WorldWideScience

Sample records for short wavelength gravity

  1. Short wavelength FELS

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs

  2. Short wavelength FELS

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs.

  3. Towards short wavelengths FELs workshop

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Winick, H.

    1993-01-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FELs offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FELs will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program

  4. Towards short wavelengths FELs workshop

    Science.gov (United States)

    Ben-Zvi, I.; Winick, H.

    1993-11-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FEL's offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FEL's will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program.

  5. Review of short wavelength lasers

    International Nuclear Information System (INIS)

    Hagelstein, P.L.

    1985-01-01

    There has recently been a substantial amount of research devoted to the development of short wavelength amplifiers and lasers. A number of experimental results have been published wherein the observation of significant gain has been claimed on transitions in the EUV and soft x-ray regimes. The present review is intended to discuss the main approaches to the creation of population inversions and laser media in the short wavelength regime, and hopefully aid workers in the field by helping to provide access to a growing literature. The approaches to pumping EUV and soft x-ray lasers are discussed according to inversion mechanism. The approaches may be divided into roughly seven categories, including collisional excitation pumping, recombination pumping, direct photoionization and photoexcitation pumping, metastable state storage plus optical pumping, charge exchange pumping, and finally, the extension of free electron laser techniques into the EUV and soft x-ray regimes. 250 references

  6. Review of short wavelength lasers

    Energy Technology Data Exchange (ETDEWEB)

    Hagelstein, P.L.

    1985-03-18

    There has recently been a substantial amount of research devoted to the development of short wavelength amplifiers and lasers. A number of experimental results have been published wherein the observation of significant gain has been claimed on transitions in the EUV and soft x-ray regimes. The present review is intended to discuss the main approaches to the creation of population inversions and laser media in the short wavelength regime, and hopefully aid workers in the field by helping to provide access to a growing literature. The approaches to pumping EUV and soft x-ray lasers are discussed according to inversion mechanism. The approaches may be divided into roughly seven categories, including collisional excitation pumping, recombination pumping, direct photoionization and photoexcitation pumping, metastable state storage plus optical pumping, charge exchange pumping, and finally, the extension of free electron laser techniques into the EUV and soft x-ray regimes. 250 references.

  7. Gravity a very short introduction

    CERN Document Server

    Clifton, Timothy

    2017-01-01

    Gravity is one of the four fundamental interactions that exist in nature. It also has the distinction of being the oldest, weakest, and most difficult force to quantize. Understanding gravity is not only essential for understanding the motion of objects on Earth, but also the motion of all celestial objects, and even the expansion of the Universe itself. It was the study of gravity that led Einstein to his profound realizations about the nature of space and time. Gravity is not only universal, it is also essential for understanding the behavior of the Universe, and all astrophysical bodies within it. In this Very Short Introduction Timothy Clifton looks at the development of our understanding of gravity since the early observations of Kepler and Newtonian theory. He discusses Einstein's theory of gravity, which now supplants Newton's, showing how it allows us to understand why the frequency of light changes as it passes through a gravitational field, why GPS satellites need their clocks corrected as they orbi...

  8. Short wavelength FELs using the SLAC linac

    International Nuclear Information System (INIS)

    Winick, H.; Bane, K.; Boyce, R.

    1993-08-01

    Recent technological developments have opened the possibility to construct a device which we call a Linac Coherent Light Source (LCLS); a fourth generation light source, with brightness, coherence, and peak power far exceeding other sources. Operating on the principle of the free electron laser (FEL), the LCLS would extend the range of FEL operation to much aborter wavelength than the 240 mn that has so far been reached. We report the results of studies of the use of the SLAC linac to drive an LCLS at wavelengths from about 3-100 nm initially and possibly even shorter wavelengths in the future. Lasing would be achieved in a single pass of a low emittance, high peak current, high energy electron beam through a long undulator. Most present FELs use an optical cavity to build up the intensity of the light to achieve lasing action in a low gain oscillator configuration. By eliminating the optical cavity, which is difficult to make at short wavelengths, laser action can be extended to shorter wavelengths by Self-Amplified-Spontaneous-Emission (SASE), or by harmonic generation from a longer wavelength seed laser. Short wavelength, single pass lasers have been extensively studied at several laboratories and at recent workshops

  9. Short wavelength sources and atoms and ions

    International Nuclear Information System (INIS)

    Kennedy, E.T.

    2008-01-01

    The interaction of ionizing radiation with atoms and ions is a key fundamental process. Experimental progress has depended in particular on the development of short wavelength light sources. Laser-plasma and synchrotron sources have been exploited for several decades and most recently the development of short wavelength Free Electron Laser (FEL) sources is revolutionizing the field. This paper introduces laser plasma and synchrotron sources through examples of their use in studies of the interaction of ionizing radiation with atoms and ions, ranging from few-electron atomic and ionic systems to the many-electron high atomic number actinides. The new FEL source (FLASH) at DESY is introduced. (author)

  10. Optical Detection in Ultrafast Short Wavelength Science

    International Nuclear Information System (INIS)

    Fullagar, Wilfred K.; Hall, Chris J.

    2010-01-01

    A new approach to coherent detection of ionising radiation is briefly motivated and recounted. The approach involves optical scattering of coherent light fields by colour centres in transparent solids. It has significant potential for diffractive imaging applications that require high detection dynamic range from pulsed high brilliance short wavelength sources. It also motivates new incarnations of Bragg's X-ray microscope for pump-probe studies of ultrafast molecular structure-dynamics.

  11. Short wavelength striations on expanding plasma clouds

    International Nuclear Information System (INIS)

    Winske, D.; Gary, S.P.

    1989-01-01

    The growth and evolution of short wavelength (< ion gyroradius) flute modes on a plasma expanding across an ambient magnetic field have been actively studied in recent years, both by means of experiments in the laboratory as well as in space and through numerical simulations. We review the relevant observations and simulations results, discuss the instability mechanism and related linear theory, and describe recent work to bring experiments and theory into better agreement. 30 refs., 6 figs

  12. Local Analysis Approach for Short Wavelength Geopotential Variations

    Science.gov (United States)

    Bender, P. L.

    2009-12-01

    The value of global spherical harmonic analyses for determining 15 day to 30 day changes in the Earth's gravity field has been demonstrated extensively using data from the GRACE mission and previous missions. However, additional useful information appears to be obtainable from local analyses of the data. A number of such analyses have been carried out by various groups. In the energy approximation, the changes in the height of the satellite altitude geopotential can be determined from the post-fit changes in the satellite separation during individual one-revolution arcs of data from a GRACE-type pair of satellites in a given orbit. For a particular region, it is assumed that short wavelength spatial variations for the arcs crossing that region during a time T of interest would be used to determine corrections to the spherical harmonic results. The main issue in considering higher measurement accuracy in future missions is how much improvement in spatial resolution can be achieved. For this, the shortest wavelengths that can be determined are the most important. And, while the longer wavelength variations are affected by mass distribution changes over much of the globe, the shorter wavelength ones hopefully will be determined mainly by more local changes in the mass distribution. Future missions are expected to have much higher accuracy for measuring changes in the satellite separation than GRACE. However, how large an improvement in the derived results in hydrology will be achieved is still very much a matter of study, particularly because of the effects of uncertainty in the time variations in the atmospheric and oceanic mass distributions. To be specific, it will be assumed that improving the spatial resolution in continental regions away from the coastlines is the objective, and that the satellite altitude is in the range of roughly 290 to 360 km made possible for long missions by drag-free operation. The advantages of putting together the short wavelength

  13. Self-amplified spontaneous emission for short wavelength coherent radiation

    International Nuclear Information System (INIS)

    Kim, K.J.; Xie, M.

    1992-09-01

    We review the recent progress in our understanding of the self-amplified spontaneous emission (SASE), emphasizing the application to short wavelength generation. Simple formulae are given for the start-up, exponential gain and the saturation of SASE. Accelerator technologies producing high brightness electron beams required for short wavelength SASE are discussed. An example utilizing electron beams from a photocathode-linac system to produce 4nm SASE in the multigigawatt range is presented

  14. Estimates of SASE power in the short wavelength region

    International Nuclear Information System (INIS)

    Kim, Kwang-Je.

    1992-03-01

    Given a sufficiently bright electron beam, the self-amplified-spontaneous emission (SASE) can provide gigawatts of short wavelength coherent radiation. The advantages of SASE approach are that is requires neither optical cavity nor an imput seed laser. In this note, we estimate the peak power performance of SASE for wavelengths shorter than 1000 Angstrom. At each wavelength, we calculate the saturated power from a uniform parameter undulator and the enhanced power from a tapered undulator. The method described here is an adaptation of that discussed by L.H. Yu, who discussed the harmonic generation scheme with seeded laser, to the case of SASE

  15. Nonlinear propagation of short wavelength drift-Alfven waves

    DEFF Research Database (Denmark)

    Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens

    1986-01-01

    Making use of a kinetic ion and a hydrodynamic electron description together with the Maxwell equation, the authors derive a set of nonlinear equations which governs the dynamics of short wavelength ion drift-Alfven waves. It is shown that the nonlinear drift-Alfven waves can propagate as two-dim...

  16. OMEGA: a short-wavelength laser for fusion experiments

    International Nuclear Information System (INIS)

    Soures, J.M.; Hutchison, R.J.; Jacobs, S.D.; Lund, L.D.; McCrory, R.L.; Richardson, M.C.

    1983-01-01

    The OMEGA, Nd:glass laser facility was constructed for the purpose of investigating the feasibility of direct-drive laser fusion. With 24 beams producing a total energy of 4 kJ or a peak power of 12 TW, OMEGA is capable of nearly uniform illumination of spherical targets. Six of the OMEGA beams have recently been converted to short-wavelength operation (351 nm). In this paper, we discuss details of the system design and performance, with particular emphasis on the frequency-conversion system and multi-wavelength diagnostic system

  17. Short wavelength limits of current shot noise suppression

    International Nuclear Information System (INIS)

    Nause, Ariel; Dyunin, Egor; Gover, Avraham

    2014-01-01

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasma wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect

  18. Short wavelength limits of current shot noise suppression

    Energy Technology Data Exchange (ETDEWEB)

    Nause, Ariel, E-mail: arielnau@post.tau.ac.il [Faculty of Exact Sciences, Department of Physics, Tel Aviv University, Tel Aviv (Israel); Dyunin, Egor; Gover, Avraham [Faculty of Engineering, Department of Physical Electronics, Tel Aviv University, Tel Aviv (Israel)

    2014-08-15

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasma wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect.

  19. Short-wavelength magnetic recording new methods and analyses

    CERN Document Server

    Ruigrok, JJM

    2013-01-01

    Short-wavelength magnetic recording presents a series of practical solutions to a wide range of problems in the field of magnetic recording. It features many new and original results, all derived from fundamental principles as a result of up-to-date research.A special section is devoted to the playback process, including the calculations of head efficiency and head impedance, derived from new theorems.Features include:A simple and fast method for measuring efficiency; a simple method for the accurate separation of the read and write behaviour of magnetic heads; a new concept - the bandpass hea

  20. Experimental tests of induced spatial incoherence using short laser wavelength

    International Nuclear Information System (INIS)

    Obenschain, S.P.; Grun, J.; Herbst, M.J.

    1986-01-01

    The authors have developed a laser beam smoothing technique called induced spatial incoherence (ISI), which can produce the highly uniform focal profiles required for direct-drive laser fusion. Uniform well-controlled focal profiles are required to obtain the highly symmetric pellet implosions needed for high-energy gain. In recent experiments, the authors' tested the effects of ISI on high-power laser-target interaction. With short laser wavelength, the coupling physics dramatically improved over that obtained with an ordinary laser beam

  1. Stability of short wavelength tearing and twisting modes

    International Nuclear Information System (INIS)

    Waelbroeck, F.L.

    1998-01-01

    The stability and mutual interaction of tearing and twisting modes in a torus is governed by matrices that generalize the well-known Δ' stability index. The diagonal elements of these matrices determine the intrinsic stability of modes that reconnect the magnetic field at a single resonant surface. The off-diagonal elements indicate the strength of the coupling between the different modes. The author shows how the elements of these matrices can be evaluated, in the limit of short wavelength, from the free energy driving radially extended ballooning modes. The author applies the results by calculating the tearing and twisting Δ' for a model high-beta equilibrium with circular flux surfaces

  2. Research with high-power short-wavelength lasers

    International Nuclear Information System (INIS)

    Holzrichter, J.F.; Campbell, E.M.; Lindl, J.D.; Storm, E.

    1985-01-01

    Three important high-temperature, high-density experiments were conducted recently using the 10-TW, short-wavelength Novette laser system at the Lawrence Livermore National Laboratory. These experiments demonstrated successful solutions to problems that arose during previous experiments with long wavelength lasers (lambda greater than or equal to 1μm) in which inertial confinement fusion (ICF), x-ray laser, and other high-temperature physics concepts were being tested. The demonstrations were: (1) large-scale plasmas (typical dimensions of up to 1000 laser wavelengths) were produced in which potentially deleterious laser-plasma instabilities were collisionally damped. (2) Deuterium-tritium fuel was imploded to a density of 20 g/cm 3 and a pressure of 10 10 atm. (3) A 700-fold amplification of soft x rays by stimulated emission at 206 and 209 A (62 eV) from Se +24 ions was observed in a laser-generated plasma. Isoelectronic scaling to 155 A (87 eV) in Y +29 was also demonstrated

  3. Simulation of the Chang'E-5 mission contribution in lunar long wavelength gravity field improvement

    Science.gov (United States)

    Yan, Jianguo; Yang, Xuan; Ping, Jinsong; Ye, Mao; Liu, Shanhong; Jin, Weitong; Li, Fei; Barriot, Jean-Pierre

    2018-06-01

    The precision of lunar gravity field estimation has improved by means of three to five orders of magnitude since the successful GRAIL lunar mission. There are still discrepancies however, in the low degree coefficients and long wavelength components of the solutions developed by two space research centers (JPL and GSFC). These discrepancies hint at the possibilities for improving the accuracy in the long wavelength part of the lunar gravity field. In the near future, China will launch the Chang'E-5 lunar mission. In this sample-return mission, there will be a chance to do KBRR measurements between an ascending module and an orbiting module. These two modules will fly around lunar at an inclination of ˜49 degrees, with an orbital height of 100 km and an inter-satellite distance of 200 km. In our research, we simulated the contribution of the KBRR tracking mode for different GRAIL orbital geometries. This analysis indicated possible deficiencies in the low degree coefficient solutions for the polar satellite-to-satellite tracking mode at various orbital heights. We also investigated the potential contributions of the KBRR to the Chang'E-5 mission goal of lunar gravity field recovery, especially in the long wavelength component. Potential improvements were assessed using various power spectrums of the lunar gravity field models. In addition, we also investigated possible improvements in solving lunar tidal Love number K2. These results may assist the implementation of the Chang'E-5 mission.

  4. Observation of magnon-phonon interaction at short wavelengths

    International Nuclear Information System (INIS)

    Dolling, G.; Cowley, R.A.

    1966-01-01

    Measurements have been made of the magnon and phonon dispersion relations in uranium dioxide at 9 o K. These measurements provide evidence of a strong interaction between the magnon and phonon excitations and enable a value to be deduced for the coupling constant. The interaction of long-wavelength magnons in ferromagnetic materials has been studied previously with ultrasonic techniques; however, inelastic scattering of slow neutrons enables both the magnon and phonon dispersion relations to be determined for short wavelengths. In those magnetic materials which have been studied by earlier workers, the magnons and phonons either interacted with one another very weakly or else their frequencies were very different. The results could then be understood without introducing any magnon-phonon interaction. In this note we report measurements of both the magnon and the phonon spectra of antiferromagnetic uranium dioxide, which lead to a magnon-phonon coupling constant of 9.6 ± 1.6 o K. Since the Neel temperature is 30.8 o K, this coupling constant is of a similar magnitude to the direct magnetic interactions. (author)

  5. Self Referencing Heterodyne Transient Grating Spectroscopy with Short Wavelength

    Directory of Open Access Journals (Sweden)

    Jakob Grilj

    2015-04-01

    Full Text Available Heterodyning by a phase stable reference electric field is a well known technique to amplify weak nonlinear signals. For short wavelength, the generation of a reference field in front of the sample is challenging because of a lack of suitable beamsplitters. Here, we use a permanent grating which matches the line spacing of the transient grating for the creation of a phase stable reference field. The relative phase among the two can be changed by a relative translation of the permanent and transient gratings in direction orthogonal to the grating lines. We demonstrate the technique for a transient grating on a VO2 thin film and observe constructive as well as destructive interference signals.

  6. Beam dynamics simulations for linacs driving short-wavelength FELs

    International Nuclear Information System (INIS)

    Ferrario, M.; Tazzioli, F.

    1999-01-01

    The fast code HOMDYN has been recently developed, in the framework of the TTF (Tesla test facility) collaboration, in order to study the beam dynamics of linacs delivering high brightness beams as those needed for short wavelength Fel experiments. These linacs are typically driven by radio-frequency photo-injectors, where correlated time dependent space charge effects are of great relevance: these effects cannot be studied by standard beam optics codes (TRACE3D, etc.) and they have been modeled so far by means of multi-particle (Pic or quasistatic) codes requiring heavy cpu time and memory allocations. HOMDYN is able to describe the beam generation at the photo-cathode and the emittance compensation process in the injector even running on a laptop with very modest running rimes (less than a minute). In this paper it is showed how this capability of the code is exploited so to model a whole linac up to the point where the space charge dominated regime is of relevance (200 MeV)

  7. Interferometry on small quantum systems at short wavelength

    International Nuclear Information System (INIS)

    Usenko, Sergey

    2017-01-01

    The present work concentrates on prototypical studies of light-induced correlated many-body dynamics in complex systems. In its course a reflective split-and-delay unit (SDU) for phase-resolved one-color pump-probe experiments with gas phase samples using VUV-XUV laser pulses was built. The collinear propagation of pump and probe pulses is ensured by the special geometry of the SDU and allows to perform phase-resolved (coherent) autocorrelation measurements. The control of the pump-probe delay with attosecond precision is established by a specially developed diagnostic tool based on an in-vacuum white light interferometer that allows to monitor the relative displacement of the SDU reflectors with nanometer resolution. Phase-resolved (interferometric) pump-probe experiments with developed SDU require spatially-resolved imaging of the ionization volume. For this an electron-ion coincidence spectrometer was built. The spectrometer enables coincident detection of photoionization products using velocity map imaging (VMI) technique for electrons and VMI or spatial imaging for ions. In first experiments using the developed SDU and the spectrometer in the ion spatial-imaging mode linear field autocorrelation of free-electron laser pulses at the central wavelength of 38 nm was recorded. A further focus of the work were energy- and time-resolved resonant two-photon ionization experiments using short tunable UV laser pulses on C_6_0 fullerene. The experiments demonstrated that dipole-selective excitation on a timescale faster than the characteristic intramolecular energy dissipation limits the number of accessible excitation pathways and thus results in a narrow resonance. Time-dependent one-color pump-probe study showed that nonadiabatic (vibron) coupling is the dominant energy dissipation mechanism for high-lying electronic excited states in C_6_0.

  8. Interferometry on small quantum systems at short wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Usenko, Sergey

    2017-01-15

    The present work concentrates on prototypical studies of light-induced correlated many-body dynamics in complex systems. In its course a reflective split-and-delay unit (SDU) for phase-resolved one-color pump-probe experiments with gas phase samples using VUV-XUV laser pulses was built. The collinear propagation of pump and probe pulses is ensured by the special geometry of the SDU and allows to perform phase-resolved (coherent) autocorrelation measurements. The control of the pump-probe delay with attosecond precision is established by a specially developed diagnostic tool based on an in-vacuum white light interferometer that allows to monitor the relative displacement of the SDU reflectors with nanometer resolution. Phase-resolved (interferometric) pump-probe experiments with developed SDU require spatially-resolved imaging of the ionization volume. For this an electron-ion coincidence spectrometer was built. The spectrometer enables coincident detection of photoionization products using velocity map imaging (VMI) technique for electrons and VMI or spatial imaging for ions. In first experiments using the developed SDU and the spectrometer in the ion spatial-imaging mode linear field autocorrelation of free-electron laser pulses at the central wavelength of 38 nm was recorded. A further focus of the work were energy- and time-resolved resonant two-photon ionization experiments using short tunable UV laser pulses on C{sub 60} fullerene. The experiments demonstrated that dipole-selective excitation on a timescale faster than the characteristic intramolecular energy dissipation limits the number of accessible excitation pathways and thus results in a narrow resonance. Time-dependent one-color pump-probe study showed that nonadiabatic (vibron) coupling is the dominant energy dissipation mechanism for high-lying electronic excited states in C{sub 60}.

  9. Observation of Rayleigh - Taylor growth to short wavelengths on Nike

    International Nuclear Information System (INIS)

    Pawley, C.J.; Bodner, S.E.; Dahlburg, J.P.; Obenschain, S.P.; Schmitt, A.J.; Sethian, J.D.; Sullivan, C.A.; Gardner, J.H.; Aglitskiy, Y.; Chan, Y.; Lehecka, T.

    1999-01-01

    The uniform and smooth focal profile of the Nike KrF laser [S. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to ablatively accelerate 40 μm thick polystyrene planar targets with pulse shaping to minimize shock heating of the compressed material. The foils had imposed small-amplitude sinusoidal wave perturbations of 60, 30, 20, and 12.5 μm wavelength. The shortest wavelength is near the ablative stabilization cutoff for Rayleigh - Taylor growth. Modification of the saturated wave structure due to random laser imprint was observed. Excellent agreement was found between the two-dimensional simulations and experimental data for most cases where the laser imprint was not dominant. copyright 1999 American Institute of Physics

  10. Single Mode Fiber Optic Transceiver Using Short Wavelength Active Devices In Long Wavelength Fiber

    Science.gov (United States)

    Gillham, Frederick J.; Campbell, Daniel R.; Corke, Michael; Stowe, David W.

    1990-01-01

    Presently, single mode optical fiber technology is being utilized in systems to supply telephone service to the subscriber. However, in an attempt to be competitive with copper based systems, there are many development programs underway to determine the most cost effective solution while still providing a service that will either satisfy or be upgradeable to satisfy the demands of the consumer for the next 10 to 20 years. One such approach is to combine low cost laser transmitters and silicon receivers, which have been developed for the "compact disc" industry, with fiber that operates in the single mode regime at 1300 nm. In this paper, an optical transceiver will be presented, consisting of a compact disc laser, a silicon detector and a single mode coupler at 1300 nm. A possible system layout is presented which operates at 780 nm bi-directionally for POTS and upgradeable to 1300 nm for video services. There are several important design criteria that have to be considered in the development of such a system which will be addressed. These include: 1. Optimization of coupled power from laser to fiber while maintaining stable launched conditions over a wide range of environmental conditions. 2. Consideration of the multimode operation of the 1300 nm single mode fiber while operating in the 780 nm wavelength region. 3. Development of a low cost pseudo-wavelength division multiplexer for 1300 nm single mode/780 nm multimode operation and a low cost dual mode 50/50, 780 nm splitter using 1300 nm fiber. Details will be given of the design criteria and solution in terms of optimized design. Results of the performance of several prototype devices will be given with indications of the merits of this approach and where further development effort should be applied.

  11. Sexual dimorphism of short-wavelength photoreceptors in the small white butterfly, Pieris rapae crucivora

    NARCIS (Netherlands)

    Arikawa, K; Wakakuwa, M; Qiu, XD; Kurasawa, M; Stavenga, DG; Qiu, Xudong

    2005-01-01

    The eyes of the female small white butterfly, Pieris rapae crucivora, are furnished with three classes of short-wavelength photoreceptors, with sensitivity peaks in the ultraviolet (UV) (lambda(max) = 360 nm), violet (V) (lambda max = 425 nm), and blue (B) (lambda(max) = 453 nm) wavelength range.

  12. Introduction: a short-wavelength-FEL/storage-ring complex

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1984-01-01

    We believe that, in view of the present state of FEL understanding, it is now proper to construct a research facility devoted to the use of coherent radiation and the advancement of FEL physics technology at wavelengths shorter than 1000 A. We show a possible layout of such a facility, which will be referred to as a Coherent xuv Facility (CXF), where research can be conducted on several techniques for generating coherent radiation. Undulators are already well understood and will generate broadly tunable, spatially coherent radiation of bandwidth lambda /Δlambda approx. = 10 2 . A crossed undulator system will extend the undulator capability to include variable polarization. For full coherence, in spatial as well as in longitudinal directions, it is necessary to induce and exploit density modulation in electron beams, as is the case in the transverse optical klystrons (TOKs) and FELs. In TOKs, coherent radiation is generated at harmonics of an input laser frequency, with the electron beam playing the role of a nonlinear medium. Ultimately, FELS would deliver intense, tunable x rays and vuv radiation of extremely narrow spectral width. There are two possible routes to an FEL, one based on feedback by end mirrors, the other based on development of a high-gain, single-pass device. It can be seen, from this paper, that the photon flux increases monotonically, or the wavelength decreases monotonically, as one goes through (1) undulator radiation, (2) TOK radiation, (3) FEL oscillator radiation, to (4) FEL single-pass radiation. Each of these will demand considerable quality development effort. Each will result in photon fluxes of increased value to the users

  13. Short-wavelength electrostatic waves in the earth's magnetosheath

    International Nuclear Information System (INIS)

    Gallagher, D.L.

    1985-01-01

    Recent observations with the ISEE 1 spacecraft have found electric field emissions in the dayside magnetosheath whose frequency spectrum is modulated at twice the spacecraft spin period. The upper frequency cutoff in the frequency-time spectrum of the emission has a characteristic parabola shape or ''festoon'' shape. The low-frequency cutoff ranges from 100 to 400 Hz, while the high-frequency limit ranges from about 1 to 4 kHz. The bandwidth is found to minimize for antenna orientations parallel to the wave vectors. The wave vector does not appear to be related to the local magnetic field, the plasma flow velocity, or the spacecraft-sun directions. The spacecraft observed frequency spectrum results from the spacecraft antenna response to the Doppler-shifted wave vector spectrum which exists in the plasma. Imposed constraints on the plasma rest frame wave vectors and frequencies indicate that emissions occur within the frequency range from about 150 Hz to 1 kHz, with wavelengths between about 40 and 600 m. These constraints strongly suggest that the festoon-shaped emissions are ion-acoustic waves. The small group velocity and k direction of the ion-acoustic mode are consistent with wave generation upstream at the bow shock and convection downstream to locations within the outer dayside magnetosheath

  14. Short wavelength electrostatic waves in the earth's magnetosheath

    International Nuclear Information System (INIS)

    Gallagher, D.L.

    1982-01-01

    Recent observations with the ISEE-1 spacecraft have found electric field emissions in the dayside magnetosheath whose frequency spectrum is modulated at twice the spacecraft spin period. The upper frequency cutoff in the frequency-time spectrum of the emissions has a characteristic parabola shape or ''festoon'' shape. The low frequency cutoff ranges from 100 Hz to 400 Hz, while the high frequency limit ranges from about 1kHz to 4kHz. The bandwidth is found to minimize for antenna orientations parallel to these wave number vectors, requiring the confinement of those vectors to a plane which contains the geocentric solar eclilptic coordinate z-axis. The spacecraft observed frequency spectrum results from the spacecraft antenna response to the Doppler shifted wave vector spectrum which exists in the plasma. Imposed constraints on the plasma rest-frame wave vectors and frequencies indicate that the emissions occur within the frequency range from about 150 Hz to 1 kHz, with wavelengths between about 30 meters and 600 meters. These constraints strongly suggest that the festoon-shaped emissions are ion-acoustic waves. The small group velocity and k vector direction of the ion-acoustic mode are consistent with wave generation upstream at the bow shock and convection downstream to locations within the outer dayside magnetosheath

  15. Derivation of gravity wave intrinsic parameters and vertical wavelength using a single scanning OH(3-1) airglow spectrometer

    Science.gov (United States)

    Wüst, Sabine; Offenwanger, Thomas; Schmidt, Carsten; Bittner, Michael; Jacobi, Christoph; Stober, Gunter; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell, James M., III

    2018-05-01

    For the first time, we present an approach to derive zonal, meridional, and vertical wavelengths as well as periods of gravity waves based on only one OH* spectrometer, addressing one vibrational-rotational transition. Knowledge of these parameters is a precondition for the calculation of further information, such as the wave group velocity vector.OH(3-1) spectrometer measurements allow the analysis of gravity wave ground-based periods but spatial information cannot necessarily be deduced. We use a scanning spectrometer and harmonic analysis to derive horizontal wavelengths at the mesopause altitude above Oberpfaffenhofen (48.09° N, 11.28° E), Germany for 22 nights in 2015. Based on the approximation of the dispersion relation for gravity waves of low and medium frequencies and additional horizontal wind information, we calculate vertical wavelengths. The mesopause wind measurements nearest to Oberpfaffenhofen are conducted at Collm (51.30° N, 13.02° E), Germany, ca. 380 km northeast of Oberpfaffenhofen, by a meteor radar.In order to compare our results, vertical temperature profiles of TIMED-SABER (thermosphere ionosphere mesosphere energetics dynamics, sounding of the atmosphere using broadband emission radiometry) overpasses are analysed with respect to the dominating vertical wavelength.

  16. Influence of wavelength on transient short-circuit current in polycrystalline silicon solar cells

    International Nuclear Information System (INIS)

    Ba, B.; Kane, M.

    1993-10-01

    The influence of the wavelength of a monochromatic illumination on transient short-circuit current in an n/p polycrystalline silicon part solar cell junction is investigated. A wavelength dependence in the initial part of the current decay is observed in the case of cells with moderate grain boundary effects. This influence is attenuated in polycrystalline cells with strong grain boundary activity. (author). 10 refs, 6 figs

  17. Operational characteristics of the OMEGA short-wavelength laser fusion facility

    International Nuclear Information System (INIS)

    Soures, J.M.; Hutchison, R.; Jacobs, S.; McCrory, R.L.; Peck, R.; Seka, W.

    1984-01-01

    Twelve beams of the OMEGA, 24 beam direct-drive laser facility have been converted to 351-nm wavelength operation. The performance characteristics of this short-wavelength facility will be discussed. Beam-to-beam energy balance of +-2.3% and on-target energy, at 351-nm, in excess of 70 J per beam have been demonstrated. Long-term performance (>600 shots) of the system has been optimized by appropriate choice of index matching liquid, optical materials and coatings. The application of this system in direct-drive laser fusion experiments will be discussed

  18. Short-wavelength attenuated polychromatic white light during work at night : Limited melatonin suppression without substantial decline of alertness

    NARCIS (Netherlands)

    van de Werken, Maan; Giménez, Marina C; de Vries, Bonnie; Beersma, Domien G M; Gordijn, Marijke C M

    Exposure to light at night increases alertness, but light at night (especially short-wavelength light) also disrupts nocturnal physiology. Such disruption is thought to underlie medical problems for which shiftworkers have increased risk. In 33 male subjects we investigated whether short-wavelength

  19. Local instabilities in magnetized rotational flows: A short-wavelength approach

    OpenAIRE

    Kirillov, Oleg N.; Stefani, Frank; Fukumoto, Yasuhide

    2014-01-01

    We perform a local stability analysis of rotational flows in the presence of a constant vertical magnetic field and an azimuthal magnetic field with a general radial dependence. Employing the short-wavelength approximation we develop a unified framework for the investigation of the standard, the helical, and the azimuthal version of the magnetorotational instability, as well as of current-driven kink-type instabilities. Considering the viscous and resistive setup, our main focus is on the cas...

  20. Nonlinear-optical generation of short-wavelength radiation controlled by laser-induced interference structures

    International Nuclear Information System (INIS)

    Popov, A K; Kimberg, V V

    1998-01-01

    A study is reported of the combined influence of laser-induced resonances in the energy continuum, of splitting of discrete resonances in the field of several strong radiations, and of absorption of the initial and generated radiations on totally resonant parametric conversion to the short-wavelength range. It is shown that the radiation power can be increased considerably by interference processes involving quantum transitions. (nonlinear optical phenomena and devices)

  1. Short-Wavelength Light Enhances Cortisol Awakening Response in Sleep-Restricted Adolescents

    Directory of Open Access Journals (Sweden)

    Mariana G. Figueiro

    2012-01-01

    Full Text Available Levels of cortisol, a hormone produced by the adrenal gland, follow a daily, 24-hour rhythm with concentrations reaching a minimum in the evening and a peak near rising time. In addition, cortisol levels exhibit a sharp peak in concentration within the first hour after waking; this is known as the cortisol awakening response (CAR. The present study is a secondary analysis of a larger study investigating the impact of short-wavelength (λmax≈470 nm light on CAR in adolescents who were sleep restricted. The study ran over the course of three overnight sessions, at least one week apart. The experimental sessions differed in terms of the light exposure scenarios experienced during the evening prior to sleeping in the laboratory and during the morning after waking from a 4.5-hour sleep opportunity. Eighteen adolescents aged 12–17 years were exposed to dim light or to 40 lux (0.401 W/m2 of 470-nm peaking light for 80 minutes after awakening. Saliva samples were collected every 20 minutes to assess CAR. Exposure to short-wavelength light in the morning significantly enhanced CAR compared to dim light. Morning exposure to short-wavelength light may be a simple, yet practical way to better prepare adolescents for an active day.

  2. Extended short wavelength infrared HgCdTe detectors on silicon substrates

    Science.gov (United States)

    Park, J. H.; Hansel, D.; Mukhortova, A.; Chang, Y.; Kodama, R.; Zhao, J.; Velicu, S.; Aqariden, F.

    2016-09-01

    We report high-quality n-type extended short wavelength infrared (eSWIR) HgCdTe (cutoff wavelength 2.59 μm at 77 K) layers grown on three-inch diameter CdTe/Si substrates by molecular beam epitaxy (MBE). This material is used to fabricate test diodes and arrays with a planar device architecture using arsenic implantation to achieve p-type doping. We use different variations of a test structure with a guarded design to compensate for the lateral leakage current of traditional test diodes. These test diodes with guarded arrays characterize the electrical performance of the active 640 × 512 format, 15 μm pitch detector array.

  3. Short-wavelength free-electron laser sources and science: a review

    Science.gov (United States)

    Seddon, E. A.; Clarke, J. A.; Dunning, D. J.; Masciovecchio, C.; Milne, C. J.; Parmigiani, F.; Rugg, D.; Spence, J. C. H.; Thompson, N. R.; Ueda, K.; Vinko, S. M.; Wark, J. S.; Wurth, W.

    2017-11-01

    This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area. Dedicated to John M J Madey (1943-2016) and Rodolfo Bonifacio (1940-2016) whose perception, drive and perseverance paved the way for the realisation and development of short-wavelength free-electron lasers.

  4. Optimization of a miniature short-wavelength infrared objective optics of a short-wavelength infrared to visible upconversion layer attached to a mobile-devices visible camera

    Science.gov (United States)

    Kadosh, Itai; Sarusi, Gabby

    2017-10-01

    The use of dual cameras in parallax in order to detect and create 3-D images in mobile devices has been increasing over the last few years. We propose a concept where the second camera will be operating in the short-wavelength infrared (SWIR-1300 to 1800 nm) and thus have night vision capability while preserving most of the other advantages of dual cameras in terms of depth and 3-D capabilities. In order to maintain commonality of the two cameras, we propose to attach to one of the cameras a SWIR to visible upconversion layer that will convert the SWIR image into a visible image. For this purpose, the fore optics (the objective lenses) should be redesigned for the SWIR spectral range and the additional upconversion layer, whose thickness is mobile device visible range camera sensor (the CMOS sensor). This paper presents such a SWIR objective optical design and optimization that is formed and fit mechanically to the visible objective design but with different lenses in order to maintain the commonality and as a proof-of-concept. Such a SWIR objective design is very challenging since it requires mimicking the original visible mobile camera lenses' sizes and the mechanical housing, so we can adhere to the visible optical and mechanical design. We present in depth a feasibility study and the overall optical system performance of such a SWIR mobile-device camera fore optics design.

  5. Integral equation based stability analysis of short wavelength drift modes in tokamaks

    International Nuclear Information System (INIS)

    Hirose, A.; Elia, M.

    2003-01-01

    Linear stability of electron skin-size drift modes in collisionless tokamak discharges has been investigated in terms of electromagnetic, kinetic integral equations in which neither ions nor electrons are assumed to be adiabatic. A slab-like ion temperature gradient mode persists in such a short wavelength regime. However, toroidicity has a strong stabilizing influence on this mode. In the electron branch, the toroidicity induced skin-size drift mode previously predicted in terms of local kinetic analysis has been recovered. The mode is driven by positive magnetic shear and strongly stabilized for negative shear. The corresponding mixing length anomalous thermal diffusivity exhibits favourable isotope dependence. (author)

  6. Short latency compound action potentials from mammalian gravity receptor organs

    Science.gov (United States)

    Jones, T. A.; Jones, S. M.

    1999-01-01

    Gravity receptor function was characterized in four mammalian species using far-field vestibular evoked potentials (VsEPs). VsEPs are compound action potentials of the vestibular nerve and central relays that are elicited by linear acceleration ramps applied to the cranium. Rats, mice, guinea pigs, and gerbils were studied. In all species, response onset occurred within 1.5 ms of the stimulus onset. Responses persisted during intense (116 dBSPL) wide-band (50 to 50 inverted question mark omitted inverted question mark000 Hz) forward masking, whereas auditory responses to intense clicks (112 dBpeSPL) were eliminated under the same conditions. VsEPs remained after cochlear extirpation but were eliminated following bilateral labyrinthectomy. Responses included a series of positive and negative peaks that occurred within 8 ms of stimulus onset (range of means at +6 dBre: 1.0 g/ms: P1=908 to 1062 micros, N1=1342 to 1475 micros, P2=1632 to 1952 micros, N2=2038 to 2387 micros). Mean response amplitudes at +6 dBre: 1.0 g/ms ranged from 0.14 to 0.99 microV. VsEP input/output functions revealed latency slopes that varied across peaks and species ranging from -19 to -51 micros/dB. Amplitude-intensity slopes also varied ranging from 0.04 to 0.08 microV/dB for rats and mice. Latency values were comparable to those of birds although amplitudes were substantially smaller in mammals. VsEP threshold values were considerably higher in mammals compared to birds and ranged from -8.1 to -10.5 dBre 1.0 g/ms across species. These results support the hypothesis that mammalian gravity receptors are less sensitive to dynamic stimuli than are those of birds.

  7. Short wavelength laser-plasma interaction experiments in a spherical geometry

    International Nuclear Information System (INIS)

    Keck, R.L.

    1984-01-01

    Short wavelength (250 to 500 nm) lasers should provide reduced fast electron preheat and increased laser-pellet coupling efficiency when used as laser fusion drivers. As part of an ongoing effort to study short wavelength laser plasm interaction, six beams of the 24 beam OMEGA Nd-glass laser system have been converted to operation at the third harmonic. This system is capable of providing in excess of 250 Joules of 351 nm light on spherical targets at intensities up to 2 x 10/sup 15/ W/cm/sup 2/. To date, experiments have been performed to study the uniformity of irradiation, laser absorption, fast electron production and preheat, energy transport within the target and underdense plasma instabilities. Both x-ray continuum measurements and Kα line measurements indicate that the absorption is dominated by inverse bremsstrahlung. Electron energy transport has been studied using x-ray burn-through and charge collector measurements. The results show that with 351 nm irradiation ablation pressures of order 100 Mbars are generated at intensities of 10/sup 15/ W/cm/sup 2/

  8. The opto-cryo-mechanical design of the short wavelength camera for the CCAT Observatory

    Science.gov (United States)

    Parshley, Stephen C.; Adams, Joseph; Nikola, Thomas; Stacey, Gordon J.

    2014-07-01

    The CCAT observatory is a 25-m class Gregorian telescope designed for submillimeter observations that will be deployed at Cerro Chajnantor (~5600 m) in the high Atacama Desert region of Chile. The Short Wavelength Camera (SWCam) for CCAT is an integral part of the observatory, enabling the study of star formation at high and low redshifts. SWCam will be a facility instrument, available at first light and operating in the telluric windows at wavelengths of 350, 450, and 850 μm. In order to trace the large curvature of the CCAT focal plane, and to suit the available instrument space, SWCam is divided into seven sub-cameras, each configured to a particular telluric window. A fully refractive optical design in each sub-camera will produce diffraction-limited images. The material of choice for the optical elements is silicon, due to its excellent transmission in the submillimeter and its high index of refraction, enabling thin lenses of a given power. The cryostat's vacuum windows double as the sub-cameras' field lenses and are ~30 cm in diameter. The other lenses are mounted at 4 K. The sub-cameras will share a single cryostat providing thermal intercepts at 80, 15, 4, 1 and 0.1 K, with cooling provided by pulse tube cryocoolers and a dilution refrigerator. The use of the intermediate temperature stage at 15 K minimizes the load at 4 K and reduces operating costs. We discuss our design requirements, specifications, key elements and expected performance of the optical, thermal and mechanical design for the short wavelength camera for CCAT.

  9. Artificial gravity: head movements during short-radius centrifugation

    NARCIS (Netherlands)

    Young, L. R.; Hecht, H.; Lyne, L. E.; Sienko, K. H.; Cheung, C. C.; Kavelaars, J.

    2001-01-01

    Short-radius centrifugation is a potential countermeasure to long-term weightlessness. Unfortunately, head movements in a rotating environment induce serious discomfort, non-compensatory vestibulo-ocular reflexes, and subjective illusions of body tilt. In two experiments we investigated the effects

  10. Lack of short-wavelength light during the school day delays dim light melatonin onset (DLMO) in middle school students.

    Science.gov (United States)

    Figueiro, Mariana G; Rea, Mark S

    2010-01-01

    Circadian timing affects sleep onset. Delayed sleep onset can reduce sleep duration in adolescents required to awake early for a fixed school schedule. The absence of short-wavelength ("blue") morning light, which helps entrain the circadian system, can hypothetically delay sleep onset and decrease sleep duration in adolescents. The goal of this study was to investigate whether removal of short-wavelength light during the morning hours delayed the onset of melatonin in young adults. Dim light melatonin onset (DLMO) was measured in eleven 8th-grade students before and after wearing orange glasses, which removed short-wavelength light, for a five-day school week. DLMO was significantly delayed (30 minutes) after the five-day intervention, demonstrating that short-wavelength light exposure during the day can be important for advancing circadian rhythms in students. Lack of short-wavelength light in the morning has been shown to delay the circadian clock in controlled laboratory conditions. The results presented here are the first to show, outside laboratory conditions, that removal of short-wavelength light in the morning hours can delay DLMO in 8th-grade students. These field data, consistent with results from controlled laboratory studies, are directly relevant to lighting practice in schools.

  11. Recent results on short-range gravity experiment

    International Nuclear Information System (INIS)

    Hata, Maki; Akiyama, Takashi; Ikeda, Yuki; Kawamura, Hirokazu; Narita, Keigo; Ninomiya, Kazufumi; Ogawa, Naruya; Sato, Toshiaki; Seitaibashi, Etsuko; Sekiguchi, Yuta; Tsutsui, Ryosuke; Yazawa, Kazumasa; Murata, Jiro

    2009-01-01

    According to the ADD model, deviation from Newton's inverse square law is expected at below sub-millimeter scale. Present study is an experimental investigation of the Newton's gravitational law at a short range scale. We have developed an experimental setup using torsion balance bar, and succeeded to confirm the inverse square law at a centimeter scale. In addition, composition dependence of gravitational constant G is also tested at the centimeter scale, motivated to test the weak equivalence principle.

  12. Ultra-high accuracy optical testing: creating diffraction-limited short-wavelength optical systems

    International Nuclear Information System (INIS)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman, Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli, Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-01-01

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-(angstrom) and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date

  13. High-Resolution Gravity Field Modeling for Mercury to Estimate Crust and Lithospheric Properties

    Science.gov (United States)

    Goossens, S.; Mazarico, E.; Genova, A.; James, P. B.

    2018-05-01

    We estimate a gravity field model for Mercury using line-of-sight data to improve the gravity field model at short wavelengths. This can be used to infer crustal density and infer the support mechanism of the lithosphere.

  14. Towards shorter wavelength x-ray lasers using a high power, short pulse pump laser

    International Nuclear Information System (INIS)

    Tighe, W.; Krushelnick, K.; Valeo, E.; Suckewer, S.

    1991-05-01

    A near-terawatt, KrF* laser system, focussable to power densities >10 18 W/cm 2 has been constructed for use as a pump laser in various schemes aimed at the development of x-ray lasing below 5nm. The laser system along with output characteristics such as the pulse duration, the focal spot size, and the percentage of amplified spontaneous emission (ASE) emitted along with the laser pulse will be presented. Schemes intended to lead to shorter wavelength x-ray emission will be described. The resultant requirements on the pump laser characteristics and the target design will be outlined. Results from recent solid target experiments and two-laser experiments, showing the interaction of a high-power, short pulse laser with a preformed plasma, will be presented. 13 refs., 5 figs

  15. Scaling model for high-aspect-ratio microballoon direct-drive implosions at short laser wavelengths

    International Nuclear Information System (INIS)

    Schirmann, D.; Juraszek, D.; Lane, S.M.; Campbell, E.M.

    1992-01-01

    A scaling model for hot spherical ablative implosions in direct-drive mode is presented. The model results have been compared with experiments from LLE, ILE, and LLNL. Reduction of the neutron yield due to illumination nonuniformities is taken into account by the assumption that the neutron emission is cut off when the gas shock wave reflected off the center meets the incoming pusher, i.e., at a time when the probability of shell breakup is greatly enhanced. The main advantage of this semiempirical scaling model is that it elucidates the principal features of these simple implosions and permits one to estimate very quickly the performance of a high-aspect-ratio direct-drive target illuminated by short-wavelength laser light. (Author)

  16. Surface Variability of Short-wavelength Radiation and Temperature on Exoplanets around M Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin; Tian, Feng [Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084 (China); Wang, Yuwei [Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, QC H3A 0B9 (Canada); Dudhia, Jimy; Chen, Ming, E-mail: tianfengco@tsinghua.edu.cn [National Center for Atmospheric Research, Boulder, CO (United States)

    2017-03-10

    It is a common practice to use 3D General Circulation Models (GCM) with spatial resolution of a few hundred kilometers to simulate the climate of Earth-like exoplanets. The enhanced albedo effect of clouds is especially important for exoplanets in the habitable zones around M dwarfs that likely have fixed substellar regions and substantial cloud coverage. Here, we carry out mesoscale model simulations with 3 km spatial resolution driven by the initial and boundary conditions in a 3D GCM and find that it could significantly underestimate the spatial variability of both the incident short-wavelength radiation and the temperature at planet surface. Our findings suggest that mesoscale models with cloud-resolving capability be considered for future studies of exoplanet climate.

  17. Magneto-optical enhancement of TbFeCo/Al films at short wavelength

    International Nuclear Information System (INIS)

    Song, K.; Ito, H.; Naoe, M.

    1992-01-01

    In this paper, the bilayered films composed of magneto-optical (MO) amorphous Tb-Te-Co alloy and reflective Al layers were deposited successively on glass slide substrates without plasma exposure by using the facing targets sputtering system. The specimen films with the thickness of MO layer t MO below 5 nm showed apparent perpendicular magnetic anisotropy constant Ku of 2 to 3 x 10 6 erg/cm3 and rectangular Kerr loop. The specimen film with t MO of 14 nm took the Kerr rotation angle θ k as large as about 0.36 degree, at the wavelength λ as short as about 400 nm. These values of θ k is considerably larger than those of the bilayered films in the conventional MO media. Normally, the bilayered films with t MO above 50 nm took θ k of about 0.25 degree at θ k of 400 nm

  18. Temperature distribution and heat radiation of patterned surfaces at short wavelengths

    Science.gov (United States)

    Emig, Thorsten

    2017-05-01

    We analyze the equilibrium spatial distribution of surface temperatures of patterned surfaces. The surface is exposed to a constant external heat flux and has a fixed internal temperature that is coupled to the outside heat fluxes by finite heat conductivity across the surface. It is assumed that the temperatures are sufficiently high so that the thermal wavelength (a few microns at room temperature) is short compared to all geometric length scales of the surface patterns. Hence the radiosity method can be employed. A recursive multiple scattering method is developed that enables rapid convergence to equilibrium temperatures. While the temperature distributions show distinct dependence on the detailed surface shapes (cuboids and cylinder are studied), we demonstrate robust universal relations between the mean and the standard deviation of the temperature distributions and quantities that characterize overall geometric features of the surface shape.

  19. Emitted short wavelength infrared radiation for detection and monitoring of volcanic activity

    Science.gov (United States)

    Rothery, D. A.; Francis, P. W.; Wood, C. A.

