkylation of isobutane by ethylene: A thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Goupil, J.M.; Poirier, J.L.; Cornet, D. (Univ. of Caen (France). Lab. Catalyse et Spectrochimie)

    1994-03-01

    Alkylation of isobutane by ethylene produces mainly hexanes, but a variety of other compounds, alkanes or alkenes, may be formed by secondary reactions such as successive alkylations, isomerization, and ethylene polymerization. The equilibrium distribution of products is evaluated in the temperature range 280--680 K and at various initial compositions and pressures. Isomer groups are treated using Alberty's formulation. Calculations show that alkenes are thermodynamically unstable under usual reaction conditions. The equilibrium amounts of alkanes are such that C[sub 6] [much gt] C[sub 8] [much gt] C[sub 10] and heavy alkanes also appear unstable. The selective formation of particular isomers (dimethylbutanes, trimethylpentanes) is also integrated in the equilibrium equations. The calculated compositions (C[sub 6]:C[sub 8]:C[sub 10]) are compared with experimental data.

  6. A Convenient Approach to Synthesizing Peptide C-Terminal N-Alkyl Amides

    Science.gov (United States)

    Fang, Wei-Jie; Yakovleva, Tatyana; Aldrich, Jane V.

    2014-01-01

    Peptide C-terminal N-alkyl amides have gained more attention over the past decade due to their biological properties, including improved pharmacokinetic and pharmacodynamic profiles. However, the synthesis of this type of peptide on solid phase by current available methods can be challenging. Here we report a convenient method to synthesize peptide C-terminal N-alkyl amides using the well-known Fukuyama N-alkylation reaction on a standard resin commonly used for the synthesis of peptide C-terminal primary amides, the PAL-PEG-PS (Peptide Amide Linker-polyethylene glycol-polystyrene) resin. The alkylation and oNBS deprotection were conducted under basic conditions and were therefore compatible with this acid labile resin. The alkylation reaction was very efficient on this resin with a number of different alkyl iodides or bromides, and the synthesis of model enkephalin N-alkyl amide analogs using this method gave consistently high yields and purities, demonstrating the applicability of this methodology. The synthesis of N-alkyl amides was more difficult on a Rink amide resin, especially the coupling of the first amino acid to the N-alkyl amine, resulting in lower yields for loading the first amino acid onto the resin. This method can be widely applied in the synthesis of peptide N-alkyl amides. PMID:22252422

  7. DNA Damage Induced by Alkylating Agents and Repair Pathways

    OpenAIRE

    Natsuko Kondo; Akihisa Takahashi; Koji Ono; Takeo Ohnishi

    2010-01-01

    The cytotoxic effects of alkylating agents are strongly attenuated by cellular DNA repair processes, necessitating a clear understanding of the repair mechanisms. Simple methylating agents form adducts at N- and O-atoms. N-methylations are removed by base excision repair, AlkB homologues, or nucleotide excision repair (NER). O 6-methylguanine (MeG), which can eventually become cytotoxic and mutagenic, is repaired by O 6-methylguanine-DNA methyltransferase, and O 6MeG:T mispairs are recognized...

  8. Optimizing the use of alkylators in neuro-oncology

    OpenAIRE

    Perry, J R; Wick, W; Weller, M

    2011-01-01

    For more than three decades, alkylating agents have been the most widely used class of chemotherapeutic agents for the treatment of glial brain tumors. Today, concomitant and adjuvant temozolomide is the standard of care for newly diagnosed glioblastoma. Temozolomide alone or in combination with radiotherapy is being explored in ongoing trials in newly diagnosed patients with low-grade and anaplastic glioma. Rechallenge with alternative dosing schedules of temozolomide is a valid treatment op...

