WorldWideScience

Sample records for short n-o bond

  1. Unusually short chalcogen bonds involving organoselenium: insights into the Se-N bond cleavage mechanism of the antioxidant ebselen and analogues.

    Science.gov (United States)

    Thomas, Sajesh P; Satheeshkumar, K; Mugesh, Govindasamy; Guru Row, T N

    2015-04-27

    Structural studies on the polymorphs of the organoselenium antioxidant ebselen and its derivative show the potential of organic selenium to form unusually short Se⋅⋅⋅O chalcogen bonds that lead to conserved supramolecular recognition units. Se⋅⋅⋅O interactions observed in these polymorphs are the shortest such chalcogen bonds known for organoselenium compounds. The FTIR spectral evolution characteristics of this interaction from solution state to solid crystalline state further validates the robustness of this class of supramolecular recognition units. The strength and electronic nature of the Se⋅⋅⋅O chalcogen bonds were explored using high-resolution X-ray charge density analysis and atons-in-molecules (AIM) theoretical analysis. A charge density study unravels the strong electrostatic nature of Se⋅⋅⋅O chalcogen bonding and soft-metal-like behavior of organoselenium. An analysis of the charge density around Se-N and Se-C covalent bonds in conjunction with the Se⋅⋅⋅O chalcogen bonding modes in ebselen and its analogues provides insights into the mechanism of drug action in this class of organoselenium antioxidants. The potential role of the intermolecular Se⋅⋅⋅O chalcogen bonding in forming the intermediate supramolecular assembly that leads to the bond cleavage mechanism has been proposed in terms of electron density topological parameters in a series of molecular complexes of ebselen with reactive oxygen species (ROS). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Insertion reactions into Pd[bond]O and Pd[bond]N bonds: preparation of alkoxycarbonyl, carbonato, carbamato, thiocarbamate, and thioureide complexes of palladium(II).

    Science.gov (United States)

    Ruiz, José; Martínez, M Teresa; Florenciano, Félix; Rodríguez, Venancio; López, Gregorio; Pérez, José; Chaloner, Penny A; Hitchcock, Peter B

    2003-06-02

    Mononuclear palladium hydroxo complexes of the type [Pd(N[bond]N)(C(6)F(5))(OH)] [(N[bond]N = 2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (Me(2)bipy), 1,10-phenanthroline (phen), or N,N,N',N'-tetramethylethylenediamine (tmeda)] have been prepared by reaction of [Pd(N[bond]N)(C(6)F(5))(acetone)]ClO(4) with KOH in methanol. These hydroxo complexes react, in methanol, with CO (1 atm, room temperature) to yield the corresponding methoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)Me)]. Similar alkoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)R)] (N[bond]N = bis(3,5-dimethylpyrazol-1-yl)methane); R = Me, Et, or (i)Pr) are obtained when [Pd(N[bond]N)(C(6)F(5))Cl] is treated with KOH in the corresponding alcohol ROH and CO is bubbled through the solution. The reactions of [Pd(N[bond]N)(C(6)F(5))(OH)] (N[bond]N = bipy or Me(2)bipy) with CO(2), in tetrahydrofuran, lead to the formation of the binuclear carbonate complexes [(N[bond]N)(C(6)F(5))Pd(mu-eta(2)-CO(3))Pd(C(6)F(5))(N[bond]N)]. Complexes [Pd(N[bond]N)(C(6)F(5))(OH)] react in alcohol with PhNCS to yield the corresponding N-phenyl-O-alkylthiocarbamate complexes [Pd(N[bond]N)(C(6)F(5))[SC(OR)NPh

  3. Cocrystals of 6-propyl-2-thiouracil: N-H···O versus N-H···S hydrogen bonds.

    Science.gov (United States)

    Tutughamiarso, Maya; Egert, Ernst

    2011-11-01

    In order to investigate the relative stability of N-H···O and N-H···S hydrogen bonds, we cocrystallized the antithyroid drug 6-propyl-2-thiouracil with two complementary heterocycles. In the cocrystal pyrimidin-2-amine-6-propyl-2-thiouracil (1/2), C(4)H(5)N(3)·2C(7)H(10)N(2)OS, (I), the `base pair' is connected by one N-H···S and one N-H···N hydrogen bond. Homodimers of 6-propyl-2-thiouracil linked by two N-H···S hydrogen bonds are observed in the cocrystal N-(6-acetamidopyridin-2-yl)acetamide-6-propyl-2-thiouracil (1/2), C(9)H(11)N(3)O(2)·2C(7)H(10)N(2)OS, (II). The crystal structure of 6-propyl-2-thiouracil itself, C(7)H(10)N(2)OS, (III), is stabilized by pairwise N-H···O and N-H···S hydrogen bonds. In all three structures, N-H···S hydrogen bonds occur only within R(2)(2)(8) patterns, whereas N-H···O hydrogen bonds tend to connect the homo- and heterodimers into extended networks. In agreement with related structures, the hydrogen-bonding capability of C=O and C=S groups seems to be comparable.

  4. Short strong hydrogen bonds in proteins: a case study of rhamnogalacturonan acetylesterase

    International Nuclear Information System (INIS)

    Langkilde, Annette; Kristensen, Søren M.; Lo Leggio, Leila; Mølgaard, Anne; Jensen, Jan H.; Houk, Andrew R.; Navarro Poulsen, Jens-Christian; Kauppinen, Sakari; Larsen, Sine

    2008-01-01

    The short hydrogen bonds in rhamnogalacturonan acetylesterase have been investigated by structure determination of an active-site mutant, 1 H NMR spectra and computational methods. Comparisons are made to database statistics. A very short carboxylic acid carboxylate hydrogen bond, buried in the protein, could explain the low-field (18 p.p.m.) 1 H NMR signal. An extremely low-field signal (at approximately 18 p.p.m.) in the 1 H NMR spectrum of rhamnogalacturonan acetylesterase (RGAE) shows the presence of a short strong hydrogen bond in the structure. This signal was also present in the mutant RGAE D192N, in which Asp192, which is part of the catalytic triad, has been replaced with Asn. A careful analysis of wild-type RGAE and RGAE D192N was conducted with the purpose of identifying possible candidates for the short hydrogen bond with the 18 p.p.m. deshielded proton. Theoretical calculations of chemical shift values were used in the interpretation of the experimental 1 H NMR spectra. The crystal structure of RGAE D192N was determined to 1.33 Å resolution and refined to an R value of 11.6% for all data. The structure is virtually identical to the high-resolution (1.12 Å) structure of the wild-type enzyme except for the interactions involving the mutation and a disordered loop. Searches of the Cambridge Structural Database were conducted to obtain information on the donor–acceptor distances of different types of hydrogen bonds. The short hydrogen-bond interactions found in RGAE have equivalents in small-molecule structures. An examination of the short hydrogen bonds in RGAE, the calculated pK a values and solvent-accessibilities identified a buried carboxylic acid carboxylate hydrogen bond between Asp75 and Asp87 as the likely origin of the 18 p.p.m. signal. Similar hydrogen-bond interactions between two Asp or Glu carboxy groups were found in 16% of a homology-reduced set of high-quality structures extracted from the PDB. The shortest hydrogen bonds in RGAE are

  5. Molecularly Tuning the Radicaloid N-H···O═C Hydrogen Bond.

    Science.gov (United States)

    Lu, Norman; Chung, Wei-Cheng; Ley, Rebecca M; Lin, Kwan-Yu; Francisco, Joseph S; Negishi, Ei-Ichi

    2016-03-03

    Substituent effects on the open shell N-H···O═C hydrogen-bond has never been reported. This study examines how 12 functional groups composed of electron donating groups (EDG), halogen atoms and electron withdrawing groups (EWG) affect the N-H···O═C hydrogen-bond properties in a six-membered cyclic model system of O═C(Y)-CH═C(X)N-H. It is found that group effects on this open shell H-bonding system are significant and have predictive trends when X = H and Y is varied. When Y is an EDG, the N-H···O═C hydrogen-bond is strengthened; and when Y is an EWG, the bond is weakened; whereas the variation in electronic properties of X group do not exhibit a significant impact upon the hydrogen bond strength. The structural impact of the stronger N-H···O═C hydrogen-bond are (1) shorter H and O distance, r(H···O) and (2) a longer N-H bond length, r(NH). The stronger N-H···O═C hydrogen-bond also acts to pull the H and O in toward one another which has an effect on the bond angles. Our findings show that there is a linear relationship between hydrogen-bond angle and N-H···O═C hydrogen-bond energy in this unusual H-bonding system. In addition, there is a linear correlation of the r(H···O) and the hydrogen bond energy. A short r(H···O) distance corresponds to a large hydrogen bond energy when Y is varied. The observed trends and findings have been validated using three different methods (UB3LYP, M06-2X, and UMP2) with two different basis sets.

  6. Microsolvation effect and hydrogen-bonding pattern of taurine-water TA-(H2O)n (n = 1-3) complexes.

    Science.gov (United States)

    Dai, Yumei; Wang, Yuhua; Huang, Zhengguo; Wang, Hongke; Yu, Lei

    2012-01-01

    The microsolvation of taurine (TA) with one, two or three water molecules was investigated by a density functional theory (DFT) approach. Quantum theory of atoms in molecules (QTAIM) analyses were employed to elucidate the hydrogen bond (H-bond) interaction characteristics in TA-(H(2)O)(n) (n = 1-3) complexes. The results showed that the intramolecular H-bond formed between the hydroxyl and the N atom of TA are retained in most TA-(H(2)O)(n) (n = 1-3) complexes, and are strengthened via cooperative effects among multiple H-bonds from n = 1-3. A trend of proton transformation exists from the hydroxyl to the N atom, which finally results in the cleavage of the origin intramolecular H-bond and the formation of a new intramolecular H-bond between the amino and the O atom of TA. Therefore, the most stable TA-(H(2)O)(3) complex becomes a zwitterionic complex rather than a neutral type. A many-body interaction analysis showed that the major contributors to the binding energies for complexes are the two-body energies, while three-body energies and relaxation energies make significant contributions to the binding energies for some complexes, whereas the four-body energies are too small to be significant.

  7. Crystal structure details of La- and Bi-substituted hydroxyapatites: Evidence for LaO+ and BiO+ with a very short metal–oxygen bond

    International Nuclear Information System (INIS)

    Kazin, Pavel E.; Pogosova, Mariam A.; Trusov, Lev A.; Kolesnik, Irina V.; Magdysyuk, Oxana V.; Dinnebier, Robert E.

    2016-01-01

    Crystal structures of substituted apatites with general formula Ca 10−x M x (PO 4 ) 6 (OH 1−δ ) 2−x O x , where M=La, Bi, 0≤x<2, were refined using high-resolution X-ray powder diffraction patterns. Individual positions for Ca 2+ and M 3+ -ions localized near Ca2-site were determined. The M 3+ -ion was found shifted toward the hexagonal channel center with respect to the Ca 2+ -ion, forming very short bond with the intrachannel O 2− , while leaving considerably longer distances to other oxygen atoms, which suggested the existence of a MO + ion. Distinct bands of stretching M–O modes were observed in the Raman and FT-IR spectra of the compounds. The bond lengths for BiO + and LaO + were estimated to be 2.05(1) and 2.09(1) Å correspondingly. The latter was almost 0.3 Å lower than the shortest La–O bond in La 2 O 3 . The realization of such a strong lanthanide–oxygen bond in a crystal lattice could provide a very high axial ligand field and might be implemented to develop high-energy-barrier single-molecule magnets as well as to tune properties of lanthanide-based luminophores. - Graphical abstract: A fragment of the La-for-Ca substituted apatite crystal structure focusing on the La–O bond. - Highlights: • Individual positions in the apatite crystal lattice for a doping atom (La, Bi) and Ca. • The doping atom shifts toward the center of the hexagonal channel. • BiO + and LaO + with estimated short bond lengths of 2.05 and 2.09 Å respectively.

  8. Potassium bis(carbonato-O,O')(ethylenediamine-N,N')cobaltate(III) monohydrate at 173 K.

    Science.gov (United States)

    Belai, N; Dickman, M H; Pope, M T

    2001-07-01

    The title salt, K[Co(C2H8N2)(CO3)2].H2O, consists of a distorted octahedral cobalt complex anion and a seven-coordinate potassium cation. Both metal atoms have crystallographic twofold symmetry, one C2 axis passing through the Co atom and C--C bond, and another along a short K--O (water) bond of 2.600 A (corrected for libration). The carbonate is bidentate to both cobalt and potassium and the water forms a hydrogen bond to a carbonate O atom.

  9. Cross-Dehydrogenative Coupling Reactions Between P(O)-H and X-H (X = S, N, O, P) Bonds.

    Science.gov (United States)

    Hosseinian, Akram; Farshbaf, Sepideh; Fekri, Leila Zare; Nikpassand, Mohammad; Vessally, Esmail

    2018-05-26

    P(O)-X (X = S, N, O, P) bond-containing compounds have extensive application in medicinal chemistry, agrochemistry, and material chemistry. These useful organophosphorus compounds also have many applications in organic synthesis. In light of the importance of titled compounds, there is continuing interest in the development of synthetic methods for P(O)-X bonds construction. In the last 4 years, the direct coupling reaction of P(O)-H compounds with thiols, alcohols, and amines/amides has received much attention because of the atom-economic character. This review aims to give an overview of new developments in cross-dehydrogenative coupling reactions between P(O)-H and X-H (X = S, N, O, P) bonds, with special emphasis on the mechanistic aspects of the reactions.

  10. Short Carboxylic Acid–Carboxylate Hydrogen Bonds Can Have Fully Localized Protons

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiusheng; Pozharski, Edwin; Wilson, Mark A.

    2017-01-17

    Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low-barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15–0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homologue, YajL, was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp24 that satisfies standard donor–acceptor distance criteria for a LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the Escherichia coli homologue YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with a LBHB. A Protein Data Bank-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short [O–O> = 2.542(2) Å]. Chemically similar H-bonds between hydroxylated residues (Ser/Thr/Tyr) and carboxylates show a trend of lengthening O–O distance with increasing H-bond donor pKa. This trend suggests that conventional electronic effects provide an adequate explanation for short, charge-assisted carboxylic acid–carboxylate H-bonds in proteins, without the need to invoke LBHBs in general. This study demonstrates that bond length analysis of atomic resolution X-ray crystal structures provides a useful experimental test of certain candidate LBHBs.

  11. Crystal structure details of La- and Bi-substituted hydroxyapatites: Evidence for LaO{sup +} and BiO{sup +} with a very short metal–oxygen bond

    Energy Technology Data Exchange (ETDEWEB)

    Kazin, Pavel E., E-mail: kazin@inorg.chem.msu.ru [Department of Chemistry, Moscow State University, 119991 Moscow (Russian Federation); Pogosova, Mariam A.; Trusov, Lev A.; Kolesnik, Irina V. [Department of Chemistry, Moscow State University, 119991 Moscow (Russian Federation); Magdysyuk, Oxana V.; Dinnebier, Robert E. [Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart (Germany)

    2016-05-15

    Crystal structures of substituted apatites with general formula Ca{sub 10−x}M{sub x}(PO{sub 4}){sub 6}(OH{sub 1−δ}){sub 2−x}O{sub x}, where M=La, Bi, 0≤x<2, were refined using high-resolution X-ray powder diffraction patterns. Individual positions for Ca{sup 2+} and M{sup 3+}-ions localized near Ca2-site were determined. The M{sup 3+}-ion was found shifted toward the hexagonal channel center with respect to the Ca{sup 2+}-ion, forming very short bond with the intrachannel O{sup 2−}, while leaving considerably longer distances to other oxygen atoms, which suggested the existence of a MO{sup +} ion. Distinct bands of stretching M–O modes were observed in the Raman and FT-IR spectra of the compounds. The bond lengths for BiO{sup +} and LaO{sup +} were estimated to be 2.05(1) and 2.09(1) Å correspondingly. The latter was almost 0.3 Å lower than the shortest La–O bond in La{sub 2}O{sub 3}. The realization of such a strong lanthanide–oxygen bond in a crystal lattice could provide a very high axial ligand field and might be implemented to develop high-energy-barrier single-molecule magnets as well as to tune properties of lanthanide-based luminophores. - Graphical abstract: A fragment of the La-for-Ca substituted apatite crystal structure focusing on the La–O bond. - Highlights: • Individual positions in the apatite crystal lattice for a doping atom (La, Bi) and Ca. • The doping atom shifts toward the center of the hexagonal channel. • BiO{sup +} and LaO{sup +} with estimated short bond lengths of 2.05 and 2.09 Å respectively.

  12. Intermolecular and very strong intramolecular C-SeO/N chalcogen bonds in nitrophenyl selenocyanate crystals.

    Science.gov (United States)

    Wang, Hui; Liu, Ju; Wang, Weizhou

    2018-02-14

    Single-crystal X-ray diffraction reveals that polymorphic ortho-nitrophenyl selenocyanate (o-NSC, crystals 1a and 1b) and monomorphic para-nitrophenyl selenocyanate (p-NSC, crystal 2) crystals are all stabilized mainly by intermolecular and very strong intramolecular C-SeO/N chalcogen bonds, as well as by other different interactions. Thermogravimetric (TG) and differential scanning calorimetry thermogram (DSC) analyses show that the starting decomposition temperatures and melting points of the three crystals are different, following the order 1b > 1a > 2, which is consistent with the structural characteristics of the crystals. In addition, atoms in molecules (AIM) and natural bond orbital (NBO) analyses indicate that the total strengths of the C-SeO and C-SeN chalcogen bonds decrease in the order 1b > 1a > 2. This study could be significant for engineering functional crystals based on robust C-SeO and C-SeN chalcogen bonds, and for designing drugs containing selenium as well as understanding their interaction in biosystems.

  13. Efficient C-O and C-N bond forming cross-coupling reactions catalyzed by core-shell structured Cu/Cu2O nanowires

    KAUST Repository

    Elshewy, Ahmed M.

    2013-12-01

    Oxygen and Nitrogen containing compounds are of utmost importance due to their interesting and diverse biological activities. The construction of the C-O and C–N bonds is of significance as it opens avenues for the introduction of ether and amine linkages in organic molecules. Despite significant advancements in this field, the construction of C-O and C–N bonds is still a major challenge for organic chemists, due to the involvement of harsh reaction conditions or the use of expensive catalysts or ligands in many cases. Thus, it is a challenge to develop alternative, milder, cheaper and more reproducible methodologies for the construction of these types of bonds. Herein, we introduce a new efficient ligand free catalytic system for C-O and C-N bond formation reactions.

  14. [2-(Dimethylaminoethanol-κ2N,O][2-(dimethylaminoethanolato-κ2N,O]iodidocopper(II

    Directory of Open Access Journals (Sweden)

    Elena A. Buvaylo

    2012-04-01

    Full Text Available The title compound, [Cu(C4H10NOI(C4H11NO], was obtained unintentionally as the product of an attempted synthesis of a Cu/Zn mixed-metal complex using zerovalent copper, zinc(II oxide and ammonium iodide in pure 2-(dimethylaminoethanol, in air. The molecular complex has no crystallographically imposed symmetry. The coordination geometry around the metal atom is distorted square-pyramidal. The equatorial coordination around copper involves donor atoms of the bidentate chelating 2-(dimethylaminoethanol ligand and the 2-(dimethylaminoethanolate group, which are mutually trans to each other, with four approximately equal short Cu—O/N bond distances. The axial Cu—I bond is substantially elongated. Intermolecular hydrogen-bonding interactions involving the –OH group of the neutral 2-(dimethylaminoethanol ligand to the O atom of the monodeprotonated 2-(dimethylaminoethanolate group of the molecule related by the n-glide plane, as indicated by the O...O distance of 2.482 (12 Å, form chains of molecules propagating along [101].

  15. Ultrathin silicon oxynitride layer on GaN for dangling-bond-free GaN/insulator interface.

    Science.gov (United States)

    Nishio, Kengo; Yayama, Tomoe; Miyazaki, Takehide; Taoka, Noriyuki; Shimizu, Mitsuaki

    2018-01-23

    Despite the scientific and technological importance of removing interface dangling bonds, even an ideal model of a dangling-bond-free interface between GaN and an insulator has not been known. The formation of an atomically thin ordered buffer layer between crystalline GaN and amorphous SiO 2 would be a key to synthesize a dangling-bond-free GaN/SiO 2 interface. Here, we predict that a silicon oxynitride (Si 4 O 5 N 3 ) layer can epitaxially grow on a GaN(0001) surface without creating dangling bonds at the interface. Our ab initio calculations show that the GaN/Si 4 O 5 N 3 structure is more stable than silicon-oxide-terminated GaN(0001) surfaces. The electronic properties of the GaN/Si 4 O 5 N 3 structure can be tuned by modifying the chemical components near the interface. We also propose a possible approach to experimentally synthesize the GaN/Si 4 O 5 N 3 structure.

  16. C=C bond cleavage on neutral VO3(V2O5)n clusters.

    Science.gov (United States)

    Dong, Feng; Heinbuch, Scott; Xie, Yan; Bernstein, Elliot R; Rocca, Jorge J; Wang, Zhe-Chen; Ding, Xun-Lei; He, Sheng-Gui

    2009-01-28

    The reactions of neutral vanadium oxide clusters with alkenes (ethylene, propylene, 1-butene, and 1,3-butadiene) are investigated by experiments and density function theory (DFT) calculations. Single photon ionization through extreme ultraviolet radiation (EUV, 46.9 nm, 26.5 eV) is used to detect neutral cluster distributions and reaction products. In the experiments, we observe products (V(2)O(5))(n)VO(2)CH(2), (V(2)O(5))(n)VO(2)C(2)H(4), (V(2)O(5))(n)VO(2)C(3)H(4), and (V(2)O(5))(n)VO(2)C(3)H(6), for neural V(m)O(n) clusters in reactions with C(2)H(4), C(3)H(6), C(4)H(6), and C(4)H(8), respectively. The observation of these products indicates that the C=C bonds of alkenes can be broken on neutral oxygen rich vanadium oxide clusters with the general structure VO(3)(V(2)O(5))(n=0,1,2...). DFT calculations demonstrate that the reaction VO(3) + C(3)H(6) --> VO(2)C(2)H(4) + H(2)CO is thermodynamically favorable and overall barrierless at room temperature. They also provide a mechanistic explanation for the general reaction in which the C=C double bond of alkenes is broken on VO(3)(V(2)O(5))(n=0,1,2...) clusters. A catalytic cycle for alkene oxidation on vanadium oxide is suggested based on our experimental and theoretical investigations. The reactions of V(m)O(n) with C(6)H(6) and C(2)F(4) are also investigated by experiments. The products VO(2)(V(2)O(5))(n)C(6)H(4) are observed for dehydration reactions between V(m)O(n) clusters and C(6)H(6). No product is detected for V(m)O(n) clusters reacting with C(2)F(4). The mechanisms of the reactions between VO(3) and C(2)F(4)/C(6)H(6) are also investigated by calculations at the B3LYP/TZVP level.

  17. Ab initio computational study of –N-C and –O-C bonding formation : functional group modification reaction based chitosan

    Science.gov (United States)

    Siahaan, P.; Salimah, S. N. M.; Sipangkar, M. J.; Hudiyanti, D.; Djunaidi, M. C.; Laksitorini, M. D.

    2018-04-01

    Chitosan application in pharmaceutics and cosmeceutics industries is limited by its solubility issue. Modification of -NH2 and -OH fuctional groups of chitosan by adding carboxyl group has been shown to improve its solubility and application. Attempt to synthesize carboxymethyl chitosan (CMC) from monocloroacetic acid (MCAA) has been done prior this report. However no information is available wether –OH (-O-C bonding formation) or -NH2 (-N-C bonding formation) is the preference for - CH2COOH to attach. In the current study, the reaction mechanism between chitosan and MCAA reactants into carboxymethyl chitosan (CMC) was examined by computational approach. Dimer from of chitosan used as a molecular model in calculation All the molecular structure involved in the reaction mechanism was optimized by ab initio computational on the theory and basis set HF/6-31G(d,p). The results showed that the - N-C bonding formation via SN2 than the -O-C bonding formation via SN2 which have activation energy 469.437 kJ/mol and 533.219 kJ/mol respectively. However, the -O-C bonding formation more spontaneous than the -N-C bonding formation because ΔG the formation of O-CMC-2 reaction is more negative than ΔG of formation N-CMC-2 reaction is -4.353 kJ/mol and -1.095 kJ/mol respectively. The synthesis of N,O-CMC first forms -O-CH2COOH, then continues to form -NH-CH2COOH. This information is valuable to further optimize the reaction codition for CMC synthesis.

  18. Structural Characterization of N-Alkylated Twisted Amides: Consequences for Amide Bond Resonance and N-C Cleavage.

    Science.gov (United States)

    Hu, Feng; Lalancette, Roger; Szostak, Michal

    2016-04-11

    Herein, we describe the first structural characterization of N-alkylated twisted amides prepared directly by N-alkylation of the corresponding non-planar lactams. This study provides the first experimental evidence that N-alkylation results in a dramatic increase of non-planarity around the amide N-C(O) bond. Moreover, we report a rare example of a molecular wire supported by the same amide C=O-Ag bonds. Reactivity studies demonstrate rapid nucleophilic addition to the N-C(O) moiety of N-alkylated amides, indicating the lack of n(N) to π*(C=O) conjugation. Most crucially, we demonstrate that N-alkylation activates the otherwise unreactive amide bond towards σ N-C cleavage by switchable coordination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Isolation and X-ray structures of four Rh(PCP) complexes including a Rh(I) dioxygen complex with a short O-O bond

    KAUST Repository

    Hayashi, Yukiko

    2013-07-01

    The reaction of RhCl3·H2O with tBu2P(CH2)5PtBu 2 afforded several complexes including [RhIII(H)Cl{ tBu2- P(CH2)2CH(CH2) 2PtBu2}] (1), [RhIIIHCl 2{tBu2P(CH2)5P tBu2}]2 (2), [RhICl{ tBu2P(CH2)2CH=CHCH2P tBu2}] (3) and [RhICl{tBu 2PCH2C(O)CH=CHCH2PtBu2}] (4). X-ray crystal structures of 3 and 4 showed that the C=C bond on the C 5 unit of tBu2P(CH2) 5PtBu2 is bound to Rh(I) in a η2 configuration. In 4, the Rh atom has a trigonal pyramidal coordination geometry. The X-ray crystal structure of 2 consists of two rhodium( III) centers bridged by two tBu2P(CH2)5P tBu2 ligands with two phosphorus atoms, one from each ligand, trans to one another. The crystal structure of the rhodium oxygen adduct with 1,3-bis(di-t-butylphosphinomethyl) benzene [RhO2{ tBu2PCH2(C6H3)CH 2PtBu2}] (5) was also investigated. In this species the O2 is η2 coordinated to the Rh(I) center with asymmetric Rh-O bond lengths (2.087(7) and 1.998(8) Å). The O-O bond distance is short (1.337(11) Å) with νO-O of 990.5 cm -1. DFT calculations on complex 5 yielded two η2- O2 structures that differed in energy by only 0.76 kcal/mol. The lower energy one (5a) had near C2 symmetry, and had nearly equal Rh-O bond lengths, while the higher energy structure (5b) had near Cs symmetry and generally good agreement with the experimental structure. The calculated UV-Vis and IR spectra of complex 5 are in excellent agreement with experiment. © 2012 Elsevier Ltd. All rights reserved.

  20. Isolation and X-ray structures of four Rh(PCP) complexes including a Rh(I) dioxygen complex with a short O-O bond

    KAUST Repository

    Hayashi, Yukiko; Szalda, David J.; Grills, David C.; Hanson, Jonathan C.; Huang, Kuo-Wei; Muckerman, James T.; Fujita, Etsuko

    2013-01-01

    The reaction of RhCl3·H2O with tBu2P(CH2)5PtBu 2 afforded several complexes including [RhIII(H)Cl{ tBu2- P(CH2)2CH(CH2) 2PtBu2}] (1), [RhIIIHCl 2{tBu2P(CH2)5P tBu2}]2 (2), [RhICl{ tBu2P(CH2)2CH=CHCH2P tBu2}] (3) and [RhICl{tBu 2PCH2C(O)CH=CHCH2PtBu2}] (4). X-ray crystal structures of 3 and 4 showed that the C=C bond on the C 5 unit of tBu2P(CH2) 5PtBu2 is bound to Rh(I) in a η2 configuration. In 4, the Rh atom has a trigonal pyramidal coordination geometry. The X-ray crystal structure of 2 consists of two rhodium( III) centers bridged by two tBu2P(CH2)5P tBu2 ligands with two phosphorus atoms, one from each ligand, trans to one another. The crystal structure of the rhodium oxygen adduct with 1,3-bis(di-t-butylphosphinomethyl) benzene [RhO2{ tBu2PCH2(C6H3)CH 2PtBu2}] (5) was also investigated. In this species the O2 is η2 coordinated to the Rh(I) center with asymmetric Rh-O bond lengths (2.087(7) and 1.998(8) Å). The O-O bond distance is short (1.337(11) Å) with νO-O of 990.5 cm -1. DFT calculations on complex 5 yielded two η2- O2 structures that differed in energy by only 0.76 kcal/mol. The lower energy one (5a) had near C2 symmetry, and had nearly equal Rh-O bond lengths, while the higher energy structure (5b) had near Cs symmetry and generally good agreement with the experimental structure. The calculated UV-Vis and IR spectra of complex 5 are in excellent agreement with experiment. © 2012 Elsevier Ltd. All rights reserved.

  1. Hydrogen bonded networks in formamide [HCONH2]n (n = 1 – 10 ...

    Indian Academy of Sciences (India)

    gns

    Table S1: Comparison of interaction energy (I.E) in kcal/mol in four arrangements of formamide n=1-10 at B3LYP/D95** level of theory. n = #monomers. Table S2: O---H bond length (in Å) for formamide clusters n = (2-10). Table S3: N-H bond stretching frequency (in cm-1) for four arrangements of formamide clusters n.

  2. Geometric structure of thin SiO xN y films on Si(100)

    Science.gov (United States)

    Behrens, K.-M.; Klinkenberg, E.-D.; Finster, J.; Meiwes-Broer, K.-H.

    1998-05-01

    Thin films of amorphous stoichometric SiO xN y are deposited on radiation-heated Si(100) by rapid thermal low-pressure chemical vapour deposition. We studied the whole range of possible compositions. In order to determine the geometric structure, we used EXAFS and photoelectron spectroscopy. Tetrahedrons constitute the short-range units with a central Si atom connected to N and O. The distribution of the possible tetrahedrons can be described by a mixture of the Random Bonding Model and the Random Mixture Model. For low oxygen contents x/( x+ y)≤0.3, the geometric structure of the film is almost the structure of a-Si 3N 4, with the oxygen preferably on top of Si-N 3 triangles. Higher oxygen contents induce changes in the bond lengths, bond angles and coordination numbers.

  3. Impact of post-deposition annealing on interfacial chemical bonding states between AlGaN and ZrO2 grown by atomic layer deposition

    International Nuclear Information System (INIS)

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Wang, Hong; Ng, Serene Lay Geok; Ji, Rong; Liu, Zhi Hong

    2015-01-01

    The effect of post-deposition annealing on chemical bonding states at interface between Al 0.5 Ga 0.5 N and ZrO 2 grown by atomic layer deposition (ALD) is studied by angle-resolved x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. It has been found that both of Al-O/Al 2p and Ga-O/Ga 3d area ratio decrease at annealing temperatures lower than 500 °C, which could be attributed to “clean up” effect of ALD-ZrO 2 on AlGaN. Compared to Ga spectra, a much larger decrease in Al-O/Al 2p ratio at a smaller take-off angle θ is observed, which indicates higher effectiveness of the passivation of Al-O bond than Ga-O bond through “clean up” effect near the interface. However, degradation of ZrO 2 /AlGaN interface quality due to re-oxidation at higher annealing temperature (>500 °C) is also found. The XPS spectra clearly reveal that Al atoms at ZrO 2 /AlGaN interface are easier to get oxidized as compared with Ga atoms

  4. Enhanced photocatalytic degradation of Amaranth dye on mesoporous anatase TiO2: evidence of C-N, N[double bond, length as m-dash]N bond cleavage and identification of new intermediates.

    Science.gov (United States)

    Naik, Amarja P; Salkar, Akshay V; Majik, Mahesh S; Morajkar, Pranay P

    2017-07-01

    The photocatalytic degradation mechanism of Amaranth, a recalcitrant carcinogenic azo dye, was investigated using mesoporous anatase TiO 2 under sunlight. Mesoporous anatase TiO 2 of a high photocatalytic activity has been synthesized using a sol-gel method and its photocatalytic activity for the degradation of Amaranth dye has been evaluated with respect to Degussa P25. The effect of bi-dentate complexing agents like oxalic acid, ethylene glycol and urea on the surface properties of TiO 2 catalyst has been investigated using TG-DTA, FTIR, HR-TEM, SAED, PXRD, EDS, UV-DRS, PL, BET N 2 adsorption-desorption isotherm studies and BJH analysis. The influence of catalyst properties such as the mesoporous network, pore volume and surface area on the kinetics of degradation of Amaranth as a function of irradiation time under natural sunlight has been monitored using UV-Vis spectroscopy. The highest rate constant value of 0.069 min -1 was obtained for the photocatalytic degradation of Amaranth using TiO 2 synthesized via a urea assisted sol-gel synthesis method. The effect of the reaction conditions such as pH, TiO 2 concentration and Amaranth concentration on the photodegradation rate has been investigated. The enhanced photocatalytic activity of synthesized TiO 2 in comparison with P25 is attributed to the mesoporous nature of the catalyst leading to increased pore diameter, pore volume, surface area and enhanced charge carrier separation efficiency. New intermediates of photocatalytic degradation of Amaranth, namely, sodium-3-hydroxynaphthalene-2,7-disulphonate, 3-hydroxynaphthalene, sodium-4-aminonaphthalenesulphonate and sodium-4-aminobenzenesulphonate have been identified using LC-ESI-MS for the very first time, providing direct evidence for simultaneous bond cleavage pathways (-C-N-) and (-N[double bond, length as m-dash]N-). A new plausible mechanism of TiO 2 catalysed photodegradation of Amaranth along with the comparison of its toxicity to that of its degradation

  5. Impact of SiO2 on Al–Al thermocompression wafer bonding

    International Nuclear Information System (INIS)

    Malik, Nishant; Finstad, Terje G; Schjølberg-Henriksen, Kari; Poppe, Erik U; Taklo, Maaike M V

    2015-01-01

    Al–Al thermocompression bonding suitable for wafer level sealing of MEMS devices has been investigated. This paper presents a comparison of thermocompression bonding of Al films deposited on Si with and without a thermal oxide (SiO 2 film). Laminates of diameter 150 mm containing device sealing frames of width 200 µm were realized. The wafers were bonded by applying a bond force of 36 or 60 kN at bonding temperatures ranging from 300–550 °C for bonding times of 15, 30 or 60 min. The effects of these process variations on the quality of the bonded laminates have been studied. The bond quality was estimated by measurements of dicing yield, tensile strength, amount of cohesive fracture in Si and interfacial characterization. The mean bond strength of the tested structures ranged from 18–61 MPa. The laminates with an SiO 2 film had higher dicing yield and bond strength than the laminates without SiO 2 for a 400 °C bonding temperature. The bond strength increased with increasing bonding temperature and bond force. The laminates bonded for 30 and 60 min at 400 °C and 60 kN had similar bond strength and amount of cohesive fracture in the bulk silicon, while the laminates bonded for 15 min had significantly lower bond strength and amount of cohesive fracture in the bulk silicon. (paper)

  6. Efficient C-O and C-N bond forming cross-coupling reactions catalyzed by core-shell structured Cu/Cu2O nanowires

    KAUST Repository

    Elshewy, Ahmed M.

    2013-01-01

    linkages in organic molecules. Despite significant advancements in this field, the construction of C-O and C–N bonds is still a major challenge for organic chemists, due to the involvement of harsh reaction conditions or the use of expensive catalysts

  7. Background CH4 and N2O fluxes in low-input short rotation coppice

    Science.gov (United States)

    Görres, Carolyn-Monika; Zenone, Terenzio; Ceulemans, Reinhart

    2016-04-01

    Extensively managed short rotation coppice systems are characterized by low fluxes of CH4 and N2O. However due to the large global warming potential of these trace gases (GWP100: CH4: 34, N2O: 298), such background fluxes can still significantly contribute to offsetting the CO2 uptake of short rotation coppice systems. Recent technological advances in fast-response CH4 and N2O analysers have improved our capability to capture these background fluxes, but their quantification still remains a challenge. As an example, we present here CH4 and N2O fluxes from a short-rotation bioenergy plantation in Belgium. Poplars have been planted in a double-row system on a loamy sand in 2010 and coppiced in the beginning of 2012 and 2014 (two-year rotation system). In 2013 (June - November) and 2014 (April - August), the plantation's CH4 and N2O fluxes were measured in parallel with an eddy covariance tower (EC) and an automated chamber system (AC). The EC had a detection limit of 13.68 and 0.76 μmol m-2 h-1 for CH4 and N2O, respectively. The median detection limit of the AC was 0.38 and 0.08 μmol m-2 h-1 for CH4 and N2O, respectively. The EC picked up a few high CH4 emission events with daily averages >100 μmol m-2 h-1, but a large proportion of the measured fluxes were within the EC's detection limit. The same was true for the EC-derived N2O fluxes where the daily average flux was often close to the detection limit. Sporadically, some negative (uptake) fluxes of N2O were observed. On the basis of the EC data, no clear link was found between CH4 and N2O fluxes and environmental variables. The problem with fluxes within the EC detection limit is that a significant amount of the values can show the opposite sign, thus "mirroring" the true flux. Subsequently, environmental controls of background trace gas fluxes might be disguised in the analysis. As a next step, it will be tested if potential environmental drivers of background CH4 and N2O fluxes at the plantation can be

  8. X-ray Absorption Spectroscopy and Density Functional Theory Studies of [(H3buea)FeIII-X]n1 (X= S2-, O2-,OH-): Comparison of Bonding and Hydrogen Bonding in Oxo and Sulfido Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Abhishek; Hocking, Rosalie K.; /Stanford U., Chem. Dept.; Larsen, Peter; Borovik, Andrew S.; /Kansas U.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.; /SLAC,

    2006-09-27

    Iron L-edge, iron K-edge, and sulfur K-edge X-ray absorption spectroscopy was performed on a series of compounds [Fe{sup III}H{sub 3}buea(X)]{sup n-} (X = S{sup 2-}, O{sup 2-}, OH{sup -}). The experimentally determined electronic structures were used to correlate to density functional theory calculations. Calculations supported by the data were then used to compare the metal-ligand bonding and to evaluate the effects of H-bonding in Fe{sup III}-O vs Fe{sup III-}S complexes. It was found that the Fe{sup III-}O bond, while less covalent, is stronger than the FeIII-S bond. This dominantly reflects the larger ionic contribution to the Fe{sup III-}O bond. The H-bonding energy (for three H-bonds) was estimated to be -25 kcal/mol for the oxo as compared to -12 kcal/mol for the sulfide ligand. This difference is attributed to the larger charge density on the oxo ligand resulting from the lower covalency of the Fe-O bond. These results were extended to consider an Fe{sup IV-}O complex with the same ligand environment. It was found that hydrogen bonding to Fe{sup IV-}O is less energetically favorable than that to Fe{sup III-}O, which reflects the highly covalent nature of the Fe{sup IV-}O bond.

  9. Competing intramolecular N-H⋯O=C hydrogen bonds and extended intermolecular network in 1-(4-chlorobenzoyl)-3-(2-methyl-4-oxopentan-2-yl) thiourea analyzed by experimental and theoretical methods

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, Aamer, E-mail: aamersaeed@yahoo.com [Department of Chemistry, Quaid-I-Azam University, Islamabad 45320 (Pakistan); Khurshid, Asma [Department of Chemistry, Quaid-I-Azam University, Islamabad 45320 (Pakistan); Jasinski, Jerry P. [Department of Chemistry, Keene State College, 229 Main Street Keene, NH 03435-2001 (United States); Pozzi, C. Gustavo; Fantoni, Adolfo C. [Instituto de Física La Plata, Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 49 y 115, La Plata, Buenos Aires (Argentina); Erben, Mauricio F., E-mail: erben@quimica.unlp.edu.ar [CEQUINOR (UNLP, CONICET-CCT La Plata), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 962, (1900) La Plata, Buenos Aires (Argentina)

    2014-03-18

    Highlights: • Two distinct N-H⋯O=C intramolecular competing hydrogen bonds are feasible in the title molecule. • Crystal structures and vibrational properties were determined. • The C=O and C=S double bonds of the acyl-thiourea group are mutually oriented in opposite directions. • A strong hyperconjugative lpO1 → σ{sup ∗}(N2-H) remote interaction was detected. • Topological analysis reveals a Cl⋯N interaction playing a relevant role in crystal packing. - Abstract: The synthesis of a novel 1-acyl-thiourea species (C{sub 14}H{sub 17}N{sub 2}O{sub 2}SCl), has been tailored in such a way that two distinct N-H⋯O=C intramolecular competing hydrogen bonds are feasible. The X-ray structure analysis as well as the vibrational (FT-IR and FT-Raman) data reveal that the S conformation is preferred, with the C=O and C=S bonds of the acyl-thiourea group pointing in opposite directions. The preference for the intramolecular N-H⋯O=C hydrogen bond within the -C(O)NHC(S)NH- core is confirmed. The Natural Bond Orbital and the Atom in Molecule approaches demonstrate that a strong hyperconjugative lpO → σ{sup ∗}(N-H) remote interaction between the acyl and the thioamide N-H groups is responsible for the stabilization of the S conformation. Intermolecular interactions have been characterized in the periodic system electron density and the topological analysis reveals the presence of an extended intermolecular network in the crystal, including a Cl⋯N interaction playing a relevant role in crystal packing.

  10. Cleavage of thymine N3-H bonds by low-energy electrons attached to base π* orbitals

    International Nuclear Information System (INIS)

    Theodore, Magali; Sobczyk, Monika; Simons, Jack

    2006-01-01

    In this work, we extend our earlier studies on single strand break (SSB) formation in DNA to consider the possibility of cleaving a thymine N 3 -H bond to generate a nitrogen-centered anion and a hydrogen radical which might proceed to induce further bond cleavages. In earlier studies, we considered SSBs induced by low-energy electrons that attach to DNA bases' π* orbitals or to phosphate P=O π* orbitals to cleave sugar-phosphate C-O bonds or base-sugar N 1 -C bonds. We also studied the effects of base π-stacking on the rates of such bond cleavages. To date, our results suggest that sugar-phosphate C-O bonds have the lowest barriers to cleavage, that attachment of electrons with energies below 2 eV most likely occurs at the base π* orbitals, that electrons with energy above 2 eV can also attach to phosphate P=O π* orbitals, and that base π stacking has a modest but slowing effect on the rates of SSB formation. However, we had not yet examined the possibility that base N 3 -H bonds could rupture subsequent to base π* orbital capture. In the present work, the latter possibility is considered and it is found that the barrier to cleavage of the N 3 -H bond in thymine is considerably higher than for cleaving sugar-phosphate C-O bonds, so our prediction that SSB formation is dominated by C-O bond cleavage remains intact

  11. (Metformin-κ2N,N′(salicylato-κ2O,O′copper(II trihydrate

    Directory of Open Access Journals (Sweden)

    Sandra Julieta Gutiérrez Ojeda

    2018-02-01

    Full Text Available The hydrous title complex [systematic name: (1,1-dimethylbiguanide-κ2N2,N4(2-oxidobenzoato-κ2O,O′copper(II trihydrate], [Cu(C7H4O3(C4H11N5]·3H2O, was synthesized electrolytically from an ethanolic solution of metformin hydrochloride, acetylsalicylic acid, Pepto-Bismol and a copper sacrificial anode. Diffraction data were collected at 0.56 Å resolution, allowing the accurate determination of H-atom positions in the neutral metformin ligand. Both imine groups in metformin have very similar N=C bond lengths, 1.2978 (17 and 1.3033 (17 Å, and the salicylate dianion behaves as a chelating ligand. The coordination sphere of the copper(II cation deviates marginally from a square-planar arrangement. In the crystal, short Cu...Cu separations of 3.5476 (3 Å are observed, along with classical hydrogen-bonding interactions.

  12. catena-Poly[[aquabis[N-(pyridin-3-ylisonicotinamide-κN1]copper(II]-μ-fumarato-κ2O1:O4

    Directory of Open Access Journals (Sweden)

    Sultan H. Qiblawi

    2012-12-01

    Full Text Available In the title compound, [Cu(C4H2O4(C11H9N3O2(H2O]n, CuII ions on crystallographic twofold rotation axes are coordinated in a square pyramidal environment by two trans O atoms belonging to two monodentate fumarate anions, two trans isonicotinamide pyridyl N-donor atoms from monodentate, pendant 3-pyridylisonicotinamide (3-pina ligands, and one apical aqua ligand, also sited on the crystallographic twofold rotation axis. The exobidentate fumarate ligands form [Cu(fumarate(3-pina2(H2O]n coordination polymer chains that are arranged parallel to [001]. In the crystal, these polymeric chains are anchored into supramolecular layers parallel to (100 by O—H...O hydrogen bonds between aqua ligands and unligating fumarate O atoms, and N—H...O(=C hydrogen bonds between 3-pina ligands. In turn, the layers aggregate by weak C—H...N and C—H...O hydrogen bonds, affording a three-dimensional network.

  13. Crystallographic and infrared spectroscopic study of bond distances in Ln[Fe(CN)6].4H2O (Ln=lanthanide)

    International Nuclear Information System (INIS)

    Zhou Xianju; Wong, W.-T.; Faucher, Michele D.; Tanner, Peter A.

    2008-01-01

    Along with crystallographic data of Ln[Fe(CN) 6 ].4H 2 O (Ln=lanthanide), the infrared spectra are reassigned to examine bond length trends across the series of Ln. The changes in mean Ln-O, Ln-N, C≡N and Fe-C distances are discussed and the bond natures of Ln-N and Ln-O are studied by bond length linear or quadratic fitting and comparisons with relevant ionic radii. The two different C≡N bond distances have been simulated by the covalo-electrostatic model. - Graphical abstract: Crystallographic and FTIR data for Ln[Fe(CN) 6 ].4H 2 O enable the changes in Ln-O, Ln-N, C≡N and Fe-C distances to be determined and modeled across the lanthanide series

  14. N,N′-Bis(4-bromophenyl-N,N′-dimethylurea

    Directory of Open Access Journals (Sweden)

    Alexandre Pocinho

    2018-02-01

    Full Text Available The structure of the title compound, C15H14Br2N2O, at 180 K has monoclinic (P21/n symmetry. It was obtained unexpectedly from the decomposition of the parent 4-bromo-N-tert-butoxycarbonyl-N-methyl-aniline. It exhibits an `endo' conformation with angles between the two aromatic rings slightly lower than the average values found for similar compounds on the Cambridge Structural Database. In the crystal, C—H...O hydrogen bonds and short Br...Br halogen bonds [3.444 (1 Å] are observed.

  15. Characteristics of N2O production and hydroxylamine variation in short-cut nitrification SBR process.

    Science.gov (United States)

    Hu, Bo; Ye, Junhong; Zhao, Jianqiang; Ding, Xiaoqian; Yang, Liwei; Tian, Xiaolei

    2018-01-01

    In order to study the characteristics of nitrous oxide (N 2 O) production and hydroxylamine (NH 2 OH) variation under oxic conditions, concentrations of NH 2 OH and N 2 O were simultaneously monitored in a short-cut nitrification sequencing batch reactor (SBR) operated with different influent ammonia concentrations. In the short-cut nitrification process, N 2 O production was increased with the increasing of ammonia concentration in influent. The maximum concentrations of dissolved N 2 O-N in the reactor were 0.11 mg/L and 0.52 mg/L when ammonia concentrations in the influent were 50 mg/L and 70 mg/L respectively. Under the low and medium ammonia load phases, the concentrations of NH 2 OH-N in the reactor were remained at a low level which fluctuated around 0.06 mg/L in a small range, and did not change with the variation of influent NH 4 + -N concentration. Based on the determination results, the half-saturation of NH 2 OH in the biochemical conversion process of NH 2 OH to NO 2 - -N was very small, and the value of 0.05 mg NH 2 OH-N/L proposed in the published literature was accurate. NH 2 OH is an important intermediate in the nitrification process, and the direct determination of NH 2 OH in the nitrification process was beneficial for revealing the kinetic process of NH 2 OH production and consumption as well as the effects of NH 2 OH on N 2 O production in the nitrification process.

  16. Ab initio studies of O-2(-) (H2O)(n) and O-3(-) (H2O)(n) anionic molecular clusters, n

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Kurten, T.; Enghoff, Martin Andreas Bødker

    2011-01-01

    that anionic O-2(-)(H2O)n and O-3(-)(H2O)n clusters are thermally stabilized at typical atmospheric conditions for at least n = 5. The first 4 water molecules are strongly bound to the anion due to delocalization of the excess charge while stabilization of more than 4 H2O is due to normal hydrogen bonding....... Although clustering up to 12 H2O, we find that the O-2 and O-3 anions retain at least ca. 80 % of the charge and are located at the surface of the cluster. The O-2(-) and O-3(-) speicies are thus accessible for further reactions. We consider the distributions of cluster sizes as function of altitude before...

  17. Trends in Strong Chemical Bonding in C2, CN, CN-, CO, N2, NO, NO+, and O2

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2017-01-01

    The strong chemical bonds between C, N, and O play a central role in chemistry, and their formation and cleavage are critical steps in very many catalytic processes. The close-lying molecular orbital energies and large correlation effects pose a challenge to electronic structure calculations and ...

  18. Supra-molecular hydrogen-bonding patterns in the N(9)-H protonated and N(7)-H tautomeric form of an N(6) -benzoyl-adenine salt: N (6)-benzoyl-adeninium nitrate.

    Science.gov (United States)

    Karthikeyan, Ammasai; Jeeva Jasmine, Nithianantham; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-02-01

    In the title molecular salt, C12H10N5O(+)·NO3 (-), the adenine unit has an N (9)-protonated N(7)-H tautomeric form with non-protonated N(1) and N(3) atoms. The dihedral angle between the adenine ring system and the phenyl ring is 51.10 (10)°. The typical intra-molecular N(7)-H⋯O hydrogen bond with an S(7) graph-set motif is also present. The benzoyl-adeninium cations also form base pairs through N-H⋯O and C-H⋯N hydrogen bonds involving the Watson-Crick face of the adenine ring and the C and O atoms of the benzoyl ring of an adjacent cation, forming a supra-molecular ribbon with R 2 (2)(9) rings. Benzoyl-adeninum cations are also bridged by one of the oxygen atoms of the nitrate anion, which acts as a double acceptor, forming a pair of N-H⋯O hydrogen bonds to generate a second ribbon motif. These ribbons together with π-π stacking inter-actions between the phenyl ring and the five- and six-membered adenine rings of adjacent mol-ecules generate a three-dimensional supra-molecular architecture.

  19. Studies of Hydrogen Bonding Between N, N-Dimethylacetamide and Primary Alcohols

    Directory of Open Access Journals (Sweden)

    M. S. Manjunath

    2009-01-01

    Full Text Available Hydrogen bonding between N, N-dimethylacetamide (DMA and alcohols has been studied in carbon tetrachloride solution by an X-band Microwave bench at 936GHz. The dielectric relaxation time (τ of the binary system are obtained by both Higasi's method and Gopalakrishna method. The most likely association complex between alcohol and DMA is 1:1 stoichiometric complex through the hydroxyl group of the alcohol and the carbonyl group of amide. The results show that the interaction between alcohols and amides is 1:1 complex through the free hydroxyl group of the alcohol and the carbonyl group of amide and the alkyl chain-length of both the alcohols and amide plays an important role in the determination of the strength of hydrogen bond (O-H: C=O formed and suggests that the proton donating ability of alcohols is in the order: 1-propanol < 1-butanol < 1-pentanol and the accepting ability of DMA.

  20. Ab Initio Calculations on Halogen Bond Between N-Br and Electron-donating Groups

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-hua; CHEN Xue-song; ZOU Jian-wei; YU Qing-sen

    2007-01-01

    Ab initio calculations of complexes formed between N-bromosuccinimide and a series of electron-donating groups were performed at the level of MP2/Lanl2DZ* to gain a deeper insight into the nature of the N-Br halogen stronger halogen-bonding complex than the C-Br. A comparison of neutral hydrogen bond complex series reveals that the electron-donating capacities of the atoms decrease in the order, N>O>S; O(sp3)>O(sp2), which is adequate for the C-Br halogen bonding. Interaction energies, in conjunction with the geometrical parameters show that the affinitive capacity of trihalide anions X-3 with N-bromosuccinimide are markedly lower than that of the corresponding X- with N-bromosuccinimide, even lower than those of neutral molecules with N-bromosuccinimide. AIM analyses further confirmed the above results.

  1. UNA METODOLOGÍA PARA VALORAR UN CALLABLE BOND A METHODOLOGY TO VALUE A CALLABLE BOND

    Directory of Open Access Journals (Sweden)

    Carlos Alexander Grajales

    2008-12-01

    Full Text Available En este artículo, la metodología empleada para valorar un bono que tiene una opción call incluida (callable bond o bono redimible viene dada por la implementación numérica del modelo de tasa corta de Hull y White, la cual se logra con un árbol trinomial de tasas. Así mismo, se presenta una aplicación para el caso de la compañía Interconexión Eléctrica S. A. -ISA-, que ha emitido dos instrumentos callable bonds. Para el desarrollo de tal aplicación se construyen algunos algoritmos computacionales, los cuales pueden valorar los dos bonos con opción call que tiene dicha compañía y además permiten la estructuración de un bono con opción call incluida de tipo genérico.In this paper the methodology employed for assessing a bond that includes a call option (callable bond is given by the numeric implementation of Hull and White short rate model, which it is accomplished through an interest rates trinomial tree. It also presents an application for the case of the company Interconexión Eléctrica S. A. -ISA-, which has issued two callable bonds instruments. For the development of such application computer algorithms are implemented to value the two bonds of the company, and they also allow the structuring of a bond with a generic type call option included.

  2. Determination of wafer bonding mechanisms for plasma activated SiN films with x-ray reflectivity

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, S [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Sandhu, R [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Wojtowicz, M [Northrop Grumman Space Technology, Redondo Beach, CA 90278 (United States); Sun, Y [Department of Chemical Engineering, University of California, Los Angeles, CA 90095 (United States); Hicks, R [Department of Chemical Engineering, University of California, Los Angeles, CA 90095 (United States); Goorsky, M S [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States)

    2005-05-21

    Specular and diffuse x-ray reflectivity measurements were employed for wafer bonding studies of surface and interfacial reactions in {approx}800 A thick SiN films deposited on III-V substrates. CuK{sub {alpha}}{sub 1} radiation was employed for these measurements. The as-deposited films show very low surface roughness and uniform, high density SiN. Reflectivity measurements show that an oxygen plasma treatment converts the nitride surface to a somewhat porous SiO{sub x} layer (67 A thick, at 80% of SiO{sub 2} density), with confirmation of the oxide formation from x-ray photoelectron spectroscopy. Reactions at the bonded interface of two oxygen plasma treated SiN layers were examined using a bonded structure from which one of the III-V wafers is removed. Reflectivity measurements of bonded structures annealed at 150 deg. C and 300 deg. C show an increase in the SiO{sub x} layer density and thickness and even a density gradient across this interface. The increase in density is correlated with an increase in bond strength, where after the 300 deg. C anneal, a high interfacial bond strength, exceeding the bulk strength, was achieved.

  3. Synthesis, spectral characterization and structural studies of a novel O, N, O donor semicarbazone and its binuclear copper complex with hydrogen bond stabilized lattice

    Science.gov (United States)

    Layana, S. R.; Saritha, S. R.; Anitha, L.; Sithambaresan, M.; Sudarsanakumar, M. R.; Suma, S.

    2018-04-01

    A novel O,N,O donor salicylaldehyde-N4-phenylsemicarbazone, (H2L) has been synthesized and physicochemically characterized. Detailed structural studies of H2L using single crystal X-ray diffraction technique reveals the existence of intra and inter molecular hydrogen bonding interactions, which provide extra stability to the molecule. We have successfully synthesized a binuclear copper(II) complex, [Cu2(HL)2(NO3)(H2O)2]NO3 with phenoxy bridging between the two copper centers. The complex was characterized by elemental analysis, magnetic susceptibility and conductivity measurements, FT-IR, UV-Visible, mass and EPR spectral methods. The grown crystals of the copper complex were employed for the single crystal X-ray diffraction studies. The complex possesses geometrically different metal centers, in which the ligand coordinates through ketoamide oxygen, azomethine nitrogen and deprotonated phenoxy oxygen. The extensive intermolecular hydrogen bonding interactions of the coordinated and the lattice nitrate groups interconnect the complex units to form a 2D supramolecular assembly. The ESI mass spectrum substantiates the existence of 1:1 complex. The g values obtained from the EPR spectrum in frozen DMF suggest dx2 -y2 ground state for the unpaired electron.

  4. N-Oxide-N-oxide interactions and Cl...Cl halogen bonds in pentachloropyridine N-oxide: the many-body approach to interactions in the crystal state.

    Science.gov (United States)

    Wzgarda-Raj, Kinga; Rybarczyk-Pirek, Agnieszka J; Wojtulewski, Sławomir; Palusiak, Marcin

    2018-02-01

    Pentachloropyridine N-oxide, C 5 Cl 5 NO, crystallizes in the monoclinic space group P2 1 /c. In the crystal structure, molecules are linked by C-Cl...Cl halogen bonds into infinite ribbons extending along the crystallographic [100] direction. These molecular aggregates are further stabilized by very short intermolecular N-oxide-N-oxide interactions into herringbone motifs. Computations based on quantum chemistry methods allowed for a more detailed description of the N-oxide-N-oxide interactions and Cl...Cl halogen bonds. For this purpose, Hirshfeld surface analysis and the many-body approach to interaction energy were applied.

  5. Effect of surface pretreatment on interfacial chemical bonding states of atomic layer deposited ZrO2 on AlGaN

    International Nuclear Information System (INIS)

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Wang, Hong; Ng, Serene Lay Geok; Ji, Rong; Liu, Zhi Hong

    2015-01-01

    Atomic layer deposition (ALD) of ZrO 2 on native oxide covered (untreated) and buffered oxide etchant (BOE) treated AlGaN surface was analyzed by utilizing x-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy. Evidenced by Ga–O and Al–O chemical bonds by XPS, parasitic oxidation during deposition is largely enhanced on BOE treated AlGaN surface. Due to the high reactivity of Al atoms, more prominent oxidation of Al atoms is observed, which leads to thicker interfacial layer formed on BOE treated surface. The results suggest that native oxide on AlGaN surface may serve as a protecting layer to inhibit the surface from further parasitic oxidation during ALD. The findings provide important process guidelines for the use of ALD ZrO 2 and its pre-ALD surface treatments for high-k AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors and other related device applications

  6. The Co-III-C bond in (1-thia-4,7-diazacyclodecyl-kappa N-3(4),N-7,C-10)(1,4,7-triazacyclononane-kappa N-3(1),N-4,N-7)-cobalt(III) dithionate hydrate

    DEFF Research Database (Denmark)

    Harris, Pernille; Kofod, P.; Song, Y.S.

    2003-01-01

    In the title compound, [Co(C6H15N3)(C7H15N2S)]S2O6.H2O, the Co-C bond distance is 1.9930 (13) Angstrom, which is shorter than for related compounds with the linear 1,6-diamino-3-thiahexan-4-ide anion in place of the macrocyclic 1-thia-4,7-diazacyclodecan-8-ide anion. The coordinated carbanion pro...... produces an elongation of 0.102 (7) Angstrom of the Co-N bond to the 1,4,7-triazacyclononane N atom in the trans position. This relatively small trans influence is presumably a result of the triamine ligand forming strong bonds to the Co-III atom....

  7. Short hydrogen bonds in the catalytic mechanism of serine proteases

    Directory of Open Access Journals (Sweden)

    VLADIMIR LESKOVAC

    2008-04-01

    Full Text Available The survey of crystallographic data from the Protein Data Bank for 37 structures of trypsin and other serine proteases at a resolution of 0.78–1.28 Å revealed the presence of hydrogen bonds in the active site of the enzymes, which are formed between the catalytic histidine and aspartate residues and are on average 2.7 Å long. This is the typical bond length for normal hydrogen bonds. The geometric properties of the hydrogen bonds in the active site indicate that the H atom is not centered between the heteroatoms of the catalytic histidine and aspartate residues in the active site. Taken together, these findings exclude the possibility that short “low-barrier” hydrogen bonds are formed in the ground state structure of the active sites examined in this work. Some time ago, it was suggested by Cleland that the “low-barrier hydrogen bond” hypothesis is operative in the catalytic mechanism of serine proteases, and requires the presence of short hydrogen bonds around 2.4 Å long in the active site, with the H atom centered between the catalytic heteroatoms. The conclusions drawn from this work do not exclude the validity of the “low-barrier hydrogen bond” hypothesis at all, but they merely do not support it in this particular case, with this particular class of enzymes.

  8. Bonding Characteristics and Chemical Inertness of Zr–Si–N Coatings with a High Si Content in Glass Molding

    Directory of Open Access Journals (Sweden)

    Li-Chun Chang

    2018-05-01

    Full Text Available High-Si-content transition metal nitride coatings, which exhibited an X-ray amorphous phase, were proposed as protective coatings on glass molding dies. In a previous study, the Zr–Si–N coatings with Si contents of 24–30 at.% exhibited the hardness of Si3N4, which was higher than those of the middle-Si-content (19 at.% coatings. In this study, the bonding characteristics of the constituent elements of Zr–Si–N coatings were evaluated through X-ray photoelectron spectroscopy. Results indicated that the Zr 3d5/2 levels were 179.14–180.22 and 180.75–181.61 eV for the Zr–N bonds in ZrN and Zr3N4 compounds, respectively. Moreover, the percentage of Zr–N bond in the Zr3N4 compound increased with increasing Si content in the Zr–Si–N coatings. The Zr–N bond of Zr3N4 dominated when the Si content was >24 at.%. Therefore, high Si content can stabilize the Zr–N compound in the M3N4 bonding structure. Furthermore, the thermal stability and chemical inertness of Zr–Si–N coatings were evaluated by conducting thermal cycle annealing at 270 °C and 600 °C in a 15-ppm O2–N2 atmosphere. The results indicated that a Zr22Si29N49/Ti/WC assembly was suitable as a protective coating against SiO2–B2O3–BaO-based glass for 450 thermal cycles.

  9. Theoretical study of the interaction of N2 with water molecules. (H2O)/sub n/:N2, n = 1--8

    International Nuclear Information System (INIS)

    Curtiss, L.A.; Eisgruber, C.L.

    1984-01-01

    Ab initio molecular orbital calculations including correlation energy have been carried out on the interaction of a single H 2 O molecule with N 2 . The potential energy surface for H 2 O:N 2 is found to have a minimum corresponding to a HOH xxx N 2 structure with a weak ( -1 ) hydrogen bond. A second, less stable, configuration corresponding to a H 2 O xxx N 2 structure with N 2 bonded side on to the oxygen of H 2 O was found to be either a minimum or a saddle point in the potential energy surface depending on the level of calculation. The minimal STO-3G basis set was used to investigate the interaction of up to eight H 2 O molecules with N 2 . Two types of clusters, one containing only HOH xxx N 2 interactions and the other containing both HOH xxxN 2 and H 2 O xxx N 2 interactions, were investigated for [N 2 :(H 2 O)/sub n/, n = 2--8

  10. Poly[(6-carboxypicolinato-κ3O2,N,O6(μ3-pyridine-2,6-dicarboxylato-κ5O2,N,O6:O2′:O6′dysprosium(III

    Directory of Open Access Journals (Sweden)

    Xu Li

    2009-11-01

    Full Text Available In the title complex, [Dy(C7H3NO4(C7H4NO4]n, one of the ligands is fully deprotonated while the second has lost only one H atom. Each DyIII ion is coordinated by six O atoms and two N atoms from two pyridine-2,6-dicarboxylate and two 6-carboxypicolinate ligands, displaying a bicapped trigonal-prismatic geometry. The average Dy—O bond distance is 2.40 Å, some 0.1Å longer than the corresponding Ho—O distance in the isotypic holmium complex. Adjacent DyIII ions are linked by the pyridine-2,6-dicarboxylate ligands, forming a layer in (100. These layers are further connected by π–π stacking interactions between neighboring pyridyl rings [centroid–centroid distance = 3.827 (3 Å] and C—H...O hydrogen-bonding interactions, assembling a three-dimensional supramolecular network. Within each layer, there are other π–π stacking interactions between neighboring pyridyl rings [centroid–centroid distance = 3.501 (2 Å] and O—H...O and C—H...O hydrogen-bonding interactions, which further stabilize the structure.

  11. Aqua[bis(pyrimidin-2-yl-kappa N)amine](carbonato-kappa 2O,O')copper(II) dihydrate.

    Science.gov (United States)

    van Albada, Gerard A; Mutikainen, Ilpo; Turpeinen, Urho; Reedijk, Jan

    2002-03-01

    The title mononuclear complex, [Cu(CO(3))(C(8)H(7)N(5))(H(2)O)] x 2H(2)O, was obtained by fixation of CO(2) by a mixture of copper(II) tetrafluoroborate and the ligand bis(pyrimidin-2-yl)amine in ethanol/water. The Cu(II) ion of the complex has a distorted square-pyramidal environment, with a basal plane formed by two N atoms of the ligand and two chelating O atoms of the carbonate group, while the apical position is occupied by the O atom of the coordinating water molecule. In the solid state, hydrogen-bonding interactions are dominant, the most unusual being the Watson-Crick-type coplanar ligand pairing through two N--H...N bonds. Lattice water molecules also participate in hydrogen bonding.

  12. Electron densities and chemical bonding in TiC, TiN and TiO derived from energy band calculations

    International Nuclear Information System (INIS)

    Blaha, P.