    1988-01-01

    Thematic Mapper images from LANDSAT were used to monitor volcanoes. Achievements include: (1) the discovery of a magmatic precursor to the 16 Sept. 1986 eruption of Lascar, northern Chile, on images from Mar. and July 1985 and of continuing fumarolic activity after the eruption; (2) the detection of unreported major changes in the distribution of lava lakes on Erta'Ale, Ethiopia; and (3) the mapping of a halo of still-hot spatter surrounding a vent on Mount Erebus, Antarctica, on an image acquired 5 min after a minor eruption otherwise known only from seismic records. A spaceborne short wavelength infrared sensor for observing hot phenomena of volcanoes is proposed. A polar orbit is suggested.

  20. Short-wavelength InAlGaAs/AlGaAs quantum dot superluminescent diodes

    Science.gov (United States)

    Liang, De-Chun; An, Qi; Jin, Peng; Li, Xin-Kun; Wei, Heng; Wu, Ju; Wang, Zhan-Guo

    2011-10-01

    This paper reports the fabrication of J-shaped bent-waveguide superluminescent diodes utilizing an InAlGaAs/AlGaAs quantum dot active region. The emission spectrum of the device is centred at 884 nm with a full width at half maximum of 37 nm and an output power of 18 mW. By incorporating an Al composition into the quantum dot active region, short-wavelength superluminescent diode devices can be obtained. An intersection was found for the light power-injection current curves measured from the straight-waveguide facet and the bent-waveguide facet, respectively. The result is attributed to the conjunct effects of the gain and the additional loss of the bent waveguide. A numerical simulation is performed to verify the qualitative explanation. It is shown that bent waveguide loss is an important factor that affects the output power of J-shaped superluminescent diode devices.

  1. Laser spectroscopy on atoms and ions using short-wavelength radiation

    International Nuclear Information System (INIS)

    Larsson, Joergen.

    1994-05-01

    Radiative properties and energy structures in atoms and ions have been investigated using UV/VUV radiation. In order to obtain radiation at short wavelengths, frequency mixing of pulsed laser radiation in crystals and gases has been performed using recently developed frequency-mixing schemes. To allow the study of radiative lifetimes shorter than the pulses from standard Q-switched lasers, different techniques have been used to obtain sufficiently short pulses. The Hanle effect has been employed following pulsed laser excitation for the same purpose. High-resolution spectroscopic techniques have been adapted for use with the broad-band, pulsed laser sources which are readily available in the UV/VUV spectral region. In order to investigate sources of radiation in the XUV and soft X-ray spectral regions, harmonic generation in rare gases has been studied. The generation of coherent radiation by the interaction between laser radiation and relativistic electrons in a synchrotron storage ring has also been investigated. 60 refs

  2. Ultrafast terawatt laser sources for high-field particle acceleration and short wavelength generation

    International Nuclear Information System (INIS)

    Downer, M.C.

    1996-01-01

    The Laser Sources working group concerned itself with recent advances in and future requirements for the development of laser sources relevant to high-energy physics (HEP) colliders, small scale accelerators, and the generation of short wave-length radiation. We heavily emphasized pulsed terawatt peak power laser sources for several reasons. First, their development over the past five years has been rapid and multi-faceted, and has made relativistic light intensity available to the advanced accelerator community, as well as the wider physics community, for the first time. Secondly, they have strongly impacted plasma-based accelerator research over the past two years, producing the first experimental demonstrations of the laser wakefield accelerator (LWFA) in both its resonantly-driven and self-modulated forms. Thirdly, their average power and wall-plug efficiency currently fall well short of projected requirements for future accelerators and other high average power applications, but show considerable promise for improving substantially over the next few years. A review of this rapidly emerging laser technology in the context of advanced accelerator research is therefore timely

  3. TES arrays for the short wavelength band of the SAFARI instrument on SPICA

    Science.gov (United States)

    Khosropanah, P.; Hijmering, R.; Ridder, M.; Gao, J. R.; Morozov, D.; Mauskopf, P. D.; Trappe, N.; O'Sullivan, C.; Murphy, A.; Griffin, D.; Goldie, D.; Glowacka, D.; Withington, S.; Jackson, B. D.; Audley, M. D.; de Lange, G.

    2012-09-01

    SPICA is an infra-red (IR) telescope with a cryogenically cooled mirror (~5K) with three instruments on board, one of which is SAFARI that is an imaging Fourier Transform Spectrometer (FTS) with three bands covering the wavelength of 34-210 μm. We develop transition edge sensors (TES) array for short wavelength band (34-60 μm) of SAFARI. These are based on superconducting Ti/Au bilayer as TES bolometers with a Tc of about 105 mK and thin Ta film as IR absorbers on suspended silicon nitride (SiN) membranes. These membranes are supported by long and narrow SiN legs that act as weak thermal links between the TES and the bath. Previously an electrical noise equivalent power (NEP) of 4×10-19 W/√Hz was achieved for a single pixel of such detectors. As an intermediate step toward a full-size SAFARI array (43×43), we fabricated several 8×9 detector arrays. Here we describe the design and the outcome of the dark and optical tests of several of these devices. We achieved high yield (<93%) and high uniformity in terms of critical temperature (<5%) and normal resistance (7%) across the arrays. The measured dark NEPs are as low as 5×10-19 W/√Hz with a response time of about 1.4 ms at preferred operating bias point. The optical coupling is implemented using pyramidal horns array on the top and hemispherical cavity behind the chip that gives a measured total optical coupling efficiency of 30±7%.

  4. Correlated evolution of short wavelength sensitive photoreceptor sensitivity and color pattern in Lake Malawi cichlids

    Directory of Open Access Journals (Sweden)

    Michael J. Pauers

    2016-02-01

    Full Text Available For evolutionary ecologists, the holy grail of visual ecology is to establish an unambiguous link between photoreceptor sensitivity, the spectral environment, and the perception of specific visual stimuli (e.g., mates, food, predators, etc.. Due to the bright nuptial colors of the males, and the role female mate choice plays in their evolution, the haplochromine cichlid fishes of the African great lakes are favorite research subjects for such investigations. Despite this attention, current evidence is equivocal; while distinct correlations among photoreceptor sensitivity, photic environment, and male coloration exist in Lake Victorian haplochromines, attempts to find such correlations in Lake Malawian cichlids have failed. Lake Malawi haplochromines have a wide variability in their short-wavelength-sensitive photoreceptors, especially compared to their mid- and long-wavelength-sensitive photoreceptors; these cichlids also vary in the degree to which they express one of three basic color patterns (vertical bars, horizontal stripes, and solid patches of colors, each of which is likely used in a different form of communication. Thus, we hypothesize that, in these fishes, spectral sensitivity and color pattern have evolved in a correlated fashion to maximize visual communication; specifically, ultraviolet sensitivity should be found in vertically-barred species to promote ‘private’ communication, while striped species should be less likely to have ultraviolet sensitivity, since their color pattern carries ‘public’ information. Using phylogenetic independent contrasts, we found that barred species had strong sensitivity to ultraviolet wavelengths, but that striped species typically lacked sensitivity to ultraviolet light. Further, the only variable, even when environmental variables were simultaneously considered, that could predict ultraviolet sensitivity was color pattern. We also found that, using models of correlated evolution, color

  5. Gravity

    CERN Document Server

    Gamow, George

    2003-01-01

    A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw

  6. Reactions of N2(A3Σ/sub u/+) and candidates for short wavelength lasers

    International Nuclear Information System (INIS)

    Setser, D.W.

    1987-01-01

    This proposal is a request for a one year renewal of a contract with the Univ. of California (Lawrence Livermore Laboratory). The proposed experiments are directed towards investigation of possible short-wavelength laser candidate molecules that can be pumped via excitation-transfer reactions with N 2 (A 3 Σ/sub u/ + ) molecules. We will continue our flowing-afterglow experiments to characterize the excitation-transfer collisions between N 2 (A) and promising acceptor diatomic molecules (radicals). We also will extend the studies to include excitation-transfer to Cd and to S atoms. For some chemical systems, a pulsed N 2 (A) source would be very convenient for kinetic measurements and we propose to develop a pulsed N 2 (A) source. During the first year, we have shown that the excitation-transfer reaction between N 2 (A) and SO(X) provides a possible laser candidate. Therefore, we propose to start a program to study the quenching and relaxation kinetics of the SO(A 3 PI) molecule, using pulsed laser excitation techniques to generate specific levels of SO(A 3 PI)

  7. Short wavelength infrared optical windows for evaluation of benign and malignant tissues

    Science.gov (United States)

    Sordillo, Diana C.; Sordillo, Laura A.; Sordillo, Peter P.; Shi, Lingyan; Alfano, Robert R.

    2017-04-01

    There are three short wavelength infrared (SWIR) optical windows outside the conventionally used first near-infrared (NIR) window (650 to 950 nm). They occur in the 1000- to 2500-nm range and may be considered second, third, and fourth NIR windows. The second (1100 to 1350 nm) and third windows (1600 to 1870 nm) are now being explored through label-free linear and multiphoton imaging. The fourth window (2100 to 2350 nm) has been mostly ignored because of water absorption and the absence of sensitive detectors and ultrafast lasers. With the advent of new technology, use of window IV is now possible. Absorption and scattering properties of light through breast and prostate cancer, bone, lipids, and intralipid solutions at these windows were investigated. We found that breast and prostate cancer and bone have longer total attenuation lengths at NIR windows III and IV, whereas fatty tissues and intralipid have longest lengths at windows II and III. Since collagen is the major chromophore at 2100 and 2350 nm, window IV could be especially valuable in evaluating cancers and boney tissues, whereas windows II and III may be more useful for tissues with high lipid content. SWIR windows may be utilized as additional optical tools for the evaluation of collagen in tissues.

  8. Short-wavelength ablation of polymers in the high-fluence regime

    International Nuclear Information System (INIS)

    Liberatore, Chiara; Juha, Libor; Vyšín, Ludek; Endo, Akira; Mocek, Tomas; Mann, Klaus; Müller, Matthias; Pina, Ladislav; Rocca, Jorge J

    2014-01-01

    Short-wavelength ablation of poly(1,4-phenylene ether-ether-sulfone) (PPEES) and poly(methyl methacrylate) (PMMA) was investigated using extreme ultraviolet (XUV) and soft x-ray (SXR) radiation from plasma-based sources. The initial experiment was performed with a 10 Hz desktop capillary-discharge XUV laser lasing at 46.9 nm. The XUV laser beam was focused onto the sample by a spherical mirror coated with a Si/Sc multilayer. The same materials were irradiated with 13.5 nm radiation emitted by plasmas produced by focusing an optical laser beam onto a xenon gas-puff target. A Schwarzschild focusing optics coated with a Mo/Si multilayer was installed at the source to achieve energy densities exceeding 0.1 J cm −2 in the tight focus. The existing experimental system at the Laser Laboratorium Göttingen was upgraded by implementing a 1.2 J driving laser. An increase of the SXR fluence was secured by improving the alignment technique. (paper)

  9. Ultraviolet and short wavelength visible light exposure: why ultraviolet protection alone is not adequate.

    Science.gov (United States)

    Reichow, Alan W; Citek, Karl; Edlich, Richard F

    2006-01-01

    The danger of exposure to ultraviolet (UV) radiation in both the natural environment and artificial occupational settings has long been recognized by national and international standards committees and worker safety agencies. There is an increasing body of literature that suggests that protection from UV exposure is not enough. Unprotected exposure to the short wavelengths of the visible spectrum, termed the "blue light hazard", is gaining acceptance as a true risk to long-term visual health. Global standards and experts in the field are now warning that those individuals who spend considerable time outdoors should seek sun filter eyewear with high impact resistant lenses that provide 100% UV filtration, high levels of blue light filtration, and full visual field lens/frame coverage as provided by high wrap eyewear. The Skin Cancer Foundation has endorsed certain sunglasses as "product[s]...effective [as] UV filter[s] for the eyes and surrounding skin". However, such endorsement does not necessarily mean that the eyewear meets all the protective needs for outdoor use. There are several brands that offer products with such protective characteristics. Performance sun eyewear by Nike Vision, available in both corrective and plano (nonprescription) forms, is one such brand incorporating these protective features.

  10. Propagation of short-period gravity waves at high-latitudes during the MaCWAVE winter campaign

    Directory of Open Access Journals (Sweden)

    K. Nielsen

    2006-07-01

    Full Text Available As part of the MaCWAVE (Mountain and Convective Waves Ascending Vertically winter campaign an all-sky monochromatic CCD imager has been used to investigate the properties of short-period mesospheric gravity waves at high northern latitudes. Sequential measurements of several nightglow emissions were made from Esrange, Sweden, during a limited period from 27–31 January 2003. Coincident wind measurements over the altitude range (~80–100 km using two meteor radar systems located at Esrange and Andenes have been used to perform a novel investigation of the intrinsic properties of five distinct wave events observed during this period. Additional lidar and MSIS model temperature data have been used to investigate their nature (i.e. freely propagating or ducted. Four of these extensive wave events were found to be freely propagating with potential source regions to the north of Scandinavia. No evidence was found for strong orographic forcing by short-period waves in the airglow emission layers. The fifth event was most unusual exhibiting an extensive, but much smaller and variable wavelength pattern that appeared to be embedded in the background wind field. Coincident wind measurements indicated the presence of a strong shear suggesting this event was probably due to a large-scale Kelvin-Helmholtz instability.

  11. Multi-photon ionization of atoms in intense short-wavelength radiation fields

    Science.gov (United States)

    Meyer, Michael

    2015-05-01

    The unprecedented characteristics of XUV and X-ray Free Electron Lasers (FELs) have stimulated numerous investigations focusing on the detailed understanding of fundamental photon-matter interactions in atoms and molecules. In particular, the high intensities (up to 106 W/cm2) giving rise to non-linear phenomena in the short wavelength regime. The basic phenomenology involves the production of highly charged ions via electron emission to which both sequential and direct multi-photon absorption processes contribute. The detailed investigation of the role and relative weight of these processes under different conditions (wavelength, pulse duration, intensity) is the key element for a comprehensive understanding of the ionization dynamics. Here the results of recent investigations are presented, performed at the FELs in Hamburg (FLASH) and Trieste (FERMI) on atomic systems with electronic structures of increasing complexity (Ar, Ne and Xe). Mainly, electron spectroscopy is used to obtain quantitative information about the relevance of various multi-photon ionization processes. For the case of Ar, a variety of processes including above threshold ionization (ATI) from 3p and 3s valence shells, direct 2p two-photon ionization and resonant 2p-4p two-photon excitations were observed and their role was quantitatively determined comparing the experimental ionization yields to ab-initio calculations of the cross sections for the multi-photon processes. Using Ar as a benchmark to prove the reliability of the combined experimental and theoretical approach, the more complex and intriguing case of Xe was studied. Especially, the analysis of the two-photon ATI from the Xe 4d shell reveals new insight into the character of the 4d giant resonance, which was unresolved in the linear one-photon regime. Finally, the influence of intense XUV radiation to the relaxation dynamics of the Ne 2s-3p resonance was investigated by angle-resolved electron spectroscopy, especially be observing

  12. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources

    NARCIS (Netherlands)

    Loch, R.A.; Sobierajski, R.; Louis, Eric; Bosgra, J.; Bosgra, J.; Bijkerk, Frederik

    2012-01-01

    The single shot damage thresholds of multilayer optics for highintensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly

  13. Short-Wavelength Infrared (SWIR) spectroscopy of low-grade metamorphic volcanic rocks of the Pilbara Craton

    NARCIS (Netherlands)

    Abweny, Mohammad S.; van Ruitenbeek, Frank J A; de Smeth, Boudewijn; Woldai, Tsehaie; van der Meer, Freek D.; Cudahy, Thomas; Zegers, Tanja; Blom, Jan Kees; Thuss, Barbara

    This paper shows the results of Short-Wavelength Infrared (SWIR) spectroscopy investigations of volcanic rocks sampled from low-grade metamorphic greenstone belts of the Archean Pilbara Craton in Western Australia. From the reflectance spectra a range of spectrally active minerals were identified,

  14. Short wavelength light filtering by the natural human lens and IOLs -- implications for entrainment of circadian rhythm

    DEFF Research Database (Denmark)

    Brøndsted, Adam Elias; Lundeman, Jesper Holm; Kessel, Line

    2013-01-01

    Photoentrainment of circadian rhythm begins with the stimulation of melanopsin containing retinal ganglion cells that respond directly to blue light. With age, the human lens becomes a strong colour filter attenuating transmission of short wavelengths. The purpose of the study was to examine the ...

  15. New Insight into Short-Wavelength Solar Wind Fluctuations from Vlasov Theory

    Science.gov (United States)

    Sahraoui, Fouad; Belmont, G.; Goldstein, M. L.

    2012-01-01

    The nature of solar wind (SW) turbulence below the proton gyroscale is a topic that is being investigated extensively nowadays, both theoretically and observationally. Although recent observations gave evidence of the dominance of kinetic Alfven waves (KAWs) at sub-ion scales with omega omega (sub ci)) is more relevant. Here, we study key properties of the short-wavelength plasma modes under limited, but realistic, SW conditions, Typically Beta(sub i) approx. > Beta (sub e) 1 and for high oblique angles of propagation 80 deg theory, we discuss the relevance of each plasma mode (fast, Bernstein, KAW, whistler) in carrying the energy cascade down to electron scales. We show, in particular, that the shear Alfven mode (known in the magnetohydrodynamic limit) extends at scales kappa rho (sub i) approx. > 1 to frequencies either larger or smaller than omega (sub ci), depending on the anisotropy kappa (parallel )/ kappa(perpendicular). This extension into small scales is more readily called whistler (omega > omega (sub ci)) or KAW (omega < omega (sub ci)) although the mode is essentially the same. This contrasts with the well-accepted idea that the whistler branch always develops as a continuation at high frequencies of the fast magnetosonic mode. We show, furthermore, that the whistler branch is more damped than the KAW one, which makes the latter the more relevant candidate to carry the energy cascade down to electron scales. We discuss how these new findings may facilitate resolution of the controversy concerning the nature of the small-scale turbulence, and we discuss the implications for present and future spacecraft wave measurements in the SW.

  16. Increasing robustness of indirect drive capsule designs against short wavelength hydrodynamic instabilities

    International Nuclear Information System (INIS)

    Haan, S.W.; Herrmann, M.C.; Dittrich, T.R.; Fetterman, A.J.; Marinak, M.M.; Munro, D.H.; Pollaine, S.M.; Salmonson, J.D.; Strobel, G.L.; Suter, L.J.

    2005-01-01

    Targets meant to achieve ignition on the National Ignition Facility (NIF) [J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, Laser Focus World 30, 75 (1994)] have been redesigned and their performance simulated. Simulations indicate dramatically reduced growth of short wavelength hydrodynamic instabilities, resulting from two changes in the designs. First, better optimization results from systematic mapping of the ignition target performance over the parameter space of ablator and fuel thickness combinations, using techniques developed by one of us (Herrmann). After the space is mapped with one-dimensional simulations, exploration of it with two-dimensional simulations quantifies the dependence of instability growth on target dimensions. Low modes and high modes grow differently for different designs, allowing a trade-off of the two regimes of growth. Significant improvement in high-mode stability can be achieved, relative to previous designs, with only insignificant increase in low-mode growth. This procedure produces capsule designs that, in simulations, tolerate several times the surface roughness that could be tolerated by capsules optimized by older more heuristic techniques. Another significant reduction in instability growth, by another factor of several, is achieved with ablators with radially varying dopant. In this type of capsule the mid-Z dopant, which is needed in the ablator to minimize x-ray preheat at the ablator-ice interface, is optimally positioned within the ablator. A fabrication scenario for graded dopants already exists, using sputter coating to fabricate the ablator shell. We describe the systematics of these advances in capsule design, discuss the basis behind their improved performance, and summarize how this is affecting our plans for NIF ignition

  17. gravity

    Indian Academy of Sciences (India)

    We study the cosmological dynamics for R p exp( λ R ) gravity theory in the metric formalism, using dynamical systems approach. Considering higher-dimensional FRW geometries in case of an imperfect fluid which has two different scale factors in the normal and extra dimensions, we find the exact solutions, and study its ...

  18. Action spectrum for photobleaching of human lenses by short wavelength visible irradiation

    DEFF Research Database (Denmark)

    Kessel, Line; Larsen, Michael

    2015-01-01

    transmission with increasing laser irradiation. CONCLUSIONS: For a 75 year old lens an effect corresponding to elimination of 15 years or more of optical ageing was obtained. This study of the spectral characteristics and intensity needed to bleach the human lens with single-photon laser effects found...... an action-spectrum peak at 420 nm tailing gradually off toward longer wavelengths and more steeply toward shorter wavelengths. The results may be used to guide experiments with two-photon bleaching....

  19. A cure for the blues: opsin duplication and subfunctionalization for short-wavelength sensitivity in jewel beetles (Coleoptera: Buprestidae).

    Science.gov (United States)

    Lord, Nathan P; Plimpton, Rebecca L; Sharkey, Camilla R; Suvorov, Anton; Lelito, Jonathan P; Willardson, Barry M; Bybee, Seth M

    2016-05-18

    Arthropods have received much attention as a model for studying opsin evolution in invertebrates. Yet, relatively few studies have investigated the diversity of opsin proteins that underlie spectral sensitivity of the visual pigments within the diverse beetles (Insecta: Coleoptera). Previous work has demonstrated that beetles appear to lack the short-wavelength-sensitive (SWS) opsin class that typically confers sensitivity to the "blue" region of the light spectrum. However, this is contrary to established physiological data in a number of Coleoptera. To explore potential adaptations at the molecular level that may compensate for the loss of the SWS opsin, we carried out an exploration of the opsin proteins within a group of beetles (Buprestidae) where short-wave sensitivity has been demonstrated. RNA-seq data were generated to identify opsin proteins from nine taxa comprising six buprestid species (including three male/female pairs) across four subfamilies. Structural analyses of recovered opsins were conducted and compared to opsin sequences in other insects across the main opsin classes-ultraviolet, short-wavelength, and long-wavelength. All nine buprestids were found to express two opsin copies in each of the ultraviolet and long-wavelength classes, contrary to the single copies recovered in all other molecular studies of adult beetle opsin expression. No SWS opsin class was recovered. Furthermore, the male Agrilus planipennis (emerald ash borer-EAB) expressed a third LWS opsin at low levels that is presumed to be a larval copy. Subsequent homology and structural analyses identified multiple amino acid substitutions in the UVS and LWS copies that could confer short-wavelength sensitivity. This work is the first to compare expressed opsin genes against known electrophysiological data that demonstrate multiple peak sensitivities in Coleoptera. We report the first instance of opsin duplication in adult beetles, which occurs in both the UVS and LWS opsin classes

  20. Monolithic photonic integration for visible and short near-infrared wavelengths: technologies and platforms for bio and life science applications

    Science.gov (United States)

    Porcel, Marco A. G.; Artundo, Iñigo; Domenech, J. David; Geuzebroek, Douwe; Sunarto, Rino; Hoofman, Romano

    2018-04-01

    This tutorial aims to provide a general overview on the state-of-the-art of photonic integrated circuits (PICs) in the visible and short near-infrared (NIR) wavelength ranges, mostly focusing in silicon nitride (SiN) substrates, and a guide to the necessary steps in the design toward the fabrication of such PICs. The focus is put on bio- and life sciences, given the adequacy and, thus, a large number of applications in this field.

  1. Photonic crystal fibre enables short-wavelength two-photon laser scanning fluorescence microscopy with fura-2

    International Nuclear Information System (INIS)

    McConnell, Gail; Riis, Erling

    2004-01-01

    We report on a novel and compact reliable laser source capable of short-wavelength two-photon laser scanning fluorescence microscopy based on soliton self-frequency shift effects in photonic crystal fibre. We demonstrate the function of the system by performing two-photon microscopy of smooth muscle cells and cardiac myocytes from the rat pulmonary vein and Chinese hamster ovary cells loaded with the fluorescent calcium indicator fura-2/AM

  2. Study of short wavelength turbulence in dense plasmas. Final technical report, September 8, 1981-August 7, 1983

    International Nuclear Information System (INIS)

    Chen, F.F.; Joshi, C.

    1983-10-01

    The work includes studies of four topics: (1) Thomson scattering from short wavelength density fluctuations from laser excited plasmas from solid targets; (2) studies of SBS driven ion acoustic waves and it's harmonics in underdense plasmas; (3) studies of optical mixing excitation of electron plasma waves (high frequency density fluctuations) in theta pinch plasma; and (4) computational studies of high frequency wave excitation by intense laser beams in plasmas

  3. Laser spectroscopy of the products of photoevaporation with a short-wavelength (λ = 193 nm) excimer laser

    International Nuclear Information System (INIS)

    Gochelashvili, K S; Zemskov, M E; Evdokimova, O N; Mikhkel'soo, V T; Prokhorov, A M

    1999-01-01

    An excimer laser spectrometer was designed and constructed. It consists of a high-vacuum interaction chamber, a short-wavelength (λ = 193 nm) excimer ArF laser used for evaporation, a probe dye laser pumped by an XeCl excimer laser, and a system for recording a laser-induced fluorescence signal. This spectrometer was used to investigate nonthermal mechanisms of photoevaporation of a number of wide-gap dielectrics. (laser applications and other topics in quantum electronics)

  4. Stability of short-axial-wavelength internal kink modes of an anisotropic plasma

    Science.gov (United States)

    Faghihi, M.; Scheffel, J.

    1987-12-01

    The double adiabatic equations are used to study the stability of a cylindrical Z-pinch with respect to small axial wavelength, internal kink (m ≥ 1) modes. It is found that marginally (ideally) unstable, isotropic equilibria are stabilized. Also, constant-current-density equilibria can be stabilized for P > P and large β

  5. Stability of short-axial-wavelength internal kink modes of an anisotropic plasma

    International Nuclear Information System (INIS)

    Faghihi, M.; Schefffel, J.

    1987-01-01

    The double adiabatic equations are used to study the stability of a cylindrical Z-pinch with respect to small axial wavelength, internal kink (m ≥ 1) modes. It is found that marginally (ideally) unstable, isotropic equilibria are stabilized. Also, constant-current-density equilibria can be stabilized for Psub(perpendicular) > Psub(parallel) and large βsub(perpendicular). (author)

  6. Group III nitride semiconductors for short wavelength light-emitting devices

    Science.gov (United States)

    Orton, J. W.; Foxon, C. T.

    1998-01-01

    The group III nitrides (AlN, GaN and InN) represent an important trio of semiconductors because of their direct band gaps which span the range 1.95-6.2 eV, including the whole of the visible region and extending well out into the ultraviolet (UV) range. They form a complete series of ternary alloys which, in principle, makes available any band gap within this range and the fact that they also generate efficient luminescence has been the main driving force for their recent technological development. High brightness visible light-emitting diodes (LEDs) are now commercially available, a development which has transformed the market for LED-based full colour displays and which has opened the way to many other applications, such as in traffic lights and efficient low voltage, flat panel white light sources. Continuously operating UV laser diodes have also been demonstrated in the laboratory, exciting tremendous interest for high-density optical storage systems, UV lithography and projection displays. In a remarkably short space of time, the nitrides have therefore caught up with and, in some ways, surpassed the wide band gap II-VI compounds (ZnCdSSe) as materials for short wavelength optoelectronic devices. The purpose of this paper is to review these developments and to provide essential background material in the form of the structural, electronic and optical properties of the nitrides, relevant to these applications. We have been guided by the fact that the devices so far available are based on the binary compound GaN (which is relatively well developed at the present time), together with the ternary alloys AlGaN and InGaN, containing modest amounts of Al or In. We therefore concentrate, to a considerable extent, on the properties of GaN, then introduce those of the alloys as appropriate, emphasizing their use in the formation of the heterostructures employed in devices. The nitrides crystallize preferentially in the hexagonal wurtzite structure and devices have so

  7. Stability of short-axial-wavelength internal kink modes of an anisotropic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, M.; Schefffel, J.

    1987-12-01

    The double adiabatic equations are used to study the stability of a cylindrical Z-pinch with respect to small axial wavelength, internal kink (m greater than or equal to 1) modes. It is found that marginally (ideally) unstable, isotropic equilibria are stabilized. Also, constant-current-density equilibria can be stabilized for Psub(perpendicular) > Psub(parallel) and large ..beta..sub(perpendicular).

  8. Is there an unknown risk for short-wavelength visible laser radiation?

    Energy Technology Data Exchange (ETDEWEB)

    Reidenbach, Hans-Dieter; Beckmann, Dirk; Al Ghouz, Imene; Dollinger, Klaus [Fachhochschule Koeln (Germany). Forschungsbereich Medizintechnik und Nichtionisierende Strahlung; Ott, Guenter [Bundesanstalt fuer Arbeitsschutz und Arbeitsmedizin (BAuA), Dortmund (Germany); Brose, Martin [Berufsgenossenschaft Energie Textil Elektro Medienerzeugnisse (BG ETEM), Koeln (Germany)

    2013-09-01

    A specially designed test apparatus was used in the investigation on temporary blinding. During provisional tests, exposure had been carried out with different wavelengths, power settings and exposure durations. One subject familiar to the effects of temporary blinding experienced an unusual effect, which lasted a long period of time. Concerning that this effect is not known enough to be considered in safety regulations, make it important to publish this report. (orig.)

  9. Recovery Of Short Wavelength Geophysical Signals With Future Delay-Doppler Altimeters (Cryosat Ii And Sentinel Type)

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar

    2010-01-01

    altimetry: Factor of 20 improvements in along track resolution. An along-track footprint length that does not vary with wave height (sea state). Twice the precision in sea surface height measurements / sea surface slope measurements. These improvements are studied with respect to retrieval of short...... wavelength geophysical signal related to mainly bathymetric features. The combination of upward continuation from the sea bottom and smoothing the altimeter observations resulted in the best recovery of geophysical signal for simulated 5-Hz DD observations. Simulations carried out in this investigation...

  10. Paraconductivity of three-dimensional amorphous superconductors: evidence for a short-wavelength cutoff in the fluctuation spectrum

    International Nuclear Information System (INIS)

    Johnson, W.L.

    1977-10-01

    Measurements of the temperature dependence and magnetic field dependence of the paraconductivity of a three dimensional amorphous superconductor are presented. The data are analyzed in terms of several current theories and are found to give good agreement for low fields and temperatures near T/sub c/. The paraconductivity falls well below predicted theoretical values in the high temperature and high field limits. This is attributed to the reduced role of high wavevector contributions to the paraconductivity. It is shown that the introduction of a short wavelength cutoff in the theoretical fluctuation spectrum provides a phenomelogical account of the discrepancy between theory and experiment

  11. AlGaN-based laser diodes for the short-wavelength ultraviolet region

    International Nuclear Information System (INIS)

    Yoshida, Harumasa; Kuwabara, Masakazu; Yamashita, Yoji; Takagi, Yasufumi; Uchiyama, Kazuya; Kan, Hirofumi

    2009-01-01

    We have demonstrated the room-temperature operation of GaN/AlGaN and indium-free AlGaN multiple-quantum-well (MQW) laser diodes under the pulsed-current mode. We have successfully grown low-dislocation-density AlGaN films with AlN mole fractions of 20 and 30% on sapphire substrates using the hetero-facet-controlled epitaxial lateral overgrowth (hetero-FACELO) method. GaN/AlGaN and AlGaN MQW laser diodes have been fabricated on the low-dislocation-density Al 0.2 Ga 0.8 N and Al 0.3 Ga 0.7 N films, respectively. The GaN/AlGaN MQW laser diodes lased at a peak wavelength ranging between 359.6 and 354.4 nm. A threshold current density of 8 kA cm -2 , an output power as high as 80 mW and a differential external quantum efficiency (DEQE) of 17.4% have been achieved. The AlGaN MQW laser diodes lased at a peak wavelength down to 336.0 nm far beyond the GaN band gap. For the GaN/AlGaN MQW laser diodes, the modal gain coefficient and the optical internal loss are estimated to be 4.7±0.6 cm kA -1 and 10.6±2.7 cm -1 , respectively. We have observed that the characteristic temperature T 0 ranges from 132 to 89 K and DEQE shows an almost stable tendency with increase of temperature. A temperature coefficient of 0.049 nm K -1 is also found for the GaN/AlGaN MQW laser diode. The results for the AlGaN-based laser diodes grown on high-quality AlGaN films presented here will be essential for the future development of laser diodes emitting much shorter wavelengths.

  12. Gamma-ray detection with an UV-enhanced photodiode and scintillation crystals emitting at short wavelengths

    International Nuclear Information System (INIS)

    Johansen, G.A.

    1997-01-01

    A low-noise ion implanted photodiode with high spectral response in the deep blue/UV region has been tested as read-out device for scintillation crystals with matching emission spectra (YAP(Ce), GSO(Ce), BGO and CsI(Tl)). This gamma-ray detector concept is attractive in many industrial applications where compactness, reliability and ambient temperature operation are important. The results show that the amount of detected scintillation light energy falls rapidly off as the wavelength of the scintillation light decreases. It is concluded that the dynamic spectral response of the photodiode, due to increasing carrier collection times, is considerably less than the DC response at short wavelengths. The diode is not useful in pulse mode operation with scintillation crystals emitting at wavelengths below about 400 nm. For read-out of CsI(Tl) with 661.6 keV gamma-radiation, however, the photodiode concept shows better energy resolution (7.1%) than other detectors. (orig.)

  13. Short-wavelength luminescence in Ho{sup 3+}-doped KGd(WO{sub 4}){sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, M., E-mail: m.malinowski@elka.pw.edu.p [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Kaczkan, M.; Stopinski, S.; Piramidowicz, R. [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Majchrowski, A. [Institute of Applied Physics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland)

    2009-12-15

    Emissions from the high-lying excited states, energy transfer and upconversion processes are investigated in Ho{sup 3+}-activated KGd(WO{sub 4}){sub 2} crystal. The spectral assignment based on time-resolved emission spectra allowed to identify various near ultra-violet (UV), blue and green emissions starting from the excited {sup 3}H{sub 5}, {sup 5}G{sub 4}, {sup 5}G{sub 5}, {sup 5}F{sub 3} and {sup 5}S{sub 2} levels. The temporal behavior of these transitions after pulsed excitation was analyzed as a function of temperature and holmium ions concentration. The shortening and nonexponentiality of the decays, observed with increasing activator concentrations, indicated cross-relaxation (CR) among the Ho{sup 3+} ions. Cross-relaxation rates were experimentally determined as a function of activator concentration and used to evaluate the values of the nearest-neighbor trapping rates X{sub 01} and to model the decays. It was observed that KGW, despite higher than in YAG maximum phonon energy of about 900 cm{sup -1}, is more efficient short-wavelength emitter than YAG. Examples of the excited-state absorption (ESA) and energy transfer (ET) mechanisms responsible for the upconverted, short-wavelength emissions were identified by analyzing fluorescence dynamics and possible energy resonances.

  14. Efficient soft x-ray generation in short wavelength laser produced plasmas

    International Nuclear Information System (INIS)

    Mochizuki, T.; Yamanaka, C.

    1987-01-01

    Intense x-ray generation in 1.053, 0.53, 0.26 μm laser-produced plasma has been investigated in the photon energy range of 0.1 to 3keV. The x-ray spectrum is found to have several humps which move to the higher energy side as the atomic number of the target increases. This atomic dependence is explained by a semi-Moseley's law and allows us to predict a target material most suitable for generating the photons of desired energies. Conversion efficiencies of 1.5 -- 3keV x-rays are obtained also as a function of laser wavelength at the intensity of 10/sup 13/W/cm/sup 2/. The conversion efficiency of keV x rays has been enhanced by a factor of 2 -- 3 with a controlled prepulse laser. From the semi-Moseley's law we find that cryogenic targets using either Xe or Kr in a liquid or solid phase may be most useful for a number of applications because they radiate 1 -- 3 keV x rays efficiently and never deposit on the x-ray optical components and the objects to be exposed

  15. Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jixian; Sutherland, Brandon R.; Hoogland, Sjoerd; Fan, Fengjia; Sargent, Edward H., E-mail: ted.sargent@utoronto.ca [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Kinge, Sachin [Advanced Technology, Materials and Research, Research and Development, Hoge Wei 33- Toyota Technical Centre, B-1930 Zaventem (Belgium)

    2015-10-12

    Atomic layer deposition (ALD), prized for its high-quality thin-film formation in the absence of high temperature or high vacuum, has become an industry standard for the large-area deposition of a wide array of oxide materials. Recently, it has shown promise in the formation of nanocrystalline sulfide films. Here, we demonstrate the viability of ALD lead sulfide for photodetection. Leveraging the conformal capabilities of ALD, we enhance the absorption without compromising the extraction efficiency in the absorbing layer by utilizing a ZnO nanowire electrode. The nanowires are first coated with a thin shunt-preventing TiO{sub 2} layer, followed by an infrared-active ALD PbS layer for photosensing. The ALD PbS photodetector exhibits a peak responsivity of 10{sup −2} A W{sup −1} and a shot-derived specific detectivity of 3 × 10{sup 9} Jones at 1530 nm wavelength.

  16. Short-wavelength out-of-band EUV emission from Sn laser-produced plasma

    Science.gov (United States)

    Torretti, F.; Schupp, R.; Kurilovich, D.; Bayerle, A.; Scheers, J.; Ubachs, W.; Hoekstra, R.; Versolato, O. O.

    2018-02-01

    We present the results of spectroscopic measurements in the extreme ultraviolet regime (7-17 nm) of molten tin microdroplets illuminated by a high-intensity 3 J, 60 ns Nd:YAG laser pulse. The strong 13.5 nm emission from this laser-produced plasma (LPP) is of relevance for next-generation nanolithography machines. Here, we focus on the shorter wavelength features between 7 and 12 nm which have so far remained poorly investigated despite their diagnostic relevance. Using flexible atomic code calculations and local thermodynamic equilibrium arguments, we show that the line features in this region of the spectrum can be explained by transitions from high-lying configurations within the Sn{}8+-Sn{}15+ ions. The dominant transitions for all ions but Sn{}8+ are found to be electric-dipole transitions towards the n = 4 ground state from the core-excited configuration in which a 4p electron is promoted to the 5s subshell. Our results resolve some long-standing spectroscopic issues and provide reliable charge state identification for Sn LPP, which could be employed as a useful tool for diagnostic purposes.

  17. Reduction of short wavelength reflectance of multi-wall carbon nanotubes through ultraviolet laser irradiation

    Science.gov (United States)

    Stephens, Michelle S.; Simonds, Brian J.; Yung, Christopher S.; Conklin, Davis; Livigni, David J.; Oliva, Alberto Remesal; Lehman, John H.

    2018-05-01

    Multi-wall carbon nanotube coatings are used as broadband, low-reflectance absorbers for bolometric applications and for stray light control. They are also used as high emittance blackbody radiators. Irradiation of single wall carbon nanotubes with ultraviolet (UV) laser light has been shown to remove amorphous carbon debris, but there have been few investigations of the interaction of UV light with the more complex physics of multi-wall carbon nanotubes. We present measurements of reflectance and surface morphology before and after exposure of multi-wall carbon nanotube coatings to 248 nm UV laser light. We show that UV exposure reduces the reflectivity at wavelengths below 600 nm and present modeling of the thermal cycling the UV exposure causes at the surface of the carbon nanotubes. This effect can be used to flatten the spectral shape of the reflectivity curve of carbon nanotube absorber coatings used for broadband applications. Finally, we find that the effect of UV exposure depends on the nanotube growth process.

  18. Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing

    International Nuclear Information System (INIS)

    Xu, Jixian; Sutherland, Brandon R.; Hoogland, Sjoerd; Fan, Fengjia; Sargent, Edward H.; Kinge, Sachin

    2015-01-01

    Atomic layer deposition (ALD), prized for its high-quality thin-film formation in the absence of high temperature or high vacuum, has become an industry standard for the large-area deposition of a wide array of oxide materials. Recently, it has shown promise in the formation of nanocrystalline sulfide films. Here, we demonstrate the viability of ALD lead sulfide for photodetection. Leveraging the conformal capabilities of ALD, we enhance the absorption without compromising the extraction efficiency in the absorbing layer by utilizing a ZnO nanowire electrode. The nanowires are first coated with a thin shunt-preventing TiO 2 layer, followed by an infrared-active ALD PbS layer for photosensing. The ALD PbS photodetector exhibits a peak responsivity of 10 −2  A W −1 and a shot-derived specific detectivity of 3 × 10 9  Jones at 1530 nm wavelength

  19. Short wavelength automated perimetry can detect visual field changes in diabetic patients without retinopathy

    Directory of Open Access Journals (Sweden)

    Othman Ali Zico

    2014-01-01

    Full Text Available Purpose: The purpose of the following study is to compare short wave automated perimetry (SWAP versus standard automated perimetry (SAP for early detection of diabetic retinopathy (DR. Materials and Methods: A total of 40 diabetic patients, divided into group I without DR (20 patients = 40 eyes and group II with mild non-proliferative DR (20 patients = 40 eyes were included. They were tested with central 24-2 threshold test with both shortwave and SAP to compare sensitivity values and local visual field indices in both of them. A total of 20 healthy age and gender matched subjects were assessed as a control group. Results: Control group showed no differences between SWAP and SAP regarding mean deviation (MD, corrected pattern standard deviation (CPSD or short fluctuations (SF. In group I, MD showed significant more deflection in SWAP (−4.44 ± 2.02 dB compared to SAP (−0.96 ± 1.81 dB (P = 0.000002. However, CPSD and SF were not different between SWAP and SAP. In group II, MD and SF showed significantly different values in SWAP (−5.75 ± 3.11 dB and 2.0 ± 0.95 compared to SAP (−3.91 ± 2.87 dB and 2.86 ± 1.23 (P = 0.01 and 0.006 respectively. There are no differences regarding CPSD between SWAP and SAP. The SWAP technique was significantly more sensitive than SAP in patients without retinopathy (p, but no difference exists between the two techniques in patients with non-proliferative DR. Conclusion: The SWAP technique has a higher yield and efficacy to pick up abnormal findings in diabetic patients without overt retinopathy rather than patients with clinical retinopathy.

  20. Expression and Evolution of Short Wavelength Sensitive Opsins in Colugos: A Nocturnal Lineage That Informs Debate on Primate Origins.

    Science.gov (United States)

    Moritz, Gillian L; Lim, Norman T-L; Neitz, Maureen; Peichl, Leo; Dominy, Nathaniel J

    2013-01-01

    A nocturnal activity pattern is central to almost all hypotheses on the adaptive origins of primates. This enduring view has been challenged in recent years on the basis of variation in the opsin genes of nocturnal primates. A correspondence between the opsin genes and activity patterns of species in Euarchonta-the superordinal group that includes the orders Primates, Dermoptera (colugos), and Scandentia (treeshrews)-could prove instructive, yet the basic biology of the dermopteran visual system is practically unknown. Here we show that the eye of the Sunda colugo ( Galeopterus variegatus ) lacks a tapetum lucidum and has an avascular retina, and we report on the expression and spectral sensitivity of cone photopigments. We found that Sunda colugos have intact short wavelength sensitive (S-) and long wavelength sensitive (L-) opsin genes, and that both opsins are expressed in cone photoreceptors of the retina. The inferred peak spectral sensitivities are 451 and 562 nm, respectively. In line with adaptation to nocturnal vision, cone densities are low. Surprisingly, a majority of S-cones coexpress some L-opsin. We also show that the ratio of rates of nonsynonymous to synonymous substitutions of exon 1 of the S-opsin gene is indicative of purifying selection. Taken together, our results suggest that natural selection has favored a functional S-opsin in a nocturnal lineage for at least 45 million years. Accordingly, a nocturnal activity pattern remains the most likely ancestral character state of euprimates.

  1. Investigation of concept of efficient short wavelength laser. Quarterly progress report, 1 August 1978--31 October 1978

    Energy Technology Data Exchange (ETDEWEB)

    Piper, L.G.; Krech, R.H.; Pugh, E.R.; Taylor, R.L.

    1978-12-01

    A concept for the development of an efficient short wavelength laser based on a class of endoergic molecules-azides is being studied. One of these two laser-device experiments involves generating high concentrations of azide radicals in the thermal pyrolysis of solid, ionic azides, with the subsequent excitation of the N/sub 2/(B/sup 3/pi/sub g/) state from azide-radical recombination. Laser action would then take place upon the N/sub 2/(B/sup 3/pi/sub g/ - A/sup 3/Sigma/sup +//sub u/), first-postive transition. The second laser-demonstration experiment involves creating a high density of NCl(b/sup 1/Sigma/sup +/) state by uv photolysis of ClN/sub 3/. In this case laser emission is expected on the NCl(b/sup 1/Sigma/sup +/ ..-->.. X/sup 3/Sigma/sup -/) transition at 665 nm.

  2. Investigation of concept of efficient short wavelength laser. Quarterly progress report, 1 August 1978--31 October 1978

    International Nuclear Information System (INIS)

    Piper, L.G.; Krech, R.H.; Pugh, E.R.; Taylor, R.L.

    1978-01-01

    A concept for the development of an efficient short wavelength laser based on a class of endoergic molecules-azides is being studied. One of these two laser-device experiments involves generating high concentrations of azide radicals in the thermal pyrolysis of solid, ionic azides, with the subsequent excitation of the N 2 (B 3 pi/sub g/) state from azide-radical recombination. Laser action would then take place upon the N 2 (B 3 pi/sub g/ - A 3 Sigma + /sub u/), first-postive transition. The second laser-demonstration experiment involves creating a high density of NCl(b 1 Sigma + ) state by uv photolysis of ClN 3 . In this case laser emission is expected on the NCl(b 1 Sigma + → X 3 Sigma - ) transition at 665 nm

  3. Investigation of concept of efficient short wavelength laser. Quarterly progress report, 1 November 1978-31 January 1979

    Energy Technology Data Exchange (ETDEWEB)

    Krech, R.H.; Piper, L.G.; Pugh, E.R.; Taylor, R.L.

    1979-03-01

    A concept for the development of an efficient short wavelength laser based on a class of endoergic molecules-azides is being investigated. The first of two laser-device experiments involves generating high concentrations of azide radicals in the thermal pyrolysis of solid, ionic azides, with the subsequent excitation of the N/sub 2/(B/sup 3/..pi../sub g/) state from azide-radical recombination. Laser action would then take place upon the N/sub 2/(B/sup 3/..pi../sub g/-A/sup 3/..sigma../sup +//sub u/), first-positive transition. The second laser-demonstration experiment involves creating a high density of NCl(b/sup 1/..sigma../sup +/) state by uv photolysis of ClN/sub 3/. In this case laser emission is expected on the NCl(b/sup 1/..sigma../sup +/..-->..X/sup 3/..sigma../sup -/) transition at 665 nm.

  4. Temporal gravity field modeling based on least square collocation with short-arc approach

    Science.gov (United States)

    ran, jiangjun; Zhong, Min; Xu, Houze; Liu, Chengshu; Tangdamrongsub, Natthachet

    2014-05-01

    After the launch of the Gravity Recovery And Climate Experiment (GRACE) in 2002, several research centers have attempted to produce the finest gravity model based on different approaches. In this study, we present an alternative approach to derive the Earth's gravity field, and two main objectives are discussed. Firstly, we seek the optimal method to estimate the accelerometer parameters, and secondly, we intend to recover the monthly gravity model based on least square collocation method. The method has been paid less attention compared to the least square adjustment method because of the massive computational resource's requirement. The positions of twin satellites are treated as pseudo-observations and unknown parameters at the same time. The variance covariance matrices of the pseudo-observations and the unknown parameters are valuable information to improve the accuracy of the estimated gravity solutions. Our analyses showed that introducing a drift parameter as an additional accelerometer parameter, compared to using only a bias parameter, leads to a significant improvement of our estimated monthly gravity field. The gravity errors outside the continents are significantly reduced based on the selected set of the accelerometer parameters. We introduced the improved gravity model namely the second version of Institute of Geodesy and Geophysics, Chinese Academy of Sciences (IGG-CAS 02). The accuracy of IGG-CAS 02 model is comparable to the gravity solutions computed from the Geoforschungszentrum (GFZ), the Center for Space Research (CSR) and the NASA Jet Propulsion Laboratory (JPL). In term of the equivalent water height, the correlation coefficients over the study regions (the Yangtze River valley, the Sahara desert, and the Amazon) among four gravity models are greater than 0.80.

  5. Investigation of concept of efficient short wavelength laser. Final technical report, April 1, 1977-July 31, 1979

    International Nuclear Information System (INIS)

    Piper, L.G.; Krech, R.H.; Pugh, E.; Taylor, R.L.

