Stability of Cubipod Armoured Roundheads in Short Crested Waves
DEFF Research Database (Denmark)
Burcharth, Hans F.; Andersen, Thomas Lykke; Medina, Josep R.
2011-01-01
The paper presents a comparison of the stability of concrete cube armour and Cubipod armour in a breakwater roundhead with slope 1:1.5, exposed to both 2-D (long-crested) and 3-D (short-crested) waves. The model tests were performed at the Hydraulics and Coastal Engineering Laboratory at Aalborg...... University, Denmark. The model tests showed that Cubipod armour is more stable than cube armour when exposed to longer waves (steepness approx. 0.025) and has equal stability to cubes in shorter waves. The Cubipod armour layer contained due to its high porosity approximately 6-17% less concrete than the cube...
Large amplitude waves and fields in plasmas
International Nuclear Information System (INIS)
Angelis, U. de; Naples Univ.
1990-02-01
In this review, based mostly on the results of the recent workshop on ''Large Amplitude Waves and Fields in Plasmas'' held at ICTP (Trieste, Italy) in May 1989 during the Spring College on Plasma Physics, I will mostly concentrate on underdense, cold, homogeneous plasmas, discussing some of the alternative (to fusion) uses of laser-plasma interaction. In Part I an outline of some basic non-linear processes is given, together with some recent experimental results. The processes are chosen because of their relevance to the applications or because new interesting developments have been reported at the ICTP workshop (or both). In Part II the excitation mechanisms and uses of large amplitude plasma waves are presented: these include phase-conjugation in plasmas, plasma based accelerators (beat-wave, plasma wake-field and laser wake-field), plasma lenses and plasma wigglers for Free Electron Lasers. (author)
A numerical study of lowest-order short-crested water wave instabilities
DEFF Research Database (Denmark)
Fuhrman, David R.; Madsen, Per A.
2005-01-01
This work presents the first numerical simulations of the long-term evolution of doubly-periodic short-crested wave instabilities, which are the simplest cases involving the three-dimensional instability of genuinely three-dimensional progressive water waves. The simulated evolutions reveal quali...
Short-crested waves in deep water: a numerical investigation of recent laboratory experiments
DEFF Research Database (Denmark)
Fuhrman, David R.; Madsen, Per A.
2006-01-01
A numerical study of quasi-steady, doubly-periodic monochromatic short-crested wave patterns in deep water is conducted using a high-order Boussinesq-type model. Simulations using linear wavemaker conditions in the nonlinear model are initially used to approximate conditions from recent laboratory...... experiments. The computed patterns share many features with those observed in wavetanks, including bending (both frontwards and backwards) of the wave crests, dipping at the crest centerlines, and a pronounced long modulation in the direction of propagation. A new and simple explanation for these features...
Damping and Frequency Shift of Large Amplitude Electron Plasma Waves
DEFF Research Database (Denmark)
Thomsen, Kenneth; Juul Rasmussen, Jens
1983-01-01
The initial evolution of large-amplitude one-dimensional electron waves is investigated by applying a numerical simulation. The initial wave damping is found to be strongly enhanced relative to the linear damping and it increases with increasing amplitude. The temporal evolution of the nonlinear...
Numerical simulation of lowest-order short-crested wave instabilities
DEFF Research Database (Denmark)
Fuhrman, David R.; Madsen, Per A.; Bingham, Harry
2006-01-01
instabilities. These correctly lead to well-known (nearly symmetric) recurrence cycles below a previously established breaking threshold steepness, and to an asymmetric evolution (characterized by a permanent transfer of energy to the lower side-band) above this threshold, with dissipation from a smoothing...... that the unstable evolution of these initially three-dimensional waves leads to an asymmetric evolution, even for weakly nonlinear cases presumably well below breaking. This is characterized by an energy transfer to the lower side-band, which is also accompanied by a similar transfer to more distant upper side......-bands. At larger steepness, the evolution leads to a permanent downshift of both the mean and peak frequencies, driven in part by dissipation, effectively breaking the quasi-recurrence cycle. A single case involving a class Ib short-crested wave instability at relatively large steepness is also considered, which...
DEFF Research Database (Denmark)
Burcharth, H. F.; Liu, Z.
In nature coastal structures are exposed to oblique short-crested waves. The effect of wave incident angle on total wave force on a long caisson are twofold. The one is the force reduction due to the reduction of instantaneous point pressure on the caisson, named point-pressure force reduction....... The other is the force reduction due to the fact that the peak pressures do not occur simultaneously along the caisson, named peak-delay force reduction. These two reduction effects can also be expected with short-crested waves, as the short-crestedness of waves means the spreading of wave energy over...... a range of incident angles. The peak-delay force reduction, i.e. no simultaneous peak along caisson, is of particular interest because the equipment improvement in construction enables the building of considerably long caissons. In Japan length of caissons exceeds often 100m. This paper will concentrate...
Light Diffraction by Large Amplitude Ultrasonic Waves in Liquids
Adler, Laszlo; Cantrell, John H.; Yost, William T.
2016-01-01
Light diffraction from ultrasound, which can be used to investigate nonlinear acoustic phenomena in liquids, is reported for wave amplitudes larger than that typically reported in the literature. Large amplitude waves result in waveform distortion due to the nonlinearity of the medium that generates harmonics and produces asymmetries in the light diffraction pattern. For standing waves with amplitudes above a threshold value, subharmonics are generated in addition to the harmonics and produce additional diffraction orders of the incident light. With increasing drive amplitude above the threshold a cascade of period-doubling subharmonics are generated, terminating in a region characterized by a random, incoherent (chaotic) diffraction pattern. To explain the experimental results a toy model is introduced, which is derived from traveling wave solutions of the nonlinear wave equation corresponding to the fundamental and second harmonic standing waves. The toy model reduces the nonlinear partial differential equation to a mathematically more tractable nonlinear ordinary differential equation. The model predicts the experimentally observed cascade of period-doubling subharmonics terminating in chaos that occurs with increasing drive amplitudes above the threshold value. The calculated threshold amplitude is consistent with the value estimated from the experimental data.
Obliquely propagating large amplitude solitary waves in charge neutral plasmas
Directory of Open Access Journals (Sweden)
F. Verheest
2007-01-01
Full Text Available This paper deals in a consistent way with the implications, for the existence of large amplitude stationary structures in general plasmas, of assuming strict charge neutrality between electrons and ions. With the limit of pair plasmas in mind, electron inertia is retained. Combining in a fluid dynamic treatment the conservation of mass, momentum and energy with strict charge neutrality has indicated that nonlinear solitary waves (as e.g. oscillitons cannot exist in electron-ion plasmas, at no angle of propagation with respect to the static magnetic field. Specifically for oblique propagation, the proof has turned out to be more involved than for parallel or perpendicular modes. The only exception is pair plasmas that are able to support large charge neutral solitons, owing to the high degree of symmetry naturally inherent in such plasmas. The nonexistence, in particular, of oscillitons is attributed to the breakdown of the plasma approximation in dealing with Poisson's law, rather than to relativistic effects. It is hoped that future space observations will allow to discriminate between oscillitons and large wave packets, by focusing on the time variability (or not of the phase, since the amplitude or envelope graphs look very similar.
Simulations of short-crested harbour waves with variational Boussinesq modelling
Adytia, D.
2014-01-01
Waves propagating from the deep ocean to the coast show large changes in wave height, wave length and direction. The challenge to simulate the essential wave characteristics is in particular to model the speed and nonlinear interaction correctly. All these physical phenomena are present, but hidden,
Initial frequency shift of large amplitude plasma wave, 2
International Nuclear Information System (INIS)
Yamanaka, K.; Sugihara, R.; Ohsawa, Y.; Kamimura, T.
1979-07-01
A nonlinear complex frequency shift of the ion acoustic wave in the initial phase defined by 0 0 and ωsub(s)/k as long as ωsub(s) >> γsub( l), where phi 0 , ωsub(s), γsub( l) and t sub(c) are the initial value of the potential, the frequency of the wave, the linear Landau damping coefficient and the time for the first minimum of the amplitude oscillation, respectively. A simulation study is also carried out. The results confirm the validity of the theory. (author)
Modeling of shock wave propagation in large amplitude ultrasound.
Pinton, Gianmarco F; Trahey, Gregg E
2008-01-01
The Rankine-Hugoniot relation for shock wave propagation describes the shock speed of a nonlinear wave. This paper investigates time-domain numerical methods that solve the nonlinear parabolic wave equation, or the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and the conditions they require to satisfy the Rankine-Hugoniot relation. Two numerical methods commonly used in hyperbolic conservation laws are adapted to solve the KZK equation: Godunov's method and the monotonic upwind scheme for conservation laws (MUSCL). It is shown that they satisfy the Rankine-Hugoniot relation regardless of attenuation. These two methods are compared with the current implicit solution based method. When the attenuation is small, such as in water, the current method requires a degree of grid refinement that is computationally impractical. All three numerical methods are compared in simulations for lithotripters and high intensity focused ultrasound (HIFU) where the attenuation is small compared to the nonlinearity because much of the propagation occurs in water. The simulations are performed on grid sizes that are consistent with present-day computational resources but are not sufficiently refined for the current method to satisfy the Rankine-Hugoniot condition. It is shown that satisfying the Rankine-Hugoniot conditions has a significant impact on metrics relevant to lithotripsy (such as peak pressures) and HIFU (intensity). Because the Godunov and MUSCL schemes satisfy the Rankine-Hugoniot conditions on coarse grids, they are particularly advantageous for three-dimensional simulations.
3-D Effects Force Reduction of Short-Crested Non-Breaking Waves on Caissons
DEFF Research Database (Denmark)
Burcharth, H. F.; Liu, Z.
1998-01-01
The effect of wave short-crestedness on the horizontal wave force on a caisson is twofold. The one is the force reduction due to the reduction of point pressure on the caisson, named point-pressure reduction. The other is the force reduction due to the fact that the peak pressures do not occur si...
Experimental Study of Wave Forces on Vertical Circular Cylinders in Long and Short Crested Sea
DEFF Research Database (Denmark)
Høgedal, Michael
on the safe side, as the directional spreading of the wave field Ieads to reduced horizontal velocities and acceleration; in the fluid and hence a reduction of the resultant and in-line wave forces on the structure. The directional spreading of the horizontal velocity field generally causes an increase...... with miniature pressure transducers. The experiments were carried out in the 3-D wave tank in the Hydraulics & Coastal Engineering Laboratory at Aalborg University and in the off-shore basin at the Danish Hydraulic Institute....
Analysis of Overtopping Flow on Sea Dikes in Oblique and Short-Crested Waves
DEFF Research Database (Denmark)
Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Burcharth, Hans F.
2013-01-01
-empirical formulae for the estimation of flow depths and flow velocities across a dike. The results have been coupled to the actual erosion of the landward dike slope determined by full-scale 2D tests using the so-called “Overtopping Simulator”. This paper describes the results from 96 small-scale tests carried out...... directions on the dike, and the statistical distribution of individual flow parameters are needed to obtain more realistic estimates of dike erosion caused by wave overtopping....
Relativistic effects on large amplitude nonlinear Langmuir waves in a two-fluid plasma
International Nuclear Information System (INIS)
Nejoh, Yasunori
1994-07-01
Large amplitude relativistic nonlinear Langmuir waves are analyzed by the pseudo-potential method. The existence conditions for nonlinear Langmuir waves are confirmed by considering relativistic high-speed electrons in a two-fluid plasma. The significant feature of this investigation is that the propagation of nonlinear Langmuir waves depends on the ratio of the electron streaming velocity to the velocity of light, the normalized potential and the ion mass to electron mass ratio. The constant energy is determined by the specific range of the relativistic effect. In the non-relativistic limit, large amplitude relativistic Langmuir waves do not exist. The present investigation predicts new findings of large amplitude nonlinear Langmuir waves in space plasma phenomena in which relativistic electrons are important. (author)
Large amplitude ion-acoustic waves in a plasma with an electron beam
International Nuclear Information System (INIS)
Nejoh, Y.; Sanuki, H.
1995-01-01
The nonlinear wave structures of large amplitude ion-acoustic waves are studied in a plasma with an electron beam, by the pseudopotential method. The region of the existence of large amplitude ion-acoustic waves is examined, showing that the condition of the existence sensitively depends on the parameters such as the electron beam temperature, the ion temperature, the electrostatic potential, and the concentration of the electron beam density. It turns out that the region of the existence spreads as the beam temperature increases but the effect of the electron beam velocity is relatively small. New findings of large amplitude ion-acoustic waves in a plasma with an electron beam are predicted. copyright 1995 American Institute of Physics
Large Amplitude Low Frequency Waves in a Magnetized Nonuniform Electron-Positron-Ion Plasma
Institute of Scientific and Technical Information of China (English)
Q. Haque; H. Saleem
2004-01-01
@@ It is shown that the large amplitude low-frequency electromagnetic drift waves in electron-positron-ion plasmas might give rise to dipolar vortices. A linear dispersion relation of several coupled electrostatic and electromagnetic low-frequency modes is obtained. The relevance of this work to both laboratory and astrophysical situations is pointed out.
Observation of large-amplitude ion acoustic wave in microwave-plasma interaction experiments
International Nuclear Information System (INIS)
Yugami, Noboru; Nishida, Yasushi
1997-01-01
Large amplitude ion acoustic wave, which is not satisfied with a linear dispersion relationship of ion acoustic wave, is observed in microwave-plasma interaction experiments. This ion acoustic wave is excited around critical density layer and begins to propagate to underdense region with a phase velocity one order faster than sound velocity C s , which is predicted by the linear theory, the phase velocity and the wave length of the wave decreases as it propagates. Finally, it converges to C s and strongly dumps. Diagnostic by the Faraday cup indicates that this ion acoustic wave is accompanied with a hot ion beam. (author)
Tang, Xiangwei; Cattell, Cynthia; Dombeck, John; Dai, Lei; Wilson, Lynn B. III; Breneman, Aaron; Hupack, Adam
2013-01-01
We present the first observations of large amplitude waves in a well-defined electron diffusion region based on the criteria described by Scudder et al at the subsolar magnetopause using data from one Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite. These waves identified as whistler mode waves, electrostatic solitary waves, lower hybrid waves, and electrostatic electron cyclotron waves, are observed in the same 12 s waveform capture and in association with signatures of active magnetic reconnection. The large amplitude waves in the electron diffusion region are coincident with abrupt increases in electron parallel temperature suggesting strong wave heating. The whistler mode waves, which are at the electron scale and which enable us to probe electron dynamics in the diffusion region were analyzed in detail. The energetic electrons (approx. 30 keV) within the electron diffusion region have anisotropic distributions with T(sub e(right angle))/T(sub e(parallel)) > 1 that may provide the free energy for the whistler mode waves. The energetic anisotropic electrons may be produced during the reconnection process. The whistler mode waves propagate away from the center of the "X-line" along magnetic field lines, suggesting that the electron diffusion region is a possible source region of the whistler mode waves.
International Nuclear Information System (INIS)
Sabry, R.
2009-01-01
A finite amplitude theory for ion-acoustic solitary waves and double layers in multicomponent plasma consisting of hot positrons, cold ions, and electrons with two-electron temperature distributions is presented. Conditions are obtained under which large amplitude stationary ion-acoustic solitary waves and double layers can exist. For the physical parameters of interest, the ion-acoustic solitary wave (double layers) profiles and the relationship between the maximum soliton (double layers) amplitude and the Mach number are found. Also, we have presented the region of existence of the large amplitude ion-acoustic waves by analyzing the structure of the pseudopotential. For the selected range of parameters, it is found that only positive solitary waves and double layers can exist. An analysis for the small amplitude limit through the Sagdeev pseudopotential analysis and the reductive perturbation theory shows the existence of positive and negative ion-acoustic solitary waves and double layers. The effects of positron concentration and temperature ratio on the characteristics of the solitary ion-acoustic waves and double layers (namely, the amplitude and width) are discussed in detail. The relevance of this investigation to space and laboratory plasmas is pointed out.
Phase Coherence of Large Amplitude MHD Waves in the Earth's Foreshock: Geotail Observations
International Nuclear Information System (INIS)
Hada, Tohru; Koga, Daiki; Yamamoto, Eiko
2003-01-01
Large amplitude MHD turbulence is commonly found in the earth's foreshock region. It can be represented as a superposition of Fourier modes with characteristic frequency, amplitude, and phase. Nonlinear interactions between the Fourier modes are likely to produce finite correlation among the wave phases. For discussions of various transport processes of energetic particles, it is fundamentally important to determine whether the wave phases are randomly distributed (as assumed in quasi-linear theories) or they have a finite coherence. However, naive inspection of wave phases does not reveal anything, as the wave phase is sensitively related to the choice of origin of the coordinate, which should be arbitrary. Using a method based on a surrogate data technique and a fractal analysis, we analyzed Geotail magnetic field data to evaluate the phase coherence among the MHD waves in the earth's foreshock region. We show that the correlation of wave phases does exist, indicating that the nonlinear interactions between the waves is in progress. Furthermore, by introducing an index to represent the degree of the phase coherence, we discuss that the wave phases become more coherent as the turbulence amplitude increases, and also as the propagation angle of the most dominant wave mode becomes oblique. Details of the analysis as well as implications of the present results to transport processes of energetic particles will be discussed
Modified Clemmow-Mullaly-Allis diagram for large-amplitude electromagnetic waves in magnetoplasmas
International Nuclear Information System (INIS)
Minami, K.; Mori, Y.; Takeda, S.
1975-02-01
A possible modification to the well known Clemmow- Mullaly-Allis diagram is analysed taking into account the radiation pressure force due to a large-amplitude electromagnetic field E in magnetoplasmas. We restrict ourselves here to the propagations parallel (the right and left-hand circularly polarized waves) and/or perpendicular (the ordinary and extraordinary modes) to the static magnetic field Bsub(o). We analyse electromagnetic waves incident normally on a semi-infinite uniform plasma, on which Bsub(o) is applied parallel and/or perpendicular to the surface. Considerations are limited to a cold collisionless plasma where the incident waves are evanescent. Simple expressions are obtained for the cut-off conditions of the waves except the extraordinary mode. In the latter case, the cut-off condition is calculated numerically solving an integral equation. The results are demonstrated in the usual Clemmow-Mullaly-Allis diagram for the various values of b=2Esub(i) 2 e 2 /mω 2 kappaTsub(e') where Esub(i) and ω are, respectively, the amplitude and the angular frequency of the incident wave. The cut-off lines are shown to move towards the higher densities with increasing b. (auth.)
Directory of Open Access Journals (Sweden)
Michael Graf
2013-07-01
Full Text Available The spectral wave model SWAN (Simulating Waves Nearshore was applied to Lake Zurich, a narrow pre-Alpine lake in Switzerland. The aim of the study is to investigate whether the model system consisting of SWAN and the numerical weather prediction model COSMO-2 is a suitable tool for wave forecasts for the pre-Alpine Lake Zurich. SWAN is able to simulate short-crested wind-generated surface waves. The model was forced with a time varying wind field taken from COSMO-2 with hourly outputs. Model simulations were compared with measured wave data at one near-shore site during a frontal passage associated with strong on-shore winds. The overall course of the measured wave height is well captured in the SWAN simulation: the wave amplitude significantly increases during the frontal passage followed by a transient drop in amplitude. The wave pattern on Lake Zurich is quite complex. It strongly depends on the inherent variability of the wind field and on the external forcing due to the surrounding complex topography. The influence of the temporal wind resolution is further studied with two sensitivity experiments. The first one considers a low-pass filtered wind field, based on a 2-h running mean of COSMO-2 output, and the second experiment uses simple synthetic gusts, which are implemented into the SWAN model and take into account short-term fluctuations of wind speed at 1-sec resolution. The wave field significantly differs for the 1-h and 2-h simulations, but is only negligibly affected by the gusts.
Well-posedness of the Cauchy problem for models of large amplitude internal waves
International Nuclear Information System (INIS)
Guyenne, Philippe; Lannes, David; Saut, Jean-Claude
2010-01-01
We consider in this paper the 'shallow-water/shallow-water' asymptotic model obtained in Choi and Camassa (1999 J. Fluid Mech. 396 1–36), Craig et al (2005 Commun. Pure. Appl. Math. 58 1587–641) (one-dimensional interface) and Bona et al (2008 J. Math. Pures Appl. 89 538–66) (two-dimensional interface) from the two-layer system with rigid lid, for the description of large amplitude internal waves at the interface of two layers of immiscible fluids of different densities. For one-dimensional interfaces, this system is of hyperbolic type and its local well-posedness does not raise serious difficulties, although other issues (blow-up, loss of hyperbolicity, etc) turn out to be delicate. For two-dimensional interfaces, the system is nonlocal. Nevertheless, we prove that it conserves some properties of 'hyperbolic type' and show that the associated Cauchy problem is locally well posed in suitable Sobolev classes provided some natural restrictions are imposed on the data. These results are illustrated by numerical simulations with emphasis on the formation of shock waves
Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves
Directory of Open Access Journals (Sweden)
Shukui Liu
2011-03-01
Full Text Available Typical results obtained by a newly developed, nonlinear time domain hybrid method for simulating large amplitude motions of ships advancing with constant forward speed in waves are presented. The method is hybrid in the way of combining a time-domain transient Green function method and a Rankine source method. The present approach employs a simple double integration algorithm with respect to time to simulate the free-surface boundary condition. During the simulation, the diffraction and radiation forces are computed by pressure integration over the mean wetted surface, whereas the incident wave and hydrostatic restoring forces/moments are calculated on the instantaneously wetted surface of the hull. Typical numerical results of application of the method to the seakeeping performance of a standard containership, namely the ITTC S175, are herein presented. Comparisons have been made between the results from the present method, the frequency domain 3D panel method (NEWDRIFT of NTUA-SDL and available experimental data and good agreement has been observed for all studied cases between the results of the present method and comparable other data.
Large-amplitude internal tides, solitary waves, and turbulence in the central Bay of Biscay
Xie, X. H.; Cuypers, Y.; Bouruet-Aubertot, P.; Ferron, B.; Pichon, A.; LourençO, A.; Cortes, N.
2013-06-01
and fine-scale measurements collected in the central Bay of Biscay during the MOUTON experiment are analyzed to investigate the dynamics of internal waves and associated mixing. Large-amplitude internal tides (ITs) that excite internal solitary waves (ISWs) in the thermocline are observed. ITs are dominated by modes 3 and 4, while ISWs projected on mode 1 that is trapped in the thermocline. Therein, ITs generate a persistent narrow shear band, which is strongly correlated with the enhanced dissipation rate in the thermocline. This strong dissipation rate is further reinforced in the presence of ISWs. Dissipation rates during the period without ISWs largely agree with the MacKinnon-Gregg scaling proposed for internal wavefields dominated by a low-frequency mode, while they show poor agreement with the Gregg-Henyey parameterization valid for internal wavefields close to the Garrett-Munk model. The agreement with the MacKinnon-Gregg scaling is consistent with the fact that turbulent mixing here is driven by the low-frequency internal tidal shear.
Bavassano-Cattaneo, M. B.; Moreno, G.; Scotto, M. T.; Acuna, M.
1987-01-01
Plasma and magnetic field observations performed onboard the Voyager 2 spacecraft have been used to investigate Jupiter's foreshock. Large-amplitude waves have been detected in association with the quasi-perpendicular structure of the Jovian bow shock, thus proving that the upstream turbulence is not a characteristic signature of the quasi-parallel shock.
Energy Technology Data Exchange (ETDEWEB)
Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1999-12-31
The calibrating method for an electrochemical probe, neglecting the effect of the normal velocity on the mass transport, can cause large errors when applied to the measurement of wall shear rates in thin wavy flow with large amplitude waves. An extended calibrating method is developed to consider the contributions of the normal velocity. The inclusion of the turbulence-induced normal velocity term is found to have a negligible effect on the mass transfer coefficient. The contribution of the wave-induced normal velocity can be classified on the dimensionless parameter, V. If V is above a critical value of V, V{sub crit}, the effects of the wave-induced normal velocity become larger with an increase in V. While its effects negligible for inversely. The present inverse method can predict the unknown shear rate more accurately in thin wavy flow with large amplitude waves than the previous method. 18 refs., 8 figs. (Author)
Energy Technology Data Exchange (ETDEWEB)
Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1998-12-31
The calibrating method for an electrochemical probe, neglecting the effect of the normal velocity on the mass transport, can cause large errors when applied to the measurement of wall shear rates in thin wavy flow with large amplitude waves. An extended calibrating method is developed to consider the contributions of the normal velocity. The inclusion of the turbulence-induced normal velocity term is found to have a negligible effect on the mass transfer coefficient. The contribution of the wave-induced normal velocity can be classified on the dimensionless parameter, V. If V is above a critical value of V, V{sub crit}, the effects of the wave-induced normal velocity become larger with an increase in V. While its effects negligible for inversely. The present inverse method can predict the unknown shear rate more accurately in thin wavy flow with large amplitude waves than the previous method. 18 refs., 8 figs. (Author)
International Nuclear Information System (INIS)
Nejoh, Y.N.
1997-01-01
The nonlinear wave structures of large amplitude ion-acoustic waves are studied in a plasma with positrons. We have presented the region of existence of the ion-acoustic waves by analysing the structure of the pseudopotential. The region of existence sensitively depends on the positron to electron density ratio, the ion to electron mass ratio and the positron to electron temperature ratio. It is shown that the maximum Mach number increases as the positron temperature increases and the region of existence of the ion-acoustic waves spreads as the positron temperature increases. 12 refs., 6 figs
Propagation of large amplitude Alfven waves in the solar wind current sheet
International Nuclear Information System (INIS)
Malara, Francesco; Primavera, Leonardo; Veltri, Pierluigi
1996-01-01
The time evolution of Alfvenic perturbations in the Solar Wind current sheet is studied by using numerical simulations of the compressible magnetohydrodynamic (MHD) equations. The simulations show that the interaction between the large amplitude Alfvenic pertubation and the solar wind current sheet decreases the correlation between velocity and magnetic field fluctuations and produces compressive fluctuations. The characteristics of these compressive fluctuations compare rather well with spatial observations. The behavior of the correlation between density and magnetic field intensity fluctuations and of the their spectra are well reproduced so that the physical mechanisms giving rise to these behaviors can be identified
Large amplitude solitary waves in a multicomponent plasma with negative ions
International Nuclear Information System (INIS)
Nakamura, Y.; Tsukabayashi, I.; Ludwig, G.O.; Ferreira, J.L.
1987-09-01
When the concentration of negative ions is larger than a critical value, a small compressive pulse evolves into a subsonic wave train and a large pulse develops into a solitary wave. The threshold amplitude and velocity of the solitary waves are measured and compared with predictions using the pseudopotential method. (author) [pt
MESSENGER Orbital Observations of Large-Amplitude Kelvin-Helmholtz Waves at Mercury's Magnetopause
Sundberg, Torbjorn; Boardsen, Scott A.; Slavin, James A.; Anderson, Brian J.; Korth, Haje; Zurbuchen, Thomas H.; Raines, Jim M.; Solomon, Sean C.
2012-01-01
We present a survey of Kelvi\\ n-Helmholtz (KH) waves at Mercury's magnetopause during MESSENGER's first Mercury year in orb it. The waves were identified on the basis of the well-established sawtooth wave signatures that are associated with non-linear KH vortices at the magnetopause. MESSENGER frequently observed such KH waves in the dayside region of the magnetosphere where the magnetosheath flow velocity is still sub -sonic, which implies that instability growth rates at Mercury's magnetopau are much larger than at Earth. We attribute these greater rates to the limited wave energy dissipation in Mercury's highly resistive regolith. The wave amplitude was often on the order of ' 00 nT or more, and the wave periods were - 10- 20 s. A clear dawn-dusk asymmetry is present in the data, in that all of the observed wave events occurred in the post-noon and dusk-side sectors of the magnetopause. This asymmetry is like ly related to finite Larmor-radius effects and is in agreement with results from particle-in-cell simulations of the instability. The waves were observed almost exclusively during periods when the north-south component of the magnetosheath magnetic field was northward, a pattern similar to that for most terrestrial KH wave events. Accompanying plasma measurements show that the waves were associated with the transport of magnetosheath plasma into the magnetosphere.
Vlasov simulation of the relativistic effect on the breaking of large amplitude plasma waves
International Nuclear Information System (INIS)
Xu Hui; Sheng Zhengming; Zhang Jie
2007-01-01
The influence of relativistic and thermal effects on plasma wave breaking has been studied by solving the coupled Vlasov-Poisson equations. When the relativistic effect is not considered, the wave breaking will not occur, provided the initial perturbation is less than certain value as predicted previously, and the largest amplitude of the plasma wave will decrease with the increase of the initial temperature. When the relativistic effect is considered, wave breaking always occurs during the time evolution, irrespective of the initial perturbation amplitude. Yet the smaller the initial perturbation amplitude is, the longer is the time for wave breaking to occur. With large initial perturbations, wave breaking can always occur with the without the relativistic effect. However, the results are significantly different in the two cases. The thermal effects of electrons decrease the threshold value to initial amplitude for wave breaking and large phase velocity makes the nonlinear phenomenon occur more easily. (authors)
Intermittent large amplitude internal waves observed in Port Susan, Puget Sound
Harris, J. C.; Decker, L.
2017-07-01
A previously unreported internal tidal bore, which evolves into solitary internal wave packets, was observed in Port Susan, Puget Sound, and the timing, speed, and amplitude of the waves were measured by CTD and visual observation. Acoustic Doppler current profiler (ADCP) measurements were attempted, but unsuccessful. The waves appear to be generated with the ebb flow along the tidal flats of the Stillaguamish River, and the speed and width of the resulting waves can be predicted from second-order KdV theory. Their eventual dissipation may contribute significantly to surface mixing locally, particularly in comparison with the local dissipation due to the tides. Visually the waves appear in fair weather as a strong foam front, which is less visible the farther they propagate.
A heating mechanism of ions due to large amplitude coherent ion acoustic wave
International Nuclear Information System (INIS)
Yajima, Nobuo; Kawai, Yoshinobu; Kogiso, Ken.
1978-05-01
Ion heating mechanism in a plasma with a coherent ion acoustic wave is studied experimentally and numerically. Ions are accelerated periodically in the electrostatic potential of the coherent wave and their oscillation energy is converted into the thermal energy of ions through the collision with the neutral atoms in plasma. The Monte Carlo calculation is applied to obtain the ion temperature. The amplitude of the electrostatic potential, the mean number of collisions and the mean life time of ions are treated as parameters in the calculation. The numerical results are compared with the experiments and both of them agree well. It is found that the ion temperature increases as the amplitude of the coherent wave increases and the high energy tail in the distribution function of ions are observed for the case of large wave-amplitude. (author)
Observation of large-amplitude ion acoustic solitary waves in a plasma
International Nuclear Information System (INIS)
Nakamura, Yoshiharu
1987-01-01
Propagation of nonlinear ion acoustic waves in a multi-component plasma with negative ions is investigated in a double-plasma device. When the density of negative ions is larger than a critical value, a broad negative pulse evolves to rarefactive solitons, and a positive pulse whose amplitude is less than a certain threshold value becomes a subsonic wave train. In the same plasma, a positive pulse whose amplitude is larger than the threshold develops into a solitary wave. The critical amplitude is measured as a function of the density of negative ions and compared with predictions of the pseudo-potential method. The energy distribution of electrons in the solitary wave is also measured. (author)
Parametric instability of a large-amplitude nonmonochromatic Alfvacute en wave
International Nuclear Information System (INIS)
Malara, F.; Velli, M.
1996-01-01
The parametric instability of a finite-amplitude Alfvacute en wave is studied in a one-dimensional geometry. The pump wave is an exact solution of the nonlinear magnetohydrodynamic (MHD) equations, i.e., the magnetic field perturbation has a uniform intensity and rotates in the plane perpendicular to the propagation direction, but its Fourier spectrum contains several wavelengths. The weakly nonmonochromatic regime is first studied by an analytical approach. It is shown that the growth rate of the instability decreases quadratically with a parameter that measures the departure from the monochromatic case. The fully nonmonochromatic case is studied by numerically solving the instability equations, when the phase function of the pump wave has a power-law spectrum. Though the growth rate is maximum in the monochromatic case, it remains of the same order of magnitude also for wide spectrum pump waves. For quasimonochromatic waves the correction to the growth rate depends only on the spectral index of the phase function. copyright 1996 American Institute of Physics
Large-Amplitude Long-Wave Instability of a Supersonic Shear Layer
Messiter, A. F.
1995-01-01
For sufficiently high Mach numbers, small disturbances on a supersonic vortex sheet are known to grow in amplitude because of slow nonlinear wave steepening. Under the same external conditions, linear theory predicts slow growth of long-wave disturbances to a thin supersonic shear layer. An asymptotic formulation is given here which adds nonzero shear-layer thickness to the weakly nonlinear formulation for a vortex sheet. Spatial evolution is considered, for a spatially periodic disturbance having amplitude of the same order, in Reynolds number, as the shear-layer thickness. A quasi-equilibrium inviscid nonlinear critical layer is found, with effects of diffusion and slow growth appearing through nonsecularity condition. Other limiting cases are also considered, in an attempt to determine a relationship between the vortex-sheet limit and the long-wave limit for a thin shear layer; there appear to be three special limits, corresponding to disturbances of different amplitudes at different locations along the shear layer.
DEFF Research Database (Denmark)
Burcharth, Hans F.; Liu, Zhou
1999-01-01
The effect of wave short-crestedness on the horizontal wave force on a caisson is twofold. The one is the force reduction due to the reduction of point pressure on the caisson, named point-pressure reduction. The other is the force reduction due to the fact that the peak pressures do not occur si...
Bingham, R.; De Angelis, U.; Shukla, P. K.; Stenflo, L.
1990-01-01
During the last decade considerable progress has been made in the area of nonlinear plasma wave phenomena and their applications. In order to exhibit the present state-of-art in this field, a one-week (22-26 May) workshop on Large Amplitude Waves and Fields was organized at the International Centre for Theoretical Physics (ICTP), Trieste, Italy, during the bi-yearly activity of the Spring College on Plasma Physics (15 May-9 June, 1989). Most of the invited lectures are published in this Topical Issue of Physica Scripta so that scientists working, or who want to enter the field of nonlinear plasma wave theory, can find out what has been achieved and what are the current research trends in this area. The material included here consists of general plasma wave theory, results of computer simulations, and experimental verifications. Without going into any detail, we shall just highlight the topics and the general features of the lectures contained in these proceedings. Various aspects of the excitation, propagation and interaction of nonlinear waves in plasmas are reviewed. Their relevance to plasma-based beat wave accelerators, short pulse laser and particle beam wake-field accelerators, plasma lenses, laser fusion and ionospheric modification experiments is discussed. Some introductory lectures present the general physics of nonlinear plasma waves including the saturation mechanisms and wave breaking conditions for both non-relativistic and relativistic nonlinearities. Three wave and four wave processes which include stimulated Raman, Brillouin and Compton scattering, modulational instabilities, self-focusing and collapse of the waves are discussed, emphasizing the important effects due to the relativistic electron mass variation and ponderomotive force. Detailed numerical studies of the interaction of high frequency plasma waves with low frequency density fluctuations described by the Zakharov equations show the localization of the high frequency field in density
Jantzen, Carin
2013-11-29
Coral reefs are facing rapidly changing environments, but implications for reef ecosystem functioning and important services, such as productivity, are difficult to predict. Comparative investigations on coral reefs that are naturally exposed to differing environmental settings can provide essential information in this context. One prevalent phenomenon regularly introducing alterations in water chemistry into coral reefs are internal waves. This study therefore investigates the effect of large amplitude internal waves (LAIW) on primary productivity in coral reefs at the Similan Islands (Andaman Sea, Thailand). The LAIW-exposed west sides of the islands are subjected to sudden drops in water temperature accompanied by enhanced inorganic nutrient concentrations compared to the sheltered east. At the central island, Ko Miang, east and west reefs are only few hundred meters apart, but feature pronounced differences. On the west lower live coral cover (-38%) coincides with higher turf algae cover (+64%) and growth (+54%) compared to the east side. Turf algae and the reef sand-associated microphytobenthos displayed similar chlorophyll a contents on both island sides, but under LAIW exposure, turf algae exhibited higher net photosynthesis (+23%), whereas the microphytobenthos displayed reduced net and gross photosynthesis (-19% and -26%, respectively) accompanied by lower respiration (-42%). In contrast, the predominant coral Porites lutea showed higher chlorophyll a tissues contents (+42%) on the LAIW-exposed west in response to lower light availability and higher inorganic nutrient concentrations, but net photosynthesis was comparable for both sides. Turf algae were the major primary producers on the west side, whereas microphytobenthos dominated on the east. The overall primary production rate (comprising all main benthic primary producers) was similar on both island sides, which indicates high primary production variability under different environmental conditions.
Zettergren, M. D.; Snively, J. B.; Inchin, P.; Komjathy, A.; Verkhoglyadova, O. P.
2017-12-01
Ocean and solid earth responses during earthquakes are a significant source of large amplitude acoustic and gravity waves (AGWs) that perturb the overlying ionosphere-thermosphere (IT) system. IT disturbances are routinely detected following large earthquakes (M > 7.0) via GPS total electron content (TEC) observations, which often show acoustic wave ( 3-4 min periods) and gravity wave ( 10-15 min) signatures with amplitudes of 0.05-2 TECU. In cases of very large earthquakes (M > 8.0) the persisting acoustic waves are estimated to have 100-200 m/s compressional velocities in the conducting ionospheric E and F-regions and should generate significant dynamo currents and magnetic field signatures. Indeed, some recent reports (e.g. Hao et al, 2013, JGR, 118, 6) show evidence for magnetic fluctuations, which appear to be related to AGWs, following recent large earthquakes. However, very little quantitative information is available on: (1) the detailed spatial and temporal dependence of these magnetic fluctuations, which are usually observed at a small number of irregularly arranged stations, and (2) the relation of these signatures to TEC perturbations in terms of relative amplitudes, frequency, and timing for different events. This work investigates space- and time-dependent behavior of both TEC and magnetic fluctuations following recent large earthquakes, with the aim to improve physical understanding of these perturbations via detailed, high-resolution, two- and three-dimensional modeling case studies with a coupled neutral atmospheric and ionospheric model, MAGIC-GEMINI (Zettergren and Snively, 2015, JGR, 120, 9). We focus on cases inspired by the large Chilean earthquakes from the past decade (viz., the M > 8.0 earthquakes from 2010 and 2015) to constrain the sources for the model, i.e. size, frequency, amplitude, and timing, based on available information from ocean buoy and seismometer data. TEC data are used to validate source amplitudes and to constrain
Reed, Evan J.; Armstrong, Michael R.
2010-09-07
Strain waves of THz frequencies can coherently generate radiation when they propagate past an interface between materials with different piezoelectric coefficients. Such radiation is of detectable amplitude and contains sufficient information to determine the time-dependence of the strain wave with unprecedented subpicosecond, nearly atomic time and space resolution.
Directory of Open Access Journals (Sweden)
C. Cattell
2003-01-01
Full Text Available Solitary waves with large electric fields (up to 100's of mV/m have been observed throughout the magnetosphere and in the bow shock. We discuss observations by Polar at high altitudes ( ~ 4-8 RE , during crossings of the plasma sheet boundary and cusp, and new measurements by Polar at the equatorial magnetopause and by Cluster near the bow shock, in the cusp and at the plasma sheet boundary. We describe the results of a statistical study of electron solitary waves observed by Polar at high altitudes. The mean solitary wave duration was ~ 2 ms. The waves have velocities from ~ 1000 km/s to > 2500 km/s. Observed scale sizes (parallel to the magnetic field are on the order of 1-10lD, with eF/kTe from ~ 0.01 to O(1. The average speed of solitary waves at the plasma sheet boundary is faster than the average speed observed in the cusp and at cusp injections. The amplitude increases with both velocity and scale size. These observations are all consistent with the identification of the solitary waves as electron hole modes. We also report the discovery of solitary waves at the magnetopause, observed in Polar data obtained at the subsolar equatorial magnetopause. Both positive and negative potential structures have been observed with amplitudes up to ~ 25 mV/m. The velocities range from 150 km/s to >2500 km/s, with scale sizes the order of a kilometer (comparable to the Debye length. Initial observations of solitary waves by the four Cluster satellites are utilized to discuss the scale sizes and time variability of the regions where the solitary waves occur. Preliminary results from the four Cluster satellites have given a glimpse of the spatial and temporal variability of the occurrence of solitary waves and their association with other wave modes. In all the events studied, significant differences were observed in the waveforms observed simultaneously at the four locations separated by ~ 1000 km. When solitary waves were seen at one satellite, they
Directory of Open Access Journals (Sweden)
Y.-N. Nejoh
1998-01-01
Full Text Available The nonlinear dustgrain-charging and the influence of the ion density and temperature on electrostatic waves in a dusty plasma having trapped ions are investigated by numerical calculation. This work is the first approach to the effect of trapped ions in dusty plasmas. The nonlinear variation of the dust-charge is examined, and it is shown that the characteristics of the dustcharge number sensitively depend on the plasma potential, Mach number, dust mass-to-charge ratio, trapped ion density and temperature. The fast and slow wave modes are shown in this system. An increase of the ion temperature decreases the dust-charging rate and the propagation speed of ion waves. It is found that the existence of electrostatic ion waves sensitively depends on the ion to electron density ratio. New findings of the variable-charge dust grain particles, ion density and temperature in a dusty plasma with trapped ions are predicted.
Pelinovsky, Efim; Chaikovskaia, Natalya; Rodin, Artem
2015-04-01
The paper presents the analysis of the formation and evolution of shock wave in shallow water with no restrictions on its amplitude in the framework of the nonlinear shallow water equations. It is shown that in the case of large-amplitude waves appears a new nonlinear effect of reflection from the shock front of incident wave. These results are important for the assessment of coastal flooding by tsunami waves and storm surges. Very often the largest number of victims was observed on the coastline where the wave moved breaking. Many people, instead of running away, were just looking at the movement of the "raging wall" and lost time. This fact highlights the importance of researching the problem of security and optimal behavior of people in situations with increased risk. Usually there is uncertainty about the exact time, when rogue waves will impact. This fact limits the ability of people to adjust their behavior psychologically to the stressful situations. It concerns specialists, who are busy both in the field of flying activity and marine service as well as adults, young people and children, who live on the coastal zone. The rogue wave research is very important and it demands cooperation of different scientists - mathematicians and physicists, as well as sociologists and psychologists, because the final goal of efforts of all scientists is minimization of the harm, brought by rogue waves to humanity.
Agapitov, O. V.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Lejosne, S.
2014-12-01
A huge number of different non-linear structures (double layers, electron holes, non-linear whistlers, etc) have been observed by the electric field experiment on the Van Allen Probes in conjunction with relativistic electron acceleration in the Earth's outer radiation belt. These structures, found as short duration (~0.1 msec) quasi-periodic bursts of electric field in the high time resolution electric field waveform, have been called Time Domain Structures (TDS). They can quite effectively interact with radiation belt electrons. Due to the trapping of electrons into these non-linear structures, they are accelerated up to ~10 keV and their pitch angles are changed, especially for low energies (˜1 keV). Large amplitude electric field perturbations cause non-linear resonant trapping of electrons into the effective potential of the TDS and these electrons are then accelerated in the non-homogeneous magnetic field. These locally accelerated electrons create the "seed population" of several keV electrons that can be accelerated by coherent, large amplitude, upper band whistler waves to MeV energies in this two step acceleration process. All the elements of this chain acceleration mechanism have been observed by the Van Allen Probes.
Energy Technology Data Exchange (ETDEWEB)
Remya, B.; Reddy, R. V.; Lakhina, G. S. [Indian Institute of Geomagnetism, Kalamboli Highway, New Panvel, Navi Mumbai, Maharashtra (India); Tsurutani, B. T.; Falkowski, B. J. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Echer, E. [Instituto Nacional de Pesquisas Espaciais (INPE), Avenida Astronautas, 1758, P.O. Box 515, Sao Jose dos Campos, SP (Brazil); Glassmeier, K.-H., E-mail: remyaphysics@gmail.com [Institute for Geophysics and Extraterrestrial Physics (IGEP), Mendelssohnstr.3, D-38106, Braunschweig (Germany)
2014-09-20
During 1999 August 18, both Cassini and WIND were in the Earth's magnetosheath and detected transverse electromagnetic waves instead of the more typical mirror-mode emissions. The Cassini wave amplitudes were as large as ∼14 nT (peak to peak) in a ∼55 nT ambient magnetic field B {sub 0}. A new method of analysis is applied to study these waves. The general wave characteristics found were as follows. They were left-hand polarized and had frequencies in the spacecraft frame (f {sub scf}) below the proton cyclotron frequency (f{sub p} ). Waves that were either right-hand polarized or had f {sub scf} > f{sub p} are shown to be consistent with Doppler-shifted left-hand waves with frequencies in the plasma frame f{sub pf} < f{sub p} . Thus, almost all waves studied are consistent with their being electromagnetic proton cyclotron waves. Most of the waves (∼55%) were found to be propagating along B {sub 0} (θ{sub kB{sub 0}}<30{sup ∘}), as expected from theory. However, a significant fraction of the waves were found to be propagating oblique to B {sub 0}. These waves were also circularly polarized. This feature and the compressive ([B {sub max} – B {sub min}]/B {sub max}, where B {sub max} and B {sub min} are the maximum and minimum field magnitudes) nature (ranging from 0.27 to 1.0) of the waves are noted but not well understood at this time. The proton cyclotron waves were shown to be quasi-coherent, theoretically allowing for rapid pitch-angle transport of resonant protons. Because Cassini traversed the entire subsolar magnetosheath and WIND was in the dusk-side flank of the magnetosheath, it is surmised that the entire region was filled with these waves. In agreement with past theory, it was the exceptionally low plasma β (0.35) that led to the dominance of the proton cyclotron wave generation during this interval. A high-speed solar wind stream ((V{sub sw} ) = 598 km s{sup –1}) was the source of this low-β plasma.
Pautet, P.-D.; Taylor, M. J.; Fritts, D. C.; Bossert, K.; Williams, B. P.; Broutman, D.; Ma, J.; Eckermann, S. D.; Doyle, J. D.
2016-02-01
The Deep Propagating Gravity Wave Experiment (DEEPWAVE) project was conducted over New Zealand and the surrounding regions during June and July 2014, to more fully understand the generation, propagation, and effects of atmospheric gravity waves. A large suite of instruments collected data from the ground to the upper atmosphere (~100 km), with several new remote-sensing instruments operating on board the NSF Gulfstream V (GV) research aircraft, which was the central measurement platform of the project. On 14 July, during one of the research flights (research flight 23), a spectacular event was observed as the GV flew in the lee of the sub-Antarctic Auckland Islands (50.7°S). An apparent "ship wave" pattern was imaged in the OH layer (at ~83.5 km) by the Utah State University Advanced Mesospheric Temperature Mapper and evolved significantly over four successive passes spanning more than 4 h. The waves were associated with orographic forcing generated by relatively strong (15-20 m/s) near-surface wind flowing over the rugged island topography. The mountain wave had an amplitude T' ~ 10 K, a dominant horizontal wavelength ~40 km, achieved a momentum flux exceeding 300 m2 s-2, and eventually exhibited instability and breaking at the OH altitude. This case of deep mountain wave propagation demonstrates the potential for strong responses in the mesosphere arising from a small source under suitable propagation conditions and suggests that such cases may be more common than previously believed.
Stability of Cubipod Armoured Roundheads in Short Crested Waves
DEFF Research Database (Denmark)
Burcharth, Hans F.; Andersen, Thomas Lykke; Medina, Josep R.
The roundhead is generally the most exposed part of the breakwater. Moreover, in case of rubble mound structures the needed armour size is larger than in the adjacent trunk. Typically units of almost double mass are needed in the roundhead if high density stones or concrete are not used in the head....
Formation of large-amplitude dust ion-acoustic shocks in dusty plasmas
International Nuclear Information System (INIS)
Eliasson, B.; Shukla, P.K.
2005-01-01
Theoretical and numerical studies of self-steepening and shock formation of large-amplitude dust ion-acoustic waves in dusty plasmas are presented. A comparison is made between the nondispersive two fluid model, which predicts the formation of large-amplitude compressive and rarefactive dust ion-acoustic shocks, Vlasov simulations, and recent laboratory experiments
DEFF Research Database (Denmark)
Frigaard, Peter; Høgedal, Michael; Christensen, Morten
The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered.......The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered....
Two-level systems driven by large-amplitude fields
Nori, F.; Ashhab, S.; Johansson, J. R.; Zagoskin, A. M.
2009-03-01
We analyze the dynamics of a two-level system subject to driving by large-amplitude external fields, focusing on the resonance properties in the case of driving around the region of avoided level crossing. In particular, we consider three main questions that characterize resonance dynamics: (1) the resonance condition, (2) the frequency of the resulting oscillations on resonance, and (3) the width of the resonance. We identify the regions of validity of different approximations. In a large region of the parameter space, we use a geometric picture in order to obtain both a simple understanding of the dynamics and quantitative results. The geometric approach is obtained by dividing the evolution into discrete time steps, with each time step described by either a phase shift on the basis states or a coherent mixing process corresponding to a Landau-Zener crossing. We compare the results of the geometric picture with those of a rotating wave approximation. We also comment briefly on the prospects of employing strong driving as a useful tool to manipulate two-level systems. S. Ashhab, J.R. Johansson, A.M. Zagoskin, F. Nori, Two-level systems driven by large-amplitude fields, Phys. Rev. A 75, 063414 (2007). S. Ashhab et al, unpublished.