  9. 3-alkyl fentanyl analogues: Structure-activity-relationship study

    OpenAIRE

    Vučković, Sonja; Savić-Vujović, Katarina; Srebro, Dragana; Ivanović, Milovan; Došen-Mićović, Ljiljana; Stojanović, Radan; Prostran, Milica

    2012-01-01

    Introduction. Fentanyl belongs to 4-anilidopiperidine class of synthetic opioid analgesics. It is characterized by high potency, rapid onset and short duration of action. A large number of fentanyl analogues have been synthesized so far, both to establish the structure-activity-relationship (SAR) and to find novel, clinically useful analgesic drugs. Objective. In this study, newly synthesized 3-alkyl fentanyl analogues were examined for analgesic activity and compared with fentanyl. Methods. ...

  10. New potential of the reductive alkylation of amines

    International Nuclear Information System (INIS)

    Gusak, K N; Ignatovich, Zh V; Koroleva, E V

    2015-01-01

    Available data on the reductive alkylation of amines with carbonyl compounds — a key method for the preparation of secondary and tertiary amines — are described systematically. The review provides information on the relevant reducing agents and catalysts and on the use of chiral catalysts in stereo- and enantiocontrolled reactions of amine synthesis. The effect of the reactant and catalyst structures on the reaction rates and chemo- and stereo(enantio)selectivity is considered. The bibliography includes 156 references

  11. Ruthenium-Catalyzed Alkylation of Oxindole with Alcohols

    DEFF Research Database (Denmark)

    Jensen, Thomas; Madsen, Robert

    2009-01-01

    An atom-economical and solvent-free catalytic procedure for the mono-3-alkylation of oxindole with alcohols is described. The reaction is mediated by the in situ generated catalyst from RuCl3 center dot xH(2)O and PPh3 in the presence of sodium hydroxide, The reactions proceed in good to excellent...... yields with a wide range of aromatic, heteroaromatic, and aliphatic alcohols....

  12. Alkylation of isobutane by butenes on zirconium sulfate catalysts

    International Nuclear Information System (INIS)

    Lavrenov, A.V.; Perelevskij, E.V.; Finevich, V.P.; Zajkovskij, V.I.; Paukshtis, E.A.; Duplyakiv, V.K.; Bal'zhinimaev, B.S.

    2003-01-01

    Preparation of applied zirconium sulfate catalysts obtained by the method of impregnation is investigated. Results of comparative study of structural, acid-base and catalytic properties of sulfated zirconium dioxide applied on silica gel and aluminium oxide are represented. Intervals of values of synthesis basic parameters and characteristics of catalysts properties providing achievement of high activity and selectivity in isobutane alkylation by butenes in liquid phase are determined [ru

  13. Supply chain management problems at South African automotive ...

    African Journals Online (AJOL)

    competition in global markets, the introduction of products with shorter life cycles, ... employees in the domestic automotive industry has declined, with 16 000 job .... integrates supply and demand management across companies” (Council for .... across the supply chain so that the enterprise can improve performance by ...

  14. Chemotherapy-induced pulmonary hypertension: role of alkylating agents.

    Science.gov (United States)

    Ranchoux, Benoît; Günther, Sven; Quarck, Rozenn; Chaumais, Marie-Camille; Dorfmüller, Peter; Antigny, Fabrice; Dumas, Sébastien J; Raymond, Nicolas; Lau, Edmund; Savale, Laurent; Jaïs, Xavier; Sitbon, Olivier; Simonneau, Gérald; Stenmark, Kurt; Cohen-Kaminsky, Sylvia; Humbert, Marc; Montani, David; Perros, Frédéric