    1979-01-01

    The feasibility of producing an efficient, short wavelength, storage laser for ICF driven applications by making use of certain state-specific reactions of exoergic azide compounds has been investigated. The ultraviolet (approx. 300 nm) photolysis of gaseous ClN 3 produced prompt emission in the red, which was attributed to the efficient formation of ClN(b 1 Σ + ) with subsequent ClN(X reverse arrow b) fluorescence. Based on these results, a small-scale laser demonstration experiment was constructed using short duration Xe flash lamps as the photolytic source. The results of this latter experiment were negative. The most plausible explanation was that the flash lamps provided sufficient far-uv radiation to dissociate and/or ionize the ClN(b) produced in the primary photolytic step. In parallel, limited experiments were performed on the rapid pyrolysis of a solid, ionic azide, NaN 3 , to produce gaseous N 3 radicals and subsequent production of triplet N 2 molecules

  6. Experimental study on the effects of surface gravity waves of different wavelengths on the phase averaged performance characteristics of marine current turbine

    Science.gov (United States)

    Luznik, L.; Lust, E.; Flack, K. A.

    2014-12-01

    There are few studies describing the interaction between marine current turbines and an overlying surface gravity wave field. In this work we present an experimental study on the effects of surface gravity waves of different wavelengths on the wave phase averaged performance characteristics of a marine current turbine model. Measurements are performed with a 1/25 scale (diameter D=0.8m) two bladed horizontal axis turbine towed in the large (116m long) towing tank at the U.S. Naval Academy equipped with a dual-flap, servo-controlled wave maker. Three regular waves with wavelengths of 15.8, 8.8 and 3.9m with wave heights adjusted such that all waveforms have the same energy input per unit width are produced by the wave maker and model turbine is towed into the waves at constant carriage speed of 1.68 m/s. This representing the case of waves travelling in the same direction as the mean current. Thrust and torque developed by the model turbine are measured using a dynamometer mounted in line with the turbine shaft. Shaft rotation speed and blade position are measured using in in-house designed shaft position indexing system. The tip speed ratio (TSR) is adjusted using a hysteresis brake which is attached to the output shaft. Free surface elevation and wave parameters are measured with two optical wave height sensors, one located in the turbine rotor plane and other one diameter upstream of the rotor. All instruments are synchronized in time and data is sampled at a rate of 700 Hz. All measured quantities are conditionally sampled as a function of the measured surface elevation and transformed to wave phase space using the Hilbert Transform. Phenomena observed in earlier experiments with the same turbine such as phase lag in the torque signal and an increase in thrust due to Stokes drift are examined and presented with the present data as well as spectral analysis of the torque and thrust data.

  7. Evidence for nonuniversal behavior of paraconductivity caused by predominant short-wavelength Gaussian fluctuations in YBa2Cu3O6.9

    International Nuclear Information System (INIS)

    Gauzzi, A.; Pavuna, D.

    1995-01-01

    We report on in-plane paraconductivity measurements in thin YBa 2 Cu 3 O 6.9 films. Our analysis of the data shows that the temperature dependence of paraconductivity is affected by lattice disorder and deviates at all temperatures from the universal power laws predicted by both scaling and mean-field theories. This gives evidence for the absence of critical fluctuations and for the failure of the Aslamazov-Larkin universal relation between critical exponent and dimensionality of the spectrum of Gaussian fluctuations. We account quantitatively for the data within the experimental error by introducing a short-wavelength cutoff into this spectrum. This implies that three-dimensional short-wavelength Gaussian fluctuations dominate in YBa 2 Cu 3 O 6.9 and suggests a rapid attenuation of these fluctuations with decreasing wavelength in short-coherence-length systems as compared to the case of the conventional Ginzburg-Landau theory

  8. Relationship between short-wavelength automatic perimetry and Heidelberg retina tomograph parameters in eyes with ocular hypertension

    Directory of Open Access Journals (Sweden)

    Christos Pitsas

    2015-10-01

    Full Text Available AIM:To compare and correlate optic nerve head parameters obtained byHeidelberg retina tomograph (HRT with short-wavelength automatic perimetry (SWAP indices in eyes with ocular hypertension (OHT.METHODS: One hundred and forty-six patients with OHT included in the present study. All subjects had reliable SWAP and HRT measurements performed within a 2wk period. The eyes were classified as normal/abnormal according to visual field criteria and Moorfields regression analysis (MRA. Correlations between visual field indices and HRT parameters were analyzed using Pearson correlation coefficient (r.RESULTS:Twenty-nine eyes (19.9% had SWAP defects. Twenty-nine eyes (19.9% were classified as abnormal according to global MRA. Six eyes (4.1% had abnormal global MRA and SWAP defects. The k statistic is 0.116 (P=0.12 indicating a very poor agreement between the methods. No statistical significant correlation between HRT and SWAP parameters was detected.CONCLUSION:SWAP defects may coexist with abnormalities of optic disc detected by HRT in eyes with OHT. In most eyes, however, the two methods detect different glaucoma properties.

  9. Multiple pathways carry signals from short-wavelength-sensitive ('blue') cones to the middle temporal area of the macaque.

    Science.gov (United States)

    Jayakumar, Jaikishan; Roy, Sujata; Dreher, Bogdan; Martin, Paul R; Vidyasagar, Trichur R

    2013-01-01

    We recorded spike activity of single neurones in the middle temporal visual cortical area (MT or V5) of anaesthetised macaque monkeys. We used flashing, stationary spatially circumscribed, cone-isolating and luminance-modulated stimuli of uniform fields to assess the effects of signals originating from the long-, medium- or short- (S) wavelength-sensitive cone classes. Nearly half (41/86) of the tested MT neurones responded reliably to S-cone-isolating stimuli. Response amplitude in the majority of the neurones tested further (19/28) was significantly reduced, though not always completely abolished, during reversible inactivation of visuotopically corresponding regions of the ipsilateral primary visual cortex (striate cortex, area V1). Thus, the present data indicate that signals originating in S-cones reach area MT, either via V1 or via a pathway that does not go through area V1. We did not find a significant difference between the mean latencies of spike responses of MT neurones to signals that bypass V1 and those that do not; the considerable overlap we observed precludes the use of spike-response latency as a criterion to define the routes through which the signals reach MT.

  10. Characterization of Low Noise TES Detectors Fabricated by D-RIE Process for SAFARI Short-Wavelength Band

    Science.gov (United States)

    Khosropanah, P.; Suzuki, T.; Hijmering, R. A.; Ridder, M. L.; Lindeman, M. A.; Gao, J.-R.; Hoevers, H.

    2014-08-01

    SRON is developing TES detectors based on a superconducting Ti/Au bilayer on a suspended SiN membrane for the short-wavelength band of the SAFARI instrument on SPICA mission. We have recently replaced the wet KOH etching of the Si substrate by deep reactive ion etching. The new process enables us to fabricate the detectors on the substrate and release the membrane at the very last step. Therefore the production of SAFARI large arrays (4343) on thin SiN membrane (250 nm) is feasible. It also makes it possible to realize narrow supporting SiN legs of 1 m, which are needed to meet SAFARI NEP requirements. Here we report the current-voltage characteristics, noise performance and impedance measurement of these devices. The measured results are then compared with the distributed leg model that takes into account the thermal fluctuation noise due to the SiN legs. We measured a dark NEP of 0.7 aW/, which is 1.6 times higher than the theoretically expected phonon noise.

  11. Effects of low or high doses of short wavelength ultraviolet light (UVB) on Langerhans cells and skin allograft survival

    International Nuclear Information System (INIS)

    Odling, K.A.; Halliday, G.M.; Muller, H.K.

    1987-01-01

    Donor C57BL mouse shaved dorsal trunk or tail skin was exposed to high (200 mJ/cm 2 ) or low (40 mJ/cm 2 ) doses of short wavelength ultraviolet light (UVB) before grafting on to the thorax of BALB/c mouse recipients of the same sex. Skin grafted 1-14 days following a single high dose of UVB irradiation was ultrastructurally depleted of LC and survived significantly longer than unirradiated skin before being rejected. After a 21-day interval between exposure and grafting when LC were again present in the epidermis there was no significant difference between treated and control graft survival. Exposure to low dose UVB irradiation only significantly increased graft survival for skin transplanted 1-3 days after irradiation; skin grafted 4 days following irradiation survived for a similar period to unirradiated control skin grafts. Electronmicroscopy showed that the low UVB dose did not deplete LC from the epidermis. We conclude that after low dose UVB treatment the class II MHC antigens on the LC Plasma membrane were lost temporarily, thus prolonging graft survival, but when the plasma membrane antigens were re-expressed graft survival returned to normal. In contrast, high-dose UVB irradiation prolonged graft survival by depleting LC from the epidermis, with graft survival only returning to control values as LC repopulated the epidermis

  12. Role of short-wavelength filtering lenses in delaying myopia progression and amelioration of asthenopia in juveniles

    Directory of Open Access Journals (Sweden)

    Hai-Lan Zhao

    2017-08-01

    Full Text Available AIM: To evaluate the positive effects of blue-violet light filtering lenses in delaying myopia and relieving asthenopia in juveniles. METHODS: Sixty ametropia juveniles (aged range, 11-15y were randomized into two groups: the test group (30 children, 60 eyes, wearing blue-violet light filtering lenses; and the control group (30 children, 60 eyes, wearing ordinary aspherical lenses. Baseline refractive power of the affected eyes and axial length of the two groups was recorded. After 1-year, the patients underwent contrast sensitivity (glare and non-glare under bright and dark conditions, accommodation-related testing, asthenopia questionnaire assessment, and adverse reaction questionnaire assessment. RESULTS: After 1y of wearing the filtering lenses, changes in refractive power and axial length were not significantly different between the two groups (P>0.05. Under bright conditions, the contrast sensitivities at low and medium-frequency grating (vision angles of 6.3°, 4.0°, and 2.5° with glare in the test group were significantly higher than in the control group (P0.05. In the test group, the amplitude of accommodation, accommodative lag, and accommodative sensitivity of patients wearing glasses for 6 and 12mo were significantly elevated (P0.05, and the asthenopia grating was not significantly decreased (P>0.05. In addition, after wearing glasses for 6 to 12mo, the asthenopia grating of patients in the test group decreased significantly compared with the control group (P0.05. CONCLUSION: A 1-year follow-up reveal that compare with ordinary glasses, short-wavelength filtering lenses (blue/violet-light filters increase the low- and medium-frequency contrast sensitivity under bright conditions and improved accommodation. They effectively relieved asthenopia without severe adverse reactions, suggesting potential for clinical application. However, no significant advantages in terms of refractive power or axial length progression were found compared

  13. Short wavelength lateral variability of lithospheric mantle beneath the Middle Atlas (Morocco) as recorded by mantle xenoliths

    Science.gov (United States)

    El Messbahi, Hicham; Bodinier, Jean-Louis; Vauchez, Alain; Dautria, Jean-Marie; Ouali, Houssa; Garrido, Carlos J.

    2015-05-01

    mountains results from the combination of different mechanisms and occurred in a piecewise fashion at a short wavelength scale.

  14. Comparison of XH2O Retrieved from GOSAT Short-Wavelength Infrared Spectra with Observations from the TCCON Network

    Directory of Open Access Journals (Sweden)

    Eric Dupuy

    2016-05-01

    Full Text Available Understanding the atmospheric distribution of water (H 2 O is crucial for global warming studies and climate change mitigation. In this context, reliable satellite data are extremely valuable for their global and continuous coverage, once their quality has been assessed. Short-wavelength infrared spectra are acquired by the Thermal And Near-infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS aboard the Greenhouse gases Observing Satellite (GOSAT. From these, column-averaged dry-air mole fractions of carbon dioxide, methane and water vapor (XH 2 O have been retrieved at the National Institute for Environmental Studies (NIES, Japan and are available as a Level 2 research product. We compare the NIES XH 2 O data, Version 02.21, with retrievals from the ground-based Total Carbon Column Observing Network (TCCON, Version GGG2014. The datasets are in good overall agreement, with GOSAT data showing a slight global low bias of −3.1% ± 24.0%, good consistency over different locations (station bias of −1.53% ± 10.35% and reasonable correlation with TCCON (R = 0.89. We identified two potential sources of discrepancy between the NIES and TCCON retrievals over land. While the TCCON XH 2 O amounts can reach 6000–7000 ppm when the atmospheric water content is high, the correlated NIES values do not exceed 5500 ppm. This could be due to a dry bias of TANSO-FTS in situations of high humidity and aerosol content. We also determined that the GOSAT-TCCON differences directly depend on the altitude difference between the TANSO-FTS footprint and the TCCON site. Further analysis will account for these biases, but the NIES V02.21 XH 2 O product, after public release, can already be useful for water cycle studies.

  15. Quark confinement and the short-range component of general affine gauge gravity

    International Nuclear Information System (INIS)

    Sijacki, D.

    1982-01-01

    Within the framework of a gauge field theory based on the general affine space-time symmetry, we propose a certain purely quadratic gauge field lagrangian. In the large-scale region it yields an Einstein-Cartan-like gravity with Newton's constand generated spontaneously, while in the particle domain it yields a renormalizable theory with a confining potential applying to quarks and not to leptons. (orig.)

  16. Experimental studies on the production and suppression mechanism of the hot electrons produced by short wavelength laser

    International Nuclear Information System (INIS)

    Qi Lanying; Jiang Xiaohua; Zhao Xuewei; Li Sanwei; Zhang Wenhai; Li Chaoguang; Zheng Zhijian; Ding Yongkun

    1999-12-01

    The experiments on gold-disk and hohlraum and plastic hydrocarbon (CH) film targets irradiated by laser beams with wavelength 0.35 μm (Xingguang-II) and 0.53 μm (Shenguang-I) are performed. The characteristics of hot electrons are commonly deduced from spectrum of hard X-ray. Associated with the measurement of backward SRS and 3/2ω 0 , the production mechanism of hot electrons for different target type is analyzed in laser plasma with shorter wavelength. A effective way to suppress hot electrons has been found

  17. Backscattering of gyrotron radiation and short-wavelength turbulence during electron cyclotron resonance plasma heating in the L-2M stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Batanov, G. M.; Borzosekov, V. D., E-mail: tinborz@gmail.com; Kovrizhnykh, L. M.; Kolik, L. V.; Konchekov, E. M.; Malakhov, D. V.; Petrov, A. E.; Sarksyan, K. A.; Skvortsova, N. N.; Stepakhin, V. D.; Kharchev, N. K. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2013-06-15

    Backscattering of gyrotron radiation ({theta} = {pi}) by short-wavelength density fluctuations (k{sub Up-Tack} = 30 cm{sup -1}) in the plasma of the L-2M stellarator was studied under conditions of electron cyclotron resonance (ECR) plasma heating at the second harmonic of the electron gyrofrequency (75 GHz). The scattering of the O-wave emerging due to the splitting of the linearly polarized gyrotron radiation into the X- and O-waves was analyzed. The signal obtained after homodyne detection of scattered radiation is a result of interference of the reference signal, the quasi-steady component, and the fast oscillating component. The coefficients of reflection of the quasi-steady component, R{sub =}{sup 2}(Y), and fast oscillating component, R{sub {approx}}{sup 2}(Y), of scattered radiation are estimated. The growth of the R{sub {approx}}{sup 2}(Y) coefficient from 3.7 Multiplication-Sign 10{sup -4} to 5.2 Multiplication-Sign 10{sup -4} with increasing ECR heating power from 190 to 430 kW is found to correlate with the decrease in the energy lifetime from 1.9 to 1.46 ms. The relative density of short-wavelength fluctuations is estimated to be Left-Pointing-Angle-Bracket n{sub {approx}}{sup 2} Right-Pointing-Angle-Bracket / Left-Pointing-Angle-Bracket n{sub e}{sup 2} Right-Pointing-Angle-Bracket = 3 Multiplication-Sign 10{sup -7}. It is shown that the frequencies of short-wavelength fluctuations are in the range 10-150 kHz. The recorded short-wavelength fluctuations can be interpreted as structural turbulence, the energy of which comprises {approx}10% of the total fluctuations energy. Simulations of transport processes show that neoclassical heat fluxes are much smaller than anomalous ones. It is suggested that short-wavelength turbulence plays a decisive role in the anomalous heat transport.

  18. Lithospheric stretching and the long wavelength free-air gravity anomaly of the Eastern Continental margin of India and the 85 degree E Ridge, Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Rajesh, S.; Majumdar, T.J.; Krishna, K.S.

    Or as envisaged, was it originated from the Crozet hotspot We address these issues by using satellite altimeter-derived gravity anomaly and its analytical upward continuation anomalies with forward modeling of ship-borne data. Results on analytical continuation...

  19. Short-period atmospheric gravity waves - A study of their statistical properties and source mechanisms

    Science.gov (United States)

    Gedzelman, S. D.

    1983-01-01

    Gravity waves for the one year period beginning 19 October 1976 around Palisades, New York, are investigated to determine their statistical properties and sources. The waves have typical periods of 10 min, pressure amplitudes of 3 Pa and velocities of 30 m/s. In general, the largest, amplitude waves occur during late fall and early winter when the upper tropospheric winds directly overhead are fastest and the static stability of the lower troposphere is greatest. Mean wave amplitudes correlate highly with the product of the mean maximum wind speed and the mean low level stratification directly aloft. A distinct diurnal variation of wave amplitudes with the largest waves occurring in the pre-dawn hours is also observed as a result of the increased static stability then. The majority of waves are generated by shear instability; however, a number of waves are generated by distant sources such as nuclear detonations or large thunderstorms. The waves with distant sources can be distinguished on the basis of their generally much higher coherency across the grid and velocities that depart markedly from the wind velocity at any point in the sounding.

  20. Parabolic Flights @ Home. An Unmanned Air Vehicle for Short-Duration Low-Gravity Experiments

    Science.gov (United States)

    Hofmeister, Paul Gerke; Blum, Jürgen

    2011-02-01

    We developed an unmanned air vehicle (UAV) suitable for small parabolic-flight experiments. The flight speed of 100 m s - 1 is sufficient for zero-gravity parabolas of 16 s duration. The flight path's length of slightly more than 1 km and 400 m difference in altitude is suitable for ground controlled or supervised flights. Since this fits within the limits set for model aircraft, no additional clearance is required for operation. Our UAV provides a cost-effective platform readily available for low-g experiments, which can be performed locally without major preparation. A payload with a size of up to 0.9 ×0.3 ×0.3 m3 and a mass of ˜5 kg can be exposed to 0 g 0-5 g 0, with g 0 being the gravitational acceleration of the Earth. Flight-duration depends on the desired acceleration level, e.g. 17 s at 0.17 g 0 (lunar surface level) or 21 s at 0.38 g 0 (Martian surface level). The aircraft has a mass of 25 kg (including payload) and a wingspan of 2 m. It is powered by a jet engine with an exhaust speed of 450 m s - 1 providing a thrust of 180 N. The parabolic-flight curves are automated by exploiting the advantages of sophisticated micro-electronics to minimize acceleration errors.

  1. Improved performance of P3HT:PCBM solar cells by both anode modification and short-wavelength energy utilization using Tb(aca)3phen

    International Nuclear Information System (INIS)

    Zhuo Zu-Liang; Wang Yong-Sheng; He Da-Wei; Fu Ming

    2014-01-01

    The performance of P3HT:PCBM solar cells was improved by anode modification using spin-coated Tb(aca) 3 phen ultrathin films. The modification of the Tb(aca) 3 phen ultrathin film between the indium tin oxide (ITO) anode and the PE-DOT:PSS layer resulted in a maximum power conversion efficiency (PCE) of 2.99% compared to 2.66% for the reference device, which was due to the increase in the short-circuit current density (J sc ). The PCE improvement could be attributed to the short-wavelength energy utilization and the optimized morphology of the active layers. Tb(aca) 3 phen with its strong down-conversion luminescence properties is suitable for the P3HT:PCBM blend active layer, and the absorption region of the ternary blend films is extended into the near ultraviolet region. Furthermore, the crystallization and the surface morphology of P3HT:PCBM films were improved with the Tb(aca) 3 phen ultrathin film. The ultraviolent—visible absorption spectra, atomic force microscope (AFM), and X-ray diffraction (XRD) of the films were investigated. Both anode modification and short-wavelength energy utilization using Tb(aca) 3 phen in P3HT:PCBM solar cells led to about a 12% PCE increase. (interdisciplinary physics and related areas of science and technology)

  2. Short-wavelength soft-x-ray laser pumped in double-pulse single-beam non-normal incidence

    International Nuclear Information System (INIS)

    Zimmer, D.; Ros, D.; Guilbaud, O.; Habib, J.; Kazamias, S.; Zielbauer, B.; Bagnoud, V.; Ecker, B.; Aurand, B.; Kuehl, T.; Hochhaus, D. C.; Neumayer, P.

    2010-01-01

    We demonstrated a 7.36 nm Ni-like samarium soft-x-ray laser, pumped by 36 J of a neodymium:glass chirped-pulse amplification laser. Double-pulse single-beam non-normal-incidence pumping was applied for efficient soft-x-ray laser generation. In this case, the applied technique included a single-optic focusing geometry for large beam diameters, a single-pass grating compressor, traveling-wave tuning capability, and an optimized high-energy laser double pulse. This scheme has the potential for even shorter-wavelength soft-x-ray laser pumping.

  3. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision--a significant trend in the evolution of mammalian vision.

    Science.gov (United States)

    Jacobs, Gerald H

    2013-03-01

    All mammalian cone photopigments are derived from the operation of representatives from two opsin gene families (SWS1 and LWS in marsupial and eutherian mammals; SWS2 and LWS in monotremes), a process that produces cone pigments with respective peak sensitivities in the short and middle-to-long wavelengths. With the exception of a number of primate taxa, the modal pattern for mammals is to have two types of cone photopigment, one drawn from each of the gene families. In recent years, it has been discovered that the SWS1 opsin genes of a widely divergent collection of eutherian mammals have accumulated mutational changes that render them nonfunctional. This alteration reduces the retinal complements of these species to a single cone type, thus rendering ordinary color vision impossible. At present, several dozen species from five mammalian orders have been identified as falling into this category, but the total number of mammalian species that have lost short-wavelength cones in this way is certain to be much larger, perhaps reaching as high as 10% of all species. A number of circumstances that might be used to explain this widespread cone loss can be identified. Among these, the single consistent fact is that the species so affected are nocturnal or, if they are not technically nocturnal, they at least feature retinal organizations that are typically associated with that lifestyle. At the same time, however, there are many nocturnal mammals that retain functional short-wavelength cones. Nocturnality thus appears to set the stage for loss of functional SWS1 opsin genes in mammals, but it cannot be the sole circumstance.

  4. Reactions of N2(A3SIGMA/sub u/+) and candidates for short wavelength lasers, March 1, 1984-February 28, 1985

    International Nuclear Information System (INIS)

    Setser, D.W.

    1987-01-01

    There are several potential schemes for efficiently generating high concentrations of the first electronically excited state of nitrogen, N 2 (A 3 Σ/sub u/ + , 6.2 eV) by either chemical or electrical pumping. The goal of this proposal is to study ways of utilizing the energy of the N 2 (A) molecules for developing efficient, short wavelength gas lasers. Such lasers are of potential interest for laser fusion. The authors report both excitation-transfer and dissociative excitation-transfer reactions of N 2 (A) that yield electronically-excited diatomic molecules as products. 25 refs

  5. A UV pre-ionized dual-wavelength short-pulse high-power CO{sub 2} laser facility for laser particle acceleration research

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahim, N A; Mouris, J F; Davis, R W

    1994-12-01

    In this report we describe the Chalk River dual-wavelength, short-pulse, single-mode, high-power CO{sub 2} laser facility for research in laser particle acceleration and CANDU materials modifications. The facility is designed and built around UV-preionized transversely-excited atmospheric-pressure (TEA) Lumonics CO{sub 2} laser discharge modules. Peak focussed power densities of up to 2 x 10{sup 14} W/cm{sup 2} in 500 ps pulses have been obtained. (author). 10 refs., 9 figs.

  6. Wavelength dependence of momentum-space images of low-energy electrons generated by short intense laser pulses at high intensities

    International Nuclear Information System (INIS)

    Maharjan, C M; Alnaser, A S; Litvinyuk, I; Ranitovic, P; Cocke, C L

    2006-01-01

    We have measured momentum-space images of low-energy electrons generated by the interaction of short intense laser pulses with argon atoms at high intensities. We have done this over a wavelength range from 400 to 800 nm. The spectra show considerable structure in both the energy and angular distributions of the electrons. Some, but not all, energy features can be identified as multi-photon resonances. The angular structure shows a regularity which transcends the resonant structure and may be due instead to diffraction. The complexity of the results defies easy model-dependent interpretations and invites full solutions to Schroedinger's equation for these systems

  7. Measurements of the growth rate of the short wavelength Rayleigh-Taylor instability of foam foil packages driven by a soft x-ray pulse

    International Nuclear Information System (INIS)

    Willi, O.; Pasley, J.; Iwase, A.; Nazarov, W.; Rose, S.J.

    2000-01-01

    The Rayleigh-Taylor instability was studied in the short wavelength regime using single mode targets that were driven by hohlraum radiation allowing the Takabe-Morse roll-over due to ablative stabilisation to be investigated. A temporally shaped soft x-ray drive was generated by focusing one of the PHEBUS laser beams into a gold hohlraum with a maximum radiation temperature of about 120 eV. Thin plastic foils with sinusoidal modulations with wavelengths between 12 and 50 μm, and a perturbation amplitude of about 10% of the wavelength, were used. A low density 50 mg/cc tri-acrylate foam 150 μm in length facing the hohlraum was attached to the modulated foam target. The targets were radiographed face-on at an x-ray energy of about 1.3 keV with a spatial resolution of about 5 μm using a Wolter-like x-ray microscope coupled to an x-ray streak camera with a temporal resolution of 50 ps. The acceleration was obtained from side-on radiography. 2-D hydrodynamic code simulations have been carried out to compare the experimental results with the simulations. (authors)

  8. Investigation of concept of efficient short wavelength laser. Interim progress report, 1 April 1977-30 April 1978

    Energy Technology Data Exchange (ETDEWEB)

    Piper, L.G.; Krech, R.H.; Taylor, R.L.

    1978-05-01

    Under this program PSI is investigating the photolytic decomposition of a class of endoergic molecules - azides. Because these compounds contain substantial chemical energy, they offer a potentially more efficient approach for the production of electronically excited fragments. The goal of the present program was to acquire sufficient data and understanding of certain fundamental processes to permit the critical evaluation of this approach for laser development. An apparatus was built to study the wavelength-selected photolysis of gaseous, covalent azides. The photolysis source is a frequency doubled, tuneable dye laser. Detection of fragment species is accomplished by observation of primary fluorescence, or by laser-induced fluorescence (LIF) using a second tuneable dye laser. The design of the apparatus is discussed in detail.

  9. Reducing Short-Wavelength Blue Light in Dry Eye Patients with Unstable Tear Film Improves Performance on Tests of Visual Acuity.

    Science.gov (United States)

    Kaido, Minako; Toda, Ikuko; Oobayashi, Tomoo; Kawashima, Motoko; Katada, Yusaku; Tsubota, Kazuo

    2016-01-01

    To investigate whether suppression of blue light can improve visual function in patients with short tear break up time (BUT) dry eye (DE). Twenty-two patients with short BUT DE (10 men, 12 women; mean age, 32.4 ± 6.4 years; age range, 23-43 years) and 18 healthy controls (10 men, 8 women; mean age, 30.1 ± 7.4 years; age range, 20-49 years) underwent functional visual acuity (VA) examinations with and without wearing eyeglasses with 50% blue light blocked lenses. The functional VA parameters were starting VA, functional VA, and visual maintenance ratio. The baseline mean values (logarithm of the minimum angle of resolution, logMAR) of functional VA and the visual maintenance ratio were significantly worse in the DE patients than in the controls (P 0.05). The DE patients had significant improvement in mean functional VA and visual maintenance ratio while wearing the glasses (P 0.05). Protecting the eyes from short-wavelength blue light may help to ameliorate visual impairment associated with tear instability in patients with DE. This finding represents a new concept, which is that the blue light exposure might be harmful to visual function in patients with short BUT DE.

  10. Reducing Short-Wavelength Blue Light in Dry Eye Patients with Unstable Tear Film Improves Performance on Tests of Visual Acuity.

    Directory of Open Access Journals (Sweden)

    Minako Kaido

    Full Text Available To investigate whether suppression of blue light can improve visual function in patients with short tear break up time (BUT dry eye (DE.Twenty-two patients with short BUT DE (10 men, 12 women; mean age, 32.4 ± 6.4 years; age range, 23-43 years and 18 healthy controls (10 men, 8 women; mean age, 30.1 ± 7.4 years; age range, 20-49 years underwent functional visual acuity (VA examinations with and without wearing eyeglasses with 50% blue light blocked lenses. The functional VA parameters were starting VA, functional VA, and visual maintenance ratio.The baseline mean values (logarithm of the minimum angle of resolution, logMAR of functional VA and the visual maintenance ratio were significantly worse in the DE patients than in the controls (P 0.05. The DE patients had significant improvement in mean functional VA and visual maintenance ratio while wearing the glasses (P 0.05.Protecting the eyes from short-wavelength blue light may help to ameliorate visual impairment associated with tear instability in patients with DE. This finding represents a new concept, which is that the blue light exposure might be harmful to visual function in patients with short BUT DE.

  11. Optimum electron temperature and density for short-wavelength plasma-lasing from nickel-like ions

    International Nuclear Information System (INIS)

    Masoudnia, Leili; Bleiner, Davide

    2014-01-01

    Soft X-ray lasing across a Ni-like plasma gain-medium requires optimum electron temperature and density for attaining to the Ni-like ion stage and for population inversion in the 3d 9 4d 1 (J=0)→3d 9 4p 1 (J=1) laser transition. Various scaling laws, function of operating parameters, were compared with respect to their predictions for optimum temperatures and densities. It is shown that the widely adopted local thermodynamic equilibrium (LTE) model underestimates the optimum plasma-lasing conditions. On the other hand, non-LTE models, especially when complemented with dielectronic recombination, provided accurate prediction of the optimum plasma-lasing conditions. It is further shown that, for targets with Z equal or greater than the rare-earth elements (e.g. Sm), the optimum electron density for plasma-lasing is not accessible for pump-pulses at λ=1ω=1μm. This observation explains a fundamental difficulty in saturating the wavelength of plasma-based X-ray lasers below 6.8 nm, unless using 2ω pumping

  12. Does one hour of bright or short-wavelength filtered tablet screenlight have a meaningful effect on adolescents' pre-bedtime alertness, sleep, and daytime functioning?

    Science.gov (United States)

    Heath, Melanie; Sutherland, Cate; Bartel, Kate; Gradisar, Michael; Williamson, Paul; Lovato, Nicole; Micic, Gorica

    2014-05-01

    Electronic media use is prevalent among adolescent populations, as is the frequency of sleeplessness. One mechanism proposed for technology affecting adolescents' sleep is the alerting effects from bright screens. Two explanations are provided. First, screens emit significant amounts of short-wavelength light (i.e. blue), which produces acute alertness and alters sleep timing. Second, later chronotypes are hypothesised to be hypersensitive to evening light. This study analysed the pre-sleep alertness (GO/NOGO task speed, accuracy; subjective sleepiness), sleep (sleep diary, polysomnography), and morning functioning of 16 healthy adolescents (M = 17.4 ± 1.9 yrs, 56% f) who used a bright tablet screen (80 lux), dim screen (1 lux) and a filtered short-wavelength screen (f.lux; 50 lux) for 1 hr before their usual bedtime in a within-subjects protocol. Chronotype was analysed as a continuous between-subjects factor; however, no significant interactions occurred. Significant effects occurred between bright and dim screens for GO/NOGO speed and accuracy. However, the magnitude of these differences was small (e.g. GO/NOGO speed = 23 ms, accuracy = 13%), suggesting minimal clinical significance. No significant effects were found for sleep onset latency, slow-rolling eye movements, or the number of SWS and REM minutes in the first two sleep cycles. Future independent studies are needed to test short (1 hr) vs longer (>2 hrs) screen usage to provide evidence for safe-to-harmful levels of screenlight exposure before adolescents' usual bedtime.

  13. The vertical and the longitudinal dynamic responses of the vehicle-track system to squat-type short wavelength irregularity

    Science.gov (United States)

    Zhao, Xin; Li, Zili; Dollevoet, Rolf

    2013-12-01

    The squat, a kind of rolling contact fatigue occurring on the rail top, can excite the high-frequency vehicle-track interaction effectively due to its geometric deviations with a typical wavelength of 20-40 mm, leading to the accelerated deterioration of a track. In this work, a validated 3D transient finite element model is employed to calculate in the time domain the vertical and the longitudinal dynamic contact forces between the wheel and the rail caused by squats. The vehicle-track structure and the wheel-rail continua are both considered in order to include all the important eigencharacteristics of the system related to squats. By introducing the rotational and translational movements of the wheel, the transient wheel-rail rolling contact is solved in detail by a 3D frictional contact model integrated. The contact filter effect is considered automatically in the simulations by the finite size of the contact patch. The present work focuses on the influences of the length, width and depth of a light squat on the resulted dynamic contact forces, for which idealised defect models are used. The growth of a squat is also modelled to a certain extent by a series of defects with different dimensions. The results show that the system is mainly excited at two frequencies separately in the vertical and the longitudinal dynamics. Their superposition explains the typical appearance of mature squats. As a squat grows up, the magnitude of the excited vibration at the lower frequency increases faster than the one at the higher frequency.

  14. High color rendering index of remote-type white LEDs with multi-layered quantum dot-phosphor films and short-wavelength pass dichroic filters

    Science.gov (United States)

    Yoon, Hee Chang; Oh, Ji Hye; Do, Young Rag

    2014-09-01

    This paper introduces high color rendering index (CRI) white light-emitting diodes (W-LEDs) coated with red emitting (Sr,Ca)AlSiN3:Eu phosphors and yellowish-green emitting AgIn5S8/ZnS (AIS/ZS) quantum dots (QDs) on glass or a short-wavelength pass dichroic filter (SPDF), which transmit blue wavelength regions and reflect yellow wavelength regions. The red emitting (Sr,Ca)AlSiN3:Eu phosphor film is coated on glass and a SPDF using a screen printing method, and then the yellowish-green emitting AIS/ZS QDs are coated on the red phosphor (Sr,Ca)AlSiN3:Eu film-coated glass and SPDF using the electrospray (e-spray) method.To fabricate the red phosphor film, the optimum amount of phosphor is dispersed in a silicon binder to form a red phosphor paste. The AIS/ZS QDs are mixed with dimethylformamide (DMF), toluene, and poly(methyl methacrylate) (PMMA) for the e-spray coating. The substrates are spin-coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to fabricate a conductive surface. The CRI of the white LEDs is improved through inserting the red phosphor film between the QD layer and the glass substrate. Furthermore, the light intensities of the multi-layered phosphor films are enhanced through changing the glass substrate to the SPDF. The correlated color temperatures (CCTs) vary as a function of the phosphor concentration in the phosphor paste. The optical properties of the yellowish-green AIS/ZS QDs and red (Sr,Ca)AlSiN3:Eu phosphors are characterized using photoluminescence (PL), and the multi-layered QD-phosphor films are measured using electroluminescence (EL) with an InGaN blue LED (λmax = 450 nm) at 60 mA.

  15. Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations

    Science.gov (United States)

    Meyer, Catrin I.; Ern, Manfred; Hoffmann, Lars; Trinh, Quang Thai; Alexander, M. Joan

    2018-01-01

    We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are compared on a

  16. Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations

    Directory of Open Access Journals (Sweden)

    C. I. Meyer

    2018-01-01

    Full Text Available We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are

  17. Short-wavelength infrared imaging using low dark current InGaAs detector arrays and vertical-cavity surface-emitting laser illuminators

    Science.gov (United States)

    Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David

    2011-06-01

    We describe the factors that go into the component choices for a short wavelength IR (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7 °C. In addition, we have mated our InGaAs detector arrays to 640×512 readout integrated integrated circuits to make focal plane arrays (FPAs). The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 μm at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0 °C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling. In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, and provide artifact-free imagery versus conventional laser illuminators.

  18. Transition operators in acoustic-wave diffraction theory. I - General theory. II - Short-wavelength behavior, dominant singularities of Zk0 and Zk0 exp -1

    Science.gov (United States)

    Hahne, G. E.

    1991-01-01

    A formal theory of the scattering of time-harmonic acoustic scalar waves from impenetrable, immobile obstacles is established. The time-independent formal scattering theory of nonrelativistic quantum mechanics, in particular the theory of the complete Green's function and the transition (T) operator, provides the model. The quantum-mechanical approach is modified to allow the treatment of acoustic-wave scattering with imposed boundary conditions of impedance type on the surface (delta-Omega) of an impenetrable obstacle. With k0 as the free-space wavenumber of the signal, a simplified expression is obtained for the k0-dependent T operator for a general case of homogeneous impedance boundary conditions for the acoustic wave on delta-Omega. All the nonelementary operators entering the expression for the T operator are formally simple rational algebraic functions of a certain invertible linear radiation impedance operator which maps any sufficiently well-behaved complex-valued function on delta-Omega into another such function on delta-Omega. In the subsequent study, the short-wavelength and the long-wavelength behavior of the radiation impedance operator and its inverse (the 'radiation admittance' operator) as two-point kernels on a smooth delta-Omega are studied for pairs of points that are close together.

  19. Determination of Seed Soundness in Conifers Cryptomeria japonica and Chamaecyparis obtusa Using Narrow-Multiband Spectral Imaging in the Short-Wavelength Infrared Range

    Science.gov (United States)

    Matsuda, Osamu; Hara, Masashi; Tobita, Hiroyuki; Yazaki, Kenichi; Nakagawa, Toshinori; Shimizu, Kuniyoshi; Uemura, Akira; Utsugi, Hajime

    2015-01-01

    Regeneration of planted forests of Cryptomeria japonica (sugi) and Chamaecyparis obtuse (hinoki) is the pressing importance to the forest administration in Japan. Low seed germination rate of these species, however, has hampered low-cost production of their seedlings for reforestation. The primary cause of the low germinability has been attributed to highly frequent formation of anatomically unsound seeds, which are indistinguishable from sound germinable seeds by visible observation and other common criteria such as size and weight. To establish a method for sound seed selection in these species, hyperspectral imaging technique was used to identify a wavelength range where reflectance spectra differ clearly between sound and unsound seeds. In sound seeds of both species, reflectance in a narrow waveband centered at 1,730 nm, corresponding to a lipid absorption band in the short-wavelength infrared (SWIR) range, was greatly depressed relative to that in adjacent wavebands on either side. Such depression was absent or less prominent in unsound seeds. Based on these observations, a reflectance index SQI, abbreviated for seed quality index, was formulated using reflectance at three narrow SWIR wavebands so that it represents the extent of the depression. SQI calculated from seed area-averaged reflectance spectra and spatial distribution patterns of pixelwise SQI within each seed area were both proven as reliable criteria for sound seed selection. Enrichment of sound seeds was accompanied by an increase in germination rate of the seed lot. Thus, the methods described are readily applicable toward low-cost seedling production in combination with single seed sowing technology. PMID:26083366

  20. Design and analysis of InN - In0.25Ga0.75N single quantum well laser for short distance communication wavelength

    Science.gov (United States)

    Polash, Md. Mobarak Hossain; Alam, M. Shah; Biswas, Saumya

    2018-03-01

    A single quantum well semiconductor laser based on wurtzite-nitride is designed and analyzed for short distance communication wavelength (at around 1300 nm). The laser structure has 12 Å well layer of InN, 15 Å barrier layer of In0.25Ga0.75N, and 54 Å separate confinement heterostructure layer of GaN. To calculate the electronic characteristics of the structure, a self-consistent method is used where Hamiltonian with effective mass approximation is solved for conduction band while six-bands Hamiltonian matrix with k · p formalism including the polarization effect, valence-band mixing effect, and strain effect is solved for valence band. The interband optical transition elements, optical gain, differential gain, radiative current density, spontaneous emission rate, and threshold characteristics have been calculated. The wave function overlap integral is found to be 45.93% for TE-polarized structure. Also, the spontaneous emission rate is found to be 6.57 × 1027 s - 1 cm - 3 eV - 1 at 1288.21 nm with the carrier density of 5 × 1019 cm - 3. Furthermore, the radiative current density and the radiative recombination rate are found to be 121.92 A cm - 2 and 6.35 × 1027 s - 1 cm - 3, respectively, while the TE-polarized optical gain of the structure is 3872.1 cm - 1 at 1301.7 nm.

  1. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution.

    Science.gov (United States)

    Emerling, Christopher A; Huynh, Hieu T; Nguyen, Minh A; Meredith, Robert W; Springer, Mark S

    2015-11-22

    Retinal opsin photopigments initiate mammalian vision when stimulated by light. Most mammals possess a short wavelength-sensitive opsin 1 (SWS1) pigment that is primarily sensitive to either ultraviolet or violet light, leading to variation in colour perception across species. Despite knowledge of both ultraviolet- and violet-sensitive SWS1 classes in mammals for 25 years, the adaptive significance of this variation has not been subjected to hypothesis testing, resulting in minimal understanding of the basis for mammalian SWS1 spectral tuning evolution. Here, we gathered data on SWS1 for 403 mammal species, including novel SWS1 sequences for 97 species. Ancestral sequence reconstructions suggest that the most recent common ancestor of Theria possessed an ultraviolet SWS1 pigment, and that violet-sensitive pigments evolved at least 12 times in mammalian history. We also observed that ultraviolet pigments, previously considered to be a rarity, are common in mammals. We then used phylogenetic comparative methods to test the hypotheses that the evolution of violet-sensitive SWS1 is associated with increased light exposure, extended longevity and longer eye length. We discovered that diurnal mammals and species with longer eyes are more likely to have violet-sensitive pigments and less likely to possess UV-sensitive pigments. We hypothesize that (i) as mammals evolved larger body sizes, they evolved longer eyes, which limited transmittance of ultraviolet light to the retina due to an increase in Rayleigh scattering, and (ii) as mammals began to invade diurnal temporal niches, they evolved lenses with low UV transmittance to reduce chromatic aberration and/or photo-oxidative damage. © 2015 The Author(s).

  2. Short-wavelength multiline erbium-doped fiber ring laser by a broadband long-period fiber grating inscribed in a taper transition

    International Nuclear Information System (INIS)

    Anzueto-Sánchez, G; Martínez-Rios, A

    2014-01-01

    A stable multiwavelength all-fiber erbium-doped fiber ring laser (EDFRL) based on a broadband long-period fiber grating (LPFG) inscribed in a fiber taper transition is presented. The LPFG’s characteristics were engineered to provide a higher loss at the natural lasing wavelength of the laser cavity. The LPFG inscribed on a taper transition provided a depth greater than 25 dB, and posterior chemical etching provided a broad notch band to inhibit laser generation on the long-wavelength side of the EDF gain. Up to four simultaneous laser wavelengths are generated in the range of 1530–1535 nm. (paper)

  3. Short (

    NARCIS (Netherlands)

    Telleman, Gerdien; den Hartog, Laurens

    2013-01-01

    Aim: This systematic review assessed the implant survival rate of short (<10 mm) dental implants installed in partially edentulous patients. A case report of a short implant in the posterior region have been added. Materials and methods: A search was conducted in the electronic databases of MEDLINE

  4. Tunable Superconducting Gravity Gradiometer for Mars Climate, Atmosphere, and Gravity Field Investigation

    Science.gov (United States)

    Griggs, C. E.; Paik, H. J.; Moody, M. V.; Han, S.-C.; Rowlands, D. D.; Lemoine, F. G.; Shirron, P. J.

    2015-01-01

    We are developing a compact tensor superconducting gravity gradiometer (SGG) for obtaining gravimetric measurements from planetary orbits. A new and innovative design gives a potential sensitivity of approximately 10(sup -4) E Hz(sup - 1/2)( 1 E = 10(sup -9 S(sup -2) in the measurement band up to 0.1 Hz (suitale for short wavelength static gravity) and of approximately 10(sup -4) E Hz(sup - 1/2) in the frequency band less than 1 mHz (for long wavelength time-variable gravity) from the same device with a baseline just over 10 cm. The measurement band and sensitiy can be optimally tuned in-flight during the mission by changing resonance frequencies, which allows meaurements of both static and time-variable gravity fields from the same mission. Significant advances in the technologies needed for space-based cryogenic instruments have been made in the last decade. In particular, the use of cryocoolers will alleviate the previously severe constraint on mission lifetime imposed by the use of liquid helium, enabling mission durations in the 5 - 10 year range.

  5. The gravity field and GGOS

    DEFF Research Database (Denmark)

    Forsberg, René; Sideris, M.G.; Shum, C.K.

    2005-01-01

    The gravity field of the earth is a natural element of the Global Geodetic Observing System (GGOS). Gravity field quantities are like spatial geodetic observations of potential very high accuracy, with measurements, currently at part-per-billion (ppb) accuracy, but gravity field quantities are also...... unique as they can be globally represented by harmonic functions (long-wavelength geopotential model primarily from satellite gravity field missions), or based on point sampling (airborne and in situ absolute and superconducting gravimetry). From a GGOS global perspective, one of the main challenges...... is to ensure the consistency of the global and regional geopotential and geoid models, and the temporal changes of the gravity field at large spatial scales. The International Gravity Field Service, an umbrella "level-2" IAG service (incorporating the International Gravity Bureau, International Geoid Service...

  6. Scaling in quantum gravity

    Directory of Open Access Journals (Sweden)

    J. Ambjørn

    1995-07-01

    Full Text Available The 2-point function is the natural object in quantum gravity for extracting critical behavior: The exponential falloff of the 2-point function with geodesic distance determines the fractal dimension dH of space-time. The integral of the 2-point function determines the entropy exponent γ, i.e. the fractal structure related to baby universes, while the short distance behavior of the 2-point function connects γ and dH by a quantum gravity version of Fisher's scaling relation. We verify this behavior in the case of 2d gravity by explicit calculation.

  7. Massive Gravity

    OpenAIRE

    de Rham, Claudia

    2014-01-01

    We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...

  8. Extended wavelength InGaAs on GaAs using InAlAs buffer for back-side-illuminated short-wave infrared detectors

    International Nuclear Information System (INIS)

    Zimmermann, Lars; John, Joachim; Degroote, Stefan; Borghs, Gustaaf; Hoof, Chris van; Nemeth, Stefan

    2003-01-01

    We conducted an experimental study of back-side-illuminated InGaAs photodiodes grown on GaAs and sensitive in the short-wave infrared up to 2.4 μm. Standard metamorphic InGaAs or IR-transparent InAlAs buffers were grown by molecular-beam epitaxy. We studied dark current and photocurrent as a function of buffer thickness, buffer material, and temperature. A saturation of the dark current with buffer thickness was not observed. The maximum resistance area product was ∼10 Ω cm2 at 295 K. The dark current above 200 K was dominated by generation-recombination current. A pronounced dependence of the photocurrent on the buffer thickness was observed. The peak external quantum efficiency was 46% (at 1.6 μm) without antireflective coating

  9. Short Wavelength Electromagnetic Perturbations Excited Near the Solar Probe Plus Spacecraft in the Inner Heliosphere: 2.5D Hybrid Modeling

    Science.gov (United States)

    Lipatov, Alexander S.; Sittler, Edward C.; Hartle, Richard E.; Cooper, John F.

    2011-01-01

    A 2.5D numerical plasma model of the interaction of the solar wind (SW) with the Solar Probe Plus spacecraft (SPPSC) is presented. These results should be interpreted as a basic plasma model derived from the SW-interaction with the spacecraft (SC), which could have consequences for both plasma wave and electron plasma measurements on board the SC in the inner heliosphere. Compression waves and electric field jumps with amplitudes of about 1.5 V/m and (12-18) V/m were also observed. A strong polarization electric field was also observed in the wing of the plasma wake. However, 2.5D hybrid modeling did not show excitation of whistler/Alfven waves in the upstream connected with the bidirectional current closure that was observed in short-time 3D modeling SPPSC and near a tether in the ionosphere. The observed strong electromagnetic perturbations may be a crucial point in the electromagnetic measurements planned for the future Solar Probe Plus (SPP) mission. The results of modeling electromagnetic field perturbations in the SW due to shot noise in absence of SPPSC are also discussed.

  10. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers.......Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers....

  11. A high resolution gravity model for Venus - GVM-1

    Science.gov (United States)

    Nerem, R. S.; Bills, B. G.; Mcnamee, J. B.