Large amplitude parallel propagating electromagnetic oscillitons
International Nuclear Information System (INIS)
Cattaert, Tom; Verheest, Frank
2005-01-01
Earlier systematic nonlinear treatments of parallel propagating electromagnetic waves have been given within a fluid dynamic approach, in a frame where the nonlinear structures are stationary and various constraining first integrals can be obtained. This has lead to the concept of oscillitons that has found application in various space plasmas. The present paper differs in three main aspects from the previous studies: first, the invariants are derived in the plasma frame, as customary in the Sagdeev method, thus retaining in Maxwell's equations all possible effects. Second, a single differential equation is obtained for the parallel fluid velocity, in a form reminiscent of the Sagdeev integrals, hence allowing a fully nonlinear discussion of the oscilliton properties, at such amplitudes as the underlying Mach number restrictions allow. Third, the transition to weakly nonlinear whistler oscillitons is done in an analytical rather than a numerical fashion
Discharge Coefficient of Rectangular Short-Crested Weir with Varying Slope Coefficients
Directory of Open Access Journals (Sweden)
Yuejun Chen
2018-02-01
Full Text Available Rectangular short-crested weirs are widely used for simple structure and high discharge capacity. As one of the most important and influential factors of discharge capacity, side slope can improve the hydraulic characteristics of weirs at special conditions. In order to systemically study the effects of upstream and downstream slope coefficients S1 and S2 on overflow discharge coefficient in a rectangular short-crested weir the Volume of Fluid (VOF method and the Renormalization Group (RNG κ-ε turbulence model are used. In this study, the slope coefficient ranges from V to 3H:1V and each model corresponds to five total energy heads of H0 ranging from 8.0 to 24.0 cm. Comparisons of discharge coefficients and free surface profiles between simulated and laboratory results display a good agreement. The simulated results show that the difference of discharge coefficients will decrease with upstream slopes and increase with downstream slopes as H0 increases. For a given H0, the discharge coefficient has a convex parabolic relation with S1 and a piecewise linearity relation with S2. The maximum discharge coefficient is always obtained at S2 = 0.8. There exists a difference between upstream and downstream slope coefficients in the influence range of free surface curvatures. Furthermore, a proposed discharge coefficient equation by nonlinear regression is a function of upstream and downstream slope coefficients.
Two-level systems driven by large-amplitude fields
International Nuclear Information System (INIS)
Ashhab, S.; Johansson, J. R.; Zagoskin, A. M.; Nori, Franco
2007-01-01
We analyze the dynamics of a two-level system subject to driving by large-amplitude external fields, focusing on the resonance properties in the case of driving around the region of avoided level crossing. In particular, we consider three main questions that characterize resonance dynamics: (1) the resonance condition (2) the frequency of the resulting oscillations on resonance, and (3) the width of the resonance. We identify the regions of validity of different approximations. In a large region of the parameter space, we use a geometric picture in order to obtain both a simple understanding of the dynamics and quantitative results. The geometric approach is obtained by dividing the evolution into discrete time steps, with each time step described by either a phase shift on the basis states or a coherent mixing process corresponding to a Landau-Zener crossing. We compare the results of the geometric picture with those of a rotating wave approximation. We also comment briefly on the prospects of employing strong driving as a useful tool to manipulate two-level systems
Fine structure of large amplitude chorus wave packets
Czech Academy of Sciences Publication Activity Database
Santolík, Ondřej; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Bounds, S. R.
2014-01-01
Roč. 41, č. 2 (2014), s. 293-299 ISSN 0094-8276 R&D Projects: GA MŠk 7E12026; GA ČR GAP205/10/2279 Institutional support: RVO:68378289 Keywords : whistler-mode chorus * waveform measurements * nonlinear phenomena Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.456, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/2013GL058889/abstract
Initial frequency shift of large amplitude plasma wave
International Nuclear Information System (INIS)
Sugihara, Ryo; Yamanaka, Kaoru.
1979-04-01
A distribution function which is an exact solution to the collisionless Boltzmann equation is obtained in an expansion form in terms of the potential phi(x, t). A complex nonlinear frequency shift ωsub( n)(t) is obtained by use of the Poisson equation and the expansion. The theory is valid for arbitrary phi 0 and v sub(p) as long as ωsub(p) >> γsub( l), and in the initial phase defined by 0 0 , v sub(p), ωsub(p), γsub( l) and t sub(c) are the initial value of phi, the phase velocity, the Langmuir frequency, the linear Landau damping coefficient and the time for the first minimum of the amplitude oscillation. The ωsub( n)(0) does not vanish and Reωsub( n)(0)/γsub( l) > 1 holds even for e phi 0 /T 1 in the initial phase for v sub( p) > v sub( t). The theory reproduces main features of experimental results and that of simulations. (author)
Microscopic theory of dynamical subspace for large amplitude collective motion
International Nuclear Information System (INIS)
Sakata, Fumihiko; Marumori, Toshio; Ogura, Masanori.
1986-01-01
A full quantum theory appropriate for describing large amplitude collective motion is proposed by exploiting the basic idea of the semi-classical theory so far developed within the time-depedent Hartree-Fock theory. A central problem of the quantum theory is how to determine an optimal representation called a dynamical representation specific for the collective subspace where the large amplitude collective motion is replicated as precisely as possible. As an extension of the semi-classical theory where the concept of an approximate integral surface played an important role, the collective subspace is properly characterized by introducing a concept of an approximate invariant subspace of the Hamiltonian. (author)
Stability of cube armoured roundheads exposed to long crested and short crested waves
DEFF Research Database (Denmark)
Maciñeira, Enrique G.; Burcharth, Hans Falk
2016-01-01
Highlights •A formula to estimate armour damage in cube armoured roundheads is presented •Damage limits for design limit states are proposed......Highlights •A formula to estimate armour damage in cube armoured roundheads is presented •Damage limits for design limit states are proposed...
Large amplitude ion-acoustic solitons in dusty plasmas
International Nuclear Information System (INIS)
Tiwari, R. S.; Jain, S. L.; Mishra, M. K.
2011-01-01
Characteristics of ion-acoustic soliton in dusty plasma, including the dynamics of heavily charged massive dust grains, are investigated following the Sagdeev Potential formalism. Retaining fourth order nonlinearities of electric potential in the expansion of the Sagdeev Potential in the energy equation for a pseudo particle and integrating the resulting energy equation, large amplitude soliton solution is determined. Variation of amplitude (A), half width (W) at half maxima and the product P = AW 2 of the Korteweg-deVries (KdV), dressed and large amplitude soliton as a function of wide range of dust concentration are numerically studied for recently observed parameters of dusty plasmas. We have also presented the region of existence of large amplitude ion-acoustic soliton in the dusty plasma by analyzing the structure of the pseudo potential. It is found that in the presence of positively charged dust grains, system supports only compressive solitons, on the other hand, in the presence of negatively charged dust grains, the system supports compressive solitons up to certain critical concentration of dust grains and above this critical concentration, the system can support rarefactive solitons also. The effects of dust concentration, charge, and mass of the dust grains, on the characteristics of KdV, dressed and large amplitude the soliton, i.e., amplitude (A), half width at half maxima (W), and product of amplitude (A) and half width at half maxima (P = AW 2 ), are discussed in detail
Large Amplitude Oscillatory Extension of Soft Polymeric Networks
DEFF Research Database (Denmark)
Bejenariu, Anca Gabriela; Rasmussen, Henrik K.; Skov, Anne Ladegaard
2010-01-01
sing a filament stretching rheometer (FSR) surrounded by a thermostatic chamber and equipped with a micrometric laser it is possible to measure large amplitude oscillatory elongation (LAOE) on elastomeric based networks with no base flow as in the LAOE method for polymer melts. Poly(dimethylsilox...
Large amplitude forced vibration analysis of cross-beam system ...
African Journals Online (AJOL)
Large amplitude forced vibration behaviour of cross-beam system under harmonic excitation is studied, incorporating the effect of geometric non-linearity. The forced vibration analysis is carried out in an indirect way, in which the dynamic system is assumed to satisfy the force equilibrium condition at peak load value, thus ...
The Dynamics of Large-Amplitude Motion in Energized Molecules
Energy Technology Data Exchange (ETDEWEB)
Perry, David S. [Univ. of Akron, OH (United States). Dept. of Chemistry
2016-05-27
Chemical reactions involve large-amplitude nuclear motion along the reaction coordinate that serves to distinguish reactants from products. Some reactions, such as roaming reactions and reactions proceeding through a loose transition state, involve more than one large-amplitude degree of freedom. Because of the limitation of exact quantum nuclear dynamics to small systems, one must, in general, define the active degrees of freedom and separate them in some way from the other degrees of freedom. In this project, we use large-amplitude motion in bound model systems to investigate the coupling of large-amplitude degrees of freedom to other nuclear degrees of freedom. This approach allows us to use the precision and power of high-resolution molecular spectroscopy to probe the specific coupling mechanisms involved, and to apply the associated theoretical tools. In addition to slit-jet spectra at the University of Akron, the current project period has involved collaboration with Michel Herman and Nathalie Vaeck of the Université Libre de Bruxelles, and with Brant Billinghurst at the Canadian Light Source (CLS).
Dynamic response function and large-amplitude dissipative collective motion
International Nuclear Information System (INIS)
Wu Xizhen; Zhuo Yizhong; Li Zhuxia; Sakata, Fumihiko.
1993-05-01
Aiming at exploring microscopic dynamics responsible for the dissipative large-amplitude collective motion, the dynamic response and correlation functions are introduced within the general theory of nuclear coupled-master equations. The theory is based on the microscopic theory of nuclear collective dynamics which has been developed within the time-dependent Hartree-Fock (TDHF) theory for disclosing complex structure of the TDHF-manifold. A systematic numerical method for calculating the dynamic response and correlation functions is proposed. By performing numerical calculation for a simple model Hamiltonian, it is pointed out that the dynamic response function gives an important information in understanding the large-amplitude dissipative collective motion which is described by an ensemble of trajectories within the TDHF-manifold. (author)
Field theory of large amplitude collective motion. A schematic model
International Nuclear Information System (INIS)
Reinhardt, H.
1978-01-01
By using path integral methods the equation for large amplitude collective motion for a schematic two-level model is derived. The original fermion theory is reformulated in terms of a collective (Bose) field. The classical equation of motion for the collective field coincides with the time-dependent Hartree-Fock equation. Its classical solution is quantized by means of the field-theoretical generalization of the WKB method. (author)
Jump phenomena. [large amplitude responses of nonlinear systems
Reiss, E. L.
1980-01-01
The paper considers jump phenomena composed of large amplitude responses of nonlinear systems caused by small amplitude disturbances. Physical problems where large jumps in the solution amplitude are important features of the response are described, including snap buckling of elastic shells, chemical reactions leading to combustion and explosion, and long-term climatic changes of the earth's atmosphere. A new method of rational functions was then developed which consists of representing the solutions of the jump problems as rational functions of the small disturbance parameter; this method can solve jump problems explicitly.
Short Large-Amplitude Magnetic Structures (SLAMS) at Venus
Collinson, G. A.; Wilson, L. B.; Sibeck, D. G.; Shane, N.; Zhang, T. L.; Moore, T. E.; Coates, A. J.; Barabash, S.
2012-01-01
We present the first observation of magnetic fluctuations consistent with Short Large-Amplitude Magnetic Structures (SLAMS) in the foreshock of the planet Venus. Three monolithic magnetic field spikes were observed by the Venus Express on the 11th of April 2009. The structures were approx.1.5->11s in duration, had magnetic compression ratios between approx.3->6, and exhibited elliptical polarization. These characteristics are consistent with the SLAMS observed at Earth, Jupiter, and Comet Giacobini-Zinner, and thus we hypothesize that it is possible SLAMS may be found at any celestial body with a foreshock.
Very low luminosity stars with very large amplitude flares
International Nuclear Information System (INIS)
Schaefer, B.E.
1990-01-01
CCD frames of CZ Cnc, KY Cep, the gamma-ray burster optical transient, and NSV 12006 are analyzed. Also studied are 549 archival photographic plates of the CZ Cnc field. These observations are compared with the data of Lovas (1976). Flare events on CZ Cnc are examined. Based on the data it is noted that CZ Cnc is a main-sequence star, has a magnitude of 16.1, a distance of 100 pc, occasional large-amplitude flares, and frequent flares with amplitudes greater than 4 mag. 36 refs
A large-amplitude traveling ionospheric disturbance excited by the space shuttle during launch
International Nuclear Information System (INIS)
Noble, S.T.
1990-01-01
The ionosphere was monitored during the fourth space shuttle (STS 4) launch in June 1982 by the Arecibo incoherent scatter radar. A long-lived, large-amplitude, traveling ionospheric disturbance with dominant wave moles of ∼ 15 and 75 min was observed shortly after the launch. The disturbance wave train is likely the product of a variety of wave modes. The disturbance front traveled with an average group speed of >628 m/s. Such speeds are typical of fast moving shock waves and ducted gravity waves. Either one or both could be responsible for the signatures observed near the leading edge of the STS 4 wave train. Later arriving waves, with their inherently lower propagation speeds, are attributed to additional gravity wave modes. These waves, however, were not explicitly identified in this study. Although atmospheric waves are excited along the entire flight path, the most intense region of excitation is located along a relatively short flight segment (∼70 km) near the launch site where all primary thrusters are firing and over 70% of the propellants are expended. Not since the nuclear bomb tests of the late 1950s and early 1960s has an artificial source of atmospheric gravity waves been more available for upper atmospheric studies. The routine launching of high thrust vehicles provides an excellent opportunity to observe the propagation characteristics of atmospheric waves under controlled conditions and to acquire information on the nature of the upper atmosphere
Attitude tracking control of flexible spacecraft with large amplitude slosh
Deng, Mingle; Yue, Baozeng
2017-12-01
This paper is focused on attitude tracking control of a spacecraft that is equipped with flexible appendage and partially filled liquid propellant tank. The large amplitude liquid slosh is included by using a moving pulsating ball model that is further improved to estimate the settling location of liquid in microgravity or a zero-g environment. The flexible appendage is modelled as a three-dimensional Bernoulli-Euler beam, and the assumed modal method is employed. A hybrid controller that combines sliding mode control with an adaptive algorithm is designed for spacecraft to perform attitude tracking. The proposed controller has proved to be asymptotically stable. A nonlinear model for the overall coupled system including spacecraft attitude dynamics, liquid slosh, structural vibration and control action is established. Numerical simulation results are presented to show the dynamic behaviors of the coupled system and to verify the effectiveness of the control approach when the spacecraft undergoes the disturbance produced by large amplitude slosh and appendage vibration. Lastly, the designed adaptive algorithm is found to be effective to improve the precision of attitude tracking.
Large amplitude oscillatory motion along a solar filament
Vršnak, B.; Veronig, A. M.; Thalmann, J. K.; Žic, T.
2007-08-01
Context: Large amplitude oscillations of solar filaments is a phenomenon that has been known for more than half a century. Recently, a new mode of oscillations, characterized by periodical plasma motions along the filament axis, was discovered. Aims: We analyze such an event, recorded on 23 January 2002 in Big Bear Solar Observatory Hα filtergrams, to infer the triggering mechanism and the nature of the restoring force. Methods: Motion along the filament axis of a distinct buldge-like feature was traced, to quantify the kinematics of the oscillatory motion. The data were fitted by a damped sine function to estimate the basic parameters of the oscillations. To identify the triggering mechanism, morphological changes in the vicinity of the filament were analyzed. Results: The observed oscillations of the plasma along the filament were characterized by an initial displacement of 24 Mm, an initial velocity amplitude of 51 km s-1, a period of 50 min, and a damping time of 115 min. We interpret the trigger in terms of poloidal magnetic flux injection by magnetic reconnection at one of the filament legs. The restoring force is caused by the magnetic pressure gradient along the filament axis. The period of oscillations, derived from the linearized equation of motion (harmonic oscillator) can be expressed as P=π√{2}L/v_Aϕ≈4.4L/v_Aϕ, where v_Aϕ =Bϕ0/√μ_0ρ represents the Alfvén speed based on the equilibrium poloidal field Bϕ0. Conclusions: Combination of our measurements with some previous observations of the same kind of oscillations shows good agreement with the proposed interpretation. Movie to Fig. 1 is only available in electronic form at http://www.aanda.org
Simulation-Based Analysis of Ship Motions in Short-Crested Irregular Seas
Directory of Open Access Journals (Sweden)
Kıvanç Ali ANIL
2017-03-01
Full Text Available Demonstration of the seakeeping calculation results other than polar diagrams and Cartesian plots is important during the initial and detail design stages of naval platforms due to the necessity of numerical simulations (time series data for the design and validation of the systems on board. These time series simulations are called as “real time computer experiments”. Similar simulation algorithms for ship motions and wave elevation are also used by ship-handling simulators for realistic visualization. The goal of this paper is to create a basis for the simulation-based analysis of ship motions and wave elevation for future design and validation studies for both the naval platform itself and the systems on board. The focus of this paper is the clarification of the theoretical background of this process, i.e. all formulations required to create and validate a ship motion and wave surface simulation are given in detail. The results of this study may also be used in ship-handling simulators or helicopter landing on ship simulations.
International Nuclear Information System (INIS)
Bell, Christopher G.; Anastassiou, Costas A.; O’Hare, Danny; Parker, Kim H.; Siggers, Jennifer H.
2012-01-01
Highlights: ► Theory of ac voltammetry on ideal surface-confined redox systems. ► Analytical description of the harmonics and transient of the current response. ► Solution valid for high frequency, large-amplitude sinusoidal input voltage. ► Protocol for determining system parameters from experimental current responses. - Abstract: Large-amplitude ac voltammetry, where the applied voltage is a large-amplitude sinusoidal waveform superimposed onto a dc ramp, is a powerful method for investigating the reaction kinetics of surface-confined redox species. Here we consider the large-amplitude ac voltammetric current response of a quasi-reversible, ideal, surface-confined redox system, for which the redox reaction is described by Butler–Volmer theory. We derive an approximate analytical solution, which is valid whenever the angular frequency of the sine-wave is much larger than the rate of the dc ramp and the standard kinetic rate constant of the redox reaction. We demonstrate how the third harmonic and the initial transient of the current response can be used to estimate parameters of the electrochemical system, namely the kinetic rate constant, the electron transfer coefficient, the adsorption formal potential, the initial proportion of oxidised molecules and the linear double-layer capacitance.
Large-amplitude dust acoustic shocklets in non-Maxwellian dusty plasmas
Ali, S.; Naeem, Ismat; Mirza, Arshad M.
2017-10-01
The formation and propagation of fully nonlinear dust-acoustic (DA) waves and shocks are studied in a non-Maxwellian thermal dusty plasma which is composed of Maxwellian electrons and nonthermal energetic ions with a neutralizing background of negatively charged dust grains. For this purpose, we have solved dust dynamical equations along with quasineutrality equation by using a diagonalization matrix technique. A set of two characteristic wave equations is obtained, which admits both analytical and numerical solutions. Taylor expansion in the small-amplitude limit ( Φ ≪ 1 ) leads to nonlinear effective phase and shock speeds accounting for nonthermal energetic ions. It is numerically shown that DA pulses can be developed into DA shocklets involving the negative electrostatic potential, dust fluid velocity, and dust number density. These structures are significantly influenced by the ion-nonthermality, dust thermal correction, and temporal variations. However, the amplitudes of solitary and shock waves are found smaller in case of Cairns-distributed ions as compared to Kappa-distributed ions due to smaller linear and nonlinear effective phase speeds that cause smaller nonlinearity effects. The present results should be useful for understanding the nonlinear characteristics of large-amplitude DA excitations and nonstationary shocklets in a laboratory non-Maxwellian dusty plasma, where nonthermal energetic ions are present in addition to Maxwellian electrons.
Large amplitude nuclear collective motion and the quantized ATDHF theory
International Nuclear Information System (INIS)
Provoost, D.
1986-01-01
Several nuclear systems are studied within the quantized ATDHF theory. For the α- 16 O system, after construction of the wave functions along the collective path, a collective Schroedinger equation, including quantum corrections, is derived in the Gaussian Overlap Approximation and solved for scattering and bound states. The elastic scattering cross sections agree well with experiment at low energies. An alternative possibility is to perform angular momentum projections on the wave functions and to insert the Hamilton- and normkernels in the Griffin-Hill-Wheeler equation. The widths of the resonances are extracted from the poles of the S-matrix in the complex energy plane. Good agreement is obtained for the energies of even-parity levels but the odd-parity levels are shifted in energy as compared with experiment. The origin of this discrepancy is to be found in the BKN interaction which is not able to reproduce the binding energies of α, 16 O and 20 Ne. For the α- 12 C system, with a deformed fragment, the agreement with experiment is poor. One difficulty is the problem of how to link the different paths of the different configurations which are possible for the α- 12 C system. All calculations have been performed on a three-dimensional lattice. (MCB)
Modeling of large amplitude plasma blobs in three-dimensions
Energy Technology Data Exchange (ETDEWEB)
Angus, Justin R. [Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 (United States); Umansky, Maxim V. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)
2014-01-15
Fluctuations in fusion boundary and similar plasmas often have the form of filamentary structures, or blobs, that convectively propagate radially. This may lead to the degradation of plasma facing components as well as plasma confinement. Theoretical analysis of plasma blobs usually takes advantage of the so-called Boussinesq approximation of the potential vorticity equation, which greatly simplifies the treatment analytically and numerically. This approximation is only strictly justified when the blob density amplitude is small with respect to that of the background plasma. However, this is not the case for typical plasma blobs in the far scrape-off layer region, where the background density is small compared to that of the blob, and results obtained based on the Boussinesq approximation are questionable. In this report, the solution of the full vorticity equation, without the usual Boussinesq approximation, is proposed via a novel numerical approach. The method is used to solve for the evolution of 2D and 3D plasma blobs in a regime where the Boussinesq approximation is not valid. The Boussinesq solution under predicts the cross field transport in 2D. However, in 3D, for parameters typical of current tokamaks, the disparity between the radial cross field transport from the Boussinesq approximation and full solution is virtually non-existent due to the effects of the drift wave instability.
Modeling of large amplitude plasma blobs in three-dimensions
International Nuclear Information System (INIS)
Angus, Justin R.; Umansky, Maxim V.
2014-01-01
Fluctuations in fusion boundary and similar plasmas often have the form of filamentary structures, or blobs, that convectively propagate radially. This may lead to the degradation of plasma facing components as well as plasma confinement. Theoretical analysis of plasma blobs usually takes advantage of the so-called Boussinesq approximation of the potential vorticity equation, which greatly simplifies the treatment analytically and numerically. This approximation is only strictly justified when the blob density amplitude is small with respect to that of the background plasma. However, this is not the case for typical plasma blobs in the far scrape-off layer region, where the background density is small compared to that of the blob, and results obtained based on the Boussinesq approximation are questionable. In this report, the solution of the full vorticity equation, without the usual Boussinesq approximation, is proposed via a novel numerical approach. The method is used to solve for the evolution of 2D and 3D plasma blobs in a regime where the Boussinesq approximation is not valid. The Boussinesq solution under predicts the cross field transport in 2D. However, in 3D, for parameters typical of current tokamaks, the disparity between the radial cross field transport from the Boussinesq approximation and full solution is virtually non-existent due to the effects of the drift wave instability
Abnormal Waves Modelled as Second-order Conditional Waves
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
2005-01-01
The paper presents results for the expected second order short-crested wave conditional of a given wave crest at a specific point in time and space. The analysis is based on the second order Sharma and Dean shallow water wave theory. Numerical results showing the importance of the spectral densit...
Wave Reflection in 3D Conditions
DEFF Research Database (Denmark)
Zanuttigh, Barbara; Andersen, Thomas Lykke
2010-01-01
Based on recent experiments carried out in wave basin on breakwaters with armour layer of rocks and cubes, this paper examines the dependence of the reflection coefficient on wave directional spreading and obliquity. Results suggest that long-crested and short-crested waves give similar reflectio...
Superposed epoch analysis applied to large-amplitude travelling convection vortices
Directory of Open Access Journals (Sweden)
H. Lühr
1998-07-01
Full Text Available For the six months from 1 October 1993 to 1 April 1994 the recordings of the IMAGE magnetometer network have been surveyed in a search for large-amplitude travelling convection vortices (TCVs. The restriction to large amplitudes (>100 nT was chosen to ensure a proper detection of evens also during times of high activity. Readings of all stations of the northern half of the IMAGE network were employed to check the consistency of the ground signature with the notation of a dual-vortex structure moving in an azimuthal direction. Applying these stringent selection criteria we detected a total of 19 clear TCV events. The statistical properties of our selection resemble the expected characteristics of large-amplitude TCVs. New and unexpected results emerged from the superposed epoch analysis. TCVs tend to form during quiet intervals embedded in moderately active periods. The occurrence of events is not randomly distributed but rather shows a clustering around a few days. These clusters recur once or twice every 27 days. Within a storm cycle they show up five to seven days after the commencement. With regard to solar wind conditions, we see the events occurring in the middle of the IMF sector structure. Large-amplitude TCVs seem to require certain conditions to make solar wind transients 'geoeffective', which have the tendency to recur with the solar rotation period.Key words. Ionosphere (Aural ionosphere; Ionosphere- magnetosphere interactions · Magnetospheric Physics (current system
Large-amplitude double layers in a dusty plasma with an arbitrary ...
Indian Academy of Sciences (India)
Formation of large-amplitude double layers in a dusty plasma whose constituents are electrons, ions, warm dust grains and positive ion beam are studied using Sagdeev's pseudopotential technique. Existence of double layers is investigated. It is found that both the temperature of dust particles and ion beam temperature ...
Energy Technology Data Exchange (ETDEWEB)
Tamagawa, T; Matsuoka, T; Sato, T [Japan Petroleum Exploration Corp., Tokyo (Japan); Minegishi, M; Tsuru, T [Japan National Oil Corp., Tokyo (Japan)
1996-05-01
A large amplitude event difficult to interpret was discovered in the overlap section in offset data beyond 10km targeting at deep structures, and the event was examined. A wave field modeling was carried out by use of a simplified synclinal structure model because it had been estimated that the large amplitude event had something to do with a synclinal structure. A pseudospectral program was used for modeling the wave field on the assumption that the synclinal structure model would be an acoustic body and that the surface would contain free boundaries and multiple reflection. It was found as the result that a discontinuous large amplitude event is mapped out in the synclinal part of the overlap section when a far trace is applied beyond the structure during a CMP overlap process. This can be attributed to the concentration of energy produced by multiple reflection in the synclinal part and by the reflection waves beyond the critical angle. Accordingly, it is possible that phenomena similar to those encountered in the modeling process are emerging during actual observation. 2 refs., 8 figs.
Global Well-Posedness of the Boltzmann Equation with Large Amplitude Initial Data
Duan, Renjun; Huang, Feimin; Wang, Yong; Yang, Tong
2017-07-01
The global well-posedness of the Boltzmann equation with initial data of large amplitude has remained a long-standing open problem. In this paper, by developing a new {L^∞_xL^1v\\cap L^∞_{x,v}} approach, we prove the global existence and uniqueness of mild solutions to the Boltzmann equation in the whole space or torus for a class of initial data with bounded velocity-weighted {L^∞} norm under some smallness condition on the {L^1_xL^∞_v} norm as well as defect mass, energy and entropy so that the initial data allow large amplitude oscillations. Both the hard and soft potentials with angular cut-off are considered, and the large time behavior of solutions in the {L^∞_{x,v}} norm with explicit rates of convergence are also studied.
Quantum theory of dynamical collective subspace for large-amplitude collective motion
International Nuclear Information System (INIS)
Sakata, Fumihiko; Marumori, Toshio; Ogura, Masanori.
1986-03-01
By placing emphasis on conceptual correspondence to the ''classical'' theory which has been developed within the framework of the time-dependent Hartree-Fock theory, a full quantum theory appropriate for describing large-amplitude collective motion is proposed. A central problem of the quantum theory is how to determine an optimal representation called a dynamical representation; the representation is specific for the collective subspace where the large-amplitude collective motion is replicated as satisfactorily as possible. As an extension of the classical theory where the concept of an approximate integral surface plays an important role, the dynamical representation is properly characterized by introducing a concept of an approximate invariant subspace of the Hamiltonian. (author)
Directionality and spread of shallow water waves along the eastern Arabian Sea
Digital Repository Service at National Institute of Oceanography (India)
SanilKumar, V.; Anoop, T.R.
, at http://www.cdc.noaa.gov/. 4 Results and discussions 4.1 Wave directional spreading For long-crested waves, the value of directional width is 0◦, and as the waves become short-crested, the value increases and the wave directional spreading increases...
International Nuclear Information System (INIS)
Krylov, Slava; Gerson, Yuval; Nachmias, Tali; Keren, Uri
2010-01-01
In this work we report on an approach allowing efficient parametric excitation of large-amplitude stable oscillations of a microstructure operated by a parallel-plate electrode, and present results of a theoretical and experimental investigation of the device. The frame-type structure, fabricated from a silicon on insulator (SOI) substrate using deep reactive ion etching (DRIE), consists a pair of cantilever-type suspensions connected at their ends by a link. The time-varying electrostatic force applied to the link by a parallel-plate electrode is transformed into a periodic tension of the beams, resulting in the modulation of their flexural stiffness and consequently the mechanical parametric excitation of the structure. The lateral compliance of the beams allows for large-amplitude in-plane oscillations in the direction parallel to the electrode while high axial stiffness prevents undesirable instabilities. The lumped model of the device, considered as an assembly of geometrically nonlinear massless flexures and a rigid massive link and built using the Rayleigh–Ritz method, predicted the feasibility of the excitation approach. The fabricated devices were operated in ambient air conditions by a combination of a steady (dc) and time-dependent (ac) components of voltage and the large-amplitude responses, up to 75 µm, in the vicinity of the principal parametric and primary resonances were registered by means of video acquisition and image processing. The shapes of the experimental resonant curves were consistent with those predicted by the model. The location and size of the instability regions on the frequency–voltage plane (parametric tongues) were quantitatively in good agrement with the model results. Theoretical and experimental results indicate that the suggested approach can be efficiently used for excitation of various types of microdevices where stable resonant operation combined with robustness and large vibrational amplitudes are desirable
Experimental control of Stewart's theoretical model of large amplitude moving striations
International Nuclear Information System (INIS)
Berge, G. van den; Vanmarcke, M.
1977-01-01
The longitudinal variation of the electron concentration in large amplitude moving striations, computed theoretically by Stewart, has been tested experimentally. The measurements are carried out by means of a sampling probe technique in the glow discharge of neon (I = 105 mA, 2R = 5.6 cm, p 0 = 0.79 torr) and of argon (I = 75 mA, 2R = 5.7 cm, p 0 = 0.46 torr). It is found that the measured dependence of the concentration is not consistent with the theory. (Auth.)
Large amplitude dynamics of micro-/nanomechanical resonators actuated with electrostatic pulses
International Nuclear Information System (INIS)
Juillard, J.; Bonnoit, A.; Avignon, E.; Hentz, S.; Colinet, E.
2010-01-01
In the field of resonant nano-electro-mechanical system (NEMS) design, it is a common misconception that large-amplitude motion, and thus large signal-to-noise ratio, can only be achieved at the risk of oscillator instability. In the present paper, we show that very simple closed-loop control schemes can be used to achieve stable large-amplitude motion of a resonant structure even when jump resonance (caused by electrostatic softening or Duffing hardening) is present in its frequency response. We focus on the case of a resonant accelerometer sensing cell, consisting of a nonlinear clamped-clamped beam with electrostatic actuation and detection, maintained in an oscillation state with pulses of electrostatic force that are delivered whenever the detected signal (the position of the beam) crosses zero. We show that the proposed feedback scheme ensures the stability of the motion of the beam much beyond the critical Duffing amplitude and that, if the parameters of the beam are correctly chosen, one can achieve almost full-gap travel range without incurring electrostatic pull-in. These results are illustrated and validated with transient simulations of the nonlinear closed-loop system.
Characterization of a subset of large amplitude noise events in VIRGO science run 1 (VSR1)
International Nuclear Information System (INIS)
Del Prete, M
2009-01-01
We report about a characterization study of a subset of large amplitude noise events present in the main data channel of the VIRGO detector. The main motivation of this study is the identification of auxiliary channels which can be used to define veto procedures. We characterized large amplitude events both in the time and in the frequency domain. We found evidence of coincidences among these and disturbances detected by magnetometer's sensors or inside the main power supply. In some cases the disturbances were produced by events in the VIRGO environment such as lightnings, main power supply glitches and airplane traffic. We have found two auxiliary channels that can be used to veto events generated by main power supply glitches or lightnings. A procedure to clean the main channel based on them has been successfully tested. We have also identified two auxiliary channels which are useful for the identification of events generated by airplane traffic. These can be used to implement a vetoing procedure both in the time and in the frequency domain.
Characterization of a subset of large amplitude noise events in VIRGO science run 1 (VSR1)
Energy Technology Data Exchange (ETDEWEB)
Del Prete, M [Universita di Pisa, Lungarno Pacinotti, 43, 56126 Pisa Instituto Nazionale di Fisica Nucleare sez. di Pisa, ED C polo Fibonacci, Via F Buonarroti 2, 56127, Pisa (Italy)
2009-10-21
We report about a characterization study of a subset of large amplitude noise events present in the main data channel of the VIRGO detector. The main motivation of this study is the identification of auxiliary channels which can be used to define veto procedures. We characterized large amplitude events both in the time and in the frequency domain. We found evidence of coincidences among these and disturbances detected by magnetometer's sensors or inside the main power supply. In some cases the disturbances were produced by events in the VIRGO environment such as lightnings, main power supply glitches and airplane traffic. We have found two auxiliary channels that can be used to veto events generated by main power supply glitches or lightnings. A procedure to clean the main channel based on them has been successfully tested. We have also identified two auxiliary channels which are useful for the identification of events generated by airplane traffic. These can be used to implement a vetoing procedure both in the time and in the frequency domain.
Nonlinear model and attitude dynamics of flexible spacecraft with large amplitude slosh
Deng, Mingle; Yue, Baozeng
2017-04-01
This paper is focused on the nonlinearly modelling and attitude dynamics of spacecraft coupled with large amplitude liquid sloshing dynamics and flexible appendage vibration. The large amplitude fuel slosh dynamics is included by using an improved moving pulsating ball model. The moving pulsating ball model is an equivalent mechanical model that is capable of imitating the whole liquid reorientation process. A modification is introduced in the capillary force computation in order to more precisely estimate the settling location of liquid in microgravity or zero-g environment. The flexible appendage is modelled as a three dimensional Bernoulli-Euler beam and the assumed modal method is employed to derive the nonlinear mechanical model for the overall coupled system of liquid filled spacecraft with appendage. The attitude maneuver is implemented by the momentum transfer technique, and a feedback controller is designed. The simulation results show that the liquid sloshing can always result in nutation behavior, but the effect of flexible deformation of appendage depends on the amplitude and direction of attitude maneuver performed by spacecraft. Moreover, it is found that the liquid sloshing and the vibration of flexible appendage are coupled with each other, and the coupling becomes more significant with more rapid motion of spacecraft. This study reveals that the appendage's flexibility has influence on the liquid's location and settling time in microgravity. The presented nonlinear system model can provide an important reference for the overall design of the modern spacecraft composed of rigid platform, liquid filled tank and flexible appendage.
Padé approximant for normal stress differences in large-amplitude oscillatory shear flow
Poungthong, P.; Saengow, C.; Giacomin, A. J.; Kolitawong, C.; Merger, D.; Wilhelm, M.
2018-04-01
Analytical solutions for the normal stress differences in large-amplitude oscillatory shear flow (LAOS), for continuum or molecular models, normally take the inexact form of the first few terms of a series expansion in the shear rate amplitude. Here, we improve the accuracy of these truncated expansions by replacing them with rational functions called Padé approximants. The recent advent of exact solutions in LAOS presents an opportunity to identify accurate and useful Padé approximants. For this identification, we replace the truncated expansion for the corotational Jeffreys fluid with its Padé approximants for the normal stress differences. We uncover the most accurate and useful approximant, the [3,4] approximant, and then test its accuracy against the exact solution [C. Saengow and A. J. Giacomin, "Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow," Phys. Fluids 29, 121601 (2017)]. We use Ewoldt grids to show the stunning accuracy of our [3,4] approximant in LAOS. We quantify this accuracy with an objective function and then map it onto the Pipkin space. Our two applications illustrate how to use our new approximant reliably. For this, we use the Spriggs relations to generalize our best approximant to multimode, and then, we compare with measurements on molten high-density polyethylene and on dissolved polyisobutylene in isobutylene oligomer.
Derkevorkian, Armen; Peterson, Lee; Kolaini, Ali R.; Hendricks, Terry J.; Nesmith, Bill J.
2016-01-01
An analytic approach is demonstrated to reveal potential pyroshock -driven dynamic effects causing power losses in the Thermo -Electric (TE) module bars of the Mars Science Laboratory (MSL) Multi -Mission Radioisotope Thermoelectric Generator (MMRTG). This study utilizes high- fidelity finite element analysis with SIERRA/PRESTO codes to estimate wave propagation effects due to large -amplitude suddenly -applied pyro shock loads in the MMRTG. A high fidelity model of the TE module bar was created with approximately 30 million degrees -of-freedom (DOF). First, a quasi -static preload was applied on top of the TE module bar, then transient tri- axial acceleration inputs were simultaneously applied on the preloaded module. The applied input acceleration signals were measured during MMRTG shock qualification tests performed at the Jet Propulsion Laboratory. An explicit finite element solver in the SIERRA/PRESTO computational environment, along with a 3000 processor parallel super -computing framework at NASA -AMES, was used for the simulation. The simulation results were investigated both qualitatively and quantitatively. The predicted shock wave propagation results provide detailed structural responses throughout the TE module bar, and key insights into the dynamic response (i.e., loads, displacements, accelerations) of critical internal spring/piston compression systems, TE materials, and internal component interfaces in the MMRTG TE module bar. They also provide confidence on the viability of this high -fidelity modeling scheme to accurately predict shock wave propagation patterns within complex structures. This analytic approach is envisioned for modeling shock sensitive hardware susceptible to intense shock environments positioned near shock separation devices in modern space vehicles and systems.
Large-amplitude superexchange of high-spin fermions in optical lattices
International Nuclear Information System (INIS)
Jürgensen, Ole; Heinze, Jannes; Lühmann, Dirk-Sören
2013-01-01
We show that fermionic high-spin systems with spin-changing collisions allow one to monitor superexchange processes in optical superlattices with large amplitudes and strong spin fluctuations. By investigating the non-equilibrium dynamics, we find a superexchange dominated regime at weak interactions. The underlying mechanism is driven by an emerging tunneling-energy gap in shallow few-well potentials. As a consequence, the interaction-energy gap that is expected to occur only for strong interactions in deep lattices is re-established. By tuning the optical lattice depth, a crossover between two regimes with negligible particle number fluctuations is found: firstly, the common regime with vanishing spin-fluctuations in deep lattices and, secondly, a novel regime with strong spin fluctuations in shallow lattices. We discuss the possible experimental realization with ultracold 40 K atoms and observable quantities in double wells and two-dimensional plaquettes. (paper)
Oscillations of non-isothermal N/S boundary with a high frequency and large amplitude
International Nuclear Information System (INIS)
Bezuglyj, A.I.; Shklovskij, V.A.
2016-01-01
Within the framework of the phenomenological approach based on the heat balance equation and the dependence of the critical temperature of the superconductor on the current value theoretically investigated the impact of high-frequency current of high amplitude and arbitrary shape on the non-isothermal balance of the oscillating N/S interface in a long superconductor. We introduce a self-consistent average temperature field of rapidly oscillating non-isothermal N/S boundary (heat kink), which allows to go beyond the well-known concept of mean-square heating and consider the impact of current waveform. With regard to experiments on the effects of microwave high-power radiation on the current-voltage characteristics (CVC) of superconducting films, we give the classification of the families of the CVC for inhomogeneous superconductors which carry a current containing a high frequency component of large amplitude. Several characteristics have hysteresis of thermal nature.
DEFF Research Database (Denmark)
Andersen, Jonas; Heimdal, J.; Larsen, René Wugt
2015-01-01
⋯HO hydrogen bond acceptor in the two most stable conformations. In the most stable conformation, the water subunit forces the ethanol molecule into its less stable gauche configuration upon dimerization owing to a cooperative secondary weak O⋯HC hydrogen bondinteraction evidenced by a significantly blue......-shift of the low-frequency in-plane donor OH librational band origin. The strong correlation between the low-frequency in-plane donor OH librational motion and the secondary intermolecular O⋯HC hydrogen bond is demonstrated by electronic structure calculations. The experimental findings are further supported...... by CCSD(T)-F12/aug-cc-pVQZ calculations of the conformationalenergy differences together with second-order vibrational perturbation theory calculations of the large-amplitude donor OH librational band origins....
Dephasing due to Nuclear Spins in Large-Amplitude Electric Dipole Spin Resonance.
Chesi, Stefano; Yang, Li-Ping; Loss, Daniel
2016-02-12
We analyze effects of the hyperfine interaction on electric dipole spin resonance when the amplitude of the quantum-dot motion becomes comparable or larger than the quantum dot's size. Away from the well-known small-drive regime, the important role played by transverse nuclear fluctuations leads to a Gaussian decay with characteristic dependence on drive strength and detuning. A characterization of spin-flip gate fidelity, in the presence of such additional drive-dependent dephasing, shows that vanishingly small errors can still be achieved at sufficiently large amplitudes. Based on our theory, we analyze recent electric dipole spin resonance experiments relying on spin-orbit interactions or the slanting field of a micromagnet. We find that such experiments are already in a regime with significant effects of transverse nuclear fluctuations and the form of decay of the Rabi oscillations can be reproduced well by our theory.
Modelling of Wave Attenuation Induced by Multi-Purpose Floating Structures
DEFF Research Database (Denmark)
Stratigaki, Vasiliki; Troch, Peter; Stallard, Tim
2014-01-01
, polychromatic, long- and short-crested irregular waves), WEC response and modification of the wave field have been measured to provide data for the understanding of WEC farm interactions and for the evaluation of farm interaction numerical models. A first extensive wave farm database is established...
Multi-point observations of large-amplitude electric fields during substorms obtained by THEMIS
Ogasawara, K.; Kasaba, Y.; Nishimura, Y.; Hori, T.; Takada, T.; Miyashita, Y.; Angelopoulos, V.; Bonnell, J. W.; McFadden, J. P.
2009-12-01
Large-amplitude electric fields over 100 mV/m have been observed around the equatorial magnetosphere. These electric fields may contribute to energy transport and particle acceleration in the magnetosphere [e.g., Wygant et al., 2000, 2002], and seem to be related to fast plasma flows with a size of a few Re [Nakamura et al., 2001]. In order to understand their macroscopic characteristics and the effects to magnetic activities, it is important to observe both fields and particles simultaneously at multiple locations within several Re. Five THEMIS probes can frequently provide such chances. In this paper, we show the several events with large-amplitude electric fields during substorms obtained by THEMIS. One of the events is found in 05:50-06:00 UT on 11 March 2008, when TH-D (Xsm=-10.7 Re, Ysm=4.8 Re) and TH-E (Xsm=-10.3 Re, Ysm=5.6 Re) observed intense electric fields. At 05:54 UT, THEMIS GBO-s clearly showed the auroral onset signature. The great intensification was near the SNKQ station, and this structure moved westward with the speed of ~6 km/s. It corresponds to ~200 km/s, as mapped to the TH-D/E location. The footprints of TH-A (Xsm=-6.8 Re, Ysm=-0.4 Re), D, and E were close to the site of the aurora. The location of TH-D was beside that of TH-E, and TH-A was located earthward and eastward from the former two. The enhanced electric fields observed by TH-D and E were associated with magnetic dipolarization and earthward high-speed plasma flow. They were also associated with the depletion of electron density estimated by the spacecraft potential. These features are consistent with the model of plasma bubbles [e.g., Pontius and Wolf, 1990]. The Y components of plasma flows were 200-300 km/s, roughly consistent with the westward auroral motion as mapped to the equatorial magnetosphere. Also, we found that Poynting flux of low frequency was efficient to illuminate the auroral emissions. This fact suggests that electromagnetic energy is transported to the
The application of large amplitude oscillatory stress in a study of fully formed fibrin clots
Lamer, T. F.; Thomas, B. R.; Curtis, D. J.; Badiei, N.; Williams, P. R.; Hawkins, K.
2017-12-01
The suitability of controlled stress large amplitude oscillatory shear (LAOStress) for the characterisation of the nonlinear viscoelastic properties of fully formed fibrin clots is investigated. Capturing the rich nonlinear viscoelastic behaviour of the fibrin network is important for understanding the structural behaviour of clots formed in blood vessels which are exposed to a wide range of shear stresses. We report, for the first time, that artefacts due to ringing exist in both the sample stress and strain waveforms of a LAOStress measurement which will lead to errors in the calculation of nonlinear viscoelastic properties. The process of smoothing the waveforms eliminates these artefacts whilst retaining essential rheological information. Furthermore, we demonstrate the potential of LAOStress for characterising the nonlinear viscoelastic properties of fibrin clots in response to incremental increases of applied stress up to the point of fracture. Alternating LAOStress and small amplitude oscillatory shear measurements provide detailed information of reversible and irreversible structural changes of the fibrin clot as a consequence of elevated levels of stress. We relate these findings to previous studies involving large scale deformations of fibrin clots. The LAOStress technique may provide useful information to help understand why some blood clots formed in vessels are stable (such as in deep vein thrombosis) and others break off (leading to a life threatening pulmonary embolism).
An analysis of plasma ion toroidal rotation during large amplitude MHD activity in JET
International Nuclear Information System (INIS)
Snipes, J.A.; Esch, H.P.L. de; Lazzaro, E.; Stork, D.; Hellermann, M. von; Galvao, R.; Hender, T.C.; Zasche, D.
1989-01-01
A detailed study of plasma ion toroidal rotation in JET during large amplitude MHD activity has revealed a strong viscous force that couples plasma ions to MHD modes. Depending on the MHD modes present, this force can couple across all of the plasma cross section, across only the central region, roughly within the q=1 surface, or across only the outer region outside the q=1.5 surface. The force acts to flatten the ion toroidal rotation frequency profile, measured by the JET active charge exchange spectroscopy diagnostic, across the coupled region of plasma. The frequency of rotation in this region agrees with the MHD oscillation frequency measured by magnetic pick-up coils at the wall. The strength of the force between the ions and modes becomes evident during high power NBI when the mode locks and drags the ion toroidal rotation frequency to zero, within the errors of the measurements. The present theories of plasma rotation either ignore MHD effects entirely, consider only moderate n toroidal field ripple, or low n ripple effects. (author) 7 refs., 3 figs
Zhang, Sipei; Nakatani, Alan; Griffith, William
Large Amplitude Oscillatory Shear (LAOS) testing has recently taken on renewed interest in the rheological community. It is a very useful tool to probe the viscoelastic response of materials in the non-linear regime. Much of the discussion on polymers in the LAOS field has focused on melts in or near the terminal flow regime. Here we present a LAOS study conducted on a commercial rheometer for acrylic emulsion-based pressure sensitive adhesive (PSA) films in the plateau regime. The films behaved qualitatively similar over an oscillation frequency range of 0.5-5 rad/s. From Fourier transform analysis, the fifth or even the seventh order harmonic could be observed at large applied strains. From stress decomposition analysis or Lissajous curves, inter-cycle elastic softening, or type I behavior, was observed for all films as the strain increases, while intra-cycle strain hardening occurred at strains in the LAOS regime. Overall, as acid content increases, it was found that the trend in elasticity under large applied strains agreed very well with the trend in cohesive strength of the films.
Romero, Alejandra D.; Córsico, A. H.; Althaus, L. G.; Pelisoli, I.; Kepler, S. O.
2018-06-01
The blue large-amplitude pulsators (BLAPs) constitute a new class of pulsating stars. They are hot stars with effective temperatures of ˜30 000 K and surface gravities of log g ˜ 4.9, that pulsate with periods in the range 20-40 min. Until now, their origin and evolutionary state, as well as the nature of their pulsations, were not been unveiled. In this paper, we propose that the BLAPs are the hot counterpart of the already known pulsating pre-extremely low mass (pre-ELM) white dwarf (WD) stars, that are He-core low-mass stars resulting from interacting binary evolution. Using fully evolutionary sequences, we show that the BLAPs are well represented by pre-ELM WD models with high effective temperature and stellar masses ˜0.34 M⊙. From the analysis of their pulsational properties, we find that the observed variabilities can be explained by high-order non-radial g-mode pulsations or, in the case of the shortest periods, also by low-order radial modes, including the fundamental radial mode. The theoretical modes with periods in the observed range are unstable due to the κ mechanism associated with the Z-bump in the opacity at log T ˜ 5.25.