    1983-10-01

    It was the aim of this paper to describe the chemical bonding of TiC, TiN and TiO by means of energy bands and electron densities. Using the respective potentials we have calculated the bandstructure of a finer k-grid with the linearized APW method to obtain accurate densities of states (DOS). These DOS wer partitioned into local partial contributions and the metal d DOS were further decomposed into tsub(2g) and esub(g) symmetry components in order to additionally characterize bonding. The electron densities corresponding to the occupied valence states are obtained from the LAPW calculations. They provide further insight into characteristic trends in the series from TiC to TiO: around the nonmetal site the density shows increasing localisation; around the metal site the deviation from spherical symmetry changes from esub(g) to tsub(2g). Electron density plots of characteristic band states allow to describe different types of bonding occurring in these systems. For TiC and TiN recent measurements of the electron densities exist for samples of TiCsub(0.94) and TiNsub(0.99), where defects cause static displacements of the Ti atoms. If this effect can be compensated by an atomic model one hopefully can extrapolate to stoichiometric composition. This procedure allows a comparison with structure factors derived from theoretical electron densities. The agreement for TiN is very good. For TiC the extrapolated data agree in terms of the deviations from spherical symmetry near the Ti site with the LAPW data, but the densities around both atoms are more localized than in theory. An explanation could be: a) the defects affect the electronic structure in TiCsub(0.94) with respect to TiCsub(1.0): b) the applied atomic model does not properly extrapolate to stoichiometry, because parameters of this model correlate or become unphysical. (Author)

  13. Ab initio studies of O2-(H2O)n and O3-(H2O)n anionic molecular clusters, n≤12

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Kurtén, T.; Enghoff, Martin Andreas Bødker

    2011-01-01

    that anionic O2−(H2O)n and O3−(H2O)n clusters are thermally stabilized at typical atmospheric conditions for at least n = 5. The first 4 water molecules are strongly bound to the anion due to delocalization of the excess charge while stabilization of more than 4 H2O is due to normal hydrogen bonding. Although...... clustering up to 12 H2O, we find that the O2 and O3 anions retain at least ca. 80 % of the charge and are located at the surface of the cluster. The O2− and O3− speicies are thus accessible for further reactions. Finally, the thermodynamics of a few relevant cluster reactions are considered....

  14. Process for protecting bonded components from plating shorts

    Science.gov (United States)

    Tarte, Lisa A.; Bonde, Wayne L.; Carey, Paul G.; Contolini, Robert J.; McCarthy, Anthony M.

    2000-01-01

    A method which protects the region between a component and the substrate onto which the components is bonded using an electrically insulating fillet of photoresist. The fillet protects the regions from subsequent plating with metal and therefore shorting the plated conductors which run down the sides of the component and onto the substrate.

  15. Tetrakis(6-methyl-2,2′-bipyridine-1κ2N,N′;2κ2N,N′;3κ2N,N′;4κ2N,N′-tetra-μ-nitrato-1:2κ2O:O′;2:3κ3O:O′,O′′;2:3κ3O,O′:O′′;3:4κ2O:O′-tetranitrato-1κ4O,O′;4κ2O,O′-tetralead(II

    Directory of Open Access Journals (Sweden)

    Roya Ahmadi

    2009-10-01

    Full Text Available In the tetranuclear centrosymmetric title compound, [Pb4(NO38(C11H10N24], irregular PbN2O5 and PbN2O4 coordination polyhedra occur. The heptacoordinated lead(II ion is bonded to two bidentate and one monodentate nitrate ion and one bidentate 6-methyl-2,2′-bipyridine (mbpy ligand. The six-coordinate lead(II ion is bonded to one bidentate and two monodentate nitrate anions and one mbpy ligand. In the crystal, bridging nitrate anions lead to infinite chains propagating in [111]. A number of C—H...O hydrogen bonds may stabilize the structure.

  16. Iron(II)-catalyzed intermolecular amino-oxygenation of olefins through the N-O bond cleavage of functionalized hydroxylamines.

    Science.gov (United States)

    Lu, Deng-Fu; Zhu, Cheng-Liang; Jia, Zhen-Xin; Xu, Hao

    2014-09-24

    An iron-catalyzed diastereoselective intermolecular olefin amino-oxygenation reaction is reported, which proceeds via an iron-nitrenoid generated by the N-O bond cleavage of a functionalized hydroxylamine. In this reaction, a bench-stable hydroxylamine derivative is used as the amination reagent and oxidant. This method tolerates a range of synthetically valuable substrates that have been all incompatible with existing amino-oxygenation methods. It can also provide amino alcohol derivatives with regio- and stereochemical arrays complementary to known amino-oxygenation methods.

  17. Direct bonding of ALD Al2O3 to silicon nitride thin films

    DEFF Research Database (Denmark)

    Laganà, Simone; Mikkelsen, E. K.; Marie, Rodolphe

    2017-01-01

    microscopy (TEM) by improving low temperature annealing bonding strength when using atomic layer deposition of aluminum oxide. We have investigated and characterized bonding of Al2O3-SixNy (low stress silicon rich nitride) and Al2O3-Si3N4 (stoichiometric nitride) thin films annealed from room temperature up......O3 can be bonded to. Preliminary tests demonstrating a well-defined nanochannel system with-100 nm high channels successfully bonded and tests against leaks using optical fluorescence technique and transmission electron microscopy (TEM) characterization of liquid samples are also reported. Moreover...

  18. Influência da adição de carga inorgânica aos sistemas adesivos na resistência adesiva à dentina = Influence of filler addition to bonding agents on dentin bond strength

    Directory of Open Access Journals (Sweden)

    Cesar, Patricia Desiderio

    2005-01-01

    Full Text Available O objetivo desse estudo foi avaliar o papel da presença ou não de partículas de carga nos sistemas adesivos sobre a resistência adesiva à dentina. Foram utilizados 70 dentes bovinos, divididos em 7 grupos, que foram embutidos em resina acrílica e desgastados até a exposição de uma área plana de dentina. Todos os espécimes receberam o condicionamento ácido e aplicação dos sistemas adesivos, contendo ou não as partículas de carga, de acordo com as instruções do fabricante: Prime & Bond 2. 1 (sem carga – SC, Prime & Bond NT (com carga – CC, Prime & Bond 2. 1 + 10% de SiO² (CC, One Step (SC, One Step Plus (CC, Sigle Bond (SC e Single Bond +10% de SiO² (CC. Cilindros de resina composta TPH Spectrum foram realizados sobre a área de adesão. Os espécimes foram armazenados por 24 a 37C°, e então submetidos ao teste de cisalhamento. Os dados obtidos foram submetidos à análise estatística, empregando- se o teste de análise de variância paramétrica, seguida pelo teste de Tukey a um nível de significância de 5%. Concluiu-se que, para todos os sistemas adesivos testados, a adição de partículas de carga não resultou em diferenças significativas na força de adesão. Porém, entre as marcas comerciais, observamos diferenças significativas, o que demonstra a influência dos demais componentes na eficiência adesiva

  19. Calibration of short rate term structure models from bid-ask coupon bond prices

    Science.gov (United States)

    Gomes-Gonçalves, Erika; Gzyl, Henryk; Mayoral, Silvia

    2018-02-01

    In this work we use the method of maximum entropy in the mean to provide a model free, non-parametric methodology that uses only market data to provide the prices of the zero coupon bonds, and then, a term structure of the short rates. The data used consists of the prices of the bid-ask ranges of a few coupon bonds quoted in the market. The prices of the zero coupon bonds obtained in the first stage, are then used as input to solve a recursive set of equations to determine a binomial recombinant model of the short term structure of the interest rates.

  20. N-(3-Nitrophenylmaleamic acid

    Directory of Open Access Journals (Sweden)

    B. Thimme Gowda

    2010-07-01

    Full Text Available In the title compound, C10H8N2O5, the molecule is slightly distorted from planarity. The molecular structure is stabilized by two intramolecular hydrogen bonds. The first is a short O—H...O hydrogen bond (H...O distance = 1.57 Å within the maleamic acid unit and the second is a C—H...O hydrogen bond (H...O distance = 2.24 Å which connects the amide group with the benzene ring. The nitro group is twisted by 6.2 (2° out of the plane of the benzene ring. The crystal structure manifests a variety of hydrogen bonding. The packing is dominated by a strong intermolecular N—H...O interaction which links the molecules into chains running along the b axis. The chains within a plane are further assembled by three additional types of intermolecular C—H...O hydrogen bonds to form a sheet parallel to the (overline{1}01 plane.

  1. Effect of solvent on proton location and dynamic behavior in short intramolecular hydrogen bonds studied by molecular dynamics simulations and NMR experiments

    International Nuclear Information System (INIS)

    Mori, Yukie; Masuda, Yuichi

    2015-01-01

    Highlights: • MD simulations were performed to study dynamics of strong hydrogen bonds. • Nuclear magnetic relaxation times of proton were measured in solution. • The hydrogen bond of dibenzoylmethane enol is asymmetric in methanol solution. • Formation or breakage of intermolecular hydrogen bonds can trigger proton transfer. • Dimethylsulfoxide may form a bifurcated hydrogen bond with a hydrogen-bonded system. - Abstract: Hydrogen phthalate anion has a short strong O–H–O hydrogen bond (H-bond). According to previous experimental studies, the H-bond is asymmetric and two tautomers are interconverted in aqueous solutions. In the present study, the effects of polar solvents on the H-bond in a zwitterionic hydrogen phthalate derivative 1 were investigated by quantum mechanics/molecular mechanics molecular dynamics (MD) simulations. The analyses of the trajectories for the methanol solution showed that the H-bonding proton tends to be located closer to the carboxylate group that forms fewer intermolecular H-bonds, than to the other carboxylate group and that the intramolecular proton transfer in 1 is triggered by the breakage and/or formation of an intermolecular H-bond. The enol form of dibenzoylmethane (2) also has a short H-bond, and the OH bond is reported to be rather long (>1.1 Å) in the crystal. In the present study, the effects of the solvent on the H-bond in 2 were investigated by molecular orbital (MO) calculations, MD simulations and nuclear magnetic resonance (NMR) spectroscopy. Density functional theory (DFT) calculations for 2 in vacuum indicated that the barrier height for the intramolecular proton transfer is almost the same as the zero-point energy of the vibrational ground state, resulting in broad distribution of the proton density along the H-bond, owing to the nuclear quantum effect. The OH distances were determined in CCl 4 , acetonitrile, and dimethylsulfoxide solutions from the magnetic dipolar interactions between the 17 O and 1

  2. Effect of solvent on proton location and dynamic behavior in short intramolecular hydrogen bonds studied by molecular dynamics simulations and NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Yukie, E-mail: mori.yukie@ocha.ac.jp; Masuda, Yuichi

    2015-09-08

    Highlights: • MD simulations were performed to study dynamics of strong hydrogen bonds. • Nuclear magnetic relaxation times of proton were measured in solution. • The hydrogen bond of dibenzoylmethane enol is asymmetric in methanol solution. • Formation or breakage of intermolecular hydrogen bonds can trigger proton transfer. • Dimethylsulfoxide may form a bifurcated hydrogen bond with a hydrogen-bonded system. - Abstract: Hydrogen phthalate anion has a short strong O–H–O hydrogen bond (H-bond). According to previous experimental studies, the H-bond is asymmetric and two tautomers are interconverted in aqueous solutions. In the present study, the effects of polar solvents on the H-bond in a zwitterionic hydrogen phthalate derivative 1 were investigated by quantum mechanics/molecular mechanics molecular dynamics (MD) simulations. The analyses of the trajectories for the methanol solution showed that the H-bonding proton tends to be located closer to the carboxylate group that forms fewer intermolecular H-bonds, than to the other carboxylate group and that the intramolecular proton transfer in 1 is triggered by the breakage and/or formation of an intermolecular H-bond. The enol form of dibenzoylmethane (2) also has a short H-bond, and the OH bond is reported to be rather long (>1.1 Å) in the crystal. In the present study, the effects of the solvent on the H-bond in 2 were investigated by molecular orbital (MO) calculations, MD simulations and nuclear magnetic resonance (NMR) spectroscopy. Density functional theory (DFT) calculations for 2 in vacuum indicated that the barrier height for the intramolecular proton transfer is almost the same as the zero-point energy of the vibrational ground state, resulting in broad distribution of the proton density along the H-bond, owing to the nuclear quantum effect. The OH distances were determined in CCl{sub 4}, acetonitrile, and dimethylsulfoxide solutions from the magnetic dipolar interactions between the {sup 17

  3. Cleavage of sp3 C-O bonds via oxidative addition of C-H bonds.

    Science.gov (United States)

    Choi, Jongwook; Choliy, Yuriy; Zhang, Xiawei; Emge, Thomas J; Krogh-Jespersen, Karsten; Goldman, Alan S

    2009-11-04

    (PCP)Ir (PCP = kappa(3)-C(6)H(3)-2,6-[CH(2)P(t-Bu)(2)](2)) is found to undergo oxidative addition of the methyl-oxygen bond of electron-poor methyl aryl ethers, including methoxy-3,5-bis(trifluoromethyl)benzene and methoxypentafluorobenzene, to give the corresponding aryloxide complexes (PCP)Ir(CH(3))(OAr). Although the net reaction is insertion of the Ir center into the C-O bond, density functional theory (DFT) calculations and a significant kinetic isotope effect [k(CH(3))(OAr)/k(CD(3))(OAr) = 4.3(3)] strongly argue against a simple insertion mechanism and in favor of a pathway involving C-H addition and alpha-migration of the OAr group to give a methylene complex followed by hydride-to-methylene migration to give the observed product. Ethoxy aryl ethers, including ethoxybenzene, also undergo C-O bond cleavage by (PCP)Ir, but the net reaction in this case is 1,2-elimination of ArO-H to give (PCP)Ir(H)(OAr) and ethylene. DFT calculations point to a low-barrier pathway for this reaction that proceeds through C-H addition of the ethoxy methyl group followed by beta-aryl oxide elimination and loss of ethylene. Thus, both of these distinct C-O cleavage reactions proceed via initial addition of a C(sp(3))-H bond, despite the fact that such bonds are typically considered inert and are much stronger than C-O bonds.

  4. Theoretical study of ZnO adsorption and bonding on Al2O3 (0001) surface

    Institute of Scientific and Technical Information of China (English)

    LI Yanrong; YANG Chun; XUE Weidong; LI Jinshan; LIU Yonghua

    2004-01-01

    ZnO adsorption on sapphire (0001) surface is theoretically calculated by using a plane wave ultrasoft pseudo-potential method based on ab initio molecular dynamics. The results reveal that the surface relaxation in the first layer Al-O is reduced, even eliminated after the surface adsorption of ZnO, and the chemical bonding energy is 434.3(±38.6) kJ·mol-1. The chemical bond of ZnO (0.185 ± 0.01 nm) has a 30° angle away from the adjacent Al-O bond, and the stable chemical adsorption position of the Zn is deflected from the surface O-hexagonal symmetry with an angle of about 30°. The analysis of the atomic populations, density of state and bonding electronic density before and after the adsorption indicates that the chemical bond formed by the O2- of the ZnO and the surface Al3+ has a strong ionic bonding characteristic, while the chemical bond formed by the Zn2+ and the surface O2- has an obvious covalent characteristic, which comes mainly from the hybridization of the Zn 4s and the O 2p and partially from that of the Zn 3d and the O 2p.

  5. Noble gas bond and the behaviour of XeO3 under pressure.

    Science.gov (United States)

    Hou, Chunju; Wang, Xianlong; Botana, Jorge; Miao, Maosheng

    2017-10-18

    Over the past few decades, the concept of hydrogen bonds, in which hydrogen is electrophilic, has been extended to halogen bonds, chalcogen bonds and pnicogen bonds. Herein, we show that such a non-covalent bonding also exists in noble gas compounds. Using first principles calculations, we illustrate the OXe-O bond in molecular crystal XeO 3 and its effect on the behavior of this compound under pressure. Our calculations show that the covalent Xe-O bond lengths were elongated with increasing pressure and correspondingly the Xe-O stretching vibration frequencies were red shifted, which is similar to the change of H-bonds under pressure. The OXe-O bond and related hopping of O between neighboring Xe sites also correspond to the structural changes in the XeO 3 compounds at about 2 GPa. Our study extends the concept of hydrogen bonding to include all p-block elements and show a new bonding type for Noble gas elements in which it acts as an electrophilic species.

  6. Crystal structure of diquabis (3-hydroxybenzoato-κO)bis(nicotinamide-κN)zinc(II)

    International Nuclear Information System (INIS)

    Sahin, O.; Buyukgungor, O.; Koese, D. A.; Necefoglu, H.

    2010-01-01

    The title compound, [Zn(C 7 H 5 O 3 ) 2 (C 6 H 6 N 2 O) 2 (H 2 O) 2 ], is a two-dimensional hydrogen-bonded supramolecular complex. The Zn I I ion resides on the centre of symmetry and is in an octahedral coordination environment comprising two pyridyl N atoms, two carboxylate O atoms and two O atoms from water molecules. Intermolecular N-H...O and O-H...O hydrogen bonds produce R 1 1 (6), R 2 2 (7), R 2 2 (8), R 2 2 (16), R 2 2 (20), R 2 2 (22) and R 3 3 (30) rings which lead to a one-dimensional polymeric chains. An extensive two-dimensional network of N-H...O, O-H...O, C-H...O hydrogen bonds, and C-H...π interactions are responsible for crystal stabilization.

  7. [Effect of short-time drought process on denitrifying bacteria abundance and N2O emission in paddy soil].

    Science.gov (United States)

    Lu, Jing; Liu, Jin-Bo; Sheng, Rong; Liu, Yi; Chen, An-Lei; Wei, Wen-Xue

    2014-10-01

    In order to investigate the impact of drying process on greenhouse gas emissions and denitrifying microorganisms in paddy soil, wetting-drying process was simulated in laboratory conditions. N2O flux, redox potential (Eh) were monitored and narG- and nosZ-containing denitrifiers abundances were determined by real-time PCR. N2O emission was significantly increased only 4 h after drying process began, and it was more than 6 times of continuous flooding (CF) at 24 h. In addition, narG and nosZ gene abundances were increased rapidly with the drying process, and N2O emission flux was significantly correlated with narG gene abundance (P driving microorganisms which caused the N2O emission in the short-time drought process in paddy soil.

  8. N6,3′-cyclo-5′-O-Cyanomethylthymidine

    Directory of Open Access Journals (Sweden)

    Jingbo Sun

    2010-06-01

    Full Text Available The title compound, C19H20N4O4, is a cyclonucleoside with a C—N linkage. The furanose ring adopts a twist C3′-endo/C2′-exo (close to 3T2 conformation with a pseudorotational phase angle (P of 8.1° and puckering amplitude (vm of 30.6°. The orientation of the pyrimidine ring with respect to the sugar group is anti. One intramolecular C—H...O hydrogen bond is observed. The packing features an N—H...O hydrogen bond.

  9. Rotational Isomers, Intramolecular Hydrogen Bond, and IR Spectra of o-Vinylphenol Homologs

    Science.gov (United States)

    Glazunov, V. P.; Berdyshev, D. V.; Balaneva, N. N.; Radchenko, O. S.; Novikov, V. L.

    2018-03-01

    The ν(OH) stretching-mode bands in solution IR spectra of five o-vinylphenol (o-VPh) homologs in the slightly polar solvents CCl4 and n-hexane were studied. Several rotamers with free OH groups were found in solutions of o-VPh and its methyl-substituted derivatives in n-hexane. The proportion of rotamers in o-VPh homologs with intramolecular hydrogen bonds (IHBs) O-H...π varied from 22 to 97% in the gas and cyclohexane according to B3LYP/cc-pVTZ calculations. The theoretically estimated effective enthalpies -ΔH of their IHBs varied in the range 0.20-2.24 kcal/mol.

  10. Theoretical investigation on hydrogen bond interaction of diketo/keto-enol form uracil and thymine tautomers with intercalators.

    Science.gov (United States)

    Anithaa, V S; Vijayakumar, S; Sudha, M; Shankar, R

    2017-11-06

    The interaction of diketo and keto-enol form of thymine and uracil tautomers with acridine (Acr), phenazine (Phen), benzo[c]cinnoline (Ben), 1,10-phenanthroline (1,10-Phe), and 4,7-phenenthroline (4,7-Phe) intercalating drug molecules was studied using density functional theory at B3LYP/6-311++G** and M05-2×/6-311++G** levels of theory. From the interaction energy, it is found that keto-enol form tautomers have stronger interaction with intercalators than diketone form tautomers. On complex formation of thymine and uracil tautomers with benzo[c]cinnoline the drug molecules have high interaction energy values of -20.14 (BenT3) and -20.55 (BenU3) kcal mol -1 , while phenazine has the least interaction energy values of -6.52 (PhenT2) and -6.67 (PhenU2) kcal mol -1 . The closed shell intermolecular type interaction between the molecules with minimum elliptical value of 0.018 and 0.019 a.u at both levels of theory has been found from topological analysis. The benzo[c]cinnoline drug molecule with thymine and uracil tautomers has short range intermolecular N-H…N, C-H…O, and O-H...N hydrogen bonds (H-bonds) resulting in higher stability than other drug molecules. The proper hydrogen bonds N-H..N and O-H..N have the frequency shifted toward the lower side (red shifted) with the elongation in their bond length while the improper hydrogen bond C-H...O has the frequency shifted toward the higher side (blue shifted) of the spectral region with the contraction in their bond length. Further, the charge transfer between proton acceptor and donor along with stability of the bond is studied using natural bond orbital (NBO) analysis. Graphical abstract Hydrogen bond interaction of diketo/keto-enol form uracil and thymine tautomers with intercalators.

  11. Bis(2,2'-bipyridyl-κN,N')(carbonato-κO,O')cobalt(III) bromide trihydrate.

    Science.gov (United States)

    Ma, Peng-Tao; Wang, Yu-Xia; Zhang, Guo-Qian; Li, Ming-Xue

    2007-12-06

    The title complex, [Co(CO(3))(C(10)H(8)N(2))(2)]Br·3H(2)O, is isostructural with the chloride analogue. The six-coordinated octahedral [Co(2,2'-bipy)(2)CO(3)](+) cation (2,2'-bipy is 2,2'-bipyrid-yl), bromide ion and water mol-ecules are linked together via O-H⋯Br and O-H⋯O hydrogen bonds, generating a one-dimensional chain.

  12. Synthesis and characterization of a pentadentate Schiff base N3O2 ligand and its neutral technetium(V) complex. X-ray structure of (N,N'-3-azapentane-1,5-diylbis(3-(1-iminoethyl)-6-methyl-2H-pyran-2,4(3H)-dionato)(3-)-O,O',N,N',N double-prime)oxotechnetium(V)

    International Nuclear Information System (INIS)

    Shuang Liu; Rettig, S.J.; Orvig, C.

    1991-01-01

    Preparations of a potentially pentadentate ligand, N,N'-3-azapentane-1,5-diylbis(3-(1-iminoethyl)-6-methyl-2H-pyran-2,4-(3H)-dione) (H 3 apa), and its neutral technetium(V) complex, [TcO(apa)], are described. The 13 C and 1 H NMR, infrared, optical, and mass spectra of the pentadentate ligand and its technetium(V) complex are reported. The X-ray structure of [TcO(apa)] has been determined. Crystals are orthorhombic, space group Pbca, with a = 12.833 (2) angstrom, b = 33.320 (5) angstrom, c = 9.942(4) angstrom, V = 4251 (2) angstrom, and Z = 8. The structure was solved by Patterson and Fourier methods and was refined by full-matrix least-squares procedures to R = 0.028 and R W = 0.032 for 4054 reflections with I ≥ 3σ(I). The technetium(V) complex has a highly distorted octahedral coordination geometry comprising a [TcO] 3+ core and the triply deprotonated pentadentate ligand wrapping around the metal center. One of the two oxygen donor atoms of the pentadentate ligand is located trans to the Tc double-bond O bond while the remaining four donor atoms, N 3 O, occupy the equatorial sites. The distance between the deprotonated N(1) atom to the Tc center is significantly shorter than a normal Tc-N single bond length of 2.10 angstroms, but longer than that for a Tc-N triple bond. 1 H NMR spectral data reveal a rigid solution structure for the complex, which undergoes no conformational and configurational exchange at temperatures up to 50C

  13. From Stable ZnO and GaN Clusters to Novel Double Bubbles and Frameworks

    Directory of Open Access Journals (Sweden)

    Matthew R. Farrow

    2014-05-01

    Full Text Available A bottom up approach is employed in the design of novel materials: first, gas-phase “double bubble” clusters are constructed from high symmetry, Th, 24 and 96 atom, single bubbles of ZnO and GaN. These are used to construct bulk frameworks. Upon geometry optimization—minimisation of energies and forces computed using density functional theory—the symmetry of the double bubble clusters is reduced to either C1 or C2, and the average bond lengths for the outer bubbles are 1.9 Å, whereas the average bonds for the inner bubble are larger for ZnO than for GaN; 2.0 Å and 1.9 Å, respectively. A careful analysis of the bond distributions reveals that the inter-bubble bonds are bi-modal, and that there is a greater distortion for ZnO. Similar bond distributions are found for the corresponding frameworks. The distortion of the ZnO double bubble is found to be related to the increased flexibility of the outer bubble when composed of ZnO rather than GaN, which is reflected in their bulk moduli. The energetics suggest that (ZnO12@(GaN48 is more stable both in gas phase and bulk frameworks than (ZnO12@(ZnO48 and (GaN12@(GaN48. Formation enthalpies are similar to those found for carbon fullerenes.

  14. Syntheses and characterizations of secondary Pb-O bonding supported Pb(II)-sulfonate complexes

    Science.gov (United States)

    Huang, Guo-Zhen; Zou, Xin; Zhu, Zhi-Biao; Deng, Zhao-Peng; Huo, Li-Hua; Gao, Shan

    2018-06-01

    The reaction of Pb(II) salts and mono- or disulfonates leads to the formation of eight new Pb(II)-mono/disulfonate complexes, [Pb(L1)(H2O)]2 (1), [Pb4(L2)2(AcO)2]n·5nH2O (2), [Pb(L3)(H2O)]2 (3), [Pb(HL4)(H2O)2]n·nH2O (4), [Pb(HL5)(H2O)2]n·2nH2O (5), [Pb(H2L6)(H2O)]n·nDMF·2nH2O (6), [Pb2(H3L7)4(H2O)6]·2H2O (7) and [Pb(H2L7)(H2O)]n·nH2O (8) (H2L1= 2-hydroxy-5-methyl-benzenesulfonic acid, H3L2= 2-hydroxyl-5-methyl- 1,3-benzenedisulfonic acid, H2L3= 2-hydroxy-5-nitro-benzenesulfonic acid, H3L4= 2-hydroxyl-5-bromo-1,3- benzenedisulfonic acid, H3L5= 2-hydroxyl-5-carboxyl-benzenesulfonic acid, H4L6= 2,5-dihydroxyl-3-carboxyl- benzenesulfonic acid, H4L7= 2,4-dihydroxyl-5-carboxyl-benzenesulfonic acid, DMF = N,N'-dimethyl-formamide, AcO- = acetate), which have been characterized by elemental analysis, IR, TG, PL, powder and single-crystal X-ray diffraction. In view of the primary Pb-O bonds, these eight complexes exhibit diverse dinuclear (1, 3 and 7), helical chain (4), wave-like chain (5), linear chain (6), zigzag chain (8) and layer structure (2), in which the Pb(II) cations present different hemi-directed geometries. Taking the secondary Pb-O bonds into account, chain structure for complex 7, layer motifs for complexes 1 and 3-6, as well as 3-D framework for complex 8 are observed with Pb(II) cations showing more intricate holo-directed geometries. The various coordination modes of these seven different mono/disulfonate anions are responsible for the formation of these multiple structures. Furthermore, the introduction of hydroxyl and carboxyl groups increases the coordination ability of sulfonate to the p-block metal cation. Luminescent analyses indicate that complex 7 presents purple emission at 395 nm at room temperature.

  15. Mo-Mo Quintuple Bond is Highly Reactive in H-H, C-H, and O-H σ-Bond Cleavages Because of the Polarized Electronic Structure in Transition State.

    Science.gov (United States)

    Chen, Yue; Sakaki, Shigeyoshi

    2017-04-03

    The recently reported high reactivity of the Mo-Mo quintuple bond of Mo 2 (NN) 2 (1) {NN = μ-κ 2 -CH[N(2,6-iPr 2 C 6 H 3 )] 2 } in the H-H σ-bond cleavage was investigated. DFT calculations disclosed that the H-H σ-bond cleavage by 1 occurs with nearly no barrier to afford the cis-dihydride species followed by cis-trans isomerization to form the trans-dihydride product, which is consistent with the experimental result. The O-H and C-H bond cleavages by 1 were computationally predicted to occur with moderate (ΔG° ⧧ = 9.0 kcal/mol) and acceptable activation energies (ΔG° ⧧ = 22.5 kcal/mol), respectively, suggesting that the Mo-Mo quintuple bond can be applied to various σ-bond cleavages. In these σ-bond cleavage reactions, the charge-transfer (CT Mo→XH ) from the Mo-Mo quintuple bond to the X-H (X = H, C, or O) bond and that (CT XH→Mo ) from the X-H bond to the Mo-Mo bond play crucial roles. Though the HOMO (dδ-MO) of 1 is at lower energy and the LUMO + 2 (dδ*-MO) of 1 is at higher energy than those of RhCl(PMe 3 ) 2 (LUMO and LUMO + 1 of 1 are not frontier MO), the H-H σ-bond cleavage by 1 more easily occurs than that by the Rh complex. Hence, the frontier MO energies are not the reason for the high reactivity of 1. The high reactivity of 1 arises from the polarization of dδ-type MOs of the Mo-Mo quintuple bond in the transition state. Such a polarized electronic structure enhances the bonding overlap between the dδ-MO of the Mo-Mo bond and the σ*-antibonding MO of the X-H bond to facilitate the CT Mo→XH and reduce the exchange repulsion between the Mo-Mo bond and the X-H bond. This polarized electronic structure of the transition state is similar to that of a frustrated Lewis pair. The easy polarization of the dδ-type MOs is one of the advantages of the metal-metal multiple bond, because such polarization is impossible in the mononuclear metal complex.

  16. Potassium (2,2'-bipyridine-κN,N')bis-(carbonato-κO,O')cobaltate(III) dihydrate.

    Science.gov (United States)

    Wang, Jian-Fei; Lin, Jian-Li

    2010-09-30

    In the title compound, K[Co(CO(3))(2)(C(10)H(8)N(2))]·2H(2)O, the Co(III) atom is coordinated by two bipyridine N atoms and four O atoms from two bidentate chelating carbonate anions, and thus adopts a distorted octa-hedral N(2)O(4) environment. The [Co(bipy)(CO(3))(2)](-) (bipy is 2,2'-bipyridine) -units are stacked along [100] via π-π stacking inter-actions, with inter-planar distances between the bipyridine rings of 3.36 (4) and 3.44 (6) Å, forming chains. Classical O-H⋯O hydrogen-bonding inter-actions link the chains, forming channels along (100) in which the K(+) ions reside and leading to a three-dimensional supra-molecular architecture.

  17. N,N′-(Ethane-1,2-diyldi-o-phenylenebis(pyridine-2-carboxamide

    Directory of Open Access Journals (Sweden)

    Shuranjan Sarkar

    2011-11-01

    Full Text Available The title molecule, C26H22N4O2, is centrosymmetric and adopts an anti conformation. Two intramolecular hydrogen bonds, viz. amide–pyridine N—H...N and phenyl–amide C—H...O, stabilize the trans conformation of the (pyridine-2-carboxamidophenyl group about the amide plane. In the crystal, the presence of weak intermolecular C—H...O hydrogen bonds results in the formation of a three-dimensional network.

  18. Nucleophilicities of Lewis Bases B and Electrophilicities of Lewis Acids A Determined from the Dissociation Energies of Complexes B⋯A Involving Hydrogen Bonds, Tetrel Bonds, Pnictogen Bonds, Chalcogen Bonds and Halogen Bonds

    Directory of Open Access Journals (Sweden)

    Ibon Alkorta

    2017-10-01

    Full Text Available It is shown that the dissociation energy D e for the process B⋯A = B + A for 250 complexes B⋯A composed of 11 Lewis bases B (N2, CO, HC≡CH, CH2=CH2, C3H6, PH3, H2S, HCN, H2O, H2CO and NH3 and 23 Lewis acids (HF, HCl, HBr, HC≡CH, HCN, H2O, F2, Cl2, Br2, ClF, BrCl, H3SiF, H3GeF, F2CO, CO2, N2O, NO2F, PH2F, AsH2F, SO2, SeO2, SF2, and SeF2 can be represented to good approximation by means of the equation D e = c ′ N B E A , in which N B is a numerical nucleophilicity assigned to B, E A is a numerical electrophilicity assigned to A, and c ′ is a constant, conveniently chosen to have the value 1.00 kJ mol−1 here. The 250 complexes were chosen to cover a wide range of non-covalent interaction types, namely: (1 the hydrogen bond; (2 the halogen bond; (3 the tetrel bond; (4 the pnictogen bond; and (5 the chalcogen bond. Since there is no evidence that one group of non-covalent interaction was fitted any better than the others, it appears the equation is equally valid for all the interactions considered and that the values of N B and E A so determined define properties of the individual molecules. The values of N B and E A can be used to predict the dissociation energies of a wide range of binary complexes B⋯A with reasonable accuracy.

  19. [(Nitrato-κO,O')(nitrito-κO,O')(0.25/1.75)]bis-(1,10-phenanthroline-κN,N')cadmium(II).

    Science.gov (United States)

    Najafi, Ezzatollah; Amini, Mostafa M; Ng, Seik Weng

    2011-01-22

    The reaction of cadmium nitrate and sodium nitrite in the presence of 1,10-phenanthroline yields the mixed nitrate-nitrite title complex, [Cd(NO(2))(1.75)(NO(3))(0.25)(C(12)H(8)N(2))(2)]. The metal ion is bis-chelated by two N-heterocycles as well as by the nitrate/nitrite ions in a distorted dodeca-hedral CdN(4)O(4) coordination environment. One nitrite group is ordered; the other is disordered with respect to a nitrate group (ratio 0.75:0.25) concerning the O atom that is not involved in bonding to the metal ion.

  20. Crystal structures of 2-[(4,6-diaminopyrimidin-2-ylsulfanyl]-N-(naphthalen-1-ylacetamide and 2-[(4,6-diaminopyrimidin-2-ylsulfanyl]-N-(4-fluorophenylacetamide

    Directory of Open Access Journals (Sweden)

    S. Subasri

    2017-02-01

    Full Text Available The title compounds, C16H15N5OS, (I, and C12H12FN5OS, (II, are [(diaminopyrimidinesulfanyl]acetamide derivatives. In (I, the pyrimidine ring is inclined to the naphthalene ring system by 55.5 (1°, while in (II, the pyrimidine ring is inclined to the benzene ring by 58.93 (8°. In (II, there is an intramolecular N—H...N hydrogen bond and a short C—H...O contact. In the crystals of (I and (II, molecules are linked by pairs of N—H...N hydrogen bonds, forming inversion dimers with R22(8 ring motifs. In the crystal of (I, the dimers are linked by bifurcated N—H...(O,O and C—H...O hydrogen bonds, forming layers parallel to (100. In the crystal of (II, the dimers are linked by N—H...O hydrogen bonds, also forming layers parallel to (100. The layers are linked by C—H...F hydrogen bonds, forming a three-dimensional architecture.

  1. Hindered Csbnd N bond rotation in triazinyl dithiocarbamates

    Science.gov (United States)

    Jung, Taesub; Do, Hee-Jin; Son, Jongwoo; Song, Jae Hee; Cha, Wansik; Kim, Yeong-Joon; Lee, Kyung-Koo; Kwak, Kyungwon

    2018-01-01

    The substituent and solvent effects on the rotation around a Csbnd N amide bond were studied for a series of triazine dibenzylcarbamodithioates. The Gibbs free energies (ΔG‡) were measured to be 16-18 kcal/mol in DMSO-d6 and toluene-d8 using variable-temperature nuclear magnetic resonance (VT-1H NMR) spectroscopy. Density functional theory (DFT) calculations reproduced the experimental observations with various substituents, as well as solvents. From the detailed analysis of the DFT results, we found that the electron donating dibenzyl amine group increased the electron population on the triazinyl ring, which decreased the rotational barrier of the Csbnd N bond in the dithiocarbamate group attached to the triazinyl ring. The higher electron population on the triazine moiety stabilizes the partial double bond character of the Ssbnd C bond, which competitively excludes the double bond character of the Csbnd N bond. Therefore, the rotational dynamics of the Csbnd N bond in dithiocarbamates can be a sensitive probe to small differences in the electron population of substituents on sulfur.

  2. (Carbonato-κ(2)O,O')bis-(5,5'-dimethyl-2,2'-bipyridyl-κ(2)N,N')cobalt(III) bromide trihydrate.

    Science.gov (United States)

    Arun Kumar, Kannan; Meera, Parthsarathi; Amutha Selvi, Madhavan; Dayalan, Arunachalam

    2012-04-01

    In the title complex, [Co(CO(3))(C(12)H(12)N(2))(2)]Br·3H(2)O, the Co(III) cation has a distorted octa-hedral coordination environment. It is chelated by four N atoms of two different 5,5'-dimethyl-2,2'-bipyridyl (dmbpy) ligands in axial and equatorial positions, and by two O atoms of a carbonate anion completing the equatorial positions. Although the water mol-ecules are disordered and their H atoms were not located, there are typical O⋯O distances between 2.8 and 3.0 Å, indicating O-H⋯O hydrogen bonding. The crystal packing is consolidated by C-H⋯O and C-H⋯Br hydrogen bonds, as well as π-π stacking inter-actions between adjacent pyridine rings of the dmbpy ligands, with centroid-centroid distances of 3.694 (3) and 3.7053 (3) Å.

  3. Potential short-term losses of N2O and N2 from high concentrations of biogas digestate in arable soils

    Science.gov (United States)

    Fiedler, Sebastian Rainer; Augustin, Jürgen; Wrage-Mönnig, Nicole; Jurasinski, Gerald; Gusovius, Bertram; Glatzel, Stephan

    2017-09-01

    Biogas digestate (BD) is increasingly used as organic fertilizer, but has a high potential for NH3 losses. Its proposed injection into soils as a countermeasure has been suggested to promote the generation of N2O, leading to a potential trade-off. Furthermore, the effect of high nutrient concentrations on N2 losses as they may appear after injection of BD into soil has not yet been evaluated. Hence, we performed an incubation experiment with soil cores in a helium-oxygen atmosphere to examine the influence of soil substrate (loamy sand, clayey silt), water-filled pore space (WFPS; 35, 55, 75 %) and application rate (0, 17.6 and 35.2 mL BD per soil core, 250 cm3) on the emission of N2O, N2 and CO2 after the usage of high loads of BD. To determine the potential capacity for gaseous losses, we applied anaerobic conditions by purging with helium for the last 24 h of incubation. Immediate N2O and N2 emissions as well as the N2 / (N2O+N2) product ratio depended on soil type and increased with WFPS, indicating a crucial role of soil gas diffusivity for the formation and emission of nitrogenous gases in agricultural soils. However, emissions did not increase with the application rate of BD. This is probably due to an inhibitory effect of the high NH4+ content of BD on nitrification. Our results suggest a larger potential for N2O formation immediately following BD injection in the fine-textured clayey silt compared to the coarse loamy sand. By contrast, the loamy sand showed a higher potential for N2 production under anaerobic conditions. Our results suggest that short-term N losses of N2O and N2 after injection may be higher than probable losses of NH3 following surface application of BD.

  4. Chemical Bond Parameters in Sr3MRhO6 (M=Rare earth)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chemical bond parameters, that is, bond covalency, bond valence, macroscopic linear susceptibility, and oxidation states of elements in Sr3MRhO6 (M=Sm, Eu, Tb, Dy, Ho, Er, Yb) have been calculated. The results indicate that the bond covalency of M-O decreases sharply with the decrease of ionic radius of M3+ from Sm to Yb, while no obvious trend has been found for Rh-O and Sr-O bonds. The global instability index indicates that the crystal structures of Sr3MrhO6 (M = Sm, Eu, Tb, Dy, Ho) have strained bonds.

  5. Structural characterisation of GaN and GaN:O thin films

    International Nuclear Information System (INIS)

    Granville, S.; Budde, F.; Koo, A.; Ruck, B.J.; Trodahl, H.J.; Bittar, A.; Metson, J.B.; James, B.J.; Kennedy, V.J.; Markwitz, A.; Prince, K.E.

    2005-01-01

    In its crystalline form, the wide band-gap semiconductor GaN is of exceptional interest in the development of suitable materials for short wavelength optoelectronic devices. One of the barriers to its potential usefulness however is the large concentration of defects present even in MBE-grown material often due to the lattice mismatch of the GaN with common substrate materials. Calculations have suggested that GaN films grown with an amorphous structure retain many of the useful properties of the crystalline material, including the wide band-gap and a low density of states in the gap, and thus may be a suitable alternative to the single crystal GaN for a variety of applications. We have performed structural and compositional measurements on heavily disordered GaN thin films with and without measureable O and H concentrations grown using ion-assisted deposition. X-ray diffraction and x-ray absorption fine structure measurements show that stoichiometric films are composed of nanocrystallites of ∼3-4 nm in size and that GaN films containing O to 10 at % or greater are amorphous. Rutherford backscattering spectroscopy (RBS) was performed and nuclear reaction analysis (NRA) measurements were made to determine the elemental composition of the films and elastic recoil detection (ERD) detected the hydrogen concentrations. Secondary ion mass spectroscopy (SIMS) measurements were used to depth profile the films. X-ray photoelectron spectroscopy (XPS) measurements probed the bonding environment of the Ga in the films. (author). 2 figs., 1 tab

  6. Theoretical study of the mechanism of formation of a chemical bond between two ions: A+ and B+. Application to CO++. Interpretation of N2O++ photo-dissociation mechanisms

    International Nuclear Information System (INIS)

    Levasseur, Nathalie

    1989-01-01

    This research thesis reports the theoretical study of the mechanism of formation of a chemical bond between two positively charged species, within the frame of the valence-bond theory and in the CO model case. The analysis in terms of orthogonal and non orthogonal orbitals leads to two very different interpretations, and allows potential curves of doubly charged diatomic ions to be simply explained, the generally evoked model to be put into question again, and a predictive model to be developed. The theoretical determination of N 2 O potential energy surfaces and of the first states of N 2 O ++ ( 3 Σ - , 1 Δ, 1 Σ + et 3 Π) allowed experimental results of N 2 O ++ photo-dissociation to be at least qualitatively understood and interpreted. Moreover, the study of electronic configurations involved in dissociation, showed that the model elaborated for a diatomic molecule is also valid for a triatomic system [fr

  7. Crystal structures of 2-[(4,6-di-amino-pyrimidin-2-yl)sulfan-yl]-N-(naphthalen-1-yl)acetamide and 2-[(4,6-di-amino-pyrimidin-2-yl)sulfan-yl]-N-(4-fluoro-phen-yl)acetamide.

    Science.gov (United States)

    Subasri, S; Kumar, Timiri Ajay; Sinha, Barij Nayan; Jayaprakash, Venkatesan; Viswanathan, Vijayan; Velmurugan, Devadasan

    2017-02-01

    The title compounds, C 16 H 15 N 5 OS, (I), and C 12 H 12 FN 5 OS, (II), are [(di-amino-pyrimidine)-sulfan-yl]acetamide derivatives. In (I), the pyrimidine ring is inclined to the naphthalene ring system by 55.5 (1)°, while in (II), the pyrimidine ring is inclined to the benzene ring by 58.93 (8)°. In (II), there is an intra-molecular N-H⋯N hydrogen bond and a short C-H⋯O contact. In the crystals of (I) and (II), mol-ecules are linked by pairs of N-H⋯N hydrogen bonds, forming inversion dimers with R 2 2 (8) ring motifs. In the crystal of (I), the dimers are linked by bifurcated N-H⋯(O,O) and C-H⋯O hydrogen bonds, forming layers parallel to (100). In the crystal of (II), the dimers are linked by N-H⋯O hydrogen bonds, also forming layers parallel to (100). The layers are linked by C-H⋯F hydrogen bonds, forming a three-dimensional architecture.

  8. μ-Adipato-κ2O1:O4-bis{[2,6-bis(1H-benzimidazol-2-yl-κN3pyridine-κN](nitrato-κOlead(II}

    Directory of Open Access Journals (Sweden)

    Lian-Qiang Wei

    2010-01-01

    Full Text Available The dinuclear title compound, [Pb2(C6H8O4(NO32(C19H13N52], lies with the mid-point of the butyl chain of the bridging adipate unit on a center of inversion. The PbII ion is covalently bonded to the nitrate anion and is bonded to a carboxylate group of the adipate unit by another covalent bond. The N-heterocycle functions in a chelating tridentate mode. The metal atom exists in a Ψ-octahedral coordination environment. When weaker Pb...O interactions are also considered, the geometry is a Ψ-tricapped trigonal prism in which the lone-pair electrons occupy one face of the trigonal prism. Adjacent molecules are linked into a layer structure by N—H...O hydrogen bonds.

  9. Role of Short-Range Chemical Ordering in (GaN) 1–x (ZnO) x for Photodriven Oxygen Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dennis P. [Department; Neuefeind, Joerg C. [Chemical; Koczkur, Kallum M. [Department; Bish, David L. [Department; Skrabalak, Sara E. [Department

    2017-07-21

    (GaN)1–x(ZnO)x (GZNO) is capable of visible-light driven water splitting, but its bandgap at x ≤ 0.15 (>2.7 eV) results in poor visible-light absorption. Unfortunately, methods to narrow its bandgap by incorporating higher ZnO concentrations are accompanied by extensive Urbach tailing near the absorption-edge, which is indicative of structural disorder or chemical inhomogeneities. We evaluated whether this disorder is intrinsic to the bond-length distribution in GZNO or is a result of defects introduced from the loss of Zn during nitridation. Here, the synthesis of GZNO derived from layered double hydroxide (LDH) precursors is described which minimizes Zn loss and chemical inhomogeneities and enhances visible-light absorption. The average and local atomic structures of LDH-derived GZNO were investigated using X-ray and neutron scattering and are correlated with their oxygen evolution rates. An isotope-contrasted neutron-scattering experiment was conducted in conjunction with reverse Monte Carlo (RMC) simulations. We showed that a bond-valence bias in the RMC refinements reproduces the short-range ordering (SRO) observed in structure refinements using isotope-contrasted neutron data. The findings suggest that positional disorder of cation–anion pairs in GZNO partially arises from SRO and influences local bond relaxations. Furthermore, particle-based oxygen evolution reactions (OERs) in AgNO3 solution reveal that the crystallite size of GZNO correlates more than positional disorder with oxygen evolution rate. These findings illustrate the importance of examining the local structure of multinary photocatalysts to identify dominant factors in particulate-based photodriven oxygen evolution.

  10. Silylene-Nickel Promoted Cleavage of B-O Bonds: From Catechol Borane to the Hydroborylene Ligand.

    Science.gov (United States)

    Hadlington, Terrance J; Szilvási, Tibor; Driess, Matthias

    2017-06-19

    The first 16 valence electron [bis(NHC)](silylene)Ni 0 complex 1, [( TMS L)ClSi:→Ni(NHC) 2 ], bearing the acyclic amido-chlorosilylene ( TMS L)ClSi: ( TMS L=N(SiMe 3 )Dipp; Dipp=2,6-Pr i 2 C 6 H 4 ) and two NHC ligands (N-heterocyclic carbene=:C[(Pr i )NC(Me)] 2 ) was synthesized in high yield and structurally characterized. Compound 1 is capable of facile dihydrogen activation under ambient conditions to give the corresponding HSi-NiH complex 2. Most notably, 1 reacts with catechol borane to afford the unprecedented hydroborylene-coordinated (chloro)(silyl)nickel(II) complex 3, {[cat( TMS L)Si](Cl)Ni←:BH(NHC) 2 }, via the cleavage of two B-O bonds and simultaneous formation of two Si-O bonds. The mechanism for the formation of 3 was rationalized by means of DFT calculations, which highlight the powerful synergistic effects of the Si:→Ni moiety in the breaking of incredibly strong B-O bonds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A two-dimensional CdII coordination polymer: poly[diaqua[μ3-5,6-bis(pyridin-2-ylpyrazine-2,3-dicarboxylato-κ5O2:O3:O3,N4,N5]cadmium

    Directory of Open Access Journals (Sweden)

    Monserrat Alfonso

    2016-09-01

    Full Text Available The reaction of 5,6-bis(pyridin-2-ylpyrazine-2,3-dicarboxylic acid with cadmium dichloride leads to the formation of the title two-dimensional coordination polymer, [Cd(C16H8N4O4(H2O2]n. The metal atom is sevenfold coordinated by one pyrazine and one pyridine N atom, two water O atoms, and by two carboxylate O atoms, one of which bridges two CdII atoms to form a Cd2O2 unit situated about a centre of inversion. Hence, the ligand coordinates to the cadmium atom in an N,N′,O-tridentate and an O-monodentate manner. Within the polymer network, there are a number of O—H...O hydrogen bonds present, involving the water molecules and the carboxylate O atoms. There are also C—H...N and C—H...O hydrogen bonds present. In the crystal, the polymer networks lie parallel to the bc plane. They are aligned back-to-back along the a axis with the non-coordinating pyridine rings directed into the space between the networks.

  12. Incorporation of TiO2 nanotubes in a polycrystalline zirconia: Synthesis of nanotubes, surface characterization, and bond strength.

    Science.gov (United States)

    Dos Santos, Angélica Feltrin; Sandes de Lucena, Fernanda; Sanches Borges, Ana Flávia; Lisboa-Filho, Paulo Noronha; Furuse, Adilson Yoshio

    2018-04-05

    Despite numerous advantages such as high strength, the bond of yttria-stabilized zirconia polycrystal (Y-TZP) to tooth structure requires improvement. The purpose of this in vitro study was to evaluate the incorporation of TiO 2 nanotubes into zirconia surfaces and the bond strength of resin cement to the modified ceramic. TiO 2 nanotubes were produced by alkaline synthesis, mixed with isopropyl alcohol (50 wt%) and applied on presintered zirconia disks. The ceramics were sintered, and the surfaces were characterized by confocal laser microscopy, scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDS) analysis. For bond strength, the following 6 groups (n=16) were evaluated: without TiO 2 and Single Bond Universal; with TiO 2 nanotubes and Single Bond Universal; without TiO 2 nanotubes and Z-prime; with TiO 2 nanotubes and Z-prime; without TiO 2 and Signum Zirconia Bond; with TiO 2 and Signum Zirconia Bond. After sintering, resin cement cylinders, diameter of 1.40 mm and 1 mm in height, were prepared and polymerized for 20 seconds. Specimens were stored in water at 37°C for 30 days and submitted to a shear test. Data were analyzed by 2-way ANOVA and Tukey honest significant difference (α=.05) tests. EDS analysis confirmed that nanoagglomerates were composed of TiO 2 . The shear bond strength showed statistically significant differences among bonding agents (P<.001). No significant differences were found with the application of nanotubes, regardless of the group analyzed (P=.682). The interaction among the bonding agent factors and addition of nanotubes was significant (P=.025). Nanotubes can be incorporated into zirconia surfaces. However, this incorporation did not improve bond strength. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Hydrogen bond interactions in sulfamerazine: DFT study of the O-17, N-14, and H-2 electric field gradient tensors

    International Nuclear Information System (INIS)

    Aghazadeh, Mustafa; Mirzaei, Mahmoud

    2008-01-01

    Hydrogen bond (HB) interactions are studied in the real crystalline structure of sulfamerazine by density functional theory (DFT) calculations of the electric field gradient (EFG) tensors at the sites of O-17, N-14, and H-2 nuclei. One-molecule (single) and four-molecule (cluster) models of sulfamerazine are created by available crystal coordinates and the EFG tensors are calculated in both models to indicate the influence of HB interactions on the tensors. Directly relate to the experiments, the calculated EFG tensors are converted to the experimentally measurable nuclear quadrupole resonance (NQR) parameters, quadrupole coupling constant (qcc) and asymmetry parameter (η Q ). The evaluated NQR parameters reveal that due to contribution of the target molecule to N-H...N and N-H...O types of HB interactions, the EFG tensors at the sites of various nuclei are influenced from single model to the target molecule in cluster. Additionally, O2, N4, and H2 nuclei of the target molecule are significantly influenced by HB interactions, consequently, they have the major contributions to HB interactions in cluster model of sulfamerazine. The calculations are performed employing B3LYP method and 6-311++G** basis set using GAUSSIAN 98 suite of program

  14. O envolvimento do pai na gravidez/parto e a ligação emocional com o bebé La participación del padre en el embarazo/parto y el vínculo emocional con el bebé Father’s involvement in pregnancy/childbirth and the emotional bond with the baby

    Directory of Open Access Journals (Sweden)

    João Rui Duarte Farias Nogueira

    2012-12-01

    Full Text Available Enquadramento: a ligação emocional entre pai e filho é determinante na transição para a paternidade e no desenvolvimento do bebé. Objetivos: pretendemos verificar se existe relação entre as variáveis sóciodemográficas, o envolvimento na gravidez ou o corte do cordão umbilical com a ligação emocional do pai com o bebé. Metodologia: efetuámos um estudo transversal, quantitativo de caráter descritivo analítico. Aplicámos um questionário e a escala bonding validada para a população Portuguesa (Figueiredo et al., 2005, em três momentos diferentes (durante o trabalho de parto, no 1º e no 3º dia após o parto a 222 pais, entre novembro de 2010 e janeiro de 2011. Resultados: verificámos que a idade (entre 25 e 40 anos, o acompanhamento da grávida às consultas de vigilância da gravidez, o acompanhamento da grávida nos preparativos para o nascimento do bebé, a leitura de informação sobre o bebé em desenvolvimento, o envolvimento na gravidez e o corte do cordão umbilical influenciam positivamente a ligação emocional do pai com o bebé. Conclusão: os resultados apontam para uma melhoria na ligação afetiva entre o pai e o bebé se os profissionais de saúde promoverem o envolvimento do pai na gravidez e no parto.Marco: el vínculo emocional entre padre e hijo es crucial en la transición hacia la paternidad y el desarrollo del bebé.Objetivos: pretendemos verificar si existe una relación entre las variables sociodemográficas, la participación en el embarazo o el corte del cordón umbilical y el vínculo emocional entre el padre y el bebé. Metodología: se realizó un estudio transversal, cuantitativo, de corte descriptivo-analítico. Se aplicó un cuestionario y la escala de Bonding validado para la población portuguesa (Figueiredo et al., 2005, en tres momentos diferentes (durante el parto, durante el primer y el tercer día después del parto a 222 padres, entre noviembre 2010 y enero de 2011. Resultados: se

  15. Cyclotron production of molecules labelled with short-lived radioisotopes β+ emitters (15O, 13N, 11C) and their clinical uses

    International Nuclear Information System (INIS)

    Bougharouat, B.

    1981-01-01

    Clinical use of three short-lived radioisotopes: 15 O, 13 N and 11 C is studied on two complementary aspects. A production and purification system is realized; detection instruments in medical use are studied. The production of labelled molecules with the three radiotracers 15 O, 13 N, 11 C from the target bombardment with charged and accelerated particles was studied [fr

  16. Nucleophilicities of Lewis Bases B and Electrophilicities of Lewis Acids A Determined from the Dissociation Energies of Complexes B⋯A Involving Hydrogen Bonds, Tetrel Bonds, Pnictogen Bonds, Chalcogen Bonds and Halogen Bonds.

    Science.gov (United States)

    Alkorta, Ibon; Legon, Anthony C

    2017-10-23

    It is shown that the dissociation energy D e for the process B⋯A = B + A for 250 complexes B⋯A composed of 11 Lewis bases B (N₂, CO, HC≡CH, CH₂=CH₂, C₃H₆, PH₃, H₂S, HCN, H₂O, H₂CO and NH₃) and 23 Lewis acids (HF, HCl, HBr, HC≡CH, HCN, H₂O, F₂, Cl₂, Br₂, ClF, BrCl, H₃SiF, H₃GeF, F₂CO, CO₂, N₂O, NO₂F, PH₂F, AsH₂F, SO₂, SeO₂, SF₂, and SeF₂) can be represented to good approximation by means of the equation D e = c ' N B E A , in which N B is a numerical nucleophilicity assigned to B, E A is a numerical electrophilicity assigned to A, and c ' is a constant, conveniently chosen to have the value 1.00 kJ mol -1 here. The 250 complexes were chosen to cover a wide range of non-covalent interaction types, namely: (1) the hydrogen bond; (2) the halogen bond; (3) the tetrel bond; (4) the pnictogen bond; and (5) the chalcogen bond. Since there is no evidence that one group of non-covalent interaction was fitted any better than the others, it appears the equation is equally valid for all the interactions considered and that the values of N B and E A so determined define properties of the individual molecules. The values of N B and E A can be used to predict the dissociation energies of a wide range of binary complexes B⋯A with reasonable accuracy.

  17. Collision-Induced Dissociation Study of Strong Hydrogen-Bonded Cluster Ions Y-(HF) n (Y=F, O2) Using Atmospheric Pressure Corona Discharge Ionization Mass Spectrometry Combined with a HF Generator.

    Science.gov (United States)

    Sakamoto, Kenya; Sekimoto, Kanako; Takayama, Mitsuo

    2017-01-01

    Hydrogen fluoride (HF) was produced by a homemade HF generator in order to investigate the properties of strong hydrogen-bonded clusters such as (HF) n . The HF molecules were ionized in the form of complex ions associated with the negative core ions Y - produced by atmospheric pressure corona discharge ionization (APCDI). The use of APCDI in combination with the homemade HF generator led to the formation of negative-ion HF clusters Y - (HF) n (Y=F, O 2 ), where larger clusters with n ≥4 were not detected. The mechanisms for the formation of the HF, F - (HF) n , and O 2 - (HF) n species were discussed from the standpoints of the HF generator and APCDI MS. By performing energy-resolved collision-induced dissociation (CID) experiments on the cluster ions F - (HF) n ( n =1-3), the energies for the loss of HF from F - (HF) 3 , F - (HF) 2 , and F - (HF) were evaluated to be 1 eV or lower, 1 eV or higher, and 2 eV, respectively, on the basis of their center-of-mass energy ( E CM ). These E CM values were consistent with the values of 0.995, 1.308, and 2.048 eV, respectively, obtained by ab initio calculations. The stability of [O 2 (HF) n ] - ( n =1-4) was discussed on the basis of the bond lengths of O 2 H-F - (HF) n and O 2 - H-F(HF) n obtained by ab initio calculations. The calculations indicated that [O 2 (HF) 4 ] - separated into O 2 H and F - (HF) 3 .

  18. cyclo-Tetrakis(μ-3-acetyl-4-methyl-1H-pyrazole-5-carboxylato-κ4N2,O3:N1,O5tetrakis[aquacopper(II] tetradecahydrate

    Directory of Open Access Journals (Sweden)

    Sergey Malinkin

    2011-09-01

    Full Text Available The title compound, [Cu4(C7H6N2O34(H2O4]·14H2O, a tetranuclear [2 × 2] grid-type complex with S4 symmetry, contains four CuII atoms which are bridged by four pyrazolecarboxylate ligand anions and are additionally bonded to a water molecule. Each CuII atom is coordinated by two O atoms of the carboxylate and acetyl groups, two pyrazole N atoms of doubly deprotonated 3-acetyl-4-methyl-1H-pyrazole-5-carboxylic acid and one O atom of a water molecule. The geometry at each CuII atom is distorted square-pyramidal, with the two N and two O atoms in the equatorial plane and O atoms in the axial positions. O—H...O hydrogen-bonding interactions additionally stabilize the structure. One of the uncoordinated water molecules shows half-occupancy.

  19. XANES study on Ruddlesdan-Popper phase, Lan+1NinO3n+1 (n = 1, 2 and ∞)

    International Nuclear Information System (INIS)

    Park, Jung-Chul; Kim, Dong-Kuk; Byeon, Song-Hu; Kim, Don

    2001-01-01

    Ruddlesden-Popper phase, La n+1 Ni n O 3n+ 1 (n = 1, 2, and ∞) compounds were prepared by citrate sol-gel method. We revealed the origin of the variation of the electrical conductivities in La n+1 Ni n O 3n+1 (n= 1, 2, and ∞) using resistivity measurements, Rietveld analysis, and X-ray absorption spectroscopy. According to the XANES spectra, it is found that the degree of 4pπ - 4pσ energy splitting between 8345 eV and 8350 eV is qualitatively proportional to the elongation of the out-of-plane Ni-O bond length. With the decrease of 4pπ-4pσ splitting, the strong hybridization of the σ-bonding between Ni-3d and O-2p orbitals creates narrow antibonding σ bands, which finally results in the lower electrical resistivity. (au)

  20. Structure and bonding in compounds containing the NpO2+ and NpO22+ ions

    International Nuclear Information System (INIS)

    Musikas, C.; Burns, J.H.

    1975-01-01

    Studies of oxo cations of Np(V) and Np(VI) were made on single crystals using X-ray diffraction and spectroscopic methods. Quantitative measurements of the geometry of the triatomic ion and its uranyl(VI) analog made it possible to assess the effects on bond lengths of the nature of equatorial secondary bonds, the change in valence from V to VI, and the actinide contraction. Absorption spectra showed marked changes in the solid state compared to the same ion in solution, especially anisotropy with crystal orientation (dichroism). The compounds analyzed were Na 4 NpO 2 (O 2 ) 3 .9H 2 O, Na 4 UO 2 (O 2 ) 3 .9H 2 O, K 4 NpO 2 (CO 3 ) 3 , and BaNpO 2 (H 3 C 2 O 2 ).2H 2 O. All actinyl ions were found to be linear. The largest difference in M=O bond lengths is between 1.776 in the compound having the relatively weak secondary linkage to carbonate, and 1.843 A in which the peroxide forms much stronger covalent bonds. Between compounds identical except for change of U to Np the M=O bond length contracts by only about 0.01 A. However an elongation of about 0.11A is observed when neptunium(VI) is reduced to neptunium(V) without change in the equatorial ligand. (U.S.)

  1. N-(N-[2-(3,5-Difluorophenyl)acetyl]-(S)-alanyl)-(S)-phenylglycine tert-butyl ester (DAPT): an inhibitor of γ-secretase, revealing fine electronic and hydrogen-bonding features

    Energy Technology Data Exchange (ETDEWEB)

    Czerwinski, Andrzej; Valenzuela, Francisco [Peptides International Inc., 11621 Electron Drive, Louisville, KY 40299 (United States); Afonine, Pavel [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Dauter, Miroslawa, E-mail: dauter@anl.gov [Basic Research Program, SAIC-Frederick Inc., Synchrotron Radiation Research Section, MCL, NCI, Argonne National Laboratory, Biosciences Division, Building 202, Argonne, IL 60439 (United States); Dauter, Zbigniew [Synchrotron Radiation Research Section, MCL, NCI, Argonne National Laboratory, Biosciences Division, Building 202, Argonne, IL 60439 (United States); Peptides International Inc., 11621 Electron Drive, Louisville, KY 40299 (United States)

    2010-12-01

    The title compound, C{sub 23}H{sub 26}F{sub 2}N{sub 2}O{sub 4}, is a dipeptidic inhibitor of γ-secretase, one of the enzymes involved in Alzheimer’s dis@@ease. The mol@@ecule adopts a compact conformation, without intra@@molecular hydrogen bonds. In the crystal structure, one of the amide N atoms forms the only inter@@molecular N—H⋯O hydrogen bond; the second amide N atom does not form hydrogen bonds. High-resolution synchrotron diffraction data permitted the unequivocal location and refinement without restraints of all H atoms, and the identification of the characteristic shift of the amide H atom engaged in the hydrogen bond from its ideal position, resulting in a more linear hydrogen bond. Significant residual densities for bonding electrons were revealed after the usual SHELXL refinement, and modeling of these features as additional inter@@atomic scatterers (IAS) using the program PHENIX led to a significant decrease in the R factor from 0.0411 to 0.0325 and diminished the r.m.s. deviation level of noise in the final difference Fourier map from 0.063 to 0.037 e Å{sup −3}.

  2. (Acetonitrile{2-[bis(pyridin-2-ylmethyl-κ2Namino-κN]-N-(2,6-dimethylphenylacetamide-κO}(perchlorato-κOzinc (acetonitrile{2-[bis(pyridin-2-ylmethyl-κ2Namino-κN]-N-(2,6-dimethylphenylacetamide-κO}zinc tris(perchlorate

    Directory of Open Access Journals (Sweden)

    Ove Alexander Høgmoen Åstrand

    2013-02-01

    Full Text Available In the title salt, [Zn(C22H24N4O(CH3CN][Zn(ClO4(C22H24N4O(CH3CN](ClO43, two differently coordinated zinc cations occur. In the first complex, the metal ion is coordinated by the N,N′,N′′,O-tetradentate acetamide ligand and an acetonitrile N atom, generating an approximate trigonal–bipyramidal coordination geometry, with the O atom in an equatorial site and the acetonitrile N atom in an axial site. In the second complex ion, a perchlorate ion is also bonded to the zinc ion, generating a distorted trans-ZnO2N4 octahedron. Of the uncoordinating perchlorate ions, one lies on a crystallographic twofold axis and one lies close to a twofold axis and has a site occupancy of 0.5. N—H...O and N—H...(O,O hydrogen bonds are observed in the crystal. Disordered solvent molecules occupy about 11% of the unit-cell volume; their contribution to the scattering was removed with the SQUEEZE routine of the PLATON program [Spek (2009. Acta Cryst. D65, 148–155.].

  3. The hydrogen bond between N-H or O-H and organic fluorine: favourable yes, competitive no.

    Science.gov (United States)

    Taylor, Robin

    2017-06-01

    A study was made of X-H...F-C interactions (X = N or O) in small-molecule crystal structures. It was primarily based on 6728 structures containing X-H and C-F and no atom heavier than chlorine. Of the 28 451 C-F moieties in these structures, 1051 interact with X-H groups. However, over three-quarters of these interactions are either the weaker components of bifurcated hydrogen bonds (so likely to be incidental contacts) or occur in structures where there is a clear insufficiency of good hydrogen-bond acceptors such as oxygen, nitrogen or halide. In structures where good acceptors are entirely absent, there is about a 2 in 3 chance that a given X-H group will donate to fluorine. Viable alternatives are X-H...π hydrogen bonds (especially to electron-rich aromatics) and dihydrogen bonds. The average H...F distances of X-H...F-C interactions are significantly shorter for CR 3 F (R = C or H) and Csp 2 -F acceptors than for CRF 3 . The X-H...F angle distribution is consistent with a weak energetic preference for linearity, but that of H...F-C suggests a flat energy profile in the range 100-180°. X-H...F-C interactions are more likely when the acceptor is Csp 2 -F or CR 3 F, and when the donor is C-NH 2 . They also occur significantly more often in structures containing tertiary alcohols or solvent molecules, or with Z' > 1, i.e. when there may be unusual packing problems. It is extremely rare to find X-H...F-C interactions in structures where there are several unused good acceptors. When it does happen, there is often a clear reason, e.g. awkwardly shaped molecules whose packing isolates a donor group from the good acceptors.