    1993-01-01

    A spherical harmonic model of the gravitational field of Venus complete to degree and order 50 has been developed using the S-band Doppler tracking data of the Pioneer Venus Orbiter (PVO) collected between 1979 and 1982. The short wavelengths of this model could only be resolved near the PVO periapse location (about 14 deg N latitude), therefore a priori constraints were applied to the model to bias poorly observed coefficients towards zero. The resulting model has a half-wavelength resolution of 400 km near the PVO periapse location, but the resolution degrades to greater than 1000 km near the poles. This gravity model correlates well with a degree 50 spherical harmonic expansion of the Venus topography derived from a combination of Magellan and PVO data. New tracking data from Magellan's gravity mission should provide some improvement to this model, although a complete model of the Venusian gravity field will depend on tracking of Magellan after the circularization of its orbit using aerobraking.

  12. On the unstable mode merging of gravity-inertial waves with Rossby waves

    Directory of Open Access Journals (Sweden)

    J. F. McKenzie

    2011-08-01

    Full Text Available We recapitulate the results of the combined theory of gravity-inertial-Rossby waves in a rotating, stratified atmosphere. The system is shown to exhibit a "local" (JWKB instability whenever the phase speed of the low-frequency-long wavelength westward propagating Rossby wave exceeds the phase speed ("Kelvin" speed of the high frequency-short wavelength gravity-inertial wave. This condition ensures that mode merging, leading to instability, takes place in some intermediate band of frequencies and wave numbers. The contention that such an instability is "spurious" is not convincing. The energy source of the instability resides in the background enthalpy which can be released by the action of the gravitational buoyancy force, through the combined wave modes.

  13. Nonlocal gravity

    CERN Document Server

    Mashhoon, Bahram

    2017-01-01

    Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...

  14. Short-Wavelength Countermeasures for Circadian Desynchrony

    National Research Council Canada - National Science Library

    Heller, H. C; Smith, Mark

    2008-01-01

    .... Exposure of humans to bright light for an hour or more at the right phase of the circadian cycle produces significant phase shifts of circadian rhythms speeding recovery from jet-lag, and optimizing...

  15. Physics of short-wavelength-laser design

    Energy Technology Data Exchange (ETDEWEB)

    Hagelstein, P.L.

    1981-01-01

    The physics and design of vuv and soft x-ray lasers pumped by ICF class high intensity infrared laser drivers are described (for example, the SHIVA laser facility at LLNL). Laser design and physics issues are discussed in the case of a photoionization pumping scheme involving Ne II and line pumping schemes involving H-like and He-like neon.

  16. Demonstration of a Short Wavelength Chemical Laser

    National Research Council Canada - National Science Library

    Gole, James

    1999-01-01

    ...)). Using this gain medium in a full vacuum cavity constructed following the design of the HF overtone system at the University of Illinois, Urbana, we have pursued and are continuing experiments...

  17. Short-Wavelength Countermeasures for Circadian Desynchrony

    National Research Council Canada - National Science Library

    Heller, H. C; Smith, Mark

    2008-01-01

    ... cognitive functionality and restorative sleep. Our work on mice produced the unexpected result that exposure to intermittent millisecond flashes of light distributed over an hour for a total of only 120 msec...

  18. Massive gravity from bimetric gravity

    International Nuclear Information System (INIS)

    Baccetti, Valentina; Martín-Moruno, Prado; Visser, Matt

    2013-01-01

    We discuss the subtle relationship between massive gravity and bimetric gravity, focusing particularly on the manner in which massive gravity may be viewed as a suitable limit of bimetric gravity. The limiting procedure is more delicate than currently appreciated. Specifically, this limiting procedure should not unnecessarily constrain the background metric, which must be externally specified by the theory of massive gravity itself. The fact that in bimetric theories one always has two sets of metric equations of motion continues to have an effect even in the massive gravity limit, leading to additional constraints besides the one set of equations of motion naively expected. Thus, since solutions of bimetric gravity in the limit of vanishing kinetic term are also solutions of massive gravity, but the contrary statement is not necessarily true, there is no complete continuity in the parameter space of the theory. In particular, we study the massive cosmological solutions which are continuous in the parameter space, showing that many interesting cosmologies belong to this class. (paper)

  19. Analysis of the fluctuation-induced excess dc conductivity of epitaxial YBa2Cu3O7 films: Influence of a short-wavelength cutoff in the fluctuation spectrum

    International Nuclear Information System (INIS)

    Hopfengaertner, R.; Hensel, B.; Saemann-Ischenko, G.

    1991-01-01

    Measurements of the temperature dependence of the in-plane dc conductivity on various high-quality epitaxial YBa 2 Cu 3 O 7 films are presented. The rounding of the resistivity in the transition region has been analyzed in terms of the anisotropic Aslamazov-Larkin (AL), Lawrence-Doniach (LD), and Maki-Thompson theories. In the framework of the time-dependent Ginzburg-Landau (GL) approach we have investigated the influence of a short-wavelength cutoff parameter in the fluctuation spectrum of the AL and LD term. In both theories this physically reasonable cutoff leads to a considerable reduction of the predicted excess dc conductivity at higher temperatures. Moreover, the three-dimensional anisotropic AL term, taking the cutoff into account, predicts nearly the same excess conductivity as the original LD term, although these two approaches describe different systems. A good agreement between experimental data and LD as well as the modified three-dimensional anisotropic AL term was found in the region 1.01T c ≤T≤1.1T c . The zero-temperature GL coherence length ξ c (0) has been estimated to be about 1.5 A

  20. Gravity brake

    Science.gov (United States)

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  1. Analogue Gravity

    Directory of Open Access Journals (Sweden)

    Barceló Carlos

    2005-12-01

    Full Text Available Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.

  2. Quantum Gravity

    OpenAIRE

    Alvarez, Enrique

    2004-01-01

    Gravitons should have momentum just as photons do; and since graviton momentum would cause compression rather than elongation of spacetime outside of matter; it does not appear that gravitons are compatible with Swartzchild's spacetime curvature. Also, since energy is proportional to mass, and mass is proportional to gravity; the energy of matter is proportional to gravity. The energy of matter could thus contract space within matter; and because of the inter-connectedness of space, cause the...

  3. Why is gravity so weak?

    International Nuclear Information System (INIS)

    Goradia, S.G.

    2006-01-01

    Why is gravity weak? Gravity is plagued with this and many other questions. After decades of exhausting work we do not have a clear answer. In view of this fact it will be shown in the following pages that there are reasons for thinking that gravity is just a composite force consisting of the long-range manifestations of short range nuclear forces that are too tiny to be measured at illuminated or long ranges by particle colliders. This is consistent with Einstein's proposal in 1919

  4. Analogue Gravity

    Directory of Open Access Journals (Sweden)

    Carlos Barceló

    2011-05-01

    Full Text Available Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.

  5. Quantum Gravity

    International Nuclear Information System (INIS)

    Giribet, G E

    2005-01-01

    Claus Kiefer presents his book, Quantum Gravity, with his hope that '[the] book will convince readers of [the] outstanding problem [of unification and quantum gravity] and encourage them to work on its solution'. With this aim, the author presents a clear exposition of the fundamental concepts of gravity and the steps towards the understanding of its quantum aspects. The main part of the text is dedicated to the analysis of standard topics in the formulation of general relativity. An analysis of the Hamiltonian formulation of general relativity and the canonical quantization of gravity is performed in detail. Chapters four, five and eight provide a pedagogical introduction to the basic concepts of gravitational physics. In particular, aspects such as the quantization of constrained systems, the role played by the quadratic constraint, the ADM decomposition, the Wheeler-de Witt equation and the problem of time are treated in an expert and concise way. Moreover, other specific topics, such as the minisuperspace approach and the feasibility of defining extrinsic times for certain models, are discussed as well. The ninth chapter of the book is dedicated to the quantum gravitational aspects of string theory. Here, a minimalistic but clear introduction to string theory is presented, and this is actually done with emphasis on gravity. It is worth mentioning that no hard (nor explicit) computations are presented, even though the exposition covers the main features of the topic. For instance, black hole statistical physics (within the framework of string theory) is developed in a pedagogical and concise way by means of heuristical arguments. As the author asserts in the epilogue, the hope of the book is to give 'some impressions from progress' made in the study of quantum gravity since its beginning, i.e., since the end of 1920s. In my opinion, Kiefer's book does actually achieve this goal and gives an extensive review of the subject. (book review)

  6. The alpine Swiss-French airborne gravity survey

    Science.gov (United States)

    Verdun, Jérôme; Klingelé, Emile E.; Bayer, Roger; Cocard, Marc; Geiger, Alain; Kahle, Hans-Gert

    2003-01-01

    In February 1998, a regional-scale, airborne gravity survey was carried out over the French Occidental Alps within the framework of the GéoFrance 3-D research program.The survey consisted of 18 NS and 16 EW oriented lines with a spacing of 10 and 20 km respectively, covering the whole of the Western French Alps (total area: 50 000 km2; total distance of lines flown: 10 000 km). The equipment was mounted in a medium-size aircraft (DeHavilland Twin Otter) flowing at a constant altitude of 5100 m a.s.l, and at a mean ground speed of about 280 km h-1. Gravity was measured using a LaCoste & Romberg relative, air/sea gravimeter (type SA) mounted on a laser gyro stabilized platform. Data from 5 GPS antennae located on fuselage and wings and 7 ground-based GPS reference stations were used to determine position and aircraft induced accelerations.The gravimeter passband was derived by comparing the vertical accelerations provided by the gravimeter with those estimated from the GPS positions. This comparison showed that the gravimeter is not sensitive to very short wavelength aircraft accelerations, and therefore a simplified formulation for computing airborne gravity measurements was developed. The intermediate and short wavelength, non-gravitational accelerations were eliminated by means of digital, exponential low-pass filters (cut-off wavelength: 16 km). An important issue in airborne gravimetry is the reliability of the airborne gravity surveys when compared to ground surveys. In our studied area, the differences between the airborne-acquired Bouguer anomaly and the ground upward-continued Bouguer anomaly of the Alps shows a good agreement: the rms of these differences is equal to 7.68 mGal for a spatial resolution of 8 km. However, in some areas with rugged topography, the amplitudes of those differences have a striking correlation with the topography. We then argue that the choice of an appropriate density (reduction by a factor of 10 per cent) for computing the

  7. Simulating Gravity

    Science.gov (United States)

    Pipinos, Savas

    2010-01-01

    This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…

  8. Cellular gravity

    NARCIS (Netherlands)

    F.C. Gruau; J.T. Tromp (John)

    1999-01-01

    textabstractWe consider the problem of establishing gravity in cellular automata. In particular, when cellular automata states can be partitioned into empty, particle, and wall types, with the latter enclosing rectangular areas, we desire rules that will make the particles fall down and pile up on

  9. Wavelength conversion devices

    DEFF Research Database (Denmark)

    Mikkelsen, Benny; Durhuus, Terji; Jørgensen, Carsten

    1996-01-01

    system requirements. The ideal wavelength converter should be transparent to the bit rate and signal format and provide an unchirped output signal with both a high extinction ratio and a large signal-to-noise ratio. It should allow conversion to both shorter and longer wavelengths with equal performance...

  10. Functional characterization of spectral tuning mechanisms in the great bowerbird short-wavelength sensitive visual pigment (SWS1), and the origins of UV/violet vision in passerines and parrots.

    Science.gov (United States)

    van Hazel, Ilke; Sabouhanian, Amir; Day, Lainy; Endler, John A; Chang, Belinda S W

    2013-11-13

    One of the most striking features of avian vision is the variation in spectral sensitivity of the short wavelength sensitive (SWS1) opsins, which can be divided into two sub-types: violet- and UV- sensitive (VS & UVS). In birds, UVS has been found in both passerines and parrots, groups that were recently shown to be sister orders. While all parrots are thought to be UVS, recent evidence suggests some passerine lineages may also be VS. The great bowerbird (Chlamydera nuchalis) is a passerine notable for its courtship behaviours in which males build and decorate elaborate bower structures. The great bowerbird SWS1 sequence possesses an unusual residue combination at known spectral tuning sites that has not been previously investigated in mutagenesis experiments. In this study, the SWS1 opsin of C. nuchalis was expressed along with a series of spectral tuning mutants and ancestral passerine SWS1 pigments, allowing us to investigate spectral tuning mechanisms and explore the evolution of UV/violet sensitivity in early passerines and parrots. The expressed C. nuchalis SWS1 opsin was found to be a VS pigment, with a λmax of 403 nm. Bowerbird SWS1 mutants C86F, S90C, and C86S/S90C all shifted λmax into the UV, whereas C86S had no effect. Experimentally recreated ancestral passerine and parrot/passerine SWS1 pigments were both found to be VS, indicating that UV sensitivity evolved independently in passerines and parrots from a VS ancestor. Our mutagenesis studies indicate that spectral tuning in C. nuchalis is mediated by mechanisms similar to those of other birds. Interestingly, our ancestral sequence reconstructions of SWS1 in landbird evolution suggest multiple transitions from VS to UVS, but no instances of the reverse. Our results not only provide a more precise prediction of where these spectral sensitivity shifts occurred, but also confirm the hypothesis that birds are an unusual exception among vertebrates where some descendants re-evolved UVS from a violet type

  11. Influence of blue light spectrum filter on short-wavelength and standard automated perimetries Influência de filtro para o espectro azul da luz na perimetria computadorizada branco-branco e azul-amarelo

    Directory of Open Access Journals (Sweden)

    Leonardo Cunha Castro

    2006-10-01

    Full Text Available PURPOSE: To evaluate the influence of a blue light spectrum filter (BLSF, similar in light spectrum transmittance to the intraocular lens Acrysof NaturalTM, on standard automated perimetry (SAP and short-wavelength automated perimetry (SWAP. METHODS: Twenty young individuals (OBJETIVO: Avaliar a influência de um filtro para o espectro azul da luz, semelhante à lente intra-ocular Acrysof Natural®, nos exames de perimetria automatizada padrão (branco-no-branco e de comprimento de onda curto (azul-no-amarelo. MÉTODOS: Vinte pacientes jovens sem alterações oculares (20 olhos realizaram seqüência de 4 exames de campo visual: perimetria automatizada padrão e azul-no-amarelo com e sem o filtro para o espectro azul da luz. Os índices de limiar foveal (FT, desvio médio (MD e desvio-padrão (PSD obtidos em todos os exames e a diferença causada pela excentricidade nos exames de perimetria automatizada azul-no-amarelo foram analisados. Variabilidade interindivíduos (desvio-padrão dos pontos testados foi calculada. RESULTADOS: Observou-se redução estatisticamente significante no desvio médio (p<0.001 e no limiar foveal (p<0.001 medidos pela perimetria automatizada azul-no-amarelo com o uso do filtro para o espectro azul da luz comparado quando realizado sem o filtro. Nenhum outro índice avaliado apresentou diferença estatisticamente significante nos exames de perimetria automatizada padrão ou azul-no-amarelo. Foi notado aumento da variabilidade interindivíduos com a excentricidade nos exames de perimetria automatizada azul-no-amarelo com e sem o uso do filtro para o espectro azul da luz, assim como a diferença de sensibilidade entre os hemisférios inferior e superior (hemisfério inferior menos superior, mas não houve diferença estatisticamente significante quando comparados os exames com e sem o uso do filtro. Quando foram comparados os 4 pontos mais inferiores e os 4 pontos mais superiores, a diferença inferior-superior aumentou

  12. Quantum gravity

    International Nuclear Information System (INIS)

    Isham, C.

    1989-01-01

    Gravitational effects are seen as arising from a curvature in spacetime. This must be reconciled with gravity's apparently passive role in quantum theory to achieve a satisfactory quantum theory of gravity. The development of grand unified theories has spurred the search, with forces being of equal strength at a unification energy of 10 15 - 10 18 GeV, with the ''Plank length'', Lp ≅ 10 -35 m. Fundamental principles of general relativity and quantum mechanics are outlined. Gravitons are shown to have spin-0, as mediators of gravitation force in the classical sense or spin-2 which are related to the quantisation of general relativity. Applying the ideas of supersymmetry to gravitation implies partners for the graviton, especially the massless spin 3/2 fermion called a gravitino. The concept of supersymmetric strings is introduced and discussed. (U.K.)

  13. Quantum gravity

    International Nuclear Information System (INIS)

    Markov, M.A.; West, P.C.

    1984-01-01

    This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981

  14. Is nonrelativistic gravity possible?

    International Nuclear Information System (INIS)

    Kocharyan, A. A.

    2009-01-01

    We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.

  15. Application of high-pass filtering techniques on gravity and magnetic data of the eastern Qattara Depression area, Western Desert, Egypt

    Directory of Open Access Journals (Sweden)

    Hesham Shaker Zahra

    2016-06-01

    Full Text Available In this work, a reconnaissance study is presented to delineate the subsurface tectonics and lithological inferences of the eastern area of Qattara Depression using the Bouguer gravity and aeromagnetic data. To achieve this goal, several transformation techniques and filtering processes are accomplished on these maps. At first, the total intensity aeromagnetic map is processed through the application of reduction to the magnetic north pole technique. The fast Fourier transform is carried out on the gravity and RTP magnetic data for establishing and defining the residual (shallow sources. The frequency high-pass filtering is used to enhance the anomaly wavelengths associated with the shallow sources. The used processing techniques are the polynomial surface fitting enhancement, Laplacian, Strike Filtering, Enhancement Utilization, Suppression Utilization, Butterworth Filtering Utilization, Butterworth high-pass filter, Euler’s deconvolution and forward modeling. The equivalent depths of the isolated short wavelength anomalies are 0.759 and 0.340 km below the flight surface, and the depths of the intermediate wavelength anomalies are 1.28 and 2.00 km for the gravity and magnetic data, respectively. Finally, the quantitative interpretations of the Bouguer gravity and RTP magnetic maps of the study area, reflect the occurrence of the various types of structures and their components. The main tectonic deformations of the study area have NNW–SSE, NNE–SSW, NE–SW, NW–SE and E–W trends.

  16. A strong astrophysical constraint on the violation of special relativity by quantum gravity.

    Science.gov (United States)

    Jacobson, T; Liberati, S; Mattingly, D

    2003-08-28

    Special relativity asserts that physical phenomena appear the same to all unaccelerated observers. This is called Lorentz symmetry and relates long wavelengths to short ones: if the symmetry is exact it implies that space-time must look the same at all length scales. Several approaches to quantum gravity, however, suggest that there may be a microscopic structure of space-time that leads to a violation of Lorentz symmetry. This might arise because of the discreteness or non-commutivity of space-time, or through the action of extra dimensions. Here we determine a very strong constraint on a type of Lorentz violation that produces a maximum electron speed less than the speed of light. We use the observation of 100-MeV synchrotron radiation from the Crab nebula to improve the previous limit by a factor of 40 million, ruling out this type of Lorentz violation, and thereby providing an important constraint on theories of quantum gravity.

  17. Noncommutative gravity

    International Nuclear Information System (INIS)

    Schupp, P.

    2007-01-01

    Heuristic arguments suggest that the classical picture of smooth commutative spacetime should be replaced by some kind of quantum / noncommutative geometry at length scales and energies where quantum as well as gravitational effects are important. Motivated by this idea much research has been devoted to the study of quantum field theory on noncommutative spacetimes. More recently the focus has started to shift back to gravity in this context. We give an introductory overview to the formulation of general relativity in a noncommutative spacetime background and discuss the possibility of exact solutions. (author)

  18. Development and analysis of a twelfth degree and order gravity model for Mars

    Science.gov (United States)

    Christensen, E. J.; Balmino, G.

    1979-01-01

    Satellite geodesy techniques previously applied to artificial earth satellites have been extended to obtain a high-resolution gravity field for Mars. Two-way Doppler data collected by 10 Deep Space Network (DSN) stations during Mariner 9 and Viking 1 and 2 missions have been processed to obtain a twelfth degree and order spherical harmonic model for the martian gravitational potential. The quality of this model was evaluated by examining the rms residuals within the fit and the ability of the model to predict the spacecraft state beyond the fit. Both indicators show that more data and higher degree and order harmonics will be required to further refine our knowledge of the martian gravity field. The model presented shows much promise, since it resolves local gravity features which correlate highly with the martian topography. An isostatic analysis based on this model, as well as an error analysis, shows rather complete compensation on a global (long wavelength) scale. Though further model refinements are necessary to be certain, local (short wavelength) features such as the shield volcanos in Tharsis appear to be uncompensated. These are interpreted to place some bounds on the internal structure of Mars.

  19. The gravitational wave stress–energy (pseudo)-tensor in modified gravity

    Science.gov (United States)

    Saffer, Alexander; Yunes, Nicolás; Yagi, Kent

    2018-03-01

    The recent detections of gravitational waves by the advanced LIGO and Virgo detectors open up new tests of modified gravity theories in the strong-field and dynamical, extreme gravity regime. Such tests rely sensitively on the phase evolution of the gravitational waves, which is controlled by the energy–momentum carried by such waves out of the system. We here study four different methods for finding the gravitational wave stress–energy pseudo-tensor in gravity theories with any combination of scalar, vector, or tensor degrees of freedom. These methods rely on the second variation of the action under short-wavelength averaging, the second perturbation of the field equations in the short-wavelength approximation, the construction of an energy complex leading to a Landau–Lifshitz tensor, and the use of Noether’s theorem in field theories about a flat background. We apply these methods in general relativity, Jordan–Fierz–Brans–Dicky theoy, and Einstein-Æther theory to find the gravitational wave stress–energy pseudo-tensor and calculate the rate at which energy and linear momentum is carried away from the system. The stress–energy tensor and the rate of linear momentum loss in Einstein-Æther theory are presented here for the first time. We find that all methods yield the same rate of energy loss, although the stress–energy pseudo-tensor can be functionally different. We also find that the Noether method yields a stress–energy tensor that is not symmetric or gauge-invariant, and symmetrization via the Belinfante procedure does not fix these problems because this procedure relies on Lorentz invariance, which is spontaneously broken in Einstein-Æther theory. The methods and results found here will be useful for the calculation of predictions in modified gravity theories that can then be contrasted with observations.

  20. Conformal Gravity

    International Nuclear Information System (INIS)

    Hooft, G.

    2012-01-01

    The dynamical degree of freedom for the gravitational force is the metric tensor, having 10 locally independent degrees of freedom (of which 4 can be used to fix the coordinate choice). In conformal gravity, we split this field into an overall scalar factor and a nine-component remainder. All unrenormalizable infinities are in this remainder, while the scalar component can be handled like any other scalar field such as the Higgs field. In this formalism, conformal symmetry is spontaneously broken. An imperative demand on any healthy quantum gravity theory is that black holes should be described as quantum systems with micro-states as dictated by the Hawking-Bekenstein theory. This requires conformal symmetry that may be broken spontaneously but not explicitly, and this means that all conformal anomalies must cancel out. Cancellation of conformal anomalies yields constraints on the matter sector as described by some universal field theory. Thus black hole physics may eventually be of help in the construction of unified field theories. (author)

  1. Gravity signals from the lithosphere in the Central European Basin System

    Science.gov (United States)

    Yegorova, T.; Bayer, U.; Thybo, H.; Maystrenko, Y.; Scheck-Wenderoth, M.; Lyngsie, S. B.

    2007-01-01

    -Norwegian orogeny. The major part of the NGB is characterized by high-density lithosphere, which includes a high-velocity lower crust (relict of Baltica passive margin) overthrusted by the Avalonian terrane. The short wavelength pattern of the final residuals shows several north-west trending gravity highs between the Tornquist Zone and the Elbe Fault System. The NDB is separated by a gravity low at the Ringkøbing-Fyn high from a chain of positive anomalies in the NGB and the PT. In the NGB these anomalies correspond to the Prignitz (Rheinsberg anomaly), the Glueckstadt and Horn Graben, and they continue further west into the Central Graben, to join with the gravity high of the Central North Sea.

  2. Southern Africa Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data base (14,559 records) was received in January 1986. Principal gravity parameters include elevation and observed gravity. The observed gravity values are...

  3. NGS Absolute Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...

  4. Interpretation of gravity and magnetic data with geological constraints for 3D structure of the Thuringian Basin, Germany

    Science.gov (United States)

    Prutkin, Ilya; Vajda, Peter; Jahr, Thomas; Bleibinhaus, Florian; Novák, Pavel; Tenzer, Robert

    2017-01-01

    We apply a novel method for the separation of potential field sources and their 3D inversion at the regional study area of Thuringian Basin in central Germany. The gravity and magnetic data are separated into long, medium and short wavelengths and then inverted separately. The main goal is to study uniqueness of the solution and its stability in all numerical steps of the interpretation process and to demonstrate, how geological constraints can diminish the degree of non-uniqueness by the interpretation of the gravity and magnetic anomalies. Our numerical experiments with medium wavelengths reveal that if we explain negative anomalies with the topography of near-surface layers, the obtained solution is not supported by borehole data. These negative anomalies are thus explained by restricted bodies (granitic intrusions) at the depths from 4 down to 10 km. These bodies are located above a density interface with topography at the depth of approximately 10 km. The 3D inversion of magnetic data (at short wavelengths) allows investigating a detailed structure of the upper boundary of the crystalline basement: two uplifts in the depths between 2.0 and 0.7 km are found. By using the residual negative anomalies we further study the salt tectonics, showing that the geometry of a salt pillow with a thickness of approximately 200 m closely agrees with borehole data.

  5. Signatures of modified gravity on the 21 cm power spectrum at reionisation

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [Institut de Physique Théorique, CEA, IPhT, CNRS, URA 2306, F-91191 Gif/Yvette Cedex (France); Clesse, Sébastien; Davis, Anne-Christine, E-mail: philippe.brax@cea.fr, E-mail: s.clesse@damtp.cam.ac.uk, E-mail: a.c.davis@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2013-01-01

    Scalar modifications of gravity have an impact on the growth of structure. Baryon and Cold Dark Matter (CDM) perturbations grow anomalously for scales within the Compton wavelength of the scalar field. In the late time Universe when reionisation occurs, the spectrum of the 21 cm brightness temperature is thus affected. We study this effect for chameleon-f(R) models, dilatons and symmetrons. Although the f(R) models are more tightly constrained by solar system bounds, and effects on dilaton models are negligible, we find that symmetrons where the phase transition occurs before z{sub *} ∼ 12 could be detectable for a scalar field range as low as 5kpc. For all these models, the detection prospects of modified gravity effects are higher when considering modes parallel to the line of sight where very small scales can be probed. The study of the 21 cm spectrum thus offers a complementary approach to testing modified gravity with large scale structure surveys. Short scales, which would be highly non-linear in the very late time Universe when structure forms and where modified gravity effects are screened, appear in the linear spectrum of 21 cm physics, hence deviating from General Relativity in a maximal way.

  6. Topics in quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Lamon, Raphael

    2010-06-29

    . Furthermore, we succeed in solving the quantum Gauss constraint. In the second part of the thesis we introduce some aspects of phenomenological quantum gravity and their possible detectable signatures. The goal of phenomenological quantum gravity is to derive conclusions and make predictions from expected characteristics of a full theory of quantum gravity. One possibility is an energy-dependent speed of light arising from a quantized space such that the propagation time of two photons differs. However, the amount of these corrections is very small such that only cosmological distances can be considered. Gamma-ray bursts (GRB) are ideal candidates as they are short but very luminous bursts of gamma-rays taking place at distances billions of light-years away. We study GRBs detected by the European satellite INTEGRAL and develop a new method to analyze unbinned data. A {chi}{sup 2}-test will provide a lower bound for quantum gravity corrections, which will be nevertheless well below the Planck mass. Then we shall study the sensibility of NASA's new satellite Fermi Gamma-ray Space Telescope and conclude that it is well suited to detect corrections. This prediction has just been confirmed when Fermi detected a very energetic photon emanating from GRB 090510 which highly constrains models with linear corrections to the speed of light. However, as it is shown at the end of this thesis, more bursts are needed in order to definitely falsify such models. (orig.)

  7. Topics in quantum gravity

    International Nuclear Information System (INIS)

    Lamon, Raphael

    2010-01-01

    succeed in solving the quantum Gauss constraint. In the second part of the thesis we introduce some aspects of phenomenological quantum gravity and their possible detectable signatures. The goal of phenomenological quantum gravity is to derive conclusions and make predictions from expected characteristics of a full theory of quantum gravity. One possibility is an energy-dependent speed of light arising from a quantized space such that the propagation time of two photons differs. However, the amount of these corrections is very small such that only cosmological distances can be considered. Gamma-ray bursts (GRB) are ideal candidates as they are short but very luminous bursts of gamma-rays taking place at distances billions of light-years away. We study GRBs detected by the European satellite INTEGRAL and develop a new method to analyze unbinned data. A χ 2 -test will provide a lower bound for quantum gravity corrections, which will be nevertheless well below the Planck mass. Then we shall study the sensibility of NASA's new satellite Fermi Gamma-ray Space Telescope and conclude that it is well suited to detect corrections. This prediction has just been confirmed when Fermi detected a very energetic photon emanating from GRB 090510 which highly constrains models with linear corrections to the speed of light. However, as it is shown at the end of this thesis, more bursts are needed in order to definitely falsify such models. (orig.)

  8. Newtonian gravity in loop quantum gravity

    OpenAIRE

    Smolin, Lee

    2010-01-01

    We apply a recent argument of Verlinde to loop quantum gravity, to conclude that Newton's law of gravity emerges in an appropriate limit and setting. This is possible because the relationship between area and entropy is realized in loop quantum gravity when boundaries are imposed on a quantum spacetime.

  9. Wavelength conversion technology

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    1998-01-01

    Optical wavelength conversion is currently attracting much interest. This is because it enables full flexibility and eases management of WDM fibre networks. The tutorial will review existing and potential application areas. Examples of node architectures and network demonstrators that use wavelen...

  10. Wavelength-stepped, actively mode-locked fiber laser based on wavelength-division-multiplexed optical delay lines

    Science.gov (United States)

    Lee, Eunjoo; Kim, Byoung Yoon

    2017-12-01

    We propose a new scheme for an actively mode-locked wavelength-swept fiber laser that produces a train of discretely wavelength-stepped pulses from a short fiber cavity. Pulses with different wavelengths are split and combined by standard wavelength division multiplexers with fiber delay lines. As a proof of concept, we demonstrate a laser using an erbium doped fiber amplifier and commercially available wavelength-division multiplexers with wavelength spacing of 0.8 nm. The results show simultaneous mode-locking at three different wavelengths. Laser output parameters in time domain, optical and radio frequency spectral domain, and the noise characteristics are presented. Suggestions for the improved design are discussed.

  11. Wavelength sweepable laser source

    DEFF Research Database (Denmark)

    2014-01-01

    Wavelength sweepable laser source is disclosed, wherein the laser source is a semiconductor laser source adapted for generating laser light at a lasing wavelength. The laser source comprises a substrate, a first reflector, and a second reflector. The first and second reflector together defines...... and having a rest position, the second reflector and suspension together defining a microelectromechanical MEMS oscillator. The MEMS oscillator has a resonance frequency and is adapted for oscillating the second reflector on either side of the rest position.; The laser source further comprises electrical...... connections adapted for applying an electric field to the MEMS oscillator. Furthermore, a laser source system and a method of use of the laser source are disclosed....

  12. Bringing Gravity to Space

    Science.gov (United States)

    Norsk, P.; Shelhamer, M.

    2016-01-01

    This panel will present NASA's plans for ongoing and future research to define the requirements for Artificial Gravity (AG) as a countermeasure against the negative health effects of long-duration weightlessness. AG could mitigate the gravity-sensitive effects of spaceflight across a host of physiological systems. Bringing gravity to space could mitigate the sensorimotor and neuro-vestibular disturbances induced by G-transitions upon reaching a planetary body, and the cardiovascular deconditioning and musculoskeletal weakness induced by weightlessness. Of particular interest for AG during deep-space missions is mitigation of the Visual Impairment Intracranial Pressure (VIIP) syndrome that the majority of astronauts exhibit in space to varying degrees, and which presumably is associated with weightlessness-induced fluid shift from lower to upper body segments. AG could be very effective for reversing the fluid shift and thus help prevent VIIP. The first presentation by Dr. Charles will summarize some of the ground-based and (very little) space-based research that has been conducted on AG by the various space programs. Dr. Paloski will address the use of AG during deep-space exploration-class missions and describe the different AG scenarios such as intra-vehicular, part-of-vehicle, or whole-vehicle centrifugations. Dr. Clement will discuss currently planned NASA research as well as how to coordinate future activities among NASA's international partners. Dr. Barr will describe some possible future plans for using space- and ground-based partial-G analogs to define the relationship between physiological responses and G levels between 0 and 1. Finally, Dr. Stenger will summarize how the human cardiovascular system could benefit from intermittent short-radius centrifugations during long-duration missions.

  13. The Cause of Gravity

    OpenAIRE

    Byrne, Michael

    1999-01-01

    Einstein said that gravity is an acceleration like any other acceleration. But gravity causes relativistic effects at non-relativistic speeds; so gravity could have relativistic origins. And since the strong force is thought to cause most of mass, and mass is proportional to gravity; the strong force is therefore also proportional to gravity. The strong force could thus cause relativistic increases of mass through the creation of virtual gluons; along with a comparable contraction of space ar...

  14. Connected magma plumbing system between Cerro Negro and El Hoyo Complex, Nicaragua revealed by gravity survey

    Science.gov (United States)

    MacQueen, Patricia; Zurek, Jeffrey; Williams-Jones, Glyn

    2016-11-01

    Cerro Negro, near León, Nicaragua is a young, relatively small basaltic cinder cone volcano that has been unusually active during its short lifespan. Multiple explosive eruptions have deposited significant amounts of ash on León and the surrounding rural communities. While a number of studies investigate the geochemistry and stress regime of the volcano, subsurface structures have only been studied by diffuse soil gas surveys. These studies have raised several questions as to the proper classification of Cerro Negro and its relation to neighboring volcanic features. To address these questions, we collected 119 gravity measurements around Cerro Negro volcano in an attempt to delineate deep structures at the volcano. The resulting complete Bouguer anomaly map revealed local positive gravity anomalies (wavelength 0.5 to 2 km, magnitude +4 mGal) and regional positive (10 km wavelength, magnitudes +10 and +8 mGal) and negative (12 and 6 km wavelength, magnitudes -18 and -13 mGal) Bouguer anomalies. Further analysis of these gravity data through inversion has revealed both local and regional density anomalies that we interpret as intrusive complexes at Cerro Negro and in the Nicaraguan Volcanic Arc. The local density anomalies at Cerro Negro have a density of 2700 kg m-3 (basalt) and are located between -250 and -2000 m above sea level. The distribution of recovered density anomalies suggests that eruptions at Cerro Negro may be tapping an interconnected magma plumbing system beneath El Hoyo, Cerro La Mula, and Cerro Negro, and more than seven other proximal volcanic features, implying that Cerro Negro should be considered the newest cone of a Cerro Negro-El Hoyo volcanic complex.

  15. Seeding and layering of equatorial spread F by gravity waves

    International Nuclear Information System (INIS)

    Hysell, D.L.; Kelley, M.C.; Swartz, W.E.; Woodman, R.F.

    1990-01-01

    Studies dating back more than 15 years have presented evidence that atmospheric gravity waves play a role in initiating nighttime equatorial F region instabilities. This paper analyzes a spectabular spread F event that for the first time demonstrates a layering which, the authors argue, is controlled by a gravity wave effect. The 50-km vertical wavelength of a gravity wave which they have found is related theoretically to a plasma layering irregularity that originated at low altitudes and then was convected, intact, to higher altitudes. Gravity waves also seem to have determined bottomside intermediate scale undulations, although this fact is not as clear in the data. The neutral wind dynamo effect yields wave number conditions on the gravity wave's ability to modulate the Rayleigh-Taylor instaiblity process. Finally, after evaluating the gravity wave dispersion relation and spatial resonance conditions, we estimate the properties of the seeding wave

  16. Global gravity field from recent satellites (DTU15) - Arctic improvements

    DEFF Research Database (Denmark)

    Andersen, O. B.; Knudsen, P.; Kenyon, S.

    2017-01-01

    Global marine gravity field modelling using satellite altimetry is currently undergoing huge improvement with the completion of the Jason-1 end-of-life geodetic mission, but particularly with the continuing Cryosat-2 mission. These new satellites provide three times as many geodetic mission...... altimetric sea surface height observations as ever before. The impact of these new geodetic mission data is a dramatic improvement of particularly the shorter wavelength of the gravity field (10-20 km) which is now being mapped at significantly higher accuracy. The quality of the altimetric gravity field...... is in many places surpassing the quality of gravity fields derived using non-commercial marine gravity observations. Cryosat-2 provides for the first time altimetry throughout the Arctic Ocean up to 88°N. Here, the huge improvement in marine gravity mapping is shown through comparison with high quality...

  17. Spectral analysis of the gravity and topography of Mars

    Science.gov (United States)

    Bills, Bruce G.; Frey, Herbert V.; Kiefer, Walter S.; Nerem, R. Steven; Zuber, Maria T.

    1993-01-01

    New spherical harmonic models of the gravity and topography of Mars place important constraints on the structure and dynamics of the interior. The gravity and topography models are significantly phase coherent for harmonic degrees n less than 30 (wavelengths greater than 700 km). Loss of coherence below that wavelength is presumably due to inadequacies of the models, rather than a change in behavior of the planet. The gravity/topography admittance reveals two very different spectral domains: for n greater than 4, a simple Airy compensation model, with mean depth of 100 km, faithfully represents the observed pattern; for degrees 2 and 3, the effective compensation depths are 1400 and 550 km, respectively, strongly arguing for dynamic compensation at those wavelengths. The gravity model has been derived from a reanalysis of the tracking data for Mariner 9 and the Viking Orbiters, The topography model was derived by harmonic analysis of the USGS digital elevation model of Mars. Before comparing gravity and topography for internal structure inferences, we must ensure that both are consistently referenced to a hydrostatic datum. For the gravity, this involves removal of hydrostatic components of the even degree zonal coefficients. For the topography, it involves adding the degree 4 equipotential reference surface, to get spherically referenced values, and then subtracting the full degree 50 equipotential. Variance spectra and phase coherence of orthometric heights and gravity anomalies are addressed.

  18. MIT wavelength tables. Volume 2. Wavelengths by element

    International Nuclear Information System (INIS)

    Phelps, F.M. III.

    1982-01-01

    This volume is the first stage of a project to expand and update the MIT wavelength tables first compiled in the 1930's. For 109,325 atomic emission lines, arranged by element, it presents wavelength in air, wavelength in vacuum, wave number and intensity. All data are stored on computer-readable magnetic tape

  19. Chiral gravity, log gravity, and extremal CFT

    International Nuclear Information System (INIS)

    Maloney, Alexander; Song Wei; Strominger, Andrew

    2010-01-01

    We show that the linearization of all exact solutions of classical chiral gravity around the AdS 3 vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.

  20. Gravity/Fluid Correspondence and Its Application on Bulk Gravity with U(1) Gauge Field

    International Nuclear Information System (INIS)

    Hu, Ya-Peng; Zhang, Jian-Hui

    2014-01-01

    As the long wavelength limit of the AdS/CFT correspondence, the gravity/fluid correspondence has been shown to be a useful tool for extracting properties of the fluid on the boundary dual to the gravity in the bulk. In this paper, after briefly reviewing the algorithm of gravity/fluid correspondence, we discuss the results of its application on bulk gravity with a U(1) gauge field. In the presence of a U(1) gauge field, the dual fluid possesses more interesting properties such as its charge current. Furthermore, an external field A_μ"e"x"t could affect the charge current, and the U(1) Chern-Simons term also induces extra structures to the dual current giving anomalous transport coefficients.

  1. Propagation and Breaking at High Altitudes of Gravity Waves Excited by Tropospheric Forcing

    Science.gov (United States)

    Prusa, Joseph M.; Smolarkiewicz, Piotr K.; Garcia, Rolando R.

    1996-01-01

    An anelastic approximation is used with a time-variable coordinate transformation to formulate a two-dimensional numerical model that describes the evolution of gravity waves. The model is solved using a semi-Lagrangian method with monotone (nonoscillatory) interpolation of all advected fields. The time-variable transformation is used to generate disturbances at the lower boundary that approximate the effect of a traveling line of thunderstorms (a squall line) or of flow over a broad topographic obstacle. The vertical propagation and breaking of the gravity wave field (under conditions typical of summer solstice) is illustrated for each of these cases. It is shown that the wave field at high altitudes is dominated by a single horizontal wavelength; which is not always related simply to the horizontal dimension of the source. The morphology of wave breaking depends on the horizontal wavelength; for sufficiently short waves, breaking involves roughly one half of the wavelength. In common with other studies, it is found that the breaking waves undergo "self-acceleration," such that the zonal-mean intrinsic frequency remains approximately constant in spite of large changes in the background wind. It is also shown that many of the features obtained in the calculations can be understood in terms of linear wave theory. In particular, linear theory provides insights into the wavelength of the waves that break at high altitudes, the onset and evolution of breaking. the horizontal extent of the breaking region and its position relative to the forcing, and the minimum and maximum altitudes where breaking occurs. Wave breaking ceases at the altitude where the background dissipation rate (which in our model is a proxy for molecular diffusion) becomes greater than the rate of dissipation due to wave breaking, This altitude, in effect, the model turbopause, is shown to depend on a relatively small number of parameters that characterize the waves and the background state.

  2. Quantum W3 gravity

    International Nuclear Information System (INIS)

    Schoutens, K.; van Nieuwenhuizen, P.; State Univ. of New York, Stony Brook, NY

    1991-11-01

    We briefly review some results in the theory of quantum W 3 gravity in the chiral gauge. We compare them with similar results in the analogous but simpler cases of d = 2 induced gauge theories and d = 2 induced gravity

  3. Urine specific gravity test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...

  4. Cadiz, California Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (32 records) were gathered by Mr. Seth I. Gutman for AridTech Inc., Denver, Colorado using a Worden Prospector gravity meter. This data base...

  5. Andes 1997 Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Central Andes gravity data (6,151 records) were compiled by Professor Gotze and the MIGRA Group. This data base was received in April, 1997. Principal gravity...

  6. DNAG Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Decade of North American Geology (DNAG) gravity grid values, spaced at 6 km, were used to produce the Gravity Anomaly Map of North America (1987; scale...

  7. Gravity wave astronomy

    International Nuclear Information System (INIS)

    Pinheiro, R.

    1979-01-01

    The properties and production of gravitational radiation are described. The prospects for their detection are considered including the Weber apparatus and gravity-wave telescopes. Possibilities of gravity-wave astronomy are noted

  8. Northern Oklahoma Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (710 records) were compiled by Professor Ahern. This data base was received in June 1992. Principal gravity parameters include latitude,...

  9. Idaho State Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (24,284 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity...

  10. Strings and quantum gravity

    International Nuclear Information System (INIS)

    Vega, H.J. de

    1990-01-01

    One of the main challenges in theoretical physics today is the unification of all interactions including gravity. At present, string theories appear as the most promising candidates to achieve such a unification. However, gravity has not completely been incorporated in string theory, many technical and conceptual problems remain and a full quantum theory of gravity is still non-existent. Our aim is to properly understand strings in the context of quantum gravity. Attempts towards this are reviewed. (author)

  11. Geometric Liouville gravity

    International Nuclear Information System (INIS)

    La, H.

    1992-01-01

    A new geometric formulation of Liouville gravity based on the area preserving diffeo-morphism is given and a possible alternative to reinterpret Liouville gravity is suggested, namely, a scalar field coupled to two-dimensional gravity with a curvature constraint

  12. Covariant w∞ gravity

    NARCIS (Netherlands)

    Bergshoeff, E.; Pope, C.N.; Stelle, K.S.

    1990-01-01

    We discuss the notion of higher-spin covariance in w∞ gravity. We show how a recently proposed covariant w∞ gravity action can be obtained from non-chiral w∞ gravity by making field redefinitions that introduce new gauge-field components with corresponding new gauge transformations.

  13. Induced quantum conformal gravity

    International Nuclear Information System (INIS)

    Novozhilov, Y.V.; Vassilevich, D.V.

    1988-11-01

    Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs

  14. Quantum Gravity Phenomenology

    OpenAIRE

    Amelino-Camelia, Giovanni

    2003-01-01

    Comment: 9 pages, LaTex. These notes were prepared while working on an invited contribution to the November 2003 issue of Physics World, which focused on quantum gravity. They intend to give a non-technical introduction (accessible to readers from outside quantum gravity) to "Quantum Gravity Phenomenology"

  15. Gravity is Geometry.

    Science.gov (United States)

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  16. Bouguer gravity trends and crustal structure of the Palmyride Mountain belt and surrounding northern Arabian platform in Syria

    Science.gov (United States)

    Best, John A.; Barazangi, Muawia; Al-Saad, Damen; Sawaf, Tarif; Gebran, Ali

    1990-12-01

    This study examines the crustal structure of the Palmyrides and the northern Arabian platform in Syria by two- and three-dimensional modeling of the Bouguer gravity anomalies. Results of the gravity modeling indicate that (1) western Syria is composed of at least two different crustal blocks, (2) the southern crustal block is penetrated by a series of crustal-scale, high-density intrusive complexes, and (3) short-wavelength gravity anomalies in the southwest part of the mountain belt are clearly related to basement structure. The crustal thickness in Syria, as modeled on the gravity profiles, is approximately 40 ±4 km, which is similar to crustal thicknesses interpreted from refraction data in Jordan and Saudi Arabia. The different crustal blocks and large-scale mafic intrusions are best explained, though not uniquely, by Proterozoic convergence and suturing and early Paleozoic rifting, as interpreted in the exposed rocks of the Arabian shield. These two processes, combined with documented Mesozoic rifting and Cenozoic transpression, compose the crustal evolution of the northern Arabian platform beneath Syria.

  17. Bouguer gravity trends and crustal structure of the Palmyride Mountain belt and surrounding northern Arabian platform in Syria

    Energy Technology Data Exchange (ETDEWEB)

    Best, J.A.; Barazangi, M. (Cornell Univ., Ithaca, NY (USA)); Al-Saad, D.; Sawaf, T.; Gebran, A. (Syrian Petroleum Company, Damascus (Syria))

    1990-12-01

    This study examines the crustal structure of the Palmyrides and the northern Arabian platform in Syria by two- and three-dimensional modeling of the Bouguer gravity anomalies. Results of the gravity modeling indicate that (1) western Syria is composed of at least two different crustal blocks, (2) the southern crustal block is penetrated by a series of crustal-scale, high-density intrusive complexes, and (3) short-wavelength gravity anomalies in the southwest part of the mountain belt are clearly related to basement structure. The crustal thickness in Syria, as modeled on the gravity profiles, is approximately 40{plus minus}4 km, which is similar to crustal thicknesses interpreted from refraction data in Jordan and Saudi Arabia. The different crustal blocks and large-scale mafic intrusions are best explained, though not uniquely, by Proterozoic convergence and suturing and early Paleozoic rifting, as interpreted in the exposed rocks of the Arabian shield. These two processes, combined with documented Mesozoic rifting and Cenozoic transpression, compose the crustal evolution of the northern Arabian platform beneath Syria.

  18. New Bouguer Gravity Maps of Venezuela: Representation and Analysis of Free-Air and Bouguer Anomalies with Emphasis on Spectral Analyses and Elastic Thickness

    OpenAIRE

    Sanchez-Rojas, Javier

    2012-01-01

    A new gravity data compilation for Venezuela was processed and homogenized. Gravity was measured in reference to the International Gravity Standardization Net 1971, and the complete Bouguer anomaly was calculated by using the Geodetic Reference System 1980 and 2.67 Mg/m3. A regional gravity map was computed by removing wavelengths higher than 200 km from the Bouguer anomaly. After the anomaly separation, regional and residual Bouguer gravity fields were then critically discussed in term of th...

  19. A case study of typhoon-induced gravity waves and the orographic impacts related to Typhoon Mindulle (2004) over Taiwan

    OpenAIRE

    Wu, J. F.; Xue, X. H.; Hoffmann, L.; Dou, X. K.; Li, H. M.; Chen, T. D.

    2015-01-01

    Atmospheric gravity waves (GWs) significantly influence global circulation. Deep convection, particularly that associated with typhoons, is believed to be an important source of gravity waves. Stratospheric gravity waves induced by Typhoon Mindulle (2004) were detected by the Atmospheric Infrared Sounder (AIRS). Semicircular GWs with horizontal wavelengths of 100–400 km were found over Taiwan through an inspection of AIRS radiances at 4.3 μm. Characteristics of the stratospheric gravity waves...

