X-ray testing for short-time dynamic applications
International Nuclear Information System (INIS)
Kurfiss, Malte; Moser, Stefan; Popko, Gregor; Nau, Siegfried
2017-01-01
For nondestructive testing purposes new challenges are short-time dynamic processes. The application of x-ray flash tubes and modern high-speed cameras allows the observation of the opening of air-bags or the energy absorption of compressed tubes as occurring during a vehicle crash. Special algorithms designed for computerized tomography analyses allow the 3D reconstruction at individual time points of the dynamic process. Possibilities and limitations of the actual techniques are discussed.
Short-time quantum dynamics of sharp boundaries potentials
Energy Technology Data Exchange (ETDEWEB)
Granot, Er' el, E-mail: erel@ariel.ac.il; Marchewka, Avi
2015-02-15
Despite the high prevalence of singular potential in general, and rectangular potentials in particular, in applied scattering models, to date little is known about their short time effects. The reason is that singular potentials cause a mixture of complicated local as well as non-local effects. The object of this work is to derive a generic method to calculate analytically the short-time impact of any singular potential. In this paper it is shown that the scattering of a smooth wavefunction on a singular potential is totally equivalent, in the short-time regime, to the free propagation of a singular wavefunction. However, the latter problem was totally addressed analytically in Ref. [7]. Therefore, this equivalency can be utilized in solving analytically the short time dynamics of any smooth wavefunction at the presence of a singular potentials. In particular, with this method the short-time dynamics of any problem where a sharp boundaries potential (e.g., a rectangular barrier) is turned on instantaneously can easily be solved analytically.
Short-time quantum dynamics of sharp boundaries potentials
Granot, Er'el; Marchewka, Avi
2015-02-01
Despite the high prevalence of singular potential in general, and rectangular potentials in particular, in applied scattering models, to date little is known about their short time effects. The reason is that singular potentials cause a mixture of complicated local as well as non-local effects. The object of this work is to derive a generic method to calculate analytically the short-time impact of any singular potential. In this paper it is shown that the scattering of a smooth wavefunction on a singular potential is totally equivalent, in the short-time regime, to the free propagation of a singular wavefunction. However, the latter problem was totally addressed analytically in Ref. [7]. Therefore, this equivalency can be utilized in solving analytically the short time dynamics of any smooth wavefunction at the presence of a singular potentials. In particular, with this method the short-time dynamics of any problem where a sharp boundaries potential (e.g., a rectangular barrier) is turned on instantaneously can easily be solved analytically.
Short-time quantum dynamics of sharp boundaries potentials
International Nuclear Information System (INIS)
Granot, Er'el; Marchewka, Avi
2015-01-01
Despite the high prevalence of singular potential in general, and rectangular potentials in particular, in applied scattering models, to date little is known about their short time effects. The reason is that singular potentials cause a mixture of complicated local as well as non-local effects. The object of this work is to derive a generic method to calculate analytically the short-time impact of any singular potential. In this paper it is shown that the scattering of a smooth wavefunction on a singular potential is totally equivalent, in the short-time regime, to the free propagation of a singular wavefunction. However, the latter problem was totally addressed analytically in Ref. [7]. Therefore, this equivalency can be utilized in solving analytically the short time dynamics of any smooth wavefunction at the presence of a singular potentials. In particular, with this method the short-time dynamics of any problem where a sharp boundaries potential (e.g., a rectangular barrier) is turned on instantaneously can easily be solved analytically
Energy Technology Data Exchange (ETDEWEB)
Kurfiss, Malte; Moser, Stefan; Popko, Gregor; Nau, Siegfried [Fraunhofer-Institut fuer Kurzzeitdynamik, Efringen-Kirchen (Germany). Ernst-Mach-Inst. (EMI)
2017-08-01
For nondestructive testing purposes new challenges are short-time dynamic processes. The application of x-ray flash tubes and modern high-speed cameras allows the observation of the opening of air-bags or the energy absorption of compressed tubes as occurring during a vehicle crash. Special algorithms designed for computerized tomography analyses allow the 3D reconstruction at individual time points of the dynamic process. Possibilities and limitations of the actual techniques are discussed.
Effective description of the short-time dynamics in open quantum systems
Rossi, Matteo A. C.; Foti, Caterina; Cuccoli, Alessandro; Trapani, Jacopo; Verrucchi, Paola; Paris, Matteo G. A.
2017-09-01
We address the dynamics of a bosonic system coupled to either a bosonic or a magnetic environment and derive a set of sufficient conditions that allow one to describe the dynamics in terms of the effective interaction with a classical fluctuating field. We find that for short interaction times the dynamics of the open system is described by a Gaussian noise map for several different interaction models and independently on the temperature of the environment. In order to go beyond a qualitative understanding of the origin and physical meaning of the above short-time constraint, we take a general viewpoint and, based on an algebraic approach, suggest that any quantum environment can be described by classical fields whenever global symmetries lead to the definition of environmental operators that remain well defined when increasing the size, i.e., the number of dynamical variables, of the environment. In the case of the bosonic environment this statement is exactly demonstrated via a constructive procedure that explicitly shows why a large number of environmental dynamical variables and, necessarily, global symmetries, entail the set of conditions derived in the first part of the work.
Takahashi, Osamu; Nomura, Tetsuo; Tabayashi, Kiyohiko; Yamasaki, Katsuyoshi
2008-07-01
We performed spectral analysis by using the maximum entropy method instead of the traditional Fourier transform technique to investigate the short-time behavior in molecular systems, such as the energy transfer between vibrational modes and chemical reactions. This procedure was applied to direct ab initio molecular dynamics calculations for the decomposition of formic acid. More reactive trajectories of dehydrolation than those of decarboxylation were obtained for Z-formic acid, which was consistent with the prediction of previous theoretical and experimental studies. Short-time maximum entropy method analyses were performed for typical reactive and non-reactive trajectories. Spectrograms of a reactive trajectory were obtained; these clearly showed the reactant, transient, and product regions, especially for the dehydrolation path.
Critical dynamics of the Potts model: short-time Monte Carlo simulations
International Nuclear Information System (INIS)
Silva, Roberto da; Drugowich de Felicio, J.R.
2004-01-01
We calculate the new dynamic exponent θ of the 4-state Potts model, using short-time simulations. Our estimates θ1=-0.0471(33) and θ2=-0.0429(11) obtained by following the behavior of the magnetization or measuring the evolution of the time correlation function of the magnetization corroborate the conjecture by Okano et al. [Nucl. Phys. B 485 (1997) 727]. In addition, these values agree with previous estimate of the same dynamic exponent for the two-dimensional Ising model with three-spin interactions in one direction, that is known to belong to the same universality class as the 4-state Potts model. The anomalous dimension of initial magnetization x0=zθ+β/ν is calculated by an alternative way that mixes two different initial conditions. We have also estimated the values of the static exponents β and ν. They are in complete agreement with the pertinent results of the literature
Quantum Dynamics with Short-Time Trajectories and Minimal Adaptive Basis Sets.
Saller, Maximilian A C; Habershon, Scott
2017-07-11
Methods for solving the time-dependent Schrödinger equation via basis set expansion of the wave function can generally be categorized as having either static (time-independent) or dynamic (time-dependent) basis functions. We have recently introduced an alternative simulation approach which represents a middle road between these two extremes, employing dynamic (classical-like) trajectories to create a static basis set of Gaussian wavepackets in regions of phase-space relevant to future propagation of the wave function [J. Chem. Theory Comput., 11, 8 (2015)]. Here, we propose and test a modification of our methodology which aims to reduce the size of basis sets generated in our original scheme. In particular, we employ short-time classical trajectories to continuously generate new basis functions for short-time quantum propagation of the wave function; to avoid the continued growth of the basis set describing the time-dependent wave function, we employ Matching Pursuit to periodically minimize the number of basis functions required to accurately describe the wave function. Overall, this approach generates a basis set which is adapted to evolution of the wave function while also being as small as possible. In applications to challenging benchmark problems, namely a 4-dimensional model of photoexcited pyrazine and three different double-well tunnelling problems, we find that our new scheme enables accurate wave function propagation with basis sets which are around an order-of-magnitude smaller than our original trajectory-guided basis set methodology, highlighting the benefits of adaptive strategies for wave function propagation.
Fernandes, Brian; Hegde, Manu; Stanish, Paul C.; Mišković, Zoran L.; Radovanovic, Pavle V.
2017-09-01
We developed a comprehensive theoretical model describing the photoluminescence decay dynamics at short and long time scales based on the donor-acceptor defect interactions in γ-Ga2O3 nanocrystals, and quantitatively determined the importance of exclusion distance and spatial distribution of defects. We allowed for donors and acceptors to be adjacent to each other or separated by different exclusion distances. The optimal exclusion distance was found to be comparable to the donor Bohr radius and have a strong effect on the photoluminescence decay curve at short times. The importance of the exclusion distance at short time scales was confirmed by Monte Carlo simulations.
Short-time dynamics of random-bond Potts ferromagnet with continuous self-dual quenched disorders
Pan, Z. Q.; Ying, H. P.; Gu, D. W.
2001-01-01
We present Monte Carlo simulation results of random-bond Potts ferromagnet with the Olson-Young self-dual distribution of quenched disorders in two-dimensions. By exploring the short-time scaling dynamics, we find universal power-law critical behavior of the magnetization and Binder cumulant at the critical point, and thus obtain estimates of the dynamic exponent $z$ and magnetic exponent $\\eta$, as well as the exponent $\\theta$. Our special attention is paid to the dynamic process for the $q...
Optimal filtering of dynamics in short-time features for music organization
DEFF Research Database (Denmark)
Arenas-García, Jerónimo; Larsen, Jan; Hansen, Lars Kai
2006-01-01
There is an increasing interest in customizable methods for organizing music collections. Relevant music characterization can be obtained from short-time features, but it is not obvious how to combine them to get useful information. In this work, a novel method, denoted as the Positive Constrained...... Orthonormalized Partial Least Squares (POPLS), is proposed. Working on the periodograms of MFCCs time series, this supervised method finds optimal filters which pick up the most discriminative temporal information for any music organization task. Two examples are presented in the paper, the first being a simple...... proof-of-concept, where an altosax with and without vibrato is modelled. A more complex \\$11\\$ music genre classification setup is also investigated to illustrate the robustness and validity of the proposed method on larger datasets. Both experiments showed the good properties of our method, as well...
Short-time dynamics of phenylene-rings in bisphenol based engineering thermoplastics
International Nuclear Information System (INIS)
Arrese-Igor, S.; Arbe, A.; Alegria, A.; Colmenero, J.; Frick, B.
2003-01-01
We have recently performed one of the first approaches by means of quasielastic neutron scattering (QENS) to the problem of identifying the molecular motions giving rise to the secondary relaxations of engineering thermoplastics. Preliminary results point to phenylene ring π-flips as the main motion causing the observed quasielastic broadening in the ∼10 -10 -10 -9 s time scale below the glass transition temperature T g . Continuing our study of sub-T g dynamics in these systems by QENS, measurements on polycarbonate (PC) and polysulfone (PSF) with deuterated methyl groups (d6) in the ∼10 -13 -10 -11 s time scale have been performed. The intermediate scattering function shows a smooth second decay in addition to that of vibrations and 'fast dynamics' at T > or approx. 200 K. The extrapolation of phenylene π-flip motion to faster times does not explain the decay observed. However, a non-negligible contribution of π-flips at T≥350 K in PCd6 is noticeable, whereas for PSFd6 some effect can be inferred above ∼450 K. In the temperature region where the π-flips do not contribute to the spectra we have characterised the signal by assuming a temperature dependent distribution of small angle oscillations of phenylene rings leading to an activation energy of 0.18 eV
Lainscsek, Claudia; Weyhenmeyer, Jonathan; Hernandez, Manuel E; Poizner, Howard; Sejnowski, Terrence J
2013-01-01
Time series analysis with delay differential equations (DDEs) reveals non-linear properties of the underlying dynamical system and can serve as a non-linear time-domain classification tool. Here global DDE models were used to analyze short segments of simulated time series from a known dynamical system, the Rössler system, in high noise regimes. In a companion paper, we apply the DDE model developed here to classify short segments of encephalographic (EEG) data recorded from patients with Parkinson's disease and healthy subjects. Nine simulated subjects in each of two distinct classes were generated by varying the bifurcation parameter b and keeping the other two parameters (a and c) of the Rössler system fixed. All choices of b were in the chaotic parameter range. We diluted the simulated data using white noise ranging from 10 to -30 dB signal-to-noise ratios (SNR). Structure selection was supervised by selecting the number of terms, delays, and order of non-linearity of the model DDE model that best linearly separated the two classes of data. The distances d from the linear dividing hyperplane was then used to assess the classification performance by computing the area A' under the ROC curve. The selected model was tested on untrained data using repeated random sub-sampling validation. DDEs were able to accurately distinguish the two dynamical conditions, and moreover, to quantify the changes in the dynamics. There was a significant correlation between the dynamical bifurcation parameter b of the simulated data and the classification parameter d from our analysis. This correlation still held for new simulated subjects with new dynamical parameters selected from each of the two dynamical regimes. Furthermore, the correlation was robust to added noise, being significant even when the noise was greater than the signal. We conclude that DDE models may be used as a generalizable and reliable classification tool for even small segments of noisy data.
Antipersistent dynamics in short time scale variability of self-potential signals
Directory of Open Access Journals (Sweden)
M. Ragosta
2000-06-01
Full Text Available Time scale properties of self-potential signals are investigated through the analysis of the second order structure function (variogram, a powerful tool to investigate the spatial and temporal variability of observational data. In this work we analyse two sequences of self-potential values measured by means of a geophysical monitoring array located in a seismically active area of Southern Italy. The range of scales investigated goes from a few minutes to several days. It is shown that signal fluctuations are characterised by two time scale ranges in which self-potential variability appears to follow slightly different dynamical behaviours. Results point to the presence of fractal, non stationary features expressing a long term correlation with scaling coefficients which are the clue of stabilising mechanisms. In the scale ranges in which the series show scale invariant behaviour, self-potentials evolve like fractional Brownian motions with anticorrelated increments typical of processes regulated by negative feedback mechanisms (antipersistence. On scales below about 6 h the strength of such an antipersistence appears to be slightly greater than that observed on larger time scales where the fluctuations are less efficiently stabilised.
Time Perspective and Identity Formation: Short-Term Longitudinal Dynamics in College Students
Luyckx, Koen; Lens, Willy; Smits, Ilse; Goossens, Luc
2010-01-01
Planning for the future and developing a personalized identity are conceived of as important developmental tasks that adolescents and emerging adults are confronted with on the pathway to adulthood. The present study set out to examine whether both tasks develop in tandem by using a short-term longitudinal dataset consisting of 371 college…
Energy Technology Data Exchange (ETDEWEB)
Stiegman, Albert E.; Park, Chi-Dong; Mileham, Melissa; Van de Burgt, Lambertus J. [Department of Chemistry and Biochemistry, Florida State University Tallahassee, FL (United States); Kramer, Michael P. [AFRL/MNME Eglin AFB, FL (United States)
2009-08-15
Time-resolved spectroscopy was used to study the dynamics of the photothermal ignition of Al/Fe{sub 2}O{sub 3} metastable intermolecular composites after single short-pulse laser initiation. The dynamics were recorded in several time domains from nanosecond to microsecond to quantify the dynamics from initial laser excitation to combustion. Time-averaged spectral data were also collected for the overall emission occurring during combustion. (Abstract Copyright [2009], Wiley Periodicals, Inc.)
Riest, Jonas; Nägele, Gerhard; Liu, Yun; Wagner, Norman J.; Godfrin, P. Douglas
2018-02-01
Recently, atypical static features of microstructural ordering in low-salinity lysozyme protein solutions have been extensively explored experimentally and explained theoretically based on a short-range attractive plus long-range repulsive (SALR) interaction potential. However, the protein dynamics and the relationship to the atypical SALR structure remain to be demonstrated. Here, the applicability of semi-analytic theoretical methods predicting diffusion properties and viscosity in isotropic particle suspensions to low-salinity lysozyme protein solutions is tested. Using the interaction potential parameters previously obtained from static structure factor measurements, our results of Monte Carlo simulations representing seven experimental lysoyzme samples indicate that they exist either in dispersed fluid or random percolated states. The self-consistent Zerah-Hansen scheme is used to describe the static structure factor, S(q), which is the input to our calculation schemes for the short-time hydrodynamic function, H(q), and the zero-frequency viscosity η. The schemes account for hydrodynamic interactions included on an approximate level. Theoretical predictions for H(q) as a function of the wavenumber q quantitatively agree with experimental results at small protein concentrations obtained using neutron spin echo measurements. At higher concentrations, qualitative agreement is preserved although the calculated hydrodynamic functions are overestimated. We attribute the differences for higher concentrations and lower temperatures to translational-rotational diffusion coupling induced by the shape and interaction anisotropy of particles and clusters, patchiness of the lysozyme particle surfaces, and the intra-cluster dynamics, features not included in our simple globular particle model. The theoretical results for the solution viscosity, η, are in qualitative agreement with our experimental data even at higher concentrations. We demonstrate that semi
Antipersistent dynamics in short time scale variability of self-potential signals
Cuomo, V.; Lanfredi, M.; Lapenna, V.; Macchiato, M.; Ragosta, M.; Telesca, L.
2000-01-01
Time scale properties of self-potential signals are investigated through the analysis of the second order structure function (variogram), a powerful tool to investigate the spatial and temporal variability of observational data. In this work we analyse two sequences of self-potential values measured by means of a geophysical monitoring array located in a seismically active area of Southern Italy. The range of scales investigated goes from a few minutes to several days. It is shown that signal...
A short-time scale colloidal system reveals early bacterial adhesion dynamics.
Directory of Open Access Journals (Sweden)
Christophe Beloin
2008-07-01
Full Text Available The development of bacteria on abiotic surfaces has important public health and sanitary consequences. However, despite several decades of study of bacterial adhesion to inert surfaces, the biophysical mechanisms governing this process remain poorly understood, due, in particular, to the lack of methodologies covering the appropriate time scale. Using micrometric colloidal surface particles and flow cytometry analysis, we developed a rapid multiparametric approach to studying early events in adhesion of the bacterium Escherichia coli. This approach simultaneously describes the kinetics and amplitude of early steps in adhesion, changes in physicochemical surface properties within the first few seconds of adhesion, and the self-association state of attached and free-floating cells. Examination of the role of three well-characterized E. coli surface adhesion factors upon attachment to colloidal surfaces--curli fimbriae, F-conjugative pilus, and Ag43 adhesin--showed clear-cut differences in the very initial phases of surface colonization for cell-bearing surface structures, all known to promote biofilm development. Our multiparametric analysis revealed a correlation in the adhesion phase with cell-to-cell aggregation properties and demonstrated that this phenomenon amplified surface colonization once initial cell-surface attachment was achieved. Monitoring of real-time physico-chemical particle surface properties showed that surface-active molecules of bacterial origin quickly modified surface properties, providing new insight into the intricate relations connecting abiotic surface physicochemical properties and bacterial adhesion. Hence, the biophysical analytical method described here provides a new and relevant approach to quantitatively and kinetically investigating bacterial adhesion and biofilm development.
Tong, Yunjie; Hocke, Lia M; Frederick, Blaise deB
2014-11-01
Recently developed simultaneous multislice echo-planar imaging (EPI) sequences permit imaging of the whole brain at short repetition time (TR), allowing the cardiac fluctuations to be fully sampled in blood-oxygen-level dependent functional MRI (BOLD fMRI). A novel low computational analytical method was developed to dynamically map the passage of the pulsation signal through the brain and visualize the whole cerebral vasculature affected by the pulse signal. This algorithm is based on a simple combination of fast BOLD fMRI and the scanner's own built-in pulse oximeter. Multiple, temporally shifted copies of the pulse oximeter data (with 0.08 s shifting step and coverage of a 1-s span) were downsampled and used as cardiac pulsation regressors in a general linear model based analyses (FSL) of the fMRI data. The resulting concatenated z-statistics maps show the voxels that are affected as the cardiac signal travels through the brain. Many voxels were highly correlated with the pulsation regressor or its temporally shifted version. The dynamic and static cardiac pulsation maps obtained from both the task and resting state scans, resembled cerebral vasculature. The results demonstrated: (i) cardiac pulsation significantly affects most voxels in the brain; (ii) combining fast fMRI and this analytical method can reveal additional clinical information to functional studies. Copyright © 2013 Wiley Periodicals, Inc.
Wang, Zidong; Liu, Xiaohui; Liu, Yurong; Liang, Jinling; Vinciotti, Veronica
2009-01-01
In this paper, the extended Kalman filter (EKF) algorithm is applied to model the gene regulatory network from gene time series data. The gene regulatory network is considered as a nonlinear dynamic stochastic model that consists of the gene measurement equation and the gene regulation equation. After specifying the model structure, we apply the EKF algorithm for identifying both the model parameters and the actual value of gene expression levels. It is shown that the EKF algorithm is an online estimation algorithm that can identify a large number of parameters (including parameters of nonlinear functions) through iterative procedure by using a small number of observations. Four real-world gene expression data sets are employed to demonstrate the effectiveness of the EKF algorithm, and the obtained models are evaluated from the viewpoint of bioinformatics.
Krstacic, Goran; Krstacic, Antonija; Smalcelj, Anton; Milicic, Davor; Jembrek-Gostovic, Mirjana
2007-04-01
Dynamic analysis techniques may quantify abnormalities in heart rate variability (HRV) based on nonlinear and fractal analysis (chaos theory). The article emphasizes clinical and prognostic significance of dynamic changes in short-time series applied on patients with coronary heart disease (CHD) during the exercise electrocardiograph (ECG) test. The subjects were included in the series after complete cardiovascular diagnostic data. Series of R-R and ST-T intervals were obtained from exercise ECG data after sampling digitally. The range rescaled analysis method determined the fractal dimension of the intervals. To quantify fractal long-range correlation's properties of heart rate variability, the detrended fluctuation analysis technique was used. Approximate entropy (ApEn) was applied to quantify the regularity and complexity of time series, as well as unpredictability of fluctuations in time series. It was found that the short-term fractal scaling exponent (alpha(1)) is significantly lower in patients with CHD (0.93 +/- 0.07 vs 1.09 +/- 0.04; P chaos theory during the exercise ECG test point out the multifractal time series in CHD patients who loss normal fractal characteristics and regularity in HRV. Nonlinear analysis technique may complement traditional ECG analysis.
International Nuclear Information System (INIS)
Ramia, M.E.; Martin, C.A.; Jeandrevin, S.
2011-01-01
A NMR probe for low frequency and short recovery time is presented in this work. The probe contains the tuning circuit, diode expanders and quarter wavelength networks to protect the receiver from both the amplifier noise and the coil ringing following the transmitter power pulse. It also possesses a coil damper which is activated by of non active components. The probe performance shows a recovery time of about of 15μs a sensitive Q factor reduction and an increase of the signal to noise ratio of about 68% during the reception at a work frequency of 2 MHz. (author)
Czech Academy of Sciences Publication Activity Database
Gruber, Jan
2011-01-01
Roč. 56, č. 2 (2011), s. 185-205 ISSN 0001-7043 Institutional research plan: CEZ:AV0Z20570509 Keywords : correlation dimension * time-embeddings * chaos Subject RIV: BL - Plasma and Gas Discharge Physics
Petermann, Eric; Knöller, Kay; Stollberg, Reiner; Scholten, Jan; Rocha, Carlos; Weiß, Holger; Schubert, Michael
2017-04-01
Submarine groundwater discharge (SGD) plays a crucial role for the water quality of coastal waters due to associated fluxes of nutrients, organic compounds and/or heavy-metals. Thus, the quantification of SGD is essential for evaluating the vulnerability of coastal water bodies with regard to groundwater pollution as well as for understanding the matter cycles of the connected water bodies. Here, we present a scientific approach for quantifying discharge of fresh groundwater (GWf) and recirculated seawater (SWrec), including its short-term temporal dynamics, into the tide-affected Knysna estuary, South Africa. For a time-variant end-member mixing analysis we conducted time-series observations of radon (222Rn) and salinity within the estuary over two tidal cycles in combination with estimates of the related end-members for seawater, river water, GWf and SWrec. The mixing analysis was treated as constrained optimization problem for finding an end-member mixing ratio that simultaneously fits the observed data for radon and salinity best for every time-step. Uncertainty of each mixing ratio was quantified by Monte Carlo simulations of the optimization procedure considering uncertainty in end-member characterization. Results reveal the highest GWf and SWrec fraction in the estuary during peak low tide with averages of 0.8 % and 1.4 %, respectively. Further, we calculated a radon mass balance that revealed a daily radon flux of 4.8 * 108 Bq into the estuary equivalent to a GWf discharge of 29.000 m3/d (9.000-59.000 m3/d for 25th-75th percentile range) and a SWrec discharge of 80.000 m3/d (45.000-130.000 m3/d for 25th-75th percentile range). The uncertainty of SGD reflects the end-member uncertainty, i.e. the spatial heterogeneity of groundwater composition. The presented approach allows the calculation of mixing ratios of multiple uncertain end-members for time-series measurements of multiple parameters. Linking these results with a tracer mass balance allows conversion
Potential barrier classification by short-time measurement
International Nuclear Information System (INIS)
Granot, Er'el; Marchewka, Avi
2006-01-01
We investigate the short-time dynamics of a delta-function potential barrier on an initially confined wave packet. There are mainly two conclusions: (A) At short times the probability density of the first particles that passed through the barrier is unaffected by it. (B) When the barrier is absorptive (i.e., its potential is imaginary) it affects the transmitted wave function at shorter times than a real potential barrier. Therefore, it is possible to distinguish between an imaginary and a real potential barrier by measuring its effect at short times only on the transmitting wave function
Potential barrier classification by short-time measurement
Granot, Er'El; Marchewka, Avi
2006-03-01
We investigate the short-time dynamics of a delta-function potential barrier on an initially confined wave packet. There are mainly two conclusions: (A) At short times the probability density of the first particles that passed through the barrier is unaffected by it. (B) When the barrier is absorptive (i.e., its potential is imaginary) it affects the transmitted wave function at shorter times than a real potential barrier. Therefore, it is possible to distinguish between an imaginary and a real potential barrier by measuring its effect at short times only on the transmitting wave function.
Short time ahead wind power production forecast
International Nuclear Information System (INIS)
Sapronova, Alla; Meissner, Catherine; Mana, Matteo
2016-01-01
An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast. (paper)
Short time ahead wind power production forecast
Sapronova, Alla; Meissner, Catherine; Mana, Matteo
2016-09-01
An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast.
Electron dynamics inside short-coherence systems
International Nuclear Information System (INIS)
Ferrari, Giulio; Bordone, Paolo; Jacoboni, Carlo
2006-01-01
We present theoretical results on electron dynamics inside nanometric systems, where the coherence of the electron ensemble is maintained in a very short region. The contacts are supposed to spoil such a coherence, therefore the interference processes between the carrier wavefunction and the internal potential profile can be affected by the proximity of the contacts. The problem has been analysed by using the Wigner-function formalism. For very short devices, transport properties, such as tunnelling through potential barriers, are significantly influenced by the distance between the contacts
The Neuromagnetic Dynamics of Time Perception
Carver, Frederick W.; Elvevåg, Brita; Altamura, Mario; Weinberger, Daniel R.; Coppola, Richard
2012-01-01
Examining real-time cortical dynamics is crucial for understanding time perception. Using magnetoencephalography we studied auditory duration discrimination of short (.5 s) versus a pitch control. Time-frequency analysis of event-related fields showed widespread beta-band (13-30 Hz) desynchronization during all tone presentations. Synthetic aperture magnetometry indicated automatic primarily sensorimotor responses in short and pitch conditions, with activation specific to timing in bilateral ...
Kuehn, Christian
2015-01-01
This book provides an introduction to dynamical systems with multiple time scales. The approach it takes is to provide an overview of key areas, particularly topics that are less available in the introductory form. The broad range of topics included makes it accessible for students and researchers new to the field to gain a quick and thorough overview. The first of its kind, this book merges a wide variety of different mathematical techniques into a more unified framework. The book is highly illustrated with many examples and exercises and an extensive bibliography. The target audience of this book are senior undergraduates, graduate students as well as researchers interested in using the multiple time scale dynamics theory in nonlinear science, either from a theoretical or a mathematical modeling perspective.
Transient nanobubbles in short-time electrolysis
Svetovoy, Vitaly; Sanders, Remco G.P.; Elwenspoek, Michael Curt
2013-01-01
Water electrolysis in a microsystem is observed and analyzed on a short-time scale of ∼10 μs. The very unusual properties of the process are stressed. An extremely high current density is observed because the process is not limited by the diffusion of electroactive species. The high current is
Inferring interdependencies from short time series
Indian Academy of Sciences (India)
Abstract. Complex networks provide an invaluable framework for the study of interlinked dynamical systems. In many cases, such networks are constructed from observed time series by first estimating the ...... does not quantify causal relations (unlike IOTA, or .... Africa_map_regions.svg, which is under public domain.
Dynamic Routing of Short Transfer Baggage
DEFF Research Database (Denmark)
Clausen, Tommy; Pisinger, David
of dispatch. Computational results are presented for real-life passenger data with stochastic bag arrival times and travel times. The results indicate that the algorithm is able to dispatch the baggage considerably better than the manual delivery plans reported in the case study, and due to its fast running...... that arrive continuously during the day. We present an IP model of the problem and describe the problem as a case study from a real life setting. We present a weighted greedy algorithm for dispatching vehicles that works in an dynamic context, meaning that it only considers bags available at the time......We consider a variant of the Vehicle Routing Problem that arises in airports when transporting baggage for passengers with connecting flights. Each bag can be delivered in two locations with disjunctive time windows. The task is to define multiple trips for the vehicles in order to deliver bags...
Short-term Consumer Benefits of Dynamic Pricing
Dupont, Benjamin; De Jonghe, Cedric; Kessels, Kris; Belmans, Ronnie
2011-01-01
Consumer benefits of dynamic pricing depend on a variety of factors. Consumer characteristics and climatic circumstances widely differ, which forces a regional comparison. This paper presents a general overview of demand response programs and focuses on the short-term benefits of dynamic pricing for an average Flemish residential consumer. It reaches a methodology to develop a cost reflective dynamic pricing program and to estimate short-term bill savings. Participating in a dynamic pricing p...
Decision time horizon for music genre classification using short time features
DEFF Research Database (Denmark)
Ahrendt, Peter; Meng, Anders; Larsen, Jan
2004-01-01
In this paper music genre classification has been explored with special emphasis on the decision time horizon and ranking of tapped-delay-line short-time features. Late information fusion as e.g. majority voting is compared with techniques of early information fusion such as dynamic PCA (DPCA......). The most frequently suggested features in the literature were employed including mel-frequency cepstral coefficients (MFCC), linear prediction coefficients (LPC), zero-crossing rate (ZCR), and MPEG-7 features. To rank the importance of the short time features consensus sensitivity analysis is applied...
Are anomalously short tunnelling times measurable?
International Nuclear Information System (INIS)
Delgado, V.; Muga, J.G.
1996-01-01
Low and Mende have analyzed the conditions that would make possible an actual measurement of an anomalously short traversal time through a potential barrier concluding that such a measurement cannot be made because it is not possible to describe the tunnelling of a wave packet initially close to the barrier by the open-quote open-quote usual wave packet space time analysis close-quote close-quote. We complement this work in several ways: It is argued that the described failure of the usual formalism occurs under a set of too restrictive conditions, some of them not physically motivated, so it does not necessarily imply the impossibility of such a measurement. However, by retaining only conditions well motivated on physical grounds we have performed a systematic numerical check which shows that the conclusion by Low and Mende is indeed generally valid. It is shown that, as speculated by Low and Mende, the process is dominated by over the barrier transmission. Copyright copyright 1996 Academic Press, Inc
International Nuclear Information System (INIS)
Ergler, T.
2006-01-01
In course of this work pump-probe experiments aimed to study ultrafast nuclear motion in H 2 (D 2 ) fragmentation by intense 6-25 fs laser pulses have been carried out. In order to perform time-resolved measurements, a Mach-Zehnder interferometer providing two identical synchronized laser pulses with the time-delay variable from 0 to 3000 fs with 300 as accuracy and long-term stability has been built. The laser pulses at the intensities of up to 10 15 W/cm 2 were focused onto a H 2 (D 2 ) molecular beam leading to the ionization or dissociation of the molecules, and the momenta of all charged reactions fragments were measured with a reaction microscope. With 6-7 fs pulses it was possible to probe the time evolution of the bound H + 2 (D + 2 ) nuclear wave packet created by the first (pump) laser pulse, fragmenting the molecule with the second (probe) pulse. A fast delocalization, or ''collapse'', and subsequent ''revival'' of the vibrational wave packet have been observed. In addition, the signatures of the ground state vibrational excitation in neutral D 2 molecule have been found, and the dominance of a new, purely quantum mechanical wave packet preparation mechanism (the so-called ''Lochfrass'') has been proved. In the experiments with 25 fs pulses the theoretically predicted enhancement of the ionization probability for the dissociating H + 2 molecular ion at large internuclear distances has been detected for the first time. (orig.)
Reconstructing time-dependent dynamics
Clemson, Philip; Lancaster, Gemma; Stefanovska, Aneta
2016-01-01
The usefulness of the information extracted from biomedical data relies heavily on the underlying theory of the methods used in its extraction. The assumptions of stationarity and autonomicity traditionally applied to dynamical systems break down when considering living systems, due to their inherent time-variability. Living systems are thermodynamically open, and thus constantly interacting with their environment. This results in highly nonlinear, time-dependent dynamics. The aim of signal a...
Dynamic inequalities on time scales
Agarwal, Ravi; Saker, Samir
2014-01-01
This is a monograph devoted to recent research and results on dynamic inequalities on time scales. The study of dynamic inequalities on time scales has been covered extensively in the literature in recent years and has now become a major sub-field in pure and applied mathematics. In particular, this book will cover recent results on integral inequalities, including Young's inequality, Jensen's inequality, Holder's inequality, Minkowski's inequality, Steffensen's inequality, Hermite-Hadamard inequality and Čebyšv's inequality. Opial type inequalities on time scales and their extensions with weighted functions, Lyapunov type inequalities, Halanay type inequalities for dynamic equations on time scales, and Wirtinger type inequalities on time scales and their extensions will also be discussed here in detail.
Forecast model of landslides in a short time
International Nuclear Information System (INIS)
Sanchez Lopez, Reinaldo
2006-01-01
The IDEAM in development of their functions as member of the national technical committee for the prevention and disasters attention (SNPAD) accomplishes the follow-up, monitoring and forecast in real time of the environmental dynamics that in extreme situations constitute threats and natural risks. One of the frequent dynamics and of greater impact is related to landslides, those that affect persistently the life of the persons, the infrastructure, the socioeconomic activities and the balance of the environment. The landslide in Colombia and in the world are caused mainly by effects of the rain, due to that, IDEAM has come developing forecast model, as an instrument for risk management in a short time. This article presents aspects related to their structure, operation, temporary space resolution, products, results, achievements and projections of the model. Conceptually, the model is support by the principle of the dynamic temporary - space, of the processes that consolidate natural hazards, particularly in areas where the man has come building the risk. Structurally, the model is composed by two sub-models; the general susceptibility of the earthly model and the critical rain model as a denotative factor, that consolidate the hazard process. In real time, the model, works as a GIS, permitting the automatic zoning of the landslides hazard for issue public advisory warming to help makers decisions on the risk that cause frequently these events, in the country
Kernel optimization for short-range molecular dynamics
Hu, Changjun; Wang, Xianmeng; Li, Jianjiang; He, Xinfu; Li, Shigang; Feng, Yangde; Yang, Shaofeng; Bai, He
2017-02-01
To optimize short-range force computations in Molecular Dynamics (MD) simulations, multi-threading and SIMD optimizations are presented in this paper. With respect to multi-threading optimization, a Partition-and-Separate-Calculation (PSC) method is designed to avoid write conflicts caused by using Newton's third law. Serial bottlenecks are eliminated with no additional memory usage. The method is implemented by using the OpenMP model. Furthermore, the PSC method is employed on Intel Xeon Phi coprocessors in both native and offload models. We also evaluate the performance of the PSC method under different thread affinities on the MIC architecture. In the SIMD execution, we explain the performance influence in the PSC method, considering the "if-clause" of the cutoff radius check. The experiment results show that our PSC method is relatively more efficient compared to some traditional methods. In double precision, our 256-bit SIMD implementation is about 3 times faster than the scalar version.
Psarra, I.; Arentze, T.A.; Timmermans, H.J.P.
2016-01-01
This study focused on short-term dynamics of activity-travel behavior as a response to travel time increases. It is assumed that short-term changes are triggered by stress, which is defined as the deviation between an individual’s aspirations and his or her daily experiences. When stress exceeds a
Folding very short peptides using molecular dynamics.
Directory of Open Access Journals (Sweden)
Bosco K Ho
2006-04-01
Full Text Available Peptides often have conformational preferences. We simulated 133 peptide 8-mer fragments from six different proteins, sampled by replica-exchange molecular dynamics using Amber7 with a GB/SA (generalized-Born/solvent-accessible electrostatic approximation to water implicit solvent. We found that 85 of the peptides have no preferred structure, while 48 of them converge to a preferred structure. In 85% of the converged cases (41 peptides, the structures found by the simulations bear some resemblance to their native structures, based on a coarse-grained backbone description. In particular, all seven of the beta hairpins in the native structures contain a fragment in the turn that is highly structured. In the eight cases where the bioinformatics-based I-sites library picks out native-like structures, the present simulations are largely in agreement. Such physics-based modeling may be useful for identifying early nuclei in folding kinetics and for assisting in protein-structure prediction methods that utilize the assembly of peptide fragments.
Nonequilibrium Physics at Short Time Scales: Formation of Correlations
International Nuclear Information System (INIS)
Peliti, L
2005-01-01
It is a happy situation when similar concepts and theoretical techniques can be applied to widely different physical systems because of a deep similarity in the situations being studied. The book illustrates this well; it focuses on the description of correlations in quantum systems out of equilibrium at very short time scales, prompted by experiments with short laser pulses in semiconductors, and in complex reactions in heavy nuclei. In both cases the experiments are characterized by nonlinear dynamics and by strong correlations out of equilibrium. In some systems there are also important finite-size effects. The book comprises several independent contributions of moderate length, and I sometimes felt that a more intensive effort in cross-coordination of the different contributions could have been of help. It is divided almost equally between theory and experiment. In the theoretical part, there is a thorough discussion both of the kinematic aspects (description of correlations) and the dynamical ones (evaluation of correlations). The experimental part is naturally divided according to the nature of the system: the interaction of pulsed lasers with matter on the one hand, and the correlations in finite-size systems (nanoparticles and nuclei) on the other. There is also a discussion on the dynamics of superconductors, a subject currently of great interest. Although an effort has been made to keep each contribution self-contained, I must admit that reading level is uneven. However, there are a number of thorough and stimulating contributions that make this book a useful introduction to the topic at the level of graduate students or researchers acquainted with quantum statistical mechanics. (book review)
Design spectra development considering short time histories
International Nuclear Information System (INIS)
Weiner, E.O.
1983-01-01
The need for generation of seismic acceleration histories to prescribed response spectra arises several ways in structural dynamics. For example, one way of obtaining floor spectra is to generate a history from a foundation spectra and then solve for the floor motion from which a floor spectrum can be obtained. Two separate programs, MODQKE and MDOF, were written to provide a capability of obtaining equipment spectra from design spectra. MODQKE generates or modifies acceleration histories to conform with design spectra pertaining to, say, a foundation. MDOF is a simple linear modal superposition program that solves for equipment support histories using the design spectra conforming histories as input. Equipment spectra, then, are obtained from the support histories using MODQKE
Design spectra development considering short time histories
International Nuclear Information System (INIS)
Weiner, E.O.
1983-01-01
Two separate programs, MODQKE and MDOF, were written to provide a capability of obtaining equipment spectra from design spectra. MODQKE generates or modifies acceleration histories to conform with design spectra pertaining to, say, a foundation. MDOF is a simple linear modal superposition program that solves for equipment support histories using the design spectra conforming histories as input. Equipment spectra, then, are obtained from the support histories using MODQKE. MODQKE was written to modify or provide new histories with special attention paid to short seismic records. A technique from the open literature was borrowed to generate an initial history that approximates a given response spectrum. Further refinement is done with smoothing cycles in which several correction signals are added to the history in a way that produces a least squares fit between actual and prescribed spectra. Provision is made for history shaping, a baseline correction, and final scaling. MODQKE performance has been demonstrated with seven examples having zero to ten percent damping ratios, and 2.5 seconds to 20 seconds durations and a variety of target spectra. The examples show the program is inexpensive to use. MDOF is a simple modal superposition program. It has no eigensolver, and the user supplies mode shapes, frequencies, and participation factors as input. Floor spectra can be generated from design spectra by using a history from MODQKE that conforms to the design spectrum as input to MDOF. Floor motions from MDOF can be fed back to MODQKE without modification to obtain the floor spectra. A simple example is given to show how equipment mass effects can be incorporated into the MDOF solution. Any transient solution capability can be used to replace MDOF. For example, a direct transient approach may be desirable if both the equipment and floor structures are to be included in the model with different damping fractions. (orig./HP)
Kālacakra: Shortlies Considerations on Time
Directory of Open Access Journals (Sweden)
Adrián Muñoz
2013-05-01
Full Text Available This paper calls for a comparative reading of both the Buddhist conception of time and a branch of Western phenomenology. With special emphasis on the Madhyamaka Buddhist school, it discusses the way in which fugacity and impermanence are similarly discussed by French philosopher Gaston Bachelard in his L’intuition de l’instant. In both cases, the stress lies on the fact that duration is but a mental construct lacking true, absolute reality, while at the same time the human being is subjected to hopes of transcendence which, in turn, engender disillusion and delusion.
Phonemes as short time cognitive components
DEFF Research Database (Denmark)
Feng, Ling; Hansen, Lars Kai
2006-01-01
are the smallest contrastive unit in the sound system of a language. Generalizable components were found deriving from phonemes based on homomorphic filtering features with basic time scale (20 msec). We sparsified the features based on energy as a preprocessing means to eliminate the intrinsic noise. Independent...
Temporal Dynamics of Recovery from Extinction Shortly after Extinction Acquisition
Archbold, Georgina E.; Dobbek, Nick; Nader, Karim
2013-01-01
Evidence suggests that extinction is new learning. Memory acquisition involves both short-term memory (STM) and long-term memory (LTM) components; however, few studies have examined early phases of extinction retention. Retention of auditory fear extinction was examined at various time points. Shortly (1-4 h) after extinction acquisition…
The MOLDY short-range molecular dynamics package
Ackland, G. J.; D'Mellow, K.; Daraszewicz, S. L.; Hepburn, D. J.; Uhrin, M.; Stratford, K.
2011-12-01
measuring thermodynamic properities, diffusion, radiation damage, fracture, twinning deformation, nucleation and growth of phase transitions, sputtering etc. In the vast majority of materials, the interactions are non-pairwise, and the code must be able to deal with many-body forces. Solution method: Molecular dynamics involves integrating Newton's equations of motion. MOLDY uses verlet (for good energy conservation) or predictor-corrector (for accurate trajectories) algorithms. It is parallelised using open MP. It also includes a static minimisation routine to find the lowest energy structure. Boundary conditions for surfaces, clusters, grain boundaries, thermostat (Nose), barostat (Parrinello-Rahman), and externally applied strain are provided. The initial configuration can be either a repeated unit cell or have all atoms given explictly. Initial velocities are generated internally, but it is also possible to specify the velocity of a particular atom. A wide range of interatomic force models are implemented, including embedded atom, Morse or Lennard-Jones. Thus the program is especially well suited to calculations of metals. Restrictions: The code is designed for short-ranged potentials, and there is no Ewald sum. Thus for long range interactions where all particles interact with all others, the order- N scaling will fail. Different interatomic potential forms require recompilation of the code. Additional comments: There is a set of associated open-source analysis software for postprocessing and visualisation. This includes local crystal structure recognition and identification of topological defects. Running time: A set of test modules for running time are provided. The code scales as order N. The parallelisation shows near-linear scaling with number of processors in a shared memory environment. A typical run of a few tens of nanometers for a few nanoseconds will run on a timescale of days on a multiprocessor desktop.
Beam dynamics simulations for linacs driving short-wavelength FELs
International Nuclear Information System (INIS)
Ferrario, M.; Tazzioli, F.
1999-01-01
The fast code HOMDYN has been recently developed, in the framework of the TTF (Tesla test facility) collaboration, in order to study the beam dynamics of linacs delivering high brightness beams as those needed for short wavelength Fel experiments. These linacs are typically driven by radio-frequency photo-injectors, where correlated time dependent space charge effects are of great relevance: these effects cannot be studied by standard beam optics codes (TRACE3D, etc.) and they have been modeled so far by means of multi-particle (Pic or quasistatic) codes requiring heavy cpu time and memory allocations. HOMDYN is able to describe the beam generation at the photo-cathode and the emittance compensation process in the injector even running on a laptop with very modest running rimes (less than a minute). In this paper it is showed how this capability of the code is exploited so to model a whole linac up to the point where the space charge dominated regime is of relevance (200 MeV)
On the Option Effects of Short-Time Work Arrangements
Huisman, Kuno; Thijssen, J.J.J.
2018-01-01
We analyse the short term work (STW) regulations that several OECD countries introduced after the 2007 financial crisis. We view these measures as a collection of real options and study the dynamic effect of STW on the endogenous liquidation decision of the firm. While STW delays a firm’s
Improving Music Genre Classification by Short-Time Feature Integration
DEFF Research Database (Denmark)
Meng, Anders; Ahrendt, Peter; Larsen, Jan
2005-01-01
Many different short-time features, using time windows in the size of 10-30 ms, have been proposed for music segmentation, retrieval and genre classification. However, often the available time frame of the music to make the actual decision or comparison (the decision time horizon) is in the range...... of seconds instead of milliseconds. The problem of making new features on the larger time scale from the short-time features (feature integration) has only received little attention. This paper investigates different methods for feature integration and late information fusion for music genre classification...
Dynamical arrest in dense short-ranged attractive colloids
International Nuclear Information System (INIS)
Foffi, G; Sciortino, F; Zaccarelli, E; Tartaglia, P
2004-01-01
We study thermodynamic and dynamic properties of model colloidal systems interacting with a hard core repulsion and a short-range attraction, and provide an overall picture of their phase diagrams which shows a very rich phenomenology. We focus on the slow dynamic properties of this model, investigating in detail the glass transition lines (both repulsive and attractive), the glass-glass transitions and the location of the higher order singularities. We discuss the relative location of the glass lines and of the metastable liquid-gas binodal, an issue relevant for the understanding of low density arrested states of matter
Short-time quantum propagator and Bohmian trajectories
de Gosson, Maurice; Hiley, Basil
2013-12-01
We begin by giving correct expressions for the short-time action following the work Makri-Miller. We use these estimates to derive an accurate expression modulo Δt2 for the quantum propagator and we show that the quantum potential is negligible modulo Δt2 for a point source, thus justifying an unfortunately largely ignored observation of Holland made twenty years ago. We finally prove that this implies that the quantum motion is classical for very short times.
Short-time quantum propagator and Bohmian trajectories
International Nuclear Information System (INIS)
Gosson, Maurice de; Hiley, Basil
2013-01-01
We begin by giving correct expressions for the short-time action following the work Makri–Miller. We use these estimates to derive an accurate expression modulo Δt 2 for the quantum propagator and we show that the quantum potential is negligible modulo Δt 2 for a point source, thus justifying an unfortunately largely ignored observation of Holland made twenty years ago. We finally prove that this implies that the quantum motion is classical for very short times.
Short-term mechanisms influencing volumetric brain dynamics
Directory of Open Access Journals (Sweden)
Nikki Dieleman
2017-01-01
Full Text Available With the use of magnetic resonance imaging (MRI and brain analysis tools, it has become possible to measure brain volume changes up to around 0.5%. Besides long-term brain changes caused by atrophy in aging or neurodegenerative disease, short-term mechanisms that influence brain volume may exist. When we focus on short-term changes of the brain, changes may be either physiological or pathological. As such determining the cause of volumetric dynamics of the brain is essential. Additionally for an accurate interpretation of longitudinal brain volume measures by means of neurodegeneration, knowledge about the short-term changes is needed. Therefore, in this review, we discuss the possible mechanisms influencing brain volumes on a short-term basis and set-out a framework of MRI techniques to be used for volumetric changes as well as the used analysis tools. 3D T1-weighted images are the images of choice when it comes to MRI of brain volume. These images are excellent to determine brain volume and can be used together with an analysis tool to determine the degree of volume change. Mechanisms that decrease global brain volume are: fluid restriction, evening MRI measurements, corticosteroids, antipsychotics and short-term effects of pathological processes like Alzheimer's disease, hypertension and Diabetes mellitus type II. Mechanisms increasing the brain volume include fluid intake, morning MRI measurements, surgical revascularization and probably medications like anti-inflammatory drugs and anti-hypertensive medication. Exercise was found to have no effect on brain volume on a short-term basis, which may imply that dehydration caused by exercise differs from dehydration by fluid restriction. In the upcoming years, attention should be directed towards studies investigating physiological short-term changes within the light of long-term pathological changes. Ultimately this may lead to a better understanding of the physiological short-term effects of
Porta, Alberto; Bari, Vlasta; Marchi, Andrea; De Maria, Beatrice; Cysarz, Dirk; Van Leeuwen, Peter; Takahashi, Anielle C. M.; Catai, Aparecida M.; Gnecchi-Ruscone, Tomaso
2015-01-01
Two diverse complexity metrics quantifying time irreversibility and local prediction, in connection with a surrogate data approach, were utilized to detect nonlinear dynamics in short heart period (HP) variability series recorded in fetuses, as a function of the gestational period, and in healthy humans, as a function of the magnitude of the orthostatic challenge. The metrics indicated the presence of two distinct types of nonlinear HP dynamics characterized by diverse ranges of time scales. These findings stress the need to render more specific the analysis of nonlinear components of HP dynamics by accounting for different temporal scales. PMID:25806002
Neural Computations in a Dynamical System with Multiple Time Scales.
Mi, Yuanyuan; Lin, Xiaohan; Wu, Si
2016-01-01
Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions.
Quality of Standard Reference Materials for Short Time Activation Analysis
International Nuclear Information System (INIS)
Ismail, S.S.; Oberleitner, W.
2003-01-01
Some environmental reference materials (CFA-1633 b, IAEA-SL-1, SARM-1,BCR-176, Coal-1635, IAEA-SL-3, BCR-146, and SRAM-5) were analysed by short-time activation analysis. The results show that these materials can be classified in three groups, according to their activities after irradiation. The obtained results were compared in order to create a quality index for determination of short-lived nuclides at high count rates. It was found that Cfta is not a suitable standard for determining very short-lived nuclides (half-lives<1 min) because the activity it produces is 15-fold higher than that SL-3. Biological reference materials, such as SRM-1571, SRM-1573, SRM-1575, SRM-1577, IAEA-392, and IAEA-393, were also investigated by a higher counting efficiency system. The quality of this system and its well-type detector for investigating short-lived nuclides was discussed
Short-time quantum propagator and Bohmian trajectories
Energy Technology Data Exchange (ETDEWEB)
Gosson, Maurice de, E-mail: maurice.degosson@gmail.com [Universität Wien, Fakultät für Mathematik, NuHAG, Wien 1090 (Austria); Hiley, Basil [University of London, Birkbeck College, Theoretical Physics Unit, London WC1E 7HX (United Kingdom)
2013-12-06
We begin by giving correct expressions for the short-time action following the work Makri–Miller. We use these estimates to derive an accurate expression modulo Δt{sup 2} for the quantum propagator and we show that the quantum potential is negligible modulo Δt{sup 2} for a point source, thus justifying an unfortunately largely ignored observation of Holland made twenty years ago. We finally prove that this implies that the quantum motion is classical for very short times.
Emulating short-term synaptic dynamics with memristive devices
Berdan, Radu; Vasilaki, Eleni; Khiat, Ali; Indiveri, Giacomo; Serb, Alexandru; Prodromakis, Themistoklis
2016-01-01
Neuromorphic architectures offer great promise for achieving computation capacities beyond conventional Von Neumann machines. The essential elements for achieving this vision are highly scalable synaptic mimics that do not undermine biological fidelity. Here we demonstrate that single solid-state TiO2 memristors can exhibit non-associative plasticity phenomena observed in biological synapses, supported by their metastable memory state transition properties. We show that, contrary to conventional uses of solid-state memory, the existence of rate-limiting volatility is a key feature for capturing short-term synaptic dynamics. We also show how the temporal dynamics of our prototypes can be exploited to implement spatio-temporal computation, demonstrating the memristors full potential for building biophysically realistic neural processing systems.
A short history of fractal-Cantorian space-time
International Nuclear Information System (INIS)
Marek-Crnjac, L.
2009-01-01
The article attempts to give a short historical overview of the discovery of fractal-Cantorian space-time starting from the 17th century up to the present. In the last 25 years a great number of scientists worked on fractal space-time notably Garnet Ord in Canada, Laurent Nottale in France and Mohamed El Naschie in England who gave an exact mathematical procedure for the derivation of the dimensionality and curvature of fractal space-time fuzzy manifold.
Optimum short-time polynomial regression for signal analysis
Indian Academy of Sciences (India)
A Sreenivasa Murthy
the Proceedings of European Signal Processing Conference. (EUSIPCO) 2008. ... In a seminal paper, Savitzky and Golay [4] showed that short-time polynomial modeling is ...... We next consider a linearly frequency-modulated chirp with an exponentially .... 1 http://www.physionet.org/physiotools/matlab/ECGwaveGen/.
Neural Computations in a Dynamical System with Multiple Time Scales
Directory of Open Access Journals (Sweden)
Yuanyuan Mi
2016-09-01
Full Text Available Neural systems display rich short-term dynamics at various levels, e.g., spike-frequencyadaptation (SFA at single neurons, and short-term facilitation (STF and depression (STDat neuronal synapses. These dynamical features typically covers a broad range of time scalesand exhibit large diversity in different brain regions. It remains unclear what the computationalbenefit for the brain to have such variability in short-term dynamics is. In this study, we proposethat the brain can exploit such dynamical features to implement multiple seemingly contradictorycomputations in a single neural circuit. To demonstrate this idea, we use continuous attractorneural network (CANN as a working model and include STF, SFA and STD with increasing timeconstants in their dynamics. Three computational tasks are considered, which are persistent activity,adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, andhence cannot be implemented by a single dynamical feature or any combination with similar timeconstants. However, with properly coordinated STF, SFA and STD, we show that the network isable to implement the three computational tasks concurrently. We hope this study will shed lighton the understanding of how the brain orchestrates its rich dynamics at various levels to realizediverse cognitive functions.
Ultra-short time sciences. From the atto-second to the peta-watts
International Nuclear Information System (INIS)
2000-01-01
This book presents the recent advances in the scientific and technical domains linked with ultra-short time physics. It deals first with the conceptual and technological aspects of ultra-intense and ultra-brief lasers. Then, it describes the different domains of research (atoms, molecules and aggregates; gaseous phase dynamics using the pump-probe technique; femto-chemistry in dense phase; condensed matter; plasma physics; consistent control; aerosols; functional femto-biology) and the different domains of application (medical diagnosis; ophthalmology; telecommunications; technological and industrial developments). A last part is devoted to the teaching of ultra-short time sciences. (J.S.)