Discovery of Fast, Large-amplitude Optical Variability of V648 Car (=SS73-17)
Angeloni, R.; Di Mille, F.; Ferreira Lopes, C. E.; Masetti, N.
2012-09-01
We report on the discovery of large-amplitude flickering from V648 Car (= SS73-17), a poorly studied object listed among the very few hard X-ray-emitting symbiotic stars. We performed millimagnitude precision optical photometry with the Swope Telescope at the Las Campanas Observatory, Chile, and found that V648 Car shows large U-band variability over timescales of minutes. To our knowledge, it exhibits some of the largest flickering of a symbiotic star ever reported. Our finding supports the hypothesis that symbiotic white dwarfs producing hard X-rays are predominantly powered by accretion, rather than quasi-steady nuclear burning, and have masses close to the Chandrasekhar limit. No significant periodicity is evident from the flickering light curve. The All Sky Automated Survey long-term V light curve suggests the presence of a tidally distorted giant accreting via Roche lobe overflow, and a binary period of ~520 days. On the basis of the outstanding physical properties of V648 Car as hinted at by its fast and long-term optical variability, as well as by its nature as a hard X-ray emitter, we therefore call for simultaneous follow-up observations in different bands, ideally combined with time-resolved optical spectroscopy.
DISCOVERY OF FAST, LARGE-AMPLITUDE OPTICAL VARIABILITY OF V648 Car (=SS73-17)
International Nuclear Information System (INIS)
Angeloni, R.; Di Mille, F.; Ferreira Lopes, C. E.; Masetti, N.
2012-01-01
We report on the discovery of large-amplitude flickering from V648 Car (= SS73-17), a poorly studied object listed among the very few hard X-ray-emitting symbiotic stars. We performed millimagnitude precision optical photometry with the Swope Telescope at the Las Campanas Observatory, Chile, and found that V648 Car shows large U-band variability over timescales of minutes. To our knowledge, it exhibits some of the largest flickering of a symbiotic star ever reported. Our finding supports the hypothesis that symbiotic white dwarfs producing hard X-rays are predominantly powered by accretion, rather than quasi-steady nuclear burning, and have masses close to the Chandrasekhar limit. No significant periodicity is evident from the flickering light curve. The All Sky Automated Survey long-term V light curve suggests the presence of a tidally distorted giant accreting via Roche lobe overflow, and a binary period of ∼520 days. On the basis of the outstanding physical properties of V648 Car as hinted at by its fast and long-term optical variability, as well as by its nature as a hard X-ray emitter, we therefore call for simultaneous follow-up observations in different bands, ideally combined with time-resolved optical spectroscopy.
Equations-of-motion approach to a quantum theory of large-amplitude collective motion
International Nuclear Information System (INIS)
Klein, A.
1984-01-01
The equations-of-motion approach to large-amplitude collective motion is implemented both for systems of coupled bosons, also studied in a previous paper, and for systems of coupled fermions. For the fermion case, the underlying formulation is that provided by the generalized Hartree-Fock approximation (or generalized density matrix method). To obtain results valid in the semi-classical limit, as in most previous work, we compute the Wigner transform of quantum matrices in the representation in which collective coordinates are diagonal and keep only the leading contributions. Higher-order contributions can be retained, however, and, in any case, there is no ambiguity of requantization. The semi-classical limit is seen to comprise the dynamics of time-dependent Hartree-Fock theory (TDHF) and a classical canonicity condition. By utilizing a well-known parametrization of the manifold of Slater determinants in terms of classical canonical variables, we are able to derive and understand the equations of the adiabatic limit in full parallelism with the boson case. As in the previous paper, we can thus show: (i) to zero and first order in the adiabatic limit the physics is contained in Villar's equations; (ii) to second order there is consistency and no new conditions. The structure of the solution space (discussed thoroughly in the previous paper) is summarized. A discussion of associated variational principles is given. A form of the theory equivalent to self-consistent cranking is described. A method of solution is illustrated by working out several elementary examples. The relationship to previsous work, especially that of Zelevinsky and Marumori and coworkers is discussed briefly. Three appendices deal respectively with the equations-of-motion method, with useful properties of Slater determinants, and with some technical details associated with the fermion equations of motion. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kim, Juntae; Helgeson, Matthew E., E-mail: helgeson@engineering.ucsb.edu [Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106 (United States); Merger, Dimitri; Wilhelm, Manfred [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany)
2014-09-01
We investigate yielding in a colloidal gel that forms a heterogeneous structure, consisting of a two-phase bicontinuous network of colloid-rich domains of fractal clusters and colloid-poor domains. Combining large amplitude oscillatory shear measurements with simultaneous small and ultra-small angle neutron scattering (rheo-SANS/USANS), we characterize both the nonlinear mechanical processes and strain amplitude-dependent microstructure underlying yielding. We observe a broad, three-stage yielding process that evolves over an order of magnitude in strain amplitude between the onset of nonlinearity and flow. Analyzing the intracycle response as a sequence of physical processes reveals a transition from elastic straining to elastoplastic thinning (which dominates in region I) and eventually yielding (which evolves through region II) and flow (which saturates in region III), and allows quantification of instantaneous nonlinear parameters associated with yielding. These measures exhibit significant strain rate amplitude dependence above a characteristic frequency, which we argue is governed by poroelastic effects. Correlating these results with time-averaged rheo-USANS measurements reveals that the material passes through a cascade of structural breakdown from large to progressively smaller length scales. In region I, compression of the fractal domains leads to the formation of large voids. In regions II and III, cluster-cluster correlations become increasingly homogeneous, suggesting breakage and eventually depercolation of intercluster bonds at the yield point. All significant structural changes occur on the micron-scale, suggesting that large-scale rearrangements of hundreds or thousands of particles, rather than the homogeneous rearrangement of particle-particle bonds, dominate the initial yielding of heterogeneous colloidal gels.
Inviscid evolution of large amplitude filaments in a uniform gravity field
Energy Technology Data Exchange (ETDEWEB)
Angus, J. R. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Krasheninnikov, S. I. [University of California, San Diego, La Jolla, California 92093 (United States); National Research Nuclear University “MEPhl” Kashirskoe sh., 31, 115563 Moscow (Russian Federation)
2014-11-15
The inviscid evolution of localized density stratifications under the influence of a uniform gravity field in a homogeneous, ambient background is studied. The fluid is assumed to be incompressible, and the stratification, or filament, is assumed to be initially isotropic and at rest. It is shown that the center of mass energy can be related to the center of mass position in a form analogous to that of a solid object in a gravity field g by introducing an effective gravity field g{sub eff}, which is less than g due to energy that goes into the background and into non-center of mass motion of the filament. During the early stages of the evolution, g{sub eff} is constant in time and can be determined from the solution of a 1D differential equation that depends on the initial, radially varying density profile of the filament. For small amplitude filaments such that ρ{sub 0} ≪ 1, where ρ{sub 0} is the relative amplitude of the filament to the background, the early stage g{sub eff} scales linearly with ρ{sub 0}, but as ρ{sub 0}→∞, g{sub eff}→g and is thus independent of ρ{sub 0}. Fully nonlinear simulations are performed for the evolution of Gaussian filaments, and it is found that the time t{sub max}, which is defined as the time for the center of mass velocity to reach its maximum value U{sub max}, occurs very soon after the constant acceleration phase and so U{sub max}≈g{sub eff}(t=0)t{sub max}. The simulation results show that U{sub max}∼1/t{sub max}∼√(ρ{sub 0}) for ρ{sub 0} ≪ 1, in agreement with theory and results from previous authors, but that U{sub max} and t{sub max} both scale approximately with √(ρ{sub 0}) for ρ{sub 0} ≫ 1. The fact that U{sub max} and t{sub max} have the same scaling with ρ{sub 0} for large amplitude filaments is in agreement with the theory presented in this paper.
DEFF Research Database (Denmark)
Andersen, Jonas; Heimdal, J.; Larsen, René Wugt
2015-01-01
is a superior hydrogen bond acceptor. The class of large-amplitude donor OH librational motion is shown to account for up to 5.1 kJ mol-1 of the destabilizing change of vibrational zero-point energy upon intermolecular OH...O hydrogen bond formation. The experimental findings are supported by complementary...
The permittivity of a plasma at cyclotron resonance in large amplitude e.m. fields
Schram, D.C.
1970-01-01
The permittivity of a collisionless plasma as a function of field parameters is measured in standing and in travelling waves. In both experiments the permittivity remains finite at cyclotron resonance; the resonance is broadened and shifted towards higher values of the magnetic field strength. The
Prompt muon-induced fission: A probe for nuclear friction in large-amplitude collective motion
International Nuclear Information System (INIS)
Oberacker, V.E.; Umar, A.S.; Wells, J.C.; Strayer, M.R.; Maruhn, J.A.; Reinhard, P.G.
1998-01-01
Excited muonic atoms in the actinide region may induce prompt fission by inverse internal conversion, i.e. the excitation energy of the muonic atom is transferred to the nucleus. The authors solve the time dependent Dirac equation for the muonic spinor wave function in the Coulomb field of the fissioning nucleus on a 3-dimensional lattice and demonstrate that the muon attachment probability to the light fission fragment is a measure of the nuclear energy dissipation between the outer fission barrier and the scission point
Jantzen, Carin; Schmidt, Gertraud M.; Wild, Christian; Roder, Cornelia; Khokiattiwong, Somkiat; Richter, Claudio
2013-01-01
Coral reefs are facing rapidly changing environments, but implications for reef ecosystem functioning and important services, such as productivity, are difficult to predict. Comparative investigations on coral reefs that are naturally exposed
Small and large amplitude movement of the unstable interface between two immiscible fluids
Energy Technology Data Exchange (ETDEWEB)
Aribert, J M; Thirriot, C
1970-01-01
The flow of immiscible fluids in a confined flow channel is accompanied by a deformation of the surface of separation when the stability conditions are not fulfilled. A simplified schematic for the problem is given, and the characteristic surface perturbation is calculated analytically and numerically. The perturbation is characterized by a wavelength, an amplitude, and the shape of the perturbation at a sufficient distance from the front. Two asymptotic cases are fully discussed: the creation of a wave in the surface, and the shape of a fully developed perturbation. Experimental results from 2 Hele-Shaw models are in satisfactory agreement with the theoretical predictions. Further studies will be concerned with variable rate flow, geometrically divergent flow, layered flow with variable viscosity between layers, and non-Newtonian flow.
International Nuclear Information System (INIS)
Umar, A.S.; Klein, A.
1986-01-01
A recent formulation of the theory of large amplitude collective motion in the adiabatic limit is applied to a generalized monopole shell model. Numerical calculations are carried out for the three-level model, approximately equivalent to a classical system with two degrees of freedom. Our results go somewhat beyond previous treatments of this system and provide substantiation for the validity of the method, in suitable parameter ranges, as a way of recognizing and decoupling the collective and the non-collective degrees of freedom. (orig.)
DEFF Research Database (Denmark)
Mihrin, Dmytro; Jakobsen, P. W.; Voute, A.
2018-01-01
experimental value for the vibrational zero-point energy of 2.50 ± 0.05 kJ mol−1 arising from the entire class of large-amplitude intermolecular modes. The spectroscopic findings are complemented by CCSD(T)-F12b/aug-cc-pV5Z (electronic energies) and CCSD(T)-F12b/aug-cc-pVQZ (force fields) electronic structure...... calculations, providing a (semi)-experimental value of 17.20 ± 0.20 kJ mol−1 for the dissociation energy D0 of this strictly linear weak intermolecular CH⋯N hydrogen bond....
Multi-directional random wave interaction with an array of cylinders
DEFF Research Database (Denmark)
Ji, Xinran; Liu, Shuxue; Bingham, Harry B.
2015-01-01
Based on the linear theory of wave interaction with an array of circular bottom-mounted vertical cylinders, systematic calculations are made to investigate the effects of the wave directionality on wave loads in short-crested seas. The multi-directional waves are specified using a discrete form...... of the Mitsuyasu-type spreading function. The time series of multi-directional wave loads, including both the wave run-up and wave force, can be simulated. The effect of wave directionality on the wave run-up and wave loading on the cylinders is investigated. For multi-directional waves, as the distribution...
A brute-force spectral approach for wave estimation using measured vessel motions
DEFF Research Database (Denmark)
Nielsen, Ulrik D.; Brodtkorb, Astrid H.; Sørensen, Asgeir J.
2018-01-01
, and the procedure is simple in its mathematical formulation. The actual formulation is extending another recent work by including vessel advance speed and short-crested seas. Due to its simplicity, the procedure is computationally efficient, providing wave spectrum estimates in the order of a few seconds......The article introduces a spectral procedure for sea state estimation based on measurements of motion responses of a ship in a short-crested seaway. The procedure relies fundamentally on the wave buoy analogy, but the wave spectrum estimate is obtained in a direct - brute-force - approach......, and the estimation procedure will therefore be appealing to applications related to realtime, onboard control and decision support systems for safe and efficient marine operations. The procedure's performance is evaluated by use of numerical simulation of motion measurements, and it is shown that accurate wave...
International Nuclear Information System (INIS)
Brodin, G.; Stenflo, L.
2017-01-01
Considering a class of solutions where the density perturbations are functions of time, but not of space, we derive a new exact large amplitude wave solution for a cold uniform electron plasma. This result illustrates that most simple analytical solutions can appear even if the density perturbations are large. - Highlights: • The influence of large amplitude electromagnetic waves on electrostatic oscillations is found. • A generalized Mathieu equation is derived. • Anharmonic wave profiles are computed numerically.
Energy Technology Data Exchange (ETDEWEB)
Brodin, G., E-mail: gert.brodin@physics.umu.se [Department of Physics, Umeå University, SE-901 87 Umeå (Sweden); Stenflo, L. [Department of Physics, Linköping University, SE-581 83 Linköping (Sweden)
2017-03-18
Considering a class of solutions where the density perturbations are functions of time, but not of space, we derive a new exact large amplitude wave solution for a cold uniform electron plasma. This result illustrates that most simple analytical solutions can appear even if the density perturbations are large. - Highlights: • The influence of large amplitude electromagnetic waves on electrostatic oscillations is found. • A generalized Mathieu equation is derived. • Anharmonic wave profiles are computed numerically.
Saengow, C.; Giacomin, A. J.
2017-12-01
The Oldroyd 8-constant framework for continuum constitutive theory contains a rich diversity of popular special cases for polymeric liquids. In this paper, we use part of our exact solution for shear stress to arrive at unique exact analytical solutions for the normal stress difference responses to large-amplitude oscillatory shear (LAOS) flow. The nonlinearity of the polymeric liquids, triggered by LAOS, causes these responses at even multiples of the test frequency. We call responses at a frequency higher than twice the test frequency higher harmonics. We find the new exact analytical solutions to be compact and intrinsically beautiful. These solutions reduce to those of our previous work on the special case of the corotational Maxwell fluid. Our solutions also agree with our new truncated Goddard integral expansion for the special case of the corotational Jeffreys fluid. The limiting behaviors of these exact solutions also yield new explicit expressions. Finally, we use our exact solutions to see how η∞ affects the normal stress differences in LAOS.
International Nuclear Information System (INIS)
Sakata, Fumihiko; Marumori, Toshio; Hashimoto, Yukio; Une, Tsutomu.
1983-05-01
The geometry of the self-consistent collective-coordinate (SCC) method formulated within the framework of the time-dependent Hartree-Fock (TDHF) theory is investigated by associating the variational parameters with a symplectic manifold (a TDHF manifold). With the use of a canonical-variables parametrization, it is shown that the TDHF equation is equivalent to the canonical equations of motion in classical mechanics in the TDHF manifold. This enables us to investigate geometrical structure of the SCC method in the language of the classical mechanics. The SCC method turns out to give a prescription how to dynamically extract a ''maximally-decoupled'' collective submanifold (hypersurface) out of the TDHF manifold, in such a way that a certain kind of trajectories corresponding to the large-amplitude collective motion under consideration can be reproduced on the hypersurface as precisely as possible. The stability of the hypersurface at each point on it is investigated, in order to see whether the hypersurface obtained by the SCC method is really an approximate integral surface in the TDHF manifold or not. (author)
International Nuclear Information System (INIS)
Min Kim, Jung; Kate Gurnon, A.; Wagner, Norman J.; Eberle, Aaron P. R.; Porcar, Lionel
2014-01-01
The microstructure-rheology relationship for a model, thermoreversible nanoparticle gel is investigated using a new technique of time-resolved neutron scattering under steady and time-resolved large amplitude oscillatory shear (LAOS) flows. A 21 vol. % gel is tested with varying strength of interparticle attraction. Shear-induced structural anisotropy is observed as butterfly scattering patterns and quantified through an alignment factor. Measurements in the plane of flow show significant, local anisotropy develops with alignment along the compressional axis of flow, providing new insights into how gels flow. The microstructure-rheology relationship is analyzed through a new type of structure-Lissajous plot that shows how the anisotropic microstructure is responsible for the observed LAOS response, which is beyond a response expected for a purely viscous gel with constant structure. The LAOS shear viscosities are observed to follow the “Delaware-Rutgers” rule. Rheological and microstructural data are successfully compared across a broad range of conditions by scaling the shear rate by the strength of attraction, providing a method to compare behavior between steady shear and LAOS experiments. However, important differences remain between the microstructures measured at comparatively high frequency in LAOS experiments and comparable steady shear experiments that illustrate the importance of measuring the microstructure to properly interpret the nonlinear, dynamic rheological response
Energy Technology Data Exchange (ETDEWEB)
Min Kim, Jung; Kate Gurnon, A.; Wagner, Norman J., E-mail: wagnernj@udel.edu [Department of Chemical and Biomolecular Engineering and Center for Neutron Science, University of Delaware, Newark, Delaware 19716 (United States); Eberle, Aaron P. R. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Porcar, Lionel [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 and Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France)
2014-09-01
The microstructure-rheology relationship for a model, thermoreversible nanoparticle gel is investigated using a new technique of time-resolved neutron scattering under steady and time-resolved large amplitude oscillatory shear (LAOS) flows. A 21 vol. % gel is tested with varying strength of interparticle attraction. Shear-induced structural anisotropy is observed as butterfly scattering patterns and quantified through an alignment factor. Measurements in the plane of flow show significant, local anisotropy develops with alignment along the compressional axis of flow, providing new insights into how gels flow. The microstructure-rheology relationship is analyzed through a new type of structure-Lissajous plot that shows how the anisotropic microstructure is responsible for the observed LAOS response, which is beyond a response expected for a purely viscous gel with constant structure. The LAOS shear viscosities are observed to follow the “Delaware-Rutgers” rule. Rheological and microstructural data are successfully compared across a broad range of conditions by scaling the shear rate by the strength of attraction, providing a method to compare behavior between steady shear and LAOS experiments. However, important differences remain between the microstructures measured at comparatively high frequency in LAOS experiments and comparable steady shear experiments that illustrate the importance of measuring the microstructure to properly interpret the nonlinear, dynamic rheological response.
Energy Technology Data Exchange (ETDEWEB)
Liu Lifang, E-mail: liu_lifang1106@yahoo.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Lu Daogang, E-mail: ludaogang@ncepu.edu.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Li Yang, E-mail: qinxiuyi@sina.com [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Zhang Pan, E-mail: zhangpan@ncepu.edu.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Niu Fenglei, E-mail: niufenglei@ncepu.edu.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China)
2011-08-15
Highlights: > FIV of a foursquare fix-supported flexible plate exposed to axial flow was studied. > Special designed test section and advanced measuring equipments were adopted. > The narrow-band vibration phenomenon with large amplitude was observed. > Line of plate's vibration amplitude and flow rate was investigated. > The phenomenon and the measurement error were analyzed. - Abstract: An experiment was performed to analyze the flow-induced vibration behavior of a foursquare fix-supported flexible plate exposed to the axial flow within a rigid narrow channel. The large-amplitude and narrow-band vibration phenomenon was observed in the experiment when the flow velocity varied with the range of 0-5 m/s. The occurring condition and some characteristics of the large-amplitude and narrow-band vibrations were investigated.
Yang, Liping; Zhang, Lei; He, Jiansen; Tu, Chuanyi; Li, Shengtai; Wang, Xin; Wang, Linghua
2018-03-01
Multi-order structure functions in the solar wind are reported to display a monofractal scaling when sampled parallel to the local magnetic field and a multifractal scaling when measured perpendicularly. Whether and to what extent will the scaling anisotropy be weakened by the enhancement of turbulence amplitude relative to the background magnetic strength? In this study, based on two runs of the magnetohydrodynamic (MHD) turbulence simulation with different relative levels of turbulence amplitude, we investigate and compare the scaling of multi-order magnetic structure functions and magnetic probability distribution functions (PDFs) as well as their dependence on the direction of the local field. The numerical results show that for the case of large-amplitude MHD turbulence, the multi-order structure functions display a multifractal scaling at all angles to the local magnetic field, with PDFs deviating significantly from the Gaussian distribution and a flatness larger than 3 at all angles. In contrast, for the case of small-amplitude MHD turbulence, the multi-order structure functions and PDFs have different features in the quasi-parallel and quasi-perpendicular directions: a monofractal scaling and Gaussian-like distribution in the former, and a conversion of a monofractal scaling and Gaussian-like distribution into a multifractal scaling and non-Gaussian tail distribution in the latter. These results hint that when intermittencies are abundant and intense, the multifractal scaling in the structure functions can appear even if it is in the quasi-parallel direction; otherwise, the monofractal scaling in the structure functions remains even if it is in the quasi-perpendicular direction.
Kleiner, Isabelle; Hougen, Jon T.
2017-06-01
In this talk we report on our progress in trying to make the hybrid Hamiltonian competitive with the pure-tunneling Hamiltonian for treating large-amplitude motions in methylamine. A treatment using the pure-tunneling model has the advantages of: (i) requiring relatively little computer time, (ii) working with relatively uncorrelated fitting parameters, and (iii) yielding in the vast majority of cases fits to experimental measurement accuracy. These advantages are all illustrated in the work published this past year on a gigantic v_{t} = 1 data set for the torsional fundamental band in methyl amine. A treatment using the hybrid model has the advantages of: (i) being able to carry out a global fit involving both v_{t} = 0 and v_{t} = 1 energy levels and (ii) working with fitting parameters that have a clearer physical interpretation. Unfortunately, a treatment using the hybrid model has the great disadvantage of requiring a highly correlated set of fitting parameters to achieve reasonable fitting accuracy, which complicates the search for a good set of molecular fitting parameters and a fit to experimental accuracy. At the time of writing this abstract, we have been able to carry out a fit with J up to 15 that includes all available infrared data in the v_{t} = 1-0 torsional fundamental band, all ground-state microwave data with K up to 10 and J up to 15, and about a hundred microwave lines within the v_{t} = 1 torsional state, achieving weighted root-mean-square (rms) deviations of about 1.4, 2.8, and 4.2 for these three categories of data. We will give an update of this situation at the meeting. I. Gulaczyk, M. Kreglewski, V.-M. Horneman, J. Mol. Spectrosc., in Press (2017).
Energy Technology Data Exchange (ETDEWEB)
Liu Lifang, E-mail: liu_lifang1106@yahoo.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); State Nuclear Power Software Development Center, Building 1, Compound No. 29, North Third Ring Road, Xicheng District, Beijing 100029 (China); Lu Daogang [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China)
2012-09-15
Highlights: Black-Right-Pointing-Pointer The large amplitude and narrow-band vibration experiment was performed. Black-Right-Pointing-Pointer The added mass theory was used to analyze the test plates' natural vibration characteristics in static water. Black-Right-Pointing-Pointer The occurring condition of the large amplitude and narrow band vibration was investigated. Black-Right-Pointing-Pointer The large amplitude and narrow-band vibration mechanism was investigated. - Abstract: Further experiments and theoretical analysis were performed to investigate mechanism of the large-amplitude and narrow-band vibration behavior of a flexible flat plate in a rectangular channel. Test plates with different thicknesses were adopted in the FIV experiments. The natural vibration characteristics of the flexible flat plates in air were tested, and the added mass theory of column was used to analyze the flexible flat plates' natural vibration characteristics in static water. It was found that the natural vibration frequency of a certain test plate in static water is approximately within the main vibration frequency band of the plate when it was induced to vibrate with the large-amplitude and narrow-band in the rectangular channel. It can be concluded that the harmonic between the flowing fluid and the vibrating plate is one of the key reasons to induce the large-amplitude and narrow-band vibration phenomenon. The occurring condition of the phenomenon and some important narrow-band vibration characteristics of a foursquare fix-supported flexible flat plate were investigated.
Computation of nonlinear water waves with a high-order Boussinesq model
DEFF Research Database (Denmark)
Fuhrman, David R.; Madsen, Per A.; Bingham, Harry
2005-01-01
Computational highlights from a recently developed high-order Boussinesq model are shown. The model is capable of treating fully nonlinear waves (up to the breaking point) out to dimensionless depths of (wavenumber times depth) kh \\approx 25. Cases considered include the study of short......-crested waves in shallow/deep water, resulting in hexagonal/rectangular surface patterns; crescent waves, resulting from unstable perturbations of plane progressive waves; and highly-nonlinear wave-structure interactions. The emphasis is on physically demanding problems, and in eachcase qualitative and (when...
International Nuclear Information System (INIS)
Roberts, D.H.; Klobuchar, J.A.; Fougere, P.F.; Hendrickson, D.H.
1982-01-01
A remarkable long-lived, large-scale traveling ionospheric disturbance (TID), excited by the May 18, 1980, explosion of Mount St. Helens, has been detected in total electron content monitor data. Oscillatory perturbations in the electron column density of the ionosphere with amplitudes about 10% of the nominal daytime content were detected at three stations whose ionospheric penetration points lie between 1610 and 1890 km from Mount St. Helens. Smaller perturbations were detected at five of six additional stations between 3760 and 4950 km away. The period of the TID increased linearly with great-circle distance from Mount St. Helens, ranging from roughly-equal37 min at the nearest station to roughly-equal116 min at the most distant one. The TID persisted for at least four cycles at the three close stations and three cycles at the more distant stations and was qualitatively similar to TID's produced by the low-altitude thermonuclear detonations of the 1960's. The disturbance front of this TID accelerated from an average velocity of roughly-equal350 m/s between Mt. St. Helens and the close stations to an average velocity of roughly-equal550 m/s to the more distant ones.A model based on the free wave response of an isothermal atmosphere to a point disturbance provides a good fit to the data at the three closest stations, but no such model can account for all of the data. Modeling of the long-distance behavior of the Mount St. Helens TID in terms of upper-atmosphere guided gravity waves is complicated by the requirement of exciting them by a ground-level explosion. There was no evidence for a strong supersonic shock wave in the ionosphere. As a result, the Mount St. Helens disturbance may prove to be a cleaner test of detailed theories of the point excitation and propagation of gravity waves in a realistic atmosphere than were TID's excited by thermonuclear weapons
DEFF Research Database (Denmark)
Sedaghatizadeh, N.; Atefi, G.; Fardad, A. A.
2011-01-01
In this investigation, semiempirical and numerical studies of blood flow in a viscoelastic artery were performed using the Cosserat continuum model. The large-amplitude oscillatory shear deformation model was used to quantify the nonlinear viscoelastic response of blood flow. The finite differenc...... method was used to solve the governing equations, and the particle swarm optimization algorithm was utilized to identify the non-Newtonian coefficients (kυ and γυ). The numerical results agreed well with previous experimental results....
International Nuclear Information System (INIS)
Hashimoto, Y.; Marumori, T.; Sakata, F.
1987-01-01
With the purpose of clarifying characteristic difference of the optimum collective submanifolds in nonresonant and resonant cases, we develop an improved method of solving the basic equations of the self-consistent collective-coordinate (SCC) method for large-amplitude collective motion. It is shown that, in the resonant cases, there inevitably arise essential coupling terms which break the maximal-decoupling property of the collective motion, and we have to extend the optimum collective submanifold so as to properly treat the degrees of freedom which bring about the resonances
Estimation of Wave Disturbance in Harbours
DEFF Research Database (Denmark)
Helm-Petersen, Jacob
. Information on how the sponge layers perform with respect to reflection of short-crested waves are presented mainly in terms of overall reflection coefficients and main directions as functions of incident main direction relative to the structure. The influence of a irregular structure front has also been......The motivation for the present study has been to improve the reliability in using numerical wave propagation models as a tool for estimating wave disturbance in harbours. Attention has been directed towards the importance of the modelling of reflection in the applied mild-slope model. Methods have...... been presented for the analysis of reflected wave fields in 2D and 3D. The Bayesian Directional Wave Spectrum Estimation Method has been applied throughout the study. Reflection characteristics have been investigated by use of physical models for three types of coastal structures with vertical fronts...
Walén test and de Hoffmann-Teller frame of interplanetary large-amplitude Alfvén waves
International Nuclear Information System (INIS)
Chao, J. K.; Hsieh, Wen-Chieh; Lee, L. C.; Yang, L.
2014-01-01
In this study, three methods of analysis are compared to test the Walén relation. Method 1 requires a good de Hoffmann-Teller (HT) frame. Method 2 uses three components separately to find the frame that is slightly modified from Method 1. This method is intended to improve the accuracy of the HT frame and able to demonstrate the anisotropic property of the fluctuations. The better the relation is, the closer the slope of a regression fitting the data of plasma versus Alfvén velocities is to 1. However, this criterion is based on an average HT frame, and the fitted slope does not always work for the Walén test because the HT frame can change so fast in the high-speed streams. We propose Method 3 to check the Walén relation using a sequence of data generated by taking the difference of two consecutive values of plasma and Alfvén velocities, respectively. The difference data are independent of the HT frame. We suggest that the ratio of the variances between plasma and Alfvén velocities is a better parameter to qualify the Walén relation. Four cases in two solar wind streams are studied using these three methods. Our results show that when the solar wind HT frame remains stable, all three methods can predict Alfvénic fluctuations well, but Method 3 can better predict the Walén relation when solar wind contains structures with several small streams. A simulated case also demonstrates that Method 3 is better and more robust than Methods 1 and 2. These results are important for a better understanding of Alfvénic fluctuations and turbulence in the solar wind.
Malaeke, Hasan; Moeenfard, Hamid
2016-03-01
The objective of this paper is to study large amplitude flexural-extensional free vibration of non-uniform cantilever beams carrying a both transversely and axially eccentric tip mass. The effects of variable axial force is also taken into account. Hamilton's principle is utilized to obtain the partial differential equations governing the nonlinear vibration of the system as well as the corresponding boundary conditions. A numerical finite difference scheme is proposed to find the natural frequencies and mode shapes of the system which is validated specifically for a beam with linearly varying cross section. Using a single mode approximation in conjunction with the Lagrange method, the governing equations are reduced to a set of two nonlinear ordinary differential equations in terms of end displacement components of the beam which are coupled due to the presence of the transverse eccentricity. These temporal coupled equations are then solved analytically using the multiple time scales perturbation technique. The obtained analytical results are compared with the numerical ones and excellent agreement is observed. The qualitative and quantitative knowledge resulting from this research is expected to enable the study of the effects of eccentric tip mass and non-uniformity on the large amplitude flexural-extensional vibration of beams for improved dynamic performance.
Evaluation of Hydraulic Response of the Wave Dragon
DEFF Research Database (Denmark)
Frigaard, Peter; Kofoed, Jens Peter
The present study investigates the hydraulic response of the wave energy converter Wave Dragon. This is done by peforming model tests in a wave tank in the Hydraulics & Coastal Engineering Laboratory at Aalborg University. In the model tests a floating scale model (length scale 1:50) of the Wave...... Dragon is subjected to irregular, long crested irregular and short crested sea conditions corresponding to typical situations under which the Wave Dragon will produce power. Furthermore two situations corresponding to extreme storm conditions are tested. The objective of the study is to determine...... the wave induced forces in the moorings and in the junction between the reflectors and the reservoir part, and motions of the Wave Dragon situated in different sea conditions....
Bursts of electron waves modulated by oblique ion waves
International Nuclear Information System (INIS)
Boswell, R.W.
1984-01-01
Experimental evidence is presented which shows small packets of electron plasma waves modulated by large amplitude obliquely propagating non-linear ion plasma waves. Very often the whole system is modulated by an oscillation near the ion gyro frequency or its harmonics. The ion waves seem to be similar to those measured in the current carrying auroral plasma. These results suggest that the generation of ion and electron waves in the auroral plasma may be correlated
Directory of Open Access Journals (Sweden)
Remo Cossu
Full Text Available Observations of the interactions of large amplitude internal seiches with the sloping boundary of Lake Simcoe, Canada show a pronounced asymmetry between up- and downwelling. Data were obtained during a 42-day period in late summer with an ADCP and an array of four thermistor chains located in a 5 km line at the depths where the thermocline intersects the shallow slope of the lakebed. The thermocline is located at depths of 12-14 m during the strongly stratified period of late summer. During periods of strong westerly winds the thermocline is deflected as much as 8 m vertically and interacts directly with the lakebed at depth between 14-18 m. When the thermocline was rising at the boundary, the stratification resembles a turbulent bore that propagates up the sloping lakebed with a speed of 0.05-0.15 m s(-1 and a Froude number close to unity. There were strong temperature overturns associated with the abrupt changes in temperature across the bore. Based on the size of overturns in the near bed stratification, we show that the inferred turbulent diffusivity varies by up to two orders of magnitude between up- and downwellings. When the thermocline was rising, estimates of turbulent diffusivity were high with KZ ∼10(-4 m(2s(-1, whereas during downwelling events the near-bed stratification was greatly increased and the turbulence was reduced. This asymmetry is consistent with previous field observations and underlines the importance of shear-induced convection in benthic bottom boundary layers of stratified lakes.
Nonlinear Waves in the Terrestrial Quasiparallel Foreshock.
Hnat, B; Kolotkov, D Y; O'Connell, D; Nakariakov, V M; Rowlands, G
2016-12-02
We provide strongly conclusive evidence that the cubic nonlinearity plays an important part in the evolution of the large amplitude magnetic structures in the terrestrial foreshock. Large amplitude nonlinear wave trains at frequencies above the proton cyclotron frequency are identified after nonharmonic slow variations are filtered out by applying the empirical mode decomposition. Numerical solutions of the derivative nonlinear Schrödinger equation, predicted analytically by the use of a pseudopotential approach, are found to be consistent with the observed wave forms. The approximate phase speed of these nonlinear waves, indicated by the parameters of numerical solutions, is of the order of the local Alfvén speed. We suggest that the feedback of the large amplitude fluctuations on background plasma is reflected in the evolution of the pseudopotential.
Numerical Simulation of a Breaking Gravity Wave Event Over Greenland Observed During Fastex
National Research Council Canada - National Science Library
Doyle, James
1997-01-01
Measurements from the NOAA G4 research aircraft and high-resolution numerical simulations are used to study the evolution and dynamics of a large-amplitude gravity wave event over Greenland that took...
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....
International Nuclear Information System (INIS)
Sati, Priti; Tripathi, V. K.
2012-01-01
Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.
National Aeronautics and Space Administration — Large amplitude, unsteady heating loads and steep flow gradients produced in regions of shock-wave/turbulent boundary-layer interaction (SWTBLI) pose a serious and...
National Aeronautics and Space Administration — Large amplitude, unsteady heating loads and steep flow gradients produced in regions of shock-wave/turbulent boundary-layer interaction (SWTBLI) pose a serious and...
Beat-wave generation of plasmons in semiconductor plasmas
International Nuclear Information System (INIS)
Berezhiani, V.I.; Mahajan, S.M.
1995-08-01
It is shown that in semiconductor plasmas, it is possible to generate large amplitude plasma waves by the beating of two laser beams with frequency difference close to the plasma frequency. For narrow gap seimconductors (for example n-type InSb), the system can simulate the physics underlying beat wave generation in relativistic gaseous plasmas
Beat-wave generation of plasmons in semiconductor plasmas
International Nuclear Information System (INIS)
Berezhiani, V.I.; Mahajan, S.M.
1995-08-01
It is shown that in semiconductor plasmas, it is possible to generate large amplitude plasma waves by the beating of two laser beams with frequency difference close to the plasma frequency. For narrow gap semiconductor (for example n-type InSb), the system can simulate the physics underlying beat wave generation in relativistic gaseous plasmas. (author). 7 refs
Electron plasma waves and plasma resonances
International Nuclear Information System (INIS)
Franklin, R N; Braithwaite, N St J
2009-01-01
In 1929 Tonks and Langmuir predicted of the existence of electron plasma waves in an infinite, uniform plasma. The more realistic laboratory environment of non-uniform and bounded plasmas frustrated early experiments. Meanwhile Landau predicted that electron plasma waves in a uniform collisionless plasma would appear to be damped. Subsequent experimental work verified this and revealed the curious phenomenon of plasma wave echoes. Electron plasma wave theory, extended to finite plasmas, has been confirmed by various experiments. Nonlinear phenomena, such as particle trapping, emerge at large amplitude. The use of electron plasma waves to determine electron density and electron temperature has not proved as convenient as other methods.
Some nonlinear processes relevant to the beat wave accelerator
International Nuclear Information System (INIS)
Bingham, R.; Mori, W.B.
1985-03-01
The beat wave accelerator depends on the generation of a large amplitude plasma wave with a phase velocity close to the velocity of light c. The plasma wave (ωsub(p), ksub(p)) is generated by beating colinear laser beams (ω 1 , k 1 ) and (ω 2 ,k 2 ) with ωsub(p) = ω 1 -ω 2 , ksub(p) = k 1 -k 2 . Since the process involves both large amplitude transverse and longitudinal waves, various nonlinear instabilities associated with either wave may occur. The object of the article is to discuss some of the processes that may compete with the beat wave generation listing their threshold and growth rate. (author)
Directory of Open Access Journals (Sweden)
Kajánek D.
2018-02-01
Full Text Available The contribution is focused on the preparation of coating based on the dicalcium phosphate-dihydrate (DCPD on the surface of ZW3 magnesium alloy. For the preparation of the coating a cathodic electrodeposition technique called Large Amplitude Sinusoidal Voltammetry (LASV was used. The DCPD layer was prepared at the temperature of 22 ± 2 °C in electrolyte composed of 0.1M Ca(NO3.4H2O, 0.06 M NH4H2PO4 and H2O2. Electrochemical characteristics were evaluated by electrochemical impedance spectroscopy (EIS in 0.1M NaCl solution. The obtained data in form of Nyquist plots were analysed by the equivalent circuit method. It is clear from the measured values of polarization resistance Rp that dicalcium phosphate-dihydrate (DCPD layer prepared by LASV electro-deposition technique improved corrosion resistance of ZW3 alloy in the chosen environment.
Zacharegkas, Georgios; Isliker, Heinz; Vlahos, Loukas
2016-11-01
The limitation of the Quasilinear Theory (QLT) to describe the diffusion of electrons and ions in velocity space when interacting with a spectrum of large amplitude electrostatic Langmuir, Upper and Lower hybrid waves, is analyzed. We analytically and numerically estimate the threshold for the amplitude of the waves above which the QLT breaks down, using a test particle code. The evolution of the velocity distribution, the velocity-space diffusion coefficients, the driven current, and the heating of the particles are investigated, for the interaction with small and large amplitude electrostatic waves, that is, in both regimes, where QLT is valid and where it clearly breaks down.
2016-01-01
This volume brings together four lecture courses on modern aspects of water waves. The intention, through the lectures, is to present quite a range of mathematical ideas, primarily to show what is possible and what, currently, is of particular interest. Water waves of large amplitude can only be fully understood in terms of nonlinear effects, linear theory being not adequate for their description. Taking advantage of insights from physical observation, experimental evidence and numerical simulations, classical and modern mathematical approaches can be used to gain insight into their dynamics. The book presents several avenues and offers a wide range of material of current interest. Due to the interdisciplinary nature of the subject, the book should be of interest to mathematicians (pure and applied), physicists and engineers. The lectures provide a useful source for those who want to begin to investigate how mathematics can be used to improve our understanding of water wave phenomena. In addition, some of the...
High-frequency modulation of ion-acoustic waves.
Albright, N. W.
1972-01-01
A large amplitude, high-frequency electromagnetic oscillation is impressed on a nonrelativistic, collisionless plasma from an external source. The frequency is chosen to be far from the plasma frequency (in fact, lower). The resulting electron velocity distribution function strongly modifies the propagation of ion-acoustic waves parallel to the oscillating electric field. The complex frequency is calculated numerically.
Hydroelectromechanical modelling of a piezoelectric wave energy converter
Renzi, E.
2016-11-01
We investigate the hydroelectromechanical-coupled dynamics of a piezoelectric wave energy converter. The converter is made of a flexible bimorph plate, clamped at its ends and forced to motion by incident ocean surface waves. The piezoceramic layers are connected in series and transform the elastic motion of the plate into useful electricity by means of the piezoelectric effect. By using a distributed-parameter analytical approach, we couple the linear piezoelectric constitutive equations for the plate with the potential-flow equations for the surface water waves. The resulting system of governing partial differential equations yields a new hydroelectromechanical dispersion relation, whose complex roots are determined with a numerical approach. The effect of the piezoelectric coupling in the hydroelastic domain generates a system of short- and long-crested weakly damped progressive waves travelling along the plate. We show that the short-crested flexural wave component gives a dominant contribution to the generated power. We determine the hydroelectromechanical resonant periods of the device, at which the power output is significant.
Harmonic emission due to the nonlinear coupling of a Gaussian laser and a plasma wave
Energy Technology Data Exchange (ETDEWEB)
Pathak, R; Jain, R K [Department of Mathematics, SSL Jain College, Vidisha, MP, 464001 (India); Parashar, J [Department of Physics, Samrat Ashok Technological Institute, Vidisha, MP, 464001 (India)
2010-04-15
A high-power Gaussian laser propagating through a plasma couples with a large-amplitude plasma wave and undergoes scattering to produce harmonics. The process is sensitive to the phase matching angle between the laser and plasma wave numbers and the plasma wave frequency. For larger harmonics, the phase matching angle is high. The efficiency of the process is comparatively high at higher plasma wave frequencies.
National Oceanic and Atmospheric Administration, Department of Commerce — A 1-month 4-element moored array experiment to measure the currents associated with large-amplitude internal waves generated by tidal flow across Stellwagen Bank.
Nonlinear wavenumber of an electron plasma wave
International Nuclear Information System (INIS)
Vidmar, P.J.; Malmberg, J.H.; Starke, T.P.
1976-01-01
The wavenumber of a large-amplitude electron plasma wave propagating on a collisionless plasma column is measured. The wavenumber is shifted from that of a small-amplitude wave of the same frequency. This nonlinear wavenumber shift, deltak/subr/, depends on position, frequency, and initial wave amplitude, Phi. The observed spatial oscillations of deltak/subr/ agree qualitatively with recent theories. Experimentally deltak/subr/proportionalk/subi/S (Phi) rootPhi where k/subi/ is the linear Landau damping coefficient, S (Phi) equivalentk/subi/(Phi)/k/subi/, and k/subi/(Phi) is the initial damping coefficient which depends on Phi
Greenstadt, E. W.; Le, G.; Strangeway, R. J.
1995-01-01
We review our current knowledge of ULF waves in planetary foreshocks. Most of this knowledge comes from observations taken within a few Earth radii of the terrestrial bow shock. Terrestrial foreshock ULF waves can be divided into three types, large amplitude low frequency waves (approximately 30-s period), upstream propagating whistlers (1-Hz waves), and 3-s waves. The 30-s waves are apparently generated by back-streaming ion beams, while the 1-Hz waves are generated at the bow shock. The source of the 3-s waves has yet to be determined. In addition to issues concerning the source of ULF waves in the foreshock, the waves present a number of challenges, both in terms of data acquisition, and comparison with theory. The various waves have different coherence scales, from approximately 100 km to approximately 1 Earth radius. Thus multi-spacecraft separation strategies must be tailored to the phenomenon of interest. From a theoretical point of view, the ULF waves are observed in a plasma in which the thermal pressure is comparable to the magnetic pressure, and the rest-frame wave frequency can be moderate fraction of the proton gyro-frequency. This requires the use of kinetic plasma wave dispersion relations, rather than multi-fluid MHD. Lastly, and perhaps most significantly, ULF waves are used to probe the ambient plasma, with inferences being drawn concerning the types of energetic ion distributions within the foreshock. However, since most of the data were acquired close to the bow shock, the properties of the more distant foreshock have to be deduced mainly through extrapolation of the near-shock results. A general understanding of the wave and plasma populations within the foreshock, their interrelation, and evolution, requires additional data from the more distant foreshock.
Magnetization of a warm plasma by the nonstationary ponderomotive force of an electromagnetic wave
International Nuclear Information System (INIS)
Shukla, Nitin; Shukla, P. K.; Stenflo, L.
2009-01-01
It is shown that magnetic fields can be generated in a warm plasma by the nonstationary ponderomotive force of a large-amplitude electromagnetic wave. In the present Brief Report, we derive simple and explicit results that can be useful for understanding the origin of the magnetic fields that are produced in intense laser-plasma interaction experiments.
On the Dynamics of Two-Dimensional Capillary-Gravity Solitary Waves with a Linear Shear Current
Directory of Open Access Journals (Sweden)
Dali Guo
2014-01-01
Full Text Available The numerical study of the dynamics of two-dimensional capillary-gravity solitary waves on a linear shear current is presented in this paper. The numerical method is based on the time-dependent conformal mapping. The stability of different kinds of solitary waves is considered. Both depression wave and large amplitude elevation wave are found to be stable, while small amplitude elevation wave is unstable to the small perturbation, and it finally evolves to be a depression wave with tails, which is similar to the irrotational capillary-gravity waves.
Nonlinear Whistler Wave Physics in the Radiation Belts
Crabtree, Chris
2016-10-01
Wave particle interactions between electrons and whistler waves are a dominant mechanism for controlling the dynamics of energetic electrons in the radiation belts. They are responsible for loss, via pitch-angle scattering of electrons into the loss cone, and energization to millions of electron volts. It has previously been theorized that large amplitude waves on the whistler branch may scatter their wave-vector nonlinearly via nonlinear Landau damping leading to important consequences for the global distribution of whistler wave energy density and hence the energetic electrons. It can dramatically reduce the lifetime of energetic electrons in the radiation belts by increasing the pitch angle scattering rate. The fundamental building block of this theory has now been confirmed through laboratory experiments. Here we report on in situ observations of wave electro-magnetic fields from the EMFISIS instrument on board NASA's Van Allen Probes that show the signatures of nonlinear scattering of whistler waves in the inner radiation belts. In the outer radiation belts, whistler mode chorus is believed to be responsible for the energization of electrons from 10s of Kev to MeV energies. Chorus is characterized by bursty large amplitude whistler mode waves with frequencies that change as a function of time on timescales corresponding to their growth. Theories explaining the chirping have been developed for decades based on electron trapping dynamics in a coherent wave. New high time resolution wave data from the Van Allen probes and advanced spectral techniques are revealing that the wave dynamics is highly structured, with sub-elements consisting of multiple chirping waves with discrete frequency hops between sub-elements. Laboratory experiments with energetic electron beams are currently reproducing the complex frequency vs time dynamics of whistler waves and in addition revealing signatures of wave-wave and beat-wave nonlinear wave-particle interactions. These new data
Arbitrary electron acoustic waves in degenerate dense plasmas
Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.
2017-05-01
A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.
Nonlinear propagation of Alfven waves in cometary plasmas
International Nuclear Information System (INIS)
Lakhina, G.S.; Shukla, P.K.
1987-07-01
Large amplitude Alfven waves propagating along the guide magnetic field in a three-component plasma are shown to be modulationally unstable due to their nonlinear interaction with nonresonant electrostatic density fluctuations. A new class of subsonic Alfven soliton solutions are found to exist in the three-component plasma. The Alfven solitons can be relevant in explaining the properties of hydromagnetic turbulence near the comets. (author). 15 refs
Positron-acoustic waves in an electron-positron plasma with an electron beam
International Nuclear Information System (INIS)
Nejoh, Y.N.
1996-01-01
The nonlinear wave structures of large-amplitude positron-acoustic waves are studied in an electron-positron plasma in the presence of an electron beam with finite temperature and hot electrons and positrons. The region where positron-acoustic waves exist is presented by analysing the structure of the pseudopotential. The region depends sensitively on the positron density, the positron temperature and the electron beam temperature. It is shown that the maximum amplitude of the wave decreases as the positron temperature increases, and the region of positron-acoustic waves spreads as the positron temperature increases. 11 refs., 5 figs
Nonlinear localized dust acoustic waves in a charge varying dusty plasma with nonthermal ions
International Nuclear Information System (INIS)
Tribeche, Mouloud; Amour, Rabia
2007-01-01
A numerical investigation is presented to show the existence, formation, and possible realization of large-amplitude dust acoustic (DA) solitary waves in a charge varying dusty plasma with nonthermal ions. These nonlinear localized structures are self-consistent solutions of the collisionless Vlasov equation with a population of fast particles. The spatial patterns of the variable charge DA solitary wave are significantly modified by the nonthermal effects. The results complement and provide new insights into previously published results on this problem
-Advanced Models for Tsunami and Rogue Waves
Directory of Open Access Journals (Sweden)
D. W. Pravica
2012-01-01
Full Text Available A wavelet , that satisfies the q-advanced differential equation for , is used to model N-wave oscillations observed in tsunamis. Although q-advanced ODEs may seem nonphysical, we present an application that model tsunamis, in particular the Japanese tsunami of March 11, 2011, by utilizing a one-dimensional wave equation that is forced by . The profile is similar to tsunami models in present use. The function is a wavelet that satisfies a q-advanced harmonic oscillator equation. It is also shown that another wavelet, , matches a rogue-wave profile. This is explained in terms of a resonance wherein two small amplitude forcing waves eventually lead to a large amplitude rogue. Since wavelets are used in the detection of tsunamis and rogues, the signal-analysis performance of and is examined on actual data.