  20. High energy scattering in gravity and supergravity

    DEFF Research Database (Denmark)

    B. Giddings, Steven; Schmidt-Sommerfeld, Maximilian; Andersen, Jeppe Rosenkrantz

    2010-01-01

    We investigate features of perturbative gravity and supergravity by studying scattering in the ultraplanckian limit, and sharpen arguments that the dynamics is governed by long-distance physics. A simple example capturing aspects of the eikonal resummation suggests why short distance phenomena...... and in particular divergences or nonrenormalizability do not necessarily play a central role in this regime. A more profound problem is apparently unitarity. These considerations can be illustrated by showing that known gravity and supergravity amplitudes have the same long-distance behavior, despite the extra...... a physical scattering process, and ultraplanckian scattering exhibiting Regge behavior. These arguments sharpen the need to find a nonperturbative completion of gravity with mechanisms which restore unitarity in the strong gravity regime....

  1. Quantum and gravity. Blend or melange?

    Energy Technology Data Exchange (ETDEWEB)

    Wuethrich, Christian [University of Geneva (Switzerland)

    2016-07-01

    Do we need to quantize gravity, as it is tacitly assumed in much of fundamental physics? The standard lore falls short of justifying an affirmative answer. Black hole thermodynamics is widely considered, faint though it may be, our firmest hint at a quantum theory of gravity - despite the failure to date to observe Hawking radiation or any other effect that would require going beyond a classical description of black holes. Hawking radiation hitherto merely enjoys a theoretical derivation in a semi-classical theory combining quantum matter with classical gravity. But how can a semi-classical melange of physical principles possibly justify that the quantum and gravity are blended into a unified fundamental theory when the latter is generally expected to reject at least some of the principles in the former?.

  2. Scales of gravity

    International Nuclear Information System (INIS)

    Dvali, Gia; Kolanovic, Marko; Nitti, Francesco; Gabadadze, Gregory

    2002-01-01

    We propose a framework in which the quantum gravity scale can be as low as 10 -3 eV. The key assumption is that the standard model ultraviolet cutoff is much higher than the quantum gravity scale. This ensures that we observe conventional weak gravity. We construct an explicit brane-world model in which the brane-localized standard model is coupled to strong 5D gravity of infinite-volume flat extra space. Because of the high ultraviolet scale, the standard model fields generate a large graviton kinetic term on the brane. This kinetic term 'shields' the standard model from the strong bulk gravity. As a result, an observer on the brane sees weak 4D gravity up to astronomically large distances beyond which gravity becomes five dimensional. Modeling quantum gravity above its scale by the closed string spectrum we show that the shielding phenomenon protects the standard model from an apparent phenomenological catastrophe due to the exponentially large number of light string states. The collider experiments, astrophysics, cosmology and gravity measurements independently point to the same lower bound on the quantum gravity scale, 10 -3 eV. For this value the model has experimental signatures both for colliders and for submillimeter gravity measurements. Black holes reveal certain interesting properties in this framework

  3. Infinite derivative gravity : non-singular cosmology & blackhole solutions

    NARCIS (Netherlands)

    Mazumdar, Anupam

    2017-01-01

    Both Einstein's theory of General Relativity and Newton's theory of gravity possess a short dis- tance and small time scale catastrophe. The blackhole singularity and cosmological Big Bang singularity problems highlight that current theories of gravity are incomplete description at early times and

  4. Einstein gravity emerging from quantum weyl gravity

    International Nuclear Information System (INIS)

    Zee, A.

    1983-01-01

    We advocate a conformal invariant world described by the sum of the Weyl, Dirac, and Yang-Mills action. Quantum fluctuations bring back Einstein gravity so that the long-distance phenomenology is as observed. Formulas for the induced Newton's constant and Eddington's constant are derived in quantized Weyl gravity. We show that the analogue of the trace anomaly for the Weyl action is structurally similar to that for the Yang-Mills action

  5. What can be learned about the lunar mantle from the Gravity Recovery and Interior Laboratory (GRAIL)?

    Science.gov (United States)

    Zuber, M. T.; Smith, D. E.; Asmar, S. W.; Konopliv, A. S.; Lemoine, F. G.; Melosh, J.; Neumann, G. A.; Phillips, R. J.; Solomon, S. C.; Watkins, M. M.; Wieczorek, M. A.; Williams, J. G.; Andrews-Hanna, J. C.; Garrick-Bethell, I.; Head, J. W.; Kiefer, W. S.; Matsuyama, I.; McGovern, P. J.; Nimmo, F.; Soderblom, J. M.; Taylor, J.; Weber, R. C.; Goossens, S. J.; Kruizinga, G. L.; Mazarico, E.; Park, R. S.; Yuan, D.

    2013-12-01

    The Gravity Recovery and Interior Laboratory (GRAIL), a dual-spacecraft, gravity-mapping mission that is a component of NASA's Discovery Program, has successfully concluded its Primary and Extended Missions, and is currently in the science analysis phase. In order to safely navigate the dual spacecraft at an average altitude of 22.5 km above the lunar surface during the Extended Mission phase in the fall of 2012, and to derive the greatest information from the full mission data set, the focus had been on the production of gravitational fields with the highest-possible resolution. Spherical harmonic models of the Moon's gravitational field, produced by separate software systems at the Goddard Space Flight Center and the Jet Propulsion Laboratory, now include observations from both the Primary and Extended Missions. The highest-resolution models to date are to degree and order 900, corresponding to a spatial block size of 6 km, and are ideally suited to study the structure of the Moon's crust in extraordinary detail. GRAIL has achieved all measurement objectives for the Primary Mission, enabling all science investigations to be addressed. One of these investigations is to study the lunar hemispherical asymmetry, i.e., the difference between the nearside and farside. In this study we explore the nearside and farside mantle by isolating the long-wavelength gravity field. We accomplish this objective by removing plausible short-wavelength contributions from the crust that were based on the full resolution of high-degree and -order models, and by considering constraints from crustal compositions and volumes of mare basalt deposits. We localize the power spectral contributions of the nearside and farside to constrain lateral density variations, such as those associated with melting from the source regions of the mare basalts.

  6. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. I. ACOUSTIC AND INERTIA-GRAVITY WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)

    2014-07-01

    This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.

  7. Magnetic Fields Versus Gravity

    Science.gov (United States)

    Hensley, Kerry

    2018-04-01

    Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal

  8. New standards for reducing gravity data: The North American gravity database

    Science.gov (United States)

    Hinze, W. J.; Aiken, C.; Brozena, J.; Coakley, B.; Dater, D.; Flanagan, G.; Forsberg, R.; Hildenbrand, T.; Keller, Gordon R.; Kellogg, J.; Kucks, R.; Li, X.; Mainville, A.; Morin, R.; Pilkington, M.; Plouff, D.; Ravat, D.; Roman, D.; Urrutia-Fucugauchi, J.; Veronneau, M.; Webring, M.; Winester, D.

    2005-01-01

    The North American gravity database as well as databases from Canada, Mexico, and the United States are being revised to improve their coverage, versatility, and accuracy. An important part of this effort is revising procedures for calculating gravity anomalies, taking into account our enhanced computational power, improved terrain databases and datums, and increased interest in more accurately defining long-wavelength anomaly components. Users of the databases may note minor differences between previous and revised database values as a result of these procedures. Generally, the differences do not impact the interpretation of local anomalies but do improve regional anomaly studies. The most striking revision is the use of the internationally accepted terrestrial ellipsoid for the height datum of gravity stations rather than the conventionally used geoid or sea level. Principal facts of gravity observations and anomalies based on both revised and previous procedures together with germane metadata will be available on an interactive Web-based data system as well as from national agencies and data centers. The use of the revised procedures is encouraged for gravity data reduction because of the widespread use of the global positioning system in gravity fieldwork and the need for increased accuracy and precision of anomalies and consistency with North American and national databases. Anomalies based on the revised standards should be preceded by the adjective "ellipsoidal" to differentiate anomalies calculated using heights with respect to the ellipsoid from those based on conventional elevations referenced to the geoid. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  9. Radiative flux calculations at UV and visible wavelengths

    International Nuclear Information System (INIS)

    Grossman, A.S.; Grant, K.E.; Wuebbles, D.J.

    1993-10-01

    A radiative transfer model to calculate the short wavelength fluxes at altitudes between 0 and 80 km has been developed at LLNL. The wavelength range extends from 175--735 nm. This spectral range covers the UV-B wavelength region, 250--350 nm, with sufficient resolution to allow comparison of UV-B measurements with theoretical predictions. Validation studies for the model have been made for both UV-B ground radiation calculations and tropospheric solar radiative forcing calculations for various ozone distributions. These studies indicate that the model produces results which agree well with respect to existing UV calculations from other published models

  10. Lower dimensional gravity

    International Nuclear Information System (INIS)

    Brown, J.D.

    1988-01-01

    This book addresses the subject of gravity theories in two and three spacetime dimensions. The prevailing philosophy is that lower dimensional models of gravity provide a useful arena for developing new ideas and insights, which are applicable to four dimensional gravity. The first chapter consists of a comprehensive introduction to both two and three dimensional gravity, including a discussion of their basic structures. In the second chapter, the asymptotic structure of three dimensional Einstein gravity with a negative cosmological constant is analyzed. The third chapter contains a treatment of the effects of matter sources in classical two dimensional gravity. The fourth chapter gives a complete analysis of particle pair creation by electric and gravitational fields in two dimensions, and the resulting effect on the cosmological constant

  11. Gravity interpretation via EULDPH

    International Nuclear Information System (INIS)

    Ebrahimzadeh Ardestani, V.

    2003-01-01

    Euler's homogeneity equation for determining the coordinates of the source body especially to estimate the depth (EULDPH) is discussed at this paper. This method is applied to synthetic and high-resolution real data such as gradiometric or microgravity data. Low-quality gravity data especially in the areas with a complex geology structure has rarely been used. The Bouguer gravity anomalies are computed from absolute gravity data after the required corrections. Bouguer anomaly is transferred to residual gravity anomaly. The gravity gradients are estimated from residual anomaly values. Bouguer anomaly is the gravity gradients, using EULDPH. The coordinates of the perturbing body will be determined. Two field examples one in the east of Tehran (Mard Abad) where we would like to determine the location of the anomaly (hydrocarbon) and another in the south-east of Iran close to the border with Afghanistan (Nosrat Abad) where we are exploring chromite are presented

  12. Anomalies and gravity

    International Nuclear Information System (INIS)

    Mielke, Eckehard W.

    2006-01-01

    Anomalies in Yang-Mills type gauge theories of gravity are reviewed. Particular attention is paid to the relation between the Dirac spin, the axial current j5 and the non-covariant gauge spin C. Using diagrammatic techniques, we show that only generalizations of the U(1)- Pontrjagin four-form F and F = dC arise in the chiral anomaly, even when coupled to gravity. Implications for Ashtekar's canonical approach to quantum gravity are discussed

  13. A 70th Degree Lunar Gravity Model (GLGM-2) from Clementine and other tracking data

    Science.gov (United States)

    Lemonie, Frank G. R.; Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.

    1997-01-01

    A spherical harmonic model of the lunar gravity field complete to degree and order 70 has been developed from S band Doppler tracking data from the Clementine mission, as well as historical tracking data from Lunar Orbiters 1-5 and the Apollo 15 and 16 subsatellites. The model combines 361,000 Doppler observations from Clementine with 347,000 historical observations. The historical data consist of mostly 60-s Doppler with a noise of 0.25 to several mm/s. The Clementine data consist of mostly 10-s Doppler data, with a data noise of 0.25 mm/s for the observations from the Deep Space Network, and 2.5 mm/s for the data from a naval tracking station at Pomonkey, Maryland. Observations provided Clementine, provide the strongest satellite constraint on the Moon's low-degree field. In contrast the historical data, collected by spacecraft that had lower periapsis altitudes, provide distributed regions of high-resolution coverage within +/- 29 deg of the nearside lunar equator. To obtain the solution for a high-degree field in the absence of a uniform distribution of observations, we applied an a priori power law constraint of the form 15 x 10(exp -5)/sq l which had the effect of limiting the gravitational power and noise at short wavelengths. Coefficients through degree and order 18 are not significantly affected by the constraint, and so the model permits geophysical analysis of effects of the major basins at degrees 10-12. The GLGM-2 model confirms major features of the lunar gravity field shown in previous gravitational field models but also reveals significantly more detail, particularly at intermediate wavelengths (10(exp 3) km). Free-air gravity anomaly maps derived from the new model show the nearside and farside highlands to be gravitationally smooth, reflecting a state of isostatic compensation. Mascon basins (including Imbrium, Serenitatis, Crisium, Smythii, and Humorum) are denoted by gravity highs first recognized from Lunar Orbiter tracking. All of the major

  14. Waste Isolation Pilot Plant (WIPP) site gravity survey and interpretation

    International Nuclear Information System (INIS)

    Barrows, L.J.; Fett, J.D.

    1983-04-01

    A portion of the WIPP site has been extensively surveyed with high-precision gravity. The main survey (in T22S, R31E) covered a rectangular area 2 by 4-1/3 mi encompassing all of WIPP site Zone II and part of the disturbed zone to the north of the site. Stations were at 293-ft intervals along 13 north-south lines 880 ft apart. The data are considered accurate to within a few hundredths of a milligal. Long-wavelength gravity anomalies correlate well with seismic time structures on horizons below the Castile Formation. Both the gravity anomalies and the seismic time structures are interpreted as resulting from related density and velocity variations within the Ochoan Series. Shorter wavelength negative gravity anomalies are interpreted as resulting from bulk density alteration in the vicinity of karst conduits. The WIPP gravity survey was unable to resolve low-amplitude, long-wavelength anomalies that should result from the geologic structures within the disturbed zone. It did indicate the degree and character of karst development within the surveyed area

  15. influence of gravity

    Directory of Open Access Journals (Sweden)

    Animesh Mukherjee

    1991-01-01

    Full Text Available Based upon Biot's [1965] theory of initial stresses of hydrostatic nature produced by the effect of gravity, a study is made of surface waves in higher order visco-elastic media under the influence of gravity. The equation for the wave velocity of Stonely waves in the presence of viscous and gravitational effects is obtained. This is followed by particular cases of surface waves including Rayleigh waves and Love waves in the presence of viscous and gravity effects. In all cases the wave-velocity equations are found to be in perfect agreement with the corresponding classical results when the effects of gravity and viscosity are neglected.

  16. Gravity inversion code

    International Nuclear Information System (INIS)

    Burkhard, N.R.

    1979-01-01

    The gravity inversion code applies stabilized linear inverse theory to determine the topography of a subsurface density anomaly from Bouguer gravity data. The gravity inversion program consists of four source codes: SEARCH, TREND, INVERT, and AVERAGE. TREND and INVERT are used iteratively to converge on a solution. SEARCH forms the input gravity data files for Nevada Test Site data. AVERAGE performs a covariance analysis on the solution. This document describes the necessary input files and the proper operation of the code. 2 figures, 2 tables

  17. Classical Weyl transverse gravity

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)

    2017-05-15

    We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)

  18. Gravity-darkening in the Algol system

    International Nuclear Information System (INIS)

    Kopal, Z.

    1979-01-01

    Infrared observations of the secondary minimum of the eclipsing system of Algol, secured recently by Nadeau et al. (1978) with the 200 in and 60 in reflectors of Mount Wilson and Palomar Observatories at the effective wavelength of 10 μm, show its light curve to be distinctly dish-shaped i.e. the light diminishes relatively fast in the early stages of the eclipse, and its rate of decline slows down in advanced partial phases. This fact indicates convincingly that the light distribution over the apparent disc of Algol's late-type (contact) component is akin to that produced by the phenomenon of 'gravity-darkening' to a very pronounced degree. An analysis of Algol's infrared light curve during the secondary minimum (when its contact component undergoes eclipse by its nearly spherical mate) observed at an effective wavelength of 10μm, discloses now that the (monochromatic) coefficient of the linear law of gravity-darkening, characterizing the distribution of brightness over the apparent disc of the contact star, comes out again at least twice as large as one which would correspond to a purely radiative energy transfer of total light in the far interior of this star. No physical theory can be advanced to explain this fact - except, possibly, a hypothesis that the observed enhancement of the monochromatic coefficient tau of gravity-darkening over that appropriate for total radiation may be caused by a very wide departure of the outer layer of the respective stars from thermodynamic equilibrium. (Auth.)

  19. Topology optimised wavelength dependent splitters

    DEFF Research Database (Denmark)

    Hede, K. K.; Burgos Leon, J.; Frandsen, Lars Hagedorn

    A photonic crystal wavelength dependent splitter has been constructed by utilising topology optimisation1. The splitter has been fabricated in a silicon-on-insulator material (Fig. 1). The topology optimised wavelength dependent splitter demonstrates promising 3D FDTD simulation results....... This complex photonic crystal structure is very sensitive against small fabrication variations from the expected topology optimised design. A wavelength dependent splitter is an important basic building block for high-performance nanophotonic circuits. 1J. S. Jensen and O. Sigmund, App. Phys. Lett. 84, 2022...

  20. AWG Filter for Wavelength Interrogator

    Science.gov (United States)

    Black, Richard J. (Inventor); Costa, Joannes M. (Inventor); Faridian, Fereydoun (Inventor); Moslehi, Behzad (Inventor); Sotoudeh, Vahid (Inventor)

    2015-01-01

    A wavelength interrogator is coupled to a circulator which couples optical energy from a broadband source to an optical fiber having a plurality of sensors, each sensor reflecting optical energy at a unique wavelength and directing the reflected optical energy to an AWG. The AWG has a detector coupled to each output, and the reflected optical energy from each grating is coupled to the skirt edge response of the AWG such that the adjacent channel responses form a complementary pair response. The complementary pair response is used to convert an AWG skirt response to a wavelength.

  1. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. Only those grid cells within 10 kilometers of a gravity data point have gravity values....

  2. Consistency of orthodox gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Frascati (Italy). Laboratori Nazionali di Frascati; Shiekh, A. [International Centre for Theoretical Physics, Trieste (Italy)

    1997-01-01

    A recent proposal for quantizing gravity is investigated for self consistency. The existence of a fixed-point all-order solution is found, corresponding to a consistent quantum gravity. A criterion to unify couplings is suggested, by invoking an application of their argument to more complex systems.

  3. Generalized pure Lovelock gravity

    Science.gov (United States)

    Concha, Patrick; Rodríguez, Evelyn

    2017-11-01

    We present a generalization of the n-dimensional (pure) Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.

  4. Generalized pure Lovelock gravity

    Directory of Open Access Journals (Sweden)

    Patrick Concha

    2017-11-01

    Full Text Available We present a generalization of the n-dimensional (pure Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.

  5. Gravity model improvement investigation. [improved gravity model for determination of ocean geoid

    Science.gov (United States)

    Siry, J. W.; Kahn, W. D.; Bryan, J. W.; Vonbun, F. F.

    1973-01-01

    This investigation was undertaken to improve the gravity model and hence the ocean geoid. A specific objective is the determination of the gravity field and geoid with a space resolution of approximately 5 deg and a height resolution of the order of five meters. The concept of the investigation is to utilize both GEOS-C altimeter and satellite-to-satellite tracking data to achieve the gravity model improvement. It is also planned to determine the geoid in selected regions with a space resolution of about a degree and a height resolution of the order of a meter or two. The short term objectives include the study of the gravity field in the GEOS-C calibration area outlined by Goddard, Bermuda, Antigua, and Cape Kennedy, and also in the eastern Pacific area which is viewed by ATS-F.

  6. First Release of Gravimetric Geoid Model over Saudi Arabia Based on Terrestrial Gravity and GOCE Satellite Data: KSAG01

    Science.gov (United States)

    Alothman, Abdulaziz; Elsaka, Basem

    2016-04-01

    A new gravimetric quasi-geoid, known as KSAG0, has been developed recently by Remove-Compute-Restore techniques (RCR), provided by the GRAVSOFT software, using gravimetric free air anomalies. The terrestrial gravity data used in this computations are: 1145 gravity field anomalies observed by ARAMCO (Saudi Arabian Oil Company) and 2470 Gravity measurements from BGI (Bureau Gravimétrique International). The computations were carried out implementing the least squares collocation method through the RCR techniques. The KSAG01 is based on merging in addition to the terrestrial gravity observations, GOCE satellite model (Eigen-6C4) and global gravity model (EGM2008) have been utilized in the computations. The long, medium and short wavelength spectrum of the height anomalies were compensated from Eigen-6C4 and EGM2008 geoid models truncated up to Degree and order (d/o) up to 2190. KSAG01 geoid covers 100 per cent of the kingdom, with geoid heights range from - 37.513 m in the southeast to 23.183 m in the northwest of the country. The accuracy of the geoid is governed by the accuracy, distribution, and spacing of the observations. The standard deviation of the predicted geoid heights is 0.115 m, with maximum errors of about 0.612 m. The RMS of geoid noise ranges from 0.019 m to 0.04 m. Comparison of the predicted gravimetric geoid with EGM, GOCE, and GPS/Levelling geoids, reveals a considerable improvements of the quasi-geoid heights over Saudi Arabia.

  7. Short Wavelength Electrostatic Waves in the Earth’s Magnetosheath.

    Science.gov (United States)

    1982-07-01

    to an antenna effect. Emissions likely to be ion-acoustic mode waves have been found up- stream of the bow shock ( foreshock ) in the solar wind...particles apparently reflected at the bow shock and associated with ion- acoustic mode waves in the Earth’s foreshock are also observed [Eastman et al...Res., 86, A 4493-4510, 1981. Eastman, T.E., 1.R. Anderson, L.A. Frank, and G.K. Parks, Upstream particles observed in the Earth’s foreshock region

  8. Short wavelength optics for future free electron lasers

    International Nuclear Information System (INIS)

    Attwood, D.T.

    1984-04-01

    Although much free-electron laser work is directed toward achieving sufficient single-pass gain to be useful for research purposes, the availability of mirrors of high reflectance for the vacuum ultraviolet and soft x-ray regime would make resonant cavities a possibility. In addition, as in ordinary synchrotron radiation work, mirrors are required for the construction of realistic experiments and for beam manipulation purposes such as folding and extraction. The Working Group discussed a number of approaches to reflecting optics for free electron lasers, which are summarized here, and described in some detail. 16 references, 2 figures

  9. Ultra-short wavelength x-ray system

    Science.gov (United States)

    Umstadter, Donald [Ann Arbor, MI; He, Fei [Ann Arbor, MI; Lau, Yue-Ying [Potomac, MD

    2008-01-22

    A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

  10. Non-linear modulation of short wavelength compressional Alfven eigenmodes

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, E. D.; Gorelenkov, N. N.; Podesta, M.; Gerhardt, S. P.; Bell, R. E.; Diallo, A.; LeBlanc, B. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Bortolon, A. [University of California, Irvine, California 92697 (United States); Crocker, N. A. [University of California, Los Angeles, California 90095 (United States); Levinton, F. M.; Yuh, H. [Nova Photonics, Princeton, New Jersey 08543 (United States)

    2013-04-15

    Most Alfvenic activity in the frequency range between toroidal Alfven eigenmodes and roughly one half of the ion cyclotron frequency on National Spherical Torus eXperiment [Ono et al., Nucl. Fusion 40, 557 (2000)], that is, approximately 0.3 MHz up to Almost-Equal-To 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n = 1 kink-like mode. In this paper, we present measurements of the spectrum of these high frequency CAE (hfCAE) and their mode structure. We compare those measurements to a simple model of CAE and present a predator-prey type model of the curious non-linear coupling of the hfCAE and the low frequency kink-like mode.

  11. Workshop on scientific applications of short wavelength coherent light sources

    International Nuclear Information System (INIS)

    Spicer, W.; Arthur, J.; Winick, H.

    1993-02-01

    This report contains paper on the following topics: A 2 to 4nm High Power FEL On the SLAC Linac; Atomic Physics with an X-ray Laser; High Resolution, Three Dimensional Soft X-ray Imaging; The Role of X-ray Induced Damage in Biological Micro-imaging; Prospects for X-ray Microscopy in Biology; Femtosecond Optical Pulses?; Research in Chemical Physics Surface Science, and Materials Science, with a Linear Accelerator Coherent Light Source; Application of 10 GeV Electron Driven X-ray Laser in Gamma-ray Laser Research; Non-Linear Optics, Fluorescence, Spectromicroscopy, Stimulated Desorption: We Need LCLS' Brightness and Time Scale; Application of High Intensity X-rays to Materials Synthesis and Processing; LCLS Optics: Selected Technological Issues and Scientific Opportunities; Possible Applications of an FEL for Materials Studies in the 60 eV to 200 eV Spectral Region

  12. Electron beam acceleration and compression for short wavelength FELs

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.

    1994-11-01

    A single pass UV or X-ray FEL will require a low emittance electron beam with high peak current and relatively high beam energy, a few hundred MeV to many GeV. To achieve the necessary peak current and beam energy, the beams must be bunch compressed and they must be accelerated in long transport lines where dispersive and wakefield emittance dilutions are important. In this paper, we will describe the sources and significance of the dilutions during acceleration, bunch compression, and transport through the undulator. In addition, we will discuss sources of jitter, especially effects arising from the bunch compressions, and the possible cancellation techniques

  13. Coherence techniques at extreme ultraviolet wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chang [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    The renaissance of Extreme Ultraviolet (EUV) and soft x-ray (SXR) optics in recent years is mainly driven by the desire of printing and observing ever smaller features, as in lithography and microscopy. This attribute is complemented by the unique opportunity for element specific identification presented by the large number of atomic resonances, essentially for all materials in this range of photon energies. Together, these have driven the need for new short-wavelength radiation sources (e.g. third generation synchrotron radiation facilities), and novel optical components, that in turn permit new research in areas that have not yet been fully explored. This dissertation is directed towards advancing this new field by contributing to the characterization of spatial coherence properties of undulator radiation and, for the first time, introducing Fourier optical elements to this short-wavelength spectral region. The first experiment in this dissertation uses the Thompson-Wolf two-pinhole method to characterize the spatial coherence properties of the undulator radiation at Beamline 12 of the Advanced Light Source. High spatial coherence EUV radiation is demonstrated with appropriate spatial filtering. The effects of small vertical source size and beamline apertures are observed. The difference in the measured horizontal and vertical coherence profile evokes further theoretical studies on coherence propagation of an EUV undulator beamline. A numerical simulation based on the Huygens-Fresnel principle is performed.

  14. Relic gravity waves from braneworld inflation

    International Nuclear Information System (INIS)

    Sahni, Varun; Sami, M.; Souradeep, Tarun

    2002-01-01

    We discuss a scenario in which extra dimensional effects allow a scalar field with a steep potential to play the dual role of the inflaton as well as dark energy (quintessence). The post-inflationary evolution of the universe in this scenario is generically characterized by a 'kinetic regime' during which the kinetic energy of the scalar field greatly exceeds its potential energy resulting in a 'stiff' equation of state for scalar field matter P φ ≅ρ φ . The kinetic regime precedes the radiation dominated epoch and introduces an important new feature into the spectrum of relic gravity waves created quantum mechanically during inflation. The amplitude of the gravity wave spectrum increases with the wave number for wavelengths shorter than the comoving horizon scale at the commencement of the radiative regime. This 'blue tilt' is a generic feature of models with steep potentials and imposes strong constraints on a class of inflationary braneworld models. Prospects for detection of the gravity wave background by terrestrial and space-borne gravity wave observatories such as LIGO II and LISA are discussed

  15. Approach of regional gravity field modeling from GRACE data for improvement of geoid modeling for Japan

    Science.gov (United States)

    Kuroishi, Y.; Lemoine, F. G.; Rowlands, D. D.

    2006-12-01

    The latest gravimetric geoid model for Japan, JGEOID2004, suffers from errors at long wavelengths (around 1000 km) in a range of +/- 30 cm. The model was developed by combining surface gravity data with a global marine altimetric gravity model, using EGM96 as a foundation, and the errors at long wavelength are presumably attributed to EGM96 errors. The Japanese islands and their vicinity are located in a region of plate convergence boundaries, producing substantial gravity and geoid undulations in a wide range of wavelengths. Because of the geometry of the islands and trenches, precise information on gravity in the surrounding oceans should be incorporated in detail, even if the geoid model is required to be accurate only over land. The Kuroshio Current, which runs south of Japan, causes high sea surface variability, making altimetric gravity field determination complicated. To reduce the long-wavelength errors in the geoid model, we are investigating GRACE data for regional gravity field modeling at long wavelengths in the vicinity of Japan. Our approach is based on exclusive use of inter- satellite range-rate data with calibrated accelerometer data and attitude data, for regional or global gravity field recovery. In the first step, we calibrate accelerometer data in terms of scales and biases by fitting dynamically calculated orbits to GPS-determined precise orbits. The calibration parameters of accelerometer data thus obtained are used in the second step to recover a global/regional gravity anomaly field. This approach is applied to GRACE data obtained for the year 2005 and resulting global/regional gravity models are presented and discussed.

  16. High energy scattering in gravity and supergravity

    CERN Document Server

    Giddings, Steven B; Andersen, Jeppe R

    2010-01-01

    We investigate features of perturbative gravity and supergravity by studying scattering in the ultraplanckian limit, and sharpen arguments that the dynamics is governed by long-distance physics. A simple example capturing aspects of the eikonal resummation suggests why short distance phenomena and in particular divergences or nonrenormalizability do not necessarily play a central role in this regime. A more profound problem is apparently unitarity. These considerations can be illustrated by showing that known gravity and supergravity amplitudes have the same long-distance behavior, despite the extra light states of supergravity, and this serves as an important check on long-range dynamics in a context where perturbative amplitudes are finite. We also argue that these considerations have other important implications: they obstruct probing the conjectured phenomenon of asymptotic safety through a physical scattering process, and gravity appears not to reggeize. These arguments sharpen the need to find a nonpert...

  17. Wavelength-independent fringe spacing in rainbows from falling neutrons

    International Nuclear Information System (INIS)

    Berry, M.V.

    1982-01-01

    For particles with speed upsilon and mass m emitted isotropically from a point source and falling under gravity g, the quantal probability density is dominated by a paraboloidal caustic decorated with paraboloidal interference fringes. Near the caustic, the fringes have a spacing independent of upsilon and hence of wavelength, given by ΔR=3.53897x(h 2 /m 2 g)sup(1/3) for the first two (brightest) fringes at the level of the source. For neutrons in the Earth's field, ΔR=0.02617mm. The effect might be difficult to detect. (author)

  18. Interrogation of weak Bragg grating sensors based on dual-wavelength differential detection.

    Science.gov (United States)

    Cheng, Rui; Xia, Li

    2016-11-15

    It is shown that for weak Bragg gratings the logarithmic ratio of reflected intensities at any two wavelengths within the spectrum follows a linear relationship with the Bragg wavelength shift, with a slope proportional to their wavelength spacing. This finding is exploited to develop a flexible, efficient, and cheap interrogation solution of weak fiber Bragg grating (FBGs), especially ultra-short FBGs, in distributed sensing based on dual-wavelength differential detection. The concept is experimentally studied in both single and distributed sensing systems with ultra-short FBG sensors. The work may form the basis of new and promising FBG interrogation techniques based on detecting discrete rather than continuous spectra.

  19. Formation of diapiric structure in the deformation zone, central Indian Ocean: A model from gravity and seismic reflection data

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Rao, D.G.; Neprochnov, Y.P.

    Analyses of bathymetry, gravity and seismic reflection data of the diffusive plate boundary in the central Indian Ocean reveal a new kind of deformed structure besides the well-reported structures of long-wavelength anticlinal basement rises...

  20. FY 2000 report on the results of the regional consortium R and D project - Regional consortium energy R and D. Development of new vacuum ultraviolet area optical materials realizing next generation short wavelength optical lithography; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo - chiiki consortium energy kenkyu kaihatsu. Jisedai tanhacho hikari lithography wo jitsugensuru shinku shigaiiki kogaku zairyo no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    As materials for next generation lithography use optical device using short wavelength light sources such as F{sub 2} and Ar{sub 2}, the development was proceeded with of fluoride monocrystal materials and 12-inch class large/high quality monocrystal production technology. Studies were made in the following five fields: 1) proposal/design of new materials and the heightening of performance: 2) establishment of the large/high quality crystal production method; 3) evaluation of optical properties and elucidation of micro-defect formation mechanism; 4) comprehensive investigational research; 5) study of the evaluation technology by vacuum ultraviolet area pulse light. In 1), for the development of the optimum materials, a lot of materials were tried to be monocrystallized, and the permeability was estimated by measuring the reflectance in the vacuum ultraviolet area. As to LiCaAlF{sub 6}, monocrystal with 1-inch diameter was made by the Bridgman method. In 2), studies were made of conditions for large crystal growth by the pull method, large crystal growth by the Bridgman method, and the structure of production equipment for crystals with larger diameter. (NEDO)

  1. Lattice gravity and strings

    International Nuclear Information System (INIS)

    Jevicki, A.; Ninomiya, M.

    1985-01-01

    We are concerned with applications of the simplicial discretization method (Regge calculus) to two-dimensional quantum gravity with emphasis on the physically relevant string model. Beginning with the discretization of gravity and matter we exhibit a discrete version of the conformal trace anomaly. Proceeding to the string problem we show how the direct approach of (finite difference) discretization based on Nambu action corresponds to unsatisfactory treatment of gravitational degrees. Based on the Regge approach we then propose a discretization corresponding to the Polyakov string. In this context we are led to a natural geometric version of the associated Liouville model and two-dimensional gravity. (orig.)

  2. The Future of Gravity

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Of the four fundamental forces, gravity has been studied the longest, yet gravitational physics is one of the most rapidly developing areas of science today. This talk will give a broad brush survey of the past achievements and future prospects of general relativistic gravitational physics. Gravity is a two frontier science being important on both the very largest and smallest length scales considered in contemporary physics. Recent advances and future prospects will be surveyed in precision tests of general relativity, gravitational waves, black holes, cosmology and quantum gravity. The aim will be an overview of a subject that is becoming increasingly integrated with experiment and other branches of physics.

  3. Agility of Felix Regarding Wavelength and Micropulse Shape

    NARCIS (Netherlands)

    Bakker, R. J.; van der Geer, C. A. J.; Jaroszynski, D. A.; van der Meer, A. F. G.; Oepts, D.; van Amersfoort, P. W.; Anderegg, V.; van Son, P. C.

    1993-01-01

    The user-facility FELIX employs two FELs together covering the spectral range from 6.5 to 110 mum. Adjustment of the undulator strength permits wavelength tuning over a factor of two within two minutes while continuously providing several kilowatts of output power. As FELIX combines short electron

  4. Long-Wavelength Phonon Scattering in Nonpolar Semiconductors

    DEFF Research Database (Denmark)

    Lawætz, Peter

    1969-01-01

    The long-wavelength acoustic- and optical-phonon scattering of carriers in nonpolar semiconductors is considered from a general point of view. The deformation-potential approximation is defined and it is shown that long-range electrostatic forces give a nontrivial correction to the scattering...... of the very-short-range nature of interactions in a covalent semiconductor....

  5. Wavelength dependence of interstellar polarization

    International Nuclear Information System (INIS)

    Mavko, G.E.

    1974-01-01

    The wavelength dependence of interstellar polarization was measured for twelve stars in three regions of the Milky Way. A 120A bandpass was used to measure the polarization at a maximum of sixteen wavelengths evenly spaced between 2.78μ -1 (3600A) and 1.28μ -1 (7800A). For such a wide wavelength range, the wavelength resolution is superior to that of any previously reported polarization measurements. The new scanning polarimeter built by W. A. Hiltner of the University of Michigan was used for the observations. Very broad structure was found in the wavelength dependence of the polarization. Extensive investigations were carried out to show that the structure was not caused by instrumental effects. The broad structure observed is shown to be in agreement with concurrent extinction measurements for the same stars. Also, the observed structure is of the type predicted when a homogeneous silicate grain model is fitted to the observed extinction. The results are in agreement with the hypothesis that the very broad band structure seen in the extinction is produced by the grains. (Diss. Abstr. Int., B)

  6. Europe's Preparation For GOCE Gravity Field Recovery

    Science.gov (United States)

    Suenkel, H.; Suenkel, H.

    2001-12-01

    repeat mission such a time series can be very efficiently transformed into lumped coefficients using fast Fourier techniques. For a realistic mission scenario this transformation has to be extended by an iteration process. 3. The space-wise approach which, after having transformed the original observations onto a spatial geographical grid, transforms the pseudo-observations into harmonic coefficients using a fast collocation technique. A successful mission presupposed, GOCE will finally deliver the Earth's gravity field with a resolution of about 70 km half wavelength and a global geoid with an accuracy of about 1 cm.

  7. Investigating gravity waves evidences in the Venus upper atmosphere

    Science.gov (United States)

    Migliorini, Alessandra; Altieri, Francesca; Shakun, Alexey; Zasova, Ludmila; Piccioni, Giuseppe; Bellucci, Giancarlo; Grassi, Davide

    2014-05-01

    We present a method to investigate gravity waves properties in the upper mesosphere of Venus, through the O2 nightglow observations acquired with the imaging spectrometer VIRTIS on board Venus Express. Gravity waves are important dynamical features that transport energy and momentum. They are related to the buoyancy force, which lifts air particles. Then, the vertical displacement of air particles produces density changes that cause gravity to act as restoring force. Gravity waves can manifest through fluctuations on temperature and density fields, and hence on airglow intensities. We use the O2 nightglow profiles showing double peaked structures to study the influence of gravity waves in shaping the O2 vertical profiles and infer the waves properties. In analogy to the Earth's and Mars cases, we use a well-known theory to model the O2 nightglow emissions affected by gravity waves propagation. Here we propose a statistical discussion of the gravity waves characteristics, namely vertical wavelength and wave amplitude, with respect to local time and latitude. The method is applied to about 30 profiles showing double peaked structures, and acquired with the VIRTIS/Venus Express spectrometer, during the mission period from 2006-07-05 to 2008-08-15.

  8. Two-dimensional coherence analysis of magnetic and gravity data from the Cascer Quadrangle, Wyoming. Final report

    International Nuclear Information System (INIS)

    QEB, Inc. has completed a two-dimensional coherence analysis of gravity and magnetic data from the Casper, Wyoming NTMS quadrangle. Magnetic data from an airborne survey were reduced to produce a Residual Magnetic map, and gravity data obtained from several sources were reduced to produce a Complete Bouguer Gravity map. Both sets of data were upward continued to a plane one kilometer above the surface; and then, to make the magnetic and gravity data comparable, the magnetic data were transformed to pseudo-gravity data by the application of Poisson's relationship for rocks that are both dense and magnetic relative to the surrounding rocks. A pseudo-gravity map was then produced and an analysis made of the two-dimensional coherence between the upward continued Bouguer gravity and the pseudo-gravity data. Based on the results of the coherence analysis, digital filters were designed to either pass or reject wavelength bands with high coherence

  9. Gravity Data for Egypt

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (71 records) were gathered by various governmental organizations (and academia) using a variety of methods. This data base was received in...

  10. New massive gravity

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hohm, Olaf; Townsend, Paul K.

    2012-01-01

    We present a brief review of New Massive Gravity, which is a unitary theory of massive gravitons in three dimensions obtained by considering a particular combination of the Einstein-Hilbert and curvature squared terms.

  11. DMA Antarctic Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (65,164 records) were gathered by various governmental organizations (and academia) using a variety of methods. The data base was received...

  12. Gravity Data for Minnesota

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (55,907 records) were gathered by various governmental organizations (and academia) using a variety of methods. This data base was received...

  13. Stability in designer gravity

    International Nuclear Information System (INIS)

    Hertog, Thomas; Hollands, Stefan

    2005-01-01

    We study the stability of designer gravity theories, in which one considers gravity coupled to a tachyonic scalar with anti-de Sitter (AdS) boundary conditions defined by a smooth function W. We construct Hamiltonian generators of the asymptotic symmetries using the covariant phase space method of Wald et al and find that they differ from the spinor charges except when W = 0. The positivity of the spinor charge is used to establish a lower bound on the conserved energy of any solution that satisfies boundary conditions for which W has a global minimum. A large class of designer gravity theories therefore have a stable ground state, which the AdS/CFT correspondence indicates should be the lowest energy soliton. We make progress towards proving this by showing that minimum energy solutions are static. The generalization of our results to designer gravity theories in higher dimensions involving several tachyonic scalars is discussed

  14. Carroll versus Galilei gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Gomis, Joaquim [Departament de Física Cuàntica i Astrofísica and Institut de Ciències del Cosmos,Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain); Rollier, Blaise [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Rosseel, Jan [Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria); Veldhuis, Tonnis ter [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2017-03-30

    We consider two distinct limits of General Relativity that in contrast to the standard non-relativistic limit can be taken at the level of the Einstein-Hilbert action instead of the equations of motion. One is a non-relativistic limit and leads to a so-called Galilei gravity theory, the other is an ultra-relativistic limit yielding a so-called Carroll gravity theory. We present both gravity theories in a first-order formalism and show that in both cases the equations of motion (i) lead to constraints on the geometry and (ii) are not sufficient to solve for all of the components of the connection fields in terms of the other fields. Using a second-order formalism we show that these independent components serve as Lagrange multipliers for the geometric constraints we found earlier. We point out a few noteworthy differences between Carroll and Galilei gravity and give some examples of matter couplings.

  15. Discrete quantum gravity

    International Nuclear Information System (INIS)

    Williams, Ruth M

    2006-01-01

    A review is given of a number of approaches to discrete quantum gravity, with a restriction to those likely to be relevant in four dimensions. This paper is dedicated to Rafael Sorkin on the occasion of his sixtieth birthday

  16. The earth's shape and gravity

    CERN Document Server

    Garland, G D; Wilson, J T

    2013-01-01

    The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp

  17. Streaming gravity mode instability

    International Nuclear Information System (INIS)

    Wang Shui.

    1989-05-01

    In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs

  18. On higher derivative gravity

    International Nuclear Information System (INIS)

    Accioly, A.J.

    1987-01-01

    A possible classical route conducting towards a general relativity theory with higher-derivatives starting, in a sense, from first principles, is analysed. A completely causal vacuum solution with the symmetries of the Goedel universe is obtained in the framework of this higher-derivative gravity. This very peculiar and rare result is the first known vcuum solution of the fourth-order gravity theory that is not a solution of the corresponding Einstein's equations.(Author) [pt

  19. What Is Gravity?

    Science.gov (United States)

    Nelson, George

    2004-01-01

    Gravity is the name given to the phenomenon that any two masses, like you and the Earth, attract each other. One pulls on the Earth and the Earth pulls on one the same amount. And one does not have to be touching. Gravity acts over vast distances, like the 150 million kilometers (93 million miles) between the Earth and the Sun or the billions of…

  20. Automated borehole gravity meter system

    International Nuclear Information System (INIS)

    Lautzenhiser, Th.V.; Wirtz, J.D.

    1984-01-01

    An automated borehole gravity meter system for measuring gravity within a wellbore. The gravity meter includes leveling devices for leveling the borehole gravity meter, displacement devices for applying forces to a gravity sensing device within the gravity meter to bring the gravity sensing device to a predetermined or null position. Electronic sensing and control devices are provided for (i) activating the displacement devices, (ii) sensing the forces applied to the gravity sensing device, (iii) electronically converting the values of the forces into a representation of the gravity at the location in the wellbore, and (iv) outputting such representation. The system further includes electronic control devices with the capability of correcting the representation of gravity for tidal effects, as well as, calculating and outputting the formation bulk density and/or porosity

  1. Wavelength conversion techniques and devices

    DEFF Research Database (Denmark)

    Danielsen, Søren Lykke; Mikkelsen, Benny; Hansen, Peter Bukhave

    1997-01-01

    Taking into account the requirements to the converters e.g., bit rate transparency (at least up to 10 Gbit/s), polarisation independence, wavelength independence, moderate input power levels, high signal-to-noise ratio and high extinction ratio interferometric wavelength convertors are very...... interesting for use in WDM optical fibre networks. However, the perfect converter has probably not yet been fabricated and new techniques such as conversion relying on cross-absorption modulation in electro-absorption modulators might also be considered in pursue of effective conversion devices...

  2. Sub-wavelength plasmon laser

    Science.gov (United States)

    Bora, Mihail; Bond, Tiziana C.

    2016-04-19

    A plasmonic laser device has resonant nanocavities filled with a gain medium containing an organic dye. The resonant plasmon frequencies of the nanocavities are tuned to align with both the absorption and emission spectra of the dye. Variables in the system include the nature of the dye and the wavelength of its absorption and emission, the wavelength of the pumping radiation, and the resonance frequencies of the nanocavities. In addition the pumping frequency of the dye is selected to be close to the absorption maximum.

  3. Wavelength standards in the infrared

    CERN Document Server

    Rao, KN

    2012-01-01

    Wavelength Standards in the Infrared is a compilation of wavelength standards suitable for use with high-resolution infrared spectrographs, including both emission and absorption standards. The book presents atomic line emission standards of argon, krypton, neon, and xenon. These atomic line emission standards are from the deliberations of Commission 14 of the International Astronomical Union, which is the recognized authority for such standards. The text also explains the techniques employed in determining spectral positions in the infrared. One of the techniques used includes the grating con

  4. Effects of gravity in folding

    Science.gov (United States)

    Minkel, Donald Howe

    Effects of gravity on buckle folding are studied using a Newtonian fluid finite element model of a single layer embedded between two thicker less viscous layers. The methods allow arbitrary density jumps, surface tension coefficients, resistance to slip at the interfaces, and tracking of fold growth to a large amplitudes. When density increases downward in two equal jumps, a layer buckles less and thickens more than with uniform density. When density increases upward in two equal jumps, it buckles more and thickens less. A low density layer with periodic thickness variations buckles more, sometimes explosively. Thickness variations form, even if not present initially. These effects are greater with; smaller viscosities, larger density jump, larger length scale, and slower shortening rate. They also depend on wavelength and amplitude, and these dependencies are described in detail. The model is applied to the explosive growth of the salt anticlines of the Paradox Basin, Colorado and Utah. There, shale (higher density) overlies salt (lower density). Methods for simulating realistic earth surface erosion and deposition conditions are introduced. Growth rates increase both with ease of slip at the salt-shale interface, and when earth surface relief stays low due to erosion and deposition. Model anticlines grow explosively, attaining growth rates and amplitudes close to those of the field examples. Fastest growing wavelengths are the same as seen in the field. It is concluded that a combination of partial-slip at the salt-shale interface, with reasonable earth surface conditions, promotes sufficiently fast buckling of the salt-shale interface due to density inversion alone. Neither basement faulting, nor tectonic shortening is required to account for the observed structures. Of fundamental importance is the strong tendency of gravity to promote buckling in low density layers with thickness variations. These develop, even if not present initially.

  5. UV caps, IR modification of gravity, and recovery of 4D gravity in regularized braneworlds

    International Nuclear Information System (INIS)

    Kobayashi, Tsutomu

    2008-01-01

    In the context of six-dimensional conical braneworlds we consider a simple and explicit model that incorporates long-distance modification of gravity and regularization of codimension-2 singularities. To resolve the conical singularities we replace the codimension-2 branes with ringlike codimension-1 branes, filling in the interiors with regular caps. The six-dimensional Planck scale in the cap is assumed to be much greater than the bulk Planck scale, which gives rise to the effect analogous to brane-induced gravity. Weak gravity on the regularized brane is studied in the case of a sharp conical bulk. We show by a linear analysis that gravity at short distances is effectively described by the four-dimensional Brans-Dicke theory, while the higher dimensional nature of gravity emerges at long distances. The linear analysis breaks down at some intermediate scale, below which four-dimensional Einstein gravity is shown to be recovered thanks to the second-order effects of the brane bending.

  6. Gravity Before Einstein and Schwinger Before Gravity

    Science.gov (United States)

    Trimble, Virginia L.

    2012-05-01

    Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.

  7. Extended Theories of Gravity

    International Nuclear Information System (INIS)

    Capozziello, Salvatore; De Laurentis, Mariafelicia

    2011-01-01

    Extended Theories of Gravity can be considered as a new paradigm to cure shortcomings of General Relativity at infrared and ultraviolet scales. They are an approach that, by preserving the undoubtedly positive results of Einstein’s theory, is aimed to address conceptual and experimental problems recently emerged in astrophysics, cosmology and High Energy Physics. In particular, the goal is to encompass, in a self-consistent scheme, problems like inflation, dark energy, dark matter, large scale structure and, first of all, to give at least an effective description of Quantum Gravity. We review the basic principles that any gravitational theory has to follow. The geometrical interpretation is discussed in a broad perspective in order to highlight the basic assumptions of General Relativity and its possible extensions in the general framework of gauge theories. Principles of such modifications are presented, focusing on specific classes of theories like f(R)-gravity and scalar–tensor gravity in the metric and Palatini approaches. The special role of torsion is also discussed. The conceptual features of these theories are fully explored and attention is paid to the issues of dynamical and conformal equivalence between them considering also the initial value problem. A number of viability criteria are presented considering the post-Newtonian and the post-Minkowskian limits. In particular, we discuss the problems of neutrino oscillations and gravitational waves in extended gravity. Finally, future perspectives of extended gravity are considered with possibility to go beyond a trial and error approach.