  4. O vínculo na atenção à saúde: revisão sistematizada na literatura, Brasil (1998-2007 El vínculo en la atención a la salud: revisión sistematizada en la literatura, Brasil (1998-2007 Bond in health care: a systematic review of literature in Brazil (1998-2007

    Directory of Open Access Journals (Sweden)

    Maria Eugênia Firmino Brunello

    2010-01-01

    Full Text Available O objetivo do estudo foi levantar produções científicas brasileiras que se relacionavam à dimensão vínculo na atenção primária à saúde. O estudo abrangeu o período de 1998 a 2007, a partir das bases de dados LILACS e SciELO por meio das palavras-chave: atenção primária à saúde, acolhimento, tuberculose (indexados, vínculo, adesão, saúde, atenção básica, longitudinalidade e abandono (não indexados. Foram selecionadas 50 produções que posteriormente foram categorizadas. Os achados mostraram que houve um interesse maior pela temática após o ano de 2004, predominando publicações em periódicos que valorizam a saúde coletiva e estudos que se inserem no nível primário de atenção. Entende-se que o vínculo é fator importante para a atenção à saúde e tende a melhorar o conhecimento dos reais problemas da população atendida pelos serviços, além de facilitar o relacionamento dos usuários com os profissionais que os atendem.El objetivo del estudio fue levantar producciones científicas brasileñas que se relacionaban con la dimensión vínculo en la atención primaria a la salud. El estudio abarcó el período de 1998 a 2007, a partir de las bases de datos LILACS y SciELO por medio de las palabras clave: atención primaria a la salud, acogimiento, tuberculosis (indexados, vínculo, adhesión, salud, atención básica, longitudinal y abandono (no indexados. Fueron seleccionadas 50 producciones que posteriormente fueron categorizadas. Los hallazgos mostraron que hubo un interés mayor por la temática después del año de 2004, predominando publicaciones en periódicos que valorizan la salud colectiva y estudios que se sitúan en el nivel primario de atención. Se entiende que el vínculo es un factor importante para la atención a la salud y tiende a mejorar el conocimiento de los reales problemas de la población atendida por los servicios, además de facilitar la relación de los usuarios con los profesionales

  5. [Cr(N)(acac)2]: A simple chromium nitride complex and its reactivity towards late transition metals

    DEFF Research Database (Denmark)

    Hedegaard, Erik Donovan; Schau-Magnussen, Magnus; Bendix, Jesper

    2011-01-01

    A new simple chromium(V) nitride complex, Cr(N)(acac)2 (1) has been prepared by nitrogen atom transfer. X-ray crystallography shows a short Cr-N bond at 1.5564(11) Å and equatorial Cr-O distances in the range 1.9387(9) – 1.9485(9) Å. 1 reacts as a p-backbonding ligand ......A new simple chromium(V) nitride complex, Cr(N)(acac)2 (1) has been prepared by nitrogen atom transfer. X-ray crystallography shows a short Cr-N bond at 1.5564(11) Å and equatorial Cr-O distances in the range 1.9387(9) – 1.9485(9) Å. 1 reacts as a p-backbonding ligand ...

  6. Stability analysis and structural rules of titanium dioxide clusters (TiO2)n with n = 1-9

    International Nuclear Information System (INIS)

    Zhang Weiwei; Han Ye; Yao Shuyu; Sun Haiqing

    2011-01-01

    Highlights: · We investigated the structure and stability of (TiO 2 ) n clusters with n = 1-9. · Some initial structures are introduced and proved to be the real global minimum. · We summarized the structural rules for small (TiO 2 ) n clusters. · The bonding features for the energy increment or decrement of the clusters are investigated. · A general shift of stability and reactivity with size for (TiO 2 ) n clusters. - Abstract: Atomic clusters have been considered as models for fundamental mechanistic insight into complex surfaces and catalysts. The structure and stability of (TiO 2 ) n clusters with n = 1-9 are investigated using the b3lyp hybrid density functional method in this paper. Some of the clusters are proposed initially and proved to be the real global minima. The stability and band gap of the clusters as a function of size are also investigated. The structural rules of the clusters are first summarized. The lowest-lying (TiO 2 ) n isomers tend to form some compact rather than quasi-linear or circular structures. The oxygen atom in 4-fold coordination and the titanium atom in 4-fold coordination favor the cluster stability. The 5-fold coordinated Ti-atom, the Ti-Ti bond and the terminal Ti-O bond lead to stability penalty for the clusters. No evidence for a regular variation in stability or reactivity with size of the clusters has shown. The structural rules can serve as guiding factors for formation research and structure design of (TiO 2 ) n and other transition metal oxide clusters.

  7. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol.

    Science.gov (United States)

    Zhao, Hailiang; Tang, Shanshan; Xu, Xiang; Du, Lin

    2016-12-30

    Amides are important atmospheric organic-nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH) with amides (formamide, N -methylformamide, N , N -dimethylformamide, acetamide, N -methylacetamide and N , N -dimethylacetamide) have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH-amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O-H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components.

  8. Hydrogen bonded C-H···Y (Y = O, S, Hal) molecular complexes: A natural bond orbital analysis

    Science.gov (United States)

    Isaev, A. N.

    2016-03-01

    Hydrogen bonded C-H···Y complexes formed by H2O, H2S molecules, hydrogen halides, and halogen-ions with methane, halogen substituted methane as well as with the C2H2 and NCH molecules were studied at the MP2/aug-cc-pVDZ level. The structure of NBOs corresponding to lone pair of acceptor Y, n Y, and vacant anti-σ-bond C-H of proton donor was analyzed and estimates of second order perturbation energy E(2) characterizing donor-acceptor n Y → σ C-H * charge-transfer interaction were obtained. Computational results for complexes of methane and its halogen substituted derivatives show that for each set of analogous structures, the EnY→σ*C-H (2) energy tends to grow with an increase in the s-component percentage in the lone pair NBO of acceptor Y. Calculations for different C···Y distances show that the equilibrium geometries of complexes lie in the region where the E(2) energy is highest and it changes symbatically with the length of the covalent E-H bond when the R(C···Y) distance is varied. The performed analysis allows us to divide the hydrogen bonded complexes into two groups, depending on the pattern of overlapping for NBOs of the hydrogen bridge.

  9. (Carbonato-κO,O')bis-(di-2-pyridyl-amine-κN,N')cobalt(III) bromide.

    Science.gov (United States)

    Czapik, Agnieszka; Papadopoulos, Christos; Lalia-Kantouri, Maria; Gdaniec, Maria

    2011-04-01

    In the title compound, [Co(CO(3))(C(10)H(9)N(3))(2)]Br, a distorted octa-hedral coordination of the Co(III) atom is completed by four N atoms of the two chelating di-2-pyridyl-amine ligands and two O atoms of the chelating carbonate anion. The di-2-pyridyl-amine ligands are nonplanar and the dihedral angles between the 2-pyridyl groups are 29.11 (9) and 37.15 (12)°. The coordination cation, which has approximate C(2) symmetry, is connected to the bromide ion via an N-H⋯Br(-) hydrogen bond. The ionic pair thus formed is further assembled into a dimer via N-H⋯O inter-actions about an inversion centre. A set of weaker C-H⋯O and C-H⋯Br(-) inter-actions connect the dimers into a three-dimensional network.

  10. Size-dependent disproportionation (in 2-20 nm regime) and hybrid Bond Valence derived interatomic potentials for BaTaO2N

    Science.gov (United States)

    Anbalagan, Kousika; Thomas, Tiju

    2018-05-01

    Interatomic potentials for complex materials (like ceramic systems) are important for realistic molecular dynamics (MD) simulations. Such simulations are relevant for understanding equilibrium, transport and dynamical properties of materials, especially in the nanoregime. Here we derive a hybrid interatomic potential (based on bond valence (BV) derived Morse and Coulomb terms), for modeling a complex ceramic, barium tantalum oxynitride (BaTaO2N). This material has been chosen due to its relevance for capacitive and photoactive applications. However, the material presents processing challenges such as the emergence of non-stoichiometric phases during processing, demonstrating complex processing-property correlations. This makes MD investigations of this material both scientifically and technologically relevant. The BV based hybrid potential presented here has been used for simulating sintering of BaTaO2N nanoparticles ( 2-20 nm) under different conditions (using the relevant canonical ensemble). Notably, we show that sintering of particles of diameter 10 nm in size results in the formation of a cluster of tantalum and oxygen atoms at the interface of the BaTaO2N particles. This is in agreement with the experimental reports. The results presented here suggest that the potential proposed can be used to explore dynamical properties of BaTaO2N and related systems. This work will also open avenues for development of nanoscience-enabled aid-free sintering approaches to this and related materials.

  11. μ-Oxalato-κ4O1,O2:O1′,O2′-bis[aqua(2,2′-bipyridine-κN(nitrato-κ2O,O′lead(II

    Directory of Open Access Journals (Sweden)

    Gang-Hong Pan

    2012-10-01

    Full Text Available The title compound, [Pb2(C2O4(NO32(C10H8N22(H2O2], was synthesized hydrothermally. The binuclear complex molecule is centrosymmetric, the inversion centre being located at the mid-point of the oxalate C—C bond. The PbII ion is heptacoordinated by the O atom of one water molecule, two oxalate O atoms, two nitrate O atoms and two 2,2′-bipyridine N atoms, forming an irregular coordination environemnt. Intermolecular O—H...O hydrogen bonds between water molecules and oxalate and nitrate ions result in the formation of layers parallel to (010. π–π interactions between pyridine rings in adjacent layers, with centroid–centroid distances of 3.584 (2 Å, stabilize the structural set-up.

  12. Aqua{2-(pyridin-2-yl-N-[(pyridin-2-ylmethylidene]ethanamine-κ3N,N′,N′′}(sulfato-κ2O,O′copper(II tetrahydrate

    Directory of Open Access Journals (Sweden)

    Daniel Tinguiano

    2013-01-01

    Full Text Available The title complex, [Cu(SO4(C13H13N3(H2O]·4H2O, was obtained by mixing copper sulfate pentahydrate and 2-(pyridin-2-yl-N-(pyridin-2-ylmethylideneethanamine in ethanol under reflux conditions. The CuII ion shows a Jahn–Teller-distorted octahedral geometry, with equatorial positions occupied by three N atoms from the tridentate ligand (average Cu—N = 2.004 Å and one O atom from a bidentate sulfate anion [Cu—O = 1.963 (2 Å]. The axial positions are occupied by one O atom from a coordinating water molecule [Cu—O = 2.230 (3 Å] and one weakly bonded O atom [Cu—O = 2.750 (2 Å] from the bidentate sulfate ion. The complex molecules are connected through O—H...O hydrogen bonds between the coordinating water molecules and sulfate ions from neighboring complexes, forming a double chain parallel to the c axis. The chains are stabilized through additional hydrogen bonds by one of the non-coordinating water molecules bridging between neighboring strands of the double chains. The remaining three water molecules fill the interstitial space between the double chains and are involved in an intricate hydrogen-bonding network that consolidates the structure.

  13. (Carbonato-κO,O')bis-(1,10-phenan-throline-κN,N')cobalt(III) nitrate monohydrate.

    Science.gov (United States)

    Andaç, Omer; Yolcu, Zuhal; Büyükgüngör, Orhan

    2009-12-12

    The crystal structure of the title compound, [Co(CO(3))(C(12)H(8)N(2))(2)]NO(3)·H(2)O, consists of Co(III) complex cations, nitrate anions and uncoordinated water mol-ecules. The Co(III) cation is chelated by a carbonate anion and two phenanthroline ligands in a distorted octa-hedral coordination geometry. A three-dimensional supra-molecular structure is formed by O-H⋯O and C-H⋯O hydrogen bonding, C-H⋯π and aromatic π-π stacking [centroid-centroid distance = 3.995 (1)Å] inter-actions.

  14. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Bonding in O3 and SO2.

    Science.gov (United States)

    Takeshita, Tyler Y; Lindquist, Beth A; Dunning, Thom H

    2015-07-16

    There are many well-known differences in the physical and chemical properties of ozone (O3) and sulfur dioxide (SO2). O3 has longer and weaker bonds than O2, whereas SO2 has shorter and stronger bonds than SO. The O-O2 bond is dramatically weaker than the O-SO bond, and the singlet-triplet gap in SO2 is more than double that in O3. In addition, O3 is a very reactive species, while SO2 is far less so. These disparities have been attributed to variations in the amount of diradical character in the two molecules. In this work, we use generalized valence bond (GVB) theory to characterize the electronic structure of ozone and sulfur dioxide, showing O3 does indeed possess significant diradical character, whereas SO2 is effectively a closed shell molecule. The GVB results provide critical insights into the genesis of the observed difference in these two isoelectronic species. SO2 possesses a recoupled pair bond dyad in the a"(π) system, resulting in SO double bonds. The π system of O3, on the other hand, has a lone pair on the central oxygen atom plus a pair of electrons in orbitals on the terminal oxygen atoms that give rise to a relatively weak π interaction.

  15. Crystal structure of catena-poly[silver(I-μ-l-tyrosinato-κ2O:N

    Directory of Open Access Journals (Sweden)

    Aqsa Yousaf

    2015-03-01

    Full Text Available The title compound, [Ag(C9H10NO3]n, is a polymeric silver(I complex of l-tyrosine. The AgI atom is connected to N and O atoms of two different l-tyrosine ligands in an almost linear arrangement, with an Ni—Ag—O1 bond angle of 173.4 (2° [symmetry code: (i x + 1, y, z]. The Ag—Ni and Ag—O bond lengths are 2.156 (5 and 2.162 (4 Å, respectively. The polymeric chains extend along the crystallographic a axis. Strong hydrogen bonds of the N—H...O and O—H...O types and additional C—H...O interactions connect these chains into a double-layer polymeric network in the ab plane.

  16. Crystal structure of bis-(μ-3-nitro-benzoato)-κ3O,O':O;κ3O:O,O'-bis-[bis-(3-cyano-pyridine-κN1)(3-nitro-benzoato-κ2O,O')cadmium].

    Science.gov (United States)

    Hökelek, Tuncer; Akduran, Nurcan; Özen, Azer; Uğurlu, Güventürk; Necefoğlu, Hacali

    2017-03-01

    The asymmetric unit of the title compound, [Cd 2 (C 7 H 4 NO 4 ) 4 (C 6 H 4 N 2 ) 4 ], contains one Cd II atom, two 3-nitro-benzoate (NB) anions and two 3-cyano-pyridine (CPy) ligands. The two CPy ligands act as monodentate N(pyridine)-bonding ligands, while the two NB anions act as bidentate ligands through the carboxyl-ate O atoms. The centrosymmetric dinuclear complex is generated by application of inversion symmetry, whereby the Cd II atoms are bridged by the carboxyl-ate O atoms of two symmetry-related NB anions, thus completing the distorted N 2 O 5 penta-gonal-bipyramidal coordination sphere of each Cd II atom. The benzene and pyridine rings are oriented at dihedral angles of 10.02 (7) and 5.76 (9)°, respectively. In the crystal, C-H⋯N hydrogen bonds link the mol-ecules, enclosing R 2 2 (26) ring motifs, in which they are further linked via C-H⋯O hydrogen bonds, resulting in a three-dimensional network. In addition, π-π stacking inter-actions between parallel benzene rings and between parallel pyridine rings of adjacent mol-ecules [shortest centroid-to-centroid distances = 3.885 (1) and 3.712 (1) Å, respectively], as well as a weak C-H⋯π inter-action, may further stabilize the crystal structure.

  17. Diammine{N-[2-(hydroxyiminopropionyl]-N′-[2-(oxidoiminopropionyl]propane-1,3-diaminido-κ4N,N′,N′′,N′′′}iron(III

    Directory of Open Access Journals (Sweden)

    Stefania Tomyn

    2012-12-01

    Full Text Available In the title compound, [Fe(C9H13N4O4(NH32], the FeIII atom, lying on a mirror plane, is coordinated by four N atoms of a triply deprotonated tetradentate N-[2-(hydroxyiminopropionyl]-N′-[2-(oxidoiminopropionyl]propane-1,3-diaminide ligand in the equatorial plane and two N atoms of two ammonia molecules at the axial positions in a distorted octahedral geometry. A short intramolecular O—H...O hydrogen bond between the cis-disposed oxime O atoms stabilizes the pseudo-macrocyclic configuration of the ligand. In the crystal, molecules are linked by N—H...O hydrogen bonds into a three-dimensional network. The ligand has a mirror-plane symmetry. One of the methylene groups of the propane bridge is disordered over two sets of sites with equal occupancy factors.

  18. Bonding characteristics in NiAl intermetallics with O impurity: a first-principles computational tensile test

    International Nuclear Information System (INIS)

    Hu Xuelan; Zhang Ying; Lu Guanghong; Wang Tianmin

    2009-01-01

    We have performed a first-principles computational tensile test on NiAl intermetallics with O impurity along the [001] crystalline direction on the (110) plane to investigate the tensile strength and the bonding characteristics of the NiAl-O system. We show that the ideal tensile strength is largely reduced due to the presence of O impurity in comparison with pure NiAl. The investigations of the atomic configuration and bond-length evolution show that O prefers to bond with Al, forming an O-Al cluster finally with the break of O-Ni bonds. The O-Ni bonds are demonstrated to be weaker than the O-Al bonds, and the reduced tensile strength originates from such weaker O-Ni bonds. A void-like structure forms after the break of the O-Ni and some Ni-Al bonds. Such a void-like structure can act as the initial nucleation or the propagation path of the crack, and thus produce large effects on the mechanical properties of NiAl.

  19. Revisit the landscape of protonated water clusters H+(H2O)n with n = 10-17: An ab initio global search

    Science.gov (United States)

    Shi, Ruili; Li, Keyao; Su, Yan; Tang, Lingli; Huang, Xiaoming; Sai, Linwei; Zhao, Jijun

    2018-05-01

    Using a genetic algorithm incorporated with density functional theory, we explore the ground state structures of protonated water clusters H+(H2O)n with n = 10-17. Then we re-optimize the isomers at B97-D/aug-cc-pVDZ level of theory. The extra proton connects with a H2O molecule to form a H3O+ ion in all H+(H2O)10-17 clusters. The lowest-energy structures adopt a monocage form at n = 10-16 and core-shell structure at n = 17 based on the MP2/aug-cc-pVTZ//B97-D/aug-cc-pVDZ+ZPE single-point-energy calculation. Using second-order vibrational perturbation theory, we further calculate the infrared spectra with anharmonic correction for the ground state structures of H+(H2O)10-17 clusters at the PBE0/aug-cc-pVDZ level. The anharmonic correction to the spectra is crucial since it reproduces the experimental results quite well. The extra proton weakens the O-H bond strength in the H3O+ ion since the Wiberg bond order of the O-H bond in the H3O+ ion is smaller than that in H2O molecules, which causes a red shift of the O-H stretching mode in the H3O+ ion.

  20. [μ-1,1′-(Butane-1,4-diyldi-1H-benzimidazole-κ2N3:N3′]bis{[N,N′-bis(carboxymethylethylenediamine-N,N′-diacetato-κ5O,O′,O′′,N,N′]mercury(II} methanol disolvate

    Directory of Open Access Journals (Sweden)

    Gang-Sen Li

    2009-08-01

    Full Text Available The binuclear title complex, [Hg2(C10H14N2O82(C18H18N4]·2CH3OH, lies on an inversion center with the unique HgII ion coordinated in a disorted octahedral environment with one Hg—N bond significantly shorter than the other two. In the crystal structure, intermolecular O—H...O hydrogen bonds link complex and solvent molecules into a three-dimensional network.

  1. Crystal structure of di-μ-aqua-μ-(pyrazine N,N′-dioxide-κ2O:O-bis(diaquasodium tetraphenylborate dihydrate pyrazine N,N′-dioxide monosolvate

    Directory of Open Access Journals (Sweden)

    Elaine P. Boron

    2015-12-01

    Full Text Available The search for novel lanthanide coordination networks using pyrazine N,N′-dioxide (pzdo, C4H4N2O2 as a structure-directing unit, led to the synthesis and the structure determination of the title compound, [Na2(C4H4N2O2(H2O6][B(C6H54]2·C4H4N2O2·2H2O. The crystal structure is comprised of discrete [{Na(H2O2}2(μ-H2O2(μ-pzdo]2+ cations and tetraphenylborate anions, as well as pzdo and H2O solvent molecules. The dinuclear cation is located about a twofold rotation axis, and the symmetry-related NaI atoms display a distorted square-pyramidal coordination sphere defined by two O atoms of terminal water ligands, two O atoms of bridging water ligands and one O atom of a bridging pzdo ligand. In the crystal, O—H...O hydrogen bonds link the dinuclear cation and solvent pzdo molecules (point-group symmetry -1 into rectangular grid-like layers parallel to the bc plane. Additional C—H...O, O—H...O, C—H...π and O—H...π interactions link the anion and solvent water molecules to the layers. The layers are further linked into a three-dimensional network through a combination of C—H...π and O—H...π hydrogen bonds involving the tetraphenylborate anion.

  2. Predicted bond length variation in wurtzite and zinc-blende InGaN and AlGaN alloys

    International Nuclear Information System (INIS)

    Mattila, T.; Zunger, A.

    1999-01-01

    Valence force field simulations utilizing large supercells are used to investigate the bond lengths in wurtzite and zinc-blende In x Ga 1-x N and Al x Ga 1-x N random alloys. We find that (i) while the first-neighbor cation endash anion shell is split into two distinct values in both wurtzite and zinc-blende alloys (R Ga-N 1 ≠R In-N 1 ), the second-neighbor cation endash anion bonds are equal (R Ga-N 2 =R In-N 2 ). (ii) The second-neighbor cation endash anion bonds exhibit a crucial difference between wurtzite and zinc-blende binary structures: in wurtzite we find two bond distances which differ in length by 13% while in the zinc-blende structure there is only one bond length. This splitting is preserved in the alloy, and acts as a fingerprint, distinguishing the wurtzite from the zinc-blende structure. (iii) The small splitting of the first-neighbor cation endash anion bonds in the wurtzite structure due to nonideal c/a ratio is preserved in the alloy, but is obscured by the bond length broadening. (iv) The cation endash cation bond lengths exhibit three distinct values in the alloy (Ga endash Ga, Ga endash In, and In endash In), while the anion endash anion bonds are split into two values corresponding to N endash Ga endash N and N endash In endash N. (v) The cation endash related splitting of the bonds and alloy broadening are considerably larger in InGaN alloy than in AlGaN alloy due to larger mismatch between the binary compounds. (vi) The calculated first-neighbor cation endash anion and cation endash cation bond lengths in In x Ga 1-x N alloy are in good agreement with the available experimental data. The remaining bond lengths are provided as predictions. In particular, the predicted splitting for the second-neighbor cation endash anion bonds in the wurtzite structure awaits experimental testing. copyright 1999 American Institute of Physics

  3. Crystal structures of dibromido{N-[(pyridin-2-yl-κNmethylidene]picolinohydrazide-κ2N′,O}cadmium methanol monosolvate and diiodido{N-[(pyridin-2-yl-κNmethylidene]picolinohydrazide-κ2N′,O}cadmium

    Directory of Open Access Journals (Sweden)

    Ali Akbar Khandar

    2017-05-01

    Full Text Available The title compounds, [CdBr2(C12H10N4O]·CH3OH, (I, and [CdI2(C12H10N4O], (II, are cadmium bromide and cadmium iodide complexes of the ligand (E-N′-(pyridin-2-ylmethylenepicolinohydrazide. Complex (I crystallizes as the methanol monosolvate. In both compounds, the Cd2+ cation is ligated by one O atom and two N atoms of the tridentate ligand, and by two bromide anions forming a Br2N2O pentacoordination sphere for (I, and by two iodide anions forming an I2N2O pentacoordination sphere for (II, both with a distorted square-pyramidal geometry. In the crystal of complex (I, molecules are linked by pairs of N—H...O and O—H...Br hydrogen bonds, involving the solvent molecule, forming dimeric units, which are linked by C—H...Br hydrogen bonds forming layers parallel to (101. In the crystal of complex (II, molecules are linked by N—H...I hydrogen bonds, forming chains propagating along [010]. In complex (II, measured at room temperature, the two iodide anions are each disordered over two sites; the refined occupancy ratio is 0.75 (2:0.25 (2.

  4. Density functional theory investigation of the geometric and electronic structures of [UO2(H2O)m(OH)n](2 - n) (n + m = 5).

    Science.gov (United States)

    Ingram, Kieran I M; Häller, L Jonas L; Kaltsoyannis, Nikolas

    2006-05-28

    Gradient corrected density functional theory has been used to calculate the geometric and electronic structures of the family of molecules [UO2(H2O)m(OH)n](2 - n) (n + m = 5). Comparisons are made with previous experimental and theoretical structural and spectroscopic data. r(U-O(yl)) is found to lengthen as water molecules are replaced by hydroxides in the equatorial plane, and the nu(sym) and nu(asym) uranyl vibrational wavenumbers decrease correspondingly. GGA functionals (BP86, PW91 and PBE) are generally found to perform better for the cationic complexes than for the anions. The inclusion of solvent effects using continuum models leads to spurious low frequency imaginary vibrational modes and overall poorer agreement with experimental data for nu(sym) and nu(asym). Analysis of the molecular orbital structure is performed in order to trace the origin of the lengthening and weakening of the U-O(yl) bond as waters are replaced by hydroxides. No evidence is found to support previous suggestions of a competition for U 6d atomic orbitals in U-O(yl) and U-O(hydroxide)pi bonding. Rather, the lengthening and weakening of U-O(yl) is attributed to reduced ionic bonding generated in part by the sigma-donating ability of the hydroxide ligands.

  5. Tris(tetrabutylammonium) tris(nitrato-κ2 O,O ')tetrakis(thiocyanato-κN)thorium(IV)

    International Nuclear Information System (INIS)

    Janeth Lozano-Rodriguez, M.; Petit, S.; Copping, R.; Den Auwer, Ch.; Janeth Lozano-Rodriguez, M.; Mustre de Leon, J.; Thuery, P.

    2011-01-01

    The title compound, (C 16 H 36 N) 3 [Th(NCS) 4 (NO 3 ) 3 ], was obtained from the reaction of Th(NO 3 ) 4 .5H 2 O with (Bu 4 N)(NCS). The Th(IV) atom is in a ten-coordinate environment of irregular geometry, being bound to the N atoms of the four thiocyanate ions and to three bidentate nitrate ions. The average Th-N and Th-O bond lengths are 2.481 (10) and 2.57 (3) Angstroms, respectively. (authors)

  6. Hydrogren-Bonding between Thioacetamide and Some N,N-dimethylalkylamides in Chloroform.

    OpenAIRE

    Park, Hee-Suk; Choi, Jae-Young; Kim, Young-Ae; Huh, Young-Duk; Yoon, Chang-Ju; Choi, Young-Sang

    1990-01-01

    The near-IR spectra of thioacetamide were recorded for the investigation of hydrogen bonding between thioacetamide (TA) and N,N-dimethylalkylamides (DMF, OMA, DMP) in chloroform over the range of 5°C to 55°C. The v0 + amide II combination band has been resolved into contributions from monomeric TA, 1:1 hydrogen bonded complex and 1:2 complex by the parameterized matrix modeling method. The association constants

  7. First-principle study on bonding mechanism of ZnO by LDA+U method

    International Nuclear Information System (INIS)

    Zhou, G.C.; Sun, L.Z.; Zhong, X.L.; Chen Xiaoshuang; Wei Lu; Wang, J.B.

    2007-01-01

    The electronic structure and the bonding mechanism of ZnO have been studied by using the Full-Potential Linear Augmented Plane Wave (FP-LAPW) method within the density-functional theory (DFT) based on LDA+U exchange correlation potential. The valence and the bonding charge density are calculated and compared with those derived from LDA and GGA to describe the bonding mechanism. The charge transfer along with the bonding process is analyzed by using the theory of Atoms in Molecules (AIM). The bonding, the topological characteristics and the p-d coupling effects on the bonding mechanism of ZnO are shown quantitatively with the critical points (CPs) along the bonding trajectory and the charge in the atomic basins. Meanwhile, the bonding characteristics for wurtzite, zinc blende and rocksalt phase of ZnO are discussed systematically in the present paper

  8. Bismuth-boron multiple bonding in BiB_2O"- and Bi_2B"-

    International Nuclear Information System (INIS)

    Jian, Tian; Cheung, Ling Fung; Chen, Teng-Teng; Wang, Lai-Sheng

    2017-01-01

    Despite its electron deficiency, boron is versatile in forming multiple bonds. Transition-metal-boron double bonding is known, but boron-metal triple bonds have been elusive. Two bismuth boron cluster anions, BiB_2O"- and Bi_2B"-, containing triple and double B-Bi bonds are presented. The BiB_2O"- and Bi_2B"- clusters are produced by laser vaporization of a mixed B/Bi target and characterized by photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra are obtained and interpreted with the help of ab initio calculations, which show that both species are linear. Chemical bonding analyses reveal that Bi forms triple and double bonds with boron in BiB_2O"- ([Bi≡B-B≡O]"-) and Bi_2B"- ([Bi=B=Bi]"-), respectively. The Bi-B double and triple bond strengths are calculated to be 3.21 and 4.70 eV, respectively. This is the first experimental observation of Bi-B double and triple bonds, opening the door to design main-group metal-boron complexes with multiple bonding. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Enthalpies of solvation of ethylene oxide oligomers CH{sub 3}O(CH{sub 2}CH{sub 2}O){sub n}CH{sub 3} (n = 1 to 4) in different H-bonding solvents: Methanol, chloroform, and water. Group contribution method as applied to the polar oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Barannikov, Vladimir P., E-mail: vpb@isc-ras.ru [Institute of Solution Chemistry, Russian Academy of Sciences, Academicheskaya Str. 1, Ivanovo 153045 (Russian Federation); Guseynov, Sabir S.; Vyugin, Anatoliy I. [Institute of Solution Chemistry, Russian Academy of Sciences, Academicheskaya Str. 1, Ivanovo 153045 (Russian Federation)

    2011-12-15

    Highlights: > Solvation enthalpy is found for ethylene oxide oligomers in chloroform and methanol. > Coefficients of solute-solute interaction are determined for oligomers in methanol. > Enthalpies of hydrogen bonding of oligomers with chloroform and water are estimated. > Additivity scheme is developed for describing enthalpies of solvation of oligomers. - Abstract: The enthalpies of solution and solvation of ethylene oxide oligomers CH{sub 3}O(CH{sub 2}CH{sub 2}O){sub n}CH{sub 3} (n = 1 to 4) in methanol and chloroform have been determined from calorimetric measurements at T = 298.15 K. The enthalpic coefficients of pairwise solute-solute interaction for methanol solutions have been calculated. The enthalpic characteristics of the oligomers in methanol, chloroform, water and tetrachloromethane have been compared. The hydrogen bonding of the oligomers with chloroform and water molecules is exhibited in the values of solvation enthalpy and coefficient of solute-solute interaction. This effect is not observed for methanol solvent. The thermochemical data evidence an existence of multi-centred hydrogen bonds in associates of polyethers with the solvent molecules. Enthalpies of hydrogen bonding of the oligomers with chloroform and water have been estimated. The additivity scheme has been developed to describe the enthalpies of solvation of ethylene oxide oligomers, unbranched monoethers and n-alkanes in chloroform, methanol, water, and tetrachloromethane. The correction parameters for contribution of repeated polar groups and correction term for methoxy-compounds have been introduced. The obtained group contributions permit to describe the enthalpies of solvation of unbranched monoethers and ethylene oxide oligomers in the solvents with standard deviation up to 0.6 kJ . mol{sup -1}. The values of group contributions and corrections are strongly influenced by solvent properties.

  10. Supramolecular structures in N-isonicotinoyl arylaldehydehydrazones: multiple hydrogen-bonding modes in series of geometric isomers.

    Science.gov (United States)

    Wardell, Solange M S V; de Souza, Marcus V N; Wardell, James L; Low, John N; Glidewell, Christopher

    2007-12-01

    Sixteen N-isonicotinoyl arylaldehydehydrazones, NC(5)H(4)CONHN=CHC(6)H(4)R, have been studied and the structures of 14 of them have been determined, including the unsubstituted parent compound with R = H, and the complete sets of 2-, 3- and 4-substituted geometric isomers for R = F, Br and OMe, and two of the three isomers for R = Cl and OEt. The 2-chloro and 3-chloro derivatives are isostructural with the corresponding bromo isomers, and all compounds contain trans amide groups apart from the isostructural pair where R = 2-Cl and 2-Br, which contain cis amide groups. The structures exhibit a wide range of direction-specific intermolecular interactions, including eight types of hydrogen bonds, N-H...N, N-H...O, O-H...O, O-H...N, C-H...N, C-H...O, C-H...pi(arene) and C-H...pi(pyridyl), as well as pi...pi stacking interactions. The structures exhibit a very broad range of combinations of these interactions: the resulting hydrogen-bonded supramolecular structures range from one-dimensional when R = 2-F, 2-OMe or 2-OEt, via two-dimensional when R = 4-F, 3-Cl, 3-Br, 4-OMe or 3-OEt, to three-dimensional when R = H, 3-F, 2-Cl, 2-Br, 4-Br or 3-OMe. Minor changes in either the identity of the substituent or its location can lead to substantial changes in the pattern of supramolecular aggregation, posing significant problems of predictability. The new structures are compared with the recently published structures of the isomeric series having R = NO(2), with several monosubstituted analogues containing 2-pyridyl or 3-pyridyl units rather than 4-pyridyl, and with a number of examples having two or three substituents in the aryl ring: some 30 structures in all are discussed.

  11. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol

    Directory of Open Access Journals (Sweden)

    Hailiang Zhao

    2016-12-01

    Full Text Available Amides are important atmospheric organic–nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH with amides (formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide and N,N-dimethylacetamide have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH–amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O–H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components.

  12. Accurate characterization and understanding of interface trap density trends between atomic layer deposited dielectrics and AlGaN/GaN with bonding constraint theory

    Energy Technology Data Exchange (ETDEWEB)

    Ramanan, Narayanan; Lee, Bongmook; Misra, Veena, E-mail: vmisra@ncsu.edu [Department of Electrical and Computer Engineering, North Carolina State University, 2410 Campus Shore Drive, Raleigh, North Carolina 27695 (United States)

    2015-06-15

    Many dielectrics have been proposed for the gate stack or passivation of AlGaN/GaN based metal oxide semiconductor heterojunction field effect transistors, to reduce gate leakage and current collapse, both for power and RF applications. Atomic Layer Deposition (ALD) is preferred for dielectric deposition as it provides uniform, conformal, and high quality films with precise monolayer control of film thickness. Identification of the optimum ALD dielectric for the gate stack or passivation requires a critical investigation of traps created at the dielectric/AlGaN interface. In this work, a pulsed-IV traps characterization method has been used for accurate characterization of interface traps with a variety of ALD dielectrics. High-k dielectrics (HfO{sub 2}, HfAlO, and Al{sub 2}O{sub 3}) are found to host a high density of interface traps with AlGaN. In contrast, ALD SiO{sub 2} shows the lowest interface trap density (<2 × 10{sup 12 }cm{sup −2}) after annealing above 600 °C in N{sub 2} for 60 s. The trend in observed trap densities is subsequently explained with bonding constraint theory, which predicts a high density of interface traps due to a higher coordination state and bond strain in high-k dielectrics.

  13. Avaliação do efeito de tratamentos superficiais sobre a força de adesão de braquetes em provisórios de resina acrílica Assessment of the effect of different surface treatments on the bond strength of brackets bonded to acrylic resin

    Directory of Open Access Journals (Sweden)

    Deise Lima Cunha Masioli

    2011-02-01

    Full Text Available OBJETIVO: avaliar a influência do tratamento de superfície de resinas acrílicas na resistência ao cisalhamento de braquetes colados com resina composta. MÉTODOS: foram confeccionados 140 discos de resina acrílica autopolimerizável (Duralay®, divididos aleatoriamente em 14 grupos (n=10. Em cada grupo, os corpos de prova receberam um tipo diferente de tratamento de superfície: grupo 1 = sem tratamento de superfície (controle; grupo 2 = silano; grupo 3 = jato de óxido de alumínio (JOA; grupo 4 = JOA + silano; grupo 5 = broca diamantada; grupo 6 = broca diamantada+ silano; grupo 7 = ácido fluorídrico; grupo 8 = ácido fluorídrico + silano; grupo 9 = ácido fosfórico; grupo 10 = ácido fosfórico + silano; grupo 11 = monômero de metilmetacrilato (MMA; grupo 12 = MMA + silano; grupo 13 = Plastic conditioner (Reliance®; grupo 14 = Plastic conditioner (Reliance® + silano. Após o preparo de superfície, os corpos de prova foram analizados através da rugosimetria. Posteriormente, foram colados braquetes (Morelli® de incisivo central "standard edgewise" com resina fotopolimerizável Transbond XT®; de acordo com as instruções do fabricante. RESULTADOS: o agente umectante à base de silano não teve um efeito estatisticamente significativo sobre os valores de força de adesão; os tratamentos com JOA e broca produziram maiores mudanças topográficas na superfície da resina acrílica, bem como os maiores valores de rugosidade; observou-se uma correlação não linear entre a força de adesão e a rugosidade de superfície; tratamentos com monômero e JOA resultaram nas maiores forças de adesão. CONCLUSÕES: o silano não foi capaz de aumentar a força de adesão entre braquete e resina acrílica. Sugere-se mais estudos sobre este tema, pois a força de adesão obtida foi muito baixa.OBJECTIVE: To evaluate the influence of the surface treatment of acrylic resins on the shear bond strength of brackets bonded with composite resin

  14. Electronic parameters of Sr2Nb2O7 and chemical bonding

    DEFF Research Database (Denmark)

    Atuchin, V.V.; Grivel, Jean-Claude; Korotkov, A.S.

    2008-01-01

    /2)) and Delta(O-Sr) = BE(O 1s)-BE(Sr 3d(5/2)), were used to characterize the valence electron transfer on the formation of the Nb-O and Sr-O bonds. The chemical bonding effects were considered on the basis of our XPS results for Sr2Nb2O7 and earlier published structural and XPS data for other Sr- or Nb...

  15. Investigation on Surface Polarization of Al2O3-capped GaN/AlGaN/GaN Heterostructure by Angle-Resolved X-ray Photoelectron Spectroscopy.

    Science.gov (United States)

    Duan, Tian Li; Pan, Ji Sheng; Wang, Ning; Cheng, Kai; Yu, Hong Yu

    2017-08-17

    The surface polarization of Ga-face gallium nitride (GaN) (2 nm)/AlGaN (22 nm)/GaN channel (150 nm)/buffer/Si with Al 2 O 3 capping layer is investigated by angle-resolved X-ray photoelectron spectroscopy (ARXPS). It is found that the energy band varies from upward bending to downward bending in the interface region, which is believed to be corresponding to the polarization variation. An interfacial layer is formed between top GaN and Al 2 O 3 due to the occurrence of Ga-N bond break and Ga-O bond forming during Al 2 O 3 deposition via the atomic layer deposition (ALD). This interfacial layer is believed to eliminate the GaN polarization, thus reducing the polarization-induced negative charges. Furthermore, this interfacial layer plays a key role for the introduction of the positive charges which lead the energy band downward. Finally, a N 2 annealing at 400 °C is observed to enhance the interfacial layer growth thus increasing the density of positive charges.

  16. Sequential plasma activation methods for hydrophilic direct bonding at sub-200 °C

    Science.gov (United States)

    He, Ran; Yamauchi, Akira; Suga, Tadatomo

    2018-02-01

    We present our newly developed sequential plasma activation methods for hydrophilic direct bonding of silica glasses and thermally grown SiO2 films. N2 plasma was employed to introduce a metastable oxynitride layer on wafer surfaces for the improvement of bond energy. By using either O2-plasma/N2-plasma/N-radical or N2-plasma/N-radical sequential activation, the quartz-quartz bond energy was increased from 2.7 J/m2 to close to the quartz bulk fracture energy that was estimated to be around 9.0 J/m2 after post-bonding annealing at 200 °C. The silicon bulklike bond energy between thermal SiO2 films was also obtained. We suggest that the improvement is attributable to surface modification such as N-related defect formation and asperity softening by the N2 plasma surface treatment.

  17. Poly[[diaqua-μ4-pyrazine-2,3-dicarboxylato-κ6N,O2:O2′:O3,O3′:O3-strontium(II] monohydrate

    Directory of Open Access Journals (Sweden)

    Vahid Amani

    2008-07-01

    Full Text Available In the title compound, {[Sr(C6H2N2O4(H2O2]·H2O}n, the SrII ions are bridged by the pyrazine-2,3-dicarboxylate ligands with the formation of two-dimensional polymeric layers parallel to the ac plane. Each SrII ion is eight-coordinated by one N and five O atoms from the four ligands and two water molecules. The coordination polyhedron is derived from a pentagonal bipyramid with an O atom at the apex on one side of the equatorial plane and two O atoms sharing the apical site on the other side. The coordinated and uncoordinated water molecules are involved in O—H...O and O—H...N hydrogen bonds, which consolidate the crystal structure.

  18. Synthesis, Structure and Spectroscopy of Two Structurally Related Hydrogen Bonded Compounds in the dpma/HClO4 System; dpma (dimethylphosphorylmethanamine

    Directory of Open Access Journals (Sweden)

    Guido J. Reiss

    2013-06-01

    Full Text Available The new phosphine oxide compound, (dimethylphosphorylmethanaminium perchlorate, dpmaHClO4 (1, was synthesized by the reaction of (dimethylphosphoryl methanamine (dpma with concentrated perchloric acid. (Dimethylphosphorylmethanaminium perchlorate (dimethylphosphorylmethanamine solvate, dpmaHClO4•dpma (2 was obtained by the slow evaporation of an equimolar methanolic solution of 1 and dpma at room temperature. For both compounds, single-crystal X-ray structures, IR and Raman spectra are reported. The assignment of the spectroscopic data were supported by quantum chemical calculations at the B3LYP/6-311G(2d,p level of theory. In 1, the dpmaH cations form polymeric, polar double-strands along [010] by head to tail connections via N–H∙∙∙O hydrogen bonds. The perchlorate anions are located between these strands attached by one medium strong and two weaker un-bifurcated hydrogen bonds (monoclinic, centrosymmetric space group C2/c, a = 17.8796(5 Å, b = 5.66867(14 Å, c = 17.0106(5 Å, β = 104.788(3°, V = 1666.9(1 Å3, Z = 8, T = 293 K, R(F [I > 2σ(I] = 0.0391, wR(F2 [all] = 0.1113. In 2, besides the N–H∙∙∙O hydrogen bonds, medium strong N–H∙∙∙N hydrogen bonds are present. One dpmaH cation and the neutral dpma molecule are connected head to tail by two N–H∙∙∙O hydrogen bonds forming a monocationic cyclic unit. These cyclic units are further connected by N–H∙∙∙O and N–H∙∙∙N hydrogen bonds forming polymeric, polar double-strands along [001]. The perchlorate anions fill the gaps between these strands, and each [ClO4]− anion is weakly connected to the NH2 group by one N–H∙∙∙O hydrogen bond (orthorhombic, non-centrosymmetric space group Pca21 (No. 29, a = 18.5821(5 Å, b = 11.4320(3 Å, c = 6.89400(17 Å, V = 1464.50(6 Å3, Z = 4, T = 100 K, R(F [I > 2σ(I] = 0.0234, wR(F2 [all] = 0.0575. Both structures are structurally related, and their commonalities are discussed in terms of a graph

  19. N-H···S Interaction Continues To Be an Enigma: Experimental and Computational Investigations of Hydrogen-Bonded Complexes of Benzimidazole with Thioethers.

    Science.gov (United States)

    Wategaonkar, Sanjay; Bhattacherjee, Aditi

    2018-05-03

    The N-H···S hydrogen bond, even though classified as an unconventional hydrogen bond, is found to bear important structural implications on protein structure and folding. In this article, we report a gas-phase study of the N-H···S hydrogen bond between the model compounds of histidine (benzimidazole, denoted BIM) and methionine (dimethyl sulfide, diethyl sulfide, and tetrahydrothiophene, denoted Me 2 S, Et 2 S, and THT, respectively). A combination of laser spectroscopic methods such as laser-induced fluorescence (LIF), two-color resonant two-photon ionization (2cR2PI), and fluorescence depletion by infrared spectroscopy (FDIR) is used in conjunction with DFT and ab initio calculations to characterize the nature of this prevalent H-bonding interaction in simple bimolecular complexes. A single conformer was found to exist for the BIM-Me 2 S complex, whereas the BIM-Et 2 S and BIM-THT complexes showed the presence of three and two conformers, respectively. These conformers were characterized on the basis of IR spectroscopic results and electronic structure calculations. Quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO), and energy decomposition (NEDA) analyses were performed to investigate the nature of the N-H···S H-bond. Comparison of the results with the N-H···O type of interactions in BIM and indole revealed that the strength of the N-H···S H-bond is similar to N-H···O in these binary gas-phase complexes.

  20. Intramolecular CH···O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson-Crick pairs. Quantum chemical and AIM analysis.

    Science.gov (United States)

    Yurenko, Yevgen P; Zhurakivsky, Roman O; Samijlenko, Svitlana P; Hovorun, Dmytro M

    2011-08-01

    The aim of this work is to cast some light on the H-bonds in double-stranded DNA in its AI and BI forms. For this purpose, we have performed the MP2 and DFT quantum chemical calculations of the canonical nucleoside conformers, relative to the AI and BI DNA forms, and their Watson-Crick pairs, which were regarded as the simplest models of the double-stranded DNA. Based on the atoms-in-molecules analysis (AIM), five types of the CH···O hydrogen bonds, involving bases and sugar, were detected numerically from 1 to 3 per a conformer: C2'H···O5', C1'H···O2, C6H···O5', C8H···O5', and C6H···O4'. The energy values of H-bonds occupy the range of 2.3-5.6 kcal/mol, surely exceeding the kT value (0.62 kcal/mol). The nucleoside CH···O hydrogen bonds appeared to "survive" turns of bases against the sugar, sometimes in rather large ranges of the angle values, pertinent to certain conformations, which points out to the source of the DNA lability, necessary for the conformational adaptation in processes of its functioning. The calculation of the interactions in the dA·T nucleoside pair gives evidence, that additionally to the N6H···O4 and N1···N3H canonical H-bonds, between the bases adenine and thymine the third one (C2H···O2) is formed, which, though being rather weak (about 1 kcal/mol), satisfies the AIM criteria of H-bonding and may be classified as a true H-bond. The total energy of all the CH···O nontraditional intramolecular H-bonds in DNA nucleoside pairs appeared to be commensurable with the energy of H-bonds between the bases in Watson-Crick pairs, which implies their possible important role in the DNA shaping.

  1. compounds with N=N, C≡C or conjugated double-bonded systems

    Indian Academy of Sciences (India)

    Unusual products in the reactions of phosphorus(III) compounds with. N=N, C≡C or conjugated double-bonded systems. K C KUMARA SWAMY,* E BALARAMAN, M PHANI PAVAN, N N BHUVAN KUMAR,. K PRAVEEN KUMAR and N SATISH KUMAR. School of Chemistry, University of Hyderabad, Hyderabad 500 046.

  2. Proton transfer in a short hydrogen bond caused by solvation shell fluctuations: an ab initio MD and NMR/UV study of an (OHO)(-) bonded system.

    Science.gov (United States)

    Pylaeva, Svetlana; Allolio, Christoph; Koeppe, Benjamin; Denisov, Gleb S; Limbach, Hans-Heinrich; Sebastiani, Daniel; Tolstoy, Peter M

    2015-02-14

    We present a joint experimental and quantum chemical study on the influence of solvent dynamics on the protonation equilibrium in a strongly hydrogen bonded phenol-acetate complex in CD2Cl2. Particular attention is given to the correlation of the proton position distribution with the internal conformation of the complex itself and with fluctuations of the aprotic solvent. Specifically, we have focused on a complex formed by 4-nitrophenol and tetraalkylammonium-acetate in CD2Cl2. Experimentally we have used combined low-temperature (1)H and (13)C NMR and UV-vis spectroscopy and showed that a very strong OHO hydrogen bond is formed with proton tautomerism (PhOH···(-)OAc and PhO(-)···HOAc forms, both strongly hydrogen bonded). Computationally, we have employed ab initio molecular dynamics (70 and 71 solvent molecules, with and without the presence of a counter-cation, respectively). We demonstrate that the relative motion of the counter-cation and the "free" carbonyl group of the acid plays the major role in the OHO bond geometry and causes proton "jumps", i.e. interconversion of PhOH···(-)OAc and PhO(-)···HOAc tautomers. Weak H-bonds between CH(CD) groups of the solvent and the oxygen atom of carbonyl stabilize the PhOH···(-)OAc type of structures. Breaking of CH···O bonds shifts the equilibrium towards PhO(-)···HOAc form.

  3. Tetraammineplatinum(II) aquapentachloroiridate(III) dihydrate, [Pt(NH3)4][IrCl5(H2O)

    International Nuclear Information System (INIS)

    Garnier, E.; Bele, M.

    1994-01-01

    The crystal is built up from planar Pt(NH 3 ) 4 2+ cations, octahedral IrCl 5 (H 2 O) 2- anions and two H 2 O molecules. The coordination of these ions is 6/6, thus leading to a NaCl crystal structure. Electrostatic interactions and N..Cl, N..O and N..N short contacts (possible hydrogen bonds) take part in the packing of the structure and form a three-dimensional network. (orig.)

  4. Crystal structure of bis(μ-3-nitrobenzoato-κ3O,O′:O;κ3O:O,O′-bis[bis(3-cyanopyridine-κN1(3-nitrobenzoato-κ2O,O′cadmium

    Directory of Open Access Journals (Sweden)

    Tuncer Hökelek

    2017-03-01

    Full Text Available The asymmetric unit of the title compound, [Cd2(C7H4NO44(C6H4N24], contains one CdII atom, two 3-nitrobenzoate (NB anions and two 3-cyanopyridine (CPy ligands. The two CPy ligands act as monodentate N(pyridine-bonding ligands, while the two NB anions act as bidentate ligands through the carboxylate O atoms. The centrosymmetric dinuclear complex is generated by application of inversion symmetry, whereby the CdII atoms are bridged by the carboxylate O atoms of two symmetry-related NB anions, thus completing the distorted N2O5 pentagonal–bipyramidal coordination sphere of each CdII atom. The benzene and pyridine rings are oriented at dihedral angles of 10.02 (7 and 5.76 (9°, respectively. In the crystal, C—H...N hydrogen bonds link the molecules, enclosing R22(26 ring motifs, in which they are further linked via C—H...O hydrogen bonds, resulting in a three-dimensional network. In addition, π–π stacking interactions between parallel benzene rings and between parallel pyridine rings of adjacent molecules [shortest centroid-to-centroid distances = 3.885 (1 and 3.712 (1 Å, respectively], as well as a weak C—H...π interaction, may further stabilize the crystal structure.

  5. Cooperativity of hydrogen-bonded networks in 7-azaindole(CH3OH)n (n=2,3) clusters evidenced by IR-UV ion-dip spectroscopy and natural bond orbital analysis.

    Science.gov (United States)

    Sakota, Kenji; Kageura, Yutaka; Sekiya, Hiroshi

    2008-08-07

    IR-UV ion-dip spectra of the 7-azaindole (7AI)(CH(3)OH)(n) (n=1-3) clusters have been measured in the hydrogen-bonded NH and OH stretching regions to investigate the stable structures of 7AI(CH(3)OH)(n) (n=1-3) in the S(0) state and the cooperativity of the H-bonding interactions in the H-bonded networks. The comparison of the IR-UV ion-dip spectra with IR spectra obtained by quantum chemistry calculations shows that 7AI(CH(3)OH)(n) (n=1-3) have cyclic H-bonded structures, where the NH group and the heteroaromatic N atom of 7AI act as the proton donor and proton acceptor, respectively. The H-bonded OH stretch fundamental of 7AI(CH(3)OH)(2) is remarkably redshifted from the corresponding fundamental of (CH(3)OH)(2) by 286 cm(-1), which is an experimental manifestation of the cooperativity in H-bonding interaction. Similarly, two localized OH fundamentals of 7AI(CH(3)OH)(3) also exhibit large redshifts. The cooperativity of 7AI(CH(3)OH)(n) (n=2,3) is successfully explained by the donor-acceptor electron delocalization interactions between the lone-pair orbital in the proton acceptor and the antibonding orbital in the proton donor in natural bond orbital (NBO) analyses.

  6. Zoledronate complexes. III. Two zoledronate complexes with alkaline earth metals: [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)] and [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n).

    Science.gov (United States)

    Freire, Eleonora; Vega, Daniel R; Baggio, Ricardo

    2010-06-01

    Diaquabis[dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato-kappa(2)O,O']magnesium(II), [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)], consists of isolated dimeric units built up around an inversion centre and tightly interconnected by hydrogen bonding. The Mg(II) cation resides at the symmetry centre, surrounded in a rather regular octahedral geometry by two chelating zwitterionic zoledronate(1-) [or dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonate] anions and two water molecules, in a pattern already found in a few reported isologues where the anion is bound to transition metals (Co, Zn and Ni). catena-Poly[[aquacalcium(II)]-mu(3)-[hydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato]-kappa(5)O:O,O':O',O''], [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n), consists instead of a Ca(II) cation in a general position, a zwitterionic zoledronate(2-) anion and a coordinated water molecule. The geometry around the Ca(II) atom, provided by six bisphosphonate O atoms and one water ligand, is that of a pentagonal bipyramid with the Ca(II) atom displaced by 0.19 A out of the equatorial plane. These Ca(II) coordination polyhedra are ;threaded' by the 2(1) axis so that successive polyhedra share edges of their pentagonal basal planes. This results in a strongly coupled rhomboidal Ca(2)-O(2) chain which runs along [010]. These chains are in turn linked by an apical O atom from a -PO(3) group in a neighbouring chain. This O-atom, shared between chains, generates strong covalently bonded planar arrays parallel to (100). Finally, these sheets are linked by hydrogen bonds into a three-dimensional structure. Owing to the extreme affinity of zoledronic acid for bone tissue, in general, and with calcium as one of the major constituents of bone, it is expected that this structure will be useful in modelling some of the biologically interesting processes in which the drug takes part.

  7. Informações contábil-financeiras e custo de captação em mercados de bonds

    Directory of Open Access Journals (Sweden)

    Maurício Ribeiro do Valle

    2002-12-01

    Full Text Available O artigo discute a questão do conteúdo informacional de números contábil-financeiros e analisa a relação entre estas informações e o custo de captação das maiores empresas do setor Papel & Celulose que obtiveram recursos nos mercados americano e internacional de bonds durante o período 1991-98. Os indicadores contábil-financeiros analisados mostraram que as empresas brasileiras não apresentaram um elevado desempenho como as empresas que captaram recursos com um baixo custo, mas, também, não apresentaram características semelhantes às empresas - americanas e canadenses com profundos problemas financeiros - que captaram a um alto custo nos mercados estudados.The article concerns the information provided by accounting/financial variables and analyzes the relationship between this information and the cost of funding for the largest Pulp and Paper companies that raised capital in the U.S. and international bond markets in the period 1991-98. The analyzed accounting/financial variables showed that Brazilian companies neither performed as well as the companies that raised capital with a low cost, nor presented the same characteristics as the companies - American and Canadian companies with large financial problems - that raised capital with a high cost in the studied markets.

  8. Hydrogen bonding donation of N-methylformamide with dimethylsulfoxide and water

    Science.gov (United States)

    Borges, Alexandre; Cordeiro, João M. M.

    2013-04-01

    20% N-methylformamide (NMF) mixtures with water and with dimethylsulfoxide (DMSO) have been studied. A comparison between the hydrogen bonding (H-bond) donation of N-methylformamide with both solvents in the mixtures is presented. Results of radial distribution functions, pair distribution energies, molecular dipole moment correlation, and geometry of the H-bonded species in each case are shown. The results indicate that the NMF - solvent H-bond is significantly stronger with DMSO than with water. The solvation shell is best organized in the DMSO mixture than in the aqueous one.

  9. Bent CNN bond of diazo compounds, RR'(Cdbnd N+dbnd N-)

    Science.gov (United States)

    Akita, Motoko; Takahashi, Mai; Kobayashi, Keiji; Hayashi, Naoto; Tukada, Hideyuki

    2013-02-01

    The reaction of ninhydrin with benzophenone hydrazone afforded 2-diazo-3-diphenylmethylenehydrazono-1-indanone 1 and 2-diazo-1,3-bis(diphenylmethylenehydrazono)indan 2. X-ray crystal structure analyses of these products showed that the diazo functional group Cdbnd N+dbnd N- of 1 is bent by 172.9°, while that of 2 has a linear geometry. The crystal structure data of diazo compounds have been retrieved from the Cambridge Structural Database (CSD), which hit 177 entries to indicate that the angle of 172.9° in 1 lies in one of the most bent structures. The CSD search also indicated that diazo compounds consisting of a distorted diazo carbon tend to bend the Cdbnd N+dbnd N- bond. On the basis of DFT calculations (B3LYP/6-311++G(d,p)) of model compounds, it was revealed that the bending of the CNN bond is principally induced by steric factors and that the neighboring carbonyl group also plays a role in bending toward the carbonyl side owing to an electrostatic attractive interaction. The potential surface along the path of Cdbnd N+dbnd N- bending in 2-diazopropane shows a significantly shallow profile with only 4 kcal/mol needed to bend the Cdbnd N+dbnd N- bond from 180° to 160°. Thus, the bending of the diazo group in 1 is reasonable as it is provided with all of the factors for facile bending disclosed in this investigation.

  10. Bond length effects during the dissociation of O2 on Ni(1 1 1)

    International Nuclear Information System (INIS)

    Shuttleworth, I.G.

    2015-01-01

    Graphical abstract: - Highlights: • The dissociation of O 2 on Ni(1 1 1) has been investigated using the Nudged Elastic Band (NEB) technique. • An exceptional correlation has been identified between the O/Ni bond order and the O 2 bond length for a series of sterically different reaction paths. • Direct magnetic phenomena accompany these processes suggesting further mechanisms for experimental control. - Abstract: The interaction between O 2 and Ni(1 1 1) has been investigated using spin-polarised density functional theory. A series of low activation energy (E A = 103–315 meV) reaction pathways corresponding to precursor and non-precursor mediated adsorption have been identified. It has been seen that a predominantly pathway-independent correlation exists between O−Ni bond order and the O 2 bond length. This correlation demonstrates that the O−O interaction predominantly determines the bonding of this system

  11. Blue-shifted and red-shifted hydrogen bonds: Theoretical study of the CH3CHO· · ·HNO complexes

    Science.gov (United States)

    Yang, Yong; Zhang, Weijun; Gao, Xiaoming

    The blue-shifted and red-shifted H-bonds have been studied in complexes CH3CHO?HNO. At the MP2/6-31G(d), MP2/6-31+G(d,p) MP2/6-311++G(d,p), B3LYP/6-31G(d), B3LYP/6-31+G(d,p) and B3LYP/6-311++G(d,p) levels, the geometric structures and vibrational frequencies of complexes CH3CHO?HNO are calculated by both standard and CP-corrected methods, respectively. Complex A exhibits simultaneously red-shifted C bond H?O and blue-shifted N bond H?O H-bonds. Complex B possesses simultaneously two blue-shifted H-bonds: C bond H?O and N bond H?O. From NBO analysis, it becomes evident that the red-shifted C bond H?O H-bond can be explained on the basis of the two opposite effects: hyperconjugation and rehybridization. The blue-shifted C bond H?O H-bond is a result of conjunct C bond H bond strengthening effects of the hyperconjugation and the rehybridization due to existence of the significant electron density redistribution effect. For the blue-shifted N bond H?O H-bonds, the hyperconjugation is inhibited due to existence of the electron density redistribution effect. The large blue shift of the N bond H stretching frequency is observed because the rehybridization dominates the hyperconjugation.

  12. Discovery of S···C≡N Intramolecular Bonding in a Thiophenylcyanoacrylate-Based Dye: Realizing Charge Transfer Pathways and Dye···TiO 2 Anchoring Characteristics for Dye-Sensitized Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Jacqueline M. [Cavendish; ISIS; Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States; Department; Blood-Forsythe, Martin A. [Cavendish; Lin, Tze-Chia [Cavendish; Pattison, Philip [Swiss; Gong, Yun [Cavendish; Vázquez-Mayagoitia, Álvaro [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States; Waddell, Paul G. [Cavendish; Australian Centre for Neutron Scattering, Australian Nuclear Science; Zhang, Lei [Cavendish; Koumura, Nagatoshi [National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Mori, Shogo [Division

    2017-07-25

    Donor-pi-acceptor dyes containing thiophenyl pi-conjugated units and cyanoacrylate acceptor groups are among the best-performing organic chromophores used in dye-sensitized solar cell (DSC) applications. Yet, the molecular origins of their high photovoltaic output have remained unclear until now. This synchrotron-based X-ray diffraction study elucidates these origins for the high-performance thiophenylcyanoacrylate-based dye MK-2 (7.7% DSC device efficiency) and its molecular building block, MK-44. The crystal structures of MK-2 and MK-44 are both determined, while a high-resolution charge-density mapping of the smaller molecule was also possible, enabling the nature of its bonding to be detailed. A strong S center dot center dot center dot C equivalent to N intramolecular interaction is discovered, which bears a bond critical point, thus proving that this interaction should be formally classified as a chemical bond. A topological analysis of the pi-conjugated portion of MK-44 shows that this S center dot center dot center dot C equivalent to N bonding underpins the highly efficient intramolecular charge transfer(ICT) in thiophenylcyanoacrylate dyes. This manifests as two bipartite ICT pathways bearing carboxylate and nitrile end points. In turn, these pathways dictate a preferred COO/CN anchoring mode for the dye as it adsorbs onto TiO2 surfaces, to form the dye TiO2 interface that constitutes the DSC working electrode. These results corroborate a recent proposal that all cyanoacrylate groups anchor onto TiO2 in this COO/CN binding configuration. Conformational analysis of the MK-44 and MK-2 crystal structures reveals that this S center dot center dot center dot C equivalent to N bonding will persist in MK-2. Accordingly, this newly discovered bond affords a rational explanation for the attractive photovoltaic properties of,MK-2. More generally, this study provides the first unequivocal evidence for an S center dot center dot center dot C equivalent to N

  13. Unusual hydrogen bonding in L-cysteine hydrogen fluoride.

    Science.gov (United States)

    Minkov, V S; Ghazaryan, V V; Boldyreva, E V; Petrosyan, A M

    2015-08-01

    L-Cysteine hydrogen fluoride, or bis(L-cysteinium) difluoride-L-cysteine-hydrogen fluoride (1/1/1), 2C3H8NO2S(+)·2F(-)·C3H7NO2S·HF or L-Cys(+)(L-Cys···L-Cys(+))F(-)(F(-)...H-F), provides the first example of a structure with cations of the 'triglycine sulfate' type, i.e. A(+)(A···A(+)) (where A and A(+) are the zwitterionic and cationic states of an amino acid, respectively), without a doubly charged counter-ion. The salt crystallizes in the monoclinic system with the space group P2(1). The dimeric (L-Cys···L-Cys(+)) cation and the dimeric (F(-)···H-F) anion are formed via strong O-H···O or F-H···F hydrogen bonds, respectively, with very short O···O [2.4438 (19) Å] and F···F distances [2.2676 (17) Å]. The F···F distance is significantly shorter than in solid hydrogen fluoride. Additionally, there is another very short hydrogen bond, of O-H···F type, formed by a L-cysteinium cation and a fluoride ion. The corresponding O···F distance of 2.3412 (19) Å seems to be the shortest among O-H···F and F-H···O hydrogen bonds known to date. The single-crystal X-ray diffraction study was complemented by IR spectroscopy. Of special interest was the spectral region of vibrations related to the above-mentioned hydrogen bonds.

  14. (3-Methylbenzonitrile-1κN-cis-tetrakis(μ-N-phenylacetamidato-1:2κ4N:O;1:2κ4O:N-dirhodium(II(Rh—Rh

    Directory of Open Access Journals (Sweden)

    Cassandra T. Eagle

    2014-08-01

    Full Text Available The complex molecule of the title compound, [Rh2{N(C6H5COCH3}4(NCC7H7], has crystallographically-imposed mirror symmetry. The four acetamide ligands bridging the dirhodium core are arranged in a 2,2-cis manner with two N atoms and two O atoms coordinating to the unique RhII atom cis to one another. The Neq—Rh—Rh—Oeq torsion angles on the acetamide bridge are 0.75 (7 and 1.99 (9°. The axial nitrile ligand completes the distorted octahedral coordination sphere of one RhII atom and shows a nonlinear coordination, with an Rh—N—C bond angle of 162.8 (5°; the N—C bond length is 1.154 (7 Å.

  15. Discrimination between O-H…N and O-H…O=C Complexes of 3 ...

    African Journals Online (AJOL)

    NICO

    n. The much larger frequency shift of the base C=O group is due to an increased cooperativity. The presence of an intense absorption band of methanol polymers between 3720 and 3200 cm–1 suggests that. 3M4P is no longer H-bonded by a single methanol molecule, but rather by methanol associates. The structure of this ...

  16. X-ray diffraction and chemical bonding

    International Nuclear Information System (INIS)

    Bats, J.W.

    1976-01-01

    Chemical bonds are investigated in sulfamic acid (H 3 N-SO 3 ), sodium sulfonlate dihydrate (H 2 NC 6 H 4 SO 3 Na.2H 2 O), 2,5-dimercaptothiadiazole (HS-C 2 N 2 S-SH), sodium cyanide dihydrate (NaCN.2H 2 O), sodium thiocyanate (NaSCN) and ammonium thiocyanate (NH 4 SCN) by X-ray diffraction, and if necessary completed with neutron diffraction. Crystal structures and electron densities are determined together with bond length and angles. Also the effects of thermal motion are discussed

  17. Control of chemical bonding of the ZnO surface grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Ogata, K.; Komuro, T.; Hama, K.; Koike, K.; Sasa, S.; Inoue, M.; Yano, M.