Gravitational Waves from Oscillons after Inflation.
Antusch, Stefan; Cefalà, Francesco; Orani, Stefano
2017-01-06
We investigate the production of gravitational waves during preheating after inflation in the common case of field potentials that are asymmetric around the minimum. In particular, we study the impact of oscillons, comparatively long lived and spatially localized regions where a scalar field (e.g., the inflaton) oscillates with large amplitude. Contrary to a previous study, which considered a symmetric potential, we find that oscillons in asymmetric potentials associated with a phase transition can generate a pronounced peak in the spectrum of gravitational waves that largely exceeds the linear preheating spectrum. We discuss the possible implications of this enhanced amplitude of gravitational waves. For instance, for low scale inflation models, the contribution from the oscillons can strongly enhance the observation prospects at current and future gravitational wave detectors.
Shaarawi, Amr Mohamed
In this work, nondispersive wavepacket solutions to linear partial differential equations are investigated. These solutions are characterized by infinite energy content; otherwise they are continuous, nonsingular and propagate in free space without spreading out. Examples of such solutions are Berry and Balazs' Airy packet, MacKinnon's wave packet and Brittingham's Focus Wave Mode (FWM). It is demonstrated in this thesis that the infinite energy content is not a basic problem per se and that it can be dealt with in two distinct ways. First these wave packets can be used as bases to construct highly localized, slowly decaying, time-limited pulsed solutions. In the case of the FWMs, this path leads to the formulation of the bidirectional representation, a technique that provides the most natural basis for synthesizing Brittingham-like solutions. This representation is used to derive new exact solutions to the 3-D scalar wave equation. It is also applied to problems involving boundaries, in particular to the propagation of a localized pulse in a infinite acoustic waveguide and to the launchability of such a pulse from the opening of a semi-infinite waveguide. The second approach in dealing with the infinite energy content utilizes the bump-like structure of nondispersive solutions. With an appropriate choice of parameters, these bump fields have very large amplitudes around the centers, in comparison to their tails. In particular, the FWM solutions are used to model massless particles and are capable of providing an interesting interpretation to the results of Young's two slit experiment and to the wave-particle duality of light. The bidirectional representation provides, also, a systematic way of deriving packet solutions to the Klein-Gordon, the Schrodinger and the Dirac equations. Nondispersive solutions of the former two equations are compared to previously derived ones, e.g., the Airy packet and MacKinnon's wave packet.
Directory of Open Access Journals (Sweden)
S. S. Ghosh
2004-01-01
Full Text Available The presence of dynamic, large amplitude solitary waves in the auroral regions of space is well known. Since their velocities are of the order of the ion acoustic speed, they may well be considered as being generated from the nonlinear evolution of ion acoustic waves. However, they do not show the expected width-amplitude correlation for K-dV solitons. Recent POLAR observations have actually revealed that the low altitude rarefactive ion acoustic solitary waves are associated with an increase in the width with increasing amplitude. This indicates that a weakly nonlinear theory is not appropriate to describe the solitary structures in the auroral regions. In the present work, a fully nonlinear analysis based on Sagdeev pseudopotential technique has been adopted for both parallel and oblique propagation of rarefactive solitary waves in a two electron temperature multi-ion plasma. The large amplitude solutions have consistently shown an increase in the width with increasing amplitude. The width-amplitude variation profile of obliquely propagating rarefactive solitary waves in a magnetized plasma have been compared with the recent POLAR observations. The width-amplitude variation pattern is found to fit well with the analytical results. It indicates that a fully nonlinear theory of ion acoustic solitary waves may well explain the observed anomalous width variations of large amplitude structures in the auroral region.
International Nuclear Information System (INIS)
Williams, R.L.; Johnson, J.A. III
1993-01-01
The feasibility of using an ionizing shock wave to produce high density plasmas suitable for the propagation large amplitude relativistic plasma waves is being investigated. A 20 kv arc driven shock tube of coaxial geometry produces a hypersonic shock wave (10 p > 10 17 cm -3 ). The shock can be made to reflect off the end of the tube, collide with its wake, and thus increase the plasma density further. After reflecting, the plasma is at rest. The shock speed is measured using piezoelectric pressure probes and the ion density is measured using laser induced fluorescence (LIF) techniques on argon 488.0 nm and 422.8 nm lines. The future plans are to excite large amplitude relativistic plasma waves in this plasma by either injecting a short pulse laser (Laser Wake Field Scheme), two beating lasers (Plasma Beat Wave Scheme), or a short bunch of relativistic electrons (Plasma Wake Field Scheme). Results of recent computational and theoretical studies, as well as initial experimental measurements on the plasma using LIF, are reported. Implications for the application of high density plasmas produced in this way to such novel schemes as the plasma wave accelerator, photon accelerator, plasma wave undulator, and also plasma lens, are discussed. The effect of plasma turbulence is also discussed
On the existence of Alfvén waves in the terrestrial foreshock
Directory of Open Access Journals (Sweden)
J. P. Eastwood
2003-07-01
Full Text Available The terrestrial foreshock is characterised by the existence of large amplitude ultra low frequency waves. The majority of such waves are observed to be left-handed in the spacecraft frame, but are in fact intrinsically right-handed and have been identified as fast-magnetosonic waves. More rarely observed are waves that are right-handed in the spacecraft frame. Cluster four spacecraft observations of such waves are presented and analysed using multi-spacecraft techniques; in particular the k-filtering/wave telescope technique is used. The waves are found to be left-handed and propagating sunwards in the plasma rest frame, and are, therefore, identified as Alfvénic. The convection of the waves anti-sunward in the solar wind flow causes the observed polarisation to be reversed. Generation mechanisms are discussed.Key words. Interplanetary physics (MHD waves and turbulence; planetary bow shocks – Space plasma physics (wave particle interactions
On the existence of Alfvén waves in the terrestrial foreshock
Directory of Open Access Journals (Sweden)
J. P. Eastwood
Full Text Available The terrestrial foreshock is characterised by the existence of large amplitude ultra low frequency waves. The majority of such waves are observed to be left-handed in the spacecraft frame, but are in fact intrinsically right-handed and have been identified as fast-magnetosonic waves. More rarely observed are waves that are right-handed in the spacecraft frame. Cluster four spacecraft observations of such waves are presented and analysed using multi-spacecraft techniques; in particular the k-filtering/wave telescope technique is used. The waves are found to be left-handed and propagating sunwards in the plasma rest frame, and are, therefore, identified as Alfvénic. The convection of the waves anti-sunward in the solar wind flow causes the observed polarisation to be reversed. Generation mechanisms are discussed.
Key words. Interplanetary physics (MHD waves and turbulence; planetary bow shocks – Space plasma physics (wave particle interactions
Electromagnetic waves in single- and multi-Josephson junctions
International Nuclear Information System (INIS)
Matsumoto, Hideki; Koyama, Tomio; Machida, Masahiko
2008-01-01
The terahertz wave emission from the intrinsic Josephson junctions is one of recent topics in high T c superconductors. We investigate, by numerical simulation, properties of the electromagnetic waves excited by a constant bias current in the single- and multi-Josephson junctions. Nonlinear equations of phase-differences are solved numerically by treating the effects of the outside electromagnetic fields as dynamical boundary conditions. It is shown that the emitted power of the electromagnetic wave can become large near certain retrapping points of the I-V characteristics. An instability of the inside phase oscillation is related to large amplitude of the oscillatory waves. In the single- (or homogeneous mutli-) Josephson junctions, electromagnetic oscillations can occur either in a form of standing waves (shorter junctions) or by formation of vortex-antivortex pairs (longer junctions). How these two effects affects the behavior of electromagnetic waves in the intrinsic Josephson junctions is discussed
Elastic-wave generation in the evolution of displacement peaks
International Nuclear Information System (INIS)
Zhukov, V.P.; Boldin, A.A.
1988-01-01
This paper investigated the character of elastic shock wave generation and damping in irradiated materials along with the possibility of their long-range influence on the structure of the irradiated materials. Dispersion at the elastoplastic stage of atomic displacement peak development was taken into account. The three-dimensional nonlinear wave was described by an equation in the approximation of weak nonlinearity and weak spatial dispersion. Numerical modeling of the propagation of a plane shock wave in a crystal lattice was conducted. The distribution of the density and mass velocity of the material at the instant of complete damping of the plastic shock-wave component was determined. The appearance of solitary waves (solitons) at large amplitudes, localized in space, which propagate without distortion to arbitrary distances and retain their amplitude and form in interacting with one another, was investigated. Some physical consequences of the influence of solitary waves on the irradiated materials were considered
Waves and solitons in the continuum limit of the Calogero-Sutherland model
Polychronakos, A P
1995-01-01
We examine a collection of classical particles interacting with inverse-square two-body potentials in the thermodynamic limit of finite particle density. We find explicit large-amplitude density waves and soliton solutions for the motion of the system. Waves can be constructed as coherent states of either solitons or phonons (small-amplitude waves). Therefore, either solitons or phonons can be considered as the fundamental excitations. The generic wave is shown to correspond to a two-band state in the quantum description of the system, while the limiting cases of solitons and phonons correspond to particle and hole excitations.
Computational study of nonlinear plasma waves. I. Simulation model and monochromatic wave propagtion
International Nuclear Information System (INIS)
Matda, Y.; Crawford, F.W.
1974-12-01
An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described. (auth)
Energy Technology Data Exchange (ETDEWEB)
Yoshimoto, H. [Ship Research Inst., Tokyo (Japan)
1996-12-31
Since ocean waves encountered by ocean vessels or offshore structures in actual sea areas present extremely irregular variations, a stochastic method is necessary to estimate their statistical properties. This paper first shows a calculation method for probability density function for water level variation which strictly incorporates a secondary non-linear effect containing directional dispersibility by modeling ocean waves as short-crested irregular waves. Then, the paper specifically elucidates effects of the directional dispersibility of ocean waves on statistical amount of amplitudes by deriving the statistical amount of the amplitudes based on the probability density function of the water level variation and by using a numerical simulation. The paper finally takes up data of waves in stormy sea observed in an experiment in an actual sea area, compares the result with that of theoretical calculations, and evaluates reasonability of this method. With this estimation method, individual secondary components or components of difference and sum may be subjected to influence of the directional dispersibility, but they do not differ much from the case of long-crested irregular waves on the whole. 21 refs., 11 figs., 2 tabs.
Measurements of beat wave accelerated electrons in a toroidal plasma
International Nuclear Information System (INIS)
Rogers, J.H.
1992-06-01
Electrons are accelerated by large amplitude electron plasma waves driven by counter-propagating microwaves with a difference frequency approximately equal to the electron plasma frequency. Energetic electrons are observed only when the phase velocity of the wave is in the range 3v e ph e (v ph was varied 2v e ph e ), where v e is the electron thermal velocity, (kT e /m e ) 1/2 . As the phase velocity increases, fewer electrons are accelerated to higher velocities. The measured current contained in these accelerated electrons has the power dependence predicted by theory, but the magnitude is lower than predicted
Explaining Polarization Reversals in STEREO Wave Data
Breneman, A.; Cattell, C.; Wygant, J.; Kersten, K.; Wilson, L, B., III; Dai, L.; Colpitts, C.; Kellogg, P. J.; Goetz, K.; Paradise, A.
2012-01-01
Recently Breneman et al. reported observations of large amplitude lightning and transmitter whistler mode waves from two STEREO passes through the inner radiation belt (Lpaper. We show, with a combination of observations and simulated wave superposition, that these polarization reversals are due to the beating of an incident electromagnetic whistler mode wave at 21.4 kHz and linearly polarized, symmetric lower hybrid sidebands Doppler-shifted from the incident wave by +/-200 Hz. The existence of the lower hybrid waves is consistent with the parametric decay mechanism of Lee and Kuo whereby an incident whistler mode wave decays into symmetric, short wavelength lower hybrid waves and a purely growing (zero-frequency) mode. Like the lower hybrid waves, the purely growing mode is Doppler-shifted by 200 Hz as observed on STEREO. This decay mechanism in the upper ionosphere has been previously reported at equatorial latitudes and is thought to have a direct connection with explosive spread F enhancements. As such it may represent another dissipation mechanism of VLF wave energy in the ionosphere and may help to explain a deficit of observed lightning and transmitter energy in the inner radiation belts as reported by Starks et al.
Energy Technology Data Exchange (ETDEWEB)
Ota, M; Ikegami, H; Yamaguchi, Y [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)
1997-10-01
The elastic response of VLFS of 1200m long in wave was studied experimentally using a water tank and integral elastic model of 1/80 scale. As offshore airport, a ultra- thin box type floating structure of 5km long, 1km wide and several meter thick is used, and the effect of elasticity is not negligible for such a structure. The experiment used a water tank of 160m long, 30m wide and 3.1m deep. Supposing a water depth of 20m for real VLFSs, the experiment was carried out mainly in a local shallow water area prepared with a temporary bottom together with that in a deep water area. A simple mooring equipment with a linear spring equivalent to real VLFSs was used. The integral floating model was prepared by not mechanical but welded junction to obtain uniform elasticity. The response in wave showed a complicated 3-D behavior, offering useful data for verification of a behavior estimation method. The response was nearly equal between shallow and deep water areas at the same wave length, and the response amplitude in regular waves was equivalent to the significant amplitude in long and short crested irregular waves. 7 refs., 8 figs., 3 tabs.
Dispersive Evolution of Nonlinear Fast Magnetoacoustic Wave Trains
Energy Technology Data Exchange (ETDEWEB)
Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M., E-mail: D.J.Pascoe@warwick.ac.uk [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)
2017-10-01
Quasi-periodic rapidly propagating wave trains are frequently observed in extreme ultraviolet observations of the solar corona, or are inferred by the quasi-periodic modulation of radio emission. The dispersive nature of fast magnetohydrodynamic waves in coronal structures provides a robust mechanism to explain the detected quasi-periodic patterns. We perform 2D numerical simulations of impulsively generated wave trains in coronal plasma slabs and investigate how the behavior of the trapped and leaky components depend on the properties of the initial perturbation. For large amplitude compressive perturbations, the geometrical dispersion associated with the waveguide suppresses the nonlinear steepening for the trapped wave train. The wave train formed by the leaky components does not experience dispersion once it leaves the waveguide and so can steepen and form shocks. The mechanism we consider can lead to the formation of multiple shock fronts by a single, large amplitude, impulsive event and so can account for quasi-periodic features observed in radio spectra.
Artificial excitation of ELF waves with frequency of Schumann resonance
Streltsov, A. V.; Guido, T.; Tulegenov, B.; Labenski, J.; Chang, C.-L.
2014-11-01
We report results from the experiment aimed at the artificial excitation of extremely low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance. Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the Earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range 7.8-8.0 Hz when the ionosphere has a strong F layer, the frequency of the HF radiation is in the range 3.20-4.57 MHz, and the electric field greater than 5 mV/m is present in the ionosphere.
Fernández, Leandro; Monbaliu, Jaak; Onorato, Miguel; Toffoli, Alessandro
2014-05-01
This research is focused on the study of nonlinear evolution of irregular wave fields in water of arbitrary depth by comparing field measurements and numerical simulations.It is now well accepted that modulational instability, known as one of the main mechanisms for the formation of rogue waves, induces strong departures from Gaussian statistics. However, whereas non-Gaussian properties are remarkable when wave fields follow one direction of propagation over an infinite water depth, wave statistics only weakly deviate from Gaussianity when waves spread over a range of different directions. Over finite water depth, furthermore, wave instability attenuates overall and eventually vanishes for relative water depths as low as kh=1.36 (where k is the wavenumber of the dominant waves and h the water depth). Recent experimental results, nonetheless, seem to indicate that oblique perturbations are capable of triggering and sustaining modulational instability even if khthe aim of this research is to understand whether the combined effect of directionality and finite water depth has a significant effect on wave statistics and particularly on the occurrence of extremes. For this purpose, numerical experiments have been performed solving the Euler equation of motion with the Higher Order Spectral Method (HOSM) and compared with data of short crested wave fields for different sea states observed at the Lake George (Australia). A comparative analysis of the statistical properties (i.e. density function of the surface elevation and its statistical moments skewness and kurtosis) between simulations and in-situ data provides a confrontation between the numerical developments and real observations in field conditions.
Feng, Q. S.; Zheng, C. Y.; Liu, Z. J.; Cao, L. H.; Xiao, C. Z.; Wang, Q.; Zhang, H. C.; He, X. T.
2017-08-01
Ion-bulk (IBk) wave, a novel branch with a phase velocity close to the ion’s thermal velocity, discovered by Valentini et al (2011 Plasma Phys. Control. Fusion 53 105017), is recently considered as an important electrostatic activity in solar wind, and thus of great interest to space physics and also inertial confinement fusion. The harmonic effects on IBk waves has been researched by Vlasov simulation for the first time. The condition of excitation of the large-amplitude IBk waves is given. The nature of nonlinear IBk waves in the condition of kFeng scattering (SFS) has been proposed and also verified by Vlasov-Maxwell code. In CH plasmas, in addition to the stimulated Brillouin scattering from multi ion-acoustic waves, there exists SIBS simultaneously. This research gives an insight into the SIBS in the field of laser plasma interaction.
Excitation of compressional waves and the formation of shocklets in the earth's foreshock
International Nuclear Information System (INIS)
Hada, T.; Kennel, C.F.; Teresawa, T.
1987-01-01
Large-amplitude waves with typical frequencies of 0.01--0.05 Hz are often observed in the foreshocks of earth and other planets. Large-amplitude waves in the earth's foreshock are sometimes (but not always) observed in a highly time-developed form, either as steepened pulses or as discrete oscillatory wave packets of finite length. This implies that nonlinearities are strong enough to modify their waveforms before the solar wind carries them out the foreshock. The instabilities and steepening of upstream waves in the earth's foreshock caused by backstreaming ions are discussed in the first part of the paper. For typical foreshock ''diffuse'' ion distributions, right and left-hand polarized(RHP and LHP) waves propagating parallel to the local magnetic field are preferentially excited. Such noncompressional waves neither steepen nor grow fast enough to account for the amplitude polarizations and waveforms observed in the diffuse ion foreshock. Oblique waves develop a density compression and their magnetic field polarization is elliptical. Although these characteristics match the observations of the steepened waves in the diffuse ion zone, the growth rates of those waves oblique enough to steepen are too small to account for observed amplitudes
On the interaction of small-scale linear waves with nonlinear solitary waves
Xu, Chengzhu; Stastna, Marek
2017-04-01
In the study of environmental and geophysical fluid flows, linear wave theory is well developed and its application has been considered for phenomena of various length and time scales. However, due to the nonlinear nature of fluid flows, in many cases results predicted by linear theory do not agree with observations. One of such cases is internal wave dynamics. While small-amplitude wave motion may be approximated by linear theory, large amplitude waves tend to be solitary-like. In some cases, when the wave is highly nonlinear, even weakly nonlinear theories fail to predict the wave properties correctly. We study the interaction of small-scale linear waves with nonlinear solitary waves using highly accurate pseudo spectral simulations that begin with a fully nonlinear solitary wave and a train of small-amplitude waves initialized from linear waves. The solitary wave then interacts with the linear waves through either an overtaking collision or a head-on collision. During the collision, there is a net energy transfer from the linear wave train to the solitary wave, resulting in an increase in the kinetic energy carried by the solitary wave and a phase shift of the solitary wave with respect to a freely propagating solitary wave. At the same time the linear waves are greatly reduced in amplitude. The percentage of energy transferred depends primarily on the wavelength of the linear waves. We found that after one full collision cycle, the longest waves may retain as much as 90% of the kinetic energy they had initially, while the shortest waves lose almost all of their initial energy. We also found that a head-on collision is more efficient in destroying the linear waves than an overtaking collision. On the other hand, the initial amplitude of the linear waves has very little impact on the percentage of energy that can be transferred to the solitary wave. Because of the nonlinearity of the solitary wave, these results provide us some insight into wave-mean flow
Large amplitude nuclear collective motion and the quantized ATDHF theory
International Nuclear Information System (INIS)
Provoost, D.
1986-03-01
It is the aim of the present work to present some numerical results obtained within the ATDHF formalism. Both approaches have been considered, the construction of the collective Hamiltonian as well as the solution of the Griffin-Hill-Wheeler equation, both using the ATDHF collective path. We show that a fully selfconsistent microscopic description of nuclear phemomena using general many-body techniques can be treated on the numerical level. We considered several different systems to indicate as much as possible the present possibilities and limits of the theory as well as of the numerical techniques. (orig./HSI)
Numerical simulation of flow induced airfoil vibrations with large amplitudes
Czech Academy of Sciences Publication Activity Database
Sváček, Petr; Feistauer, M.; Horáček, Jaromír
2007-01-01
Roč. 23, - (2007), s. 391-411 ISSN 0889-9746 R&D Projects: GA AV ČR IAA200760613 Institutional research plan: CEZ:AV0Z20760514 Keywords : aeroelasticity * flutter * nonlinear oscillations Subject RIV: BI - Acoustics Impact factor: 0.821, year: 2007
Microscopic theories for collective motions of large amplitude
International Nuclear Information System (INIS)
Souza Cruz, F.F. de.
1986-01-01
The many proposals of ''Collective Paths'' that have appeared in literature, were derived through a local analysis of the Time Dependent Hartree Fock dynamics. Those proposals were compared and validity conditions obtained for Semiclassical Hamiltonians which have only quadratic terms in momenta. A careful analysis of the parametrization of Slater Determinants allowed us to exploit the geometrical features of the Time Dependent Hartree Fock Theory and construct the Paths in a covariant way. The analysis was applied to a three level model (Su(3)). (author) [pt
Large amplitude collective nuclear motion and soliton concept
International Nuclear Information System (INIS)
Kartavenko, V.G.; Joint Inst. for Nuclear Research, Dubna
1993-01-01
An application of a soliton theory methods to some nonlinear problems in low and intermediate energies (E ∼ 10--100MeV/nucleon) nucleus - nucleus collisions are presented. Linear and nonlinear excitations of the nuclear density are investigated in the framework of nuclear hydrodynamics. The problem of dynamical instability and clusterization phenomena in a breakup of excited nuclear systems are considered from the points of view of a soliton concept
Orthogonal ribbons for suspending test masses in interferometric gravitational wave detectors
International Nuclear Information System (INIS)
Lee, B.H.; Ju, L.; Blair, D.G.
2005-01-01
We show that a simple modification of proposed ribbon suspensions for laser interferometric gravitational wave detectors can substantially reduce the amplitude of violin modes at the expense of a small deterioration of suspension thermal noise. Using low loss fused silica, large amplitude peaks which cause dynamic range problems can be reduced by 21 dB. The total number of horizontal longitudinal direction violin modes below 5 kHz is reduced to less than half that expected with conventional ribbon suspensions
Orthogonal ribbons for suspending test masses in interferometric gravitational wave detectors
Energy Technology Data Exchange (ETDEWEB)
Lee, B.H. [School of Physics, University of Western Australia, Crawley 6009, WA (Australia)]. E-mail: bhl@physics.uwa.edu.au; Ju, L. [School of Physics, University of Western Australia, Crawley 6009, WA (Australia); Blair, D.G. [School of Physics, University of Western Australia, Crawley 6009, WA (Australia)
2005-05-23
We show that a simple modification of proposed ribbon suspensions for laser interferometric gravitational wave detectors can substantially reduce the amplitude of violin modes at the expense of a small deterioration of suspension thermal noise. Using low loss fused silica, large amplitude peaks which cause dynamic range problems can be reduced by 21 dB. The total number of horizontal longitudinal direction violin modes below 5 kHz is reduced to less than half that expected with conventional ribbon suspensions.
Energy Technology Data Exchange (ETDEWEB)
Emadi, E.; Zahed, H. [Physics Department, Faculty of Science, Sahand University of Technology, 51335–1996 Tabriz (Iran, Islamic Republic of)
2016-08-15
The behavior of linear and nonlinear dust ion acoustic (DIA) solitary waves in an unmagnetized quantum dusty plasma, including inertialess electrons and positrons, ions, and mobile negative dust grains, are studied. Reductive perturbation and Sagdeev pseudopotential methods are employed for small and large amplitude DIA solitary waves, respectively. A minimum value of the Mach number obtained for the existence of solitary waves using the analytical expression of the Sagdeev potential. It is observed that the variation on the values of the plasma parameters such as different values of Mach number M, ion to electron Fermi temperature ratio σ, and quantum diffraction parameter H can lead to the creation of compressive solitary waves.
Scattering of matter waves in spatially inhomogeneous environments
International Nuclear Information System (INIS)
Tsitoura, F.; Krüger, P.; Kevrekidis, P. G.; Frantzeskakis, D. J.
2015-01-01
In this article, we study scattering of quasi-one-dimensional matter waves at an interface of two spatial domains, one with repulsive and one with attractive interatomic interactions. It is shown that the incidence of a Gaussian wave packet from the repulsive to the attractive region gives rise to generation of a soliton train. More specifically, the number of emergent solitons can be controlled, e.g., by the variation of the amplitude or the width of the incoming wave packet. Furthermore, we study the reflectivity of a soliton incident from the attractive region to the repulsive one. We find the reflection coefficient numerically and employ analytical methods, which treat the soliton as a particle (for moderate and large amplitudes) or a quasilinear wave packet (for small amplitudes), to determine the critical soliton momentum (as a function of the soliton amplitude) for which total reflection is observed
Scattering of electromagnetic waves into plasma oscillations via plasma particles
International Nuclear Information System (INIS)
Lin, A.T.; Dawson, J.M.
1975-01-01
A plasma subjected to an intense electromagnetic wave can exhibit a large number of parametric instabilities. An interesting example which has received little attention is the decay of the electromagnetic wave into a plasma oscillation with the excess energy and momentum being carried off by electrons. This process has been simulated on a one-and-two-halves dimensional electromagnetic code. The incident electromagnetic wave had a frequency near the plasma frequency so that decay into a plasma oscillation and a backscattered electromagnetic wave was excluded. As expected, the threshold for this instability was very large , so it is unlikely that this instability is competitive in most laser plasmas. Nevertheless, the physical mechanism involved provides a means for absorption of laser light and acceleration of particles in a plasma containing large amplitude plasma oscillations
Asymptotic expansions for solitary gravity-capillary waves in two and three dimensions
International Nuclear Information System (INIS)
Ablowitz, M J; Haut, T S
2010-01-01
High-order asymptotic series are obtained for gravity-capillary solitary waves, where the first term in the series is the well-known sech 2 solution of the KdV equation. The asymptotic series is used, with nine terms included, to investigate the effects of surface tension on the height and energy of large amplitude waves, and waves close to the solitary version of Stokes' extreme wave. In particular, for surface tension below a critical value, the solitary wave with the maximum energy is obtained. For large surface tension, the series is also used to study the energy related to the solitary waves of depression. Energy considerations suggest that, for large enough surface tension, there are solitary waves that can get close to the fluid bottom. Comparisons are also made with recent experiments.
Directory of Open Access Journals (Sweden)
Vladimir Krivtsov
2014-04-01
Full Text Available This paper describes the physical model testing of an array of wave energy devices undertaken in the NTNU (Norwegian University of Science and Technology Trondheim basin between 8 and 20 October 2008 funded under the EU Hydralabs III initiative, and provides an analysis of the extreme mooring loads. Tests were completed at 1/20 scale on a single oscillating water column device and on close-packed arrays of three and five devices following calibration of instrumentation and the wave and current test environment. One wave energy converter (WEC was fully instrumented with mooring line load cells, optical motion tracker and accelerometers and tested in regular waves, short- and long-crested irregular waves and current. The wave and current test regimes were measured by six wave probes and a current meter. Arrays of three and five similar WECs, with identical mooring systems, were tested under similar environmental loading with partial monitoring of mooring forces and motions. The majority of loads on the mooring lines appeared to be broadly consistent with both logistic and normal distribution; whilst the right tail appeared to conform to the extreme value distribution. Comparison of the loads at different configurations of WEC arrays suggests that the results are broadly consistent with the hypothesis that the mooring loads should differ. In particular; the results from the tests in short crested seas conditions give an indication that peak loads in a multi WEC array may be considerably higher than in 1-WEC configuration. The test campaign has contributed essential data to the development of Simulink™ and Orcaflex™ models of devices, which include mooring system interactions, and data have also been obtained for inter-tank comparisons, studies of scale effects and validation of mooring system numerical models. It is hoped that this paper will help to draw the attention of a wider scientific community to the dataset freely available from the
Studies on the parametric decay of waves in fusion plasmas
International Nuclear Information System (INIS)
Paettikangas, T.
1992-08-01
Parametric instabilities of large-amplitude electromagnetic waves are investigated in fusion applications. In laser fusion, the electromegnetic wave reflected from the overdense plasma can act as a secondary pump wave and exite parametric instabilities. In double simulated Brilloun scattering (DSBS), both the incoming and the reflected pump wave scatter from a common ion sound wave. The stationary states and the dynamics of DSBS are investigated by using a simple envelope model. The ion sound wave that is exited in DSBS is shown to have soliton-like properties. The simulated Raman scattering (SRS) of free-electron-laser radiation can be applied to current drive in tokamaks. SRS generates fast longitudinal electron plasma waves which accelerate electrons to relativistic energies. Since the energetic current-carrying electrons are almost collisionless, the current decays very slowly. The feasibility of the Raman current drive in tokamaks is investigated theoretically. The current drive efficiency and the optimum free-electron-laser parameters are determined. The energy transfer to the fast electrons from the electrostatic wave is studied with relativistic Vlasov-Maxwell simulations. The parametric decay of a wave to half-harmonics is investigated. It is shown that the growth rate of the decay vanishes in the limit of a long wavelenght of the pump wave even for general electromagnetic or electrostatic decay models. The results are applied to the decay of a fast magnetosonic waves in tokamak plasmas. (orig.)
The instability of internal gravity waves to localised disturbances
Directory of Open Access Journals (Sweden)
J. Vanneste
1995-02-01
Full Text Available The instability of an internal gravity wave due to nonlinear wave-wave interaction is studied theoretically and numerically. Three different aspects of this phenomenon are examined. 1. The influence of dissipation on both the resonant and the nonresonant interactions is analysed using a normal mode expansion of the basic equations. In particular, the modifications induced in the interaction domain are calculated and as a result some modes are shown to be destabilised by dissipation. 2. The evolution of an initial unstable disturbance of finite vertical extent is described as the growth of two secondary wave packets travelling at the same group velocity. A quasi-linear correction to the basic primary wave is calculated, corresponding to a localised amplitude decrease due to the disturbance growth. 3. Numerical experiments are carried out to study the effect of a basic shear on wave instability. It appears that the growing secondary waves can have a frequency larger than that of the primary wave, provided that the shear is sufficient. The instability of waves with large amplitude and long period, such as tides or planetary waves, could therefore be invoked as a possible mechanism for the generation of gravity waves with shorter period in the middle atmosphere.
Directory of Open Access Journals (Sweden)
V. Deepa
2006-10-01
Full Text Available The altitude profiles of temperature fluctuations in the stratosphere and mesosphere observed with the Rayleigh Lidar at Gadanki (13.5° N, 79.2° E on 30 nights during January to March 1999 and 21 nights during February to April 2000 were analysed to bring out the temporal and vertical propagation characteristics of gravity wave perturbations. The gravity wave perturbations showed periodicities in the 0.5–3-h range and attained large amplitudes (4–5 K in the mesosphere. The phase propagation characteristics of gravity waves with different periods showed upward wave propagation with a vertical wavelength of 5–7 km. The mean flow acceleration computed from the divergence of momentum flux of gravity waves is compared with that calculated from monthly values of zonal wind obtained from RH-200 rockets flights. Thus, the contribution of gravity waves towards the generation of Stratospheric Semi Annual Oscillation (SSAO is estimated.
Observation of Faraday Waves in a Bose-Einstein Condensate
International Nuclear Information System (INIS)
Engels, P.; Atherton, C.; Hoefer, M. A.
2007-01-01
Faraday waves in a cigar-shaped Bose-Einstein condensate are created. It is shown that periodically modulating the transverse confinement, and thus the nonlinear interactions in the BEC, excites small amplitude longitudinal oscillations through a parametric resonance. It is also demonstrated that even without the presence of a continuous drive, an initial transverse breathing mode excitation of the condensate leads to spontaneous pattern formation in the longitudinal direction. Finally, the effects of strongly driving the transverse breathing mode with large amplitude are investigated. In this case, impact-oscillator behavior and intriguing nonlinear dynamics, including the gradual emergence of multiple longitudinal modes, are observed
Wu, Dong L.; Zhang, Fuqing
2004-01-01
Satellite microwave data are used to study gravity wave properties and variabilities over the northeastern United States and the North Atlantic in the December-January periods. The gravity waves in this region, found in many winters, can reach the stratopause with growing amplitude. The Advanced Microwave Sounding Unit-A (AMSU-A) observations show that the wave occurrences are correlated well with the intensity and location of the tropospheric baroclinic jet front systems. To further investigate the cause(s) and properties of the North Atlantic gravity waves, we focus on a series of wave events during 19-21 January 2003 and compare AMSU-A observations to simulations from a mesoscale model (MM5). The simulated gravity waves compare qualitatively well with the satellite observations in terms of wave structures, timing, and overall morphology. Excitation mechanisms of these large-amplitude waves in the troposphere are complex and subject to further investigations.
Ion stochastic heating by obliquely propagating magnetosonic waves
International Nuclear Information System (INIS)
Gao Xinliang; Lu Quanming; Wu Mingyu; Wang Shui
2012-01-01
The ion motions in obliquely propagating Alfven waves with sufficiently large amplitudes have already been studied by Chen et al.[Phys. Plasmas 8, 4713 (2001)], and it was found that the ion motions are stochastic when the wave frequency is at a fraction of the ion gyro-frequency. In this paper, with test particle simulations, we investigate the ion motions in obliquely propagating magnetosonic waves and find that the ion motions also become stochastic when the amplitude of the magnetosonic waves is sufficiently large due to the resonance at sub-cyclotron frequencies. Similar to the Alfven wave, the increase of the propagating angle, wave frequency, and the number of the wave modes can lower the stochastic threshold of the ion motions. However, because the magnetosonic waves become more and more compressive with the increase of the propagating angle, the decrease of the stochastic threshold with the increase of the propagating angle is more obvious in the magnetosonic waves than that in the Alfven waves.
International Nuclear Information System (INIS)
Ebrahim, N.A.; Douglas, S.R.
1992-03-01
Electron acceleration by relativistic large-amplitude electron plasma waves is studied by theory and particle simulations. The maximum acceleration that can be obtained from this process depends on many different factors. This report presents a study of how these various factors impact on the acceleration mechanism. Although particular reference is made to the laser plasma beatwave concept, the study is equally relevant to the acceleration of particles in the plasma wakefield accelerator and the laser wakefield accelerator
Electron Acoustic Waves in Pure Ion Plasmas
Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.
2012-10-01
Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v vphvph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.
Planetary wave-gravity wave interactions during mesospheric inversion layer events
Ramesh, K.; Sridharan, S.; Raghunath, K.; Vijaya Bhaskara Rao, S.; Bhavani Kumar, Y.
2013-07-01
lidar temperature observations over Gadanki (13.5°N, 79.2°E) show a few mesospheric inversion layer (MIL) events during 20-25 January 2007. The zonal mean removed SABER temperature shows warm anomalies around 50°E and 275°E indicating the presence of planetary wave of zonal wave number 2. The MIL amplitudes in SABER temperature averaged for 10°N-15°N and 70°E-90°E show a clear 2 day wave modulation during 20-28 January 2007. Prior to 20 January 2007, a strong 2day wave (zonal wave number 2) is observed in the height region of 80-90 km and it gets largely suppressed during 20-26 January 2007 as the condition for vertical propagation is not favorable, though it prevails at lower heights. The 10 day mean zonal wind over Tirunelveli (8.7°N, 77.8°E) shows deceleration of eastward winds indicating the westward drag due to wave dissipation. The nightly mean MF radar observed zonal winds show the presence of alternating eastward and westward winds during the period of 20-26 January 2007. The two dimensional spectrum of Rayleigh lidar temperature observations available for the nights of 20, 22, and 24 January 2007 shows the presence of gravity wave activity with periods 18 min, 38 min, 38 min, and vertical wavelengths 6.4 km, 4.0 km, 6.4 km respectively. From the dispersion relation of gravity waves, it is inferred that these waves are internal gravity waves rather than inertia gravity waves with the horizontal phase speeds of ~40 m/s, ~37 m/s, and ~50 m/s respectively. Assuming the gravity waves are eastward propagating waves, they get absorbed only in the eastward local wind fields of the planetary wave thereby causing turbulence and eddy diffusion which can be inferred from the estimation of large drag force due to the breaking of gravity wave leading to the formation of large amplitude inversion events in alternate nights. The present study shows that, the mesospheric temperature inversion is caused mainly due to the gravity wave breaking and the inversion
Nonlinear acoustic waves in partially ionized collisional plasmas
International Nuclear Information System (INIS)
Rao, N.N.; Kaup, D.J.; Shukla, P.K.
1991-01-01
Nonlinear propagation of acoustic-type waves in a partially ionized three-component collisional plasma consisting of electrons, ions and neutral particles is investigated. For bidirectional propagation, it is shown that the small- but finite-amplitude waves are governed by the Boussinesq equation, which for unidirectional propagation near the acoustic speed reduces to the usual Korteweg-de Vries equation. For large-amplitude waves, it is demonstrated that the relevant fluid equations are integrable in a stationary frame, and the parameter values for the existence of finite-amplitude solutions are explicitly obtained. In both cases, the different temperatures of the individual species, are taken into account. The relevance of the results to the earth's ionospheric plasma in the lower altitude ranges is pointed out. (author)
Filamentation of a surface plasma wave over a semiconductor-free space interface
Kumar, Gagan; Tripathi, V. K.
2007-12-01
A large amplitude surface plasma wave (SPW), propagating over a semiconductor-free space interface, is susceptible to filamentation instability. A small perturbation in the amplitude of the SPW across the direction of propagation exerts a ponderomotive force on free electrons and holes, causing spatial modulation in free carrier density and hence the effective permittivity ɛeff of the semiconductor. The regions with higher ɛeff attract more power from the nieghborhood, leading to the growth of the perturbation. The growth rate increases with the intensity of the surface wave. It decreases with the frequency of the SPW.
Barberopoulou, A.; Qamar, A.; Pratt, T.L.; Creager, K.C.; Steele, W.P.
2004-01-01
The Mw7.9 Denali, Alaska earthquake of 3 November, 2002, caused minor damage to at least 20 houseboats in Seattle, Washington by initiating water waves in Lake Union. These water waves were likely initiated during the large amplitude seismic surface waves from this earthquake. Maps of spectral amplification recorded during the Denali earthquake on the Pacific Northwest Seismic Network (PNSN) strong-motion instruments show substantially increased shear and surface wave amplitudes coincident with the Seattle sedimentary basin. Because Lake Union is situated on the Seattle basin, the size of the water waves may have been increased by local amplification of the seismic waves by the basin. Complete hazard assessments require understanding the causes of these water waves during future earthquakes. Copyright 2004 by the American Geophysical Union.
Wave-particle Interactions in Space and Laboratory Plasmas
An, Xin
are trapped by the large amplitude Langmuir wave and are accelerated to the beam energy level in the parallel direction. The excitation of whistler waves through Landau resonance is limited by the saturation of Langmuir waves, due to a faster depletion rate of the beam free energy from ∂fb/∂v ∥> 0 by the latter compare to the former. The second part of the thesis considers the interaction between electromagnetic ion cyclotron (EMIC) waves and relativistic electrons. Nonlinear interactions between them are investigated in a two-wave oscillator model. Three interaction regimes are identified depending on the separation of the two wave numbers. Both the decoupled and degenerate regimes are characterized by phase bunching, in which the resonant electrons are scattered preferentially to one direction rather than diffusively. In the coupled regime, resonant electrons experience alternate trapping and de-trapping near the separatrix, from which stochastic motion of electrons arises. For a continuous spectrum of EMIC waves, test particle simulations are compared against quasi-linear diffusion theory (QLT) description of the wave-particle interactions. QLT gives similar results as test particle simulations for the small amplitude and broadband waves, whereas it fails for large amplitude and narrowband waves. By varying the wave spectral width and wave intensity systematically, a regime map is constructed to indicate the applicability of QLT in the wave parameter space.
Langmuir wave-packet generation from an electron beam propagating in the inhomogeneous solar wind
International Nuclear Information System (INIS)
Zaslavsky, A.; Maksimovic, M.; Volokitin, A. S.; Krasnoselskikh, V. V.; Bale, S. D.
2010-01-01
Recent in-situ observations by the TDS instrument equipping the STEREO spacecraft revealed that large amplitude spatially localized Langmuir waves are frequent in the solar wind, and correlated with the presence of suprathermal electron beams during type III events or close to the electron foreshock. We briefly present the new theoretical model used to perform the study of these localized electrostatic waves, and show first results of simulations of the destabilization of Langmuir waves by a beam propagating in the inhomogeneous solar wind. The main results are that the destabilized waves are mainly focalized near the minima of the density profiles, and that the nonlinear interaction of the waves with the resonant particles enhances this focalization compared to a situation in which the only propagation effects are taken into account.
Saturation of Langmuir waves in laser-produced plasmas
International Nuclear Information System (INIS)
Baker, K.L.
1996-04-01
This dissertation deals with the interaction of an intense laser with a plasma (a quasineutral collection of electrons and ions). During this interaction, the laser drives large-amplitude waves through a class of processes known as parametric instabilities. Several such instabilities drive one type of wave, the Langmuir wave, which involves oscillations of the electrons relative to the nearly-stationary ions. There are a number of mechanisms which limit the amplitude to which Langmuir waves grow. In this dissertation, these mechanisms are examined to identify qualitative features which might be observed in experiments and/or simulations. In addition, a number of experiments are proposed to specifically look for particular saturation mechanisms. In a plasma, a Langmuir wave can decay into an electromagnetic wave and an ion wave. This parametric instability is proposed as a source for electromagnetic emission near half of the incident laser frequency observed from laser-produced plasmas. This interpretation is shown to be consistent with existing experimental data and it is found that one of the previous mechanisms used to explain such emission is not. The scattering version of the electromagnetic decay instability is shown to provide an enhanced noise source of electromagnetic waves near the frequency of the incident laser
Assimilation of Wave Imaging Radar Observations for Real-time Wave-by-Wave Forecasting
Energy Technology Data Exchange (ETDEWEB)
Simpson, Alexandra [Oregon State Univ., Corvallis, OR (United States); Haller, Merrick [Oregon State Univ., Corvallis, OR (United States). School of Civil & Construction Engineering; Walker, David [SRI International, Menlo Park, CA (United States); Lynett, Pat [Univ. of Southern California, Los Angeles, CA (United States)
2017-08-29
-resolved predictions. Two recommendations for future work are as follows: first, we would recommend additional focused field campaigns for algorithm validation. The field campaign should be long enough to capture a range of wave conditions relevant to the target application and WEC site. In addition, it will be crucial to make sure the vessel of choice has high accuracy position and heading instrumentation (this instrumentation is commercially available but not standard on commercial fishing vessels). The second recommendation is to expand the model physics in the wave model backbone to include some nonlinear effects. Specifically, the third-order correction to the wave speed due to amplitude dispersion would be the next step in order to more accurately represent the phase speeds of large amplitude waves.
Energy Technology Data Exchange (ETDEWEB)
McHugh, John P. [The University of New Hampshire, Department of Mechanical Engineering, Kingsbury Hall, Durham, NH (United States)
2008-04-15
Internal waves propagating in an idealized two-layer atmosphere are studied numerically. The governing equations are the inviscid anelastic equations for a perfect gas atmosphere. The numerical formulation eliminates all variables in the linear terms except vertical velocity, which are then treated implicitly. Nonlinear terms are treated explicitly. The basic state is a two-layer flow with continuous density at the interface. Each layer has a unique constant for the Brunt-Vaeisaelae frequency. Waves are forced at the bottom of the domain, are periodic in the horizontal direction, and form a finite wave packet in the vertical. The results show that the wave packet forms a mean flow that is confined to the interface region that persists long after the wave packet has moved away. Large-amplitude waves are forced to break beneath the interface. (orig.)
Lagrangian modelling of ocean surface waves and synthetic aperture radar wave measurements
Energy Technology Data Exchange (ETDEWEB)
Fouques, Sebastien
2005-07-01
, along with a RAR modulation transfer function (MTF) with a larger amplitude. Eventually, an optimization of the RAR MTF is carried out by making use of the co-located database and the dependency of the optimized parameters on the wind velocity is studied. In the last three articles. Lagrangian models for ocean surface waves are investigated, and the main results are the following. In Article III, ocean surface properties such as the slope and the curvature are studied for linear irregular waves, and the difference between the Eulerian and the Lagrangian wave spectra is illustrated. In addition, some features of the second-order Lagrangian solution for irregular long-crested waves are presented. Then, in Article IV, the Lagrangian equations of motion, as given in Lamb (1932), are extended to include the irrotational flow assumption and simplified by eliminating the pressure. The first-order solution for two-dimensional irregular waves given by Pierson (1961) is modified through a change of variables that makes the mass conservation equation be fulfilled exactly, instead of being correct to the first order only. The resulting waves show higher sharp crests than in Pierson's solution, in which some water locally and temporary disappears in the vicinity of the surface. Furthermore, a three-dimensional second-order irrotational solution is derived. Monte Carlo simulations of irregular long-crested waves reveal that the fronts of some waves may steepen, while the fluid located on their back side and near the surface is hurled forward, in a way similar to an early stage breaking wave. Then, it is demonstrated that at the second order, short-crested waves develop curved crests owing to a non-uniform current field. Finally, the ability of the Lagrangian formalism to describe capillary waves is investigated in Article V. Assuming that surface tension is the only restoring force, the profile of the first-order monochromatic solution is the same as for gravity waves, with
O Wave Interactions: Explosive Resonant Triads and Critical Layers.
Mahoney, Daniel J.
This thesis considers the phenomenon of explosive resonant triads in weakly nonlinear, dispersive wave systems. These are nearly linear waves with slowly varying amplitudes which become unbounded in finite time. It is shown that such interactions are much stronger than previously thought. These waves can be thought of as a nonlinear instability, in the sense that a weakly nonlinear perturbation to some system grows to such magnitudes that the behavior of the system is governed by strongly nonlinear effects. This may occur for systems which are linearly or neutrally stable. This is contrasted with previous resolutions of this problem, which treated such perturbations as being large amplitude, nearly linear waves. Analytical and numerical evidence is presented to support these claims. These waves represent a potentially important effect in a variety of physical systems, most notably plasma physics. Attention here is turned to their occurrence in fluid mechanics. Here previous work is extended to include flow systems with continuously varying basic velocities and densities. Many of the problems encountered here will be found to be of a singular nature themselves, and the techniques for analyzing these difficulties will be developed. This will involve the concept of a critical layer in a fluid, a level at which a wave phase speed equals the unperturbed fluid velocity in the direction of propagation. Examples of such waves in this context will be presented. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).
Understanding the Physical Nature of Coronal "EIT Waves".
Long, D M; Bloomfield, D S; Chen, P F; Downs, C; Gallagher, P T; Kwon, R-Y; Vanninathan, K; Veronig, A M; Vourlidas, A; Vršnak, B; Warmuth, A; Žic, T
2017-01-01
For almost 20 years the physical nature of globally propagating waves in the solar corona (commonly called "EIT waves") has been controversial and subject to debate. Additional theories have been proposed over the years to explain observations that did not agree with the originally proposed fast-mode wave interpretation. However, the incompatibility of observations made using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory with the fast-mode wave interpretation was challenged by differing viewpoints from the twin Solar Terrestrial Relations Observatory spacecraft and data with higher spatial and temporal resolution from the Solar Dynamics Observatory . In this article, we reexamine the theories proposed to explain EIT waves to identify measurable properties and behaviours that can be compared to current and future observations. Most of us conclude that the so-called EIT waves are best described as fast-mode large-amplitude waves or shocks that are initially driven by the impulsive expansion of an erupting coronal mass ejection in the low corona.
MESSENGER Observations of ULF Waves in Mercury's Foreshock Region
Le, Guan; Chi, Peter J.; Bardsen, Scott; Blanco-Cano, Xochitl; Slavin, James A.; Korth, Haje
2012-01-01
The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth s is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury s bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury s foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury s foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the 1-Hz waves in the Earth s foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth s foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper.
Magnetospheric pulsations: Models and observations of compressional waves
International Nuclear Information System (INIS)
Zhu, Xiaoming.