  8. The Gravity Field of Mercury After the Messenger Low-Altitude Campaign

    Science.gov (United States)

    Mazarico, Erwan; Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Smith, David E.; Zuber, Maria T.; Neumann, Gary A.; Solomon, Sean C.

    2015-01-01

    The final year of the MESSENGER mission was designed to take advantage of the remaining propellant onboard to provide a series of lowaltitude observation campaigns and acquire novel scientific data about the innermost planet. The lower periapsis altitude greatly enhances the sensitivity to the short-wavelength gravity field, but only when the spacecraft is in view of Earth. After more than 3 years in orbit around Mercury, the MESSENGER spacecraft was tracked for the first time below 200-km altitude on 5 May 2014 by the NASA Deep Space Network (DSN). Between August and October, periapsis passages down to 25-km altitude were routinely tracked. These periods considerably improved the quality of the data coverage. Before the end of its mission, MESSENGER will fly at very low altitudes for extended periods of time. Given the orbital geometry, however the periapses will not be visible from Earth and so no new tracking data will be available for altitudes lower than 75 km. Nevertheless, the continuous tracking of MESSENGER in the northern hemisphere will help improve the uniformity of the spatial coverage at altitudes lower than 150 km, which will further improve the overall quality of the Mercury gravity field.

  9. Effective gravitational wave stress-energy tensor in alternative theories of gravity

    International Nuclear Information System (INIS)

    Stein, Leo C.; Yunes, Nicolas

    2011-01-01

    The inspiral of binary systems in vacuum is controlled by the stress-energy of gravitational radiation and any other propagating degrees of freedom. For gravitational waves, the dominant contribution is characterized by an effective stress-energy tensor at future null infinity. We employ perturbation theory and the short-wavelength approximation to compute this stress-energy tensor in a wide class of alternative theories. We find that this tensor is generally a modification of that first computed by Isaacson, where the corrections can dominate over the general relativistic term. In a wide class of theories, however, these corrections identically vanish at asymptotically flat, future, null infinity, reducing the stress-energy tensor to Isaacson's. We exemplify this phenomenon by first considering dynamical Chern-Simons modified gravity, which corrects the action via a scalar field and the contraction of the Riemann tensor and its dual. We then consider a wide class of theories with dynamical scalar fields coupled to higher-order curvature invariants and show that the gravitational wave stress-energy tensor still reduces to Isaacson's. The calculations presented in this paper are crucial to perform systematic tests of such modified gravity theories through the orbital decay of binary pulsars or through gravitational wave observations.

  10. Quantum gravity at a Lifshitz point

    International Nuclear Information System (INIS)

    Horava, Petr

    2009-01-01

    We present a candidate quantum field theory of gravity with dynamical critical exponent equal to z=3 in the UV. (As in condensed-matter systems, z measures the degree of anisotropy between space and time.) This theory, which at short distances describes interacting nonrelativistic gravitons, is power-counting renormalizable in 3+1 dimensions. When restricted to satisfy the condition of detailed balance, this theory is intimately related to topologically massive gravity in three dimensions, and the geometry of the Cotton tensor. At long distances, this theory flows naturally to the relativistic value z=1, and could therefore serve as a possible candidate for a UV completion of Einstein's general relativity or an infrared modification thereof. The effective speed of light, the Newton constant and the cosmological constant all emerge from relevant deformations of the deeply nonrelativistic z=3 theory at short distances.

  11. Moho geometry gravity inversion experiment (MoGGIE): A refined model of the Australian Moho, and its tectonic and isostatic implications

    Science.gov (United States)

    Aitken, Alan R. A.

    2010-08-01

    At the continent-scale, models of Moho depth based on seismic estimates alone can be inadequate due to irregular or sparse data. Gravity-based Moho modelling provides better coverage, however, the methods used are typically hampered by an inability to explicitly honour seismic constraints and are also limited by over simplistic model conditions, e.g. laterally-homogenous layering. I present a new method to generate a continent-scale Moho model, based on the constrained inversion of free-air gravity data. This method explicitly honours seismic Moho estimates and accounts for a laterally heterogeneous crust and mantle. Resolution and sensitivity testing shows that, for wavelengths greater than 200 km, crustal density and Moho depth are recovered with reasonable accuracy, ± 30 kg m - 3 and ± 3 km respectively. MoGGIE uses a six layer model incorporating ocean, sedimentary basin, upper crust, lower/oceanic crust, eclogitised crust and mantle. Inversion variables were the density of the crustal layers, constrained by a standard density model, and the depths to intra-crustal boundaries and the Moho, constrained by 230 seismic depth estimates. The results demonstrate that a balanced approach to seismically-constrained gravity inversion has the capability to generate detailed and well-constrained models of the Moho and crustal density at the continent-scale. For Australia, this is a clear improvement on the sparse and irregular resolution of the Moho provided by seismic estimates of crustal thickness, which fail to resolve short-wavelength features. Newly defined tectonic features include extensive magmatic underplates, crustal-scale shear zones, and the boundaries between tectonic blocks. Isostatic analysis reveals that little of the continent is close to isostatic equilibrium, with isostatic disequilibria preserved at multiple scales, from hundreds of kilometres to the entire continent. These disequilibria are interpreted to indicate long-wavelength flexure of highly

  12. Small-Scale Gravity Waves in ER-2 MMS/MTP Wind and Temperature Measurements during CRYSTAL-FACE

    Science.gov (United States)

    Wang, L.; Alexander, M. J.; Bui, T. P.; Mahoney, M. J.

    2006-01-01

    Lower stratospheric wind and temperature measurements made from NASA's high-altitude ER-2 research aircraft during the CRYSTAL-FACE campaign in July 2002 were analyzed to retrieve information on small scale gravity waves (GWs) at the aircraft's flight level (typically approximately 20 km altitude). For a given flight segment, the S-transform (a Gaussian wavelet transform) was used to search for and identify small horizontal scale GW events, and to estimate their apparent horizontal wavelengths. The horizontal propagation directions of the events were determined using the Stokes parameter method combined with the cross S-transform analysis. The vertical temperature gradient was used to determine the vertical wavelengths of the events. GW momentum fluxes were calculated from the cross S-transform. Other wave parameters such as intrinsic frequencies were calculated using the GW dispersion relation. More than 100GW events were identified. They were generally high frequency waves with vertical wavelength of approximately 5 km and horizontal wavelength generally shorter than 20 km. Their intrinsic propagation directions were predominantly toward the east, whereas their ground-based propagation directions were primarily toward the west. Among the events, approximately 20% of them had very short horizontal wavelength, very high intrinsic frequency, and relatively small momentum fluxes, and thus they were likely trapped in the lower stratosphere. Using the estimated GW parameters and the background winds and stabilities from the NCAR/NCEP reanalysis data, we were able to trace the sources of the events using a simple reverse ray-tracing. More than 70% of the events were traced back to convective sources in the troposphere, and the sources were generally located upstream of the locations of the events observed at the aircraft level. Finally, a probability density function of the reversible cooling rate due to GWs was obtained in this study, which may be useful for cirrus

  13. Small-scale gravity waves in ER-2 MMS/MTP wind and temperature measurements during CRYSTAL-FACE

    Directory of Open Access Journals (Sweden)

    L. Wang

    2006-01-01

    Full Text Available Lower stratospheric wind and temperature measurements made from NASA's high-altitude ER-2 research aircraft during the CRYSTAL-FACE campaign in July 2002 were analyzed to retrieve information on small scale gravity waves (GWs at the aircraft's flight level (typically ~20 km altitude. For a given flight segment, the S-transform (a Gaussian wavelet transform was used to search for and identify small horizontal scale GW events, and to estimate their apparent horizontal wavelengths. The horizontal propagation directions of the events were determined using the Stokes parameter method combined with the cross S-transform analysis. The vertical temperature gradient was used to determine the vertical wavelengths of the events. GW momentum fluxes were calculated from the cross S-transform. Other wave parameters such as intrinsic frequencies were calculated using the GW dispersion relation. More than 100GW events were identified. They were generally high frequency waves with vertical wavelength of ~5 km and horizontal wavelength generally shorter than 20 km. Their intrinsic propagation directions were predominantly toward the east, whereas their ground-based propagation directions were primarily toward the west. Among the events, ~20% of them had very short horizontal wavelength, very high intrinsic frequency, and relatively small momentum fluxes, and thus they were likely trapped in the lower stratosphere. Using the estimated GW parameters and the background winds and stabilities from the NCAR/NCEP reanalysis data, we were able to trace the sources of the events using a simple reverse ray-tracing. More than 70% of the events were traced back to convective sources in the troposphere, and the sources were generally located upstream of the locations of the events observed at the aircraft level. Finally, a probability density function of the reversible cooling rate due to GWs was obtained in this study, which may be useful for cirrus cloud models.

  14. The nonlinear effects on the characteristics of gravity wave packets: dispersion and polarization relations

    Directory of Open Access Journals (Sweden)

    S.-D. Zhang

    2000-10-01

    Full Text Available By analyzing the results of the numerical simulations of nonlinear propagation of three Gaussian gravity-wave packets in isothermal atmosphere individually, the nonlinear effects on the characteristics of gravity waves are studied quantitatively. The analyses show that during the nonlinear propagation of gravity wave packets the mean flows are accelerated and the vertical wavelengths show clear reduction due to nonlinearity. On the other hand, though nonlinear effects exist, the time variations of the frequencies of gravity wave packets are close to those derived from the dispersion relation and the amplitude and phase relations of wave-associated disturbance components are consistent with the predictions of the polarization relation of gravity waves. This indicates that the dispersion and polarization relations based on the linear gravity wave theory can be applied extensively in the nonlinear region.Key words: Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides

  15. Assessing GOCE Gravity Models using Altimetry and In-situ Ocean Current Observation

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar; Honecker, Johanna

    gravity models provided by the GOCE mission have enhanced the resolution and sharpened the boundaries of those features and the associated geostrophic surface currents reveal improvements for all of the ocean's current systems. In this study, a series of 23 newer gravity models including observations from...... as quantified quality measures associated with the 23 GOCE gravity models.......The Gravity and steady state Ocean Circulation Explorer (GOCE) satellite mission measures Earth's gravity field with an unprecedented accuracy at short spatial scales. Previous results have demonstrated a significant advance in our ability to determine the ocean's general circulation. The improved...

  16. Cycle 24 COS FUV Internal/External Wavelength Scale Monitor

    Science.gov (United States)

    Fischer, William J.

    2018-02-01

    We report on the monitoring of the COS FUV wavelength scale zero-points during Cycle 24 in program 14855. Select cenwaves were monitored for all FUV gratings at Lifetime Position 3. The target and cenwaves have remained the same since Cycle 21, with a change only to the target acquisition sequence. All measured offsets are within the error goals, although the G140L cenwaves show offsets at the short-wavelength end of segment A that are approaching the tolerance. This behavior will be closely monitored in subsequent iterations of the program.

  17. Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Stegmaier, M.; Ebert, J.; Pernice, W. H. P., E-mail: wolfram.pernice@kit.edu [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76133 Karlsruhe (Germany); Meckbach, J. M.; Ilin, K.; Siegel, M. [Institute of Micro- und Nanoelectronic Systems, Karlsruhe Institute of Technology, 76187 Karlsruhe (Germany)

    2014-03-03

    Aluminum nitride (AlN) has recently emerged as a promising material for integrated photonics due to a large bandgap and attractive optical properties. Exploiting the wideband transparency, we demonstrate waveguiding in AlN-on-Insulator circuits from near-infrared to ultraviolet wavelengths using nanophotonic components with dimensions down to 40 nm. By measuring the propagation loss over a wide spectral range, we conclude that both scattering and absorption of AlN-intrinsic defects contribute to strong attenuation at short wavelengths, thus providing guidelines for future improvements in thin-film deposition and circuit fabrication.

  18. Instability of combined gravity-inertial-Rossby waves in atmospheres and oceans

    Directory of Open Access Journals (Sweden)

    J. F. McKenzie

    2011-06-01

    Full Text Available The properties of the instability of combined gravity-inertial-Rossby waves on a β-plane are investigated. The wave-energy exchange equation shows that there is an exchange of energy with the background stratified medium. The energy source driving the instability lies in the background enthalpy released by the gravitational buoyancy force. It is shown that if the phase speed of the westward propagating low frequency-long wavelength Rossby wave exceeds the Poincaré-Kelvin (or "equivalent" shallow water wave speed, instability arises from the merging of Rossby and Poincaré modes. There are two key parameters in this instability condition; namely, the equatorial/rotational Mach (or Froude number M and the latitude θ0 of the β-plane. In general waves equatorward of a critical latitude for given M can be driven unstable, with corresponding growth rates of the order of a day or so. Although these conclusions may only be safely drawn for short wavelengths corresponding to a JWKB wave packet propagating internally and located far from boundaries, nevertheless such a local instability may play a significant role in atmosphere-ocean dynamics.

  19. Satellite Detection of Orographic Gravity-wave Activity in the Winter Subtropical Stratosphere over Australia and Africa

    Science.gov (United States)

    Eckermann, S. D.; Wu, D. L.

    2012-01-01

    Orographic gravity-wave (OGW) parameterizations in models produce waves over subtropical mountain ranges in Australia and Africa that propagate into the stratosphere during austral winter and deposit momentum, affecting weather and climate. Satellite sensors have measured stratospheric GWs for over a decade, yet find no evidence of these waves. So are parameterizations failing here? Here we argue that the short wavelengths of subtropical OGWs place them near or below the detection limits of satellite sensors. To test this hypothesis, we reanalyze nine years of stratospheric radiances from the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite during austral winter, applying new averaging techniques to maximize signal-to-noise and improve thresholds for OGW detection. Deep climatological enhancements in stratospheric OGW variance over specific mountain ranges in Australia and southern Africa are revealed for the first time, which exhibit temporal and vertical variations consistent with predicted OGW responses to varying background winds.

  20. General relativity and gauge gravity theories of higher order

    International Nuclear Information System (INIS)

    Konopleva, N.P.

    1998-01-01

    It is a short review of today's gauge gravity theories and their relations with Einstein General Relativity. The conceptions of construction of the gauge gravity theories with higher derivatives are analyzed. GR is regarded as the gauge gravity theory corresponding to the choice of G ∞4 as the local gauge symmetry group and the symmetrical tensor of rank two g μν as the field variable. Using the mathematical technique, single for all fundamental interactions (namely variational formalism for infinite Lie groups), we can obtain Einstein's theory as the gauge theory without any changes. All other gauge approaches lead to non-Einstein theories of gravity. But above-mentioned mathematical technique permits us to construct the gauge gravity theory of higher order (for instance SO (3,1)-gravity) so that all vacuum solutions of Einstein equations are the solutions of the SO (3,1)-gravity theory. The structure of equations of SO(3,1)-gravity becomes analogous to Weeler-Misner geometrodynamics one

  1. Solutions for ultra-high speed optical wavelength conversion and clock recovery

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen

    2006-01-01

    This paper reports on our recent advances in ultra-fast optical communications relying on ultra-short pulses densely stacked in ultra-high bit rate serial data signals at a single wavelength. The paper describes details in solutions for the network functionalities of wavelength conversion and clock...... recovery at bit rates up to 320 Gb/s...

  2. [Fundus autofluorescence in patients with inherited retinal diseases : Patterns of fluorescence at two different wavelengths.

    NARCIS (Netherlands)

    Theelen, T.; Boon, C.J.F.; Klevering, B.J.; Hoyng, C.B.

    2008-01-01

    BACKGROUND: Fundus autofluorescence (FAF) may be excited and measured at different wavelengths. In the present study we compared short wavelength and near-infrared FAF patterns of retinal dystrophies. METHODS: We analysed both eyes of 108 patients with diverse retinal dystrophies. Besides colour

  3. 100G shortwave wavelength division multiplexing solutions for multimode fiber data links

    DEFF Research Database (Denmark)

    Cimoli, Bruno; Estaran Tolosa, Jose Manuel; Rodes Lopez, Guillermo Arturo

    2016-01-01

    We investigate an alternative 100G solution for optical short-range data center links. The presented solution adopts wavelength division multiplexing technology to transmit four channels of 25G over a multimode fiber. A comparative performance analysis of the wavelength-grid selection for the wav...

  4. Gravity field recovery in the framework of a Geodesy and Time Reference in Space (GETRIS)

    Science.gov (United States)

    Hauk, Markus; Schlicht, Anja; Pail, Roland; Murböck, Michael

    2017-04-01

    vary the number of Galileo and LEO satellites and show reduced errors in the temporal gravity field solutions for this enhanced inter-satellite-links. Based on the GETRIS infrastructure, the multiplicity of satellites enables co-estimating short-period long-wavelength gravity field signals, indicating it as powerful method for non-tidal aliasing reduction.

  5. Quantum Gravity Experiments

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2015-10-01

    Full Text Available A new quantum gravity experiment is reported with the data confirming the generali- sation of the Schrödinger equation to include the interaction of the wave function with dynamical space. Dynamical space turbulence, via this interaction process, raises and lowers the energy of the electron wave function, which is detected by observing conse- quent variations in the electron quantum barrier tunnelling rate in reverse-biased Zener diodes. This process has previously been reported and enabled the measurement of the speed of the dynamical space flow, which is consistent with numerous other detection experiments. The interaction process is dependent on the angle between the dynamical space flow velocity and the direction of the electron flow in the diode, and this depen- dence is experimentally demonstrated. This interaction process explains gravity as an emergent quantum process, so unifying quantum phenomena and gravity. Gravitational waves are easily detected.

  6. Gravity and strings

    CERN Document Server

    Ortín, Tomás

    2015-01-01

    Self-contained and comprehensive, this definitive new edition of Gravity and Strings is a unique resource for graduate students and researchers in theoretical physics. From basic differential geometry through to the construction and study of black-hole and black-brane solutions in quantum gravity - via all the intermediate stages - this book provides a complete overview of the intersection of gravity, supergravity, and superstrings. Now fully revised, this second edition covers an extensive array of topics, including new material on non-linear electric-magnetic duality, the electric-tensor formalism, matter-coupled supergravity, supersymmetric solutions, the geometries of scalar manifolds appearing in 4- and 5-dimensional supergravities, and much more. Covering reviews of important solutions and numerous solution-generating techniques, and accompanied by an exhaustive index and bibliography, this is an exceptional reference work.

  7. Solitons in Newtonian gravity

    International Nuclear Information System (INIS)

    Goetz, G.

    1988-01-01

    It is shown that the plane-wave solutions for the equations governing the motion of a self-gravitating isothermal fluid in Newtonian hydrodynamics are generated by a sine-Gordon equation which is solvable by an 'inverse scattering' transformation. A transformation procedure is outlined by means of which one can construct solutions of the gravity system out of a pair of solutions of the sine-Gordon equation, which are interrelated via an auto-Baecklund transformation. In general the solutions to the gravity system are obtained in a parametric representation in terms of characteristic coordinates. All solutions of the gravity system generated by the one-and two-soliton solutions of the sine-Gordon equation can be constructed explicitly. These might provide models for the evolution of flat structures as they are predicted to arise in the process of galaxy formation. (author)

  8. Stochastic quantum gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1987-01-01

    We begin with a naive application of the Parisi-Wu scheme to linearized gravity. This will lead into trouble as one peculiarity of the full theory, the indefiniteness of the Euclidean action, shows up already at this level. After discussing some proposals to overcome this problem, Minkowski space stochastic quantization will be introduced. This will still not result in an acceptable quantum theory of linearized gravity, as the Feynman propagator turns out to be non-causal. This defect will be remedied only after a careful analysis of general covariance in stochastic quantization has been performed. The analysis requires the notion of a metric on the manifold of metrics, and a natural candidate for this is singled out. With this a consistent stochastic quantization of Einstein gravity becomes possible. It is even possible, at least perturbatively, to return to the Euclidean regime. 25 refs. (Author)

  9. No slip gravity

    Science.gov (United States)

    Linder, Eric V.

    2018-03-01

    A subclass of the Horndeski modified gravity theory we call No Slip Gravity has particularly interesting properties: 1) a speed of gravitational wave propagation equal to the speed of light, 2) equality between the effective gravitational coupling strengths to matter and light, Gmatter and Glight, hence no slip between the metric potentials, yet difference from Newton's constant, and 3) suppressed growth to give better agreement with galaxy clustering observations. We explore the characteristics and implications of this theory, and project observational constraints. We also give a simple expression for the ratio of the gravitational wave standard siren distance to the photon standard candle distance, in this theory and others, and enable a direct comparison of modified gravity in structure growth and in gravitational waves, an important crosscheck.

  10. The quantization of gravity

    CERN Document Server

    Gerhardt, Claus

    2018-01-01

    A unified quantum theory incorporating the four fundamental forces of nature is one of the major open problems in physics. The Standard Model combines electro-magnetism, the strong force and the weak force, but ignores gravity. The quantization of gravity is therefore a necessary first step to achieve a unified quantum theory. In this monograph a canonical quantization of gravity has been achieved by quantizing a geometric evolution equation resulting in a gravitational wave equation in a globally hyperbolic spacetime. Applying the technique of separation of variables we obtain eigenvalue problems for temporal and spatial self-adjoint operators where the temporal operator has a pure point spectrum with eigenvalues $\\lambda_i$ and related eigenfunctions, while, for the spatial operator, it is possible to find corresponding eigendistributions for each of the eigenvalues $\\lambda_i$, if the Cauchy hypersurface is asymptotically Euclidean or if the quantized spacetime is a black hole with a negative cosmological ...

  11. Airborne Gravity: NGS' Gravity Data for EN08 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Vermont, New Hampshire, Massachusettes, Maine, and Canada collected in 2013 over 1 survey. This data set is part of the Gravity...

  12. Airborne Gravity: NGS' Gravity Data for TS01 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Puerto Rico and the Virgin Islands collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  13. Airborne Gravity: NGS' Gravity Data for AN08 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2016 over one survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  14. Airborne Gravity: NGS' Gravity Data for CN02 (2013 & 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Nebraska collected in 2013 & 2014 over 3 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...

  15. Airborne Gravity: NGS' Gravity Data for EN01 (2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Canada, and Lake Ontario collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  16. Airborne Gravity: NGS' Gravity Data for AN03 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 and 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  17. Airborne Gravity: NGS' Gravity Data for EN06 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maine, Canada, and the Atlantic Ocean collected in 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the...

  18. Airborne Gravity: NGS' Gravity Data for ES01 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida, the Bahamas, and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition of...

  19. A Combined Gravity Compensation Method for INS Using the Simplified Gravity Model and Gravity Database.

    Science.gov (United States)

    Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang

    2018-05-14

    In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS's solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method.

  20. Miniaturised Gravity Sensors for Remote Gravity Surveys.

    Science.gov (United States)

    Middlemiss, R. P.; Bramsiepe, S. G.; Hough, J.; Paul, D. J.; Rowan, S.; Samarelli, A.; Hammond, G.

    2016-12-01

    Gravimetry lets us see the world from a completely different perspective. The ability to measure tiny variations in gravitational acceleration (g), allows one to see not just the Earth's gravitational pull, but the influence of smaller objects. The more accurate the gravimeter, the smaller the objects one can see. Gravimetry has applications in many different fields: from tracking magma moving under volcanoes before eruptions; to locating hidden tunnels. The top commercial gravimeters weigh tens of kg and cost at least $100,000, limiting the situations in which they can be used. By contrast, smart phones use a MEMS (microelectromechanical system) accelerometer that can measure the orientation of the device. These are not nearly sensitive or stable enough to be used for the gravimetry but they are cheap, light-weight and mass-producible. At Glasgow University we have developed a MEMS device with both the stability and sensitivity for useful gravimetric measurements. This was demonstrated by a measurement of the Earth tides - the first time this has been achieved with a MEMS sensor. A gravimeter of this size opens up the possiblility for new gravity imaging modalities. Thousands of gravimeters could be networked over a survey site, storing data on an SD card or communicating wirelessly to a remote location. These devices could also be small enough to be carried by a UAVs: airborne gravity surveys could be carried out at low altitude by mulitple UAVs, or UAVs could be used to deliver ground based gravimeters to remote or inaccessible locations.

  1. Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms.

    Science.gov (United States)

    Tahara, Tatsuki; Mori, Ryota; Kikunaga, Shuhei; Arai, Yasuhiko; Takaki, Yasuhiro

    2015-06-15

    Dual-wavelength phase-shifting digital holography that selectively extracts wavelength information from five wavelength-multiplexed holograms is presented. Specific phase shifts for respective wavelengths are introduced to remove the crosstalk components and extract only the object wave at the desired wavelength from the holograms. Object waves in multiple wavelengths are selectively extracted by utilizing 2π ambiguity and the subtraction procedures based on phase-shifting interferometry. Numerical results show the validity of the proposed technique. The proposed technique is also experimentally demonstrated.

  2. Surfing surface gravity waves

    Science.gov (United States)

    Pizzo, Nick

    2017-11-01

    A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.

  3. Towards a quantum gravity

    International Nuclear Information System (INIS)

    Romney, B.; Barrau, A.; Vidotto, F.; Le Meur, H.; Noui, K.

    2011-01-01

    The loop quantum gravity is the only theory that proposes a quantum description of space-time and therefore of gravitation. This theory predicts that space is not infinitely divisible but that is has a granular structure at the Planck scale (10 -35 m). Another feature of loop quantum gravity is that it gets rid of the Big-Bang singularity: our expanding universe may come from the bouncing of a previous contracting universe, in this theory the Big-Bang is replaced with a big bounce. The loop quantum theory predicts also the huge number of quantum states that accounts for the entropy of large black holes. (A.C.)

  4. Terrestrial gravity data analysis for interim gravity model improvement

    Science.gov (United States)

    1987-01-01

    This is the first status report for the Interim Gravity Model research effort that was started on June 30, 1986. The basic theme of this study is to develop appropriate models and adjustment procedures for estimating potential coefficients from terrestrial gravity data. The plan is to use the latest gravity data sets to produce coefficient estimates as well as to provide normal equations to NASA for use in the TOPEX/POSEIDON gravity field modeling program.

  5. Wave Tank Studies of Phase Velocities of Short Wind Waves

    Science.gov (United States)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Wave tank studies of phase velocities of short wind waves have been carried out using Ka-band radar and an Optical Spectrum Analyser. The phase velocities were retrieved from measured radar and optical Doppler shifts, taking into account measurements of surface drift velocities. The dispersion relationship was studied in centimetre (cm)- and millimetre(mm)-scale wavelength ranges at different fetches and wind speeds, both for a clean water surface and for water covered with surfactant films. It is ob- tained that the phase velocities do not follow the dispersion relation of linear capillary- gravity waves, increasing with fetch and, therefore, depending on phase velocities of dominant decimetre (dm)-centimetre-scale wind waves. One thus can conclude that nonlinear cm-mm-scale harmonics bound to the dominant wind waves and propagat- ing with the phase velocities of the decimetric waves are present in the wind wave spectrum. The resulting phase velocities of short wind waves are determined by re- lation between free and bound waves. The relative intensity of the bound waves in the spectrum of short wind waves is estimated. It is shown that this relation depends strongly on the surfactant concentration, because the damping effect due to films is different for free and bound waves; this results to changes of phase velocities of wind waves in the presence of surfactant films. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  6. Gravity and Height Variations at Medicina, Italy

    Science.gov (United States)

    Bruni, Sara; Zerbini, Susanna; Errico, Maddalena; Santi, Efisio; Wziontek, Hartmut

    2017-04-01

    Since 1996, at the Medicina station, height and gravity variations are monitored continuously by means of GPS, VLBI and superconducting gravimeter (SG) data. Additionally, absolute gravity observations are performed twice a year and environmental parameters, among others water table levels, are regularly acquired. Levelling between the different monuments at the site area is also carried out repeatedly to constrain local ties in the vertical position. Two GPS systems are located very close to each other, and both are in close proximity to the VLBI antenna. Twenty years of data are now available, which allow investigating both long- and short-period height and gravity signals together with their relevant correlations. Natural land subsidence, which is well known to occur in the area, is a major component of the observed long-term behavior; however, non-linear long-period signatures are also present in the time series. On a shorter time scale, fingerprints of the water table seasonal oscillations can be recognized in the data. The Medicina site is characterized by clayey soil subjected to consolidation effects when the water table lowers during summer periods. The pillar on which the SG is installed is especially affected because of its shallow foundation, causing height decreases in the order of 2.5-3 cm for water table lowering of 2 m. This study presents a comparative analysis of the different data sets with the aim of separating mass and deformation contributions in the SG gravity record.

  7. Gravity Data for South America

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (152,624 records) were compiled by the University of Texas at Dallas. This data base was received in June 1992. Principal gravity parameters...

  8. Interior Alaska Gravity Station Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 9416 records. This data base was received in March 1997. Principal gravity parameters include Free-air Anomalies which have been...

  9. Gravity Station Data for Spain

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 28493 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...

  10. Gravity Station Data for Portugal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 3064 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...

  11. Measurement of short bunches

    International Nuclear Information System (INIS)

    Wang, D.X.

    1996-01-01

    In recent years, there has been increasing interest in short electron bunches for different applications such as short wavelength FELs, linear colliders, and advanced accelerators such as laser or plasma wakefield accelerators. One would like to meet various requirements such as high peak current, low momentum spread, high luminosity, small ratio of bunch length to plasma wavelength, and accurate timing. Meanwhile, recent development and advances in RF photoinjectors and various bunching schemes make it possible to generate very short electron bunches. Measuring the longitudinal profile and monitoring bunch length are critical to understand the bunching process and longitudinal beam dynamics, and to commission and operate such short bunch machines. In this paper, several commonly used measurement techniques for subpicosecond bunches and their relative advantages and disadvantages are discussed. As examples, bunch length related measurements at Jefferson Lab are presented. At Jefferson Lab, bunch lengths as short as 84 fs have been systematically measured using a zero-phasing technique. A highly sensitive Coherent Synchrotron Radiation (CSR) detector has been developed to noninvasively monitor bunch length for low charge bunches. Phase transfer function measurements provide a means of correcting RF phase drifts and reproducing RF phases to within a couple of tenths of a degree. The measurement results are in excellent agreement with simulations. A comprehensive bunch length control scheme is presented. (author)

  12. Measurement of short bunches

    International Nuclear Information System (INIS)

    Wang, D.X.

    1996-01-01

    In recent years, there has been increasing interest in short electron bunches for different applications such as short wavelength FELs, linear colliders, and advanced accelerators such as laser or plasma wakefield accelerators. One would like to meet various requirements such as high peak current, low momentum spread, high luminosity, small ratio of bunch length to plasma wavelength, and accurate timing. Meanwhile, recent development and advances in RF photoinjectors and various bunching schemes make it possible to generate very short electron bunches. Measuring the longitudinal profile and monitoring bunch length are critical to understand the bunching process and longitudinal beam dynamics, and to commission and operate such short bunch machines. In this paper, several commonly used measurement techniques for subpicosecond bunches and their relative advantages and disadvantages are discussed. As examples, bunch length related measurements at Jefferson lab are presented. At Jefferson Lab, bunch lengths s short as 84 fs have been systematically measured using a zero-phasing technique. A highly sensitive Coherent Synchrotron Radiation (CSR) detector has been developed to noninvasively monitor bunch length for low charge bunches. Phase transfer function measurements provide a means of correcting RF phase drifts and reproducing RF phases to within a couple of tenths of a degree. The measurement results are in excellent agreement with simulations. A comprehensive bunch length control scheme is presented

  13. Gravity and isostatic anomaly maps of Greece produced

    Science.gov (United States)

    Lagios, E.; Chailas, S.; Hipkin, R. G.

    A gravity anomaly map of Greece was first compiled in the early 1970s [Makris and Stavrou, 1984] from all available gravity data collected by different Hellenic institutions. However, to compose this map the data had to be smoothed to the point that many of the smaller-wavelength gravity anomalies were lost. New work begun in 1987 has resulted in the publication of an updated map [Lagios et al., 1994] and an isostatic anomaly map derived from it.The gravity data cover the area between east longitudes 19° and 27° and north latitudes 32° and 42°, organized in files of 100-km squares and grouped in 10-km squares using UTM zone 34 coordinates. Most of the data on land come from the gravity observations of Makris and Stavrou [1984] with additional data from the Institute of Geology and Mining Exploration, the Public Oil Corporation of Greece, and Athens University. These data were checked using techniques similar to those used in compiling the gravity anomaly map of the United States, but the horizontal gradient was used as a check rather than the gravity difference. Marine data were digitized from the maps of Morelli et al. [1975a, 1975b]. All gravity anomaly values are referred to the IGSN-71 system, reduced with the standard Bouger density of 2.67 Mg/m3. We estimate the errors of the anomalies in the continental part of Greece to be ±0.9 mGal; this is expected to be smaller over fairly flat regions. For stations whose height has been determined by leveling, the error is only ±0.3 mGal. For the marine areas, the errors are about ±5 mGal [Morelli, 1990].

  14. Massive Conformal Gravity

    International Nuclear Information System (INIS)

    Faria, F. F.

    2014-01-01

    We construct a massive theory of gravity that is invariant under conformal transformations. The massive action of the theory depends on the metric tensor and a scalar field, which are considered the only field variables. We find the vacuum field equations of the theory and analyze its weak-field approximation and Newtonian limit.

  15. Colossal creations of gravity

    DEFF Research Database (Denmark)

    Skielboe, Andreas

    Gravity governs the evolution of the universe on the largest scales, and powers some of the most extreme objects at the centers of galaxies. Determining the masses and kinematics of galaxy clusters provides essential constraints on the large-scale structure of the universe, and act as direct probes...

  16. A Trick of Gravity

    Science.gov (United States)

    Newburgh, Ronald

    2010-01-01

    It's both surprising and rewarding when an old, standard problem reveals a subtlety that expands its pedagogic value. I realized recently that the role of gravity in the range equation for a projectile is not so simple as first appears. This realization may be completely obvious to others but was quite new to me.

  17. Discrete Lorentzian quantum gravity

    NARCIS (Netherlands)

    Loll, R.

    2000-01-01

    Just as for non-abelian gauge theories at strong coupling, discrete lattice methods are a natural tool in the study of non-perturbative quantum gravity. They have to reflect the fact that the geometric degrees of freedom are dynamical, and that therefore also the lattice theory must be formulated

  18. Loop quantum gravity

    International Nuclear Information System (INIS)

    Pullin, J.

    2015-01-01

    Loop quantum gravity is one of the approaches that are being studied to apply the rules of quantum mechanics to the gravitational field described by the theory of General Relativity . We present an introductory summary of the main ideas and recent results. (Author)

  19. A finite quantum gravity

    International Nuclear Information System (INIS)

    Meszaros, A.

    1984-05-01

    In case the graviton has a very small non-zero mass, the existence of six additional massive gravitons with very big masses leads to a finite quantum gravity. There is an acausal behaviour on the scales that is determined by the masses of additional gravitons. (author)

  20. Venus - Ishtar gravity anomaly

    Science.gov (United States)

    Sjogren, W. L.; Bills, B. G.; Mottinger, N. A.

    1984-01-01

    The gravity anomaly associated with Ishtar Terra on Venus is characterized, comparing line-of-sight acceleration profiles derived by differentiating Pioneer Venus Orbiter Doppler residual profiles with an Airy-compensated topographic model. The results are presented in graphs and maps, confirming the preliminary findings of Phillips et al. (1979). The isostatic compensation depth is found to be 150 + or - 30 km.

  1. Torsion induces gravity

    International Nuclear Information System (INIS)

    Aros, Rodrigo; Contreras, Mauricio

    2006-01-01

    In this work the Poincare-Chern-Simons and anti-de Sitter-Chern-Simons gravities are studied. For both, a solution that can be cast as a black hole with manifest torsion is found. Those solutions resemble Schwarzschild and Schwarzschild-AdS solutions, respectively

  2. Discrete quantum gravity

    International Nuclear Information System (INIS)

    Williams, J.W.

    1992-01-01

    After a brief introduction to Regge calculus, some examples of its application is quantum gravity are described in this paper. In particular, the earliest such application, by Ponzano and Regge, is discussed in some detail and it is shown how this leads naturally to current work on invariants of three-manifolds

  3. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    1998-01-01

    Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  4. Stochastic inflation and nonlinear gravity

    International Nuclear Information System (INIS)

    Salopek, D.S.; Bond, J.R.

    1991-01-01

    We show how nonlinear effects of the metric and scalar fields may be included in stochastic inflation. Our formalism can be applied to non-Gaussian fluctuation models for galaxy formation. Fluctuations with wavelengths larger than the horizon length are governed by a network of Langevin equations for the physical fields. Stochastic noise terms arise from quantum fluctuations that are assumed to become classical at horizon crossing and that then contribute to the background. Using Hamilton-Jacobi methods, we solve the Arnowitt-Deser-Misner constraint equations which allows us to separate the growing modes from the decaying ones in the drift phase following each stochastic impulse. We argue that the most reasonable choice of time hypersurfaces for the Langevin system during inflation is T=ln(Ha), where H and a are the local values of the Hubble parameter and the scale factor, since T is the natural time for evolving the short-wavelength scalar field fluctuations in an inhomogeneous background

  5. Quantum Gravity Effects in Cosmology

    Directory of Open Access Journals (Sweden)

    Gu Je-An

    2018-01-01

    Full Text Available Within the geometrodynamic approach to quantum cosmology, we studied the quantum gravity effects in cosmology. The Gibbons-Hawking temperature is corrected by quantum gravity due to spacetime fluctuations and the power spectrum as well as any probe field will experience the effective temperature, a quantum gravity effect.

  6. Even-dimensional topological gravity from Chern-Simons gravity

    International Nuclear Information System (INIS)

    Merino, N.; Perez, A.; Salgado, P.

    2009-01-01

    It is shown that the topological action for gravity in 2n-dimensions can be obtained from the (2n+1)-dimensional Chern-Simons gravity genuinely invariant under the Poincare group. The 2n-dimensional topological gravity is described by the dynamics of the boundary of a (2n+1)-dimensional Chern-Simons gravity theory with suitable boundary conditions. The field φ a , which is necessary to construct this type of topological gravity in even dimensions, is identified with the coset field associated with the non-linear realizations of the Poincare group ISO(d-1,1).

  7. GEODYNAMIC WAVES AND GRAVITY

    Directory of Open Access Journals (Sweden)

    A. V. Vikulin

    2014-01-01

    Full Text Available  Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related.  The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.  

  8. Comparison of different wavelength pump sources for Tm subnanosecond amplifier

    Science.gov (United States)

    Cserteg, Andras; Guillemet, Sébastien; Hernandez, Yves; Giannone, Domenico

    2012-06-01

    We report here a comparison of different pumping wavelengths for short pulse Thulium fibre amplifiers. We compare the results in terms of efficiency and required fibre length. As we operate the laser in the sub-nanosecond regime, the fibre length is a critical parameter regarding non linear effects. With 793 nm clad-pumping, a 4 m long active fibre was necessary, leading to strong spectral deformation through Self Phase Modulation (SPM). Core-pumping scheme was then more in-depth investigated with several wavelengths tested. Good results with Erbium and Raman shifted pumping sources were obtained, with very short fibre length, aiming to reach a few micro-joules per pulse without (or with limited) SPM.

  9. Optogalvanic wavelength calibration for laser monitoring of reactive atmospheric species

    Science.gov (United States)

    Webster, C. R.

    1982-01-01

    Laser-based techniques have been successfully employed for monitoring atmospheric species of importance to stratospheric ozone chemistry or tropospheric air quality control. When spectroscopic methods using tunable lasers are used, a simultaneously recorded reference spectrum is required for wavelength calibration. For stable species this is readily achieved by incorporating into the sensing instrument a reference cell containing the species to be monitored. However, when the species of interest is short-lived, this approach is unsuitable. It is proposed that wavelength calibration for short-lived species may be achieved by generating the species of interest in an electrical or RF discharge and using optogalvanic detection as a simple, sensitive, and reliable means of recording calibration spectra. The wide applicability of this method is emphasized. Ultraviolet, visible, or infrared lasers, either CW or pulsed, may be used in aircraft, balloon, or shuttle experiments for sensing atoms, molecules, radicals, or ions.

  10. Metastable gravity on classical defects

    International Nuclear Information System (INIS)

    Ringeval, Christophe; Rombouts, Jan-Willem

    2005-01-01

    We discuss the realization of metastable gravity on classical defects in infinite-volume extra dimensions. In dilatonic Einstein gravity, it is found that the existence of metastable gravity on the defect core requires violation of the dominant energy condition for codimension N c =2 defects. This is illustrated with a detailed analysis of a six-dimensional hyperstring minimally coupled to dilaton gravity. We present the general conditions under which a codimension N c >2 defect admits metastable modes, and find that they differ from lower codimensional models in that, under certain conditions, they do not require violation of energy conditions to support quasilocalized gravity

  11. Making Displaced Holograms At Two Wavelengths

    Science.gov (United States)

    Witherow, William K.; Ecker, Andreas

    1989-01-01

    Two-wavelength holographic system augmented with pair of prisms to introduce small separation between holograms formed simultaneously at two wavelengths on holographic plate. Principal use in study of flows. Gradients in index of refraction of fluid caused by variations in temperature, concentration, or both. Holography at one wavelength cannot be used to distinguish between two types of variations. Difference between spacings of fringes in photographs reconstructed from holograms taken simultaneously at two different wavelengths manipulated mathematically to determine type of variation.

  12. Comparison of Global Distributions of Zonal-Mean Gravity Wave Variance Inferred from Different Satellite Instruments

    Science.gov (United States)

    Preusse, Peter; Eckermann, Stephen D.; Offermann, Dirk; Jackman, Charles H. (Technical Monitor)

    2000-01-01

    Gravity wave temperature fluctuations acquired by the CRISTA instrument are compared to previous estimates of zonal-mean gravity wave temperature variance inferred from the LIMS, MLS and GPS/MET satellite instruments during northern winter. Careful attention is paid to the range of vertical wavelengths resolved by each instrument. Good agreement between CRISTA data and previously published results from LIMS, MLS and GPS/MET are found. Key latitudinal features in these variances are consistent with previous findings from ground-based measurements and some simple models. We conclude that all four satellite instruments provide reliable global data on zonal-mean gravity wave temperature fluctuations throughout the middle atmosphere.

  13. Quantum gravity from noncommutative spacetime

    International Nuclear Information System (INIS)

    Lee, Jungjai; Yang, Hyunseok

    2014-01-01

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.

  14. Quantum gravity from noncommutative spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jungjai [Daejin University, Pocheon (Korea, Republic of); Yang, Hyunseok [Korea Institute for Advanced Study, Seoul (Korea, Republic of)

    2014-12-15

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.

  15. A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model

    DEFF Research Database (Denmark)

    Knudsen, Per; Bingham, R.; Andersen, Ole Baltazar

    2011-01-01

    The Gravity and steady-state Ocean Circulation Explorer (GOCE) satellite mission measures Earth’s gravity field with an unprecedented accuracy at short spatial scales. In doing so, it promises to significantly advance our ability to determine the ocean’s general circulation. In this study, an ini...

  16. Age versus size determination of radial variation in wood specific gravity : lessons from eccentrics

    Science.gov (United States)

    G. Bruce Williamson; Michael C. Wiemann

    2011-01-01

    Radial increases in wood specific gravity have been shown to characterize early successional trees from tropical forests. Here, we develop and apply a novel method to test whether radial increases are determined by tree age or tree size. The method compares the slopes of specific gravity changes across a short radius and a long radius of trees with eccentric trunks. If...

  17. Cosmological Tests of Gravity

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Extensions of Einstein’s theory of General Relativity are under investigation as a potential explanation of the accelerating expansion rate of the universe. I’ll present a cosmologist’s overview of attempts to test these ideas in an efficient and unbiased manner. I’ll start by introducing the bestiary of alternative gravity theories that have been put forwards. This proliferation of models motivates us to develop model-independent, agnostic tools for comparing the theory space to cosmological data. I’ll introduce the effective field theory for cosmological perturbations, a framework designed to unify modified gravity theories in terms of a manageable set of parameters. Having outlined the formalism, I’ll talk about the current constraints on this framework, and the improvements expected from the next generation of large galaxy clustering, weak lensing and intensity mapping experiments.

  18. The relativistic gravity train

    Science.gov (United States)

    Seel, Max

    2018-05-01

    The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.

  19. Antimatter gravity experiment

    International Nuclear Information System (INIS)

    Brown, R.E.; Camp, J.B.; Darling, T.W.

    1990-01-01

    An experiment is being developed to measure the acceleration of the antiproton in the gravitational field of the earth. Antiprotons of a few MeV from the LEAR facility at CERN will be slowed, captured, cooled to a temperature of about 10 K, and subsequently launched a few at a time into a drift tube where the effect of gravity on their motion will be determined by a time-of-flight method. Development of the experiment is proceeding at Los Alamos using normal matter. The fabrication of a drift tube that will produce a region of space in which gravity is the dominant force on moving ions is of major difficulty. This involves a study of methods of minimizing the electric fields produced by spatially varying work functions on conducting surfaces. Progress in a number of areas is described, with stress on the drift-tube development

  20. Lectures on Quantum Gravity

    CERN Document Server

    Gomberoff, Andres

    2006-01-01

    The 2002 Pan-American Advanced Studies Institute School on Quantum Gravity was held at the Centro de Estudios Cientificos (CECS),Valdivia, Chile, January 4-14, 2002. The school featured lectures by ten speakers, and was attended by nearly 70 students from over 14 countries. A primary goal was to foster interaction and communication between participants from different cultures, both in the layman’s sense of the term and in terms of approaches to quantum gravity. We hope that the links formed by students and the school will persist throughout their professional lives, continuing to promote interaction and the essential exchange of ideas that drives research forward. This volume contains improved and updated versions of the lectures given at the School. It has been prepared both as a reminder for the participants, and so that these pedagogical introductions can be made available to others who were unable to attend. We expect them to serve students of all ages well.

  1. Tensor Galileons and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chatzistavrakidis, Athanasios [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Khoo, Fech Scen [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany); Roest, Diederik [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Schupp, Peter [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany)

    2017-03-13

    The particular structure of Galileon interactions allows for higher-derivative terms while retaining second order field equations for scalar fields and Abelian p-forms. In this work we introduce an index-free formulation of these interactions in terms of two sets of Grassmannian variables. We employ this to construct Galileon interactions for mixed-symmetry tensor fields and coupled systems thereof. We argue that these tensors are the natural generalization of scalars with Galileon symmetry, similar to p-forms and scalars with a shift-symmetry. The simplest case corresponds to linearised gravity with Lovelock invariants, relating the Galileon symmetry to diffeomorphisms. Finally, we examine the coupling of a mixed-symmetry tensor to gravity, and demonstrate in an explicit example that the inclusion of appropriate counterterms retains second order field equations.

  2. Simplicial quantum gravity

    International Nuclear Information System (INIS)

    Hartle, J.B.

    1985-01-01

    Simplicial approximation and the ideas associated with the Regge calculus provide a concrete way of implementing a sum over histories formulation of quantum gravity. A simplicial geometry is made up of flat simplices joined together in a prescribed way together with an assignment of lengths to their edges. A sum over simplicial geometries is a sum over the different ways the simplices can be joined together with an integral over their edge lengths. The construction of the simplicial Euclidean action for this approach to quantum general relativity is illustrated. The recovery of the diffeomorphism group in the continuum limit is discussed. Some possible classes of simplicial complexes with which to define a sum over topologies are described. In two dimensional quantum gravity it is argued that a reasonable class is the class of pseudomanifolds

  3. Instantons and gravity

    International Nuclear Information System (INIS)

    Konopleva, N.P.

    1996-01-01

    The problems of application of nonperturbative quantization methods in the theories of the gauge fields and gravity are discussed. Unification of interactions is considered in the framework of the geometrical gauge fields theory. Vacuum conception in the unified theory of interactions and instantons role in the vacuum structure are analyzed. The role of vacuum solutions of Einstein equations in definition of the gauge field vacuum is demonstrated

  4. Gravity, Time, and Lagrangians

    Science.gov (United States)

    Huggins, Elisha

    2010-01-01

    Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one…

  5. Spontaneously generated gravity

    International Nuclear Information System (INIS)

    Zee, A.