Active mode-locking of mid-infrared quantum cascade lasers with short gain recovery time.
Wang, Yongrui; Belyanin, Alexey
2015-02-23
We investigate the dynamics of actively modulated mid-infrared quantum cascade lasers (QCLs) using space- and time-domain simulations of coupled density matrix and Maxwell equations with resonant tunneling current taken into account. We show that it is possible to achieve active mode locking and stable generation of picosecond pulses in high performance QCLs with a vertical laser transition and a short gain recovery time by bias modulation of a short section of a monolithic Fabry-Perot cavity. In fact, active mode locking in QCLs with a short gain recovery time turns out to be more robust to the variation of parameters as compared to previously studied lasers with a long gain recovery time. We investigate the effects of spatial hole burning and phase locking on the laser output.
The case of escape probability as linear in short time
Marchewka, A.; Schuss, Z.
2018-02-01
We derive rigorously the short-time escape probability of a quantum particle from its compactly supported initial state, which has a discontinuous derivative at the boundary of the support. We show that this probability is linear in time, which seems to be a new result. The novelty of our calculation is the inclusion of the boundary layer of the propagated wave function formed outside the initial support. This result has applications to the decay law of the particle, to the Zeno behaviour, quantum absorption, time of arrival, quantum measurements, and more.
Dynamic characteristic of intense short microwave propagation in an atmosphere
International Nuclear Information System (INIS)
Yee, J.H.; Alvarez, R.A.; Mayhall, D.J.; Madsen, N.K.; Cabayan, H.S.
1983-07-01
The dynamic behavior of an intense microwave pulse which propagates through the atmosphere will be presented. Our theoretical results are obtained by solving Maxwell's equations, together with the electron fluid equations. Our calculations show that although large portions of the initial energy are absorbed by the electrons that are created through the avalanche process, a significant amount of energy is still able to reach the earth's surface. The amount of energy that reaches the earth's surface as a function of initial energy and wave shape after having propagated through 100 km in the atmosphere are investigated. Results for the air breakdown threshold intensity as a function of the pressure for different pulse widths and different frequencies will also be presented. In addition, we will present a comparison between the theoretical and the experimental results for the pulse shape of a short microwave pulse after it has traveled through a rectangular wave guide which contains a section of air. 23 references, 9 figures
Short Sleep Times Predict Obesity in Internal Medicine Clinic Patients
Buscemi, Dolores; Kumar, Ashwani; Nugent, Rebecca; Nugent, Kenneth
2007-01-01
Study Objectives: Epidemiological studies have demonstrated an association between short sleep times and obesity as defined by body mass index (BMI). We wanted to determine whether this association occurs in patients with chronic medical diagnoses since the number of confounding factors is likely higher in patients than the general population. Methods: Two hundred patients attending internal medicine clinics completed a survey regarding sleep habits, lifestyle characteristics, and medical diagnoses. An independent surveyor collected the information on the questionnaires and reviewed the medical records. Height and weight were measured by clinic personnel. Data were analyzed with multivariate logistic regression. Results: Subjects with short sleep times (< 7 hours) had an increased likelihood of obesity as defined by a BMI ≥ 30 kg/m2 when compared to the reference group of (8, 9] hours (odds ratio 2.93; 95% confidence interval, 1.06–8.09). There was a U-shaped relationship between obesity and sleep time in women but not in men. Young age (18 to 49 years), not smoking, drinking alcohol, hypertension, diabetes, and sleep apnea were also associated with obesity in the overall model. Conclusions: This study demonstrates an association between short sleep times and obesity in undifferentiated patients attending an internal medicine clinic using models adjusting for age, lifestyle characteristics, and some medical diagnoses. The U-shaped relationship in women suggests that sleep patterns may have gender specific associations. These observations provide the background for therapeutic trials in weight loss in patients with established medical problems. Citation: Buscemi D; Kumar A; Nugent R; Nugent K. Short sleep times predict obesity in internal medicine clinic patients. J Clin Sleep Med 2007;3(7):681–688. PMID:18198800
Short echo time, fast gradient-echo imaging
International Nuclear Information System (INIS)
Haacke, E.M.; Lenz, G.W.
1987-01-01
Present fast-gradient-echoes schemes can acquire volume data rapidly and are flexible in T1 or T1/T2 contrast behavior. However, sequences used to date employ echo time (TE) values of about 15 ms +- 5 and, because of in vivo field inhomogeneities (short T2), they suffer badly from signal loss near sinuses and tissue boundaries. The authors implemented sequences with TE = 4-6 ms and found significant improvement in image quality, especially at high fields. Examples with long TEs vs. short TEs are given in the knee, spine, head, and orbits. Further advantages include (1) faster repetition times (15 ms), (2) higher-quality spin-density or T1-weighted images, and (3) reduction of blood motion artifacts
Short- and long-term variations in non-linear dynamics of heart rate variability
DEFF Research Database (Denmark)
Kanters, J K; Højgaard, M V; Agner, E
1996-01-01
OBJECTIVES: The purpose of the study was to investigate the short- and long-term variations in the non-linear dynamics of heart rate variability, and to determine the relationships between conventional time and frequency domain methods and the newer non-linear methods of characterizing heart rate...... rate and describes mainly linear correlations. Non-linear predictability is correlated with heart rate variability measured as the standard deviation of the R-R intervals and the respiratory activity expressed as power of the high-frequency band. The dynamics of heart rate variability changes suddenly...
International Nuclear Information System (INIS)
Wang, C.-C.; Jang, M.-J.; Yeh, Y.-L.
2007-01-01
This paper studies the bifurcation and nonlinear behaviors of a flexible rotor supported by relative short gas film bearings. A time-dependent mathematical model for gas journal bearings is presented. The finite difference method with successive over relation method is employed to solve the Reynolds' equation. The system state trajectory, Poincare maps, power spectra, and bifurcation diagrams are used to analyze the dynamic behavior of the rotor and journal center in the horizontal and vertical directions under different operating conditions. The analysis reveals a complex dynamic behavior comprising periodic and subharmonic response of the rotor and journal center. This paper shows how the dynamic behavior of this type of system varies with changes in rotor mass and rotational velocity. The results of this study contribute to a further understanding of the nonlinear dynamics of gas film rotor-bearing systems
A short note on dynamic programming in a band.
Gibrat, Jean-François
2018-06-15
Third generation sequencing technologies generate long reads that exhibit high error rates, in particular for insertions and deletions which are usually the most difficult errors to cope with. The only exact algorithm capable of aligning sequences with insertions and deletions is a dynamic programming algorithm. In this note, for the sake of efficiency, we consider dynamic programming in a band. We show how to choose the band width in function of the long reads' error rates, thus obtaining an [Formula: see text] algorithm in space and time. We also propose a procedure to decide whether this algorithm, when applied to semi-global alignments, provides the optimal score. We suggest that dynamic programming in a band is well suited to the problem of aligning long reads between themselves and can be used as a core component of methods for obtaining a consensus sequence from the long reads alone. The function implementing the dynamic programming algorithm in a band is available, as a standalone program, at: https://forgemia.inra.fr/jean-francois.gibrat/BAND_DYN_PROG.git.
Complex dynamic in ecological time series
Peter Turchin; Andrew D. Taylor
1992-01-01
Although the possibility of complex dynamical behaviors-limit cycles, quasiperiodic oscillations, and aperiodic chaos-has been recognized theoretically, most ecologists are skeptical of their importance in nature. In this paper we develop a methodology for reconstructing endogenous (or deterministic) dynamics from ecological time series. Our method consists of fitting...
The short time Fourier transform and local signals
Okumura, Shuhei
In this thesis, I examine the theoretical properties of the short time discrete Fourier transform (STFT). The STFT is obtained by applying the Fourier transform by a fixed-sized, moving window to input series. We move the window by one time point at a time, so we have overlapping windows. I present several theoretical properties of the STFT, applied to various types of complex-valued, univariate time series inputs, and their outputs in closed forms. In particular, just like the discrete Fourier transform, the STFT's modulus time series takes large positive values when the input is a periodic signal. One main point is that a white noise time series input results in the STFT output being a complex-valued stationary time series and we can derive the time and time-frequency dependency structure such as the cross-covariance functions. Our primary focus is the detection of local periodic signals. I present a method to detect local signals by computing the probability that the squared modulus STFT time series has consecutive large values exceeding some threshold after one exceeding observation following one observation less than the threshold. We discuss a method to reduce the computation of such probabilities by the Box-Cox transformation and the delta method, and show that it works well in comparison to the Monte Carlo simulation method.
Evaluation of scaling invariance embedded in short time series.
Directory of Open Access Journals (Sweden)
Xue Pan
Full Text Available Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2. Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03 and sharp confidential interval (standard deviation ≤0.05. Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.
Evaluation of scaling invariance embedded in short time series.
Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping
2014-01-01
Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.
Fractional dynamic calculus and fractional dynamic equations on time scales
Georgiev, Svetlin G
2018-01-01
Pedagogically organized, this monograph introduces fractional calculus and fractional dynamic equations on time scales in relation to mathematical physics applications and problems. Beginning with the definitions of forward and backward jump operators, the book builds from Stefan Hilger’s basic theories on time scales and examines recent developments within the field of fractional calculus and fractional equations. Useful tools are provided for solving differential and integral equations as well as various problems involving special functions of mathematical physics and their extensions and generalizations in one and more variables. Much discussion is devoted to Riemann-Liouville fractional dynamic equations and Caputo fractional dynamic equations. Intended for use in the field and designed for students without an extensive mathematical background, this book is suitable for graduate courses and researchers looking for an introduction to fractional dynamic calculus and equations on time scales. .
Can time be a discrete dynamical variable
International Nuclear Information System (INIS)
Lee, T.D.
1983-01-01
The possibility that time can be regarded as a discrete dynamical variable is examined through all phases of mechanics: from classical mechanics to nonrelativistic quantum mechanics, and to relativistic quantum field theories. (orig.)
Application of short-time activation analysis in the sciences
International Nuclear Information System (INIS)
Grass, F.
1991-01-01
Short-time activation analysis has proved to be a valuable tool in nearly all fields of science. To take full advantage of this technique, it is favorable to use a fast transfer system and a high resolution high rate gamma-spectroscopy system for short lived gamma-emitters and a Cherenkov detector for the determination of hard beta-emitters. It is then possible to utilize sub-minute nuclides Li-8 (740 ms), B-12 (20 ms), F-20 (11.1 s), Y-89m (16 s), and Pb-207m (800 ms) for the determination of these elements. Besides these sub-minute nuclides which constitute the only possibility for neutron activation analysis of these elements there are a number of other elements which form longer lived nuclides on short irradiation. The analysis of the halogenides F, Cl, Br, I in waste water of a sewage incineration plant can be achieved with a single 20 s irradiation and two consecutive measurement of 20 and 600 s using Cl-38m, F-20, Br-79m as well as the longer lived Cl-38, Br-80, I-128
Short-time perturbation theory and nonrelativistic duality
International Nuclear Information System (INIS)
Whitenton, J.B.; Durand, B.; Durand, L.
1983-01-01
We give a simple proof of the nonrelativistic duality relation 2 sigma/sub bound/>roughly-equal 2 sigma/sub free/> for appropriate energy averages of the cross sections for e + e - →(qq-bar bound states) and e + e - →(free qq-bar pair), and calculate the corrections to the relation by relating W 2 sigma to the Fourier transform of the Feynman propagation function and developing a short-time perturbation series for that function. We illustrate our results in detail for simple power-law potentials and potentials which involve combinations of powers
Directional short-time Fourier transform of distributions
Directory of Open Access Journals (Sweden)
Katerina Hadzi-Velkova Saneva
2016-04-01
Full Text Available Abstract In this paper we consider the directional short-time Fourier transform (DSTFT that was introduced and investigated in (Giv in J. Math. Anal. Appl. 399:100-107, 2013. We analyze the DSTFT and its transpose on test function spaces S ( R n $\\mathcal {S}(\\mathbb {R}^{n}$ and S ( Y 2 n $\\mathcal {S}(\\mathbb {Y}^{2n}$ , respectively, and prove the continuity theorems on these spaces. Then the obtained results are used to extend the DSTFT to spaces of distributions.
Short-term memory in olfactory network dynamics
Stopfer, Mark; Laurent, Gilles
1999-12-01
Neural assemblies in a number of animal species display self-organized, synchronized oscillations in response to sensory stimuli in a variety of brain areas.. In the olfactory system of insects, odour-evoked oscillatory synchronization of antennal lobe projection neurons (PNs) is superimposed on slower and stimulus-specific temporal activity patterns. Hence, each odour activates a specific and dynamic projection neuron assembly whose evolution during a stimulus is locked to the oscillation clock. Here we examine, using locusts, the changes in population dynamics of projection-neuron assemblies over repeated odour stimulations, as would occur when an animal first encounters and then repeatedly samples an odour for identification or localization. We find that the responses of these assemblies rapidly decrease in intensity, while they show a marked increase in spike time precision and inter-neuronal oscillatory coherence. Once established, this enhanced precision in the representation endures for several minutes. This change is stimulus-specific, and depends on events within the antennal lobe circuits, independent of olfactory receptor adaptation: it may thus constitute a form of sensory memory. Our results suggest that this progressive change in olfactory network dynamics serves to converge, over repeated odour samplings, on a more precise and readily classifiable odour representation, using relational information contained across neural assemblies.
Short-time existence of solutions for mean-field games with congestion
Gomes, Diogo A.
2015-11-20
We consider time-dependent mean-field games with congestion that are given by a Hamilton–Jacobi equation coupled with a Fokker–Planck equation. These models are motivated by crowd dynamics in which agents have difficulty moving in high-density areas. The congestion effects make the Hamilton–Jacobi equation singular. The uniqueness of solutions for this problem is well understood; however, the existence of classical solutions was only known in very special cases, stationary problems with quadratic Hamiltonians and some time-dependent explicit examples. Here, we demonstrate the short-time existence of C∞ solutions for sub-quadratic Hamiltonians.
EVOLVING TO TYPE Ia SUPERNOVAE WITH SHORT DELAY TIMES
International Nuclear Information System (INIS)
Wang Bo; Chen Xuefei; Han Zhanwen; Meng Xiangcun
2009-01-01
The single-degenerate model is currently a favorable progenitor model for Type Ia supernovae (SNe Ia). Recent investigations on the white dwarf (WD) + He star channel of the single-degenerate model imply that this channel is noteworthy for producing SNe Ia. In this paper, we studied SN Ia birthrates and delay times of this channel via a detailed binary population synthesis approach. We found that the Galactic SN Ia birthrate from the WD + He star channel is ∼0.3 x 10 -3 yr -1 according to our standard model, and that this channel can explain SNe Ia with short delay times (∼4.5 x 10 7 -1.4 x 10 8 yr). Meanwhile, these WD + He star systems may be related to the young supersoft X-ray sources prior to SN Ia explosions.
Time ordering in multi-electron dynamics
International Nuclear Information System (INIS)
McGuire, J H; Godunov, A L; Shakov, Kh Kh; Shipakov, V A; Merabet, H; Bruch, R; Hanni, J
2003-01-01
Time ordering of interactions in dynamic quantum multi-electron systems provides a constraint that interconnects the time evolution of different electrons. In energy space, time ordering appears as the principal value contribution from the Green function, which corresponds to the asymptotic condition that specifies whether the system has outgoing (or possibly incoming) scattered waves. We report evidence of effects of time correlation found by comparing calculations to recent spectropolarimetric data
Time ordering in multi-electron dynamics
Energy Technology Data Exchange (ETDEWEB)
McGuire, J H [Department of Physics, Tulane University, New Orleans, LA (United States); Godunov, A L [Department of Physics, Tulane University, New Orleans, LA (United States); Shakov, Kh Kh [Department of Physics, Tulane University, New Orleans, LA (United States); Shipakov, V A [Troitsk Institute for Innovation and Fusion Research, Troitsk (Russian Federation); Merabet, H [Department of Physics, University of Nevada Reno, Reno, NV (United States); Bruch, R [Department of Physics, University of Nevada Reno, Reno, NV (United States); Hanni, J [Department of Physics, University of Nevada Reno, Reno, NV (United States)
2003-01-28
Time ordering of interactions in dynamic quantum multi-electron systems provides a constraint that interconnects the time evolution of different electrons. In energy space, time ordering appears as the principal value contribution from the Green function, which corresponds to the asymptotic condition that specifies whether the system has outgoing (or possibly incoming) scattered waves. We report evidence of effects of time correlation found by comparing calculations to recent spectropolarimetric data.
Regular transport dynamics produce chaotic travel times.
Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F; Toledo, Benjamín; Valdivia, Juan Alejandro
2014-06-01
In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.
Some nonlinear dynamic inequalities on time scales
Indian Academy of Sciences (India)
In 1988, Stefan Hilger [10] introduced the calculus on time scales which unifies continuous and discrete analysis. Since then many authors have expounded on various aspects of the theory of dynamic equations on time scales. Recently, there has been much research activity concerning the new theory. For example, we ...
Short time propagation of a singular wave function: Some surprising results
Marchewka, A.; Granot, E.; Schuss, Z.
2007-08-01
The Schrödinger evolution of an initially singular wave function was investigated. First it was shown that a wide range of physical problems can be described by initially singular wave function. Then it was demonstrated that outside the support of the initial wave function the time evolution is governed to leading order by the values of the wave function and its derivatives at the singular points. Short-time universality appears where it depends only on a single parameter—the value at the singular point (not even on its derivatives). It was also demonstrated that the short-time evolution in the presence of an absorptive potential is different than in the presence of a nonabsorptive one. Therefore, this dynamics can be harnessed to the determination whether a potential is absorptive or not simply by measuring only the transmitted particles density.
Synaptic scaling enables dynamically distinct short- and long-term memory formation.
Directory of Open Access Journals (Sweden)
Christian Tetzlaff
2013-10-01
Full Text Available Memory storage in the brain relies on mechanisms acting on time scales from minutes, for long-term synaptic potentiation, to days, for memory consolidation. During such processes, neural circuits distinguish synapses relevant for forming a long-term storage, which are consolidated, from synapses of short-term storage, which fade. How time scale integration and synaptic differentiation is simultaneously achieved remains unclear. Here we show that synaptic scaling - a slow process usually associated with the maintenance of activity homeostasis - combined with synaptic plasticity may simultaneously achieve both, thereby providing a natural separation of short- from long-term storage. The interaction between plasticity and scaling provides also an explanation for an established paradox where memory consolidation critically depends on the exact order of learning and recall. These results indicate that scaling may be fundamental for stabilizing memories, providing a dynamic link between early and late memory formation processes.
Synaptic scaling enables dynamically distinct short- and long-term memory formation.
Tetzlaff, Christian; Kolodziejski, Christoph; Timme, Marc; Tsodyks, Misha; Wörgötter, Florentin
2013-10-01
Memory storage in the brain relies on mechanisms acting on time scales from minutes, for long-term synaptic potentiation, to days, for memory consolidation. During such processes, neural circuits distinguish synapses relevant for forming a long-term storage, which are consolidated, from synapses of short-term storage, which fade. How time scale integration and synaptic differentiation is simultaneously achieved remains unclear. Here we show that synaptic scaling - a slow process usually associated with the maintenance of activity homeostasis - combined with synaptic plasticity may simultaneously achieve both, thereby providing a natural separation of short- from long-term storage. The interaction between plasticity and scaling provides also an explanation for an established paradox where memory consolidation critically depends on the exact order of learning and recall. These results indicate that scaling may be fundamental for stabilizing memories, providing a dynamic link between early and late memory formation processes.
In-medium short-range dynamics of nucleons: Recent theoretical and experimental advances
Energy Technology Data Exchange (ETDEWEB)
Atti, Claudio Ciofi degli, E-mail: ciofi@pg.infn.it
2015-08-14
treatments of FSI effects resulted in a robust theoretical framework for the analysis and the interpretations of experimental data; at the same time, and more importantly, new results appeared in the experimental sector thanks to the increase of the resolution at which nuclei can at present be investigated, reaching a scale of the order of the nucleon dimensions and covering kinematical regions less affected by FSI and non nucleonic degrees of freedom. As a result the model dependence of the extracted information on SRCs could be reduced and the link between the short-range dynamics predicted by a given NN interaction and the experimental data became more reliable.
Extracting biologically significant patterns from short time series gene expression data
Directory of Open Access Journals (Sweden)
McGinnis Thomas
2009-08-01
Full Text Available Abstract Background Time series gene expression data analysis is used widely to study the dynamics of various cell processes. Most of the time series data available today consist of few time points only, thus making the application of standard clustering techniques difficult. Results We developed two new algorithms that are capable of extracting biological patterns from short time point series gene expression data. The two algorithms, ASTRO and MiMeSR, are inspired by the rank order preserving framework and the minimum mean squared residue approach, respectively. However, ASTRO and MiMeSR differ from previous approaches in that they take advantage of the relatively few number of time points in order to reduce the problem from NP-hard to linear. Tested on well-defined short time expression data, we found that our approaches are robust to noise, as well as to random patterns, and that they can correctly detect the temporal expression profile of relevant functional categories. Evaluation of our methods was performed using Gene Ontology (GO annotations and chromatin immunoprecipitation (ChIP-chip data. Conclusion Our approaches generally outperform both standard clustering algorithms and algorithms designed specifically for clustering of short time series gene expression data. Both algorithms are available at http://www.benoslab.pitt.edu/astro/.
Dynamics of Nonlinear Time-Delay Systems
Lakshmanan, Muthusamy
2010-01-01
Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations have developed as particularly suitable tools for modeling specific dynamical systems. Indeed, time-delay is ubiquitous in many physical systems, for example due to finite switching speeds of amplifiers in electronic circuits, finite lengths of vehicles in traffic flows, finite signal propagation times in biological networks and circuits, and quite generally whenever memory effects are relevant. This monograph presents the basics of chaotic time-delay systems and their synchronization with an emphasis on the effects of time-delay feedback which give rise to new collective dynamics. Special attention is devoted to scalar chaotic/hyperchaotic time-delay systems, and some higher order models, occurring in different bran...
Short-Term Change Detection in Wetlands Using Sentinel-1 Time Series
DEFF Research Database (Denmark)
Muro, Javier; Canty, Morton; Conradsen, Knut
2016-01-01
Automated monitoring systems that can capture wetlands’ high spatial and temporal variability are essential for their management. SAR-based change detection approaches offer a great opportunity to enhance our understanding of complex and dynamic ecosystems. We test a recently-developed time serie...... certain landscape changes are detected only by either the Landsat-based or the S1-omnibus method. The S1-omnibus method shows a great potential for an automated monitoring of short time changes and accurate delineation of areas of high variability and of slow and gradual changes....
Identification of the structure parameters using short-time non-stationary stochastic excitation
Jarczewska, Kamila; Koszela, Piotr; Śniady, PaweŁ; Korzec, Aleksandra
2011-07-01
In this paper, we propose an approach to the flexural stiffness or eigenvalue frequency identification of a linear structure using a non-stationary stochastic excitation process. The idea of the proposed approach lies within time domain input-output methods. The proposed method is based on transforming the dynamical problem into a static one by integrating the input and the output signals. The output signal is the structure reaction, i.e. structure displacements due to the short-time, irregular load of random type. The systems with single and multiple degrees of freedom, as well as continuous systems are considered.
Long-time predictions in nonlinear dynamics
Szebehely, V.
1980-01-01
It is known that nonintegrable dynamical systems do not allow precise predictions concerning their behavior for arbitrary long times. The available series solutions are not uniformly convergent according to Poincare's theorem and numerical integrations lose their meaningfulness after the elapse of arbitrary long times. Two approaches are the use of existing global integrals and statistical methods. This paper presents a generalized method along the first approach. As examples long-time predictions in the classical gravitational satellite and planetary problems are treated.
Short-time action electric generators to power physical devices
International Nuclear Information System (INIS)
Glebov, I.A.; Kasharskij, Eh.G.; Rutberg, F.G.; Khutoretskij, G.M.
1982-01-01
Requirements to be met by power-supply sources of the native electrophysical facilities have been analyzed and trends in designing foreign electric machine units of short-time action have been considered. Specifications of a generator, manufactured in the form of synchronous bipolar turbogenerator with an all-forged rotor with indirect air cooling of the rotor and stator windings are presented. Front parts of the stator winding are additionally fixed using glass-textolite rings, brackets and gaskets. A flywheel, manufactured in the form of all-forged steel cylinder is joined directly with the generator rotor by means of a half-coupling. An acceleration asynchronous engine with a phase rotor of 4 MW nominal capacity is located on the opposite side of the flywheel. The generator peak power is 242 MVxA; power factor = 0.9; energy transferred to the load 5per 1 pulse =00 MJ; the flywheel weight 81 t
Short- and long-run time-of-use price elasticities in Swiss residential electricity demand
International Nuclear Information System (INIS)
Filippini, Massimo
2011-01-01
This paper presents an empirical analysis on the residential demand for electricity by time-of-day. This analysis has been performed using aggregate data at the city level for 22 Swiss cities for the period 2000-2006. For this purpose, we estimated two log-log demand equations for peak and off-peak electricity consumption using static and dynamic partial adjustment approaches. These demand functions were estimated using several econometric approaches for panel data, for example LSDV and RE for static models, and LSDV and corrected LSDV estimators for dynamic models. The attempt of this empirical analysis has been to highlight some of the characteristics of the Swiss residential electricity demand. The estimated short-run own price elasticities are lower than 1, whereas in the long-run these values are higher than 1. The estimated short-run and long-run cross-price elasticities are positive. This result shows that peak and off-peak electricity are substitutes. In this context, time differentiated prices should provide an economic incentive to customers so that they can modify consumption patterns by reducing peak demand and shifting electricity consumption from peak to off-peak periods. - Highlights: → Empirical analysis on the residential demand for electricity by time-of-day. → Estimators for dynamic panel data. → Peak and off-peak residential electricity are substitutes.
Short-run and long-run dynamics of farm land allocation
DEFF Research Database (Denmark)
Arnberg, Søren; Hansen, Lars Gårn
2012-01-01
This study develops and estimates a dynamic multi-output model of farmers’ land allocation decisions that allows for the gradual adjustment of allocations that can result from crop rotation practices and quasi-fixed capital constraints. Estimation is based on micro-panel data from Danish farmers...... that include acreage, output, and variable input utilization at the crop level. Results indicate that there are substantial differences between the short-run and long-run land allocation behaviour of Danish farmers and that there are substantial differences in the time lags associated with different crops...
The effect of short-time active listening training.
Tatsumi, Asami; Sumiyoshi, Kenichi; Kawaguchi, Hitomi; Sano, Yukiko
2010-01-01
We conducted mental health training incorporating active listening for managers at a site of a general chemical company with 1,400 employees. Our purpose was to clarify the effect of active listening training of 2.5h. All subjects were managers. The mental health training was given to 229 managers, 21 times from May 2007 until March 2008. Surveys were conducted from May 2007 to September 2008. The training sessions were conducted in a company meeting room, starting at 2:00 p.m. The importance and significance of listening as a mental health measure and methods of active listening were explained in the training. Afterward, role-playing and follow-up discussions were done twice each. In summaries, participants wrote down what they noticed about listening and gave group presentations. The instructor commented on the presentations, and ended the session by passing out and explaining a paper summarizing what is important in listening. The training was evaluated with a questionnaire distributed at the completion of training, and questionnaires on implementation of what was learned were distributed 1, 3, and 6 mo later. The Active Listening Attitude Scale (ALAS; composed of two scales for method of listening and listening attitude) developed by Mishima et al. was also used before and 1, 3, and 6 mo after the training. In questionnaires distributed on the same day after training, 60% of the 212 respondents said the training time was just right, and 30.1% felt it was too short. The difficulty level of the training was considered appropriate by 77.8%, and 79.7% intended to implement what they had learned. Overall satisfaction was high at 85.9%. In the questionnaire 6 mo after training, 81.4% of the 145 respondents remembered the content of the training and 49.7% said they were practicing what they had learned. They responded that their conversations with subordinates about non-work topics had increased, and communication and support at work had become smoother. ALAS was
Abstraction of Dynamical Systems by Timed Automata
DEFF Research Database (Denmark)
Wisniewski, Rafael; Sloth, Christoffer
2011-01-01
To enable formal verification of a dynamical system, given by a set of differential equations, it is abstracted by a finite state model. This allows for application of methods for model checking. Consequently, it opens the possibility of carrying out the verification of reachability and timing re...
Some Nonlinear Dynamic Inequalities on Time Scales
Indian Academy of Sciences (India)
The aim of this paper is to investigate some nonlinear dynamic inequalities on time scales, which provide explicit bounds on unknown functions. The inequalities given here unify and extend some inequalities in (B G Pachpatte, On some new inequalities related to a certain inequality arising in the theory of differential ...
Clinical time series prediction: Toward a hierarchical dynamical system framework.
Liu, Zitao; Hauskrecht, Milos
2015-09-01
Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. We tested our framework by first learning the time series model from data for the patients in the training set, and then using it to predict future time series values for the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. Copyright © 2014 Elsevier B.V. All rights reserved.
Clinical time series prediction: towards a hierarchical dynamical system framework
Liu, Zitao; Hauskrecht, Milos
2014-01-01
Objective Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Materials and methods Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. Results We tested our framework by first learning the time series model from data for the patient in the training set, and then applying the model in order to predict future time series values on the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. Conclusion A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive
Discrete time and continuous time dynamic mean-variance analysis
Reiss, Ariane
1999-01-01
Contrary to static mean-variance analysis, very few papers have dealt with dynamic mean-variance analysis. Here, the mean-variance efficient self-financing portfolio strategy is derived for n risky assets in discrete and continuous time. In the discrete setting, the resulting portfolio is mean-variance efficient in a dynamic sense. It is shown that the optimal strategy for n risky assets may be dominated if the expected terminal wealth is constrained to exactly attain a certain goal instead o...
Innovation: study of 'ultra-short' time reactions
International Nuclear Information System (INIS)
Anon.
2001-01-01
This short article presents the new Elyse facility of Orsay-Paris 11 university for the study of ultra-short chemical and biochemical phenomena. Elyse uses the 'pump-probe' technique which consists in two perfectly synchronized electron and photon pulses. It comprises a 3 to 9 MeV electron accelerator with a HF gun photo-triggered with a laser. Elyse can initiate reactions using ultra-short electron pulses (radiolysis) or ultra-short photon pulses (photolysis). (J.S.)
Short-term solar irradiation forecasting based on Dynamic Harmonic Regression
International Nuclear Information System (INIS)
Trapero, Juan R.; Kourentzes, Nikolaos; Martin, A.
2015-01-01
Solar power generation is a crucial research area for countries that have high dependency on fossil energy sources and is gaining prominence with the current shift to renewable sources of energy. In order to integrate the electricity generated by solar energy into the grid, solar irradiation must be reasonably well forecasted, where deviations of the forecasted value from the actual measured value involve significant costs. The present paper proposes a univariate Dynamic Harmonic Regression model set up in a State Space framework for short-term (1–24 h) solar irradiation forecasting. Time series hourly aggregated as the Global Horizontal Irradiation and the Direct Normal Irradiation will be used to illustrate the proposed approach. This method provides a fast automatic identification and estimation procedure based on the frequency domain. Furthermore, the recursive algorithms applied offer adaptive predictions. The good forecasting performance is illustrated with solar irradiance measurements collected from ground-based weather stations located in Spain. The results show that the Dynamic Harmonic Regression achieves the lowest relative Root Mean Squared Error; about 30% and 47% for the Global and Direct irradiation components, respectively, for a forecast horizon of 24 h ahead. - Highlights: • Solar irradiation forecasts at short-term are required to operate solar power plants. • This paper assesses the Dynamic Harmonic Regression to forecast solar irradiation. • Models are evaluated using hourly GHI and DNI data collected in Spain. • The results show that forecasting accuracy is improved by using the model proposed
Dynamics of solitons in multicomponent long wave–short wave ...
Indian Academy of Sciences (India)
2Department of Physics, Anna University, Chennai 600 025, India. 3Centre for Nonlinear Dynamics, .... In §3, we revisit the earlier studies on the dynamics of bright multisoliton of ... For this purpose, the power series expansion of variables g(l) ...
Job quality of short-time workers and perception and support from their managers
坂爪, 洋美
2017-01-01
The purpose of this study was to clarify the relationship between the characteristics of job quality that short-time workers occupied and the managers’ perception and support whose member has used short-time working hour system. A total of 559 first-line managers who has a member using short-time working hour system completed a web-based survey assessing job quality of short-time workers , the risk of using short-timeworking hour system, career perspective of short-time workers, and the suppo...
Mechanistic models for cancer development after short time radiation exposure
International Nuclear Information System (INIS)
Kottbauer, M. M.
1997-12-01
In this work two biological based models were developed. First the single-hit model for solid tumors (SHM-S) and second the single-hit model for leukemia (SHM-L). These models are a further development of the Armitage-Doll model for the special case of a short time radiation exposure. The basis of the models is the multistage process of carcinogeneses. The single-hit models provide simultaneously the age-dependent cancer-rate of spontaneous and radiation induced tumors as well as the dose-effect relationships at any age after exposure. The SHM-S leads to a biological based dose-effect relationship, which is similar to the relative risk model suggested by the ICRP 60. The SHM-S describes the increased mortality rate of the bomb survivors more accurate than the relative risk model. The SHM-L results in an additive dose-effect relationship. It is shown that only small differences in the derivation of the two models lead to the two dose-effect relationships. Beside the radiation exposure the new models consider the decrease of the cancer mortality rate at higher ages (age>75) which can be traced back mainly to three causes: competitive causes of death, reduction of cell proliferation and reduction of risk groups. The single-hit models also consider children cancer, the different rates of incidence and mortality, influence of the immune system and the cell-killing effect. (author)
Short-time home coming project in evacuation zone
International Nuclear Information System (INIS)
Tatsuzaki, Hideo
2011-01-01
Accident at Fukushima Daiichi Nuclear Power Plants (NPPs) forced neighboring residents to evacuate, and evacuation zone (20 km radius from NPPs) was defined as highly contaminated and designated as no-entry zones. Residents had been obliged to live a refugee life for a longer period than expected. Short-time home coming project was initiated according to their requests. They came to the meeting place called transfer place (20 - 30 km radius from NPPs), wore protective clothing and personal dosimeter with having drinking water and came home in evacuation zone with staffs by bus. Their healthcare management professionals were fully prepared for emergency. After collecting necessary articles at home within two hours, they returned to the meeting place by bus for screening and dressing, and went back to refuge house. If screening data were greater than 13 kcpm using GM counters, partial body decontamination had been conducted by wiping and if greater than 100 kcpm, whole body decontamination was requested but not conducted. Dose rate of residents and staffs was controlled less than 1 mSv, which was alarm level of personal dosimeter. Stable iodine was prepared but actually not used. (T. Tanaka)
Probabilistic eruption forecasting at short and long time scales
Marzocchi, Warner; Bebbington, Mark S.
2012-10-01
Any effective volcanic risk mitigation strategy requires a scientific assessment of the future evolution of a volcanic system and its eruptive behavior. Some consider the onus should be on volcanologists to provide simple but emphatic deterministic forecasts. This traditional way of thinking, however, does not deal with the implications of inherent uncertainties, both aleatoric and epistemic, that are inevitably present in observations, monitoring data, and interpretation of any natural system. In contrast to deterministic predictions, probabilistic eruption forecasting attempts to quantify these inherent uncertainties utilizing all available information to the extent that it can be relied upon and is informative. As with many other natural hazards, probabilistic eruption forecasting is becoming established as the primary scientific basis for planning rational risk mitigation actions: at short-term (hours to weeks or months), it allows decision-makers to prioritize actions in a crisis; and at long-term (years to decades), it is the basic component for land use and emergency planning. Probabilistic eruption forecasting consists of estimating the probability of an eruption event and where it sits in a complex multidimensional time-space-magnitude framework. In this review, we discuss the key developments and features of models that have been used to address the problem.
Nonlinear Dynamical Modes as a Basis for Short-Term Forecast of Climate Variability
Feigin, A. M.; Mukhin, D.; Gavrilov, A.; Seleznev, A.; Loskutov, E.
2017-12-01
We study abilities of data-driven stochastic models constructed by nonlinear dynamical decomposition of spatially distributed data to quantitative (short-term) forecast of climate characteristics. We compare two data processing techniques: (i) widely used empirical orthogonal function approach, and (ii) nonlinear dynamical modes (NDMs) framework [1,2]. We also make comparison of two kinds of the prognostic models: (i) traditional autoregression (linear) model and (ii) model in the form of random ("stochastic") nonlinear dynamical system [3]. We apply all combinations of the above-mentioned data mining techniques and kinds of models to short-term forecasts of climate indices based on sea surface temperature (SST) data. We use NOAA_ERSST_V4 dataset (monthly SST with space resolution 20 × 20) covering the tropical belt and starting from the year 1960. We demonstrate that NDM-based nonlinear model shows better prediction skill versus EOF-based linear and nonlinear models. Finally we discuss capability of NDM-based nonlinear model for long-term (decadal) prediction of climate variability. [1] D. Mukhin, A. Gavrilov, E. Loskutov , A.Feigin, J.Kurths, 2015: Principal nonlinear dynamical modes of climate variability, Scientific Reports, rep. 5, 15510; doi: 10.1038/srep15510. [2] Gavrilov, A., Mukhin, D., Loskutov, E., Volodin, E., Feigin, A., & Kurths, J., 2016: Method for reconstructing nonlinear modes with adaptive structure from multidimensional data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(12), 123101. [3] Ya. Molkov, D. Mukhin, E. Loskutov, A. Feigin, 2012: Random dynamical models from time series. Phys. Rev. E, Vol. 85, n.3.
An Artificial Neural Network Based Short-term Dynamic Prediction of Algae Bloom
Directory of Open Access Journals (Sweden)
Yao Junyang
2014-06-01
Full Text Available This paper proposes a method of short-term prediction of algae bloom based on artificial neural network. Firstly, principal component analysis is applied to water environmental factors in algae bloom raceway ponds to get main factors that influence the formation of algae blooms. Then, a model of short-term dynamic prediction based on neural network is built with the current chlorophyll_a values as input and the chlorophyll_a values in the next moment as output to realize short-term dynamic prediction of algae bloom. Simulation results show that the model can realize short-term prediction of algae bloom effectively.
Aspherical bubble dynamics and oscillation times
Energy Technology Data Exchange (ETDEWEB)
Godwin, R.P.; Chapyak, E.J. [Los Alamos National Lab., NM (United States); Noack, J.; Vogel, A. [Medizinisches Laserzentrum Luebeck (Germany)
1999-03-01
The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.
Short irradiation time characteristics of the inverter type X-ray generator
International Nuclear Information System (INIS)
Miyazaki, Shigeru; Hara, Takamitu; Matutani, Kazuo; Saito, Kazuhiko.
1994-01-01
The linearity of the X-ray output is an important factor in radiography. It is a composite of the linearities of the X-ray tube voltage, the X-ray tube current, and the exposure time. This paper focuses on the linearity of exposure time. Non-linearity of the X-ray output for short-time exposure became a problem when the three-phase X-ray generator was introduced. This paper describes the inverter-type X-ray generator, which is expected to become predominant in the future. Previously, we investigated X-ray output linearity during short-time exposure using the technique of dynamic study. In this paper, we describe the application of a digital memory and a personal computer to further investigation. The non-linearity of the X-ray output was caused by irregular waveforms of the X-ray tube voltage found at the rise time and the fall time. When the rise time was about 0.6 ms, the non-linearity was about 2%, which is negligibly small. The non-linearity due to the fall time of the X-ray tube varied greatly according to the X-ray tube current. For the minimum irradiation time of 1 ms, 4% to 27% of the non-linearity was attributable to the fall time. The main cause was the stray capacitance of the X-ray high-voltage cables. When the X-ray tube current exceeded 400 mA, the rise time was almost equal to the fall time, and the problem did not occur. Consequently, the ideal generator should have a fall time which is equal to the rise time of the X-ray tube voltage. Strictly speaking, such a generator should have rectangular waveforms. (author)
Generating Dynamic Persistence in the Time Domain
Guerrero, A.; Smith, L. A.; Smith, L. A.; Kaplan, D. T.
2001-12-01
Many dynamical systems present long-range correlations. Physically, these systems vary from biological to economical, including geological or urban systems. Important geophysical candidates for this type of behaviour include weather (or climate) and earthquake sequences. Persistence is characterised by slowly decaying correlation function; that, in theory, never dies out. The Persistence exponent reflects the degree of memory in the system and much effort has been expended creating and analysing methods that successfully estimate this parameter and model data that exhibits persistence. The most widely used methods for generating long correlated time series are not dynamical systems in the time domain, but instead are derived from a given spectral density. Little attention has been drawn to modelling persistence in the time domain. The time domain approach has the advantage that an observation at certain time can be calculated using previous observations which is particularly suitable when investigating the predictability of a long memory process. We will describe two of these methods in the time domain. One is a traditional approach using fractional ARIMA (autoregressive and moving average) models; the second uses a novel approach to extending a given series using random Fourier basis functions. The statistical quality of the two methods is compared, and they are contrasted with weather data which shows, reportedly, persistence. The suitability of this approach both for estimating predictability and for making predictions is discussed.
Short-term mechanisms influencing volumetric brain dynamics
Dieleman, Nikki; Koek, Huiberdina L.; Hendrikse, Jeroen
2017-01-01
With the use of magnetic resonance imaging (MRI) and brain analysis tools, it has become possible to measure brain volume changes up to around 0.5%. Besides long-term brain changes caused by atrophy in aging or neurodegenerative disease, short-term mechanisms that influence brain volume may exist.
Modeling biological pathway dynamics with timed automata.
Schivo, Stefano; Scholma, Jetse; Wanders, Brend; Urquidi Camacho, Ricardo A; van der Vet, Paul E; Karperien, Marcel; Langerak, Rom; van de Pol, Jaco; Post, Janine N
2014-05-01
Living cells are constantly subjected to a plethora of environmental stimuli that require integration into an appropriate cellular response. This integration takes place through signal transduction events that form tightly interconnected networks. The understanding of these networks requires capturing their dynamics through computational support and models. ANIMO (analysis of Networks with Interactive Modeling) is a tool that enables the construction and exploration of executable models of biological networks, helping to derive hypotheses and to plan wet-lab experiments. The tool is based on the formalism of Timed Automata, which can be analyzed via the UPPAAL model checker. Thanks to Timed Automata, we can provide a formal semantics for the domain-specific language used to represent signaling networks. This enforces precision and uniformity in the definition of signaling pathways, contributing to the integration of isolated signaling events into complex network models. We propose an approach to discretization of reaction kinetics that allows us to efficiently use UPPAAL as the computational engine to explore the dynamic behavior of the network of interest. A user-friendly interface hides the use of Timed Automata from the user, while keeping the expressive power intact. Abstraction to single-parameter kinetics speeds up construction of models that remain faithful enough to provide meaningful insight. The resulting dynamic behavior of the network components is displayed graphically, allowing for an intuitive and interactive modeling experience.
Quantifying complexity of financial short-term time series by composite multiscale entropy measure
Niu, Hongli; Wang, Jun
2015-05-01
It is significant to study the complexity of financial time series since the financial market is a complex evolved dynamic system. Multiscale entropy is a prevailing method used to quantify the complexity of a time series. Due to its less reliability of entropy estimation for short-term time series at large time scales, a modification method, the composite multiscale entropy, is applied to the financial market. To qualify its effectiveness, its applications in the synthetic white noise and 1 / f noise with different data lengths are reproduced first in the present paper. Then it is introduced for the first time to make a reliability test with two Chinese stock indices. After conducting on short-time return series, the CMSE method shows the advantages in reducing deviations of entropy estimation and demonstrates more stable and reliable results when compared with the conventional MSE algorithm. Finally, the composite multiscale entropy of six important stock indices from the world financial markets is investigated, and some useful and interesting empirical results are obtained.
Multivariable dynamic calculus on time scales
Bohner, Martin
2016-01-01
This book offers the reader an overview of recent developments of multivariable dynamic calculus on time scales, taking readers beyond the traditional calculus texts. Covering topics from parameter-dependent integrals to partial differentiation on time scales, the book’s nine pedagogically oriented chapters provide a pathway to this active area of research that will appeal to students and researchers in mathematics and the physical sciences. The authors present a clear and well-organized treatment of the concept behind the mathematics and solution techniques, including many practical examples and exercises.
Short time series analysis of Didymosphenia geminata blooming in the Oreti River, New Zealand
Garcia, T.; Kilroy, C.; Larned, S.; Packman, A. I.; Kumar, P.
2010-12-01
The mat-forming diatom Didymosphenia geminata was introduced to New Zealand in 2004, and subsequently spread to many rivers on the south island. D geminata mats are exceptionally dense and thick. Extensive blooms of this introduced organism have substantially modified the benthic environment in many New Zealand rivers, but the factors that contribute to D. geminata blooming are not well understood. We synthesized a sequence of observations of D. geminata areal coverage and thickness to examine physical and chemical controls on the growth and persistence of D germinata. We analyzed the best available time series on the distribution of this organism in New Zealand, observations in the Oreti River every 15 days spanning April 2006 to May 2007. During this period, mean D. geminata coverage of the river bed was ~52% and the mean mat thickness was ~6 mm. Relationships between time-series observations of D. geminata and 13 different physical and chemical variables were analyzed using linear and nonlinear methods. Areal cover and thickness of D geminata mats were found to be influenced by both slow and fast dynamic processes. The spread of the organism, in terms of % cover, was highly correlated with conductivity, ammonium, nitrate, dissolved oxygen, and total nitrogen with short time lags (fast dynamics). Moreover, water clarity, cloud cover, and flow were highly correlated with % cover with long time lags, indicating that these conditions exert long-term control on D. geminata growth. Areal coverage and thickness were found to be highly correlated, but the variables associated with slow and fast dynamics of these two measures were not identical. The variables found to be highly correlated with D. germinata thickness and represented fast dynamics were temperature, dissolved oxygen, conductivity, nitrate, and total nitrogen. Additionally, the variables influencing the slow dynamics of D. germinata thickness were flow, water clarity, turbidity and total phosphorous.
Short-term wind power forecasting: probabilistic and space-time aspects
DEFF Research Database (Denmark)
Tastu, Julija
work deals with the proposal and evaluation of new mathematical models and forecasting methods for short-term wind power forecasting, accounting for space-time dynamics based on geographically distributed information. Different forms of power predictions are considered, starting from traditional point...... into the corresponding models are analysed. As a final step, emphasis is placed on generating space-time trajectories: this calls for the prediction of joint multivariate predictive densities describing wind power generation at a number of distributed locations and for a number of successive lead times. In addition......Optimal integration of wind energy into power systems calls for high quality wind power predictions. State-of-the-art forecasting systems typically provide forecasts for every location individually, without taking into account information coming from the neighbouring territories. It is however...
Constraints on Dynamic Triggering from very Short term Microearthquake Aftershocks at Parkfield
Ampuero, J.; Rubin, A.
2004-12-01
The study of microearthquakes helps bridge the gap between laboratory experiments and data from large earthquakes, the two disparate scales that have contributed so far to our understanding of earthquake physics. Although they are frequent, microearthquakes are difficult to analyse. Applying high precision relocation techniques, Rubin and Gillard (2000) observed a pronounced asymmetry in the spatial distribution of the earliest and nearest aftershocks of microearthquakes along the San Andreas fault (they occur more often to the NW of the mainshock). It was suggested that this could be related to the velocity contrast across the fault. Preferred directivity of dynamic rupture pulses running along a bimaterial interface (to the SE in the case of the SAF) is expected on theoretical grounds. Our numerical simulations of crack-like rupture on such interfaces show a pronounced asymmetry of the stress histories beyond the rupture ends, and suggest two possible mechanisms for the observed asymmetry: First, that it results from an asymmmetry in the static stress field following arrest of the mainshock (closer to failure to the NW), or second, that it is due to a short-duration tensile pulse that propagates to the SE, which could reduce the number of aftershocks to the SE by dynamic triggering of any nucleation site close enough to failure to have otherwise produced an aftershock. To distinguish betwen these mechanisms we need observations of dynamic triggering in microseismicity. For small events triggered at a distance of some mainshock radii, triggering time scales are so short that seismograms of both events overlap. To detect the occurrence of compound events and very short term aftershocks in the HRSN Parkfield archived waveforms we have developed an automated search algorithm based on empirical Green's function (EGF) deconvolution. Optimal EGFs are first selected by the coherency of the cross-component convolution with respect to the target event. Then Landweber
uncertain dynamic systems on time scales
Directory of Open Access Journals (Sweden)
V. Lakshmikantham
1995-01-01
Full Text Available A basic feedback control problem is that of obtaining some desired stability property from a system which contains uncertainties due to unknown inputs into the system. Despite such imperfect knowledge in the selected mathematical model, we often seek to devise controllers that will steer the system in a certain required fashion. Various classes of controllers whose design is based on the method of Lyapunov are known for both discrete [4], [10], [15], and continuous [3–9], [11] models described by difference and differential equations, respectively. Recently, a theory for what is known as dynamic systems on time scales has been built which incorporates both continuous and discrete times, namely, time as an arbitrary closed sets of reals, and allows us to handle both systems simultaneously [1], [2], [12], [13]. This theory permits one to get some insight into and better understanding of the subtle differences between discrete and continuous systems. We shall, in this paper, utilize the framework of the theory of dynamic systems on time scales to investigate the stability properties of conditionally invariant sets which are then applied to discuss controlled systems with uncertain elements. For the notion of conditionally invariant set and its stability properties, see [14]. Our results offer a new approach to the problem in question.
The dynamics of short envelope solitons in media with controlled dispersion
International Nuclear Information System (INIS)
Aseeva, N.V.; Gromov, E.M.; Tyutin, V.V.
2007-01-01
The dynamics of short envelope solitons in media with controlled dispersion is investigated in the framework of the third-order nonlinear Schroedinger equation. Evolution of the solitons amplitude is analyzed in the adiabatic approximation. The existence of short envelope solitons independent from linear dispersion inhomogeneity is shown
Molecular dynamics simulations of short-range force systems on 1024-node hypercubes
International Nuclear Information System (INIS)
Plimpton, S.J.
1990-01-01
In this paper, two parallel algorithms for classical molecular dynamics are presented. The first assigns each processor to a subset of particles; the second assigns each to a fixed region of 3d space. The algorithms are implemented on 1024-node hypercubes for problems characterized by short-range forces, diffusion (so that each particle's neighbors change in time), and problem size ranging from 250 to 10000 particles. Timings for the algorithms on the 1024-node NCUBE/ten and the newer NCUBE 2 hypercubes are given. The latter is found to be competitive with a CRAY-XMP, running an optimized serial algorithm. For smaller problems the NCUBE 2 and CRAY-XMP are roughly the same; for larger ones the NCUBE 2 is up to twice as fast. Parallel efficiencies of the algorithms and communication parameters for the two hypercubes are also examined
Telleman, Gerdien; den Hartog, Laurens
2013-01-01
Aim: This systematic review assessed the implant survival rate of short (<10 mm) dental implants installed in partially edentulous patients. A case report of a short implant in the posterior region have been added. Materials and methods: A search was conducted in the electronic databases of MEDLINE
International Nuclear Information System (INIS)
Kostamovaara, J.; Myllylae, R.
1985-01-01
The construction and the performance of a time-to-amplitude converter equipped with constant fraction discriminators is described. The TAC consists of digital and analog parts which are constructed on two printed circuit boards, both of which are located in a single width NIM module. The dead time of the TAC for a start pulse which is not followed by a stop pulse within the time range of the device (proportional100 ns) is only proportional100 ns, which enables one to avoid counting rate saturation even with a high random input signal rate. The differential and integral nonlinearities of the TAC are better than +-1.5% and 0.05%, respectively. The resolution for input timing pulses of constant shape is 20 ps (fwhm), and less than 10 ps (fwhm) with a modification in the digital part. The walk error of the constant fraction timing discriminators is presented and various parameters affecting it are discussed. The effect of the various disturbances in linearity caused by the fast ECL logic and their minimization are also discussed. The time-to-amplitude converter has been used in positron lifetime studies and for laser range finding. (orig.)
Short-run Exchange-Rate Dynamics: Theory and Evidence
DEFF Research Database (Denmark)
Carlson, John A.; Dahl, Christian Møller; Osler, Carol L.
Recent research has revealed a wealth of information about the microeconomics of currency markets and thus the determination of exchange rates at short horizons. This information is valuable to us as scientists since, like evidence of macroeconomic regularities, it can provide critical guidance...... of currency markets, it accurately reflects the constraints and objectives faced by the major participants, and it fits key stylized facts concerning returns and order flow. With respect to macroeconomics, the model is consistent with most of the major puzzles that have emerged under floating rates....
[Dynamic Attending Binds Time and Rhythm Perception].
Kuroda, Tsuyoshi; Ono, Fuminori; Kadota, Hiroshi
2017-11-01
Relations between time and rhythm perception are discussed in this review of psychophysical research relevant to the multiple-look effect and dynamic-attending theory. Discrimination of two neighboring intervals that are marked by three successive sounds is improved when the presentation of the first (standard, S) interval is repeated before that of the second (comparison, C), as SSSSC. This improvement in sensitivity, called the multiple-look effect, occurs because listeners (1) perceive regular rhythm during the repetition of the standard interval, (2) predict the timing of subsequent sounds, and (3) detect sounds that are deviated from the predicted timing. The dynamic-attending theory attributes such predictions to the entrainment of attentional rhythms. An endogenous attentional rhythm is synchronized with the periodic succession of sounds marking the repeated standard. The standard and the comparison are discriminated on the basis of whether the ending marker of the comparison appears at the peak of the entrained attentional rhythm. This theory is compatible with the findings of recent neurophysiological studies that relate temporal prediction to neural oscillations.
TIME-VARYING DYNAMICAL STAR FORMATION RATE
Energy Technology Data Exchange (ETDEWEB)
Lee, Eve J.; Chang, Philip; Murray, Norman, E-mail: evelee@berkeley.edu [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto, ON M5S 3H8 (Canada)
2015-02-10
We present numerical evidence of dynamic star formation in which the accreted stellar mass grows superlinearly with time, roughly as t {sup 2}. We perform simulations of star formation in self-gravitating hydrodynamic and magnetohydrodynamic turbulence that is continuously driven. By turning the self-gravity of the gas in the simulations on or off, we demonstrate that self-gravity is the dominant physical effect setting the mass accretion rate at early times before feedback effects take over, contrary to theories of turbulence-regulated star formation. We find that gravitational collapse steepens the density profile around stars, generating the power-law tail on what is otherwise a lognormal density probability distribution function. Furthermore, we find turbulent velocity profiles to flatten inside collapsing regions, altering the size-line width relation. This local flattening reflects enhancements of turbulent velocity on small scales, as verified by changes to the velocity power spectra. Our results indicate that gas self-gravity dynamically alters both density and velocity structures in clouds, giving rise to a time-varying star formation rate. We find that a substantial fraction of the gas that forms stars arrives via low-density flows, as opposed to accreting through high-density filaments.