1989-01-01
The first part of the dissertation models ultralow frequency (ULF) waves in a simplified geometry in order to understand the physics of the mode coupling between the compressional and shear Alfven waves in an inhomogeneous magnetized plasma. Wave mode coupling occurs when a field line resonant frequency (defined by the shear Alfven mode) matches the global mode frequency (defined by the compressional mode). Large wave amplitudes occur near the resonant field line. Although the wave amplitude of the global mode is small away from resonant field lines, significant wave energy is stored in the wave mode due to its large scale nature. It serves as a reservoir to continuously feed energy to resonant field lines. This mechanism may explain why some field line resonances can last for times longer than that predicted from the ionospheric Joule dissipation. A nonmonotonic Alfven velocity divides the magnetosphere into two or more cavities by the local maxima of the Alfven velocity. The global mode is typically localized in one of the cavities except at some preferred frequencies, the global mode can extend through more than one cavity. This may explain ULF wave excitations in the low latitude magnetosphere. The second part of the dissertation is devoted to study compressional waves in the outer magnetosphere using magnetic field and plasma data. Statistical information on the distribution of compressional Pc 5 waves in the outer magnetosphere is obtained. Large amplitude, long period compressional Pc 5 pulsations are found very common near the magnetic equator. They are polarized mainly in a meridian plane with comparable compressional and transverse amplitudes. Close correlation between compressional wave amplitude and plasma β is also found. Several case studies show that compressional waves are quenched in the region where β < 1
Generation of ion-acoustic waves in an inductively coupled, low-pressure discharge lamp
International Nuclear Information System (INIS)
Camparo, J. C.; Klimcak, C. M.
2006-01-01
For a number of years it has been known that the alkali rf-discharge lamps used in atomic clocks can exhibit large amplitude intensity oscillations. These oscillations arise from ion-acoustic plasma waves and have typically been associated with erratic clock behavior. Though large amplitude ion-acoustic plasma waves are clearly deleterious for atomic clock operation, it does not follow that small amplitude oscillations have no utility. Here, we demonstrate two easily implemented methods for generating small amplitude ion-acoustic plasma waves in alkali rf-discharge lamps. Furthermore, we demonstrate that the frequency of these waves is proportional to the square root of the rf power driving the lamp and therefore that their examination can provide an easily accessible parameter for monitoring and controlling the lamp's plasma conditions. This has important consequences for precise timekeeping, since the atomic ground-state hyperfine transition, which is the heart of the atomic clock signal, can be significantly perturbed by changes in the lamp's output via the ac-Stark shift
Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III
2017-12-01
Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (∼ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with
Swanson, DG
1989-01-01
Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th
Electron-acoustic solitary waves in the Earth's inner magnetosphere
Dillard, C. S.; Vasko, I. Y.; Mozer, F. S.; Agapitov, O. V.; Bonnell, J. W.
2018-02-01
The broadband electrostatic turbulence observed in the inner magnetosphere is produced by large-amplitude electrostatic solitary waves of generally two types. The solitary waves with symmetric bipolar parallel (magnetic field-aligned) electric field are electron phase space holes. The solitary waves with highly asymmetric bipolar parallel electric field have been recently shown to correspond to the electron-acoustic plasma mode (existing due to two-temperature electron population). Through theoretical and numerical analysis of hydrodynamic and modified Korteweg-de Vries equations, we demonstrate that the asymmetric solitary waves appear due to the steepening of initially quasi-monochromatic electron-acoustic perturbation arrested at some moment by collisionless dissipation (Landau damping). The typical steepening time is found to be from a few to tens of milliseconds. The steepening of the electron-acoustic waves has not been reproduced in self-consistent kinetic simulations yet, and factors controlling the formation of steepened electron-acoustic waves, rather than electron phase space holes, remain unclear.
Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu
2015-12-02
As an important way to control and manage heat transport, thermal rectification has become an elementary issue in the field of phononics and plays a key role in the designing of thermal devices. Here we investigate systematically the standing wave and the accompanying resonance process in asymmetric nanowires to understand the standing wave itself and its great effect on thermal rectification. Results show that the standing wave is sensitive to both the structural and thermal properties of the material, and its great effect on enhancing the thermal rectification is realized not only by the energy-localization nature of the standing wave, but also by the resonance-caused large amplitude and high energy of the standing wave.
Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and spasms due ... that the body is having trouble with the heat. If a heat wave is predicted or happening… - ...
DEFF Research Database (Denmark)
Kramer, Morten; Brorsen, Michael; Frigaard, Peter
Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....
Trapped Electron Instability of Electron Plasma Waves: Vlasov simulations and theory
Berger, Richard; Chapman, Thomas; Brunner, Stephan
2013-10-01
The growth of sidebands of a large-amplitude electron plasma wave is studied with Vlasov simulations for a range of amplitudes (. 001 vph = +/-ωbe , where vph =ω0 /k0 and ωbe is the bounce frequency of a deeply trapped electron. In 2D simulations, we find that the instability persists and co-exists with the filamentation instability. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD.
Energy Technology Data Exchange (ETDEWEB)
Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-10-18
This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.
Towne, Dudley H
1988-01-01
This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.
DEFF Research Database (Denmark)
This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....
DEFF Research Database (Denmark)
Kofoed, Jens Peter; Frigaard, Peter; Sørensen, H. C.
1998-01-01
This paper concerns with the development of the wave energy converter (WEC) Wave Dragon. This WEC is based on the overtopping principle. An overview of the performed research done concerning the Wave Dragon over the past years is given, and the results of one of the more comprehensive studies, co...
Resonant magnetohydrodynamic waves in high-beta plasmas
International Nuclear Information System (INIS)
Ruderman, M. S.
2009-01-01
When a global magnetohydrodynamic (MHD) wave propagates in a weakly dissipative inhomogeneous plasma, the resonant interaction of this wave with either local Alfven or slow MHD waves is possible. This interaction occurs at the resonant position where the phase velocity of the global wave coincides with the phase velocity of either Alfven or slow MHD waves. As a result of this interaction a dissipative layer embracing the resonant position is formed, its thickness being proportional to R -1/3 , where R>>1 is the Reynolds number. The wave motion in the resonant layer is characterized by large amplitudes and large gradients. The presence of large gradients causes strong dissipation of the global wave even in very weakly dissipative plasmas. Very often the global wave motion is characterized by the presence of both Alfven and slow resonances. In plasmas with small or moderate plasma beta β, the resonance positions corresponding to the Alfven and slow resonances are well separated, so that the wave motion in the Alfven and slow dissipative layers embracing the Alfven and slow resonant positions, respectively, can be studied separately. However, when β > or approx. R 1/3 , the two resonance positions are so close that the two dissipative layers overlap. In this case, instead of two dissipative layers, there is one mixed Alfven-slow dissipative layer. In this paper the wave motion in such a mixed dissipative layer is studied. It is shown that this motion is a linear superposition of two motions, one corresponding to the Alfven and the other to the slow dissipative layer. The jump of normal velocity across the mixed dissipative layer related to the energy dissipation rate is equal to the sum of two jumps, one that occurs across the Alfven dissipative layer and the other across the slow dissipative layer.
Nonlinear water waves: introduction and overview
Constantin, A.
2017-12-01
For more than two centuries progress in the study of water waves proved to be interdependent with innovative and deep developments in theoretical and experimental directions of investigation. In recent years, considerable progress has been achieved towards the understanding of waves of large amplitude. Within this setting one cannot rely on linear theory as nonlinearity becomes an essential feature. Various analytic methods have been developed and adapted to come to terms with the challenges encountered in settings where approximations (such as those provided by linear or weakly nonlinear theory) are ineffective. Without relying on simpler models, progress becomes contingent upon the discovery of structural properties, the exploitation of which requires a combination of creative ideas and state-of-the-art technical tools. The successful quest for structure often reveals unexpected patterns and confers aesthetic value on some of these studies. The topics covered in this issue are both multi-disciplinary and interdisciplinary: there is a strong interplay between mathematical analysis, numerical computation and experimental/field data, interacting with each other via mutual stimulation and feedback. This theme issue reflects some of the new important developments that were discussed during the programme `Nonlinear water waves' that took place at the Isaac Newton Institute for Mathematical Sciences (Cambridge, UK) from 31st July to 25th August 2017. A cross-section of the experts in the study of water waves who participated in the programme authored the collected papers. These papers illustrate the diversity, intensity and interconnectivity of the current research activity in this area. They offer new insight, present emerging theoretical methodologies and computational approaches, and describe sophisticated experimental results. This article is part of the theme issue 'Nonlinear water waves'.
Rubinstein, Justin L.; Gomberg, Joan; Vidale, John E.; Wech, Aaron G.; Kao, Honn; Creager, Kenneth C.; Rogers, Garry
2009-02-01
We explore the physical conditions that enable triggering of nonvolcanic tremor and earthquakes by considering local seismic activity on Vancouver Island, British Columbia during and immediately after the arrival of large-amplitude seismic waves from 30 teleseismic and 17 regional or local earthquakes. We identify tremor triggered by four of the teleseismic earthquakes. The close temporal and spatial proximity of triggered tremor to ambient tremor and aseismic slip indicates that when a fault is close to or undergoing failure, it is particularly susceptible to triggering of further events. The amplitude of the triggering waves also influences the likelihood of triggering both tremor and earthquakes such that large amplitude waves triggered tremor in the absence of detectable aseismic slip or ambient tremor. Tremor and energy radiated from regional/local earthquakes share the same frequency passband so that tremor cannot be identified during these smaller, more frequent events. We confidently identify triggered local earthquakes following only one teleseism, that with the largest amplitude, and four regional or local events that generated vigorous aftershock sequences in their immediate vicinity. Earthquakes tend to be triggered in regions different from tremor and with high ambient seismicity rates. We also note an interesting possible correlation between large teleseismic events and episodic tremor and slip (ETS) episodes, whereby ETS events that are "late" and have built up more stress than normal are susceptible to triggering by the slight nudge of the shaking from a large, distant event, while ETS events that are "early" or "on time" are not.
Jaffe, Lionel F
2008-04-12
Waves through living systems are best characterized by their speeds at 20 degrees C. These speeds vary from those of calcium action potentials to those of ultraslow ones which move at 1-10 and/or 10-20 nm s(-1). All such waves are known or inferred to be calcium waves. The two classes of calcium waves which include ones with important morphogenetic effects are slow waves that move at 0.2-2 microm s(-1) and ultraslow ones. Both may be propagated by cycles in which the entry of calcium through the plasma membrane induces subsurface contraction. This contraction opens nearby stretch-sensitive calcium channels. Calcium entry through these channels propagates the calcium wave. Many slow waves are seen as waves of indentation. Some are considered to act via cellular peristalsis; for example, those which seem to drive the germ plasm to the vegetal pole of the Xenopus egg. Other good examples of morphogenetic slow waves are ones through fertilizing maize eggs, through developing barnacle eggs and through axolotl embryos during neural induction. Good examples of ultraslow morphogenetic waves are ones during inversion in developing Volvox embryos and across developing Drosophila eye discs. Morphogenetic waves may be best pursued by imaging their calcium with aequorins.
Energy Technology Data Exchange (ETDEWEB)
Nazarenko, Sergey [Warwick Univ., Coventry (United Kingdom). Mathematics Inst.
2011-07-01
Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as ''frozen'' turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field. (orig.)
Force-controlled absorption in a fully-nonlinear numerical wave tank
International Nuclear Information System (INIS)
Spinneken, Johannes; Christou, Marios; Swan, Chris
2014-01-01
An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes
'Oscillator-wave' model: properties and heuristic instances
International Nuclear Information System (INIS)
Damgov, Vladimir; Trenchev, Plamen; Sheiretsky, Kostadin
2003-01-01
The article considers a generalized model of an oscillator, subjected to the influence of an external wave. It is shown that the systems of diverse physical background, which this model encompasses by their nature, should belong to the broader, proposed in previous works class of 'kick-excited self-adaptive dynamical systems'. The theoretical treatment includes an analytic approach to the conditions for emergence of small and large amplitudes, i.e. weak and strong non-linearity of the system. Derived also are generalized conditions for the transition of systems of this 'oscillator-wave' type to non-regular and chaotic behaviour. For the purpose of demonstrating the heuristic properties of the generalized oscillator-wave model from this point of view are considered the relevant systems and phenomena of the quantized cyclotron resonance and the megaquantum resonance-wave model of the Solar System. We point to a number of other natural and scientific phenomena, which can be effectively analyzed from the point of view of the developed approach. In particular we stress on the possibility for development and the wide applicability of specific wave influences, for example for the improvement and the speeding up of technological processes
Performance of Ships and Offshore Structures in Waves
Directory of Open Access Journals (Sweden)
Shukui Liu
2012-01-01
for predicting large amplitude motions of ships and floating structures in response to incoming waves in the frame of potential theory. The developed alternative set of time domain methods simulate the hydrodynamic forces acting on ships advancing in waves with constant speed. For motions’ simulation, the diffraction forces and radiation forces are calculated up to the mean wetted surface, while the Froude-Krylov forces and hydrostatic restoring forces are calculated up to the undisturbed incident wave surface in case of large incident wave amplitude. This enables the study of the above waterline hull form effect. Characteristic case studies on simulating the hydrodynamic forces and motions of standard type of ships have been conducted for validation purpose. Good agreement with other numerical codes and experimental data has been observed. Furthermore, the added resistance of ships in waves can be calculated by the presented methods. This capability supports the increased demand of this type of tools for the proper selection of engine/propulsion systems accounting for ship’s performance in realistic sea conditions, or when optimizing ship’s sailing route for minimum fuel consumption and toxic gas emissions.
Precursor Wave Emission Enhanced by Weibel Instability in Relativistic Shocks
Iwamoto, Masanori; Amano, Takanobu; Hoshino, Masahiro; Matsumoto, Yosuke
2018-05-01
We investigated the precursor wave emission efficiency in magnetized purely perpendicular relativistic shocks in pair plasmas. We extended our previous study to include the dependence of upstream magnetic field orientations. We performed two-dimensional particle-in-cell simulations and focused on two magnetic field orientations: the magnetic field in the simulation plane (i.e., in-plane configuration) and that perpendicular to the simulation plane (i.e., out-of-plane configuration). Our simulations in the in-plane configuration demonstrated that not only extraordinary but also ordinary mode waves are excited. We quantified the emission efficiency as a function of the magnetization parameter σ e and found that the large-amplitude precursor waves are emitted for a wide range of σ e . We found that especially at low σ e , the magnetic field generated by Weibel instability amplifies the ordinary mode wave power. The amplitude is large enough to perturb the upstream plasma, and transverse density filaments are generated as in the case of the out-of-plane configuration investigated in the previous study. We confirmed that our previous conclusion holds regardless of upstream magnetic field orientations with respect to the two-dimensional simulation plane. We discuss the precursor wave emission in three dimensions and the feasibility of wakefield acceleration in relativistic shocks based on our results.
A study of shock-associated magnetohydrodynamic waves in the solar wind
Spangler, Steven R.
1992-01-01
Three major topics were addressed, one theoretical and two observational. The topics were: (1) an attempt to understand the evolution of the large-amplitude magnetohydrodynamic (MHD) waves in the foreshock, using a nonlinear wave equation called the Derivative Nonlinear Schrodinger equation (henceforth DNLS) as a model, (2) using the extensive set of ISE data to test for the presence of various nonlinear wave processes which might be present, and (3) a study of plasma turbulence in the interstellar medium which might be physically similar to that in the solar wind. For these investigations we used radioastronomical techniques. Good progress was made in each of these areas and a separate discussion of each is given.
EXPERIMENTAL DETERMINATION OF WHISTLER WAVE DISPERSION RELATION IN THE SOLAR WIND
Energy Technology Data Exchange (ETDEWEB)
Stansby, D.; Horbury, T. S.; Chen, C. H. K.; Matteini, L., E-mail: david.stansby14@imperial.ac.uk [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom)
2016-09-20
The origins and properties of large-amplitude whistler wavepackets in the solar wind are still unclear. In this Letter, we utilize single spacecraft electric and magnetic field waveform measurements from the ARTEMIS mission to calculate the plasma frame frequency and wavevector of individual wavepackets over multiple intervals. This allows direct comparison of experimental measurements with theoretical dispersion relations to identify the observed waves as whistler waves. The whistlers are right-hand circularly polarized, travel anti-sunward, and are aligned with the background magnetic field. Their dispersion is strongly affected by the local electron parallel beta in agreement with linear theory. The properties measured are consistent with the electron heat flux instability acting in the solar wind to generate these waves.
Wave propagation in a bounded plasma with striction nonlinearity taken into account
International Nuclear Information System (INIS)
Brazhnik, V.A.; Grishaev, V.I.; Demchenko, V.V.; Pavlov, S.S.; Panchenko, V.I.; AN Ukrainskoj SSR, Kharkov. Fiziko-Tekhnicheskij Inst. Nizkikh Temperatur)
1981-01-01
Electromagnetic wave propagation in plasma is analyzed with striction nonlinearity taken into account. The reflection of a circularly polarized wave falling on a layer of homogeneous magnetoactive plasma is analytically investigated under conditions of linear skinning. The large amplitude TE-type wave propagation along the layer of isotropic plasma is numerically determined. It is shown that the distribution of the electric field amplitude essentially differs from the one predicted from the linear theory. Some periodic distributions across the layer become possible, in particular numerical modelling makes it possible to study the evolution of solitons generated by a monochromatic pump field in an inhomogeneous plasma layer bounded by ideally conducting surfaces. It is shown that generated solitons interact with those reflected from the boundary without any change of their form [ru
A Proton-Cyclotron Wave Storm Generated by Unstable Proton Distribution Functions in the Solar Wind
Wicks, R. T.; Alexander, R. L.; Stevens, M.; Wilson, L. B., III; Moya, P. S.; Vinas, A.; Jian, L. K.; Roberts, D. A.; O’Modhrain, S.; Gilbert, J. A.;
2016-01-01
We use audification of 0.092 seconds cadence magnetometer data from the Wind spacecraft to identify waves with amplitudes greater than 0.1 nanoteslas near the ion gyrofrequency (approximately 0.1 hertz) with duration longer than 1 hour during 2008. We present one of the most common types of event for a case study and find it to be a proton-cyclotron wave storm, coinciding with highly radial magnetic field and a suprathermal proton beam close in density to the core distribution itself. Using linear Vlasov analysis, we conclude that the long-duration, large-amplitude waves are generated by the instability of the proton distribution function. The origin of the beam is unknown, but the radial field period is found in the trailing edge of a fast solar wind stream and resembles other events thought to be caused by magnetic field footpoint motion or interchange reconnection between coronal holes and closed field lines in the corona.
Multicomponent long-wave-short-wave resonance interaction system: Bright solitons, energy-sharing collisions, and resonant solitons.
Sakkaravarthi, K; Kanna, T; Vijayajayanthi, M; Lakshmanan, M
2014-11-01
We consider a general multicomponent (2+1)-dimensional long-wave-short-wave resonance interaction (LSRI) system with arbitrary nonlinearity coefficients, which describes the nonlinear resonance interaction of multiple short waves with a long wave in two spatial dimensions. The general multicomponent LSRI system is shown to be integrable by performing the Painlevé analysis. Then we construct the exact bright multisoliton solutions by applying the Hirota's bilinearization method and study the propagation and collision dynamics of bright solitons in detail. Particularly, we investigate the head-on and overtaking collisions of bright solitons and explore two types of energy-sharing collisions as well as standard elastic collision. We have also corroborated the obtained analytical one-soliton solution by direct numerical simulation. Also, we discuss the formation and dynamics of resonant solitons. Interestingly, we demonstrate the formation of resonant solitons admitting breather-like (localized periodic pulse train) structure and also large amplitude localized structures akin to rogue waves coexisting with solitons. For completeness, we have also obtained dark one- and two-soliton solutions and studied their dynamics briefly.
MAVEN Observation of an Obliquely Propagating Low-Frequency Wave Upstream of Mars
Ruhunusiri, Suranga; Halekas, J. S.; Connerney, J. E. P.; Espley, J. R.; McFadden, J. P.; Mazelle, C.; Brain, D.; Collinson, G.; Harada, Y.; Larson, D. E.;
2016-01-01
We report Mars Atmosphere and Volatile EvolutioN (MAVEN) mission observations of a large amplitude low-frequency plasma wave that propagated oblique to the ambient magnetic field upstream of Mars along with a non-solar-wind plasma component that had a flow velocity perpendicular to the magnetic field. We consider nine possibilities for this wave that include various combinations of its propagation direction, polarization in the solar wind frame, and ion source responsible for its generation. Using the observed wave parameters and the measured plasma parameters as constraints, we uniquely identify the wave by systematically discarding these possibilities. We determine that the wave is a right-hand polarized wave that propagated upstream in the solar wind frame. We find two possibilities for the ion source that can be responsible for this wave generation. They are either newly born pickup protons or reflected solar wind protons from the bow shock.We determine that the observed non-solar-wind component is not responsible for the wave generation, and it is likely that the non-solar-wind component was merely perturbed by the passage of the wave.
CERN. Geneva
2005-01-01
We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.
On the interaction of deep water waves and exponential shear currents
Cheng, Jun; Cang, Jie; Liao, Shi-Jun
2009-05-01
A train of periodic deep-water waves propagating on a steady shear current with a vertical distribution of vorticity is investigated by an analytic method, namely the homotopy analysis method (HAM). The magnitude of the vorticity varies exponentially with the magnitude of the stream function, while remaining constant on a particular streamline. The so-called Dubreil-Jacotin transformation is used to transfer the original exponentially nonlinear boundary-value problem in an unknown domain into an algebraically nonlinear boundary-value problem in a known domain. Convergent series solutions are obtained not only for small amplitude water waves on a weak current but also for large amplitude waves on a strong current. The nonlinear wave-current interaction is studied in detail. It is found that an aiding shear current tends to enlarge the wave phase speed, sharpen the wave crest, but shorten the maximum wave height, while an opposing shear current has the opposite effect. Besides, the amplitude of waves and fluid velocity decay over the depth more quickly on an aiding shear current but more slowly on an opposing shear current than that of waves on still water. Furthermore, it is found that Stokes criteria of wave breaking is still valid for waves on a shear current: a train of propagating waves on a shear current breaks as the fiuid velocity at crest equals the wave phase speed. Especially, it is found that the highest waves on an opposing shear current are even higher and steeper than that of waves on still water. Mathematically, this analytic method is rather general in principle and can be employed to solve many types of nonlinear partial differential equations with variable coefficients in science, finance and engineering.
Electron acceleration during the decay of nonlinear Whistler waves in low-beta electron-ion plasma
International Nuclear Information System (INIS)
Umeda, Takayuki; Saito, Shinji; Nariyuki, Yasuhiro
2014-01-01
Relativistic electron acceleration through dissipation of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave in low-beta plasma is investigated by utilizing a one-dimensional fully relativistic electromagnetic particle-in-cell code. The nonlinear (large-amplitude) parent whistler wave decays through the parametric instability which enhances electrostatic ion acoustic waves and electromagnetic whistler waves. These waves satisfy the condition of three-wave coupling. Through the decay instability, the energy of electron bulk velocity supporting the parent wave is converted to the thermal energy perpendicular to the background magnetic field. Increase of the perpendicular temperature triggers the electron temperature anisotropy instability which generates broadband whistler waves and heats electrons in the parallel direction. The broadband whistler waves are inverse-cascaded during the relaxation of the electron temperature anisotropy. In lower-beta conditions, electrons with a pitch angle of about 90° are successively accelerated by inverse-cascaded whistler waves, and selected electrons are accelerated to over a Lorentz factor of 10. The result implies that the nonlinear dissipation of a finite-amplitude and short-wavelength whistler wave plays an important role in producing relativistic nonthermal electrons over a few MeV especially at lower beta plasmas.
National Research Council Canada - National Science Library
Swanson, D. G
1989-01-01
... Swanson, D.G. (Donald Gary), D a t e - Plasma waves. Bibliography: p. Includes index. 1. Plasma waves. QC718.5.W3S43 1989 ISBN 0-12-678955-X I. Title. 530.4'4 88-34388 Printed in the United Sta...
DEFF Research Database (Denmark)
Tedd, James; Kofoed, Jens Peter; Friis-Madsen, Erik
2008-01-01
Since March 2003 a prototype of Wave Dragon has been tested in an inland sea in Denmark. This has been a great success with all subsystems tested and improved through working in an offshore environment. The project has proved the Wave Dragon device and has enabled the next stage, a production sized...
DEFF Research Database (Denmark)
Kramer, Morten; Brorsen, Michael; Frigaard, Peter
Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....
Plasma wave amplitude measurement created by guided laser wakefield
International Nuclear Information System (INIS)
Wojda, Franck
2010-01-01
The interaction of an intense laser pulse of short duration with a plasma produces a plasma wave with large amplitude in its wake, which is associated with a longitudinal electric field. It can be used to accelerate relativistic electrons injected into the wave to energies in the GeV range over distances of the order of a few centimeters, short compared to acceleration lengths in conventional accelerators. The control of the electron beam characteristics during the acceleration process is fundamental for achieving a usable laser-plasma acceleration stage. The main result of this thesis is the creation and characterization of a plasma wave in a weakly nonlinear regime over a length of several centimeters. Capillary tubes are used to guide the laser beam over these distances, while maintaining a large enough intensity (∼ 10 17 W/cm 2 ). The guided laser beam ionizes the gas in the tube and creates the plasma wave. A diagnostic based on the modification of the laser pulse spectrum was used to determine the amplitude of the plasma wave along the tube. The amplitude of the plasma wave was studied as a function of gas filling pressure, length of the capillary and laser energy. Experimental results are compared; they are in excellent agreement with analytical results and modeling. They show that the electric field associated with the plasma wave is between 1 and 10 GV/m over a length of up to 8 cm. This work has demonstrated the ability to create a controlled plasma wave in a weakly nonlinear regime. (author)
MHD waves, reconnection, and plasma transport at the dayside magnetopause
International Nuclear Information System (INIS)
Johnson, J.R.; Cheng, C.Z.
1996-01-01
The magnetic field of the Earth creates a huge cavity in the solar wind known as the magnetosphere. The transition region between the solar wind plasma and magnetosphere plasma is of substantial interest because many magnetospheric processes are governed by the transport of particles, momentum and energy across that boundary. At this boundary, the magnetopause, there is an abrupt decrease in plasma bulk flow, density and pressure, and large increase in temperature and magnetic field. Throughout this region the plasmas is large. Large amplitude compressional waves are nearly always found in the region just outside of the magnetopause. These waves are either intrinsic solar wind fluctuations or they may be global mirror modes which are generated in a localized region of large pressure anisotropy just outside the magnetopause. The substantial background gradients observed at the magnetopause strongly couple the compressional waves with kinetic Alfven waves near the Alfven resonance location, leading to substantial particle transport. Moreover, for a sheared background magnetic field, as is found at times of southward interplanetary magnetic field, the mode converted kinetic Alfven waves can propagate to the location where k parallel = 0 and generate islands in phase space. We present a solution of the kinetic-MHD wave equations for the magnetic field structure based on a realistic steady state profile which includes: a sheared magnetic field; magnetic curvature; and gradients in the background density, pressure and magnetic field. We incorporate wave-particle resonance interactions for electrons and ions to obtain the dissipation. The background magnetic Keld curvature and gradient give rise to drifts which alter the resonance condition for the various particle species (ω - k circ V d - k parallel v parallel ) and reduces the Landau damping of the kinetic Alfven wave, allowing it to propagate to the k parallel = 0 location
Kinetic Alfven Waves at the Magnetopause-Mode Conversion, Transport and Formation of LLBL; TOPICAL
International Nuclear Information System (INIS)
Jay R. Johnson; C.Z. Cheng
2002-01-01
At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in the Alfven velocity[Johnson and Cheng, Geophys. Res. Lett. 24 (1997) 1423]. The mode-conversion process can explain the following wave observations typically found during satellite crossings of the magnetopause: (1) a dramatic change in wave polarization from compressional in the magnetosheath to transverse at the magnetopause, (2) an amplification of wave amplitude at the magnetopause, (3) a change in Poynting flux from cross-field in the magnetosheath to field-aligned at the magnetopause, and (4) a steepening in the wave power spectrum at the magnetopause. We examine magnetic field data from a set of ISEE1, ISEE2, and WIND magnetopause crossings and compare with the predictions of theoretical wave solutions based on the kinetic-fluid model with particular attention to the role of magnetic field rotation across the magnetopause. The results of the study suggest a good qualitative agreement between the observations and the theory of mode conversion to kinetic Alfven waves. Because mode-converted kinetic Alfven waves readily decouple particles from the magnetic field lines, efficient quasilinear transport (D(approx) 109m2/s) can occur. Moreover, if the wave amplitude is sufficiently large (Bwave/B0 and gt; 0.2) stochastic particle transport also occurs. This wave-induced transport can lead to significant heating and particle entry into the low latitude boundary layer across closed field lines.At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in
Identification and classification of very low frequency waves on a coral reef flat
Gawehn, Matthijs; van Dongeran, Ap; van Rooijen, Arnold; Storlazzi, Curt; Cheriton, Olivia; Reniers, Ad
2016-01-01
Very low frequency (VLF, 0.001–0.005 Hz) waves are important drivers of flooding of low-lying coral reef-islands. In particular, VLF wave resonance is known to drive large wave runup and subsequent overwash. Using a 5 month data set of water levels and waves collected along a cross-reef transect on Roi-Namur Island in the Republic of the Marshall Islands, the observed VLF motions were categorized into four different classes: (1) resonant, (2) (nonresonant) standing, (3) progressive-growing, and (4) progressive-dissipative waves. Each VLF class is set by the reef flat water depth and, in the case of resonance, the incident-band offshore wave period. Using an improved method to identify VLF wave resonance, we find that VLF wave resonance caused prolonged (∼0.5–6.0 h), large-amplitude water surface oscillations at the inner reef flat ranging in wave height from 0.14 to 0.83 m. It was induced by relatively long-period, grouped, incident-band waves, and occurred under both storm and nonstorm conditions. Moreover, observed resonant VLF waves had nonlinear, bore-like wave shapes, which likely have a larger impact on the shoreline than regular, sinusoidal waveforms. As an alternative technique to the commonly used Fast Fourier Transformation, we propose the Hilbert-Huang Transformation that is more computationally expensive but can capture the wave shape more accurately. This research demonstrates that understanding VLF waves on reef flats is important for evaluating coastal flooding hazards.
Identification and classification of very low frequency waves on a coral reef flat
Gawehn, Matthijs; van Dongeren, Ap; van Rooijen, Arnold; Storlazzi, Curt D.; Cheriton, Olivia M.; Reniers, Ad
2016-10-01
Very low frequency (VLF, 0.001-0.005 Hz) waves are important drivers of flooding of low-lying coral reef-islands. In particular, VLF wave resonance is known to drive large wave runup and subsequent overwash. Using a 5 month data set of water levels and waves collected along a cross-reef transect on Roi-Namur Island in the Republic of the Marshall Islands, the observed VLF motions were categorized into four different classes: (1) resonant, (2) (nonresonant) standing, (3) progressive-growing, and (4) progressive-dissipative waves. Each VLF class is set by the reef flat water depth and, in the case of resonance, the incident-band offshore wave period. Using an improved method to identify VLF wave resonance, we find that VLF wave resonance caused prolonged (˜0.5-6.0 h), large-amplitude water surface oscillations at the inner reef flat ranging in wave height from 0.14 to 0.83 m. It was induced by relatively long-period, grouped, incident-band waves, and occurred under both storm and nonstorm conditions. Moreover, observed resonant VLF waves had nonlinear, bore-like wave shapes, which likely have a larger impact on the shoreline than regular, sinusoidal waveforms. As an alternative technique to the commonly used Fast Fourier Transformation, we propose the Hilbert-Huang Transformation that is more computationally expensive but can capture the wave shape more accurately. This research demonstrates that understanding VLF waves on reef flats is important for evaluating coastal flooding hazards.
Parametric instabilities of parallel propagating incoherent Alfven waves in a finite ion beta plasma
International Nuclear Information System (INIS)
Nariyuki, Y.; Hada, T.; Tsubouchi, K.
2007-01-01
Large amplitude, low-frequency Alfven waves constitute one of the most essential elements of magnetohydrodynamic (MHD) turbulence in the fast solar wind. Due to small collisionless dissipation rates, the waves can propagate long distances and efficiently convey such macroscopic quantities as momentum, energy, and helicity. Since loading of such quantities is completed when the waves damp away, it is important to examine how the waves can dissipate in the solar wind. Among various possible dissipation processes of the Alfven waves, parametric instabilities have been believed to be important. In this paper, we numerically discuss the parametric instabilities of coherent/incoherent Alfven waves in a finite ion beta plasma using a one-dimensional hybrid (superparticle ions plus an electron massless fluid) simulation, in order to explain local production of sunward propagating Alfven waves, as suggested by Helios/Ulysses observation results. Parameter studies clarify the dependence of parametric instabilities of coherent/incoherent Alfven waves on the ion and electron beta ratio. Parametric instabilities of coherent Alfven waves in a finite ion beta plasma are vastly different from those in the cold ions (i.e., MHD and/or Hall-MHD systems), even if the collisionless damping of the Alfven waves are neglected. Further, ''nonlinearly driven'' modulational instability is important for the dissipation of incoherent Alfven waves in a finite ion beta plasma regardless of their polarization, since the ion kinetic effects let both the right-hand and left-hand polarized waves become unstable to the modulational instability. The present results suggest that, although the antisunward propagating dispersive Alfven waves are efficiently dissipated through the parametric instabilities in a finite ion beta plasma, these instabilities hardly produce the sunward propagating waves
Generation and Micro-scale Effects of Electrostatic Waves in an Oblique Shock
Goodrich, K.; Ergun, R.; Schwartz, S. J.; Newman, D.; Johlander, A.; Argall, M. R.; Wilder, F. D.; Torbert, R. B.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Gershman, D. J.; Burch, J. L.
2017-12-01
We present an analysis of large amplitude (>100 mV/m), high frequency (≤1 kHz), electrostatic waves observed by MMS during an oblique bow shock crossing event. The observed waves primarily consist of electrostatic solitary waves (ESWs) and oblique ion plasma waves (IPWs). ESWs typically include nonlinear structures such as double layers, ion phase-space holes, and electron phase-space holes. Oblique IPWs are observed to be similar to ion acoustic waves, but can propagate up to 70° from the ambient magnetic field direction. Both wave-modes, particularly IPWs, are observed to have very short wavelengths ( 100 m) and are highly localized. While such wave-modes have been previously observed in the terrestrial bow shock, instrumental constraints have limited detailed insight into their generation and their effect on their plasma shock environment. Analysis of this oblique shock event shows evidence that ESWs and oblique IPWs can be generated through field-aligned currents associated with magnetic turbulence and through a counterstreaming ion instability respectively. We also present evidence that this wave activity can facilitate momentum exchange between ion populations, resulting in deceleration of incoming solar wind, and localized electron heating.
Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas
Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.
2011-01-01
Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.
Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian.
Shi, Yuan; Qin, Hong; Fisch, Nathaniel J
2017-08-01
Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this paper, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. The general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.
The Influence of Trapped Particles on the Parametric Decay Instability of Near-Acoustic Waves
Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.
2017-10-01
We present quantitative measurements of a decay instability to lower frequencies of near-acoustic waves. These experiments are conducted on pure ion plasmas confined in a cylindrical Penning-Malmberg trap. The axisymmetric, standing plasma waves have near-acoustic dispersion, discretized by the axial wave number kz =mz(π /Lp) . The nonlinear coupling rates are measured between large amplitude mz = 2 (pump) waves and small amplitude mz = 1 (daughter) waves, which have a small frequency detuning Δω = 2ω1 -ω2 . Classical 3-wave parametric coupling rates are proportional to pump wave amplitude as Γ (δn2 /n0) , with oscillatory energy exchange for Γ Δω / 2 . Experiments on cold plasmas agree quantitatively for oscillatory energy exchange, and agree within a factor-of-two for decay instability rates. However, nascent theory suggest that this latter agreement is merely fortuitous, and that the instability mechanism is trapped particles. Experiments at higher temperatures show that trapped particles reduce the instability threshold below classical 3-wave theory predictions. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693. M. Affolter is supported by the DOE FES Postdoctoral Research Program administered by ORISE for the DOE. ORISE is managed by ORAU under DOE Contract Number DE-SC0014664.
Observation of a new type of low-frequency waves at comet 67P/Churyumov-Gerasimenko
Directory of Open Access Journals (Sweden)
I. Richter
2015-08-01
Full Text Available We report on magnetic field measurements made in the innermost coma of 67P/Churyumov-Gerasimenko in its low-activity state. Quasi-coherent, large-amplitude (δ B/B ~ 1, compressional magnetic field oscillations at ~ 40 mHz dominate the immediate plasma environment of the nucleus. This differs from previously studied cometary interaction regions where waves at the cometary ion gyro-frequencies are the main feature. Thus classical pickup-ion-driven instabilities are unable to explain the observations. We propose a cross-field current instability associated with newborn cometary ion currents as a possible source mechanism.
International Nuclear Information System (INIS)
Beklaryan, Leva A
2011-01-01
A finite difference analogue of the wave equation with potential perturbation is investigated, which simulates the behaviour of an infinite rod under the action of an external longitudinal force field. For a homogeneous rod, describing solutions of travelling wave type is equivalent to describing the full space of classical solutions to an induced one-parameter family of functional differential equations of point type, with the characteristic of the travelling wave as parameter. For an inhomogeneous rod, the space of solutions of travelling wave type is trivial, and their 'proper' extension is defined as solutions of 'quasitravelling' wave type. By contrast to the case of a homogeneous rod, describing the solutions of quasitravelling wave type is equivalent to describing the quotient of the full space of impulsive solutions to an induced one-parameter family of point-type functional differential equations by an equivalence relation connected with the definition of solutions of quasitravelling wave type. Stability of stationary solutions is analyzed. Bibliography: 9 titles.
Advanced Accelerators: Particle, Photon and Plasma Wave Interactions
Energy Technology Data Exchange (ETDEWEB)
Williams, Ronald L. [Florida A & M University, Tallahassee, FL (United States)
2017-06-29
The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to study techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.
DEFF Research Database (Denmark)
Kramer, Morten; Frigaard, Peter
Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....
DEFF Research Database (Denmark)
Kramer, Morten; Andersen, Thomas Lykke
Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....
DEFF Research Database (Denmark)
Tedd, James; Kofoed, Jens Peter; Knapp, W.
2006-01-01
Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during this ext......Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during...... this extended period. The prototype is highly instrumented. The overtopping characteristic and the power produced are presented here. This has enabled comparison between the prototype and earlier results from both laboratory model and computer simulation. This gives the optimal operating point and the expected...... power of the device. The project development team has gained much soft experience from working in the harsh offshore environment. In particular the effect of marine growth in the draft tubes of the turbines has been investigated. The control of the device has been a focus for development as is operates...
Rocket experiment on spontaneously and artificially stimulated VLF plasma waves in the ionosphere
International Nuclear Information System (INIS)
Matsumoto, H.; Miyatake, S.; Kimura, I.
1975-01-01
In situ active experiments on the nonlinear wave-wave and wave-particle interactions in the ionospheric plasma were performed by a Japanese sounding rocket K-9M-41. Both spontaneously and artificially stimulated plasma waves in the VLF range were observed. When a large amplitude electron plasma wave was transmitted from the rocket, parametrically excited ion acoustic waves were observed in addition to natural emissions such as whistlers, LHR emissions, and hisslike emissions. It was also found that 'risers' were triggered by the LHR emissions, which seem to be very similar to a phenomenon of the so-called ASE (artificially stimulated emissions). When a slow electron beam with energy lower than 3 eV was ejected from the rocket, a new type of periodic U-shaped discrete emission was observed which was excited through a wave-particle interaction. The frequency of these emissions is lower than the LHR frequency and decreases as the beam energy is increased. Spectrograms of the observed plasma are presented, and some are analyzed theoretically. (auth)
Ring waves as a mass transport mechanism in air-driven core-annular flows.
Camassa, Roberto; Forest, M Gregory; Lee, Long; Ogrosky, H Reed; Olander, Jeffrey
2012-12-01
Air-driven core-annular fluid flows occur in many situations, from lung airways to engineering applications. Here we study, experimentally and theoretically, flows where a viscous liquid film lining the inside of a tube is forced upwards against gravity by turbulent airflow up the center of the tube. We present results on the thickness and mean speed of the film and properties of the interfacial waves that develop from an instability of the air-liquid interface. We derive a long-wave asymptotic model and compare properties of its solutions with those of the experiments. Traveling wave solutions of this long-wave model exhibit evidence of different mass transport regimes: Past a certain threshold, sufficiently large-amplitude waves begin to trap cores of fluid which propagate upward at wave speeds. This theoretical result is then confirmed by a second set of experiments that show evidence of ring waves of annular fluid propagating over the underlying creeping flow. By tuning the parameters of the experiments, the strength of this phenomenon can be adjusted in a way that is predicted qualitatively by the model.
TEMPERATURE ANISOTROPY IN THE PRESENCE OF ULTRA LOW FREQUENCY WAVES IN THE TERRESTRIAL FORESHOCK
International Nuclear Information System (INIS)
Selzer, L. A.; Hnat, B.; Osman, K. T.; Nakariakov, V. M.; Eastwood, J. P.; Burgess, D.
2014-01-01
We report the first study of the correlation between elevated solar wind core plasma temperatures and temperature anisotropy in the terrestrial foreshock. Plasma temperature is enhanced near the fire hose marginal stability threshold in the presence of ultra low frequency (ULF) large amplitude magnetic perturbations, which are intrinsically right-hand circularly polarized. Direct comparison of contemporaneous anisotropic temperatures in the upstream solar wind and the foreshock suggests that the net heating of plasma is mediated via increase of the parallel temperature in the foreshock region where the ULF waves are present. We consider the possibility that a mechanism based on Landau damping, where solar wind plasma temperature parallel to the background magnetic field is increased by interaction with oblique compressible fast magneto-acoustic ULF waves, influences temperature anisotropy
TEMPERATURE ANISOTROPY IN THE PRESENCE OF ULTRA LOW FREQUENCY WAVES IN THE TERRESTRIAL FORESHOCK
Energy Technology Data Exchange (ETDEWEB)
Selzer, L. A.; Hnat, B.; Osman, K. T.; Nakariakov, V. M. [Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Eastwood, J. P. [Space and Atmospheric Physics, The Blackett Laboratory, Imperial College London, London (United Kingdom); Burgess, D., E-mail: L.A.Selzer@warwick.ac.uk [School of Physics and Astronomy, Queen Mary University of London (United Kingdom)
2014-06-10
We report the first study of the correlation between elevated solar wind core plasma temperatures and temperature anisotropy in the terrestrial foreshock. Plasma temperature is enhanced near the fire hose marginal stability threshold in the presence of ultra low frequency (ULF) large amplitude magnetic perturbations, which are intrinsically right-hand circularly polarized. Direct comparison of contemporaneous anisotropic temperatures in the upstream solar wind and the foreshock suggests that the net heating of plasma is mediated via increase of the parallel temperature in the foreshock region where the ULF waves are present. We consider the possibility that a mechanism based on Landau damping, where solar wind plasma temperature parallel to the background magnetic field is increased by interaction with oblique compressible fast magneto-acoustic ULF waves, influences temperature anisotropy.
Resonant magneto-acoustic switching: influence of Rayleigh wave frequency and wavevector
Kuszewski, P.; Camara, I. S.; Biarrotte, N.; Becerra, L.; von Bardeleben, J.; Savero Torres, W.; Lemaître, A.; Gourdon, C.; Duquesne, J.-Y.; Thevenard, L.
2018-06-01
We show on in-plane magnetized thin films that magnetization can be switched efficiently by 180 degrees using large amplitude Rayleigh waves travelling along the hard or easy magnetic axis. Large characteristic filament-like domains are formed in the latter case. Micromagnetic simulations clearly confirm that this multi-domain configuration is compatible with a resonant precessional mechanism. The reversed domains are in both geometries several hundreds of , much larger than has been shown using spin transfer torque- or field-driven precessional switching. We show that surface acoustic waves can travel at least 1 mm before addressing a given area, and can interfere to create magnetic stripes that can be positioned with a sub-micronic precision.
Gravitational waves from the Papaloizou-Pringle instability in black-hole-torus systems.
Kiuchi, Kenta; Shibata, Masaru; Montero, Pedro J; Font, José A
2011-06-24
Black hole (BH)-torus systems are promising candidates for the central engine of γ-ray bursts (GRBs), and also possible outcomes of the collapse of supermassive stars to supermassive black holes (SMBHs). By three-dimensional general relativistic numerical simulations, we show that an m = 1 nonaxisymmetric instability grows for a wide range of self-gravitating tori orbiting BHs. The resulting nonaxisymmetric structure persists for a time scale much longer than the dynamical one, becoming a strong emitter of large amplitude, quasiperiodic gravitational waves. Our results indicate that both, the central engine of GRBs and newly formed SMBHs, can be strong gravitational wave sources observable by forthcoming ground-based and spacecraft detectors.
Degenerate four-wave mixing mediated by ponderomotive-force-driven plasma gratings
International Nuclear Information System (INIS)
Lee, K.-H.; Lin, M.-W.; Pai, C.-H.; Ha, L.-C.; Lin, J.-Y.; Wang, J.; Chen, S.-Y.
2007-01-01
Degenerate four-wave mixing mediated by ponderomotive-force-driven plasma gratings is demonstrated in the near-infrared regime. The quadratic dependence of the reflectivity of the probe pulse on plasma density indicates that the mixing is caused by the quasineutral plasma grating driven by the laser ponderomotive force. The experiment verifies that ponderomotive force is an effective means to produce a large-amplitude short-period plasma grating, which has many important applications in ultrahigh-intensity optics. In particular, such a grating is a crucial element for the development of plasma phase-conjugate mirrors that can be used to restore the wave-front distortion that is ubiquitous in nonlinear propagation
Bolborici, V; Dawson, F P; Pugh, M C
2014-03-01
Piezoelectric traveling wave rotary ultrasonic motors are motors that generate torque by using the friction force between a piezoelectric composite ring (or disk-shaped stator) and a metallic ring (or disk-shaped rotor) when a traveling wave is excited in the stator. The motor speed is proportional to the amplitude of the traveling wave and, in order to obtain large amplitudes, the stator is excited at frequencies close to its resonance frequency. This paper presents a non-empirical partial differential equations model for the stator, which is discretized using the finite volume method. The fundamental frequency of the discretized model is computed and compared to the experimentally-measured operating frequency of the stator of Shinsei USR60 piezoelectric motor. Copyright © 2013 Elsevier B.V. All rights reserved.
MESSENGER Magnetic Field Observations of Upstream Ultra-Low Frequency Waves at Mercury
Le, G.; Chi, P. J.; Boardsen, S.; Blanco-Cano, X.; Anderosn, B. J.; Korth, H.
2012-01-01
The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth's is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury's bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury's foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury's foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the I-Hz waves in the Earth's foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth's foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at near 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at near 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper.
Hydromagnetic waves, turbulence, and collisionless processes in the interplanetary medium
International Nuclear Information System (INIS)
Barnes, A.
1983-01-01
The solar wind does not flow quietly. It seethes and undulates, fluctuating on time scales that range from the solar rotation period down to fractions of milliseconds. Most of the power in interplanetary waves and turbulence lies at hydromagnetic scales. These fluctuations are normally of large amplitude, containing enough energy to affect solar and galactic cosmic rays, and may be the remnants of a coronal turbulence field powerful enough to play a major role in accelerating the solar wind itself. The origin and evolution of interplanetary hydromagnetic waves and turbulence, and their influence on the large-scale dynamics of the solar wind are among the most fundamental questions of solar-terrestrial physics. First hydrodynamic waves and turbulences in the interplanetary medium are discussed in two sections, respectively. Because the length and time scales for hydromagnetic fluctuations are very much smaller than the corresponding Coulomb collision scales of the plasma ions and electrons, the interplanetary variations are modelled as fluctuations in a magnetohydrodynamic fluid. In the last section, collisionless phenomena are discussed. They are of qualitative significance. (Auth.)
Relativistic harmonic content of nonlinear electromagnetic waves in underdense plasmas
International Nuclear Information System (INIS)
Mori, W.B.; Decker, C.D.; Leemans, W.P.
1993-01-01
The relativistic harmonic content of large amplitude electromagnetic waves propagating in underdense plasmas is investigated. The steady state harmonic content of nonlinear linearly polarized waves is calculated for both the very underdense (w p /w o ) much-lt 1 and critical density (w p /w o ) ≅ 1 limits. For weak nonlinearities, eE o /mcw o p /w o . Arguments are given for extending these results for arbitrary wave amplitudes. The authors also show that the use of the variable x-ct and the quasi-static approximation leads to errors in both magnitude and sign when calculating the third harmonic. In the absence of damping or density gradients the third harmonic's amplitude is found to oscillate between zero and twice the steady state value. Preliminary PIC simulation results are presented. The simulation results are in basic agreement with the uniform plasma predictions for the third harmonic amplitude. However, the higher harmonics are orders of magnitude larger than expected and the presence of density ramps significantly modifies the results
Digital Repository Service at National Institute of Oceanography (India)
Varkey, M.J
, steep nonsymmetric cnoidal waves, solitons and random waves. They have different properties too. Any wave form has a wave period (T), wave height (H) and speed (C) which depends on T. Still another type of waves are breaking waves near a coast...