    2004-01-01

    Toward the fabrication of enzyme modified field effect transistors (EnFETs) as one of organic/inorganic hybridized structures, surface bonding of the ZnO grown by molecular beam epitaxy was controlled by ex situ treatments. Angle resolved X-ray photoelectron spectroscopy (XPS) measurement revealed that O-H bonds exist at the surface of ZnO. It was found that the number of O-H bond could be changed with reversibility using plasma and thermal treatments

  18. Bond portfolio's duration and investment term-structure management problem

    OpenAIRE

    Liu, Daobai

    2006-01-01

    In the considered bond market, there are N zero-coupon bonds transacted continuously, which will mature at equally spaced dates. A duration of bond portfolios under stochastic interest rate model is introduced, which provides a measurement for the interest rate risk. Then we consider an optimal bond investment term-structure management problem using this duration as a performance index, and with the short-term interest rate process satisfying some stochastic differential ...

  19. Photosynthetic water oxidation: binding and activation of substrate waters for O-O bond formation.

    Science.gov (United States)

    Vinyard, David J; Khan, Sahr; Brudvig, Gary W

    2015-01-01

    Photosynthetic water oxidation occurs at the oxygen-evolving complex (OEC) of Photosystem II (PSII). The OEC, which contains a Mn4CaO5 inorganic cluster ligated by oxides, waters and amino-acid residues, cycles through five redox intermediates known as S(i) states (i = 0-4). The electronic and structural properties of the transient S4 intermediate that forms the O-O bond are not well understood. In order to gain insight into how water is activated for O-O bond formation in the S4 intermediate, we have performed a detailed analysis of S-state dependent substrate water binding kinetics taking into consideration data from Mn coordination complexes. This analysis supports a model in which the substrate waters are both bound as terminal ligands and react via a water-nucleophile attack mechanism.

  20. Photochemical oxidation of short-chain polychlorinated n-alkane mixtures using H2O2/UV and the photo-Fenton reaction

    OpenAIRE

    Ken J. Friesen; Taha M. El-Morsi; Alaa S. Abd-El-Aziz

    2004-01-01

    The photochemical oxidation of a series of short-chain polychlorinated n-alkane (PCA) mixtures was investigated using H2O2/UV and modified photo-Fenton conditions (Fe3+/H2O2/UV) in both Milli-Q and lake water. All PCA mixtures, including chlorinated (Cl5 to Cl8) decanes, undecanes, dodecanes and tridecanes degraded in 0.02 M H2O2/UV at pH 2.8 in pure water, with 80±4% disappearance after 3 h of irradiation using a 300 nm light source. Degradation was somewhat enhanced under similar conditions...

  1. Synthesis, characterization and crystal structure of the new pentahydrate of bis(2,2'-bipyridine-κ(2)N,N')(oxalato-κ(2)O(1),O(2))nickel(II).

    Science.gov (United States)

    Farkašová, Nela; Cernák, Juraj; Tomás, Milagros; Falvello, Larry R

    2014-05-01

    The reaction of NiCl2, K2C2O4·H2O and 2,2'-bipyridine (bpy) in water-ethanol solution at 281 K yields light-purple needles of the new pentahydrate of bis(2,2'-bipyridine)oxalatonickel(II), [Ni(C2O4)(C10H8N2)2]·5H2O or [Ni(ox)(bpy)2]·5H2O, while at room temperature, deep-pink prisms of the previously reported tetrahydrate [Ni(ox)(bpy)2]·4H2O [Román, Luque, Guzmán-Miralles & Beitia (1995), Polyhedron, 14, 2863-2869] were gathered. The asymmetric unit in the crystal structure of the new pentahydrate incorporates the discrete molecular complex [Ni(ox)(bpy)2] and five solvent water molecules. Within the complex molecule, all three ligands are bonded as chelates. The complex molecules are involved in an extended system of hydrogen bonds with the solvent water molecules. Additionally, π-π interactions also contribute to the stabilization of the extended structure. The dehydration of the pentahydrate starts at 323 K and proceeds in at least two steps as determined by thermal analysis.

  2. Poly[aqua-μ-bromido-(μ2-5-methylpyrazine-2-carboxylato-κ4N1,O2:O2,O2′lead(II

    Directory of Open Access Journals (Sweden)

    Pan Yang

    2012-09-01

    Full Text Available In the title coordination polymer, [PbBr(C6H5N2O2(H2O]n, the PbII atom is coordinated by one pyrazine N atom, two bridging Br atoms, a water molecule and three carboxylate O atoms. Bridging by the two anions generates a layer structure parallel to (001; the layers are linked by O—H...N and O—H...Br hydrogen bonds, forming a three-dimensional network. The lone pair is stereochemically active, resulting in a Ψ-dodecahedral coordination environment for PbII.

  3. Uma investigação sobre os co-movimentos na volatilidade dos par bonds latino-americanos

    Directory of Open Access Journals (Sweden)

    Igor A.C. de Morais

    2001-04-01

    Full Text Available Este artigo procura aplicar o método de quase-máxima verossimilhança para estimar a volatilidade estocástica multivariada não-estacionária dos preços de compra dos par bonds de quatro países latino-americanos - México, Brasil, Argentina e Venezuela - no período de 9-8-1994 a 15-9-1999. O objetivo é analisar possíveis movimentos comuns nestas variâncias. Os testes feitos revelam que a volatilidade nos modelos univariados não apresentam inclinação, mas possuem alta persistência. A formulação multivariada relaciona bem os dados, obtendo estimativas consistentes e revelando a existência de um comportamento ao longo do tempo similar entre as volatilidades das quatro séries.This paper uses a quasi-maximum likelihood procedure to estimate the non-stationary stochastic volatility for the par bonds of four Latin American countries: Brazil, Argentina, Mexico and Venezuela. The aim is to investigate the possible presence of co-movements in volatility across countries. The estimation period goes from August 1994 to September 1999, including, therefore, the Asian and Russian crises. The estimated volatility for the univariate model does not show any slope and is highly persistent. The multivariate model gives a good fit to the data and shows that there is common movement.

  4. Novel ethylenediamine-gallium phosphate containing 6-fold coordinated gallium atoms with unusual four equatorial Ga–N bonds

    Energy Technology Data Exchange (ETDEWEB)

    Torre-Fernández, Laura [Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo-CINN, 33006 Oviedo (Spain); Espina, Aránzazu; Khainakov, Sergei A.; Amghouz, Zakariae [Servicios Científico Técnicos, Universidad de Oviedo, 33006 Oviedo (Spain); García, José R. [Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo-CINN, 33006 Oviedo (Spain); García-Granda, Santiago, E-mail: sgg@uniovi.es [Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo-CINN, 33006 Oviedo (Spain)

    2014-07-01

    A novel ethylenediamine-gallium phosphate, formulated as Ga(H{sub 2}NCH{sub 2}CH{sub 2}NH{sub 2}){sub 2}PO{sub 4}·2H{sub 2}O, was synthesized under hydrothermal conditions. The crystal structure, including hydrogen positions, was determined using single-crystal X-ray diffraction data (monoclinic, a=9.4886(3) Å, b=6.0374(2) Å, c=10.2874(3) Å, and β=104.226(3)°, space group Pc) and the bulk was characterized by chemical (Ga–P–C–H–N) and thermal analysis (TG–MS and DSC), including activation energy data of its thermo-oxidative degradation, powder X-ray diffraction (PXRD), solid-state nuclear magnetic resonance (SS-NMR) measurements, and transmission electron microscopy (TEM, SAED/NBD, and STEM BF-EDX). The crystal structure is built up of infinite zig-zag chains running along the c-axis, formed by vertex-shared (PO{sub 4}) and (GaO{sub 2}N{sub 4}) polyhedra. The new compound is characterized by unusual four equatorial Ga–N bonds coming from two nonequivalent ethylenediamine molecules and exhibits strong blue emission at 430 nm (λ{sub ex}=350 nm) in the solid state at room temperature. - Graphical abstract: Single crystals of a new ethylenediamine-gallium phosphate, Ga(H{sub 2}NCH{sub 2}CH{sub 2}NH{sub 2}){sub 2}PO{sub 4}·2H{sub 2}O, were obtained and the structural features presented. This structure is one of the scarce examples of GaPO with Ga–N bonds reported. - Highlights: • A novel ethylenediamine-gallium phosphate was hydrothermally synthesized. • The new compound is characterized by unusual four equatorial Ga–N bonds. • Void-volume analysis shows cages and channels with sizes ideally suited to accommodate small molecules. • The new compound exhibits strong blue emission.

  5. What is a hydrogen bond?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. What is a hydrogen bond? Precise definition of a hydrogen bond is still elusive!1. Several criteria are listed usually for X-H•••Y, X and Y initially thought to be F, O and N only1. Structural: The X-Y bond length is less than the sum of their van der Waals radii. X-H•••Y is ...

  6. The cocrystal μ-oxalato-κ4O1,O2:O1′,O2′-bis(aqua(nitrato-κO{[1-(2-pyridyl-κNethylidene]hydrazine-κN}copper(II μ-oxalato-κ4O1,O2:O1′,O2′-bis((methanol-κO(nitrato-κO{[1-(2-pyridyl-κNethylidene]hydrazine-κN}copper(II (1/1

    Directory of Open Access Journals (Sweden)

    Youssouph Bah

    2008-09-01

    Full Text Available The title cocrystal, [Cu2(C2O4(NO32(C7H9N32(H2O2][Cu2(C2O4(NO32(C7H9N32(CH4O2], is a 1:1 cocrystal of two centrosymmetric CuII complexes with oxalate dianions and Schiff base ligands. In each molecule, the CuII centre is in a distorted octahedral cis-CuN2O4 environment, the donor atoms of the N,N′-bidentate Schiff base ligand and the bridging O,O′-bidentate oxalate group lying in the equatorial plane. In one molecule, a monodentate nitrate anion and a water molecule occupy the axial sites, and in the other, a monodentate nitrate anion and a methanol molecule occupy these sites. In the crystal structure, intermolecular N—H...O, O—H...O and N—H...N hydrogen bonds link the molecules into a network. Weak intramolecular N—H...O interactions are also observed.

  7. Diaqua-2κ2O-bis(μ-1-oxido-2-naphthoato-1:2κ3O1,O2:O2′;2:3κ3O2:O1,O2′-bis(1-oxido-2-naphthoato-1κ1O2,O2;3κ2O1,O2-hexapyridine-1κ2N,2κ2N,3κ2N-trimanganese(II/III pyridine disolvate dihydrate

    Directory of Open Access Journals (Sweden)

    Daqi Wang

    2008-12-01

    Full Text Available The title complex, [Mn3(C11H6O34(C5H5N6(H2O2]·2H2O·2C5H5N, is a trinuclear mixed oxidation state complex of overline1 symmetry. The three Mn atoms are six-coordinated in the shape of distorted octahedra, each coordinated with an O4N2 set of donor atoms, where the ligands exhibit mono- and bidentate modes. However, the coordination of the MnII ion located on the inversion centre involves water molecules at two coordination sites, whereas that of the two symmetry-related MnIII ions involves an O4N2 set of donor atoms orginating from the organic ligands. Intramolecular C—H...π interactions between neighbouring pyridine ligands stabilize this arrangement. A two-dimensional network parallel to (001 is formed by intermolecular O—H...O hydrogen bonds.

  8. Aquabis(3,5-dimethyl-1H-pyrazole-κN(oxalato-κ2O,O′copper(II

    Directory of Open Access Journals (Sweden)

    Andrii I. Buvailo

    2008-01-01

    Full Text Available In the title compound, [Cu(C2O4(C5H8N22(H2O], the CuII atom is coordinated in a slightly distorted square-pyramidal geometry by two N atoms belonging to the two 3,5-dimethyl-1H-pyrazole ligands, two O atoms of the oxalate anion providing an O,O′-chelating coordination mode, and an O atom of the water molecule occupying the apical position. The crystal packing shows a well defined layer structure. Intra-layer connections are realised through a system of hydrogen bonds while the nature of the inter-layer interactions is completely hydrophobic, including no hydrogen-bonding interactions.

  9. 31 CFR 351.11 - What do I need to know about the short-term savings bond rate, to understand redemption value...

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false What do I need to know about the short-term savings bond rate, to understand redemption value calculations in this subpart? 351.11... Provisions § 351.11 What do I need to know about the short-term savings bond rate, to understand redemption...

  10. Synthesis, crystal structure and magnetic properties of (acetato-κ²O,O')bis(5,5'-dimethyl-2,2'-bipyridine-κ²N,N')nickel(II) perchlorate monohydrate.

    Science.gov (United States)

    Farkašová, Nela; Černák, Juraj; Falvello, Larry R; Orendáč, Martin; Boča, Roman

    2015-04-01

    The title hydrated ionic complex, [Ni(CH3COO)(C12H12N2)2]ClO4·H2O or [Ni(ac)(5,5'-dmbpy)2]ClO4·H2O (where 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine and ac is acetate), (1), was isolated as violet crystals from the aqueous ethanolic nickel acetate-5,5'-dmbpy-KClO4 system. Within the complex cation, the Ni(II) atom is hexacoordinated by two chelating 5,5'-dmbpy ligands and one chelating ac ligand. The mean Ni-N and Ni-O bond lengths are 2.0628 (17) and 2.1341 (15) Å, respectively. The water solvent molecule is disordered over two partially occupied positions and links two complex cations and two perchlorate anions into hydrogen-bonded centrosymmetric dimers, which are further connected by π-π interactions. The magnetic properties of (1) at low temperatures are governed by the action of single-ion anisotropy, D, which arises from the reduced local symmetry of the cis-NiO2N4 chromophore. The fitting of the variable-temperature magnetic data (2-300 K) gives g(iso) = 2.134 and D/hc = 3.13 cm(-1).

  11. MOLECULAR COMPLEXES OF SULPHUR DIOXIDE WITH N,O-CONTAINING ORGANIC BASES (REVIEW

    Directory of Open Access Journals (Sweden)

    R. E. Khoma

    2016-10-01

    Full Text Available The literature data on the synthesis, stoichiometry, structure and relative stability of molecular  complexes of sulphur dioxide with N,O-containing organic bases have been systematized and  generalized. It was shown that the yield of the reaction product of sulfur dioxide with organic  bases (such as amines are strongly influenced by the conditions of synthesis: the nature of  the solvent (basicity, polarity, the temperature and SO2:L ratio in the reaction medium. The stoichiometry of SO2*nL molecular complexes depends on ligand denticity, as well as its  ability to H-bonding. The reaction of the sulfur oxide (IV with organic bases can give S←N and S←O complexes. With the increase of the value of base proton affinity the decrease ΔrSN values has been marked. Characteristic parameter Δr SN = r SN – a1(rS+ rN (where rSNis the S←N donor-acceptor bond length has been determined by microwave spectroscopy and X-ray analysis, rSand rNwere the tabulated values of the homopolar covalent radii of sulphur and nitrogen heteroatoms. The dependence of formation enthalpy of molecular complexes of basic amines and spectral characteristics has been noted; enthalpy-entropy compensation for S←N and S←O complex-es has been stated. Despite the limited experimental data on the thermodynamics of complex formation and the lengths of donor-acceptor bonds for the same compounds it has been found bond S←N strength in SO2 molecular complexes to depend on the intrinsic value of ΔrSN. The contribution of van der Waals forces and charge transfer forces to the formation of molecular complexes of sulphur dioxide has been stated.

  12. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O

    Science.gov (United States)

    Moseman-Valtierra, Serena; Gonzalez, Rosalinda; Kroeger, Kevin D.; Tang, Jianwu; Chao, Wei Chun; Crusius, John; Bratton, John F.; Green, Adrian; Shelton, James

    2011-01-01

    Coastal salt marshes sequester carbon at high rates relative to other ecosystems and emit relatively little methane particularly compared to freshwater wetlands. However, fluxes of all major greenhouse gases (N2O, CH4, and CO2) need to be quantified for accurate assessment of the climatic roles of these ecosystems. Anthropogenic nitrogen inputs (via run-off, atmospheric deposition, and wastewater) impact coastal marshes. To test the hypothesis that a pulse of nitrogen loading may increase greenhouse gas emissions from salt marsh sediments, we compared N2O, CH4 and respiratory CO2fluxes from nitrate-enriched plots in a Spartina patens marsh (receiving single additions of NaNO3 equivalent to 1.4 g N m−2) to those from control plots (receiving only artificial seawater solutions) in three short-term experiments (July 2009, April 2010, and June 2010). In July 2009, we also compared N2O and CH4 fluxes in both opaque and transparent chambers to test the influence of light on gas flux measurements. Background fluxes of N2O in July 2009 averaged −33 μmol N2O m−2 day−1. However, within 1 h of nutrient additions, N2O fluxes were significantly greater in plots receiving nitrate additions relative to controls in July 2009. Respiratory rates and CH4 fluxes were not significantly affected. N2O fluxes were significantly higher in dark than in transparent chambers, averaging 108 and 42 μmol N2O m−2 day−1 respectively. After 2 days, when nutrient concentrations returned to background levels, none of the greenhouse gas fluxes differed from controls. In April 2010, N2O and CH4 fluxes were not significantly affected by nitrate, possibly due to higher nitrogen demands by growing S. patens plants, but in June 2010 trends of higher N2O fluxes were again found among nitrate-enriched plots, indicating that responses to nutrient pulses may be strongest during the summer. In terms of carbon equivalents, the highest average N2O and CH4 fluxes observed, exceeded half

  13. Evolution of the bonding mechanism of ZnO under isotropic compression: A first-principles study

    International Nuclear Information System (INIS)

    Zhou, G.C.; Sun, L.Z.; Wang, J.B.; Zhong, X.L.; Zhou, Y.C.

    2008-01-01

    The electronic structure and the bonding mechanism of ZnO under isotropic pressure have been studied by using the full-potential linear augmented plane wave (FP-LAPW) method within the density-functional theory (DFT) based on LDA+U exchange correlation (EXC) potential. We used the theory of Atoms in Molecules (AIM) method to analyze the change of the charge transfer and the bonding strength under isotropic pressure. The results of the theoretical analysis show that charge transfer between Zn and O atomic basins nearly linearly increases with the increasing pressure. Charge density along the Zn-O bond increases under the high pressure. The bonding strength and the ionicity of Zn-O bond also increase with the increasing pressure. The linear evolution process of the bonding mechanism under isotropic pressure was shown clearly in the present paper

  14. Crystal structure of catena-poly[[[aquabis(dimethylformamide-κOmagnesium(II]-μ3-(2,2′-bipyridine-5,5′-dicarboxylato-κ5O2:O2′:N,N′:O5-[dichloridoplatinum(II

    Directory of Open Access Journals (Sweden)

    Fredrik Lundvall

    2017-07-01

    Full Text Available The title compound, {[MgPtCl2(C12H6N2O4(C3H7NO2(H2O]·C3H7NO}n, is a one-dimensional coordination polymer. The structure consists of Pt-functionalized bipyridine ligands connected by MgII cations, as well as coordinating and non-coordinating solvent molecules. The PtII cation is coordinated by the two N atoms of the bipyridine moiety and two Cl atoms in a square-planar fashion. This coordination induces an in-plane bend along the bipyridine backbone of approximately 10° from the linear ideal of a conjugated π-system. Likewise, the coordination to the MgII cation induces a significant bowing of the plane of the bipyridine of about 12°, giving it a distinct curved appearance. The carboxylate groups of the bipyridine ligand exhibit moderate rotations relative to their parent pyridine rings. The MgII cation has a fairly regular octahedral coordination polyhedron, in which three vertices are occupied by O atoms from the carboxylate groups of three different bipyridine ligands. The remaining three vertices are occupied by the O atoms of two dimethylformamide (DMF molecules and one water molecule. The one-dimensional chains are oriented in the [01-1] direction, and non-coordinating DMF molecules can be found in the space between the chains. The shortest intermolecular O...H contacts are 2.844 (4 and 2.659 (4 Å, suggesting moderate hydrogen-bonding interactions. In addition, there is a short intermolecular Pt...Pt contact of 3.491 (1 Å, indicating a Pt stacking interaction. Some structure-directing contribution from the hydrogen bonding and Pt...Pt interaction is probable. However, the crystal packing seems to be directed primarily by van der Waals interactions.

  15. Characterization of remote O2-plasma-enhanced CVD SiO2/GaN(0001) structure using photoemission measurements

    Science.gov (United States)

    Truyen, Nguyen Xuan; Ohta, Akio; Makihara, Katsunori; Ikeda, Mitsuhisa; Miyazaki, Seiichi

    2018-01-01

    The control of chemical composition and bonding features at a SiO2/GaN interface is a key to realizing high-performance GaN power devices. In this study, an ∼5.2-nm-thick SiO2 film has been deposited on an epitaxial GaN(0001) surface by remote O2-plasma-enhanced chemical vapor deposition (O2-RPCVD) using SiH4 and Ar/O2 mixture gases at a substrate temperature of 500 °C. The depth profile of chemical structures and electronic defects of the O2-RPCVD SiO2/GaN structures has been evaluated from a combination of SiO2 thinning examined by X-ray photoelectron spectroscopy (XPS) and the total photoelectron yield spectroscopy (PYS) measurements. As a highlight, we found that O2-RPCVD is effective for fabricating an abrupt SiO2/GaN interface.

  16. In silico CrNF, a half-metallic ferromagnetic nitride–fluoride mimicking CrO2

    International Nuclear Information System (INIS)

    Matar, Samir F.

    2014-01-01

    Isoelectronic with CrO 2 , CrNF is proposed in silico based on rutile derived structures with DFT computations. The ground state structure defined from cohesive energies is of MgUO 4 -type, characterized by short covalent Cr–N and long ionic Cr–F distances. Like CrO 2 it is a half-metallic ferromagnet with M=2 μ B /FU integer magnetization with reduced band gap at minority spins. Major difference of magnetic response to pressure characterizes CrNF as a soft ferromagnet versus hard magnetic CrO 2 . The chemical bonding properties point to prevailing covalent Cr–N versus ionic Cr–F bonding. Different synthesis routes are examined. - Highlights: • DFT identification of CrNF is based on isoelectronicity and rutile derivatives. • Similarly to CrO 2 , CrNF is a half-metallic ferromagnet with reduced band gap. • Strong pressure dependence of magnetization of CrNF oppositely to CrO 2 . • Covalent Cr–N bonding prevails in spite of the presence of ionic Cr–F. • Cohesive energies favor the synthesis for which protocols are proposed

  17. Investigation of the flatband voltage (V(FB)) shift of Al2O3 on N2 plasma treated Si substrate.

    Science.gov (United States)

    Kim, Hyungchul; Lee, Jaesang; Jeon, Heeyoung; Park, Jingyu; Jeon, Hyeongtag

    2013-09-01

    The relationships between the physical and electrical characteristics of films treated with N2 plasma followed by forming gas annealing (FGA) were investigated. The Si substrates were treated with various radio frequency (RF) power levels under a N2 ambient. Al2O3 films were then deposited on Si substrates via remote plasma atomic-layer deposition. The plasma characteristics, such as the radical and ion density, were investigated using optical emission spectroscopy. Through X-ray photoelectron spectroscopy, the chemical-bonding configurations of the samples treated with N2 plasma and FGA were examined. The quantity of Si-N bonds increased as the RF power was increased, and Si--O--N bonds were generated after FGA. The flatband voltage (VFB) was shifted in the negative direction with increasing RF power, but the VFB values of the samples after FGA shifted in the positive direction due to the formation of Si--O--N bonds. N2 plasma treatment with various RF power levels slightly increased the leakage current due to the generation of defect sites.

  18. Self-Assembled Amphiphilic Water Oxidation Catalysts: Control of O-O Bond Formation Pathways by Different Aggregation Patterns.

    Science.gov (United States)

    Yang, Bing; Jiang, Xin; Guo, Qing; Lei, Tao; Zhang, Li-Ping; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-05-17

    The oxidation of water to molecular oxygen is the key step to realize water splitting from both biological and chemical perspective. In an effort to understand how water oxidation occurs on a molecular level, a large number of molecular catalysts have been synthesized to find an easy access to higher oxidation states as well as their capacity to make O-O bond. However, most of them function in a mixture of organic solvent and water and the O-O bond formation pathway is still a subject of intense debate. Herein, we design the first amphiphilic Ru-bda (H2 bda=2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts (WOCs) of formula [Ru(II) (bda)(4-OTEG-pyridine)2 ] (1, OTEG=OCH2 CH2 OCH2 CH2 OCH3 ) and [Ru(II) (bda)(PySO3 Na)2 ] (2, PySO3 (-) =pyridine-3-sulfonate), which possess good solubility in water. Dynamic light scattering (DLS), scanning electron microscope (SEM), critical aggregation concentration (CAC) experiments and product analysis demonstrate that they enable to self-assemble in water and form the O-O bond through different routes even though they have the same bda(2-) backbone. This work illustrates for the first time that the O-O bond formation pathway can be regulated by the interaction of ancillary ligands at supramolecular level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Topology of charge density of flucytosine and related molecules and characteristics of their bond charge distributions.

    Science.gov (United States)

    Murgich, Juan; Franco, Héctor J; San-Blas, Gioconda

    2006-08-24

    The molecular charge distribution of flucytosine (4-amino-5-fluoro-2-pyrimidone), uracil, 5-fluorouracil, and thymine was studied by means of density functional theory calculations (DFT). The resulting distributions were analyzed by means of the atoms in molecules (AIM) theory. Bonds were characterized through vectors formed with the charge density value, its Laplacian, and the bond ellipticity calculated at the bond critical point (BCP). Within each set of C=O, C-H, and N-H bonds, these vectors showed little dispersion. C-C bonds formed three different subsets, one with a significant degree of double bonding, a second corresponding to single bonds with a finite ellipticity produced by hyperconjugation, and a third one formed by a pure single bond. In N-C bonds, a decrease in bond length (an increase in double bond character) was not reflected as an increase in their ellipticity, as in all C-C bonds studied. It was also found that substitution influenced the N-C, C-O, and C-C bond ellipticity much more than density and its Laplacian at the BCP. The Laplacian of charge density pointed to the existence of both bonding and nonbonding maxima in the valence shell charge concentration of N, O, and F, while only bonding ones were found for the C atoms. The nonbonding maxima related to the sites for electrophilic attack and H bonding in O and N, while sites of nucleophilic attack were suggested by the holes in the valence shell of the C atoms of the carbonyl groups.

  20. Avaliação da utilização dos adesivos dentinários na microinfiltração marginal de resinas compostas = Evaluation of use of dentin bond on the marginal microleakege of composites

    Directory of Open Access Journals (Sweden)

    Peixe, Simone

    2006-01-01

    Full Text Available O objetivo deste trabalho foi o de avaliar a microinfiltração marginal em restaurações de resina composta quando utilizados adesivos dentinários de um mesmo fabricante e associação com os adesivos de fabricantes diferentes. Foram realizados 40 preparos classe II tipo slot vertical, com pontas diamantadas 1094 (K. G. Sorensen nas proximais dos terceiros molares. As restaurações foram divididas em 4 grupos; restaurações com Prime & Bond e TPH (G1, Single Bond e TPH (G2, Single Bond e Z 100 (G3, Prime & Bond e Z 100 (G4. Após a confecção das restaurações, estas foram submetidas à ciclagem térmica, em água a 5°C ± 2°C e 55°C ± 2°C, com o tempo de permanência de 30 segundos, num total de 500 ciclos. As amostras foram imersas no corante, nitrato de prata 50%, em temperatura ambiente por 24 horas em câmara escura, sendo posteriormente colocadas em uma solução fotoreveladora sob luz fluorescente por 6 horas. Foram realizados dois cortes no centro da restauração, no sentido ocluso-gengival. A análise da microinfiltração foi realizada em lupa esterioscópica Zeiss com 50 vezes de aumento, seguindo scores de 0 a 3 graus. Os dados obtidos foram submetidos à análise não paramétrica de Kruskal-Wallis, revelando que os valores medianos (G1 = 3; G2 = 3; G3 = 2. 5; G4 = 1 diferem estatisticamente ao nível de significância de 5%. Mediante ao teste de comparação múltipla de Dunn (5% G4 foi superior aos outros grupos em termos de microinfiltração marginal

  1. Estudo biomecânico da fixação pedicular curta na fratura-explosão toracolombar Estudio biomecánico de fijación pedicular corta en la fracturaexplosión toracolumbar Biomechanical evaluation of short-segment fixation for thoracolumbar burst-fractures

    Directory of Open Access Journals (Sweden)

    Marcos André Sonagli

    2011-01-01

    Full Text Available OBJETIVO: Comparar a rigidez biomecânica entre a coluna toracolombar intacta, a coluna com fratura explosão e a coluna com fratura explosão associada à fixação pedicular curta em suínos. MÉTODOS: 30 amostras de coluna toracolombar (T11-L3 de suínos foram divididas em três grupos com 10 amostras cada. O Grupo 1 representava a coluna intacta, o Grupo 2 representava a coluna com fratura explosão e o Grupo 3 a fratura explosão associada à fixação pedicular curta. Foi realizado o corte ósseo em "V" do terço médio do corpo vertebral comprometendo a coluna anterior e média de L1 para simular a fratura explosão. No Grupo 3 foi realizada a fixação pedicular com Pinos de Schanz. Os grupos foram submetidos ao teste biomecânico em compressão axial controlada. Os parâmetros de carga (N e deslocamento (mm eram gerados em um gráfico instantâneo e a rigidez (N/mm foi determinada. O teste era interrompido quando ocorria uma queda súbita na curva no gráfico indicando falência da amostra. RESULTADOS: A rigidez das colunas fraturadas foi 53% menor do que a rigidez das colunas intactas, sendo essa diferença estatisticamente significativa (p OBJETIVO: Comparar la rigidez biomecánica entre la columna toracolumbar intacta, la columna con fractura-explosión y la columna con fractura-explosión asociada a la fijación pedicular corta en cerdos. MÉTODOS: 30 muestras de columna toracolumbar (T11-L3 de cerdos fueron divididas en tres grupos con 10 muestras cada una. El Grupo 1 representaba la columna intacta, el Grupo 2 representaba la columna con fractura-explosión y el Grupo 3 la fractura-explosión asociada a la fijación pedicular corta. Fue realizado el corte óseo en "V" del 1/3 medio del cuerpo vertebral, comprometiendo la columna anterior y media de L1, para simular la fractura-explosión. En el Grupo 3 fue realizada la fijación pedicular con pernos de Schanz. Los Grupos fueron sometidos al test biomecánico en compresión axial

  2. Crystal structure of diaquabis(N,N-diethylnicotinamide-κN1bis(2,4,6-trimethylbenzoato-κO1cobalt(II

    Directory of Open Access Journals (Sweden)

    Gülçin Şefiye Aşkın

    2016-04-01

    Full Text Available The centrosymmetric molecule in the monomeric title cobalt complex, [Co(C10H11O22(C10H14N2O2(H2O2], contains two water molecules, two 2,4,6-trimethylbenzoate (TMB ligands and two diethylnicotinamide (DENA ligands. All ligands coordinate to the CoII atom in a monodentate fashion. The four O atoms around the CoII atom form a slightly distorted square-planar arrangement, with the distorted octahedral coordination sphere completed by two pyridine N atoms of the DENA ligands. The dihedral angle between the planar carboxylate group and the adjacent benzene ring is 84.2 (4°, while the benzene and pyridine rings are oriented at a dihedral angle of 38.87 (10°. The water molecules exhibit both intramolecular (to the non-coordinating carboxylate O atom and intermolecular (to the amide carbonyl O atom O—H...O hydrogen bonds. The latter lead to the formation of layers parallel to (100, enclosing R44(32 ring motifs. These layers are further linked via weak C—H...O hydrogen bonds, resulting in a three-dimensional network. One of the two ethyl groups of the DENA ligand is disordered over two sets of sites with an occupancy ratio of 0.490 (13:0.510 (13.

  3. UV photolysis of 4-iodo-, 4-bromo-, and 4-chlorophenol: Competition between C-Y (Y = halogen) and O-H bond fission

    Science.gov (United States)

    Sage, Alan G.; Oliver, Thomas A. A.; King, Graeme A.; Murdock, Daniel; Harvey, Jeremy N.; Ashfold, Michael N. R.

    2013-04-01

    The wavelength dependences of C-Y and O-H bond fission following ultraviolet photoexcitation of 4-halophenols (4-YPhOH) have been investigated using a combination of velocity map imaging, H Rydberg atom photofragment translational spectroscopy, and high level spin-orbit resolved electronic structure calculations, revealing a systematic evolution in fragmentation behaviour across the series Y = I, Br, Cl (and F). All undergo O-H bond fission following excitation at wavelengths λ ≲ 240 nm, on repulsive ((n/π)σ*) potential energy surfaces (PESs), yielding fast H atoms with mean kinetic energies ˜11 000 cm-1. For Y = I and Br, this process occurs in competition with prompt C-I and C-Br bond cleavage on another (n/π)σ* PES, but no Cl/Cl* products unambiguously attributable to one photon induced C-Cl bond fission are observed from 4-ClPhOH. Differences in fragmentation behaviour at longer excitation wavelengths are more marked. Prompt C-I bond fission is observed following excitation of 4-IPhOH at all λ ≤ 330 nm; the wavelength dependent trends in I/I* product branching ratio, kinetic energy release, and recoil anisotropy suggest that (with regard to C-I bond fission) 4-IPhOH behaves like a mildly perturbed iodobenzene. Br atoms are observed when exciting 4-BrPhOH at long wavelengths also, but their velocity distributions suggest that dissociation occurs after internal conversion to the ground state. O-H bond fission, by tunnelling (as in phenol), is observed only in the cases of 4-FPhOH and, more weakly, 4-ClPhOH. These observed differences in behaviour can be understood given due recognition of (i) the differences in the vertical excitation energies of the C-Y centred (n/π)σ* potentials across the series Y = I increased spin-orbit coupling in, particularly, 4-IPhOH. The present results provide (another) reminder of the risks inherent in extrapolating photochemical behaviour measured for one molecule at one wavelength to other (related) molecules and to

  4. Tris-(hydroxyamino)triazines: high-affinity chelating tridentate O,N,O-hydroxylamine ligand for the cis-V(V)O2(+) cation.

    Science.gov (United States)

    Nikolakis, Vladimiros A; Exarchou, Vassiliki; Jakusch, Tamás; Woolins, J Derek; Slawin, Alexandra M Z; Kiss, Tamás; Kabanos, Themistoklis A

    2010-10-14

    The treatment of the trichloro-1,3,5-triazine with N-methylhydroxylamine hydrochloride results in the replacement of the three chlorine atoms of the triazine ring with the function -N(OH)CH(3) yielding the symmetrical tris-(hydroxyamino)triazine ligand H(3)trihyat. Reaction of the ligand H(3)trihyat with NaV(V)O(3) in aqueous solution followed by addition of Ph(4)PCl gave the mononuclear vanadium(V) compound Ph(4)P[V(V)O(2)(Htrihyat)] (1). The structure of compound 1 was determined by X-ray crystallography and indicates that this compound has a distorted square-pyramidal arrangement around vanadium. The ligand Htrihyat(2-) is bonded to vanadium atom in a tridentate fashion at the triazine ring nitrogen atom and the two deprotonated hydroxylamido oxygen atoms. The high electron density of the triazine ring nitrogen atoms, which results from the resonative contribution of electrons of exocyclic nitrogen atoms, leads to a very strong V-N bond. The cis-[V(V)O(2)(Htrihyat)](-) species exhibits high hydrolytic stability in aqueous solution over a wide pH range, 2.5-11.5, as was evidenced by potentiometry.

  5. {2-[(3,5-Dichloro-2-oxidobenzylideneamino-κ2N,O]-3-methylpentanoato-κO}(N,N′-dimethylformamide-κOcopper(II

    Directory of Open Access Journals (Sweden)

    Xiao Zhen Feng

    2008-05-01

    Full Text Available In the title compound, [Cu(C13H13Cl2NO3(C3H7NO], the CuII atom is coordinated in a slightly distorted square-planar geometry by two O atoms and one N atom from the tridentate chiral ligand 2-[(3,5-dichloro-2-oxidobenzylideneamino]-3-methylpentanoate and by one O atom from dimethylformamide. In the crystal structure, the Cu atom forms contacts with Cl and O atoms of two units (Cu...Cl and Cu...O = 3.401 and 2.947 Å, respectively, thereby forming an approximately octahedral arrangement. A three-dimensional network is constructed through Cl...Cu, O...Cu, Cl...Cl contacts and C—H...O hydrogen bonds.

  6. Hydrogen bonding in (substituted benzene)·(water)n clusters with n≤4

    International Nuclear Information System (INIS)

    Barth, H.-D.; Buchhold, K.; Djafari, S.; Reimann, B.; Lommatzsch, U.; Brutschy, B.

    1998-01-01

    Infrared ion-depletion spectroscopy, a double resonance method combining vibrational predissociation with resonant two-photon ionization (R2PI) spectroscopy, has been applied to study mixed clusters of the type (substituted benzene)·(H 2 O) n with n≤4. The UV chromophores were p-difluorobenzene, fluorobenzene, benzene, toluene, p-xylene and anisole. From the IR depletion spectra in the region of the OH stretching vibrations it could be shown that the water molecules are attached as subclusters to the chromophores. Size and configuration of the subclusters could be deduced from the IR depletion spectra. In the anisole·(H 2 O) 1 a nd 2 complexes the water clusters form an ordinary hydrogen bond to the oxygen atom of the methoxy group. In all other mixed complexes a π-hydrogen bond is formed between one of the free OH groups of a water subcluster and the π-system of the chromophore. According to the strength of this interaction the frequency of the respective absorption band exhibits a characteristic red-shift which could be related to the total atomic charges in the aromatic ring. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. [KDy(Hptc3(H3ptc]n·2n(Hbipy·5n(H2O, a Layered Coordination Polymer Containing DyO6N3 Tri-Capped Trigonal Prisms (H3ptc = Pyridine 2,4,6-Tricarboxylic Acid, C8H5NO6; Bipy = 2,2'-Bipyridine, C10H8N2

    Directory of Open Access Journals (Sweden)

    Shoaib Anwar

    2012-08-01

    Full Text Available The synthesis, structure and properties of the bimetallic layered coordination polymer, [KDy(C8H3NO63(C8H5NO6]n·2n(C10H9N2·5n(H2O = [KDy(Hptc3(H3ptc]n·2n(Hbipy·5n(H2O, are described. The Dy3+ ion is coordinated by three O,N,O-tridentate doubly-deprotonated pyridine tri-carboxylate (Hptc ligands to generate a fairly regular DyO6N3 tri-capped trigonal prism, with the N atoms acting as the caps. The potassium ion is coordinated by an O,N,O-tridentate H3ptc molecule as well as monodentate and bidentate Hptc ligands to result in an irregular KNO9 coordination geometry. The ligands bridge the metal-atom nodes into a bimetallic, layered, coordination polymer, which extends as corrugated layers in the (010 plane, with the mono-protonated bipyridine cations and water molecules occupying the inter-layer regions: Unlike related structures, there are no dysprosium–water bonds. Many O–HLO and N–HLO hydrogen bonds consolidate the structure. Characterization and bioactivity data are described. Crystal data: C52H42DyKN8O29, Mr = 1444.54, triclinic,  (No. 2, Z = 2, a = 9.188(2 Å, b = 15.7332(17 Å, c = 19.1664(19 Å, α = 92.797(6°, β = 92.319(7°, γ = 91.273(9°, V = 2764.3(7 Å3, R(F = 0.029, wR(F2 = 0.084.

  8. Difluorophosphoryl nitrene F2P(O)N: matrix isolation and unexpected rearrangement to F2PNO.

    Science.gov (United States)

    Zeng, Xiaoqing; Beckers, Helmut; Willner, Helge; Neuhaus, Patrik; Grote, Dirk; Sander, Wolfram

    2009-12-14

    Triplet difluorophosphoryl nitrene F(2)P(O)N (X(3)A'') was generated on ArF excimer laser irradiation (lambda=193 nm) of F(2)P(O)N(3) in solid argon matrix at 16 K, and characterized by its matrix IR, UV/Vis, and EPR spectra, in combination with DFT and CBS-QB3 calculations. On visible light irradiation (lambda>420 nm) at 16 K F(2)P(O)N reacts with molecular nitrogen and some of the azide is regenerated. UV irradiation (lambda=255 nm) of F(2)P(O)N (X(3)A'') induced a Curtius-type rearrangement, but instead of a 1,3-fluorine shift, nitrogen migration to give F(2)PON is proposed to be the first step of the photoisomerization of F(2)P(O)N into F(2)PNO (difluoronitrosophosphine). Formation of novel F(2)PNO was confirmed with (15)N- and (18)O-enriched isotopomers by IR spectroscopy and DFT calculations. Theoretical calculations predict a rather long P-N bond of 1.922 A [B3LYP/6-311+G(3df)] and low bond-dissociation energy of 76.3 kJ mol(-1) (CBS-QB3) for F(2)PNO.

  9. Spectroscopic, DFT, and XRD Studies of Hydrogen Bonds in N-Unsubstituted 2-Aminobenzamides.

    Science.gov (United States)

    Mphahlele, Malose Jack; Maluleka, Marole Maria; Rhyman, Lydia; Ramasami, Ponnadurai; Mampa, Richard Mokome

    2017-01-04

    The structures of the mono- and the dihalogenated N -unsubstituted 2-aminobenzamides were characterized by means of the spectroscopic (¹H-NMR, UV-Vis, FT-IR, and FT-Raman) and X-ray crystallographic techniques complemented with a density functional theory (DFT) method. The hindered rotation of the C(O)-NH₂ single bond resulted in non-equivalence of the amide protons and therefore two distinct resonances of different chemical shift values in the ¹H-NMR spectra of these compounds were observed. 2-Amino-5-bromobenzamide ( ABB ) as a model confirmed the presence of strong intramolecular hydrogen bonds between oxygen and the amine hydrogen. However, intramolecular hydrogen bonding between the carbonyl oxygen and the amine protons was not observed in the solution phase due to a rapid exchange of these two protons with the solvent and fast rotation of the Ar-NH₂ single bond. XRD also revealed the ability of the amide unit of these compounds to function as a hydrogen bond donor and acceptor simultaneously to form strong intermolecular hydrogen bonding between oxygen of one molecule and the NH moiety of the amine or amide group of the other molecule and between the amine nitrogen and the amide hydrogen of different molecules. DFT calculations using the B3LYP/6-311++G(d,p) basis set revealed that the conformer ( A ) with oxygen and 2-amine on the same side predominates possibly due to the formation of a six-membered intramolecular ring, which is assisted by hydrogen bonding as observed in the single crystal XRD structure.

  10. Crystal structures of N2,N3,N5,N6-tetrakis(pyridin-2-ylmethylpyrazine-2,3,5,6-tetracarboxamide and N2,N3,N5,N6-tetrakis(pyridin-4-ylmethylpyrazine-2,3,5,6-tetracarboxamide

    Directory of Open Access Journals (Sweden)

    Dilovan S. Cati

    2017-02-01

    Full Text Available The title compounds, C32H28N10O4· unknown solvent, (I, and C32H28N10O4, (II, are pyrazine-2,3,5,6-tetracarboxamide derivatives. In (I, the substituents are (pyridin-2-ylmethylcarboxamide, while in (II, the substituents are (pyridin-4-ylmethylcarboxamide. Both compounds crystallize in the monoclinic space group P21/n, with Z′ = 1 for (I, and Z′ = 0.5 for (II. The whole molecule of (II is generated by inversion symmetry, the pyrazine ring being situated about a center of inversion. In (I, the four pyridine rings are inclined to the pyrazine ring by 83.9 (2, 82.16 (18, 82.73 (19 and 17.65 (19°. This last dihedral angle involves a pyridine ring that is linked to the adjacent carboxamide O atom by an intramolecular C—H...O hydrogen bond. In compound (II, the unique pyridine rings are inclined to the pyrazine ring by 33.3 (3 and 81.71 (10°. There are two symmetrical intramolecular C—H...O hydrogen bonds present in (II. In the crystal of (I, molecules are linked by N—H...O and N—H...N hydrogen bonds, forming layers parallel to (10-1. The layers are linked by C—H...O and C—H...N hydrogen bonds, forming a three-dimensional framework. In the crystal of (II, molecules are linked by N—H...N hydrogen bonds, forming chains propagating along the [010] direction. The chains are linked by a weaker N—H...N hydrogen bond, forming layers parallel to the (101 plane, which are in turn linked by C—H...O hydrogen bonds, forming a three-dimensional structure. In the crystal of compound (I, a region of disordered electron density was treated with the SQUEEZE routine in PLATON [Spek (2015. Acta Cryst. C71, 9–18]. Their contribution was not taken into account during refinement. In compound (II, one of the pyridine rings is positionally disordered, and the refined occupancy ratio for the disordered Car—Car—Npy atoms is 0.58 (3:0.42 (3.

  11. Electronic parameters of Sr2M2O7 (M = V, Nb, Ta) and Sr-O chemical bonding

    DEFF Research Database (Denmark)

    Atuchin, Victor V.; Grivel, Jean-Claude; Zhang, Zhaoming

    2010-01-01

    XPS measurements were carried out on Sr2Nb2O7 and Sr2Ta2O7 powder samples, which were synthesized using standard solid state method. The binding energy differences between the O 1s and cation core level, Δ(O-Sr) = BE(O 1s) - BE(Sr 3d5/2), was used to characterize the valence electron transfer...... on the formation of the Sr-O bonds. The chemical bonding effects were considered on the basis of our XPS results for Sr2Nb2O7 and Sr2Ta2O7 and the previously published structural and XPS data for other Sr-oxide compounds. A new empirical relationship between Δ(O-Sr) and L(Sr-O) was obtained. Possible applications...

  12. Bis(5-hydroxyisophthalato-κO1bis[4-(pyridine-3-carboxamido-κN3pyridinium]copper(II tetrahydrate

    Directory of Open Access Journals (Sweden)

    Robert L. LaDuca

    2013-12-01

    Full Text Available In the title compound, [Cu(C11H10N3O2(C8H4O52]·4H2O, the CuII ion, located on a crystallographic inversion center, is coordinated in a square-planar environment by two trans-O atoms belonging to two monodentate 5-hydroxyisophthalate (hip dianions and two trans nicotinamide pyridyl N-donor atoms from monodentate protonated pendant N-(pyridin-4-ylnicotinamide (4-pnaH ligands. The protonated 4-pyridylamine groups engage in N—H+...O− hydrogen-bond donation to unligated hip O atoms to construct supramolecular chain motifs parallel to [100]. Water molecules of crystallization, situated between the chains, engage in O—H...O hydrogen bonding to form supramolecular layers and the overall three-dimensional network structure.

  13. Ground-State Distortion in N-Acyl-tert-butyl-carbamates (Boc) and N-Acyl-tosylamides (Ts): Twisted Amides of Relevance to Amide N-C Cross-Coupling.

    Science.gov (United States)

    Szostak, Roman; Shi, Shicheng; Meng, Guangrong; Lalancette, Roger; Szostak, Michal

    2016-09-02

    Amide N-C(O) bonds are generally unreactive in cross-coupling reactions employing low-valent transition metals due to nN → π*C═O resonance. Herein we demonstrate that N-acyl-tert-butyl-carbamates (Boc) and N-acyl-tosylamides (Ts), two classes of acyclic amides that have recently enabled the development of elusive amide bond N-C cross-coupling reactions with organometallic reagents, are intrinsically twisted around the N-C(O) axis. The data have important implications for the design of new amide cross-coupling reactions with the N-C(O) amide bond cleavage as a key step.

  14. Bis(μ-pyridazine-3-carboxylato-κ2O:O′bis[aquadioxido(pyridazine-3-carboxylato-κ2N2,Ouranium(VI] dihydrate

    Directory of Open Access Journals (Sweden)

    Janusz Leciejewicz

    2009-01-01

    Full Text Available The structure of the binuclear title complex, [U2(C5H3N2O24O4(H2O2]·2H2O, is composed of centrosymmetric dimers in which each UO22+ ion is coordinated by two ligand molecules. One donates its N,O-bonding group and the other donates both carboxylate O atoms. Each of the latter bridges adjacent uranyl ions. The coordination environment of the metal center is a distorted pentagonal bipyramid. The dimers are interconnected by O—H...O hydrogen bonds between coordinated and uncoordinated water molecules and carboxylate O atoms. An intramolecular O—H...N interaction is also present.

  15. Bis(acetylacetonato-κ2O,O′(2-amino-1-methyl-1H-benzimidazole-κN3oxidovanadium(IV

    Directory of Open Access Journals (Sweden)

    Zukhra Ch. Kadirova

    2009-07-01

    Full Text Available The title mixed-ligand oxidovanadium(IV compound, [VO(C5H7O22(C8H9N3], contains a VIV atom in a distorted octahedral coordination, which is typical for such complexes. The vanadyl group and the N-heterocyclic ligand are cis to each other. The coordination bond is located at the endocyclic N atom of the benzimidazole ligand. Intramolecular hydrogen bonds between the exo-NH2 group H atoms and acetylacetonate O atoms stabilize the crystal structure.

  16. (E-2-(5-Chloro-2-hydroxybenzylidene-N-cyclohexylhydrazine-1-carbothioamide

    Directory of Open Access Journals (Sweden)

    Md. Azharul Arafath

    2017-01-01

    Full Text Available In the title compound, C14H18ClN3OS, the phenol ring is almost coplanar with the hydrazinecarbothioamide moiety, making a dihedral angle of 6.92 (8°. The cyclohexane ring has a chair conformation and the conformation about the C=N bond is E. In the crystal, molecules are linked by N—H...O and O—H...S hydrogen bonds, forming inversion dimers with an R22(14 ring motif flanked by two R22(6 ring motifs. The dimers are linked by short Cl...Cl interactions, forming layers parallel to the ab plane.

  17. Microstructure and Properties of Porous Si3N4/Dense Si3N4 Joints Bonded Using RE–Si–Al–O–N (RE = Y or Yb Glasses

    Directory of Open Access Journals (Sweden)

    Ling Li

    2017-11-01

    Full Text Available The joining of porous Si3N4 to dense Si3N4 ceramics has been successfully performed using mixed RE2O3 (RE = Y or Yb, Al2O3, SiO2, and α-Si3N4 powders. The results suggested that the α-Si3N4 powders partly transformed into β-SiAlON and partly dissolved into oxide glass to form oxynitride glass. Thus, composites of glass/β-SiAlON-ceramic formed in the seam of joints. Due to the capillary action of the porous Si3N4 ceramic, the molten glass solder infiltrated into the porous Si3N4 ceramic side during the joining process and formed the “infiltration zone” with a thickness of about 400 μm, which contributed to the heterogeneous distribution of the RE–Si–Al–O–N glasses in the porous Si3N4 substrate. In-situ formation of β-SiAlON in the seam resulted in a high bonding strength. The maximum bending strength of 103 MPa and 88 MPa was reached for the porous Si3N4/dense Si3N4 joints using Y–Si–Al–O–N and Yb–Si–Al–O–N glass solders, respectively.

  18. Introducing ionic and/or hydrogen bonds into the SAM//Ga2O3 top-interface of Ag(TS)/S(CH2)nT//Ga2O3/EGaIn junctions.

    Science.gov (United States)

    Bowers, Carleen M; Liao, Kung-Ching; Yoon, Hyo Jae; Rappoport, Dmitrij; Baghbanzadeh, Mostafa; Simeone, Felice C; Whitesides, George M

    2014-06-11

    Junctions with the structure Ag(TS)/S(CH2)nT//Ga2O3/EGaIn (where S(CH2)nT is a self-assembled monolayer, SAM, of n-alkanethiolate bearing a terminal functional group T) make it possible to examine the response of rates of charge transport by tunneling to changes in the strength of the interaction between T and Ga2O3. Introducing a series of Lewis acidic/basic functional groups (T = -OH, -SH, -CO2H, -CONH2, and -PO3H) at the terminus of the SAM gave values for the tunneling current density, J(V) in A/cm(2), that were indistinguishable (i.e., differed by less than a factor of 3) from the values observed with n-alkanethiolates of equivalent length. The insensitivity of the rate of tunneling to changes in the terminal functional group implies that replacing weak van der Waals contact interactions with stronger hydrogen- or ionic bonds at the T//Ga2O3 interface does not change the shape (i.e., the height or width) of the tunneling barrier enough to affect rates of charge transport. A comparison of the injection current, J0, for T = -CO2H, and T = -CH2CH3--two groups having similar extended lengths (in Å, or in numbers of non-hydrogen atoms)--suggests that both groups make indistinguishable contributions to the height of the tunneling barrier.

  19. Synthesis, spectroscopic characterization and structural studies of a new proton transfer (H-bonded) complex of o-phenylenediamine with L-tartaric acid

    Science.gov (United States)

    Khan, Ishaat M.; Ahmad, Afaq

    2013-10-01

    A proton transfer or H-bonded (CT) complex of o-phenylenediamine (OPD) as donor with L-tartaric acid (TART) as acceptor was synthesized and characterized by spectral techniques such as FTIR, 1H NMR, elemental analysis, TGA-TDA, X-ray crystallography and spectrophotometric studies. The structural investigations exhibit that the cation [OPD+] and anion [TART-] are linked together through strong N+-H⋯O- type hydrogen bonds due to transfer of proton from acceptor to donor. Formed H-bonded complex exhibits well resolved proton transfer bands in the regions where neither donor nor acceptor has any absorption. The stoichiometry of the H-bonded complex (HBC) was found to be 1:1, determined by straight line methods. Spectrophotometric studies have been performed at room temperature and Benesi-Hildebrand equation was used to determine formation constant (KCT), molar extinction coefficient (ɛCT) and also transition energy (ECT) of the H-bonded complex. Spectrophotomeric and crystallographic studies have ascertained the formation of 1:1 H-bonded complex. Thermal analysis (TGA-DTA) was also used to confirm the thermal fragmentation and the stability of the synthesized H-bonded complex.

  20. [Effects of magnetron sputtered ZrN on the bonding strength of titanium porcelain].

    Science.gov (United States)

    Zhou, Shu; Zhang, Wen-yan; Guang, Han-bing; Xia, Yang; Zhang, Fei-min

    2009-04-01

    To investigate the effect of magnetron sputtered ZrN on the bonding strength between a low-fusing porcelain (Ti/Vita titankeramik system) and commercially pure cast titanium. Sixteen specimens were randomly assigned to test group and control group (n=8). The control group received no surface treated. Magnetron sputtered ZrN film was deposited on the surface of specimens in the test group. Then the sixteen titanium-porcelain specimens were prepared in a rectangular shape and went through three-point bending test on a universal test machine. The bond strength of Ti/porcelain was recorded. The phase composition of the specimens was analyzed using X-ray diffraction (XRD). The interface at titanium and porcelain and the titanium surface after debonding were observed with a scanning electron microscopy (SEM) and analyzed using energy depressive spectrum (EDS). New phase of ZrN was found with XRD in the test group. Statistical analysis showed higher bond strength following ZrN surface treatment in the test group [(45.991+/-0.648) MPa] than that in the control group [(29.483+/-1.007) MPa] (P=0.000). Bonded ceramic could be observed in test group, the amount of bonded ceramic was more than that in the control group. No obvious bonded ceramic in control group was found. Magnetron sputtered ZrN can improve bond strength of Ti/Vita titankeramik system significantly.

  1. Tug-of-war between classical and multicenter bonds in H-(Be)n-H species

    Science.gov (United States)

    Lundell, Katie A.; Boldyrev, Alexander I.

    2018-05-01

    Quantum chemical calculations were performed for beryllium homocatenated compounds [H-(Be)n-H]. Global minimum structures were found using machine searches (Coalescence Kick method) with density functional theory. Chemical bonding analysis was performed with the Adaptive Natural Density Partitioning method. It was found that H-(Be)2-H and H-(Be)3-H clusters are linear with classical two-center two-electron bonds, while for n > 3, three-dimensional structures are more stable with multicenter bonding. Thus, at n = 4, multicenter bonding wins the tug-of-war vs. the classical bonding.

  2. Hydrogen Bonding With a Hydrogen Bond: The CH4•••H2O Dimer ...

    Indian Academy of Sciences (India)

    X-H•••C hydrogen bonds in n-alkane-HX (X = F, OH) complexes are stronger than C-H•••X hydrogen bonds. R Parajuli* and E Arunan**. *Department of Physics, Amrit Campus, Tribhuvan University, Kathmandu, Nepal. **Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560012, India.

  3. Carbonyl(N-nitroso-N-oxido-1-naphtylamine-κ2O,O′(triphenylphosphine-κPrhodium(I acetone solvate

    Directory of Open Access Journals (Sweden)

    T. J. Muller

    2009-12-01

    Full Text Available The title compound, [Rh(C10H7N2O2(C18H15P(CO]·(CH32CO, is the second structural report of a metal complex formed with the O,O′-C10H7N2O2 (neocupferrate ligand. In the crystal structure, the metal centre is surrounded by one carbonyl ligand, one triphenylphosphine ligand and the bidentate neocupferrate ligand, forming a distorted square-planar RhCO2P coordination set which is best illustrated by the small O—Rh—O bite angle of 77.74 (10°. There are no classical hydrogen-bond interactions observed for this complex.

  4. Avaliação da força de tração em braquetes colados pela técnica indireta com diferentes sistemas de adesão Evaluation of tensile strength of brackets bonded by indirect technique

    Directory of Open Access Journals (Sweden)

    André Tortamano

    2007-06-01

    Full Text Available OBJETIVO: o objetivo do presente estudo foi avaliar a resistência à tração de braquetes ortodônticos colados pela técnica indireta e pela técnica direta convencional. METODOLOGIA: foram utilizados 50 pré-molares humanos íntegros, recém-extraídos por motivos ortodônticos. Esses dentes foram divididos em 5 grupos, nos quais foram colados braquetes ortodônticos metálicos (Abzil-Brasil com as resinas compostas ortodônticas Concise (3M-Unitek-EUA e Transbond XT (3M-Unitek-EUA - utilizadas em ambas as técnicas, direta e indireta - e Transbond Sondhi (3M-Unitek-EUA - desenvolvida exclusivamente para a técnica indireta. O grupo I (controle I foi objeto de colagem direta com Transbond XT; no grupo II (controle II procedeu-se à colagem direta com Concise o grupo III recebeu colagem indireta com Concise; o grupo IV foi submetido à colagem indireta com Transbond XT e no grupo V foi realizada colagem indireta com Transbond Sondhi. Na técnica direta, o braquete foi colado diretamente sobre o esmalte após condicionamento ácido e aplicação de adesivo. Na técnica indireta, os braquetes foram colados primeiramente sobre modelo de gesso e depois transferidos para o dente, com o auxílio de moldeira individualizada. Os corpos-de-prova foram submetidos a testes de tração (Instron 4400 e os resultados foram objeto de testes estatísticos de análise de variância e de Tukey a 1%. RESULTADOS: os grupos III e V revelaram resultados significantemente menores que os dos dois grupos controles. CONCLUSÃO: a força obtida na colagem indireta com a resina Transbond XT não difere da força obtida na colagem direta com as resinas Concise e Transbond XT.AIM: The purpose of this study was to evaluate the bonding strength of brackets for direct and indirect bonding techniques. METHODS: Were used 50 human premolars recently extracted for orthodontic reasons. These teeth were divided in 5 groups and metalic orthodontic brackets (Abzil-Brazil were bonded

  5. Effect of pressure on the solution structure and hydrogen bond properties of aqueous N-methylacetamide

    International Nuclear Information System (INIS)

    Sarma, Rahul; Paul, Sandip

    2012-01-01

    Highlights: ► NMA molecules are associated mostly through their hydrophobic methyl groups. ► High pressure reduces association propensity causing dispersion of these moieties. ► Orientational polarization of vicinal water molecules near O and H atoms of NMA. ► NMA prefers to be a H-bond acceptor rather than a donor in interaction with water. ► Energy of these hydrogen bonds reduces slightly at high pressure. -- Abstract: Effects of high pressure on hydrophobic and hydrogen bonding interactions are investigated by employing molecular dynamics (MD) simulations of aqueous N-methylacetamide (NMA) solutions. Such systems are of interest mainly because high pressure causes protein denaturation and NMA is a computationally effective model to understand the atomic-level picture of pressure-induced structural transitions of protein. Simulations are performed for five different pressure values ranging from 1 atm to 8000 atm. We find that NMA molecules are associated mostly through their hydrophobic methyl groups and high pressure reduces this association propensity, causing dispersion of these moieties. At high pressure, structural void decreases and the packing efficiency of water molecules around NMA molecules increases. Hydrogen bond properties calculations show favorable NMA–NMA hydrogen bonds as compared to those of NMA–water hydrogen bonds and preference of NMA to be a hydrogen bond acceptor rather than a donor in interaction with water.

  6. (Acetato-κO(aqua-κO(2-{bis[(3,5-dimethyl-1H-pyrazol-1-yl-κN2methyl]amino-κN}ethanol-κOnickel(II perchlorate monohydrate

    Directory of Open Access Journals (Sweden)

    Jia Zhou

    2012-04-01

    Full Text Available In the structure of the title complex, [Ni(CH3CO2(C14H23N5O(H2O]ClO4·H2O, the NiII centre has a distorted octahedral environment defined by one O and three N atoms derived from the tetradentate ligand, and two O atoms, one from a water molecule and the other from an acetate anion. The molecules are connected into a three-dimensional architecture by O—H...O hydrogen bonds. The perchlorate anion is disordered over two positions; the major component has a site-occupancy factor of 0.525 (19.

  7. Interplay of Electronic Cooperativity and Exchange Coupling in Regulating the Reactivity of Diiron(IV)-oxo Complexes towards C-H and O-H Bond Activation.

    Science.gov (United States)

    Ansari, Azaj; Ansari, Mursaleem; Singha, Asmita; Rajaraman, Gopalan

    2017-07-26

    Activation of inert C-H bonds such as those of methane are extremely challenging for chemists but in nature, the soluble methane monooxygenase (sMMO) enzyme readily oxidizes methane to methanol by using a diiron(IV) species. This has prompted chemists to look for similar model systems. Recently, a (μ-oxo)bis(μ-carboxamido)diiron(IV) ([Fe IV 2 O(L) 2 ] 2+ L=N,N-bis-(3',5'-dimethyl-4'-methoxypyridyl-2'-methyl)-N'-acetyl-1,2-diaminoethane) complex has been generated by bulk electrolysis and this species activates inert C-H bonds almost 1000 times faster than mononuclear Fe IV =O species and at the same time selectively activates O-H bonds of alcohols. The very high reactivity and selectivity of this species is puzzling and herein we use extensive DFT calculations to shed light on this aspect. We have studied the electronic and spectral features of diiron {Fe III -μ(O)-Fe III } +2 (complex I), {Fe III -μ(O)-Fe IV } +3 (II), and {Fe IV -μ(O)-Fe IV } +4 (III) complexes. Strong antiferromagnetic coupling between the Fe centers leads to spin-coupled S=0, S=3/2, and S=0 ground state for species I-III respectively. The mechanistic study of the C-H and O-H bond activation reveals a multistate reactivity scenario where C-H bond activation is found to occur through the S=4 spin-coupled state corresponding to the high-spin state of individual Fe IV centers. The O-H bond activation on the other hand, occurs through the S=2 spin-coupled state corresponding to an intermediate state of individual Fe IV centers. Molecular orbital analysis reveals σ-π/π-π channels for the reactivity. The nature of the magnetic exchange interaction is found to be switched during the course of the reaction and this offers lower energy pathways. Significant electronic cooperativity between two metal centers during the course of the reaction has been witnessed and this uncovers the reason behind the efficiency and selectivity observed. The catalyst is found to prudently choose the desired spin

  8. Resistência de união à dentina de quatro sistemas adesivos Bond strength of four adhesive systems to dentin

    Directory of Open Access Journals (Sweden)

    Marcela Rocha de Oliveira Carrilho

    2002-09-01

    Full Text Available O objetivo do presente estudo foi avaliar a resistência adesiva de quatro sistemas adesivos, composicionalmente diferentes, aplicados à dentina humana. Doze dentes terceiros molares humanos tiveram o esmalte oclusal removido para exposição de uma superfície plana de dentina, na qual foram realizados os procedimentos de adesão. Os dentes foram aleatoriamente divididos em quatro grupos, considerando-se o sistema adesivo e a resina composta a serem empregados: Grupo 1 - Single Bond + P60 (SB; Grupo 2 - Bond 1 + Surefil (B1; Grupo 3 - Prime & Bond NT + Alert (NT e Grupo 4 - Prime & Bond 2.1 + TPH (2.1. Após 24 h de armazenagem em água destilada a 37ºC, os dentes foram seccionados, longitudinalmente, em cortes perpendiculares entre si, para que fossem obtidos espécimes em formato de um paralelogramo com secção transversal retangular de 0,8 mm² de área e 10 mm de comprimento, em média. Os espécimes foram submetidos ao teste de microtração. A análise de variância (alfa = 0,05 demonstrou não haver diferença significante entre os valores médios de resistência obtidos pelos quatro adesivos, embora a análise dos espécimes que sofreram fratura precoce tenha evidenciado menor sensibilidade para o sistema SB.The purpose of the present study was to evaluate the bond strength of four adhesive systems to dentin. Twelve human third molars had their occlusal enamel removed in order to expose a flat dentinal surface, on which the adhesive procedures were carried out. The teeth were divided into four groups, according to the employed adhesive system and composite resin: Group 1 - Single Bond + P60 (SB; Group 2 - Bond 1 + Surefil (B1; Group 3 - Prime & Bond NT + Alert (NT; and Group 4 - Prime & Bond 2.1 + TPH (2.1. After 24 h in distilled water at 37ºC, the teeth were longitudinally sectioned in two perpendicular directions in order to obtain parallelogram-shaped specimens with a cross-sectional area of 0.8 mm² and 10 mm of length, on the

  9. Computational and Empirical Trans-hydrogen Bond Deuterium Isotope Shifts Suggest that N1-N3 A:U Hydrogen Bonds of RNA are Shorter than those of A:T Hydrogen Bonds of DNA

    International Nuclear Information System (INIS)

    Kim, Yong-Ick; Manalo, Marlon N.; Perez, Lisa M.; LiWang, Andy

    2006-01-01

    Density functional theory calculations of isolated Watson-Crick A:U and A:T base pairs predict that adenine 13 C2 trans-hydrogen bond deuterium isotope shifts due to isotopic substitution at the pyrimidine H3, 2h Δ 13 C2, are sensitive to the hydrogen-bond distance between the N1 of adenine and the N3 of uracil or thymine, which supports the notion that 2h Δ 13 C2 is sensitive to hydrogen-bond strength. Calculated 2h Δ 13 C2 values at a given N1-N3 distance are the same for isolated A:U and A:T base pairs. Replacing uridine residues in RNA with 5-methyl uridine and substituting deoxythymidines in DNA with deoxyuridines do not statistically shift empirical 2h Δ 13 C2 values. Thus, we show experimentally and computationally that the C7 methyl group of thymine has no measurable affect on 2h Δ 13 C2 values. Furthermore, 2h Δ 13 C2 values of modified and unmodified RNA are more negative than those of modified and unmodified DNA, which supports our hypothesis that RNA hydrogen bonds are stronger than those of DNA. It is also shown here that 2h Δ 13 C2 is context dependent and that this dependence is similar for RNA and DNA

  10. Bis(2,2′-bipyridyl-κ2N,N′(sulfato-κ2O,O′cobalt(II ethane-1,2-diol monosolvate

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2011-01-01

    Full Text Available The title compound, [Co(SO4(C10H8N22]·C2H6O2, has the Co2+ ion in a distorted octahedral CoN4O2 coordination geometry. A twofold rotation axis passes through the Co and S atoms, and through the mid-point of the C—C bond of the ethanediol molecule. In the crystal, the [CoSO4(C10H8N22] and C2H6O2 units are held together by a pair of O—H...O hydrogen bonds.