    2015-02-01

    Pulmonary veno-occlusive disease (PVOD) is an uncommon form of pulmonary hypertension (PH) characterized by progressive obstruction of small pulmonary veins and a dismal prognosis. Limited case series have reported a possible association between different chemotherapeutic agents and PVOD. We evaluated the relationship between chemotherapeutic agents and PVOD. Cases of chemotherapy-induced PVOD from the French PH network and literature were reviewed. Consequences of chemotherapy exposure on the pulmonary vasculature and hemodynamics were investigated in three different animal models (mouse, rat, and rabbit). Thirty-seven cases of chemotherapy-associated PVOD were identified in the French PH network and systematic literature analysis. Exposure to alkylating agents was observed in 83.8% of cases, mostly represented by cyclophosphamide (43.2%). In three different animal models, cyclophosphamide was able to induce PH on the basis of hemodynamic, morphological, and biological parameters. In these models, histopathological assessment confirmed significant pulmonary venous involvement highly suggestive of PVOD. Together, clinical data and animal models demonstrated a plausible cause-effect relationship between alkylating agents and PVOD. Clinicians should be aware of this uncommon, but severe, pulmonary vascular complication of alkylating agents. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Effects of alkylating carcinogens on human tumor cells in culture

    International Nuclear Information System (INIS)

    Goth-Goldstein, R.; Hughes, M.

    1987-01-01

    In Escherichia coli 3-methyladenine and 3-methylguanine have been identified as lethal lesions, since two types of alkylating agent-sensitive mutants were deficient in repair of either of these lesions. Similar alkylation-sensitive human cell lines exist. These are the tumor cell lines of the complex Mer - phenotype. All Mer - cells examined were hypersensitive to killing by MNNG and other alkylating agents, and failed to repair O 6 -methylguanine. The widely studied HeLa S3 cell line has the Mer + phenotype, but a Mer - variant (HeLa MR) has arisen. This offers the possibility to study Mer - and Mer + cells of otherwise similar genetic background. We are using these two variants to analyze the Mer - phenotype further. When HeLa S3 and HeLa MR were treated with a highly dose of MNNG, and the surviving population exposed to a second dose of MNNG 2-3 weeks later, HeLa S3 (Mer + ) cells were equally or even slightly more sensitive to a second exposure of MNNG, whereas the surviving HeLa MR (Mer - ) population was much more resistant to MNNG. 1 fig., 1 tab

  16. DNA Damage Induced by Alkylating Agents and Repair Pathways

    Science.gov (United States)

    Kondo, Natsuko; Takahashi, Akihisa; Ono, Koji; Ohnishi, Takeo

    2010-01-01

    The cytotoxic effects of alkylating agents are strongly attenuated by cellular DNA repair processes, necessitating a clear understanding of the repair mechanisms. Simple methylating agents form adducts at N- and O-atoms. N-methylations are removed by base excision repair, AlkB homologues, or nucleotide excision repair (NER). O6-methylguanine (MeG), which can eventually become cytotoxic and mutagenic, is repaired by O6-methylguanine-DNA methyltransferase, and O6MeG:T mispairs are recognized by the mismatch repair system (MMR). MMR cannot repair the O6MeG/T mispairs, which eventually lead to double-strand breaks. Bifunctional alkylating agents form interstrand cross-links (ICLs) which are more complex and highly cytotoxic. ICLs are repaired by complex of NER factors (e.g., endnuclease xeroderma pigmentosum complementation group F-excision repair cross-complementing rodent repair deficiency complementation group 1), Fanconi anemia repair, and homologous recombination. A detailed understanding of how cells cope with DNA damage caused by alkylating agents is therefore potentially useful in clinical medicine. PMID:21113301

  17. Decreased stability of DNA in cells treated with alkylating agents

    Energy Technology Data Exchange (ETDEWEB)

    Frankfurt, O.S. (Cedars Medical Center, Miami, FL (United States))

    1990-12-01

    A modified highly sensitive procedure for the evaluation of DNA damage in individual cells treated with alkylating agents is reported. The new methodology is based on the amplification of single-strandedness in alkylated DNA by heating in the presence of Mg{sup 2+}. Human ovarian carcinoma cells A2780 were treated with nitrogen mustard (HN2), fixed in methanol, and stained with monoclonal antibody (MOAB) F7-26 generated against HN2-treated DNA. Binding of MOAB was measured by flow cytometry with indirect immunofluorescence. Intensive binding of MOAB to control and drug-treated cells was observed after heating in Tris buffer supplemented with MgCl{sub 2}. Thus, the presence of phosphates and MgCl{sub 2} during heating was necessary for the detection of HN2-induced changes in DNA stability. Fluorescence of HN2-treated cells decreased to background levels after treatment with single-strand-specific S{sub 1} nuclease. MOAB F7-26 interacted with single-stranded regions in DNA and did not bind to dsDNA or other cellular antigens. It is suggested that alkylation of guanines decreased the stability of the DNA molecule and increased the access of MOAB F7-26 to deoxycytidines on the opposite DNA strand.