Effect of dynamical phase on the resonant interaction among tsunami edge wave modes
Geist, Eric L.
2018-01-01
Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ1 + θ2 − θ3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.
Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes
Geist, Eric L.
2018-04-01
Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange ( φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.
Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes
Geist, Eric L.
2018-02-01
Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.
Wave fronts of electromagnetic cyclotron harmonic waves
International Nuclear Information System (INIS)
Ohnuma, T.; Watanabe, T.
1982-01-01
In an inhomogeneous high-density magnetized plasma, the spatial properties of the wave fronts and ray trajectories of electromagnetic ordinary and extraordinary cyclotron harmonic waves are investigated. Those waves which are radiated from a local source are found to have wave fronts which are almost parallel to the magnetic field. Also, the reflective properties of the electromagnetic cyclotron harmonic waves are confirmed
Energy Technology Data Exchange (ETDEWEB)
Kim, Eungsoo [Univ. of Texas, Austin, TX (United States); Manuel, Lance [Univ. of Texas, Austin, TX (United States); Curcic, Milan [Univ. of Miami, Coral Gables, FL (United States); Chen, Shuyi S. [Univ. of Miami, Coral Gables, FL (United States); Phillips, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Veers, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2016-06-01
In the United States, potential offshore wind plant sites have been identified along the Atlantic seaboard and in the Gulf of Mexico. It is imperative that we define external conditions associated with hurricanes and severe winter storms and consider load cases for which wind turbines may need to be designed. We selected two hurricanes, Ike (2008) and Sandy (2012), and investigated the effect these tropical storms would have on bottom-supported offshore wind turbines that were hypothetically in or close to their path as they made landfall. For realistic turbine loads assessment, it is important that the coupled influences of the changing wind, wave, and current fields are simulated throughout the evolution of the hurricanes. We employed a coupled model--specifically, the University of Miami Coupled Model (UMCM)--that integrates atmospheric, wave, and ocean components to produce needed wind, wave, and current data. The wind data are used to generate appropriate vertical wind profiles and full wind velocity fields including turbulence; the current field over the water column is obtained by interpolated discrete output current data; and short-crested irregular second-order waves are simulated using output directional wave spectra from the coupled model. We studied two monopile-supported offshore wind turbines sited in 20 meters of water in the Gulf of Mexico to estimate loads during Hurricane Ike, and a jacket space-frame platform-supported offshore wind turbine sited in 50 meters of water in the mid-Atlantic region to estimate loads during Hurricane Sandy. In this report we discuss in detail how the simulated hurricane wind, wave, and current output data are used in turbine loads studies. In addition, important characteristics of the external conditions are studied, including the relative importance of swell versus wind seas, aerodynamic versus hydrodynamic forces, current velocity effects, yaw control options for the turbine, hydrodynamic drag versus inertia forces
DEFF Research Database (Denmark)
Kramer, Morten; Frigaard, Peter
På foranledning af Löwenmark F.R.I, er der udført numeriske beregninger af Wave Dragons (herefter WD) armes effektivitet for forskellige geometriske udformninger. 5 geometriske modeller, hvor WD's arme er forkortet/forlænget er undersøgt for 3 forskellige drejninger af armene. I alt er 15...
Narayan, J. P.; Kumar, Neeraj; Chauhan, Ranu
2018-03-01
This research work is inspired by the recently accepted concept that high frequency Rayleigh waves are generated in the epicentral zone of shallow earthquakes. Such high frequency Rayleigh waves with large amplitude may develop much of spatial variability in ground motion which in turn may cause unexpected damage to long-span structures like bridges, underground pipelines, dams, etc., in the hilly regions. Further, it has been reported that topography acts as an insulator for the Rayleigh waves (Ma et al. BSSA 97:2066-2079, 2007). The above mentioned scientific developments stimulated to quantify the role of shape and number of ridges and valleys falling in the path of Rayleigh wave in the insulating effect of topography on the Rayleigh waves. The simulated results reveals very large amplification of the horizontal component of Rayleigh wave near the top of a triangular ridge which may cause intensive landslides under favorable condition. The computed snapshots of the wave-field of Rayleigh wave reveals that the interaction of Rayleigh wave with the topography causes reflection, splitting, and diffraction of Rayleigh wave in the form of body waves which in turn provides the insulating capacity to the topography. Insulating effects of single valley is more than that of single ridge. Further this effect was more in case of elliptical ridge/valley than triangular ridge/valley. The insulating effect of topography was proportional to the frequency of Rayleigh wave and the number of ridges and valleys in the string. The obtained level of insulation effects of topography on the Rayleigh wave (energy of Rayleigh wave reduced to less than 4% after crossing a topography of span 4.5 km) calls for the consideration of role of hills and valleys in seismic hazard prediction, particularly in case of shallow earthquakes.
Impact of Wave Dragon on Wave Climate
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Tedd, James; Kramer, Morten
This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator.......This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator....
Energy Technology Data Exchange (ETDEWEB)
Whittaker, T.J.T. (Queen' s Univ., Belfast, Northern Ireland (UK)); White, P.R.S. (Lanchester Polytechnic, Coventry (UK)); Baker, A.C.J. (Binnie and Partners, London (UK))
1988-10-01
An informal discussion on various wave energy converters is reported. These included a prototype oscillating water column (OWC) device being built on the Isle of Islay in Scotland; the SEA Clam; a tapering channel device (Tapchan) raising incoming waves into a lagoon on a Norwegian island and an OWC device on the same island. The Norwegian devices are delivering electricity at about 5.5p/KWh and 4p/KWh respectively with possibilities for reduction to 2.5-3p/KWh and 3p/KWh under favourable circumstances. The discussion ranged over comparisons with progress in wind power, engineering aspects, differences between inshore and offshore devices, tidal range and energy storage. (UK).
Ciufolini, I; Moschella, U; Fre, P
2001-01-01
Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.
DEFF Research Database (Denmark)
Kramer, Morten; Frigaard, Peter; Brorsen, Michael
Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....
Jiang, Z
2005-01-01
The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.
2015-10-30
Coastal Inlets Research Program CMS -Wave CMS -Wave is a two-dimensional spectral wind-wave generation and transformation model that employs a forward...marching, finite-difference method to solve the wave action conservation equation. Capabilities of CMS -Wave include wave shoaling, refraction... CMS -Wave can be used in either on a half- or full-plane mode, with primary waves propagating from the seaward boundary toward shore. It can
Nonlinear Right-Hand Polarized Wave in Plasma in the Electron Cyclotron Resonance Region
Krasovitskiy, V. B.; Turikov, V. A.
2018-05-01
The propagation of a nonlinear right-hand polarized wave along an external magnetic field in subcritical plasma in the electron cyclotron resonance region is studied using numerical simulations. It is shown that a small-amplitude plasma wave excited in low-density plasma is unstable against modulation instability with a modulation period equal to the wavelength of the excited wave. The modulation amplitude in this case increases with decreasing detuning from the resonance frequency. The simulations have shown that, for large-amplitude waves of the laser frequency range propagating in plasma in a superstrong magnetic field, the maximum amplitude of the excited longitudinal electric field increases with the increasing external magnetic field and can reach 30% of the initial amplitude of the electric field in the laser wave. In this case, the energy of plasma electrons begins to substantially increase already at magnetic fields significantly lower than the resonance value. The laser energy transferred to plasma electrons in a strong external magnetic field is found to increase severalfold compared to that in isotropic plasma. It is shown that this mechanism of laser radiation absorption depends only slightly on the electron temperature.
International Nuclear Information System (INIS)
Ohsawa, Yukiharu.
1984-12-01
A 2-1/2 dimensional fully relativistic, fully electromagnetic particle code is used to study a time evolution of nonlinear magnetosonic pulse propagating in the direction perpendicular to a magnetic field. The pulse is excited by an instantaneous piston acceleration, and evolves totally self-consistently. Large amplitude pulse traps some ions and accelerates them parallel to the wave front. They are detrapped when their velocities become of the order of the sum of the ExB drift velocity and the wave phase velocity, where E is the electric field in the direction of wave propagation. The pulse develops into a quasi-shock wave in a collisionless plasma by a dissipation due to the resonant ion acceleration. Simple nonlinear wave theory for a cold plasma well describes the shock properties observed in the simulation except for the effects of resonant ions. In particular, magnitude of an electric potential across the shock region is derived analytically and is found to be in good agreement with our simulations. The potential jump is proportional to B 2 , and hence the ExB drift velocity of the trapped ions is proportional to B. (author)
Winjum, B. J.; Banks, J. W.; Berger, R. L.; Cohen, B. I.; Chapman, T.; Hittinger, J. A. F.; Rozmus, W.; Strozzi, D. J.; Brunner, S.
2012-10-01
We present results on the kinetic filamentation of finite-width nonlinear electron plasma waves (EPW). Using 2D simulations with the PIC code BEPS, we excite a traveling EPW with a Gaussian transverse profile and a wavenumber k0λDe= 1/3. The transverse wavenumber spectrum broadens during transverse EPW localization for small width (but sufficiently large amplitude) waves, while the spectrum narrows to a dominant k as the initial EPW width increases to the plane-wave limit. For large EPW widths, filaments can grow and destroy the wave coherence before transverse localization destroys the wave; the filaments in turn evolve individually as self-focusing EPWs. Additionally, a transverse electric field develops that affects trapped electrons, and a beam-like distribution of untrapped electrons develops between filaments and on the sides of a localizing EPW. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD-061. Supported also under Grants DE-FG52-09NA29552 and NSF-Phy-0904039. Simulations were performed on UCLA's Hoffman2 and NERSC's Hopper.
One and two dimensional simulations on beat wave acceleration
International Nuclear Information System (INIS)
Mori, W.; Joshi, C.; Dawson, J.M.; Forslund, D.W.; Kindel, J.M.
1984-01-01
Recently there has been considerable interest in the use of fast-large-amplitude plasma waves as the basis for a high energy particle accelerator. In these schemes, lasers are used to create the plasma wave. To date the few simulation studies on this subject have been limited to one-dimensional, short rise time simulations. Here the authors present results from simulations in which more realistic parameters are used. In addition, they present the first two dimensional simulations on this subject. One dimensional simulations on a 2 1/2-D relativistic electromagnetic particle code, in which only a few cells were used in one direction, on colinear optical mixing are presented. In these simulations the laser rise time, laser intensity, plasma density, plasma temperature and system size were varied. The simulations indicate that the theory of Rosenbluth and Liu is applicable over a wide range of parameters. In addition, simulations with a DC magnetic field are presented in order to study the ''Surfatron'' concept
Numerical Simulation of Internal Waves in the Andaman Sea
Mohanty, Sachiko; Devendra Rao, Ambarukhana
2017-04-01
The interactions of barotropic tides with irregular bottom topography generate internal waves with high amplitude known as large-amplitude internal waves (LAIW) in the Andaman Sea. These waves are an important phenomena in the ocean due to their influence on the density structure and energy transfer into the region. These waves are also important in submarine acoustics, underwater navigation, offshore structures, ocean mixing, biogeochemical processes, etc. over the shelf-slope region. In the present study, energetics analysis of M2 internal tides over the Andaman Sea is carried out in detail by using a three-dimensional MIT general circulation ocean model (MITgcm). In-situ observations of temperature, conductivity and currents with high temporal resolution are used to validate the model simulations. From the spectral energy estimate of density, it is found that the peak estimate is associated with the semi-diurnal frequency at all the depths in both observations and model simulations. The baroclinic velocity characteristics, suggests that a multi-mode features of baroclinic tides are present at the buoy location. To understand the generation and propagation of internal tides over this region, energy flux and barotropic-to-baroclinic M2 tidal energy conversion rates are examined. The model simulation suggests that the internal tide is generated at multiple sites and propagate off of their respective generation sources. Most of the energy propagation in the Andaman Sea follows the 1000m isobath. The maximum horizontal kinetic energy follows the energy flux pattern over the domain and the available potential energy is found to be maximum in the north of the Andaman Sea.
Recent progress in the microscopic description of small and large amplitude collective motion
Energy Technology Data Exchange (ETDEWEB)
Lacroix, D., E-mail: lacroix@ipno.in2p3.fr; Tanimura, Y. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, F-91406 Orsay Cedex (France); Ayik, S. [Physics Department, Tennessee Technological University, Cookeville, Tennessee 38505 (United States); Scamps, G. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Simenel, C. [Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 2601 (Australia); Yilmaz, B. [Physics Department, Faculty of Sciences, Ankara University, 06100, Ankara (Turkey)
2015-10-15
Dynamical mean-field theory has recently attracted much interests to provide a unified framework for the description of many aspects of nuclear dynamics [1, 2, 3, 4, 5] (for recent reviews see [6, 7]). In particular, the inclusion of pairing correlation has opened new perspectives [8, 9, 10, 11, 12]. A summary of recent applications including giant resonances and transfer reactions will be made in this talk [13, 14, 15, 16]. While new progresses have been made with the use of sophisticated effective interactions and the development of symmetry unrestricted applications, mean-field dynamics suffer from the poor treatment of quantum fluctuations in collective space. As a consequence, these theories are successful in describing average properties of many different experimental observations but generally fail to account realistically for the width of experimental distribution. The increase of predictive power of dynamical mean-field theory is facing the difficulty of going beyond the independent particle or quasi-particle picture. Nevertheless, in the last decade, novel methods have been proposed to prepare the next generation of microscopic mean-field codes able to account for both average properties and fluctuations around the average. A review of recent progresses in this direction as well as recent applications to heavy-ion collisions will be given [17, 18].
Spitzer observations of large amplitude variables in the LMC and IC 1613
Directory of Open Access Journals (Sweden)
Whitelock Patricia A.
2017-01-01
Full Text Available The 3.6 and 4.5 ìm characteristics of asymptotic giant branch variables in the LMC and IC 1613 are discussed. For C-rich Mira variables there is a very clear periodluminosity-colour relation, where the [3.6] . [4.5] colour is associated with the amount of circumstellar material and correlated with the pulsation amplitude. The [4.5] periodluminosity relation for dusty stars is approximately one mag brighter than for their naked counterparts with comparable periods.
National Research Council Canada - National Science Library
Field, Robert
1997-01-01
Through Stimulated Emission Pumping (SEP) studies of highly excited vibrational levels of the electronic ground state of HCP, the spectroscopic signatures of bond breaking isomer/atom (HCP right arrow HPC...
Kirschmeier, Benjamin; Summerour, Jacob; Bryant, Matthew
2017-04-01
Interest in clean, stable, and renewable energy harvesting devices has increased dramatically with the volatility of petroleum markets. Specifically, research in aero/hydro kinetic devices has created numerous new horizontal and vertical axis wind turbines, and oscillating wing turbines. Oscillating wing turbines (OWTs) differ from their wind turbine cousins by having a rectangular swept area compared to a circular swept area. The OWT systems also possess a lower tip speed that reduces the overall noise produced by the system. OWTs have undergone significant computational analysis to uncover the underlying flow physics that can drive the system to high efficiencies for single wing oscillations. When two of these devices are placed in tandem configuration, i.e. one placed downstream of the other, they either can constructively or destructively interact. When constructive interactions occurred, they enhance the system efficiency to greater than that of two devices on their own. A new experimental design investigates the dependency of interaction modes on the pitch stiffness of the downstream wing. The experimental results demonstrated that interaction modes are functions of convective time scale and downstream wing pitch stiffness. Heterogeneous combinations of pitch stiffness exhibited constructive and destructive lock-in phenomena whereas the homogeneous combination exhibited only destructive interactions.
International Nuclear Information System (INIS)
Levenshtam, V B
2006-01-01
We justify the averaging method for abstract parabolic equations with stationary principal part that contain non-linearities (subordinate to the principal part) some of whose terms are rapidly oscillating in time with zero mean and are proportional to the square root of the frequency of oscillation. Our interest in the exponent 1/2 is motivated by the fact that terms proportional to lower powers of the frequency have no influence on the average. For linear equations of the same type, we justify an algorithm for the study of the stability of solutions in the case when the stationary averaged problem has eigenvalues on the imaginary axis (the critical case)
Void coalescence mechanism for combined tension and large amplitude cyclic shearing
DEFF Research Database (Denmark)
Nielsen, Kim Lau; Andersen, Rasmus Grau; Tvergaard, Viggo
2017-01-01
Void coalescence at severe shear deformation has been studied intensively under monotonic loading conditions, and the sequence of micro-mechanisms that governs failure has been demonstrated to involve collapse, rotation, and elongation of existing voids. Under intense shearing, the voids are flat...
Czech Academy of Sciences Publication Activity Database
Pivokonský, Radek; Filip, Petr; Zelenková, Jana
2016-01-01
Roč. 104, č. 8 (2016), s. 171-178 ISSN 0032-3861 Institutional support: RVO:67985874 Keywords : LAOS * fourier transform rheology * Giesekus model * PTT model * modified XPP model * poly(ethylene oxide) Subject RIV: BK - Fluid Dynamics Impact factor: 3.684, year: 2016
Survey of large-amplitude flapping motions in the midtail current sheet
Directory of Open Access Journals (Sweden)
V. A. Sergeev
2006-08-01
Full Text Available We surveyed fast current sheet crossings (flapping motions over the distance range 10–30 RE in the magnetotail covered by the Geotail spacecraft. Since the local tilts of these dynamic sheets are large and variable in these events, we compare three different methods of evaluating current sheet normals using 4-s/c Cluster data and define the success criteria for the single-spacecraft-based method (MVA to obtain the reliable results. Then, after identifying more than ~1100 fast CS crossings over a 3-year period of Geotail observations in 1997–1999, we address their parameters, spatial distribution and activity dependence. We confirm that over the entire distance covered and LT bins, fast crossings have considerable tilts in the YZ plane (from estimated MVA normals which show a preferential appearance of one (YZ kink-like mode that is responsible for these severe current sheet perturbations. Their occurrence is highly inhomogeneous; it sharply increases with radial distance and has a peak in the tail center (with some duskward shift, resembling the occurrence of the BBFs, although there is no one-to-one local correspondence between these two phenomena. The crossing durations typically spread around 1 min and decrease significantly where the high-speed flows are registered. Based on an AE index superposed epoch study, the flapping motions prefer to appear during the substorm expansion phase, although a considerable number of events without any electrojet and auroral activity were also observed. We also present statistical distributions of other parameters and briefly discuss what could be possible mechanisms to generate the flapping motions.
Self-consistent collective coordinate method for large amplitude collective motions
International Nuclear Information System (INIS)
Sakata, F.; Hashimoto, Y.; Marumori, T.; Une, T.
1982-01-01
A recent development of the self-consistent collective coordinate method is described. The self-consistent collective coordinate method was proposed on the basis of the fundamental principle called the invariance principle of the Schroedinger equation. If this is formulated within a framework of the time dependent Hartree Fock (TDHF) theory, a classical version of the theory is obtained. A quantum version of the theory is deduced by formulating it within a framework of the unitary transformation method with auxiliary bosons. In this report, the discussion is concentrated on a relation between the classical theory and the quantum theory, and an applicability of the classical theory. The aim of the classical theory is to extract a maximally decoupled collective subspace out of a huge dimensional 1p - 1h parameter space introduced by the TDHF theory. An intimate similarity between the classical theory and a full quantum boson expansion method (BEM) was clarified. Discussion was concentrated to a simple Lipkin model. Then a relation between the BEM and the unitary transformation method with auxiliary bosons was discussed. It became clear that the quantum version of the theory had a strong relation to the BEM, and that the BEM was nothing but a quantum analogue of the present classical theory. The present theory was compared with the full TDHF calculation by using a simple model. (Kato, T.)
Quasielastic neutron scattering study of large amplitude motions in molecular systems
International Nuclear Information System (INIS)
Bee, M.
1996-01-01
This lecture aims at giving some illustrations of the use of Incoherent Quasielastic Neutron Scattering in the investigation of motions of atoms or molecules in phases with dynamical disorder. The general incoherent scattering function is first recalled. Then the Elastic Incoherent Structure Factor is introduced. It is shown how its determination permits to deduce a particular dynamical model. Long-range translational diffusion is illustrated by some experiments carried out with liquids or with different chemical species intercalated in porous media. Examples of rotational motions are provided by solid phases where an orientational disorder of the molecules exists. The jump model is the most commonly used and yields simple scattering laws which can be easily handled. Highly disordered crystals require a description in terms of the isotropic rotational diffusion model. Many of the present studies are concerned with rather complicated systems. Considerable help is obtained either by using selectively deuterated samples or by carrying out measurements with semi-oriented samples. (author) 5 figs., 14 refs
Large amplitude oscillation of a boiling bubble growing at a wall in stagnation flow
International Nuclear Information System (INIS)
Geld, C.W.M. van der; Berg, R. van de; Peukert, P.
2009-01-01
A boiling bubble is created on an artificial site that is part of a bubble generator that is mounted at the center of a pipe. Downflow of water impinges on the bubble generator and creates a stagnation flow above the artificial cavity. Stable axisymmetric elongation in the direction away from the wall and multiple shape oscillation cycles are observed. The time of growth and attachment is typically of the order of 250 ms. Amongst the length scales that characterize the bubble shape is the radius of curvature of the upper part of the bubble, R. The period of oscillation, T, is strongly dependent on time, as is R. The parameters C and m in the defining equation T = C R m √(ρL/σ) have been determined by fitting to data of more than 100 bubbles. For each operating condition, the same values of C and m have been found. The value of m is 1.49 ± 0.02, which is explained from the continuous growth of the bubble and from the relation to the period of oscillation of a free bubble deforming in the fundamental mode corresponding to the third Legendre Polynomial. For the latter, R is the radius of the volume-equivalent sphere, R 0 , and C is √12, while for attached boiling bubbles C is found to amount 1.9√12. The difference is easily explained from the continuous growth, difference in definition, finite amplitude oscillation and proximity of the wall. (author)
Energy Technology Data Exchange (ETDEWEB)
Yu, Hua-Gen, E-mail: hgy@bnl.gov [Division of Chemistry, Department of Energy and Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)
2016-08-28
We report a new full-dimensional variational algorithm to calculate rovibrational spectra of polyatomic molecules using an exact quantum mechanical Hamiltonian. The rovibrational Hamiltonian of system is derived in a set of orthogonal polyspherical coordinates in the body-fixed frame. It is expressed in an explicitly Hermitian form. The Hamiltonian has a universal formulation regardless of the choice of orthogonal polyspherical coordinates and the number of atoms in molecule, which is suitable for developing a general program to study the spectra of many polyatomic systems. An efficient coupled-state approach is also proposed to solve the eigenvalue problem of the Hamiltonian using a multi-layer Lanczos iterative diagonalization approach via a set of direct product basis set in three coordinate groups: radial coordinates, angular variables, and overall rotational angles. A simple set of symmetric top rotational functions is used for the overall rotation whereas a potential-optimized discrete variable representation method is employed in radial coordinates. A set of contracted vibrationally diabatic basis functions is adopted in internal angular variables. Those diabatic functions are first computed using a neural network iterative diagonalization method based on a reduced-dimension Hamiltonian but only once. The final rovibrational energies are computed using a modified Lanczos method for a given total angular momentum J, which is usually fast. Two numerical applications to CH{sub 4} and H{sub 2}CO are given, together with a comparison with previous results.
International Nuclear Information System (INIS)
Krlin, L.
1973-07-01
The effect of stochastic instability of particle motion on nonlinear Landau damping was investigated on a simple model of particles with a discrete spectrum. It was shown that as far as the trajectory of particles was stochastically unstable (at beat resonances under consideration), diffusion of particles took place. The influence of this effect on the nonlinear Landau mechanism commonly assumed is discussed; the possibility of heating in this regime in a beam-plasma experiment is dealt with briefly. (author)
Energy Technology Data Exchange (ETDEWEB)
Leblanc, Jean L. [University P. and M. Curie-Paris 6, Polymer Rheology and Processing, Vitry-sur-Seine (France)
2007-10-15
The so-called thermoplastic vulcanizates (TPV) are essentially blends of a crystalline thermoplastic polymer (e.g., polypropylene) and a vulcanizable rubber composition, prepared through a special process called dynamic vulcanization, which yields a fine dispersion of micron-size crosslinked rubber particles in a thermoplastic matrix. Such materials are by nature complex polymer systems, i.e., multiphase, heterogeneous, typically disordered materials for which structure is as important as composition. Correctly assessing their rheological properties is a challenging task for several reasons: first, even if the uniformity of their composition is taken for granted, TPV are indeed very complicated materials, not only heterogeneous but also with a morphology related to their composition; second, their morphology can be affected by the flow field used; third, the migration of small labile ingredients (e.g., oil, curative residue, etc.) can in the meantime significantly change the boundary flow conditions, for instance through self-lubrication due to phase separation of the oil, or wall slip, or both. The aims of the work reported were to investigate a series of commercial TPV through the so-called Fourier transform rheometry, a testing technique especially developed to accurately investigate the nonlinear viscoelastic domain. Results are tentatively interpreted in terms of material composition and structure. (orig.)
Large-amplitude ion-acoustic double layers in a plasma with warm ions
International Nuclear Information System (INIS)
Roychoudury, R.K.; Bhattacharyya, S.; Varshni, Y.P.
1990-01-01
The conditions for the existence of an ion-acoustic double layer in a plasma with warm ions and two distinct groups of hot electrons have been studied using the Sagdeev potential method. A comparison is made with the published results of Bharuthram and Shukla for cold ions and a two temperature electron population. Numerical studies have been made to find out the effect of a finite ion temperature on the Mach number of the double layers
Large amplitude oscillatory measurements as mechanical characterization methods for soft elastomers
DEFF Research Database (Denmark)
Skov, Anne Ladegaard
2012-01-01
oscillating elongation (LAOE)1 and planar elongation2, 3 make the ideal set of experiments to evaluate the mechanical performance of DEAPs. We evaluate the mechanical performance of several soft elastomers applicable for DEAP purposes such as poly(propyleneoxide) (PPO) networks3, 4 and traditional unfilled...
Origin of inertia in large-amplitude collective motion in finite Fermi ...
Indian Academy of Sciences (India)
There is a tacit assumption that the collective variables (shape) determine the internal structure and state of the nucleus. A detailed derivation of eq. (2) based on the principle of least action is given in [16]. During collec- tive motion, the eigenstate does not change leading thereby to adiabatic approximation, and we shall ...
Single-particle motion in large-amplitude quadrupole shape transition
International Nuclear Information System (INIS)
Yamada, Kazuya
1991-01-01
The microscopic structure of the single-particle motion for the spherical-deformed transitional nuclei is analysed by using the self-consistent collective-coordinate method (SCC method). The single-particle motion in the moving-frame of reference called the collective vibrating coordinate frame is introduced by the generalized Bogoliubov transformation depending on the collective coordinate. The numerical calculations of the single-particle (quasi-particle) energy level diagrams and their occupation probabilities for the static deformation are carried out for the Sm isotopes. A clear change of the single-particle distribution structure appears in the course of deformation. (author)
Large amplitude change in spot-induced rotational modulation of the Kepler Ap star KIC 2569073
DEFF Research Database (Denmark)
Drury, Jason A.; Murphy, Simon J.; Derekas, Aliz
2017-01-01
An investigation of the 200 x 200 pixel 'superstamp' images of the centres of the open clusters NGC 6791 and NGC 6819 allows for the identification and study of many variable stars that were not included in the Kepler target list. KIC 2569073 (V= 14.22), is a particularly interesting variable Ap ...
Large amplitude oscillation of a boiling bubble growing at a wall in stagnation flow
Energy Technology Data Exchange (ETDEWEB)
Geld, C.W.M. van der; Berg, R. van de; Peukert, P. [Eindhoven University of Technology, Eindhoven (Netherlands). Faculty of Mechanical Engineering], e-mail: C.W.M._v.d.Geld@tue.nl
2009-07-01
A boiling bubble is created on an artificial site that is part of a bubble generator that is mounted at the center of a pipe. Downflow of water impinges on the bubble generator and creates a stagnation flow above the artificial cavity. Stable axisymmetric elongation in the direction away from the wall and multiple shape oscillation cycles are observed. The time of growth and attachment is typically of the order of 250 ms. Amongst the length scales that characterize the bubble shape is the radius of curvature of the upper part of the bubble, R. The period of oscillation, T, is strongly dependent on time, as is R. The parameters C and m in the defining equation T = C R{sup m} {radical}({rho}L/{sigma}) have been determined by fitting to data of more than 100 bubbles. For each operating condition, the same values of C and m have been found. The value of m is 1.49 {+-} 0.02, which is explained from the continuous growth of the bubble and from the relation to the period of oscillation of a free bubble deforming in the fundamental mode corresponding to the third Legendre Polynomial. For the latter, R is the radius of the volume-equivalent sphere, R{sub 0}, and C is {radical}12, while for attached boiling bubbles C is found to amount 1.9{radical}12. The difference is easily explained from the continuous growth, difference in definition, finite amplitude oscillation and proximity of the wall. (author)
Periodic large-amplitude thermal oscillations occurring in a buoyant plume
International Nuclear Information System (INIS)
Oras, J.J.; Kasza, K.E.
1983-01-01
Reactor events such as N-1 loop operation in conjunction with a leaky check valve in the down loop can cause flow to be convected back into the reactor outlet nozzle/piping region and to be back-flushed into the reactor outlet plenum. The preceding results in a temperature difference between pipe inflow and plenum. This temperature difference causes buoyancy forces which if large enough can cause: a pipe backflow and recirculation loop; and a thermal plume in the plenum. Both phenomena are being studied because they can produce undesirable pipe, nozzle and plenum wall thermal distributions, and hence undesirable thermal stresses. This paper discusses some features of the plume
Figueroa, Daniel G; Torrentí, Francisco
2016-01-01
During or towards the end of inflation, the Standard Model (SM) Higgs forms a condensate with a large amplitude. Following inflation, the condensate oscillates, decaying non-perturbatively into the rest of the SM species. The resulting out-of-equilibrium dynamics converts a fraction of the energy available into gravitational waves (GW). We study this process using classical lattice simulations in an expanding box, following the energetically dominant electroweak gauge bosons $W^\\pm$ and $Z$. We characterize the GW spectrum as a function of the running couplings, Higgs initial amplitude, and post-inflationary expansion rate. As long as the SM is decoupled from the inflationary sector, the generation of this background is universally expected, independently of the nature of inflation. Our study demonstrates the efficiency of GW emission by gauge fields undergoing parametric resonance. The initial energy of the Higgs condensate represents however, only a tiny fraction of the inflationary energy. Consequently, th...
A three-dimensional Dirichlet-to-Neumann operator for water waves over topography
Andrade, D.; Nachbin, A.
2018-06-01
Surface water waves are considered propagating over highly variable non-smooth topographies. For this three dimensional problem a Dirichlet-to-Neumann (DtN) operator is constructed reducing the numerical modeling and evolution to the two dimensional free surface. The corresponding Fourier-type operator is defined through a matrix decomposition. The topographic component of the decomposition requires special care and a Galerkin method is provided accordingly. One dimensional numerical simulations, along the free surface, validate the DtN formulation in the presence of a large amplitude, rapidly varying topography. An alternative, conformal mapping based, method is used for benchmarking. A two dimensional simulation in the presence of a Luneburg lens (a particular submerged mound) illustrates the accurate performance of the three dimensional DtN operator.
Energy Technology Data Exchange (ETDEWEB)
Li, Fangyu, E-mail: cqufangyuli@hotmail.com [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); Wen, Hao [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Fang, Zhenyun [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); Wei, Lianfu; Wang, Yiwen; Zhang, Miao [Quantum Optoelectronics Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)
2016-10-15
Interaction of very low-frequency primordial (relic) gravitational waves (GWs) to cosmic microwave background (CMB) can generate B-mode polarization. Here, for the first time we point out that the electromagnetic (EM) response to high-frequency GWs (HFGWs) would produce quasi-B-mode distribution of the perturbative photon fluxes. We study the duality and high complementarity between such two B-modes, and it is shown that such two effects are from the same physical origin: the tensor perturbation of the GWs and not the density perturbation. Based on this quasi-B-mode in HFGWs and related numerical calculation, it is shown that the distinguishing and observing of HFGWs from the braneworld would be quite possible due to their large amplitude, higher frequency and very different physical behaviors between the perturbative photon fluxes and background photons, and the measurement of relic HFGWs may also be possible though face to enormous challenge.
Barker, Blake; Jung, Soyeun; Zumbrun, Kevin
2018-03-01
Turing patterns on unbounded domains have been widely studied in systems of reaction-diffusion equations. However, up to now, they have not been studied for systems of conservation laws. Here, we (i) derive conditions for Turing instability in conservation laws and (ii) use these conditions to find families of periodic solutions bifurcating from uniform states, numerically continuing these families into the large-amplitude regime. For the examples studied, numerical stability analysis suggests that stable periodic waves can emerge either from supercritical Turing bifurcations or, via secondary bifurcation as amplitude is increased, from subcritical Turing bifurcations. This answers in the affirmative a question of Oh-Zumbrun whether stable periodic solutions of conservation laws can occur. Determination of a full small-amplitude stability diagram - specifically, determination of rigorous Eckhaus-type stability conditions - remains an interesting open problem.
Directory of Open Access Journals (Sweden)
F.Y. Fangyu Li
2016-10-01
Full Text Available Interaction of very low-frequency primordial (relic gravitational waves (GWs to cosmic microwave background (CMB can generate B-mode polarization. Here, for the first time we point out that the electromagnetic (EM response to high-frequency GWs (HFGWs would produce quasi-B-mode distribution of the perturbative photon fluxes. We study the duality and high complementarity between such two B-modes, and it is shown that such two effects are from the same physical origin: the tensor perturbation of the GWs and not the density perturbation. Based on this quasi-B-mode in HFGWs and related numerical calculation, it is shown that the distinguishing and observing of HFGWs from the braneworld would be quite possible due to their large amplitude, higher frequency and very different physical behaviors between the perturbative photon fluxes and background photons, and the measurement of relic HFGWs may also be possible though face to enormous challenge.
Efficient Wave Energy Amplification with Wave Reflectors
DEFF Research Database (Denmark)
Kramer, Morten Mejlhede; Frigaard, Peter Bak
2002-01-01
Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130......-140%. In the paper a procedure for calculating the efficiency and optimizing the geometry of wave reflectors are described, this by use of a 3D boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benifit...... for different geometries of the wave reflectors and optimal geometrical design parameters are specified. On this basis inventors of WEC's can evaluate whether a specific WEC possible could benefit from wave reflectors....
Frashure, K. M.; Chen, R. F.; Stephen, R. A.; Bolmer, T.; Lavin, M.; Strohschneider, D.; Maichle, R.; Micozzi, N.; Cramer, C.
2007-01-01
Demonstrating wave processes quantitatively in the classroom using standard classroom tools (such as Slinkys and wave tanks) can be difficult. For example, waves often travel too fast for students to actually measure amplitude or wavelength. Also, when teaching propagating waves, reflections from the ends set up standing waves, which can confuse…
Multi-fluid Approach to High-frequency Waves in Plasmas. III. Nonlinear Regime and Plasma Heating
Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume
2018-03-01
The multi-fluid modeling of high-frequency waves in partially ionized plasmas has shown that the behavior of magnetohydrodynamic waves in the linear regime is heavily influenced by the collisional interaction between the different species that form the plasma. Here, we go beyond linear theory and study large-amplitude waves in partially ionized plasmas using a nonlinear multi-fluid code. It is known that in fully ionized plasmas, nonlinear Alfvén waves generate density and pressure perturbations. Those nonlinear effects are more pronounced for standing oscillations than for propagating waves. By means of numerical simulations and analytical approximations, we examine how the collisional interaction between ions and neutrals affects the nonlinear evolution. The friction due to collisions dissipates a fraction of the wave energy, which is transformed into heat and consequently raises the temperature of the plasma. As an application, we investigate frictional heating in a plasma with physical conditions akin to those in a quiescent solar prominence.
Effects of vortex-like and non-thermal ion distributions on non-linear dust-acoustic waves
International Nuclear Information System (INIS)
Mamun, A.A.; Cairns, R.A.; Shukla, P.K.
1996-01-01
The effects of vortex-like and non-thermal ion distributions are incorporated in the study of nonlinear dust-acoustic waves in an unmagnetized dusty plasma. It is found that owing to the departure from the Boltzmann ion distribution to a vortex-like phase space distribution, the dynamics of small but finite amplitude dust-acoustic waves is governed by a modified Kortweg endash de Vries equation. The latter admits a stationary dust-acoustic solitary wave solution, which has larger amplitude, smaller width, and higher propagation velocity than that involving adiabatic ions. On the other hand, consideration of a non-thermal ion distribution provides the possibility of coexistence of large amplitude rarefactive as well as compressive dust-acoustic solitary waves, whereas these structures appear independently when the wave amplitudes become infinitely small. The present investigation should help us to understand the salient features of the non-linear dust-acoustic waves that have been observed in a recent numerical simulation study. copyright 1996 American Institute of Physics
International Nuclear Information System (INIS)
Boyd, John P.
2003-01-01
If the dispersion in a nonlinear hyperbolic wave equation is weak in the sense that the frequency ω(k) of cos(kx) is bounded as k→∞, it is common that (i) travelling waves exist up to a limiting amplitude with wave-breaking for higher amplitudes, and (ii) the limiting wave has a corner, that is, a discontinuity in slope. Because 'corner' waves are not smooth, standard numerical methods converge poorly as the number of grid points is increased. However, the corner wave is important because, at least in some systems, it is the attractor for all large amplitude initial conditions. Here we devise a Legendre-pseudospectral method which is uncorrupted by the singularity. The symmetric (u(X)=u(-X)) wave can be computed on an interval spanning only half the spatial period; since u is smooth on this domain which does not include the corner except as an endpoint, all numerical difficulties are avoided. A key step is to derive an extra boundary condition which uniquely identifies the corner wave. With both the grid point values of u(x) and phase speed c as unknowns, the discretized equations, imposing three boundary conditions on a second order differential equation, are solved by a Newton-Raphson iteration. Although our method is illustrated by the so-called 'Whitham's equation', u t +uu x =∫Du dx ' where D is a very general linear operator, the ideas are widely applicable
Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.
2016-01-01
Near the Sun (plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.
Energy Technology Data Exchange (ETDEWEB)
Ofman, Leon, E-mail: Leon.Ofman@nasa.gov [Department of Physics, The Catholic University of America, Washington, DC (United States); NASA Goddard Space Flight Center, Greenbelt, MD (United States); Visiting, Department of Geosciences, Tel Aviv University, Tel Aviv (Israel); Ozak, Nataly [Centre for mathematical Plasma Astrophysics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)
2016-03-25
Near the Sun (< 10R{sub s}) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.
Indian Academy of Sciences (India)
IAS Admin
wavelength, they are called shallow water waves. In the ... Deep and intermediate water waves are dispersive as the velocity of these depends on wavelength. This is not the ..... generation processes, the finite amplitude wave theories are very ...
STEREO Observations of Waves in the Ramp Regions of Interplanetary Shocks
Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III
2017-12-01
Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (≥ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with
National Research Council Canada - National Science Library
Pritchard, David
1999-01-01
Matter wave interferometers, in which de Broglie waves are coherently split and then recombined to produce interference fringes, have opened exciting new possibilities for precision and fundamental...
Romanelli, N.; Mazelle, C.; Meziane, K.
2018-02-01
Seen from the solar wind (SW) reference frame, the presence of newborn planetary protons upstream from the Martian and Venusian bow shocks and SW protons reflected from each of them constitutes two sources of nonthermal proton populations. In both cases, the resulting proton velocity distribution function is highly unstable and capable of giving rise to ultralow frequency quasi-monochromatic electromagnetic plasma waves. When these instabilities take place, the resulting nonlinear waves are convected by the SW and interact with nonthermal protons located downstream from the wave generation region (upstream from the bow shock), playing a predominant role in their dynamics. To improve our understanding of these phenomena, we study the interaction between a charged particle and a large-amplitude monochromatic circularly polarized electromagnetic wave propagating parallel to a background magnetic field, from first principles. We determine the number of fix points in velocity space, their stability, and their dependence on different wave-particle parameters. Particularly, we determine the temporal evolution of a charged particle in the pitch angle-gyrophase velocity plane under nominal conditions expected for backstreaming protons in planetary foreshocks and for newborn planetary protons in the upstream regions of Venus and Mars. In addition, the inclusion of wave ellipticity effects provides an explanation for pitch angle distributions of suprathermal protons observed at the Earth's foreshock, reported in previous studies. These analyses constitute a mean to evaluate if nonthermal proton velocity distribution functions observed at these plasma environments present signatures that can be understood in terms of nonlinear wave-particle processes.
Overdetermined shooting methods for computing standing water waves with spectral accuracy
International Nuclear Information System (INIS)
Wilkening, Jon; Yu Jia
2012-01-01
A high-performance shooting algorithm is developed to compute time-periodic solutions of the free-surface Euler equations with spectral accuracy in double and quadruple precision. The method is used to study resonance and its effect on standing water waves. We identify new nucleation mechanisms in which isolated large-amplitude solutions, and closed loops of such solutions, suddenly exist for depths below a critical threshold. We also study degenerate and secondary bifurcations related to Wilton's ripples in the traveling case, and explore the breakdown of self-similarity at the crests of extreme standing waves. In shallow water, we find that standing waves take the form of counter-propagating solitary waves that repeatedly collide quasi-elastically. In deep water with surface tension, we find that standing waves resemble counter-propagating depression waves. We also discuss the existence and non-uniqueness of solutions, and smooth versus erratic dependence of Fourier modes on wave amplitude and fluid depth. In the numerical method, robustness is achieved by posing the problem as an overdetermined nonlinear system and using either adjoint-based minimization techniques or a quadratically convergent trust-region method to minimize the objective function. Efficiency is achieved in the trust-region approach by parallelizing the Jacobian computation, so the setup cost of computing the Dirichlet-to-Neumann operator in the variational equation is not repeated for each column. Updates of the Jacobian are also delayed until the previous Jacobian ceases to be useful. Accuracy is maintained using spectral collocation with optional mesh refinement in space, a high-order Runge–Kutta or spectral deferred correction method in time and quadruple precision for improved navigation of delicate regions of parameter space as well as validation of double-precision results. Implementation issues for transferring much of the computation to a graphic processing units are briefly
International Nuclear Information System (INIS)
Yan Zhenya
2010-01-01
We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic, which is nonlinear wave alternative of the Black-Scholes model. These rogue wave solutions may he used to describe the possible physical mechanisms for rogue wave phenomenon in financial markets and related fields.
Hierarchical wave functions revisited
International Nuclear Information System (INIS)
Li Dingping.
1997-11-01
We study the hierarchical wave functions on a sphere and on a torus. We simplify some wave functions on a sphere or a torus using the analytic properties of wave functions. The open question, the construction of the wave function for quasi electron excitation on a torus, is also solved in this paper. (author)
Temiz, Burak Kagan; Yavuz, Ahmet
2015-01-01
This study was done to develop a simple and inexpensive wave driver that can be used in experiments on string waves. The wave driver was made using a battery-operated toy car, and the apparatus can be used to produce string waves at a fixed frequency. The working principle of the apparatus is as follows: shortly after the car is turned on, the…
Limit cycle analysis of nuclear coupled density wave oscillations
International Nuclear Information System (INIS)
Ward, M.E.
1985-01-01
An investigation of limit cycle behavior for the nuclear-coupled density wave oscillation (NCDWO) in a boiling water reactor (BWR) was performed. A simplified nonlinear model of BWR core behavior was developed using a two-region flow channel representation, coupled with a form of the point-kinetics equation. This model has been used to investigate the behavior of large amplitude NCDWO's through conventional time-integration solutions and through application of a direct relaxation-oscillation limit cycle solution in phase space. The numerical solutions demonstrate the potential for severe global power and flow oscillations in a BWR core at off-normal conditions, such as might occur during Anticipated Transients without Scram. Because of the many simplifying assumptions used, it is felt that the results should not be interpreted as an absolute prediction of core behavior, but as an indication of the potential for large oscillations and a demonstration of the corresponding limit cycle mechanisms. The oscillations in channel density drive the core power variations, and are reinforced by heat flux variations due to the changing fuel temperature. A global temperature increase occurs as energy is accumulated in the fuel, and limits the magnitude of the oscillations because as the average channel density decreases, the amplitude and duration of positive void reactivity at a given oscillation amplitude is lessened
Seismic Evidence for Possible Slab Melting from Strong Scattering Waves
Directory of Open Access Journals (Sweden)
Cheng-Horng Lin
2011-01-01
Full Text Available Slab melting in young and hot subduction zones has been studied using geochemical observations and thermal modelling, but there are few data from seismic studies to confirm slab melting. Also the detailed geometry in the deep part of the melting slab is often ambiguous in that the intraslab earthquakes within the Wadati-Benioff zone are only limited to shallower depths. To improve our understanding of both the seismic features and geometry found in a young and hot subducted slab, I analyzed anomalous moonquake-like seismograms that were generated by an intermediate-depth earthquake recorded in central Japan. For this study, possible reflected (or scattered sources were examined using detailed analyses of particle motions and a grid search for travel-time differences between the direct and later P-waves. The results show that using strong seismic scattering, slab melting is likely occurring in the deeper, flexing part of the subducted Philippine Sea plate. Because the subducted Philippine Sea plate in central Japan is young and therefore hot, partial melting might have taken place to produce abundant melting spots in the subducted slab. Melting spots, identified as ¡§bright spots,¡¨ could efficiently reflect or scatter seismic energy and generate many later phases with large amplitudes.
Energy Technology Data Exchange (ETDEWEB)
Muller, Norbert; Piechna, Janusz; Sun, Guangwei; Parraga, Pablo-Francisco
2018-01-02
A wave disc engine apparatus is provided. A further aspect employs a constricted nozzle in a wave rotor channel. A further aspect provides a sharp bend between an inlet and an outlet in a fluid pathway of a wave rotor, with the bend being spaced away from a peripheral edge of the wave rotor. A radial wave rotor for generating electricity in an automotive vehicle is disclosed in yet another aspect.
Bialynicki-Birula, Iwo
2005-01-01
Photon wave function is a controversial concept. Controversies stem from the fact that photon wave functions can not have all the properties of the Schroedinger wave functions of nonrelativistic wave mechanics. Insistence on those properties that, owing to peculiarities of photon dynamics, cannot be rendered, led some physicists to the extreme opinion that the photon wave function does not exist. I reject such a fundamentalist point of view in favor of a more pragmatic approach. In my view, t...
Photoelectron wave function in photoionization: plane wave or Coulomb wave?
Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I
2015-11-19
The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.
Energy Technology Data Exchange (ETDEWEB)
Kobakhidze, Archil; Lagger, Cyril; Manning, Adrian [University of Sydney, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Sydney, NSW (Australia); Yue, Jason [National Taiwan Normal University, Department of Physics, Taipei (China)
2017-08-15
We investigate the properties of a stochastic gravitational wave background produced by a first-order electroweak phase transition in the regime of extreme supercooling. We study a scenario whereby the percolation temperature that signifies the completion of the transition, T{sub p}, is as low as a few MeV (nucleosynthesis temperature), while most of the true vacuum bubbles are formed much earlier at the nucleation temperature, T{sub n} ∝ 50 GeV. This implies that the gravitational wave spectrum is mainly produced by the collisions of large bubbles and characterised by a large amplitude and a peak frequency as low as f ∝ 10{sup -9}-10{sup -7} Hz. We show that such a scenario can occur in (but not limited to) a model based on a non-linear realisation of the electroweak gauge group, so that the Higgs vacuum configuration is altered by a cubic coupling. In order to carefully quantify the evolution of the phase transition of this model over such a wide temperature range we go beyond the usual fast transition approximation, taking into account the expansion of the Universe as well as the behaviour of the nucleation probability at low temperatures. Our computation shows that there exists a range of parameters for which the gravitational wave spectrum lies at the edge between the exclusion limits of current pulsar timing array experiments and the detection band of the future Square Kilometre Array observatory. (orig.)
EEG slow-wave coherence changes in propofol-induced general anesthesia: Experiment and theory
Directory of Open Access Journals (Sweden)
Kaier eWang
2014-10-01
Full Text Available The electroencephalogram (EEG patterns recorded during general anesthetic-induced coma are closely similar to those seen during slow-wave sleep, the deepest stage of natural sleep; both states show patterns dominated by large amplitude slow waves. Slow oscillations are believed to be important for memory consolidation during natural sleep. Tracking the emergence of slow-wave oscillations during transition to unconsciousness may help us to identify drug-induced alterations of the underlying brain state, and provide insight into the mechanisms of general anesthesia. Although cellular-based mechanisms have been proposed, the origin of the slow oscillation has not yet been unambiguously established. A recent theoretical study by Steyn-Ross et al. [Physical Review X 3(2, 021005 (2013] proposes that the slow oscillation is a network, rather than cellular phenomenon. Modeling anesthesia as a moderate reduction in gap-junction interneuronal coupling, they predict an unconscious state signposted by emergent low-frequency oscillations with chaotic dynamics in space and time. They suggest that anesthetic slow-waves arise from a competitive interaction between symmetry-breaking instabilities in space (Turing and time (Hopf, modulated by gap-junction coupling strength. A significant prediction of their model is that EEG phase coherence will decrease as the cortex transits from Turing--Hopf balance (wake to Hopf-dominated chaotic slow-waves (unconsciousness. Here, we investigate changes in phase coherence during induction of general anesthesia. After examining 128-channel EEG traces recorded from five volunteers undergoing propofol anesthesia, we report a significant drop in sub-delta band (0.05--1.5 Hz slow-wave coherence between frontal, occipital, and frontal-occipital electrode pairs, with the most pronounced wake-versus-unconscious coherence changes occurring at the frontal cortex.