Short-term memory in olfactory network dynamics
Stopfer, Mark; Laurent, Gilles
1999-01-01
Neural assemblies in a number of animal species display self-organized, synchronized oscillations in response to sensory stimuli in a variety of brain areas. In the olfactory system of insects, odour-evoked oscillatory synchronization of antennal lobe projection neurons (PNs) is superimposed on slower and stimulus-specific temporal activity patterns. Hence, each odour activates a specific and dynamic projection neuron assembly whose evolution during a stimulus is locked to the oscillation clo...
Continuous Time Dynamic Contraflow Models and Algorithms
Directory of Open Access Journals (Sweden)
Urmila Pyakurel
2016-01-01
Full Text Available The research on evacuation planning problem is promoted by the very challenging emergency issues due to large scale natural or man-created disasters. It is the process of shifting the maximum number of evacuees from the disastrous areas to the safe destinations as quickly and efficiently as possible. Contraflow is a widely accepted model for good solution of evacuation planning problem. It increases the outbound road capacity by reversing the direction of roads towards the safe destination. The continuous dynamic contraflow problem sends the maximum number of flow as a flow rate from the source to the sink in every moment of time unit. We propose the mathematical model for the continuous dynamic contraflow problem. We present efficient algorithms to solve the maximum continuous dynamic contraflow and quickest continuous contraflow problems on single source single sink arbitrary networks and continuous earliest arrival contraflow problem on single source single sink series-parallel networks with undefined supply and demand. We also introduce an approximation solution for continuous earliest arrival contraflow problem on two-terminal arbitrary networks.
Long and short time quantum dynamics III. Transients,
Czech Academy of Sciences Publication Activity Database
Špička, Václav; Velický, Bedřich; Kalvová, Anděla
2005-01-01
Roč. 29, - (2005), s. 196-212 ISSN 1386-9477 R&D Projects: GA ČR(CZ) GA202/04/0585; GA AV ČR(CZ) IAA1010404 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100520 Keywords : non-equilibrium * Green functions * quantum transport equations * initial conditions Subject RIV: BE - Theoretical Physics Impact factor: 0.946, year: 2005
How long-term dynamics of sediment subduction controls short-term dynamics of seismicity
Brizzi, S.; van Zelst, I.; van Dinther, Y.; Funiciello, F.; Corbi, F.
2017-12-01
Most of the world's greatest earthquakes occur along the subduction megathrust. Weak and porous sediments have been suggested to homogenize the plate interface and thereby promote lateral rupture propagation and great earthquakes. However, the importance of sediment thickness, let alone their physical role, is not yet unequivocally established. Based on a multivariate statistical analysis of a global database of 62 subduction segments, we confirm that sediment thickness is one of the key parameters controlling the maximum magnitude a megathrust can generate. Moreover, Monte Carlo simulations highlighted that the occurrence of great earthquakes on sediment-rich subduction segments is very unlikely (p-value≪0.05) related to pure chance. To understand how sediments in the subduction channel regulate earthquake size, this study extends and demystifies multivariate, spatiotemporally limited data through numerical modeling. We use the 2D Seismo-Thermo-Mechanical modeling approach to simulate both the long- and short-term dynamics of subduction and related seismogenesis (van Dinther et al., JGR, 2013). These models solve for the conservation of mass, momentum and energy using a visco-elasto-plastic rheology with rate-dependent friction. Results show that subducted sediments have a strong influence on the long-term evolution of the convergent margin. Increasing the sediment thickness on the incoming plate from 0 to 6 km causes a decrease of slab dip from 23° to 10°. This, in addition to increased radiogenic heating, extends isotherms, thereby widening the seismogenic portion of the megathrust from 80 to 150 km. Consequently, over tens of thousands of years, we observe that the maximum moment magnitude of megathrust earthquakes increases from 8.2 to 9.2 for these shallower and warmer interfaces. In addition, we observe more and larger splay faults, which could enhance vertical seafloor displacements. These results highlight the primary role of subducted sediments in
Dynamical evolution of short-wave instability in LHD
International Nuclear Information System (INIS)
Miura, H.; Nakajima, N.
2009-01-01
Full text: Dynamical growth of ballooning modes with high poloidal(m) /toroidal(n) Fourier coefficients (higher m/n modes) in the Large Helical Device (LHD) is studied by means of full 3D nonlinear simulations. Influences of higher modes on low modes are studied numerically. In the LHD experiments, some MHD activities are observed but the activities do not bring about serious deteriorations of plasma profiles and high beta-values have been achieved. For the sake of understanding the mild saturation of the instability, some numerical simulations have been carried out. However, the earlier works focus on low modes and dynamical behaviors of high modes are not understood well. In order to understand the dynamical evolution of the pressure-driven high-modes and clarify their influences on growth of low-modes, full-3D simulations of high Reynolds number LHD plasma are carried out for the magnetic field with the vacuum magnetic axis position 3.6m, the peak beta value 3.7%, and the reference Reynolds number Re=10 6 . In the simulations, the growth of ballooning modes up to n=15 toroidal wave-number is identified. The simultaneous growth of multiple ballooning modes brings about total modification of the pressure profile, showing that the pressure-flattening mechanism can not suppress the growth of the modes. On the other hand, a mild saturation of the unstable mode is obtained in another simulation with the relatively large parallel heat conduction, suggesting that the mild saturations might be rather contributed by the dissipative effects (typically by the parallel heat conduction) than the nonlinear mechanism such as the modifications of the pressure profiles. We also find that the wave-length of the n=15 ballooning mode is comparable to the ion skin-depth, suggesting the necessity of studying the high modes in the framework of the Hall-MHD dynamics. Studying the dynamics of the LHD plasmas by the use of the Hall-MHD or some sort of the two-fluid system is considered
International Nuclear Information System (INIS)
Bolton, P.R.
1987-06-01
A technique is described for measuring and deconvolving response times of microwave diode detection systems in order to generate corrected input signals typical of an infinite detection rate. The method has been applied to cases of 2.86 GHz ultra-short HPM pulse detection where pulse rise time is comparable to that of the detector; whereas, the duration of a few nanoseconds is significantly longer. Results are specified in terms of the enhancement of equivalent deconvolved input voltages for given observed voltages. The convolution integral imposes the constraint of linear detector response to input power levels. This is physically equivalent to the conservation of integrated pulse energy in the deconvolution process. The applicable dynamic range of a microwave diode is therefore limited to a smaller signal region as determined by its calibration
Nonlinear complex dynamics and Keynesian rigidity: A short introduction
Jovero, Edgardo
2005-09-01
The topic of this paper is to show that the greater acceptance and intense use of complex nonlinear dynamics in macroeconomics makes sense only within the neoKeynesian tradition. An example is presented regarding the behavior of an open-economy two-sector growth model endowed with Keynesian rigidity. The Keynesian view that structural instability globally exists in the aggregate economy is put forward, and therefore the need arises for policy to alleviate this instability in the form of dampened fluctuations is presented as an alternative view for macroeconomic theorizing.
DYNAMICS OF THE ANXIETY DISORDERS IN THE COURSE OF SHORT-TERM PSYCHOTHERAPY
Directory of Open Access Journals (Sweden)
T.N. Hmylova
2008-06-01
Full Text Available The tendency of psychotherapy modern concepts referring to the short-term forms having been taken into account, we carried out the research aimed at the study of short-term form personality-oriented psychotherapy effect on the anxiety disorder dynamics. 103 patients with neurotic disorders were examined in the neurosis and psychotherapy department of the Bekhterev Psychoneurological Research Institute. The findings revealed the situational and personal anxiety level to be objectively decreased in the short-term group psychotherapy course. The short-term group psychotherapy was proved to bean effective method in anxiety disorders treatment considering indications and limitations.
Computer simulation of yielding supports under static and short-term dynamic load
Directory of Open Access Journals (Sweden)
Kumpyak Oleg
2018-01-01
Full Text Available Dynamic impacts that became frequent lately cause large human and economic losses, and their prevention methods are not always effective and reasonable. The given research aims at studying the way of enhancing explosion safety of building structures by means of yielding supports. The paper presents results of numerical studies of strength and deformation property of yielding supports in the shape of annular tubes under static and short-term dynamic loading. The degree of influence of yielding supports was assessed taking into account three peculiar stages of deformation: elastic; elasto-plastic; and elasto-plastic with hardening. The methodology for numerical studies performance was described using finite element analysis with program software Ansys Mechanical v17.2. It was established that rigidity of yielding supports influences significantly their stress-strain state. The research determined that with the increase in deformable elements rigidity dependence between load and deformation of the support in elastic and plastic stages have linear character. Significant reduction of the dynamic response and increase in deformation time of yielding supports were observed due to increasing the plastic component. Therefore, it allows assuming on possibility of their application as supporting units in RC beams.
Dynamic stability of nano-fibers self-assembled from short amphiphilic A6D peptides.
Nikoofard, Narges; Maghsoodi, Fahimeh
2018-04-07
Self-assembly of A 6 D amphiphilic peptides in explicit water is studied by using coarse-grained molecular dynamics simulations. It is observed that the self-assembly of randomly distributed A 6 D peptides leads to the formation of a network of nano-fibers. Two other simulations with cylindrical nano-fibers as the initial configuration show the dynamic stability of the self-assembled nano-fibers. As a striking feature, notable fluctuations occur along the axes of the nano-fibers. Depending on the number of peptides per unit length of the nano-fiber, flat-shaped bulges or spiral shapes along the nano-fiber axis are observed at the fluctuations. Analysis of the particle distribution around the nano-fiber indicates that the hydrophobic core and the hydrophilic shell of the nano-structure are preserved in both simulations. The size of the deformations and their correlation times are different in the two simulations. This study gives new insights into the dynamics of the self-assembled nano-structures of short amphiphilic peptides.
Dynamic stability of nano-fibers self-assembled from short amphiphilic A6D peptides
Nikoofard, Narges; Maghsoodi, Fahimeh
2018-04-01
Self-assembly of A6D amphiphilic peptides in explicit water is studied by using coarse-grained molecular dynamics simulations. It is observed that the self-assembly of randomly distributed A6D peptides leads to the formation of a network of nano-fibers. Two other simulations with cylindrical nano-fibers as the initial configuration show the dynamic stability of the self-assembled nano-fibers. As a striking feature, notable fluctuations occur along the axes of the nano-fibers. Depending on the number of peptides per unit length of the nano-fiber, flat-shaped bulges or spiral shapes along the nano-fiber axis are observed at the fluctuations. Analysis of the particle distribution around the nano-fiber indicates that the hydrophobic core and the hydrophilic shell of the nano-structure are preserved in both simulations. The size of the deformations and their correlation times are different in the two simulations. This study gives new insights into the dynamics of the self-assembled nano-structures of short amphiphilic peptides.
SHORT COMMUNICATION: Time measurement device with four femtosecond stability
Panek, Petr; Prochazka, Ivan; Kodet, Jan
2010-10-01
We present the experimental results of extremely precise timing in the sense of time-of-arrival measurements in a local time scale. The timing device designed and constructed in our laboratory is based on a new concept using a surface acoustic wave filter as a time interpolator. Construction of the device is briefly described. The experiments described were focused on evaluating the timing precision and stability. Low-jitter test pulses with a repetition frequency of 763 Hz were generated synchronously to the local time base and their times of arrival were measured. The resulting precision of a single measurement was typically 900 fs RMS, and a timing stability TDEV of 4 fs was achieved for time intervals in the range from 300 s to 2 h. To our knowledge this is the best value reported to date for the stability of a timing device. The experimental results are discussed and possible improvements are proposed.
Dynamical Detection of Topological Phase Transitions in Short-Lived Atomic Systems
Setiawan, F.; Sengupta, K.; Spielman, I. B.; Sau, Jay D.
2015-11-01
We demonstrate that dynamical probes provide direct means of detecting the topological phase transition (TPT) between conventional and topological phases, which would otherwise be difficult to access because of loss or heating processes. We propose to avoid such heating by rapidly quenching in and out of the short-lived topological phase across the transition that supports gapless excitations. Following the quench, the distribution of excitations in the final conventional phase carries signatures of the TPT. We apply this strategy to study the TPT into a Majorana-carrying topological phase predicted in one-dimensional spin-orbit-coupled Fermi gases with attractive interactions. The resulting spin-resolved momentum distribution, computed by self-consistently solving the time-dependent Bogoliubov-de Gennes equations, exhibits Kibble-Zurek scaling and Stückelberg oscillations characteristic of the TPT. We discuss parameter regimes where the TPT is experimentally accessible.
Real-time energy resources scheduling considering short-term and very short-term wind forecast
Energy Technology Data Exchange (ETDEWEB)
Silva, Marco; Sousa, Tiago; Morais, Hugo; Vale, Zita [Polytechnic of Porto (Portugal). GECAD - Knowledge Engineering and Decision Support Research Center
2012-07-01
This paper proposes an energy resources management methodology based on three distinct time horizons: day-ahead scheduling, hour-ahead scheduling, and real-time scheduling. In each scheduling process the update of generation and consumption operation and of the storage and electric vehicles storage status are used. Besides the new operation conditions, the most accurate forecast values of wind generation and of consumption using results of short-term and very short-term methods are used. A case study considering a distribution network with intensive use of distributed generation and electric vehicles is presented. (orig.)
Dynamical resonance shift and unification of resonances in short-pulse laser-cluster interaction
Mahalik, S. S.; Kundu, M.
2018-06-01
Pronounced maximum absorption of laser light irradiating a rare-gas or metal cluster is widely expected during the linear resonance (LR) when Mie-plasma wavelength λM of electrons equals the laser wavelength λ . On the contrary, by performing molecular dynamics (MD) simulations of an argon cluster irradiated by short 5-fs (FWHM) laser pulses it is revealed that, for a given laser pulse energy and a cluster, at each peak intensity there exists a λ —shifted from the expected λM—that corresponds to a unified dynamical LR at which evolution of the cluster happens through very efficient unification of possible resonances in various stages, including (i) the LR in the initial time of plasma creation, (ii) the LR in the Coulomb expanding phase in the later time, and (iii) anharmonic resonance in the marginally overdense regime for a relatively longer pulse duration, leading to maximum laser absorption accompanied by maximum removal of electrons from cluster and also maximum allowed average charge states for the argon cluster. Increasing the laser intensity, the absorption maxima is found to shift to a higher wavelength in the band of λ ≈(1 -1.5 ) λM than permanently staying at the expected λM. A naive rigid sphere model also corroborates the wavelength shift of the absorption peak as found in MD and unequivocally proves that maximum laser absorption in a cluster happens at a shifted λ in the marginally overdense regime of λ ≈(1 -1.5 ) λM instead of λM of LR. The present study is important for guiding an optimal condition laser-cluster interaction experiment in the short-pulse regime.
The history of time a very short introduction
Holford-Strevens, Leofranc
2005-01-01
Leofranc Holford-Strevens explores time measurement and the organisation of time into hours, days, months and years using a range of fascinating examples from Ancient Rome and Julius Caesar's Leap Year, to the 1920s' project for a fixed Easter. - ;Why do we measure time in the way that we do? Why is a week seven days long? At what point did minutes and seconds come into being? Why are some calendars lunar and some solar? The organisation of time into hours, days, months and years seems immutable and universal, but is actually far more artificial than most people realise. The French Revolution
The use of Matlab for colour fuzzy representation of multichannel EEG short time spectra.
Bigan, C; Strungaru, R
1998-01-01
During the last years, a lot of EEG research efforts was directed to intelligent methods for automatic analysis of data from multichannel EEG recordings. However, all the applications reported were focused on specific single tasks like detection of one specific "event" in the EEG signal: spikes, sleep spindles, epileptic seizures, K complexes, alpha or other rhythms or even artefacts. The aim of this paper is to present a complex system being able to perform a representation of the dynamic changes in frequency components of each EEG channel. This representation uses colours as a powerful means to show the only one frequency range chosen from the shortest epoch of signal able to be processed with the conventional "Short Time Fast Fourier Transform" (S.T.F.F.T.) method.
DEFF Research Database (Denmark)
Barletta, Andrea; Nicolato, Elisa; Pagliarani, Stefano
error bounds for VIX futures, options and implied volatilities. In particular, we derive exact asymptotic results for VIX implied volatilities, and their sensitivities, in the joint limit of short time-to-maturity and small log-moneyness. The obtained expansions are explicit, based on elementary...... approximations of equity (SPX) options. However, the generalizations needed to cover the case of VIX options are by no means straightforward as the dynamics of the underlying VIX futures are not explicitly known. To illustrate the accuracy of our technique, we provide numerical implementations for a selection...... functions and they neatly uncover how the VIX skew depends on the specific choice of the volatility and the vol-of-vol processes. Our results are based on perturbation techniques applied to the infinitesimal generator of the underlying process. This methodology has been previously adopted to derive...
Task set induces dynamic reallocation of resources in visual short-term memory.
Sheremata, Summer L; Shomstein, Sarah
2017-08-01
Successful interaction with the environment requires the ability to flexibly allocate resources to different locations in the visual field. Recent evidence suggests that visual short-term memory (VSTM) resources are distributed asymmetrically across the visual field based upon task demands. Here, we propose that context, rather than the stimulus itself, determines asymmetrical distribution of VSTM resources. To test whether context modulates the reallocation of resources to the right visual field, task set, defined by memory-load, was manipulated to influence visual short-term memory performance. Performance was measured for single-feature objects embedded within predominantly single- or two-feature memory blocks. Therefore, context was varied to determine whether task set directly predicts changes in visual field biases. In accord with the dynamic reallocation of resources hypothesis, task set, rather than aspects of the physical stimulus, drove improvements in performance in the right- visual field. Our results show, for the first time, that preparation for upcoming memory demands directly determines how resources are allocated across the visual field.
Directory of Open Access Journals (Sweden)
Luca Faes
2017-01-01
Full Text Available The most common approach to assess the dynamical complexity of a time series across multiple temporal scales makes use of the multiscale entropy (MSE and refined MSE (RMSE measures. In spite of their popularity, MSE and RMSE lack an analytical framework allowing their calculation for known dynamic processes and cannot be reliably computed over short time series. To overcome these limitations, we propose a method to assess RMSE for autoregressive (AR stochastic processes. The method makes use of linear state-space (SS models to provide the multiscale parametric representation of an AR process observed at different time scales and exploits the SS parameters to quantify analytically the complexity of the process. The resulting linear MSE (LMSE measure is first tested in simulations, both theoretically to relate the multiscale complexity of AR processes to their dynamical properties and over short process realizations to assess its computational reliability in comparison with RMSE. Then, it is applied to the time series of heart period, arterial pressure, and respiration measured for healthy subjects monitored in resting conditions and during physiological stress. This application to short-term cardiovascular variability documents that LMSE can describe better than RMSE the activity of physiological mechanisms producing biological oscillations at different temporal scales.
Short Vigilance Tasks are Hard Work Even If Time Flies
2016-10-21
maintaining the data needed , and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other...actual time. Upon completion of the task, participants filled out questionnaires related to the hedonic and temporal evaluation of the task. Participants...time. Upon completion of the task, participants filled out questionnaires related to the hedonic and temporal evaluation of the task. Participants
Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay.
Liu, Dong; Sun, Changzheng; Xiong, Bing; Luo, Yi
2014-03-10
We report rich nonlinear dynamics in integrated coupled lasers with ultra-short coupling delay. Mutually stable locking, period-1 oscillation, frequency locking, quasi-periodicity and chaos are observed experimentally. The dynamic behaviors are reproduced numerically by solving coupled delay differential equations that take the variation of both frequency detuning and coupling phase into account. Moreover, it is pointed out that the round-trip frequency is not involved in the above nonlinear dynamical behaviors. Instead, the relationship between the frequency detuning Δν and the relaxation oscillation frequency νr under mutual injection are found to be critical for the various observed dynamics in mutually coupled lasers with very short delay.
Perception of short time scale intervals in a hypnotic virtuoso
Noreika, Valdas; Falter, Christine M.; Arstila, Valtteri; Wearden, John H.; Kallio, Sakari
2012-01-01
Previous studies showed that hypnotized individuals underestimate temporal intervals in the range of several seconds to tens of minutes. However, no previous work has investigated whether duration perception is equally disorderly when shorter time intervals are probed. In this study, duration
Dollars and Deadlines: Rule Reforms in Short Time Frames
ABSTRACT: In "At Last! Aye, and there's the Rub" (i.e., the target article for this commentary), Capron describes challenges related to the timing for development, adoption, and revision of the Common Rule. Specifically, what the National Commission thought would be a...
Tests for nonlinearity in short stationary time series
International Nuclear Information System (INIS)
Chang, T.; Sauer, T.; Schiff, S.J.
1995-01-01
To compare direct tests for detecting determinism in chaotic time series, data from Henon, Lorenz, and Mackey--Glass equations were contaminated with various levels of additive colored noise. These data were analyzed with a variety of recently developed tests for determinism, and the results compared
SHORT LITERATURE REVIEW ON THE KINEMATICS AND DYNAMICS OF THE INDUSTRIAL ROBOTS
RATIU Mariana
2016-01-01
This paper is the result of a short literature review on the kinematics and dynamics of the industrial robots, a first study conducted in a wider research that will be further developed in the field of the trajectory generating mechanisms of the industrial robots. After an introduction about the importance of the robots in the industrial processes and about the necessity to streamline and optimize the robot`s motion, are presented some recent approaches related to the kinematic and dynamic an...
Relationships between Isometric Force-Time Characteristics and Dynamic Performance
Directory of Open Access Journals (Sweden)
Thomas Dos’Santos
2017-09-01
Full Text Available The purpose of this study was to explore the relationships between isometric mid-thigh pull (IMTP force-time characteristics (peak force and time-specific force vales (100–250 ms and dynamic performance and compare dynamic performance between stronger and weaker athletes. Forty-three athletes from different sports (rowing, soccer, bicycle motocross, and hockey performed three trials of the squat jump (SJ, countermovement jump (CMJ, and IMTP, and performed a one repetition maximum power clean (PC. Reactive strength index modified (RSImod was also calculated from the CMJ. Statistically significant large correlations between IMTP force-time characteristics and PC (ρ = 0.569–0.674, p < 0.001, and moderate correlations between IMTP force-time characteristics (excluding force at 100 ms and RSImod (ρ = 0.389–0.449, p = 0.013–0.050 were observed. Only force at 250 ms demonstrated a statistically significant moderate correlation with CMJ height (ρ = 0.346, p = 0.016 and no statistically significant associations were observed between IMTP force-time characteristics and SJ height. Stronger athletes (top 10 demonstrated statistically significantly greater CMJ heights, RSImods, and PCs (p ≤ 0.004, g = 1.32–1.89 compared to weaker (bottom 10 athletes, but no differences in SJ height were observed (p = 0.871, g = 0.06. These findings highlight that the ability to apply rapidly high levels of force in short time intervals is integral for PC, CMJ height, and reactive strength.
Exploiting short-term memory in soft body dynamics as a computational resource.
Nakajima, K; Li, T; Hauser, H; Pfeifer, R
2014-11-06
Soft materials are not only highly deformable, but they also possess rich and diverse body dynamics. Soft body dynamics exhibit a variety of properties, including nonlinearity, elasticity and potentially infinitely many degrees of freedom. Here, we demonstrate that such soft body dynamics can be employed to conduct certain types of computation. Using body dynamics generated from a soft silicone arm, we show that they can be exploited to emulate functions that require memory and to embed robust closed-loop control into the arm. Our results suggest that soft body dynamics have a short-term memory and can serve as a computational resource. This finding paves the way towards exploiting passive body dynamics for control of a large class of underactuated systems. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Effect of short-chain branching on interfacial polymer structure and dynamics under shear flow.
Jeong, Sohdam; Kim, Jun Mo; Cho, Soowon; Baig, Chunggi
2017-11-22
We present a detailed analysis on the effect of short-chain branches on the structure and dynamics of interfacial chains using atomistic nonequilibrium molecular dynamics simulations of confined polyethylene melts in a wide range of shear rates. The intrinsically fast random motions of the short branches constantly disturb the overall chain conformation, leading to a more compact and less deformed chain structure of the short-chain branched (SCB) polymer against the imposed flow field in comparison with the corresponding linear polymer. Moreover, such highly mobile short branches along the backbone of the SCB polymer lead to relatively weaker out-of-plane wagging dynamics of interfacial chains, with highly curvy backbone structures in the intermediate flow regime. In conjunction with the contribution of short branches (as opposed to that of the backbone) to the total interfacial friction between the chains and the wall, the SCB polymer shows a nearly constant behavior in the degree of slip (d s ) with respect to shear rate in the weak-to-intermediate flow regimes. On the contrary, in the strong flow regime where irregular chain rotation and tumbling dynamics occur via intensive dynamical collisions between interfacial chains and the wall, an enhancement effect on the chain detachment from the wall, caused by short branches, leads to a steeper increase in d s for the SCB polymer than for the linear polymer. Remarkably, the SCB chains at the interface exhibit two distinct types of rolling mechanisms along the backbone, with a half-dumbbell mesoscopic structure at strong flow fields, in addition to the typical hairpin-like tumbling behavior displayed by the linear chains.
SABIL, SYAHRIANA
2015-01-01
2015 SYAHRIANA SABIL (I 111 11 273). Pasteurisasi High Temperature Short Time (HTST) Susu terhadap Listeria monocytogenes pada Penyimpanan Refrigerator. Dibimbing oleh RATMAWATI MALAKA dan FARIDA NUR YULIATI. Pasteurisasi High Temperature Short Time (HTST) merupakan proses pemanasan susu di bawah titik didih yang diharapkan dapat membunuh Listeria monocytogenes (L. monocytogenes) karena bersifat patogen dan mengakibatkan listeriosis yang merupakan penyakit zoonosis. Tu...
Dynamic behavior of HTSC opening switch models controlled by short over-critical current pulses
International Nuclear Information System (INIS)
Agafonov, A.V.; Krastelev, E.G.; Voronin, V.S.
1999-01-01
We present results of experimental research of dynamical properties of thin films of YBa 2 Cu 3 O 7 HTSC-switch models under action of short overcritical current pulses to test this method of control of fast high-power opening switches for accelerator applications
Short-term dynamics of second-growth mixed mesophytic forest strata in West Virginia
Cynthia C. Huebner; Steven L. Stephenson; Harold S. Adams; Gary W. Miller
2007-01-01
The short-term dynamics of mixed mesophytic forest strata in West Virginia were examined using similarity analysis and linear correlation of shared ordination space. The overstory tree, understory tree, shrub/vine, and herb strata were stable over a six year interval, whereas the tree seedling and sapling strata were unstable. All strata but the shrub/vine and tree...
Time manages interference in visual short-term memory.
Smith, Amy V; McKeown, Denis; Bunce, David
2017-09-01
Emerging evidence suggests that age-related declines in memory may reflect a failure in pattern separation, a process that is believed to reduce the encoding overlap between similar stimulus representations during memory encoding. Indeed, behavioural pattern separation may be indexed by a visual continuous recognition task in which items are presented in sequence and observers report for each whether it is novel, previously viewed (old), or whether it shares features with a previously viewed item (similar). In comparison to young adults, older adults show a decreased pattern separation when the number of items between "old" and "similar" items is increased. Yet the mechanisms of forgetting underpinning this type of recognition task are yet to be explored in a cognitively homogenous group, with careful control over the parameters of the task, including elapsing time (a critical variable in models of forgetting). By extending the inter-item intervals, number of intervening items and overall decay interval, we observed in a young adult sample (N = 35, M age = 19.56 years) that the critical factor governing performance was inter-item interval. We argue that tasks using behavioural continuous recognition to index pattern separation in immediate memory will benefit from generous inter-item spacing, offering protection from inter-item interference.
DEFF Research Database (Denmark)
Dorn, Jochen
on Forex, interest rates and commodities. If an investor positions himself on the (volatility) market within a long/short trading framework, he typically bets on a traditional mispricing arbitrage. However as this corresponds to a call spread with equal exercise prices, this strategy alone would...
Waiting Time Dynamics in Two-Dimensional Infrared Spectroscopy
Jansen, Thomas L. C.; Knoester, Jasper
We review recent work on the waiting time dynamics of coherent two-dimensional infrared (2DIR) spectroscopy. This dynamics can reveal chemical and physical processes that take place on the femto- and picosecond time scale, which is faster than the time scale that may be probed by, for example,
Cerveau, Nicolas; Leclercq, Sébastien; Leroy, Elodie; Bouchon, Didier; Cordaux, Richard
2011-01-01
Transposable elements (TE) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Long-term TE evolution can readily be reconstructed in eukaryotes, thanks to many degraded copies constituting genomic fossil records of past TE proliferations. By contrast, bacterial genomes usually experience high sequence turnover and short TE retention times, thereby obscuring ancient TE evolutionary patterns. We found that Wolbachia bacterial genomes contain 52-171 insertion sequence (IS) TEs. IS account for 11% of Wolbachia wRi, which is one of the highest IS genomic coverage reported in prokaryotes to date. We show that many IS groups are currently expanding in various Wolbachia genomes and that IS horizontal transfers are frequent among strains, which can explain the apparent synchronicity of these IS proliferations. Remarkably, >70% of Wolbachia IS are nonfunctional. They constitute an unusual bacterial IS genomic fossil record providing direct empirical evidence for a long-term IS evolutionary dynamics following successive periods of intense transpositional activity. Our results show that comprehensive IS annotations have the potential to provide new insights into prokaryote TE evolution and, more generally, prokaryote genome evolution. Indeed, the identification of an important IS genomic fossil record in Wolbachia demonstrates that IS elements are not always of recent origin, contrary to the conventional view of TE evolution in prokaryote genomes. Our results also raise the question whether the abundance of IS fossils is specific to Wolbachia or it may be a general, albeit overlooked, feature of prokaryote genomes.
Dynamical structure of space and time
International Nuclear Information System (INIS)
Sannikov-Proskuryakov, S.S.
2000-01-01
A mathematically correct solution of the problem of ultraviolet divergences requires a radical change of our ideas on space and matter. We show that the space is a discontinuum in small which is the carrier of a new dynamical structure. Taking into account this structure, a new theory of elementary particles can be suggested
Detection of dynamically varying interaural time differences
DEFF Research Database (Denmark)
Kohlrausch, Armin; Le Goff, Nicolas; Breebaart, Jeroen
2010-01-01
of fringes surrounding the probe is equal to the addition of the effects of the individual fringes. In this contribution, we present behavioral data for the same experimental condition, called dynamically varying ITD detection, but for a wider range of probe and fringe durations. Probe durations varied...
A Dynamic Travel Time Estimation Model Based on Connected Vehicles
Directory of Open Access Journals (Sweden)
Daxin Tian
2015-01-01
Full Text Available With advances in connected vehicle technology, dynamic vehicle route guidance models gradually become indispensable equipment for drivers. Traditional route guidance models are designed to direct a vehicle along the shortest path from the origin to the destination without considering the dynamic traffic information. In this paper a dynamic travel time estimation model is presented which can collect and distribute traffic data based on the connected vehicles. To estimate the real-time travel time more accurately, a road link dynamic dividing algorithm is proposed. The efficiency of the model is confirmed by simulations, and the experiment results prove the effectiveness of the travel time estimation method.
Neural dynamics underlying attentional orienting to auditory representations in short-term memory.
Backer, Kristina C; Binns, Malcolm A; Alain, Claude
2015-01-21
Sounds are ephemeral. Thus, coherent auditory perception depends on "hearing" back in time: retrospectively attending that which was lost externally but preserved in short-term memory (STM). Current theories of auditory attention assume that sound features are integrated into a perceptual object, that multiple objects can coexist in STM, and that attention can be deployed to an object in STM. Recording electroencephalography from humans, we tested these assumptions, elucidating feature-general and feature-specific neural correlates of auditory attention to STM. Alpha/beta oscillations and frontal and posterior event-related potentials indexed feature-general top-down attentional control to one of several coexisting auditory representations in STM. Particularly, task performance during attentional orienting was correlated with alpha/low-beta desynchronization (i.e., power suppression). However, attention to one feature could occur without simultaneous processing of the second feature of the representation. Therefore, auditory attention to memory relies on both feature-specific and feature-general neural dynamics. Copyright © 2015 the authors 0270-6474/15/351307-12$15.00/0.
Kundu, Mainak; He, Ting-Fang; Lu, Yangyi; Wang, Lijuan; Zhong, Dongping
2018-05-03
Short-range electron transfer (ET) in proteins is an ultrafast process on the similar timescales as local protein-solvent fluctuations thus the two dynamics are coupled. Here, we use semiquinone flavodoxin and systematically characterized the photoinduced redox cycle with eleven mutations of different aromatic electron donors (tryptophan and tyrosine) and local residues to change redox properties. We observed the forward and backward ET dynamics in a few picoseconds, strongly following a stretched behavior resulting from a coupling between local environment relaxations and these ET processes. We further observed the hot vibrational-state formation through charge recombination and the subsequent cooling dynamics also in a few picoseconds. Combined with the ET studies in oxidized flavodoxin, these results coherently reveal the evolution of the ET dynamics from single to stretched exponential behaviors and thus elucidate critical timescales for the coupling. The observed hot vibration-state formation is robust and should be considered in all photoinduced back ET processes in flavoproteins.
Determination of rail wear and short-time wear measurements of rails applying radioisotopes
International Nuclear Information System (INIS)
Grohmann, H.D.
1981-01-01
An energetic model has been developed for calculating rail wear. Short-time wear tests on rails after surface activation and following activity measurements showed a good agreement with the calculated values
Time for a change: dynamic urban ecology.
Ramalho, Cristina E; Hobbs, Richard J
2012-03-01
Contemporary cities are expanding rapidly in a spatially complex, non-linear manner. However, this form of expansion is rarely taken into account in the way that urbanization is classically assessed in ecological studies. An explicit consideration of the temporal dynamics, although frequently missing, is crucial in order to understand the effects of urbanization on biodiversity and ecosystem functioning in rapidly urbanizing landscapes. In particular, a temporal perspective highlights the importance of land-use legacies and transient dynamics in the response of biodiversity to environmental change. Here, we outline the essential elements of an emerging framework for urban ecology that incorporates the characteristics of contemporary urbanization and thus empowers ecologists to understand and intervene in the planning and management of cities. Copyright Â© 2011 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
V. A. Anischenko
2011-01-01
Full Text Available The paper shows that failure to take into account variable ratio of short-time emergency overloading of turbo-generators (synchronous compensators that can lead to underestimation of overloading capacity or impermissible insulation over-heating.A method has been developed for determination of permissible duration of short-time emergency over-loading that takes into account changes of over-loading ratio in case of a failure.
SHORT LITERATURE REVIEW ON THE KINEMATICS AND DYNAMICS OF THE INDUSTRIAL ROBOTS
Directory of Open Access Journals (Sweden)
RATIU Mariana
2016-09-01
Full Text Available This paper is the result of a short literature review on the kinematics and dynamics of the industrial robots, a first study conducted in a wider research that will be further developed in the field of the trajectory generating mechanisms of the industrial robots. After an introduction about the importance of the robots in the industrial processes and about the necessity to streamline and optimize the robot`s motion, are presented some recent approaches related to the kinematic and dynamic analysis, the optimization of the robot`s motion, and modeling of the trajectory generating mechanism of the industrial robots.
Stability Analysis on Sparsely Encoded Associative Memory with Short-Term Synaptic Dynamics
Xu, Muyuan; Katori, Yuichi; Aihara, Kazuyuki
This study investigates the stability of sparsely encoded associative memory in a network composed of stochastic neurons. The incorporation of short-term synaptic dynamics significantly changes the stability with respect to synaptic properties. Various states including static and oscillatory states are found in the network dynamics. Specifically, the sparseness of memory patterns raises the problem of spurious states. A mean field model is used to analyze the detailed structure in the stability and show that the performance of memory retrieval is recovered by appropriate feedback.
Time-dependent Bragg diffraction and short-pulse reflection by one-dimensional photonic crystals
International Nuclear Information System (INIS)
André, Jean-Michel; Jonnard, Philippe
2015-01-01
The time-dependence of the Bragg diffraction by one-dimensional photonic crystals and its influence on the short pulse reflection are studied in the framework of the coupled-wave theory. The indicial response of the photonic crystal is calculated and it appears that it presents a time-delay effect with a transient time conditioned by the extinction length. A numerical simulation is presented for a Bragg mirror in the x-ray domain and a pulse envelope modelled by a sine-squared shape. The potential consequences of the time-delay effect in time-dependent optics of short-pulses are emphasized. (paper)
Dynamic travel time estimation using regression trees.
2008-10-01
This report presents a methodology for travel time estimation by using regression trees. The dissemination of travel time information has become crucial for effective traffic management, especially under congested road conditions. In the absence of c...
Dynamical Detection of Topological Phase Transitions in Short-Lived Atomic Systems
Setiawan, F.; Sengupta, K.; Spielman, I. B.; Sau, Jay D.
2015-01-01
We demonstrate that dynamical probes provide direct means of detecting the topological phase transition (TPT) between conventional and topological phases, which would otherwise be difficult to access because of loss or heating processes. We propose to avoid such heating by rapidly quenching in and out of the short-lived topological phase across the transition that supports gapless excitations. Following the quench, the distribution of excitations in the final conventional phase carries signat...
Continuous administration of short-lived isotopes for evaluating dynamic parameters
International Nuclear Information System (INIS)
Selikson, M.
1985-01-01
In this paper it is shown that continuous but varying infusions (specifically, exponential infusions) of a short-lived radionuclide can be used to evaluate a wide range of dynamic parameters. The detector response to exponential infusions is derived. An example of an inert diffusible substrate for evaluating regional flow and a glucose model for evaluating regional metabolic rate are both worked out. The advantages of using exponential infusion methods are discussed
Bounds of Certain Dynamic Inequalities on Time Scales
Directory of Open Access Journals (Sweden)
Deepak B. Pachpatte
2014-10-01
Full Text Available In this paper we study explicit bounds of certain dynamic integral inequalities on time scales. These estimates give the bounds on unknown functions which can be used in studying the qualitative aspects of certain dynamic equations. Using these inequalities we prove the uniqueness of some partial integro-differential equations on time scales.
Distributed Time Synchronization Algorithms and Opinion Dynamics
Manita, Anatoly; Manita, Larisa
2018-01-01
We propose new deterministic and stochastic models for synchronization of clocks in nodes of distributed networks. An external accurate time server is used to ensure convergence of the node clocks to the exact time. These systems have much in common with mathematical models of opinion formation in multiagent systems. There is a direct analogy between the time server/node clocks pair in asynchronous networks and the leader/follower pair in the context of social network models.
Intense field stabilization in circular polarization: Three-dimensional time-dependent dynamics
International Nuclear Information System (INIS)
Choi, Dae-Il; Chism, Will
2002-01-01
We investigate the stabilization of hydrogen atoms in a circularly polarized laser field. We use a three-dimensional, time-dependent approach to study the quantum dynamics of hydrogen atoms subject to high-intensity, short-wavelength, laser pulses. We find an enhanced survival probability as the field is increased under fixed envelope conditions. We also confirm wave packet behaviors previously seen in two-dimensional time-dependent computations
Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.
Limongi, Roberto; Silva, Angélica M
2016-11-01
The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.
Psychometric properties of the Hebrew short version of the Zimbardo Time Perspective Inventory.
Orkibi, Hod
2015-06-01
The purpose of this study was to develop a short Hebrew version of the Zimbardo Time Perspective Inventory that can be easily administered by health professionals in research, therapy, and counseling. First, the empirical links of time perspective (TP) to subjective well-being and health protective and health risk behaviors are reviewed. Then, a brief account of the instrument's previous modifications is provided. Results of confirmatory factor analysis (N = 572) verified the five-factor structure of the short version and yielded acceptable internal consistency reliability for each factor. The correlation coefficients between the five subscales of the short (20 items) and the original (56 items) instruments were all above .79, indicating the suitability of the short version for assessing the five TP factors. Support for the discriminant and concurrent validity was also achieved, largely in agreement with previous findings. Finally, limitations and future directions are addressed, and potential applications in therapy and counseling are offered. © The Author(s) 2014.
Real-time mobile customer short message system design and implementation
Han, Qirui; Sun, Fang
To expand the current mobile phone short message service, and to make the contact between schools, teachers, parents and feedback of the modern school office system more timely and conveniently, designed and developed the Short Message System based on the Linux platform. The state-of-the-art principles and designed proposals in the Short Message System based on the Linux platform are introduced. Finally we propose an optimized secure access authentication method. At present, many schools,vbusinesses and research institutions ratify the promotion and application the messaging system gradually, which has shown benign market prospects.
Stability theory for dynamic equations on time scales
Martynyuk, Anatoly A
2016-01-01
This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems. In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Ma...
Variation in the local population dynamics of the short-lived Opuntia macrorhiza (Cactaceae).
Haridas, C V; Keeler, Kathleen H; Tenhumberg, Brigitte
2015-03-01
Spatiotemporal variation in demographic rates can have profound effects for population persistence, especially for dispersal-limited species living in fragmented landscapes. Long-term studies of plants in such habitats help with understanding the impacts of fragmentation on population persistence but such studies are rare. In this work, we reanalyzed demographic data from seven years of the short-lived cactus Opuntia macrorhiza var. macrorhiza at five plots in Boulder, Colorado. Previous work combining data from all years and all plots predicted a stable population (deterministic log lamda approximately 0). This approach assumed that all five plots were part of a single population. Since the plots were located in a suburban-agricultural interface separated by highways, grazing lands, and other barriers, and O. macrorhiza is likely dispersal limited, we analyzed the dynamics of each plot separately using stochastic matrix models assuming each plot represented a separate population. We found that the stochastic population growth rate log lamdaS varied widely between populations (log lamdaS = 0.1497, 0.0774, -0.0230, -0.2576, -0.4989). The three populations with the highest growth rates were located close together in space, while the two most isolated populations had the lowest growth rates suggesting that dispersal between populations is critical for the population viability of O. macrorhiza. With one exception, both our prospective (stochastic elasticity) and retrospective (stochastic life table response experiments) analysis suggested that means of stasis and growth, especially of smaller plants, were most important for population growth rate. This is surprising because recruitment is typically the most important vital rate in a short-lived species such as O. macrorhiza. We found that elasticity to the variance was mostly negligible, suggesting that O. macrorhiza populations are buffered against large temporal variation. Finally, single-year elasticities to means
Directory of Open Access Journals (Sweden)
Tanti Octavia
2003-01-01
Full Text Available A Modified Giffler and Thompson algorithm combined with dynamic slack time is used to allocate machines resources in dynamic nature. It was compared with a Real Time Order Promising (RTP algorithm. The performance of modified Giffler and Thompson and RTP algorithms are measured by mean tardiness. The result shows that modified Giffler and Thompson algorithm combined with dynamic slack time provides significantly better result compared with RTP algorithm in terms of mean tardiness.
Family dynamics and first-time homeownership
Smits, A.; Mulder, C.H.
2008-01-01
The transition to first-time homeownership is related to household events such as cohabitation and marriage as well as to parents' homeownership. This paper investigates how these relationships have changed during the last few decades, using the first wave of the Netherlands Kinship Panel Study and
Exploitation and exploration dynamics in recessionary times
Walrave, B.
2012-01-01
Firm performance largely depends on the ability to adapt to, and exploit, changes in the business environment. That is, firms should maintain ecological fitness by reconfiguring their resource base to cope with emerging threats and explore new opportunities, while at the same time exploiting
Short term outcome of posterior dynamic stabilization system in degenerative lumbar diseases.
Yang, Mingyuan; Li, Chao; Chen, Ziqiang; Bai, Yushu; Li, Ming
2014-11-01
Decompression and fusion is considered as the 'gold standard' for the treatment of degenerative lumbar diseases, however, many disadvantages have been reported in several studies, recently like donor site pain, pseudoarthrosis, nonunion, screw loosening, instrumentation failure, infection, adjacent segment disease (ASDis) and degeneration. Dynamic neutralization system (Dynesys) avoids many of these disadvantages. This system is made up of pedicle screws, polyethylene terephthalate cords, and polycarbonate urethane spacers to stabilize the functional spinal unit and preserve the adjacent motion after surgeries. This was a retrospective cohort study to compare the effect of Dynesys for treating degenerative lumbar diseases with posterior lumbar interbody fusion (PLIF) based on short term followup. Seventy five consecutive patients of lumbar degenerative disease operated between October 2010 and November 2012 were studied with a minimum followup of 2 years. Patients were divided into two groups according to the different surgeries. 30 patients underwent decompression and implantation of Dynesys in two levels (n = 29) or three levels (n = 1) and 45 patients underwent PLIF in two levels (n = 39) or three levels (n = 6). Clinical and radiographic outcomes between two groups were reviewed. Thirty patients (male:17, female:13) with a mean age of 55.96 ± 7.68 years were included in Dynesys group and the PLIF group included 45 patients (male:21, female:24) with a mean age of 54.69 ± 3.26 years. The average followup in Dynesys group and PLIF group was 2.22 ± 0.43 year (range 2-3.5 year) and 2.17 ± 0.76 year (range 2-3 year), respectively. Dynesys group showed a shorter operation time (141.06 ± 11.36 min vs. 176.98 ± 6.72 min, P degenerative disease showed clinical benefits with motion preservation of the operated segments, but does not have the significant advantage on motion preservation at adjacent segments, to avoid the degeneration of adjacent intervertebral disk.
Exploitation and exploration dynamics in recessionary times
Walrave, B.
2012-01-01
Firm performance largely depends on the ability to adapt to, and exploit, changes in the business environment. That is, firms should maintain ecological fitness by reconfiguring their resource base to cope with emerging threats and explore new opportunities, while at the same time exploiting existing resources. As such, firms possessing the ability to simultaneously perform exploitative and explorative initiatives are more resilient. In this respect, the performance implications of balancing ...
Energy Technology Data Exchange (ETDEWEB)
Zhang Yu, E-mail: yuzhang@xmu.edu.cn [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen Fujian 361005 (China); Sprecher, Alicia J. [Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-7375 (United States); Zhao Zongxi [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen Fujian 361005 (China); Jiang, Jack J. [Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-7375 (United States)
2011-09-15
Highlights: > The VWK method effectively detects the nonlinearity of a discrete map. > The method describes the chaotic time series of a biomechanical vocal fold model. > Nonlinearity in laryngeal pathology is detected from short and noisy time series. - Abstract: In this paper, we apply the Volterra-Wiener-Korenberg (VWK) model method to detect nonlinearity in disordered voice productions. The VWK method effectively describes the nonlinearity of a third-order nonlinear map. It allows for the analysis of short and noisy data sets. The extracted VWK model parameters show an agreement with the original nonlinear map parameters. Furthermore, the VWK mode method is applied to successfully assess the nonlinearity of a biomechanical voice production model simulating irregular vibratory dynamics of vocal folds with a unilateral vocal polyp. Finally, we show the clinical applicability of this nonlinear detection method to analyze the electroglottographic data generated by 14 patients with vocal nodules or polyps. The VWK model method shows potential in describing the nonlinearity inherent in disordered voice productions from short and noisy time series that are common in the clinical setting.
International Nuclear Information System (INIS)
Zhang Yu; Sprecher, Alicia J.; Zhao Zongxi; Jiang, Jack J.
2011-01-01
Highlights: → The VWK method effectively detects the nonlinearity of a discrete map. → The method describes the chaotic time series of a biomechanical vocal fold model. → Nonlinearity in laryngeal pathology is detected from short and noisy time series. - Abstract: In this paper, we apply the Volterra-Wiener-Korenberg (VWK) model method to detect nonlinearity in disordered voice productions. The VWK method effectively describes the nonlinearity of a third-order nonlinear map. It allows for the analysis of short and noisy data sets. The extracted VWK model parameters show an agreement with the original nonlinear map parameters. Furthermore, the VWK mode method is applied to successfully assess the nonlinearity of a biomechanical voice production model simulating irregular vibratory dynamics of vocal folds with a unilateral vocal polyp. Finally, we show the clinical applicability of this nonlinear detection method to analyze the electroglottographic data generated by 14 patients with vocal nodules or polyps. The VWK model method shows potential in describing the nonlinearity inherent in disordered voice productions from short and noisy time series that are common in the clinical setting.
A short-time fading study of Al2O3:C
International Nuclear Information System (INIS)
Nascimento, L.F.; Vanhavere, F.; Silva, E.H.; Deene, Y. De
2015-01-01
This paper studies the short-time fading from Al 2 O 3 :C by measuring optically stimulated luminescence (OSL) signals (Total OSL: T OSL , and Peak OSL: P OSL ) from droplets and Luxel™ pellets. The influence of various bleaching regimes (blue, green and white) and light power is compared. The fading effect is the decay of the OSL signal in the dark at room temperature. Al 2 O 3 :C detectors were submitted to various bleaching regimes, irradiated with a reference dose and read out after different time spans. Investigations were carried out using 2 mm size droplet detectors, made of thin Al 2 O 3 :C powder mixed with a photocured polymer. Tests were compared to Luxel™-type detectors (Landauer Inc.). Short-time post-irradiation fading is present in OSL results (T OSL and P OSL ) droplets for time spans up to 200 s. The effect of short-time fading can be lowered/removed when treating the detectors with high-power and/or long time bleaching regimes; this result was observed in both T OSL and P OSL from droplets and Luxel™. - Highlights: • Droplet composed of thin powder of Al 2 O 3 :C was prepared using a photo-curable polymer. • Powder grain sizes ranged from 5 μm to 35 μm. • Short-time fading was measured for irradiated samples. • Various bleaching regimes and light power was tested. • Droplets were compared to a commercially dosimeter, Luxel™
Human-Structure Dynamic Interaction during Short-Distance Free Falls
Directory of Open Access Journals (Sweden)
E. Shahabpoor
2016-01-01
Full Text Available The dynamic interactions of falling human bodies with civil structures, regardless of their potentially critical effects, have sparsely been researched in contact biomechanics. The physical contact models suggested in the existing literature, particularly for short-distant falls in home settings, assume the human body falls on a “rigid” (not vibrating ground. A similar assumption is usually made during laboratory-based fall tests, including force platforms. Based on observations from a set of pediatric head-first free fall tests, the present paper shows that the dynamics of the grounded force plate are not always negligible when doing fall test in a laboratory setting. By using a similar analogy for lightweight floor structures, it is shown that ignoring the dynamics of floors in the contact model can result in an up to 35% overestimation of the peak force experienced by a falling human. A nonlinear contact model is suggested, featuring an agent-based modelling approach, where the dynamics of the falling human and the impact object (force plate or a floor structure here are each modelled using a single-degree-of-freedom model to simulate their dynamic interactions. The findings of this research can have wide applications in areas such as impact biomechanics and sports science.
Directory of Open Access Journals (Sweden)
Hazem eToutounji
2014-05-01
Full Text Available The behavior and skills of living systems depend on the distributed control provided by specialized and highly recurrent neural networks. Learning and memory in these systems is mediated by a set of adaptation mechanisms, known collectively as neuronal plasticity. Translating principles of recurrent neural control and plasticity to artificial agents has seen major strides, but is usually hampered by the complex interactions between the agent's body and its environment. One of the important standing issues is for the agent to support multiple stable states of behavior, so that its behavioral repertoire matches the requirements imposed by these interactions. The agent also must have the capacity to switch between these states in time scales that are comparable to those by which sensory stimulation varies. Achieving this requires a mechanism of short-term memory that allows the neurocontroller to keep track of the recent history of its input, which finds its biological counterpart in short-term synaptic plasticity. This issue is approached here by deriving synaptic dynamics in recurrent neural networks. Neurons are introduced as self-regulating units with a rich repertoire of dynamics. They exhibit homeostatic properties for certain parameter domains, which result in a set of stable states and the required short-term memory. They can also operate as oscillators, which allow them to surpass the level of activity imposed by their homeostatic operation conditions. Neural systems endowed with the derived synaptic dynamics can be utilized for the neural behavior control of autonomous mobile agents. The resulting behavior depends also on the underlying network structure, which is either engineered, or developed by evolutionary techniques. The effectiveness of these self-regulating units is demonstrated by controlling locomotion of a hexapod with eighteen degrees of freedom, and obstacle-avoidance of a wheel-driven robot.
Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces
International Nuclear Information System (INIS)
Brown, W. Michael; Wang, Peng; Plimpton, Steven J.; Tharrington, Arnold N.
2011-01-01
The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - (1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory, (2) minimizing the amount of code that must be ported for efficient acceleration, (3) utilizing the available processing power from both many-core CPUs and accelerators, and (4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.
Real time simulation method for fast breeder reactors dynamics
International Nuclear Information System (INIS)
Miki, Tetsushi; Mineo, Yoshiyuki; Ogino, Takamichi; Kishida, Koji; Furuichi, Kenji.
1985-01-01
The development of multi-purpose real time simulator models with suitable plant dynamics was made; these models can be used not only in training operators but also in designing control systems, operation sequences and many other items which must be studied for the development of new type reactors. The prototype fast breeder reactor ''Monju'' is taken as an example. Analysis is made on various factors affecting the accuracy and computer load of its dynamic simulation. A method is presented which determines the optimum number of nodes in distributed systems and time steps. The oscillations due to the numerical instability are observed in the dynamic simulation of evaporators with a small number of nodes, and a method to cancel these oscillations is proposed. It has been verified through the development of plant dynamics simulation codes that these methods can provide efficient real time dynamics models of fast breeder reactors. (author)
International Nuclear Information System (INIS)
Li, Xiling; Li, Chengyi; Chai, Guozhi
2017-01-01
A temperature dependence microwave permeability characterization system of magnetic thin film up to 10 GHz is designed and fabricated. This system can be used at temperatures ranging from room temperature to 200 °C, and is based on a shorted microstrip probe, which is made by microwave printed circuit board. Without contacting the magnetic thin films to the probe, the microwave permeability of the film can be detected without any limitations of sample size and with almost the same accuracy, as shown by comparison with the results obtained from a shorted microstrip transmission-line fixture. The complex permeability can be deduced by an analytical approach from the measured reflection coefficient of a strip line ( S 11 ) with and without a ferromagnetic film material on it. The procedures are the same with the shorted microstrip transmission-line method. The microwave permeability of an oblique deposited CoZr thin film was investigated with this probe. The results show that the room temperature dynamic permeability of the CoZr film is in good agreement with the results obtained from the established short-circuited microstrip perturbation method. The temperature dependence permeability results fit well with the Landau–Lifshitz–Gilbert equation. Development of the temperature-dependent measurement of the magnetic properties of magnetic thin film may be useful for the high-frequency application of magnetic devices at high temperatures. (paper)
Directory of Open Access Journals (Sweden)
Rui Xue
2015-01-01
Full Text Available Although bus passenger demand prediction has attracted increased attention during recent years, limited research has been conducted in the context of short-term passenger demand forecasting. This paper proposes an interactive multiple model (IMM filter algorithm-based model to predict short-term passenger demand. After aggregated in 15 min interval, passenger demand data collected from a busy bus route over four months were used to generate time series. Considering that passenger demand exhibits various characteristics in different time scales, three time series were developed, named weekly, daily, and 15 min time series. After the correlation, periodicity, and stationarity analyses, time series models were constructed. Particularly, the heteroscedasticity of time series was explored to achieve better prediction performance. Finally, IMM filter algorithm was applied to combine individual forecasting models with dynamically predicted passenger demand for next interval. Different error indices were adopted for the analyses of individual and hybrid models. The performance comparison indicates that hybrid model forecasts are superior to individual ones in accuracy. Findings of this study are of theoretical and practical significance in bus scheduling.