  11. (μ-3-Acetyl-5-carboxylato-4-methylpyrazolido-1:2κ4N2,O3:N1,O5-μ-chlorido-tetrapyridine-1κ2N,2κ2N-chlorido-1κCl-dicopper(II propan-2-ol solvate

    Directory of Open Access Journals (Sweden)

    Sergey Malinkin

    2009-10-01

    Full Text Available The title compound, [Cu2(C7H6N2O3Cl2(C5H5N4]·C3H8O, is a binuclear pyrazolate complex, in which the two CuII atoms have different coordination numbers and are connected by a bridging Cl atom. One CuII atom has a distorted square-pyramidal coordination environment formed by two pyridine N atoms, one bridging Cl atom and an N,O-chelating pyrazolate ligand. The other CuII atom adopts an octahedral geometry defined by two pyridine N atoms at the axial positions, two Cl atoms and the coordinated pyrazolate ligand in the equatorial plane. An O—H...O hydrogen bond connects the complex molecules and propan-2-ol solvent molecules into pairs. These pairs form columns along the a axis.

  12. Multicomponent hydrogen-bonding organic solids constructed from 6-hydroxy-2-naphthoic acid and N-heterocycles: Synthesis, structural characterization and synthon discussion

    Science.gov (United States)

    Zong, Yingxia; Shao, Hui; Pang, Yanyan; Wang, Debao; Liu, Kang; Wang, Lei

    2016-07-01

    Seven novel multicomponent crystals involving various substituted organic amine molecules and 6-hydroxy-2-naphthoic acid were prepared and characterized by using single crystal X-ray diffraction, infrared and thermogravimetric analyses (TGA). Crystal structures with 1,4-bis(imidazol) butane (L1) 1, 1,4-bis(imidazol-1-ylmethyl)benzene (L2) 2, 1-phenyl piperazine 3, 2-amino-4-hydroxy-6-methyl pyrimidine 4, 4,4'-bipyridine 5, 5,5'-dimethyl-2,2'-dipyridine 6, 2-amino-4,6-dimethyl pyrimidine 7 were determined. Among the seven molecular complexes, total proton transfer from 6-hydroxy-2-naphthoic acid to coformer has occurred in crystals 1-4, while the remaining were cocrystals. X-ray single-crystal structures of these complexes reveal that strong hydrogen bonding O-H···O/N-H···O/O-H···N and weak C-H···O/C-H···π/π···π intermolecular interactions direct the packing modes of molecular crystals together. The analysis of supramolecular synthons in the present structures shows that some classical supramolecular synthons like pyridine-carboxylic acid heterosynthon R22 (7) and aminopyridine-carboxylic acid heterosynthon R22 (8), are again observed in constructing the hydrogen-bonding networks in this paper. Besides, we noticed that water molecules act as a significant hydrogen-bonding connector in constructing supramolecular architectures of 3, 4, 6, and 7.

  13. Bond length variation in Zn substituted NiO studied from extended X-ray absorption fine structure

    Science.gov (United States)

    Singh, S. D.; Poswal, A. K.; Kamal, C.; Rajput, Parasmani; Chakrabarti, Aparna; Jha, S. N.; Ganguli, Tapas

    2017-06-01

    Bond length behavior for Zn substituted NiO is determined through extended x-ray absorption fine structure (EXAFS) measurements performed at ambient conditions. We report bond length value of 2.11±0.01 Å for Zn-O of rock salt (RS) symmetry, when Zn is doped in RS NiO. Bond length for Zn substituted NiO RS ternary solid solutions shows relaxed behavior for Zn-O bond, while it shows un-relaxed behavior for Ni-O bond. These observations are further supported by first-principles calculations. It is also inferred that Zn sublattice remains nearly unchanged with increase in lattice parameter. On the other hand, Ni sublattice dilates for Zn compositions up to 20% to accommodate increase in the lattice parameter. However, for Zn compositions more than 20%, it does not further dilate. It has been attributed to the large disorder that is incorporated in the system at and beyond 20% of Zn incorporation in the cubic RS lattice of ternary solid solutions. For these large percentages of Zn incorporation, the Ni and the Zn atoms re-arrange themselves microscopically about the same nominal bond length rather than systematically increase in magnitude to minimize the energy of the system. This results in an increase in the Debye-Waller factor with increase in the Zn concentration rather than a systematic increase in the bond lengths.

  14. A quantitative relationship for the shock sensitivities of energetic compounds based on X-NO(2) (X=C, N, O) bond dissociation energy.

    Science.gov (United States)

    Li, Jinshan

    2010-08-15

    The ZPE-corrected X-NO(2) (X=C, N, O) bond dissociation energies (BDEs(ZPE)) of 11 energetic nitrocompounds of different types have been calculated employing density functional theory methods. Computed results show that using the 6-31G** basis set the UB3LYP calculated BDE(ZPE) is less than the UB3P86. For these typical energetic nitrocompounds the shock-initiated pressure (P(98)) is strongly related to the BDE(ZPE) indeed, and a polynomial correlation of ln(P(98)) with the BDE(ZPE) has been established successfully at different density functional theory levels, which provides a method to address the shock sensitivity problem. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Improving p-type doping efficiency in Al0.83Ga0.17N alloy substituted by nanoscale (AlN)5/(GaN)1 superlattice with MgGa-ON δ-codoping: Role of O-atom in GaN monolayer

    Science.gov (United States)

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2015-01-01

    We calculate Mg-acceptor activation energy EA and investigate the influence of O-atom, occupied the Mg nearest-neighbor, on EA in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. We find that the N-atom bonded with Ga-atom is more easily substituted by O-atom and nMgGa-ON (n = 1-3) complexes are favorable and stable in the SL. The O-atom plays a dominant role in reducing EA. The shorter the Mg-O bond is, the smaller the EA is. The Mg-acceptor activation energy can be reduced significantly by nMgGa-ON δ-codoping. Our calculated EA for 2MgGa-ON is 0.21 eV, and can be further reduced to 0.13 eV for 3MgGa-ON, which results in a high hole concentration in the order of 1020 cm-3 at room temperature in (AlN)5/(GaN)1 SL. Our results prove that nMgGa-ON (n = 2,3) δ-codoping in AlN/GaN SL with ultrathin GaN-layer is an effective way to improve p-type doping efficiency in Al-rich AlGaN.

  16. Improving p-type doping efficiency in Al0.83Ga0.17N alloy substituted by nanoscale (AlN5/(GaN1 superlattice with MgGa-ON δ-codoping: Role of O-atom in GaN monolayer

    Directory of Open Access Journals (Sweden)

    Hong-xia Zhong

    2015-01-01

    Full Text Available We calculate Mg-acceptor activation energy EA and investigate the influence of O-atom, occupied the Mg nearest-neighbor, on EA in nanoscale (AlN5/(GaN1 superlattice (SL, a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. We find that the N-atom bonded with Ga-atom is more easily substituted by O-atom and nMgGa-ON (n = 1-3 complexes are favorable and stable in the SL. The O-atom plays a dominant role in reducing EA. The shorter the Mg-O bond is, the smaller the EA is. The Mg-acceptor activation energy can be reduced significantly by nMgGa-ON δ-codoping. Our calculated EA for 2MgGa-ON is 0.21 eV, and can be further reduced to 0.13 eV for 3MgGa-ON, which results in a high hole concentration in the order of 1020 cm−3 at room temperature in (AlN5/(GaN1 SL. Our results prove that nMgGa-ON (n = 2,3 δ-codoping in AlN/GaN SL with ultrathin GaN-layer is an effective way to improve p-type doping efficiency in Al-rich AlGaN.

  17. Bond breaking and bond making in tetraoxygen: analysis of the O2(X3Sigma(g)-) + O2(X3Sigma(g)-) O4 reaction using the electron pair localization function.

    Science.gov (United States)

    Scemama, Anthony; Caffarel, Michel; Ramírez-Solís, Alejandro

    2009-08-06

    We study the nature of the electron pairing at the most important critical points of the singlet potential energy surface of the 2O2 O4 reaction and its evolution along the reaction coordinate using the electron pair localization function (EPLF) [Scemama, A.; Chaquin, P.; Caffarel, M. J. Chem. Phys. 2004, 121, 1725]. To do that, the 3D topology of the EPLF calculated with quantum Monte Carlo (at both variational and fixed-node-diffusion Monte Carlo levels) using Hartree-Fock, multiconfigurational CASSCF, and explicitly correlated trial wave functions is analyzed. At the O4 equilibrium geometry the EPLF analysis reveals four equivalent covalent bonds and two lone pairs on each oxygen atom. Along the reaction path toward dissociation it is found that the two oxygen-oxygen bonds are not broken simultaneously but sequentially, and then the lone pairs are rearranged. In a more general perspective, the usefulness of the EPLF as a unique tool to analyze the topology of electron pairing in nontrivial chemical bonding situations as well as to visualize the major steps involved in chemical reactivity is emphasized. In contrast with most standard schemes to reveal electron localization (atoms in molecules, electron localization function, natural bond orbital, etc.), the newly introduced EPLF function gives a direct access to electron pairings in molecules.

  18. {2-[(2-Acetylhydrazin-1-ylidenemethyl-κ2N1,O]-6-methoxyphenolato-κO1}(nitrato-κOcopper(II monohydrate

    Directory of Open Access Journals (Sweden)

    Ibrahima Elhadj Thiam

    2010-02-01

    Full Text Available In the title complex, [Cu(C10H11N2O3(NO3]·H2O, prepared from the Schiff base N′-(3-methoxy-2-oxidobenzylideneacetohydrazide, the CuII atom is coordinated by two O atoms and one N atom from the ligand and one O atom from a nitrate group in a distorted square-planar geometry. The CuII atom has a weak interaction with another O atom of the nitrate group. The two O atoms of the tridentate Schiff base ligand are in a trans arrangement. O—H...O and N—H...O hydrogen bonds involving the uncoordinated water molecule are observed.

  19. Adaptação transcultural para o português brasileiro do Parental Bonding Instrument (PBI Cross-cultural adaptation of Parental Bonding Instrument (PBI to Brazilian Portuguese

    Directory of Open Access Journals (Sweden)

    Simone Hauck

    2006-08-01

    Full Text Available OBJETIVO: O artigo apresenta a adaptação transcultural do Parental Bonding Instrument, um questionário auto-aplicável desenvolvido em 1979 e usado desde então para avaliar a percepção da qualidade do vínculo com os pais até os 16 anos. MÉTODO: Foram realizadas as etapas de equivalência conceitual, equivalência dos itens, equivalência semântica, equivalência operacional, equivalência funcional e aprovação da versão final pelo autor original do instrumento. RESULTADOS: Os critérios de equivalência foram satisfeitos, tendo a versão final sido aprovada pelo autor do instrumento original. CONCLUSÃO: A adaptação do Parental Bonding Instrument disponibiliza para uso um instrumento que já demonstrou ser extremamente útil em pesquisas de risco e resiliência nas últimas décadas, ao avaliar a percepção de características do comportamento dos pais tradicionalmente associadas ao desenvolvimento da personalidade.OBJETIVE: This article aims to present a cross-cultural adaptation of the Parental Bonding Instrument to Brazilian Portuguese. It is a self-administered questionnaire developed in 1979, which has been used since then to measure the subjective experience of being parented to the age of 16 years. METHOD: The following steps were performed: conceptual equivalence, item equivalence, semantic equivalence, operational equivalence, functional equivalence, and approval of the final version by the author of the original instrument. RESULTS: The study has reached the objectives of equivalence, and the final Brazilian Portuguese version has been approved by the original author. CONCLUSION: The study provides a Brazilian Portuguese version of an instrument that has been proven extremely useful in risk and resilience researches over the past decades, assessing the perception of parental characteristics traditionally related to personality development.

  20. Compressibilidade de um solo sob sistemas de pastejo rotacionado intensivo irrigado e não irrigado Soil compressibility under non-irrigated and irrigated short duration grazing systems

    Directory of Open Access Journals (Sweden)

    C. L. R. Lima

    2004-12-01

    Full Text Available O incremento da produtividade das pastagens tem sido associado ao comportamento à compressão dos solos. Os objetivos deste trabalho foram: quantificar as curvas de compressão e a pressão de preconsolidação em sistemas de pastejo intensivo rotacionado irrigado e não irrigado. Foram coletadas 96 amostras indeformadas de solo em quatro ciclos sucessivos de pastejo instalado com capim Tanzânia (Panicum maximum Jacq. em um Argissolo Vermelho. Após saturadas com água e equilibradas no potencial (psi: -10 kPa, as amostras foram pesadas e submetidas ao ensaio de compressão uniaxial com a aplicação sucessiva e contínua de pressões de 25, 50, 100, 200, 400, 600, 800, 1.000, 1.300 e 1.600 kPa. Os resultados comprovaram a hipótese de que houve diferença na compressibilidade do solo sob os sistemas de pastejo rotacionado intensivo irrigado e não irrigado. A maior compactação inicial verificada no sistema de pastejo rotacionado intensivo irrigado favoreceu o deslocamento das curvas de compressão uniaxial para valores superiores de densidade do solo. A pressão de preconsolidação foi significativamente superior no quarto ciclo de pastejo no sistema de pastejo rotacionado intensivo irrigado em relação ao sistema pastejo rotacionado intensivo não irrigado.Increment in pasture productivity has been associated with the understanding of the soil behavior under compression. The objective of this research was to quantify (a the compression curves and (b the preconsolidation pressure of the soils under non-irrigated and irrigated short duration grazing systems. Ninety-six undisturbed soil samples were taken from the four successive pasture cycles of Tanzania grass (Panicum maximum Jacq. in a Hapludalf. The samples were saturated in water and equilibrated at the matrix potential (psi: -10 kPa and then were weighed and submitted to an uniaxial compression test, applying the following pressures: 25, 50, 100, 200, 400, 600, 800, 1,000, 1,300, and

  1. Bis(benzyltrimethylammonium bis[(4SR,12SR,18RS,26RS-4,18,26-trihydroxy-12-oxido-13,17-dioxaheptacyclo[14.10.0.03,14.04,12.06,11.018,26.019,24]hexacosa-1,3(14,6,8,10,15,19,21,23-nonaene-5,25-dione] sesquihydrate: dimeric structure formation via [O—H—O]−negative charge-assisted hydrogen bonds (–CAHB with benzyltrimethylammonium counter-ions

    Directory of Open Access Journals (Sweden)

    Ravell Bengiat

    2016-03-01

    Full Text Available The reaction between bis-ninhydrin resorcinol and benzyltrimethylammonium fluoride in ethanol has produced the title compound, 2C10H16N+·2C24H13O8−·1.5H2O, which contains a unique centrosymmetric supramolecular dimeric entity, where two deprotonated ligands are held together via two strong and short [O...O = 2.4395 (13 Å] [O—H—O]− bonds of the type negative charge-assisted hydrogen bonds (–CAHB. The central aromatic rings of the ligands create parallel-displaced π–π stacking at an interplanar distance of 3.381 (1 Å, which helps stabilize the dimer. In the crystal, two symmetry-related solvent water molecules with a site occupancy of 0.75 are attached to the carbonyl groups of the dimer by weaker O—H...O hydrogen bonds, forming chains along [101].

  2. Ab Initio Study of the Dynamical Si–O Bond Breaking Event in α-Quartz

    International Nuclear Information System (INIS)

    Su Rui; Zhang Hong; Han Wei; Chen Jun

    2015-01-01

    The Si–O bond breaking event in the α-quartz at the first triplet (T_1) excitation state is studied by using ab initio molecular dynamics (AIMD) and nudged elastic band calculations. A meta-stable non-bridging oxygen hole center and E′ center (NBOHC-E′) is observed in the AIMD which consists of a broken Si–O bond with a Si–O distance of 2.54 Å. By disallowing the re-bonding of the Si and O atoms, another defect configuration (III-Si/V-Si) is obtained and validated to be stable at both ground and excitation states. The NBOHC-E′ is found to present on the minimal energy pathway of the initial to III-Si/V-Si transition, showing that the generating of the NBOHC-E′ is an important step of the excitation induced structure defect. The energy barriers to produce the NBOHC-E′ and III-Si/V-Si defects are calculated to be 1.19 and 1.28 eV, respectively. The electronic structures of the two defects are calculated by the self-consistent GW calculations and the results show a clear electron transition from the bonding orbital to the non-bonding orbital. (paper)

  3. N-(3-Chlorophenylmaleamic acid

    Directory of Open Access Journals (Sweden)

    B. Thimme Gowda

    2010-07-01

    Full Text Available In the title compound, C10H8ClNO3, the molecular conformation is stabilized by two intramolecular hydrogen bonds. The first is a short O—H...O hydrogen bond within the maleamic acid unit and the second is a C—H...O hydrogen bond which connects the amide group with the phenyl ring. The maleamic acid unit is essentially planar, with an r.m.s. deviation of 0.044 Å, and makes a dihedral angle of 15.2 (1° with the phenyl ring. In the crystal, intermolecular N—H...O hydrogen bonds link the molecules into C(7 chains running [010].

  4. Competing hydrogen bonding in methoxyphenols: The rotational spectrum of o-vanillin

    Science.gov (United States)

    Cocinero, Emilio J.; Lesarri, Alberto; Écija, Patricia; Basterretxea, Francisco; Fernández, José A.; Castaño, Fernando

    2011-05-01

    The conformational preferences of o-vanillin have been investigated in a supersonic jet expansion using Fourier transform microwave (FT-MW) spectroscopy. Three molecular conformations were derived from the rotational spectrum. The two most stable structures are characterized by a moderate O sbnd H···O dbnd C hydrogen bond between the aldehyde and the hydroxyl groups, with the methoxy side chain either in plane (global minimum a- cis-trans) or out of plane (a- cis-gauche) with respect to the aromatic ring. In the third conformer the aldehyde group is rotated by ca. 180°, forming a O sbnd H···O hydrogen bond between the methoxy and hydroxyl groups (s- trans-trans). Rotational parameters and relative populations are provided for the three conformations, which are compared with the results of ab initio (MP2) and density-functional (B3LYP, M05-2X) theoretical predictions.

  5. Muon-oxygen bonding in V2O3

    International Nuclear Information System (INIS)

    Chan, K.C.B.; Lichti, R.L.; Boekema, C.

    1986-01-01

    A muon site search using calculated internal fields has been performed for V 2 O 3 , where purely dipolar fields allow a site determination free from covalent complications. The obtained sites are a subset of the Rodriguez and Bates sites found in α-Fe 2 O 3 and indicate muon oxygen bond formation. The sites missing at low temperatures are consistent with the vanadium pairing mechanism for the metal-to-insulator (corundum-to-monoclinic) phase transition. (orig.)

  6. Deuteriation of an asymmetric short hydrogen bond. X-ray crystal structure of KF.(CH2CO2D)2

    International Nuclear Information System (INIS)

    Emsley, J.; Jones, D.J.; Kuroda, R.

    1981-01-01

    Deuteriation of the strong hydrogen bonds of KF.(CH 2 CO 2 H) 2 shows no isotope effect on the bond lengths. The only significant change is in the bond angle at the fluoride ion which widens to 128.5 from 116 0 . The i.r. spectrum shows very little change. Since the O-H ... F - hydrogen bonds are highly asymmetric, these observations challenge previous predictions about the effects of deuteriation on such bonds. (author)

  7. Diaquabis[2-(2-hydroxyethylpyridine-κ2N,O]cobalt(II dichloride

    Directory of Open Access Journals (Sweden)

    Hocine Merazig

    2013-08-01

    Full Text Available In the title salt, [Co(C7H9NO2(H2O2]Cl2, the CoII cation, located on an inversion center, is N,O-chelated by two hydroxyethylpyridine ligands and coordinated by two water molecules in a distorted O4N2 octahedral geometry. In the crystal, the Cl− anions link with the complex cations via O—H...Cl hydrogen bonds, forming a three-dimensional supramolecular architecture. π–π stacking is observed between the pyridine rings of adjacent molecules [centroid–centroid distance = 3.5810 (11 Å].

  8. Evidence of amino acid precursors: C-N bond coupling in simulated interstellar CO2/NH3 ices

    Science.gov (United States)

    Esmaili, Sasan

    2015-08-01

    Low energy secondary electrons are abundantly produced in astrophysical or planetary ices by the numerous ionizing radiation fields typically encountered in space environments and may thus play a role in the radiation processing of such ices [1]. One approach to determine their chemical effect is to irradiate nanometer thick molecular solids of simple molecular constituents, with energy selected electron beams and to monitor changes in film chemistry with the surface analytical techniques [2].Of particular interest is the formation of HCN, which is a signature of dense gases in interstellar clouds, and is ubiquitous in the ISM. Moreover, the chemistry of HCN radiolysis products such as CN- may be essential to understand of the formation of amino acids [3] and purine DNA bases. Here we present new results on the irradiation of multilayer films of CO2 and NH3 with 70 eV electrons, leading to CN bond formations. The electron stimulated desorption (ESD) yields of cations and anions are recorded as a function of electron fluence. The prompt desorption of cationic reaction/scattering products [4], is observed at low fluence (~4x1013 electrons/cm2). Detected ions include C2+, C2O2+, C2O+, CO3+, C2O3+ or CO4+ from pure CO2, and N+, NH+, NH2+, NH3+, NH4+, N2+, N2H+ from pure NH3, and NO+, NOH+ from CO2/NH3 mixtures. Most saliently, increasing signals of negative ion products desorbing during prolonged irradiation of CO2/NH3 films included C2-, C2H-, C2H2-, as well as CN-, HCN- and H2CN-. The identification of particular product ions was accomplished by using 13CO2 and 15NH3 isotopes. The chemistry induced by electrons in pure films of CO2 and NH3 and mixtures with composition ratios (3:1), (1:1), and (1:3), was also studied by X-ray photoelectron spectroscopy (XPS). Irradiation of CO2/NH3 mixed films at 22 K produces species containing the following bonds/functional groups identified by XPS: C=O, O-H, C-C, C-O, C=N and N=O. (This work has been funded by NSERC).

  9. Relaxation of the chemical bond skin chemisorption size matter ZTP mechanics H2O myths

    CERN Document Server

    Sun, Chang Q

    2014-01-01

    The aim of this book is to explore the detectable properties of a material to the parameters of bond and non-bond involved and to clarify the interdependence of various properties. This book is composed of four parts; Part I deals with the formation and relaxation dynamics of bond and non-bond during chemisorptions with uncovering of the correlation among the chemical bond, energy band, and surface potential barrier (3B) during reactions; Part II is focused on the relaxation of bonds between atoms with fewer neighbors than the ideal in bulk with unraveling of the bond order-length-strength (BOLS) correlation mechanism, which clarifies the nature difference between nanostructures and bulk of the same substance; Part III deals with the relaxation dynamics of bond under heating and compressing with revealing of rules on the temperature-resolved elastic and plastic properties of low-dimensional materials; Part IV is focused on the asymmetric relaxation dynamics of the hydrogen bond (O:H-O) and the anomalous behav...

  10. Bis(1H-imidazole-κN3bis(1-naphthaleneacetato-κ2O,O′cadmium(II

    Directory of Open Access Journals (Sweden)

    Hong-Mian Wu

    2008-05-01

    Full Text Available In the mononuclear title compound, [Cd(C12H9O22(C3H4N22], the CdII centre has a distorted octahedral coordination geometry defined by four O atoms from two naphthaleneacetate ligands and two N atoms from two imidazole ligands. The molecules are linked by N—H...O hydrogen bonds, forming a layer network.

  11. Absence of magnetic long-range order in Y2CrSbO7 : Bond-disorder-induced magnetic frustration in a ferromagnetic pyrochlore

    Science.gov (United States)

    Shen, L.; Greaves, C.; Riyat, R.; Hansen, T. C.; Blackburn, E.

    2017-09-01

    The consequences of random nonmagnetic-ion dilution for the pyrochlore family Y2(M 1 -xN x)2O7 (M = magnetic ion, N = nonmagnetic ion) have been investigated. As a first step, we experimentally examine the magnetic properties of Y2CrSbO7 (x =0.5 ), in which the magnetic sites (Cr3 +) are percolative. Although the effective Cr-Cr spin exchange is ferromagnetic, as evidenced by a positive Curie-Weiss temperature, ΘCW ≃19.5 K , our high-resolution neutron powder diffraction measurements detect no sign of magnetic long-range order down to 2 K. In order to understand our observations, we construct a lattice model to numerically study the bond disorder introduced by the ionic size mismatch between M and N , which reveals that the bond disorder percolates at xb ≃0.23 , explaining the absence of magnetic long-range order. This model could be applied to a series of frustrated magnets with a pyrochlore sublattice, for example, the spinel compound Zn (Cr1 -xGax )2O4 , wherein a Néel to spin glass phase transition occurs between x =0.2 and 0.25 [Lee et al., Phys. Rev. B 77, 014405 (2008), 10.1103/PhysRevB.77.014405]. Our study stresses the non-negligible role of bond disorder on magnetic frustration, even in ferromagnets.

  12. Relation between frequency and H bond length in heavy water: Towards the understanding of the unusual properties of H bond dynamics in nanoporous media

    International Nuclear Information System (INIS)

    Pommeret, Stanislas; Leicknam, Jean-Claude; Bratos, Savo; Musat, Raluca; Renault, Jean Philippe

    2009-01-01

    The published work on H bond dynamics mainly refers to diluted solutions HDO/D 2 O rather than to normal water. The reasons for this choice are both theoretical and experimental. Mechanical isolation of the OH vibrator eliminating the resonant energy transfer makes it a better probe of the local H bond network, while the dilution in heavy water reduces the infrared absorption, which permits the use of thicker experimental cells. The isotopic substitution does not alter crucially the nature of the problem. The length r of an OH . . . O group is statistically distributed over a large interval comprised between 2.7 and 3.2 A with a mean value r 0 = 2.86 A. Liquid water may thus be viewed as a mixture of hydrogen bonds of different length. Two important characteristics of hydrogen bonding must be mentioned. (i) The OH stretching vibrations are strongly affected by this interaction. The shorter the length r of the hydrogen bond, the strongest the H bond link and the lower is its frequency ω: the covalent OH bond energy is lent to the OH. . .O bond and reinforces the latter. A number of useful relationships between ω and r were published to express this correlation. The one adopted in our previous work is the relationship due to Mikenda. (ii) Not only the OH vibrations, but also the HDO rotations are influenced noticeably by hydrogen bonding. This is due to steric forces that hinder the HDO rotations. As they are stronger in short than in long hydrogen bonds, rotations are slower in the first case than in the second. This effect was only recently discovered, but its existence is hardly to be contested. In the present contribution, we want to revisit the relationship between the frequency of the OH vibrator and the distance OH. . .O.

  13. Radiation-induced O-glycoside bond scission in carbohydrates

    International Nuclear Information System (INIS)

    Kisel', R.M.

    2005-01-01

    Regularities in formation of products resulting from O-glycoside bond cleavage on radiolysis of aqueous solutions of (-methyl-D-glucopyranoside (I), 3-O-methylglucopyranose (II), maltose and lactose were studied. Oxygen and quinones were shown to inhibit radiation-induced homolytic destruction processes taking place in glycosides. The data obtained in this study enabled the authors to demonstrate an important role played by fragmentation reaction of C-2 radicals generated from the starting substances in formation of final radiolysis products. (authors)

  14. Normalized fluctuations, H2O vs n-hexane: Site-correlated percolation

    Science.gov (United States)

    Koga, Yoshikata; Westh, Peter; Sawamura, Seiji; Taniguchi, Yoshihiro

    1996-08-01

    Entropy, volume and the cross fluctuations were normalized to the average volume of a coarse grain with a fixed number of molecules, within which the local and instantaneous value of interest is evaluated. Comparisons were made between liquid H2O and n-hexane in the range from -10 °C to 120 °C and from 0.1 MPa to 500 MPa. The difference between H2O and n-hexane in temperature and pressure dependencies of these normalized fluctuations was explained in terms of the site-correlated percolation theory for H2O. In particular, the temperature increase was confirmed to reduce the hydrogen bond probability, while the pressure appeared to have little effect on the hydrogen bond probability. According to the Le Chatelier principle, however, the putative formation of ``ice-like'' patches at low temperatures due to the site-correlated percolation requirement is retarded by pressure increases. Thus, only in the limited region of low pressure (<300 MPa) and temperature (<60 °C), the fluctuating ice-like patches are considered to persist.

  15. Magnetic Properties of NdFe10Mo2-N Bonded Magnet

    Science.gov (United States)

    Zhang, Hong-Wei; Hu, Bo-Ping; Han, Zhong-Fan; Jin, Han-Min; Fu, Quan

    1997-06-01

    The dependence of remanence and coercivity on the magnetizing field is studied for isotropic and anisotropic epoxy resin bonded magnets. It was found that the coercivity of the NdFe10Mo2-N bonded magnet is mainly controlled by nucleation of reversed magnetic domains. Variation of iHc with Zn content and heat treatment conditions is studied. The value of 0 iHc obtained in the best Zn-bonded condition is about 0.15 T higher than before bonding. The variation of the amount of α-Fe with processing conditions is demonstrated for anisotropic Zn-bonded magnets.

  16. Iodide, azide, and cyanide complexes of (N,C), (N,N), and (N,O) metallacycles of tetra- and pentavalent uranium

    International Nuclear Information System (INIS)

    Benaud, Olivier; Berthet, Jean-Claude; Thuery, Pierre; Ephritikhine, Michel

    2011-01-01

    In contrast to the neutral macrocycle [UN* 2 (N,C)] (1) [N* = N(SiMe 3 ) 3 ; N,C = CH 2 SiMe 2 N-(SiMe 3 )] which was quite inert toward I 2 , the anionic bismetallacycle [NaUN*(N,C) 2 ] (2) was readily transformed into the enlarged monometallacycle [UN*(N,N)I] (4) [N,N = (Me 3 Si)NSiMe 2 CH 2 CH 2 SiMe 2 N(SiMe 3 )] resulting from C-C coupling of the two CH 2 groups, and [NaUN*(N,O) 2 ] (3) [N,O = OC(=CH 2 )SiMe 2 N(SiMe 3 )], which is devoid of any U-C bond, was oxidized into the UV bismetallacycle [Na{UN*(N,O) 2 }2(μ-I)] (5). Sodium amalgam reduction of 4 gave the U(III) compound [UN*(N,N)] (6). Addition of MN 3 or MCN to the (N,C), (N,N), and (N,O) metallacycles 1, 4, and 5 led to the formation of the anionic azide or cyanide derivatives M[UN* 2 (N,C)(N 3 )] [M = Na, 7a or Na(15-crown-5), 7b], M[UN* 2 (N,C)(CN)] [M = NEt 4 , 8a or Na(15-crown-5), 8b or K(18-crown-6), 8c], M[UN*(N,N)(N 3 ) 2 ] [M = Na, 9a or Na(THF)4, 9b], [NEt 4 ][UN*(N,N)(CN) 2 ] (10), M[UN*(N,O) 2 (N 3 )] [M = Na, 11a or Na(15-crown-5), 11b], M[UN*(N,O) 2 (CN)] [M = NEt 4 , 12a or Na(15-crown-5), 12b]. In the presence of excess iodine in THF, the cyanide 12a was converted back into the iodide 5, while the azide 11a was transformed into the neutral UV complex [U(N{SiMe 3 }-SiMe 2 C{CHI}O) 2 I(THF)] (13). The X-ray crystal structures of 4, 7b, 8a-c, 9b, 10, 12b, and 13 were determined. (authors)

  17. Quantum mechanics models of the methanol dimer: OH⋯O hydrogen bonds of β-d-glucose moieties from crystallographic data.

    Science.gov (United States)

    Cintrón, Michael Santiago; Johnson, Glenn P; French, Alfred D

    2017-04-18

    The interaction of two methanol molecules, simplified models of carbohydrates and cellulose, was examined using a variety of quantum mechanics (QM) levels of theory. Energy plots for hydrogen bonding distance (H⋯O) and angle (OH⋯O) were constructed. All but two experimental structures were located in stabilized areas on the vacuum phase energy plots. Each of the 399 models was analyzed with Bader's atoms-in-molecules (AIM) theory, which showed a widespread ability by the dimer models to form OH⋯O hydrogen bonds that have bond paths and Bond Critical Points. Continuum solvation calculations suggest that a portion of the energy-stabilized structures could occur in the presence of water. A survey of the Cambridge Structural Database (CSD) for all donor-acceptor interactions in β-D-glucose moieties examined the similarities and differences among the hydroxyl groups and acetal oxygen atoms that participate in hydrogen bonds. Comparable behavior was observed for the O2H, O3H, O4H, and O6H hydroxyls, acting either as acceptors or donors. Ring O atoms showed distinct hydrogen bonding behavior that favored mid-length hydrogen bonds. Published by Elsevier Ltd.

  18. Core level photoemission spectroscopy and chemical bonding in Sr2Ta2O7

    DEFF Research Database (Denmark)

    Atuchin, V. V.; Grivel, Jean-Claude; Zhang, Z. M.

    2009-01-01

    Electronic parameters of constituent element core levels of strontium pyrotantalate (Sr2Ta2O7) were measured with X-ray photoelectron spectroscopy (XPS). The Sr2Ta2O7 powder sample was synthesized using standard solid state method. The valence electron transfer on the formation of the Sr-O and Ta......-O bonds was characterized by the binding energy differences between the O 1s and cation core levels, Delta(O-Sr) = BE(O 1s) - BE(Sr 3d(5/2)) and Delta(O-Ta) = BE(O 1s) - BE(Ta 4f(7/2)). The chemical bonding effects were considered on the basis of our XPS results for Sr2Ta2O7 and earlier published...

  19. Bismuth-boron multiple bonding in BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Jian, Tian; Cheung, Ling Fung; Chen, Teng-Teng; Wang, Lai-Sheng [Department of Chemistry, Brown University, Providence, RI (United States)

    2017-08-01

    Despite its electron deficiency, boron is versatile in forming multiple bonds. Transition-metal-boron double bonding is known, but boron-metal triple bonds have been elusive. Two bismuth boron cluster anions, BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -}, containing triple and double B-Bi bonds are presented. The BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -} clusters are produced by laser vaporization of a mixed B/Bi target and characterized by photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra are obtained and interpreted with the help of ab initio calculations, which show that both species are linear. Chemical bonding analyses reveal that Bi forms triple and double bonds with boron in BiB{sub 2}O{sup -} ([Bi≡B-B≡O]{sup -}) and Bi{sub 2}B{sup -} ([Bi=B=Bi]{sup -}), respectively. The Bi-B double and triple bond strengths are calculated to be 3.21 and 4.70 eV, respectively. This is the first experimental observation of Bi-B double and triple bonds, opening the door to design main-group metal-boron complexes with multiple bonding. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. NMR detection of short-lived β-emitter {sup 12}N implanted in water

    Energy Technology Data Exchange (ETDEWEB)

    Sugihara, T., E-mail: sugihara@vg.phys.sci.osaka-u.ac.jp; Mihara, M.; Shimaya, J.; Matsuta, K.; Fukuda, M.; Ohno, J.; Tanaka, M.; Yamaoka, S.; Watanabe, K.; Iwakiri, S.; Yanagihara, R.; Tanaka, Y.; Du, H.; Onishi, K.; Kambayashi, S.; Minamisono, T. [Osaka University, Department of Physics (Japan); Nishimura, D. [Tokyo University of Science, Department of Physics (Japan); Izumikawa, T. [Niigata University, Radioisotope Center (Japan); Ozawa, A. [University of Tsukuba, Department of Physics (Japan); Ishibashi, Y. [RIKEN Nishina Center for Accelerator-Based Science (Japan); and others

    2017-11-15

    The beta-detected nuclear magnetic resonance (β-NMR) in liquid H{sub 2}O has been observed for the first time using a short-lived β-ray emitter {sup 12}N (I{sup π} = 1{sup +},T{sub 1/2}=11 ms). A nuclear spin polarized {sup 12}N beam with an energy of about 20 MeV/nucleon was implanted into an enclosed water sample. About 50 % of implanted {sup 12}N ions maintained nuclear polarization and exhibited a β-NMR spectrum. The chemical shift of {sup 12}N in H{sub 2}O relative to {sup 12}N in Pt was deduced to be −(3.6±0.5) × 10{sup 2} ppm.

  1. Vínculos e redes sociais em contextos familiares e institucionais: uma reflexão conceitual Vínculos y redes sociales en contextos familiares e institucionales: una reflexión conceptual Bonds and social networks in family and institutional contexts: a conceptual reflection

    Directory of Open Access Journals (Sweden)

    Ana M. A. Carvalho

    2006-12-01

    Full Text Available Propõe-se uma reflexão conceitual sobre os conceitos de vínculo e rede social. São resumidos quatro trabalhos que utilizam esses conceitos e discutidas suas convergências e divergências. Carvalho sintetiza estudos sobre vínculo na interação criança-criança. Sampaio problematiza a vinculação entre crianças de rua e educadores. Rabinovich relata observações de famílias em uma comunidade quilombola. Bastos reflete sobre redes sociais com base no discurso de mães em grupos de encontro. A comparação dessas pesquisas em termos dos conceitos de vínculo e rede social indica a conveniência de explicitação dos seus sentidos em cada caso, para permitir diálogo entre enfoques diversificados sobre as relações humanas.Se propone una reflexión conceptual sobre los conceptos de vínculo y red social. Son resumidos cuatro trabajos que utilizan esos conceptos y discutidas sus convergencias y divergencias. Carvalho sintetiza estudios sobre vínculo en la interacción niño-niño. Sampaio problematiza la vinculación entre "niños de la calle" y educadores. Rabinovich relata observaciones de familias en una comunidad quilombola. Bastos refleja sobre redes sociales basado en el discurso de madres en grupos de encuentro. La comparación de esas pesquisas en términos de los conceptos de vínculo y red social indica la conveniencia de explicitación de sus sentidos en cada caso, para permitir diálogo entre enfoques diversificados sobre las relaciones humanas.This paper suggests a conceptual reflection on bonds and social network concepts. Four studies that use such concepts are synthesized and their convergences and divergences are discussed. Carvalho synthesizes studies on bonds in child-child interaction. Sampaio is concerned with bonds concerning homeless children and educators. Rabinovich reports observations of families in a Quilombola community. Bastos makes reflections on social network, based on the talks of some mothers during

  2. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.

    Science.gov (United States)

    Rice, Derek B; Massie, Allyssa A; Jackson, Timothy A

    2017-11-21

    Biological systems capitalize on the redox versatility of manganese to perform reactions involving dioxygen and its derivatives superoxide, hydrogen peroxide, and water. The reactions of manganese enzymes influence both human health and the global energy cycle. Important examples include the detoxification of reactive oxygen species by manganese superoxide dismutase, biosynthesis by manganese ribonucleotide reductase and manganese lipoxygenase, and water splitting by the oxygen-evolving complex of photosystem II. Although these enzymes perform very different reactions and employ structurally distinct active sites, manganese intermediates with peroxo, hydroxo, and oxo ligation are commonly proposed in catalytic mechanisms. These intermediates are also postulated in mechanisms of synthetic manganese oxidation catalysts, which are of interest due to the earth abundance of manganese. In this Account, we describe our recent efforts toward understanding O-O bond activation pathways of Mn III -peroxo adducts and hydrogen-atom transfer reactivity of Mn IV -oxo and Mn III -hydroxo complexes. In biological and synthetic catalysts, peroxomanganese intermediates are commonly proposed to decay by either Mn-O or O-O cleavage pathways, although it is often unclear how the local coordination environment influences the decay mechanism. To address this matter, we generated a variety of Mn III -peroxo adducts with varied ligand environments. Using parallel-mode EPR and Mn K-edge X-ray absorption techniques, the decay pathway of one Mn III -peroxo complex bearing a bulky macrocylic ligand was investigated. Unlike many Mn III -peroxo model complexes that decay to oxo-bridged-Mn III Mn IV dimers, decay of this Mn III -peroxo adduct yielded mononuclear Mn III -hydroxo and Mn IV -oxo products, potentially resulting from O-O bond activation of the Mn III -peroxo unit. These results highlight the role of ligand sterics in promoting the formation of mononuclear products and mark an important

  3. Bis[2-(2-pyridylmethyleneaminobenzenesulfonato-κ3N,N′,O]cadmium(II dihydrate

    Directory of Open Access Journals (Sweden)

    Miao Ou-Yang

    2008-11-01

    Full Text Available The title complex, [Cd(Paba2]·2H2O or [Cd(C12H9N2O3S2]·2H2O, was synthesized by the reaction of the potassium salt of 2-(2-pyridylmethyleneaminobenzenesulfonic acid (PabaK with CdCl2·2.5H2O in methanol. The CdII atom lies on a crystallographic twofold axis and is coordinated by four N atoms and two O atoms from two deprotonated tridentate 2-(2-pyridylmethyleneaminobenzenesulfonate ligands in a slightly distorted octahedral environment. There are extensive hydrogen bonds of the type O—H...O between the uncoordinated water molecules and the sulfonate O atoms, through which the complex forms a layered structure parallel to (001.

  4. Bis[μ-2-(2,4-difluorophenyl-1,3-bis(1,2,4-triazol-1-ylpropan-2-olato-κ4N2,O:O,N2′]bis[(acetato-κ2O,O′nickel(II] methanol hemisolvate

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2010-01-01

    Full Text Available In the title complex, [Ni2(C13H11F2N6O2(C2H3O22]·0.5CH3OH, there are two half-molecules in the asymmetric unit. The two centrosymmetrically related NiII atoms, each attached to an acetate ligand, are linked by two fluconazole ligands. Each NiII atom is six-coordinated in a distorted octahedral geometry by two N atoms of the triazole groups and two bridging O atoms from two different fluconazole ligands and two O atoms from a chelating acetate ligand. In the crystal structure, the half-occupied methanol solvent molecule is linked to a triazole group via an O—H...N hydrogen bond.

  5. Transition Metal Free C-N Bond Forming Dearomatizations and Aryl C-H Aminations by in Situ Release of a Hydroxylamine-Based Aminating Agent.

    Science.gov (United States)

    Farndon, Joshua J; Ma, Xiaofeng; Bower, John F

    2017-10-11

    We outline a simple protocol that accesses directly unprotected secondary amines by intramolecular C-N bond forming dearomatization or aryl C-H amination. The method is dependent on the generation of a potent electrophilic aminating agent released by in situ deprotection of O-Ts activated N-Boc hydroxylamines.

  6. Effect of Surface Treatment on Shear Bond Strength between Resin Cement and Ce-TZP/Al2O3

    Directory of Open Access Journals (Sweden)

    Jong-Eun Kim

    2016-01-01

    Full Text Available Purpose. Although several studies evaluating the mechanical properties of Ce-TZP/Al2O3 have been published, to date, no study has been published investigating the bonding protocol between Ce-TZP/Al2O3 and resin cement. The aim of this study was to evaluate the shear bond strength to air-abraded Ce-TZP/Al2O3 when primers and two different cement types were used. Materials and Methods. Two types of zirconia (Y-TZP and Ce-TZP/Al2O3 specimens were further divided into four subgroups according to primer application and the cement used. Shear bond strength was measured after water storage for 3 days or 5,000 times thermocycling for artificial aging. Results. The Y-TZP block showed significantly higher shear bond strength than the Ce-TZP/Al2O3 block generally. Primer application promoted high bond strength and less effect on bond strength reduction after thermocycling, regardless of the type of cement, zirconia block, or aging time. Conclusions. Depending on the type of the primer or resin cement used after air-abrasion, different wettability of the zirconia surface can be observed. Application of primer affected the values of shear bond strength after the thermocycling procedure. In the case of using the same bonding protocol, Y-TZP could obtain significantly higher bond strength compared with Ce-TZP/Al2O3.

  7. Short-range structure of barium tellurite glasses and its correlation with stress-optic response

    Science.gov (United States)

    Kaur, Amarjot; Khanna, Atul; Fábián, Margit

    2018-06-01

    The atomic parameters of metal ion-oxygen speciation such as bond-lengths and nearest neighbor distances for Ba-O, Te-O and O-O pairs, co-ordination numbers and bond angle distributions for O-Ba-O, O-Te-O and O-O-O linkages are determined by neutron diffraction and Reverse Monte Carlo simulations on the series of xBaO-(100-x)TeO2 glasses containing 10, 15 and 20 mol% BaO. The glass network depolymerizes and the average Te-O co-ordination number decreases from 3.60 ± 0.02 to 3.48 ± 0.02 with increase in BaO concentration. Te-O bond lengths are in the range: 1.97 ± 0.01–1.92 ± 0.01 Å. Ba2+ is mostly in octahedral coordination and the Ba-O bond lengths are in the range: 2.73 ± 0.01 to 2.76 ± 0.03 Å. Te-O co-ordination number is also determined by Raman spectroscopy and it shows good agreement with the neutron data. The short-range structural properties i.e. metal ion coordination number (Nc) and bond lengths (d) were correlated with the stress-optic response. The bonding characteristic, Br values were determined from the structural data of xBaO-(100-x)TeO2 glasses and were used to predict the stress-induced birefringence properties.

  8. Investigation of N2O Production from 266 and 532 nm Laser Flash Photolysis of O3/N2/O2 Mixtures

    Science.gov (United States)

    Estupinan, E. G.; Nicovich, J. M.; Li, J.; Cunnold, D. M.; Wine, P. H.

    2002-01-01

    Tunable diode laser absorption spectroscopy has been employed to measure the amount of N2O produced from laser flash photolysis of O3/N2/O2 mixtures at 266 and 532 nm. In the 532 nm photolysis experiments very little N2O is observed, thus allowing an upper limit yield of 7 x 10(exp -8) to be established for the process O3 + N2 yield N2O + O2, where O3 is nascent O3 that is newly formed via O(3P(sub J)) + O2 recombination (with vibrational excitation near the dissociation energy of O3). The measured upper limit yield is a factor of approx. 600 smaller than a previous literature value and is approximately a factor of 10 below the threshold for atmospheric importance. In the 266 nm photolysis experiments, significant N2O production is observed and the N2O quantum yield is found to increase linearly with pressure over the range 100 - 900 Torr in air bath gas. The source of N2O in the 266 nm photolysis experiments is believed to be the addition reaction O(1D(sub 2)) + N2 + M yields (k(sub sigma)) N2O + M, although reaction of (very short-lived) electronically excited O3 with N2 cannot be ruled out by the available data. Assuming that all observed N2O comes from the O(1D(sub 2)) + N2 + M reaction, the following expression describes the temperature dependence of k(sub sigma) (in its third-order low-pressure limit) that is consistent with the N2O yield data: k(sub sigma) = (2.8 +/- 0.1) x 10(exp -36)(T/300)(sup -(0-88+0.36)) cm(sup 6) molecule(sup -2)/s, where the uncertainties are 2(sigma) and represent precision only. The accuracy of the reported rate coefficients at the 95% confidence level is estimated to be 30 - 40% depending on the temperature. Model calculations suggest that gas phase processes initiated by ozone absorption of a UV photon represent about 1.4% of the currently estimated global source strength of atmospheric N2O. However, these processes could account for a significant fraction of the oxygen mass-independent enrichment observed in atmospheric N2O, and

  9. Butane-1,4-diammonium bis(pyridine-2,6-dicarboxylato-κ3O2,N,O6cadmate(II dihydrate

    Directory of Open Access Journals (Sweden)

    Najmeh Firoozi

    2008-10-01

    Full Text Available In the title compound, (C4H14N2[Cd(C7H3NO42]·2H2O, the CdII ion is coordinated by four O atoms [Cd—O = 2.2399 (17–2.2493 (17 Å] and two N atoms [Cd—N = 2.3113 (15 and 2.3917 (15 Å] from two tridentate pyridine-2,6-dicarboxylato ligands in a distorted octahedral geometry. The uncoordinated water molecules are involved in O—H...O and N—H...O hydrogen bonds, which contribute to the formation of a three-dimensional supramolecular structure, along with π–π stacking interactions [centroid–centroid distances of 3.5313 (13 and 3.6028 (11 Å between the pyridine rings of neighbouring dianions].

  10. Improved optical response and photocatalysis for N-doped titanium oxide (TiO2) films prepared by oxidation of TiN

    International Nuclear Information System (INIS)

    Wan, L.; Li, J.F.; Feng, J.Y.; Sun, W.; Mao, Z.Q.

    2007-01-01

    In order to improve the photocatalytic activity, N-doped titanium oxide (TiO 2 ) films were obtained by thermal oxidation of TiN films, which were prepared on Ti substrates by ion beam assisted deposition (IBAD). The dominating rutile TiO 2 phase was found in films after thermal oxidation. According to the results of X-ray photoelectron spectroscopy (XPS), the residual N atoms occupied O-atom sites in TiO 2 lattice to form Ti-O-N bonds. UV-vis spectra revealed the N-doped TiO 2 film had a red shift of absorption edge. The maximum red shift was assigned to the sample annealed at 750 deg. C, with an onset wavelength at 600 nm. The onset wavelength corresponded to the photon energy of 2.05 eV, which was nearly 1.0 eV below the band gap of pure rutile TiO 2 . The effect of nitrogen was responsible for the enhancement of photoactivity of N-doped TiO 2 films in the range of visible light

  11. Structures and Spectroscopic Properties of F-(H2O) n with n = 1-10 Clusters from a Global Search Based On Density Functional Theory.

    Science.gov (United States)

    Shi, Ruili; Wang, Pengju; Tang, Lingli; Huang, Xiaoming; Chen, Yonggang; Su, Yan; Zhao, Jijun

    2018-04-05

    Using a genetic algorithm incorporated in density functional theory, we explore the ground state structures of fluoride anion-water clusters F - (H 2 O) n with n = 1-10. The F - (H 2 O) n clusters prefer structures in which the F - anion remains at the surface of the structure and coordinates with four water molecules, as the F - (H 2 O) n clusters have strong F - -H 2 O interactions as well as strong hydrogen bonds between H 2 O molecules. The strong interaction between the F - anion and adjacent H 2 O molecule leads to a longer O-H distance in the adjacent molecule than in an individual water molecule. The simulated infrared (IR) spectra of the F - (H 2 O) 1-5 clusters obtained via second-order vibrational perturbation theory (VPT2) and including anharmonic effects reproduce the experimental results quite well. The strong interaction between the F - anion and water molecules results in a large redshift (600-2300 cm -1 ) of the adjacent O-H stretching mode. Natural bond orbital (NBO) analysis of the lowest-energy structures of the F - (H 2 O) 1-10 clusters illustrates that charge transfer from the lone pair electron orbital of F - to the antibonding orbital of the adjacent O-H is mainly responsible for the strong interaction between the F - anion and water molecules, which leads to distinctly different geometric and vibrational properties compared with neutral water clusters.

  12. 13C NMR spectra and bonding situation of the B-C bond in alkynylboranes

    International Nuclear Information System (INIS)

    Yamamoto, Yoshinori; Moritani, Ichiro

    1975-01-01

    13 C NMR spectra of boron substituted alkynes reveal that the β-carbon is deshielded by ca. 21 ppm by a B(O-n-C 4 H 9 ) 2 group. This clearly indicates the presence of a B-C π-bonding in alkynylboranes. (auth.)

  13. SHORT COMMUNICATION SYNTHESIS AND CRYSTAL ...

    African Journals Online (AJOL)

    Preferred Customer

    2012 Chemical Society of Ethiopia ... 2Department of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad,. P.O. Box ... There are diverse hydrogen bonding interactions such as O—H···N and O—H···O contacts, which.

  14. (3-Methylbenzonitrile-κNtetrakis(μ-N-phenylacetamidato-κ4N:O;κ4O:N-dirhodium(II(Rh—Rh

    Directory of Open Access Journals (Sweden)

    Jennie Tan

    2013-12-01

    Full Text Available In the title compound, [Rh2(C8H8NO4(C8H7N], the four acetamidate ligands bridging the dirhodium core are arranged in a 2,2-trans manner. One RhII atom is five-coordinate, in a distorted pyramidal geometry, while the other is six-coordinate, with a disorted octahedral geometry. For the six-coordinate RhII atom, the axial nitrile ligand shows a non-linear Rh–nitrile coordination with an Rh—N—C bond angle of 166.4 (4° and a nitrile N—C bond length of 1.138 (6 Å. Each unique RhII atom is coordinated by a trans pair of N atoms and a trans pair of O atoms from the four acetamide ligands. The Neq—Rh—Rh—Oeq torsion angles on the acetamide bridge varies between 12.55 (11 and 14.04 (8°. In the crystal, the 3-methylbenzonitrile ring shows a π–π interaction with an inversion-related equivalent [interplanar spacing = 3.360 (6 Å]. A phenyl ring on one of the acetamide ligands also has a face-to-face π–π interaction with an inversion-related equivalent [interplanar spacing = 3.416 (5 Å].

  15. Crystal structure of bis{2-[(E-(4-fluorobenzyliminomethyl]phenolato-κ2N,O}nickel(II

    Directory of Open Access Journals (Sweden)

    Amalina Mohd Tajuddin

    2014-10-01

    Full Text Available The asymmetric unit of the title complex, [Ni(C14H11FNO2], contains one-half of the molecule with the NiII cation lying on an inversion centre coordinated by a bidentate Schiff base anion. The cationic NiII center is in a distorted square-planar coordination environment chelated by the imine N and phenolate O donor atoms of the two Schiff base ligands. The N and O donor atoms of the two ligands are mutually trans with Ni—N and Ni—O bond lengths of 1.9242 (10 and 1.8336 (9 Å, respectively. The fluorophenyl ring is almost orthogonal to the coordination plane and makes a dihedral angle of 82.98 (7° with the phenolate ring. In the crystal, molecules are linked into screw chains by weak C—H...F hydrogen bonds. Additional C—H...π contacts arrange the molecules into sheets parallel to the ac plane.

  16. Effect of saliva contamination on bond strength witha hydrophilic composite resin

    Directory of Open Access Journals (Sweden)

    Mauren Bitencourt Deprá

    2013-02-01

    Full Text Available OBJECTIVE: To evaluate the influence of saliva contamination on the bond strength of metallic brackets bonded to enamel with hydrophilic resin composite. METHODS: Eighty premolars were randomly divided into 4 groups (n = 20 according to bonding material and contamination: G1 bonded with Transbond XT with no saliva contamination, G2 bonded with Transbond XT with saliva contamination, G3 bonded with Transbond Plus Color Change with no saliva contamination and G4 bonded with Transbond Plus Color Change with saliva contamination. The results were statistically analyzed (ANOVA/Tukey. RESULTS: The means and standard deviations (MPa were: G110.15 ± 3.75; G2 6.8 ± 2.54; G3 9.3 ± 3.36; G4 8.3 ± 2.95. The adhesive remnant index (ARI ranged between 0 and 1 in G1 and G4. In G2 there was a prevalence of score 0 and similar ARI distribution in G3. CONCLUSION: Saliva contamination reduced bond strength when Transbond XT hydrophobic resin composite was used. However, the hydrophilic resin Transbond Plus Color Change was not affected by the contamination.OBJETIVO: avaliar a influência da contaminação por saliva na resistência de união de braquetes metálicos colados ao esmalte com um compósito resinoso hidrofílico. MÉTODOS: oitenta pré-molares foram divididos aleatoriamente em quatro grupos (n=20, de acordo com o material de colagem e a presença de contaminação - G1 colagem com Transbond XT na ausência de contaminação; G2 colagem com Transbond XT na presença de contaminação; G3 colagem com Transbond Plus Color Change na ausência de contaminação; G4 colagem com Transbond Plus Color Change na presença de contaminação. Os resultados foram tratados estatisticamente (ANOVA/Tukey. RESULTADOS: as médias e desvios-padrão (MPa foram G1 = 10,15 ± 3,75; G2 = 6,8 ± 2,54; G3 = 9,3 ± 3,36; G4 = 8,3 ± 2,95. O índice de adesivo remanescente (IAR variou entre 0 e 1 no G1 e no G4; no G2, houve predomínio do escore 0 e distribuição similar no

  17. Crystal structure of N-[3-(dimethylazaniumylpropyl]-N′,N′,N′′,N′′-tetramethyl-N-(N,N,N′,N′-tetramethylformamidiniumylguanidinium dibromide hydroxide monohydrate

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2015-12-01

    Full Text Available The asymmetric unit of the title hydrated salt, C15H37N63+·2Br−·OH−·H2O, contains one cation, three partial-occupancy bromide ions, one hydroxide ion and one water molecule. Refinement of the site-occupancy factors of the three disordered bromide ions converges with occupancies 0.701 (2, 0.831 (2 and 0.456 (2 summing to approximately two bromide ions per formula unit. The structure was refined as a two-component inversion twin with volume fractions 0.109 (8:0.891 (8 for the two domains. The central C3N unit of the bisamidinium ion is linked to the aliphatic propyl chain by a C—N single bond. The other two bonds in this unit have double-bond character as have the four C—N bonds to the outer NMe2 groups. In contrast, the three C—N bonds to the central N atom of the (dimethylazaniumylpropyl group have single-bond character. Delocalization of the two positive charges occurs in the N/C/N and C/N/C planes, while the third positive charge is localized on the dimethylammonium group. The crystal structure is stabilized by O—H...O, N—H...Br, O—H...Br and C—H...Br hydrogen bonds, forming a three-dimensional network.

  18. Low temperature bonding of heterogeneous materials using Al2O3 as an intermediate layer

    DEFF Research Database (Denmark)

    Sahoo, Hitesh Kumar; Ottaviano, Luisa; Zheng, Yi

    2018-01-01

    Integration of heterogeneous materials is crucial for many nanophotonic devices. The integration is often achieved by bonding using polymer adhesives or metals. A much better and cleaner option is direct wafer bonding, but the high annealing temperatures required make it a much less attractive...... atomic layer deposited Al2O3 an excellent choice for the intermediate layer. The authors have optimized the bonding process to achieve a high interface energy of 1.7 J/m2 for a low temperature annealing of 300 °C. The authors also demonstrate wafer bonding of InP to SiO2 on Si and GaAs to sapphire using...

  19. 26 CFR 1.103(n)-1T - Limitation on aggregrate amount of private activity bonds (temporary).

    Science.gov (United States)

    2010-04-01

    ... activity bonds (temporary). 1.103(n)-1T Section 1.103(n)-1T Internal Revenue INTERNAL REVENUE SERVICE... Excluded from Gross Income § 1.103(n)-1T Limitation on aggregrate amount of private activity bonds (temporary). Q-1: What does section 103(n) provide? A-1: Interest on an issue of private activity bonds will...

  20. Avaliação da resistência adesiva e do padrão de descolagem de diferentes sistemas de colagem de braquetes associados à clorexidina Evaluation of the bond strength and debonding pattern of different bracket bonding systems associated with chlorhexidine

    Directory of Open Access Journals (Sweden)

    Jorge Luís de Oliveira Ribeiro

    2008-08-01

    Full Text Available OBJETIVOS: o objetivo deste estudo in vitro foi avaliar a resistência adesiva e o padrão de descolagem de diferentes sistemas de colagem de braquetes (Sistema Transbond XT / 3M-Unitek e Sistema Enlight / Ormco cujos respectivos adesivos foram pré-misturados ao verniz de clorexidina (Cervitec / Ivoclar-Vivadent. METODOLOGIA: a amostra utilizada foi constituída por 60 pré-molares humanos, extraídos por indicações ortodônticas, incluídos em cilindros de PVC e divididos aleatoriamente em quatro grupos: grupo 1 - Sistema Transbond XT conforme prescrito pelo fabricante; grupo 2 - Sistema Transbond XT associado a verniz de clorexidina; grupo 3 - Sistema Enlight conforme prescrito pelo fabricante; grupo 4 - Sistema Enlight associado a verniz de clorexidina. A resistência adesiva foi avaliada pelo teste de cisalhamento na máquina de ensaios universal EMIC (0,5mm/min; o padrão de descolagem foi avaliado, através da lupa estereoscópica STEMI 2000-C / Zeiss (20x, pela observação do Índice de Adesivo Remanescente (IAR na superfície do esmalte dentário, após a descolagem dos braquetes. RESULTADOS: não houve diferença estatisticamente significante (p AIM: The objective of this in vitro study was to evaluate the bond strength and the debonding pattern of different bracket bonding systems (Transbond XT System / 3M-Unitek and Enlight System / Ormco whose respective adhesives were pre-mixed with chlorhexidine varnish (Cervitec / Ivoclar-Vivadent. METHODS: The sample used consisted of sixty human pre-molars extracted for orthodontic purposes, included in PVC cylinder and randomly divided in four experimental groups: group 1 - Transbond XT System according to the manufacturer’s instructions; group 2 - Transbond XT System combined with chlorhexidine varnish; group 3 - Enlight System according to the manufacturer’s instructions; group 4 - Enlight System combined with chlorhexidine varnish. The bond strength evaluation was obtained through

  1. Quantification of the selective activation of C--H bonds in short chain alkanes: The reactivity of ethane, propane, isobutane, n-butane, and neopentane on Ir(111)

    International Nuclear Information System (INIS)

    Johnson, D.F.; Weinberg, W.H.

    1995-01-01

    The initial probabilities of precursor-mediated, dissociative chemisorption of the saturated hydrocarbons 13 C-labeled ethane, propane, isobutane, n-butane, and neopentane on the close-packed Ir(111) surface have been measured. The selective activation of primary (1 degree), secondary (2 degree), and tertiary (3 degree) C--H bonds has been quantified by examining the reactivities of the selectively deuterated isotopomers of propane, C 3 H 8 , CH 3 CD 2 CH 3 , and C 3 D 8 , and of isobutane, (CH 3 ) 3 CH, (CH 3 ) 3 CD, and (CD 3 ) 3 CH. With respect to the bottom of the physically adsorbed well for each hydrocarbon, the apparent C--H bond activation energies have been found to be 10.4±0.3 kcal/mol (ethane), 11.4±0.3 kcal/mol (propane), 11.5±0.3 kcal/mol (n-butane), 11.3±0.3 kcal/mol (i-butane), and 11.3±0.3 kcal/mol (neopentane). For all the alkanes examined, the ratios of the preexponential factors of the rate coefficients of reaction and desorption are 1x10 -2 . The C--D bond activation energies are higher than the corresponding C--H bond activation energies by 480 cal/mol (ethane), 630 cal/mol (propane), and 660 cal/mol (i-butane). By analyzing the primary kinetic isotope effects for the selectively deuterated isotopomers of propane and isobutane, the 2 degree C--H bond activation energy is found to be 310±160 cal/mol less than the 1 degree C--H bond activation energy on this surface, and similarly, 3 degree C--H bond cleavage is less by 80±70 cal/mol. The quantification of the branching ratios within the C--H bond activation channel for propane and isobutane on this surface shows that the formation of 1 degree-alkyl intermediates is, in general, favored over the formation of either 2 degree- or 3 degree-alkyl intermediates. (Abstract Truncated)

  2. Theoretical studies on photoelectron and IR spectral properties of Br2.-(H2O)n clusters.

    Science.gov (United States)

    Pathak, A K; Mukherjee, T; Maity, D K

    2007-07-28

    We report vertical detachment energy (VDE) and IR spectra of Br2.-.(H2O)n clusters (n=1-8) based on first principles electronic structure calculations. Cluster structures and IR spectra are calculated at Becke's half-and-half hybrid exchange-correlation functional (BHHLYP) with a triple split valence basis function, 6-311++G(d,p). VDE for the hydrated clusters is calculated based on second order Moller-Plesset perturbation (MP2) theory with the same set of basis function. On full geometry optimization, it is observed that conformers having interwater hydrogen bonding among solvent water molecules are more stable than the structures having double or single hydrogen bonded structures between the anionic solute, Br2.-, and solvent water molecules. Moreover, a conformer having cyclic interwater hydrogen bonded network is predicted to be more stable for each size hydrated cluster. It is also noticed that up to four solvent H2O units can reside around the solute in a cyclic interwater hydrogen bonded network. The excess electron in these hydrated clusters is localized over the solute atoms. Weighted average VDE is calculated for each size (n) cluster based on statistical population of the conformers at 150 K. A linear relationship is obtained for VDE versus (n+3)(-1/3) and bulk VDE of Br2.- aqueous solution is calculated as 10.01 eV at MP2 level of theory. BHHLYP density functional is seen to make a systematic overestimation in VDE values by approximately 0.5 eV compared to MP2 data in all the hydrated clusters. It is observed that hydration increases VDE of bromine dimer anion system by approximately 6.4 eV. Calculated IR spectra show that the formation of Br2.--water clusters induces large shifts from the normal O-H stretching bands of isolated water keeping bending modes rather insensitive. Hydrated clusters, Br2.-.(H2O)n, show characteristic sharp features of O-H stretching bands of water in the small size clusters.

  3. Theoretical studies on photoelectron and IR spectral properties of Br2.-(H2O)n clusters

    Science.gov (United States)

    Pathak, A. K.; Mukherjee, T.; Maity, D. K.

    2007-07-01

    We report vertical detachment energy (VDE) and IR spectra of Br2•-•(H2O)n clusters (n=1-8) based on first principles electronic structure calculations. Cluster structures and IR spectra are calculated at Becke's half-and-half hybrid exchange-correlation functional (BHHLYP) with a triple split valence basis function, 6-311++G(d,p). VDE for the hydrated clusters is calculated based on second order Moller-Plesset perturbation (MP2) theory with the same set of basis function. On full geometry optimization, it is observed that conformers having interwater hydrogen bonding among solvent water molecules are more stable than the structures having double or single hydrogen bonded structures between the anionic solute, Br2•-, and solvent water molecules. Moreover, a conformer having cyclic interwater hydrogen bonded network is predicted to be more stable for each size hydrated cluster. It is also noticed that up to four solvent H2O units can reside around the solute in a cyclic interwater hydrogen bonded network. The excess electron in these hydrated clusters is localized over the solute atoms. Weighted average VDE is calculated for each size (n) cluster based on statistical population of the conformers at 150K. A linear relationship is obtained for VDE versus (n+3)-1/3 and bulk VDE of Br2•- aqueous solution is calculated as 10.01eV at MP2 level of theory. BHHLYP density functional is seen to make a systematic overestimation in VDE values by ˜0.5eV compared to MP2 data in all the hydrated clusters. It is observed that hydration increases VDE of bromine dimer anion system by ˜6.4eV. Calculated IR spectra show that the formation of Br2•--water clusters induces large shifts from the normal O-H stretching bands of isolated water keeping bending modes rather insensitive. Hydrated clusters, Br2•-•(H2O)n, show characteristic sharp features of O-H stretching bands of water in the small size clusters.