    1981-01-01

    We show, following a recent suggestion of Adler, that gravity may arise as a consequence of dynamical symmetry breaking in a scale- and gauge-invariant world. Our calculation is not tied to any specific scheme of dynamical symmetry breaking. A representation for Newton's coupling constant in terms of flat-space quantities is derived. The sign of Newton's coupling constant appears to depend on infrared details of the symmetry-breaking mechanism

  6. Loop Quantum Gravity.

    Science.gov (United States)

    Rovelli, Carlo

    2008-01-01

    The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime , is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n -point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  7. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    2008-07-01

    Full Text Available The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler’s “spacetime foam” intuition. (iii Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv A derivation of the Bekenstein–Hawking black-hole entropy. (v Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  8. Semiclassical unimodular gravity

    International Nuclear Information System (INIS)

    Fiol, Bartomeu; Garriga, Jaume

    2010-01-01

    Classically, unimodular gravity is known to be equivalent to General Relativity (GR), except for the fact that the effective cosmological constant Λ has the status of an integration constant. Here, we explore various formulations of unimodular gravity beyond the classical limit. We first consider the non-generally covariant action formulation in which the determinant of the metric is held fixed to unity. We argue that the corresponding quantum theory is also equivalent to General Relativity for localized perturbative processes which take place in generic backgrounds of infinite volume (such as asymptotically flat spacetimes). Next, using the same action, we calculate semiclassical non-perturbative quantities, which we expect will be dominated by Euclidean instanton solutions. We derive the entropy/area ratio for cosmological and black hole horizons, finding agreement with GR for solutions in backgrounds of infinite volume, but disagreement for backgrounds with finite volume. In deriving the above results, the path integral is taken over histories with fixed 4-volume. We point out that the results are different if we allow the 4-volume of the different histories to vary over a continuum range. In this ''generalized'' version of unimodular gravity, one recovers the full set of Einstein's equations in the classical limit, including the trace, so Λ is no longer an integration constant. Finally, we consider the generally covariant theory due to Henneaux and Teitelboim, which is classically equivalent to unimodular gravity. In this case, the standard semiclassical GR results are recovered provided that the boundary term in the Euclidean action is chosen appropriately

  9. Granular Superconductors and Gravity

    Science.gov (United States)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  10. Venus gravity fields

    Science.gov (United States)

    Sjogren, W. L.; Ananda, M.; Williams, B. G.; Birkeland, P. W.; Esposito, P. S.; Wimberly, R. N.; Ritke, S. J.

    1981-01-01

    Results of Pioneer Venus Orbiter observations concerning the gravity field of Venus are presented. The gravitational data was obtained from reductions of Doppler radio tracking data for the Orbiter, which is in a highly eccentric orbit with periapsis altitude varying from 145 to 180 km and nearly fixed periapsis latitude of 15 deg N. The global gravity field was obtained through the simultaneous estimation of the orbit state parameters and gravity coefficients from long-period variations in orbital element rates. The global field has been described with sixth degree and order spherical harmonic coefficients, which are capable of resolving the three major topographical features on Venus. Local anomalies have been mapped using line-of-sight accelerations derived from the Doppler residuals between 40 deg N and 10 deg S latitude at approximately 300 km spatial resolution. Gravitational data is observed to correspond to topographical data obtained by radar altimeter, with most of the gravitational anomalies about 20-30 milligals. Simulations evaluating the isostatic states of two topographic features indicate that at least partial isostasy prevails, with the possibility of complete compensation.

  11. Wavelength modulation spectroscopy of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, S.E.

    1977-10-01

    The use of modulation spectroscopy to study the electronic properties of solids has been very productive. The construction of a wide range Wavelength Modulation Spectrometer to study the optical properties of solids is described in detail. Extensions of the working range of the spectrometer into the vacuum ultraviolet are discussed. Measurements of the reflectivity and derivative reflectivity spectra of the lead chalcogenides, the chalcopyrite ZnGeP/sub 2/, the layer compounds GaSe and GaS and their alloys, the ferroelectric SbSI, layer compounds SnS/sub 2/ and SnSe/sub 2/, and HfS/sub 2/ were made. The results of these measurements are presented along with their interpretation in terms of band structure calculations.

  12. Polar gravity fields from GOCE and airborne gravity

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Yidiz, Hasan

    2011-01-01

    Airborne gravity, together with high-quality surface data and ocean satellite altimetric gravity, may supplement GOCE to make consistent, accurate high resolution global gravity field models. In the polar regions, the special challenge of the GOCE polar gap make the error characteristics...... of combination models especially sensitive to the correct merging of satellite and surface data. We outline comparisons of GOCE to recent airborne gravity surveys in both the Arctic and the Antarctic. The comparison is done to new 8-month GOCE solutions, as well as to a collocation prediction from GOCE gradients...... in Antarctica. It is shown how the enhanced gravity field solutions improve the determination of ocean dynamic topography in both the Arctic and in across the Drake Passage. For the interior of Antarctica, major airborne gravity programs are currently being carried out, and there is an urgent need...

  13. Gravity signatures of terrane accretion

    Science.gov (United States)

    Franco, Heather; Abbott, Dallas

    1999-01-01

    In modern collisional environments, accreted terranes are bracketed by forearc gravity lows, a gravitational feature which results from the abandonment of the original trench and the initiation of a new trench seaward of the accreted terrane. The size and shape of the gravity low depends on the type of accreted feature and the strength of the formerly subducting plate. Along the Central American trench, the accretion of Gorgona Island caused a seaward trench jump of 48 to 66 km. The relict trench axes show up as gravity lows behind the trench with minimum values of -78 mgal (N of Gorgona) and -49 mgal (S of Gorgona) respectively. These forearc gravity lows have little or no topographic expression. The active trench immediately seaward of these forearc gravity lows has minimum gravity values of -59 mgal (N of Gorgona) and -58 mgal (S of Gorgona), respectively. In the north, the active trench has a less pronounced gravity low than the sediment covered forearc. In the Mariana arc, two Cretaceous seamounts have been accreted to the Eocene arc. The northern seamount is most likely a large block, the southern seamount may be a thrust slice. These more recent accretion events have produced modest forearc topographic and gravity lows in comparison with the topographic and gravity lows within the active trench. However, the minimum values of the Mariana forearc gravity lows are modest only by comparison to the Mariana Trench (-216 mgal); their absolute values are more negative than at Gorgona Island (-145 to -146 mgal). We speculate that the forearc gravity lows and seaward trench jumps near Gorgona Island were produced by the accretion of a hotspot island from a strong plate. The Mariana gravity lows and seaward trench jumps (or thrust slices) were the result of breaking a relatively weak plate close to the seamount edifice. These gravity lows resulting from accretion events should be preserved in older accreted terranes.

  14. Use of GRACE determined secular gravity rates for glacial isostatic adjustment studies in North-America

    Science.gov (United States)

    van der Wal, Wouter; Wu, Patrick; Sideris, Michael G.; Shum, C. K.

    2008-10-01

    Monthly geopotential spherical harmonic coefficients from the GRACE satellite mission are used to determine their usefulness and limitations for studying glacial isostatic adjustment (GIA) in North-America. Secular gravity rates are estimated by unweighted least-squares estimation using release 4 coefficients from August 2002 to August 2007 provided by the Center for Space Research (CSR), University of Texas. Smoothing is required to suppress short wavelength noise, in addition to filtering to diminish geographically correlated errors, as shown in previous studies. Optimal cut-off degrees and orders are determined for the destriping filter to maximize the signal to noise ratio. The halfwidth of the Gaussian filter is shown to significantly affect the sensitivity of the GRACE data (with respect to upper mantle viscosity and ice loading history). Therefore, the halfwidth should be selected based on the desired sensitivity. It is shown that increase in water storage in an area south west of Hudson Bay, from the summer of 2003 to the summer of 2006, contributes up to half of the maximum estimated gravity rate. Hydrology models differ in the predictions of the secular change in water storage, therefore even 4-year trend estimates are influenced by the uncertainty in water storage changes. Land ice melting in Greenland and Alaska has a non-negligible contribution, up to one-fourth of the maximum gravity rate. The estimated secular gravity rate shows two distinct peaks that can possibly be due to two domes in the former Pleistocene ice cover: west and south east of Hudson Bay. With a limited number of models, a better fit is obtained with models that use the ICE-3G model compared to the ICE-5G model. However, the uncertainty in interannual variations in hydrology models is too large to constrain the ice loading history with the current data span. For future work in which GRACE will be used to constrain ice loading history and the Earth's radial viscosity profile, it is

  15. Evidence for asymptotic safety from lattice quantum gravity.

    Science.gov (United States)

    Laiho, J; Coumbe, D

    2011-10-14

    We calculate the spectral dimension for nonperturbative quantum gravity defined via Euclidean dynamical triangulations. We find that it runs from a value of ∼3/2 at short distance to ∼4 at large distance scales, similar to results from causal dynamical triangulations. We argue that the short-distance value of 3/2 for the spectral dimension may resolve the tension between asymptotic safety and the holographic principle.

  16. Conformal Gravity: Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Robert K. Nesbet

    2013-01-01

    Full Text Available This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance, postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.

  17. Gravity localization on hybrid branes

    Directory of Open Access Journals (Sweden)

    D.F.S. Veras

    2016-03-01

    Full Text Available This work deals with gravity localization on codimension-1 brane worlds engendered by compacton-like kinks, the so-called hybrid branes. In such scenarios, the thin brane behavior is manifested when the extra dimension is outside the compact domain, where the energy density is non-trivial, instead of asymptotically as in the usual thick brane models. The zero mode is trapped in the brane, as required. The massive modes, although not localized in the brane, have important phenomenological implications such as corrections to the Newton's law. We study such corrections in the usual thick domain wall and in the hybrid brane scenarios. By means of suitable numerical methods, we attain the mass spectrum for the graviton and the corresponding wavefunctions. The spectra possess the usual linearly increasing behavior from the Kaluza–Klein theories. Further, we show that the 4D gravitational force is slightly increased at short distances. The first eigenstate contributes highly for the correction to the Newton's law. The subsequent normalized solutions have diminishing contributions. Moreover, we find out that the phenomenology of the hybrid brane is not different from the usual thick domain wall. The use of numerical techniques for solving the equations of the massive modes is useful for matching possible phenomenological measurements in the gravitational law as a probe to warped extra dimensions.

  18. Cosmological tests of modified gravity.

    Science.gov (United States)

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  19. Cosmology in general massive gravity theories

    International Nuclear Information System (INIS)

    Comelli, D.; Nesti, F.; Pilo, L.

    2014-01-01

    We study the cosmological FRW flat solutions generated in general massive gravity theories. Such a model are obtained adding to the Einstein General Relativity action a peculiar non derivative potentials, function of the metric components, that induce the propagation of five gravitational degrees of freedom. This large class of theories includes both the case with a residual Lorentz invariance as well as the case with rotational invariance only. It turns out that the Lorentz-breaking case is selected as the only possibility. Moreover it turns out that that perturbations around strict Minkowski or dS space are strongly coupled. The upshot is that even though dark energy can be simply accounted by massive gravity modifications, its equation of state w eff has to deviate from -1. Indeed, there is an explicit relation between the strong coupling scale of perturbations and the deviation of w eff from -1. Taking into account current limits on w eff and submillimiter tests of the Newton's law as a limit on the possible strong coupling scale, we find that it is still possible to have a weakly coupled theory in a quasi dS background. Future experimental improvements on short distance tests of the Newton's law may be used to tighten the deviation of w eff form -1 in a weakly coupled massive gravity theory

  20. Simulation of non-hydrostatic gravity wave propagation in the upper atmosphere

    Directory of Open Access Journals (Sweden)

    Y. Deng

    2014-04-01

    Full Text Available The high-frequency and small horizontal scale gravity waves may be reflected and ducted in non-hydrostatic simulations, but usually propagate vertically in hydrostatic models. To examine gravity wave propagation, a preliminary study has been conducted with a global ionosphere–thermosphere model (GITM, which is a non-hydrostatic general circulation model for the upper atmosphere. GITM has been run regionally with a horizontal resolution of 0.2° long × 0.2° lat to resolve the gravity wave with wavelength of 250 km. A cosine wave oscillation with amplitude of 30 m s−1 has been applied to the zonal wind at the low boundary, and both high-frequency and low-frequency waves have been tested. In the high-frequency case, the gravity wave stays below 200 km, which indicates that the wave is reflected or ducted in propagation. The results are consistent with the theoretical analysis from the dispersion relationship when the wavelength is larger than the cutoff wavelength for the non-hydrostatic situation. However, the low-frequency wave propagates to the high altitudes during the whole simulation period, and the amplitude increases with height. This study shows that the non-hydrostatic model successfully reproduces the high-frequency gravity wave dissipation.

  1. Is Gravity an Entropic Force?

    Directory of Open Access Journals (Sweden)

    Shan Gao

    2011-04-01

    Full Text Available The remarkable connections between gravity and thermodynamics seem to imply that gravity is not fundamental but emergent, and in particular, as Verlinde suggested, gravity is probably an entropic force. In this paper, we will argue that the idea of gravity as an entropic force is debatable. It is shown that there is no convincing analogy between gravity and entropic force in Verlinde’s example. Neither holographic screen nor test particle satisfies all requirements for the existence of entropic force in a thermodynamics system. Furthermore, we show that the entropy increase of the screen is not caused by its statistical tendency to increase entropy as required by the existence of entropic force, but in fact caused by gravity. Therefore, Verlinde’s argument for the entropic origin of gravity is problematic. In addition, we argue that the existence of a minimum size of spacetime, together with the Heisenberg uncertainty principle in quantum theory, may imply the fundamental existence of gravity as a geometric property of spacetime. This may provide a further support for the conclusion that gravity is not an entropic force.

  2. Active Response Gravity Offload System

    Science.gov (United States)

    Valle, Paul; Dungan, Larry; Cunningham, Thomas; Lieberman, Asher; Poncia, Dina

    2011-01-01

    The Active Response Gravity Offload System (ARGOS) provides the ability to simulate with one system the gravity effect of planets, moons, comets, asteroids, and microgravity, where the gravity is less than Earth fs gravity. The system works by providing a constant force offload through an overhead hoist system and horizontal motion through a rail and trolley system. The facility covers a 20 by 40-ft (approximately equals 6.1 by 12.2m) horizontal area with 15 ft (approximately equals4.6 m) of lifting vertical range.

  3. Teleparallel equivalent of Lovelock gravity

    Science.gov (United States)

    González, P. A.; Vásquez, Yerko

    2015-12-01

    There is a growing interest in modified gravity theories based on torsion, as these theories exhibit interesting cosmological implications. In this work inspired by the teleparallel formulation of general relativity, we present its extension to Lovelock gravity known as the most natural extension of general relativity in higher-dimensional space-times. First, we review the teleparallel equivalent of general relativity and Gauss-Bonnet gravity, and then we construct the teleparallel equivalent of Lovelock gravity. In order to achieve this goal, we use the vielbein and the connection without imposing the Weitzenböck connection. Then, we extract the teleparallel formulation of the theory by setting the curvature to null.

  4. The Interpretation of Wavelengths and Periods as Measured from Atmospheric Balloons.

    Science.gov (United States)

    de La Torre, Alejandro; Alexander, Pedro

    1995-12-01

    Transformations that take into account the characteristics of balloon motion and wave propagation to infer the `real' wavelengths and frequencies from the `apparent' ones measured during sounding are derived. To estimate the differences that may arise in the observations of internal gravity waves, a statistical relation between their wavelength and period recently found from theory and experiment is applied. It is shown that it may not be possible to determine from each apparent datum a unique real value, because up to four different transformations may be applicable for each experimental datum of wavelength or frequency. However, under certain conditions this ambiguity can be removed. The omission of the appropriate transformation may lead one to seriously misinterpret the data.

  5. Solar Observations at Submillimeter Wavelengths

    Science.gov (United States)

    Kaufmann, P.

    We review earlier to recent observational evidences and theoretical motivations leading to a renewed interest to observe flares in the submillimeter (submm) - infrared (IR) range of wavelengths. We describe the new solar dedicated submillimeter wave telescope which began operations at El Leoncito in the Argentina Andes: the SST project. It consists of focal plane arrays of two 405 GHz and four 212 GHz radiometers placed in a 1.5-m radome-enclosed Cassegrain antenna, operating simultaneously with one millisecond time resolution. The first solar events analyzed exhibited the onset of rapid submm-wave spikes (100-300 ms), well associated to other flare manifestations, especially at X-rays. The spikes positions were found scattered over the flaring source by tens of arcseconds. For one event an excellent association was found between the gamma-ray emission time profile and the rate of occurrence of submm-wave rapid spikes. The preliminary results favour the idea that bulk burst emissions are a response to numerous fast energetic injections, discrete in time, produced at different spatial positions over the flaring region. Coronal mass ejections were associated to the events studied. Their trajectories extrapolated to the solar surface appear to correspond to the onset time of the submm-wave spikes, which might represent an early signature of the CME's initial acceleration process.

  6. The gravity apple tree

    International Nuclear Information System (INIS)

    Aldama, Mariana Espinosa

    2015-01-01

    The gravity apple tree is a genealogical tree of the gravitation theories developed during the past century. The graphic representation is full of information such as guides in heuristic principles, names of main proponents, dates and references for original articles (See under Supplementary Data for the graphic representation). This visual presentation and its particular classification allows a quick synthetic view for a plurality of theories, many of them well validated in the Solar System domain. Its diachronic structure organizes information in a shape of a tree following similarities through a formal concept analysis. It can be used for educational purposes or as a tool for philosophical discussion. (paper)

  7. Centrifuges for Microgravity Simulation. The Reduced Gravity Paradigm

    International Nuclear Information System (INIS)

    Loon, Jack J. W. A. van

    2016-01-01

    Due to the cumbersome nature of performing real microgravity—spaceflight research scientists have been searching for alternatives to perform simulated microgravity or partial gravity experiments on Earth. For more than a century one uses the slow rotating clinostat as developed by von Sachs at the end of the nineteenth century. Since then, the fast rotating clinostat, the 3D clinostat or the random positioning machine, the rotating wall vessels, tail suspension and bed rest head down tilt and lately the levitating magnets have been introduced. Several of these simulation systems provide some similarities of the responses and phenotypes as seen in real microgravity experiments. However, one should always realize that we cannot reduce gravity on Earth, other than the relative short duration free fall studies in e.g., drop towers or parabolic aircraft. In this paper we want to explore the possibility to apply centrifuges to simulate microgravity or maybe better to simulate hypo-gravity. This Reduced Gravity Paradigm, RGP is based on the premise that adaptations seen going from a hypergravity level to a lower gravity are similar as changes seen going from unit gravity to microgravity.

  8. Centrifuges for Microgravity Simulation. The Reduced Gravity Paradigm

    Energy Technology Data Exchange (ETDEWEB)

    Loon, Jack J. W. A. van, E-mail: j.vanloon@vumc.nl [Department of Oral and Maxillofacial Surgery / Oral Pathology, Dutch Experiment Support Center, VU University Medical Center and Academic Centre for Dentistry Amsterdam, Amsterdam (Netherlands); TEC-MMG LIS Lab, European Space Agency Technology Center, Noordwijk (Netherlands)

    2016-07-19

    Due to the cumbersome nature of performing real microgravity—spaceflight research scientists have been searching for alternatives to perform simulated microgravity or partial gravity experiments on Earth. For more than a century one uses the slow rotating clinostat as developed by von Sachs at the end of the nineteenth century. Since then, the fast rotating clinostat, the 3D clinostat or the random positioning machine, the rotating wall vessels, tail suspension and bed rest head down tilt and lately the levitating magnets have been introduced. Several of these simulation systems provide some similarities of the responses and phenotypes as seen in real microgravity experiments. However, one should always realize that we cannot reduce gravity on Earth, other than the relative short duration free fall studies in e.g., drop towers or parabolic aircraft. In this paper we want to explore the possibility to apply centrifuges to simulate microgravity or maybe better to simulate hypo-gravity. This Reduced Gravity Paradigm, RGP is based on the premise that adaptations seen going from a hypergravity level to a lower gravity are similar as changes seen going from unit gravity to microgravity.

  9. Airborne Gravity: NGS' Gravity Data for AN05 (2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  10. Airborne Gravity: NGS' Gravity Data for AN06 (2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  11. Airborne Gravity: NGS' Gravity Data for CS08 (2015)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for CS08 collected in 2006 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  12. Airborne Gravity: NGS' Gravity Data for AS02 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  13. Airborne Gravity: NGS' Gravity Data for ES02 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida and the Gulf of Mexico collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition of the American...

  14. Airborne Gravity: NGS' Gravity Data for AN04 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  15. Airborne Gravity: NGS' Gravity Data for CS05 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2014 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  16. Airborne Gravity: NGS' Gravity Data for CS07 (2014 & 2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2014 & 2016 over 3 surveys,TX14-2, TX16-1 and TX16-2. This data set is part of the Gravity for the Re-definition of...

  17. Airborne Gravity: NGS' Gravity Data for AS01 (2008)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2008 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  18. Airborne Gravity: NGS' Gravity Data for CS04 (2009)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  19. Airborne Gravity: NGS' Gravity Data for AN02 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  20. Lovelock gravities from Born–Infeld gravity theory

    Directory of Open Access Journals (Sweden)

    P.K. Concha

    2017-02-01

    Full Text Available We present a Born–Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.

  1. Lovelock gravities from Born-Infeld gravity theory

    Science.gov (United States)

    Concha, P. K.; Merino, N.; Rodríguez, E. K.

    2017-02-01

    We present a Born-Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.

  2. Effective wavelength calibration for moire fringe projection

    International Nuclear Information System (INIS)

    Purcell, Daryl; Davies, Angela; Farahi, Faramarz

    2006-01-01

    The fringe patterns seen when using moire instruments are similar to the patterns seen in traditional interferometry but differ in the spacing between consecutive fringes. In traditional interferometry, the spacing is constant and related to the wavelength of the source. In moire fringe projection, the spacing (the effective wavelength) may not be constant over the field of view and the spacing depends on the system geometry. In these cases, using a constant effective wavelength over the field of view causes inaccurate surface height measurements. We examine the calibration process of the moirefringe projection measurement, which takes this varying wavelength into account to produce a pixel-by-pixel wavelength map. The wavelength calibration procedure is to move the object in the out-of-plane direction a known distance until every pixel intensity value goes through at least one cycle. A sinusoidal function is then fit to the data to extract the effective wavelength pixel by pixel, yielding an effective wavelength map. A calibrated step height was used to validate the effective wavelength map with results within 1% of the nominal value of the step height. The error sources that contributed to the uncertainty in determining the height of the artifact are also investigated

  3. Earth's structure and evolution inferred from topography, gravity, and seismicity.

    Science.gov (United States)

    Watkinson, A. J.; Menard, J.; Patton, R. L.

    2016-12-01

    Earth's wavelength-dependent response to loading, reflected in observed topography, gravity, and seismicity, can be interpreted in terms of a stack of layers under the assumption of transverse isotropy. The theory of plate tectonics holds that the outermost layers of this stack are mobile, produced at oceanic ridges, and consumed at subduction zones. Their toroidal motions are generally consistent with those of several rigid bodies, except in the world's active mountain belts where strains are partitioned and preserved in tectonite fabrics. Even portions of the oceanic lithosphere exhibit non-rigid behavior. Earth's gravity-topography cross-spectrum exhibits notable variations in signal amplitude and character at spherical harmonic degrees l=13, 116, 416, and 1389. Corresponding Cartesian wavelengths are approximately equal to the respective thicknesses of Earth's mantle, continental mantle lithosphere, oceanic thermal lithosphere, and continental crust, all known from seismology. Regional variations in seismic moment release with depth, derived from the global Centroid Moment Tensor catalog, are also evident in the crust and mantle lithosphere. Combined, these observations provide powerful constraints for the structure and evolution of the crust, mantle lithosphere, and mantle as a whole. All that is required is a dynamically consistent mechanism relating wavelength to layer thickness and shear-strain localization. A statistically-invariant 'diharmonic' relation exhibiting these properties appears as the leading order approximation to toroidal motions on a self-gravitating body of differential grade-2 material. We use this relation, specifically its predictions of weakness and rigidity, and of folding and shear banding response as a function of wavelength-to-thickness ratio, to interpret Earth's gravity, topography, and seismicity in four-dimensions. We find the mantle lithosphere to be about 255-km thick beneath the Himalaya and the Andes, and the long-wavelength

  4. Contravariant gravity on Poisson manifolds and Einstein gravity

    International Nuclear Information System (INIS)

    Kaneko, Yukio; Watamura, Satoshi; Muraki, Hisayoshi

    2017-01-01

    A relation between gravity on Poisson manifolds proposed in Asakawa et al (2015 Fortschr. Phys . 63 683–704) and Einstein gravity is investigated. The compatibility of the Poisson and Riemann structures defines a unique connection, the contravariant Levi-Civita connection, and leads to the idea of the contravariant gravity. The Einstein–Hilbert-type action yields an equation of motion which is written in terms of the analog of the Einstein tensor, and it includes couplings between the metric and the Poisson tensor. The study of the Weyl transformation reveals properties of those interactions. It is argued that this theory can have an equivalent description as a system of Einstein gravity coupled to matter. As an example, it is shown that the contravariant gravity on a two-dimensional Poisson manifold can be described by a real scalar field coupled to the metric in a specific manner. (paper)

  5. Aspects of Quadratic Gravity

    CERN Document Server

    Alvarez-Gaume, Luis; Kounnas, Costas; Lust, Dieter; Riotto, Antonio

    2016-01-01

    We discuss quadratic gravity where terms quadratic in the curvature tensor are included in the action. After reviewing the corresponding field equations, we analyze in detail the physical propagating modes in some specific backgrounds. First we confirm that the pure $R^2$ theory is indeed ghost free. Then we point out that for flat backgrounds the pure $R^2$ theory propagates only a scalar massless mode and no spin-two tensor mode. However, the latter emerges either by expanding the theory around curved backgrounds like de Sitter or anti-de Sitter, or by changing the long-distance dynamics by introducing the standard Einstein term. In both cases, the theory is modified in the infrared and a propagating graviton is recovered. Hence we recognize a subtle interplay between the UV and IR properties of higher order gravity. We also calculate the corresponding Newton's law for general quadratic curvature theories. Finally, we discuss how quadratic actions may be obtained from a fundamental theory like string- or M-...

  6. Newtonian quantum gravity

    International Nuclear Information System (INIS)

    Jones, K.R.W.

    1995-01-01

    We develop a nonlinear quantum theory of Newtonian gravity consistent with an objective interpretation of the wavefunction. Inspired by the ideas of Schroedinger, and Bell, we seek a dimensional reduction procedure to map complex wavefunctions in configuration space onto a family of observable fields in space-time. Consideration of quasi-classical conservation laws selects the reduced one-body quantities as the basis for an explicit quasi-classical coarse-graining. These we interpret as describing the objective reality of the laboratory. Thereafter, we examine what may stand in the role of the usual Copenhagen observer to localise this quantity against macroscopic dispersion. Only a tiny change is needed, via a generically attractive self-potential. A nonlinear treatment of gravitational self-energy is thus advanced. This term sets a scale for all wavepackets. The Newtonian cosmology is thus closed, without need of an external observer. Finally, the concept of quantisation is re-interpreted as a nonlinear eigenvalue problem. To illustrate, we exhibit an elementary family of gravitationally self-bound solitary waves. Contrasting this theory with its canonically quantised analogue, we find that the given interpretation is empirically distinguishable, in principle. This result encourages deeper study of nonlinear field theories as a testable alternative to canonically quantised gravity. (author). 46 refs., 5 figs

  7. Gravity and antimatter

    International Nuclear Information System (INIS)

    Goldman, T.; Hughes, R.J.; Nieto, M.M.

    1988-01-01

    No one has ever dropped a single particle of antimatter. Yet physicists assume that it would fall to the ground just like ordinary matter. Their arguments are based on two well established ideas: the equivalence principle of gravitation and the quantum-mechanical symmetry between matter and antimatter. Today this line of reasoning is being undermined by the possibility that the first of these ideas, the principle of equivalence, may not be true. Indeed all modern attempts to include gravity with the other forces of nature in a consistent, unified quantum theory predict the existence of new gravitational-strength forces, that among other things, will violate the principle. Such effects have been seen already in recent experiments. Hence, an experiment to measure the gravitational acceleration of antimatter could be of great importance to the understanding of quantum gravity. An international team has been formed to measure the graviational acceleration of antiprotons. Such an experiment would provide an unambiquous test, if new gravitational interactions do exist. 10 figs

  8. The oxidative burst reaction in mammalian cells depends on gravity.

    Science.gov (United States)

    Adrian, Astrid; Schoppmann, Kathrin; Sromicki, Juri; Brungs, Sonja; von der Wiesche, Melanie; Hock, Bertold; Kolanus, Waldemar; Hemmersbach, Ruth; Ullrich, Oliver

    2013-12-20

    Gravity has been a constant force throughout the Earth's evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in "functional weightlessness" were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function

  9. Effects of artificial gravity on the cardiovascular system: Computational approach

    Science.gov (United States)

    Diaz Artiles, Ana; Heldt, Thomas; Young, Laurence R.

    2016-09-01

    Artificial gravity has been suggested as a multisystem countermeasure against the negative effects of weightlessness. However, many questions regarding the appropriate configuration are still unanswered, including optimal g-level, angular velocity, gravity gradient, and exercise protocol. Mathematical models can provide unique insight into these questions, particularly when experimental data is very expensive or difficult to obtain. In this research effort, a cardiovascular lumped-parameter model is developed to simulate the short-term transient hemodynamic response to artificial gravity exposure combined with ergometer exercise, using a bicycle mounted on a short-radius centrifuge. The model is thoroughly described and preliminary simulations are conducted to show the model capabilities and potential applications. The model consists of 21 compartments (including systemic circulation, pulmonary circulation, and a cardiac model), and it also includes the rapid cardiovascular control systems (arterial baroreflex and cardiopulmonary reflex). In addition, the pressure gradient resulting from short-radius centrifugation is captured in the model using hydrostatic pressure sources located at each compartment. The model also includes the cardiovascular effects resulting from exercise such as the muscle pump effect. An initial set of artificial gravity simulations were implemented using the Massachusetts Institute of Technology (MIT) Compact-Radius Centrifuge (CRC) configuration. Three centripetal acceleration (artificial gravity) levels were chosen: 1 g, 1.2 g, and 1.4 g, referenced to the subject's feet. Each simulation lasted 15.5 minutes and included a baseline period, the spin-up process, the ergometer exercise period (5 minutes of ergometer exercise at 30 W with a simulated pedal cadence of 60 RPM), and the spin-down process. Results showed that the cardiovascular model is able to predict the cardiovascular dynamics during gravity changes, as well as the expected

  10. Mechanism of wavelength conversion in polystyrene doped with benzoxanthene: emergence of a complex.

    Science.gov (United States)

    Nakamura, Hidehito; Shirakawa, Yoshiyuki; Kitamura, Hisashi; Sato, Nobuhiro; Shinji, Osamu; Saito, Katashi; Takahashi, Sentaro

    2013-01-01

    Fluorescent guest molecules doped in polymers have been used to convert ultraviolet light into visible light for applications ranging from optical fibres to filters for the cultivation of plants. The wavelength conversion process involves the absorption of light at short wavelengths followed by fluorescence emission at a longer wavelength. However, a precise understanding of the light conversion remains unclear. Here we show light responses for a purified polystyrene base substrates doped with fluorescent benzoxanthene in concentrations varied over four orders of magnitude. The shape of the excitation spectrum for fluorescence emission changes significantly with the concentration of the benzoxanthene, indicating formation of a base substrate/fluorescent molecule complex. Furthermore, the wavelength conversion light yield increases in three stages depending on the nature of the complex. These findings identify a mechanism that will have many applications in wavelength conversion materials.

  11. Minimal Length Scale Scenarios for Quantum Gravity.

    Science.gov (United States)

    Hossenfelder, Sabine

    2013-01-01

    We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.

  12. Minimal Length Scale Scenarios for Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Sabine Hossenfelder

    2013-01-01

    Full Text Available We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.

  13. Short philtrum

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003302.htm Short philtrum To use the sharing features on this page, please enable JavaScript. A short philtrum is a shorter than normal distance between ...

  14. The dynamics of interacting nonlinearities governing long wavelength driftwave turbulence

    International Nuclear Information System (INIS)

    Newman, D.E.

    1993-09-01

    Because of the ubiquitous nature of turbulence and the vast array of different systems which have turbulent solutions, the study of turbulence is an area of active research. Much present day understanding of turbulence is rooted in the well established properties of homogeneous Navier-Stokes turbulence, which, due to its relative simplicity, allows for approximate analytic solutions. This work examines a group of turbulent systems with marked differences from Navier-Stokes turbulence, and attempts to quantify some of their properties. This group of systems represents a variety of drift wave fluctuations believed to be of fundamental importance in laboratory fusion devices. From extensive simulation of simple local fluid models of long wavelength drift wave turbulence in tokamaks, a reasonably complete picture of the basic properties of spectral transfer and saturation has emerged. These studies indicate that many conventional notions concerning directions of cascades, locality and isotropy of transfer, frequencies of fluctuations, and stationarity of saturation are not valid for moderate to long wavelengths. In particular, spectral energy transfer at long wavelengths is dominated by the E x B nonlinearity, which carries energy to short scale in a manner that is highly nonlocal and anisotropic. In marked contrast to the canonical self-similar cascade dynamics of Kolmogorov, energy is efficiently passed between modes separated by the entire spectrum range in a correlation time. At short wavelengths, transfer is dominated by the polarization drift nonlinearity. While the standard dual cascade applies in this subrange, it is found that finite spectrum size can produce cascades that are reverse directed and are nonconservative in enstrophy and energy similarity ranges. In regions where both nonlinearities are important, cross-coupling between the nolinearities gives rise to large no frequency shifts as well as changes in the spectral dynamics

  15. Is there a quantum theory of gravity

    International Nuclear Information System (INIS)

    Strominger, A.

    1984-01-01

    The paper concerns attempts to construct a unitary, renormalizable quantum field theory of gravity. Renormalizability and unitarity in quantum gravity; the 1/N expansion; 1/D expansions; and quantum gravity and particle physics; are all discussed. (U.K.)

  16. On axionic field ranges, loopholes and the weak gravity conjecture

    International Nuclear Information System (INIS)

    Brown, Jon; Cottrell, William; Shiu, Gary; Soler, Pablo

    2016-01-01

    In this short note we clarify some aspects of the impact that the Weak Gravity Conjecture has on models of (generalized) natural inflation. We address in particular certain technical and conceptual concerns recently raised regarding the stringent constraints and conclusions found in our previous work http://dx.doi.org/10.1007/JHEP10(2015)023. We also point out the difficulties faced by attempts to evade these constraints. These new considerations improve the understanding of the quantum gravity constraints we found and further support the conclusion that it remains challenging for axions to drive natural inflation.

  17. Planck-scale gravity test at PETRA. Letter of intent

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, V.; Balewski, K.

    2016-02-15

    Quantum or torsion gravity models predict unusual properties of space- time at very short distances. In particular, near the Planck length, around 10{sup -35} m, empty space may behave as a crystal, singly or doubly refractive. This hypothesis, however, remains uncheckable for any direct measurement since the smallest distance accessible in experiment is about 10{sup -19} m at the LHC. Here we propose a laboratory test to measure space birefringence or refractivity induced by gravity. A sensitivity 10{sup -31} m for doubly and 10{sup -28} m for singly refractive vacuum could be reached with PETRA 6 GeV beam exploring UV laser Compton scattering.

  18. Planck-scale gravity test at PETRA. Letter of intent

    International Nuclear Information System (INIS)

    Gharibyan, V.; Balewski, K.

    2016-02-01

    Quantum or torsion gravity models predict unusual properties of space- time at very short distances. In particular, near the Planck length, around 10 -35 m, empty space may behave as a crystal, singly or doubly refractive. This hypothesis, however, remains uncheckable for any direct measurement since the smallest distance accessible in experiment is about 10 -19 m at the LHC. Here we propose a laboratory test to measure space birefringence or refractivity induced by gravity. A sensitivity 10 -31 m for doubly and 10 -28 m for singly refractive vacuum could be reached with PETRA 6 GeV beam exploring UV laser Compton scattering.

  19. Quantum Gravity in Two Dimensions

    DEFF Research Database (Denmark)

    Ipsen, Asger Cronberg

    The topic of this thesis is quantum gravity in 1 + 1 dimensions. We will focus on two formalisms, namely Causal Dynamical Triangulations (CDT) and Dy- namical Triangulations (DT). Both theories regularize the gravity path integral as a sum over triangulations. The difference lies in the class...

  20. Topological strings from Liouville gravity

    International Nuclear Information System (INIS)

    Ishibashi, N.; Li, M.

    1991-01-01

    We study constrained SU(2) WZW models, which realize a class of two-dimensional conformal field theories. We show that they give rise to topological gravity coupled to the topological minimal models when they are coupled to Liouville gravity. (orig.)

  1. Newton-Cartan gravity revisited

    NARCIS (Netherlands)

    Andringa, Roel

    2016-01-01

    In this research Newton's old theory of gravity is rederived using an algebraic approach known as the gauging procedure. The resulting theory is Newton's theory in the mathematical language of Einstein's General Relativity theory, in which gravity is spacetime curvature. The gauging procedure sheds

  2. Fixed points of quantum gravity

    OpenAIRE

    Litim, D F

    2003-01-01

    Euclidean quantum gravity is studied with renormalisation group methods. Analytical results for a non-trivial ultraviolet fixed point are found for arbitrary dimensions and gauge fixing parameter in the Einstein-Hilbert truncation. Implications for quantum gravity in four dimensions are discussed.

  3. Neutron Stars : Magnetism vs Gravity

    Indian Academy of Sciences (India)

    however, in the magnetosphere, electromagnetic forces dominate over gravity : Fgr = mg ~ 10-18 Newton ; Fem = e V B ~ 10-5 Newton; (for a single electron of mass m and charge e ) ; Hence, the electromagnetic force is 1013 times stronger than gravity !!

  4. Measuring wood specific gravity, correctly

    Science.gov (United States)

    G. Bruce Williamson; Michael C. Wiemann

    2010-01-01

    The specific gravity (SG) of wood is a measure of the amount of structural material a tree species allocates to support and strength. In recent years, wood specific gravity, traditionally a forester’s variable, has become the domain of ecologists exploring the universality of plant functional traits and conservationists estimating global carbon stocks. While these...

  5. Long-wavelength photonic integrated circuits and avalanche photodetectors

    Science.gov (United States)

    Tsou, Yi-Jen D.; Zaytsev, Sergey; Pauchard, Alexandre; Hummel, Steve; Lo, Yu-Hwa

    2001-10-01

    Fast-growing internet traffic volume require high data communication bandwidth over longer distances. Access network bottlenecks put pressure on short-range (SR) telecommunication systems. To effectively address these datacom and telecom market needs, low-cost, high-speed laser modules at 1310 to 1550 nm wavelengths and avalanche photodetectors are required. The great success of GaAs 850nm VCSEls for Gb/s Ethernet has motivated efforts to extend VCSEL technology to longer wavelengths in the 1310 and 1550 nm regimes. However, the technological challenges associated with materials for long wavelength VCSELs are tremendous. Even with recent advances in this area, it is believed that significant additional development is necessary before long wavelength VCSELs that meet commercial specifications will be widely available. In addition, the more stringent OC192 and OC768 specifications for single-mode fiber (SMF) datacom may require more than just a long wavelength laser diode, VCSEL or not, to address numerous cost and performance issues. We believe that photonic integrated circuits (PICs), which compactly integrate surface-emitting lasers with additional active and passive optical components with extended functionality, will provide the best solutions to today's problems. Photonic integrated circuits have been investigated for more than a decade. However, they have produced limited commercial impact to date primarily because the highly complicated fabrication processes produce significant yield and device performance issues. In this presentation, we will discuss a new technology platform of InP-based PICs compatible with surface-emitting laser technology, as well as a high data rate externally modulated laser module. Avalanche photodetectors (APDs) are the key component in the receiver to achieve high data rate over long transmission distance because of their high sensitivity and large gain- bandwidth product. We have used wafer fusion technology to achieve In

  6. Holography, Gravity and Condensed Matter

    Energy Technology Data Exchange (ETDEWEB)

    Hartnoll, Sean [Stanford Univ., CA (United States). Dept. of Physics

    2017-12-20

    gravity. These included the first computation of holographic entanglement beyond the bulk classical limit as well understanding short distance entanglement in the emergent spacetime of the c=1 matrix quantum mechanics. The objective here is ultimately to understanding how a priori non-local degrees of freedom can re-arrange themselves quantum mechanically to support emergent local dynamics. Much of work funded by this grant involved collaboration with postdocs and graduate students, several of which were directly funded by the grant. These students have now successfully graduated to postdoctoral positions and in one case to high tech industry. The ideas developed in this work have directly fed into my current research in which I am aiming to prove fundamental bounds on entropy production and transport from quantum mechanics and statistical physics. As often, as with much of my previous work, black hole physics can be an inspiration for extreme dynamics such as fundamental bounds, but ultimately one hopes to prove them using more general tools of quantum field theory.

  7. Short-range fundamental forces

    International Nuclear Information System (INIS)

    Antoniadis, I.; Baessler, S.; Buchner, M.; Fedorov, V.V.; Hoedl, S.; Nesvizhevsky, V.V.; Pignol, G.; Protasov, K.V.; Lambrecht, A.; Reynaud, S.; Sobolev, Y.

    2010-01-01

    We consider theoretical motivations to search for extra short-range fundamental forces as well as experiments constraining their parameters. The forces could be of two types: 1) spin-independent forces; 2) spin-dependent axion-like forces. Different experimental techniques are sensitive in respective ranges of characteristic distances. The techniques include measurements of gravity at short distances, searches for extra interactions on top of the Casimir force, precision atomic and neutron experiments. We focus on neutron constraints, thus the range of characteristic distances considered here corresponds to the range accessible for neutron experiments

  8. Wavelength scaling of laser plasma coupling

    International Nuclear Information System (INIS)

    Kruer, W.L.

    1983-01-01

    The use of shorter wavelength laser light both enhances collisional absorption and reduces deleterious collective plasma effects. Coupling processes which can be important in reactor-size targets are briefly reviewed. Simple estimates are presented for the intensity-wavelength regime in which collisional absorption is high and collective effects are minimized

  9. Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory

    International Nuclear Information System (INIS)

    Chan, H.A.; Paik, H.J.

    1987-01-01

    Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for the device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges

  10. The role of collective self-gravity in the nonlinear evolution of viscous overstability in Saturn's rings.

    Science.gov (United States)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2017-06-01

    We investigate the influence of collective self-gravity forces on the nonlinear evolution of the viscous overstability in Saturn's dense rings. Local N-body simulations, incorporating vertical and radial collective self-gravity are performed. Vertical self-gravity is mimicked through an increased frequency of vertical oscillations, while radial self-gravity is approximated by solving the Poisson equation for a thin disk in Fourier space. Direct particle-particle forces are omitted, while the magnitude of radial self gravity is controlled by assigning a variable surface mass density to the system's homogeneous ground state. We compare our simulations with large-scale isothermal and non-isothermal hydrodynamic model calculations, including radial self-gravity and employing transport coefficients derived in Salo et al. (2001). We concentrate on optical depths τ=1.5-2, appropriate to model Saturn's dense rings. Our isothermal and non isothermal hydrodynamic results in the limit of vanishing self-gravity compare very well with the studies of Latter&Ogilvie (2010) and Rein&latter (2013), respectively.With non-vanishing radial self-gravity we find that the wavelengths of saturated overstable wave trains are located in close vicinity of the local minimum of the nonlinear dispersion relation for a particular surface density. Good agreement is found between non-isothermal hydrodynamics and N-body simulations for disks with strong radial self-gravity, while the largest deviations occur for a weak but non-vanishing self-gravity.The resulting saturation wavelengths of the viscous overstability for moderate and strong radial self-gravity (λ~ 200-300m) agree reasonably well with the length scale of periodic micro structure in Saturn's inner A and B ring, as found by Cassini.

  11. DBI from gravity

    Energy Technology Data Exchange (ETDEWEB)

    Maxfield, Travis; Sethi, Savdeep [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States)

    2017-02-22

    We study the dynamics of gravitational lumps. By a lump, we mean a metric configuration that asymptotes to a flat space-time. Such lumps emerge in string theory as strong coupling descriptions of D-branes. We provide a physical argument that the broken global symmetries of such a background, generated by certain large diffeomorphisms, constrain the dynamics of localized modes. These modes include the translation zero modes and any localized tensor modes. The constraints we find are gravitational analogues of those found in brane physics. For the example of a Taub-NUT metric in eleven-dimensional supergravity, we argue that a critical value for the electric field arises from standard gravity without higher derivative interactions.

  12. Alternative gravity theories

    International Nuclear Information System (INIS)

    Francaviglia, M.

    1990-01-01

    Although general relativity is a well-established discipline the theory deserves efforts aimed at producing alternative or more general frameworks for investigating the classical properties of gravity. These are either devoted to producing alternative viewpoints or interpretations of standard general relativity, or at constructing, discussing and proposing experimental tests for alternative descriptions of the dynamics of the gravitational field and its interaction (or unification) with external matter fields. Classical alternative theories of gravitation can roughly classified as follows; theories based on a still 4-dimensional picture, under the assumption that the dynamics of the gravitational field is more complicated than Einstein's and theories based on higher-dimensional pictures. This leads to supergravity and strings which are not included here. Theories based on higher-dimensional pictures on the assumption that space-time is replaced by a higher-dimensional manifold. Papers on these classifications are reviewed. (author)

  13. Is quantum gravity unpredictable

    International Nuclear Information System (INIS)

    Gross, D.J.

    1984-01-01

    An investigation of Hawking's proposal that the inclusion of topologically non-trivial manifolds in the functional integral of quantum gravity leads to the loss of quantum coherence is carried out. We discuss some of the problems associated with Hawking's Dollar-matrix theory, including the breakdown of the connection between symmetry principles and conservation laws. It is proposed to use Kaluza-Klein theories to study this issue, since these theories contain well-defined euclidean instantons. These can be used to perform explicit semiclassical calculations of the effects of space-time foam. A general method is presented for constructing Kaluza-Klein instantons based on solutions of ordinary Yang-Mills theory. It is argued that none of these will lead to a breakdown of quantum mechanics. The physical effects of space-time foam are discussed in some detail using explicit instantons of a four-dimensional Kaluza-Klein theory. (orig.)

  14. Brane-Localized Gravity

    International Nuclear Information System (INIS)

    Gregory, Ruth

    2007-01-01

    The study of braneworlds has been an area of intense activity over the past decade, with thousands of papers being written, and many important technical advances being made. This book focuses on a particular aspect of braneworlds, namely perturbative gravity in one specific model: the Randall-Sundrum model. The book starts with an overview of the Randall-Sundrum model, discussing anti-de Sitter (AdS) space and the Israel equations in some detail. It then moves on to discuss cosmological branes, focusing on branes with constant curvature. The book then turns to brane gravity, i.e. what do we, as brane observers, perceive the gravitational interaction to be on the brane as derived from the actual five-dimensional gravitational physics? After a derivation of the general brane equations from the Israel equations, the remainder of the book deals with perturbative gravity. This part of the book is extremely detailed, with calculations given explicitly. Overall, the book is quite pedagogical in style, with the aim being to explain in detail the topics it chooses to cover. While it is not unusual to have books written on current and extremely popular research areas, it is unusual to have calculations written so explicitly. This is both a strength and a weakness of this book. It is a strength because the calculations are presented in a detail that students learning the topic will definitely appreciate; however, the narrow focus of the book also means that it lacks perspective and fails to present the broader context. In choosing to focus on one particular aspect of Randall-Sundrum branes, the book has not managed to communicate why a large number of theorists have worked so intensively on this model. In its early stages, the explicit detail of the Randall-Sundrum model would be extremely useful for a student starting out in this research area. In addition, the calculational detail later in the computation of the graviton propagator on the brane would also be welcome not

  15. Duality in linearized gravity

    International Nuclear Information System (INIS)

    Henneaux, Marc; Teitelboim, Claudio

    2005-01-01

    We show that duality transformations of linearized gravity in four dimensions, i.e., rotations of the linearized Riemann tensor and its dual into each other, can be extended to the dynamical fields of the theory so as to be symmetries of the action and not just symmetries of the equations of motion. Our approach relies on the introduction of two superpotentials, one for the spatial components of the spin-2 field and the other for their canonically conjugate momenta. These superpotentials are two-index, symmetric tensors. They can be taken to be the basic dynamical fields and appear locally in the action. They are simply rotated into each other under duality. In terms of the superpotentials, the canonical generator of duality rotations is found to have a Chern-Simons-like structure, as in the Maxwell case

  16. Stochastic quantization and gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1984-01-01

    We give a preliminary account of the application of stochastic quantization to the gravitational field. We start in Section I from Nelson's formulation of quantum mechanics as Newtonian stochastic mechanics and only then introduce the Parisi-Wu stochastic quantization scheme on which all the later discussion will be based. In Section II we present a generalization of the scheme that is applicable to fields in physical (i.e. Lorentzian) space-time and treat the free linearized gravitational field in this manner. The most remarkable result of this is the noncausal propagation of conformal gravitons. Moreover the concept of stochastic gauge-fixing is introduced and a complete discussion of all the covariant gauges is given. A special symmetry relating two classes of covariant gauges is exhibited. Finally Section III contains some preliminary remarks on full nonlinear gravity. In particular we argue that in contrast to gauge fields the stochastic gravitational field cannot be transformed to a Gaussian process. (Author)

  17. Gravity mediated preheating

    International Nuclear Information System (INIS)

    Maity, Debaprasad

    2015-01-01

    In this work we propose a mechanism of natural preheating of our universe induced by the inflation field dependent effective mass term for the gravitational wave. For any single field inflationary model, the inflation must go through the oscillatory phase after the end of inflation. As has recently been shown, if the gravitational fluctuation has inflation dependent mass term, there will be a resonant amplification of the amplitude of the gravitational wave during the oscillatory phase of inflation though parametric resonance. Because of this large enhancement of the amplitude of the gravitational wave, we show that universe can be naturally pre-heated through a minimally coupled matter field with gravity. Therefore, during the pre-heating phase, there is no need to introduce any arbitrary coupling between the matter field and the inflation. (author)

  18. Teleparallel Gravity An Introduction

    CERN Document Server

    Aldrovandi, Ruben

    2013-01-01

    Teleparallel Gravity (TG) is an alternative theory for gravitation, which is equivalent to General Relativity (GR). However, it is conceptually different. For example in GR geometry replaces the concept of force, and the trajectories are determined by geodesics. TG attributes gravitation to torsion, which accounts for gravitation by acting as a force. TG has already solved some old problems of gravitation (like the energy-momentum density of the gravitational field). The interest in TG has grown in the last few years. The book here proposed will be the first one dedicated exclusively to TG, and will include the foundations of the theory, as well as applications to specific problems to illustrate how the theory works.