Complete Abstractions of Dynamical Systems by Timed Automata
DEFF Research Database (Denmark)
Sloth, Christoffer; Wisniewski, Rafael
2013-01-01
This paper addresses the generation of complete abstractions of polynomial dynamical systems by timed automata. For the proposed abstraction, the state space is divided into cells by sublevel sets of functions. We identify a relation between these functions and their directional derivatives along...... to approximate the dynamical system, in a subset of admissible subdivisioning functions....
Dynamic Factor Analysis of Nonstationary Multivariate Time Series.
Molenaar, Peter C. M.; And Others
1992-01-01
The dynamic factor model proposed by P. C. Molenaar (1985) is exhibited, and a dynamic nonstationary factor model (DNFM) is constructed with latent factor series that have time-varying mean functions. The use of a DNFM is illustrated using data from a television viewing habits study. (SLD)
Limitless capacity: A dynamic object-oriented approach to short-term memory
Directory of Open Access Journals (Sweden)
Bill eMacken
2015-03-01
Full Text Available The notion of capacity-limited processing systems is a core element of cognitive accounts of limited and variable performance, enshrined within the short-term memory construct. We begin with a detailed critical analysis of the conceptual bases of this view and argue that there are fundamental problems – ones that go to the heart of cognitivism more generally – that render it untenable. In place of limited capacity systems, we propose a framework for explaining performance that focuses on the dynamic interplay of three aspects of any given setting: the particular task that must be accomplished, the nature and form of the material upon which the task must be performed, and the repertoire of skills and perceptual-motor functions possessed by the participant. We provide empirical examples of the applications of this framework in areas of performance typically accounted for by reference to capacity-limited short-term memory processes.
Limitless capacity: a dynamic object-oriented approach to short-term memory.
Macken, Bill; Taylor, John; Jones, Dylan
2015-01-01
The notion of capacity-limited processing systems is a core element of cognitive accounts of limited and variable performance, enshrined within the short-term memory construct. We begin with a detailed critical analysis of the conceptual bases of this view and argue that there are fundamental problems - ones that go to the heart of cognitivism more generally - that render it untenable. In place of limited capacity systems, we propose a framework for explaining performance that focuses on the dynamic interplay of three aspects of any given setting: the particular task that must be accomplished, the nature and form of the material upon which the task must be performed, and the repertoire of skills and perceptual-motor functions possessed by the participant. We provide empirical examples of the applications of this framework in areas of performance typically accounted for by reference to capacity-limited short-term memory processes.
Dynamic visual noise reduces confidence in short-term memory for visual information.
Kemps, Eva; Andrade, Jackie
2012-05-01
Previous research has shown effects of the visual interference technique, dynamic visual noise (DVN), on visual imagery, but not on visual short-term memory, unless retention of precise visual detail is required. This study tested the prediction that DVN does also affect retention of gross visual information, specifically by reducing confidence. Participants performed a matrix pattern memory task with three retention interval interference conditions (DVN, static visual noise and no interference control) that varied from trial to trial. At recall, participants indicated whether or not they were sure of their responses. As in previous research, DVN did not impair recall accuracy or latency on the task, but it did reduce recall confidence relative to static visual noise and no interference. We conclude that DVN does distort visual representations in short-term memory, but standard coarse-grained recall measures are insensitive to these distortions.
Short- and long-term tannin induced carbon, nitrogen and phosphorus dynamics in Corsican pine litter
Nierop, K.G.J.; Verstraten, J.M.; Tietema, A.; Westerveld, J.W.; Wartenbergh, P.E.
2006-01-01
Pine litter amended with either tannic acid (TA) or condensed tannins (CTs) was studied to assess the effects on C, N and P mineralization in relation to the fate of tannins by incubation experiments during various time intervals. TA induced a rapid short-term effect resulting in high C respiration
Short desynchronization episodes prevail in synchronous dynamics of human brain rhythms.
Ahn, Sungwoo; Rubchinsky, Leonid L
2013-03-01
Neural synchronization is believed to be critical for many brain functions. It frequently exhibits temporal variability, but it is not known if this variability has a specific temporal patterning. This study explores these synchronization/desynchronization patterns. We employ recently developed techniques to analyze the fine temporal structure of phase-locking to study the temporal patterning of synchrony of the human brain rhythms. We study neural oscillations recorded by electroencephalograms in α and β frequency bands in healthy human subjects at rest and during the execution of a task. While the phase-locking strength depends on many factors, dynamics of synchrony has a very specific temporal pattern: synchronous states are interrupted by frequent, but short desynchronization episodes. The probability for a desynchronization episode to occur decreased with its duration. The transition matrix between synchronized and desynchronized states has eigenvalues close to 0 and 1 where eigenvalue 1 has multiplicity 1, and therefore if the stationary distribution between these states is perturbed, the system converges back to the stationary distribution very fast. The qualitative similarity of this patterning across different subjects, brain states and electrode locations suggests that this may be a general type of dynamics for the brain. Earlier studies indicate that not all oscillatory networks have this kind of patterning of synchronization/desynchronization dynamics. Thus, the observed prevalence of short (but potentially frequent) desynchronization events (length of one cycle of oscillations) may have important functional implications for the brain. Numerous short desynchronizations (as opposed to infrequent, but long desynchronizations) may allow for a quick and efficient formation and break-up of functionally significant neuronal assemblies.
Short-time, high-dosage penicillin infusion therapy of syphilis
DEFF Research Database (Denmark)
Lomholt, Hans; Poulsen, Asmus; Brandrup, Flemming
2003-01-01
The optimal dosage and duration of penicillin treatment for the various stages of syphilis are not known. We present data on 20 patients with syphilis (primary, secondary or latent) treated with high-dose, short-time penicillin infusion therapy. Patients were given 10 MIU of penicillin G intraven......The optimal dosage and duration of penicillin treatment for the various stages of syphilis are not known. We present data on 20 patients with syphilis (primary, secondary or latent) treated with high-dose, short-time penicillin infusion therapy. Patients were given 10 MIU of penicillin G...
Bayesian dynamic modeling of time series of dengue disease case counts.
Martínez-Bello, Daniel Adyro; López-Quílez, Antonio; Torres-Prieto, Alexander
2017-07-01
The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model's short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful
Rich spectrum of neural field dynamics in the presence of short-term synaptic depression
Wang, He; Lam, Kin; Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si
2015-09-01
In continuous attractor neural networks (CANNs), spatially continuous information such as orientation, head direction, and spatial location is represented by Gaussian-like tuning curves that can be displaced continuously in the space of the preferred stimuli of the neurons. We investigate how short-term synaptic depression (STD) can reshape the intrinsic dynamics of the CANN model and its responses to a single static input. In particular, CANNs with STD can support various complex firing patterns and chaotic behaviors. These chaotic behaviors have the potential to encode various stimuli in the neuronal system.
OTDM Networking for Short Range High-Capacity Highly Dynamic Networks
DEFF Research Database (Denmark)
Medhin, Ashenafi Kiros
This PhD thesis aims at investigating the possibility of designing energy-efficient high-capacity (up to Tbit/s) optical network scenarios, leveraging on the effect of collective switching of many bits simultaneously, as is inherent in high bit rate serial optical data signals. The focus...... is on short range highly dynamic networks, catering to data center needs. The investigation concerns optical network scenarios, and experimental implementations of high bit rate serial data packet generation and reception, scalable optical packet labeling, simple optical label extraction and stable ultra...
Simple and reliable procedure for the evaluation of short-term dynamic processes in power systems
Energy Technology Data Exchange (ETDEWEB)
Popovic, D P
1986-10-01
An efficient approach is presented to the solution of the short-term dynamics model in power systems. It consists of an adequate algebraic treatment of the original system of nonlinear differential equations, using linearization, decomposition and Cauchy's formula. The simple difference equations obtained in this way are incorporated into a model of the electrical network, which is of a low order compared to the ones usually used. Newton's method is applied to the model formed in this way, which leads to a simple and reliable iterative procedure. The characteristics of the procedure developed are demonstrated on examples of transient stability analysis of real power systems. 12 refs.
Electricity prices and fuel costs. Long-run relations and short-run dynamics
International Nuclear Information System (INIS)
Mohammadi, Hassan
2009-01-01
The paper examines the long-run relation and short-run dynamics between electricity prices and three fossil fuel prices - coal, natural gas and crude oil - using annual data for the U.S. for 1960-2007. The results suggest (1) a stable long-run relation between real prices for electricity and coal (2) Bi-directional long-run causality between coal and electricity prices. (3) Insignificant long-run relations between electricity and crude oil and/or natural gas prices. And (4) no evidence of asymmetries in the adjustment of electricity prices to deviations from equilibrium. A number of implications are addressed. (author)
Directory of Open Access Journals (Sweden)
PAPAJ Ján
2013-05-01
Full Text Available Disconnected mobile ad-hoc networks (MANET are very important areas of the research. In this article, the performance analysis of the enhanced dynamic source routing protocol (OPP_DSR is introduced. This modification enables the routing process in the case when there are no connections to other mobile nodes. It also will enable the routing mechanisms when the routes, selected by routing mechanisms, are disconnected for some time. Disconnection can be for a short time and standard routing protocol DSR cannot reflect on this situation.The main idea is based on opportunistic forwarding where the nodes not only forward data but it's stored in the cache during long time. The network parameters throughput, routing load and are analysed.
Intrinsic dynamics of heart regulatory systems on short timescales: from experiment to modelling
International Nuclear Information System (INIS)
Khovanov, I A; Khovanova, N A; McClintock, P V E; Stefanovska, A
2009-01-01
We discuss open problems related to the stochastic modelling of cardiac function. The work is based on an experimental investigation of the dynamics of heart rate variability (HRV) in the absence of respiratory perturbations. We consider first the cardiac control system on short timescales via an analysis of HRV within the framework of a random walk approach. Our experiments show that HRV on timescales of less than a minute takes the form of free diffusion, close to Brownian motion, which can be described as a non-stationary process with stationary increments. Secondly, we consider the inverse problem of modelling the state of the control system so as to reproduce the experimentally observed HRV statistics of. We discuss some simple toy models and identify open problems for the modelling of heart dynamics
Short pulse absorption dynamics in a p-i-n InGaAsP MQW waveguide saturable absorber
DEFF Research Database (Denmark)
Romstad, Francis Pascal; Öhman, Filip; Mørk, Jesper
2002-01-01
The saturation properties and absorption dynamics of an InGaAsP MQW waveguide saturable absorber is measured using short 200-fs and 1-ps pulses. The dependence on the pulse energy and reverse bias is characterized.......The saturation properties and absorption dynamics of an InGaAsP MQW waveguide saturable absorber is measured using short 200-fs and 1-ps pulses. The dependence on the pulse energy and reverse bias is characterized....
Arresting Strategy Based on Dynamic Criminal Networks Changing over Time
Directory of Open Access Journals (Sweden)
Junqing Yuan
2013-01-01
Full Text Available We investigate a sequence of dynamic criminal networks on a time series based on the dynamic network analysis (DNA. According to the change of networks’ structure, networks’ variation trend is analyzed to forecast its future structure. Finally, an optimal arresting time and priority list are designed based on our analysis. Better results can be expected than that based on social network analysis (SNA.
Biberger, Thomas; Ewert, Stephan D
2017-08-01
The generalized power spectrum model [GPSM; Biberger and Ewert (2016). J. Acoust. Soc. Am. 140, 1023-1038], combining the "classical" concept of the power-spectrum model (PSM) and the envelope power spectrum-model (EPSM), was demonstrated to account for several psychoacoustic and speech intelligibility (SI) experiments. The PSM path of the model uses long-time power signal-to-noise ratios (SNRs), while the EPSM path uses short-time envelope power SNRs. A systematic comparison of existing SI models for several spectro-temporal manipulations of speech maskers and gender combinations of target and masker speakers [Schubotz et al. (2016). J. Acoust. Soc. Am. 140, 524-540] showed the importance of short-time power features. Conversely, Jørgensen et al. [(2013). J. Acoust. Soc. Am. 134, 436-446] demonstrated a higher predictive power of short-time envelope power SNRs than power SNRs using reverberation and spectral subtraction. Here the GPSM was extended to utilize short-time power SNRs and was shown to account for all psychoacoustic and SI data of the three mentioned studies. The best processing strategy was to exclusively use either power or envelope-power SNRs, depending on the experimental task. By analyzing both domains, the suggested model might provide a useful tool for clarifying the contribution of amplitude modulation masking and energetic masking.
Analysis of Time Reversible Born-Oppenheimer Molecular Dynamics
Directory of Open Access Journals (Sweden)
Lin Lin
2013-12-01
Full Text Available We analyze the time reversible Born-Oppenheimer molecular dynamics (TRBOMD scheme, which preserves the time reversibility of the Born-Oppenheimer molecular dynamics even with non-convergent self-consistent field iteration. In the linear response regime, we derive the stability condition, as well as the accuracy of TRBOMD for computing physical properties, such as the phonon frequency obtained from the molecular dynamics simulation. We connect and compare TRBOMD with Car-Parrinello molecular dynamics in terms of accuracy and stability. We further discuss the accuracy of TRBOMD beyond the linear response regime for non-equilibrium dynamics of nuclei. Our results are demonstrated through numerical experiments using a simplified one-dimensional model for Kohn-Sham density functional theory.
Computation of the Short-Time Linear Canonical Transform with Dual Window
Directory of Open Access Journals (Sweden)
Lei Huang
2017-01-01
Full Text Available The short-time linear canonical transform (STLCT, which maps the time domain signal into the joint time and frequency domain, has recently attracted some attention in the area of signal processing. However, its applications are still limited due to the fact that selection of coefficients of the short-time linear canonical series (STLCS is not unique, because time and frequency elementary functions (together known as basis function of STLCS do not constitute an orthogonal basis. To solve this problem, this paper investigates a dual window solution. First, the nonorthogonal problem that suffered from original window is fulfilled by orthogonal condition with dual window. Then based on the obtained condition, a dual window computation approach of the GT is extended to the STLCS. In addition, simulations verify the validity of the proposed condition and solutions. Furthermore, some possible applied directions are discussed.
Viruses as groundwater tracers: using ecohydrology to characterize short travel times in aquifers
Hunt, Randall J.; Borchardt, Mark A.; Bradbury, Kenneth R.
2014-01-01
Viruses are attractive tracers of short (population over time; therefore, the virus snapshot shed in the fecal wastes of an infected population at a specific point in time can serve as a marker for tracking virus and groundwater movement. The virus tracing approach and an example application are described to illustrate their ability to characterize travel times in high-groundwater velocity settings, and provide insight unavailable from standard hydrogeologic approaches. Although characterization of preferential flowpaths does not usually characterize the majority of other travel times occurring in the groundwater system (e.g., center of plume mass; tail of the breakthrough curve), virus approaches can trace very short times of transport, and thus can fill an important gap in our current hydrogeology toolbox.
Acute effects of short and long duration dynamic stretching protocols on muscle strength
Directory of Open Access Journals (Sweden)
Christiano Francisco dos Santos
Full Text Available Objective Compare the acute effects of dynamic stretching protocols on the isokinetic performance of the quadriceps and hamstring muscles at two velocities in adult males.Methodology Included the participation of 14 males (21 ± 2.6 years; 178 ± 0.4 cm; 73.2 ± 20.9 kg were assessed using an isokinetic dynamometer before and after following a short or long-duration dynamic stretching protocol or a control protocol. The results were assessed by a two-way ANOVA and a Scheffé’s post hoc test at a 5% significance level.Results No difference was found in the variables assessed at 180°/s after LDDS. At 60°/s, LDDS reduced the power of the knee flexors. The control protocol reduced the power of the knee flexors and increased the power of the extensors. At 60°/s, the work of the knee flexors exhibited a reduction after LDDS. The control protocol resulted in a reduction in the work of the flexors. The peak torque angle exhibited a reduction in the extensors and flexors after LDDS and SDDS.Conclusion Dynamic stretching did not cause any change in the peak torque, which points to its possible use in activities involving velocity and muscle strength. The executing dynamic stretching before physical activities such as running and high-intensity sports might be beneficial by promoting increases in heart rate and in body temperature.
International Nuclear Information System (INIS)
Fitzgerald, R.
2016-01-01
Studies and calibrations of short-lived radionuclides, for example "1"5O, are of particular interest in nuclear medicine. Yet counting experiments on such species are vulnerable to an error due to the combined effect of decay and dead time. Separate decay corrections and dead-time corrections do not account for this issue. Usually counting data are decay-corrected to the start time of the count period, or else instead of correcting the count rate, the mid-time of the measurement is used as the reference time. Correction factors are derived for both those methods, considering both extending and non-extending dead time. Series approximations are derived here and the accuracy of those approximations are discussed. - Highlights: • Derived combined effects of decay and dead time. • Derived for counting systems with extending or non-extending dead times. • Derived series expansions for both midpoint and decay-to-start-time methods. • Useful for counting experiments with short-lived radionuclides. • Examples given for "1"5O, used in PET scanning.
Directory of Open Access Journals (Sweden)
Peter Regier
2016-12-01
Full Text Available Estuaries significantly impact the global carbon cycle by regulating the exchange of organic matter, primarily in the form of dissolved organic carbon (DOC, between terrestrial and marine carbon pools. Estuarine DOC dynamics are complex as tides and other hydrological and climatic drivers can affect carbon fluxes on short and long time scales. While estuarine and coastal DOC dynamics have been well studied, variations on short time scales are less well constrained. Recent advancements in sonde technology enable autonomous in situ collection of high frequency DOC data using fluorescent dissolved organic matter (fDOM as a proxy, dramatically improving our capacity to characterize rapid changes in DOC, even in remote ecosystems. This study utilizes high-frequency fDOM measurements to untangle rapid and complex hydrologic drivers of DOC in the Shark River estuary, the main drainage of Everglades National Park, Florida. Non-conservative mixing of fDOM along the salinity gradient suggested mangrove inputs accounted for 6% of the total DOC pool. Average changes in fDOM concentrations through individual tidal cycles ranged from less than 10% to greater than 50% and multi-day trends greater than 100% change in fDOM concentration were observed. Salinity and water level both inversely correlated to fDOM at sub-hourly and daily resolutions, while freshwater controls via precipitation and water management were observed at diel to monthly time-scales. In particular, the role of water management in rapidly shifting estuarine salinity gradients and DOC export regimes at sub-weekly time-scales was evident. Additionally, sub-hourly spikes in ebb-tide fDOM indicated rapid exchange of DOC between mangrove sediments and the river channel. DOC fluxes calculated from high-resolution fDOM measurements were compared to monthly DOC measurements with high-resolution fluxes considerably improving accuracy of fluxes (thereby constraining carbon budgets. This study provides
The relation between short-term emotion dynamics and psychological well-being: A meta-analysis.
Houben, Marlies; Van Den Noortgate, Wim; Kuppens, Peter
2015-07-01
Not only how good or bad people feel on average, but also how their feelings fluctuate across time is crucial for psychological health. The last 2 decades have witnessed a surge in research linking various patterns of short-term emotional change to adaptive or maladaptive psychological functioning, often with conflicting results. A meta-analysis was performed to identify consistent relationships between patterns of short-term emotion dynamics-including patterns reflecting emotional variability (measured in terms of within-person standard deviation of emotions across time), emotional instability (measured in terms of the magnitude of consecutive emotional changes), and emotional inertia of emotions over time (measured in terms of autocorrelation)-and relatively stable indicators of psychological well-being or psychopathology. We determined how such relationships are moderated by the type of emotional change, type of psychological well-being or psychopathology involved, valence of the emotion, and methodological factors. A total of 793 effect sizes were identified from 79 articles (N = 11,381) and were subjected to a 3-level meta-analysis. The results confirmed that overall, low psychological well-being co-occurs with more variable (overall ρ̂ = -.178), unstable (overall ρ̂ = -.205), but also more inert (overall ρ̂ = -.151) emotions. These effect sizes were stronger when involving negative compared with positive emotions. Moreover, the results provided evidence for consistency across different types of psychological well-being and psychopathology in their relation with these dynamical patterns, although specificity was also observed. The findings demonstrate that psychological flourishing is characterized by specific patterns of emotional fluctuations across time, and provide insight into what constitutes optimal and suboptimal emotional functioning. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
NMR transmit-receive system with short recovery time and effective isolation
Jurga, K.; Reynhardt, E. C.; Jurga, S.
A transmit-receive system with a short recovery time and excellent isolation has been developed. The system operates in conjunction with an ENI Model 3200L broadband amplifier and a spin-lock NMR pulse spectrometer. The system has been tested in the frequency range 5.5 to 52 MHz and seems not to generate any background noise.
Price, Cristofer; Unlu, Fatih
2014-01-01
The Comparative Short Interrupted Time Series (C-SITS) design is a frequently employed quasi-experimental method, in which the pre- and post-intervention changes observed in the outcome levels of a treatment group is compared with those of a comparison group where the difference between the former and the latter is attributed to the treatment. The…
Eulerian short-time statistics of turbulent flow at large Reynolds number
Brouwers, J.J.H.
2004-01-01
An asymptotic analysis is presented of the short-time behavior of second-order temporal velocity structure functions and Eulerian acceleration correlations in a frame that moves with the local mean velocity of the turbulent flow field. Expressions in closed-form are derived which cover the viscous
Modular High Voltage Pulse Converter for Short Rise and Decay Times
Mao, S.
2018-01-01
This thesis explores a modular HV pulse converter technology with short rise and decay times. A systematic methodology to derive and classify HV architectures based on a modularization level of power building blocks of the HV pulse converter is developed to summarize existing architectures and
Time perception and dynamics of facial expressions of emotions.
Directory of Open Access Journals (Sweden)
Sophie L Fayolle
Full Text Available Two experiments were run to examine the effects of dynamic displays of facial expressions of emotions on time judgments. The participants were given a temporal bisection task with emotional facial expressions presented in a dynamic or a static display. Two emotional facial expressions and a neutral expression were tested and compared. Each of the emotional expressions had the same affective valence (unpleasant, but one was high-arousing (expressing anger and the other low-arousing (expressing sadness. Our results showed that time judgments are highly sensitive to movements in facial expressions and the emotions expressed. Indeed, longer perceived durations were found in response to the dynamic faces and the high-arousing emotional expressions compared to the static faces and low-arousing expressions. In addition, the facial movements amplified the effect of emotions on time perception. Dynamic facial expressions are thus interesting tools for examining variations in temporal judgments in different social contexts.
Solitary wave dynamics in time-dependent potentials
International Nuclear Information System (INIS)
Abou Salem, Walid K.
2008-01-01
The long time dynamics of solitary wave solutions of the nonlinear Schroedinger equation in time-dependent external potentials is rigorously studied. To set the stage, the well-posedness of the Cauchy problem for a generalized nonautonomous nonlinear Schroedinger equation with time-dependent nonlinearities and potential is established. Afterward, the dynamics of NLS solitary waves in time-dependent potentials is studied. It is shown that in the space-adiabatic regime where the external potential varies slowly in space compared to the size of the soliton, the dynamics of the center of the soliton is described by Hamilton's equations, plus terms due to radiation damping. Finally, two physical applications are discussed: the first is adiabatic transportation of solitons and the second is the Mathieu instability of trapped solitons due to time-periodic perturbations
Species Turnover through Time: Colonization and Extinction Dynamics across Metacommunities.
Nuvoloni, Felipe Micali; Feres, Reinaldo José Fazzio; Gilbert, Benjamin
2016-06-01
Island biogeography and metacommunity theory often use equilibrium assumptions to predict local diversity, yet nonequilibrium dynamics are common in nature. In nonequilibrium communities, local diversity fluctuates through time as the relative importance of colonization and extinction change. Here, we test the prevalence and causes of nonequilibrium dynamics in metacommunities of mites associated with rubber trees distributed over large spatial (>1,000 km) and temporal (>30-60 generations) scales in Brazil. We measured colonization and extinction rates to test species turnover and nonequilibrium dynamics over a growing season. Mite metacommunities exhibited nonequilibrium dynamics for most months of the year, and these dynamics tracked climatic conditions. Monthly shifts in temperature of more than 1°C resulted in nonequilibrium dynamics, as did mean temperatures outside of two critical ranges. Nonequilibrium dynamics were caused by a change in colonization with temperature change and changes in both colonization and extinction with absolute temperature. Species turnover showed different trends; high relative humidity increased both colonization and extinction rates, increasing turnover but not nonequilibrium dynamics. Our study illustrates that testing nonequilibrium dynamics can provide new insights into the drivers of colonization, extinction, and diversity fluctuations in metacommunities.
Rotor-System Log-Decrement Identification Using Short-Time Fourier-Transform Filter
Li, Qihang; Wang, Weimin; Chen, Lifang; Sun, Dan
2015-01-01
With the increase of the centrifugal compressor capability, such as large scale LNG and CO2 reinjection, the stability margin evaluation is crucial to assure the compressor work in the designed operating conditions in field. Improving the precision of parameter identification of stability is essential and necessary as well. Based on the time-varying characteristics of response vibration during the sine-swept process, a short-time Fourier transform (STFT) filter was introduced to increase the ...
Energy Technology Data Exchange (ETDEWEB)
Bartosch, T. [Erlanger-Nuernberg Univ., Erlanger (Germany). Lehrstul fuer Nachrichtentechnik I; Seidl, D. [Seismologisches Zentralobservatorium Graefenberg, Erlanegen (Greece). Bundesanstalt fuer Geiwissenschaften und Rohstoffe
1999-06-01
Among a variety of spectrogram methods short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were selected to analyse transients in non-stationary signals. Depending on the properties of the tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli (Italy).
The effect of long and short time oil shocks on economic growth in Iran
Sayyed Abdolmajid Jalae; Sanaz Mohammadi
2012-01-01
Oil is one of the strategic good so that price fluctuations and shocks of it have major effects on economic growth and recession in depended countries to revenues of it. In this study, it is tried that the effect of oil price shocks investigated in two types (short and long time) on Economic growth in Iran. Its Period is from 1974 to 2006. According it, oil price uncertainty is quantized by GARCH model and is determined the effects of oil price shocks on economic growth in Iran during a short...
Zelenev, V.V.; Bruggen, van A.H.C.; Semenov, A.M.
2005-01-01
The objectives of the research were to investigate short-term dynamics of bacterial populations in soil after a disturbance in the form of fresh organic matter incorporation and to investigate how these dynamics are linked to those of some environmental parameters. To reach these objectives, soil
Multiple time step integrators in ab initio molecular dynamics
International Nuclear Information System (INIS)
Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.
2014-01-01
Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy
Quantum dynamics via a time propagator in Wigner's phase space
DEFF Research Database (Denmark)
Grønager, Michael; Henriksen, Niels Engholm
1995-01-01
We derive an expression for a short-time phase space propagator. We use it in a new propagation scheme and demonstrate that it works for a Morse potential. The propagation scheme is used to propagate classical distributions which do not obey the Heisenberg uncertainty principle. It is shown that ...... as a part of the sampling function. ©1995 American Institute of Physics....
Verification of Continuous Dynamical Systems by Timed Automata
DEFF Research Database (Denmark)
Sloth, Christoffer; Wisniewski, Rafael
2011-01-01
This paper presents a method for abstracting continuous dynamical systems by timed automata. The abstraction is based on partitioning the state space of a dynamical system using positive invariant sets, which form cells that represent locations of a timed automaton. The abstraction is intended......, which is generated utilizing sub-level sets of Lyapunov functions, as they are positive invariant sets. It is shown that this partition generates sound and complete abstractions. Furthermore, the complete abstractions can be composed of multiple timed automata, allowing parallelization...
Quantum Dynamics of Test Particle in Curved Space-Time
International Nuclear Information System (INIS)
Piechocki, W.
2002-01-01
To reveal the nature of space-time singularities of removable type we examine classical and quantum dynamics of a free particle in the Sitter type spacetimes. Consider space-times have different topologies otherwise are isometric. Our systems are integrable and we present analytic solutions of the classical dynamics. We quantize the systems by making use of the group theoretical method: we find an essentially self-adjoint representation of the algebra of observables integrable to the irreducible unitarity representation of the symmetry group of each consider gravitational system. The massless particle dynamics is obtained in the zero-mass limit of the massive case. Global properties of considered gravitational systems are of primary importance for the quantization procedure. Systems of a particle in space-times with removable singularities appear to be quantizable. We give specific proposal for extension of our analysis to space-times with essential type singularities. (author)
Metagenomics meets time series analysis: unraveling microbial community dynamics
Faust, K.; Lahti, L.M.; Gonze, D.; Vos, de W.M.; Raes, J.
2015-01-01
The recent increase in the number of microbial time series studies offers new insights into the stability and dynamics of microbial communities, from the world's oceans to human microbiota. Dedicated time series analysis tools allow taking full advantage of these data. Such tools can reveal periodic
Modeling dynamic effects of promotion on interpurchase times
D. Fok (Dennis); R. Paap (Richard); Ph.H.B.F. Franses (Philip Hans)
2002-01-01
textabstractIn this paper we put forward a duration model to analyze the dynamic effects of marketing-mix variables on interpurchase times. We extend the accelerated failure-time model with an autoregressive structure. An important feature of our model is that it allows for different long-run and
A dynamical approach to time dilation and length contraction
Vries, de D.K.; Muynck, de W.M.
1996-01-01
Simple models of length and time measuring instruments are studied in order to see under what conditions a relativistic description of the dynamics of accelerated motion can be consistent with the kinematic prescriptions of Lorentz contraction and time dilation. The outcomes obtained for the
Innovative tools for real-time simulation of dynamic systems
Palli, Gianluca; Carloni, Raffaella; Melchiorri, Claudio
2008-01-01
In this paper, we present a software architecture, based on RTAI-Linux, for the real-time simulation of dynamic systems and for the rapid prototyping of digital controllers. Our aim is to simplify the testing phase of digital controllers by providing the real-time simulation of the plant with the
Short Term Strategies for a Dynamic Multi-Period Routing Problem
Angelelli, E.; Bianchessi, N.; Mansini, R.; Speranza, M. G.
2009-01-01
We consider a Dynamic Multi-Period Routing Problem (DMPRP) faced by a company which deals with on-line pick-up requests and has to serve them by a fleet of uncapacitated vehicles over a finite time horizon. When a request is issued, a deadline of a given number of days d ≤ 2 is associated to it: if
Energy Technology Data Exchange (ETDEWEB)
Tueysuez, Beyhan [Istanbul University, Department of Pediatric Genetics, Cerrahpasa Medical School, Istanbul (Turkey); Gazioglu, Nurperi [Istanbul University, Department of Neurosurgery, Cerrahpasa Medical School, Istanbul (Turkey); Uenguer, Savas [Istanbul University, Department of Pediatric Radiology, Cerrahpasa Medical School, Istanbul (Turkey); Aji, Dolly Yafet [Istanbul University, Department of Pediatrics, Cerrahpasa Medical School, Istanbul (Turkey); Tuerkmen, Seval [Istanbul University, Department of Pediatric Genetics, Cerrahpasa Medical School, Istanbul (Turkey); Universitatsklinikum Berlin, Charite Virchow-Klinik, Berlin (Germany)
2009-01-15
A 1-month-old boy with shortness of extremities on prenatal US was referred to our department with a provisional diagnosis of achondroplasia. His height was normal but he had short extremities and platyspondyly, premature carpal epiphyses on both hands, and short tubular bones with irregular metaphyses on radiographs. Re-evaluation of the patient at the age of 1 year revealed very short height and premature calcification of the costal cartilages and epiphyses. Spondylometaepiphyseal dysplasia (SMED), short limb-abnormal calcification type was diagnosed. This condition is a very rare autosomal recessively inherited disorder, and most of the patients die in early childhood due to neurological involvement. At the age of 2 years and 5 months, a CT scan showed narrowing of the cervical spinal canal. One month later he died suddenly because of spinal cord injury. In conclusion early diagnosis is very important because the recurrence risk is high and patients may die due to early neurological complications. The time of onset of abnormal calcifications, a diagnostic finding of the disease, is at the age of around 1 year in most patients. When abnormal calcifications are not yet present, but radiological changes associated with SMED are present, this rare disease must be considered. (orig.)
International Nuclear Information System (INIS)
Tueysuez, Beyhan; Gazioglu, Nurperi; Uenguer, Savas; Aji, Dolly Yafet; Tuerkmen, Seval
2009-01-01
A 1-month-old boy with shortness of extremities on prenatal US was referred to our department with a provisional diagnosis of achondroplasia. His height was normal but he had short extremities and platyspondyly, premature carpal epiphyses on both hands, and short tubular bones with irregular metaphyses on radiographs. Re-evaluation of the patient at the age of 1 year revealed very short height and premature calcification of the costal cartilages and epiphyses. Spondylometaepiphyseal dysplasia (SMED), short limb-abnormal calcification type was diagnosed. This condition is a very rare autosomal recessively inherited disorder, and most of the patients die in early childhood due to neurological involvement. At the age of 2 years and 5 months, a CT scan showed narrowing of the cervical spinal canal. One month later he died suddenly because of spinal cord injury. In conclusion early diagnosis is very important because the recurrence risk is high and patients may die due to early neurological complications. The time of onset of abnormal calcifications, a diagnostic finding of the disease, is at the age of around 1 year in most patients. When abnormal calcifications are not yet present, but radiological changes associated with SMED are present, this rare disease must be considered. (orig.)
Dynamical prediction and pattern mapping in short-term load forecasting
Energy Technology Data Exchange (ETDEWEB)
Aguirre, Luis Antonio; Rodrigues, Daniela D.; Lima, Silvio T. [Departamento de Engenharia Eletronica, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901 Belo Horizonte, MG (Brazil); Martinez, Carlos Barreira [Departamento de Engenharia Hidraulica e Recursos Hidricos, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901 Belo Horizonte, MG (Brazil)
2008-01-15
This work will not put forward yet another scheme for short-term load forecasting but rather will provide evidences that may improve our understanding about fundamental issues which underlay load forecasting problems. In particular, load forecasting will be decomposed into two main problems, namely dynamical prediction and pattern mapping. It is argued that whereas the latter is essentially static and becomes nonlinear when weekly features in the data are taken into account, the former might not be deterministic at all. In such cases there is no determinism (serial correlations) in the data apart from the average cycle and the best a model can do is to perform pattern mapping. Moreover, when there is determinism in addition to the average cycle, the underlying dynamics are sometimes linear, in which case there is no need to resort to nonlinear models to perform dynamical prediction. Such conclusions were confirmed using real load data and surrogate data analysis. In a sense, the paper details and organizes some general beliefs found in the literature on load forecasting. This sheds some light on real model-building and forecasting problems and helps understand some apparently conflicting results reported in the literature. (author)
Short-term exposure to a synthetic estrogen disrupts mating dynamics in a pipefish.
Partridge, Charlyn; Boettcher, Anne; Jones, Adam G
2010-11-01
Sexual selection is responsible for the evolution of some of the most elaborate traits occurring in nature, many of which play a vital role in competition over access to mates and individual reproductive fitness. Because expression of these traits is typically regulated by sex-steroids there is a significant potential for their expression to be affected by the presence of certain pollutants, such as endocrine disrupting compounds. Endocrine disruptors have been shown to alter primary sexual traits and impact reproduction, but few studies have investigated how these compounds affect secondary sexual trait expression and how that may, in turn, impact mating dynamics. In this study we examine how short-term exposure to a synthetic estrogen impacts secondary sexual trait expression and mating dynamics in the Gulf pipefish, a species displaying sex-role reversal. Our results show that only 10days of exposure to 17α-ethinylestradiol results in adult male pipefish developing female-like secondary sexual traits. While these males are capable of reproduction, females discriminate against exposed males in mate choice trials. In natural populations, this type of discrimination would reduce male mating opportunities, thus potentially reducing their long-term reproductive success. Importantly, the effects of these compounds on mating dynamics and mating opportunity would not be observed using the current standard methods of assessing environmental contamination. However, disrupting these processes could have profound effects on the viability of exposed populations. Copyright © 2010 Elsevier Inc. All rights reserved.
Flow characteristics of a pilot-scale high temperature, short time pasteurizer.
Tomasula, P M; Kozempel, M F
2004-09-01
In this study, we present a method for determining the fastest moving particle (FMP) and residence time distribution (RTD) in a pilot-scale high temperature, short time (HTST) pasteurizer to ensure that laboratory or pilot-scale HTST apparatus meets the Pasteurized Milk Ordinance standards for pasteurization of milk and can be used for obtaining thermal inactivation data. The overall dimensions of the plate in the pasteurizer were 75 x 115 mm, with a thickness of 0.5 mm and effective diameter of 3.0 mm. The pasteurizer was equipped with nominal 21.5- and 52.2-s hold tubes, and flow capacity was variable from 0 to 20 L/h. Tracer studies were used to determine FMP times and RTD data to establish flow characteristics. Using brine milk as tracer, the FMP time for the short holding section was 18.6 s and for the long holding section was 36 s at 72 degrees C, compared with the nominal times of 21.5 and 52.2 s, respectively. The RTD study indicates that the short hold section was 45% back mixed and 55% plug flow for whole milk at 72 degrees C. The long hold section was 91% plug and 9% back mixed for whole milk at 72 degrees C. This study demonstrates that continuous laboratory and pilot-scale pasteurizers may be used to study inactivation of microorganisms only if the flow conditions in the holding tube are established for comparison with commercial HTST systems.
Difference-based clustering of short time-course microarray data with replicates
Directory of Open Access Journals (Sweden)
Kim Jihoon
2007-07-01
Full Text Available Abstract Background There are some limitations associated with conventional clustering methods for short time-course gene expression data. The current algorithms require prior domain knowledge and do not incorporate information from replicates. Moreover, the results are not always easy to interpret biologically. Results We propose a novel algorithm for identifying a subset of genes sharing a significant temporal expression pattern when replicates are used. Our algorithm requires no prior knowledge, instead relying on an observed statistic which is based on the first and second order differences between adjacent time-points. Here, a pattern is predefined as the sequence of symbols indicating direction and the rate of change between time-points, and each gene is assigned to a cluster whose members share a similar pattern. We evaluated the performance of our algorithm to those of K-means, Self-Organizing Map and the Short Time-series Expression Miner methods. Conclusions Assessments using simulated and real data show that our method outperformed aforementioned algorithms. Our approach is an appropriate solution for clustering short time-course microarray data with replicates.
Dimension reduction of frequency-based direct Granger causality measures on short time series.
Siggiridou, Elsa; Kimiskidis, Vasilios K; Kugiumtzis, Dimitris
2017-09-01
The mainstream in the estimation of effective brain connectivity relies on Granger causality measures in the frequency domain. If the measure is meant to capture direct causal effects accounting for the presence of other observed variables, as in multi-channel electroencephalograms (EEG), typically the fit of a vector autoregressive (VAR) model on the multivariate time series is required. For short time series of many variables, the estimation of VAR may not be stable requiring dimension reduction resulting in restricted or sparse VAR models. The restricted VAR obtained by the modified backward-in-time selection method (mBTS) is adapted to the generalized partial directed coherence (GPDC), termed restricted GPDC (RGPDC). Dimension reduction on other frequency based measures, such the direct directed transfer function (dDTF), is straightforward. First, a simulation study using linear stochastic multivariate systems is conducted and RGPDC is favorably compared to GPDC on short time series in terms of sensitivity and specificity. Then the two measures are tested for their ability to detect changes in brain connectivity during an epileptiform discharge (ED) from multi-channel scalp EEG. It is shown that RGPDC identifies better than GPDC the connectivity structure of the simulated systems, as well as changes in the brain connectivity, and is less dependent on the free parameter of VAR order. The proposed dimension reduction in frequency measures based on VAR constitutes an appropriate strategy to estimate reliably brain networks within short-time windows. Copyright © 2017 Elsevier B.V. All rights reserved.
Time-resolved plasma spectroscopy of thin foils heated by a relativistic-intensity short-pulse laser
International Nuclear Information System (INIS)
Audebert, P.; Gauthier, J.-C.; Shepherd, R.; Fournier, K.B.; Price, D.; Lee, R.W.; Springer, P.; Peyrusse, O.; Klein, L.
2002-01-01
Time-resolved K-shell x-ray spectra are recorded from sub-100 nm aluminum foils irradiated by 150-fs laser pulses at relativistic intensities of Iλ 2 =2x10 18 W μm 2 /cm 2 . The thermal penetration depth is greater than the foil thickness in these targets so that uniform heating takes place at constant density before hydrodynamic motion occurs. The high-contrast, high-intensity laser pulse, broad spectral band, and short time resolution utilized in this experiment permit a simplified interpretation of the dynamical evolution of the radiating matter. The observed spectrum displays two distinct phases. At early time, ≤500 fs after detecting target emission, a broad quasicontinuous spectral feature with strong satellite emission from multiply excited levels is seen. At a later time, the He-like resonance line emission is dominant. The time-integrated data is in accord with previous studies with time resolution greater than 1 ps. The early time satellite emission is shown to be a signature of an initial large area, high density, low-temperature plasma created in the foil by fast electrons accelerated by the intense radiation field in the laser spot. We conclude that, because of this early time phenomenon and contrary to previous predictions, a short, high-intensity laser pulse incident on a thin foil does not create a uniform hot and dense plasma. The heating mechanism has been studied as a function of foil thickness, laser pulse length, and intensity. In addition, the spectra are found to be in broad agreement with a hydrodynamic expansion code postprocessed by a collisional-radiative model based on superconfiguration average rates and on the unresolved transition array formalism
An Optimization Framework for Dynamic, Distributed Real-Time Systems
Eckert, Klaus; Juedes, David; Welch, Lonnie; Chelberg, David; Bruggerman, Carl; Drews, Frank; Fleeman, David; Parrott, David; Pfarr, Barbara
2003-01-01
Abstract. This paper presents a model that is useful for developing resource allocation algorithms for distributed real-time systems .that operate in dynamic environments. Interesting aspects of the model include dynamic environments, utility and service levels, which provide a means for graceful degradation in resource-constrained situations and support optimization of the allocation of resources. The paper also provides an allocation algorithm that illustrates how to use the model for producing feasible, optimal resource allocations.
Recovery time after localized perturbations in complex dynamical networks
Mitra, Chiranjit; Kittel, Tim; Choudhary, Anshul; Kurths, Jürgen; Donner, Reik V.
2017-10-01
Maintaining the synchronous motion of dynamical systems interacting on complex networks is often critical to their functionality. However, real-world networked dynamical systems operating synchronously are prone to random perturbations driving the system to arbitrary states within the corresponding basin of attraction, thereby leading to epochs of desynchronized dynamics with a priori unknown durations. Thus, it is highly relevant to have an estimate of the duration of such transient phases before the system returns to synchrony, following a random perturbation to the dynamical state of any particular node of the network. We address this issue here by proposing the framework of single-node recovery time (SNRT) which provides an estimate of the relative time scales underlying the transient dynamics of the nodes of a network during its restoration to synchrony. We utilize this in differentiating the particularly slow nodes of the network from the relatively fast nodes, thus identifying the critical nodes which when perturbed lead to significantly enlarged recovery time of the system before resuming synchronized operation. Further, we reveal explicit relationships between the SNRT values of a network, and its global relaxation time when starting all the nodes from random initial conditions. Earlier work on relaxation time generally focused on investigating its dependence on macroscopic topological properties of the respective network. However, we employ the proposed concept for deducing microscopic relationships between topological features of nodes and their respective SNRT values. The framework of SNRT is further extended to a measure of resilience of the different nodes of a networked dynamical system. We demonstrate the potential of SNRT in networks of Rössler oscillators on paradigmatic topologies and a model of the power grid of the United Kingdom with second-order Kuramoto-type nodal dynamics illustrating the conceivable practical applicability of the proposed
Recovery time after localized perturbations in complex dynamical networks
International Nuclear Information System (INIS)
Mitra, Chiranjit; Kittel, Tim; Kurths, Jürgen; Donner, Reik V; Choudhary, Anshul
2017-01-01
Maintaining the synchronous motion of dynamical systems interacting on complex networks is often critical to their functionality. However, real-world networked dynamical systems operating synchronously are prone to random perturbations driving the system to arbitrary states within the corresponding basin of attraction, thereby leading to epochs of desynchronized dynamics with a priori unknown durations. Thus, it is highly relevant to have an estimate of the duration of such transient phases before the system returns to synchrony, following a random perturbation to the dynamical state of any particular node of the network. We address this issue here by proposing the framework of single-node recovery time (SNRT) which provides an estimate of the relative time scales underlying the transient dynamics of the nodes of a network during its restoration to synchrony. We utilize this in differentiating the particularly slow nodes of the network from the relatively fast nodes, thus identifying the critical nodes which when perturbed lead to significantly enlarged recovery time of the system before resuming synchronized operation. Further, we reveal explicit relationships between the SNRT values of a network, and its global relaxation time when starting all the nodes from random initial conditions. Earlier work on relaxation time generally focused on investigating its dependence on macroscopic topological properties of the respective network. However, we employ the proposed concept for deducing microscopic relationships between topological features of nodes and their respective SNRT values. The framework of SNRT is further extended to a measure of resilience of the different nodes of a networked dynamical system. We demonstrate the potential of SNRT in networks of Rössler oscillators on paradigmatic topologies and a model of the power grid of the United Kingdom with second-order Kuramoto-type nodal dynamics illustrating the conceivable practical applicability of the proposed
Spectral phase encoding of ultra-short optical pulse in time domain for OCDMA application.
Wang, Xu; Wada, Naoya
2007-06-11
We propose a novel reconfigurable time domain spectral phase encoding (SPE) scheme for coherent optical code-division-multiple-access application. In the proposed scheme, the ultra-short optical pulse is stretched by dispersive device and the SPE is done in time domain using high speed phase modulator. The time domain SPE scheme is robust to wavelength drift of the light source and is very flexible and compatible with the fiber optical system. Proof-of-principle experiments of encoding with 16-chip, 20 GHz/chip binary-phase-shift-keying codes and 1.25 Gbps data transmission have been successfully demonstrated together with an arrayed-wave-guide decoder.
Decay of surface nanostructures via long-time-scale dynamics
International Nuclear Information System (INIS)
Voter, A.F.; Stanciu, N.
1998-01-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have developed a new approach for extending the time scale of molecular dynamics simulations. For infrequent-event systems, the category that includes most diffusive events in the solid phase, this hyperdynamics method can extend the simulation time by a few orders of magnitude compared to direct molecular dynamics. The trajectory is run on a potential surface that has been biased to raise the energy in the potential basins without affecting the transition state region. The method is described and applied to surface and bulk diffusion processes, achieving microsecond and millisecond simulation times. The authors have also developed a new parallel computing method that is efficient for small system sizes. The combination of the hyperdynamics with this parallel replica dynamics looks promising as a general materials simulation tool
Electron dynamics in solid state via time varying wavevectors
Khaneja, Navin
2018-06-01
In this paper, we study electron wavepacket dynamics in electric and magnetic fields. We rigorously derive the semiclassical equations of electron dynamics in electric and magnetic fields. We do it both for free electron and electron in a periodic potential. We do this by introducing time varying wavevectors k(t). In the presence of magnetic field, our wavepacket reproduces the classical cyclotron orbits once the origin of the Schröedinger equation is correctly chosen to be center of cyclotron orbit. In the presence of both electric and magnetic fields, our equations for wavepacket dynamics differ from classical Lorentz force equations. We show that in a periodic potential, on application of electric field, the electron wave function adiabatically follows the wavefunction of a time varying Bloch wavevector k(t), with its energies suitably shifted with time. We derive the effective mass equation and discuss conduction in conductors and insulators.
Factors in Outcomes of Short-Term Dynamic Psychotherapy for Chronic vs. Nonchronic Major Depression
LUBORSKY, LESTER; DIGUER, LOUIS; CACCIOLA, JOHN; BARBER, JACQUES P.; MORAS, KARLA; SCHMIDT, KELLY; DERUBEIS, ROBERT J.
1996-01-01
The benefits, and variables influencing the benefits, of short-term dynamic psychotherapy for chronic major depression versus nonchronic major depression were examined for 49 patients. The two diagnostic groups started at the same level on the Beck Depression Inventory (BDI) and Global Assessment of Functioning Scale (GAF) and benefited similarly. The bases for the benefits were examined by linear models explaining 35% of termination BDI variance and 47% of termination GAF scores. By far the largest contributor to outcome was initial GAF, followed by presence of more than one comorbid Axis I diagnosis. Initial level of depression on the BDI was not a significant predictor of termination BDI. The chronic/ nonchronic distinction accounted for less than 1% of explained variance, and little was added by personality disorder, age, or gender. PMID:22700274
Short-range dynamics and prediction of mesoscale flow patterns in the MISTRAL field experiment
Energy Technology Data Exchange (ETDEWEB)
Weber, R.O.; Kaufmann, P.; Talkner, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-06-01
In a limited area of about 50 km by 50 km with complex topography, wind measurements on a dense network were performed during the MISTRAL field experiment in 1991-1992. From these data the characteristic wind fields were identified by an automated classification method. The dynamics of the resulting twelve typical regional flow patterns is studied. It is discussed how transitions between the flow patterns take place and how well the transition probabilities can be described in the framework of a Markov model. Guided by this discussion, a variety of prediction models were tested which allow a short-term forecast of the flow pattern type. It is found that a prediction model which uses forecast information from the synoptic scale has the best forecast skill. (author) 2 figs., 7 refs.
Time course of dynamic range adaptation in the auditory nerve
Wang, Grace I.; Dean, Isabel; Delgutte, Bertrand
2012-01-01
Auditory adaptation to sound-level statistics occurs as early as in the auditory nerve (AN), the first stage of neural auditory processing. In addition to firing rate adaptation characterized by a rate decrement dependent on previous spike activity, AN fibers show dynamic range adaptation, which is characterized by a shift of the rate-level function or dynamic range toward the most frequently occurring levels in a dynamic stimulus, thereby improving the precision of coding of the most common sound levels (Wen B, Wang GI, Dean I, Delgutte B. J Neurosci 29: 13797–13808, 2009). We investigated the time course of dynamic range adaptation by recording from AN fibers with a stimulus in which the sound levels periodically switch from one nonuniform level distribution to another (Dean I, Robinson BL, Harper NS, McAlpine D. J Neurosci 28: 6430–6438, 2008). Dynamic range adaptation occurred rapidly, but its exact time course was difficult to determine directly from the data because of the concomitant firing rate adaptation. To characterize the time course of dynamic range adaptation without the confound of firing rate adaptation, we developed a phenomenological “dual adaptation” model that accounts for both forms of AN adaptation. When fitted to the data, the model predicts that dynamic range adaptation occurs as rapidly as firing rate adaptation, over 100–400 ms, and the time constants of the two forms of adaptation are correlated. These findings suggest that adaptive processing in the auditory periphery in response to changes in mean sound level occurs rapidly enough to have significant impact on the coding of natural sounds. PMID:22457465
Estimating return periods of extreme values from relatively short time series of winds
Jonasson, Kristjan; Agustsson, Halfdan; Rognvaldsson, Olafur; Arfeuille, Gilles
2013-04-01
An important factor for determining the prospect of individual wind farm sites is the frequency of extreme winds at hub height. Here, extreme winds are defined as the value of the highest 10 minutes averaged wind speed with a 50 year return period, i.e. annual exceeding probability of 2% (Rodrigo, 2010). A frequently applied method to estimate winds in the lowest few hundred meters above ground is to extrapolate observed 10-meter winds logarithmically to higher altitudes. Recent study by Drechsel et al. (2012) showed however that this methodology is not as accurate as interpolating simulated results from the global ECMWF numerical weather prediction (NWP) model to the desired height. Observations of persistent low level jets near Colima in SW-Mexico also show that the logarithmic approach can give highly inaccurate results for some regions (Arfeuille et al., 2012). To address these shortcomings of limited, and/or poorly representative, observations and extrapolations of winds one can use NWP models to dynamically scale down relatively coarse resolution atmospheric analysis. In the case of limited computing resources one has typically to make a compromise between spatial resolution and the duration of the simulated period, both of which can limit the quality of the wind farm siting. A common method to estimate maximum winds is to fit an extreme value distribution (e.g. Gumbel, gev or Pareto) to the maximum values of each year of available data, or the tail of these values. If data are only available for a short period, e.g. 10 or 15 years, then this will give a rather inaccurate estimate. It is possible to deal with this problem by utilizing monthly or weekly maxima, but this introduces new problems: seasonal variation, autocorrelation of neighboring values, and increased discrepancy between data and fitted distribution. We introduce a new method to estimate return periods of extreme values of winds at hub height from relatively short time series of winds, simulated
Real time visualization of dynamic magnetic fields with a nanomagnetic ferrolens
Markoulakis, Emmanouil; Rigakis, Iraklis; Chatzakis, John; Konstantaras, Antonios; Antonidakis, Emmanuel
2018-04-01
Due to advancements in nanomagnetism and latest nanomagnetic materials and devices, a new potential field has been opened up for research and applications which was not possible before. We herein propose a new research field and application for nanomagnetism for the visualization of dynamic magnetic fields in real-time. In short, Nano Magnetic Vision. A new methodology, technique and apparatus were invented and prototyped in order to demonstrate and test this new application. As an application example the visualization of the dynamic magnetic field on a transmitting antenna was chosen. Never seen before high-resolution, photos and real-time color video revealing the actual dynamic magnetic field inside a transmitting radio antenna rod has been captured for the first time. The antenna rod is fed with six hundred volts, orthogonal pulses. This unipolar signal is in the very low frequency (i.e. VLF) range. The signal combined with an extremely short electrical length of the rod, ensures the generation of a relatively strong fluctuating magnetic field, analogue to the signal transmitted, along and inside the antenna. This field is induced into a ferrolens and becomes visible in real-time within the normal human eyes frequency spectrum. The name we have given to the new observation apparatus is, SPIONs Superparamagnetic Ferrolens Microscope (SSFM), a powerful passive scientific observation tool with many other potential applications in the near future.
Singular perturbation methods for nonlinear dynamic systems with time delays
International Nuclear Information System (INIS)
Hu, H.Y.; Wang, Z.H.
2009-01-01
This review article surveys the recent advances in the dynamics and control of time-delay systems, with emphasis on the singular perturbation methods, such as the method of multiple scales, the method of averaging, and two newly developed methods, the energy analysis and the pseudo-oscillator analysis. Some examples are given to demonstrate the advantages of the methods. The comparisons with other methods show that these methods lead to easier computations and higher accurate prediction on the local dynamics of time-delay systems near a Hopf bifurcation.
Radar time delays in the dynamic theory of gravity
Directory of Open Access Journals (Sweden)
Haranas I.I.
2004-01-01
Full Text Available There is a new theory gravity called the dynamic theory, which is derived from thermodynamic principles in a five dimensional space, radar signals traveling times and delays are calculated for the major planets in the solar system, and compared to those of general relativity. This is done by using the usual four dimensional spherically symmetric space-time element of classical general relativistic gravity which has now been slightly modified by a negative inverse radial exponential term due to the dynamic theory of gravity potential.
Directory of Open Access Journals (Sweden)
Wenlei Bai
2017-12-01
Full Text Available The deterministic methods generally used to solve DC optimal power flow (OPF do not fully capture the uncertainty information in wind power, and thus their solutions could be suboptimal. However, the stochastic dynamic AC OPF problem can be used to find an optimal solution by fully capturing the uncertainty information of wind power. That uncertainty information of future wind power can be well represented by the short-term future wind power scenarios that are forecasted using the generalized dynamic factor model (GDFM—a novel multivariate statistical wind power forecasting model. Furthermore, the GDFM can accurately represent the spatial and temporal correlations among wind farms through the multivariate stochastic process. Fully capturing the uncertainty information in the spatially and temporally correlated GDFM scenarios can lead to a better AC OPF solution under a high penetration level of wind power. Since the GDFM is a factor analysis based model, the computational time can also be reduced. In order to further reduce the computational time, a modified artificial bee colony (ABC algorithm is used to solve the AC OPF problem based on the GDFM forecasting scenarios. Using the modified ABC algorithm based on the GDFM forecasting scenarios has resulted in better AC OPF’ solutions on an IEEE 118-bus system at every hour for 24 h.