  4. Hydrogen bonding in cytosinium dihydrogen phosphite

    OpenAIRE

    Nourredine Benali-Cherif; Amel Messai; Erwann Jeanneau; Dominique Luneau

    2009-01-01

    In the title compound, C4H8N3O4P+·H2PO3−, the cytosine molecule is monoprotonated and the phosphoric acid is in the monoionized state. Strong hydrogen bonds, dominated by N—H...O interactions, are responsible for cohesion between the organic and inorganic layers and maintain the stability of this structure.

  5. Crystal structure of 2-hydroxy-N-(2-hydroxyethyl-N-{2-hydroxy-3-[(E-N-hydroxyethanimidoyl]-5-methylbenzyl}ethanaminium acetate monohydrate

    Directory of Open Access Journals (Sweden)

    Gary S. Nichol

    2015-03-01

    Full Text Available The structure of the title hydrated molecular salt, C14H23N2O4+·C2H3O2−·H2O, was determined as part of a wider study on the use of the molecule as a polydentate ligand in the synthesis of MnIII clusters with magnetic properties. The cation features intramolecular O—H...N and N—H...O hydrogen-bond interactions. The crystal structure features a range of intermolecular hydrogen-bonding interactions, principally O—H...O interactions between all three species in the asymmetric unit. An R24(8 graph-set hydrogen-bonding motif between the anion and water molecules serves as a unit which links to the cation via the diethanolamine group. Each O atom of the acetate anion accepts two hydrogen bonds.

  6. Bond ionicity in crystals of transition metal compounds

    International Nuclear Information System (INIS)

    Kesler, Ya.A.

    1989-01-01

    A unified method of calculating bond ionicity in inorganic crystals is suggested. The approach presented envisages the sealing of d-electron contribution to ξ,p-electron contribution for the retention of community which can only be implemented by a self-consistent procedure. The results of self-consistent calculations of bond parameters of a number of crystals (ScN, Sc 2 O 3 , In 2 O 3 , J 2 O 3 ) as compared with the data for ξ,p-analogues are given. Ionicity changes in the series of analogous compounds utterly correspond to existing chemical concepts. The data for oxides of 4d-, 5d-elements (ZrO 2 , CeO 2 , ThO 2 ) and for a number of ternary compounds containing two types of bonds (LiNbO 3 , CdSc 2 S 4 , CdCr 2 Se 4 etc) are also given. In the case of transition elements ionicity to a great extent depends on the symmetry of anion environment and correlates to orbital population well. Ionicity values are in direct proportion to effective charges of atoms of transition elements

  7. Crystal structure of poly[[hexaqua-1κ4O,2κ2O-bis(μ3-pyridine-2,4-dicarboxylato-1κO2:2κ2N,O2′;1′κO4cobalt(IIstrontium(II] dihydrate

    Directory of Open Access Journals (Sweden)

    Zhaojun Yu

    2015-09-01

    Full Text Available In the title polymeric complex, {[CoSr(C7H3NO42(H2O6]·2H2O}n, the CoII ion, which is situated on a crystallographic centre of inversion, is six-coordinated by two O atoms and two N atoms from two pyridine-2,4-dicarboxylate (pydc2− ligands and two terminal water molecules in a slightly distorted octahedral geometry, to form a trans-[Co(pydc2(H2O2]2− unit. The SrII ion, situated on a C2 axis, is coordinated by four O atoms from four pydc2− ligands and four water molecules. The coordination geometry of the SrII atom can be best described as a distorted dodecahedron. Each SrII ion bridges four [Co(pydc2(H2O2]2− units by four COO− groups of four pydc2− ligands to form a three-dimensional network structure. Two additional solvent water molecules are observed in the crystal structure and are connected to the three-dimensional coordination polymer by O—H...O hydrogen bonds. Further intra- and intermolecular O—H...O hydrogen bonds consolidate the overall structure.

  8. Synthesis and 3D Network Architecture of 1- and 16-Hydrated Salts of 4-Dimethylaminopyridinium Decavanadate, (DMAPH6[V10O28]·nH2O

    Directory of Open Access Journals (Sweden)

    Eduardo Sánchez-Lara

    2016-05-01

    Full Text Available Two hybrid materials based on decavanadates (DMAPH6[V10O28]·H2O, (1 and (DMAPH6[V10O28]·16H2O, (2 (where DMAPH = 4-dimethylaminopyridinium were obtained by reactions under mild conditions at T = 294 and 283 K, respectively. These compounds are pseudopolymorphs, which crystallize in monoclinic P 2 1 / n and triclinic P 1 ¯ space groups. The structural analysis revealed that in both compounds, six cations DMAPH+ interact with decavanadate anion through N-H∙∙∙Odec hydrogen bonds; in 2, the hydrogen-bonding association of sixteen lattice water molecules leads to the formation of an unusual network stabilized by decavanadate clusters; this hydrogen-bond connectivity is described using graph set notation. Compound 2 differs basically in the water content which in turn increases the π∙∙∙π interactions coming from pyridinium rings. Elemental and thermal analysis (TGA/DSC as well as FT-IR, FT-Raman, for 1 and 2 are consistent with both structures and are also presented.

  9. Linear-to-λ-Shape P-O-P Bond Transmutation in Polyphosphates with Infinite (PO3)∞ Chain.

    Science.gov (United States)

    Wang, Ying; Li, Lin; Han, Shujuan; Lei, Bing-Hua; Abudoureheman, Maierhaba; Yang, Zhihua; Pan, Shilie

    2017-09-05

    A new metal polyphosphate, α-CsBa 2 (PO 3 ) 5 , exhibiting the first example of a linear P-O-P bond angle in a one-dimensional (PO 3 ) ∞ chain has been reported. Interestingly, α → β phase transition occurs in CsBa 2 (PO 3 ) 5 along with the P-O-P bonds varying from linear to λ-shape, suggesting that α-CsBa 2 (PO 3 ) 5 with unfavorable linear P-O-P bonds is more stable at ambient temperature.

  10. Crystal structure of N,N-diethylbenzene-1,4-diaminium dinitrate

    Directory of Open Access Journals (Sweden)

    Yasmina Bouaoud

    2014-11-01

    Full Text Available In the structure of the title molecular salt, C10H18N22+·2NO3−, the dinitrate salt of 4-(N,N-diethylaminoaniline, the two ethyl groups lie almost perpendicular to the plane of the benzene ring [the ring-to-ethyl C—C—N—C torsion angles are −59.5 (2 and 67.5 (3°]. The aminium groups of the cation form inter-species N—H...O hydrogen bonds with the nitro O-atom acceptors of both anions, giving rise to chain substructures lying along c. The chains are linked via further N—H...O hydrogen bonds, forming two-dimensional networks lying parallel to (010. These sheets are linked by C—H...O hydrogen bonds, forming a three-dimensional structure.

  11. A theoretical study of the molecular structures and vibrational spectra of the N 2O⋯(HF) 2

    Science.gov (United States)

    de Lima, Nathália B.; Ramos, Mozart N.

    2012-01-01

    Theoretical calculations using both the MP2 and B3LYP levels of calculation with a 6-311++G(3df,3pd) basis set have been performed to determine stable structures and molecular properties for the H-bonded complexes involving nitrous oxide (N 2O) and two HF molecules. Five complex have been characterized as minima since no imaginary frequency was found. Three complex are predicted to be relatively more stable with binding energies varying from 14 kJ mol -1 to 23 kJ mol -1 after BSSE and ZPE corrections. Our calculations have revealed that the second complexation with HF preferably occurs with the first complexed HF molecule, i.e., forming the X⋯H sbnd F⋯H sbnd F skeleton with X = O or N instead the F sbnd H⋯N sbnd N sbnd O⋯H sbnd F one. As expected, the H sbnd F chemical bonds are increased after complexation due to intermolecular charge transfer from "n" isolated pair of the X atom (X = N, O or F) to the σ ∗ anti-bonding orbital of HF. For the strongly bounded complex, the doubly complexed HF molecule acts as a bridge between the two end molecules while transferring electrons from N 2O to HF. Both possess the same amount of residual charge but with opposite signs. The H sbnd F stretching frequency of the monoprotic acid is shifted downward after complexation whereas its IR intensity is much enhanced. This increase has been adequately interpreted in terms of equilibrium hydrogen charge and charge-flux associated to the H sbnd F stretching using the CCFOM model for infrared intensities. This procedure has also allowed to analyze the new vibrational modes arising upon H-bond formation, especially those associated with the out-of-plane and in-plane HF bending modes, which are pure rotations in the HF isolated molecule.

  12. Crystal and macular structure of 1:1 complex of N-methylmorpholine betaine with salicylic acid

    International Nuclear Information System (INIS)

    Bartoszak-Adamska, E.; Dega-Szafran, Z.; Przedwojska, M.; Jaskolski, M.

    2003-01-01

    The structure of a 1:1 complexes of complex of N-methylmorpholine betaine (MMB) with salicylic acid (SAL) has been determined by a single crystal X-ray analysis. The crystals are orthorhombic, space group Pbca, with a 9.4702(6), b = 13.0559(7) and c = 45.226(2) A (at 140 K). The asymmetric unit is composed of two MMB + ·SAL - units (A and B) each formed by a short, nearly linear O-H...O hydrogen bond (2.542(2) and 2.474(2) A) between the carboxylic group of the betaine cation and carboxylate group of the anion. The salicylate anions form short intramolecular O-H...O hydrogen bonds of 2. 472(2) and 2.525(2) A (O-H...O angles 160(2) and 149(2) o ) for anion A and B, respectively, between the ortho hydroxyl donor and the COO - group, but the carboxylate acceptor O atom is in each case different. The morpholine rings are in a chair conformation with the -CH 2 COOH group in equatorial and the methyl group in axial positions. FTIR, and 1 H and 13 C NMR spectra of the complex are discussed. (author)

  13. A Cadmium Anionic 1-D Coordination Polymer {[Cd(H2O6][Cd2(atr2(μ2-btc2(H2O4] 2H2O}n within a 3-D Supramolecular Charge-Assisted Hydrogen-Bonded and π-Stacking Network

    Directory of Open Access Journals (Sweden)

    Anas Tahli

    2016-03-01

    Full Text Available The hydrothermal reaction of 4,4′-bis(1,2,4-triazol-4-yl (btr and benzene-1,3,5-tricarboxylic acid (H3btc with Cd(OAc2·2H2O at 125 °C in situ forms 4-amino-1,2,4-triazole (atr from btr, which crystallizes to a mixed-ligand, poly-anionic chain of [Cd2(atr2(µ2-btc2(H2O4]2–. Together with a hexaaquacadmium(II cation and water molecules the anionic coordination-polymeric forms a 3-D supramolecular network of hexaaquacadmium(II-catena-[bis(4-amino-1,2,4-triazoletetraaquabis(benzene-1,3,5-tricarboxylatodicadmate(II] dihydrate, 1-D-{[Cd(H2O6][Cd2(atr2(µ2-btc2(H2O4] 2H2O}n which is based on hydrogen bonds (in part charge-assisted and π–π interactions.

  14. 4-Bromo-N-(di-n-propyl­carbamothioyl)­benzamide

    OpenAIRE

    Binzet, Gün; Flörke, Ulrich; Külcü, Nevzat; Arslan, Hakan

    2009-01-01

    The synthesis of the title compound, C14H19BrN2OS, involves the reaction of 4-bromo­benzoyl chloride with potassium thio­cyanate in acetone followed by condensation of the resulting 4-bromo­benzoyl isothio­cyanate with di-n-propyl­amine. Typical thio­urea carbonyl and thio­carbonyl double bonds, as well as shortened C—N bonds, are observed in the title compound. The short C—N bond lengths in the centre of the mol­ecule reveal the effects of resonance in this part of the mol­ecule. The asymmet...

  15. The N2O activation by Rh5 clusters. A quantum chemistry study.

    Science.gov (United States)

    Olvera-Neria, Oscar; Avilés, Roberto; Francisco-Rodríguez, Héctor; Bertin, Virineya; García-Cruz, Raúl; González-Torres, Julio César; Poulain, Enrique

    2015-04-01

    Nitrous oxide (N2O) is a by-product of exhaust pipe gases treatment produced by motor vehicles. Therefore, the N2O reduction to N2 is necessary to meet the actual environmental legislation. The N2O adsorption and dissociation assisted by the square-based pyramidal Rh5 cluster was investigated using the density functional theory and the zero-order regular approximation (ZORA). The Rh5 sextet ground state is the most active in N2O dissociation, though the quartet and octet states are also active because they are degenerate. The Rh5 cluster spontaneously activates the N2─O cleavage, and the reaction is highly exothermic ca. -75 kcal mol(-1). The N2─O breaking is obtained for the geometrical arrangement that maximizes the overlap and electron transfers between the N2O and Rh5 frontier orbitals. The Rh5 high activity is due to the Rh 3d orbitals are located between the N2O HOMO and LUMO orbitals, which makes possible the interactions between them. In particular, the O 2p states strongly interact with Rh 3d orbitals, which finally weaken the N2─O bond. The electron transfer is from the Rh5 HOMO orbital to the N2O antibonding orbital.

  16. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light.

    Science.gov (United States)

    Ananpattarachai, Jirapat; Seraphin, Supapan; Kajitvichyanukul, Puangrat

    2016-02-01

    This work reports on synthesis, characterization, adsorption ability, formation rate of hydroxyl radicals (OH(•)), photocatalytic oxidation kinetics, and mineralization ability of C-doped titanium dioxide (TiO2), N-doped TiO2, and C,N co-doped TiO2 prepared by the sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy were used to analyze the titania. The rate of formation of OH(•) for each type of titania was determined, and the OH-index was calculated. The kinetics of as-synthesized TiO2 catalysts in photocatalytic oxidation of 2-chlorophenol (2-CP) under visible light irradiation were evaluated. Results revealed that nitrogen was incorporated into the lattice of titania with the structure of O-Ti-N linkages in N-doped TiO2 and C,N co-doped TiO2. Carbon was joined to the Ti-O-C bond in the C-doped TiO2 and C,N co-doped TiO2. The 2-CP adsorption ability of C,N co-doped TiO2 and C-doped TiO2 originated from a layer composed of a complex carbonaceous mixture at the surface of TiO2. C,N co-doped TiO2 had highest formation rate of OH(•) and photocatalytic activity due to a synergistic effect of carbon and nitrogen co-doping. The order of photocatalytic activity per unit surface area was the same as that of the formation rate of OH(•) unit surface area in the following order: C,N co-doped TiO2 > C-doped TiO2 > N-doped TiO2 > undoped TiO2.

  17. Perovskite BaBiO3 Transformed Layered BaBiO2.5 Crystals Featuring Unusual Chemical Bonding and Luminescence.

    Science.gov (United States)

    Li, Hong; Zhao, Qing; Liu, Bo-Mei; Zhang, Jun-Ying; Li, Zhi-Yong; Guo, Shao-Qiang; Ma, Ju-Ping; Kuroiwa, Yoshihiro; Moriyoshi, Chikako; Zheng, Li-Rong; Sun, Hong-Tao

    2018-04-14

    Engineering oxygen coordination environments of cations in oxides has received intense interest thanks to the opportunities for the discovery of novel oxides with unusual properties. Here we present the successful synthesis of stoichiometric layered BaBiO2.5 enabled by a non-topotactic phase transformation of perovskite BaBiO3. By analysing the synchrotron X-ray diffraction data using the maximum entropy method/Rietveld technique, we find that Bi forms unusual chemical bondings with four oxygen atoms, featuring one ionic bonding and three covalent bondings that results in an asymmetric coordination geometry. A broad range of photophysical characterizations reveal that this peculiar structure shows near-infrared luminescence differing from conventional Bi-bearing systems. Experimental and theoretical results lead us to propose the excitonic nature of luminescence. Our work highlights that synthesizing materials with uncommon Bi-O bonding and Bi coordination geometry provides a pathway to the discovery of systems with new functionalities. We envisage that this work could inspire interest for the exploration of a range of materials containing heavier p-block elements, offering prospects for the finding of systems with unusual properties. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Crystal structure of di-( N-methylmorpholine betaine)- L(+)-tartrate

    Science.gov (United States)

    Dega-Szafran, Z.; Dutkiewicz, G.; Kosturkiewicz, Z.; Szafran, M.

    2002-11-01

    The crystal structure of di-( N-methylmorpholine betaine)- L(+)-tartrate has been determined by X-ray diffraction method. Crystals are orthorhombic, space group P2 12 12 1, a=9.580(1), b=12.208(1), c=18.677(1) Å, Z=4, R=0.037. The molecule of L(+)-tartaric acid appears in the extended form with the hydroxyl groups as well as carboxyl groups in anti positions. The molecule is involved in a number of the intra- and intermolecular hydrogen bonds. The COOH groups of the tartaric acid link two non-equivalent N-methylmorpholine betaine molecules by a short, intermolecular O-H⋯O bonds of the lengths 2.456(1) and 2.510(1) Å. The OH groups form two different bifurcated hydrogen bonds, the intramolecular with the CO oxygen atoms (2.641(2) and 2.638(2) Å) and the intermolecular (2.919(2) and 3.084(2) Å) with neighbouring tartaric acid molecules, and link complexes in the zigzag ribbon parallel to the x-axis. The morpholine rings of both betaine molecules are in chair conformation with methyl groups in an axial position and CH 2COO - substituents in an equatorial one. In the crystals and the PM3-optimized structures there is no symmetry, both in the tartrate and N-methylmorpholine betaine moieties. FTIR spectrum confirms the complex structure of the investigated molecule.

  19. Maternal-infant bonding and the mother's participation during venipuncture: a psychoanalytic perspective Vínculo materno infantil y la participación de la madre durante la realización de la punción venosa: la ótica del psicoanálisis Vínculo materno-infantil e participação da mãe durante a realização da punção venosa: a ótica da psicanálise

    Directory of Open Access Journals (Sweden)

    Júlia Peres Pinto

    2007-02-01

    Full Text Available Professionals discuss accompanying mothers' participation during painful procedures as a possibility of care to mother and child, but there is no consensus on this subject. To contribute to this topic, this study addresses the child's needs during venipuncture in a hospital environment and the mother's participation in this procedure, based on authors from psychoanalysis and mother-child bonding.La participación de la madre acompañante junto al niño durante la realización de procedimientos dolorosos es discutida por profesionales como una posibilidad de cuidado al binomio, pero no hay un consenso sobre este tema. Para contribuir con esta discusión, el texto trata de las necesidades del niño durante la realización de la punción venosa en un ambiente de hospital y la participación de la madre en el procedimiento, tomando como base autores del psicoanálisis y el vínculo madre y hijo.A participação da mãe acompanhante junto à criança durante a realização de procedimentos dolorosos é discutida pelos profissionais como uma possibilidade de cuidado ao binômio, porém, não há consenso quanto a esse tema. Para contribuir com essa discussão, o texto aborda as necessidades da criança durante a realização da punção venosa no ambiente hospitalar e a participação da mãe no procedimento, tendo como base autores da psicanálise e o vínculo na relação mãe e filho.

  20. catena-Poly[[[trans-diaquabis(pyridine-κNcobalt(II]-μ-(4-{N′-[1-(3-acetyl-4-methyl-1H-pyrazol-5-ylethylidene]hydrazino}benzoato-κ3O:N,N′-[bis(pyridine-κNcobalt(III]-μ-(4-{N′-[1-(3-acetyl-4-methyl-1H-pyrazol-5-ylethylidene]hydrazino}benzoato-κ3N,N′:O]perchlorate 3.66-hydrate

    Directory of Open Access Journals (Sweden)

    Igor O. Fritsky

    2008-02-01

    Full Text Available The title compound, {[Co2(C15H14N4O32(C5H5N4(H2O2]ClO4·3.66H2O}n, is a one-dimensional coordination polymer, with both CoII and CoIII centres in its structure. The ligand environment surrounding CoIII is formed by two N,N-chelating pyrazole-containing ligands and two pyridine molecules in axial positions. The high-spin CoII ions, situated at crystallographic centres of inversion, exhibit a distorted octahedral coordination mode. The ClO4− anion is linked to the polymer chain via hydrogen bonds. The chains are connected by hydrogen bonds to produce a three-dimensional structure.

  1. Anisotropic thermal expansion of La(n)(Ti,Fe)(n)O(3n + 2) (n = 5 and 6).

    Science.gov (United States)

    Wölfel, Alexander; Dorscht, Philipp; Lichtenberg, Frank; van Smaalen, Sander

    2013-04-01

    Crystal structures are reported for two perovskite-related compounds with nominal compositions La5(Ti(0.8)Fe(0.2))5O17 and La6(Ti(0.67)Fe(0.33))6O20 at seven different temperatures between 90 and 350 K. For both compounds no evidence of a structural phase transition in the investigated range of temperatures was found. The thermal expansions are found to be anisotropic, with the largest thermal expansion along a direction parallel to the slabs of these layered compounds. The origin of this anisotropy is proposed to be a temperature dependence of tilts of the octahedral (Ti,Fe)O6 groups. It is likely that the same mechanism will determine similar anisotropic thermal behaviour of other compounds A(n)B(n)O(3n + 2). The crystal structures have revealed partial chemical order of Ti/Fe over the B sites, with iron concentrated towards the centers of the slabs. Local charge compensation is proposed as the driving force for the chemical order, where the highest-valent cation moves to sites near the oxygen-rich borders of the slabs. A linear dependence on the site occupation fraction by Fe of the computed valences leads to extrapolated valence values close to the formal valence of Ti(4+) for sites fully occupied by Ti, and of Fe(3+) for sites fully occupied by Fe. These results demonstrate the power of the bond-valence method, and they show that refined oxygen positions are the weighted average of oxygen positions in TiO6 and FeO6 octahedral groups.

  2. Poly[[aqua(μ2-4,4′-bipyridine-κ2N:N′[μ3-3-bromo-2-(carboxylatomethylbenzoato-κ3O1:O1′:O2]cadmium] monohydrate

    Directory of Open Access Journals (Sweden)

    Yangmei Liu

    2012-08-01

    Full Text Available In the title compound, {[Cd(C9H5BrO4(C10H8N2(H2O]·H2O}n, the CdII atom has a distorted octahedral coordination geometry. Two N atoms from two 4,4′-bipyridine (bipy ligands occupy the axial positions, while the equatorial positions are furnished by three carboxylate O atoms from three 3-bromo-2-(carboxylatomethylbenzoate (bcb ligands and one O atom from a water molecule. The bipy and bcb ligands link the CdII atoms into a three-dimensional network. O—H...O hydrogen bonds and π–π interactions between the pyridine and benzene rings [centroid–centroid distance = 3.736 (4 Å] are present in the crystal.

  3. Different hydrogen-bonded chains in the crystal structures of three alkyl N-[(E-1-(2-benzylidene-1-methylhydrazinyl-3-hydroxy-1-oxopropan-2-yl]carbamates

    Directory of Open Access Journals (Sweden)

    Thais C. M. Noguiera

    2015-07-01

    Full Text Available The crystal structures of three methylated hydrazine carbamate derivatives prepared by multi-step syntheses from l-serine are presented, namely benzyl N-{(E-1-[2-(4-cyanobenzylidene-1-methylhydrazinyl]-3-hydroxy-1-oxopropan-2-yl}carbamate, C20H20N4O4, tert-butyl N-{(E-1-[2-(4-cyanobenzylidene-1-methylhydrazinyl]-3-hydroxy-1-oxopropan-2-yl}carbamate, C17H22N4O4, and tert-butyl N-[(E-1-(2-benzylidene-1-methylhydrazinyl-3-hydroxy-1-oxopropan-2-yl]carbamate, C16H23N3O4. One of them shows that an unexpected racemization has occurred during the mild-condition methylation reaction. In each crystal structure, the molecules are linked into chains by O—H...O hydrogen bonds, but with significant differences between them.

  4. Sintering of undoped SnO2 Sinterização de SnO2 não dopado

    Directory of Open Access Journals (Sweden)

    E. R. Leite

    2003-04-01

    Full Text Available Pure SnO2 sintering was studied by constant heating rate and isothermal sintering. The constant heating rate study showed no macroscopic shrinkage during the sintering process up to 1500 ºC. Pore size distribution measurements, using gas desorption, and grain size and crystallite size measurements of isothermally sintered samples showed no formation of non-densifying microstructures during the sintering process. These results are a strong indication that densification was prevented by thermodynamic factors, mainly the high ratio of gammaGB/gSV. An explanation, based on the nature of covalent bonding and the balance between attractive and repulsive forces, was proposed to explain the high gammaGB/gammaSV ratio in SnO2.A sinterização de SnO2 puro foi estudado por taxa constante de aquecimento e por sinterização isotérmica. O estudo de taxa constante de aquecimento mostrou que não ocorre retração macroscópica durante o processo de sinterização até temperaturas de 1500 ºC. Medidas de distribuição de tamanho de poros, usando adsorção de gás, tamanho de grão e tamanho de cristalito para amostras sinterizadas isotermicamente mostrou a não formação de uma microestrutura não-densificante durante o processo de sinterização. Estes resultados são um forte indicativo que a densificação foi inibida por fatores termodinâmicos, principalmente o alto valor da razão de gamaGB/gSV. Uma explicação, baseada na natureza covalente da ligação química e no balanço entre forças atrativas e repulsivas, é apresentada para explicar o alto valor da razão gamaGB/gamaSV no SnO2.

  5. Crystal structure of (2-formylphenolato-κ2O,O′oxido(2-{[(2-oxidoethylimino]methyl}phenolato-κ3O,N,O′vanadium(V

    Directory of Open Access Journals (Sweden)

    Sowmianarayanan Parimala

    2015-05-01

    Full Text Available In the unsymmetrical title vanadyl complex, [V(C9H9NO2(C7H5O2O], one of the ligands (2-formylphenol is disordered over two sets of sites, with an occupancy ratio of 0.55 (2:0.45 (2. The metal atom is hexacoordinated, with a distorted octahedral geometry. The vanadyl O atom (which subtends the shortest V—O bond occupies one of the apical positions and the remaining axial bond (the longest in the polyhedron is provided by the (disordered formyl O atoms. The basal plane is defined by the two phenoxide O atoms, the iminoalcoholic O and the imino N atom. The planes of the two benzene rings are almost perpendicular to each other, subtending an interplanar angle of 84.1 (2° between the major parts. The crystal structure features weak C—H...O and C—H...π interactions, forming a lateral arrangement of adjacent molecules.

  6. Low-temperature Au/a-Si wafer bonding

    International Nuclear Information System (INIS)

    Jing, Errong; Xiong, Bin; Wang, Yuelin

    2011-01-01

    The Si/SiO 2 /Ti/Au–Au/Ti/a-Si/SiO 2 /Si bonding structure, which can also be used for the bonding of non-silicon material, was investigated for the first time in this paper. The bond quality test showed that the bond yield, bond repeatability and average shear strength are higher for this bonding structure. The interfacial microstructure analysis indicated that the Au-induced crystallization of the amorphous silicon process leads to big Si grains extending across the bond interface and Au filling the other regions of the bond interface, which result into a strong and void-free bond interface. In addition, the Au-induced crystallization reaction leads to a change in the IR images of the bond interface. Therefore, the IR microscope can be used to evaluate and compare the different bond strengths qualitatively. Furthermore, in order to verify the superiority of the bonding structure, the Si/SiO 2 /Ti/Au–a-Si/SiO 2 /Si (i.e. no Ti/Au layer on the a-Si surface) and Si/SiO 2 /Ti/Au–Au/Ti/SiO 2 /Si bonding structures (i.e. Au thermocompression bonding) were also investigated. For the Si/SiO 2 /Ti/Au–a-Si/SiO 2 /Si bonding structure, the poor bond quality is due to the native oxide layer on the a-Si surface, and for the Si/SiO 2 /Ti/Au–Au/Ti/SiO 2 /Si bonding structure, the poor bond quality is caused by the wafer surface roughness which prevents intimate contact and limits the interdiffusion at the bond interface.

  7. Hydrogen bonding in cytosinium dihydrogen phosphite

    Directory of Open Access Journals (Sweden)

    Nourredine Benali-Cherif

    2009-05-01

    Full Text Available In the title compound, C4H8N3O4P+·H2PO3−, the cytosine molecule is monoprotonated and the phosphoric acid is in the monoionized state. Strong hydrogen bonds, dominated by N—H...O interactions, are responsible for cohesion between the organic and inorganic layers and maintain the stability of this structure.

  8. Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR)

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Justine P. [Johns Hopkins Univ., Baltimore, MD (United States)

    2015-03-03

    Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR) Research during the project period focused primarily on mechanisms of water oxidation by structurally defined transition metal complexes. Competitive oxygen isotope fractionation of water, mediated by oxidized precursors or reduced catalysts together with ceric, Ce(IV), ammonium nitrate in aqueous media, afforded oxygen-18 kinetic isotope effects (O-18 KIEs). Measurement, calculation, and interpretation of O-18 KIEs, described in the accompanying report has important ramifications for the production of electricity and solar hydrogen (as fuel). The catalysis division of BES has acknowledged that understanding mechanisms of transition metal catalyzed water oxidation has major ramifications, potentially leading to transformation of the global economy and natural environment in years to come. Yet, because of program restructuring and decreased availability of funds, it was recommended that the Solar Photochemistry sub-division of BES would be a more appropriate parent program for support of continued research.

  9. Thermal Neutron Diffraction from the Liquids N2 and O2

    DEFF Research Database (Denmark)

    Pedersen, K. Schou; Hansen, Flemming Yssing; Carneiro, Kim

    1979-01-01

    Using a double axis crystal spectrometer, we have determined the structure factor S (kappa) of the liquids N2 and O2 up to a maximum wavevector kappam=11 Å−1. We derive the parameters characterizing the first nearest neighbor shell and find that the intramolecular bond length is well determined, ...

  10. Crystal structure of bis[μ-methoxy(pyridin-2-ylmethanolato-κ3N,O:O]bis[chloridocopper(II

    Directory of Open Access Journals (Sweden)

    Sujirat Boonlue

    2015-02-01

    Full Text Available The racemic title compound, [Cu2(C7H8NO22Cl2], is composed of dinuclear molecules in which methoxy(pyridin-2-ylmethanolate ligands bridge two symmetry-related CuII ions. Each CuII ion is coordinated in a square-planar geometry by one Cl atom, the N and O atoms of the bidentate ligand and the bridging O atom of the centrosymmetrically related bidentate ligand. The separation between the two CuII atoms is 3.005 (1 Å. In the crystal, non-classical C—H...O hydrogen bonds, weak π–π stacking [centroid–centroid distance = 4.073 (1 Å] and weak electrostatic Cu...Cl interactions [3.023 (1 Å] link the dinuclear molecules into chains running parallel to the b axis. These chains are further connected by weak C—H...Cl hydrogen bonds directed approximately along the a axis, forming a three-dimensional supramolecular network.

  11. Short-time dynamics of random-bond Potts ferromagnet with continuous self-dual quenched disorders

    OpenAIRE

    Pan, Z. Q.; Ying, H. P.; Gu, D. W.

    2001-01-01

    We present Monte Carlo simulation results of random-bond Potts ferromagnet with the Olson-Young self-dual distribution of quenched disorders in two-dimensions. By exploring the short-time scaling dynamics, we find universal power-law critical behavior of the magnetization and Binder cumulant at the critical point, and thus obtain estimates of the dynamic exponent $z$ and magnetic exponent $\\eta$, as well as the exponent $\\theta$. Our special attention is paid to the dynamic process for the $q...

  12. Influence of silicon dangling bonds on germanium thermal diffusion within SiO{sub 2} glass

    Energy Technology Data Exchange (ETDEWEB)

    Barba, D.; Martin, F.; Ross, G. G. [INRS Centre for Energy, Materials and Telecommunications, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2 (Canada); Cai, R. S.; Wang, Y. Q. [The Cultivation Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Demarche, J.; Terwagne, G. [LARN, Centre de Recherche en Physique de la Matière et du Rayonnement (PMR), University of Namur (FUNDP), B-5000 Namur (Belgium); Rosei, F. [INRS Centre for Energy, Materials and Telecommunications, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2 (Canada); Center for Self-Assembled Chemical Structures, McGill University, Montreal, Quebec H3A 2K6 (Canada)

    2014-03-17

    We study the influence of silicon dangling bonds on germanium thermal diffusion within silicon oxide and fused silica substrates heated to high temperatures. By using scanning electron microscopy and Rutherford backscattering spectroscopy, we determine that the lower mobility of Ge found within SiO{sub 2}/Si films can be associated with the presence of unsaturated SiO{sub x} chemical bonds. Comparative measurements obtained by x-ray photoelectron spectroscopy show that 10% of silicon dangling bonds can reduce Ge desorption by 80%. Thus, the decrease of the silicon oxidation state yields a greater thermal stability of Ge inside SiO{sub 2} glass, which could enable to considerably extend the performance of Ge-based devices above 1300 K.

  13. Mechanical and Morphological Properties of Short Nylon Fiber Reinforced Acrylonitrile-Butadiene Rubber Composites

    Directory of Open Access Journals (Sweden)

    S.H. Mohseniyan

    2010-12-01

    Full Text Available Acrylonitrile butadiene rubber (NBR composites are prepared from waste nylon 66 short fiber using a two-roll mill mixer. The effects of fiber content and bonding agent on the mechanical and morphological properties of the composites are studied. The curing characteristics of the composites have been studied by using cure rheometer. The cure and scorch time of the composites decrease while cure rate is increased when short fiber content is increased. The mechanical properties of the composites show improvement in both longitudinal and transverse directions with increase in short fiber content. The adhesion between the fiber and rubber is enhanced by using a dry bonding system consisting of resorcinol, xamethylenetetramine and hydrated silica (HRH. The swelling behavior of the composites in N,N-dimethylformamide is tested to find the effect of bonding agent on adhesion strength of the matrix and fibers. Fracture surface morphology of composites is studied by scanning electron microscopy. The restriction to swelling is higher for composites containing bonding agent, especially, in the longitudinal direction. The morphology of the fracture surface shows less fiber pull out when the bonding agent is introduced.

  14. A Computational and Theoretical Study of Conductance in Hydrogen-bonded Molecular Junctions

    Science.gov (United States)

    Wimmer, Michael

    This thesis is devoted to the theoretical and computational study of electron transport in molecular junctions where one or more hydrogen bonds are involved in the process. While electron transport through covalent bonds has been extensively studied, in recent work the focus has been shifted towards hydrogen-bonded systems due to their ubiquitous presence in biological systems and their potential in forming nano-junctions between molecular electronic devices and biological systems. This analysis allows us to significantly expand our comprehension of the experimentally observed result that the inclusion of hydrogen bonding in a molecular junction significantly impacts its transport properties, a fact that has important implications for our understanding of transport through DNA, and nano-biological interfaces in general. In part of this work I have explored the implications of quasiresonant transport in short chains of weakly-bonded molecular junctions involving hydrogen bonds. I used theoretical and computational analysis to interpret recent experiments and explain the role of Fano resonances in the transmission properties of the junction. In a different direction, I have undertaken the study of the transversal conduction through nucleotide chains that involve a variable number of different hydrogen bonds, e.g. NH˙˙˙O, OH˙˙˙O, and NH˙˙˙N, which are the three most prevalent hydrogen bonds in biological systems and organic electronics. My effort here has focused on the analysis of electronic descriptors that allow a simplified conceptual and computational understanding of transport properties. Specifically, I have expanded our previous work where the molecular polarizability was used as a conductance descriptor to include the possibility of atomic and bond partitions of the molecular polarizability. This is important because it affords an alternative molecular description of conductance that is not based on the conventional view of molecular orbitals as

  15. Metallic and/or oxygen ion implantation into AlN ceramics as a method of preparation for its direct bonding with copper

    International Nuclear Information System (INIS)

    Barlak, M.; Borkowska, K.; Olesinska, W.; Kalinski, D.; Piekoszewski, J.; Werner, Z.; Jagielski, J.; Sartowska, B.

    2006-01-01

    Direct bonding (DB) process is recently getting an increasing interest as a method for producing high quality joints between aluminum nitride (AlN) ceramics and copper. The metallic ions were implanted using an MEVVA type TITAN implanter with unseparated beam. Oxygen ions were implanted using a semi-industrial ion implanter without mass separation equipped with a gaseous ion source. The substrate temperature did not exceed 200 o C. Ions were implanted at two acceleration voltages, i.e. 15 and 70 kV. The fluence range was between 1·E16 and 1·E18 cm -2 . After implantation, some of the samples were characterized by the Rutherford backscattering (RBS) method. In conclusion: (a) The investigations performed in the present work confirm an assumption that ion implantation is a very promising technique as a pretreatment of AlN ceramics for the formation of the joints with copper in direct bonding process. (b) It has been shown that titanium implantation gives the best results in comparison to other metals examined (Fe, Cr, Cu) but also in comparison to double Ti+O and O+Ti implantations

  16. N-Benzoyl-2-nitrobenzenesulfonamide

    Directory of Open Access Journals (Sweden)

    P. A. Suchetan

    2012-02-01

    Full Text Available In the title compound, C13H10N2O5S, the N—C bond in the C—SO2—NH—C segment has gauche torsion angles with respect to the S=O bonds. The conformation between the N—H bond and the ortho-nitro group in the sulfonyl benzene ring is syn. The molecule is twisted at the S—N bond with a torsion angle of −63.4 (2°. The sulfonyl benzene ring is tilted by 77.1 (1° relative to the —SO2—NH—C—O segment. The dihedral angle between the sulfonyl and the benzoyl benzene rings is 88.6 (1°. In the crystal, pairs of N—H...O(S hydrogen bonds link the molecules into inversion dimers, which are linked by weak C—H...O and C—H...π interactions along the b axis.

  17. (Nitrato-κ2O,O′bis[(E-N-(pyridin-4-ylmethylidene-κNhydroxyamine]silver(I

    Directory of Open Access Journals (Sweden)

    Shan Gao

    2012-12-01

    Full Text Available In the mononuclear title compound, [Ag(NO3(C6H6N2O2], the AgI atom is located on a twofold rotation axis and the nitrate-chelated AgI atom is further coordinated by two aromatic N atoms of hydroxylamine ligands in a distorted tetrahedral geometry. In the crystal, the nitrate ion has 2 symmetry with the N atom and one O atom located on the twofold rotation axis, and is linked to hydroxy groups of the hydroxylamine ligands by O—H...O hydrogen bonds, generating a chain running along the b axis.

  18. (μ-3-Acetyl-5-carboxyl­ato-4-methyl­pyrazolido-1:2κ4 N 2,O 3:N 1,O 5)-μ-chlorido-tetra­pyridine-1κ2 N,2κ2 N-chlorido-1κCl-dicopper(II) propan-2-ol solvate

    Science.gov (United States)

    Malinkin, Sergey; Penkova, Larisa; Pavlenko, Vadim A.; Haukka, Matti; Fritsky, Igor O.

    2009-01-01

    The title compound, [Cu2(C7H6N2O3)Cl2(C5H5N)4]·C3H8O, is a binuclear pyrazolate complex, in which the two CuII atoms have different coordination numbers and are connected by a bridging Cl atom. One CuII atom has a distorted square-pyramidal coordination environment formed by two pyridine N atoms, one bridging Cl atom and an N,O-chelating pyrazolate ligand. The other CuII atom adopts an octa­hedral geometry defined by two pyridine N atoms at the axial positions, two Cl atoms and the coordinated pyrazolate ligand in the equatorial plane. An O—H⋯O hydrogen bond connects the complex mol­ecules and propan-2-ol solvent mol­ecules into pairs. These pairs form columns along the a axis. PMID:21577764

  19. cis-Bis[N′-(4-bromobenzoyl-N,N-dimethylthioureato-κ2O,S]copper(II

    Directory of Open Access Journals (Sweden)

    Gün Binzet

    2011-05-01

    Full Text Available The asymmetric unit of the title compound, [Cu(C10H10BrN2OS2], contains two independent complex molecules with almost identical conformations. Two S and two O atoms form the coordination environment of the Cu atom, resulting in a slightly distorted square-planar coordination. The S atoms are in a cis configuration. The crystal structure is stabilized by weak intermolecular C—H...Br hydrogen-bonding interactions.

  20. Microestructura de Al2O3/TZP codopado con Fe2O3 y TiO2 fabricado por reacción (RBAO

    Directory of Open Access Journals (Sweden)

    Jiménez, M.

    2003-02-01

    Full Text Available Reaction-bonded 80 vol% Al2O3/TZP (2 mol% Y2O3-stabilized tetragonal zirconia polycrystals composites co-doped with 1 vol% Fe2O3 and 1 vol% TiO2 have been produced, and then presureless sintered (1450 ºC, 60 min or sinter-forged (20 MPa, 1200 ºC, 60 min. The resulting microstructures have been characterized using scanning electron microscopy. Both types of materials are dense, with a fine and homogeneous dual microstructure consisting of Al2O3 and TZP grains without intermediate grain boundary phases. Sinter-forged composites exhibit a very narrow pore size distribution, essentially smaller than the grain size of the alumina and zirconia phases. Co-doping promotes the sintering of alumina at lower temperatures, while still retains a fine grain size due to the presence of the dispersed zirconia phase. First results on presureless sintered RBAO materials show a fracture strength higher than in conventionally sintered and sinter-forged composites.Se han fabricado compuestos de 80% vol. Al2O3/TZP (ZrO2 estabilizada con 2% mol Y2O3 codopados con 1% vol. Fe2O3 y 1% vol. TiO2 mediante la tecnología RBAO (“Reaction Bonding of Aluminum Oxide”, que se han sinterizado libremente (1450 ºC, 60 min y bajo carga uniaxial (20 MPa, 1200 ºC, 60 min. Se ha caracterizado la microestructura mediante microscopía electrónica de barrido. Ambos materiales son densos con una microestructura homogénea formada por granos de alúmina y de circona, sin fases en juntas de grano. En el caso de la sinterización bajo carga, la distribución del tamaño de los poros es muy estrecha, y esencialmente menor que las correspondientes a los granos de Al2O3 y TZP. El codopado promueve la sinterización de la alúmina, mientras que los granos dispersos de circona inhiben su crecimiento de grano. Los ensayos preliminares de flexión en cuatro puntos realizados sobre los materiales sinterizados sin carga indican una resistencia a la fractura superior a la que presentan los

  1. (Pyridine-2-aldoximato-κ2N,N′bis[2-(pyridin-2-ylphenyl-κ2C1,N]iridium(III

    Directory of Open Access Journals (Sweden)

    Bimal Chandra Singh

    2013-03-01

    Full Text Available In the title complex, [Ir(C11H8N2(C6H5N2O], the octahedrally coordinated IrIII atom is bonded to two 2-(pyridin-2-ylphenyl ligands, through two phenyl C and two pydidine N atoms, and to one pyridine-2-aldoxime ligand through a pyridine N and an oxime N atom. The oxime O atom of the aldoxime unit forms intermolecular C—H...O hydrogen bonds, which result in a two-dimensional hydrogen-bonded polymeric network parallel to (100. C—H...π interactions are also observed.

  2. Room temperature direct bonding of LiNbO3 crystal layers and its application to high-voltage optical sensing

    International Nuclear Information System (INIS)

    Tulli, D; Janner, D; Pruneri, V

    2011-01-01

    LiNbO 3 is a crystal widely used in photonics and acoustics, for example in electro-optic modulation, nonlinear optical frequency conversion, electric field sensing and surface acoustic wave filtering. It often needs to be combined with other materials and used in thin layers to achieve the adequate device performance. In this paper, we investigate direct bonding of LiNbO 3 crystals with other dielectric materials, such as Si and fused silica (SiO 2 ), and we show that specific surface chemical cleaning, together with Ar or O 2 plasma activation, can be used to increase the surface free energy and achieve effective bonding at room temperature. The resulting hybrid material bonding is very strong, making the dicing and grinding of LiNbO 3 layers as thin as 15 µm possible. To demonstrate the application potentials of the proposed bonding technique, we have fabricated and characterized a high-voltage field sensor with high sensitivity in a domain inverted and bonded LiNbO 3 waveguide substrate

  3. Influência da adição de carga inorgânica aos sistemas adesivos dentinários na microinfiltração marginal = Influence of inorganic filler addition to dentin bonding systemson marginal microleakage

    Directory of Open Access Journals (Sweden)

    Yoshida, Kellyn Roberta Ayumi

    2005-01-01

    Full Text Available O objetivo deste estudo foi avaliar os efeitos da adição de carga inorgânica aos adesivos dentinários sobre a microinfiltração marginal. Para tal, oitenta incisivos bovinos receberam preparos classe V na junção amelo-cementária e foram divididos em oito grupos, cada qual recebendo versões com e sem carga de diferentes sistemas adesivos, segundo as recomendações dos fabricantes. Os seguintes Grupos foram avaliados: OS – One Step (Sem Carga – SC, OSP – One Step Plus (Com Carga – CC, PB – Prime & Bond 2. 1 (SC, PBNT – Prime & Bond NT (CC, ST – Stae (SC, STM – Stae + 10% de partículas SiO2 com tamanho de 0,01 µm (CC, SB – Single Bond (SC, SBC – Single Bond 10% de partículas SiO2 com tamanho de 0,01 µm (CC. As cavidades foram restauradas com dois incrementos de Z250. Os dentes foram imersos em água destilada a 37ºC por 24 horas e submetidos a 500 ciclos térmicos (5 e 55ºC. A microinfiltração foi avaliada quantitativamente pelo método do nitrato de prata seguido pela diafanização. Os dados foram submetidos à ANOVA paramétrica a um fator e ao teste de Tukey (a = 5%, obtendo-se um valor de p = 0,00. As médias (± desvio padrão observadas para cada Grupo foram: SB: 1,07 (± 0,20a; OS: 1,25 (± 0,49ab; OSP: 1,64 (± 0,59ab; SBC: 1,69 (± 1,07ab; PBNT: 2,21 (± 0,98ab; PB: 2,60 (± 1,45bc; ST: 3,70 (± 1,29c; STC: 3,86 (± 1,11c. Os Grupos acompanhados das mesmas letras não apresentam diferenças significantes. Podemos concluir que a adição de partículas de carga não influenciou de forma significativa a microinfiltração marginal. Foram constatadas diferenças significativas entre os sistemas adesivos de diferentes marcas

  4. Different molecular conformations co-exist in each of three 2-aryl-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)acetamides: hydrogen bonding in zero, one and two dimensions.

    Science.gov (United States)

    Narayana, Badiadka; Yathirajan, Hemmige S; Rathore, Ravindranath S; Glidewell, Christopher

    2016-09-01

    4-Antipyrine [4-amino-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one] and its derivatives exhibit a range of biological activities, including analgesic, antibacterial and anti-inflammatory, and new examples are always of potential interest and value. 2-(4-Chlorophenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)acetamide, C19H18ClN3O2, (I), crystallizes with Z' = 2 in the space group P\\overline{1}, whereas its positional isomer 2-(2-chlorophenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)acetamide, (II), crystallizes with Z' = 1 in the space group C2/c; the molecules of (II) are disordered over two sets of atomic sites having occupancies of 0.6020 (18) and 0.3980 (18). The two independent molecules of (I) adopt different molecular conformations, as do the two disorder components in (II), where the 2-chlorophenyl substituents adopt different orientations. The molecules of (I) are linked by a combination of N-H...O and C-H...O hydrogen bonds to form centrosymmetric four-molecule aggregates, while those of (II) are linked by the same types of hydrogen bonds forming sheets. The related compound N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-(3-methoxyphenyl)acetamide, C20H21N3O3, (III), is isomorphous with (I) but not strictly isostructural; again the two independent molecules adopt different molecular conformations, and the molecules are linked by N-H...O and C-H...O hydrogen bonds to form ribbons. Comparisons are made with some related structures, indicating that a hydrogen-bonded R2(2)(10) ring is the common structural motif.

  5. Effect of Storage Time on Bond Strength and Nanoleakage Expression of Universal Adhesives Bonded to Dentin and Etched Enamel.

    Science.gov (United States)

    Makishi, P; André, C B; Ayres, Apa; Martins, A L; Giannini, M

    2016-01-01

    To investigate bond strength and nanoleakage expression of universal adhesives (UA) bonded to dentin and etched enamel. Extracted human third molars were sectioned and ground to obtain flat surfaces of dentin (n = 36) and enamel (n = 48). Dentin and etched enamel surfaces were bonded with one of two UAs, All-Bond Universal (ABU) or Scotchbond Universal (SBU); or a two-step self-etching adhesive, Clearfil SE Bond (CSEB). A hydrophobic bonding resin, Adper Scotchbond Multi-Purpose Bond (ASMP Bond) was applied only on etched enamel. Following each bonding procedure, resin composite blocks were built up incrementally. The specimens were sectioned and subjected to microtensile bond strength (MTBS) testing after 24 hours or one year water storage, or immersed into ammoniacal silver nitrate solution after aging with 10,000 thermocycles and observed using scanning electron microscopy. The percentage distribution of silver particles at the adhesive/tooth interface was calculated using digital image-analysis software. The MTBS (CSEB = SBU > ABU, for dentin; and CSEB > ABU = SBU = ASMP Bond, for etched enamel) differed significantly between the adhesives after 24 hours. After one year, MTBS values were reduced significantly within the same adhesive for both substrates (analysis of variance, Bonferroni post hoc, padhesives for etched enamel. Silver particles could be detected within the adhesive/dentin interface of all specimens tested. Kruskal-Wallis mean ranks for nanoleakage in ABU, SBU, and CSEB were 16.9, 18.5 and 11, respectively (p>0.05). In the short term, MTBS values were material and dental-substrate dependent. After aging, a decrease in bonding effectiveness was observed in all materials, with nanoleakage at the adhesive/dentin interface. The bonding of the UAs was equal or inferior to that of the conventional restorative systems when applied to either substrate and after either storage period.

  6. Aquachlorido{6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilodimethylidyne]diphenolato-κ2O1,N,N′,O1′}cobalt(III monohydrate

    Directory of Open Access Journals (Sweden)

    Jianxin Xing

    2009-04-01

    Full Text Available The title compound, [Co(C18H18N2O4Cl(H2O]·H2O, contains a distorted octahedral cobalt(III complex with a 6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilodimethylidyne]diphenolate ligand, a chloride and an aqua ligand, and also a disordered water solvent molecule (half-occupancy. The CoIII ion is coordinated in an N2O3Cl manner. Weak O—H...O hydrogen bonds may help to stabilize the crystal packing.

  7. Una metodología para valorar un Callable Bond

    OpenAIRE

    Grajales, Carlos Alexander; Ocaris Pérez, Fredy

    2008-01-01

    En este artículo, la metodología empleada para valorar un bono que tiene una opción call incluida (callable bond o bono redimible) viene dada por la implementación numérica del modelo de tasa corta de Hull y White, la cual se logra con un árbol trinomial de tasas. Así mismo, se presenta una aplicación para el caso de la compañía Interconexión Eléctrica S. A. –ISA–, que ha emitido dos instrumentos callable bonds. Para el desarrollo de tal aplicación se construyen algunos algoritmos computacion...

  8. Una metodología para valorar un callable bond

    OpenAIRE

    Grajales-Correa, C. A. (Carlos Alexánder); Pérez-Ramírez, F. O. (Fredy Ocaris)

    2008-01-01

    En este artículo, la metodología empleada para valorar un bono que tiene una opción call incluida (callable bond o bono redimible) viene dada por la implementación numérica del modelo de tasa corta de Hull y White, la cual se logra con un árbol trinomial de tasas. Así mismo, se presenta una aplicación para el caso de la compañía Interconexión Eléctrica S. A. –ISA–, que ha emitido dos instrumentos callable bonds. Para el desarrollo de tal aplicación se construyen algunos algoritmos...

  9. Bonding structure and mechanical properties of B-C-N thin films synthesized by pulsed laser deposition at different laser fluences

    International Nuclear Information System (INIS)

    Wang, C.B.; Xiao, J.L.; Shen, Q.; Zhang, L.M.

    2016-01-01

    Boron carbon nitride (B-C-N) thin films have been grown by pulsed laser deposition under different laser fluences changing from 1.0 to 3.0 J/cm"2. The influence of laser fluence on microstructure, bonding structure, and mechanical properties of the films was studied, so as to explore the possibility of improving their mechanical properties by controlling bonding structure. The bonding structure identified by FT-IR and XPS indicated the coexistence of B-N, B-C, N-C and N=C bonds in the films, suggesting the formation of a ternary B-C-N hybridization. There is a clear evolution of bonding structure in the B-C-N films with the increasing of laser fluence. The variation of the mechanical properties as a function of laser fluence was also in accordance with the evolution of B-C and sp"3 N-C bonds whereas contrary to that of sp"2 B-N and N=C bonds. The hardness and modulus reached the maximum value of 33.7 GPa and 256 GPa, respectively, at a laser fluence of 3.0 J/cm"2, where the B-C-N thin films synthesized by pulsed laser deposition possessed the highest intensity of B-C and N-C bonds and the lowest fraction of B-N and N=C bonds. - Highlights: • Improvement of mechanical property by controlling bonding structure is explored. • A clear evolution of bonding structure with the increasing of laser fluence • Variation of property is in accordance with the evolution of B−C and N−C bonds.

  10. [(E-2-(3,5-Dibromo-2-oxidobenzylideneamino-3-(4-hydroxyphenylpropionato-κ3O,N,O′](dimethylformamide-κOcopper(II

    Directory of Open Access Journals (Sweden)

    Hong Liang

    2008-04-01

    Full Text Available In the title complex, [Cu(C16H11Br2NO4(C3H7NO]2, there are two unique molecules in the asymmetric unit. Each CuII atom is coordinated by two O atoms and one N atom from the tridentate ligand L2− [LH2 = (E-2-(3,5-dibromo-2-hydroxybenzylideneamino-2-(4-hydroxyphenylacetic acid] and the O atom of a dimethylformamide molecule to give a slightly distorted square-planar geometry. The two unique molecules form a dimer through weak C—H...O hydrogen bonds. In the dimer, the Cu...Cu distance is 3.712 (1 Å. In the crystal structure, molecules form a one-dimensional chain through C—H...O hydrogen bonds. These are further aggregated into a three-dimensional network by O—H...O and C—H...O hydrogen bonds.

  11. 1H-1H correlations across N-H···N hydrogen bonds in nucleic acids

    International Nuclear Information System (INIS)

    Majumdar, Ananya; Gosser, Yuying; Patel, Dinshaw J.

    2001-01-01

    In 2H J NN -COSY experiments, which correlate protons with donor/acceptor nitrogens across N d ···HN a bonds, the receptor nitrogen needs to be assigned in order to unambiguously identify the hydrogen bond. For many situations this is a non-trivial task which is further complicated by poor dispersion of (N a ,N d ) resonances. To address these problems, we present pulse sequences to obtain direct, internucleotide correlations between protons in uniformly 13 C/ 15 N labeled nucleic acids containing N d ···HN a hydrogen bonds. Specifically, the pulse sequence H2(N1N3)H3 correlates H2(A,ω 1 ):H3(U,ω 2 ) protons across Watson-Crick A-U and mismatched G·A base pairs, the sequences H5(N3N1)H1/H6(N3N1)H1 correlate H5(C,ω 1 )/H6(C,ω 1 ):H1(G,ω 2 ) protons across Watson-Crick G-C base pairs, and the H 2 (N2N7)H8 sequence correlates NH 2 (G,A,C;ω 1 ):H8(G,A;ω 2 ) protons across G·G, A·A, sheared G·A and other mismatch pairs. These 1 H- 1 H connectivities circumvent the need for independent assignment of the donor/acceptor nitrogen and related degeneracy issues associated with poorly dispersed nitrogen resonances. The methodology is demonstrated on uniformly 13 C/ 15 N labeled samples of (a) an RNA regulatory element involving the HIV-1 TAR RNA fragment, (b) a multi-stranded DNA architecture involving a G·(C-A) triad-containing G-quadruplex and (c) a peptide-RNA complex involving an evolved peptide bound to the HIV-1 Rev response element (RRE) RNA fragment

  12. 2D NiFe/CeO2 Basic-Site-Enhanced Catalyst via in-Situ Topotactic Reduction for Selectively Catalyzing the H2 Generation from N2H4·H2O.

    Science.gov (United States)

    Wu, Dandan; Wen, Ming; Gu, Chen; Wu, Qingsheng

    2017-05-17

    An economical catalyst with excellent selectivity and high activity is eagerly desirable for H 2 generation from the decomposition of N 2 H 4 ·H 2 O. Here, a bifunctional two-dimensional NiFe/CeO 2 nanocatalyst with NiFe nanoparticles (∼5 nm) uniformly anchored on CeO 2 nanosheets supports has been successfully synthesized through a dynamic controlling coprecipitation process followed by in-situ topotactic reduction. Even without NaOH as catalyst promoter, as-designed Ni 0.6 Fe 0.4 /CeO 2 nanocatalyst can show high activity for selectively catalyzing H 2 generation (reaction rate (mol N2H4 mol -1 NiFe h -1 ): 5.73 h -1 ). As ceria is easily reducible from CeO 2 to CeO 2-x , the surface of CeO 2 could supply an extremely large amount of Ce 3+ , and the high-density electrons of Ce 3+ can work as Lewis base to facilitate the absorption of N 2 H 4 , which can weaken the N-H bond and promote NiFe active centers to break the N-H bond preferentially, resulting in the high catalytic selectivity (over 99%) and activity for the H 2 generation from N 2 H 4 ·H 2 O.

  13. Determinação da tensão de aderência do bambu-concreto Determination of the bamboo-concrete bond stress

    Directory of Open Access Journals (Sweden)

    Ligia P. Mesquita

    2006-06-01

    Full Text Available Apresenta-se e se discute, neste trabalho, o estudo da aderência entre o bambu e o concreto; através de dois estudos baseados em uma programação estatística de experimento, em que no primeiro se investigaram as influências da dimensão da seção transversal das varetas de bambu e da resistência do concreto na aderência bambu-concreto e, no segundo, avaliou-se o efeito da colocação de pinos artificiais nas varetas de bambu. Em cada estudo realizaram-se 10 réplicas para cada combinação de fatores, resultando no total de 159 ensaios de arrancamento. Curvas tensão de aderência versus deslocamento relativo bambu-concreto, são apresentadas e discutidas, e a tensão de aderência de cálculo é calculada e comparada com os valores sugeridos por normas internacionais para barras lisas de aço. Constatou-se, na primeira fase da investigação, que apenas a resistência do concreto influencia na aderência bambu-concreto e que esta tensão é apenas 20% inferior que a do aço liso-concreto; já na segunda fase verificou-se que os pinos de bambu e de aço elevam a capacidade de transferência de tensões bambu-concreto, de forma significativa.This paper presents and discusses a study about the bamboo-concrete bond stress. Based on a statistical design of experiment, the investigation was divided in two steps: the first one, where the effects of the concrete compressive strength and the dimensions of the bamboo-splint cross-section were investigated; and the second, where the effect of artificial pins studding in the bamboo splints were evaluated. In both steps, ten replicates for each factor combination were done, resulting in 159 push-out tests. Bond stress versus relative displacement curves were presented and discussed. In addition, the design bond stresses of bamboo-concrete were calculated and their values were compared with those specified by International Building Codes for smooth steel and concrete. In the first step, it was

  14. Intramolecular hydrogen bonding in malonaldehyde and its radical analogues.

    Science.gov (United States)

    Lin, Chen; Kumar, Manoj; Finney, Brian A; Francisco, Joseph S

    2017-09-28

    High level Brueckner doubles with triples correction method-based ab initio calculations have been used to investigate the nature of intramolecular hydrogen bonding and intramolecular hydrogen atom transfer in cis-malonaldehyde (MA) and its radical analogues. The radicals considered here are the ones that correspond to the homolytic cleavage of C-H bonds in cis-MA. The results suggest that cis-MA and its radical analogues, cis-MA RS , and cis-MA RA , both exist in planar geometry. The calculated intramolecular O-H⋯O=C bond in cis-MA is shorter than that in the radical analogues. The intramolecular hydrogen bond in cis-MA is stronger than in its radicals by at least 3.0 kcal/mol. The stability of a cis-malonaldehyde radical correlates with the extent of electron spin delocalization; cis-MA RA , in which the radical spin is more delocalized, is the most stable MA radical, whereas cis-MA RS , in which the radical spin is strongly localized, is the least stable radical. The natural bond orbital analysis indicates that the intramolecular hydrogen bonding (O⋯H⋯O) in cis-malonaldehyde radicals is stabilized by the interaction between the lone pair orbitals of donor oxygen and the σ * orbital of acceptor O-H bond (n → σ * OH ). The calculated barriers indicate that the intramolecular proton transfer in cis-MA involves 2.2 kcal/mol lower barrier than that in cis-MA RS .

  15. Formation of a Six-Coordinate fac-[Re(Co)3]+ Complex by the N-C bond cleavage of a potentially tetradentate ligand

    International Nuclear Information System (INIS)

    Booysen, I.; Gerber, T. I. A.; Hosten, E.; Mayer, P.

    2008-01-01

    The rhenium(I) compound fac-[Re(CO) 3 (daa)]. Hpab.H 2 O (Hpab N,N'-(l,2-phenylene)bis(2'-aminobenzamide); Hdaa 2-amino-N-(2-aminophenyl)benzamide) was synthesized from the reaction of [Re(CO) 5 ,Br] with two equivalent of Hpab in toluene. The monoanionic tridentate ligand daa was formed by the rhenium-mediated cleavage of an amido N-C bond of the potentially tetradentate ligand Hpab. The compound was characterized by IR spectroscopy and X-ray crystallography, and daa is coordinated as a diamino amide via three nitrogen-donor atoms

  16. Investigation of Chemical Bond Properties and Mssbauer Spectroscopy in YBa2Cu3O7

    Institute of Scientific and Technical Information of China (English)

    高发明; 李东春; 张思远

    2003-01-01

    Chemical bond properties of YBa2Cu3O7 were studied by using the average band-gap model. The calculated results show that the covalency of Cu(1)-O bond is 0.406, and one of Cu(2)-O is 0.276. Mssbauer isomer shifts of 57Fe in Y-123 were calculated by the chemical surrounding factor hv defined by covalency and electronic polarizability. The charge-state and site of Fe were determined. The relation between the coupling constant of electron-phonon interaction and covalency is employed to explain that the Cu(2)-O plane is more important than the Cu(1)-O chain on the superconductivity in the Y-123 compounds.

  17. Bis(1,10-phenanthroline-κ2N,N′(sulfato-κ2O,O′cobalt(II butane-2,3-diol monosolvate

    Directory of Open Access Journals (Sweden)

    Shi-Juan Wang

    2011-04-01

    Full Text Available In the title compound, [Co(SO4(C12H8N22]·C4H10O2, the Co2+ ion has a distorted octahedral coordination environment composed of four N atoms from two chelating 1,10-phenanthroline ligands and two O atoms from an O,O′-bidentate sulfate anion. The dihedral angle between the two chelating N2C2 groups is 83.48 (1°. The Co2+ ion, the S atom and the mid-point of the central C—C bond of the butane-2,3-diol solvent molecule are situated on twofold rotation axes. The molecules of the complex and the solvent molecules are held together by pairs of symmetry-related O—H...O hydrogen bonds with the uncoordinated O atoms of the sulfate ions as acceptors. The solvent molecule is disordered over two sets of sites with site occupancies of 0.40 and 0.60.

  18. Poly[[diaquabis(2,2′-bipyridine-κ2N,N′(μ3-5-hydroxyisophthalato-κ5O1,O1′:O3,O3′:O3′(μ3-5-hydroxyisophthalato-κ4O1,O1′:O3:O3′(μ2-5-hydroxyisophthalato-κ3O1,O1′:O3didysprosium(III] dihydrate

    Directory of Open Access Journals (Sweden)

    Yan-Lin Zhang

    2011-10-01

    Full Text Available The polymeric title compound, {[Dy2(C8H4O53(C10H8N22(H2O2]·2H2O}n, contains two independent DyIII ions, both of which are nine-coordinated in a distorted tricapped trigonal–prismatic geometry. One DyIII ion is coordinated by five 5-hydroxyisophthalate (hip ligands and one 2,2′-bipyridine (bpy ligand and the other by three hip ligands, one bpy ligand and two water molecules. The DyIII ions are bridged by the carboxylate groups of the hip ligands, forming a three-dimensional framework. O—H...O hydrogen bonds are present in the crystal structure.

  19. N,N,N′-Trimethyl-N′′-(4-nitrophenyl-N′-phenylguanidine

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2014-05-01

    Full Text Available The C—N bond lengths in the guanidine unit of the title compound, C16H18N4O2, are 1.298 (2, 1.353 (2 and 1.401 (3 Å, indicating double- and single-bond character. The N—C—N angles are 115.81 (16, 118.90 (18 and 125.16 (18°, showing a deviation of the CN3 plane from an ideal trigonal–planar geometry. In the crystal, C—H...O hydrogen bonds are observed between the methyl- and aromatic-H atoms and nitro-O atoms. One H atom of the phenyl ring and of the NMe2 group associate with the O atoms of the nitro group, giving chains along the a- and b-axis directions. Cross-linking of these two chains results in a two-dimensional network along bc.

  20. (N,N,N′,N′-Tetramethylethylenediamine-κNbis(2,4,6-trimethylphenolato-κOgermanium(II

    Directory of Open Access Journals (Sweden)

    Eduard Rusanov

    2012-03-01

    Full Text Available In the title compound, [Ge(C9H11O2(C6H16N2], the GeII atom is coordinated in a distorted trigonal–pyramidal geometry by two O atoms belonging to two 2,4,6-trimethylphenolate ligands and one N atom of a tetramethylethylenediamine ligand. Comparing the structure with published data of similar compounds shows that the Ge—O bonds are covalent and the Ge—N bond is coordinated.