Ke, Ziming; Yankovsky, Alexander E.
2011-06-01
A set of numerical experiments has been performed in order to analyze the long-wave response of the coastal ocean to a translating mesoscale atmospheric cyclone approaching the coastline at a normal angle. An idealized two-slope shelf topography is chosen. The model is forced by a radially symmetric atmospheric pressure perturbation with a corresponding gradient wind field. The cyclone's translation speed, radius, and the continental shelf width are considered as parameters whose impact on the long wave period, modal structure, and amplitude is studied. Subinertial continental shelf waves (CSW) dominate the response under typical forcing conditions and on the narrower shelves. They propagate in the downstream (in the sense of Kelvin wave propagation) direction. Superinertial edge wave modes have higher free surface amplitudes and faster phase speeds than the CSW modes. While potentially more dangerous, edge waves are not as common as subinertial shelf waves because their generation requires a wide, gently sloping shelf and a storm system translating at a relatively high (˜10 m s -1 or faster) speed. A relatively smaller size of an atmospheric cyclone also favors edge wave generation. Edge waves with the highest amplitude (up to 60% of the forced storm surge) propagate upstream. They are produced by a storm system with an Eulerian time scale equal to the period of a zero-mode edge wave with the wavelength of the storm spatial scale. Large amplitude edge waves were generated during Hurricane Wilma's landfall (2005) on the West Florida shelf with particularly severe flooding occurring upstream of the landfall site.
Characterizing the nonlinear internal wave climate in the northeastern South China Sea
Directory of Open Access Journals (Sweden)
S. R. Ramp
2010-09-01
Full Text Available Four oceanographic moorings were deployed in the South China Sea from April 2005 to June 2006 along a transect extending from the Batanes Province, Philippines in the Luzon Strait to just north of Dong-Sha Island on the Chinese continental slope. The purpose of the array was to observe and track large-amplitude nonlinear internal waves (NIWs from generation to shoaling over the course of one full year. The basin and slope moorings observed velocity, temperature (T and salinity (S at 1–3 min intervals to observe the waves without aliasing. The Luzon mooring observed velocity at 15 min and T and S at 3 min, primarily to resolve the tidal forcing in the strait.
The observed waves travelled WNW towards 282–288 degrees with little variation. They were predominantly mode-1 waves with orbital velocities exceeding 100 cm s^{−1} and thermal displacements exceeding 100 m. Consistent with earlier authors, two types of waves were observed: the a-waves arrived diurnally and had a rank-ordered packet structure. The b-waves arrived in between, about an hour later each day similar to the pattern of the semi-diurnal tide. The b-waves were weaker than the a-waves, usually consisted of just one large wave, and were often absent in the deep basin, appearing as NIW only upon reaching the continental slope. The propagation speed of both types of waves was 323±31 cm s^{−1} in the deep basin and 222±18 cm s^{−1} over the continental slope. These speeds were 11–20% faster than the theoretical mode-1 wave speeds for the observed stratification, roughly consistent with the additional contribution from the nonlinear wave amplitude. The observed waves were clustered around the time of the spring tide at the presumed generation site in the Luzon Strait, and no waves were observed at neap tide. A remarkable feature was the distinct lack of waves during the winter months, December 2005 through February
Fu, X.; Li, H.; Guo, F.; Li, X.; Roytershteyn, V.
2017-12-01
The solar wind is a turbulent magnetized plasma extending from the upper atmosphere of the sun to the edge of the heliosphere. It carries charged particles and magnetic fields originated from the Sun, which have great impact on the geomagnetic environment and human activities in space. In such a magnetized plasma, Alfven waves play a crucial role in carrying energy from the surface of the Sun, injecting into the solar wind and establishing power-law spectra through turbulent energy cascades. On the other hand, in compressible plasmas large amplitude Alfven waves are subject to a parametric decay instability (PDI) which converts an Alfven wave to another counter-propagating Alfven wave and an ion acoustic wave (slow mode). The counter-propagating Alfven wave provides an important ingredient for turbulent cascade, and the slow-mode wave provides a channel for solar wind heating in a spatial scale much larger than ion kinetic scales. Growth and saturation of PDI in quiet plasma have been intensively studied using linear theory and nonlinear simulations in the past. Here using 3D hybrid simulations, we show that PDI is still effective in turbulent low-beta plasmas, generating slow modes and causing ion heating. Selected events in WIND data are analyzed to identify slow modes in the solar wind and the role of PDI, and compared with our simulation results. We also investigate the validity of linear Vlasov theory regarding PDI growth and slow mode damping in turbulent plasmas. Since PDI favors low plasma beta, we expect to see more evidence of PDI in the solar wind close to the Sun, especially from the upcoming NASA's Parker Solar Probe mission which will provide unprecedented wave and plasma data as close as 8.5 solar radii from the Sun.
Ikramullah, Ahmad, Rashid; Sharif, Saqib; Khattak, Fida Younus
2018-01-01
The interaction of Circularly Polarized Electro-Magnetic (CPEM) waves with a 4-component relativistic quantum plasma is studied. The plasma constituents are: relativistic-degenerate electrons and positrons, dynamic degenerate ions, and Thomas-Fermi distributed electrons in the background. We have employed the Klein-Gordon equations for the electrons as well as for the positrons, while the ions are represented by the Schrödinger equation. The Maxwell and Poisson equations are used for electromagnetic waves. Three modes are observed: one of the modes is associated with the electron acoustic wave, a second mode at frequencies greater than the electron acoustic wave mode could be associated with the positrons, and the third one at the lowest frequencies could be associated with the ions. Furthermore, Stimulated Raman Scattering (SRS), Modulational, and Stimulated Brillouin Scattering (SBS) instabilities are studied. It is observed that the growth rates of both the SRS and SBS instabilities decrease with increase in the quantum parameter of the plasma. It is also observed that the scattering spectra in both the SRS and SBS get restricted to very small wavenumber regions. It is shown that for low amplitude CPEM wave interaction with the quantum plasma, the positron concentration has no effect on the SRS and SBS spectra. In the case of large amplitude CPEM wave interaction, however, one observes spectral changes with varying positron concentrations. An increase in the positron concentration also enhances the scattering instability growth rates. Moreover, the growth rate first increases and then decreases with increasing intensity of the CPEM wave, indicating an optimum value of the CPEM wave intensity for the growth of these scattering instabilities. The modulational instability also shows dependence on the quantum parameter as well as on the positron concentration.
Electromagnetic waves in gravitational wave spacetimes
International Nuclear Information System (INIS)
Haney, M.; Bini, D.; Ortolan, A.; Fortini, P.
2013-01-01
We have considered the propagation of electromagnetic waves in a space-time representing an exact gravitational plane wave and calculated the induced changes on the four-potential field Aμ of a plane electromagnetic wave. By choosing a suitable photon round-trip in a Michelson interferometer, we have been able to identify the physical effects of the exact gravitational wave on the electromagnetic field, i.e. phase shift, change of the polarization vector, angular deflection and delay. These results have been exploited to study the response of an interferometric gravitational wave detector beyond the linear approximation of the general theory of relativity. A much more detailed examination of this problem can be found in our paper recently published in Classical and Quantum Gravity (28 (2011) 235007).
International Nuclear Information System (INIS)
Pinheiro, R.
1979-01-01
The properties and production of gravitational radiation are described. The prospects for their detection are considered including the Weber apparatus and gravity-wave telescopes. Possibilities of gravity-wave astronomy are noted
Electromagnetic ultrasonic guided waves
Huang, Songling; Li, Weibin; Wang, Qing
2016-01-01
This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.
Fuster, A.; Pabst, C.
2015-01-01
In this work we present a Finslerian version of the well-known pp-waves, which generalizes the very special relativity (VSR) line element. Our Finsler pp-waves are an exact solution of Finslerian Einstein's equations in vacuum.
National Research Council Canada - National Science Library
Pritchard, David
2000-01-01
Long-term research objective: Matter wave interferometers, in which de Broglie waves are coherently split and then recombined to produce interference fringes, have opened exciting new possibilities for precision and fundamental...
Coronal Waves and Oscillations
Directory of Open Access Journals (Sweden)
Nakariakov Valery M.
2005-07-01
Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.
Energy Technology Data Exchange (ETDEWEB)
Menikoff, Ralph [Los Alamos National Laboratory
2015-12-14
The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.
Electromagnetic wave matching device
International Nuclear Information System (INIS)
Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.
1997-01-01
The present invention provides an electromagnetic wave matching capable of reducing a cost for the transmission system in a system of using electromagnetic waves for plasma heating of a thermonuclear reactor. Namely, incident electromagnetic waves are reflected by using a plurality of phase correction mirrors. The reflected electromagnetic waves are connected to an external transmission system through an exit. The phase correction mirrors have such a shape to receive a plurality of beam-like electromagnetic waves and output electromagnetic waves by the number different from the number of the received electromagnetic wave beams having a predetermined distribution. Further, at least two of the phase correction mirrors have such a shape to change the phase of the electromagnetic waves beams incident to the reflection surface of the phase correction mirrors by a predetermined amount corresponding to the position of the reflection surface. Then, the cost for transmission system can greatly be reduced. (I.S.)
Wiley, Scott
2008-01-01
This viewgraph document reviews some mountain wave turbulence and operational hazards while soaring. Maps, photographs, and satellite images of the meteorological phenomena are included. Additionally, photographs of aircraft that sustained mountain wave damage are provided.
International Nuclear Information System (INIS)
Hild, S; Grote, H; Hewtison, M; Lueck, H; Smith, J R; Strain, K A; Willke, B; Danzmann, K
2007-01-01
The British/German gravitational wave detector GEO 600 located near Hannover in Germany is the first large-scale gravitational-wave detector using the advanced technique of signal recycling. Currently the instrument operates in detuned signal recycling mode. Several problems arise due to the fact that the signal recycling cavity changes amplitude and phase of all light fields (carrier and sidebands) present at the dark-port. In addition, in the case of detuned signal recycling this leads to unbalanced sideband fields at the detector output. The large amplitude modulation caused by this asymmetry does not carry any gravitational wave information, but might be the cause of saturation and nonlinearities on the main photodiode. We developed and demonstrated a new control method to realize tuned signal recycling operation in a large-scale gravitational wave detector. A detailed comparison of tuned and detuned signal recycling operation is given. The response function of the system (optical gain) was measured and compared, as was the size of amplitude modulation on the main photodiode. Some important noise couplings were measured and partly found to be strongly reduced in the case of tuned signal recycling operation
Wave Equation Inversion of Skeletonized SurfaceWaves
Zhang, Zhendong; Liu, Yike; Schuster, Gerard T.
2015-01-01
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve
International Nuclear Information System (INIS)
Lambert, A.J.D.
1979-01-01
A review of linear and weakly non-linear theory of electron waves, ion waves and electromagnetic waves in plasmas is presented. The author restricts the discussion to an infinitely extended, homogeneous and isotropic plasma, not affected by external fields and described by Vlasov's and Maxwell's equations. (Auth.)
DEFF Research Database (Denmark)
Kofoed, Jens Peter; Frigaard, Peter
Wave Dragon is a wave energy converter of the overtopping type. The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based on the experience gained a full scale, multi MW prototype...
Electromagnetic cyclotron harmonic waves
International Nuclear Information System (INIS)
Ohnuma, T.; Watanabe, T.; Hamamatsu, K.
1981-09-01
Electromagnetic electron cyclotron harmonic waves just below the electron cyclotron harmonics are investigated numerically and experimentally. Backward waves which are observed to propagate nearly perpendicular to the magnetic field just below the electron cyclotron frequency in a high density magnetoplasma are confirmed to be in accord with the theoretical electromagnetic cyclotron waves. (author)
Directory of Open Access Journals (Sweden)
Andreas Spiegelberg
2016-12-01
With the still unmet need for a clinically acceptable method for acquiring intracranial compliance, and the revival of ICP waveform analysis, B-waves are moving back into the research focus. Herein we provide a concise review of the literature on B-waves, including a critical assessment of non-invasive methods for obtaining B-wave surrogates.
Energy Technology Data Exchange (ETDEWEB)
Degasperis, Antonio [Dipartimento di Fisica, “Sapienza” Università di Roma, P.le A. Moro 2, 00185 Roma (Italy); Wabnitz, Stefan, E-mail: stefan.wabnitz@unibs.it [Dipartimento di Ingegneria dell' Informazione, Università degli Studi di Brescia and INO-CNR, via Branze 38, 25123 Brescia (Italy); Aceves, Alejandro B. [Southern Methodist University, Dallas (United States)
2015-06-12
We derive the rogue wave solution of the classical massive Thirring model, that describes nonlinear optical pulse propagation in Bragg gratings. Combining electromagnetically induced transparency with Bragg scattering four-wave mixing may lead to extreme waves at extremely low powers.
Fundamentals of wave phenomena
Hirose, Akira
2010-01-01
This textbook provides a unified treatment of waves that either occur naturally or can be excited and propagated in various media. This includes both longitudinal and transverse waves. The book covers both mechanical and electrical waves, which are normally covered separately due to their differences in physical phenomena.
Jovian electron bursts: Correlation with the interplanetary field direction and hydromagnetic waves
International Nuclear Information System (INIS)
Smith, E.J.; Tsurutani, B.T.; Chenette, D.L.; Conlon, T.F.; Simpson, J.A.
1976-01-01
The bursts of relativistic electrons detected on Pioneer 10 upstream from Jupiter and within 400r/subj/ of the planet have been found to be correlated with the interplanetary magnetic field. In the three examples upon which this study is based, during the month prior to the Pioneer 10 encounter, electrons with energies between 3 and 6 MeV escaping from Jupiter's magnetosphere were observed only when the interplanetary magnetic field was along the Jupiter-spacecraft line. In addition, large-amplitude interplanetary waves with characteristic periods of 10 min were observed and found to be well correlated with intervals during which the field was along the Jupiter-spacecraft line. Abrupt changes in the field away from the preferred direction caused equally abrupt terminations of the waves with an accompanying reduction in the electron flux. These results are consistent with propagation of the electrons from Jupiter to Pioneer along, rather than across, the magnetic field lines. The direction of the interplanetary magnetic field is apparently not affected by the electron bursts or by other particles from Jupiter. The average Parker spiral direction is clear with no enhancement in the Jupiter-spacecraft direction. Two alternative possibilities are considered for the origin of the waves. If they were generated near Jupiter, they would have to propagate to the spacecraft in the whistler mode. The expected attenuation of these waves over distances of several hundred r/subj/ an their long travel times make this explanation unattractive. Alternatively, hydromagnetic wave generation by Jovian charged particles, presumably the relativistic electrons themselves, as they travel upstream, appears to be an attractive explanation
Backward wave oscillators with rippled wall resonators: Analytic theory and numerical simulation
International Nuclear Information System (INIS)
Swegle, J.A.; Poukey, J.W.
1985-01-01
The 3-D analytic theory is based on the approximation that the device is infinitely long. In the absence of an electron beam, the theory is exact and allows us to compute the dispersion characteristics of the cold structure. With the inclusion of a thin electron beam, we can compute the growth rates resulting from the interaction between a waveguide mode of the structure and the slower space charge wave on the beam. In the limit of low beam currents, the full dispersion relation based on an electromagnetic analysis can be placed in correspondence with the circuit theory of Pierce. Numerical simulations permit us to explore the saturated, large amplitude operating regime for TM axisymmetric modes. The scaling of operating frequency, peak power, and operating efficiency with beam and resonator parameters is examined. The analytic theory indicates that growth rates are largest for the TM 01 modes and decrease with both the radial and azimuthal mode numbers. Another interesting trend is that for a fixed cathode voltage and slow wave structure, growth rates peak for a beam current below the space charge limiting value and decrease for both larger and smaller currents. The simulations show waves that grow from noise without any input signal, so that the system functions as an oscillator. The TM 01 mode predominates in all simulations. While a minimum device length is required for the start of oscillations, it appears that if the slow wave structure is too long, output power is decreased by a transfer of wave energy back to the electrons. Comparisons have been made between the analytical and numerical results, as well as with experimental data obtained at Sandia National Laboratories
International Nuclear Information System (INIS)
Dossmann, Yvan; Paci, Alexandre; Auclair, Francis; Lepilliez, Mathieu; Cid, Emmanuel
2014-01-01
Internal solitary waves (ISWs) are large amplitude stable waves propagating in regions of high density gradients such as the ocean pycnocline. Their dynamics has often been investigated in two-dimensional approaches, however, their three-dimensional evolution is still poorly known. Experiments have been conducted in the large stratified water tank of CNRM-GAME to study the generation of ISWs in two academic configurations inspired by oceanic regimes. First, ultrasonic probes are used to measure the interfacial displacement in the two configurations. In the primary generation case for which the two layers are of constant density, the generation of ISWs is investigated in two series of experiments with varying amplitude and forcing frequency. In the secondary generation case for which the lower layer is stratified, the generation of ISWs from the impact of an internal wave beam on the pycnocline and their subsequent dynamics is studied. The dynamics of ISWs in these two regimes accords well with analytical approaches and numerical simulations performed in analogous configurations. Then, recent developments of a stereo correlation technique are used to describe the three-dimensional structure of propagating ISWs. In the primary generation configuration, small transverse effects are observed in the course of the ISW propagation. In the secondary generation configuration, larger transverse structures are observed in the interfacial waves dynamics. The interaction between interfacial troughs and internal waves propagating in the lower stratified layer are a possible cause for the generation of these structures. The magnitude of these transverse structures is quantified with a nondimensional parameter in the two configurations. They are twice as large in the secondary generation case as in the primary generation case
International Nuclear Information System (INIS)
Goree, J.; Ono, M.; Colestock, P.; Horton, R.; McNeill, D.; Park, H.
1985-07-01
Fast wave current drive is demonstrated in the Princeton ACT-I toroidal device. The fast Alfven wave, in the range of high ion-cyclotron harmonics, produced 40 A of current from 1 kW of rf power coupled into the plasma by fast wave loop antenna. This wave excites a steady current by damping on the energetic tail of the electron distribution function in the same way as lower-hybrid current drive, except that fast wave current drive is appropriate for higher plasma densities
DEFF Research Database (Denmark)
Sørensen, H. C.; Hansen, R.; Friis-Madsen, E.
2000-01-01
The Wave Dragon is an offshore wave energy converter of the overtopping type, utilizing a patented wave reflector design to focus the waves towards a ramp, and the overtopping is used for electricity production through a set of Kaplan/propeller hydro turbines. During the last 2 years, excessive...... design an testing has been performed on a scale 1:50 model of the Wave Dragon, and on a scale 1:3:5 model turbine. Thus survivability, overtopping, hydraulic response, turbine performance and feasibility have been verified....
Elmore, William C
1985-01-01
Because of the increasing demands and complexity of undergraduate physics courses (atomic, quantum, solid state, nuclear, etc.), it is often impossible to devote separate courses to the classic wave phenomena of optics, acoustics, and electromagnetic radiation. This brief comprehensive text helps alleviate the problem with a unique overview of classical wave theory in one volume.By examining a sequence of concrete and specific examples (emphasizing the physics of wave motion), the authors unify the study of waves, developing abstract and general features common to all wave motion. The fundam
Linear waves and instabilities
International Nuclear Information System (INIS)
Bers, A.
1975-01-01
The electrodynamic equations for small-amplitude waves and their dispersion relation in a homogeneous plasma are outlined. For such waves, energy and momentum, and their flow and transformation, are described. Perturbation theory of waves is treated and applied to linear coupling of waves, and the resulting instabilities from such interactions between active and passive waves. Linear stability analysis in time and space is described where the time-asymptotic, time-space Green's function for an arbitrary dispersion relation is developed. The perturbation theory of waves is applied to nonlinear coupling, with particular emphasis on pump-driven interactions of waves. Details of the time--space evolution of instabilities due to coupling are given. (U.S.)
Engelbrecht, Jüri
2015-01-01
This book addresses the modelling of mechanical waves by asking the right questions about them and trying to find suitable answers. The questions follow the analytical sequence from elementary understandings to complicated cases, following a step-by-step path towards increased knowledge. The focus is on waves in elastic solids, although some examples also concern non-conservative cases for the sake of completeness. Special attention is paid to the understanding of the influence of microstructure, nonlinearity and internal variables in continua. With the help of many mathematical models for describing waves, physical phenomena concerning wave dispersion, nonlinear effects, emergence of solitary waves, scales and hierarchies of waves as well as the governing physical parameters are analysed. Also, the energy balance in waves and non-conservative models with energy influx are discussed. Finally, all answers are interwoven into the canvas of complexity.
Danehkar, A.
2018-06-01
Suprathermal electrons and inertial drifting electrons, so called electron beam, are crucial to the nonlinear dynamics of electrostatic solitary waves observed in several astrophysical plasmas. In this paper, the propagation of electron-acoustic solitary waves (EAWs) is investigated in a collisionless, unmagnetized plasma consisting of cool inertial background electrons, hot suprathermal electrons (modeled by a κ-type distribution), and stationary ions. The plasma is penetrated by a cool electron beam component. A linear dispersion relation is derived to describe small-amplitude wave structures that shows a weak dependence of the phase speed on the electron beam velocity and density. A (Sagdeev-type) pseudopotential approach is employed to obtain the existence domain of large-amplitude solitary waves, and investigate how their nonlinear structures depend on the kinematic and physical properties of the electron beam and the suprathermality (described by κ) of the hot electrons. The results indicate that the electron beam can largely alter the EAWs, but can only produce negative polarity solitary waves in this model. While the electron beam co-propagates with the solitary waves, the soliton existence domain (Mach number range) becomes narrower (nearly down to nil) with increasing the beam speed and the beam-to-hot electron temperature ratio, and decreasing the beam-to-cool electron density ratio in high suprathermality (low κ). It is found that the electric potential amplitude largely declines with increasing the beam speed and the beam-to-cool electron density ratio for co-propagating solitary waves, but is slightly decreased by raising the beam-to-hot electron temperature ratio.
Magnetohydrodynamic waves, electrohydrodynamic waves and photons
International Nuclear Information System (INIS)
Carstoin, J.
1984-01-01
Two new subjects have lately attracted increased attention: the magnetohydrodynamics (m.h.d.) and the theory of lasers. Equally important is the subject of electrohydrodynamics (e.h.d.). Now, clearly, all electromagnetic waves carry photons; it is the merit of Louis de Broglie to have had reconciled the validity of the Maxwell equations with existence of the latter. I have, recently, derived L. de Broglie's equations from the equations C. It seems natural to assume that the m.h.d. waves carry also photons, but how to reconcile the m.h.d axioms with the existence of photons ... a problem which has, so far, escaped the notice of physicists. In the lines which follows, an attempt is made to incorporate the photons in the m.h.d. waves, re e.h.d. waves in a rather simple fashion
Wave Overtopping Characteristics of the Wave Dragon
DEFF Research Database (Denmark)
Tedd, James; Kofoed, Jens Peter
Simulation work has been used extensively with the Wave dragon and other overtopping devices to analyse the power production performance of them and to optimise the structural design and the control strategy. A time domain approach to this is well documented in Jakobsen & Frigaard 1999. Using...... measurements taken from the Wave Dragon Nissum Bredning prototype, some of the previous assumptions have been slightly modified and improved upon, so that the simulation method better represents the reality of what is occurring....
Cycloidal Wave Energy Converter
Energy Technology Data Exchange (ETDEWEB)
Stefan G. Siegel, Ph.D.
2012-11-30
This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will
Experimental investigation of flow induced dust acoustic shock waves in a complex plasma
Energy Technology Data Exchange (ETDEWEB)
Jaiswal, S., E-mail: surabhijaiswal73@gmail.com; Bandyopadhyay, P.; Sen, A. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)
2016-08-15
We report on experimental observations of flow induced large amplitude dust-acoustic shock waves in a complex plasma. The experiments have been carried out in a Π shaped direct current glow discharge experimental device using kaolin particles as the dust component in a background of Argon plasma. A strong supersonic flow of the dust fluid is induced by adjusting the pumping speed and neutral gas flow into the device. An isolated copper wire mounted on the cathode acts as a potential barrier to the flow of dust particles. A sudden change in the gas flow rate is used to trigger the onset of high velocity dust acoustic shocks whose dynamics are captured by fast video pictures of the evolving structures. The physical characteristics of these shocks are delineated through a parametric scan of their dynamical properties over a range of flow speeds and potential hill heights. The observed evolution of the shock waves and their propagation characteristics are found to compare well with model numerical results based on a modified Korteweg-de-Vries-Burgers type equation.
Nonlinear plasma waves excitation by intense ion beams in background plasma
International Nuclear Information System (INIS)
Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.
2004-01-01
Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration τ b is much longer than the electron plasma period 2π/ω p , where ω p =(4πe 2 n p /m) 1/2 is the electron plasma frequency, and n p is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. If the beam density is larger than the background plasma density, the plasma waves break. Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The reduced fluid description derived in this paper can provide an important benchmark for numerical codes and yield scaling relations for different beam and plasma parameters. The visualization of numerical simulation data shows complex collective phenomena during beam entry and exit from the plasma
Nonlinear Plasma Waves Excitation by Intense Ion Beams in Background Plasma
International Nuclear Information System (INIS)
Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.
2004-01-01
Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration τ b is much longer than the electron plasma period 2π/ω p , where ω p = (4πe 2 n p /m) 1/2 is the electron plasma frequency and n p is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. If the beam density is larger than the background plasma density, the plasma waves break. Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The reduced fluid description derived in this paper can provide an important benchmark for numerical codes and yield scaling relations for different beam and plasma parameters. The visualization of numerical simulation data shows complex collective phenomena during beam entry and exit from the plasma
Non-reciprocal wave propagation in one-dimensional nonlinear periodic structures
Directory of Open Access Journals (Sweden)
Benbiao Luo
2018-01-01
Full Text Available We study a one-dimensional nonlinear periodic structure which contains two different spring stiffness and an identical mass in each period. The linear dispersion relationship we obtain indicates that our periodic structure has obvious advantages compared to other kinds of periodic structures (i.e. those with the same spring stiffness but two different mass, including its increased flexibility for manipulating the band gap. Theoretically, the optical cutoff frequency remains unchanged while the acoustic cutoff frequency shifts to a lower or higher frequency. A numerical simulation verifies the dispersion relationship and the effect of the amplitude-dependent signal filter. Based upon this, we design a device which contains both a linear periodic structure and a nonlinear periodic structure. When incident waves with the same, large amplitude pass through it from opposite directions, the output amplitude of the forward input is one order magnitude larger than that of the reverse input. Our devised, non-reciprocal device can potentially act as an acoustic diode (AD without an electrical circuit and frequency shifting. Our result represents a significant step forwards in the research of non-reciprocal wave manipulation.
Permanence of the corpuscular appearance and non linearity of the wave equation
International Nuclear Information System (INIS)
Fargue, D.
1984-01-01
The two fold character of matter, undulatory and corpuscular, sets problems of mathematical representation which are not yet really solved. The easier to picture is certainly the wave: there are numerous partial differential equations which can be used and are well studied, at least in the linear domain. It remains to account for the corpuscle and, above all, to connect it in some way with the wave. One way is to represent the particle as a small region of large amplitude, or of large concentration of energy, a limiting case being a mathematical singularity. Such a theory must fulfill a number of requirements, three of which are discussed: 1. The permanence of the corpuscle must be ascertained: the bump in the field must not disappear, at least as long as the particle is not acted upon by too large force gradients. 2. A dynamics must be recovered, that is a law of motion for the corpuscle, which is in good agreement with experiment, or, for lack of it, with the former theories (classical or quantum) in their domain of validity. 3. One must also recover the results of the statistical experiments, the description of which is claimed to be one of the great successes of quantum theory, as it is commonly used in practice. (Auth.)
Wave Dragon Wave Energy Converters Used as Coastal Protection
DEFF Research Database (Denmark)
Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Kofoed, Jens Peter
2011-01-01
This paper deals with wave energy converters used to reduce the wave height along shorelines. For this study the Wave Dragon wave energy converter is chosen. The wave height reduction from a single device has been evaluated from physical model tests in scale 1:51.8 of the 260 x 150 m, 24 kW/m model...... Spain, to evaluate the potential for reducing wave heights close the shore by means of Wave Dragons....
Balasis, G.; Daglis, I. A.; Mann, I. R.; Papadimitriou, C.; Zesta, E.; Georgiou, M.; Haagmans, R.; Tsinganos, K.
2015-10-01
We use multi-satellite and ground-based magnetic data to investigate the concurrent characteristics of Pc3 (22-100 mHz) and Pc4-5 (1-22 mHz) ultra-low-frequency (ULF) waves on the 31 October 2003 during the Halloween magnetic superstorm. ULF waves are seen in the Earth's magnetosphere, topside ionosphere, and Earth's surface, enabling an examination of their propagation characteristics. We employ a time-frequency analysis technique and examine data from when the Cluster and CHAMP spacecraft were in good local time (LT) conjunction near the dayside noon-midnight meridian. We find clear evidence of the excitation of both Pc3 and Pc4-5 waves, but more significantly we find a clear separation in the L shell of occurrence of the Pc4-5 and Pc3 waves in the equatorial inner magnetosphere, separated by the density gradients at the plasmapause boundary layer. A key finding of the wavelet spectral analysis of data collected from the Geotail, Cluster, and CHAMP spacecraft and the CARISMA and GIMA magnetometer networks was a remarkably clear transition of the waves' frequency into dominance in a higher-frequency regime within the Pc3 range. Analysis of the local field line resonance frequency suggests that the separation of the Pc4-5 and Pc3 emissions across the plasmapause is consistent with the structure of the inhomogeneous field line resonance Alfvén continuum. The Pc4-5 waves are consistent with direct excitation by the solar wind in the plasma trough, as well as Pc3 wave absorption in the plasmasphere following excitation by upstream waves originating at the bow shock in the local noon sector. However, despite good solar wind coverage, our study was not able to unambiguously identify a clear explanation for the sharp universal time (UT) onset of the discrete frequency and large-amplitude Pc3 wave power.
Directory of Open Access Journals (Sweden)
G. Balasis
2015-10-01
Full Text Available We use multi-satellite and ground-based magnetic data to investigate the concurrent characteristics of Pc3 (22–100 mHz and Pc4-5 (1–22 mHz ultra-low-frequency (ULF waves on the 31 October 2003 during the Halloween magnetic superstorm. ULF waves are seen in the Earth's magnetosphere, topside ionosphere, and Earth's surface, enabling an examination of their propagation characteristics. We employ a time–frequency analysis technique and examine data from when the Cluster and CHAMP spacecraft were in good local time (LT conjunction near the dayside noon–midnight meridian. We find clear evidence of the excitation of both Pc3 and Pc4-5 waves, but more significantly we find a clear separation in the L shell of occurrence of the Pc4-5 and Pc3 waves in the equatorial inner magnetosphere, separated by the density gradients at the plasmapause boundary layer. A key finding of the wavelet spectral analysis of data collected from the Geotail, Cluster, and CHAMP spacecraft and the CARISMA and GIMA magnetometer networks was a remarkably clear transition of the waves' frequency into dominance in a higher-frequency regime within the Pc3 range. Analysis of the local field line resonance frequency suggests that the separation of the Pc4-5 and Pc3 emissions across the plasmapause is consistent with the structure of the inhomogeneous field line resonance Alfvén continuum. The Pc4-5 waves are consistent with direct excitation by the solar wind in the plasma trough, as well as Pc3 wave absorption in the plasmasphere following excitation by upstream waves originating at the bow shock in the local noon sector. However, despite good solar wind coverage, our study was not able to unambiguously identify a clear explanation for the sharp universal time (UT onset of the discrete frequency and large-amplitude Pc3 wave power.
Kuznetsov, N.; Maz'ya, V.; Vainberg, B.
2002-08-01
This book gives a self-contained and up-to-date account of mathematical results in the linear theory of water waves. The study of waves has many applications, including the prediction of behavior of floating bodies (ships, submarines, tension-leg platforms etc.), the calculation of wave-making resistance in naval architecture, and the description of wave patterns over bottom topography in geophysical hydrodynamics. The first section deals with time-harmonic waves. Three linear boundary value problems serve as the approximate mathematical models for these types of water waves. The next section uses a plethora of mathematical techniques in the investigation of these three problems. The techniques used in the book include integral equations based on Green's functions, various inequalities between the kinetic and potential energy and integral identities which are indispensable for proving the uniqueness theorems. The so-called inverse procedure is applied to constructing examples of non-uniqueness, usually referred to as 'trapped nodes.'
Electromagnetic wave matching device
International Nuclear Information System (INIS)
Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.
1997-01-01
The present invention provides a matching device capable of increasing an efficiency of combining beams of electromagnetic waves outputted from an output window of a gyrotron which is expected for plasma heating of a thermonuclear reactor and an electromagnetic wave transmission system as high as possible. Namely, an electromagnetic wave matching device reflects beams of electromagnetic waves incident from an inlet by a plurality of phase correction mirrors and combines them to an external transmission system through an exit. In this case, the phase correction mirrors change the phase of the beams of electromagnetic waves incident to the phase correction mirrors by a predetermined amount corresponding to the position of the reflection mirrors. Then, the beams of electromagnetic waves outputted, for example, from a gyrotron can properly be shaped as desired for the intensity and the phase. As a result, combination efficiency with the transmission system can be increased. (I.S.)
DEFF Research Database (Denmark)
Frigaard, Peter; Andersen, Thomas Lykke
The present book describes the most important aspects of wave analysis techniques applied to physical model tests. Moreover, the book serves as technical documentation for the wave analysis software WaveLab 3, cf. Aalborg University (2012). In that respect it should be mentioned that supplementary...... to the present technical documentation exists also the online help document describing the WaveLab software in detail including all the inputs and output fields. In addition to the two main authors also Tue Hald, Jacob Helm-Petersen and Morten Møller Jakobsen have contributed to the note. Their input is highly...... acknowledged. The outline of the book is as follows: • Chapter 2 and 3 describes analysis of waves in time and frequency domain. • Chapter 4 and 5 describes the separation of incident and reflected waves for the two-dimensional case. • Chapter 6 describes the estimation of the directional spectra which also...
CERN. Geneva
2016-01-01
In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.
Ockendon, Hilary
2016-01-01
Now in its second edition, this book continues to give readers a broad mathematical basis for modelling and understanding the wide range of wave phenomena encountered in modern applications. New and expanded material includes topics such as elastoplastic waves and waves in plasmas, as well as new exercises. Comprehensive collections of models are used to illustrate the underpinning mathematical methodologies, which include the basic ideas of the relevant partial differential equations, characteristics, ray theory, asymptotic analysis, dispersion, shock waves, and weak solutions. Although the main focus is on compressible fluid flow, the authors show how intimately gasdynamic waves are related to wave phenomena in many other areas of physical science. Special emphasis is placed on the development of physical intuition to supplement and reinforce analytical thinking. Each chapter includes a complete set of carefully prepared exercises, making this a suitable textbook for students in applied mathematics, ...
International Nuclear Information System (INIS)
Gregg, D.W.; Kidder, R.E.; Biehl, A.T.
1975-01-01
A method is described for generating a traveling wave laser pulse of almost unlimited energy content wherein a gain medium is pumped into a traveling wave mode, the traveling wave moving at essentially the velocity of light to generate an amplifying region or zone which moves through the medium at the velocity of light in the presence of directed stimulating radiation, thereby generating a traveling coherent, directed radiation pulse moving with the amplification zone through the gain medium. (U.S.)
Kinesthetic Transverse Wave Demonstration
Pantidos, Panagiotis; Patapis, Stamatis
2005-09-01
This is a variation on the String and Sticky Tape demonstration "The Wave Game," suggested by Ron Edge. A group of students stand side by side, each one holding a card chest high with both hands. The teacher cues the first student to begin raising and lowering his card. When he starts lowering his card, the next student begins to raise his. As succeeding students move their cards up and down, a wave such as that shown in the figure is produced. To facilitate the process, students' motions were synchronized with the ticks of a metronome (without such synchronization it was nearly impossible to generate a satisfactory wave). Our waves typically had a frequency of about 1 Hz and a wavelength of around 3 m. We videotaped the activity so that the students could analyze the motions. The (17-year-old) students had not received any prior instruction regarding wave motion and did not know beforehand the nature of the exercise they were about to carry out. During the activity they were asked what a transverse wave is. Most of them quickly realized, without teacher input, that while the wave propagated horizontally, the only motion of the transmitting medium (them) was vertical. They located the equilibrium points of the oscillations, the crests and troughs of the waves, and identified the wavelength. The teacher defined for them the period of the oscillations of the motion of a card to be the total time for one cycle. The students measured this time and then several asserted that it was the same as the wave period. Knowing the length of the waves and the number of waves per second, the next step can easily be to find the wave speed.
DEFF Research Database (Denmark)
Takayama, Osamu; Crasovan, Lucian Cornel; Johansen, Steffen Kjær
2008-01-01
The interface of two semi-infinite media, where at least one of them is a birefringent crystal, supports a special type of surface wave that was predicted theoretically by D'yakonov in 1988. Since then, the properties of such waves, which exist in transparent media only under very special......, the existence of these surface waves in specific material examples is analyzed, discussing the challenge posed by their experimental observation....
CERN. Geneva HR-RFA
2006-01-01
We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort.
Wave reflections from breakwaters
Dickson, William S.
1994-01-01
A new method is presented for estimating the reflection of a random, multi-directional sea from a coastal structure. The technique is applicable to an array of wave gauges of arbitrary geometry deployed seaward of the reflector. An expansion for small oblique wave incidence angles is used to derive an approximate relationship between measured array cross-spectra and a small number of parameters that describe the incident wave properties and the reflectivity of the structure. Model tests with ...
CERN. Geneva
2006-01-01
Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.
Thorpe, S. A.
1980-01-01
The physical processes which control the transfer of gases between the atmosphere and oceans or lakes are poorly understood. Clouds of micro-bubbles have been detected below the surface of Loch Ness when the wind is strong enough to cause the waves to break. The rate of transfer of gas into solution from these bubbles is estimated to be significant if repeated on a global scale. We present here further evidence that the bubbles are caused by breaking waves, and discuss the relationship between the mean frequency of wave breaking at a fixed point and the average distance between breaking waves, as might be estimated from an aerial photograph.
DEFF Research Database (Denmark)
Østergaard, Claus Møller; Rosenstand, Claus Andreas Foss; Gertsen, Frank
2012-01-01
Building on previous well-argued work by Jon Sundbo (1995a), on how innovation has evolved in three phases or waves since 1880, this paper’s contribution is extending the historical line, by offering arguments and explanations for two additional waves of innovation that explain the most recent...... developments. The paper also adds new interpretations of the previous work by Sundbo (1995a) in suggesting that the waves are triggered by societal and economic crisis. The result is a new theoretical and historical framework, proposing five waves of innovation triggered by societal and economic crises...
DEFF Research Database (Denmark)
Kofoed, Jens Peter
2017-01-01
This Handbook for Ocean Wave Energy aims at providing a guide into the field of ocean wave energy utilization. The handbook offers a concise yet comprehensive overview of the main aspects and disciplines involved in the development of wave energy converters (WECs). The idea for the book has been...... shaped by the development, research, and teaching that we have carried out at the Wave Energy Research Group at Aalborg University over the past decades. It is our belief and experience that it would be useful writing and compiling such a handbook in order to enhance the understanding of the sector...
International Nuclear Information System (INIS)
Gregg, D.W.; Kidder, R.E.; Biehl, A.T.
1975-01-01
The invention broadly involves a method and means for generating a traveling wave laser pulse and is basically analogous to a single pass light amplifier system. However, the invention provides a traveling wave laser pulse of almost unlimited energy content, wherein a gain medium is pumped in a traveling wave mode, the traveling wave moving at essentially the velocity of light to generate an amplifying region or zone which moves through the medium at the velocity of light in the presence of directed stimulating radiation, thereby generating a traveling coherent, directed radiation pulse moving with the amplification zone through the gain medium. (U.S.)
David, P
2013-01-01
Propagation of Waves focuses on the wave propagation around the earth, which is influenced by its curvature, surface irregularities, and by passage through atmospheric layers that may be refracting, absorbing, or ionized. This book begins by outlining the behavior of waves in the various media and at their interfaces, which simplifies the basic phenomena, such as absorption, refraction, reflection, and interference. Applications to the case of the terrestrial sphere are also discussed as a natural generalization. Following the deliberation on the diffraction of the "ground? wave around the ear
Pizzo, Nick
2017-11-01
A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.
Hernandez-Figueroa, Hugo E; Recami, Erasmo
2013-01-01
This continuation and extension of the successful book ""Localized Waves"" by the same editors brings together leading researchers in non-diffractive waves to cover the most important results in their field and as such is the first to present the current state.The well-balanced presentation of theory and experiments guides readers through the background of different types of non-diffractive waves, their generation, propagation, and possible applications. The authors include a historical account of the development of the field, and cover different types of non-diffractive waves, including Airy
Itai, Akitoshi; Yasukawa, Hiroshi; Takumi, Ichi; Hata, Masayasu
It is well known that electromagnetic waves radiated from the earth's crust are useful for predicting earthquakes. We analyze the electromagnetic waves received at the extremely low frequency band of 223Hz. These observed signals contain the seismic radiation from the earth's crust, but also include several undesired signals. Our research focuses on the signal detection technique to identify an anomalous signal corresponding to the seismic radiation in the observed signal. Conventional anomalous signal detections lack a wide applicability due to their assumptions, e.g. the digital data have to be observed at the same time or the same sensor. In order to overcome the limitation related to the observed signal, we proposed the anomalous signals detection based on a multi-layer neural network which is trained by digital data observed during a span of a day. In the neural network approach, training data do not need to be recorded at the same place or the same time. However, some noises, which have a large amplitude, are detected as the anomalous signal. This paper develops a multi-layer neural network to decrease the false detection of the anomalous signal from the electromagnetic wave. The training data for the proposed network is the decomposed signal of the observed signal during several days, since the seismic radiations are often recorded from several days to a couple of weeks. Results show that the proposed neural network is useful to achieve the accurate detection of the anomalous signal that indicates seismic activity.
Wave Mechanics or Wave Statistical Mechanics
International Nuclear Information System (INIS)
Qian Shangwu; Xu Laizi
2007-01-01
By comparison between equations of motion of geometrical optics and that of classical statistical mechanics, this paper finds that there should be an analogy between geometrical optics and classical statistical mechanics instead of geometrical mechanics and classical mechanics. Furthermore, by comparison between the classical limit of quantum mechanics and classical statistical mechanics, it finds that classical limit of quantum mechanics is classical statistical mechanics not classical mechanics, hence it demonstrates that quantum mechanics is a natural generalization of classical statistical mechanics instead of classical mechanics. Thence quantum mechanics in its true appearance is a wave statistical mechanics instead of a wave mechanics.
Reflectors to Focus Wave Energy
DEFF Research Database (Denmark)
Kramer, Morten; Frigaard, Peter
2005-01-01
Wave Energy Converters (WEC’s) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased by approximately 30......-50%. Clearly longer wave reflectors will focus more wave energy than shorter wave reflectors. Thus the draw back is the increased wave forces for the longer wave reflectors. In the paper a procedure for calculating the energy efficiency and the wave forces on the reflectors are described, this by use of a 3D...... boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benefit for different wave reflector geometries and optimal geometrical design parameters are specified. On this basis inventors of WEC’s can...
Nonlinear Dispersive Elastic Waves in Solids: Exact, Approximate, and Numerical Solutions
Khajehtourian, Romik
Wave motion lies at the heart of many disciplines in the physical sciences and engineering. For example, problems and applications involving light, sound, heat, or fluid flow are all likely to involve wave dynamics at some level. A particular class of problems is concerned with the propagation of elastic waves in a solid medium, such as a fiber-reinforced composite material responding to vibratory excitations, or soil and rock admitting seismic waves moments after the onset of an earthquake, or phonon transport in a semiconducting crystal like silicon. Regardless of the type of wave, the dispersion relation provides a fundamental characterization of the elastodynamic properties of the medium. The first part of the dissertation examines the propagation of a large-amplitude elastic wave in a one-dimensional homogeneous medium with a focus on the effects of inherent nonlinearities on the dispersion relation. Considering a thin rod, where the thickness is small compared to the wavelength, an exact, closed-form formulation is presented for the treatment of two types of nonlinearity in the strain-displacement gradient relation: Green-Lagrange and Hencky. The derived relation is then verified by direct time-domain simulations, examining both instantaneous dispersion (by direct observation) and short-term, pre-breaking dispersion (by Fourier transformation). A high-order perturbation analysis is also conducted yielding an explicit analytical space-time solution, which is shown to be spectrally accurate. The results establish a perfect match between theory and simulation and reveal that regardless of the strength of the nonlinearity, the dispersion relation fully embodies all information pertaining to the nonlinear harmonic generation mechanism that unfolds as an arbitrary-profiled wave evolves in the medium. In the second part of the dissertation, the analysis is extended to a continuous periodic thin rod exhibiting multiple phases or embedded local resonators. The
Making waves: visualizing fluid flows
Zweers, Wout; Zwart, Valerie; Bokhove, Onno
2013-01-01
We explore the visualization of violent wave dynamics and erosion by waves and jets in laser-cut reliefs, laser engravings, and three-dimensional printing. For this purpose we built table-top experiments to cast breaking waves, and also explored the creation of extreme or rogue waves in larger wave
DEFF Research Database (Denmark)
Burcharth, H. F.; Larsen, Brian Juul
The investigation concerns the design of a new internal breakwater in the main port of Ibiza. The objective of the model tests was in the first hand to optimize the cross section to make the wave reflection low enough to ensure that unacceptable wave agitation will not occur in the port. Secondly...
Newman, J. N.
1979-01-01
Discussed is the utilization of surface ocean waves as a potential source of power. Simple and large-scale wave power devices and conversion systems are described. Alternative utilizations, environmental impacts, and future prospects of this alternative energy source are detailed. (BT)
International Nuclear Information System (INIS)
Shawhan, S.D.
1977-01-01
A brief history of plasma wave observations in the Earth's magnetosphere is recounted and a classification of the identified plasma wave phenomena is presented. The existence of plasma waves is discussed in terms of the characteristic frequencies of the plasma, the energetic particle populations and the proposed generation mechanisms. Examples are given for which plasmas waves have provided information about the plasma parameters and particle characteristics once a reasonable theory has been developed. Observational evidence and arguments by analogy to the observed Earth plasma wave processes are used to identify plasma waves that may be significant in other planetary magnetospheres. The similarities between the observed characteristics of the terrestrial kilometric radiation and radio bursts from Jupiter, Saturn and possibly Uranus are stressed. Important scientific problems concerning plasma wave processes in the solar system and beyond are identified and discussed. Models for solar flares, flare star radio outbursts and pulsars include elements which are also common to the models for magnetospheric radio bursts. Finally, a listing of the research and development in terms of instruments, missions, laboratory experiments, theory and computer simulations needed to make meaningful progress on the outstanding scientific problems of plasma wave research is given. (Auth.)
Those Elusive Gravitational Waves
MOSAIC, 1976
1976-01-01
The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)
Directory of Open Access Journals (Sweden)
Zheng-Johansson J. X.
2006-10-01
Full Text Available The electromagnetic component waves, comprising together with their generating oscillatory massless charge a material particle, will be Doppler shifted when the charge hence particle is in motion, with a velocity v, as a mere mechanical consequence of the source motion. We illustrate here that two such component waves generated in opposite directions and propagating at speed c between walls in a one-dimensional box, superpose into a traveling beat wave of wavelength Λd=vcΛ and phase velocity c2/v+v which resembles directly L. de Broglie’s hypothetic phase wave. This phase wave in terms of transmitting the particle mass at the speed v and angular frequency Ωd= 2πv/Λd, with Λd and Ωd obeying the de Broglie relations, represents a de Broglie wave. The standing-wave function of the de Broglie (phase wave and its variables for particle dynamics in small geometries are equivalent to the eigen-state solutions to Schrödinger equation of an identical system.
Langfellner, Jan; Birch, Aaron; Gizon, Laurent
2017-08-01
Solar supergranules remain a mysterious phenomenon, half a century after their discovery. One particularly interesting aspect of supergranulation is its wave-like nature detected in Fourier space. Using SDO/HMI local helioseismology and granulation tracking, we provide new evidence for supergranular waves. We also discuss their influence on the evolution of the network magnetic field using cork simulations.
International Nuclear Information System (INIS)
Yan, Zhenya
2011-01-01
The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black–Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields. -- Highlights: ► We investigate the coupled nonlinear volatility and option pricing model. ► We analytically present vector financial rogue waves. ► The vector financial rogue waves may be used to describe the extreme events in financial markets. ► This results may excite the relative researches and potential applications of vector rogue waves.