New serial time codes for seismic short period and long period data acquisition systems
International Nuclear Information System (INIS)
Kolvankar, V.G.; Rao, D.S.
1988-01-01
This paper discusses a new time code for time indexing multichannel short period (1 to 25 hz) seismic event data recorded on a single track of magnetic tape in digital format and discusses its usefulness in contrast to Vela time code used in continuous analog multichannel data recording system on multitrack instrumentation tape deck. This paper also discusses another time code, used for time indexing of seismic long period (DC to 2.5 seconds) multichannel data recorded on a single track of magnetic tape in digital format. The time code decoding and display system developed to provide quick access to any desired portion of the tape in both data recording and repro duce system is also discussed. (author). 7 figs
International Nuclear Information System (INIS)
Bjoernstad, T.
This work describes a method and outlines a procedure for optim- ization of an activation analysis with respect to the experimental times, irradiation time, t(subi), decay time and counting time. The method is based on the 'minimum relative standard deviation criterion', and specially designed for the use on short-lived nuclides. A computer program, COMB1, is written in the BASIC language in order to make the calculations easier and faster. It is intended to be understandable, and easily applicable on a computer of modest size. Time and cost are important factors, especially for routine analysis on a service basis. In such cases one can often allow a controlled reduction in the analysis quality (through a higher relative standard deviation). The procedure outlined can therefore help find acceptable conditions by calculation of the 'best practical' (or reasonable) experimental time values, and the minimum number of accumulation cycles necessary to fulfil the requirements given. (Auth.)
Short-time existence of solutions for mean-field games with congestion
Gomes, Diogo A.; Voskanyan, Vardan K.
2015-01-01
We consider time-dependent mean-field games with congestion that are given by a Hamilton–Jacobi equation coupled with a Fokker–Planck equation. These models are motivated by crowd dynamics in which agents have difficulty moving in high-density areas
Short-Term Memory Loss Over Time Without Retroactive Stimulus Interference
Cowan, Nelson; AuBuchon, Angela M.
2008-01-01
A key question in cognitive psychology is whether information in short-term memory is lost as a function of time. Lewandowsky, Duncan, and Brown (2004) argued against that memory loss because forgetting in serial recall occurred to the same extent across serial positions regardless of the rate of recall. However, we believe Lewandowsky et al. only prevented one of two types of rehearsal; they did not prevent non-articulatory rehearsal via attention. To prevent articulatory and non-articulator...
Dynamical pruning of static localized basis sets in time-dependent quantum dynamics
McCormack, D.A.
2006-01-01
We investigate the viability of dynamical pruning of localized basis sets in time-dependent quantum wave packet methods. Basis functions that have a very small population at any given time are removed from the active set. The basis functions themselves are time independent, but the set of active
Fujisawa, Toshiaki; Miyamoto, Eriko; Takuma, Shigeru; Shibuya, Makiko; Kurozumi, Akihiro; Kimura, Yukifumi; Kamekura, Nobuhito; Fukushima, Kazuaki
2009-01-01
Recovery of dynamic balance, involving adjustment of the center of gravity, is essential for safe discharge on foot after ambulatory anesthesia. The purpose of this study was to assess the recovery of dynamic balance after general anesthesia with sevoflurane, using two computerized dynamic posturographies. Nine hospitalized patients undergoing oral surgery of less than 2 h duration under general anesthesia (air-oxygensevoflurane) were studied. A dynamic balance test, assessing the ability of postural control against unpredictable perturbation stimuli (Stability System; Biodex Medical), a walking analysis test using sheets with foot pressure sensors (Walk Way-MG1000; Anima), and two simple psychomotor function tests were performed before anesthesia (baseline), and 150 and 210 min after the emergence from anesthesia. Only the double-stance phase in the walking analysis test showed a significant difference between baseline and results at 150 min. None of the other variables showed any differences among results at baseline and at 150 and 210 min. The recovery times for dynamic balance and psychomotor function seem to be within 150 min after emergence from general anesthesia with sevoflurane in patients undergoing oral surgery of less than 2-h duration.
Energy Technology Data Exchange (ETDEWEB)
Keek, L. [X-ray Astrophysics Laboratory, Astrophysics Science Division, NASA/GSFC, Greenbelt, MD 20771 (United States); Heger, A., E-mail: laurens.keek@nasa.gov [Monash Center for Astrophysics, School of Physics and Astronomy, Monash University, Victoria, 3800 (Australia)
2017-06-20
Thermonuclear flashes of hydrogen and helium accreted onto neutron stars produce the frequently observed Type I X-ray bursts. It is the current paradigm that almost all material burns in a burst, after which it takes hours to accumulate fresh fuel for the next burst. In rare cases, however, bursts are observed with recurrence times as short as minutes. We present the first one-dimensional multi-zone simulations that reproduce this phenomenon. Bursts that ignite in a relatively hot neutron star envelope leave a substantial fraction of the fuel unburned at shallow depths. In the wake of the burst, convective mixing events driven by opacity bring this fuel down to the ignition depth on the observed timescale of minutes. There, unburned hydrogen mixes with the metal-rich ashes, igniting to produce a subsequent burst. We find burst pairs and triplets, similar to the observed instances. Our simulations reproduce the observed fraction of bursts with short waiting times of ∼30%, and demonstrate that short recurrence time bursts are typically less bright and of shorter duration.
Simulating transient dynamics of the time-dependent time fractional Fokker–Planck systems
Energy Technology Data Exchange (ETDEWEB)
Kang, Yan-Mei, E-mail: ymkang@mail.xjtu.edu.cn
2016-09-16
For a physically realistic type of time-dependent time fractional Fokker–Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker–Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed. - Highlights: • An iteration method is proposed for the transient dynamics of time-dependent time fractional Fokker–Planck equations. • The method is based on Fourier Series solution and the multi-step transition probability formula. • With the time-modulated subdiffusion on finite interval as example, the polarized motion orientation is disclosed. • With the time-modulated subdiffusion within a confined potential as example, the death of dynamic response is observed.
Simulating transient dynamics of the time-dependent time fractional Fokker–Planck systems
International Nuclear Information System (INIS)
Kang, Yan-Mei
2016-01-01
For a physically realistic type of time-dependent time fractional Fokker–Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker–Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed. - Highlights: • An iteration method is proposed for the transient dynamics of time-dependent time fractional Fokker–Planck equations. • The method is based on Fourier Series solution and the multi-step transition probability formula. • With the time-modulated subdiffusion on finite interval as example, the polarized motion orientation is disclosed. • With the time-modulated subdiffusion within a confined potential as example, the death of dynamic response is observed.
International Nuclear Information System (INIS)
Van Well, A.A.; Bleuel, M.; Pappas, C.
2011-01-01
Neutron Spin Echo (NSE) spectrometers typically cover a dynamic range of three orders of magnitude at a given wavelength. At long Fourier times the limits are given by the homogeneity of precession fields. At short Fourier times, the quasi-elastic approximation and the NSE formalism mark a methodological limit. We propose to overcome this limitation and by combining Time Of Flight with Larmor precession to extend the capabilities of Neutron Spin Echo spectrometers towards short Fourier times. TOFLAR should be easily implemented on NSE spectrometers equipped with a chopper system such as IN15 or the planned WASP. (authors)
Absorption dynamics and delay time in complex potentials
Villavicencio, Jorge; Romo, Roberto; Hernández-Maldonado, Alberto
2018-05-01
The dynamics of absorption is analyzed by using an exactly solvable model that deals with an analytical solution to Schrödinger’s equation for cutoff initial plane waves incident on a complex absorbing potential. A dynamical absorption coefficient which allows us to explore the dynamical loss of particles from the transient to the stationary regime is derived. We find that the absorption process is characterized by the emission of a series of damped periodic pulses in time domain, associated with damped Rabi-type oscillations with a characteristic frequency, ω = (E + ε)/ℏ, where E is the energy of the incident waves and ‑ε is energy of the quasidiscrete state of the system induced by the absorptive part of the Hamiltonian; the width γ of this resonance governs the amplitude of the pulses. The resemblance of the time-dependent absorption coefficient with a real decay process is discussed, in particular the transition from exponential to nonexponential regimes, a well-known feature of quantum decay. We have also analyzed the effect of the absorptive part of the potential on the dynamical delay time, which behaves differently from the one observed in attractive real delta potentials, exhibiting two regimes: time advance and time delay.
A Novel Time Synchronization Method for Dynamic Reconfigurable Bus
Directory of Open Access Journals (Sweden)
Zhang Weigong
2016-01-01
Full Text Available UM-BUS is a novel dynamically reconfigurable high-speed serial bus for embedded systems. It can achieve fault tolerance by detecting the channel status in real time and reconfigure dynamically at run-time. The bus supports direct interconnections between up to eight master nodes and multiple slave nodes. In order to solve the time synchronization problem among master nodes, this paper proposes a novel time synchronization method, which can meet the requirement of time precision in UM-BUS. In this proposed method, time is firstly broadcasted through time broadcast packets. Then, the transmission delay and time deviations via three handshakes during link self-checking and channel detection can be worked out referring to the IEEE 1588 protocol. Thereby, each node calibrates its own time according to the broadcasted time. The proposed method has been proved to meet the requirement of real-time time synchronization. The experimental results show that the synchronous precision can achieve a bias less than 20 ns.
Short-time scale coupling between thermohaline and meteorological forcing in the Ría de Pontevedra
Directory of Open Access Journals (Sweden)
Paula C. Pardo
2001-07-01
Full Text Available Two cruises were performed in May-June and October-November 1997 in the Ría de Pontevedra under strong downwelling conditions. Temperature and salinity data were recorded in short sampling periods to describe the changes in thermohaline property distribution in a short time scale. In order to obtain the residual fluxes in the Ría, a bi-dimensional non-stationary salt and thermal-energy weight averaged box-model was applied. Outputs from this kinematic model were compared with Upwelling Index, river flow and density gradient, resulting in a good multiple correlation, which proves the strong coupling between thermohaline properties and meteorological variability. Ekman forcing affects the whole area but mainly controls the dynamics of outer zones. The intensity of its effect on the circulation pattern within the Ría depends on the grade of stratification of the water bodies. River flow is more relevant in inner parts. According to estimated spatially averaged velocities, water residence time is lower than two weeks in outer parts of the Ría, and decreases toward the inner zones.
Narumi, Takayuki; Tokuyama, Michio
2017-03-01
For short-range attractive colloids, the phase diagram of the kinetic glass transition is studied by time-convolutionless mode-coupling theory (TMCT). Using numerical calculations, TMCT is shown to recover all the remarkable features predicted by the mode-coupling theory for attractive colloids: the glass-liquid-glass reentrant, the glass-glass transition, and the higher-order singularities. It is also demonstrated through the comparisons with the results of molecular dynamics for the binary attractive colloids that TMCT improves the critical values of the volume fraction. In addition, a schematic model of three control parameters is investigated analytically. It is thus confirmed that TMCT can describe the glass-glass transition and higher-order singularities even in such a schematic model.
Lei, Ming; Tian, Qing; Wu, Kevin; Zhao, Yan
2016-03-01
Gate to source/drain (S/D) short is the most common and detrimental failure mechanism for advanced process technology development in Metal-Oxide-Semiconductor-Field-Effect-Transistor (MOSFET) device manufacturing. Especially for sub-1Xnm nodes, MOSFET device is more vulnerable to gate-S/D shorts due to the aggressive scaling. The detection of this kind of electrical short defect is always challenging for in-line electron beam inspection (EBI), especially new shorting mechanisms on atomic scale due to new material/process flow implementation. The second challenge comes from the characterization of the shorts including identification of the exact shorting location. In this paper, we demonstrate unique scan direction induced charging dynamics (SDCD) phenomenon which stems from the transistor level response from EBI scan at post metal contact chemical-mechanical planarization (CMP) layers. We found that SDCD effect is exceptionally useful for gate-S/D short induced voltage contrast (VC) defect detection, especially for identification of shorting locations. The unique SDCD effect signatures of gate-S/D shorts can be used as fingerprint for ground true shorting defect detection. Correlation with other characterization methods on the same defective location from EBI scan shows consistent results from various shorting mechanism. A practical work flow to implement the application of SDCD effect for in-line EBI monitor of critical gate-S/D short defects is also proposed, together with examples of successful application use cases which mostly focus on static random-access memory (SRAM) array regions. Although the capability of gate-S/D short detection as well as expected device response is limited to passing transistors and pull-down transistors due to the design restriction from standard 6-cell SRAM structure, SDCD effect is proven to be very effective for gate-S/D short induced VC defect detection as well as yield learning for advanced technology development.
Real-time high dynamic range laser scanning microscopy
Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.
2016-04-01
In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.
Complexity, Sustainability, Justice, and Meaning: Chronological Versus Dynamical Time
Directory of Open Access Journals (Sweden)
Horacio Velasco
2009-11-01
Full Text Available
Times New Roman;">Abstract: It is shown that time may be appreciated in at least two senses: chronological and dynamical. Chronological time is the time of our naïve acquaintance as transient beings. At its most extensive scale, it corresponds to history encompassing both the abiotic and the biotic universe. Dynamical time, deriving from classical mechanics, is the time embraced by most of the laws of physics. It concerns itself only with present conditions since it is held that that the past may be reconstructed from the present (literally and the future predicted from the present, a position known as Laplacian determinism.
Times New Roman;">
Times New Roman;">Nonlinear dynamics has shown the fallacy of this supposition because, of necessity, the concrete values that may be assumed in the variables of the equations of motion constituting the laws of physics (i.e. the present or starting conditions as a result of the spontaneous or intentional interaction of subject (or measuring systems and of object (or measured systems, cannot be of infinite precision. Indeed, even if they could be, it is not at all clear that they would permit Laplacian determinism because of what is thought to be the ubiquity of K-flow dynamics in nature in which even infinite past information leading to the present cannot yield prediction of the future. In consequence, nonlinear dynamics, in rebellion against dynamical time, generates a primitive form of history distinguishing past, present, and future that may be termed nonlinear dynamical hysteresis.
International Nuclear Information System (INIS)
Bizarro, Joao P.S.; Figueiredo, Antonio C.A.
2008-01-01
Performing a time-frequency (t-f) analysis on actual magnetic pick-up coil data from the JET tokamak, a comparison is presented between the spectrogram and the Wigner and Choi-Williams distributions. Whereas the former, which stems from the short-time Fourier transform and has been the work-horse for t-f signal processing, implies an unavoidable trade-off between time and frequency resolutions, the latter two belong to a later generation of distributions that yield better, if not optimal joint t-f localization. Topics addressed include signal representation in the t-f plane, frequency identification and evolution, instantaneous-frequency estimation, and amplitude tracking
DEFF Research Database (Denmark)
Heidemann Andersen, Asger; de Haan, Jan Mark; Tan, Zheng-Hua
performance measures: root-mean-squared-error, Pearson correlation, and Kendall rank correlation. The results show substantially improved performance when fitting and evaluating on the same dataset. However, this advantage does not necessarily subsist when fitting and evaluating on different datasets. When...... with a filter bank, 2) envelopes are extracted from each band, 3) the temporal correlation between clean and degraded envelopes is computed in short time segments, and 4) the correlation is averaged across time and frequency bands to obtain the final output. An unusual choice in the design of the STOI measure...
Directory of Open Access Journals (Sweden)
D. Seidl
1999-06-01
Full Text Available Among a variety of spectrogram methods Short-Time Fourier Transform (STFT and Continuous Wavelet Transform (CWT were selected to analyse transients in non-stationary tremor signals. Depending on the properties of the tremor signal a more suitable representation of the signal is gained by CWT. Three selected broadband tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli.
Automated Detection of Short Optical Transients of Astrophysical Origin in Real Time
Directory of Open Access Journals (Sweden)
Marcin Sokołowski
2010-01-01
Full Text Available The detection of short optical transients of astrophysical origin in real time is an important task for existing robotic telescopes. The faster a new optical transient is detected, the earlier follow-up observations can be started. The sooner the object is identified, the more data can be collected before the source fades away, particularly in the most interesting early period of the transient. In this the real-time pipeline designed for identification of optical flashes with the “Pi of the Sky” project will be presented in detail together with solutions used by other experiments.
A characterization of persistence at short times in the WFC3/IR detector
Gennaro, M.; Bajaj, V.; Long, K.
2018-05-01
Persistence in the WFC3/IR detector appears to decay as a power law as a function of time elapsed since the end of a stimulus. In this report we study departures from the power law at times shorter than a few hundreds seconds after the stimulus. In order to have better short-time cadence, we use the Multiaccum (.ima) files, which trace the accumulated charge in the pixels as function of time, rather than the final pipeline products (.flt files), which instead report the electron rate estimated via a linear fit to the accumulated charge vs. time relation. We note that at short times after the stimulus, the absolute change in persistence is the strongest, thus a linear fit to the accumulated signal (the .flt values) can be a poor representation of the strongly varying persistence signal. The already observed power-law decay of the persistence signal, still holds at shorter times, with typical values of the power law index, gamma in [-0.8,-1] for stimuli that saturate the WFC3 pixels. To a good degree of approximation, a single power law is a good fit to the persistence signal decay from 100 to 5000 seconds. We also detect a tapering-off in the power-law decay at increasingly shorter times. This change in behavior is of the order of Delta Gamma 0.02 - 0.05 when comparing power-law fits performed to the persistence signal from 0 up to 250 seconds and from 0 up to 4000 seconds after the stimulus, indicating that persistence decays slightly more rapidly as time progresses. Our results may suggest that for even shorter times, not probed by our study, the WFC3 persistence signal might deviate from a single power-law model.
Experimental investigation of plasma dynamics in dc and short-pulse magnetron discharges
International Nuclear Information System (INIS)
Seo, Sang-Hun; In, Jung-Hwan; Chang, Hong-Young
2006-01-01
The spatiotemporal evolution of the electron energy distribution function (EEDF) and of plasma parameters such as the electron density, the electron temperature and the plasma and floating potentials has been investigated using spatially and temporally resolved single Langmuir probe measurements in dc and mid-frequency, short-pulse magnetron discharges with a repetition frequency of 10 kHz and a duty cycle of 10%. In the pulsed discharge of the short duty cycle, a peak electron temperature higher than 10 eV was observed near the cathode fall region during the early phase of the pulse-on, which is about three times higher than the steady-state value of the electron temperature in the dc discharge. The temporal evolution of the measured EEDFs showed the initial efficient electron heating during the early phase of the pulse-on and the subsequent relaxation of electron energy by the inelastic collisions and the diffusive loss. The high-energy electrons generated during the pulse-on phase diffused the downstream region toward the grounded substrate, resulting in a bi-Maxwellian EEDF consisting of the background low-energy electrons and the high-energy electrons. The results of the spatially and temporally resolved probe measurements will be presented and the enhanced efficiency of the electron heating in the short-pulse discharge will be explained on the basis of the global model of a pulsed discharge
Capturing Context-Related Change in Emotional Dynamics via Fixed Moderated Time Series Analysis.
Adolf, Janne K; Voelkle, Manuel C; Brose, Annette; Schmiedek, Florian
2017-01-01
Much of recent affect research relies on intensive longitudinal studies to assess daily emotional experiences. The resulting data are analyzed with dynamic models to capture regulatory processes involved in emotional functioning. Daily contexts, however, are commonly ignored. This may not only result in biased parameter estimates and wrong conclusions, but also ignores the opportunity to investigate contextual effects on emotional dynamics. With fixed moderated time series analysis, we present an approach that resolves this problem by estimating context-dependent change in dynamic parameters in single-subject time series models. The approach examines parameter changes of known shape and thus addresses the problem of observed intra-individual heterogeneity (e.g., changes in emotional dynamics due to observed changes in daily stress). In comparison to existing approaches to unobserved heterogeneity, model estimation is facilitated and different forms of change can readily be accommodated. We demonstrate the approach's viability given relatively short time series by means of a simulation study. In addition, we present an empirical application, targeting the joint dynamics of affect and stress and how these co-vary with daily events. We discuss potentials and limitations of the approach and close with an outlook on the broader implications for understanding emotional adaption and development.
Fractal differential equations and fractal-time dynamical systems
Indian Academy of Sciences (India)
like fractal subsets of the real line may be termed as fractal-time dynamical systems. Formulation ... involving scaling and memory effects. But most of ..... begin by recalling the definition of the Riemann integral in ordinary calculus [33]. Let g: [a ...
Dynamic modelling of heavy metals - time scales and target loads
Posch, M.; Vries, de W.
2009-01-01
Over the past decade steady-state methods have been developed to assess critical loads of metals avoiding long-term risks in view of food quality and eco-toxicological effects on organisms in soils and surface waters. However, dynamic models are needed to estimate the times involved in attaining a
Construction of time-dependent dynamical invariants: A new approach
International Nuclear Information System (INIS)
Bertin, M. C.; Pimentel, B. M.; Ramirez, J. A.
2012-01-01
We propose a new way to obtain polynomial dynamical invariants of the classical and quantum time-dependent harmonic oscillator from the equations of motion. We also establish relations between linear and quadratic invariants, and discuss how the quadratic invariant can be related to the Ermakov invariant.
Contact Dynamics of EHL Contacts under Time Varying Conditions
Venner, Cornelis H.; Popovici, G.; Wijnant, Ysbrand H.; Dalmaz, G.; Lubrecht, A.A.; Priest, M
2004-01-01
By means of numerical simulations of two situations with time varying operating conditions it is shown that the dynamic behaviour of Elasto-Hydrodynamically Lubricated contacts in terms of vibrations can be characterized as: Changes in the mutual approach lead to film thickness changes in the inlet
Attention and awareness influence amygdala activity for dynamic bodily expressions - A short review.
Directory of Open Access Journals (Sweden)
Beatrice eDe Gelder
2012-08-01
Full Text Available The amygdala (AMG has long been viewed as the gateway to sensory processing of emotions and is also known to play an importanta role at the interface between cognition and emotion. However, the debate continues on whether AMG activation is independent of attentional demands. Recently, researchers started exploring AMG functions using dynamic stimuli rather than the traditional pictures of facial expressions. Our present goal is to review some recent studies using dynamic stimuli to investigate AMG activation and discuss the impact of different viewing conditions, including oddball detection, explicit or implicit recognition, variable cognitive task load, and non-conscious perception. In the second part we relate these different effects to a dynamic dual route model of affective processing and discuss its implications for AMG activity. We sketch a dynamic dual route perspective of affective perception and we argue that this allows for multiple AMG involvement in separate networks and at different times in the processing streams. Attention has a different impact on these separate but interacting networks. Route I is engaged in early emotion processing, is partly supported by AMG activity and is possibly independent of attention, whereas activity in the later emotion processing is influenced by attention. Route II is a cortical-based network that underlies body recognition and action representation. The end result of route I and II is reflexive and voluntary behavior respectively. We conclude that using dynamic emotion stimuli and a dynamic dual route model of affective perception can provide new insights into the varieties of AMG activation.
Adaptive synchrosqueezing based on a quilted short-time Fourier transform
Berrian, Alexander; Saito, Naoki
2017-08-01
In recent years, the synchrosqueezing transform (SST) has gained popularity as a method for the analysis of signals that can be broken down into multiple components determined by instantaneous amplitudes and phases. One such version of SST, based on the short-time Fourier transform (STFT), enables the sharpening of instantaneous frequency (IF) information derived from the STFT, as well as the separation of amplitude-phase components corresponding to distinct IF curves. However, this SST is limited by the time-frequency resolution of the underlying window function, and may not resolve signals exhibiting diverse time-frequency behaviors with sufficient accuracy. In this work, we develop a framework for an SST based on a "quilted" short-time Fourier transform (SST-QSTFT), which allows adaptation to signal behavior in separate time-frequency regions through the use of multiple windows. This motivates us to introduce a discrete reassignment frequency formula based on a finite difference of the phase spectrum, ensuring computational accuracy for a wider variety of windows. We develop a theoretical framework for the SST-QSTFT in both the continuous and the discrete settings, and describe an algorithm for the automatic selection of optimal windows depending on the region of interest. Using synthetic data, we demonstrate the superior numerical performance of SST-QSTFT relative to other SST methods in a noisy context. Finally, we apply SST-QSTFT to audio recordings of animal calls to demonstrate the potential of our method for the analysis of real bioacoustic signals.
The loss of short-term visual representations over time: decay or temporal distinctiveness?
Mercer, Tom
2014-12-01
There has been much recent interest in the loss of visual short-term memories over the passage of time. According to decay theory, visual representations are gradually forgotten as time passes, reflecting a slow and steady distortion of the memory trace. However, this is controversial and decay effects can be explained in other ways. The present experiment aimed to reexamine the maintenance and loss of visual information over the short term. Decay and temporal distinctiveness models were tested using a delayed discrimination task, in which participants compared complex and novel objects over unfilled retention intervals of variable length. Experiment 1 found no significant change in the accuracy of visual memory from 2 to 6 s, but the gap separating trials reliably influenced task performance. Experiment 2 found evidence for information loss at a 10-s retention interval, but temporally separating trials restored the fidelity of visual memory, possibly because temporally isolated representations are distinct from older memory traces. In conclusion, visual representations lose accuracy at some point after 6 s, but only within temporally crowded contexts. These findings highlight the importance of temporal distinctiveness within visual short-term memory. PsycINFO Database Record (c) 2014 APA, all rights reserved.
[Clinical characteristics of short tear film breakup time (BUT) -type dry eye].
Yamamoto, Yuji; Yokoi, Norihiko; Higashihara, Hisayo; Inagaki, Kayoko; Sonomura, Yukiko; Komuro, Aoi; Kinoshita, Shigeru
2012-12-01
To evaluate the clinical characteristics and management of short tear film breakup time (BUT) -type dry eye. Clinical background and post-treatment changes of symptoms in 77 patients with short BUT -type dry eye were investigated. Treatment consisted of artificial-tear eye-drop instillation and, if necessary, the addition of a low-density-level steroid, hyaluronic acid, a low-density-level cyclopentolate prepared by ourselves and punctal plugs inserted into the upper and lower lacrimal puncta. There were three times more women than men among the patients, and the peak age of occurrence was in the twenties in the men and in the sixties in the women. Our findings show that visual display terminal (VDT) work, contact lens (CL) wear, and changes in the sex hormones may initiate subjective symptoms. Some patients had simultaneous conjunctivochalasis, allergic conjunctivitis, and meibomian gland dysfunction. Nineteen patients (24.7%) were effectively treated with eye-drop instillation alone. Thirty-seven patients (48.1%) required punctal-plug insertion, which was completely effective in only 8 of them (21.6%). Mainly young men and menopausal women contract short BUT -type dry eye. Changes in sex hormones, VDT work and CL wear may be causal, and the disease cannot be controlled by eyedrop and punctal-plug treatment alone.
Research on resistance characteristics of YBCO tape under short-time DC large current impact
Zhang, Zhifeng; Yang, Jiabin; Qiu, Qingquan; Zhang, Guomin; Lin, Liangzhen
2017-06-01
Research of the resistance characteristics of YBCO tape under short-time DC large current impact is the foundation of the developing DC superconducting fault current limiter (SFCL) for voltage source converter-based high voltage direct current system (VSC-HVDC), which is one of the valid approaches to solve the problems of renewable energy integration. SFCL can limit DC short-circuit and enhance the interrupting capabilities of DC circuit breakers. In this paper, under short-time DC large current impacts, the resistance features of naked tape of YBCO tape are studied to find the resistance - temperature change rule and the maximum impact current. The influence of insulation for the resistance - temperature characteristics of YBCO tape is studied by comparison tests with naked tape and insulating tape in 77 K. The influence of operating temperature on the tape is also studied under subcooled liquid nitrogen condition. For the current impact security of YBCO tape, the critical current degradation and top temperature are analyzed and worked as judgment standards. The testing results is helpful for in developing SFCL in VSC-HVDC.
Equivalence between short-time biphasic and incompressible elastic material responses.
Ateshian, Gerard A; Ellis, Benjamin J; Weiss, Jeffrey A
2007-06-01
Porous-permeable tissues have often been modeled using porous media theories such as the biphasic theory. This study examines the equivalence of the short-time biphasic and incompressible elastic responses for arbitrary deformations and constitutive relations from first principles. This equivalence is illustrated in problems of unconfined compression of a disk, and of articular contact under finite deformation, using two different constitutive relations for the solid matrix of cartilage, one of which accounts for the large disparity observed between the tensile and compressive moduli in this tissue. Demonstrating this equivalence under general conditions provides a rationale for using available finite element codes for incompressible elastic materials as a practical substitute for biphasic analyses, so long as only the short-time biphasic response is sought. In practice, an incompressible elastic analysis is representative of a biphasic analysis over the short-term response deltatelasticity tensor, and K is the hydraulic permeability tensor of the solid matrix. Certain notes of caution are provided with regard to implementation issues, particularly when finite element formulations of incompressible elasticity employ an uncoupled strain energy function consisting of additive deviatoric and volumetric components.
Simulating transient dynamics of the time-dependent time fractional Fokker-Planck systems
Kang, Yan-Mei
2016-09-01
For a physically realistic type of time-dependent time fractional Fokker-Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker-Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed.
Evaluation of skeletal muscle during exercise on short repetition time MR imaging
International Nuclear Information System (INIS)
Yoshioka, Hiroshi; Niitsu, Mamoru; Anno, Izumi; Takahashi, Hideyuki; Kuno, Shinya; Matsumoto, Kunihiko; Itai, Yuji
1992-01-01
There have been many reports on the effects of exercise on skeletal muscle signal intensities based on magnetic resonance (MR) imaging. These images were obtained using T 2 -weighted MR images. The purpose of this study was to observe muscles during exercise while shortening the repetition time (TR) on spin echo images. In addition, inactive and active muscles were differentiated in the same manner. T 2 values of the tibialis anterior m. were calculated from TR=400 ms to TR=3000 ms. These values were mostly constant and didn't depend upon TR. Increases in signal intensities of the exercise muscles could be observed on the short TR (600 ms) MR images since the changes of the signal intensities mainly depend upon T 2 values. Thus, the T 2 value is useful as a quantitative index to assess the exercise muscle even on the short TR MR images. (author)
Nonlinear response of vessel walls due to short-time thermomechanical loading
International Nuclear Information System (INIS)
Pfeiffer, P.A.; Kulak, R.F.
1994-01-01
Maintaining structural integrity of the reactor pressure vessel (RPV) during a postulated core melt accident is an important safety consideration in the design of the vessel. This study addresses the failure predictions of the vessel due to thermal and pressure loadings fro the molten core debris depositing on the lower head of the vessel. Different loading combinations were considered based on the dead load, yield stress assumptions, material response and internal pressurization. The analyses considered only short term failure (quasi static) modes, long term failure modes were not considered. Short term failure modes include plastic instabilities of the structure and failure due to exceeding the failure strain. Long term failure odes would be caused by creep rupture that leads to plastic instability of the structure. Due to the sort time durations analyzed, creep was not considered in the analyses presented
Short-term memory loss over time without retroactive stimulus interference.
Cowan, Nelson; AuBuchon, Angela M
2008-02-01
A key question in cognitive psychology is whether information in short-term memory is lost as a function of time. Lewandowsky, Duncan, and Brown (2004) argued against that memory loss because forgetting in serial recall occurred to the same extent across serial positions regardless of the rate of recall. However, we believe Lewandowsky et al. (2004) only prevented one of two types of rehearsal; they did not prevent nonarticulatory rehearsal via attention. To prevent articulatory and nonarticulatory rehearsal without introducing interference, we presented unevenly timed stimuli for serial recall and, on some trials, required that the timing of stimuli be reproduced in the response. In those trials only, evidence of memory loss over time emerged. Further research is needed to identify whether this memory loss is decay or lost distinctiveness.
Micro-Doppler Ambiguity Resolution Based on Short-Time Compressed Sensing
Directory of Open Access Journals (Sweden)
Jing-bo Zhuang
2015-01-01
Full Text Available When using a long range radar (LRR to track a target with micromotion, the micro-Doppler embodied in the radar echoes may suffer from ambiguity problem. In this paper, we propose a novel method based on compressed sensing (CS to solve micro-Doppler ambiguity. According to the RIP requirement, a sparse probing pulse train with its transmitting time random is designed. After matched filtering, the slow-time echo signals of the micromotion target can be viewed as randomly sparse sampling of Doppler spectrum. Select several successive pulses to form a short-time window and the CS sensing matrix can be built according to the time stamps of these pulses. Then performing Orthogonal Matching Pursuit (OMP, the unambiguous micro-Doppler spectrum can be obtained. The proposed algorithm is verified using the echo signals generated according to the theoretical model and the signals with micro-Doppler signature produced using the commercial electromagnetic simulation software FEKO.
Topology Identification of General Dynamical Network with Distributed Time Delays
International Nuclear Information System (INIS)
Zhao-Yan, Wu; Xin-Chu, Fu
2009-01-01
General dynamical networks with distributed time delays are studied. The topology of the networks are viewed as unknown parameters, which need to be identified. Some auxiliary systems (also called the network estimators) are designed to achieve this goal. Both linear feedback control and adaptive strategy are applied in designing these network estimators. Based on linear matrix inequalities and the Lyapunov function method, the sufficient condition for the achievement of topology identification is obtained. This method can also better monitor the switching topology of dynamical networks. Illustrative examples are provided to show the effectiveness of this method. (general)
Discrete and continuous time dynamic mean-variance analysis
Reiss, Ariane
1999-01-01
Contrary to static mean-variance analysis, very few papers have dealt with dynamic mean-variance analysis. Here, the mean-variance efficient self-financing portfolio strategy is derived for n risky assets in discrete and continuous time. In the discrete setting, the resulting portfolio is mean-variance efficient in a dynamic sense. It is shown that the optimal strategy for n risky assets may be dominated if the expected terminal wealth is constrained to exactly attain a certain goal instead o...
Directory of Open Access Journals (Sweden)
Oleg G. Kumpyak
2017-12-01
Full Text Available Occurrence of extreme man-made impacts on buildings and structures has become frequent lately as a consequence of condensed explosives or explosive combustion of gas- vapor or air-fuel mixtures. Such accidents involve large human and economic losses, and their prevention methods are not always effective and reasonable. The given research aims at studying the way of enhancing explosion safety of building structures by means of yielding supports. The paper presents results of numerical studies (finite element, 3D nonlinear of strength and deformability of yielding supports in the shape of annular tubes under static and short-term dynamic loading. The degree of influence of yielding supports was assessed taking into account three peculiar stages of deformation: elastic; elasto-plastic; elasto-plastic with hardening. The methodology for numerical studies performance was described. It was established that rigidity of yielding supports influences significantly their stress-strain state. The research determined that with increase of deformable elements rigidity dependency between load and deformation of yielding supports in elastic and plastic stages have linear character. Significant reduction of dynamic response and increase of deformation time of yielding supports was observed by increasing the plastic component. Therefore it allows assuming on possibility of their application as supporting units in reinforced concrete constructions
Analysis of Seasonal Signal in GPS Short-Baseline Time Series
Wang, Kaihua; Jiang, Weiping; Chen, Hua; An, Xiangdong; Zhou, Xiaohui; Yuan, Peng; Chen, Qusen
2018-04-01
Proper modeling of seasonal signals and their quantitative analysis are of interest in geoscience applications, which are based on position time series of permanent GPS stations. Seasonal signals in GPS short-baseline (paper, to better understand the seasonal signal in GPS short-baseline time series, we adopted and processed six different short-baselines with data span that varies from 2 to 14 years and baseline length that varies from 6 to 1100 m. To avoid seasonal signals that are overwhelmed by noise, each of the station pairs is chosen with significant differences in their height (> 5 m) or type of the monument. For comparison, we also processed an approximately zero baseline with a distance of pass-filtered (BP) noise is valid for approximately 40% of the baseline components, and another 20% of the components can be best modeled by a combination of the first-order Gauss-Markov (FOGM) process plus white noise (WN). The TEM displacements are then modeled by considering the monument height of the building structure beneath the GPS antenna. The median contributions of TEM to the annual amplitude in the vertical direction are 84% and 46% with and without additional parts of the monument, respectively. Obvious annual signals with amplitude > 0.4 mm in the horizontal direction are observed in five short-baselines, and the amplitudes exceed 1 mm in four of them. These horizontal seasonal signals are likely related to the propagation of daily/sub-daily TEM displacement or other signals related to the site environment. Mismodeling of the tropospheric delay may also introduce spurious seasonal signals with annual amplitudes of 5 and 2 mm, respectively, for two short-baselines with elevation differences greater than 100 m. The results suggest that the monument height of the additional part of a typical GPS station should be considered when estimating the TEM displacement and that the tropospheric delay should be modeled cautiously, especially with station pairs with
Time variation of fundamental couplings and dynamical dark energy
International Nuclear Information System (INIS)
Dent, Thomas; Stern, Steffen; Wetterich, Christof
2009-01-01
Scalar field dynamics may give rise to a nonzero cosmological variation of fundamental constants. Within different scenarios based on the unification of gauge couplings, the various claimed observations and bounds may be combined in order to trace or restrict the time history of the couplings and masses. If the scalar field is responsible for a dynamical dark energy or quintessence, cosmological information becomes available for its time evolution. Combining this information with the time variation of couplings, one can determine the interaction strength between the scalar and atoms, which may be observed by tests of the Weak Equivalence Principle. We compute bounds on the present rate of coupling variation from experiments testing the differential accelerations for bodies with equal mass and different composition and compare the sensitivity of various methods. In particular, we discuss two specific models of scalar evolution: crossover quintessence and growing neutrino models
International Nuclear Information System (INIS)
Liu Wenyan; Tang, Z.P.; Liu Yunxin
2000-01-01
In recent years, more attention has been paid to a better understanding of the failure behavior and mechanism of heterogeneous materials at the meso-scale level. In this paper, the crack initiation and development in epoxy composites reinforced with short steel fibers under dynamic loading were simulated and analyzed with the 2D Discrete Meso-Element Dynamic Method. Results show that the damage process depends greatly on the binding property between matrix and fibers
The Perception of Time While Perceiving Dynamic Emotional Faces
Directory of Open Access Journals (Sweden)
Wang On eLi
2015-08-01
Full Text Available Emotion plays an essential role in the perception of time such that time is perceived to fly when events are enjoyable, while unenjoyable moments are perceived to drag. Previous studies have reported a time-drag effect when participants are presented with emotional facial expressions, regardless of the emotion presented. This effect can hardly be explained by induced emotion given the heterogeneous nature of emotional expressions. We conducted two experiments (n=44 & n=39 to examine the cognitive mechanism underlying this effect by presenting dynamic sequences of emotional expressions to participants. Each sequence started with a particular expression, then morphed to another. The presentation of dynamic facial expressions allows a comparison between the time-drag effect of homogeneous pairs of emotional expressions sharing similar valence and arousal to heterogeneous pairs. Sequences of seven durations (400ms, 600ms, 800ms, 1,000ms, 1,200ms, 1,400ms, 1,600ms were presented to participants, who were asked to judge whether the sequences were closer to 400ms or 1,600ms in a two-alternative forced choice task. The data were then collated according to conditions and fit into cumulative Gaussian curves to estimate the point of subjective equivalence indicating the perceived duration of 1,000ms. Consistent with previous reports, a feeling of time dragging is induced regardless of the sequence presented, such that 1,000ms is perceived to be longer than 1,000ms. In addition, dynamic facial expressions exert a greater effect on perceived time drag than static expressions. The effect is most prominent when the dynamics involve an angry face or a change in valence. The significance of this sensitivity is discussed in terms of emotion perception and its evolutionary significance for our attention mechanism.
Directory of Open Access Journals (Sweden)
Moran eBrody
2013-08-01
Full Text Available The rat globus pallidus (GP is one of the nuclei of the basal ganglia and plays an important role in a variety of motor and cognitive processes. In vivo studies have shown that repetitive stimulation evokes complex modulations of GP activity. In vitro and computational studies have suggested that short-term synaptic plasticity (STP could be one of the underlying mechanisms. The current study used simplified single compartment modeling to explore the possible effect of STP on the activity of GP neurons during low and high frequency stimulation. To do this we constructed a model of a GP neuron connected to a small network of neurons from the three major input sources to GP neurons: striatum (Str, subthalamic nucleus (STN and GP collaterals. All synapses were implemented with a kinetic model of STP. The in vitro recordings of responses to low frequency repetitive stimulation were highly reconstructed, including rate changes and locking to the stimulus. Mainly involved were fast forms of plasticity which have been found at these synapses. . The simulations were qualitatively compared to a data set previously recorded in vitro in our lab. Reconstructions of experimental responses to high frequency stimulation required adding slower forms of plasticity to the STN and GP collateral synapses, as well as adding metabotropic receptors to the STN-GP synapses. These finding suggest the existence of as yet unreported slower short-term dynamics in the GP. The computational model made additional predictions about GP activity during low and high frequency stimulation that may further our understanding of the mechanisms underlying repetative stimulation of the GP.
Time-Series Prediction: Application to the Short-Term Electric Energy Demand
Troncoso Lora, Alicia; Riquelme Santos, Jesús Manuel; Riquelme Santos, José Cristóbal; Gómez Expósito, Antonio; Martínez Ramos, José Luis
2003-01-01
This paper describes a time-series prediction method based on the kNN technique. The proposed methodology is applied to the 24-hour load forecasting problem. Also, based on recorded data, an alternative model is developed by means of a conventional dynamic regression technique, where the parameters are estimated by solving a least squares problem. Finally, results obtained from the application of both techniques to the Spanish transmission system are compared in terms of maximum, average and ...
Short-time beta grain growth kinetics for a conventional titanium alloy
International Nuclear Information System (INIS)
Semiatin, S.L.; Sukonnik, I.M.
1996-01-01
The kinetics of beta grain growth during short-time, supertransus heat treatment of Ti-5Al-4V were determined using a salt-pot technique. The finite-time, subtransus temperature transient during salt-pot heating was quantified through measurements of the heat transfer coefficient characterizing conduction across the salt-titanium interface and a simple heat conduction analysis which incorporated this heat transfer coefficient. Grain size versus time data adjusted to account for the subtransus temperature transient were successfully fit to the parabolic grain growth law d n - d 0 n = kt exp(-Q/RT) using an exponent n equal to 2.0. Comparison of the present results to rapid, continuous heat treatment data in the literature for a similar titanium alloy revealed a number of semi-quantitative similarities
Tarnow, Eugen
2008-12-01
The functional relationship between correct response probability and response time is investigated in data sets from Rubin, Hinton and Wenzel, J Exp Psychol Learn Mem Cogn 25:1161-1176, 1999 and Anderson, J Exp Psychol [Hum Learn] 7:326-343, 1981. The two measures are linearly related through stimulus presentation lags from 0 to 594 s in the former experiment and for repeated learning of words in the latter. The Tagging/Retagging interpretation of short term memory is introduced to explain this linear relationship. At stimulus presentation the words are tagged. This tagging level drops slowly with time. When a probe word is reintroduced the tagging level has to increase for the word to be properly identified leading to a delay in response time. The tagging time is related to the meaningfulness of the words used-the more meaningful the word the longer the tagging time. After stimulus presentation the tagging level drops in a logarithmic fashion to 50% after 10 s and to 20% after 240 s. The incorrect recall and recognition times saturate in the Rubin et al. data set (they are not linear for large time lags), suggesting a limited time to search the short term memory structure: the search time for recall of unusual words is 1.7 s. For recognition of nonsense words the corresponding time is about 0.4 s, similar to the 0.243 s found in Cavanagh (1972).
Study of surfaces and surface layers on high temperature materials after short-time thermal loads
International Nuclear Information System (INIS)
Bolt, H.; Hoven, H.; Koizlik, K.; Linke, J.; Nickel, H.; Wallura, E.
1985-11-01
Being part of the plasma-wall interaction during TOKAMAK operation, erosion- and redeposition processes of First Wall materials substantially influence plasma parameters as well as the properties of the First Wall. An important redeposition process of eroded material is the formation of thin films by atomic condensation. Examinations of First Wall components after TOKAMAK operation lead to the assumption that these thin metallic films tend to agglomerate to small particles under subsequent heat load. In laboratory experiments it is shown that thin metallic films on various substrates can agglomerate under short time high heat fluxes and also under longer lasting lower thermal loads, thus verifying the ''agglomeration hypothesis''. (orig.) [de
A Statistical and Spectral Model for Representing Noisy Sounds with Short-Time Sinusoids
Directory of Open Access Journals (Sweden)
Myriam Desainte-Catherine
2005-07-01
Full Text Available We propose an original model for noise analysis, transformation, and synthesis: the CNSS model. Noisy sounds are represented with short-time sinusoids whose frequencies and phases are random variables. This spectral and statistical model represents information about the spectral density of frequencies. This perceptually relevant property is modeled by three mathematical parameters that define the distribution of the frequencies. This model also represents the spectral envelope. The mathematical parameters are defined and the analysis algorithms to extract these parameters from sounds are introduced. Then algorithms for generating sounds from the parameters of the model are presented. Applications of this model include tools for composers, psychoacoustic experiments, and pedagogy.
Dynamical analysis and visualization of tornadoes time series.
Directory of Open Access Journals (Sweden)
António M Lopes
Full Text Available In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns.
Dynamical analysis and visualization of tornadoes time series.
Lopes, António M; Tenreiro Machado, J A
2015-01-01
In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns.
Observing Bridge Dynamic Deflection in Green Time by Information Technology
Yu, Chengxin; Zhang, Guojian; Zhao, Yongqian; Chen, Mingzhi
2018-01-01
As traditional surveying methods are limited to observe bridge dynamic deflection; information technology is adopted to observe bridge dynamic deflection in Green time. Information technology used in this study means that we use digital cameras to photograph the bridge in red time as a zero image. Then, a series of successive images are photographed in green time. Deformation point targets are identified and located by Hough transform. With reference to the control points, the deformation values of these deformation points are obtained by differencing the successive images with a zero image, respectively. Results show that the average measurement accuracies of C0 are 0.46 pixels, 0.51 pixels and 0.74 pixels in X, Z and comprehensive direction. The average measurement accuracies of C1 are 0.43 pixels, 0.43 pixels and 0.67 pixels in X, Z and comprehensive direction in these tests. The maximal bridge deflection is 44.16mm, which is less than 75mm (Bridge deflection tolerance value). Information technology in this paper can monitor bridge dynamic deflection and depict deflection trend curves of the bridge in real time. It can provide data support for the site decisions to the bridge structure safety.
Dynamic Modeling and Real-Time Monitoring of Froth Flotation
Directory of Open Access Journals (Sweden)
Khushaal Popli
2015-08-01
Full Text Available A dynamic fundamental model was developed linking processes from the microscopic scale to the equipment scale for batch froth flotation. State estimation, fault detection, and disturbance identification were implemented using the extended Kalman filter (EKF, which reconciles real-time measurements with dynamic models. The online measurements for the EKF were obtained through image analysis of froth images that were captured and analyzed using the commercial package VisioFroth (Metsor Minerals. The extracted image features were then correlated to recovery using principal component analysis and partial least squares regression. The performance of real-time state estimation and fault detection was validated using batch flotation of pure galena at various operating conditions. The image features that were strongly representative of recovery were identified, and calibration and validation were performed against off-line measurements of recovery. The EKF successfully captured the dynamics of the process by updating the model states and parameters using the online measurements. Finally, disturbances in the air flow rate and impeller speed were introduced into the system, and the dynamic behavior of the flotation process was successfully tracked and the disturbances were identified using state estimation.
Linear and nonlinear dynamic systems in financial time series prediction
Directory of Open Access Journals (Sweden)
Salim Lahmiri
2012-10-01
Full Text Available Autoregressive moving average (ARMA process and dynamic neural networks namely the nonlinear autoregressive moving average with exogenous inputs (NARX are compared by evaluating their ability to predict financial time series; for instance the S&P500 returns. Two classes of ARMA are considered. The first one is the standard ARMA model which is a linear static system. The second one uses Kalman filter (KF to estimate and predict ARMA coefficients. This model is a linear dynamic system. The forecasting ability of each system is evaluated by means of mean absolute error (MAE and mean absolute deviation (MAD statistics. Simulation results indicate that the ARMA-KF system performs better than the standard ARMA alone. Thus, introducing dynamics into the ARMA process improves the forecasting accuracy. In addition, the ARMA-KF outperformed the NARX. This result may suggest that the linear component found in the S&P500 return series is more dominant than the nonlinear part. In sum, we conclude that introducing dynamics into the ARMA process provides an effective system for S&P500 time series prediction.
PLLA-PHB fiber membranes obtained by solvent-free electrospinning for short-time drug delivery.
Cao, K; Liu, Y; Olkhov, A A; Siracusa, V; Iordanskii, A L
2018-02-01
Fibers of poly(L-lactic acid) (PLLA)/polyhydroxybutyrate (PHB) with different concentrations of the drug dipyridamole (DPD) were prepared using solvent-free melt electrospinning to obtain a polymeric drug delivery system. The electrospun fibers were morphologically, structurally, thermally, and dynamically characterized. Crazes that resemble lotus root crevices were interestingly observed in the 7:3 PLLA/PHB fibers with 1% DPD. The crystallinity of PLLA slightly decreased as PHB was incorporated, and the addition of DPD significantly reduced the melting temperature of the composite. The interactions between PLLA and PHB mainly occurred at a proportion of 7:3, and drug encapsulation in the fibers was verified. The kinetic profiles of drug release demonstrated the predominant multiple patterns involving a diffusional stage in the short-term mode of release and kinetic process related to the hydrolysis of the biopolymers. Furthermore, the dynamic behavior of the polymer molecules was evaluated based on the segmental mobility using probe electron spin resonance spectroscopy. The segmental mobility in the amorphous fraction of PLLA decreased with increasing PLLA content. The 9:1 PLLA/PHB system was more resistant to polymer hydrolysis than to the 7:3 system and the rate of diffusion transport was approximately two times higher for the 7:3 PLLA/PHB fibers than for the 9:1 PLLA/PHB fibers.
Road Short-Term Travel Time Prediction Method Based on Flow Spatial Distribution and the Relations
Directory of Open Access Journals (Sweden)
Mingjun Deng
2016-01-01
Full Text Available There are many short-term road travel time forecasting studies based on time series, but indeed, road travel time not only relies on the historical travel time series, but also depends on the road and its adjacent sections history flow. However, few studies have considered that. This paper is based on the correlation of flow spatial distribution and the road travel time series, applying nearest neighbor and nonparametric regression method to build a forecasting model. In aspect of spatial nearest neighbor search, three different space distances are defined. In addition, two forecasting functions are introduced: one combines the forecasting value by mean weight and the other uses the reciprocal of nearest neighbors distance as combined weight. Three different distances are applied in nearest neighbor search, which apply to the two forecasting functions. For travel time series, the nearest neighbor and nonparametric regression are applied too. Then minimizing forecast error variance is utilized as an objective to establish the combination model. The empirical results show that the combination model can improve the forecast performance obviously. Besides, the experimental results of the evaluation for the computational complexity show that the proposed method can satisfy the real-time requirement.
Night-Time Light Dynamics during the Iraqi Civil War
Directory of Open Access Journals (Sweden)
Xi Li
2018-06-01
Full Text Available In this study, we analyzed the night-time light dynamics in Iraq over the period 2012–2017 by using Visible Infrared Imaging Radiometer Suite (VIIRS monthly composites. The data quality of VIIRS images was improved by repairing the missing data, and the Night-time Light Ratio Indices (NLRIs, derived from urban extent map and night-time light images, were calculated for different provinces and cities. We found that when the Islamic State of Iraq and Syria (ISIS attacked or occupied a region, the region lost its light rapidly, with the provinces of Al-Anbar, At-Ta’min, Ninawa, and Sala Ad-din losing 63%, 73%, 88%, and 56%, of their night-time light, respectively, between December 2013 and December 2014. Moreover, the light returned after the Iraqi Security Forces (ISF recaptured the region. In addition, we also found that the night-time light in the Kurdish Autonomous Region showed a steady decline after 2014, with the Arbil, Dihok, and As-Sulaymaniyah provinces losing 47%, 18%, and 31% of their night-time light between December 2013 and December 2016 as a result of the economic crisis in the region. The night-time light in Southern Iraq, the region controlled by Iraqi central government, has grown continuously; for example, the night-time light in Al Basrah increased by 75% between December 2013 and December 2017. Regions formerly controlled by ISIS experienced a return of night-time light during 2017 as the ISF retook almost all this territory in 2017. This indicates that as reconstruction began, electricity was re-supplied in these regions. Our analysis shows the night-time light in Iraq is directly linked to the socioeconomic dynamics of Iraq, and demonstrates that the VIIRS monthly night-time light images are an effective data source for tracking humanitarian disasters in that country.
Two-actor conflict with time delay: A dynamical model
Qubbaj, Murad R.; Muneepeerakul, Rachata
2012-11-01
Recent mathematical dynamical models of the conflict between two different actors, be they nations, groups, or individuals, have been developed that are capable of predicting various outcomes depending on the chosen feedback strategies, initial conditions, and the previous states of the actors. In addition to these factors, this paper examines the effect of time delayed feedback on the conflict dynamics. Our analysis shows that under certain initial and feedback conditions, a stable neutral equilibrium of conflict may destabilize for some critical values of time delay, and the two actors may evolve to new emotional states. We investigate the results by constructing critical delay surfaces for different sets of parameters and analyzing results from numerical simulations. These results provide new insights regarding conflict and conflict resolution and may help planners in adjusting and assessing their strategic decisions.
Controller synthesis for dynamic hierarchical real-time plants using timed automata
DEFF Research Database (Denmark)
Bin Waez, Md Tawhid; Wasowski, Andrzej; Dingel, Juergen
2017-01-01
We use timed I/O automata based timed games to synthesize task-level reconfiguration services for cost-effective fault tolerance in a case study. The case study shows that state-space explosion is a severe problem for timed games. By applying suitable abstractions, we dramatically improve...... the scalability. However, timed I/O automata do not facilitate algorithmic abstraction generation techniques. The case study motivates the development of timed process automata to improve modeling and analysis for controller synthesis of time-critical plants which can be hierarchical and dynamic. The model offers...
Patient affect experiencing following therapist interventions in short-term dynamic psychotherapy.
Town, Joel M; Hardy, Gillian E; McCullough, Leigh; Stride, Chris
2012-01-01
The aim of this research was to examine the relationship between therapist interventions and patient affect responses in Short-Term Dynamic Psychotherapy (STDP). The Affect Experiencing subscale from the Achievement of Therapeutic Objectives Scale (ATOS) was adapted to measure individual immediate affect experiencing (I-AES) responses in relation to therapist interventions coded within the preceding speaking turn, using the Psychotherapy Interaction Coding (PIC) system. A hierarchical linear modelling procedure was used to assess the change in affect experiencing and the relationship between affect experiencing and therapist interventions within and across segments of therapy. Process data was taken from six STDP cases; in total 24 hours of video-taped sessions were examined. Therapist interventions were found to account for a statistically significant amount of variance in immediate affect experiencing. Higher levels of immediate affect experiencing followed the therapist's use of Confrontation, Clarification and Support compared to Questions, Self-disclosure and Information interventions. Therapist Confrontation interventions that attempted to direct pressure towards either the visceral experience of affect or a patient's defences against feelings led to the highest levels of immediate affect experiencing. The type of therapist intervention accounts for a small but significant amount of the variation observed in a patient's immediate emotional arousal. Empirical findings support clinical theory in STDP that suggests strategic verbal responses promote the achievement of this specific therapeutic objective.