  1. Resistência ao cisalhamento da colagem com compósitos utilizando potencializador de adesão Shear bond strength of composites using an adhesion booster

    Directory of Open Access Journals (Sweden)

    Edivaldo de Morais

    2011-10-01

    Full Text Available OBJETIVO: avaliar a resistência ao cisalhamento dos compósitos Transbond XT e Concise Ortodôntico utilizando o potencializador de adesão Ortho Primer. MÉTODOS: a amostra consistiu de 90 incisivos bovinos divididos em seis grupos (n=15. Todos os dentes receberam profilaxia com pedra-pomes e condicionamento do esmalte com ácido fosfórico. No Grupo I, utilizou-se Transbond XT de maneira convencional. O Grupo II foi semelhante ao I, porém, aplicou-se o Ortho Primer ao invés do XT Primer. No Grupo III, após condicionamento, o esmalte foi contaminado com saliva, aplicou-se o Ortho Primer e colagem com Transbond XT. No Grupo IV, utilizou-se o Concise Ortodôntico de maneira convencional. O Grupo V foi semelhante ao IV, porém, utilizou-se o Ortho Primer ao invés da resina fluida. No Grupo VI, após condicionamento, o esmalte foi contaminado com saliva, aplicou-se o Ortho Primer e colagem com Concise. Os corpos de prova foram armazenados em água destilada em estufa a 37ºC por 24h e submetidos ao ensaio de resistência ao cisalhamento. Os dados foram submetidos à ANOVA e ao teste de Tukey (5%. RESULTADOS: a resistência da colagem no Grupo IV foi estatisticamente superior à dos Grupos II, III e VI (p0,05. O Transbond XT e o Concise utilizados convencionalmente obtiveram os maiores valores adesivos. O Ortho Primer em esmalte seco atuou efetivamente como agente de união dos compósitos avaliados. Em esmalte contaminado, a colagem com Concise obteve baixa resistência adesiva.OBJECTIVE: The aim of this study was to evaluate the shear bond strength of the Transbond XT and Concise Orthodontics composites using the Ortho Primer adhesion booster. METHODS: The sample consisted of 90 bovine incisors divided in 6 groups (n=15. All teeth were submitted to prophylaxes with pumice stone and etching with phosphoric acid. In Group I the Transbond XT was used conventionally. Group II was similar to Group I, however, Ortho Primer was used instead of XT

  2. A two-dimensional hydrogen-bonded water layer in the structure of a cobalt(III) cubane complex.

    Science.gov (United States)

    Qi, Ji; Zhai, Xiang-Sheng; Zhu, Hong-Lin; Lin, Jian-Li

    2014-02-01

    A tetranuclear Co(III) oxide complex with cubane topology, tetrakis(2,2'-bipyridine-κ(2)N,N')di-μ2-carbonato-κ(4)O:O'-tetra-μ3-oxido-tetracobalt(III) pentadecahydrate, [Co4(CO3)2O4(C10H8N2)4]·15H2O, with an unbounded hydrogen-bonded water layer, has been synthesized by reaction of CoCO3 and 2,2'-bipyridine. The solvent water molecules form a hydrogen-bonded net with tetrameric and pentameric water clusters as subunits. The Co4O4 cubane-like cores are sandwiched between the water layers, which are further stacked into a three-dimensional metallo-supramolecular network.

  3. Trap assisted space charge conduction in p-NiO/n-ZnO heterojunction diode

    International Nuclear Information System (INIS)

    Tyagi, Manisha; Tomar, Monika; Gupta, Vinay

    2015-01-01

    Highlights: • p-NiO/n-ZnO heterojunction diode with enhanced junction parameters has been prepared. • Temperature dependent I–V throw insight into the involved conduction mechanism. • SCLC with exponential trap distribution was found to be the dominant mechanism. • C–V measurement at different frequencies support the presence of traps. - Abstract: The development of short-wavelength p–n junction is essentially important for the realization of transparent electronics for next-generation optoelectronic devices. In the present work, a p–n heterojunction diode based on p-NiO/n-ZnO has been prepared under the optimised growth conditions exhibiting improved electrical and junction parameters. The fabricated heterojunction gives typical current–voltage (I–V) characteristics with good rectifying behaviour (rectification ratio ≈ 10 4 at 2 V). The temperature dependent current–voltage characteristics of heterojunction diode have been studied and origin of conduction mechanism is identified. The space-charge limited conduction with exponential trap distribution having deep level trap is found to be the dominant conduction mechanism in the fabricated p–n heterojunction diode. The conduction and valence band discontinuities for NiO/ZnO heterostructure have been determined from the capacitance–voltage (C–V) measurements

  4. A novel metal-to-metal bonding process through in-situ formation of Ag nanoparticles using Ag2O microparticles

    International Nuclear Information System (INIS)

    Hirose, Akio; Tatsumi, Hiroaki; Takeda, Naoya; Akada, Yusuke; Ogura, Tomo; Ide, Eiichi; Morita, Toshiaki

    2009-01-01

    The metal-to-metal bonding has been successfully achieved via the bonding process using Ag metallo-organic nanoparticles at a bonding temperature of around 300-, which can be alternative to the current microsoldering in electronics assembly using high-temperature solders. However, further reduction of bonding temperature and/or bonding pressure is needed. In the present research, a novel bonding process through in-situ formation of Ag nanoparticles instead of the filler material of the Ag metallo-organic nanoparticles has been developed. The Ag nanoparticles can form by the reduction of Ag 2 O particles. In this study, the Ag 2 O particles were mixed with triethylene glycol as a reducing agent to form a paste for bonding. The Au coated cylindrical specimens were bonded using the paste. The Ag nanoparticles formed at around 130 to 160 through the reduction process of Ag2O particles with triethylene glycol. The Ag nanoparticles were immediately sintered each other due to a great surface energy per volume. A transmission electron microscope observation revealed that the sintered Ag metallurgically bonded to the Au substrate at around 160 and a dense Ag layer formed after further heating. The tensile strength of the joint bonded at 250 under a bonding pressure of 5MPa was around 60MPa

  5. Nickel-Catalyzed C sp2 –C sp3 Cross-Coupling via C–O Bond Activation

    KAUST Repository

    Guo, Lin

    2016-06-13

    A new and efficient nickel-catalyzed alkylation of CAr-O electrophiles with B-alkyl-9-BBNs is described. The transformation is characterized by its functional group tolerance and provides a practical and versatile access to various Csp2-Csp3 bonds through Csp2-O substitution, without the restriction of β-hydride elimination. Moreover, the advantage of the newly developed method was demonstrated in a selective and sequential C-O bond activation process. © 2016 American Chemical Society.

  6. [Effect of niobium nitride on the bonding strength of titanium porcelain by magnetron sputtering].

    Science.gov (United States)

    Wang, Shu-shu; Zhang, La-bao; Guang, Han-bing; Zhou, Shu; Zhang, Fei-min

    2010-05-01

    To investigate the effect of magnetron sputtered niobium nitride (NbN) on the bonding strength of commercially pure cast titanium (Ti) and low-fusing porcelain (Ti/Vita titankeramik system). Sixty Ti specimens were randomly divided into four groups, group T1, T2, T3 and T4. All specimens of group T1 and T2 were first treated with 120 microm blasted Al2O3 particles, and then only specimens of group T2 were treated with magnetron sputtered NbN film. All specimens of group T3 and T4 were first treated with magnetron sputtered NbN film and then only specimens of group T4 were treated with 120 microm blasted Al2O3 particles. The composition of the deposits were analyzed by X-ray diffraction (XRD). A universal testing machine was used to perform the three-point bending test to evaluate the bonding strength of Ti and porcelain. The microstructure of NbN, the interface of Ti-porcelain and the fractured Ti surface were observed with scanning electron microscopy (SEM) and energy depressive spectrum (EDS), and the results were compared. The XRD results showed that the NbN deposits were cubic crystalline phases. The bonding strength of Ti and porcelain in T1 to T4 group were (27.2+/-0.8), (43.1+/-0.6), (31.4+/-1.0) and (44.9+/-0.6) MPa. These results were analyzed by one-way analysis of variance and differences between groups were compared using least significant difference test. Significant inter-group differences were found among all groups (Pporcelain, while samples treated with both Al2O3 and NbN had better bond. EDS of Ti-porcelain interface showed oxidation occurred in T1, T2 and T3, but was well controlled in T4. Magnetron sputtered NbN can prevent Ti from being oxidized, and can improve the bonding strength of Ti/Vita titankeramik system. Al2O3 blast can also improve the bonding strength of Ti/Vita titankeramik system.

  7. Crystal structure of trans-bis(diethanolamine-κ3O,N,O′manganese(II bis(3-aminobenzoate

    Directory of Open Access Journals (Sweden)

    Aziz B. Ibragimov

    2016-04-01

    Full Text Available Reaction of m-aminobenzoic acid (MABA, diethanolamine (DEA and MnCl2·4H2O led to the formation of the title salt, [Mn(C4H11NO22](C7H6NO22. In the complex cation, the Mn2+ ion is located on an inversion centre and is coordinated by two symmetry-related tridentate DEA molecules, leading to the formation of a slightly distorted MnN2O4 octahedron. The MABA− counter-anions are connected to the complex ion by a pair of rather strong O—H...O hydrogen bonds, yielding a 1:2 supramolecular aggregate. Much weaker N—H...O hydrogen bonds connect neighbouring aggregates into a three-dimensional network structure.

  8. Synthesis of mononuclear copper(II) complexes of N3O2 and N4O2 donors containing Schiff base ligands: Theoretical and biological observations

    Science.gov (United States)

    Mancha Madha, K.; Gurumoorthy, P.; Arul Antony, S.; Ramalakshmi, N.

    2017-09-01

    A new series of six mononuclear copper(II) complexes were synthesized from N3O2 and N4O2 donors containing Schiff base ligands, and characterized by various spectral methods. The geometry of the complexes was determined using UV-Vis, EPR and DFT calculations. The complexes of N3O2 donors (1-3) adopted square pyramidal geometry and the remaining complexes of N4O2 donors (4-6) show distorted octahedral geometry around copper(II) nuclei. Redox properties of the complexes show a one-electron irreversible reduction process in the cathodic potential (Epc) region from -0.74 to -0.98 V. The complexes show potent antioxidant activity against DPPH radicals. Molecular docking studies of complexes showed σ-π interaction, hydrogen bonding, electrostatic and van der Waals interactions with VEGFR2 kinase receptor. In vitro cytotoxicity of the complexes was tested against human breast cancer (MDA-MB-231) cell lines and one normal human dermal fibroblasts (NHDF) cell line through MTT assay. The morphological assessment data obtained by Hoechst 33258 and AO/EB staining revealed that the complexes induce apoptosis pathway of cell death.

  9. A Novel Cyanide-Bridged Thulium-Nickel Heterobimetallic Polymeric Complex (H2O)2(DMF)10Tm2[Ni(CN)4]2[Ni(CN)4] including O-H···N Hydrogen Bond

    International Nuclear Information System (INIS)

    Chung, Janghoon; Park, Daeyoung; Song, Mina; Ha, Sungin; Kang, Ansoo; Moon, Sangbong; Ryu, Cheolhwi

    2012-01-01

    The experimental section lists the observed infrared absorption frequencies for the complex. Typically bridging CN ligands have higher stretching frequencies than the terminal CN ligands. Accordingly, cyanide stretching bands (2170, 2156, 2139 cm -1 . at higher frequencies than the stretching band (2127 cm -1 ) of K 2 [Ni(CN) 4 ] are assigned to bridging cyanide ligands. The band at 2128 cm -1 is assigned to terminal cyanide ligands because their location in the cyanide stretching region compares with the absorption observed for the nonbridging cyanide ligands in K 2 [Ni(CN) 4 ]. Array (H 2 O) 2 (DMF) 10 Tm 2 [Ni(CN) 4 ] 2 [Ni(CN) 4 ] and other lanthanide metal-Ni systems display similar CN stretching patterns in their spectra. A broad absorption band at 2950-3550 cm -1 was observed in the spectrum. This supports the presence of O-H···N intermolecular hydrogen bond interactions between the polymers

  10. Copper(II)-catalyzed electrophilic amination of quinoline N-oxides with O-benzoyl hydroxylamines.

    Science.gov (United States)

    Li, Gang; Jia, Chunqi; Sun, Kai; Lv, Yunhe; Zhao, Feng; Zhou, Kexiao; Wu, Hankui

    2015-03-21

    Copper acetate-catalyzed C-H bond functionalization amination of quinoline N-oxides was achieved using O-benzoyl hydroxylamine as an electrophilic amination reagent, thereby affording the desired products in moderate to excellent yields. Electrophilic amination can also be performed in good yield on a gram scale.

  11. Crystal structure of bis-(3-bromo-pyridine-κN)bis-(O-ethyl di-thio-carbonato-κ(2) S,S')nickel(II).

    Science.gov (United States)

    Kant, Rajni; Kour, Gurvinder; Anthal, Sumati; Neerupama; Sachar, Renu

    2015-01-01

    In the title mol-ecular complex, [Ni(C3H5OS2)2(C5H4BrN)2], the Ni(2+) cation is located on a centre of inversion and has a distorted octa-hedral N2S4 environment defined by two chelating xanthate ligands and two monodentate pyridine ligands. The C-S bond lengths of the thio-carboxyl-ate group are indicative of a delocalized bond and the O-Csp (2) bond is considerably shorter than the O-Csp (3) bond, consistent with a significant contribution of one resonance form of the xanthate anion that features a formal C=O+ unit and a negative charge on each of the S atoms. The packing of the mol-ecules is stabilized by C-H⋯S and C-H⋯π inter-actions. In addition, π-π inter-actions between the pyridine rings [centroid-to-centroid distance = 3.797 (3) Å] are also present. In the crystal structure, mol-ecules are arranged in rows along [100], forming layers parallel to (010) and (001).

  12. Poly[[μ2-2,2′-diethyl-1,1′-(butane-1,4-diyldiimidazole-κ2N3:N3′](μ2-5-hydroxyisophthalato-κ2O1:O3zinc

    Directory of Open Access Journals (Sweden)

    Ying-Ying Liu

    2011-11-01

    Full Text Available In the title coordination polymer, [Zn(C8H4O5(C14H22N4]n, the ZnII cation is coordinated by an O2N2 donor set in a distorted tetrahedral geometry. The ZnII ions are linked by μ2-OH-bdc (OH-H2bdc = 5-hydroxyisophthalic acid and bbie ligands [bbie = 2,2′-diethyl-1,1′-(butane-1,4-diyldiimidazole], forming a two-dimensional layer parallel to the ab plane. The layers are further connected through intermolecular C—H...O and O—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. In the bbie ligand, the two C atoms in the ethyl group are each disordered over two positions with a site-occupancy ratio of 0.69:0.31.

  13. Raman spectroscopy of supported chromium oxide catalysts : determination of chromium-oxygen bond distances and bond orders

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.

    1996-01-01

    An empirical correlation is described for relating Raman stretching frequencies of chromium—oxygen (Cr—O) bonds to their bond lengths in chromium oxide reference compounds. An exponential fit of crystallographically determined Cr—O bond lengths to Cr—O Raman symmetric stretching frequencies

  14. Redetermination of aqua(dihydrogen ethylenediaminetetraacetato-κ5O,O′,N,N′,O′′nickel(II

    Directory of Open Access Journals (Sweden)

    Ivana Kočanová

    2010-02-01

    Full Text Available The crystal structure of the title compound, [Ni(C10H14N2O8(H2O] or [Ni(H2edta(H2O] (H4edta is ethylenediaminetetraacetic acid, originally determined by Smith & Hoard [J. Am. Chem. Soc. (1959, 81, 556–561] has been redetermined to a significantly higher precision. The NiII atom is coordinated in a distorted octahedral geometry by two N atoms and three O atoms from three carboxylate groups of the H2edta2− ligand and by an O atom of a water molecule. The complex molecules are linked by intermolecular O—H...O hydrogen bonds into layers perpendicular to [100].

  15. A two-dimensional silver(I) coordination polymer constructed from 4-aminophenylarsonate and triphenylphosphane: poly[[(μ₃-4-aminophenylarsonato-κ³N:O:O)(triphenylphosphane-κP)silver(I)] monohydrate].

    Science.gov (United States)

    Xiao, Zu-Ping; Wen, Meng; Wang, Chun-Ya; Huang, Xi-He

    2015-04-01

    The title compound, {[Ag(C6H7AsNO3)(C18H15P)]·H2O}n, has been synthesized from the reaction of 4-aminophenylarsonic acid with silver nitrate, in aqueous ammonia, with the addition of triphenylphosphane (PPh3). The Ag(I) centre is four-coordinated by one amino N atom, one PPh3 P atom and two arsonate O atoms, forming a severely distorted [AgNPO2] tetrahedron. Two Ag(I)-centred tetrahedra are held together to produce a dinuclear [Ag2O2N2P2] unit by sharing an O-O edge. 4-Aminophenylarsonate (Hapa(-)) adopts a μ3-κ(3)N:O:O-tridentate coordination mode connecting two dinuclear units, resulting in a neutral [Ag(Hapa)(PPh3)]n layer lying parallel to the (101̄) plane. The PPh3 ligands are suspended on both sides of the [Ag(Hapa)(PPh3)]n layer, displaying up and down orientations. There is an R2(2)(8) hydrogen-bonded dimer involving two arsonate groups from two Hapa(-) ligands related by a centre of inversion. Additionally, there are hydrogen-bonding interactions involving the solvent water molecules and the arsonate and amine groups of the Hapa(-) ligands, and weak π-π stacking interactions within the [Ag(Hapa)(PPh3)]n layer. These two-dimensional layers are further assembled by weak van der Waals interactions to form the final architecture.

  16. N-(2-Chlorophenyl-2-methylbenzamide

    Directory of Open Access Journals (Sweden)

    B. Thimme Gowda

    2008-08-01

    Full Text Available In the structure of the title compound (N2CP2MBA, C14H12ClNO, the conformations of the N—H and C=O bonds are trans to each other. Furthermore, the conformation of the N—H bond is syn to the ortho-chloro group in the aniline ring and the C=O bond is syn to the ortho-methyl substituent in the benzoyl ring, similar to what is observed in 2-chloro-N-(2-chlorophenylbenzamide and 2-methyl-N-phenylbenzamide. The amide group makes almost the same dihedral angles of 41.2 (14 and 42.2 (13° with the aniline and benzoyl rings, respectively, while the dihedral angle between the benzoyl and aniline rings is only 7.4 (3°. The molecules in N2CP2MBA are packed into chains through N—H...O hydrogen bonds.

  17. The Nature of the Hydrogen Bond Outline of a Comprehensive Hydrogen Bond Theory

    CERN Document Server

    Gilli, Gastone

    2009-01-01

    Hydrogen bond (H-bond) effects are known: it makes sea water liquid, joins cellulose microfibrils in trees, shapes DNA into genes and polypeptide chains into wool, hair, muscles or enzymes. Its true nature is less known and we may still wonder why O-H...O bond energies range from less than 1 to more than 30 kcal/mol without apparent reason. This H-bond puzzle is re-examined here from its very beginning and presented as an inclusive compilation of experimental H-bond energies andgeometries.New concepts emerge from this analysis: new classes of systematically strong H-bonds (CAHBs and RAHBs: cha

  18. Supramolecular network through Nsbnd H…O, Osbnd H…O and Csbnd H…O hydrogen bonding interaction and density functional theory studies of 4-methylanilinium-3-carboxy-4-hydroxybenzenesulphonate crystal

    Science.gov (United States)

    Rajkumar, M.; Muthuraja, P.; Dhandapani, M.; Chandramohan, A.

    2018-02-01

    By utilizing the hydrogen bonding strategy, 4-methylanilinium-3-hydroxy-4-corboxy-benzenesulphonate (4MABS), an organic proton transfer molecular salt was synthesized and single crystals of it were successfully grown by slow solvent evaporation solution growth technique at ambient temperature. The 1H and 13C NMR spectra were recorded to establish the molecular structure of the title salt. The single crystal XRD analysis reveals that the title salt crystallizes in monoclinic crystal system with centrosymmetric space group, P21/n. Further, the title salt involves extensive intermolecular Nsbnd H…O, Osbnd H…O and Csbnd H…O as well as intramolecular Osbnd H…O hydrogen bonding interactions to construct supramolecular architecture. All quantum chemical calculations were performed at the level of density functional theory (DFT) with B3LYP functional using 6-311G (d,p) basis atomic set. The photoluminescence spectrum was recorded to explore the emission property of the title crystal. The presence of the various vibrational modes and functional groups in the synthesized salt was confirmed by FT-IR studies. The thermal behaviour of title crystal was established employing TG/DTA analyses. The mechanical properties of the grown crystal were determined by Vicker's microhardness studies. Dielectric measurements were carried out on the grown crystal at a different temperature to evaluate electrical properties.

  19. Experimental and theoretical studies on the structural, spectroscopic and hydrogen bonding on 4-nitro-n-(2,4-dinitrophenyl) benzenamine

    Science.gov (United States)

    Subhapriya, G.; Kalyanaraman, S.; Jeyachandran, M.; Ragavendran, V.; Krishnakumar, V.

    2018-04-01

    Synthesized 4-nitro-N-(2,4-dinitrophenyl) benzenamine (NDPBA) molecule was confirmed applying the tool of NMR. Theoretical prediction addressed the NMR chemical shifts and correlated well with the experimental data. The molecule subjected to theoretical DFT at 6-311++G** level unraveled the spectroscopic and structural properties of the NDPBA molecule. Moreover the structural features proved the occurrence of intramolecular Nsbnd H· · O hydrogen bonding in the molecule which was further confirmed with the help of Frontier molecular orbital analysis. Vibrational spectroscopic characterization through FT-IR and Raman experimentally and theoretically gave an account for the vibrational properties. An illustration of the topology of the molecule theoretically helped also in finding the hydrogen bonding energy.

  20. Density functional theory study of the structural and bonding mechanism of molecular oxygen (O2) with C3Si

    Science.gov (United States)

    Parida, Saroj K.; Behera, C.; Sahu, Sridhar

    2018-07-01

    The investigations of pure and heteroatom doped carbon clusters have created great interest because of their enormous prospective applications in various research zones, for example, optoelectronics, semiconductors, material science, energy storage devices, astro-science and so on. In this article, the interaction of molecular oxygen (O2) with C3Si has explored within a density functional theory (DFT). Different possible types of structure for C3SiO2 have collected. Among five different kinds of structure, the structure-1a, 1A1 is more energetically stable. The nature of the bonding of O2 and C3Si, in C3SiO2 has been studied by using Bader's topological analysis of the electron charge density distribution ρ(r) , Laplacian ∇2 ρ(r) and total energy density H(r) at the bond critical points (BCPs) of the structures within the framework of the atoms in molecules theory (AIM). The bonding mechanism of O2 and C3Si in C3SiO2 prompts to the fundamental understanding of the interaction of C3Si with oxygen molecule. It is interesting to note that, two types of bonding mechanism are established in same C3SiO2 system such as (i) shared-kind interactions (ii) closed-shell interactions. From various kinds of structure, Csbnd C bonds in all structures are shown as shared-kind interactions whereas Csbnd Si, Osbnd O bonds are classified as closed-shell type interactions with a certain degree of covalent character.

  1. Poly[(μ3-benzene-1,3,5-tricarboxylato-κ3O1:O3:O5(μ2-2-methylimidazolato-κ2N:N′tris(2-methylimidazole-κNdizinc(II

    Directory of Open Access Journals (Sweden)

    Palanikumar Maniam

    2011-06-01

    Full Text Available Hydrothermal reaction involving zinc nitrate hexahydrate, trisodium benzene-1,3,5-tricarboxylate (Na3BTC and 2-methylimidazole (2-MeImH yielded the title compound, [Zn2(C9H3O6(C4H5N2(C4H6N23]. In this mixed-ligand metal-organic compound, Zn2+ ions are coordinated by N atoms from 2-MeImH molecules and (2-MeIm− ions, as well as by O atoms from (BTC3− ions. This results in two different distorted tetrahedra, viz. ZnN3O and ZnN2O2. These tetrahedra are interconnected via (BTC3− ions and N:N′-bridging (2-MeIm− ions, thus forming a layered structure in the bc plane. Hydrogen bonds between the O atoms of carboxylate ions and NH groups of 2-MeImH ligands link the layers into a three-dimensional structure.

  2. High-κ Al{sub 2}O{sub 3} material in low temperature wafer-level bonding for 3D integration application

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J., E-mail: fanji@hust.edu.cn; Tu, L. C. [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Tan, C. S. [School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-03-15

    This work systematically investigated a high-κ Al{sub 2}O{sub 3} material for low temperature wafer-level bonding for potential applications in 3D microsystems. A clean Si wafer with an Al{sub 2}O{sub 3} layer thickness of 50 nm was applied as our experimental approach. Bonding was initiated in a clean room ambient after surface activation, followed by annealing under inert ambient conditions at 300 °C for 3 h. The investigation consisted of three parts: a mechanical support study using the four-point bending method, hermeticity measurements using the helium bomb test, and thermal conductivity analysis for potential heterogeneous bonding. Compared with samples bonded using a conventional oxide bonding material (SiO{sub 2}), a higher interfacial adhesion energy (∼11.93 J/m{sup 2}) and a lower helium leak rate (∼6.84 × 10{sup −10} atm.cm{sup 3}/sec) were detected for samples bonded using Al{sub 2}O{sub 3}. More importantly, due to the excellent thermal conductivity performance of Al{sub 2}O{sub 3}, this technology can be used in heterogeneous direct bonding, which has potential applications for enhancing the performance of Si photonic integrated devices.

  3. N,N,N′,N′-Tetramethyl-N′′-[2-(trimethylazaniumylethyl]guanidinium bis(tetraphenylborate acetone disolvate

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2016-02-01

    Full Text Available The asymmetric unit of the title solvated salt, C10H26N42+·2C24H20B−·2C3H6O, comprises one cation, two tetraphenylborate ions and two acetone solvent molecules. The N and methyl C atoms of the terminal trimethylammonium group are disordered over two sets of sites, with a refined occupancy ratio of 0.846 (3:0.154 (3. The C—N bond lengths in the central C3N unit of the guanidinium ion range between 1.3308 (16 and 1.3508 (16 Å, indicating a degree of double-bond character. The central C atom is bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charge is delocalized in the CN3 plane. The C—N bond lengths in the terminal trimethylammonium group have values close to that of a typical single bond, and the second positive charge is localized there. In the crystal, the guanidinium ion is connected by N—H...O and C—H...O hydrogen bonds with the acetone molecules. C—H...π interactions are present between the guanidinium H atoms and the phenyl rings of the tetraphenylborate ions, leading to the formation of a two-dimensional supramolecular pattern along the bc plane.

  4. The role of uranium-arene bonding in H2O reduction catalysis

    Science.gov (United States)

    Halter, Dominik P.; Heinemann, Frank W.; Maron, Laurent; Meyer, Karsten

    2018-03-01

    The reactivity of uranium compounds towards small molecules typically occurs through stoichiometric rather than catalytic processes. Examples of uranium catalysts reacting with water are particularly scarce, because stable uranyl groups form that preclude the recovery of the uranium compound. Recently, however, an arene-anchored, electron-rich uranium complex has been shown to facilitate the electrocatalytic formation of H2 from H2O. Here, we present the precise role of uranium-arene δ bonding in intermediates of the catalytic cycle, as well as details of the atypical two-electron oxidative addition of H2O to the trivalent uranium catalyst. Both aspects were explored by synthesizing mid- and high-valent uranium-oxo intermediates and by performing comparative studies with a structurally related complex that cannot engage in δ bonding. The redox activity of the arene anchor and a covalent δ-bonding interaction with the uranium ion during H2 formation were supported by density functional theory analysis. Detailed insight into this catalytic system may inspire the design of ligands for new uranium catalysts.

  5. The first N-terminal unprotected (Gly-Aib)n peptide: H-Gly-Aib-Gly-Aib-OtBu.

    Science.gov (United States)

    Gessmann, Renate; Brückner, Hans; Petratos, Kyriacos

    2015-12-01

    Glycine (Gly) is incorporated in roughly half of all known peptaibiotic (nonribosomally biosynthesized antibiotic peptides of fungal origin) sequences and is the residue with the greatest conformational flexibility. The conformational space of Aib (α-aminoisobutyric acid) is severely restricted by the second methyl group attached to the Cα atom. Most of the crystal structures containing Aib are N-terminal protected. Deprotection of the N- or C-terminus of peptides may alter the hydrogen-bonding scheme and/or the structure and may facilitate crystallization. The structure reported here for glycyl-α-aminoisobutyrylglycyl-α-aminoisobutyric acid tert-butyl ester, C16H30N4O5, describes the first N-terminal-unprotected (Gly-Aib)n peptide. The achiral peptide could form an intramolecular hydrogen bond between the C=O group of Gly1 and the N-H group of Aib4. This hydrogen bond is found in all tetrapeptides and N-terminal-protected tripeptides containing Aib, apart from one exception. In the present work, this hydrogen bond is not observed (N...O = 5.88 Å). Instead, every molecule is hydrogen bonded to six other symmetry-related molecules with a total of eight hydrogen bonds per molecule. The backbone conformation starts in the right-handed helical region (and the left-handed helical region for the inverted molecule) and reverses the screw sense in the last two residues.

  6. Photocatalytic degradation of Reactive Black 5 and Malachite Green with ZnO and lanthanum doped nanoparticles

    International Nuclear Information System (INIS)

    Kaneva, N; Bojinova, A; Papazova, K

    2016-01-01

    Here we report the preparation of ZnO particles with different concentrations of La 3 + doping (0, 0.5 and 1 wt%) via sol-gel method. The nanoparticles are synthesized directly from Zn(CH 3 COO) 2 .2H 2 O in the presence of 1-propanol and triethylamine at 80°C. The conditions are optimized to obtain particles of uniform size, easy to isolate and purify. The nanoparticles are characterized by SEM, XRD and UV-Vis analysis. The photocatalytic properties of pure and La-doped ZnO are studied in the photobleaching of Malachite Green (MG) and Reactive Black 5 (RB5) dyes in aqueous solutions upon UV illumination. It is observed that the rate constant increases with the La loading up to 1 wt%. The doping helps to achieve complete mineralization of MG within a short irradiation time. 1 wt% La-doped ZnO nanoparticles show highest photocatalytic activity. The La 3+ doped ZnO particles degrade faster RB5 than MG. The reason is weaker N=N bond in comparison with the C-C bond between the central carbon atom and N,N-dimethylaminobenzyl in MG. The as-prepared ZnO particles can find practical application in photocatalytic purification of textile wastewaters. (paper)

  7. Crystal structure of N-(quinolin-6-ylhydroxylamine

    Directory of Open Access Journals (Sweden)

    Anuruddha Rajapakse

    2014-11-01

    Full Text Available The title compound, C9H8N2O, crystallized with four independent molecules in the asymmetric unit. The four molecules are linked via one O—H...N and two N—H...N hydrogen bonds, forming a tetramer-like unit. In the crystal, molecules are further linked by O—H...N and N—H...O hydrogen bonds forming layers parallel to (001. These layers are linked via C—H...O hydrogen bonds and a number of weak C—H...π interactions, forming a three-dimensional structure. The crystal was refined as a non-merohedral twin with a minor twin component of 0.319.

  8. 4-Bromo-N-(di-n-propylcarbamothioylbenzamide

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The synthesis of the title compound, C14H19BrN2OS, involves the reaction of 4-bromobenzoyl chloride with potassium thiocyanate in acetone followed by condensation of the resulting 4-bromobenzoyl isothiocyanate with di-n-propylamine. Typical thiourea carbonyl and thiocarbonyl double bonds, as well as shortened C—N bonds, are observed in the title compound. The short C—N bond lengths in the centre of the molecule reveal the effects of resonance in this part of the molecule. The asymmetric unit of the title compound contains two crystallographically independent molecules, A and B. There is very little difference between the bond lengths and angles of these molecules. In molecule B, one di-n-propyl group is twisted in a −antiperiplanar conformation with C—C—C—H = −179.1 (3° and the other adopts a −synclinal conformation with C—C—C—H = −56.7 (4°; in molecule A the two di-n-propyl groups are twisted in + and −antiperiplanar conformations, with C—C—C—H = −179.9 (3 and 178.2 (3°, respectively. In the crystal, the molecules are linked into dimeric pairs via pairs of N—H...S hydrogen bonds.

  9. Crystal structures of the dioxane hemisolvates of N-(7-bromomethyl-1,8-naphthyridin-2-ylacetamide and bis[N-(7-dibromomethyl-1,8-naphthyridin-2-ylacetamide

    Directory of Open Access Journals (Sweden)

    Robert Rosin

    2017-10-01

    Full Text Available The syntheses and crystal structures of N-(7-bromomethyl-1,8-naphthyridin-2-ylacetamide dioxane hemisolvate, C11H10BrN3O·0.5C4H8O2, (I, and bis[N-(7-dibromomethyl-1,8-naphthyridin-2-ylacetamide] dioxane hemisolvate, 2C11H9Br2N3O·0.5C4H8O2, (II, are described. The molecules adopt a conformation with the N—H hydrogen pointing towards the lone electron pair of the adjacent naphthyridine N atom. The crystals of (I are stabilized by a three-dimensional supramolecular network comprising N—H...N, C—H...N and C—H...O hydrogen bonds, as well as C—Br...π halogen bonds. The crystals of compound (II are stabilized by a three-dimensional supramolecular network comprising N—H...N, C—H...N and C—H...O hydrogen bonds, as well as C—H...π contacts and C—Br...π halogen bonds. The structure of the substituent attached in the 7-position of the naphthyridine skeleton has a fundamental influence on the pattern of intermolecular noncovalent bonding. While the Br atom of (I participates in weak C—Br...Oguest and C—Br...π contacts, the Br atoms of compound (II are involved in host–host interactions via C—Br...O=C, C—Br...N and C—Br...π bonding.

  10. El vínculo especial de cuidado: construcción de una teoría fundamentada O vínculo especial de cuidado: construção de uma teoria fundamentada The special bond of care: construction of a grounded theory

    Directory of Open Access Journals (Sweden)

    LORENA CHAPARRO DÍAZ

    2010-12-01

    Full Text Available El cuidado de una persona en situación de enfermedad crónica es cada día más frecuente y afecta la cotidianidad de muchas familias, pues les implica modificar el curso de la vida, las relaciones personales y los roles de la familia. En muchos casos, cuando uno de los miembros de la familia asume el papel de cuidador principal, es decir, la responsabilidad de cuidar a su familiar dependiente, con base en esa experiencia tiene la oportunidad de generar un "vínculo especial" de cuidado con la persona cuidada. El vínculo especial de cuidado entre esta díada compuesta por el cuidador y el cuidado es una alianza nueva y diferente llena de significado. Objetivo: comprender el significado del cuidado para la díada cuidador familiar-persona con enfermedad crónica. Método: se construyó una teoría fundamentada teniendo en cuenta los datos de veinte informantes residentes en Bogotá, que componían diez díadas. Resultados: la teoría sustantiva trascender en un 'vínculo especial' de cuidado: el paso de lo evidente a lo intangible, se generó a partir del estudio con tres variables: la limitación y la necesidad de ayuda, el paso del reto o compromiso al logro y la forma de trascender en un "vínculo especial". Discusión: la teoría que surge se analiza a la luz de las teorías de vínculos humanos, el significado de la vida, la autotrascendencia y el desarrollo del concepto de cuidado. Conclusiones: las díadas que viven una experiencia de enfermedad crónica perciben que se mueven a través de un eje que lleva a una situación de menor funcionalidad física que exige respuestas instrumentales de cuidado y, al mismo tiempo, surge un "vínculo especial" a través de espacios de proyección y trascendencia que redimensionan la experiencia, es decir, hay un paso de lo evidente a lo intangible.O cuidado de uma pessoa em situação de doença crônica é cada dia mais freqüente e afeta o dia-a-dia de muitas famílias, pois ele implica modificar o

  11. SHORT- AND LONG-TERM BOND STRENGTHS OF A GOLD STANDARD

    Directory of Open Access Journals (Sweden)

    Safa TUNCER

    2015-04-01

    Full Text Available Purpose: The aim of this study was to investigate the micro tensile bond strength of a self-etch adhesive system following 1 year storage in water. Materials and Methods: 10 sound human molar teeth were used for micro tensile bond strength test. Twostep self-etch dentin adhesive (Clearfil SE Bond® was applied to the flat dentin surfaces according to the manufacturer’s instructions. Composite blocks (Z- 250; 3M ESPE of 5 mm in height have been prepared by using layering technique. Teeth were stored in water for 24 hours at 37°C and longitudinally sectioned to obtain dentin sticks of 1 mm2.Randomly selected samples from half of the teeth were immediately subjected to micro tensile test and. Remaining specimens were tested after 1 year storage in water. Bond strengths were calculated in megapascal (MPa. Results: Means and standard deviations of the Clearfil SE Bond® micro tensile bond strength values were, respectively, 37.31 ± 13.77 MPa and 24.78 ± 2.99 MPa after 24 h and 1 year of storage in water. The difference was statistically significant (p=0.031. Conclusion: Long-term storage in water decreased the micro tensile bond strength values of the twostep self-etch adhesive which has been accepted as the gold standard in bond strength tests.

  12. Nickel-Catalyzed C–O Bond-Cleaving Alkylation of Esters: Direct Replacement of the Ester Moiety by Functionalized Alkyl Chains

    KAUST Repository

    Liu, Xiangqian; Jia, Jiaqi; Rueping, Magnus

    2017-01-01

    Two efficient protocols for the nickel-catalyzed aryl–alkyl cross-coupling reactions using esters as coupling components have been established. The methods enable the selective oxidative addition of nickel to acyl C–O and aryl C–O bonds and allow the aryl–alkyl cross-coupling via decarbonylative bond cleavage or through cleavage of a C–O bond with high efficiency and good functional group compatibility. The protocols allow the streamlined, unconventional utilization of widespread ester groups and their precursors, carboxylic acids and phenols, in synthetic organic chemistry.

  13. Nickel-Catalyzed C–O Bond-Cleaving Alkylation of Esters: Direct Replacement of the Ester Moiety by Functionalized Alkyl Chains

    KAUST Repository

    Liu, Xiangqian

    2017-06-07

    Two efficient protocols for the nickel-catalyzed aryl–alkyl cross-coupling reactions using esters as coupling components have been established. The methods enable the selective oxidative addition of nickel to acyl C–O and aryl C–O bonds and allow the aryl–alkyl cross-coupling via decarbonylative bond cleavage or through cleavage of a C–O bond with high efficiency and good functional group compatibility. The protocols allow the streamlined, unconventional utilization of widespread ester groups and their precursors, carboxylic acids and phenols, in synthetic organic chemistry.

  14. Estimation of strength in different extra Watson-Crick hydrogen bonds in DNA double helices through quantum chemical studies.

    Science.gov (United States)

    Bandyopadhyay, D; Bhattacharyya, D

    2006-10-15

    It was shown earlier, from database analysis, model building studies, and molecular dynamics simulations that formation of cross-strand bifurcated or Extra Watson-Crick hydrogen (EWC) bonds between successive base pairs may lead to extra rigidity to DNA double helices of certain sequences. The strengths of these hydrogen bonds are debatable, however, as they do not have standard linear geometry criterion. We have therefore carried out detailed ab initio quantum chemical studies using RHF/6-31G(2d,2p) and B3LYP/6-31G(2p,2d) basis sets to determine strengths of several bent hydrogen bonds with different donor and acceptors. Interaction energy calculations, corrected for the basis set superposition errors, suggest that N-H...O type bent EWC hydrogen bonds are possible along same strands or across the strands between successive base pairs, leading to significant stability (ca. 4-9 kcal/mol). The N-H...N and C-H...O type interactions, however, are not so stabilizing. Hence, consideration of EWC N-H...O H-bonds can lead to a better understanding of DNA sequence directed structural features. Copyright (c) 2006 Wiley Periodicals, Inc.

  15. Crystal structure of tetraaqua[2-(pyridin-2-yl-1H-imidazole-κ2N2,N3]iron(II sulfate

    Directory of Open Access Journals (Sweden)

    Zouaoui Setifi

    2015-04-01

    Full Text Available In the title compound, [Fe(C8H7N3(H2O4]SO4, the central FeII ion is octahedrally coordinated by two N atoms from the bidentate 2-(pyridin-2-yl-1H-imidazole ligand and by four O atoms of the aqua ligands. The largest deviation from the ideal octahedral geometry is reflected by the small N—Fe—N bite angle of 76.0 (1°. The Fe—N coordination bonds have markedly different lengths [2.1361 (17 and 2.243 (2 Å], with the shorter one to the pyrimidine N atom. The four Fe—O coordination bond lengths vary from 2.1191 (18 to 2.1340 (17 Å. In the crystal, the cations and anions are arranged by means of medium-strength O—H...O hydrogen bonds into layers parallel to the ab plane. Neighbouring layers further interconnect by N—H...O hydrogen bonds involving the imidazole fragment as donor group to one sulfate O atom as an acceptor. The resulting three-dimensional network is consolidated by C—H...O, C—H...π and π–π interactions.

  16. The estimation of H-bond and metal ion-ligand interaction energies in the G-Quadruplex ⋯ Mn+ complexes

    Science.gov (United States)

    Mostafavi, Najmeh; Ebrahimi, Ali

    2018-06-01

    In order to characterize various interactions in the G-quadruplex ⋯ Mn+ (G-Q ⋯ Mn+) complexes, the individual H-bond (EHB) and metal ion-ligand interaction (EMO) energies have been estimated using the electron charge densities (ρs) calculated at the X ⋯ H (X = N and O) and Mn+ ⋯ O (Mn+ is an alkaline, alkaline earth and transition metal ion) bond critical points (BCPs) obtained from the atoms in molecules (AIM) analysis. The estimated values of EMO and EHB were evaluated using the structural parameters, results of natural bond orbital analysis (NBO), aromaticity indexes and atomic charges. The EMO value increase with the ratio of ionic charge to radius, e/r, where a linear correlation is observed between EMO and e/r (R = 0.97). Meaningful relationships are also observed between EMO and indexes used for aromaticity estimation. The ENH value is higher than EOH in the complexes; this is in complete agreement with the trend of N⋯Hsbnd N and O⋯Hsbnd N angles, the E (2) value of nN → σ*NH and nO → σ*NH interactions and the difference between the natural charges on the H-bonded atom and the hydrogen atom of guanine (Δq). In general, the O1MO2 angle becomes closer to 109.5° with the increase in EMO and decrease in EHB in the presence of metal ion.

  17. Enhanced bonding between TiO2-Graphene oxide

    DEFF Research Database (Denmark)

    Naknikham, Usuma; Buffa, Vittorio; Yue, Yuanzheng

    analysis. Besides, the study of Ti-O-C and Ti-C interface bonding was carried out using XPS. The band-gap energy was determined using a UV-VIS spectrophotometer equipped with an integrating sphere. Thus, it was possible for us to determine the reactivity of the new photocatalysts under the visible light...... as photocatalysts, which can efficiently react with organic species under solar light and can enhance the adsorption of water pollutants [3]. Many studies have shown that TiO2-GO heterostructures can quickly mineralize organic dyes in solution under UV-light. However, it is not clear if these materials can provide...... the same performances under sunlight and with complex real water systems. Hence, this research aims to study the photocatalystic property on GO-TiO2 composites with aqueous solutions of selected emerging pollutants under visible light. The samples were synthesized via the in-situ sol-gel nucleation...

  18. Trap assisted space charge conduction in p-NiO/n-ZnO heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Manisha [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Tomar, Monika [Physics department, Miranda House, University of Delhi, Delhi-110007 (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)

    2015-06-15

    Highlights: • p-NiO/n-ZnO heterojunction diode with enhanced junction parameters has been prepared. • Temperature dependent I–V throw insight into the involved conduction mechanism. • SCLC with exponential trap distribution was found to be the dominant mechanism. • C–V measurement at different frequencies support the presence of traps. - Abstract: The development of short-wavelength p–n junction is essentially important for the realization of transparent electronics for next-generation optoelectronic devices. In the present work, a p–n heterojunction diode based on p-NiO/n-ZnO has been prepared under the optimised growth conditions exhibiting improved electrical and junction parameters. The fabricated heterojunction gives typical current–voltage (I–V) characteristics with good rectifying behaviour (rectification ratio ≈ 10{sup 4} at 2 V). The temperature dependent current–voltage characteristics of heterojunction diode have been studied and origin of conduction mechanism is identified. The space-charge limited conduction with exponential trap distribution having deep level trap is found to be the dominant conduction mechanism in the fabricated p–n heterojunction diode. The conduction and valence band discontinuities for NiO/ZnO heterostructure have been determined from the capacitance–voltage (C–V) measurements.

  19. Distribution of short block copolymer chains in Binary Blends of Block Copolymers Having Hydrogen Bonding

    Science.gov (United States)

    Kwak, Jongheon; Han, Sunghyun; Kim, Jin Kon

    2014-03-01

    A binary mixture of two block copolymers whose blocks are capable of forming the hydrogen bonding allows one to obtain various microdomains that could not be expected for neat block copolymer. For instance, the binary blend of symmetric polystyrene-block-poly(2-vinylpyridine) copolymer (PS-b-P2VP) and polystyrene-block-polyhydroxystyrene copolymer (PS-b-PHS) blends where the hydrogen bonding occurred between P2VP and PHS showed hexagonally packed (HEX) cylindrical and body centered cubic (BCC) spherical microdomains. To know the exact location of short block copolymer chains at the interface, we synthesized deuterated polystyrene-block-polyhydroxystyrene copolymer (dPS-b-PHS) and prepared a binary mixture with PS-b-P2VP. We investigate, via small angle X-ray scattering (SAXS) and neutron reflectivity (NR), the exact location of shorter dPS block chain near the interface of the microdomains.

  20. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  1. Bis(5,5-diphenylhydantoinato-κN3(ethylenediaminezinc(II

    Directory of Open Access Journals (Sweden)

    Xilan Hu

    2009-11-01

    Full Text Available In the title compound, [Zn(C15H11N2O22(C2H8N2], the ZnII atom is coordinated in a distorted tetrahedral geometry. Intramolecular N—H...O, C—H...O and C—H...N hydrogen bonds occur. In the crystal, molecules are linked by intermolecular N—H...O hydrogen bonds, forming a three-dimensional network.

  2. The denitrification paradox: The role of O2 in sediment N2O production

    Science.gov (United States)

    Barnes, Jonathan; Upstill-Goddard, Robert C.

    2018-01-01

    We designed a novel laboratory sediment flux chamber in which we maintained the headspace O2 partial pressure at preselected values, allowing us to experimentally regulate "in-situ" O2 to evaluate its role in net N2O production by an intertidal estuarine sediment (Tyne, UK). In short-term (30 h) incubations with 10 L of overlying estuarine water (∼3 cm depth) and headspace O2 regulation (headspace: sediment/water ratio ∼9:1), net N2O production was highest at 1.2% O2 (sub-oxic; 32.3 nmol N2O m-2 d-1), an order of magnitude higher than at either 0.0% (anoxic; 2.5 N2O nmol m-2 d-1) or 20.85% (ambient; 2.3 nmol N2O m-2 d-1) O2. In a longer-term sealed incubation (∼490 h) without O2 control, time-dependent behaviour of N2O in the tank headspace was highly non-linear with time, showing distinct phases: (i) an initial period of no or little change in O2 or N2O up to ∼ 100 h; (ii) a quasi-linear, inverse correlation between O2 and N2O to ∼360 h, in which O2 declined to ∼2.1% and N2O rose to ∼7800 natm; (iii) over the following 50 h a slower O2 decline, to ∼1.1%, and a more rapid N2O increase, to ∼12000 natm; (iv) over the next 24 h a slowed O2 decline towards undetectable levels and a sharp fall in N2O to ∼4600 natm; (iv) a continued N2O decrease at zero O2, to ∼3000 natm by ∼ 490 h. These results show clearly that rapid N2O consumption (∼115 nmol m-2 d-1), presumably via heterotrophic denitrification (HD), occurs under fully anoxic conditions and therefore that N2O production, which was optimal for sub-oxic O2, results from other nitrogen transformation processes. In experiments in which we amended sediment overlying water to either 1 mM NH4+ or 1 mM NO3-, N2O production rates were 2-134 nmol N2O m-2 d-1 (NH4+ addition) and 0.4-2.2 nmol N2O m-2 d-1 (NO3- addition). We conclude that processes involving NH4+ oxidation (nitrifier nitrification; nitrifier denitrification; nitrification-coupled denitrification) are principally responsible for N2O

  3. Influence of carbamide peroxide-based bleaching agents on the bond strength of resin-enamel/dentin interfaces Influência de agentes clareadores à base de peróxido de carbamida na resistência de união entre resina-esmalte/dentina

    Directory of Open Access Journals (Sweden)

    Vanessa Cavalli

    2005-03-01

    Full Text Available In this bond strength study, a bleaching agent containing 10% carbamide peroxide was applied over composite-teeth bonded interfaces of two adhesive systems applied to enamel and dentin. Sixteen human third molars were used for bonding procedures. Single Bond (SB and Clearfil SE Bond (CB were applied to enamel and dentin according to the manufacturers' instructions. A resin composite cube-like structure was incrementally built on the bonded surfaces. The restored teeth were sectioned into 0.7 mm thick slices that were trimmed at enamel or dentin bonded interfaces to an hourglass shape with a cross-sectional area of approximately 0.5 mm². Specimens were assigned to 8 groups (n = 10 according to the following factors under study: dental substrate (enamel and dentin; adhesive system (SB and CB and treatment (10% carbamide peroxide and not bleached/control. The bleaching gel (Opalescence was applied at the bonded interfaces for 6 hours during 14 days and after daily treatment specimens were stored in artificial saliva. Unbleached specimens were stored in artificial saliva for 14 days. Specimens were tested for tension and the data were analyzed by three-way ANOVA and Tukey's test (p Este estudo avaliou a resistência de união de dois sistemas adesivos ao esmalte e à dentina após a aplicação de agente clareador sobre a união compósito-dente. Dezesseis terceiros molares humanos foram usados nos procedimentos restauradores. Single Bond (SB e Clearfil SE Bond (CB foram aplicados no esmalte e na dentina de acordo com as instruções dos fabricantes. Um bloco de compósito foi construído nas superfícies tratadas com os adesivos. Os dentes restaurados foram seccionados em fatias com espessura de 0,7 mm, que receberam constrição na interface de união num formato de ampulheta, com área de secção transversal de ± 0,5 mm². Os espécimes foram distribuídos em 8 grupos (n = 10 de acordo com os fatores em estudo: substrato dental (esmalte e

  4. 26 CFR 1.103(n)-4T - Elective carryforward of unused private activity bond limit (temporary).

    Science.gov (United States)

    2010-04-01

    ... bond limit (temporary). 1.103(n)-4T Section 1.103(n)-4T Internal Revenue INTERNAL REVENUE SERVICE... Excluded from Gross Income § 1.103(n)-4T Elective carryforward of unused private activity bond limit... carryforward for any one or more projects described in A-5 of this § 1.103(n)-4T (carryforward projects). Q-2...

  5. European-scale modelling of groundwater denitrification and associated N2O production

    KAUST Repository

    Keuskamp, J.A.

    2012-06-01

    This paper presents a spatially explicit model for simulating the fate of nitrogen (N) in soil and groundwater and nitrous oxide (N 2O) production in groundwater with a 1 km resolution at the European scale. The results show large heterogeneity of nitrate outflow from groundwater to surface water and production of N 2O. This heterogeneity is the result of variability in agricultural and hydrological systems. Large parts of Europe have no groundwater aquifers and short travel times from soil to surface water. In these regions no groundwater denitrification and N 2O production is expected. Predicted N leaching (16% of the N inputs) and N 2O emissions (0.014% of N leaching) are much less than the IPCC default leaching rate and combined emission factor for groundwater and riparian zones, respectively. © 2012 Elsevier Ltd. All rights reserved.

  6. Observation of internucleotide NH...N hydrogen bonds in the absence of directly detectable protons

    International Nuclear Information System (INIS)

    Majumdar, Ananya; Kettani, Abdelali; Skripkin, Eugene; Patel, Dinshaw J.

    1999-01-01

    Several structural motifs found in nucleic acids involve N-H ... N hydrogen bonds in which the donor hydrogens are broadened to extinction due to chemical or conformational exchange. In such situations, it is impossible to use the well-established HNN-COSY or soft HNN-COSY experiments, which report the presence of the hydrogen bond directly on the donor proton(s). We present a pulse sequence, H(CN)N(H), for alleviating this problem in hydrogen bonds of the type N d H ... N a -CH, in which the donor N d nitrogen is correlated with the corresponding non-exchangeable C-H proton associated with the acceptor N a nitrogen. In this way, missing N d H ... N a correlations in an HNN-COSY spectrum may be recovered from CH-N d correlations in the H(CN)N(H) spectrum. By correlating a different set of nuclei relative to the HNN-COSY class of experiments, the H(CN)N(H) experiment also serves to remove ambiguities associated with degeneracies in HNN-COSY spectra. The technique is demonstrated on d(GGAGGAG) 4 ,a quadruplex containing a novel A . (G . G . G . G) . A hexad and on d(GGGCAGGT) 4 , containing a G . C . G . C tetrad, in which missing NH 2 ... N7 correlations are retrieved via H8-(N2,N6) correlations in the H(CN)N(H) spectrum

  7. Synthesis and crystal structure of rare earth complexes with o-nitrobenzoic acid and N, N-dimethylformamide

    Science.gov (United States)

    Zhao, Lifang; Chen, Yashao; Bao, Lin

    2010-03-01

    The rare-earth compound [Ce 0.5Sm 0.5( o-NBA) 3(DMF) 2] 2 (where o-NBA = o-nitrobenzoic acid, DMF = N, N-dimethylformamide) has been synthesized and structurally characterized. The crystal structure of the compound is characterized by Fourier transfer infrared spectroscopy (FT-IR), fluorescent emission spectroscopy (FES) and single-crystal X-ray diffraction. The results show that the compound crystallizes in a triclinic system, space group P-1 with a = 11.8284 (6) Å, b = 12.5082 (7) Å, c = 13.0203 (7) Å, α = 63.9650 (10)°, β = 66.3900 (10)°, γ = 71.7380 (10)°, V = 1563.7 (14) Å 3, Dc = 1.677 g/cm 3, Z = 1, F(0 0 0) = 790. Each Ln (III) atom is bridged by four o-nitro-benzoates and chelated by one o-nitrobenzoate. The Ln (III) atom is eight-coordinated by six oxygen atoms from five o-nitro-benzoates and two oxygen atoms from two DMF molecules. Hydrogen bonds and aromatic π⋯ π stacking interactions assemble the compound into a three-dimensional network. Luminescence measurement shows that the compound emits fluorescence.

  8. Diffusionless bonding of aluminum to Zircaloy-2

    International Nuclear Information System (INIS)

    Watson, R.D.

    1965-04-01

    Aluminum can be bonded to zirconium without difficulty even when a thin layer of oxide is present on the surface of the zirconium . No detectable diffusion takes place during the bonding process. The bond layer can be stretched as much. as 8% without affecting the bond. The bond can be heated for 1000 hours at 260 o C (500 o F), and can be water quenched from 260 o C (500 o F) without any noticeable change in the bond strength. An extrusion technique has been devised for making transition sections of aluminum bonded to zirconium which can then be used to join these metals by conventional welding. Welding can be done close to the bond zone without seriously affecting the integrity of the bond. This method of bonding aluminum to Zircaloy-2 is covered by Canadian patent 702,438 January 26, 1965. (author)

  9. Photoelectron spectroscopy of B4O4-: Dual 3c-4e π hyperbonds and rhombic 4c-4e o-bond in boron oxide clusters

    Science.gov (United States)

    Tian, Wen-Juan; Zhao, Li-Juan; Chen, Qiang; Ou, Ting; Xu, Hong-Guang; Zheng, Wei-Jun; Zhai, Hua-Jin; Li, Si-Dian

    2015-04-01

    Gas-phase anion photoelectron spectroscopy (PES) is combined with global structural searches and electronic structure calculations at the hybrid Becke 3-parameter exchange functional and Lee-Yang-Parr correlation functional (B3LYP) and single-point coupled-cluster with single, double, and perturbative triple excitations (CCSD(T)) levels to probe the structural and electronic properties and chemical bonding of the B4O40/- clusters. The measured PES spectra of B4O4- exhibit a major band with the adiabatic and vertical detachment energies (ADE and VDE) of 2.64 ± 0.10 and 2.81 ± 0.10 eV, respectively, as well as a weak peak with the ADE and VDE of 1.42 ± 0.08 and 1.48 ± 0.08 eV. The former band proves to correspond to the Y-shaped global minimum of Cs B4O4- (2A″), with the calculated ADE/VDE of 2.57/2.84 eV at the CCSD(T) level, whereas the weak band is associated with the second lowest-energy, rhombic isomer of D2h B4O4- (2B2g) with the predicted ADE/VDE of 1.43/1.49 eV. Both anion structures are planar, featuring a B atom or a B2O2 core bonded with terminal BO and/or BO2 groups. The same Y-shaped and rhombic structures are also located for the B4O4 neutral cluster, albeit with a reversed energy order. Bonding analyses reveal dual three-center four-electron (3c-4e) π hyperbonds in the Y-shaped B4O40/- clusters and a four-center four-electron (4c-4e) π bond, that is, the so-called o-bond in the rhombic B4O40/- clusters. This work is the first experimental study on a molecular system with an o-bond.

  10. Photoelectron spectroscopy of B4O4 (-): Dual 3c-4e π hyperbonds and rhombic 4c-4e o-bond in boron oxide clusters.

    Science.gov (United States)

    Tian, Wen-Juan; Zhao, Li-Juan; Chen, Qiang; Ou, Ting; Xu, Hong-Guang; Zheng, Wei-Jun; Zhai, Hua-Jin; Li, Si-Dian

    2015-04-07

    Gas-phase anion photoelectron spectroscopy (PES) is combined with global structural searches and electronic structure calculations at the hybrid Becke 3-parameter exchange functional and Lee-Yang-Parr correlation functional (B3LYP) and single-point coupled-cluster with single, double, and perturbative triple excitations (CCSD(T)) levels to probe the structural and electronic properties and chemical bonding of the B4O4 (0/-) clusters. The measured PES spectra of B4O4 (-) exhibit a major band with the adiabatic and vertical detachment energies (ADE and VDE) of 2.64 ± 0.10 and 2.81 ± 0.10 eV, respectively, as well as a weak peak with the ADE and VDE of 1.42 ± 0.08 and 1.48 ± 0.08 eV. The former band proves to correspond to the Y-shaped global minimum of Cs B4O4 (-) ((2)A″), with the calculated ADE/VDE of 2.57/2.84 eV at the CCSD(T) level, whereas the weak band is associated with the second lowest-energy, rhombic isomer of D2h B4O4 (-) ((2)B2g) with the predicted ADE/VDE of 1.43/1.49 eV. Both anion structures are planar, featuring a B atom or a B2O2 core bonded with terminal BO and/or BO2 groups. The same Y-shaped and rhombic structures are also located for the B4O4 neutral cluster, albeit with a reversed energy order. Bonding analyses reveal dual three-center four-electron (3c-4e) π hyperbonds in the Y-shaped B4O4 (0/-) clusters and a four-center four-electron (4c-4e) π bond, that is, the so-called o-bond in the rhombic B4O4 (0/-) clusters. This work is the first experimental study on a molecular system with an o-bond.

  11. Positively charged phosphorus as a hydrogen bond acceptor

    DEFF Research Database (Denmark)

    Hansen, Anne Schou; Du, Lin; Kjærgaard, Henrik Grum

    2014-01-01

    Phosphorus (P) is an element that is essential to the life of all organisms, and the atmospheric detection of phosphine suggests the existence of a volatile biogeochemical P cycle. Here, we investigate the ability of P to participate in the formation of OH···P hydrogen bonds. Three bimolecular......-stretching frequency red shifts and quantum chemical calculations, we find that P is an acceptor atom similar in strength to O and S and that all three P, O, and S atoms are weaker acceptors than N. The quantum chemical calculations show that both H and P in the OH···P hydrogen bond have partial positive charges......, as expected from their electronegativities. However, the electrostatic potentials show a negative potential area on the electron density surface around P that facilitates formation of hydrogen bonds....

  12. Sealing of cavities with lateral feed-throughs by anodic bonding

    DEFF Research Database (Denmark)

    Fléron, René; Jensen, Flemming

    2003-01-01

    The SESiBon(1)) project under the EU Growth programme has focussed on the investigation and exploitation of various silicon bonding techniques. Both standard silicon to pyrex wafer bonding and the more advanced silicon-to-silicon thin film anodic bonding has been investigated. Here we present...... the results of the work done to enable bonding of structured wafer surfaces, allowing lateral feed-throughs into sealed cavities.Lateral feed throughs are formed by means of RIE in a high-doped poly-silicon film deposited on an oxidized 4" silicon wafer. Next a BPSG (Boron Phosphorus Silicate Glass) layer...... is deposited in a PECVD reaction chamber onto the structured surface. The BPSG is used as an intermediate planarization layer. Planarization is done by annealing the wafer in a N2-O2-H2O ambient for 4 - 8h @ 900 degreesC. After planarization the two wafers are bonded together, sealing the cavities.Our work...

  13. Nitrogen bonding in aluminum oxynitride films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Paul W., E-mail: pwang@bradley.edu [Department of Physics, Bradley University, 1501 W. Bradley Ave., Peoria, IL 61625 (United States); Hsu, Jin-Cherng [Department of Physics, Fu Jen Catholic University, Hsinchuang, Taipei Hsien 24205, Taiwan (China); Lin, Yung-Hsin; Chen, Huang-Lu [Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, Hsinchuang, Taipei Hsien 24205, Taiwan (China)

    2010-04-15

    Assignment of oxidation states of N{sub 1s} in XPS spectra of aluminum oxynitride by curve fitting is difficult. The XPS curve fitting was previously discussed in the paper published in J. Non-Cryst. Solids, 224 (1998) 31, in which O{sub 1s} photoelectrons from GeO{sub 2} glass were used to illustrate how to fit the XPS spectra. Three different ways were pointed out to eliminate the ambiguity caused by curve fitting such as comparing the data to data from standard samples, investigating the continuous surface modifications caused by slowly sputtering the surface, and monitoring the continuous surface modifications due to gradual increases in surface species under heating, cooling, or irradiation. Our recent work in aluminum oxynitride films provides another example of how to fit the XPS spectra of N{sub 1s} by three different oxidation states of N{sup +}, N{sup 2+}, and N{sup 3+}, by comparison of the measured data to data from previously published results, and by the gradual changes of spectra as functions of the oxygen contents in the films. Three oxidation states in different nitrogen bonding in the aluminum oxynitride, AlO{sub 2}N, Al{sub 2}O{sub 5}N{sub 2}, and AlO{sub 3}N, were clearly deduced.

  14. Parental Bonding

    Directory of Open Access Journals (Sweden)

    T. Paul de Cock

    2014-08-01

    Full Text Available Estimating the early parent–child bonding relationship can be valuable in research and practice. Retrospective dimensional measures of parental bonding provide a means for assessing the experience of the early parent–child relationship. However, combinations of dimensional scores may provide information that is not readily captured with a dimensional approach. This study was designed to assess the presence of homogeneous groups in the population with similar profiles on parental bonding dimensions. Using a short version of the Parental Bonding Instrument (PBI, three parental bonding dimensions (care, authoritarianism, and overprotection were used to assess the presence of unobserved groups in the population using latent profile analysis. The class solutions were regressed on 23 covariates (demographics, parental psychopathology, loss events, and childhood contextual factors to assess the validity of the class solution. The results indicated four distinct profiles of parental bonding for fathers as well as mothers. Parental bonding profiles were significantly associated with a broad range of covariates. This person-centered approach to parental bonding has broad utility in future research which takes into account the effect of parent–child bonding, especially with regard to “affectionless control” style parenting.

  15. Short range charge/orbital ordering in La1-xSrxMn1-zBzO3 (B Cu,Zn) manganites

    International Nuclear Information System (INIS)

    Popovic, Z V; Cantarero, A; Thijssen, W H A; Paunovic, N; Dohcevic-Mitrovic, Z; Sapina, F

    2005-01-01

    We have measured the reflectivity spectra of La 1-x Sr x Mn 1-z B z O 3 (B = Cu, Zn; 0.17 ≤ x ≤ 0.30; 0 ≤ z ≤ 0.10) manganites over wide frequency (100-4000 cm -1 ) and temperature (80-300 K) ranges. Besides the previously observed infrared active modes or mode pairs at about 160 cm -1 (external mode), 350 cm -1 (bond bending mode) and 590 cm -1 (bond stretching mode), we have clearly observed two additional phonon modes at about 645 and 720 cm -1 below the temperature T 1 (T 1 C ), which coincides with the phase transition temperature when the system transforms from ferromagnetic metallic into a ferromagnetic insulator state. This transition is related to the formation of short range charge/orbitally ordered domains. The temperature T 1 of the phase transition is dependent on the doping concentration and for optimally doped samples we have found that T 1 ∼(0.93 ± 0.02) T C . Electrical resistivity and magnetization measurements versus temperature and magnetic field support the short range charge/orbital ordering scenario

  16. Quantitative assessment of Al-to-N bonding in dilute Al0.33Ga0.67As1-yNy

    International Nuclear Information System (INIS)

    Wagner, J.; Geppert, T.; Koehler, K.; Ganser, P.; Maier, M.