Gravitational waves from inflation
International Nuclear Information System (INIS)
Guzzetti, M.C.; Bartolo, N.; Liguori, M.; Matarrese, S.
2016-01-01
The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index ηT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.
Parametric analysis of change in wave number of surface waves
Directory of Open Access Journals (Sweden)
Tadić Ljiljana
2015-01-01
Full Text Available The paper analyzes the dependence of the change wave number of materials soil constants, ie the frequency of the waves. The starting point in this analysis cosists of wave equation and dynamic stiffness matrix of soil.
International Nuclear Information System (INIS)
Kho, T.H.; Lin, A.T.
1988-01-01
Cyclotron masers such as Gyrotrons and the Autoresonance Masers, are fast wave devices: the electromagnetic wave's phase velocity v rho , is greater than the electron beam velocity, v b . To be able to convert the beam kinetic energy into radiation in these devices the beam must have an initial transverse momentum, usually obtained by propagating the beam through a transverse wiggler magnet, or along a nonuniform guide magnetic field before entry into the interaction region. Either process introduces a significant amount of thermal spread in the beam which degrades the performance of the maser. However, if the wave phase velocity v rho v b , the beam kinetic energy can be converted directly into radiation without the requirement of an initial transverse beam momentum, making a slow wave cyclotron maser a potentially simpler and more compact device. The authors present the linear and nonlinear physics of the slow wave cyclotron maser and examine its potential for practical application
Parsimonious Surface Wave Interferometry
Li, Jing
2017-10-24
To decrease the recording time of a 2D seismic survey from a few days to one hour or less, we present a parsimonious surface-wave interferometry method. Interferometry allows for the creation of a large number of virtual shot gathers from just two reciprocal shot gathers by crosscoherence of trace pairs, where the virtual surface waves can be inverted for the S-wave velocity model by wave-equation dispersion inversion (WD). Synthetic and field data tests suggest that parsimonious wave-equation dispersion inversion (PWD) gives S-velocity tomograms that are comparable to those obtained from a full survey with a shot at each receiver. The limitation of PWD is that the virtual data lose some information so that the resolution of the S-velocity tomogram can be modestly lower than that of the S-velocity tomogram inverted from a conventional survey.
International Nuclear Information System (INIS)
Booker, H.G.
1984-01-01
The book aims to present current knowledge concerning the propagation of electromagnetic waves in a homogeneous magnetoplasma for which temperature effects are unimportant. It places roughly equal emphasis on the radio and the hydromagnetic parts of the electromagnetic spectrum. The dispersion properties of a magnetoplasma are treated as a function both of wave frequency (assumed real) and of ionization density. The effect of collisions is included only in so far as this can be done with simplicity. The book describes how pulses are radiated from both small and large antennas embedded in a homogeneous magnetoplasma. The power density radiated from a type of dipole antenna is studied as a function of direction of radiation in all bands of wave frequency. Input reactance is not treated, but the dependence of radiation resistance on wave frequency is described for the entire electromagnetic spectrum. Also described is the relation between beaming and guidance for Alfven waves. (Auth.)
Electromagnetic wave energy converter
Bailey, R. L. (Inventor)
1973-01-01
Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.
Parsimonious Surface Wave Interferometry
Li, Jing; Hanafy, Sherif; Schuster, Gerard T.
2017-01-01
To decrease the recording time of a 2D seismic survey from a few days to one hour or less, we present a parsimonious surface-wave interferometry method. Interferometry allows for the creation of a large number of virtual shot gathers from just two reciprocal shot gathers by crosscoherence of trace pairs, where the virtual surface waves can be inverted for the S-wave velocity model by wave-equation dispersion inversion (WD). Synthetic and field data tests suggest that parsimonious wave-equation dispersion inversion (PWD) gives S-velocity tomograms that are comparable to those obtained from a full survey with a shot at each receiver. The limitation of PWD is that the virtual data lose some information so that the resolution of the S-velocity tomogram can be modestly lower than that of the S-velocity tomogram inverted from a conventional survey.
Directory of Open Access Journals (Sweden)
Jin Lan (兰金
2015-12-01
Full Text Available A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound states in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. Our findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.
Ion Acoustic Waves in the Presence of Electron Plasma Waves
DEFF Research Database (Denmark)
Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens
1977-01-01
Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.......Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave....
Investigation of Wave Transmission from a Floating Wave Dragon Wave Energy Converter
DEFF Research Database (Denmark)
Nørgaard, Jørgen Harck; Andersen, Thomas Lykke
2012-01-01
This paper focuses on the calibration of the MIKE21BW model against the measured wave height reduction behind a 24 kW/m Wave Dragon (WD) wave energy converter. A numerical model is used to determine the wave transmission through the floating WD in varying wave conditions. The transmission obtained...
Directional spectrum of ocean waves
Digital Repository Service at National Institute of Oceanography (India)
Fernandes, A.A; Gouveia, A; Nagarajan, R.
This paper describes a methodology for obtaining the directional spectrum of ocean waves from time series measurement of wave elevation at several gauges arranged in linear or polygonal arrays. Results of simulated studies using sinusoidal wave...
revivals of Rydberg wave packets
International Nuclear Information System (INIS)
Bluhm, R.; Kostelecky, V.A.; Tudose, B.
1998-01-01
We examine the revival structure of Rydberg wave packets. The effects of quantum defects on wave packets in alkali-metal atoms and a squeezed-state description of the initial wave packets are also described. We then examine the revival structure of Rydberg wave packets in the presence of an external electric field, i.e., the revival structure of Stark wave packets. These wave packets have energies that depend on two quantum numbers and exhibit new types of interference behaviour
Undamped electrostatic plasma waves
Energy Technology Data Exchange (ETDEWEB)
Valentini, F.; Perrone, D.; Veltri, P. [Dipartimento di Fisica and CNISM, Universita della Calabria, 87036 Rende (CS) (Italy); Califano, F.; Pegoraro, F. [Dipartimento di Fisica and CNISM, Universita di Pisa, 56127 Pisa (Italy); Morrison, P. J. [Institute for Fusion Studies and Department of Physics, University of Texas at Austin, Austin, Texas 78712-1060 (United States); O' Neil, T. M. [Department of Physics, University of California at San Diego, La Jolla, California 92093 (United States)
2012-09-15
Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named corner modes. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the (k,{omega}{sub R}) plane ({omega}{sub R} being the real part of the wave frequency and k the wavenumber), away from the well-known 'thumb curve' for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existence of these modes are described. It is also shown that deviations caused by fattening the tail of the distribution shift roots off of the thumb curve toward lower k-values and chopping the tail shifts them toward higher k-values. In addition, a rule of thumb is obtained for assessing how the existence of a plateau shifts roots off of the thumb curve. Suggestions are made for interpreting experimental observations of electrostatic waves, such as recent ones in nonneutral plasmas.
Undamped electrostatic plasma waves
International Nuclear Information System (INIS)
Valentini, F.; Perrone, D.; Veltri, P.; Califano, F.; Pegoraro, F.; Morrison, P. J.; O'Neil, T. M.
2012-01-01
Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named corner modes. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the (k,ω R ) plane (ω R being the real part of the wave frequency and k the wavenumber), away from the well-known “thumb curve” for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existence of these modes are described. It is also shown that deviations caused by fattening the tail of the distribution shift roots off of the thumb curve toward lower k-values and chopping the tail shifts them toward higher k-values. In addition, a rule of thumb is obtained for assessing how the existence of a plateau shifts roots off of the thumb curve. Suggestions are made for interpreting experimental observations of electrostatic waves, such as recent ones in nonneutral plasmas.
Robust Wave Resource Estimation
DEFF Research Database (Denmark)
Lavelle, John; Kofoed, Jens Peter
2013-01-01
density estimates of the PDF as a function both of Hm0 and Tp, and Hm0 and T0;2, together with the mean wave power per unit crest length, Pw, as a function of Hm0 and T0;2. The wave elevation parameters, from which the wave parameters are calculated, are filtered to correct or remove spurious data....... An overview is given of the methods used to do this, and a method for identifying outliers of the wave elevation data, based on the joint distribution of wave elevations and accelerations, is presented. The limitations of using a JONSWAP spectrum to model the measured wave spectra as a function of Hm0 and T0......;2 or Hm0 and Tp for the Hanstholm site data are demonstrated. As an alternative, the non-parametric loess method, which does not rely on any assumptions about the shape of the wave elevation spectra, is used to accurately estimate Pw as a function of Hm0 and T0;2....
Borcherdt, R. D.
2007-12-01
General theoretical solutions for Rayleigh- and Love-Type surface waves in viscoelastic media describe physical characteristics of the surface waves in elastic as well as anelastic media with arbitrary amounts of intrinsic absorption. In contrast to corresponding physical characteristics for Rayleigh waves in elastic media, Rayleigh- Type surface waves in anelastic media demonstrate; 1) tilt of the particle motion orbit that varies with depth, and 2) amplitude and volumetric strain distributions with superimposed sinusoidal variations that decay exponentially with depth. Each characteristic is dependent on the amount of intrinsic absorption and the chosen model of viscoelasticity. Distinguishing characteristics of anelastic Love-Type surface waves include: 1) dependencies of the wave speed and absorption coefficient on the chosen model and amount of intrinsic absorption and frequency, and 2) superimposed sinusoidal amplitude variations with an exponential decay with depth. Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physical characteristics of both types of viscoelastic surface waves appropriate for interpretations pertinent to models of earth materials ranging from low-loss in the crust to moderate- and high-loss in water-saturated soils.
Stress wave focusing transducers
Energy Technology Data Exchange (ETDEWEB)
Visuri, S.R., LLNL
1998-05-15
Conversion of laser radiation to mechanical energy is the fundamental process behind many medical laser procedures, particularly those involving tissue destruction and removal. Stress waves can be generated with laser radiation in several ways: creation of a plasma and subsequent launch of a shock wave, thermoelastic expansion of the target tissue, vapor bubble collapse, and ablation recoil. Thermoelastic generation of stress waves generally requires short laser pulse durations and high energy density. Thermoelastic stress waves can be formed when the laser pulse duration is shorter than the acoustic transit time of the material: {tau}{sub c} = d/c{sub s} where d = absorption depth or spot diameter, whichever is smaller, and c{sub s} = sound speed in the material. The stress wave due to thermoelastic expansion travels at the sound speed (approximately 1500 m/s in tissue) and leaves the site of irradiation well before subsequent thermal events can be initiated. These stress waves, often evolving into shock waves, can be used to disrupt tissue. Shock waves are used in ophthalmology to perform intraocular microsurgery and photodisruptive procedures as well as in lithotripsy to fragment stones. We have explored a variety of transducers that can efficiently convert optical to mechanical energy. One such class of transducers allows a shock wave to be focused within a material such that the stress magnitude can be greatly increased compared to conventional geometries. Some transducer tips could be made to operate regardless of the absorption properties of the ambient media. The size and nature of the devices enable easy delivery, potentially minimally-invasive procedures, and precise tissue- targeting while limiting thermal loading. The transducer tips may have applications in lithotripsy, ophthalmology, drug delivery, and cardiology.
Mandal, Birendra Nath
2015-01-01
The theory of water waves is most varied and is a fascinating topic. It includes a wide range of natural phenomena in oceans, rivers, and lakes. It is mostly concerned with elucidation of some general aspects of wave motion including the prediction of behaviour of waves in the presence of obstacles of some special configurations that are of interest to ocean engineers. Unfortunately, even the apparently simple problems appear to be difficult to tackle mathematically unless some simplified assumptions are made. Fortunately, one can assume water to be an incompressible, in viscid and homogeneous
International Nuclear Information System (INIS)
Devaure, Bernard.
1982-01-01
This invention concerns a device for simulating earth tremors. This device includes a seismic wave generator formed of a cylinder, one end of which is closed by one of the walls of a cell containing a soil, the other end being closed by a wall on which are fixed pyrotechnic devices generating shock waves inside the cylinder. These waves are transmitted from the cylinder to the cell through openings made in the cell wall. This device also includes a mechanical device acting as low-pass filter, located inside the cylinder and close to the cell wall [fr
DEFF Research Database (Denmark)
Margheritini, Lucia; Vicinanza, Diego; Frigaard, Peter
2008-01-01
The SSG (Sea Slot-cone Generator) is a wave energy converter of the overtopping type. The structure consists of a number of reservoirs one on the top of each others above the mean water level, in which the water of incoming waves is stored temporary. In each reservoir, expressively designed low...... head hydroturbines are converting the potential energy of the stored water into power. A key to success for the SSG will be the low cost of the structure and its robustness. The construction of the pilot plant is scheduled and this paper aims to describe the concept of the SSG wave energy converter...
Corinaldesi, Ernesto
1963-01-01
Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat
Kaliski, S
2013-01-01
This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth
Andrei, B. Utkin
2011-10-01
A new family of exact solutions to the wave equation representing relatively undistorted progressive waves is constructed using separation of variables in the elliptic cylindrical coordinates and one of the Bateman transforms. The general form of this Bateman transform in an orthogonal curvilinear cylindrical coordinate system is discussed and a specific problem of physical feasibility of the obtained solutions, connected with their dependence on the cyclic coordinate, is addressed. The limiting case of zero eccentricity, in which the elliptic cylindrical coordinates turn into their circular cylindrical counterparts, is shown to correspond to the focused wave modes of the Bessel-Gauss type.
International Nuclear Information System (INIS)
Utkin, Andrei B.
2011-01-01
A new family of exact solutions to the wave equation representing relatively undistorted progressive waves is constructed using separation of variables in the elliptic cylindrical coordinates and one of the Bateman transforms. The general form of this Bateman transform in an orthogonal curvilinear cylindrical coordinate system is discussed and a specific problem of physical feasibility of the obtained solutions, connected with their dependence on the cyclic coordinate, is addressed. The limiting case of zero eccentricity, in which the elliptic cylindrical coordinates turn into their circular cylindrical counterparts, is shown to correspond to the focused wave modes of the Bessel-Gauss type. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
McCormick, Michael E
2007-01-01
This volume will prove of vital interest to those studying the use of renewable resources. Scientists, engineers, and inventors will find it a valuable review of ocean wave mechanics as well as an introduction to wave energy conversion. It presents physical and mathematical descriptions of the nine generic wave energy conversion techniques, along with their uses and performance characteristics.Author Michael E. McCormick is the Corbin A. McNeill Professor of Naval Engineering at the U.S. Naval Academy. In addition to his timely and significant coverage of possible environmental effects associa
Lattice Waves, Spin Waves, and Neutron Scattering
Brockhouse, Bertram N.
1962-03-01
Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)
National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have waves data. Because of the nature of SOS requests, requests for data...
National Research Council Canada - National Science Library
Reynolds, Stephen A; Levine, Murray D
2005-01-01
.... A processing module is developed that takes profile estimates as input and uses numerically simulated linear internal wave displacements to create two-dimensional range-dependent sound speed fields...
Instantaneous wave emission model
International Nuclear Information System (INIS)
Kruer, W.L.
1970-12-01
A useful treatment of electrostatic wave emission by fast particles in a plasma is given. First, the potential due to a fast particle is expressed as a simple integration over the particle orbit; several interesting results readily follow. The potential in the wake of an accelerating particle is shown to be essentially that produced through local excitation of the plasma by the particle free-streaming about its instantaneous orbit. Application is made to one dimension, and it is shown that the wave emission and adsorption synchronize to the instantaneous velocity distribution function. Guided by these calculations, we then formulate a test particle model for computing the instantaneous wave emission by fast particles in a Vlasov plasma. This model lends itself to physical interpretation and provides a direct approach to many problems. By adopting a Fokker-Planck description for the particle dynamics, we calculate the broadening of the wave-particle resonance due to velocity diffusion and drag
Sound wave transmission (image)
When sounds waves reach the ear, they are translated into nerve impulses. These impulses then travel to the brain where they are interpreted by the brain as sound. The hearing mechanisms within the inner ear, can ...
Acoustics waves and oscillations
Sen, S.N.
2013-01-01
Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...
International Nuclear Information System (INIS)
Yemm, Richard
2000-01-01
It is claimed that important developments over the past five years mean that there will be a range of competing pre-commercial wave-energy systems by 2002. The generation costs should be on a par with biomass schemes and offshore wind systems. The environmental advantages of wave energy are extolled. Ocean Power Delivery (OPD) have produced a set of criteria to be satisfied for a successful wave power scheme and these are listed. OPD is responsible for the snake-like Pelamis device which is a semi-submerged articulated series of cylindrical sections connected through hinged joints. How the wave-induced movement of the hinges is used to generate electricity is explained. The system is easily installed and can be completely removed at the end of its life
Gravitational Waves and Neutrinos
Sturani, Riccardo
2018-01-01
We give an overview about the recent detection of gravitational waves by the Advanced LIGO first and second observing runs and by Advanced Virgo, with emphasis on the prospects for multi-messenger astronomy involving neutrinos detections.
Hietala, V.M.; Vawter, G.A.
1993-12-14
The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.
Turbulence generation by waves
Energy Technology Data Exchange (ETDEWEB)
Kaftori, D.; Nan, X.S.; Banerjee, S. [Univ. of California, Santa Barbara, CA (United States)
1995-12-31
The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.
Magnetoresistive waves in plasmas
International Nuclear Information System (INIS)
Felber, F.S.; Hunter, R.O. Jr.; Pereira, N.R.; Tajima, T.
1982-01-01
The self-generated magnetic field of a current diffusing into a plasma between conductors can magnetically insulate the plasma. Propagation of magnetoresistive waves in plasmas is analyzed. Applications to plasma opening switches are discussed
International Nuclear Information System (INIS)
Lebedev, D.R.
1979-01-01
Benney's equations of motion of incompressible nonviscous fluid with free surface in the approximation of long waves are analyzed. The connection between the Lie algebra of Hamilton plane vector fields and the Benney's momentum equations is shown
Parametric decay of lower hybrid wave into drift waves
International Nuclear Information System (INIS)
Sanuki, Heiji.
1976-12-01
A dispersion relation describing the parametric decay of a lower hybrid wave into an electrostatic drift wave and a drift Alfven wave is derived for an inhomogeneous magnetized plasma. Particularly the stimulated scattering of a drift Alfven wave in such a plasma was investigated in detail. The resonance backscattering instability is found to yield the minimum threshold. (auth.)
Generating gravity waves with matter and electromagnetic waves
International Nuclear Information System (INIS)
Barrabes, C.; Hogan, P A.
2008-01-01
If a homogeneous plane lightlike shell collides head on with a homogeneous plane electromagnetic shock wave having a step-function profile then no backscattered gravitational waves are produced. We demonstrate, by explicit calculation, that if the matter is accompanied by a homogeneous plane electromagnetic shock wave with a step-function profile then backscattered gravitational waves appear after the collision
International Nuclear Information System (INIS)
Perera, Judith
1999-01-01
The advantages of using wave power as a renewable energy source are discussed. Various methods of harnessing wave power are also discussed, together with investment requirements and the relative costs of producing electricity by other means. Island communities who currently rely on imported diesel are interested. The provision of power for reverse osmosis plants producing drinking water is an attractive application. There are many potential devices but the best way forward has yet to be identified. (UK)
International Nuclear Information System (INIS)
Belblidia, L.A.; Bratianu, C.
1979-01-01
Boiling flow in a steam generator, a water-cooled reactor, and other multiphase processes can be subject to instabilities. It appears that the most predominant instabilities are the so-called density-wave oscillations. They can cause difficulties for three main reasons; they may induce burnout; they may cause mechanical vibrations of components; and they create system control problems. A comprehensive review is presented of experimental and theoretical studies concerning density-wave oscillations. (author)
International Nuclear Information System (INIS)
Benoit, M.; Marcos, F.; Teisson, Ch.
1999-01-01
Nuclear power stations located on the coast take the water they use to cool their circuits from the sea. The water intake and discharge devices must be able to operate in all weathers, notably during extreme storms, with waves 10 m high and over. To predict the impact of the waves on the equipment, they are modeled digitally from the moment they form in the middle of the ocean right up to the moment they break on the shore. (authors)
The wave of the future - Searching for gravity waves
International Nuclear Information System (INIS)
Goldsmith, D.
1991-01-01
Research on gravity waves conducted by such scientists as Gamov, Wheeler, Weber and Zel'dovich is discussed. Particular attention is given to current trends in the theoretical analysis of gravity waves carried out by theorists Kip Thorne and Leonid Grishchuk. The problems discussed include the search for gravity waves; calculation of the types of gravity waves; the possibility of detecting gravity waves from localized sources, e.g., from the collision of two black holes in a distant galaxy or the collapse of a star, through the Laser Interferometer Gravitational Wave Observatory; and detection primordial gravity waves from the big bang
Wave Equation Inversion of Skeletonized SurfaceWaves
Zhang, Zhendong
2015-08-19
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Results with synthetic and field data illustrate the benefits and limitations of this method.
Grimshaw, RHJ
2007-01-01
After the initial observation by John Scott Russell of a solitary wave in a canal, his insightful laboratory experiments and the subsequent theoretical work of Boussinesq, Rayleigh and Korteweg and de Vries, interest in solitary waves in fluids lapsed until the mid 1960's with the seminal paper of Zabusky and Kruskal describing the discovery of the soliton. This was followed by the rapid development of the theory of solitons and integrable systems. At the same time came the realization that solitary waves occur naturally in many physical systems, and play a fundamental role in many circumstances. The aim of this text is to describe the role that soliton theory plays in fluids in several contexts. After an historical introduction, the book is divided five chapters covering the basic theory of the Korteweg-de Vries equation, and the subsequent application to free-surface solitary waves in water to internal solitary waves in the coastal ocean and the atmospheric boundary layer, solitary waves in rotating flows, ...
Numerical investigation of freak waves
Chalikov, D.
2009-04-01
Paper describes the results of more than 4,000 long-term (up to thousands of peak-wave periods) numerical simulations of nonlinear gravity surface waves performed for investigation of properties and estimation of statistics of extreme (‘freak') waves. The method of solution of 2-D potential wave's equations based on conformal mapping is applied to the simulation of wave behavior assigned by different initial conditions, defined by JONSWAP and Pierson-Moskowitz spectra. It is shown that nonlinear wave evolution sometimes results in appearance of very big waves. The shape of freak waves varies within a wide range: some of them are sharp-crested, others are asymmetric, with a strong forward inclination. Some of them can be very big, but not steep enough to create dangerous conditions for vessels (but not for fixed objects). Initial generation of extreme waves can occur merely as a result of group effects, but in some cases the largest wave suddenly starts to grow. The growth is followed sometimes by strong concentration of wave energy around a peak vertical. It is taking place in the course of a few peak wave periods. The process starts with an individual wave in a physical space without significant exchange of energy with surrounding waves. Sometimes, a crest-to-trough wave height can be as large as nearly three significant wave heights. On the average, only one third of all freak waves come to breaking, creating extreme conditions, however, if a wave height approaches the value of three significant wave heights, all of the freak waves break. The most surprising result was discovery that probability of non-dimensional freak waves (normalized by significant wave height) is actually independent of density of wave energy. It does not mean that statistics of extreme waves does not depend on wave energy. It just proves that normalization of wave heights by significant wave height is so effective, that statistics of non-dimensional extreme waves tends to be independent
Fast wave current drive above the slow wave density limit
International Nuclear Information System (INIS)
McWilliams, R.; Sheehan, D.P.; Wolf, N.S.; Edrich, D.
1989-01-01
Fast wave and slow wave current drive near the mean gyrofrequency were compared in the Irvine Torus using distinct phased array antennae of similar principal wavelengths, frequencies, and input powers. The slow wave current drive density limit was measured for 50ω ci ≤ω≤500ω ci and found to agree with trends in tokamaks. Fast wave current drive was observed at densities up to the operating limit of the torus, demonstrably above the slow wave density limit
Institute of Scientific and Technical Information of China (English)
James R. Durig; Sarah Xiao-hua Zhou; Joshua Klaassen; Arindam Ganguly
2009-01-01
The utilization of the Raman spectra of the low frequency bending mode for three quasi-linear molecules, disiloxane, (SiH3)2 O; methylisocyanate, CH3NCO; and dimethy lisocyanate, (CH3)2SiHNCO for observing the low frequency anharmonic bending vibration is demonstrated which is superior to the corresponding far infrared spectra. From the observed frequencies from the Raman spectra the potential function governing the heavy atom motion to linearity has been obtained from which the barrier has been determined. These experimental values are compared to the ab ini-tio predicted values. Also low frequency Raman spectra of the ring puckering vibration of chlorocy-clobutane, c-C4H7Cl, bromocyclobutane, c-C4H7Br, and aminocyclobutane, c-C4H7NH2, have been utilized to obtain the potential function governing the ring inversion for these molecules. The deter-mined barriers to planarity are compared to those obtained from MP2 (full) ab initio and density functional theory B3LYP calculations by utilizing a variety of basis sets. For all of these studies it is shown that the Raman spectra are superior to the infrared spectra for determining the frequencies of the excited state transitions.
International Nuclear Information System (INIS)
Marumori, Toshio; Kuriyama, Atsushi; Sakata, Fumihiko
1980-01-01
In a formally parallel way with that exciting progress has been recently achieved in understanding the yrast spectra of the rotational nuclei in terms of the quasi-particle motion in the rotating frame, an attempt to understand the yrast spectra of the vibrational nuclei in terms of the quasi-particle motion is proposed. The essential idea is to introduce the quasi-particle motion in a generalized vibrating frame, which can be regarded as a rotating frame in the gauge space of 'physical' phonons where the number of the physical phonons plays the role of the angular momentum. On the basis of a simple fundamental principle called as the 'invariance principle of the Schroedinger equation', which leads us to the 'maximal decoupling' between the physical phonon and the intrinsic modes, it is shown that the vibrational frame as well as the physical-phonon-number operator represented by the quasi-particles can be self-consistently determined. A new scope toward the yrast spectroscopy of the vibrational nuclei in terms of the quasi-particle motion is discussed
Energy Technology Data Exchange (ETDEWEB)
Sakata, Fumihiko [Tokyo Univ., Tanashi (Japan). Inst. for Nuclear Study; Yamamoto, Yoshifumi; Marumori, Toshio; Iida, Shinji; Tsukuma, Hidehiko
1989-11-01
It is the purpose of the present paper to study 'global structure' of the state space of an N-body interacting fermion system, which exhibits regular, transient and stochastic phases depending on strength of the interaction. An optimum representation called a dynamical representation plays an essential role in this investigation. The concept of the dynamical representation has been introduced in the quantum theory of dynamical subspace in our previous paper, in order to determine self-consistently an optimum collective subspace as well as an optimum collective Hamiltonian. In the theory, furthermore, dynamical conditions called separability and stability conditions have been provided in order to identify the optimum collective subspace as an approximate invariant subspace of the Hamiltonian. Physical meaning of these conditions are clarified from a viewpoint to relate breaking of them with bifurcation of the collectivity and an onset of quantum chaos from the regular collective motion, by illustrating the general idea with numerical results obtained for a simple soluble model. It turns out that the onset of the stochastic phase is associated with dissolution of the quantum numbers to specify the collective subspace and this dissolution is induced by the breaking of the separability condition in the dynamical representation. (author).
Partnership for Wave Power - Roadmaps
DEFF Research Database (Denmark)
Nielsen, Kim; Krogh, Jan; Brodersen, Hans Jørgen
This Wave Energy Technology Roadmap is developed by the Partnership for Wave Power including nine Danish wave energy developers. It builds on to the strategy [1] published by the Partnership in 2012, a document that describes the long term vision of the Danish Wave Energy sector: “By 2030...
Some considerations of wave propagation
Verdonk, P. L. F. M.
The meaning of group velocity and its relation to conserved quantities are demonstrated. The origin of wave dispersion in terms of nonlocal and relaxation phenomena are clarified. The character of a wave described by an equation with a general type of nonlinearity and general dispersion terms is explained. The steepening of a wave flank and the occurrence of stationary waves are discussed.
Rogue waves in nonlinear science
International Nuclear Information System (INIS)
Yan Zhenya
2012-01-01
Rogue waves, as a special type of solitary waves, play an important role in nonlinear optics, Bose-Einstein condensates, ocean, atmosphere, and even finance. In this report, we mainly review on the history of the rogue wave phenomenon and recent development of rogue wave solutions in some nonlinear physical models arising in the fields of nonlinear science.
Hall, Philip; Bennett, James
1986-01-01
The Taylor-Goertler vortex instability equations are formulated for steady and unsteady interacting boundary-layer flows. The effective Goertler number is shown to be a function of the wall shape in the boundary layer and the possibility of both steady and unsteady Taylor-Goertler modes exists. As an example the steady flow in a symmetrically constricted channel is considered and it is shown that unstable Goertler vortices exist before the boundary layers at the wall develop the Goldstein singularity discussed by Smith and Daniels (1981). As an example of an unsteady spatially varying basic state, it is considered the instability of high-frequency large-amplitude two- and three-dimensional Tollmien-Schlichting waves in a curved channel. It is shown that they are unstable in the first 'Stokes-layer stage' of the hierarchy of nonlinear states discussed by Smith and Burggraf (1985). This instability of Tollmien-Schlichting waves in an internal flow can occur in the presence of either convex or concave curvature. Some discussion of this instability in external flows is given.
DeWit, R. J.; Janches, D.; Fritts, D. C.; Stockwell, R. G.; Coy, L.
2017-01-01
The Southern Argentina Agile MEteor Radar (SAAMER), located at Tierra del Fuego (53.7degS, 67.7degW), has been providing near-continuous high-resolution measurements of winds and high-frequency gravity wave (GW) momentum fluxes of the mesopause region since May 2008. As SAAMER is located in the lee of the largest seasonal GW hot spot on Earth, this is a key location to study GWs and their interaction with large-scale motions. GW momentum flux climatologies are shown for the first time for this location and discussed in light of these unique dynamics. Particularly, the large eastward GW momentum fluxes during local winter are surprising, as these observations cannot be explained by the direct upward propagation of expected large-amplitude mountain waves (MWs) through the eastward stratospheric jet. Instead, these results are interpreted as secondary GWs propagating away from stratospheric sources over the Andes accompanying MW breaking over the Southern Andes.
Periodic waves in nonlinear metamaterials
International Nuclear Information System (INIS)
Liu, Wen-Jun; Xiao, Jing-Hua; Yan, Jie-Yun; Tian, Bo
2012-01-01
Periodic waves are presented in this Letter. With symbolic computation, equations for monochromatic waves are studied, and analytic periodic waves are obtained. Factors affecting properties of periodic waves are analyzed. Nonlinear metamaterials, with the continuous distribution of the dielectric permittivity obtained, are different from the ones with the discrete distribution. -- Highlights: ► Equations for the monochromatic waves in transverse magnetic polarization have been studied. ► Analytic periodic waves for the equations have been obtained. ► Periodic waves are theoretically presented and studied in the nonlinear metamaterials.
Revivals of Rydberg wave packets
International Nuclear Information System (INIS)
Bluhm, R.; Kostelecky, V.A.; Tudose, B.
1998-01-01
We examine the revival structure of Rydberg wave packets. These wave packets exhibit initial classical periodic motion followed by a sequence of collapse, fractional (or full) revivals, and fractional (or full) superrevivals. The effects of quantum defects on wave packets in alkali-metal atoms and a squeezed-state description of the initial wave packets are also considered. We then examine the revival structure of Rydberg wave packets in the presence of an external electric field - that is, the revival structure of Stark wave packets. These wave packets have energies that depend on two quantum numbers and exhibit new types of interference behavior
International Nuclear Information System (INIS)
Tribeche, Mouloud; Mayout, Saliha; Amour, Rabia
2009-01-01
Arbitrary amplitude dust acoustic waves in a high energy-tail ion distribution are investigated. The effects of charge variation and ion suprathermality on the large amplitude dust acoustic (DA) soliton are then considered. The correct suprathermal ion charging current is rederived based on the orbit motion limited approach. In the adiabatic case, the variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to show the existence of rarefactive variable charge DA solitons involving cusped density humps. The dust charge variation leads to an additional enlargement of the DA soliton, which is less pronounced as the ions evolve far away from Maxwell-Boltzmann distribution. In the nonadiabatic case, the dust charge fluctuation may provide an alternate physical mechanism causing anomalous dissipation the strength of which becomes important and may prevail over that of dispersion as the ion spectral index κ increases. Our results may provide an explanation for the strong spiky waveforms observed in auroral electric field measurements by Ergun et al.[Geophys. Res. Lett. 25, 2025 (1998)].
Capillary waves in slow motion
International Nuclear Information System (INIS)
Seydel, Tilo; Tolan, Metin; Press, Werner; Madsen, Anders; Gruebel, Gerhard
2001-01-01
Capillary wave dynamics on glycerol surfaces has been investigated by means of x-ray photon correlation spectroscopy performed at grazing angles. The measurements show that thermally activated capillary wave motion is slowed down exponentially when the sample is cooled below 273 K. This finding directly reflects the freezing of the surface waves. The wave-number dependence of the measured time constants is in quantitative agreement with theoretical predictions for overdamped capillary waves
Wave calculus based upon wave logic
International Nuclear Information System (INIS)
Orlov, Y.F.
1978-01-01
A number operator has been introduced based upon the binary (p-nary) presentation of numbers. This operator acts upon a numerical state vector. Generally the numerical state vector describes numbers that are not precise but smeared in a quantum sense. These states are interrupted in wave logic terms, according to which concepts may exist within the inner language of a phenomenon that in principle cannot be translated into the language of the investigator. In particular, states may exist where mean values of a quantity, continuous in classical limits, take only discrete values. Operators for differentiation and integration of operator functions are defined, which take the usual form in the classical limit. (author)
Metamaterials, from electromagnetic waves to water waves, bending waves and beyond
Dupont, G.
2015-08-04
We will review our recent work on metamaterials for different types of waves. Transposition of transform optics to water waves and bending waves on plates will be considered with potential applications of cloaking to water waves protection and anti-vibrating systems.
Soomere, T.
2010-07-01
Most of the processes resulting in the formation of unexpectedly high surface waves in deep water (such as dispersive and geometrical focusing, interactions with currents and internal waves, reflection from caustic areas, etc.) are active also in shallow areas. Only the mechanism of modulational instability is not active in finite depth conditions. Instead, wave amplification along certain coastal profiles and the drastic dependence of the run-up height on the incident wave shape may substantially contribute to the formation of rogue waves in the nearshore. A unique source of long-living rogue waves (that has no analogues in the deep ocean) is the nonlinear interaction of obliquely propagating solitary shallow-water waves and an equivalent mechanism of Mach reflection of waves from the coast. The characteristic features of these processes are (i) extreme amplification of the steepness of the wave fronts, (ii) change in the orientation of the largest wave crests compared with that of the counterparts and (iii) rapid displacement of the location of the extreme wave humps along the crests of the interacting waves. The presence of coasts raises a number of related questions such as the possibility of conversion of rogue waves into sneaker waves with extremely high run-up. Also, the reaction of bottom sediments and the entire coastal zone to the rogue waves may be drastic.
Millimeter wave and terahertz wave transmission characteristics in plasma
International Nuclear Information System (INIS)
Ma Ping; Qin Long; Chen Weijun; Zhao Qing; Shi Anhua; Huang Jie
2013-01-01
An experiment was conducted on the shock tube to explore the transmission characteristics of millimeter wave and terahertz wave in high density plasmas, in order to meet the communication requirement of hypersonic vehicles during blackout. The transmission attenuation curves of millimeter wave and terahertz wave in different electron density and collision frequency were obtained. The experiment was also simulated by auxiliary differential equation finite-difference time-domain (ADE-FDTD) methods. The experimental and numerical results show that the transmission attenuation of terahertz wave in the plasma is smaller than that of millimeter wave under the same conditions. The transmission attenuation of terahertz wave in the plasma is enhanced with the increase of electron density. The terahertz wave is a promising alternative to the electromagnetic wave propagation in high density plasmas. (authors)
Infragravity Waves Produced by Wave Groups on Beaches
Institute of Scientific and Technical Information of China (English)
邹志利; 常梅
2003-01-01
The generation of low frequency waves by a single or double wave groups incident upon two plane beaches with the slope of 1/40 and 1/100 is investigated experimentally and numerically. A new type of wave maker signal is used to generate the groups, allowing the bound long wave (set-down) to be included in the group. The experiments show that the low frequency wave is generated during breaking and propagation to the shoreline of the wave group. This process of generation and propagation of low frequency waves is simulated numerically by solving the short-wave averaged mass and momentum conservation equations. The computed and measured results are in good agreement. The mechanism of generation of low frequency waves in the surf zone is examined and discussed.
Prototype Testing of the Wave Energy Converter Wave Dragon
DEFF Research Database (Denmark)
Kofoed, Jens Peter; Frigaard, Peter; Friis-Madsen, Erik
2006-01-01
The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57!27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world’s first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. In the period May 2003 to January 2005 an extensive...
Prototype Testing of the Wave Energy Converter Wave Dragon
DEFF Research Database (Denmark)
Kofoed, Jens Peter; Frigaard, Peter Bak; Friis-Madsen, Erik
2004-01-01
The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57 x 27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world's first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. During the last months, extensive testing has started...
Rupture, waves and earthquakes.
Uenishi, Koji
2017-01-01
Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.
Energy Technology Data Exchange (ETDEWEB)
1983-10-01
The Tapered Channel Wave Power Plant (TAPCHAN) is based on a new method for wave energy conversion. The principle of operation can be explained by dividing the system into the following four sub-systems: Firstly, a collector which is designed to concentrate the water energy and optimize collection efficiency for a range of frequencies and directions. Secondly, the energy converter, in which the energy of the collected waves is transformed into potential energy in an on-shore water reservoir. This is the unique part of the power plant. It consists of a gradually narrowing channel with wall heights equal to the filling level of the reservoir (typical heights 3-7 m). The waves enter the wide end of the channel and as they propagate down the narrowing channel, the wave height is amplified until the wavecrests spill over the walls. Thirdly, a reservoir which provides a stable water supply for the turbines. Finally, the hydroelectric power plant, where well established techniques are used for the generation of electric power. The water turbine driving the electric generator is of a low head type, such as a Kaplan or a tubular turbine. It must be designed for salt water operation and should have good regulation capabilities. Power plants based on the principle described, are now offered on a commercial basis.
Micrononcasual Euclidean wave functions
International Nuclear Information System (INIS)
Enatsu, H.; Takenaka, A.; Okazaki, M.
1978-01-01
A theory which describes the internal attributes of hadrons in terms of space-time wave functions is presented. In order to develop the theory on the basis of a rather realistic model, covariant wave equations are first derived for the deuteron, in which the co-ordinates of the centre of mass of two nucleons can be defined unambiguously. Then the micro-noncasual behaviour of virtual mesons mediating between the two nucleons is expressed by means of wave functions depending only on the relative Euclidean co-ordinates with respect to the centre of mass of the two nucleons; the wave functions are assumed to obey the 0 4 and SU 2 x SU 2 groups. The properties of the wave functions under space inversion, time reversal and particle-antiparticle conjugation are investigated. It is found that the internal attributes of the mesons, such as spin, isospin, strangeness, intrinsic parity, charge parity and G-parity are explained consistently. The theory is applicable also to the case of baryons
Magnetostatic wave tunable resonators
Castera, J.-P.; Hartemann, P.
1983-06-01
Theoretical principles and techniques for the implementation of magnetostatic surface wave and volume wave resonators in high frequency oscillators are discussed. Magnetostatic waves are magnetic waves that propagate in materials exposed to a polarized magnetic field. The propagation speed ranges from 3-300 km/sec for wavelengths between 1 micron and 10 mm, in the presence of lags from 10-1000 nsec/ cm. Tunable resonators in the 1-20 GHz frequency range have been manufactured with YIG using liquid phase epitaxy for deposition on gadolinium and gallium substrates. Distributed-mirror Fabry-Perot cavity resonators are described and performance tests results are reported, including losses of 8 dB, a quality coefficient under voltage of 450, and frequency rejection outside of resonance better than 10 dB. However, saturation occurs at low power levels at frequencies lower than 4.2 GHz, a feature overcome with forward volume magnetostatic wave generators, which have a quality factor of 500, an insertion loss of 22 dB, and rejection around 15 dB.
Zhu, Mei Hong; Sung, Tae Sik; O'Driscoll, Kate; Koh, Sang Don; Sanders, Kenton M
2015-04-15
Interstitial cells of Cajal (ICC) provide pacemaker activity in gastrointestinal muscles that underlies segmental and peristaltic contractions. ICC generate electrical slow waves that are due to large-amplitude inward currents resulting from anoctamin 1 (ANO1) channels, which are Ca(2+)-activated Cl(-) channels. We investigated the hypothesis that the Ca(2+) responsible for the stochastic activation of ANO1 channels during spontaneous transient inward currents (STICs) and synchronized activation of ANO1 channels during slow wave currents comes from intracellular Ca(2+) stores. ICC, obtained from the small intestine of Kit(+/copGFP) mice, were studied under voltage and current clamp to determine the effects of blocking Ca(2+) uptake into stores and release of Ca(2+) via inositol 1,4,5-trisphosphate (IP3)-dependent and ryanodine-sensitive channels. Cyclocpiazonic acid, thapsigargin, 2-APB, and xestospongin C inhibited STICs and slow wave currents. Ryanodine and tetracaine also inhibited STICs and slow wave currents. Store-active compounds had no direct effects on ANO1 channels expressed in human embryonic kidney-293 cells. Under current clamp, store-active drugs caused significant depolarization of ICC and reduced spontaneous transient depolarizations (STDs). After block of ryanodine receptors with ryanodine and tetracaine, repolarization did not restore STDs. ANO1 expressed in ICC has limited access to cytoplasmic Ca(2+) concentration, suggesting that pacemaker activity depends on Ca(2+) dynamics in restricted microdomains. Our data from studies of isolated ICC differ somewhat from studies on intact muscles and suggest that release of Ca(2+) from both IP3 and ryanodine receptors is important in generating pacemaker activity in ICC. Copyright © 2015 the American Physiological Society.
Zhu, Mei Hong; Sung, Tae Sik; O'Driscoll, Kate; Koh, Sang Don
2015-01-01
Interstitial cells of Cajal (ICC) provide pacemaker activity in gastrointestinal muscles that underlies segmental and peristaltic contractions. ICC generate electrical slow waves that are due to large-amplitude inward currents resulting from anoctamin 1 (ANO1) channels, which are Ca2+-activated Cl− channels. We investigated the hypothesis that the Ca2+ responsible for the stochastic activation of ANO1 channels during spontaneous transient inward currents (STICs) and synchronized activation of ANO1 channels during slow wave currents comes from intracellular Ca2+ stores. ICC, obtained from the small intestine of Kit+/copGFP mice, were studied under voltage and current clamp to determine the effects of blocking Ca2+ uptake into stores and release of Ca2+ via inositol 1,4,5-trisphosphate (IP3)-dependent and ryanodine-sensitive channels. Cyclocpiazonic acid, thapsigargin, 2-APB, and xestospongin C inhibited STICs and slow wave currents. Ryanodine and tetracaine also inhibited STICs and slow wave currents. Store-active compounds had no direct effects on ANO1 channels expressed in human embryonic kidney-293 cells. Under current clamp, store-active drugs caused significant depolarization of ICC and reduced spontaneous transient depolarizations (STDs). After block of ryanodine receptors with ryanodine and tetracaine, repolarization did not restore STDs. ANO1 expressed in ICC has limited access to cytoplasmic Ca2+ concentration, suggesting that pacemaker activity depends on Ca2+ dynamics in restricted microdomains. Our data from studies of isolated ICC differ somewhat from studies on intact muscles and suggest that release of Ca2+ from both IP3 and ryanodine receptors is important in generating pacemaker activity in ICC. PMID:25631870
Experimental Study on the WavePiston Wave Energy Converter
DEFF Research Database (Denmark)
Pecher, Arthur; Kofoed, Jens Peter; Angelelli, E.
This report presents the results of an experimental study of the power performance of the WavePiston wave energy converter. It focuses mainly on evaluating the power generating capabilities of the device and the effect of the following issues: Scaling ratios PTO loading Wave height and wave period...... dependency Oblique incoming waves Distance between plates During the study, the model supplied by the client, WavePiston, has been rigorously tested as all the anticipated tests have been done thoroughly and during all tests, good quality data has been obtained from all the sensors....
Testing, Analysis and Control of Wave Dragon, Wave Energy Converter
DEFF Research Database (Denmark)
Tedd, James
of the incident waves upon a wave device allows the possibility of accurately tuning the power-take off mechanism (the hydro-turbines for the Wave Dragon) to capture more energy. A digital filter method for performing this prediction in real-time with minimal computational effort is presented. Construction...... of digital filters is well known within signal processing, but their use for this application in Wave Energy is new. The filter must be designed carefully as the frequency components of waves travel at different speeds. Research presented in this thesis has advanced the development of the Wave Dragon device...
Yerganian, Simon Scott
2001-07-17
A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.
Gurnett, Donald A.
1995-01-01
An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.
Electrostatic ion acoustic waves
International Nuclear Information System (INIS)
Hasegawa, A.
1983-01-01
In this paper, certain aspects of plasma physics are illustrated through a study of electrostatic ion acoustic waves. The paper consists of three Sections. Section II deals with linear properties of the ion acoustic wave including derivation of the dispersions relation with the effect of Landau damping and of an ambient magnetic field. The section also introduces the excitation processes of the ion acoustic wave due to an electron drift or to a stimulated Brillouin scattering. The nonlinear properties are introduced in Section III and IV. In Section III, incoherent nonlinear effects such as quasilinear and mode-coupling saturations of the instability are discussed. The coherent nonlinear effects such as the generation of ion acoustic solitons, shocks and weak double layers are presented in Section IV. (Auth.)
Farkas, I.; Helbing, D.; Vicsek, T.
2003-12-01
Mexican wave first widely broadcasted during the 1986 World Cup held in Mexico, is a human wave moving along the stands of stadiums as one section of spectators stands up, arms lifting, then sits down as the next section does the same. Here we use variants of models originally developed for the description of excitable media to demonstrate that this collective human behaviour can be quantitatively interpreted by methods of statistical physics. Adequate modelling of reactions to triggering attempts provides a deeper insight into the mechanisms by which a crowd can be stimulated to execute a particular pattern of behaviour and represents a possible tool of control during events involving excited groups of people. Interactive simulations, video recordings and further images are available at the webpage dedicated to this work: http://angel.elte.hu/wave.
Nonlinear surface Alfven waves
International Nuclear Information System (INIS)
Cramer, N.F.
1991-01-01
The problem of nonlinear surface Alfven waves propagating on an interface between a plasma and a vacuum is discussed, with dispersion provided by the finite-frequency effect, i.e. the finite ratio of the frequency to the ion-cyclotron frequency. A set of simplified nonlinear wave equations is derived using the method of stretched co-ordinates, and another approach uses the generation of a second-harmonic wave and its interaction with the first harmonic to obtain a nonlinear dispersion relation. A nonlinear Schroedinger equation is then derived, and soliton solutions found that propagate as solitary pulses in directions close to parallel and antiparallel to the background magnetic field. (author)
DEFF Research Database (Denmark)
Jensen, Jonas
This PhD project investigates and further develops methods for ultrasound plane wave imaging and blood flow estimation with the objective of overcoming some of the major limitations in conventional ultrasound systems, which are related to low frame rates and only estimation of velocities along...... the ultrasound beam. The first part of the contribution investigates the compromise between frame rate and plane wave image quality including the influence of grating lobes from a λ-pitch transducer. A method for optimizing the image quality is suggested, and it is shown that the frame rate can be increased...... healthy volunteers. Complex flow patterns were measured in an anthropomorphic flow phantom and showed good agreement with the velocity field simulated using computational fluid dynamics. The last part of the contribution investigates two clinical applications. Plane wave imaging was used for slow velocity...
Wave friction factor rediscovered
Le Roux, J. P.
2012-02-01
The wave friction factor is commonly expressed as a function of the horizontal water particle semi-excursion ( A wb) at the top of the boundary layer. A wb, in turn, is normally derived from linear wave theory by {{U_{{wb}}/T_{{w}}}}{{2π }} , where U wb is the maximum water particle velocity measured at the top of the boundary layer and T w is the wave period. However, it is shown here that A wb determined in this way deviates drastically from its real value under both linear and non-linear waves. Three equations for smooth, transitional and rough boundary conditions, respectively, are proposed to solve this problem, all three being a function of U wb, T w, and δ, the thickness of the boundary layer. Because these variables can be determined theoretically for any bottom slope and water depth using the deepwater wave conditions, there is no need to physically measure them. Although differing substantially from many modern attempts to define the wave friction factor, the results coincide with equations proposed in the 1960s for either smooth or rough boundary conditions. The findings also confirm that the long-held notion of circular water particle motion down to the bottom in deepwater conditions is erroneous, the motion in fact being circular at the surface and elliptical at depth in both deep and shallow water conditions, with only horizontal motion at the top of the boundary layer. The new equations are incorporated in an updated version (WAVECALC II) of the Excel program published earlier in this journal by Le Roux et al. Geo-Mar Lett 30(5): 549-560, (2010).
Directory of Open Access Journals (Sweden)
A. V. Vikulin
2014-01-01
Full Text Available Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related. The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.