  19. Gravity, a geometrical course

    CERN Document Server

    Frè, Pietro Giuseppe

    2013-01-01

    Gravity, a Geometrical Course’ presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications,  updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book is divided in two volumes.   Volume One is dedicated to the development of the theory and basic physical applications. It guides the reader from the foundation of special relativity to Einstein field equations, illustrating some basic applications in astrophysics. A detailed  account  of the historical and conceptual development of the theory is combined with the presentation of its mathematical foundations.  Differe...

  20. Brane-Localized Gravity

    CERN Document Server

    Mannheim, Philip D

    2005-01-01

    This timely and valuable book provides a detailed pedagogical introduction and treatment of the brane-localized gravity program of Randall and Sundrum, in which gravitational signals are able to localize around our four-dimensional world in the event that it is a brane embedded in an infinitely-sized, higher dimensional anti-de Sitter bulk space. A completely self-contained development of the material needed for brane-world studies is provided for both students and workers in the field, with a significant amount of the material being previously unpublished. Particular attention is given to issues not ordinarily treated in the brane-world literature, such as the completeness of tensor gravitational fluctuation modes, the causality of brane-world propagators, and the status of the massless graviton fluctuation mode in brane worlds in which it is not normalizable.

  1. Instantons in quantum gravity

    International Nuclear Information System (INIS)

    Pope, C.N.

    1980-02-01

    The material contained in this thesis is concerned with the functional integral approach to the quantum theory of gravity. It seems to be necessary to work with metrics of positive definite signature (Euclidean metrics) and then analytically continue the result back to the Lorentzian regime. The dominant contributions to the functional integral come from metrics which are stationary points of the action, i.e. classical solutions of the Euclideanized Einstein equations. These are known as Gravitational Instantons. Boundary conditions have to be placed upon the metrics included in the functional integral, and these are determined by the physical problem being considered. Three types of boundary condition have arisen in this context, corresponding to (i) zero temperature physics, and the calculation of particle scattering amplitudes, (ii) finite temperature effects, such as black hole radiance, and (iii) the study of the structure of the gravitational vacuum on Planck length scales. Instantons in the first category are asymptotically flat in all four directions, those in the second are asymptotically flat in three directions and periodic in the fourth, and those which arise in studying the gravitational vacuum are compact without boundaries. Much of the thesis is concerned with considering these various kinds of instanton, and particularly with the effects of their non-trivial topology. One way in which this can be investigated is by means of the various topological index theorems, and these are applied to a variety of situations. Self-dual metrics seem to have particular significance in quantum gravity, and they are discussed in detail. Finally, some recent work on the calculation of the propagation of particles in the gravitational vacuum is described. (author)

  2. Tests of chameleon gravity

    Science.gov (United States)

    Burrage, Clare; Sakstein, Jeremy

    2018-03-01

    Theories of modified gravity, where light scalars with non-trivial self-interactions and non-minimal couplings to matter—chameleon and symmetron theories—dynamically suppress deviations from general relativity in the solar system. On other scales, the environmental nature of the screening means that such scalars may be relevant. The highly-nonlinear nature of screening mechanisms means that they evade classical fifth-force searches, and there has been an intense effort towards designing new and novel tests to probe them, both in the laboratory and using astrophysical objects, and by reinterpreting existing datasets. The results of these searches are often presented using different parametrizations, which can make it difficult to compare constraints coming from different probes. The purpose of this review is to summarize the present state-of-the-art searches for screened scalars coupled to matter, and to translate the current bounds into a single parametrization to survey the state of the models. Presently, commonly studied chameleon models are well-constrained but less commonly studied models have large regions of parameter space that are still viable. Symmetron models are constrained well by astrophysical and laboratory tests, but there is a desert separating the two scales where the model is unconstrained. The coupling of chameleons to photons is tightly constrained but the symmetron coupling has yet to be explored. We also summarize the current bounds on f( R) models that exhibit the chameleon mechanism (Hu and Sawicki models). The simplest of these are well constrained by astrophysical probes, but there are currently few reported bounds for theories with higher powers of R. The review ends by discussing the future prospects for constraining screened modified gravity models further using upcoming and planned experiments.

  3. Gravity Probe B Inspection

    Science.gov (United States)

    2000-01-01

    The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)

  4. Gravity-matter entanglement in Regge quantum gravity

    International Nuclear Information System (INIS)

    Paunković, Nikola; Vojinović, Marko

    2016-01-01

    We argue that Hartle-Hawking states in the Regge quantum gravity model generically contain non-trivial entanglement between gravity and matter fields. Generic impossibility to talk about “matter in a point of space” is in line with the idea of an emergent spacetime, and as such could be taken as a possible candidate for a criterion for a plausible theory of quantum gravity. Finally, this new entanglement could be seen as an additional “effective interaction”, which could possibly bring corrections to the weak equivalence principle. (paper)

  5. Artificial gravity - The evolution of variable gravity research

    Science.gov (United States)

    Fuller, Charles A.; Sulzman, Frank M.; Keefe, J. Richard

    1987-01-01

    The development of a space life science research program based on the use of rotational facilities is described. In-flight and ground centrifuges can be used as artificial gravity environments to study the following: nongravitational biological factors; the effects of 0, 1, and hyper G on man; counter measures for deconditioning astronauts in weightlessness; and the development of suitable artificial gravity for long-term residence in space. The use of inertial fields as a substitute for gravity, and the relations between the radius of the centrifuge and rotation rate and specimen height and rotation radius are examined. An example of a centrifuge study involving squirrel monkeys is presented.

  6. Tunable Optical Tweezers for Wavelength-dependent Measurements

    Science.gov (United States)

    2012-04-23

    have been studied in an optical levitation scheme over short laser wavelength ranges20 and for dye-loaded di- electric particles.21 In the first case...M. Block, IEEE J. Sel. Top. Quantum Electron. 2, 1066 (1996). 7K. Dholakia, W. M. Lee, L. Paterson, M. P. MacDonald, I. Andreev, P. Mthunzi, C. T. A...Brown, R. F. Marchington, and A. C. Riches, IEEE J. Sel. Top. Quantum Electron. 13, 1646 (2007). 8K. Dholakia, M. P. MacDonald, P. Zemanek, and T

  7. Gravity Maps of Antarctic Lithospheric Structure from Remote-Sensing and Seismic Data

    Science.gov (United States)

    Tenzer, Robert; Chen, Wenjin; Baranov, Alexey; Bagherbandi, Mohammad

    2018-02-01

    Remote-sensing data from altimetry and gravity satellite missions combined with seismic information have been used to investigate the Earth's interior, particularly focusing on the lithospheric structure. In this study, we use the subglacial bedrock relief BEDMAP2, the global gravitational model GOCO05S, and the ETOPO1 topographic/bathymetric data, together with a newly developed (continental-scale) seismic crustal model for Antarctica to compile the free-air, Bouguer, and mantle gravity maps over this continent and surrounding oceanic areas. We then use these gravity maps to interpret the Antarctic crustal and uppermost mantle structure. We demonstrate that most of the gravity features seen in gravity maps could be explained by known lithospheric structures. The Bouguer gravity map reveals a contrast between the oceanic and continental crust which marks the extension of the Antarctic continental margins. The isostatic signature in this gravity map confirms deep and compact orogenic roots under the Gamburtsev Subglacial Mountains and more complex orogenic structures under Dronning Maud Land in East Antarctica. Whereas the Bouguer gravity map exhibits features which are closely spatially correlated with the crustal thickness, the mantle gravity map reveals mainly the gravitational signature of the uppermost mantle, which is superposed over a weaker (long-wavelength) signature of density heterogeneities distributed deeper in the mantle. In contrast to a relatively complex and segmented uppermost mantle structure of West Antarctica, the mantle gravity map confirmed a more uniform structure of the East Antarctic Craton. The most pronounced features in this gravity map are divergent tectonic margins along mid-oceanic ridges and continental rifts. Gravity lows at these locations indicate that a broad region of the West Antarctic Rift System continuously extends between the Atlantic-Indian and Pacific-Antarctic mid-oceanic ridges and it is possibly formed by two major

  8. Recent advancements in conformal gravity

    International Nuclear Information System (INIS)

    O’Brien, James G.; Chaykov, Spasen S.; Moss, Robert J.; Dentico, Jeremy; Stulge, Modestas; Stefanski, Brian

    2017-01-01

    In recent years, due to the lack of direct observed evidence of cold dark matter, coupled with the shrinking parameter space to search for new dark matter particles, there has been increased interest in Alternative Gravitational theories. This paper, addresses three recent advances in conformal gravity, a fourth order renormalizable metric theory of gravitation originally formulated by Weyl, and later advanced by Mannheim and Kazanas. The first section of the paper applies conformal gravity to the rotation curves of the LITTLE THINGS survey, extending the total number of rotation curves successfully fit by conformal gravity to well over 200 individual data sets without the need for additional dark matter. Further, in this rotation curve study, we show how MOND and conformal gravity compare for each galaxy in the sample. Second, we look at the original Zwicky problem of applying the virial theorem to the Coma cluster in order to get an estimate for the cluster mass. However, instead of using the standard Newtonian potential, here we use the weak field approximation of conformal gravity. We show that in the conformal case we can get a much smaller mass estimate and thus there is no apparent need to include dark matter. We then show that this calculation is in agreement with the observational data from other well studied clusters. Last, we explore the calculation of the deflection of starlight through conformal gravity, as a first step towards applying conformal gravity to gravitaitonal lensing. (paper)

  9. Stochastic Gravity: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Hu Bei Lok

    2008-05-01

    Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein–Langevin equation, which has, in addition, sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bitensor, which describes the fluctuations of quantum-matter fields in curved spacetimes. A new improved criterion for the validity of semiclassical gravity may also be formulated from the viewpoint of this theory. In the first part of this review we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to the correlation functions. The functional approach uses the Feynman–Vernon influence functional and the Schwinger–Keldysh closed-time-path effective action methods. In the second part, we describe three applications of stochastic gravity. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic-gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, using the Einstein–Langevin equation, we discuss the backreaction of Hawking radiation and the behavior of metric fluctuations for both the quasi-equilibrium condition of a black-hole in a box and the fully nonequilibrium condition of an evaporating black hole spacetime. Finally, we briefly discuss the theoretical structure of stochastic gravity in relation to quantum gravity and point out

  10. Airborne Gravity: NGS' Gravity Data for ES03 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maryland, Pennsylvania, New Jersey, West Virginia, Virginia, Delaware, and the Atlantic Ocean collected in 2013 over 1 survey. This data...

  11. Airborne Gravity: NGS' Gravity Data for EN10 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Pennsylvania, New Jersey, Connecticut and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the...

  12. Airborne Gravity: NGS' Gravity Data for EN09 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Massachusetts, Connecticut, Rhode Island, New Hampshire, New York, and the Atlantic Ocean collected in 2012 over 1 survey. This data set is...

  13. Singularity resolution in quantum gravity

    International Nuclear Information System (INIS)

    Husain, Viqar; Winkler, Oliver

    2004-01-01

    We examine the singularity resolution issue in quantum gravity by studying a new quantization of standard Friedmann-Robertson-Walker geometrodynamics. The quantization procedure is inspired by the loop quantum gravity program, and is based on an alternative to the Schroedinger representation normally used in metric variable quantum cosmology. We show that in this representation for quantum geometrodynamics there exists a densely defined inverse scale factor operator, and that the Hamiltonian constraint acts as a difference operator on the basis states. We find that the cosmological singularity is avoided in the quantum dynamics. We discuss these results with a view to identifying the criteria that constitute 'singularity resolution' in quantum gravity

  14. Natural inflation and quantum gravity.

    Science.gov (United States)

    de la Fuente, Anton; Saraswat, Prashant; Sundrum, Raman

    2015-04-17

    Cosmic inflation provides an attractive framework for understanding the early Universe and the cosmic microwave background. It can readily involve energies close to the scale at which quantum gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular, the constraint of the weak gravity conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically controlled and predictive class of natural inflation models.

  15. Mars - Hellas Planitia gravity analysis

    Science.gov (United States)

    Sjogren, W. L.; Wimberley, R. N.

    1981-01-01

    Doppler radio tracking data from Viking Orbiter 1 has provided new detailed observations of gravity variations over Hellas Planitia. Line-of-sight Bouguer gravity definitely indicates that isostatic adjustment has occurred. Two theoretical models were tested to obtain fits to the gravity data. Results for a surface deficit model, and a model with a surface deficit and a mass excess at depth are displayed. The mass-at-depth model produced very marked improvement in the data fit as compared to the surface deficit model. The optimum depth for the mass excess is 130 km.

  16. An evaluation of gravity waves and gravity wave sources in the Southern Hemisphere in a 7 km global climate simulation.

    Science.gov (United States)

    Holt, L A; Alexander, M J; Coy, L; Liu, C; Molod, A; Putman, W; Pawson, S

    2017-07-01

    In this study, gravity waves (GWs) in the high-resolution GEOS-5 Nature Run are first evaluated with respect to satellite and other model results. Southern Hemisphere winter sources of non-orographic GWs in the model are then investigated by linking measures of tropospheric non-orographic gravity wave generation tied to precipitation and frontogenesis with absolute gravity wave momentum flux in the lower stratosphere. Finally, non-orographic GW momentum flux is compared to orographic gravity wave momentum flux and compared to previous estimates. The results show that the global patterns in GW amplitude, horizontal wavelength, and propagation direction are realistic compared to observations. However, as in other global models, the amplitudes are weaker and horizontal wavelengths longer than observed. The global patterns in absolute GW momentum flux also agree well with previous model and observational estimates. The evaluation of model non-orographic GW sources in the Southern Hemisphere winter shows that strong intermittent precipitation (greater than 10 mm h -1 ) is associated with GW momentum flux over the South Pacific, whereas frontogenesis and less intermittent, lower precipitation rates (less than 10 mm h -1 ) are associated with GW momentum flux near 60°S. In the model, orographic GWs contribute almost exclusively to a peak in zonal mean momentum flux between 70 and 75°S, while non-orographic waves dominate at 60°S, and non-orographic GWs contribute a third to a peak in zonal mean momentum flux between 25 and 30°S.

  17. GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings

    Directory of Open Access Journals (Sweden)

    M. Ern

    2018-04-01

    Full Text Available Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs and chemistry climate models (CCMs usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE. GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER. Typical distributions (zonal averages and global maps of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658.

  18. GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings

    Science.gov (United States)

    Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C.; Mlynczak, Martin G.; Russell, James M., III; Riese, Martin

    2018-04-01

    Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs) and chemistry climate models (CCMs) usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE). GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Typical distributions (zonal averages and global maps) of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments) and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658" target="_blank">https://doi.org/10.1594/PANGAEA.879658.

  19. Effective long wavelength scalar dynamics in de Sitter

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Ian; Rigopoulos, Gerasimos, E-mail: ian.moss@newcastle.ac.uk, E-mail: gerasimos.rigopoulos@ncl.ac.uk [School of Mathematics and Statistics, Newcastle University, Herschel Building, Newcastle upon Tyne, NE1 7RU U.K. (United Kingdom)

    2017-05-01

    We discuss the effective infrared theory governing a light scalar's long wavelength dynamics in de Sitter spacetime. We show how the separation of scales around the physical curvature radius k / a ∼ H can be performed consistently with a window function and how short wavelengths can be integrated out in the Schwinger-Keldysh path integral formalism. At leading order, and for time scales Δ t >> H {sup −1}, this results in the well-known Starobinsky stochastic evolution. However, our approach allows for the computation of quantum UV corrections, generating an effective potential on which the stochastic dynamics takes place. The long wavelength stochastic dynamical equations are now second order in time, incorporating temporal scales Δ t ∼ H {sup −1} and resulting in a Kramers equation for the probability distribution—more precisely the Wigner function—in contrast to the more usual Fokker-Planck equation. This feature allows us to non-perturbatively evaluate, within the stochastic formalism, not only expectation values of field correlators, but also the stress-energy tensor of φ.

  20. Estimating Gravity Biases with Wavelets in Support of a 1-cm Accurate Geoid Model

    Science.gov (United States)

    Ahlgren, K.; Li, X.

    2017-12-01

    Systematic errors that reside in surface gravity datasets are one of the major hurdles in constructing a high-accuracy geoid model at high resolutions. The National Oceanic and Atmospheric Administration's (NOAA) National Geodetic Survey (NGS) has an extensive historical surface gravity dataset consisting of approximately 10 million gravity points that are known to have systematic biases at the mGal level (Saleh et al. 2013). As most relevant metadata is absent, estimating and removing these errors to be consistent with a global geopotential model and airborne data in the corresponding wavelength is quite a difficult endeavor. However, this is crucial to support a 1-cm accurate geoid model for the United States. With recently available independent gravity information from GRACE/GOCE and airborne gravity from the NGS Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project, several different methods of bias estimation are investigated which utilize radial basis functions and wavelet decomposition. We estimate a surface gravity value by incorporating a satellite gravity model, airborne gravity data, and forward-modeled topography at wavelet levels according to each dataset's spatial wavelength. Considering the estimated gravity values over an entire gravity survey, an estimate of the bias and/or correction for the entire survey can be found and applied. In order to assess the accuracy of each bias estimation method, two techniques are used. First, each bias estimation method is used to predict the bias for two high-quality (unbiased and high accuracy) geoid slope validation surveys (GSVS) (Smith et al. 2013 & Wang et al. 2017). Since these surveys are unbiased, the various bias estimation methods should reflect that and provide an absolute accuracy metric for each of the bias estimation methods. Secondly, the corrected gravity datasets from each of the bias estimation methods are used to build a geoid model. The accuracy of each geoid model

  1. Cutoff for extensions of massive gravity and bi-gravity

    International Nuclear Information System (INIS)

    Matas, Andrew

    2016-01-01

    Recently there has been interest in extending ghost-free massive gravity, bi-gravity, and multi-gravity by including non-standard kinetic terms and matter couplings. We first review recent proposals for this class of extensions, emphasizing how modifications of the kinetic and potential structure of the graviton and modifications of the coupling to matter are related. We then generalize existing no-go arguments in the metric language to the vielbein language in second-order form. We give an ADM argument to show that the most promising extensions to the kinetic term and matter coupling contain a Boulware–Deser ghost. However, as recently emphasized, we may still be able to view these extensions as effective field theories below some cutoff scale. To address this possibility, we show that there is a decoupling limit where a ghost appears for a wide class of matter couplings and kinetic terms. In particular, we show that there is a decoupling limit where the linear effective vielbein matter coupling contains a ghost. Using the insight we gain from this decoupling limit analysis, we place an upper bound on the cutoff for the linear effective vielbein coupling. This result can be generalized to new kinetic interactions in the vielbein language in second-order form. Combined with recent results, this provides a strong uniqueness argument on the form of ghost-free massive gravity, bi-gravity, and multi-gravity. (paper)

  2. Gauge theories of gravity

    International Nuclear Information System (INIS)

    Ne'eman, Y.

    1998-01-01

    The relatively simple Fibre-Bundle geometry of a Yang-Mills gauge theory - mainly the clear distinction between base and fibre - made it possible, between 1953 and 1971, to construct a fully quantized version and prove that theory's renormalizability; moreover, nonperturbative (topological) solutions were subsequently found in both the fully symmetric and the spontaneously broken modes (instantons, monopoles). Though originally constructed as a model formalism, it became in 1974 the mathematical mold holding the entire Standard Model (i.e. QCD and the Electroweak theory). On the other hand, between 1974 and 1984, Einstein's theory was shown to be perturbatively nonrenormalizable. Since 1974, the search for Quantum Gravity has therefore provided the main motivation for the construction of Gauge Theories of Gravity. Earlier, however, in 1958-76 several such attempts were initiated, for aesthetic or heuristic reasons, to provide a better understanding of the algebraic structure of GR. A third motivation has come from the interest in Unification, making it necessary to bring GR into a form compatible with an enlargement of the Standard Model. Models can be classified according to the relevant structure group in the fibre. Within the Poincare group, this has been either the R 4 translations, or the Lorentz group SL(2, C) - or the entire Poincare SL(2, C) x R 4 . Enlarging the group has involved the use of the Conformal SU(2, 2), the special Affine SA(4, R) = SL(4, R) x R 4 or Affine A(4, R) groups. Supergroups have included supersymmetry, i.e. the graded-Poincare group (n =1...8 m its extensions) or the superconformal SU(2, 2/n). These supergravity theories have exploited the lessons of the aesthetic-heuristic models - Einstein-Cartan etc. - and also achieved the Unification target. Although perturbative renormalizability has been achieved in some models, whether they satisfy unitarity is not known. The nonperturbative Ashtekar program has exploited the understanding of

  3. Renormalization and asymptotic freedom in quantum gravity

    International Nuclear Information System (INIS)

    Tomboulis, E.T.

    1984-01-01

    The article reviews some recent attempts to construct satisfactory theories of quantum gravity within the framework of local, continuum field theory. Quantum gravity; the renormalization group and its fixed points; fixed points and dimensional continuation in gravity; and quantum gravity at d=4-the 1/N expansion-asymptotic freedom; are all discussed. (U.K.)

  4. Quantum gravity and quantum cosmology

    CERN Document Server

    Papantonopoulos, Lefteris; Siopsis, George; Tsamis, Nikos

    2013-01-01

    Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe.   While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models.   ...

  5. Topological gravity with minimal matter

    International Nuclear Information System (INIS)

    Li Keke

    1991-01-01

    Topological minimal matter, obtained by twisting the minimal N = 2 supeconformal field theory, is coupled to two-dimensional topological gravity. The free field formulation of the coupled system allows explicit representations of BRST charge, physical operators and their correlation functions. The contact terms of the physical operators may be evaluated by extending the argument used in a recent solution of topological gravity without matter. The consistency of the contact terms in correlation functions implies recursion relations which coincide with the Virasoro constraints derived from the multi-matrix models. Topological gravity with minimal matter thus provides the field theoretic description for the multi-matrix models of two-dimensional quantum gravity. (orig.)

  6. Alternative Hamiltonian representation for gravity

    Energy Technology Data Exchange (ETDEWEB)

    Rosas-RodrIguez, R [Instituto de Fisica, Universidad Autonoma de Puebla, Apdo. Postal J-48, 72570, Puebla, Pue. (Mexico)

    2007-11-15

    By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity.

  7. Alternative Hamiltonian representation for gravity

    International Nuclear Information System (INIS)

    Rosas-RodrIguez, R

    2007-01-01

    By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity

  8. Random manifolds and quantum gravity

    International Nuclear Information System (INIS)

    Krzywicki, A.

    2000-01-01

    The non-perturbative, lattice field theory approach towards the quantization of Euclidean gravity is reviewed. Included is a tentative summary of the most significant results and a presentation of the current state of art

  9. Gravity Data For Colombia 1997

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (9,050 records), were observed and processed by the Instituto Geografico Agustin Codazzi(IGAC), in Colombia from 1958 to 1996. This data...

  10. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. All grid cells within the rectangular data area (from 61 to 66 degrees North latitude and...

  11. Unifying Einstein and Palatini gravities

    International Nuclear Information System (INIS)

    Amendola, Luca; Enqvist, Kari; Koivisto, Tomi

    2011-01-01

    We consider a novel class of f(R) gravity theories where the connection is related to the conformally scaled metric g μν =C(R)g μν with a scaling that depends on the scalar curvature R only. We call them C theories and show that the Einstein and Palatini gravities can be obtained as special limits. In addition, C theories include completely new physically distinct gravity theories even when f(R)=R. With nonlinear f(R), C theories interpolate and extrapolate the Einstein and Palatini cases and may avoid some of their conceptual and observational problems. We further show that C theories have a scalar-tensor formulation, which in some special cases reduces to simple Brans-Dicke-type gravity. If matter fields couple to the connection, the conservation laws in C theories are modified. The stability of perturbations about flat space is determined by a simple condition on the Lagrangian.

  12. Defying gravity using Jenga™ blocks

    Science.gov (United States)

    Tan, Yin-Soo; Yap, Kueh-Chin

    2007-11-01

    This paper describes how Jenga™ blocks can be used to demonstrate the physics of an overhanging tower that appears to defy gravity. We also propose ideas for how this demonstration can be adapted for the A-level physics curriculum.

  13. Zero-gravity movement studies

    Science.gov (United States)

    Badler, N. I.; Fishwick, P.; Taft, N.; Agrawala, M.

    1985-01-01

    The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms.

  14. Multi-wavelength lasers using AWGs

    NARCIS (Netherlands)

    Besten, den J.H.

    2003-01-01

    Multiwavelength lasers using AWGs can be used as digitally tunable lasers with simple channel selection, and for generating multiple wavelengths simultanously. In this paper a number of different configurations is reviewed.

  15. Distinguishing modified gravity models

    International Nuclear Information System (INIS)

    Brax, Philippe; Davis, Anne-Christine

    2015-01-01

    Modified gravity models with screening in local environments appear in three different guises: chameleon, K-mouflage and Vainshtein mechanisms. We propose to look for differences between these classes of models by considering cosmological observations at low redshift. In particular, we analyse the redshift dependence of the fine structure constant and the proton to electron mass ratio in each of these scenarios. When the absorption lines belong to unscreened regions of space such as dwarf galaxies, a time variation would be present for chameleons. For both K-mouflage and Vainshtein mechanisms, the cosmological time variation of the scalar field is not suppressed in both unscreened and screened environments, therefore enhancing the variation of constants and their detection prospect. We also consider the time variation of the redshift of distant objects using their spectrocopic velocities. We find that models of the K-mouflage and Vainshtein types have very different spectroscopic velocities as a function of redshift and that their differences with the Λ-CDM template should be within reach of the future ELT-HIRES observations

  16. Gravity from strings

    International Nuclear Information System (INIS)

    Deser, S.

    1987-01-01

    We obtain the Einstein action plus quadratic curvature corrections generated by closed bosonic, heterotic and supersymmetric strings by matching the four-graviton amplitude (to first order in the slope parameter and fourth power of momenta) with an effective local gravitational action. The resulting corrections are first shown to be of the Gauss-Bonnet form. It is then noted that, by the very nature of the slope expansion, the field-redefinition theorem applies. Consequently, only the curvature-squared term is determined, while squares of its contractions are explicitly seen not to contribute. This latter property has a generalization to all orders which implies that the effective gravitational action is unavoidably ghost-free. The properties of solutions to these corrected theories are then examined. First neglecting dilatons, we find the explicit 'Schwarzschild' metrics. Both asymptotically flat and de Sitter solutions are present. The latter are however shown to be unstable. The former have horizons and singularities which are respectively smaller and less violent than in Einstein gravity; the correct sign of the slope parameter also ensures absence of naked singularities. When dilatons are included, the cosmological vacua are gratifyingly excluded. (orig.)

  17. Gravity Probe B Encapsulated

    Science.gov (United States)

    2004-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is being encapsulated atop the Delta II launch vehicle. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  18. Phases of massive gravity

    CERN Document Server

    Dubovsky, S L

    2004-01-01

    We systematically study the most general Lorentz-violating graviton mass invariant under three-dimensional Eucledian group using the explicitly covariant language. We find that at general values of mass parameters the massive graviton has six propagating degrees of freedom, and some of them are ghosts or lead to rapid classical instabilities. However, there is a number of different regions in the mass parameter space where massive gravity can be described by a consistent low-energy effective theory with cutoff $\\sim\\sqrt{mM_{Pl}}$ free of rapid instabilities and vDVZ discontinuity. Each of these regions is characterized by certain fine-tuning relations between mass parameters, generalizing the Fierz--Pauli condition. In some cases the required fine-tunings are consequences of the existence of the subgroups of the diffeomorphism group that are left unbroken by the graviton mass. We found two new cases, when the resulting theories have a property of UV insensitivity, i.e. remain well behaved after inclusion of ...

  19. Distinguishing modified gravity models

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [Institut de Physique Théorique, Université Paris-Saclay, CEA, CNRS, F-91191 Gif/Yvette Cedex (France); Davis, Anne-Christine, E-mail: philippe.brax@cea.fr, E-mail: A.C.Davis@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA (United Kingdom)

    2015-10-01

    Modified gravity models with screening in local environments appear in three different guises: chameleon, K-mouflage and Vainshtein mechanisms. We propose to look for differences between these classes of models by considering cosmological observations at low redshift. In particular, we analyse the redshift dependence of the fine structure constant and the proton to electron mass ratio in each of these scenarios. When the absorption lines belong to unscreened regions of space such as dwarf galaxies, a time variation would be present for chameleons. For both K-mouflage and Vainshtein mechanisms, the cosmological time variation of the scalar field is not suppressed in both unscreened and screened environments, therefore enhancing the variation of constants and their detection prospect. We also consider the time variation of the redshift of distant objects using their spectrocopic velocities. We find that models of the K-mouflage and Vainshtein types have very different spectroscopic velocities as a function of redshift and that their differences with the Λ-CDM template should be within reach of the future ELT-HIRES observations.

  20. Nonperturbative quantum gravity

    International Nuclear Information System (INIS)

    Ambjørn, J.; Görlich, A.; Jurkiewicz, J.; Loll, R.

    2012-01-01

    Asymptotic safety describes a scenario in which general relativity can be quantized as a conventional field theory, despite being nonrenormalizable when expanding it around a fixed background geometry. It is formulated in the framework of the Wilsonian renormalization group and relies crucially on the existence of an ultraviolet fixed point, for which evidence has been found using renormalization group equations in the continuum. “Causal Dynamical Triangulations” (CDT) is a concrete research program to obtain a nonperturbative quantum field theory of gravity via a lattice regularization, and represented as a sum over spacetime histories. In the Wilsonian spirit one can use this formulation to try to locate fixed points of the lattice theory and thereby provide independent, nonperturbative evidence for the existence of a UV fixed point. We describe the formalism of CDT, its phase diagram, possible fixed points and the “quantum geometries” which emerge in the different phases. We also argue that the formalism may be able to describe a more general class of Hořava–Lifshitz gravitational models.

  1. Entropy and Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Bernard S. Kay

    2015-12-01

    Full Text Available We give a review, in the style of an essay, of the author’s 1998 matter-gravity entanglement hypothesis which, unlike the standard approach to entropy based on coarse-graining, offers a definition for the entropy of a closed system as a real and objective quantity. We explain how this approach offers an explanation for the Second Law of Thermodynamics in general and a non-paradoxical understanding of information loss during black hole formation and evaporation in particular. It also involves a radically different from usual description of black hole equilibrium states in which the total state of a black hole in a box together with its atmosphere is a pure state—entangled in just such a way that the reduced state of the black hole and of its atmosphere are each separately approximately thermal. We also briefly recall some recent work of the author which involves a reworking of the string-theory understanding of black hole entropy consistent with this alternative description of black hole equilibrium states and point out that this is free from some unsatisfactory features of the usual string theory understanding. We also recall the author’s recent arguments based on this alternative description which suggest that the Anti de Sitter space (AdS/conformal field theory (CFT correspondence is a bijection between the boundary CFT and just the matter degrees of freedom of the bulk theory.

  2. PPN-limit of Fourth Order Gravity inspired by Scalar-Tensor Gravity

    OpenAIRE

    Capozziello, S.; Troisi, A.

    2005-01-01

    Based on the {\\it dynamical} equivalence between higher order gravity and scalar-tensor gravity the PPN-limit of fourth order gravity is discussed. We exploit this analogy developing a fourth order gravity version of the Eddington PPN-parameters. As a result, Solar System experiments can be reconciled with higher order gravity, if physical constraints descending from experiments are fulfilled.

  3. Radion and holographic brane gravity

    International Nuclear Information System (INIS)

    Kanno, Sugumi; Soda, Jiro

    2002-01-01

    The low energy effective theory for the Randall-Sundrum two-brane system is investigated with an emphasis on the role of the nonlinear radion in the brane world. The equations of motion in the bulk are solved using a low energy expansion method. This allows us, through the junction conditions, to deduce the effective equations of motion for gravity on the brane. It is shown that the gravity on the brane world is described by a quasi-scalar-tensor theory with a specific coupling function ω(Ψ)=3Ψ/2(1-Ψ) on the positive tension brane and ω(Φ)=-3Φ/2(1+Φ) on the negative tension brane, where Ψ and Φ are nonlinear realizations of the radion on the positive and negative tension branes, respectively. In contrast with the usual scalar-tensor gravity, the quasi-scalar-tensor gravity couples with two kinds of matter; namely, the matter on both positive and negative tension branes, with different effective gravitational coupling constants. In particular, the radion disguised as the scalar fields Ψ and Φ couples with the sum of the traces of the energy-momentum tensor on both branes. In the course of the derivation, it is revealed that the radion plays an essential role in converting the nonlocal Einstein gravity with generalized dark radiation to local quasi-scalar-tensor gravity. For completeness, we also derive the effective action for our theory by substituting the bulk solution into the original action. It is also shown that quasi-scalar-tensor gravity works as a hologram at low energy in the sense that the bulk geometry can be reconstructed from the solution of quasi-scalar-tensor gravity

  4. Curved backgrounds in emergent gravity

    Science.gov (United States)

    Chaurasia, Shikha; Erlich, Joshua; Zhou, Yiyu

    2018-06-01

    Field theories that are generally covariant but nongravitational at tree level typically give rise to an emergent gravitational interaction whose strength depends on a physical regulator. We consider emergent gravity models in which scalar fields assume the role of clock and rulers, addressing the problem of time in quantum gravity. We discuss the possibility of nontrivial dynamics for clock and ruler fields, and describe some of the consequences of those dynamics for the emergent gravitational theory.

  5. Minimal Length, Measurability and Gravity

    Directory of Open Access Journals (Sweden)

    Alexander Shalyt-Margolin

    2016-03-01

    Full Text Available The present work is a continuation of the previous papers written by the author on the subject. In terms of the measurability (or measurable quantities notion introduced in a minimal length theory, first the consideration is given to a quantum theory in the momentum representation. The same terms are used to consider the Markov gravity model that here illustrates the general approach to studies of gravity in terms of measurable quantities.

  6. Scattering of internal gravity waves

    OpenAIRE

    Leaman Nye, Abigail

    2011-01-01

    Internal gravity waves play a fundamental role in the dynamics of stably stratified regions of the atmosphere and ocean. In addition to the radiation of momentum and energy remote from generation sites, internal waves drive vertical transport of heat and mass through the ocean by wave breaking and the mixing subsequently produced. Identifying regions where internal gravity waves contribute to ocean mixing and quantifying this mixing are therefore important for accurate climate ...

  7. Absolute gravity measurements in California

    Science.gov (United States)

    Zumberge, M. A.; Sasagawa, G.; Kappus, M.

    1986-08-01

    An absolute gravity meter that determines the local gravitational acceleration by timing a freely falling mass with a laser interferometer has been constructed. The instrument has made measurements at 11 sites in California, four in Nevada, and one in France. The uncertainty in the results is typically 10 microgal. Repeated measurements have been made at several of the sites; only one shows a substantial change in gravity.

  8. Dark Matter in Quantum Gravity

    OpenAIRE

    Calmet, Xavier; Latosh, Boris

    2018-01-01

    We show that quantum gravity, whatever its ultra-violet completion might be, could account for dark matter. Indeed, besides the massless gravitational field recently observed in the form of gravitational waves, the spectrum of quantum gravity contains two massive fields respectively of spin 2 and spin 0. If these fields are long-lived, they could easily account for dark matter. In that case, dark matter would be very light and only gravitationally coupled to the standard model particles.

  9. The quest for quantum gravity

    International Nuclear Information System (INIS)

    Au, G.

    1995-03-01

    One of the greatest challenges facing theoretical physics lies in reconciling Einstein's classical theory of gravity - general relativity -with quantum field theory. Although both theories have been experimentally supported in their respective regimes, they are as compatible as a square peg and a round hole. This article summarises the current status of the superstring approach to the problem, the status of the Ashtekar program, and problem of time in quantum gravity

  10. Gravity as Quantum Entanglement Force

    OpenAIRE

    Lee, Jae-Weon; Kim, Hyeong-Chan; Lee, Jungjai

    2010-01-01

    We conjecture that the total quantum entanglement of matter and vacuum in the universe tends to increase with time, like entropy, and that an effective force is associated with this tendency. We also suggest that gravity and dark energy are types of quantum entanglement forces, similar to Verlinde's entropic force, and give holographic dark energy with an equation of state comparable to current observational data. This connection between quantum entanglement and gravity could give some new in...

  11. Gravity as a thermodynamic phenomenon

    OpenAIRE

    Moustos, Dimitris

    2017-01-01

    The analogy between the laws of black hole mechanics and the laws of thermodynamics led Bekenstein and Hawking to argue that black holes should be considered as real thermodynamic systems that are characterised by entropy and temperature. Black hole thermodynamics indicates a deeper connection between thermodynamics and gravity. We review and examine in detail the arguments that suggest an interpretation of gravity itself as a thermodynamic theory.

  12. The quest for quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Au, G

    1995-03-01

    One of the greatest challenges facing theoretical physics lies in reconciling Einstein`s classical theory of gravity - general relativity -with quantum field theory. Although both theories have been experimentally supported in their respective regimes, they are as compatible as a square peg and a round hole. This article summarises the current status of the superstring approach to the problem, the status of the Ashtekar program, and problem of time in quantum gravity.

  13. The potential of ground gravity measurements to validate GRACE data

    Directory of Open Access Journals (Sweden)

    D. Crossley

    2003-01-01

    Full Text Available New satellite missions are returning high precision, time-varying, satellite measurements of the Earth’s gravity field. The GRACE mission is now in its calibration/- validation phase and first results of the gravity field solutions are imminent. We consider here the possibility of external validation using data from the superconducting gravimeters in the European sub-array of the Global Geodynamics Project (GGP as ‘ground truth’ for comparison with GRACE. This is a pilot study in which we use 14 months of 1-hour data from the beginning of GGP (1 July 1997 to 30 August 1998, when the Potsdam instrument was relocated to South Africa. There are 7 stations clustered in west central Europe, and one station, Metsahovi in Finland. We remove local tides, polar motion, local and global air pressure, and instrument drift and then decimate to 6-hour samples. We see large variations in the time series of 5–10µgal between even some neighboring stations, but there are also common features that correlate well over the 427-day period. The 8 stations are used to interpolate a minimum curvature (gridded surface that extends over the geographical region. This surface shows time and spatial coherency at the level of 2– 4µgal over the first half of the data and 1–2µgal over the latter half. The mean value of the surface clearly shows a rise in European gravity of about 3µgal over the first 150 days and a fairly constant value for the rest of the data. The accuracy of this mean is estimated at 1µgal, which compares favorably with GRACE predictions for wavelengths of 500 km or less. Preliminary studies of hydrology loading over Western Europe shows the difficulty of correlating the local hydrology, which can be highly variable, with large-scale gravity variations.Key words. GRACE, satellite gravity, superconducting gravimeter, GGP, ground truth

  14. Emergent/quantum gravity: macro/micro structures of spacetime

    International Nuclear Information System (INIS)

    Hu, B L

    2009-01-01

    Emergent gravity views spacetime as an entity emergent from a more complete theory of interacting fundamental constituents valid at much finer resolution or higher energies, usually assumed to be above the Planck energy. In this view general relativity is an effective theory valid only at long wavelengths and low energies. We describe the tasks of emergent gravity from any ('top-down') candidate theory for the microscopic structure of spacetime (quantum gravity), namely, identifying the conditions and processes or mechanisms whereby the familiar macroscopic spacetime described by general relativity and matter content described by quantum field theory both emerge with high probability and reasonable robustness. We point out that this task may not be so easy as commonly conjured (as implied in the 'theory of everything') because there are emergent phenomena which cannot simply be deduced from a given micro-theory. Going in the opposite direction ('bottom-up') is the task of quantum gravity, i.e., finding a theory for the microscopic structure of spacetime, which, in this new view, cannot come from quantizing the metric or connection forms because they are the collective variables which are meaningful only for the macroscopic theory (valid below the Planck energy). This task looks very difficult or almost impossible because it entails reconstructing lost information. We point out that the situation may not be so hopeless if we ask the right questions and have the proper tools for what we want to look for. We suggest pathways to move 'up' (in energy) from the given macroscopic conditions of classical gravity and quantum field theory to the domain closer to the micro-macro interface where spacetime emerged and places to look for clues or tell-tale signs at low energy where one could infer indirectly some salient features of the micro-structure of spacetime.

  15. Effect of the Earth's inner structure on the gravity in definitions of height systems

    Science.gov (United States)

    Tenzer, Robert; Foroughi, Ismael; Pitoňák, Martin; Šprlák, Michal

    2017-04-01

    compared to the corresponding surface values mainly due to topographic elevation and terrain geometry as well as the presence of large glaciers in polar regions. Changes of the vertical gravity gradient within the topography attributed to the masses distributed below the geoid (dominated mainly by the isostatic signature and the long-wavelength gravitational signature of deep mantle density heterogeneities) are, on the other hand, relatively small. Despite differences between the normal and normal-orthometric heights could directly be assessed from the surface gravity disturbances only when taken along leveling lines with information about the spirit leveling height differences, our results indicate that differences between these two height systems can be significant.

  16. Wavelength mismatch effect in electromagnetically induced absorption

    Energy Technology Data Exchange (ETDEWEB)

    Bharti, Vineet [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Wasan, Ajay [Department of Physics, Indian Institute of Technology, Roorkee 247667 (India); Natarajan, Vasant [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2016-07-15

    We present a theoretical investigation of the phenomenon of electromagnetically induced absorption (EIA) in a 4-level system consisting of vee and ladder subsystems. The four levels are coupled using one weak probe field, and two strong control fields. We consider an experimental realization using energy levels of Rb. This necessitates dealing with different conditions of wavelength mismatch—near-perfect match where all three wavelengths are approximately equal; partial mismatch where the wavelength of one control field is less than the other fields; and complete mismatch where all three wavelengths are unequal. We present probe absorption profiles with Doppler averaging at room temperature to account for experiments in a room temperature Rb vapor cell. Our analysis shows that EIA resonances can be studied using Rydberg states excited with diode lasers. - Highlights: • Wavelength mismatch effect is investigated in electromagnetically induced absorption (EIA). • An experimental realization of 4-level vee + ladder system using energy levels of rubidium atom is presented. • EIA resonances are studied under different conditions of wavelength mismatch. • Possibility of observation of EIA using Rydberg states excited with diode lasers.

  17. Wavelength mismatch effect in electromagnetically induced absorption

    International Nuclear Information System (INIS)

    Bharti, Vineet; Wasan, Ajay; Natarajan, Vasant

    2016-01-01

    We present a theoretical investigation of the phenomenon of electromagnetically induced absorption (EIA) in a 4-level system consisting of vee and ladder subsystems. The four levels are coupled using one weak probe field, and two strong control fields. We consider an experimental realization using energy levels of Rb. This necessitates dealing with different conditions of wavelength mismatch—near-perfect match where all three wavelengths are approximately equal; partial mismatch where the wavelength of one control field is less than the other fields; and complete mismatch where all three wavelengths are unequal. We present probe absorption profiles with Doppler averaging at room temperature to account for experiments in a room temperature Rb vapor cell. Our analysis shows that EIA resonances can be studied using Rydberg states excited with diode lasers. - Highlights: • Wavelength mismatch effect is investigated in electromagnetically induced absorption (EIA). • An experimental realization of 4-level vee + ladder system using energy levels of rubidium atom is presented. • EIA resonances are studied under different conditions of wavelength mismatch. • Possibility of observation of EIA using Rydberg states excited with diode lasers.

  18. A Transportable Gravity Gradiometer Based on Atom Interferometry

    Science.gov (United States)

    Yu, Nan; Thompson, Robert J.; Kellogg, James R.; Aveline, David C.; Maleki, Lute; Kohel, James M.

    2010-01-01

    rest frame for the trapped atoms. While still in this moving-frame molasses, the laser frequencies are further detuned from the atomic resonance (while maintaining this relative frequency shift) to cool the atom cloud's temperature to 2 K or below, corresponding to an rms velocity of less than 2 cm/s. After launch, the cold atoms undergo further state and velocity selection to prepare for atom interferometry. The atom interferometers are then realized using laser-induced stimulated Raman transitions to perform the necessary manipulations of each atom, and the resulting interferometer phase is measured using laser-induced fluorescence for state-normalized detection. More than 20 laser beams with independent controls of frequency, phase, and intensity are required for this measurement sequence. This instrument can facilitate the study of Earth's gravitational field from surface and air vehicles, as well as from space by allowing gravity mapping from a low-cost, single spacecraft mission. In addition, the operation of atom interferometer-based instruments in space offers greater sensitivity than is possible in terrestrial instruments due to the much longer interrogation times available in the microgravity environment. A space-based quantum gravity gradiometer has the potential to achieve sensitivities similar to the GRACE mission at long spatial wavelengths, and will also have resolution similar to GOCE for measurement at shorter length scales.

  19. Giersch International Symposion 2016 : Week 1 : Experimental Search for Quantum Gravity

    CERN Document Server

    Experimental Search for Quantum Gravity

    2018-01-01

    This book summarizes recent developments in the research area of quantum gravity phenomenology. A series of short and nontechnical essays lays out the prospects of various experimental possibilities and their current status. Finding observational evidence for the quantization of space-time was long thought impossible. In the last decade however, new experimental design and technological advances have changed the research landscape and opened new perspectives on quantum gravity. Formerly dominated by purely theoretical constructions, quantum gravity now has a lively phenomenology to offer. From high precision measurements using macroscopic quantum oscillators to new analysis methods of the cosmic microwave background, no stone is being left unturned in the experimental search for quantum gravity. This book sheds new light on the connection of astroparticle physics with the quantum gravity problem. Gravitational waves and their detection are covered. It illustrates findings from the interconnection between gene...

  20. Strapdown Airborne Gravimetry Using a Combination of Commercial Software and Stable-Platform Gravity Estimates

    DEFF Research Database (Denmark)

    Jensen, Tim E.; Nielsen, J. Emil; Olesen, Arne V.

    2017-01-01

    into the long-wavelengths of the gravity estimates. This has made the stable-platform approach the preferred method for geodetic applications. In the summer of 2016, during a large airborne survey in Malaysia, a SIMU system was flown alongside a traditional LaCoste&Romberg (LCR) gravimeter. The SIMU......For the past two decades, airborne gravimetry using a Strapdown Inertial Measurement Unit (SIMU) has been producing gravity estimates comparable to the traditional stable-platform single-axis gravimeters. The challenge has been to control the long term drift of the IMU sensors, propagating...