Tchagang, Alain B; Phan, Sieu; Famili, Fazel; Shearer, Heather; Fobert, Pierre; Huang, Yi; Zou, Jitao; Huang, Daiqing; Cutler, Adrian; Liu, Ziying; Pan, Youlian
2012-04-04
Nowadays, it is possible to collect expression levels of a set of genes from a set of biological samples during a series of time points. Such data have three dimensions: gene-sample-time (GST). Thus they are called 3D microarray gene expression data. To take advantage of the 3D data collected, and to fully understand the biological knowledge hidden in the GST data, novel subspace clustering algorithms have to be developed to effectively address the biological problem in the corresponding space. We developed a subspace clustering algorithm called Order Preserving Triclustering (OPTricluster), for 3D short time-series data mining. OPTricluster is able to identify 3D clusters with coherent evolution from a given 3D dataset using a combinatorial approach on the sample dimension, and the order preserving (OP) concept on the time dimension. The fusion of the two methodologies allows one to study similarities and differences between samples in terms of their temporal expression profile. OPTricluster has been successfully applied to four case studies: immune response in mice infected by malaria (Plasmodium chabaudi), systemic acquired resistance in Arabidopsis thaliana, similarities and differences between inner and outer cotyledon in Brassica napus during seed development, and to Brassica napus whole seed development. These studies showed that OPTricluster is robust to noise and is able to detect the similarities and differences between biological samples. Our analysis showed that OPTricluster generally outperforms other well known clustering algorithms such as the TRICLUSTER, gTRICLUSTER and K-means; it is robust to noise and can effectively mine the biological knowledge hidden in the 3D short time-series gene expression data.
Dynamic Obstacle Clearing for Real-time Character Animation
Glardon, Pascal; Boulic, Ronan; Thalmann, Daniel
2006-01-01
This paper proposes a novel method to control virtual characters in dynamic environments. A virtual character is animated by a locomotion and jumping engine, enabling production of continuous parameterized motions. At any time during runtime, flat obstacles (e.g. a puddle of water) can be created and placed in front of a character. The method first decides whether the character is able to get around or jump over the obstacle. Then the motion parameters are accordingly modified. The transition...
Disequilibrium dynamics in a Keynesian model with time delays
Gori, Luca; Guerrini, Luca; Sodini, Mauro
2018-05-01
The aim of this research is to analyse a Keynesian goods market closed economy by considering a continuous-time setup with fixed delays. The work compares dynamic results based on linear and nonlinear adjustment mechanisms through which the aggregate supply (production) reacts to a disequilibrium in the goods market and consumption depends on income at a preceding date. Both analytical and geometrical (stability switching curves) techniques are used to characterise the stability properties of the stationary equilibrium.
Prediction of dynamic expected time to system failure
Energy Technology Data Exchange (ETDEWEB)
Oh, Deog Yeon; Lee, Chong Chul [Korea Nuclear Fuel Co., Ltd., Taejon (Korea, Republic of)
1997-12-31
The mean time to failure (MTTF) expressing the mean value of the system life is a measure of system effectiveness. To estimate the remaining life of component and/or system, the dynamic mean time to failure concept is suggested. It is the time-dependent property depending on the status of components. The Kalman filter is used to estimate the reliability of components using the on-line information (directly measured sensor output or device-specific diagnostics in the intelligent sensor) in form of the numerical value (state factor). This factor considers the persistency of the fault condition and confidence level in measurement. If there is a complex system with many components, each calculated reliability`s of components are combined, which results in the dynamic MTTF of system. The illustrative examples are discussed. The results show that the dynamic MTTF can well express the component and system failure behaviour whether any kinds of failure are occurred or not. 9 refs., 6 figs. (Author)
Prediction of dynamic expected time to system failure
Energy Technology Data Exchange (ETDEWEB)
Oh, Deog Yeon; Lee, Chong Chul [Korea Nuclear Fuel Co., Ltd., Taejon (Korea, Republic of)
1998-12-31
The mean time to failure (MTTF) expressing the mean value of the system life is a measure of system effectiveness. To estimate the remaining life of component and/or system, the dynamic mean time to failure concept is suggested. It is the time-dependent property depending on the status of components. The Kalman filter is used to estimate the reliability of components using the on-line information (directly measured sensor output or device-specific diagnostics in the intelligent sensor) in form of the numerical value (state factor). This factor considers the persistency of the fault condition and confidence level in measurement. If there is a complex system with many components, each calculated reliability`s of components are combined, which results in the dynamic MTTF of system. The illustrative examples are discussed. The results show that the dynamic MTTF can well express the component and system failure behaviour whether any kinds of failure are occurred or not. 9 refs., 6 figs. (Author)
International Nuclear Information System (INIS)
Yamasaki, Tadashi; Sekiyama, Shigenobu; Tokin, Mina; Nakayasu, Yumiko; Watanabe, Tamaki.
1994-01-01
The concentration of 222 Rn in air sampled within a very short period of time was measured using activated charcoal as the adsorber. The detector is the plastic canister containing mixture of the activated charcoal and the silica gel. The radon gas was adsorbed in the charcoal in the radon chamber at the temperature of 25degC. A little amount of liquid scintillation cocktail was added into the vial of liquid scintillation counter with the canister. The radon in the charcoal was extracted in the liquid scintillation cocktail. Alpha particles emitted from radon and its daughter nuclei in the cocktail were detected using the liquid scintillation counter. Present method has advantages of not only short sampling time of air but also adsorption of radon in charcoal under a constant temperature. The concentration of radon in air down to 2 Bq/m 3 could be detected. A kinetic model for adsorption of radon in the charcoal is also presented. The ratio of radon concentration in the charcoal to that in air under the equilibrium state of adsorption was estimated to be from 6.1 to 6.8 m 3 /kg at the temperature of 25degC. (author)
FREQUENCY COMPONENT EXTRACTION OF HEARTBEAT CUES WITH SHORT TIME FOURIER TRANSFORM (STFT
Directory of Open Access Journals (Sweden)
Sumarna Sumarna
2017-01-01
Electro-acoustic human heartbeat detector have been made with the main parts : (a stetoscope (piece chest, (b mic condenser, (c transistor amplifier, and (d cues analysis program with MATLAB. The frequency components that contained in heartbeat. cues have also been extracted with Short Time Fourier Transform (STFT from 9 volunteers. The results of the analysis showed that heart rate appeared in every cue frequency spectrum with their harmony. The steps of the research were including detector instrument design, test and instrument repair, cues heartbeat recording with Sound Forge 10 program and stored in wav file ; cues breaking at the start and the end, and extraction/cues analysis using MATLAB. The MATLAB program included filter (bandpass filter with bandwidth between 0.01 – 110 Hz, cues breaking with hamming window and every part was calculated using Fourier Transform (STFT mechanism and the result were shown in frequency spectrum graph. Keywords: frequency components extraction, heartbeat cues, Short Time Fourier Transform
Online Identification of a Mechanical System in the Frequency Domain with Short-Time DFT
Directory of Open Access Journals (Sweden)
Niko Nevaranta
2015-07-01
Full Text Available A proper system identification method is of great importance in the process of acquiring an analytical model that adequately represents the characteristics of the monitored system. While the use of different time-domain online identification techniques has been widely recognized as a powerful approach for system diagnostics, the frequency domain identification techniques have primarily been considered for offline commissioning purposes. This paper addresses issues in the online frequency domain identification of a flexible two-mass mechanical system with varying dynamics, and a particular attention is paid to detect the changes in the system dynamics. An online identification method is presented that is based on a recursive Kalman filter configured to perform like a discrete Fourier transform (DFT at a selected set of frequencies. The experimental online identification results are compared with the corresponding values obtained from the offline-identified frequency responses. The results show an acceptable agreement and demonstrate the feasibility of the proposed identification method.
New solutions for the short-time analysis of geothermal vertical boreholes
Energy Technology Data Exchange (ETDEWEB)
Lamarche, Louis; Beauchamp, Benoit [Ecole de Technologie Supereure, 1100 Notre-Dame Ouest, Montreal (Canada)
2007-04-15
Many models, either numerical or analytical, have been proposed to analyse the thermal response of vertical heat exchangers that are used in ground coupled heat pump systems (GCHP). In both approaches, most of the models are valid after few hours of operation since they neglect the heat capacity of the borehole. This is valid for design purposes, where the time of interest is in the order of months and years. Recently, the short time response of vertical boreholes became a subject of interest. In this paper, we present a new analytical approach to treat this problem. It solves the exact solution for concentric cylinders and is a good approximation for the familiar U-tube configuration. (author)
International Nuclear Information System (INIS)
Ando, S; Nara, T; Kurihara, T
2014-01-01
Spatial filtering velocimetry was proposed in 1963 by Ator as a velocity-sensing technique for aerial camera-control systems. The total intensity of a moving surface is observed through a set of parallel-slit reticles, resulting in a narrow-band temporal signal whose frequency is directly proportional to the image velocity. However, even despite its historical importance and inherent technical advantages, the mathematical formulation of this technique is only valid when infinite-length observation in both space and time is possible, which causes significant errors in most applications where a small receptive window and high resolution in both axes are desired. In this study, we apply a novel mathematical technique, the weighted integral method, to solve this problem, and obtain exact sensing schemes and algorithms for finite (arbitrarily small but non-zero) size reticles and short-time estimation. Practical considerations for utilizing these schemes are also explored both theoretically and experimentally. (paper)
Verification of short lead time forecast models: applied to Kp and Dst forecasting
Wintoft, Peter; Wik, Magnus
2016-04-01
In the ongoing EU/H2020 project PROGRESS models that predicts Kp, Dst, and AE from L1 solar wind data will be used as inputs to radiation belt models. The possible lead times from L1 measurements are shorter (10s of minutes to hours) than the typical duration of the physical phenomena that should be forecast. Under these circumstances several metrics fail to single out trivial cases, such as persistence. In this work we explore metrics and approaches for short lead time forecasts. We apply these to current Kp and Dst forecast models. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637302.
Burn-up measurements of LEU fuel for short cooling times
International Nuclear Information System (INIS)
Pereda B, C.; Henriquez A, C.; Klein D, J.; Medel R, J.
2005-01-01
The measurements presented in this work were made essentially at in-pool gamma-spectrometric facility, installed inside of the secondary pool of the RECH-1 research reactor, where the measured fuel elements are under 2 meters of water. The main reason for using the in-pool facility was because of its capability to measure the burning of fuel elements without having to wait so long, that is with only 5 cooling days, which are the usual times between reactor operations. Regarding these short cooling times, this work confirms again the possibility of using the 95 Zr as a promising burnup monitor, in spite of the rough approximations used to do it. These results are statistically reasonable within the range calculated using codes. The work corroborates previous results, presented in Santiago de Chile, and it suggests future improvements in that way. (author)
Dynamical continuous time random Lévy flights
Liu, Jian; Chen, Xiaosong
2016-03-01
The Lévy flights' diffusive behavior is studied within the framework of the dynamical continuous time random walk (DCTRW) method, while the nonlinear friction is introduced in each step. Through the DCTRW method, Lévy random walker in each step flies by obeying the Newton's Second Law while the nonlinear friction f(v) = - γ0v - γ2v3 being considered instead of Stokes friction. It is shown that after introducing the nonlinear friction, the superdiffusive Lévy flights converges, behaves localization phenomenon with long time limit, but for the Lévy index μ = 2 case, it is still Brownian motion.
Dynamics symmetries of Hamiltonian system on time scales
Energy Technology Data Exchange (ETDEWEB)
Peng, Keke, E-mail: pengkeke88@126.com; Luo, Yiping, E-mail: zjstulyp@126.com [Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)
2014-04-15
In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.
The dynamics of female time allocation upon a first birth
DEFF Research Database (Denmark)
Belzil, Christian
1997-01-01
both home an labor market productivities. Overall, the model is able to explain the relatively large fraction of women who do not experience career interruptions, the rapidly declining re-employment hazards and the weak effect of education on the duration of non-employment (hometime) spells.......I estimate a non-stationary dynamic programming model of time allocation decisions between full-time work, child care and search activities upon a first birth using recursive methods. The model incorporates the following sequence of decisions; whether to stop working or not (for those who work...
Czech Academy of Sciences Publication Activity Database
Košťál, Jaroslav; Klicperová-Baker, Martina; Lukavská, K.; Lukavský, Jiří
2016-01-01
Roč. 25, č. 2 (2016), s. 169-192 ISSN 0961-463X Institutional support: RVO:68081740 Keywords : ZTPI * ZTPI-short * time perspective * temporal orientation * representative sample Subject RIV: AN - Psychology Impact factor: 1.206, year: 2016
International Nuclear Information System (INIS)
Roger Lew; Brian P. Dyre; Steffen Werner; Jeffrey C. Joe; Brian Wotring; Tuan Tran
2008-01-01
The development of real-time predictors of mental workload is critical for the practical application of augmented cognition to human-machine systems. This paper explores a novel method based on a short-time Fourier transform (STFT) for analyzing galvanic skin conductance (SC) and pupillometry time-series data to extract estimates of mental workload with temporal bandwidth high-enough to be useful for augmented cognition applications. We tested the method in the context of a process control task based on the DURESS simulation developed by Vincente and Pawlak (1994; ported to Java by Cosentino, and Ross, 1999). SC, pupil dilation, blink rate, and visual scanning patterns were measured for four participants actively engaged in controlling the simulation. Fault events were introduced that required participants to diagnose errors and make control adjustments to keep the simulator operating within a target range. We were interested in whether the STFT of these measures would produce visible effects of the increase in mental workload and stress associated with these events. Graphical exploratory data analysis of the STFT showed visible increases in the power spectrum across a range of frequencies directly following fault events. We believe this approach shows potential as a relatively unobtrusive, low-cost, high bandwidth measure of mental workload that could be particularly useful for the application of augmented cognition to human-machine systems
Energy Technology Data Exchange (ETDEWEB)
Roger Lew; Brian P. Dyre; Steffen Werner; Jeffrey C. Joe; Brian Wotring; Tuan Tran
2008-09-01
The development of real-time predictors of mental workload is critical for the practical application of augmented cognition to human-machine systems. This paper explores a novel method based on a short-time Fourier transform (STFT) for analyzing galvanic skin conductance (SC) and pupillometry time-series data to extract estimates of mental workload with temporal bandwidth high-enough to be useful for augmented cognition applications. We tested the method in the context of a process control task based on the DURESS simulation developed by Vincente and Pawlak (1994; ported to Java by Cosentino,& Ross, 1999). SC, pupil dilation, blink rate, and visual scanning patterns were measured for four participants actively engaged in controlling the simulation. Fault events were introduced that required participants to diagnose errors and make control adjustments to keep the simulator operating within a target range. We were interested in whether the STFT of these measures would produce visible effects of the increase in mental workload and stress associated with these events. Graphical exploratory data analysis of the STFT showed visible increases in the power spectrum across a range of frequencies directly following fault events. We believe this approach shows potential as a relatively unobtrusive, low-cost, high bandwidth measure of mental workload that could be particularly useful for the application of augmented cognition to human-machine systems.
Coordinated scheduling for dynamic real-time systems
Natarajan, Swaminathan; Zhao, Wei
1994-01-01
In this project, we addressed issues in coordinated scheduling for dynamic real-time systems. In particular, we concentrated on design and implementation of a new distributed real-time system called R-Shell. The design objective of R-Shell is to provide computing support for space programs that have large, complex, fault-tolerant distributed real-time applications. In R-shell, the approach is based on the concept of scheduling agents, which reside in the application run-time environment, and are customized to provide just those resource management functions which are needed by the specific application. With this approach, we avoid the need for a sophisticated OS which provides a variety of generalized functionality, while still not burdening application programmers with heavy responsibility for resource management. In this report, we discuss the R-Shell approach, summarize the achievement of the project, and describe a preliminary prototype of R-Shell system.
Kenny, Dianna T; Arthey, Stephen; Abbass, Allan
2016-01-01
Kenny has proposed that severe music performance anxiety that is unresponsive to usual treatments such as cognitive-behaviour therapy may be one manifestation of unresolved attachment ruptures in early life. Intensive Short-Term Dynamic Psychotherapy specifically targets early relationship trauma. Accordingly, a trial of Intensive Short-Term Dynamic Psychotherapy with severely anxious musicians was implemented to assess whether resolution of attachment ruptures resulted in clinically significant relief from music performance anxiety. Volunteer musicians participating in a nationally funded study were screened for MPA severity. Those meeting the critical cut-off score on the Kenny Music Performance Anxiety Inventory were offered a trial of Intensive Short-Term Dynamic Psychotherapy. In this paper, we present the theoretical foundations and rationale for the treatment approach, followed by sections of a verbatim transcript and process analysis of the assessment phase of treatment that comprised a 3-h trial therapy session. The 'case' was a professional orchestral musician (male, aged 55) who had suffered severe music performance anxiety over the course of his entire career, which spanned more than 30 years at the time he presented for treatment following his failure to secure a position at audition. The participant was able to access the pain, rage and grief associated with unresolved attachment ruptures with both parents that demonstrated the likely nexus between early attachment trauma and severe music performance anxiety. Intensive Short-Term Dynamic Psychotherapy is a potentially cost-effective treatment for severe music performance anxiety. Further research using designs with higher levels of evidence are required before clinical recommendations can be made for the use of this therapy with this population.
Theory of time-averaged neutral dynamics with environmental stochasticity
Danino, Matan; Shnerb, Nadav M.
2018-04-01
Competition is the main driver of population dynamics, which shapes the genetic composition of populations and the assembly of ecological communities. Neutral models assume that all the individuals are equivalent and that the dynamics is governed by demographic (shot) noise, with a steady state species abundance distribution (SAD) that reflects a mutation-extinction equilibrium. Recently, many empirical and theoretical studies emphasized the importance of environmental variations that affect coherently the relative fitness of entire populations. Here we consider two generic time-averaged neutral models; in both the relative fitness of each species fluctuates independently in time but its mean is zero. The first (model A) describes a system with local competition and linear fitness dependence of the birth-death rates, while in the second (model B) the competition is global and the fitness dependence is nonlinear. Due to this nonlinearity, model B admits a noise-induced stabilization mechanism that facilitates the invasion of new mutants. A self-consistent mean-field approach is used to reduce the multispecies problem to two-species dynamics, and the large-N asymptotics of the emerging set of Fokker-Planck equations is presented and solved. Our analytic expressions are shown to fit the SADs obtained from extensive Monte Carlo simulations and from numerical solutions of the corresponding master equations.
Effect of parameter calculation in direct estimation of the Lyapunov exponent in short time series
Directory of Open Access Journals (Sweden)
A. M. López Jiménez
2002-01-01
Full Text Available The literature about non-linear dynamics offers a few recommendations, which sometimes are divergent, about the criteria to be used in order to select the optimal calculus parameters in the estimation of Lyapunov exponents by direct methods. These few recommendations are circumscribed to the analysis of chaotic systems. We have found no recommendation for the estimation of λ starting from the time series of classic systems. The reason for this is the interest in distinguishing variability due to a chaotic behavior of determinist dynamic systems of variability caused by white noise or linear stochastic processes, and less in the identification of non-linear terms from the analysis of time series. In this study we have centered in the dependence of the Lyapunov exponent, obtained by means of direct estimation, of the initial distance and the time evolution. We have used generated series of chaotic systems and generated series of classic systems with varying complexity. To generate the series we have used the logistic map.
Energy Technology Data Exchange (ETDEWEB)
Mori, Yukie, E-mail: mori.yukie@ocha.ac.jp; Masuda, Yuichi
2015-09-08
Highlights: • MD simulations were performed to study dynamics of strong hydrogen bonds. • Nuclear magnetic relaxation times of proton were measured in solution. • The hydrogen bond of dibenzoylmethane enol is asymmetric in methanol solution. • Formation or breakage of intermolecular hydrogen bonds can trigger proton transfer. • Dimethylsulfoxide may form a bifurcated hydrogen bond with a hydrogen-bonded system. - Abstract: Hydrogen phthalate anion has a short strong O–H–O hydrogen bond (H-bond). According to previous experimental studies, the H-bond is asymmetric and two tautomers are interconverted in aqueous solutions. In the present study, the effects of polar solvents on the H-bond in a zwitterionic hydrogen phthalate derivative 1 were investigated by quantum mechanics/molecular mechanics molecular dynamics (MD) simulations. The analyses of the trajectories for the methanol solution showed that the H-bonding proton tends to be located closer to the carboxylate group that forms fewer intermolecular H-bonds, than to the other carboxylate group and that the intramolecular proton transfer in 1 is triggered by the breakage and/or formation of an intermolecular H-bond. The enol form of dibenzoylmethane (2) also has a short H-bond, and the OH bond is reported to be rather long (>1.1 Å) in the crystal. In the present study, the effects of the solvent on the H-bond in 2 were investigated by molecular orbital (MO) calculations, MD simulations and nuclear magnetic resonance (NMR) spectroscopy. Density functional theory (DFT) calculations for 2 in vacuum indicated that the barrier height for the intramolecular proton transfer is almost the same as the zero-point energy of the vibrational ground state, resulting in broad distribution of the proton density along the H-bond, owing to the nuclear quantum effect. The OH distances were determined in CCl{sub 4}, acetonitrile, and dimethylsulfoxide solutions from the magnetic dipolar interactions between the {sup 17
International Nuclear Information System (INIS)
Mori, Yukie; Masuda, Yuichi
2015-01-01
Highlights: • MD simulations were performed to study dynamics of strong hydrogen bonds. • Nuclear magnetic relaxation times of proton were measured in solution. • The hydrogen bond of dibenzoylmethane enol is asymmetric in methanol solution. • Formation or breakage of intermolecular hydrogen bonds can trigger proton transfer. • Dimethylsulfoxide may form a bifurcated hydrogen bond with a hydrogen-bonded system. - Abstract: Hydrogen phthalate anion has a short strong O–H–O hydrogen bond (H-bond). According to previous experimental studies, the H-bond is asymmetric and two tautomers are interconverted in aqueous solutions. In the present study, the effects of polar solvents on the H-bond in a zwitterionic hydrogen phthalate derivative 1 were investigated by quantum mechanics/molecular mechanics molecular dynamics (MD) simulations. The analyses of the trajectories for the methanol solution showed that the H-bonding proton tends to be located closer to the carboxylate group that forms fewer intermolecular H-bonds, than to the other carboxylate group and that the intramolecular proton transfer in 1 is triggered by the breakage and/or formation of an intermolecular H-bond. The enol form of dibenzoylmethane (2) also has a short H-bond, and the OH bond is reported to be rather long (>1.1 Å) in the crystal. In the present study, the effects of the solvent on the H-bond in 2 were investigated by molecular orbital (MO) calculations, MD simulations and nuclear magnetic resonance (NMR) spectroscopy. Density functional theory (DFT) calculations for 2 in vacuum indicated that the barrier height for the intramolecular proton transfer is almost the same as the zero-point energy of the vibrational ground state, resulting in broad distribution of the proton density along the H-bond, owing to the nuclear quantum effect. The OH distances were determined in CCl 4 , acetonitrile, and dimethylsulfoxide solutions from the magnetic dipolar interactions between the 17 O and 1
Constructing networks from a dynamical system perspective for multivariate nonlinear time series.
Nakamura, Tomomichi; Tanizawa, Toshihiro; Small, Michael
2016-03-01
We describe a method for constructing networks for multivariate nonlinear time series. We approach the interaction between the various scalar time series from a deterministic dynamical system perspective and provide a generic and algorithmic test for whether the interaction between two measured time series is statistically significant. The method can be applied even when the data exhibit no obvious qualitative similarity: a situation in which the naive method utilizing the cross correlation function directly cannot correctly identify connectivity. To establish the connectivity between nodes we apply the previously proposed small-shuffle surrogate (SSS) method, which can investigate whether there are correlation structures in short-term variabilities (irregular fluctuations) between two data sets from the viewpoint of deterministic dynamical systems. The procedure to construct networks based on this idea is composed of three steps: (i) each time series is considered as a basic node of a network, (ii) the SSS method is applied to verify the connectivity between each pair of time series taken from the whole multivariate time series, and (iii) the pair of nodes is connected with an undirected edge when the null hypothesis cannot be rejected. The network constructed by the proposed method indicates the intrinsic (essential) connectivity of the elements included in the system or the underlying (assumed) system. The method is demonstrated for numerical data sets generated by known systems and applied to several experimental time series.
DEFF Research Database (Denmark)
Johansen, Joakim M.; Gadsbøll, Rasmus; Thomsen, Jesper
2016-01-01
This work combines experimental and computational fluid dynamics (CFD) results to derive global kinetics for biomass (pine wood) devolatilization during heating rates on the order of 105Ks-1, bulk flow peak temperatures between 1405 and 1667K, and particle residence times below 0.1s. Experiments......Jmol-1. The accuracy of the derived global kinetics was supported by comparing predictions to experimental results from a 15kW furnace. The work emphasizes the importance of characterizing the temperature history of the biomass particles when deriving pyrolysis kinetics. The present results indicate...
Role of short-term dispersal on the dynamics of Zika virus in an extreme idealized environment
Directory of Open Access Journals (Sweden)
Victor M. Moreno
2017-02-01
Full Text Available In November 2015, El Salvador reported their first case of Zika virus (ZIKV infection, an event followed by an explosive outbreak that generated over 6000 suspected cases in a period of two months. National agencies began implementing control measures that included vector control and recommending an increased use of repellents. Further, in response to the alarming and growing number of microcephaly cases in Brazil, the importance of avoiding pregnancies for two years was stressed. In this paper, we explore the role of mobility within communities characterized by extreme poverty, crime and violence. Specifically, the role of short term mobility between two idealized interconnected highly distinct communities is explored in the context of ZIKV outbreaks. We make use of a Lagrangian modeling approach within a two-patch setting in order to highlight the possible effects that short-term mobility, within highly distinct environments, may have on the dynamics of ZIKV outbreak when the overall goal is to reduce the number of cases not just in the most affluent areas but everywhere. Outcomes depend on existing mobility patterns, levels of disease risk, and the ability of federal or state public health services to invest in resource limited areas, particularly in those where violence is systemic. The results of simulations in highly polarized and simplified scenarios are used to assess the role of mobility. It quickly became evident that matching observed patterns of ZIKV outbreaks could not be captured without incorporating increasing levels of heterogeneity. The number of distinct patches and variations on patch connectivity structure required to match ZIKV patterns could not be met within the highly aggregated model that is used in the simulations. Keywords: Vector-borne diseases, Zika virus, Residence times, Multi-patch model
Constant pressure and temperature discrete-time Langevin molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Grønbech-Jensen, Niels [Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616 (United States); Department of Mathematics, University of California, Davis, California 95616 (United States); Farago, Oded [Department of Biomedical Engineering, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel)
2014-11-21
We present a new and improved method for simultaneous control of temperature and pressure in molecular dynamics simulations with periodic boundary conditions. The thermostat-barostat equations are built on our previously developed stochastic thermostat, which has been shown to provide correct statistical configurational sampling for any time step that yields stable trajectories. Here, we extend the method and develop a set of discrete-time equations of motion for both particle dynamics and system volume in order to seek pressure control that is insensitive to the choice of the numerical time step. The resulting method is simple, practical, and efficient. The method is demonstrated through direct numerical simulations of two characteristic model systems—a one-dimensional particle chain for which exact statistical results can be obtained and used as benchmarks, and a three-dimensional system of Lennard-Jones interacting particles simulated in both solid and liquid phases. The results, which are compared against the method of Kolb and Dünweg [J. Chem. Phys. 111, 4453 (1999)], show that the new method behaves according to the objective, namely that acquired statistical averages and fluctuations of configurational measures are accurate and robust against the chosen time step applied to the simulation.
Radioactive waste. Risk, reward, space and time dynamics
International Nuclear Information System (INIS)
Duncan, I.J.
2001-01-01
This study considers, in a geographical context, issues arising from the disposal of radioactive waste with particular emphasis on societal perceptions of Risk, Trust, NIMBYand Time. It establishes that the wider community now accepts the concepts of 'user pays' and offsetting compensation to any community that accepts a risk, such risk to be minimised and interruptible as necessary. The underlying causes of NIMBYism have been misjudged by industry and this work establishes that they are as much due to exclusion from the decision making process as they are to direct concerns about the social impact, health and environment. The principal cause of NIMBYism is discussed and a procedure to assist siting approval is suggested. This study establishes that industry, government authorities or specialists working alone in this field engender less trust by society than composite bodies including government departments, industry, environmentalists, health, science and society. The dimension of an individual's perception of forward time has been quantified and found to be much shorter than the time required for the isolation of radioactive waste. This research highlights the dynamic nature of all waste isolation processes and proposes a procedure that could render the concept of long term geological disposal more acceptable to the public. It evolved that the disposal of all waste is a dynamic process, the management of which must provide the time necessary for physical and chemical change and to ensure isolation from the biosphere while it remains hazardous. The outcome of this research is applicable to the disposal of all solid hazardous waste. (author)
[Approximation to the dynamics of meningococcal meningitis through dynamic systems and time series].
Canals, M
1996-02-01
Meningococcal meningitis is subjected to epidemiological surveillance due to its severity and the occasional presentation of epidemic outbreaks. This work analyses previous disease models, generate new ones and analyses monthly cases using ARIMA time series models. The results show that disease dynamics for closed populations is epidemic and the epidemic size is related to the proportion of carriers and the transmissiveness of the agent. In open populations, disease dynamics depends on the admission rate of susceptible and the relative admission of infected individuals. Our model considers a logistic populational growth and carrier admission proportional to populational size, generating an endemic dynamics. Considering a non-instantaneous system response, a greater realism is obtained establishing that the endemic situation may present a dynamics highly sensitive to initial conditions, depending on the transmissiveness and proportion of susceptible individuals in the population. Time series model showed an adequate predictive capacity in terms no longer than 10 months. The lack of long term predictability was attributed to local changes in the proportion of carriers or on transmissiveness that lead to chaotic dynamics over a seasonal pattern. Predictions for 1995 and 1996 were obtained.
Dynamic ADMM for Real-time Optimal Power Flow: Preprint
Energy Technology Data Exchange (ETDEWEB)
Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2018-02-23
This paper considers distribution networks featuring distributed energy resources (DERs), and develops a dynamic optimization method to maximize given operational objectives in real time while adhering to relevant network constraints. The design of the dynamic algorithm is based on suitable linearizations of the AC power flow equations, and it leverages the so-called alternating direction method of multipliers (ADMM). The steps of the ADMM, however, are suitably modified to accommodate appropriate measurements from the distribution network and the DERs. With the aid of these measurements, the resultant algorithm can enforce given operational constraints in spite of inaccuracies in the representation of the AC power flows, and it avoids ubiquitous metering to gather the state of non-controllable resources. Optimality and convergence of the propose algorithm are established in terms of tracking of the solution of a convex surrogate of the AC optimal power flow problem.
International Nuclear Information System (INIS)
Eisfeld, F.
1987-01-01
The knowledge about the penetration of diesel injection jets, particularly about the flow within the short behind the nozzle, and the arising of droplets from an injection jet is very limited. Experimental investigations are required to describe the process of penetration and spreading of the jet. The research method requires high speed cinematography and short time holography. Problems in the investigation method are described
Burgholzer, P.; Motz, C.; Lang, O.; Berer, T.; Huemer, M.
2018-02-01
In photoacoustic imaging, optically generated acoustic waves transport the information about embedded structures to the sample surface. Usually, short laser pulses are used for the acoustic excitation. Acoustic attenuation increases for higher frequencies, which reduces the bandwidth and limits the spatial resolution. One could think of more efficient waveforms than single short pulses, such as pseudo noise codes, chirped, or harmonic excitation, which could enable a higher information-transfer from the samples interior to its surface by acoustic waves. We used a linear state space model to discretize the wave equation, such as the Stoke's equation, but this method could be used for any other linear wave equation. Linear estimators and a non-linear function inversion were applied to the measured surface data, for onedimensional image reconstruction. The proposed estimation method allows optimizing the temporal modulation of the excitation laser such that the accuracy and spatial resolution of the reconstructed image is maximized. We have restricted ourselves to one-dimensional models, as for higher dimensions the one-dimensional reconstruction, which corresponds to the acoustic wave without attenuation, can be used as input for any ultrasound imaging method, such as back-projection or time-reversal method.
Directory of Open Access Journals (Sweden)
Rao Nagesha AS
2009-09-01
Full Text Available Abstract Background Gene expression profiling of spontaneous tumors in the dog offers a unique translational opportunity to identify prognostic biomarkers and signaling pathways that are common to both canine and human. Osteosarcoma (OS accounts for approximately 80% of all malignant bone tumors in the dog. Canine OS are highly comparable with their human counterpart with respect to histology, high metastatic rate and poor long-term survival. This study investigates the prognostic gene profile among thirty-two primary canine OS using canine specific cDNA microarrays representing 20,313 genes to identify genes and cellular signaling pathways associated with survival. This, the first report of its kind in dogs with OS, also demonstrates the advantages of cross-species comparison with human OS. Results The 32 tumors were classified into two prognostic groups based on survival time (ST. They were defined as short survivors (dogs with poor prognosis: surviving fewer than 6 months and long survivors (dogs with better prognosis: surviving 6 months or longer. Fifty-one transcripts were found to be differentially expressed, with common upregulation of these genes in the short survivors. The overexpressed genes in short survivors are associated with possible roles in proliferation, drug resistance or metastasis. Several deregulated pathways identified in the present study, including Wnt signaling, Integrin signaling and Chemokine/cytokine signaling are comparable to the pathway analysis conducted on human OS gene profiles, emphasizing the value of the dog as an excellent model for humans. Conclusion A molecular-based method for discrimination of outcome for short and long survivors is useful for future prognostic stratification at initial diagnosis, where genes and pathways associated with cell cycle/proliferation, drug resistance and metastasis could be potential targets for diagnosis and therapy. The similarities between human and canine OS makes the
Dynamics of short-term acclimation to UV radiation in marine diatoms.
Fouqueray, Manuela; Mouget, Jean-Luc; Morant-Manceau, Annick; Tremblin, Gérard
2007-11-12
In order to investigate the dynamics of the acclimation of marine diatoms to ultraviolet radiation (UVR), Amphora coffeaeformis, Odontella aurita and Skeletonema costatum were exposed for 5 h per day to a combination of UVA and UVB (UVBR/UVAR ratio 4.5%) with a total UVR daily dose of 110 kJ m(-2), which is equivalent to that observed in the natural environment. This treatment was applied in the middle of the photoperiod and was repeated on five successive days. During the UVR treatment, chlorophyll fluorescence parameters were monitored, damage and repair constants were calculated from effective quantum yield values (phi(PSII)), and rapid light curves (electron transport rate versus irradiance curves using short light steps of different intensity) were plotted to determine the maximum relative electron transport rate (rETR(max)) and maximum light use efficiency (alpha). In all species the growth rate was lower than control from day 1-3, but increased thereafter, except for S. costatum. The cellular chlorophyll a content increased significantly with repeated daily exposure to UVR for A. coffeaeformis only. In all species, the fluorescence parameters (F(m), the maximum fluorescence level measured in the dark, phi(PSII), rETR(max) and alpha) decreased during UVR exposure, in contrast to F(0) (the minimum fluorescence level measured in the dark). The response to UVR stress was species-specific. S. costatum was very sensitive, and failed to survive for more than three days, whereas A. coffeaeformis and O. aurita were able to acclimate to UVR stress. These two species used different strategies. In A. coffeaeformis, the repair constant was lower than the damage constant, but phi(PSII) values returned to baseline values at the beginning of each experimental day, indicating that an effective active recovery process occurred after stress. In O. aurita, the repair processes took place during the stress, and could account for the UVR tolerance of this species.
Genome dynamics of short oligonucleotides: the example of bacterial DNA uptake enhancing sequences.
Directory of Open Access Journals (Sweden)
Mohammed Bakkali
Full Text Available Among the many bacteria naturally competent for transformation by DNA uptake-a phenomenon with significant clinical and financial implications- Pasteurellaceae and Neisseriaceae species preferentially take up DNA containing specific short sequences. The genomic overrepresentation of these DNA uptake enhancing sequences (DUES causes preferential uptake of conspecific DNA, but the function(s behind this overrepresentation and its evolution are still a matter for discovery. Here I analyze DUES genome dynamics and evolution and test the validity of the results to other selectively constrained oligonucleotides. I use statistical methods and computer simulations to examine DUESs accumulation in Haemophilus influenzae and Neisseria gonorrhoeae genomes. I analyze DUESs sequence and nucleotide frequencies, as well as those of all their mismatched forms, and prove the dependence of DUESs genomic overrepresentation on their preferential uptake by quantifying and correlating both characteristics. I then argue that mutation, uptake bias, and weak selection against DUESs in less constrained parts of the genome combined are sufficient enough to cause DUESs accumulation in susceptible parts of the genome with no need for other DUES function. The distribution of overrepresentation values across sequences with different mismatch loads compared to the DUES suggests a gradual yet not linear molecular drive of DNA sequences depending on their similarity to the DUES. Other genomically overrepresented sequences, both pro- and eukaryotic, show similar distribution of frequencies suggesting that the molecular drive reported above applies to other frequent oligonucleotides. Rare oligonucleotides, however, seem to be gradually drawn to genomic underrepresentation, thus, suggesting a molecular drag. To my knowledge this work provides the first clear evidence of the gradual evolution of selectively constrained oligonucleotides, including repeated, palindromic and protein
Luchetti, Andrea; Mantovani, Barbara
2011-02-01
Short INterspersed Elements (SINEs) in invertebrates, and especially in animal inbred genomes such that of termites, are poorly known; in this paper we characterize three new SINE families (Talub, Taluc and Talud) through the analyses of 341 sequences, either isolated from the Reticulitermes lucifugus genome or drawn from EST Genbank collection. We further add new data to the only isopteran element known so far, Talua. These SINEs are tRNA-derived elements, with an average length ranging from 258 to 372 bp. The tails are made up by poly(A) or microsatellite motifs. Their copy number varies from 7.9 × 10(3) to 10(5) copies, well within the range observed for other metazoan genomes. Species distribution, age and target site duplication analysis indicate Talud as the oldest, possibly inactive SINE originated before the onset of Isoptera (~150 Myr ago). Taluc underwent to substantial sequence changes throughout the evolution of termites and data suggest it was silenced and then re-activated in the R. lucifugus lineage. Moreover, Taluc shares a conserved sequence block with other unrelated SINEs, as observed for some vertebrate and cephalopod elements. The study of genomic environment showed that insertions are mainly surrounded by microsatellites and other SINEs, indicating a biased accumulation within non-coding regions. The evolutionary dynamics of Talu~ elements is explained through selective mechanisms acting in an inbred genome; in this respect, the study of termites' SINEs activity may provide an interesting framework to address the (co)evolution of mobile elements and the host genome.
Robust and Adaptive Online Time Series Prediction with Long Short-Term Memory
Directory of Open Access Journals (Sweden)
Haimin Yang
2017-01-01
Full Text Available Online time series prediction is the mainstream method in a wide range of fields, ranging from speech analysis and noise cancelation to stock market analysis. However, the data often contains many outliers with the increasing length of time series in real world. These outliers can mislead the learned model if treated as normal points in the process of prediction. To address this issue, in this paper, we propose a robust and adaptive online gradient learning method, RoAdam (Robust Adam, for long short-term memory (LSTM to predict time series with outliers. This method tunes the learning rate of the stochastic gradient algorithm adaptively in the process of prediction, which reduces the adverse effect of outliers. It tracks the relative prediction error of the loss function with a weighted average through modifying Adam, a popular stochastic gradient method algorithm for training deep neural networks. In our algorithm, the large value of the relative prediction error corresponds to a small learning rate, and vice versa. The experiments on both synthetic data and real time series show that our method achieves better performance compared to the existing methods based on LSTM.
Robust and Adaptive Online Time Series Prediction with Long Short-Term Memory.
Yang, Haimin; Pan, Zhisong; Tao, Qing
2017-01-01
Online time series prediction is the mainstream method in a wide range of fields, ranging from speech analysis and noise cancelation to stock market analysis. However, the data often contains many outliers with the increasing length of time series in real world. These outliers can mislead the learned model if treated as normal points in the process of prediction. To address this issue, in this paper, we propose a robust and adaptive online gradient learning method, RoAdam (Robust Adam), for long short-term memory (LSTM) to predict time series with outliers. This method tunes the learning rate of the stochastic gradient algorithm adaptively in the process of prediction, which reduces the adverse effect of outliers. It tracks the relative prediction error of the loss function with a weighted average through modifying Adam, a popular stochastic gradient method algorithm for training deep neural networks. In our algorithm, the large value of the relative prediction error corresponds to a small learning rate, and vice versa. The experiments on both synthetic data and real time series show that our method achieves better performance compared to the existing methods based on LSTM.
Continuous time modelling of dynamical spatial lattice data observed at sparsely distributed times
DEFF Research Database (Denmark)
Rasmussen, Jakob Gulddahl; Møller, Jesper
2007-01-01
Summary. We consider statistical and computational aspects of simulation-based Bayesian inference for a spatial-temporal model based on a multivariate point process which is only observed at sparsely distributed times. The point processes are indexed by the sites of a spatial lattice......, and they exhibit spatial interaction. For specificity we consider a particular dynamical spatial lattice data set which has previously been analysed by a discrete time model involving unknown normalizing constants. We discuss the advantages and disadvantages of using continuous time processes compared...... with discrete time processes in the setting of the present paper as well as other spatial-temporal situations....
Late-time dynamics of rapidly rotating black holes
International Nuclear Information System (INIS)
Glampedakis, K.; Andersson, N.
2001-01-01
We study the late-time behaviour of a dynamically perturbed rapidly rotating black hole. Considering an extreme Kerr black hole, we show that the large number of virtually undamped quasinormal modes (that exist for nonzero values of the azimuthal eigenvalue m) combine in such a way that the field (as observed at infinity) oscillates with an amplitude that decays as 1/t at late times. For a near extreme black hole, these modes, collectively, give rise to an exponentially decaying field which, however, is considerably 'long-lived'. Our analytic results are verified using numerical time-evolutions of the Teukolsky equation. Moreover, we argue that the physical mechanism behind the observed behaviour is the presence of a 'superradiance resonance cavity' immediately outside the black hole. We present this new feature in detail, and discuss whether it may be relevant for astrophysical black holes. (author)
Gastón, Martín; Fernández-Peruchena, Carlos; Körnich, Heiner; Landelius, Tomas
2017-06-01
The present work describes the first approach of a new procedure to forecast Direct Normal Irradiance (DNI): the #hashtdim that treats to combine ground information and Numerical Weather Predictions. The system is centered in generate predictions for the very short time. It combines the outputs from the Numerical Weather Prediction Model HARMONIE with an adaptive methodology based on Machine Learning. The DNI predictions are generated with 15-minute and hourly temporal resolutions and presents 3-hourly updates. Each update offers forecasts to the next 12 hours, the first nine hours are generated with 15-minute temporal resolution meanwhile the last three hours present hourly temporal resolution. The system is proved over a Spanish emplacement with BSRN operative station in south of Spain (PSA station). The #hashtdim has been implemented in the framework of the Direct Normal Irradiance Nowcasting methods for optimized operation of concentrating solar technologies (DNICast) project, under the European Union's Seventh Programme for research, technological development and demonstration framework.
Short-range correlations in an extended time-dependent mean-field theory
International Nuclear Information System (INIS)
Madler, P.
1982-01-01
A generalization is performed of the time-dependent mean-field theory by an explicit inclusion of strong short-range correlations on a level of microscopic reversibility relating them to realistic nucleon-nucleon forces. Invoking a least action principle for correlated trial wave functions, equations of motion for the correlation functions and the single-particle model wave function are derived in lowest order of the FAHT cluster expansion. Higher order effects as well as long-range correlations are consider only to the extent to which they contribute to the mean field via a readjusted phenomenological effective two-body interaction. The corresponding correlated stationary problem is investigated and appropriate initial conditions to describe a heavy ion reaction are proposed. The singleparticle density matrix is evaluated
Generic short-time propagation of sharp-boundaries wave packets
Granot, E.; Marchewka, A.
2005-11-01
A general solution to the "shutter" problem is presented. The propagation of an arbitrary initially bounded wave function is investigated, and the general solution for any such function is formulated. It is shown that the exact solution can be written as an expression that depends only on the values of the function (and its derivatives) at the boundaries. In particular, it is shown that at short times (t << 2mx2/hbar, where x is the distance to the boundaries) the wave function propagation depends only on the wave function's values (or its derivatives) at the boundaries of the region. Finally, we generalize these findings to a non-singular wave function (i.e., for wave packets with finite-width boundaries) and suggest an experimental verification.
Directory of Open Access Journals (Sweden)
Annussek Tobias
2012-09-01
Full Text Available Abstract Introduction Due to increasing use of disease modifying antirheumatic drugs (DMARDs as first line therapy in rheumatic diseases, dental and maxillofacial practitioner should be aware of drug related adverse events. Especially effects on bone-metabolism and its cells are discussed controversially. Therefore we investigate the in vitro effect of short time administration of low dose methotrexate (MTX on osteoblasts as essential part of bone remodelling cells. Methods Primary bovine osteoblasts (OBs were incubated with various concentrations of MTX, related to tissue concentrations, over a period of fourteen days by using a previously established standard protocol. The effect on cell proliferation as well as mitochondrial activity was assessed by using 3-(4, 5-dimethylthiazol-2-yl 2, 5-diphenyltetrazolium bromide (MTT assay, imaging and counting of living cells. Additionally, immunostaining of extracellular matrix proteins was used to survey osteogenic differentiation. Results All methods indicate a strong inhibition of osteoblast`s proliferation by short time administration of low dose MTX within therapeutically relevant concentrations of 1 to 1000nM, without affecting cell differentiation of middle-stage differentiated OBs in general. More over a significant decrease of cell numbers and mitochondrial activity was found at these MTX concentrations. The most sensitive method seems to be the MTT-assay. MTX-concentration of 0,01nM and concentrations below had no inhibitory effects anymore. Conclusion Even low dose methotrexate acts as a potent inhibitor of osteoblast’s proliferation and mitochondrial metabolism in vitro, without affecting main differentiation of pre-differentiated osteoblasts. These results suggest possible negative effects of DMARDs concerning bone healing and for example osseointegration of dental implants. Especially the specifics of the jaw bone with its high vascularisation and physiological high tissue metabolism
Directory of Open Access Journals (Sweden)
Shaohua Luo
2014-01-01
Full Text Available This paper focuses on an adaptive dynamic surface control based on the Radial Basis Function Neural Network for a fourth-order permanent magnet synchronous motor system wherein the unknown parameters, disturbances, chaos, and uncertain time delays are presented. Neural Network systems are used to approximate the nonlinearities and an adaptive law is employed to estimate accurate parameters. Then, a simple and effective controller has been obtained by introducing dynamic surface control technique on the basis of first-order filters. Asymptotically tracking stability in the sense of uniformly ultimate boundedness is achieved in a short time. Finally, the performance of the proposed control has been illustrated through simulation results.
Retention time generates short-term phytoplankton blooms in a shallow microtidal subtropical estuary
Odebrecht, Clarisse; Abreu, Paulo C.; Carstensen, Jacob
2015-09-01
In this study it was hypothesised that increasing water retention time promotes phytoplankton blooms in the shallow microtidal Patos Lagoon estuary (PLE). This hypothesis was tested using salinity variation as a proxy of water retention time and chlorophyll a for phytoplankton biomass. Submersible sensors fixed at 5 m depth near the mouth of PLE continuously measured water temperature, salinity and pigments fluorescence (calibrated to chlorophyll a) between March 2010 and 12th of December 2011, with some gaps. Salinity variations were used to separate alternating patterns of outflow of lagoon water (salinity 24; 35% of the time). The two transition phases represented a rapid change from lagoon water outflow to marine water inflow and a more gradually declining salinity between the dominating inflow and outflow conditions. During the latter of these, a significant chlorophyll a increase relative to that expected from a linear mixing relationship was observed at intermediate salinities (10-20). The increase in chlorophyll a was positively related to the duration of the prior coastal water inflow in the PLE. Moreover, chlorophyll a increase was significantly higher during austral spring-summer than autumn-winter, probably due to higher light and nutrient availability in the former. Moreover, the retention time process operating on time scales of days influences the long-term phytoplankton variability in this ecosystem. Comparing these results with monthly data from a nearby long-term water quality monitoring station (1993-2011) support the hypothesis that chlorophyll a accumulations occur after marine inflow events, whereas phytoplankton does not accumulate during high water outflow, when the water residence time is short. These results suggest that changing hydrological pattern is the most important mechanism underlying phytoplankton blooms in the PLE.
Parareal in Time for Dynamic Simulations of Power Systems
Energy Technology Data Exchange (ETDEWEB)
Gurrala, Gurunath [ORNL; Dimitrovski, Aleksandar D [ORNL; Pannala, Sreekanth [ORNL; Simunovic, Srdjan [ORNL; Starke, Michael R [ORNL
2015-01-01
In recent years, there have been significant developments in parallel algorithms and high performance parallel computing platforms. Parareal in time algorithm has become popular for long transient simulations (e.g., molecular dynamics, fusion, reacting flows). Parareal is a parallel algorithm which divides the time interval into sub-intervals and solves them concurrently. This paper investigates the applicability of the parareal algorithm to power system dynamic simulations. Preliminary results on the application of parareal for multi-machine power systems are reported in this paper. Two widely used test systems, WECC 3-generator 9-bus system, New England 10-generator 39- bus system, is used to explore the effectiveness of the parareal. Severe 3 phase bus faults are simulated using both the classical and detailed models of multi-machine power systems. Actual Speedup of 5-7 times is observed assuming ideal parallelization. It has been observed that the speedup factors of the order of 20 can be achieved by using fast coarse approximations of power system models. Dependency of parareal convergence on fault duration and location has been observed.
Essential uncontrollability of discrete linear, time-invariant, dynamical systems
Cliff, E. M.
1975-01-01
The concept of a 'best approximating m-dimensional subspace' for a given set of vectors in n-dimensional whole space is introduced. Such a subspace is easily described in terms of the eigenvectors of an associated Gram matrix. This technique is used to approximate an achievable set for a discrete linear time-invariant dynamical system. This approximation characterizes the part of the state space that may be reached using modest levels of control. If the achievable set can be closely approximated by a proper subspace of the whole space then the system is 'essentially uncontrollable'. The notion finds application in studies of failure-tolerant systems, and in decoupling.
Shapes and dynamics from the time-dependent mean field
International Nuclear Information System (INIS)
Stevenson, P.D.; Goddard, P.M.; Rios, A.
2015-01-01
Explaining observed properties in terms of underlying shape degrees of freedom is a well-established prism with which to understand atomic nuclei. Self-consistent mean-field models provide one tool to understand nuclear shapes, and their link to other nuclear properties and observables. We present examples of how the time-dependent extension of the mean-field approach can be used in particular to shed light on nuclear shape properties, particularly looking at the giant resonances built on deformed nuclear ground states, and at dynamics in highly-deformed fission isomers. Example calculations are shown of 28 Si in the first case, and 240 Pu in the latter case
Time-Frequency Dynamics of Biofuel-Fuel-Food System
Czech Academy of Sciences Publication Activity Database
Vácha, Lukáš; Janda, K.; Krištoufek, Ladislav; Zilberman, D.
2013-01-01
Roč. 40, č. 1 (2013), s. 233-241 ISSN 0140-9883 R&D Projects: GA ČR(CZ) GBP402/12/G097 Grant - others:GA ČR(CZ) GAP402/11/0948 Program:GA Institutional support: RVO:67985556 Keywords : biofuels * correlations * wavelet coherence Subject RIV: AH - Economics Impact factor: 2.580, year: 2013 http://library.utia.cas.cz/separaty/2013/E/vacha-time-frequency dynamics of biofuels-fuels-food system.pdf
Extending the Dynamic Range of a Time Projection Chamber
Estee, Justin; S πRIT Collaboration
2017-09-01
The use of Time Projection Chambers (TPCs) in intermediate heavy ion reactions faces some challenges in addressing the energy losses that range from the small energy loss of relativistic pions to the large energy loss of slow moving heavy ions. A typical trade-off can be to set the smallest desired signals to be well within the lower limits of the dynamic range of the electronics while allowing for some larger signals to saturate the electronics. With wire plane anodes, signals from readout pads further away from the track remain unsaturated and allow signals from tracks with saturated pads to be accurately recovered. We illustrate this technique using data from the SAMURAI Pion-Reconstruction and Ion-Tracker (S πRIT) TPC , which recently measured pions and light charged particles in collisions of Sn+Sn isotopes. Our method exploits knowledge of how the induced charge distribution depends on the distance from the track to smoothly extend dynamic range even when some of the pads in the track are saturated. To accommodate the analysis of slow moving heavy ions, we have extended the Bichsel energy loss distributions to handle slower moving ions as well. In this talk, I will discuss a combined approach which successfully extends the dynamic range of the TPC electronics. This work is supported by the U.S. DOE under Grant Nos. DE-SC0014530, DE-NA0002923, US NSF Grant No. PHY-1565546 and the Japan MEXT KAKENHI Grant No. 24105004.
Motor Fault Diagnosis Based on Short-time Fourier Transform and Convolutional Neural Network
Wang, Li-Hua; Zhao, Xiao-Ping; Wu, Jia-Xin; Xie, Yang-Yang; Zhang, Yong-Hong
2017-11-01
With the rapid development of mechanical equipment, the mechanical health monitoring field has entered the era of big data. However, the method of manual feature extraction has the disadvantages of low efficiency and poor accuracy, when handling big data. In this study, the research object was the asynchronous motor in the drivetrain diagnostics simulator system. The vibration signals of different fault motors were collected. The raw signal was pretreated using short time Fourier transform (STFT) to obtain the corresponding time-frequency map. Then, the feature of the time-frequency map was adaptively extracted by using a convolutional neural network (CNN). The effects of the pretreatment method, and the hyper parameters of network diagnostic accuracy, were investigated experimentally. The experimental results showed that the influence of the preprocessing method is small, and that the batch-size is the main factor affecting accuracy and training efficiency. By investigating feature visualization, it was shown that, in the case of big data, the extracted CNN features can represent complex mapping relationships between signal and health status, and can also overcome the prior knowledge and engineering experience requirement for feature extraction, which is used by traditional diagnosis methods. This paper proposes a new method, based on STFT and CNN, which can complete motor fault diagnosis tasks more intelligently and accurately.
Multi-time-scale heat transfer modeling of turbid tissues exposed to short-pulsed irradiations.