  18. Synthesis of alkyl phenols by means of radiofrequency plasmas

    International Nuclear Information System (INIS)

    Ropero, M.; Armas, F.; Iacocca, D.; Patino, P.

    1992-01-01

    New and promising possibilities in chemical synthesis have been opened through the interactions of oxygen plasmas with liquid alkyl benzene compounds. The alkyl phenols are the main products of the reaction mixtures (> 80%) oxygen, excited by radio-frequency (R.F.) is allowed to reach the surface of the liquid organic compound. The R.F. power supply is a Branson/IPC-PM 118. The substrate we have chosen are: methyl, ethyl, propyl, n-butyl, t-butyl, dimethyl and trimethyl benzenes. Under the same O 2 pressure and a power of 60 W, m-xylene and mesethylene behaved similarly. For all these substrates, values for the temperature of the liquid surface seem to indicate that oxidation tends to an optimum when P O 2 /vapor pressure (substrate) is higher than 20. In our experiments oxygen pressure in the reactor was about 0.2 Torr. Oxidation is basically attributed to O 3 P and the addition to alkyl benzenes selectively takes place on the aromatic rings, at low reactor pressure. The oxygen atom impinges on the liquid surface and epoxy intermediates could be formed. These intermediates then progress to the corresponding phenols. (author)

  19. Separation of products of alkylation of isobutane by olefins

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.

    1979-03-15

    The alkylation (A1) of isobutane (I) by propylene, butylene and amylenes is carried out at 24-52 degrees, pressure sufficient to maintain the liquid phase, and a molar ratio of I to olefins (O1) 10:1-15:1. The bulk ratio of catalysts to hydrocarbons in the reaction zone was 0.5:1-10:1; when using HF-K-T as the catalysts, it should contain less than 5 percent water and greater than or equal to 65 percent titrated HF. The hydrocarbon products (UP) from the alkylation zone are added after separating the catalyst in a fractionation tower; distillation is carried out at 38-49 degrees and 1.03-1.3 NPa. The head fraction containing I and less than 50 molar percent C3H8 and also fraction I at the point below the input side of the UP which contains less than 8 molar percent C3H8 and fraction n-C4H10 at the point below the point of discharge of fraction I is drained from the tower. The alkylate is discharged at the bottom of the tower. According to the patent the tower operates at low pressure. This improves relative volatility of individual components and reduces heat consumption. The best results are obtained when a head fraction or the concentration C3H8 approximately 25 molar percent is discharged.

  20. Analysis of supply chain management of shallots in Medan

    Science.gov (United States)

    Alam, M. C.; Supriana, T.

    2018-02-01

    Supply chain is important for business. One of supply chain that needs to be studied is the shallots supply chain. Medan have high demand while the supply of shallots is limited. This study aims to analyze the flow of shallots supply chain distribution in Medan. The method used was survey by using questionnaires to shallots producers, collecting traders, distributors, traders as well as government involved in shallots supply chain. Descriptive analysis was used to explain the shallots supply chain distribution flow. The results showed that there are two shallots supply chain model in Medan that was local shallots model and imported shallots model. Local shallots model could be distinguished based on three producer area, those were models of Medan Marelan, Samosir, and Simalungun. Medan Marelan and Simalungun models have seven supply chains, while the Samosir Model has eight supply chains. This condition indicates that the local shallots supply chain management in Medan was not efficient because of the length of the distribution channel. Supply chain imported shallots was more efficient because it had a shorter distribution flow with five supply chains.