Kim, Kyunghan; Guo, Zhixiong
2007-05-01
A combined hyperbolic radiation and conduction heat transfer model is developed to simulate multi-time-scale heat transfer in turbid tissues exposed to short-pulsed irradiations. An initial temperature response of a tissue to an ultrashort pulse irradiation is analyzed by the volume-average method in combination with the transient discrete ordinates method for modeling the ultrafast radiation heat transfer. This response is found to reach pseudo steady state within 1 ns for the considered tissues. The single pulse result is then utilized to obtain the temperature response to pulse train irradiation at the microsecond/millisecond time scales. After that, the temperature field is predicted by the hyperbolic heat conduction model which is solved by the MacCormack's scheme with error terms correction. Finally, the hyperbolic conduction is compared with the traditional parabolic heat diffusion model. It is found that the maximum local temperatures are larger in the hyperbolic prediction than the parabolic prediction. In the modeled dermis tissue, a 7% non-dimensional temperature increase is found. After about 10 thermal relaxation times, thermal waves fade away and the predictions between the hyperbolic and parabolic models are consistent.
Short locking time and low jitter phase-locked loop based on slope charge pump control
International Nuclear Information System (INIS)
Guo Zhongjie; Liu Youbao; Wu Longsheng; Wang Xihu; Tang Wei
2010-01-01
A novel structure of a phase-locked loop (PLL) characterized by a short locking time and low jitter is presented, which is realized by generating a linear slope charge pump current dependent on monitoring the output of the phase frequency detector (PFD) to implement adaptive bandwidth control. This improved PLL is created by utilizing a fast start-up circuit and a slope current control on a conventional charge pump PLL. First, the fast start-up circuit is enabled to achieve fast pre-charging to the loop filter. Then, when the output pulse of the PFD is larger than a minimum value, the charge pump current is increased linearly by the slope current control to ensure a shorter locking time and a lower jitter. Additionally, temperature variation is attenuated with the temperature compensation in the charge pump current design. The proposed PLL has been fabricated in a kind of DSP chip based on a 0.35 μm CMOS process. Comparing the characteristics with the classical PLL, the proposed PLL shows that it can reduce the locking time by 60% with a low peak-to-peak jitter of 0.3% at a wide operation temperature range. (semiconductor integrated circuits)
SHORT DISSIPATION TIMES OF PROTO-PLANETARY DISKS: AN ARTIFACT OF SELECTION EFFECTS?
International Nuclear Information System (INIS)
Pfalzner, Susanne; Steinhausen, Manuel; Menten, Karl
2014-01-01
The frequency of disks around young stars, a key parameter for understanding planet formation, is most readily determined in young stellar clusters where many relatively coeval stars are located in close proximity. Observational studies seem to show that the disk frequency decreases rapidly with cluster age with <10% of cluster stars retaining their disks for longer than 2-6 Myr. Given that at least half of all stars in the field seem to harbor one or more planets, this would imply extremely fast disk dispersal and rapid planet growth. Here we question the validity of this constraint by demonstrating that the short disk dissipation times inferred to date might have been heavily underestimated by selection effects. Critically, for ages >3 Myr only stars that originally populated the densest areas of very populous clusters, which are prone to disk erosion, are actually considered. This tiny sample may not be representative of the majority of stars. In fact, the higher disk fractions in co-moving groups indicate that it is likely that over 30% of all field stars retain their disks well beyond 10 Myr, leaving ample time for planet growth. Equally, our solar system, with a likely formation time >10 Myr, need no longer be an exception but in fact typical of planetary systems
Energy Technology Data Exchange (ETDEWEB)
Moravek, I; Lach, J [Department of Manufacturing Systems, Slovak Technical University Namestie Slobody 17 812 31 Bratislava (Slovakia); Takac, P [Institute of Zoology, SAV, Bratislava (Slovakia)
2012-07-15
Tsetse flies feed only on vertebrate blood, but the collection and processing of blood is expensive, it must be stored at -20{sup o}C requiring costly storage rooms and reliable electricity, and it must be irradiated to reduce bacterial contamination. This is tolerable for small colonies, but as colony size increases to service large- scale programmes, the supply and processing of blood becomes critical. Blood is normally collected from cattle at slaughter. This process is necessarily not aseptic, and large-scale collection is only possible where the animals are suspended for bleeding. One alternative to blood decontamination is using the High Temperature Short time Pasteurization (HTST) method. The food processing industry uses pasteurization to reduce bacterial load in a wide range of products. Our previous results indicated that for the control of the blood pasteurization process, to reach satisfactory bacteriological purity and at the same time to prevent the blood from coagulating, it is important to study temperature and time and also some other parameters that could predict blood coagulation. Crucial for blood coagulation is to study blood viscosity. Classical heat exchangers are not suitable for blood pasteurization. In such equipment the blood coagulation depends on temperature and time. Besides the relatively low temperatures, blood is coagulating with cumulative time until total shutdown of blood flow. After a series of experiments we found a solution using microwave systems. To verify the microwave heating concept, we built an experimental workstation. First we verified the accuracy of the applicator design from the aspect of output adaptation to the power source. Also we installed measuring equipment. This system complies with the requirements of quick heating with sufficiently high heat accumulation. By utilizing standard components for the base of the microwave generator, it is possible to markedly reduce the final price of the equipment. (author)
Introduction to Focus Issue: Time-delay dynamics
Erneux, Thomas; Javaloyes, Julien; Wolfrum, Matthias; Yanchuk, Serhiy
2017-11-01
The field of dynamical systems with time delay is an active research area that connects practically all scientific disciplines including mathematics, physics, engineering, biology, neuroscience, physiology, economics, and many others. This Focus Issue brings together contributions from both experimental and theoretical groups and emphasizes a large variety of applications. In particular, lasers and optoelectronic oscillators subject to time-delayed feedbacks have been explored by several authors for their specific dynamical output, but also because they are ideal test-beds for experimental studies of delay induced phenomena. Topics include the control of cavity solitons, as light spots in spatially extended systems, new devices for chaos communication or random number generation, higher order locking phenomena between delay and laser oscillation period, and systematic bifurcation studies of mode-locked laser systems. Moreover, two original theoretical approaches are explored for the so-called Low Frequency Fluctuations, a particular chaotical regime in laser output which has attracted a lot of interest for more than 30 years. Current hot problems such as the synchronization properties of networks of delay-coupled units, novel stabilization techniques, and the large delay limit of a delay differential equation are also addressed in this special issue. In addition, analytical and numerical tools for bifurcation problems with or without noise and two reviews on concrete questions are proposed. The first review deals with the rich dynamics of simple delay climate models for El Nino Southern Oscillations, and the second review concentrates on neuromorphic photonic circuits where optical elements are used to emulate spiking neurons. Finally, two interesting biological problems are considered in this Focus Issue, namely, multi-strain epidemic models and the interaction of glucose and insulin for more effective treatment.
Hamiltonian Dynamics of Doubly-Foliable Space-Times
Directory of Open Access Journals (Sweden)
Cecília Gergely
2018-01-01
Full Text Available The 2 + 1 + 1 decomposition of space-time is useful in monitoring the temporal evolution of gravitational perturbations/waves in space-times with a spatial direction singled-out by symmetries. Such an approach based on a perpendicular double foliation has been employed in the framework of dark matter and dark energy-motivated scalar-tensor gravitational theories for the discussion of the odd sector perturbations of spherically-symmetric gravity. For the even sector, however, the perpendicularity has to be suppressed in order to allow for suitable gauge freedom, recovering the 10th metric variable. The 2 + 1 + 1 decomposition of the Einstein–Hilbert action leads to the identification of the canonical pairs, the Hamiltonian and momentum constraints. Hamiltonian dynamics is then derived via Poisson brackets.
One-Time Pad as a nonlinear dynamical system
Nagaraj, Nithin
2012-11-01
The One-Time Pad (OTP) is the only known unbreakable cipher, proved mathematically by Shannon in 1949. In spite of several practical drawbacks of using the OTP, it continues to be used in quantum cryptography, DNA cryptography and even in classical cryptography when the highest form of security is desired (other popular algorithms like RSA, ECC, AES are not even proven to be computationally secure). In this work, we prove that the OTP encryption and decryption is equivalent to finding the initial condition on a pair of binary maps (Bernoulli shift). The binary map belongs to a family of 1D nonlinear chaotic and ergodic dynamical systems known as Generalized Luröth Series (GLS). Having established these interesting connections, we construct other perfect secrecy systems on the GLS that are equivalent to the One-Time Pad, generalizing for larger alphabets. We further show that OTP encryption is related to Randomized Arithmetic Coding - a scheme for joint compression and encryption.
Managing time-substitutable electricity usage using dynamic controls
Ghosh, Soumyadip; Hosking, Jonathan R.; Natarajan, Ramesh; Subramaniam, Shivaram; Zhang, Xiaoxuan
2017-02-21
A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.
Managing time-substitutable electricity usage using dynamic controls
Ghosh, Soumyadip; Hosking, Jonathan R.; Natarajan, Ramesh; Subramaniam, Shivaram; Zhang, Xiaoxuan
2017-02-07
A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.
Real Time Mapping and Dynamic Navigation for Mobile Robots
Directory of Open Access Journals (Sweden)
Maki K. Habib
2008-11-01
Full Text Available This paper discusses the importance, the complexity and the challenges of mapping mobile robot?s unknown and dynamic environment, besides the role of sensors and the problems inherited in map building. These issues remain largely an open research problems in developing dynamic navigation systems for mobile robots. The paper presenst the state of the art in map building and localization for mobile robots navigating within unknown environment, and then introduces a solution for the complex problem of autonomous map building and maintenance method with focus on developing an incremental grid based mapping technique that is suitable for real-time obstacle detection and avoidance. In this case, the navigation of mobile robots can be treated as a problem of tracking geometric features that occur naturally in the environment of the robot. The robot maps its environment incrementally using the concept of occupancy grids and the fusion of multiple ultrasonic sensory information while wandering in it and stay away from all obstacles. To ensure real-time operation with limited resources, as well as to promote extensibility, the mapping and obstacle avoidance modules are deployed in parallel and distributed framework. Simulation based experiments has been conducted and illustrated to show the validity of the developed mapping and obstacle avoidance approach.
Sivak, David A; Chodera, John D; Crooks, Gavin E
2014-06-19
When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting (related to the velocity Verlet discretization) that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.
Short-term dynamics of culturable bacteria in a soil amended with biotransformed dry olive residue.
Siles, J A; Pascual, J; González-Menéndez, V; Sampedro, I; García-Romera, I; Bills, G F
2014-03-01
Dry olive residue (DOR) transformation by wood decomposing basidiomycetes (e.g. Coriolopsis floccosa) is a possible strategy for eliminating the liabilities related to the use of olive oil industry waste as an organic soil amendment. The effects of organic fertilization with DOR on the culturable soil microbiota are largely unknown. Therefore, the objectives of this study were to measure the short-term effects of DOR and C. floccosa-transformed DOR on the culturable bacterial soil community, while at the same time documenting the bacterial diversity of an agronomic soil in the southeastern Iberian Peninsula. The control soil was compared with the same soil treated with DOR and with C. floccosa-transformed DOR for 0, 30 and 60 days. Impact was measured from total viable cells and CFU counts, as well as the isolation and characterization of 900 strains by fatty acid methyl ester profiles and 16S rRNA partial sequencing. The bacterial diversity was distributed between Actinobacteria, Alphaproteobacteria, Gammaproteobacteria, Betaproteobacteria, Bacilli, Sphingobacteria and Cytophagia. Analysis of the treatments and controls demonstrated that soil amendment with untransformed DOR produced important changes in bacterial density and diversity. However, when C. floccosa-transformed DOR was applied, bacterial proliferation was observed but bacterial diversity was less affected, and the distribution of microorganisms was more similar to the unamended soil. Copyright © 2013 Elsevier GmbH. All rights reserved.
Directory of Open Access Journals (Sweden)
Judith eLucas
2016-03-01
Full Text Available Remineralisation and transformation of dissolved organic matter (DOM by marine microbes shape the DOM composition and thus, have large impact on global carbon and nutrient cycling. However, information on bacterioplankton-DOM interactions on a molecular level is limited. We examined the variation of bacterial community composition at Helgoland Roads (North Sea in relation to variation of molecular DOM composition and various environmental parameters on short-time scales. Surface water samples were taken daily over a period of twenty days. Bacterial community and molecular DOM composition were assessed via 16S rRNA gene tag sequencing and ultrahigh resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS, respectively. Environmental conditions were driven by a coastal water influx during the first half of the sampling period and the onset of a summer phytoplankton bloom towards the end of the sampling period. These phenomena led to a distinct grouping of bacterial communities and DOM composition which was particularly influenced by total dissolved nitrogen concentration, temperature and salinity, as revealed by distance-based linear regression analyses. Bacterioplankton-DOM interaction was demonstrated in strong correlations between specific bacterial taxa and particular DOM molecules, thus, suggesting potential specialization on particular substrates. We propose that a combination of high resolution techniques, as used in this study, may provide substantial information on substrate generalists and specialists and thus, contribute to prediction of bacterial community composition variation.
Kulchitsky, A.; Maurits, S.; Watkins, B.
2006-12-01
With the widespread availability of the Internet today, many people can monitor various scientific research activities. It is important to accommodate this interest providing on-line access to dynamic and illustrative Web-resources, which could demonstrate different aspects of ongoing research. It is especially important to explain and these research activities for high school and undergraduate students, thereby providing more information for making decisions concerning their future studies. Such Web resources are also important to clarify scientific research for the general public, in order to achieve better awareness of research progress in various fields. Particularly rewarding is dissemination of information about ongoing projects within Universities and research centers to their local communities. The benefits of this type of scientific outreach are mutual, since development of Web-based automatic systems is prerequisite for many research projects targeting real-time monitoring and/or modeling of natural conditions. Continuous operation of such systems provide ongoing research opportunities for the statistically massive validation of the models, as well. We have developed a Web-based system to run the University of Alaska Fairbanks Polar Ionospheric Model in real-time. This model makes use of networking and computational resources at the Arctic Region Supercomputing Center. This system was designed to be portable among various operating systems and computational resources. Its components can be installed across different computers, separating Web servers and computational engines. The core of the system is a Real-Time Management module (RMM) written Python, which facilitates interactions of remote input data transfers, the ionospheric model runs, MySQL database filling, and PHP scripts for the Web-page preparations. The RMM downloads current geophysical inputs as soon as they become available at different on-line depositories. This information is processed to
Architecture for dynamically reconfigurable real-time lossless compression
Carter, Alison J.; Audsley, Neil C.
2004-05-01
Image compression is a computationally intensive task, which can be undertaken most efficiently by dedicated hardware. If a portable device is to carry out real-time compression on a variety of image types, then it may be useful to reconfigure the circuitry dynamically. Using commercial off-the shelf (COTS) chips, reconfiguration is usually implemented by a complete re-load from memory, but it is also possible to perform a partial reconfiguration. This work studies the use of programmable hardware devices to implement the lossless JPEG compression algorithm in real-time on a stream of independent image frames. The data rate is faster than can be compressed serially in hardware by a single processor, so the operation is split amongst several processors. These are implemented as programmable circuits, together with necessary buffering of input and output data. The timing of input and output, bearing in mind the different, and context-dependent amounts of data due to Huffman coding, is analyzed using storage-timing graphs. Because there may be differing parameters from one frame to the next, several different configurations are prepared and stored, ready to load as required. The scheduling of these reconfigurations, and the distribution/recombination of data streams is studied, giving an analysis of the real-time performance.
Assessing Coupling Dynamics from an Ensemble of Time Series
Directory of Open Access Journals (Sweden)
Germán Gómez-Herrero
2015-04-01
Full Text Available Finding interdependency relations between time series provides valuable knowledge about the processes that generated the signals. Information theory sets a natural framework for important classes of statistical dependencies. However, a reliable estimation from information-theoretic functionals is hampered when the dependency to be assessed is brief or evolves in time. Here, we show that these limitations can be partly alleviated when we have access to an ensemble of independent repetitions of the time series. In particular, we gear a data-efficient estimator of probability densities to make use of the full structure of trial-based measures. By doing so, we can obtain time-resolved estimates for a family of entropy combinations (including mutual information, transfer entropy and their conditional counterparts, which are more accurate than the simple average of individual estimates over trials. We show with simulated and real data generated by coupled electronic circuits that the proposed approach allows one to recover the time-resolved dynamics of the coupling between different subsystems.
Time domain numerical calculations of the short electron bunch wakefields in resistive structures
Energy Technology Data Exchange (ETDEWEB)
Tsakanian, Andranik
2010-10-15
The acceleration of electron bunches with very small longitudinal and transverse phase space volume is one of the most actual challenges for the future International Linear Collider and high brightness X-Ray Free Electron Lasers. The exact knowledge on the wake fields generated by the ultra-short electron bunches during its interaction with surrounding structures is a very important issue to prevent the beam quality degradation and to optimize the facility performance. The high accuracy time domain numerical calculations play the decisive role in correct evaluation of the wake fields in advanced accelerators. The thesis is devoted to the development of a new longitudinally dispersion-free 3D hybrid numerical scheme in time domain for wake field calculation of ultra short bunches in structures with walls of finite conductivity. The basic approaches used in the thesis to solve the problem are the following. For materials with high but finite conductivity the model of the plane wave reflection from a conducting half-space is used. It is shown that in the conductive half-space the field components perpendicular to the interface can be neglected. The electric tangential component on the surface contributes to the tangential magnetic field in the lossless area just before the boundary layer. For high conducting media, the task is reduced to 1D electromagnetic problem in metal and the so-called 1D conducting line model can be applied instead of a full 3D space description. Further, a TE/TM (''transverse electric - transverse magnetic'') splitting implicit numerical scheme along with 1D conducting line model is applied to develop a new longitudinally dispersion-free hybrid numerical scheme in the time domain. The stability of the new hybrid numerical scheme in vacuum, conductor and bound cell is studied. The convergence of the new scheme is analyzed by comparison with the well-known analytical solutions. The wakefield calculations for a number of
Krogseth, Ingjerd Sunde; Breivik, Knut; Arnot, Jon A; Wania, Frank; Borgen, Anders; Schlabach, Martin
2013-01-01
Short chain chlorinated paraffins (SCCPs) raise concerns due to their potential for persistence, bioaccumulation, long-range transport and adverse effects. An understanding of their environmental fate remains limited, partly due to the complexity of the mixture. The purpose of this study was to evaluate whether a mechanistic, integrated, dynamic environmental fate and bioaccumulation multimedia model (CoZMoMAN) can reconcile what is known about environmental emissions and human exposure of SC...
Vasileios, K.
2015-01-01
Traditional dance is gaining popularity as an intervention choice for improving poor balance ability of people with intellectual disability (ID). Balance improvement for individuals with ID through dance provides opportunities for participation in sport activities and promotes independent living. This short review provides in brief research evidence of dynamic balance improvement as measured by means of a balance deck in duration of 30, 45, and 60 sec intervals, highlighting the need to incor...
Short Term Prediction of PM10 Concentrations Using Seasonal Time Series Analysis
Directory of Open Access Journals (Sweden)
Hamid Hazrul Abdul
2016-01-01
Full Text Available Air pollution modelling is one of an important tool that usually used to make short term and long term prediction. Since air pollution gives a big impact especially to human health, prediction of air pollutants concentration is needed to help the local authorities to give an early warning to people who are in risk of acute and chronic health effects from air pollution. Finding the best time series model would allow prediction to be made accurately. This research was carried out to find the best time series model to predict the PM10 concentrations in Nilai, Negeri Sembilan, Malaysia. By considering two seasons which is wet season (north east monsoon and dry season (south west monsoon, seasonal autoregressive integrated moving average model were used to find the most suitable model to predict the PM10 concentrations in Nilai, Negeri Sembilan by using three error measures. Based on AIC statistics, results show that ARIMA (1, 1, 1 × (1, 0, 012 is the most suitable model to predict PM10 concentrations in Nilai, Negeri Sembilan.
Short-time regularity assessment of fibrillatory waves from the surface ECG in atrial fibrillation
International Nuclear Information System (INIS)
Alcaraz, Raúl; Martínez, Arturo; Hornero, Fernando; Rieta, José J
2012-01-01
This paper proposes the first non-invasive method for direct and short-time regularity quantification of atrial fibrillatory (f) waves from the surface ECG in atrial fibrillation (AF). Regularity is estimated by computing individual morphological variations among f waves, which are delineated and extracted from the atrial activity (AA) signal, making use of an adaptive signed correlation index. The algorithm was tested on real AF surface recordings in order to discriminate atrial signals with different organization degrees, providing a notably higher global accuracy (90.3%) than the two non-invasive AF organization estimates defined to date: the dominant atrial frequency (70.5%) and sample entropy (76.1%). Furthermore, due to its ability to assess AA regularity wave to wave, the proposed method is also able to pursue AF organization time course more precisely than the aforementioned indices. As a consequence, this work opens a new perspective in the non-invasive analysis of AF, such as the individualized study of each f wave, that could improve the understanding of AF mechanisms and become useful for its clinical treatment. (paper)
Polynomial Phase Estimation Based on Adaptive Short-Time Fourier Transform.
Jing, Fulong; Zhang, Chunjie; Si, Weijian; Wang, Yu; Jiao, Shuhong
2018-02-13
Polynomial phase signals (PPSs) have numerous applications in many fields including radar, sonar, geophysics, and radio communication systems. Therefore, estimation of PPS coefficients is very important. In this paper, a novel approach for PPS parameters estimation based on adaptive short-time Fourier transform (ASTFT), called the PPS-ASTFT estimator, is proposed. Using the PPS-ASTFT estimator, both one-dimensional and multi-dimensional searches and error propagation problems, which widely exist in PPSs field, are avoided. In the proposed algorithm, the instantaneous frequency (IF) is estimated by S-transform (ST), which can preserve information on signal phase and provide a variable resolution similar to the wavelet transform (WT). The width of the ASTFT analysis window is equal to the local stationary length, which is measured by the instantaneous frequency gradient (IFG). The IFG is calculated by the principal component analysis (PCA), which is robust to the noise. Moreover, to improve estimation accuracy, a refinement strategy is presented to estimate signal parameters. Since the PPS-ASTFT avoids parameter search, the proposed algorithm can be computed in a reasonable amount of time. The estimation performance, computational cost, and implementation of the PPS-ASTFT are also analyzed. The conducted numerical simulations support our theoretical results and demonstrate an excellent statistical performance of the proposed algorithm.
Multifractals embedded in short time series: An unbiased estimation of probability moment
Qiu, Lu; Yang, Tianguang; Yin, Yanhua; Gu, Changgui; Yang, Huijie
2016-12-01
An exact estimation of probability moments is the base for several essential concepts, such as the multifractals, the Tsallis entropy, and the transfer entropy. By means of approximation theory we propose a new method called factorial-moment-based estimation of probability moments. Theoretical prediction and computational results show that it can provide us an unbiased estimation of the probability moments of continuous order. Calculations on probability redistribution model verify that it can extract exactly multifractal behaviors from several hundred recordings. Its powerfulness in monitoring evolution of scaling behaviors is exemplified by two empirical cases, i.e., the gait time series for fast, normal, and slow trials of a healthy volunteer, and the closing price series for Shanghai stock market. By using short time series with several hundred lengths, a comparison with the well-established tools displays significant advantages of its performance over the other methods. The factorial-moment-based estimation can evaluate correctly the scaling behaviors in a scale range about three generations wider than the multifractal detrended fluctuation analysis and the basic estimation. The estimation of partition function given by the wavelet transform modulus maxima has unacceptable fluctuations. Besides the scaling invariance focused in the present paper, the proposed factorial moment of continuous order can find its various uses, such as finding nonextensive behaviors of a complex system and reconstructing the causality relationship network between elements of a complex system.
Two Machine Learning Approaches for Short-Term Wind Speed Time-Series Prediction.
Ak, Ronay; Fink, Olga; Zio, Enrico
2016-08-01
The increasing liberalization of European electricity markets, the growing proportion of intermittent renewable energy being fed into the energy grids, and also new challenges in the patterns of energy consumption (such as electric mobility) require flexible and intelligent power grids capable of providing efficient, reliable, economical, and sustainable energy production and distribution. From the supplier side, particularly, the integration of renewable energy sources (e.g., wind and solar) into the grid imposes an engineering and economic challenge because of the limited ability to control and dispatch these energy sources due to their intermittent characteristics. Time-series prediction of wind speed for wind power production is a particularly important and challenging task, wherein prediction intervals (PIs) are preferable results of the prediction, rather than point estimates, because they provide information on the confidence in the prediction. In this paper, two different machine learning approaches to assess PIs of time-series predictions are considered and compared: 1) multilayer perceptron neural networks trained with a multiobjective genetic algorithm and 2) extreme learning machines combined with the nearest neighbors approach. The proposed approaches are applied for short-term wind speed prediction from a real data set of hourly wind speed measurements for the region of Regina in Saskatchewan, Canada. Both approaches demonstrate good prediction precision and provide complementary advantages with respect to different evaluation criteria.
Directory of Open Access Journals (Sweden)
Yun-Long Kong
2018-03-01
Full Text Available A satellite image time series (SITS contains a significant amount of temporal information. By analysing this type of data, the pattern of the changes in the object of concern can be explored. The natural change in the Earth’s surface is relatively slow and exhibits a pronounced pattern. Some natural events (for example, fires, floods, plant diseases, and insect pests and human activities (for example, deforestation and urbanisation will disturb this pattern and cause a relatively profound change on the Earth’s surface. These events are usually referred to as disturbances. However, disturbances in ecosystems are not easy to detect from SITS data, because SITS contain combined information on disturbances, phenological variations and noise in remote sensing data. In this paper, a novel framework is proposed for online disturbance detection from SITS. The framework is based on long short-term memory (LSTM networks. First, LSTM networks are trained by historical SITS. The trained LSTM networks are then used to predict new time series data. Last, the predicted data are compared with real data, and the noticeable deviations reveal disturbances. Experimental results using 16-day compositions of the moderate resolution imaging spectroradiometer (MOD13Q1 illustrate the effectiveness and stability of the proposed approach for online disturbance detection.
Rotor-System Log-Decrement Identification Using Short-Time Fourier-Transform Filter
Directory of Open Access Journals (Sweden)
Qihang Li
2015-01-01
Full Text Available With the increase of the centrifugal compressor capability, such as large scale LNG and CO2 reinjection, the stability margin evaluation is crucial to assure the compressor work in the designed operating conditions in field. Improving the precision of parameter identification of stability is essential and necessary as well. Based on the time-varying characteristics of response vibration during the sine-swept process, a short-time Fourier transform (STFT filter was introduced to increase the signal-noise ratio and improve the accuracy of the estimated stability parameters. A finite element model was established to simulate the sine-swept process, and the simulated vibration signals were used to study the filtering effect and demonstrate the feasibility to identify the stability parameters by using Multiple-Input and Multiple-Output system identification method that combines the prediction error method and instrumental variable method. Simulation results show that the identification method with STFT filter improves the estimated accuracy much well and makes the curves of frequency response function clearer. Experiment was carried out on a test rig as well, which indicates the identification method is feasible in stability identification, and the results of experiment indicate that STFT filter works very well.
Timing of introduction of complementary food: short- and long-term health consequences.
Przyrembel, Hildegard
2012-01-01
Complementary food is needed when breast milk (or infant formula) alone is no longer sufficient for both nutritional and developmental reasons. The timing of its introduction, therefore, is an individual decision, although 6 months of exclusive breastfeeding can be recommended for most healthy term infants. The new foods are intended to 'complement' ongoing breastfeeding with those dietary items whose intake has become marginal or insufficient. Both breastfeeding and complementary feeding can have direct or later consequences on health. The evaluation of consequences of both early and late introduction of complementary food can neither disregard the effect of breastfeeding compared to formula feeding nor the composition or quality of the complementary food. Possible short-term health effects concern growth velocity and infections, and possible long-term effects may relate to atopic diseases, type 1 and 2 diabetes, obesity and neuromuscular development. On the basis of the currently available evidence, it is impossible to exactly determine the age when risks related to the start of complementary feeding are lowest or highest for most of these effects, with the possible exception of infections and early growth velocity. The present knowledge on undesirable health effects, however, is mainly based on observational studies, and although some mechanisms have been proposed, further prospective studies have to clarify these unsolved issues. Even less evidence on the consequences of the timing of complementary food introduction is available for formula-fed infants. Copyright © 2012 S. Karger AG, Basel.
Directory of Open Access Journals (Sweden)
MA Luo-ning
2016-07-01
Full Text Available In order to investigate the corrosion performance on intersecting and longitudinal surfaces of unoxidized and oxidized directionally solidified superalloys, Ni-base directionally solidified superalloy DZ125 and Co-base directionally solidified superalloy DZ40M were selected. Oxidation behavior on both alloys with different orientations was investigated at 1050℃ at different times, simulating the oxidation process of vanes or blades in service; subsequent electrochemical performance in 3.5%NaCl aqueous solution was studied on two orientations of unoxidized and oxidized alloys, simulating the corrosion process of superalloy during downtime. The results show that grain boundaries and sub-boundaries of directionally solidified superalloys are susceptible to corrosion and thus longitudinal surface with lower area fraction of grain boundaries has higher corrosion resistance. Compared to intersecting surface of alloys, the structure of grain boundaries of longitudinal surface is less conducive to diffusion and thus the oxidation rate on longitudinal surface is lower. Formation of oxide layers on alloys after short-time oxidation provides protective effect and enhances the corrosion resistance.
Incorporating geostrophic wind information for improved space–time short-term wind speed forecasting
Zhu, Xinxin
2014-09-01
Accurate short-term wind speed forecasting is needed for the rapid development and efficient operation of wind energy resources. This is, however, a very challenging problem. Although on the large scale, the wind speed is related to atmospheric pressure, temperature, and other meteorological variables, no improvement in forecasting accuracy was found by incorporating air pressure and temperature directly into an advanced space-time statistical forecasting model, the trigonometric direction diurnal (TDD) model. This paper proposes to incorporate the geostrophic wind as a new predictor in the TDD model. The geostrophic wind captures the physical relationship between wind and pressure through the observed approximate balance between the pressure gradient force and the Coriolis acceleration due to the Earth’s rotation. Based on our numerical experiments with data from West Texas, our new method produces more accurate forecasts than does the TDD model using air pressure and temperature for 1to 6-hour-ahead forecasts based on three different evaluation criteria. Furthermore, forecasting errors can be further reduced by using moving average hourly wind speeds to fit the diurnal pattern. For example, our new method obtains between 13.9% and 22.4% overall mean absolute error reduction relative to persistence in 2-hour-ahead forecasts, and between 5.3% and 8.2% reduction relative to the best previous space-time methods in this setting.
Simulating continuous-time Hamiltonian dynamics by way of a discrete-time quantum walk
International Nuclear Information System (INIS)
Schmitz, A.T.; Schwalm, W.A.
2016-01-01
Much effort has been made to connect the continuous-time and discrete-time quantum walks. We present a method for making that connection for a general graph Hamiltonian on a bigraph. Furthermore, such a scheme may be adapted for simulating discretized quantum models on a quantum computer. A coin operator is found for the discrete-time quantum walk which exhibits the same dynamics as the continuous-time evolution. Given the spectral decomposition of the graph Hamiltonian and certain restrictions, the discrete-time evolution is solved for explicitly and understood at or near important values of the parameters. Finally, this scheme is connected to past results for the 1D chain. - Highlights: • A discrete-time quantum walk is purposed which approximates a continuous-time quantum walk. • The purposed quantum walk could be used to simulate Hamiltonian dynamics on a quantum computer. • Given the spectra decomposition of the Hamiltonian, the quantum walk is solved explicitly. • The method is demonstrated and connected to previous work done on the 1D chain.
Quantifying evolutionary dynamics from variant-frequency time series
Khatri, Bhavin S.
2016-09-01
From Kimura’s neutral theory of protein evolution to Hubbell’s neutral theory of biodiversity, quantifying the relative importance of neutrality versus selection has long been a basic question in evolutionary biology and ecology. With deep sequencing technologies, this question is taking on a new form: given a time-series of the frequency of different variants in a population, what is the likelihood that the observation has arisen due to selection or neutrality? To tackle the 2-variant case, we exploit Fisher’s angular transformation, which despite being discovered by Ronald Fisher a century ago, has remained an intellectual curiosity. We show together with a heuristic approach it provides a simple solution for the transition probability density at short times, including drift, selection and mutation. Our results show under that under strong selection and sufficiently frequent sampling these evolutionary parameters can be accurately determined from simulation data and so they provide a theoretical basis for techniques to detect selection from variant or polymorphism frequency time-series.
Modeling Long-Term Fluvial Incision : Shall we Care for the Details of Short-Term Fluvial Dynamics?
Lague, D.; Davy, P.
2008-12-01
Fluvial incision laws used in numerical models of coupled climate, erosion and tectonics systems are mainly based on the family of stream power laws for which the rate of local erosion E is a power function of the topographic slope S and the local mean discharge Q : E = K Qm Sn. The exponents m and n are generally taken as (0.35, 0.7) or (0.5, 1), and K is chosen such that the predicted topographic elevation given the prevailing rates of precipitation and tectonics stay within realistic values. The resulting topographies are reasonably realistic, and the coupled system dynamics behaves somehow as expected : more precipitation induces increased erosion and localization of the deformation. Yet, if we now focus on smaller scale fluvial dynamics (the reach scale), recent advances have suggested that discharge variability, channel width dynamics or sediment flux effects may play a significant role in controlling incision rates. These are not factored in the simple stream power law model. In this work, we study how these short- term details propagate into long-term incision dynamics within the framework of surface/tectonics coupled numerical models. To upscale the short term dynamics to geological timescales, we use a numerical model of a trapezoidal river in which vertical and lateral incision processes are computed from fluid shear stress at a daily timescale, sediment transport and protection effects are factored in, as well as a variable discharge. We show that the stream power law model might still be a valid model but that as soon as realistic effects are included such as a threshold for sediment transport, variable discharge and dynamic width the resulting exponents m and n can be as high as 2 and 4. This high non-linearity has a profound consequence on the sensitivity of fluvial relief to incision rate. We also show that additional complexity does not systematically translates into more non-linear behaviour. For instance, considering only a dynamical width
Real-time dynamics of dissipative quantum systems
International Nuclear Information System (INIS)
Chow, K.S.
1988-01-01
The first part of this thesis motivates a real time approach to the dynamics of dissipative quantum systems. We review previous imaginary time methods for calculating escape rates and discuss their applications to the analysis of data in macroscopic quantum tunneling experiments. In tunneling experiments on heavily damped Superconducting Quantum Interference Devices, the instanton method gave results that compare reasonably well with data. In tunneling experiments on weakly damped Current Biased Josephson Junctions, two problems arise. First, the classical limit of the instanton result disagrees with the classical rate of thermal activation. Second, the instanton method cannot predict the microwave enhancement of escape rates. In the third chapter, we discuss our real time approach to the dynamics of dissipative systems in terms of a kinetic equation for the reduced density matrix. We demonstrate some known equilibrium properties of dissipative systems through the kinetic equation and derived the bath induced widths and energy shifts. In the low damping limit, the kinetic equation reduces to a much simpler master equation. The classical limit of the master equation is completely equivalent to the Fokker-Planck equation that describes thermal activation. In the fourth chapter, we apply the master equation to the problem of tunneling and resonance enhancement of tunneling in weakly damped current biased Josephson junctions. In the classical regime, microwaves of the appropriate frequency induce resonances between many neighboring levels and an asymmetrical resonance peak is measured. We can calibrate the junction parameters by fitting the stationary solution of the master equation to the classical resonance data. In the quantum regime, the stationary solution of the master equation, predicts well-resolved resonance peaks which agree very well with the observed data
Dynamic Web Expression for Near-real-time Sensor Networks
Lindquist, K. G.; Newman, R. L.; Nayak, A.; Vernon, F. L.; Nelson, C.; Hansen, T. S.; Yuen-Wong, R.
2003-12-01
As near-real-time sensor grids become more widespread, and processing systems based on them become more powerful, summarizing the raw and derived information products and delivering them to the end user become increasingly important both for ongoing monitoring and as a platform for cross-disciplinary research. We have re-engineered the dbrecenteqs program, which was designed to express real-time earthquake databases into dynamic web pages, with several powerful new technologies. While the application is still most fully developed for seismic data, the infrastructure is extensible (and being extended) to create a real-time information architecture for numerous signal domains. This work provides a practical, lightweight approach suitable for individual seismic and sensor networks, which does not require a full 'web-services' implementation. Nevertheless, the technologies here are extensible to larger applications such as the Storage-Resource-Broker based VORB project. The technologies included in the new system blend real-time relational databases as a focus for processing and data handling; an XML->XSLT architecture as the core of the web mirroring; PHP extensions to Antelope (the environmental monitoring-system context adopted for RoadNET) in order to support complex, user-driven interactivity; and VRML output for expression of information as web-browsable three-dimensional worlds.
Directory of Open Access Journals (Sweden)
Kaido M
2017-05-01
Full Text Available Minako Kaido,1,2 Motoko Kawashima,1 Reiko Ishida,1,3 Kazuo Tsubota1 1Department of Ophthalmology, Keio University School of Medicine, Tokyo, 2Wada Eye Clinic, Chiba, 3Ishida Eye Clinic, Shizuoka, Japan Aim: Validating the hypothesis that accommodative microfluctuations (AMFs may be associated with severe symptoms in short tear break-up time (BUT dry eye (DE. Methods: This study included 12 subjects with short BUT DE (age: 49.6±18.3 years. Diagnoses were performed based on the presence of DE symptoms, BUT ≤5 s, Schirmer score >5 mm, and negative keratoconjunctival epithelial damage. Tear evaluation, AMF, and functional visual acuity (VA examinations were conducted before and after DE treatment. The AMF parameters evaluated were: total high-frequency component (HFC, HFC with low accommodation for the task of staring into the distance (HFC1, HFC with high accommodation for deskwork (HFC2. A subjective questionnaire of DE symptoms was also performed. Results: Mean BUT increased from 1.9±2.0 to 6.4±2.5 s after treatment (P<0.05. The mean logarithm of the minimum angle of resolution functional VA significantly improved (from 0.19±0.19 to 0.12±0.17; P<0.05. Mean power spectrum values for total HFC and HFC1 decreased (from 61.3±5.7 to 53.8±6.6 dB and from 62.9±10.5 to 52.4±6.2 dB, respectively; P<0.05, while the mean HFC2 power spectrum values did not differ before and after treatment (P>0.05. Subjective DE symptoms were reduced in nine patients. Conclusion: Along with the improvement of BUT after treatment, DE symptoms diminished and HFC1 and functional VA improved, suggesting that tear film instability is associated with deterioration of functional VA, AMF, and DE symptoms. Keywords: accommodative microfluctuation, ciliary muscle spasm, dry eye, ocular fatigue, tear break-up time, functional visual acuity
Time Course Changes in Selected Biochemical Stress Indices in Broilers Exposed to Short-term Noise
Directory of Open Access Journals (Sweden)
Iveta Bedáňová
2010-01-01
Full Text Available Time course changes in selected biochemical stress indices (corticosterone, triglycerides, glucose, cholesterol following short-term noise exposure at 100 dB for 28 min were studied in broilers aged 42 days. Corticosterone concentrations were found to increase during the first 10 min of noise exposure and to differ significantly from the control (background sound – 50 dB at Time 10 min and 14 min, then decreased continually and at 28 min returned to the initial prestress value. Triglyceride concentrations increased in broilers exposed to 100 dB noise during the first 12 min with a significant difference from the control at 12 min and 14 min. Glucose concentrations were higher due to 100 dB noise exposure for almost the entire period monitored, with significant differences between 100 dB and control broilers at 6 min and from 10 min to 14 min. Similarly as for the corticosterone concentration, a drop in triglycerides and glucose concentrations was seen approximately from Time 14 min and a return to the pre-stress value at 28 min. The cholesterol concentrations showed various temporal patterns with no significant difference between 100 dB and control broilers in this experiment. The pattern of response found in the study indicates that 100 dB noise represents a stress factor in broilers, however, there is the ability of broilers to adapt to an increased level of noise at this intensity after the first 14 min of exposure. The findings obtained in the study may contribute to expanding detailed knowledge of physiological stress responses to this specific noise stimulus in poultry, and could thereby be used to improve the welfare of broilers in intensive housing systems.
Physical relativity. Space-time structure from a dynamical perspective
Brown, Harvey R.
Physical Relativity explores the nature of the distinction at the heart of Einstein's 1905 formulation of his special theory of relativity: that between kinematics and dynamics. Einstein himself became increasingly uncomfortable with this distinction, and with the limitations of what he called the 'principle theory' approach inspired by the logic of thermodynamics. A handful of physicists and philosophers have over the last century likewise expressed doubts about Einstein's treatment of the relativistic behaviour of rigid bodies and clocks in motion in the kinematical part of his great paper, and suggested that the dynamical understanding of length contraction and time dilation intimated by the immediate precursors of Einstein is more fundamental. Harvey Brown both examines and extends these arguments (which support a more 'constructive' approach to relativistic effects in Einstein's terminology), after giving a careful analysis of key features of the pre-history of relativity theory. He argues furthermore that the geometrization of the theory by Minkowski in 1908 brought illumination, but not a causal explanation of relativistic effects. Finally, Brown tries to show that the dynamical interpretation of special relativity defended in the book is consistent with the role this theory must play as a limiting case of Einstein's 1915 theory of gravity: the general theory of relativity. Appearing in the centennial year of Einstein's celebrated paper on special relativity, Physical Relativity is an unusual, critical examination of the way Einstein formulated his theory. It also examines in detail certain specific historical and conceptual issues that have long given rise to debate in both special and general relativity theory, such as the conventionality of simultaneity, the principle of general covariance, and the consistency or otherwise of the special theory with quantum mechanics. Harvey Brown's new interpretation of relativity theory will interest anyone working on
Rattleback dynamics and its reversal time of rotation
Kondo, Yoichiro; Nakanishi, Hiizu
2017-06-01
A rattleback is a rigid, semielliptic toy which exhibits unintuitive behavior; when it is spun in one direction, it soon begins pitching and stops spinning, then it starts to spin in the opposite direction, but in the other direction, it seems to spin just steadily. This puzzling behavior results from the slight misalignment between the principal axes for the inertia and those for the curvature; the misalignment couples the spinning with the pitching and the rolling oscillations. It has been shown that under the no-slip condition and without dissipation the spin can reverse in both directions, and Garcia and Hubbard obtained the formula for the time required for the spin reversal tr [Proc. R. Soc. Lond. A 418, 165 (1988), 10.1098/rspa.1988.0078]. In this work, we reformulate the rattleback dynamics in a physically transparent way and reduce it to a three-variable dynamics for spinning, pitching, and rolling. We obtain an expression of the Garcia-Hubbard formula for tr by a simple product of four factors: (1) the misalignment angle, (2) the difference in the inverses of inertia moment for the two oscillations, (3) that in the radii for the two principal curvatures, and (4) the squared frequency of the oscillation. We perform extensive numerical simulations to examine validity and limitation of the formula, and find that (1) the Garcia-Hubbard formula is good for both spinning directions in the small spin and small oscillation regime, but (2) in the fast spin regime especially for the steady direction, the rattleback may not reverse and shows a rich variety of dynamics including steady spinning, spin wobbling, and chaotic behavior reminiscent of chaos in a dissipative system.
LTS and FS inhibitory interneurons, short-term synaptic plasticity, and cortical circuit dynamics.
Directory of Open Access Journals (Sweden)
Itai Hayut
2011-10-01
Full Text Available Somatostatin-expressing, low threshold-spiking (LTS cells and fast-spiking (FS cells are two common subtypes of inhibitory neocortical interneuron. Excitatory synapses from regular-spiking (RS pyramidal neurons to LTS cells strongly facilitate when activated repetitively, whereas RS-to-FS synapses depress. This suggests that LTS neurons may be especially relevant at high rate regimes and protect cortical circuits against over-excitation and seizures. However, the inhibitory synapses from LTS cells usually depress, which may reduce their effectiveness at high rates. We ask: by which mechanisms and at what firing rates do LTS neurons control the activity of cortical circuits responding to thalamic input, and how is control by LTS neurons different from that of FS neurons? We study rate models of circuits that include RS cells and LTS and FS inhibitory cells with short-term synaptic plasticity. LTS neurons shift the RS firing-rate vs. current curve to the right at high rates and reduce its slope at low rates; the LTS effect is delayed and prolonged. FS neurons always shift the curve to the right and affect RS firing transiently. In an RS-LTS-FS network, FS neurons reach a quiescent state if they receive weak input, LTS neurons are quiescent if RS neurons receive weak input, and both FS and RS populations are active if they both receive large inputs. In general, FS neurons tend to follow the spiking of RS neurons much more closely than LTS neurons. A novel type of facilitation-induced slow oscillations is observed above the LTS firing threshold with a frequency determined by the time scale of recovery from facilitation. To conclude, contrary to earlier proposals, LTS neurons affect the transient and steady state responses of cortical circuits over a range of firing rates, not only during the high rate regime; LTS neurons protect against over-activation about as well as FS neurons.
Second RPA dynamics at finite temperature: time-evolutions of dynamical operators
International Nuclear Information System (INIS)
Jang, S.
1989-01-01
Time-evolutions of dynamical operators, in particular the generalized density matrix comprising both diagonal and off-diagonal elements, are investigated within the framework of second RPA dynamics at finite temperature. The calculation of the density matrix previously carried out through the appliance of the second RPA master equation by retaining only the slowly oscillating coupling terms is extended to include in the interaction Hamiltonian both the rapidly and slowly oscillating coupling terms. The extended second RPA master equation, thereby formulated without making use of the so-called resonant approximation, is analytically solved and a closed expression for the generalized density matrix is extracted. We provide illustrative examples of the generalized density matrix for various specific initial conditions. We turn particularly our attention to the Poisson distribution type of initial condition for which we deduce specifically a particular form of the density matrix from the solution of the Fokker-Planck equation for the coherent state representation. The relation of the Fokker-Planck equation to the second RPA master equation and its properties are briefly discussed. The oversight incurred in the time-evolution of operators by the resonant approximation is elucidated. The first and second moments of collective coordinates are also computed in relation to the expectation value of various dynamical operators involved in the extended master equation
Population dynamics of minimally cognitive individuals. Part 2: Dynamics of time-dependent knowledge
Energy Technology Data Exchange (ETDEWEB)
Schmieder, R.W.
1995-07-01
The dynamical principle for a population of interacting individuals with mutual pairwise knowledge, presented by the author in a previous paper for the case of constant knowledge, is extended to include the possibility that the knowledge is time-dependent. Several mechanisms are presented by which the mutual knowledge, represented by a matrix K, can be altered, leading to dynamical equations for K(t). The author presents various examples of the transient and long time asymptotic behavior of K(t) for populations of relatively isolated individuals interacting infrequently in local binary collisions. Among the effects observed in the numerical experiments are knowledge diffusion, learning transients, and fluctuating equilibria. This approach will be most appropriate to small populations of complex individuals such as simple animals, robots, computer networks, agent-mediated traffic, simple ecosystems, and games. Evidence of metastable states and intermittent switching leads them to envision a spectroscopy associated with such transitions that is independent of the specific physical individuals and the population. Such spectra may serve as good lumped descriptors of the collective emergent behavior of large classes of populations in which mutual knowledge is an important part of the dynamics.
Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading
Energy Technology Data Exchange (ETDEWEB)
Lambert, P. K.; Hustedt, C. J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C. [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Vecchio, K. S. [Department of NanoEngineering, University of California San Diego, La Jolla, California 92093 (United States); Huskins, E. L. [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830 (United States); US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Casem, D. T. [US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Gruner, S. M. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853 (United States); Tate, M. W.; Philipp, H. T.; Purohit, P.; Weiss, J. T. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Woll, A. R. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kannan, V.; Ramesh, K. T. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Kenesei, P.; Okasinski, J. S.; Almer, J. [X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)
2014-09-15
We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ∼10{sup 3}–10{sup 4} s{sup −1} in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10–20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (∼40 μs) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation.
Short communication. Harvest time in hedgerow Arbequina olive orchards in areas with early frosts
Energy Technology Data Exchange (ETDEWEB)
Gracia, P.; Sanchez-Gimeno, A. C.; Benito, M.; Oria, R.; Lasa, J. M.
2012-11-01
The shortening of harvest time attained in hedgerow olive (Olea europaea L.) orchards represents an advantage for the adoption of this cropping system in areas that are prone to suffer frost during the harvest period. To establish an optimal harvesting window, we carried out a study of the fruit ripening process on a hedgerow orchard of Arbequina olive trees, located in Zaragoza (Spain). From 2007 to 2009, oil accumulation on the fruit (% of dry weight) and oil yield (grams of oil per 100 fruits) were monitored, from early September to late November. Over the three years both variables peaked around November 15th, indicating that Arbequina reached full ripening earlier than has been reported previously for this variety. In two of the three seasons the orchard suffered several frosts during November. Long term climatic data from this area indicated that the risk of early frosts (< -2 degree centigrade) increases as November progresses with a high risk after November 20{sup t}h. In conclusion, the optimal harvesting period for Arbequina in this area should not extend beyond November 20{sup t}h. A rapid harvesting before this date is advisable to avoid the risk of damage caused by early frost in Zaragoza. Hedgerow planting provides an additional advantage in frost-prone areas, because mechanization of operations permits a short harvest period, easier to fit into the optimal harvesting window. (Author) 20 refs.
Short-term visual memory for location in depth: A U-shaped function of time.
Reeves, Adam; Lei, Quan
2017-10-01
Short-term visual memory was studied by displaying arrays of four or five numerals, each numeral in its own depth plane, followed after various delays by an arrow cue shown in one of the depth planes. Subjects reported the numeral at the depth cued by the arrow. Accuracy fell with increasing cue delay for the first 500 ms or so, and then recovered almost fully. This dipping pattern contrasts with the usual iconic decay observed for memory traces. The dip occurred with or without a verbal or color-shape retention load on working memory. In contrast, accuracy did not change with delay when a tonal cue replaced the arrow cue. We hypothesized that information concerning the depths of the numerals decays over time in sensory memory, but that cued recall is aided later on by transfer to a visual memory specialized for depth. This transfer is sufficiently rapid with a tonal cue to compensate for the sensory decay, but it is slowed by the need to tag the arrow cue's depth relative to the depths of the numerals, exposing a dip when sensation has decayed and transfer is not yet complete. A model with a fixed rate of sensory decay and varied transfer rates across individuals captures the dip as well as the cue modality effect.
Thermal sterilization of heat-sensitive products using high-temperature short-time sterilization.
Mann, A; Kiefer, M; Leuenberger, H
2001-03-01
High-temperature short-time (HTST) sterilization with a continuous-flow sterilizer, developed for this study, was evaluated. The evaluation was performed with respect to (a) the chemical degradation of two heat-sensitive drugs in HTST range (140-160 degrees C) and (b) the microbiological effect of HTST sterilization. Degradation kinetics of two heat-sensitive drugs showed that a high peak temperature sterilization process resulted in less chemical degradation for the same microbiological effect than a low peak temperature process. Both drugs investigated could be sterilized with acceptable degradation at HTST conditions. For the evaluation of the microbiological effect, Bacillus stearothermophilus ATCC 7953 spores were used as indicator bacteria. Indicator spore kinetics (D(T), z value, k, and E(a)), were determined in the HTST range. A comparison between the Bigelow model (z value concept) and the Arrhenius model, used to describe the temperature coefficient of the microbial inactivation, demonstrated that the Bigelow model is more accurate in prediction of D(T) values in the HTST range. The temperature coefficient decreased with increasing temperature. The influence of Ca(2+) ions and pH value on the heat resistance of the indicator spores, which is known under typical sterilization conditions, did not change under HTST conditions.
Murphy, Marie; Quesada, Guillermo Miro; Chen, Dayue
2011-11-01
Viral contamination of mammalian cell cultures in GMP manufacturing facility represents a serious safety threat to biopharmaceutical industry. Such adverse events usually require facility shutdown for cleaning/decontamination, and thus result in significant loss of production and/or delay of product development. High temperature short time (HTST) treatment of culture media has been considered as an effective method to protect GMP facilities from viral contaminations. Log reduction factor (LRF) has been commonly used to measure the effectiveness of HTST treatment for viral inactivation. However, in order to prevent viral contaminations, HTST treatment must inactivate all infectious viruses (100%) in the medium batch since a single virus is sufficient to cause contamination. Therefore, LRF may not be the most appropriate indicator for measuring the effectiveness of HTST in preventing viral contaminations. We report here the use of the probability to achieve complete (100%) virus inactivation to assess the effectiveness of HTST treatment. By using mouse minute virus (MMV) as a model virus, we have demonstrated that the effectiveness of HTST treatment highly depends upon the level of viral contaminants in addition to treatment temperature and duration. We believe that the statistical method described in this report can provide more accurate information about the power and potential limitation of technologies such as HTST in our shared quest to mitigate the risk of viral contamination in manufacturing facilities. Copyright © 2011 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel
Directory of Open Access Journals (Sweden)
Josip Brnic
2016-04-01
Full Text Available The correct choice of a material in the process of structural design is the most important task. This study deals with determining and analyzing the mechanical properties of the material, and the material resistance to short-time creep and fatigue. The material under consideration in this investigation is austenitic stainless steel X6CrNiTi18-10. The results presenting ultimate tensile strength and 0.2 offset yield strength at room and elevated temperatures are displayed in the form of engineering stress-strain diagrams. Besides, the creep behavior of the steel is presented in the form of creep curves. The material is consequently considered to be creep resistant at temperatures of 400 °C and 500 °C when subjected to a stress which is less than 0.9 of the yield strength at the mentioned temperatures. Even when the applied stress at a temperature of 600 °C is less than 0.5 of the yield strength, the steel may be considered as resistant to creep. Cyclic tensile fatigue tests were carried out at stress ratio R = 0.25 using a servo-pulser machine and the results were recorded. The analysis shows that the stress level of 434.33 MPa can be adopted as a fatigue limit. The impact energy was also determined and the fracture toughness assessed.
Cerebral blood flow measurement using stable xenon CT with very short inhalation times
Energy Technology Data Exchange (ETDEWEB)
Touho, Hajime; Karasawa, Jun; Shishido, Hisashi; Yamada, Keisuke; Shibamoto, Keiji [Osaka Neurological Inst., Toyonaka (Japan)
1991-02-01
A noninvasive, simplified method using inhalation of stable xenon (Xe{sup s}) and computed tomographic (CT) scanning to estimate regional cerebral blood flow (rCBF) and regional partition coefficient (r{lambda}) is described. Twenty-four patients with cerebrovascular occlusive disease and six volunteer controls inhaled 30% Xe{sup s} and 70% oxygen for 180 seconds and exhaled for 144 seconds during serial CT scanning without denitrogenation. The end-tidal Xe{sup s} concentration was continuously monitored with a thermoconductivity analyzer to determine the build-up range (A value) and build-up rate constant (K value) for arteries with the curve fitting method. The time-CT number (Hounsfield unit) curve for cerebral tissue during the Xe{sup s} washin and washout phases was used to calculate r{lambda} and rCBF using least squares curve fitting analysis. The resultant r{lambda} and rCBF map demonstrated a reliable distribution between the gray and white matter, and infarcted areas. rCBF was high in gray matter, low in white matter, and much lower in infarcted areas than in white matter. r{lambda} was high in white matter, low in gray matter, and much lower in infarcted areas. Xe{sup s} CT-CBF studies with very short inhalation of 180 seconds is a clinically useful method for evaluation of rCBF in patients with cerebrovascular diseases. (author).
Forecast of electric power market to short-term: a time series approcah
International Nuclear Information System (INIS)
Costa, Roberio Neves Pelinca da.
1994-01-01
Three different time series approaches are analysed by this dissertation in the Brazilian electricity markert context. The aim is to compare the predictive performance of these approaches from a simulated exercise using the main series of the Brazilian consumption of electricity: Total Consumption, Industrial Consumption, Residencial Consumption and Commercial Consumption. One concludes that these appraches offer an enormous potentiality to the short-term planning system of the Electric Sector. Among the univariate models, the results for the analysed period point out that the forecast produced by Holt-Winter's models are more accurate than those produced by ARIMA and structural models. When explanatory variables are introduced in the last models, one can notice, in general, an improvement in the predictive performance of the models, although there is no sufficient evidence to consider that they are superior to Holt-Winter's models. The models with explanatory variables can be particularly useful, however, when one intends either to build scenarios or to study the effects of some variables on the consumption of electricity. (author). 73 refs., 19 figs., 13 tabs
De Lin, Ming; Toncheva, Greta; Nguyen, Giao; Kim, Sangroh; Anderson-Evans, Colin; Johnson, G Allan; Yoshizumi, Terry T
2008-08-01
Digital subtraction angiography (DSA) X-ray imaging for small animals can be used for functional phenotyping given its ability to capture rapid physiological changes at high spatial and temporal resolution. The higher temporal and spatial requirements for small-animal imaging drive the need for short, high-flux X-ray pulses. However, high doses of ionizing radiation can affect the physiology. The purpose of this study was to verify and apply metal oxide semiconductor field effect transistor (MOSFET) technology to dosimetry for small-animal diagnostic imaging. A tungsten anode X-ray source was used to expose a tissue-equivalent mouse phantom. Dose measurements were made on the phantom surface and interior. The MOSFETs were verified with thermoluminescence dosimeters (TLDs). Bland-Altman analysis showed that the MOSFET results agreed with the TLD results (bias, 0.0625). Using typical small animal DSA scan parameters, the dose ranged from 0.7 to 2.2 cGy. Application of the MOSFETs in the small animal environment provided two main benefits: (1) the availability of results in near real-time instead of the hours needed for TLD processes and (2) the ability to support multiple exposures with different X-ray techniques (various of kVp, mA and ms) using the same MOSFET. This MOSFET technology has proven to be a fast, reliable small animal dosimetry method for DSA imaging and is a good system for dose monitoring for serial and gene expression studies.
Fecal short-chain fatty acids at different time points after ceftriaxone administration in rats
Directory of Open Access Journals (Sweden)
Yu. V. Holota
2017-02-01
Full Text Available Short-chain fatty acids (SCFAs are major products of the microbial fermentation of dietary fiber in the colon. Recent studies suggest that these products of microbial metabolism in the gut act as signaling molecules, influence host energy homeostasis and play major immunological roles. In the present study, defined the long-term effects of ceftriaxone administration on the fecal SCFAs concentration in Wistar rats. Ceftriaxone (300 mg/kg, i.m. was administered daily for 14 days. Rats were euthanized in 1, 15 and 56 days after ceftriaxone withdrawal. Caecal weight and fecal concentration of SCFAs by gas chromatography were measured. Ceftriaxone administration induced time-dependent rats’ caecal enlargement through accumulation of undigestable substances. In 1 day after ceftriaxone withdrawal, the concentrations of acetic, propionic, butyric acids and total SCFAs were decreased 2.9-, 13.8-, 8.5-, 4.8-fold (P < 0.05, respectively. Concentration of valeric, isovaleric and caproic acids was below the detectable level. That was accompanied by decreased 4.3-fold anaerobic index and increased the relative amount of acetic acid (P < 0.05. In 56 days, concentration of SCFAs was still below control value but higher than in 1 day (except propionic acid. Anaerobic index was lower 1.3-fold (P < 0.05 vs. control. Conclusion: antibiotic therapy induced long-term disturbance in colonic microbiota metabolic activity.
Improvement of the Original Isolation Procedure for Hormone Studies in Short-Time Culture
Directory of Open Access Journals (Sweden)
Mukadder Atmaca
2005-01-01
Full Text Available Earlier studies indicated that hormone responsiveness of cells and metabolic activity was lost during various of experimental procedure. In the light of this observation, I aimed to investigate to obtain optimal conditions for short time cultured hepatocytes and also to determine the type of test can be used to evaluate suitablity of hepatocytes for hormones studies. During the isolation period 50 IU/ml and 100 IU/ml collagenase were used. Adrenaline (10-6M was used to measure sensitivity of hepatocytes to hormones and glycogenolsis was measured at the end of 2hr incubation period. Adrenaline significantly increased gylcogenolysis (Control: 0.16±0.01 mg/2hr; Adrenaline: 0.30±0.01 mg/2hr only when the 50 IU/ml collagenase was used and the viability of the cells were over 95%. Viability tests were applied to hepatocytes that obtained by using 50 IU collagenase. Cellular glutathione, methylthiazoltetrazolium reduction, lactatedehdrogenase leakage, ATP level measured to determine viability following the attachment and incubation period. No differences were observed at the end of each period.Altogether, the present study indicated that membrane integrity and metabolic function of the hepatocytes can be improved by modifying slightly the original procedure of Reese and Byard.
Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel.
Brnic, Josip; Turkalj, Goran; Canadija, Marko; Lanc, Domagoj; Krscanski, Sanjin; Brcic, Marino; Li, Qiang; Niu, Jitai
2016-04-20
The correct choice of a material in the process of structural design is the most important task. This study deals with determining and analyzing the mechanical properties of the material, and the material resistance to short-time creep and fatigue. The material under consideration in this investigation is austenitic stainless steel X6CrNiTi18-10. The results presenting ultimate tensile strength and 0.2 offset yield strength at room and elevated temperatures are displayed in the form of engineering stress-strain diagrams. Besides, the creep behavior of the steel is presented in the form of creep curves. The material is consequently considered to be creep resistant at temperatures of 400 °C and 500 °C when subjected to a stress which is less than 0.9 of the yield strength at the mentioned temperatures. Even when the applied stress at a temperature of 600 °C is less than 0.5 of the yield strength, the steel may be considered as resistant to creep. Cyclic tensile fatigue tests were carried out at stress ratio R = 0.25 using a servo-pulser machine and the results were recorded. The analysis shows that the stress level of 434.33 MPa can be adopted as a fatigue limit. The impact energy was also determined and the fracture toughness assessed.
Formal methods for discrete-time dynamical systems
Belta, Calin; Aydin Gol, Ebru
2017-01-01
This book bridges fundamental gaps between control theory and formal methods. Although it focuses on discrete-time linear and piecewise affine systems, it also provides general frameworks for abstraction, analysis, and control of more general models. The book is self-contained, and while some mathematical knowledge is necessary, readers are not expected to have a background in formal methods or control theory. It rigorously defines concepts from formal methods, such as transition systems, temporal logics, model checking and synthesis. It then links these to the infinite state dynamical systems through abstractions that are intuitive and only require basic convex-analysis and control-theory terminology, which is provided in the appendix. Several examples and illustrations help readers understand and visualize the concepts introduced throughout the book.
Wong, Del P; Chaouachi, Anis; Lau, Patrick W C; Behm, David G
2011-01-01
This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key pointsThe duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001).No significant differences in RSA and COD between the 3 stretching conditions.The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects.The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments.
Wong, Del P.; Chaouachi, Anis; Lau, Patrick W.C.; Behm, David G.
2011-01-01
This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key points The duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). No significant differences in RSA and COD between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. PMID:24149890
Improved real-time dynamics from imaginary frequency lattice simulations
Directory of Open Access Journals (Sweden)
Pawlowski Jan M.
2018-01-01
Full Text Available The computation of real-time properties, such as transport coefficients or bound state spectra of strongly interacting quantum fields in thermal equilibrium is a pressing matter. Since the sign problem prevents a direct evaluation of these quantities, lattice data needs to be analytically continued from the Euclidean domain of the simulation to Minkowski time, in general an ill-posed inverse problem. Here we report on a novel approach to improve the determination of real-time information in the form of spectral functions by setting up a simulation prescription in imaginary frequencies. By carefully distinguishing between initial conditions and quantum dynamics one obtains access to correlation functions also outside the conventional Matsubara frequencies. In particular the range between ω0 and ω1 = 2πT, which is most relevant for the inverse problem may be more highly resolved. In combination with the fact that in imaginary frequencies the kernel of the inverse problem is not an exponential but only a rational function we observe significant improvements in the reconstruction of spectral functions, demonstrated in a simple 0+1 dimensional scalar field theory toy model.
Time- and Site-Resolved Dynamics in a Topological Circuit
Directory of Open Access Journals (Sweden)
Jia Ningyuan
2015-06-01
Full Text Available From studies of exotic quantum many-body phenomena to applications in spintronics and quantum information processing, topological materials are poised to revolutionize the condensed-matter frontier and the landscape of modern materials science. Accordingly, there is a broad effort to realize topologically nontrivial electronic and photonic materials for fundamental science as well as practical applications. In this work, we demonstrate the first simultaneous site- and time-resolved measurements of a time-reversal-invariant topological band structure, which we realize in a radio-frequency photonic circuit. We control band-structure topology via local permutation of a traveling-wave capacitor-inductor network, increasing robustness by going beyond the tight-binding limit. We observe a gapped density of states consistent with a modified Hofstadter spectrum at a flux per plaquette of ϕ=π/2. In situ probes of the band gaps reveal spatially localized bulk states and delocalized edge states. Time-resolved measurements reveal dynamical separation of localized edge excitations into spin-polarized currents. The radio-frequency circuit paradigm is naturally compatible with nonlocal coupling schemes, allowing us to implement a Möbius strip topology inaccessible in conventional systems. This room-temperature experiment illuminates the origins of topology in band structure, and when combined with circuit quantum electrodynamics techniques, it provides a direct path to topologically ordered quantum matter.
Improved real-time dynamics from imaginary frequency lattice simulations
Pawlowski, Jan M.; Rothkopf, Alexander
2018-03-01
The computation of real-time properties, such as transport coefficients or bound state spectra of strongly interacting quantum fields in thermal equilibrium is a pressing matter. Since the sign problem prevents a direct evaluation of these quantities, lattice data needs to be analytically continued from the Euclidean domain of the simulation to Minkowski time, in general an ill-posed inverse problem. Here we report on a novel approach to improve the determination of real-time information in the form of spectral functions by setting up a simulation prescription in imaginary frequencies. By carefully distinguishing between initial conditions and quantum dynamics one obtains access to correlation functions also outside the conventional Matsubara frequencies. In particular the range between ω0 and ω1 = 2πT, which is most relevant for the inverse problem may be more highly resolved. In combination with the fact that in imaginary frequencies the kernel of the inverse problem is not an exponential but only a rational function we observe significant improvements in the reconstruction of spectral functions, demonstrated in a simple 0+1 dimensional scalar field theory toy model.
Measurement of short transverse relaxation times by pseudo-echo nutation experiments
Ferrari, Maude; Moyne, Christian; Canet, Daniel
2018-07-01
Very short NMR transverse relaxation times may be difficult to measure by conventional methods. Nutation experiments constitute an alternative approach. Nutation is, in the rotating frame, the equivalent of precession in the laboratory frame. It consists in monitoring the rotation of magnetization around the radio-frequency (rf) field when on-resonance conditions are fulfilled. Depending on the amplitude of the rf field, nutation may be sensitive to the two relaxation rates R1 and R2. A full theoretical development has been worked out for demonstrating how these two relaxation rates could be deduced from a simple nutation experiment, noticing however that inhomogeneity of the rf field may lead to erroneous results. This has led us to devise new experiments which are the equivalent of echo techniques in the rotating frame (pseudo spin-echo nutation experiment and pseudo gradient-echo experiment). Full equations of motion have been derived. Although complicated, they indicate that the sum of the two relaxation rates can be obtained very accurately and not altered by rf field inhomogeneity. This implies however an appropriate data processing accounting for the oscillations which are superposed to the echo decays and, anyway, theoretically predicted. A series of experiments has been carried out for different values of the rf field amplitude on samples of water doped with a paramagnetic compound at different concentrations. Pragmatically, as R1 can be easily measured by conventional methods, its value is entered in the data processing algorithm which then returns exclusively the value of the transverse relaxation time. Very consistent results are obtained that way.
Short dynamic FDG-PET imaging protocol for patients with lung cancer
International Nuclear Information System (INIS)
Torizuka, Tatsuo; Nobezawa, Shuji; Kanno, Toshihiko; Ouchi, Yasuomi; Momiki, Shigeru; Kasamatsu, Norio; Yoshikawa, Etsuji; Futatsubashi, Masami; Okada, Hiroyuki
2000-01-01
This positron emission tomography (PET) study was designed to compare 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FDG) kinetic parameters of tumours derived from imaging frames of 0-60 min post FDG injection with those derived from shorter imaging frames of 0-30 min. Dynamic FDG-PET scans were performed on 20 patients with primary lung cancers for 1 h after intravenous injection of FDG. Images were reconstructed with attenuation correction using transmission images obtained with a germanium-68 ring source immediately before FDG injection. A region of interest (ROI) was placed on the plane of the maximal tumour FDG uptake. Arterial input function was estimated from an ROI defined in the left atrium. Based on the standard three-compartment metabolic model, we calculated the rate constants (K 1 -k 3 ) and influx constant K i = K 1 k 3 /(k 2 +k 3 ) using the imaging frames for 60 min and 30 min post FDG injection. The standardized uptake value (SUV) of tumour was measured using the imaging frame of 50-60 min post injection. High correlations were observed between kinetic parameters (K 1 , k 2 , k 3 and K i ) derived from imaging frames of 0-60 min and 0-30 min [0.231±0.114 vs 0.260±0.174 (r=0.958), 1.149±1.038 vs 1.565±2.027 (r=0.968), 0.259±0.154 vs 0.311±0.194 (r=0.886) and 0.044±0.022 vs 0.048±0.023 (r=0.961), respectively, P i showed an excellent agreement between the two methods (y=-0.0041+0.09831x). Mean SUV of the lung cancers was 6.58±2.85. It is concluded that the briefer 30-min acquisition may yield essentially the same results as the standard 60-min imaging protocol, thus offering a time saving in dynamic PET studies in which the model parameters are desired. (orig.)
Classification of time series patterns from complex dynamic systems
Energy Technology Data Exchange (ETDEWEB)
Schryver, J.C.; Rao, N.
1998-07-01
An increasing availability of high-performance computing and data storage media at decreasing cost is making possible the proliferation of large-scale numerical databases and data warehouses. Numeric warehousing enterprises on the order of hundreds of gigabytes to terabytes are a reality in many fields such as finance, retail sales, process systems monitoring, biomedical monitoring, surveillance and transportation. Large-scale databases are becoming more accessible to larger user communities through the internet, web-based applications and database connectivity. Consequently, most researchers now have access to a variety of massive datasets. This trend will probably only continue to grow over the next several years. Unfortunately, the availability of integrated tools to explore, analyze and understand the data warehoused in these archives is lagging far behind the ability to gain access to the same data. In particular, locating and identifying patterns of interest in numerical time series data is an increasingly important problem for which there are few available techniques. Temporal pattern recognition poses many interesting problems in classification, segmentation, prediction, diagnosis and anomaly detection. This research focuses on the problem of classification or characterization of numerical time series data. Highway vehicles and their drivers are examples of complex dynamic systems (CDS) which are being used by transportation agencies for field testing to generate large-scale time series datasets. Tools for effective analysis of numerical time series in databases generated by highway vehicle systems are not yet available, or have not been adapted to the target problem domain. However, analysis tools from similar domains may be adapted to the problem of classification of numerical time series data.
Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance
Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao
2018-01-01
Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy. PMID:29795600
Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance.
Liu, Yongli; Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao
2018-01-01
Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy.
Directory of Open Access Journals (Sweden)
Umid Karli
2007-12-01
Full Text Available The aim of this study was to investigate the effects of Ramadan fasting on anaerobic power and capacity and the removal rate of lactate after short time high intensity exercise in power athletes. Ten male elite power athletes (2 wrestlers, 7 sprinters and 1 thrower, aged 20-24 yr, mean age 22.30 ± 1.25 yr participated in this study. The subjects were tested three times [3 days before the beginning of Ramadan (Pre-RF, the last 3 days of Ramadan (End-RF and the last 3 days of the 4th week after the end of Ramadan (After-RF]. Anaerobic power and capacity were measured by using the Wingate Anaerobic Test (WAnT at Pre-RF, End-RF and After- RF. Capillary blood samples for lactate analyses and heart rate recordings were taken at rest, immediately after WAnT and throughout the recovery period. Repeated measures of ANOVA indicated that there were no significant changes in body weight, body mass index, fat free mass, percentage of body fat, daily sleeping time and daily caloric intake associated with Ramadan fasting. No significant changes were found in total body water either, but urinary density measured at End-RF was significantly higher than After-RF. Similarity among peak HR and peak LA values at Pre-RF, End- RF and After-RF demonstrated that cardiovascular and metabolic stress caused by WAnT was not affected by Ramadan fasting. In addition, no influence of Ramadan fasting on anaerobic power and capacity and removal rate of LA from blood following high intensity exercise was observed. The results of this study revealed that if strength-power training is performed regularly and daily food intake, body fluid balance and daily sleeping time are maintained as before Ramadan, Ramadan fasting will not have adverse effects on body composition, anaerobic power and capacity, and LA metabolism during and after high intensity exercise in power athletes
Time-Based Loss in Visual Short-Term Memory Is from Trace Decay, Not Temporal Distinctiveness
Ricker, Timothy J.; Spiegel, Lauren R.; Cowan, Nelson
2014-01-01
There is no consensus as to why forgetting occurs in short-term memory tasks. In past work, we have shown that forgetting occurs with the passage of time, but there are 2 classes of theories that can explain this effect. In the present work, we investigate the reason for time-based forgetting by contrasting the predictions of temporal…
Gajewicz, W.; Goraj, B.M.
2004-01-01
Currently to perform proton magnetic resonance spectroscopy (1H MRS) with single voxel spectroscopy (SVS) technique long and/or short echo time sequences are used in order to provide complementary information. PURPOSE: The aim of the study was to compare the usefulness of STEAM (time echo, TE, 20
MyDTW - Dynamic Time Warping program for stratigraphical time series
Kotov, Sergey; Paelike, Heiko
2017-04-01
One of the general tasks in many geological disciplines is matching of one time or space signal to another. It can be classical correlation between two cores or cross-sections in sedimentology or marine geology. For example, tuning a paleoclimatic signal to a target curve, driven by variations in the astronomical parameters, is a powerful technique to construct accurate time scales. However, these methods can be rather time-consuming and can take ours of routine work even with the help of special semi-automatic software. Therefore, different approaches to automate the processes have been developed during last decades. Some of them are based on classical statistical cross-correlations such as the 'Correlator' after Olea [1]. Another ones use modern ideas of dynamic programming. A good example is as an algorithm developed by Lisiecki and Lisiecki [2] or dynamic time warping based algorithm after Pälike [3]. We introduce here an algorithm and computer program, which are also stemmed from the Dynamic Time Warping algorithm class. Unlike the algorithm of Lisiecki and Lisiecki, MyDTW does not lean on a set of penalties to follow geological logics, but on a special internal structure and specific constrains. It differs also from [3] in basic ideas of implementation and constrains design. The algorithm is implemented as a computer program with a graphical user interface using Free Pascal and Lazarus IDE and available for Windows, Mac OS, and Linux. Examples with synthetic and real data are demonstrated. Program is available for free download at http://www.marum.de/Sergey_Kotov.html . References: 1. Olea, R.A. Expert systems for automated correlation and interpretation of wireline logs // Math Geol (1994) 26: 879. doi:10.1007/BF02083420 2. Lisiecki L. and Lisiecki P. Application of dynamic programming to the correlation of paleoclimate records // Paleoceanography (2002), Volume 17, Issue 4, pp. 1-1, CiteID 1049, doi: 10.1029/2001PA000733 3. Pälike, H. Extending the
The Time Diagram Control Approach for the Dynamic Representation of Time-Oriented Data
Directory of Open Access Journals (Sweden)
Rolf Dornberger
2016-04-01
Full Text Available The dynamic representation of time-oriented data on small screen devices is of increasing importance. Most solution approaches use issue-specific requirements based on established desktop technologies. Applied to mobile devices with small multi-touch displays such approaches often lead to a limited usability. Particularly, the time-dependent data can only be fragmentarily visualized due to limited screen sizes. Instead of reducing the complexity by visualizing the data, the interpretation of the data is getting more complex. This paper proposes a Time Diagram Control (TDC approach, a new way of representing time-based diagrams on small screen devices. The TDC uses a principle of cybernetics to integrate the user in the visualization process and thus reduce complexity. TDC focuses on simplicity of design by only providing 2D temporal line diagrams with a dynamic zooming function that works via standard multi-touch controls. Involving the user into a continuous loop of refining the visualization, TDC allows to compare data of different temporal granularities without losing the overall context of the presented data. The TDC approach ensures constant information reliability on small screen devices.
Item Anomaly Detection Based on Dynamic Partition for Time Series in Recommender Systems.
Gao, Min; Tian, Renli; Wen, Junhao; Xiong, Qingyu; Ling, Bin; Yang, Linda
2015-01-01
In recent years, recommender systems have become an effective method to process information overload. However, recommendation technology still suffers from many problems. One of the problems is shilling attacks-attackers inject spam user profiles to disturb the list of recommendation items. There are two characteristics of all types of shilling attacks: 1) Item abnormality: The rating of target items is always maximum or minimum; and 2) Attack promptness: It takes only a very short period time to inject attack profiles. Some papers have proposed item anomaly detection methods based on these two characteristics, but their detection rate, false alarm rate, and universality need to be further improved. To solve these problems, this paper proposes an item anomaly detection method based on dynamic partitioning for time series. This method first dynamically partitions item-rating time series based on important points. Then, we use chi square distribution (χ2) to detect abnormal intervals. The experimental results on MovieLens 100K and 1M indicate that this approach has a high detection rate and a low false alarm rate and is stable toward different attack models and filler sizes.
Item Anomaly Detection Based on Dynamic Partition for Time Series in Recommender Systems
Gao, Min; Tian, Renli; Wen, Junhao; Xiong, Qingyu; Ling, Bin; Yang, Linda
2015-01-01
In recent years, recommender systems have become an effective method to process information overload. However, recommendation technology still suffers from many problems. One of the problems is shilling attacks-attackers inject spam user profiles to disturb the list of recommendation items. There are two characteristics of all types of shilling attacks: 1) Item abnormality: The rating of target items is always maximum or minimum; and 2) Attack promptness: It takes only a very short period time to inject attack profiles. Some papers have proposed item anomaly detection methods based on these two characteristics, but their detection rate, false alarm rate, and universality need to be further improved. To solve these problems, this paper proposes an item anomaly detection method based on dynamic partitioning for time series. This method first dynamically partitions item-rating time series based on important points. Then, we use chi square distribution (χ2) to detect abnormal intervals. The experimental results on MovieLens 100K and 1M indicate that this approach has a high detection rate and a low false alarm rate and is stable toward different attack models and filler sizes. PMID:26267477
Scaling symmetry, renormalization, and time series modeling: the case of financial assets dynamics.
Zamparo, Marco; Baldovin, Fulvio; Caraglio, Michele; Stella, Attilio L
2013-12-01
We present and discuss a stochastic model of financial assets dynamics based on the idea of an inverse renormalization group strategy. With this strategy we construct the multivariate distributions of elementary returns based on the scaling with time of the probability density of their aggregates. In its simplest version the model is the product of an endogenous autoregressive component and a random rescaling factor designed to embody also exogenous influences. Mathematical properties like increments' stationarity and ergodicity can be proven. Thanks to the relatively low number of parameters, model calibration can be conveniently based on a method of moments, as exemplified in the case of historical data of the S&P500 index. The calibrated model accounts very well for many stylized facts, like volatility clustering, power-law decay of the volatility autocorrelation function, and multiscaling with time of the aggregated return distribution. In agreement with empirical evidence in finance, the dynamics is not invariant under time reversal, and, with suitable generalizations, skewness of the return distribution and leverage effects can be included. The analytical tractability of the model opens interesting perspectives for applications, for instance, in terms of obtaining closed formulas for derivative pricing. Further important features are the possibility of making contact, in certain limits, with autoregressive models widely used in finance and the possibility of partially resolving the long- and short-memory components of the volatility, with consistent results when applied to historical series.
Scaling symmetry, renormalization, and time series modeling: The case of financial assets dynamics
Zamparo, Marco; Baldovin, Fulvio; Caraglio, Michele; Stella, Attilio L.
2013-12-01
We present and discuss a stochastic model of financial assets dynamics based on the idea of an inverse renormalization group strategy. With this strategy we construct the multivariate distributions of elementary returns based on the scaling with time of the probability density of their aggregates. In its simplest version the model is the product of an endogenous autoregressive component and a random rescaling factor designed to embody also exogenous influences. Mathematical properties like increments’ stationarity and ergodicity can be proven. Thanks to the relatively low number of parameters, model calibration can be conveniently based on a method of moments, as exemplified in the case of historical data of the S&P500 index. The calibrated model accounts very well for many stylized facts, like volatility clustering, power-law decay of the volatility autocorrelation function, and multiscaling with time of the aggregated return distribution. In agreement with empirical evidence in finance, the dynamics is not invariant under time reversal, and, with suitable generalizations, skewness of the return distribution and leverage effects can be included. The analytical tractability of the model opens interesting perspectives for applications, for instance, in terms of obtaining closed formulas for derivative pricing. Further important features are the possibility of making contact, in certain limits, with autoregressive models widely used in finance and the possibility of partially resolving the long- and short-memory components of the volatility, with consistent results when applied to historical series.
Predicting physical time series using dynamic ridge polynomial neural networks.
Directory of Open Access Journals (Sweden)
Dhiya Al-Jumeily
Full Text Available Forecasting naturally occurring phenomena is a common problem in many domains of science, and this has been addressed and investigated by many scientists. The importance of time series prediction stems from the fact that it has wide range of applications, including control systems, engineering processes, environmental systems and economics. From the knowledge of some aspects of the previous behaviour of the system, the aim of the prediction process is to determine or predict its future behaviour. In this paper, we consider a novel application of a higher order polynomial neural network architecture called Dynamic Ridge Polynomial Neural Network that combines the properties of higher order and recurrent neural networks for the prediction of physical time series. In this study, four types of signals have been used, which are; The Lorenz attractor, mean value of the AE index, sunspot number, and heat wave temperature. The simulation results showed good improvements in terms of the signal to noise ratio in comparison to a number of higher order and feedforward neural networks in comparison to the benchmarked techniques.
Adaptation and learning: characteristic time scales of performance dynamics.
Newell, Karl M; Mayer-Kress, Gottfried; Hong, S Lee; Liu, Yeou-Teh
2009-12-01
A multiple time scales landscape model is presented that reveals structures of performance dynamics that were not resolved in the traditional power law analysis of motor learning. It shows the co-existence of separate processes during and between practice sessions that evolve in two independent dimensions characterized by time scales that differ by about an order of magnitude. Performance along the slow persistent dimension of learning improves often as much and sometimes more during rest (memory consolidation and/or insight generation processes) than during a practice session itself. In contrast, the process characterized by the fast, transient dimension of adaptation reverses direction between practice sessions, thereby significantly degrading performance at the beginning of the next practice session (warm-up decrement). The theoretical model fits qualitatively and quantitatively the data from Snoddy's [Snoddy, G. S. (1926). Learning and stability. Journal of Applied Psychology, 10, 1-36] classic learning study of mirror tracing and other averaged and individual data sets, and provides a new account of the processes of change in adaptation and learning. 2009 Elsevier B.V. All rights reserved.
Alperin, Noam; Barr, Yael; Lee, Sang H.; Mason,Sara; Bagci, Ahmet M.
2015-01-01
Preliminary results are based on analyses of data from 17 crewmembers. The initial analysis compares pre to post-flight changes in total cerebral blood flow (CBF) and craniospinal CSF flow volume. Total CBF is obtained by summation of the mean flow rates through the 4 blood vessels supplying the brain (right and left internal carotid and vertebral arteries). Volumetric flow rates were obtained using an automated lumen segmentation technique shown to have 3-4-fold improved reproducibility and accuracy over manual lumen segmentation (6). Two cohorts, 5 short-duration and 8 long-duration crewmembers, who were scanned within 3 to 8 days post landing were included (4 short-duration crewmembers with MRI scans occurring beyond 10 days post flight were excluded). The VIIP Clinical Practice Guideline (CPG) classification is being used initially as a measure for VIIP syndrome severity. Median CPG scores of the short and long-duration cohorts were similar, 2. Mean preflight total CBF for the short and long-duration cohorts were similar, 863+/-144 and 747+/-119 mL/min, respectively. Percentage CBF changes for all short duration crewmembers were 11% or lower, within the range of normal physiological fluctuations in healthy individuals. In contrast, in 4 of the 8 long-duration crewmembers, the change in CBF exceeded the range of normal physiological fluctuation. In 3 of the 4 subjects an increase in CBF was measured. Large pre to post-flight changes in the craniospinal CSF flow volume were found in 6 of the 8 long-duration crewmembers. Box-Whisker plots of the CPG and the percent CBF and CSF flow changes for the two cohorts are shown in Figure 4. Examples of CSF flow waveforms for a short and two long-duration (CPG 0 and 3) are shown in Figure 5. Changes in CBF and CSF flow dynamics larger than normal physiological fluctuations were observed in the long-duration crewmembers. Changes in CSF flow were more pronounced than changes in CBF. Decreased CSF flow dynamics were observed
Strength of tensed and compressed concrete segments in crack spacing under short-term dynamic load
Directory of Open Access Journals (Sweden)
Galyautdinov Zaur
2018-01-01
Full Text Available Formation of model describing dynamic straining of reinforced concrete requires taking into account the basic aspects influencing the stress-strain state of structures. Strength of concrete segments in crack spacing is one of the crucial aspects that affect general strain behavior of reinforced concrete. Experimental results demonstrate significant change in strength of tensed and compressed concrete segments in crack spacing both under static and under dynamic loading. In this case, strength depends on tensile strain level and the slope angle of rebars towards the cracks direction. Existing theoretical and experimental studies estimate strength of concrete segments in crack spacing under static loading. The present work presents results of experimental and theoretical studies of dynamic strength of plates between cracks subjected to compression-tension. Experimental data was analyzed statistically; the dependences were suggested to describe dynamic strength of concrete segments depending on tensile strain level and slope angle of rebars to cracks direction.
Short term outcome of posterior dynamic stabilization system in degenerative lumbar diseases
Directory of Open Access Journals (Sweden)
Mingyuan Yang
2014-01-01
Conclusion: Dynamic stabilization system treating lumbar degenerative disease showed clinical benefits with motion preservation of the operated segments, but does not have the significant advantage on motion preservation at adjacent segments, to avoid the degeneration of adjacent intervertebral disk.
Short-term observation of beach dynamics using cross-shore profiles and foreshore sediment
Digital Repository Service at National Institute of Oceanography (India)
Dora, G.U.; SanilKumar, V.; Johnson, G.; Philip, C.S.; Vinayaraj, P.
Cross-shore beach profiles and textural characteristics of foreshore sediment were analyzed for understanding an annual cycle of intertidal beach dynamics at Devbag, an Island sheltered estuarine coast. Cross-shore transects were monitored in a...
Short-Time Structural Stability of Compressible Vortex Sheets with Surface Tension
Stevens, Ben
2016-11-01
Assume we start with an initial vortex-sheet configuration which consists of two inviscid fluids with density bounded below flowing smoothly past each other, where a strictly positive fixed coefficient of surface tension produces a surface tension force across the common interface, balanced by the pressure jump. We model the fluids by the compressible Euler equations in three space dimensions with a very general equation of state relating the pressure, entropy and density such that the sound speed is positive. We prove that, for a short time, there exists a unique solution of the equations with the same structure. The mathematical approach consists of introducing a carefully chosen artificial viscosity-type regularisation which allows one to linearise the system so as to obtain a collection of transport equations for the entropy, pressure and curl together with a parabolic-type equation for the velocity which becomes fairly standard after rotating the velocity according to the interface normal. We prove a high order energy estimate for the non-linear equations that is independent of the artificial viscosity parameter which allows us to send it to zero. This approach loosely follows that introduced by Shkoller et al. in the setting of a compressible liquid-vacuum interface. Although already considered by Coutand et al. [10] and Lindblad [17], we also make some brief comments on the case of a compressible liquid-vacuum interface, which is obtained from the vortex sheets problem by replacing one of the fluids by vacuum, where it is possible to obtain a structural stability result even without surface tension.
Classification of brain tumours using short echo time 1H MR spectra
Devos, A.; Lukas, L.; Suykens, J. A. K.; Vanhamme, L.; Tate, A. R.; Howe, F. A.; Majós, C.; Moreno-Torres, A.; van der Graaf, M.; Arús, C.; Van Huffel, S.
2004-09-01
The purpose was to objectively compare the application of several techniques and the use of several input features for brain tumour classification using Magnetic Resonance Spectroscopy (MRS). Short echo time 1H MRS signals from patients with glioblastomas ( n = 87), meningiomas ( n = 57), metastases ( n = 39), and astrocytomas grade II ( n = 22) were provided by six centres in the European Union funded INTERPRET project. Linear discriminant analysis, least squares support vector machines (LS-SVM) with a linear kernel and LS-SVM with radial basis function kernel were applied and evaluated over 100 stratified random splittings of the dataset into training and test sets. The area under the receiver operating characteristic curve (AUC) was used to measure the performance of binary classifiers, while the percentage of correct classifications was used to evaluate the multiclass classifiers. The influence of several factors on the classification performance has been tested: L2- vs. water normalization, magnitude vs. real spectra and baseline correction. The effect of input feature reduction was also investigated by using only the selected frequency regions containing the most discriminatory information, and peak integrated values. Using L2-normalized complete spectra the automated binary classifiers reached a mean test AUC of more than 0.95, except for glioblastomas vs. metastases. Similar results were obtained for all classification techniques and input features except for water normalized spectra, where classification performance was lower. This indicates that data acquisition and processing can be simplified for classification purposes, excluding the need for separate water signal acquisition, baseline correction or phasing.
LEVEL OF ESTRADIOL 17-β SERUM AND OVARIAN FOLLICULARE DYNAMICS IN SHORT ESTROUS CYCLE OF BALI CATTLE
Directory of Open Access Journals (Sweden)
C.M Airin
2014-09-01
Full Text Available The aims of the research were to confirm the short estrous cycles and determine the blood level ofestradiol 17-β and ovarian follicukar dynamics in these cases. The research was conducted using sevenBali cattle, approximately 2 years of age, kept in healthy condition with normal estrous cycles.Observation of estrus symptoms was performed daily. Ovarian follicles was examined and measuredusing ultrasonography started at the estrus day. Blood samples were collected from jugular vein, bloodsample collection and ultrasonographical examination of the ovaries were performed daily in the sametime. Serum level of estradiol 17-β was performed using EIA. The short cycle estrus were observed in 4Bali cattle (n=7 among natural estrous cycle. They have only one wave ovarian follicular developmentwhereas the maximal size of ovarian follicles ovulation likes the normal cycle The duration of shortestrous cycle was 7-10 days with normal usual estrus behavior. The peak of blood serum level was107.77 ± 55.94 pg/ml when the diameter dominant follicle of short estrous cycle was reached 10.5 ±0.38 mm. It can be concluded that the short estrous cycles may occur in Bali cattle after puberty amongnormal cycles.
Time Series Modeling of Human Operator Dynamics in Manual Control Tasks
Biezad, D. J.; Schmidt, D. K.
1984-01-01
A time-series technique is presented for identifying the dynamic characteristics of the human operator in manual control tasks from relatively short records of experimental data. Control of system excitation signals used in the identification is not required. The approach is a multi-channel identification technique for modeling multi-input/multi-output situations. The method presented includes statistical tests for validity, is designed for digital computation, and yields estimates for the frequency response of the human operator. A comprehensive relative power analysis may also be performed for validated models. This method is applied to several sets of experimental data; the results are discussed and shown to compare favorably with previous research findings. New results are also presented for a multi-input task that was previously modeled to demonstrate the strengths of the method.
International Nuclear Information System (INIS)
Desrosiers, M.F.; Trifunac, A.D.
1986-01-01
The time-resolved EPR spectra and thus the structure and dynamics of transient hydrocarbon radical cations are obtained by the pulse radiolysis-fluorescence detected magnetic resonance (FDMR) technique. Here the authors report the observation of short-lived radical cations from olefins. FDMR-EPR spectra of radical cations from tetramethylethylene and cyclohexadiene are illustrated. The olefin radical cations, FDMR spectra are concentration-dependent, since dimerization with neutral molecules takes place at higher (>10 -2 M) olefin concentration. Rate constants for the dimerization reaction are derived and the effect of solvent viscosity on aggregate formation is demonstrated. By monitoring the further reactions of dimer cations the authors have obtained EPR evidence for previously unobserved higher-order (multimer) radical cation aggregates of olefins. 16 references, 5 figures
Energy Technology Data Exchange (ETDEWEB)
Popovic, D P; Stefanovic, M D [Nikola Tesla Inst., Belgrade (YU). Power System Dept.
1990-01-01
A simple, fast and reliable decoupled procedure for solving the network problems during short-term dynamic processes in power systems is presented. It is based on the Newton-Raphson method applied to the power balance equations, which include the effects of generator saliency and non-impedance loads, with further modifications resulting from the physical properties of the phenomena under study. The good convergence characteristics of the developed procedure are demonstrated, and a comparison is made with the traditional method based on the current equation and the triangularized admittance matrix, using the example of stability analysis of the Yugoslav power grid. (author).
Massively Parallel and Scalable Implicit Time Integration Algorithms for Structural Dynamics
Farhat, Charbel
1997-01-01
Explicit codes are often used to simulate the nonlinear dynamics of large-scale structural systems, even for low frequency response, because the storage and CPU requirements entailed by the repeated factorizations traditionally found in implicit codes rapidly overwhelm the available computing resources. With the advent of parallel processing, this trend is accelerating because of the following additional facts: (a) explicit schemes are easier to parallelize than implicit ones, and (b) explicit schemes induce short range interprocessor communications that are relatively inexpensive, while the factorization methods used in most implicit schemes induce long range interprocessor communications that often ruin the sought-after speed-up. However, the time step restriction imposed by the Courant stability condition on all explicit schemes cannot yet be offset by the speed of the currently available parallel hardware. Therefore, it is essential to develop efficient alternatives to direct methods that are also amenable to massively parallel processing because implicit codes using unconditionally stable time-integration algorithms are computationally more efficient when simulating the low-frequency dynamics of aerospace structures.
Energy Technology Data Exchange (ETDEWEB)
Ergler, T.
2006-07-19
In course of this work pump-probe experiments aimed to study ultrafast nuclear motion in H{sub 2} (D{sub 2}) fragmentation by intense 6-25 fs laser pulses have been carried out. In order to perform time-resolved measurements, a Mach-Zehnder interferometer providing two identical synchronized laser pulses with the time-delay variable from 0 to 3000 fs with 300 as accuracy and long-term stability has been built. The laser pulses at the intensities of up to 10{sup 15} W/cm{sup 2} were focused onto a H{sub 2} (D{sub 2}) molecular beam leading to the ionization or dissociation of the molecules, and the momenta of all charged reactions fragments were measured with a reaction microscope. With 6-7 fs pulses it was possible to probe the time evolution of the bound H{sup +}{sub 2} (D{sup +}{sub 2}) nuclear wave packet created by the first (pump) laser pulse, fragmenting the molecule with the second (probe) pulse. A fast delocalization, or ''collapse'', and subsequent ''revival'' of the vibrational wave packet have been observed. In addition, the signatures of the ground state vibrational excitation in neutral D{sub 2} molecule have been found, and the dominance of a new, purely quantum mechanical wave packet preparation mechanism (the so-called ''Lochfrass'') has been proved. In the experiments with 25 fs pulses the theoretically predicted enhancement of the ionization probability for the dissociating H{sup +}{sub 2} molecular ion at large internuclear distances has been detected for the first time. (orig.)
Interglacial climate dynamics and advanced time series analysis
Mudelsee, Manfred; Bermejo, Miguel; Köhler, Peter; Lohmann, Gerrit
2013-04-01
Studying the climate dynamics of past interglacials (IGs) helps to better assess the anthropogenically influenced dynamics of the current IG, the Holocene. We select the IG portions from the EPICA Dome C ice core archive, which covers the past 800 ka, to apply methods of statistical time series analysis (Mudelsee 2010). The analysed variables are deuterium/H (indicating temperature) (Jouzel et al. 2007), greenhouse gases (Siegenthaler et al. 2005, Loulergue et al. 2008, L¨ü thi et al. 2008) and a model-co-derived climate radiative forcing (Köhler et al. 2010). We select additionally high-resolution sea-surface-temperature records from the marine sedimentary archive. The first statistical method, persistence time estimation (Mudelsee 2002) lets us infer the 'climate memory' property of IGs. Second, linear regression informs about long-term climate trends during IGs. Third, ramp function regression (Mudelsee 2000) is adapted to look on abrupt climate changes during IGs. We compare the Holocene with previous IGs in terms of these mathematical approaches, interprete results in a climate context, assess uncertainties and the requirements to data from old IGs for yielding results of 'acceptable' accuracy. This work receives financial support from the Deutsche Forschungsgemeinschaft (Project ClimSens within the DFG Research Priority Program INTERDYNAMIK) and the European Commission (Marie Curie Initial Training Network LINC, No. 289447, within the 7th Framework Programme). References Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793. Köhler P, Bintanja R
Bialic-Murphy, Lalasia; Gaoue, Orou G
2018-01-01
Climate projections forecast more extreme interannual climate variability over time, with an increase in the severity and duration of extreme drought and rainfall events. Based on bioclimatic envelope models, it is projected that changing precipitation patterns will drastically alter the spatial distributions and density of plants and be a primary driver of biodiversity loss. However, many other underlying mechanisms can impact plant vital rates (i.e., survival, growth, and reproduction) and population dynamics. In this study, we developed a size-dependent integral projection model (IPM) to evaluate how interannual precipitation and mollusk herbivory influence the dynamics of a Hawaii endemic short-lived shrub, Schiedea obovata (Caryophyllaceae). Assessing how wet season precipitation effects population dynamics it critical, as it is the timeframe when most of the foliar growth occurs, plants flower and fruit, and seedlings establish. Temporal variation in wet season precipitation had a greater effect than mollusk herbivory on S . obovata population growth rate λ, and the impact of interannual precipitation on vital rates shifted across plant ontogeny. Furthermore, wet season precipitation influenced multiple vital rates in contrasting ways and the effect of precipitation on the survival of larger vegetative and reproductively mature individuals contributed the most to variation in the population growth rate. Among all combination of wet season precipitation and herbivory intensities, the only scenario that led to a growing population was when high wet precipitation was associated with low herbivory. Our study highlights the importance of evaluating how abiotic factors and plant-consumer interactions influence an organism across its life cycle to fully understand the underpinning mechanisms that structure its spatial and temporal distribution and abundance. Our results also illustrate that for short-lived species, like S. obovata , seedling herbivory can have
Estimation of dynamic flux profiles from metabolic time series data
Directory of Open Access Journals (Sweden)
Chou I-Chun
2012-07-01
Full Text Available Abstract Background Advances in modern high-throughput techniques of molecular biology have enabled top-down approaches for the estimation of parameter values in metabolic systems, based on time series data. Special among them is the recent method of dynamic flux estimation (DFE, which uses such data not only for parameter estimation but also for the identification of functional forms of the processes governing a metabolic system. DFE furthermore provides diagnostic tools for the evaluation of model validity and of the quality of a model fit beyond residual errors. Unfortunately, DFE works only when the data are more or less complete and the system contains as many independent fluxes as metabolites. These drawbacks may be ameliorated with other types of estimation and information. However, such supplementations incur their own limitations. In particular, assumptions must be made regarding the functional forms of some processes and detailed kinetic information must be available, in addition to the time series data. Results The authors propose here a systematic approach that supplements DFE and overcomes some of its shortcomings. Like DFE, the approach is model-free and requires only minimal assumptions. If sufficient time series data are available, the approach allows the determination of a subset of fluxes that enables the subsequent applicability of DFE to the rest of the flux system. The authors demonstrate the procedure with three artificial pathway systems exhibiting distinct characteristics and with actual data of the trehalose pathway in Saccharomyces cerevisiae. Conclusions The results demonstrate that the proposed method successfully complements DFE under various situations and without a priori assumptions regarding the model representation. The proposed method also permits an examination of whether at all, to what degree, or within what range the available time series data can be validly represented in a particular functional format of
Attractive short-range interatomic potential in the lattice dynamics of niobium and tantalum
International Nuclear Information System (INIS)
Onwuagba, B.N.; Pal, S.
1987-01-01
It is shown in the framework of the pseudopotential approach that there is a sizable attractive short-range component of the interatomic potential due to the s-d interaction which has the same functional form in real space as the Born-Mayer repulsion due to the overlap of core electron wave functions centred on neighbouring ions. The magnitude of this attractive component is such as to completely cancel the conventional Born-Mayer repulsion, making the resultant short-range interatomic potential attractive rather than repulsive. Numerical calculations show that the attractive interatomics potential, which represents the local-field correction, leads to a better understanding of the occurrence of the soft modes in the phonon dispersion curves of niobium and tantalum
A Dynamic Time Warping Approach to Real-Time Activity Recognition for Food Preparation
Pham, Cuong; Plötz, Thomas; Olivier, Patrick
We present a dynamic time warping based activity recognition system for the analysis of low-level food preparation activities. Accelerometers embedded into kitchen utensils provide continuous sensor data streams while people are using them for cooking. The recognition framework analyzes frames of contiguous sensor readings in real-time with low latency. It thereby adapts to the idiosyncrasies of utensil use by automatically maintaining a template database. We demonstrate the effectiveness of the classification approach by a number of real-world practical experiments on a publically available dataset. The adaptive system shows superior performance compared to a static recognizer. Furthermore, we demonstrate the generalization capabilities of the system by gradually reducing the amount of training samples. The system achieves excellent classification results even if only a small number of training samples is available, which is especially relevant for real-world scenarios.
Construction of a flash-photolysis apparatus having a short discharge time
International Nuclear Information System (INIS)
Devillers, C.
1964-01-01
Flash photolysis aims at reaching directly the primary mechanisms resulting from the action of light on an absorbent matter. This makes it necessary to produce a flash as short and as bright as possible. Our main effort was directed towards reducing the duration of the flash by decreasing the self-inductance of the discharge circuit. A description of this circuit and study of the characteristics of the apparatus are followed by a short description of the two analytical methods: flash spectrography and absorption spectrophotometry at a given wave-length. (author) [fr
Variational data assimilation for the optimized ozone initial state and the short-time forecasting
Directory of Open Access Journals (Sweden)
S.-Y. Park
2016-03-01
Full Text Available In this study, we apply the four-dimensional variational (4D-Var data assimilation to optimize initial ozone state and to improve the predictability of air quality. The numerical modeling systems used for simulations of atmospheric condition and chemical formation are the Weather Research and Forecasting (WRF model and the Community Multiscale Air Quality (CMAQ model. The study area covers the capital region of South Korea, where the surface measurement sites are relatively evenly distributed. The 4D-Var code previously developed for the CMAQ model is modified to consider background error in matrix form, and various numerical tests are conducted. The results are evaluated with an idealized covariance function for the appropriateness of the modified codes. The background error is then constructed using the NMC method with long-term modeling results, and the characteristics of the spatial correlation scale related to local circulation are analyzed. The background error is applied in the 4D-Var research, and a surface observational assimilation is conducted to optimize the initial concentration of ozone. The statistical results for the 12 h assimilation periods and the 120 observatory sites show a 49.4 % decrease in the root mean squared error (RMSE, and a 59.9 % increase in the index of agreement (IOA. The temporal variation of spatial distribution of the analysis increments indicates that the optimized initial state of ozone concentration is transported to inland areas by the clockwise-rotating local circulation during the assimilation windows. To investigate the predictability of ozone concentration after the assimilation window, a short-time forecasting is carried out. The ratios of the RMSE (root mean squared error with assimilation versus that without assimilation are 8 and 13 % for the +24 and +12 h, respectively. Such a significant improvement in the forecast accuracy is obtained solely by using the optimized initial state. The potential
Technical Note: Deep learning based MRAC using rapid ultra-short echo time imaging.
Jang, Hyungseok; Liu, Fang; Zhao, Gengyan; Bradshaw, Tyler; McMillan, Alan B
2018-05-15
In this study, we explore the feasibility of a novel framework for MR-based attenuation correction for PET/MR imaging based on deep learning via convolutional neural networks, which enables fully automated and robust estimation of a pseudo CT image based on ultrashort echo time (UTE), fat, and water images obtained by a rapid MR acquisition. MR images for MRAC are acquired using dual echo ramped hybrid encoding (dRHE), where both UTE and out-of-phase echo images are obtained within a short single acquisition (35 sec). Tissue labeling of air, soft tissue, and bone in the UTE image is accomplished via a deep learning network that was pre-trained with T1-weighted MR images. UTE images are used as input to the network, which was trained using labels derived from co-registered CT images. The tissue labels estimated by deep learning are refined by a conditional random field based correction. The soft tissue labels are further separated into fat and water components using the two-point Dixon method. The estimated bone, air, fat, and water images are then assigned appropriate Hounsfield units, resulting in a pseudo CT image for PET attenuation correction. To evaluate the proposed MRAC method, PET/MR imaging of the head was performed on 8 human subjects, where Dice similarity coefficients of the estimated tissue labels and relative PET errors were evaluated through comparison to a registered CT image. Dice coefficients for air (within the head), soft tissue, and bone labels were 0.76±0.03, 0.96±0.006, and 0.88±0.01. In PET quantification, the proposed MRAC method produced relative PET errors less than 1% within most brain regions. The proposed MRAC method utilizing deep learning with transfer learning and an efficient dRHE acquisition enables reliable PET quantification with accurate and rapid pseudo CT generation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Dynamic Simulation over Long Time Periods with 100% Solar Generation.
Energy Technology Data Exchange (ETDEWEB)
Concepcion, Ricky James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Ryan Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-12-01
This project aimed to identify the path forward for dynamic simulation tools to accommodate these needs by characterizing the properties of power systems (with high PV penetration), analyzing how these properties affect dynamic simulation software, and offering solutions for potential problems.
Positive dynamical systems in discrete time theory, models, and applications
Krause, Ulrich
2015-01-01
This book provides a systematic, rigorous and self-contained treatment of positive dynamical systems. A dynamical system is positive when all relevant variables of a systemare nonnegative in a natural way. This is in biology, demography or economics, where the levels of populations or prices of goods are positive. The principle also finds application in electrical engineering, physics and computer sciences.
Directory of Open Access Journals (Sweden)
Del P. Wong
2011-06-01
Full Text Available This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA and change of direction (COD. Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s. Three dynamic stretching exercises of 30 s duration were then performed (90 s total. Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p < 0.001. However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (< 90 s static stretching may not have provided sufficient stimulus to elicit performance impairments
Firm Size and Short-Term Dynamics in Aggregate Entry and Exit
Manjon, M.C.
2004-01-01
Much of the research on industry dynamics focuses on the interdependence between the sectorial rates of entry and exit.This paper argues that the size of firms and the reaction-adjustment period are important conditions missed in this literature.I illustrate the effects of this omission using data
Predicting long-term and short-term tidal flat morphodynamics using a dynamic equilibrium theory
Hu, Z.; Wang, Z.B.; Zitman, T.J.; Stive, M.J.F.; Bouma, T.J.
2015-01-01
Dynamic equilibrium theory is a fruitful concept, which we use to systematically explain the tidal flat morphodynamic response to tidal currents, wind waves, sediment supply, and other sedimentological drivers. This theory stems from a simple analytical model that derives the tide- or wave-dominated
Application of Grey Model GM(1, 1) to Ultra Short-Term Predictions of Universal Time
Lei, Yu; Guo, Min; Zhao, Danning; Cai, Hongbing; Hu, Dandan
2016-03-01
A mathematical model known as one-order one-variable grey differential equation model GM(1, 1) has been herein employed successfully for the ultra short-term (advantage is that the developed method is easy to use. All these reveal a great potential of the GM(1, 1) model for UT1-UTC predictions.
Cognitive Abilities Explaining Age-Related Changes in Time Perception of Short and Long Durations
Zelanti, Pierre S.; Droit-Volet, Sylvie
2011-01-01
The current study investigated how the development of cognitive abilities explains the age-related changes in temporal judgment over short and long duration ranges from 0.5 to 30 s. Children (5- and 9-year-olds) as well as adults were given a temporal bisection task with four different duration ranges: a duration range shorter than 1 s, two…
Development of Speech Fluency over a Short Period of Time: Effects of Pedagogic Intervention
Tavakoli, Parvaneh; Campbell, Colin; McCormack, Joan
2016-01-01
This study investigates the effects of a short-term pedagogic intervention on development of second language (L2) fluency among learners studying English for academic purposes at a UK university. It also examines the interaction between development of fluency and complexity and accuracy. Through a pretest and posttest design, data were collected…
International Nuclear Information System (INIS)
Aulchenko, V.M.; Chilingarov, A.G.; Serbo, V.V.; Titov, V.M.
1993-01-01
The study of the possibility to use CAMEX chips in several systems of the detector KEDR at the e + e - collider VEPP-4M was performed. The relatively short bunch crossing time at VEPP-4M 60 ns leads to some problems with the use of CAMEX in the standard mode. The different ways to overcome these difficulties are investigated and compared. (orig.)
25 CFR 26.30 - Does the Job Training Program provide part-time training or short-term training?
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Does the Job Training Program provide part-time training or short-term training? 26.30 Section 26.30 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR HUMAN SERVICES JOB PLACEMENT AND TRAINING PROGRAM Training Services § 26.30 Does the Job Training...
Gorbunkov, M. V.; Maslova, Yu Ya; Petukhov, V. A.; Semenov, M. A.; Shabalin, Yu V.; Tunkin, V. G.
2018-03-01
Harmonic mode-locking in a solid state laser due to optoelectronic control is studied numerically on the basis of two methods. The first one is detailed numeric simulation taking into account laser radiation fine time structure. It is shown that optimally chosen feedback delay leads to self-started mode-locking with generation of desired number of pulses in the laser cavity. The second method is based on discrete maps for short laser pulse energy. Both methods show that the application of combination of positive and negative feedback loops allows to reduce the period of regular nonlinear dynamics down to a fraction of a laser cavity round trip time.
DEFF Research Database (Denmark)
Gideon, P; Danielsen, E R; Schneider, M
1995-01-01
An insert gradient head coil with built-in X, Y, and Z gradients was used for localized proton spectroscopy in the brain of healthy volunteers, using short echo time stimulated echo acquisition mode (STEAM) sequences. Volume of interest size was 3.4 ml, repetition time was 6.0 s, and echo times...... were 10 and 20 ms, respectively. Good quality proton spectra with practically no eddy current artefacts were acquired allowing observation of strongly coupled compounds, and compounds with short T2 relaxation times. The gradient head coil thus permits further studies of compounds such as glutamine....../glutamate and myo-inositols. These compounds were more prominent within grey matter than within white matter. Rough estimations of metabolite concentrations using water as an internal standard were in good agreement with previous reports....