    2003-01-01

    A quantitative assessment of the group III-nitrogen bonding in low N-content Al 0.33 Ga 0.67 As 1-y N y with y≤0.04 has been performed, using vibrational mode Raman spectroscopy for the quantitative analysis of local bond formation in combination with energy dispersive x-ray analysis and secondary ion mass spectrometry for chemical analysis. Clear evidence is obtained for the preferential bonding of nitrogen to Al with one nitrogen atom being coordinated to, at the average, 3.4 Al neighbors. This strong preference for Al-to-N bond formation can be understood in terms of the much larger cohesive energy of the Al-N bond compared to the Ga-N chemical bond. In spite of this phase-separation-like formation of local Al-N complexes, the fundamental band gap and the E 1 /E 1 +Δ 1 band gaps show a continuous low-energy and high-energy shift, respectively, upon the addition of nitrogen as already known from dilute GaAsN

  17. Bonding of NH{sub 3}, CO, and NO to NiO and Ni-doped MgO: a problem for density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Pacchioni, Gianfranco [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca (Italy); Di Valentin, Cristiana [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca (Italy); Dominguez-Ariza, David [Departament de Quimica FIsica i Centre de Recerca en Quimica Teorica, Universitat de Barcelona i Parc Cientific de Barcelona, C/ Marti i Franques 1, E-08028 Barcelona (Spain); Illas, Francesc [Departament de QuImica FIsica i Centre de Recerca en Quimica Teorica, Universitat de Barcelona i Parc CientIfic de Barcelona, C/ Marti i Franques 1, E-08028 Barcelona (Spain); Bredow, Thomas [Theoretische Chemie, Universitaet Hannover, Am Kleinen Felde 30, 30167 Hannover (Germany); Kluener, Thorsten [Department Chemical Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany); Staemmler, Volker [Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany)

    2004-07-07

    Recent experimental results (Hoeft et al 2001 Phys. Rev. Lett. 87 086101) have questioned the capability of current theoretical methods for describing the bonding of NH{sub 3}, CO, and NO with the NiO(100) surface. We show that these systems do indeed represent a challenge to theory. For different reasons, density functional theory (DFT) fails in describing the bonding of these molecules to the NiO surface. The gradient-corrected functionals which work better for the properties of NH{sub 3}/NiO and CO/NiO (energies, geometries, vibrations) provide wrong answers for NO/NiO and vice versa. This is not due to the well-known difficulty as regards DFT describing the insulating character of NiO. In fact, exactly the same problem is found for isolated Ni{sup 2+} impurities in MgO. A correct description of the bonding of both closed-shell (NH{sub 3} and CO) and open-shell (NO) molecules to Ni{sub x}Mg{sub 1-x}O is obtained only after inclusion of dynamical correlation and dispersion forces via wavefunction-based methods. However, even with correlated calculations some uncertainties exist regarding the predicted value of the energy of adsorption of NO on NiO. While CASPT2 calculations reach reasonable agreement with experiment, the results of approximate coupled-cluster calculations (the multi-configuration coupled-electron-pair approach) substantially underestimate the adsorption energy.

  18. Convergent validity of the short-EMBU and the parental bonding instrument (PBI) : Dutch findings

    NARCIS (Netherlands)

    Arrindell, W.A.; Engebretsen, A.A

    2000-01-01

    Using a large sample of Spanish students (N = 796), Livianos-Aldana and Rojo-Moreno (1999) found poor evidence of convergent validity of the homologous dimensions that underlie the EMBU and the Parental Bonding Instrument. The Spanish findings however are neither in line with previous ones that were

  19. Poly[[(μ4-benzene-1,3,5-tricarboxylato-κ4O1:O1′:O2:O3bis(2,2-bipyridine-κ2N,N′(μ2-hydroxidodicopper(II] trihydrate

    Directory of Open Access Journals (Sweden)

    Mohamed N. El-kaheli

    2014-07-01

    Full Text Available In the title two-dimensional coordination polymer, {[Cu2(C9H3O6(OH(C10H8N22]·3H2O}n, each of the two independent CuII atoms is coordinated by a bridging OH group, two O atoms from two benzene-1,3,5-tricarboxylate (L ligands and two N atoms from a 2,2- bipyridine (bipy ligand in a distorted square-pyramidal geometry. Each L ligand coordinates four CuII atoms, thus forming a polymeric layer parallel to the bc plane with bipy molecules protruding up and down. The lattice water molecules involved in O—H...· O hydrogen bonding are situated in the inner part of each layer. The crystal packing is consolidated by π–π interactions between the aromatic rings of bipy ligands from neigbouring layers [intercentroid distance = 3.762 (3 Å].

  20. [(2S-2-(3,5-Dichloro-2-oxidobenzylideneamino-3-(4-hydroxyphenylpropionato-κ3O,N,O′](dimethylformamide-κOcopper(II

    Directory of Open Access Journals (Sweden)

    Hong Liang

    2008-04-01

    Full Text Available In the title complex, [Cu(C16H11Cl2NO4(C3H7NO] , the CuII atom is coordinated by two O atoms and one N atom from the tridentate ligand L2− {LH2 = (2S-[2-(3,5-dichloro-2-hydroxybenzylideneimino]-3-(4-hydroxyphenylpropionic acid} and one O atom from a dimethylformamide molecule, resulting in a slightly distorted square-planar geometry. The structure forms a one-dimensional chain through weak coordination bonds [Cu...O 3.080 (1, Cu...Cl 3.269 (1 Å] and a three-dimensional network through O—H...O and C—H...O hydrogen bonds.

  1. Interfacial-Bonding-Regulated CO Oxidation over Pt Atoms Immobilized on Gas-Exfoliated Hexagonal Boron Nitride

    KAUST Repository

    Liu, Xin

    2017-10-12

    We compared the electronic structure and CO oxidation mechanisms over Pt atoms immobilized by both B-vacancies and N-vacancies on gas-exfoliated hexagonal boron nitride. We showed that chemical bonds are formed between the B atoms associated with dangling bonds around the vacancies and Pt atoms. These bonds not only alter the thermodynamics and kinetics for the aggregation and effectively immobilize Pt atoms, but also significantly change the composition and energetic distribution of the electronic states of the composites to circumvent CO poisoning and to favour coadsorption of CO and O2, which further regulates the reactions to proceed through a Langmuir-Hinshelwood mechanism. The CO oxidation over Pt atoms immobilized at N-vacancies involves formation of an intermediate with –C(O)-O−O- bonded to Pt, the generation of CO2 by peroxo O−O bond scission and the reduction of the remnant oxygen, and the calculated energy barriers are 0.49, 0.23 and 0.18 eV, respectively. Such small energy barriers are comparable to those over Pt atoms trapped at B-vacancies, showing the effectiveness of Pt/hexagonal boron nitride atomic composites as catalysts for CO oxidation. These findings also suggest the feasibility of regulating the reaction pathways over single atom catalysts via interfacial engineering.

  2. cis-Dichlorido(dimethyl sulfoxide-κS(N,N,N′,N′-tetramethylguanidine-κN′′platinum(II

    Directory of Open Access Journals (Sweden)

    Ivan I. Eliseev

    2013-02-01

    Full Text Available In the title compound, cis-[PtCl2(C5H13N3(C2H6OS], the four-coordinate PtII atom is bonded to one N atom of the N,N,N′,N′-tetramethylguanidine ligand, one dimethyl sulfoxide S atom and two chloride ligands, forming a cis-square-planar geometry. The bond lengths and angles of the N—Pt—Cl functionality are typical for imine dichloridoplatinum(II complexes. The H atom of the imino group is oriented towards the O atom of the sulfoxide group of a neighboring molecule and forms an N—H...O hydrogen bond.

  3. As concepções de vínculo e a relação com o controle da tuberculose Los conceptos de enlace y la relación con el control de la tuberculosis The concepts of bonding and the relation with tuberculosis control

    Directory of Open Access Journals (Sweden)

    Anna Luiza Castro Gomes

    2009-06-01

    Full Text Available O estudo analisa as concepções de vínculo que norteiam as práticas das Equipes de Saúde da Família (ESF com relação às medidas de controle da Tuberculose (TB no âmbito da APS, no município de Bayeux - PB/Brasil. Mediante abordagem qualitativa, envolveu 37 profissionais de saúde, sendo os dados coletados pela técnica de grupo focal em abril de 2007 e analisados conforme análise de discurso. As concepções das ESF sobre vínculo revelaram coerência com os conceitos teóricos estudados, sendo evidenciadas, na relação equipe/doente, confiança, compromisso, intimidade, e responsabilidade. Aspectos potencializadores do vínculo: o tempo de atuação da ESF na comunidade; número de consultas e visitas domiciliares e envolvimento com o controle da TB. Fragilidades no vínculo: insuficiência de medidas intersetoriais, situação sócio-econômica do doente e abandono da família. Ressaltamos a necessidade de mudanças que fortaleçam a relação ESF/doente, e que, desse modo, concretize um cuidado fundamentado na integralidade no cotidiano dos serviços de saúde.El estudio analiza las concepciones de vínculo que orientan las prácticas de los Equipos de Salud de la Familia (ESF con relación a las medidas de control de la Tuberculosis (TB en el ámbito de la APS, en el municipio de Bayeux-PB/Brasil. Mediante un abordaje cualitativo, en que participaron 37 profesionales de la salud, siendo los datos recolectados por la técnica de grupo focal, en abril de 2007 y analizados conforme el análisis del discurso. Las concepciones de las ESF sobre el vínculo revelaron coherencia con los conceptos teóricos estudiados, siendo evidenciados, en la relación equipo/enfermo: confianza, compromiso, intimidad, y responsabilidad. Aspectos de potenciación del vínculo: el tiempo de actuación de la ESF en la comunidad; número de consultas y visitas domiciliares, participación en el control de la TB. Fragilidades en el vínculo: insuficiencia

  4. rac-N-[Hydroxy(4-pyridylmethyl]picolinamide: a hemiamidal

    Directory of Open Access Journals (Sweden)

    Muhammad Altaf

    2010-07-01

    Full Text Available The title compound, C12H11N3O2, a hemiamidal, was synthesized by solvent-free aldol condensation at room temperature by grinding picolinamide with isonicotinaldehyde in a 1:1 molar ratio. In the molecule, the two pyridine rings are inclined to one another by 58.75 (6°. They are linked, at positions 2 and 4, by the hemiamidal bridge (–CO—NH—CHOH–. The NH-group H atom forms an intramolecular hydrogen bond with the N atom of the picolinamide pyridine ring. In the crystal, symmetry-related molecules are linked via N—H...O hydrogen bonds, involving the NH group H atom of the hemiamidal bridge and the hydroxy O atom, forming inversion-related dimers, with graph-set R22(8. Adjacent molecules are also linked via O—H...N hydrogen bonds, involving the hydroxy substituent and the 4-pyridine N atom. Together these interactions lead to the formation of double-stranded ribbon-like hydrogen-bonded polymers propagating in [010]. The latter are further connected via C—H...O hydrogen bonds involving the carbonyl O atom, so forming a two-dimensional network in (011.

  5. Reduction-oxidation Enabled Glass-ceramics to Stainless Steel Bonding Part II interfacial bonding analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steve Xunhu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Among glass-ceramic compositions modified with a variety of oxidants (AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO3 and WO3) only CuO and CoO doped glass-ceramics showed existence of bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The CuO-modified glass-ceramics demonstrate the formation of a continuous layer of strong bonding Cr2O3 at the interface in low partial oxygen (PO2) atmosphere. However, in a local reducing atmosphere, the CuO is preferentially reduced at the surface of glass-ceramic rather than the GC-SS interface for redox. The CoO-modified glass-ceramics demonstrate improved GC-SS bonding. But the low mobility of Co++ ions in the GC limited the amount of CoO that can diffuse to and participate in redox at the interface.

  6. Tensile bond srength between composite resin using different adhesive systems Avaliação da resistência à ruptura por tração entre resina composta e diversos adesivos dentinários

    Directory of Open Access Journals (Sweden)

    Patrícia Dias

    2002-11-01

    Full Text Available The aim of this study was evaluate the tensile bond strength (TBS among nine adhesive systems and one composite resin. The groups were made as follows: Single Bond/3M (G1, Etch & Prime 3.0 /Degussa (G2, Bond 1/Jeneric/Pentron (G3, Prime & Bond 2.1/Dentsply (G4, OptiBond FL/Kerr (G5, Stae/SDI (G6, Snap Bond/ Copalite-Cooley & Cooley (G7, Prime & Bond NT/Dentsply (G8, Scotchbond Multi Purpose Plus/3M (G9. The control group (G10 was made only with the composite resin (Z100/3M. One hundred specimens were made, 10 for each group. There were significant differences on TBS among groups. G3 showed the hightest TBS in comparison to other tested groups. G10 presented higher TBS than all groups. O objetivo desta pesquisa foi investigar in vitro a resistência de união entre uma resina composta e nove sistemas adesivos dentinários. Os adesivos estudados foram assim agrupados: Single Bond/3M (G1, Etch & Prime 3.0/ Degussa (G2, Bond 1/Jeneric/Pentron (G3, Prime & Bond 2.1/Dentsply (G4, OptiBond FL/Kerr (G5, Stae/SDI (G6, Snap Bond/Copalite (G7, Prime & Bond NT/Dentsply (G 8, Scotchbond Multi Purpose Plus/3M (G9. O Grupo controle (G10. foi confeccionado somente com a resina composta (Z100/3M. Foram confeccionados 100 espécimes, 10 para cada grupo. Houve diferenças estatísticas significantes entre os grupos. O grupo 3 foi o que mostrou a mais alta resistência em comparação aos nove testados. O grupo controle (G10 apresentou a mais alta resistência entre todos os Grupos.  

  7. Origin of the Ability of α-Fe2 O3 Mesopores to Activate C-H Bonds in Methane.

    Science.gov (United States)

    Dong, Bing; Han, Zhen; Zhang, Yongbo; Yu, Youyi; Kong, Aiguo; Shan, Yongkui

    2016-02-01

    Methane is a most abundant and inexpensive hydrocarbon feedstock for the production of chemicals and fuels. However, it is extremely difficult to directly convert methane to higher hydrocarbons because the C-H bonds in methane are the most stable C-H bonds of all hydrocarbons. The activation of the C-H bonds in methane by using an efficient and mild route remains a daunting challenge. Here, we show that the inner surface structures of the pore walls in mesoporous α-Fe 2 O 3 possess excellent catalytic performance for methane activation and convert C-H bonds into the C-O bonds in an O 2 atmosphere at 140 °C. We found that such unusual structures are mainly comprised of turbostratic ribbons and K crystal faces and have higher catalytic activity than the (110) plane. These results are without precedent in the history of catalysis chemistry and will provide a new pathway for designing and preparing highly efficient catalytic materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. [(Nitrato-κ2O,O′(nitrito-κ2O,O′(0.25/1.75]bis(1,10-phenanthroline-κ2N,N′cadmium(II

    Directory of Open Access Journals (Sweden)

    Ezzatollah Najafi

    2011-02-01

    Full Text Available The reaction of cadmium nitrate and sodium nitrite in the presence of 1,10-phenanthroline yields the mixed nitrate–nitrite title complex, [Cd(NO21.75(NO30.25(C12H8N22]. The metal ion is bis-chelated by two N-heterocycles as well as by the nitrate/nitrite ions in a distorted dodecahedral CdN4O4 coordination environment. One nitrite group is ordered; the other is disordered with respect to a nitrate group (ratio 0.75:0.25 concerning the O atom that is not involved in bonding to the metal ion.

  9. BF3·Et2O-promoted cleavage of the Csp-Csp2 bond of 2-propynolphenols/anilines: route to C2-alkenylated benzoxazoles and benzimidazoles.

    Science.gov (United States)

    Song, Xian-Rong; Qiu, Yi-Feng; Song, Bo; Hao, Xin-Hua; Han, Ya-Ping; Gao, Pin; Liu, Xue-Yuan; Liang, Yong-Min

    2015-02-20

    A novel BF3·Et2O-promoted tandem reaction of easily prepared 2-propynolphenols/anilines and trimethylsilyl azide is developed to give C2-alkenylated benzoxazoles and benzimidazoles in moderate to good yields. Most reactions could be accomplished in 30 min at room temperature. This tandem process involves a Csp-Csp2 bond cleavage and a C-N bond formation. Moreover, both tertiary and secondary propargylic alcohols with diverse functional groups were tolerated under the mild conditions.

  10. Tris(2,2′-bipyridine-κ2N,N′cobalt(III bis[bis(pyridine-2,6-dicarboxylato-κ3O2,N,O6cobaltate(III] perchlorate dimethylformamide hemisolvate 1.3-hydrate

    Directory of Open Access Journals (Sweden)

    Irina A. Golenya

    2012-10-01

    Full Text Available In the title compound, [Co(C10H8N23][Co(C7H3NO42]2(ClO4·0.5C3H7NO·1.3H2O, the CoIII atom in the complex cation is pseudooctahedrally coordinated by six N atoms of three chelating bipyridine ligands. The CoIII atom in the complex anion is coordinated by two pyridine N atoms and four carboxylate O atoms of two doubly deprotonated pyridine-2,6-dicarboxylate ligands in a distorted octahedral geometry. One dimethylformamide solvent molecule and two water molecules are half-occupied and one water molecule is 0.3-occupied. O—H...O hydrogen bonds link the water molecules, the perchlorate anions and the complex anions. π–π interactions between the pyridine rings of the complex anions are also observed [centroid–centroid distance = 3.804 (3 Å].

  11. (Dimethylformamide-κO(2-hydroxybenzoato-κ2O1,O1′[tris(1-methyl-1H-benzimidazol-2-ylmethyl-κN3amine-κN]manganese(II perchlorate dimethylformamide monosolvate

    Directory of Open Access Journals (Sweden)

    Baoliang Qi

    2010-10-01

    Full Text Available In the title complex, [Mn(C7H5O3(C27H27N7(C3H7NO]ClO4·C3H7NO, the MnII ion is coordinated in a slightly distorted monocapped trigonal-prismatic geometry. The tris(1-methyl-1H-benzimidazol-2-ylmethylamine (Mentb ligand coordinates in a tetradentate mode and the coordination is completed by a bis-chelating salicylate ligand and a dimethylformamide ligand. The hydroxy group and the ortho H atoms of the salicylate ligand were refined as disordered over two sites with occupancies of 0.581 (8 and 0.419 (8. Both disorder components of the hydroxy group form intramolecular O—H...O hydrogen bonds.

  12. Barrier reduction via implementation of InGaN interlayer in wafer-bonded current aperture vertical electron transistors consisting of InGaAs channel and N-polar GaN drain

    International Nuclear Information System (INIS)

    Kim, Jeonghee; Laurent, Matthew A.; Li, Haoran; Lal, Shalini; Mishra, Umesh K.

    2015-01-01

    This letter reports the influence of the added InGaN interlayer on reducing the inherent interfacial barrier and hence improving the electrical characteristics of wafer-bonded current aperture vertical electron transistors consisting of an InGaAs channel and N-polar GaN drain. The current-voltage characteristics of the transistors show that the implementation of N-polar InGaN interlayer effectively reduces the barrier to electron transport across the wafer-bonded interface most likely due to its polarization induced downward band bending, which increases the electron tunneling probability. Fully functional wafer-bonded transistors with nearly 600 mA/mm of drain current at V GS  = 0 V and L go  = 2 μm have been achieved, and thus demonstrate the feasibility of using wafer-bonded heterostructures for applications that require active carrier transport through both materials

  13. catena-Poly[copper(II-{μ3-4,4′-dibromo-2,2′-[butane-1,4-diylbis(nitrilomethanylylidene]diphenolato-κ4N,O:N′,O′:O′}

    Directory of Open Access Journals (Sweden)

    Hadi Kargar

    2011-04-01

    Full Text Available The asymmetric unit of the title coordination polymer, [Cu(C18H16Br2N2O2]n, consists of a Schiff base complex in which a crystallographic twofold rotation axis bisects the central C—C bonds of the n-butyl spacers of the designated Schiff base ligands, making symmetry-related dimer units, which are twisted around CuII atoms in a bis-bidentate coordination mode. In the crystal, these dimeric units are connected through Cu—O bonds, forming one-dimensional coordination polymers, which propagate along [001]. The CuII atom adopts a square-based pyramidal coordination geometry, being coordinated by two N and two O atoms of symmetry-related ligands and by a third O atom of a neighboring complex. Furthermore, intermolecular π–π interactions [centroid–centroid distance = 3.786 (2 Å] and C—H...O interactions stabilize the crystal packing.

  14. 6-Methyl-2-pyridyl N-acetyl-1-thio-β-d-glucosa-minide methanol monosolvate.

    Science.gov (United States)

    Chen, Bo; Guo, Miao; Jin, Wei-Hua; Wang, Yan-Wei; Liang, Hong-Ze

    2010-09-15

    In the title compound, C(14)H(20)N(2)O(5)S·CH(4)O, the pyran-ose and pyridine rings are linked through an S atom. The pyran-ose ring has a normal chair conformation. An intra-molecular O-H⋯N hydrogen bond occurs. Inter-molecular O-H⋯O, N-H⋯O, O-H⋯N and weak C-H⋯O hydrogen bonding is present in the crystal structure.

  15. FEM thermal and stress analysis of bonded GaN-on-diamond substrate

    Science.gov (United States)

    Zhai, Wenbo; Zhang, Jingwen; Chen, Xudong; Bu, Renan; Wang, Hongxing; Hou, Xun

    2017-09-01

    A three-dimensional thermal and stress analysis of bonded GaN on diamond substrate is investigated using finite element method. The transition layer thickness, thermal conductivity of transition layer, diamond substrate thickness and the area ratio of diamond and GaN are considered and treated appropriately in the numerical simulation. The maximum channel temperature of GaN is set as a constant value and its corresponding heat power densities under different conditions are calculated to evaluate the influences that the diamond substrate and transition layer have on GaN. The results indicate the existence of transition layer will result in a decrease in the heat power density and the thickness and area of diamond substrate have certain impact on the magnitude of channel temperature and stress distribution. Channel temperature reduces with increasing diamond thickness but with a decreasing trend. The stress is reduced by increasing diamond thickness and the area ratio of diamond and GaN. The study of mechanical and thermal properties of bonded GaN on diamond substrate is useful for optimal designs of efficient heat spreader for GaN HEMT.

  16. [(Z-O-Ethyl N-(4-nitrophenylthiocarbamato-κS](triethylphosphine-κPgold(I

    Directory of Open Access Journals (Sweden)

    Soo Yei Ho

    2009-11-01

    Full Text Available In the title compound, [Au(C9H9N2O3S(C6H15P], two virtually identical molecules comprise the asymmetric unit. These are connected by Au...Au [3.6796 (4 Å] and Au...S [3.6325 (18 and 3.5471 (18 Å] contacts, forming a dimeric aggregate. The presence of intramolecular Au...O contacts [2.993 (5 and 2.957 (5 Å] is responsible for the slight deviations from the ideal linear coordination environments about the AuI ions. The conformation about the central C=N double bond is Z. Supramolecular chains sustained by π–π [3.573 (4 Å] and C—H...π interactions are evident in the crystal structure. These are connected into layers via weak intermolecular C—H...O interactions involving the nitro-group O atoms.

  17. Crystal structure of dichlorido{2-methyl-2-[(pyridin-2-ylmethylamino]propan-1-ol-κ3N,N′,O}copper(II from synchrotron data

    Directory of Open Access Journals (Sweden)

    Jong Won Shin

    2016-10-01

    Full Text Available The title compound, [CuCl2(C10H16N2O], has been synthesized and characterized by synchrotron single-crystal X-ray diffraction and FT–IR spectroscopy. The 2-methyl-2-[(pyridin-2-ylmethylamino]propan-1-ol (mpmapOH ligand, including pyridine, amine and hydroxy groups, was synthesized by the reaction of 2-amino-2-methylpropan-1-ol with pyridine-2-carbaldehyde and was characterized by NMR spectroscopy. In its CuII complex, the metal ion has a distorted square-pyramidal coordination geometry with two N and one O atom of the mpmapOH ligand and one chloride anion in the equatorial plane, and the second chloride in an axial position. The bond lengths involving the CuII ion range from 1.9881 (10 to 2.0409 (9 for the Cu—N and Cu—O bonds, and from 2.2448 (5 to 2.5014 (6 Å for the equatorial and axial Cu—Cl bonds, respectively. Intermolecular hydrogen bonds (N—H...Cl and O—H...Cl and face-to-face π–π interactions stabilize the molecular structure and give rise to a two-dimensional supramolecular structure extending parallel to (101.

  18. Controlling the Sn-C bonds content in SnO2@CNTs composite to form in situ pulverized structure for enhanced electrochemical kinetics.

    Science.gov (United States)

    Cheng, Yayi; Huang, Jianfeng; Qi, Hui; Cao, Liyun; Luo, Xiaomin; Li, Jiayin; Xu, Zhanwei; Yang, Jun

    2017-12-07

    The Sn-C bonding content between the SnO 2 and CNTs interface was controlled by the hydrothermal method and subsequent heat treatment. Electrochemical analysis found that the SnO 2 @CNTs with high Sn-C bonding content exhibited much higher capacity contribution from alloying and conversion reaction compared with the low content of Sn-C bonding even after 200 cycles. The high Sn-C bonding content enabled the SnO 2 nanoparticles to stabilize on the CNTs surface, realizing an in situ pulverization process of SnO 2 . The in situ pulverized structure was beneficial to maintain the close electrochemical contact of the working electrode during the long-term cycling and provide ultrafast transfer paths for lithium ions and electrons, which promoted the alloying and conversion reaction kinetics greatly. Therefore, the SnO 2 @CNTs composite with high Sn-C bonding content displayed highly reversible alloying and conversion reaction. It is believed that the composite could be used as a reference for design chemically bonded metal oxide/carbon composite anode materials in lithium-ion batteries.

  19. Ethyl 4,6-O-benzylidene-2-deoxy-N-phthalimido-1-thio-β-d-glucopyranoside

    Directory of Open Access Journals (Sweden)

    Göran Widmalm

    2010-12-01

    Full Text Available In the title compound, C23H23NO6S, the plane of the N-phthalimido group makes a dihedral angle of 67.4 (1° with the least square plane of the sugar ring defined by the C2, C3, C5 and O5 atoms using standard glucose nomenclature. The thioethyl group has the exo-anomeric conformation. In the crystal, intermolecular hydrogen bonds involving the hydroxy groups and the carbonyl O atoms of adjacent N-phthalimido groups form chains parallel to the b axis. The chains are further stabilized by C—H...π interactions.

  20. The Effect of CuO Nanoparticles on Antimicrobial Effects and Shear Bond Strength of Orthodontic Adhesives.

    Science.gov (United States)

    Toodehzaeim, Mohammad Hossein; Zandi, Hengameh; Meshkani, Hamidreza; Hosseinzadeh Firouzabadi, Azadeh

    2018-03-01

    Orthodontic appliances facilitate microbial plaque accumulation and increase the chance of white spot lesions. There is a need for new plaque control methods independent of patient's cooperation. The aim of this study was to determine the effects of incorporating copper oxide (CuO) nanoparticles on antimicrobial properties and bond strength of orthodontic adhesive. CuO nanoparticles were added to the composite transbond XT at concentrations of 0.01, 0.5 and 1 wt.%. To evaluate the antimicrobial properties of composites containing nanoparticles, the disk agar diffusion test was used. For this purpose, 10 discs from each concentration of nano-composites (totally 30 discs) and 10 discs from conventional composite (as the control group) were prepared. Then the diameter of streptococcus mutans growth inhibition around each disc was determined in blood agar medium. To evaluate the shear bond strength, with each concentration of nano-composites as well as the control group (conventional composite), 10 metal brackets were bonded to the human premolars and shear bond strength was determined using a universal testing machine. Nano-composites in all three concentrations showed significant antimicrobial effect compared to the control group ( p nano-composites compared to control group ( p = 0.695). Incorporating CuO nanoparticles into adhesive in all three studied concentrations added antimicrobial effects to the adhesive with no adverse effects on shear bond strength.

  1. (Acetylacetonato-κ2O,O′bis[5-methoxy-2-(naphth[1,2-d][1,3]oxazol-2-ylphenyl-κ2C1,N]iridium(III

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Zhou

    2011-10-01

    Full Text Available In the title compound, [Ir(C18H12NO22(C5H7O2], the Ir atom is O,O′-chelated by the acetylacetonate group and C,N-chelated by the 2-arylnaphth[1,2-d]oxazole groups. The six-coordinate metal atom displays a distorted octahedral geometry. Intramolecular C—H...O hydrogen bonds occur. In the crystal, intermolecular C—H...O hydrogen bonds link the molecules into columns parallel to the b axis.

  2. Crystal structure of an unknown solvate of bis(tetra-n-butylammonium [N,N′-(4-trifluoromethyl-1,2-phenylenebis(oxamato-κ4O,N,N′,O′]nickelate(II

    Directory of Open Access Journals (Sweden)

    François Eya'ane Meva

    2015-06-01

    Full Text Available In the title compound, [N(C4H94]2[Ni(C11H3F3N2O6] or [N(n-Bu4]2[Ni(topbo] [n-Bu = n-butyl and topbo = 4-trifluoromethyl-1,2-phenylenebis(oxamate], the Ni2+ cation is coordinated by two deprotonated amido N atoms and two carboxylate O atoms, setting up a slightly distorted square-planar coordination environment. The [Ni(topbo]2− anion lies on a twofold rotation axis. Due to an incompatibility with the point-group symmetry of the complete molecule, orientational disorder of the CF3 group is observed. The tetrahedral ammonium cations and the anion are linked by weak intermolecular C—H...O and C—H...F hydrogen-bonding interactions into a three-dimensional network. A region of electron density was treated with the SQUEEZE procedure in PLATON [Spek (2015. Acta Cryst. C71, 9–18] following unsuccessful attempts to model it as plausible solvent molecule(s. The given chemical formula and other crystal data do not take into account the unknown solvent molecule.

  3. Molecular dynamics simulation based on the multi-component molecular orbital method: Application to H5O2+,D5O2+,andT5O2+

    International Nuclear Information System (INIS)

    Ishimoto, Takayoshi; Koyama, Michihisa

    2012-01-01

    Graphical abstract: Molecular dynamics method based on multi-component molecular orbital method was applied to basic hydrogen bonding systems, H 5 O 2 + , and its isotopomers (D 5 O 2 + andT 5 O 2 + ). Highlights: ► Molecular dynamics method with nuclear quantum effect was developed. ► Multi-component molecular orbital method was used as ab initio MO calculation. ► Developed method applied to basic hydrogen bonding system, H 5 O 2 + , and isotopomers. ► OO vibrational stretching reflected to the distribution of protonic wavefunctions. ► H/D/T isotope effect was also analyzed. - Abstract: We propose a molecular dynamics (MD) method based on the multi-component molecular orbital (MC M O) method, which takes into account the quantum effect of proton directly, for the detailed analyses of proton transfer in hydrogen bonding system. The MC M O based MD (MC M O-MD) method is applied to the basic structures, H 5 O 2 + (called “Zundel ion”), and its isotopomers (D 5 O 2 + andT 5 O 2 + ). We clearly demonstrate the geometrical difference of hydrogen bonded OO distance induced by H/D/T isotope effect because the OO in H-compound was longer than that in D- or T-compound. We also find the strong relation between stretching vibration of OO and the distribution of hydrogen bonded protonic wavefunction because the protonic wavefunction tends to delocalize when the OO distance becomes short during the dynamics. Our proposed MC M O-MD simulation is expected as a powerful tool to analyze the proton dynamics in hydrogen bonding systems.

  4. Photoelectron spectroscopy of B4O4−: Dual 3c-4e π hyperbonds and rhombic 4c-4e o-bond in boron oxide clusters

    International Nuclear Information System (INIS)

    Tian, Wen-Juan; Chen, Qiang; Ou, Ting; Li, Si-Dian; Zhao, Li-Juan; Xu, Hong-Guang; Zheng, Wei-Jun; Zhai, Hua-Jin

    2015-01-01

    Gas-phase anion photoelectron spectroscopy (PES) is combined with global structural searches and electronic structure calculations at the hybrid Becke 3-parameter exchange functional and Lee-Yang-Parr correlation functional (B3LYP) and single-point coupled-cluster with single, double, and perturbative triple excitations (CCSD(T)) levels to probe the structural and electronic properties and chemical bonding of the B 4 O 4 0/− clusters. The measured PES spectra of B 4 O 4 − exhibit a major band with the adiabatic and vertical detachment energies (ADE and VDE) of 2.64 ± 0.10 and 2.81 ± 0.10 eV, respectively, as well as a weak peak with the ADE and VDE of 1.42 ± 0.08 and 1.48 ± 0.08 eV. The former band proves to correspond to the Y-shaped global minimum of C s B 4 O 4 − ( 2 A″), with the calculated ADE/VDE of 2.57/2.84 eV at the CCSD(T) level, whereas the weak band is associated with the second lowest-energy, rhombic isomer of D 2h B 4 O 4 − ( 2 B 2g ) with the predicted ADE/VDE of 1.43/1.49 eV. Both anion structures are planar, featuring a B atom or a B 2 O 2 core bonded with terminal BO and/or BO 2 groups. The same Y-shaped and rhombic structures are also located for the B 4 O 4 neutral cluster, albeit with a reversed energy order. Bonding analyses reveal dual three-center four-electron (3c-4e) π hyperbonds in the Y-shaped B 4 O 4 0/− clusters and a four-center four-electron (4c-4e) π bond, that is, the so-called o-bond in the rhombic B 4 O 4 0/− clusters. This work is the first experimental study on a molecular system with an o-bond

  5. Chemical bond properties and Mossbauer spectroscopy in (La1-xMx)2CuO4 (M=Ba, Sr)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By using the average band-gap model, the chemical bond properties of (La1-x Mx)2CuO4(M=Ba, Sr) were calculated . The calculated covalencies for Cu(O and La(O bond in the compounds are 0.3 and 0.03 respectively. M?ssbauer isomer shifts of 57Fe doped in La2CuO4 and 119Sn doped in La2CuO4 were calculated by using the chemical surrounding factor defined by covalency and electronic polarizability. Four valence state tin and three valence iron sites were identified in 57Fe and 119Sn doped La2CuO4.

  6. Quadruple metal-metal bonds with strong donor ligands. Ultraviolet photoelectron spectroscopy of M{sub 2}(form){sub 4} (M = Cr, Mo, W; form = N,N{prime}-diphenylformamidinate)

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenberger, D.L.; Lynn, M.A.; Chisholm, M.H.

    1999-12-29

    The He I photoelectron spectra of M{sub 2}(form){sub 4}(M = Cr, Mo, W; form - N,N{prime}-diphenylformamidinate) and Mo{sub 2}(cyform){sub 4} (cyform = N,N{prime}-dicyclohexylformamidinate) are presented. For comparison, the Ne I, He I, and He II photoelectron spectra of Mo{sub 2}(p-CH{sub 3}-form){sub 4} have also been obtained. The valence ionization features of these molecules are interpreted based on (1) the changes that occur with the metal and ligand substitutions, (2) the changes in photoelectron cross sections with excitation source, and (3) the changes from previously studied dimetal complexes. These photoelectron spectra are useful for revealing the effects that better electron donor ligands have on the valence electronic structure of M{sub 2}(L-L){sub 4} systems. Comparison with the He I spectra of the isoelectronic M{sub 2}(O{sub 2}CCH{sub 3}){sub 4} compounds is particularly revealing. Unlike with the more electron-withdrawing acetate ligand, several formamidinate-based ionizations derived from the nitrogen p{sub {pi}} orbitals occur among the metal-metal {sigma}, {pi}, and {delta} ionization bands. Although these formamidinate-based levels are close in energy to the occupied metal-metal bonds, they have little direct mixing interaction with them. The shift of the metal-metal bond ionizations to lower ionization energies for the formamidinate systems is primarily a consequence of the lower electronegativity of the ligand and the better {pi} donation into empty metal levels. The metal-metal {delta} orbital experiences some additional net bonding interaction with ligand orbitals of the same symmetry. Also, an additional bonding interaction from ligand-to-metal electron donation to the {delta}* orbital is identified. These spectra suggest a greater degree of metal-ligand covalency than in the related M{sub 2}(O{sub 2}CCH{sub 3}){sub 4} systems. Fenske-Hall molecular orbital and density functional (ADF) calculations agree with the assignment and

  7. O hydrogen bonds in alkaloids

    Indian Academy of Sciences (India)

    An overview of general classification scheme, medicinal importance and crystal structure analysis with emphasis on the role of hydrogen bonding in some alkaloids is presented in this paper. The article is based on a general kind of survey while crystallographic analysis and role of hydrogen bonding are limited to only ...

  8. Crystal structure of N,N,N′,N′,N′′,N′′-hexamethylguanidinium cyanate 1.5-hydrate

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2015-12-01

    Full Text Available The title hydrated salt, C7H18N3+·OCN−.1.5H2O, was synthesized starting from N,N,N′,N′,N′′,N′′-hexamethylguanidinium chloride by a twofold anion-exchange reaction. The asymmetric unit contains two cations, two cyanate anions and three water molecules. One cation shows orientational disorder and two sets of N-atom positions were found related by a 60° rotation, with an occupancy ratio of 0.852 (6:0.148 (6. The C—N bond lengths in both guanidinium ions range from 1.329 (2 to 1.358 (10 Å, indicating double-bond character, pointing towards charge delocalization within the NCN planes. Strong O—H...N hydrogen bonds between the crystal water molecules and the cyanate ions and strong O—H...O hydrogen bonds between the water molecules are present, resulting in a two-dimensional hydrogen bonded network running parallel to the (001 plane. The hexamethylguanidinium ions are packed in between the layers built up by water molecules and cyanate ions.

  9. Synthesis and structures of six closely related N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]arylamides, together with an isolated reaction intermediate: order versus disorder, molecular conformations and hydrogen bonding in zero, one and two dimensions.

    Science.gov (United States)

    Sagar, Belakavadi K; Yathirajan, Hemmige S; Rathore, Ravindranath S; Glidewell, Christopher

    2018-02-01

    Six closely related N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]arylamides have been synthesized and structurally characterized, together with a representative reaction intermediate. In each of N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]benzamide, C 20 H 16 ClNO 2 S, (I), N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]-4-phenylbenzamide, C 26 H 20 ClNO 2 S, (II), and 2-bromo-N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]benzamide, C 20 H 15 BrClNO 2 S, (III), the molecules are disordered over two sets of atomic sites, with occupancies of 0.894 (8) and 0.106 (8) in (I), 0.832 (5) and 0.168 (5) in (II), and 0.7006 (12) and 0.2994 (12) in (III). In each of N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]-2-iodobenzamide, C 20 H 15 ClINO 2 S, (IV), and N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]-2-methoxybenzamide, C 21 H 18 ClNO 3 S, (V), the molecules are fully ordered, but in N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]-2,6-difluorobenzamide, C 20 H 14 ClF 2 NO 2 S, (VI), which crystallizes with Z' = 2 in the space group C2/c, one of the two independent molecules is fully ordered, while the other is disordered over two sets of atomic sites having occupancies of 0.916 (3) and 0.084 (3). All of the molecules in compounds (I)-(VI) exhibit an intramolecular N-H...O hydrogen bond. The molecules of (I) and (VI) are linked by C-H...O hydrogen bonds to form finite zero-dimensional dimers, which are cyclic in (I) and acyclic in (VI), those of (III) are linked by C-H...π(arene) hydrogen bonds to form simple chains, and those of (IV) and (V) are linked into different types of chains of rings, built in each case from a combination of C-H...O and C-H...π(arene) hydrogen bonds. Two C-H...O hydrogen bonds link the molecules of (II) into sheets containing three types of ring. In benzotriazol-1-yl 3,4-dimethoxybenzoate, C 15 H 13 N 3 O 4 , (VII), the benzoate component is planar and makes a dihedral angle of 84.51 (6)° with the benzotriazole unit. Comparisons are made

  10. Theoretical and Experimental Investigations into Novel Oxynitride Discovery in the GaN-TiO2 System at High Pressure

    Directory of Open Access Journals (Sweden)

    Alwin James

    2018-01-01

    Full Text Available We employed ab initio evolutionary algorithm USPEX to speed up the discovery of a novel oxynitride in the binary system of GaN-TiO2 using high-pressure synthesis. A 1:2 mixture of GaN and nanocrystalline TiO2 (anatase was reacted under 1 GPa of pressure and at 1200 °C in a piston cylinder apparatus to produce a mixture of TiO2 (rutile and an unknown phase. From the initial analysis of high resolution neutron and X-ray diffraction data, it is isomorphic with monoclinic V2GaO5 with a unit cell composition of Ga10Ti8O28N2 with the following parameters: monoclinic, space group C2/m, a = 17.823(1 Å, b = 2.9970(1 Å, c = 9.4205(5 Å, β = 98.446(3°; Volume = 497.74(3 Å3. Further, a joint rietveld refinement revealed two distinct regimes—A Ti-rich block and a Ga-rich block. The Ti-rich block consists of four edge-shared octahedra and contains a site which is about 60% occupied by N; this site is bonded to four Ti. The remainder of the block consists of edge linked Ti-octahedral chains linked to the TiN/TiO fragments at octahedral corners partially occupied by nitrogen. The Ga-block contains two symmetry independent octahedral sites, occupied mostly by Ga, and a pure Ga-centered tetrahedral site bonded mostly to oxygen.

  11. Poly[[tetrakis(μ2-pyrazine N,N′-dioxide-κ2O:O′erbium(III] tris(perchlorate

    Directory of Open Access Journals (Sweden)

    James D. Buchner

    2010-09-01

    Full Text Available The title three-dimensional coordination network, {[Er(C4H4N2O24](ClO43}n, is isostructural to that of other lanthanides. The Er+3 cation lies on a fourfold roto-inversion axis. It is coordinated in a distorted square-antiprismatic fashion by eight O atoms from bridging pyrazine N,N′-dioxide ligands. There are two unique pyrazine N,N′-dioxide ligands. One ring is located around an inversion center, and there is a a twofold rotation axis at the center of the other ring. There are also two unique perchlorate anions. One is centered on a twofold rotation axis and the other on a fourfold roto-inversion axis. The perchlorate anions are located in channels that run perpendicular to (001 and (110 and interact with the coordination network through C—H...O hydrogen bonds.

  12. Hydrogen-bonding effects on film structure and photoelectrochemical properties of porphyrin and fullerene composites on nanostructured TiO 2 electrodes

    NARCIS (Netherlands)

    Kira, Aiko; Tanaka, Masanobu; Umeyama, Tomokazu; Matano, Yoshihiro; Yoshimoto, Naoki; Zhang, Yi; Ye, Shen; Lehtivuori, Heli; Tkachenko, Nikolai V.; Lemmetyinen, Helge; Imahori, Hiroshi

    2007-01-01

    Hydrogen-bonding effects on film structures and photophysical, photoelectrochemical, and photovoltaic properties have been examined in mixed films of porphyrin and fullerene composites with and without hydrogen bonding on nanostructured TiO2 electrodes. The nanostructured TiO2 electrodes modified

  13. Crystal structure of bis[μ-S-hexyl 3-(2-oxidobenzylidenedithiocarbazato-κ4O,N3,S:O]dicopper(II

    Directory of Open Access Journals (Sweden)

    M. S. Begum

    2015-12-01

    Full Text Available The title compound, [Cu2(C14H18N2OS22], is a binuclear copper(II complex of an oxybenzylidenedithiocarbazate ligand. The ligand coordinates in a tridentate manner through N-, S- and O-donor atoms. Each O atom also bridges to a second CuII ion to form the binuclear species. It has a central Cu2O2 rhomboid moiety and a metal-to-metal separation of 2.9923 (6 Å. In the crystal, the binuclear complexes stack along the a axis with all the hexyl chains located side-by-side, forming a hydrophobic region. The complexes are linked via C—H...N hydrogen bonds, forming chains along the c-axis direction. One CuII atom has the S atom of a symmetry-related complex located approximately in the apical position at 2.9740 (11 Å. This weak interaction links the chains to form slabs parallel to the ac plane.

  14. Metal-metal bonding and aromaticity in [M2(NHCHNH)3]2 (μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh).

    Science.gov (United States)

    Yan, Xiuli; Meng, Lingpeng; Sun, Zheng; Li, Xiaoyan

    2016-02-01

    The nature of M-M bonding and aromaticity of [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh) was investigated using atoms in molecules (AIM) theory, electron localization function (ELF), natural bond orbital (NBO) and molecular orbital analysis. These analyses led to the following main conclusions: in [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh), the Nb-Nb, Ru-Ru, and Rh-Rh bonds belong to "metallic" bonds, whereas Mo-Mo and Tc-Tc drifted toward the "dative" side; all these bonds are partially covalent in character. The Nb-Nb, Mo-Mo, and Tc-Tc bonds are stronger than Ru-Ru and Rh-Rh bonds. The M-M bonds in [M2(NHCHNH)3]2(μ-S)2 are stronger than those in [M2(NHCHNH)3]2(μ-O)2 for M = Nb, Mo, Tc, and Ru. The NICS(1)ZZ values show that all of the studied molecules, except [Ru2(NHCHNH)3]2(μ-O)2, are aromaticity molecules. O-bridged compounds have more aromaticity than S-bridged compounds. Graphical Abstract Left Molecular graph, and right electron localization function (ELF) isosurface of [M2(NHCHNH)3]2(μ-E)2(E = O, S; M = Nb, Mo, Tc, Ru, Rh).

  15. Syntheses and multi-NMR study of fac- and mer-OsO(3)F(2)(NCCH(3)) and the X-ray crystal structure (n = 2) and Raman spectrum (n = 0) of fac-OsO(3)F(2)(NCCH(3)).nCH(3)CN.

    Science.gov (United States)

    Hughes, Michael J; Gerken, Michael; Mercier, Hélène P A; Schrobilgen, Gary J

    2010-06-07

    Dissolution of the infinite chain polymer, (OsO(3)F(2))(infinity), in CH(3)CN solvent at -40 degrees C followed by solvent removal under vacuum at -40 degrees C yielded fac-OsO(3)F(2)(NCCH(3)).nCH(3)CN (n >/= 2). Continued pumping at -40 degrees C with removal of uncoordinated CH(3)CN yielded fac-OsO(3)F(2)(NCCH(3)). Both fac-OsO(3)F(2)(NCCH(3)).nCH(3)CN and fac-OsO(3)F(2)(NCCH(3)) are yellow-brown solids and were characterized by low-temperature (-150 degrees C) Raman spectroscopy. The crystal structure (-173 degrees C) of fac-OsO(3)F(2)(NCCH(3)).2CH(3)CN consists of two co-crystallized CH(3)CN molecules and a pseudo-octahedral OsO(3)F(2).NCCH(3) molecule in which three oxygen atoms are in a facial arrangement and CH(3)CN is coordinated trans to an oxygen atom in an end-on fashion. The Os---N bond length (2.205(3) A) is among the shortest M---N adduct bonds observed for a d(0) transition metal oxide fluoride. The (19)F NMR spectrum of (OsO(3)F(2))(infinity) in CH(3)CN solvent (-40 degrees C) is a singlet (-99.6 ppm) corresponding to fac-OsO(3)F(2)(NCCH(3)). The (1)H, (15)N, (13)C, and (19)F NMR spectra of (15)N-enriched OsO(3)F(2)(NCCH(3)) were recorded in SO(2)ClF solvent (-84 degrees C). Nitrogen-15 enrichment resulted in splitting of the (19)F resonance of fac-OsO(3)F(2)((15)NCCH(3)) into a doublet ((2)J((15)N-(19)F), 21 Hz). In addition, a doublet of doublets ((2)J((19)F(ax)-(19)F(eq)), 134 Hz; (2)J((15)N-(19)F(eq)), 18 Hz) and a doublet ((2)J((19)F(ax)-(19)F(eq)), 134 Hz) were observed in the (19)F NMR spectrum that have been assigned to mer-OsO(3)F(2)((15)NCCH(3)); however, coupling of (15)N to the axial fluorine-on-osmium environment could not be resolved. The nitrogen atom of CH(3)CN is coordinated trans to a fluorine ligand in the mer-isomer. Quantum-chemical calculations at the SVWN and B3LYP levels of theory were used to calculate the energy-minimized gas-phase geometries, vibrational frequencies of fac- and mer-OsO(3)F(2)(NCCH(3)) and of CH(3)CN. The

  16. catena-Poly[lead(II-[μ-2,4-diamino-6-(piperidin-1-ylpyrimidine N-oxide-κ2O:O]di-μ-iodido

    Directory of Open Access Journals (Sweden)

    Maryam Ranjbar

    2009-07-01

    Full Text Available The N-oxide O atom of the minoxidil unit in the 1/1 adduct with lead(II iodide, [PbI2(C9H15N5O]n, bridges two PbII atoms, as do each of the I atoms. The bridging interactions give rise to a linear chain motif that propagates along the a axis of the orthorhombic unit cell. The coordination sphere around the six-coordinate PbII atom is a distorted ψ-monocapped octahedron in which the stereochemically active lone pair caps one of the faces defined by the O and I atoms forming the longer Pb—O or Pb—I bonds. The PbII atom lies on a mirror plane; the mirror plane is perpendicular to the pyrimidine ring and it bisects the piperidine ring. The aromatic ring is disordered about the mirror plane with respect to the 1-nitrogen and 5-carbon atoms.

  17. Light Makes a Surface Banana-Bond Split: Photodesorption of Molecular Hydrogen from RuO 2 (110)

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Michael A.; Mu, Rentao; Dahal, Arjun; Lyubinetsky, Igor; Dohnálek, Zdenek; Glezakou, Vassiliki-Alexandra; Rousseau, Roger

    2016-07-20

    The coordination of H2 to a metal center via polarization of its bond electron density, known as a Kubas complex, is the means by which H2 chemisorbs at Ru4+ sites on the rutile RuO2(110) surface. This distortion of electron density off an interatomic axis is often described as a ‘banana-bond.’ We show that the Ru-H2 banana-bond can be destabilized, and split, using visible light. Photodesorption of H2 (or D2) is evident by mass spectrometry and scanning tunneling microscopy. From time-dependent density functional theory, the key optical excitation splitting the Ru-H2 banana-bond involves an interband transition in RuO2 which effectively diminishes its Lewis acidity, and thereby weakening the Kubas complex. Such excitations are not expected to affect adsorbates on RuO2 given its metallic properties. Therefore, this common thermal co-catalyst employed in promoting water splitting is, itself, photo-active in the visible.

  18. Bis[2-(2-aminoethyl-1H-benzimidazole-κ2N2,N3](nitrato-κ2O,O′cobalt(II chloride trihydrate

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2012-06-01

    Full Text Available In the title compound, [Co(NO3(C9H11N32]Cl·3H2O, the CoII atom is coordinated by four N atoms from two chelating 2-(2-aminoethyl-1H-benzimidazole ligands and two O atoms from one nitrate anion in a distorted octahedral coordination environment. In the crystal, N—H...Cl, N—H...O, O—H...Cl and O—H...O hydrogen bonds link the complex cations, chloride anions and solvent water molecules into a three-dimensional network. π–π interactions between the imidazole and benzene rings and between the benzene rings are observed [centroid–centroid distances = 3.903 (3, 3.720 (3, 3.774 (3 and 3.926 (3 Å].

  19. A theoretical investigation of the interaction of Immucillin-A with N-doped TiO2 anatase nanoparticles: Applications to nanobiosensors and nanocarriers

    Directory of Open Access Journals (Sweden)

    Amirali Abbasi

    2017-02-01

    Full Text Available Objective(s: Adsorption of IMMUCILLIN-A (BCX4430 molecule on the pristine and N-doped TiO2 anatase nanoparticles were studied using the density functional theory (DFT calculations. The adsorption energy analysis indicated that TiO2+IMMUCILLIN-A complexes including OC-substituted TiO2 have higher adsorption energy than the complexes with OT substituted TiO2, thus providing more stable configurations. Methods: The structural properties including bond lengths, adsorption energies and bond angles were analysed. The electronic structure of the adsorption system were investigated in view of the density of states, molecular orbitals and Mulliken charge analysis.Results: The results show that, the interaction of IMMUCILLIN-A drug with N-doped TiO2 nanoparticles is more energetically favorable than the interaction with the pristine ones, suggesting that the N-doped nanoparticles can react with IMMUCILLIN-A drug more efficiently. The Mulliken charge analysis also suggests a charge transfer from IMMUCILLIN-A molecule to the TiO2 nanoparticle.Conclusions: Based on obtained results, it can be concluded that the N-doped TiO2 nanoparticle could be utilized as an efficient candidate for application as highly sensitive nanobiosensors and efficient nanocarriers for IMMUCILLIN-A drugs.

  20. A novel bonding method for fabrication of PET planar nanofluidic chip with low dimension loss and high bonding strength

    International Nuclear Information System (INIS)

    Yin, Zhifu; Zou, Helin; Sun, Lei; Xu, Shenbo; Qi, Liping

    2015-01-01

    Plastic planar nanofluidic chips are becoming increasingly important for biological and chemical applications. However, the majority of the present bonding methods for planar nanofluidic chips suffer from high dimension loss and low bonding strength. In this work, a novel thermal bonding technique based on O 2 plasma and ethanol treatment was proposed. With the assistance of O 2 plasma and ethanol, the PET (polyethylene terephthalate) planar nanofluidic chip can be bonded at a low bonding temperature of 50 °C. To increase the bonding rate and bonding strength, the O 2 plasma parameters and thermal bonding parameters were optimized during the bonding process. The tensile test indicates that the bonding strength of the PET planar nanofluidic chip can reach 0.954 MPa, while the auto-fluorescence test demonstrates that there is no leakage or blockage in any of the bonded micro- or nanochannels. (paper)

  1. (2,4-Dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylato-κ2O4,O5(4-oxido-2-oxo-1,2-dihydropyrimidine-5-carboxylato-κ2O4,O5bis(1,10-phenanthroline-κ2N,N′yttrium(III dihydrate

    Directory of Open Access Journals (Sweden)

    Zilu Chen

    2008-09-01

    Full Text Available In the title compound, [Y(C5H2N2O4(C5H3N2O4(C12H8N22]·2H2O, the YIII ion lies on a twofold rotation axis and exhibits a distorted square-antiprismatic coordination geometry. It is chelated by two 1,10-phenanthroline ligands, a 2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate monoanion and a 4-oxido-2-oxo-1,2-dihydropyrimidine-5-carboxylate dianion. The H atom involved in an N—H...N hydrogen bond between the 1,2-dihydropyrimidine units has half occupancy and is disordered around a twofold rotation axis.

  2. Effect of tooth age on bond strength to dentin Efeito da idade na resistência de união

    Directory of Open Access Journals (Sweden)

    Marcelo Giannini

    2003-12-01

    Full Text Available This in vitro study evaluated the effect of tooth age on the tensile bond strength of Prime & Bond NT adhesive system to dentin. Human third molars from the five age groups were analyzed: A- 17 to 20yrs, B- 21 to 30yrs, C- 31 to 40yrs, D- 41 to 50yrs and E- 51 to 63yrs. The occlusal enamel was removed using a diamond saw under water cooling and the dentin surface was wet-ground with 600-grit SiC paper to obtain flat surfaces. The adhesive system was applied according to the manufacturer's instructions and a 6-mm high resin "crown" was built-up with resin composite. Teeth were stored for 24 hours in distilled water at 37ºC and prepared for micro-tensile testing. Each specimen was mounted in a testing jig attached to a universal testing machine and stressed in tension at a crosshead speed of 0.5mm/min until failure. The means of tensile bond strength were (MPa: A- 21.42 ± 7.52ª; B- 30.13 ± 10.19ª; C- 31.69 ± 11.78ª; D- 30.69 ± 8.47ª and E- 35.66 ± 9.54ª. No statistically significant difference was observed among the age groups (p > 0.05. The results suggested that the tensile bond strength of the adhesive system was not significantly affected by dentin aging.Este estudo avaliou, in vitro, o efeito da idade na resistência à tração do sistema adesivo Prime & Bond NT no substrato dentinário. Foram utilizados terceiros molares humanos de cinco faixas etárias: A- 17 a 20, B- 21 a 30, C- 31 a 40, D- 41 a 50 e E- 51 a 63. O esmalte oclusal foi removido utilizando disco de diamante e a superfície dentinária abrasionada e planificada com lixa de SiC (600 sob refrigeração. O sistema adesivo foi aplicado de acordo com as recomendações do fabricante e um bloco de resina composta de 6 mm de altura foi confeccionado na superfície dentinária. Os dentes foram armazenados em água por 24 horas a 37ºC e preparados para o ensaio de micro-tração. Cada espécime foi fixado no dispositivo de micro-tração que estava acoplado a uma m

  3. Experimentally calibrated computational chemistry of tryptophan hydroxylase: Trans influence, hydrogen-bonding, and 18-electron rule govern O-2-activation

    DEFF Research Database (Denmark)

    Haahr, Lærke Tvedebrink; Kepp, Kasper Planeta; Boesen, Jane

    2010-01-01

    with the experimental value (0.25 mm/s) which we propose as the structure of the hydroxylating intermediate, with the tryptophan substrate well located for further reaction 3.5 Å from the ferryl group. Based on the optimized transition states, the activation barriers for the two paths (glu and his) are similar, so......Insight into the nature of oxygen activation in tryptophan hydroxylase has been obtained from density functional computations. Conformations of O2-bound intermediates have been studied with oxygen trans to glutamate and histidine, respectively. An O2-adduct with O2 trans to histidine (Ohis...... towards the cofactor and a more activated O–O bond (1.33 Å) than in Oglu (1.30 Å). It is shown that the cofactor can hydrogen bond to O2 and activate the O–O bond further (from 1.33 to 1.38 Å). The Ohis intermediate leads to a ferryl intermediate (Fhis) with an isomer shift of 0.34 mm/s, also consistent...

  4. Bis(2,6-dihydroxybenzoato-κ2O1,O1′(nitrato-κ2O,O′bis(1,10-phenanthroline-κ2N,N′cerium(III

    Directory of Open Access Journals (Sweden)

    Hongxiao Jin

    2011-01-01

    Full Text Available The mononuclear title complex, [Ce(C7H5O32(NO3(C12H8N22], is isostructural to other related lanthanide structures. The Ce atom is in a pseudo-bicapped square-antiprismatic geometry formed by four N atoms from two chelating 1,10-phenanthroline (phen ligands and by six O atoms, four from two 2,6-dihydroxybenzoate (DHB ligands and the other two from a nitrate anion. π–π stacking interactions between phen and DHB ligands [centroid–centroid distances = 3.513 (3 and 3.762 (2 Å] and phen and phen ligands [face-to-face separation = 3.423 (7 Å] of adjacent complexes stabilize the crystal structure. Intramolecular O—H...O hydrogen bonds are observed in the DHB ligands.

  5. Synthesis of 1,2,4-Triazoles via Oxidative Heterocyclization: Selective C-N Bond Over C-S Bond Formation.

    Science.gov (United States)

    Gogoi, Anupal; Guin, Srimanta; Rajamanickam, Suresh; Rout, Saroj Kumar; Patel, Bhisma K

    2015-09-18

    The higher propensity of C-N over C-S bond forming ability was demonstrated, through formal C-H functionalization during the construction of 4,5-disubstituted 1,2,4-triazole-3-thiones from arylidenearylthiosemicarbazides catalyzed by Cu(II). However, steric factors imparted by the o-disubstituted substrates tend to change the reaction path giving thiodiazole as the major or an exclusive product. Upon prolonging the reaction time, the in situ generated thiones are transformed to 4,5-disubstituted 1,2,4-triazoles via a desulfurization process. Two classes of heterocycles viz. 4,5-disubstituted 1,2,4-triazole-3-thiones and 4,5-disubstituted 1,2,4-triazoles can be synthesized from arylidenearylthiosemicarbazides by simply adjusting the reaction time. Desulfurization of 1,2,4-triazole-3-thiones is assisted by thiophilic Cu to provide 1,2,4-triazoles with concomitant formation of CuS and polynuclear sulfur anions as confirmed from scanning electron microscope and energy dispersive X-ray spectroscopy measurements. A one-pot synthesis of an antimicrobial compound has been successfully achieved following this strategy.

  6. 4-Bromo-N-(di-n-propyl-carbamothioyl)-benzamide.

    Science.gov (United States)

    Binzet, Gün; Flörke, Ulrich; Külcü, Nevzat; Arslan, Hakan

    2009-02-04

    The synthesis of the title compound, C(14)H(19)BrN(2)OS, involves the reaction of 4-bromo-benzoyl chloride with potassium thio-cyanate in acetone followed by condensation of the resulting 4-bromo-benzoyl isothio-cyanate with di-n-propyl-amine. Typical thio-urea carbonyl and thio-carbonyl double bonds, as well as shortened C-N bonds, are observed in the title compound. The short C-N bond lengths in the centre of the mol-ecule reveal the effects of resonance in this part of the mol-ecule. The asymmetric unit of the title compound contains two crystallographically independent mol-ecules, A and B. There is very little difference between the bond lengths and angles of these mol-ecules. In mol-ecule B, one di-n-propyl group is twisted in a -anti-periplanar conformation with C-C-C-H = -179.1 (3)° and the other adopts a -synclinal conformation with C-C-C-H = -56.7 (4)°; in mol-ecule A the two di-n-propyl groups are twisted in + and -anti-periplanar conformations, with C-C-C-H = -179.9 (3) and 178.2 (3)°, respectively. In the crystal, the mol-ecules are linked into dimeric pairs via pairs of N-H⋯S hydrogen bonds.

  7. [Pr2(pdc3(Hpdc(H2O4]n·n(H3hp·8n(H2O, a One-Dimensional Coordination Polymer Containing PrO6N3 Tri-Capped Trigonal Prisms and PrO8N Mono-Capped Square Anti-Prisms (H2pdc = Pyridine 2,6-Dicarboxylic Acid, C7H5NO4; 3hp = 3-Hydroxy Pyridine, C5H5NO

    Directory of Open Access Journals (Sweden)

    Shahzad Sharif

    2012-08-01

    Full Text Available The synthesis, structure and some properties of the one-dimensional coordination polymer, [Pr2(pdc3(Hpdc]n·n(H3hp·8n(H2O, (H2pdc = pyridine 2,6-dicarboxylic acid, C7H5NO4; 3hp = 3-hydroxypyridine, C5H5NO are described. One of the Pr3+ ions is coordinated by two O,N,O-tridentate pdc2− ligands and one tridentate Hpdc− anion to generate a fairly regular PrO6N3 tri-capped trigonal prism, with the N atoms acting as the caps. The second Pr3+ ion is coordinated by one tridentate pdc2− dianion, four water molecules and two monodentate bridging pdc2− ligands to result in a PrO8N coordination polyhedron that approximates to a mono-capped square-anti-prism. The ligands bridge the metal-atom nodes into a chain, which extends in the [100] direction. The H3hp+ cation and uncoordinated water molecules occupy the inter-chain regions and an N–HLO and numerous O–HLO hydrogen bonds consolidate the structure. The H3hp+ species appears to intercalate between pendant pdc rings to consolidate the polymeric structure. Crystal data: 1 (C33H43N5O29Pr2, Mr = 1255.54, triclinic,  (No. 2, Z = 2, a = 13.2567(1 Å, b = 13.6304(2 Å, c = 13.6409(2 Å, α = 89.695(1°, β = 63.049(1°, γ = 86.105(1°, V = 2191.16(5 Å3, R(F = 0.033, wR(F2 = 0.084.

  8. X-ray photoelectron spectra structure and chemical bonding in AmO2

    Directory of Open Access Journals (Sweden)

    Teterin Yury A.

    2015-01-01

    Full Text Available Quantitative analysis was done of the X-ray photoelectron spectra structure in the binding energy range of 0 eV to ~35 eV for americium dioxide (AmO2 valence electrons. The binding energies and structure of the core electronic shells (~35 eV-1250 eV, as well as the relativistic discrete variation calculation results for the Am63O216 and AmO8 (D4h cluster reflecting Am close environment in AmO2 were taken into account. The experimental data show that the many-body effects and the multiplet splitting contribute to the spectral structure much less than the effects of formation of the outer (0-~15 eV binding energy and the inner (~15 eV-~35 eV binding energy valence molecular orbitals. The filled Am 5f electronic states were shown to form in the AmO2 valence band. The Am 6p electrons participate in formation of both the inner and the outer valence molecular orbitals (bands. The filled Am 6p3/2 and the O 2s electronic shells were found to make the largest contributions to the formation of the inner valence molecular orbitals. Contributions of electrons from different molecular orbitals to the chemical bond in the AmO8 cluster were evaluated. Composition and sequence order of molecular orbitals in the binding energy range 0-~35 eV in AmO2 were established. The experimental and theoretical data allowed a quantitative scheme of molecular orbitals for AmO2, which is fundamental for both understanding the chemical bond nature in americium dioxide and the interpretation of other X-ray spectra of AmO2.

  9. Nucleation, Growth Mechanism, and Controlled Coating of ZnO ALD onto Vertically Aligned N-Doped CNTs.

    Science.gov (United States)

    Silva, R M; Ferro, M C; Araujo, J R; Achete, C A; Clavel, G; Silva, R F; Pinna, N

    2016-07-19

    Zinc oxide thin films were deposited on vertically aligned nitrogen-doped carbon nanotubes (N-CNTs) by atomic layer deposition (ALD) from diethylzinc and water. The study demonstrates that doping CNTs with nitrogen is an effective approach for the "activation" of the CNTs surface for the ALD of metal oxides. Conformal ZnO coatings are already obtained after 50 ALD cycles, whereas at lower ALD cycles an island growth mode is observed. Moreover, the process allows for a uniform growth from the top to the bottom of the vertically aligned N-CNT arrays. X-ray photoelectron spectroscopy demonstrates that ZnO nucleation takes place at the N-containing species on the surface of the CNTs by the formation of the Zn-N bonds at the interface between the CNTs and the ZnO film.

  10. Carbonyl[4-(2,3-dimethylphenylaminopent-3-en-2-onato-κ2N,O](triphenylphosphine-κPrhodium(I

    Directory of Open Access Journals (Sweden)

    Gertruida J. S. Venter

    2009-11-01

    Full Text Available In the title compound, [Rh(C13H16NO(C18H15P(CO], the coordination geometry of the RhI atom is square-planar, formed by the coordinating N and O atoms of the bidentate enaminoketonate ligand, one C atom from the carbonyl group and a P atom from triphenylphosphine. The complex displays a 0.591 (3:0.409 (3 ratio disorder of the phenyl unit of the monoanionic N,O-bidentate ligand. Intramolecular hydrogen bonding is observed between a C—H group of the triphenylphosphine unit and the O atom of the enaminoketonate ligand.

  11. fac-Tris(pyridine-2-carboxyl­ato-κ2 N,O)cobalt(III)

    Science.gov (United States)

    Golenia, Irina A.; Boyko, Alexander N.; Kotova, Natalia V.; Haukka, Matti; Kalibabchuk, Valentina A.

    2011-01-01

    In the title compound, [Co(C6H4NO2)3], the CoIII ion lies on a threefold rotation axis and is in a distorted octa­hedral environment defined by three N and three O donor atoms from three fac-disposed pyridine-2-carboxyl­ate ligands. The ligands are coordinated in a chelate fashion, forming three five-membered rings. In the crystal, translationally related complex molecules are organized into columns along [001] via C—H⋯O hydrogen bonds. PMID:22219826

  12. Supra-molecular architecture in a co-crystal of the N(7)-H tautomeric form of N (6)-benzoyl-adenine with adipic acid (1/0.5).

    Science.gov (United States)

    Swinton Darious, Robert; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-06-01

    The asymmetric unit of the title co-crystal, C12H9N5O·0.5C6H10O4, consists of one mol-ecule of N (6)-benzoyl-adenine (BA) and one half-mol-ecule of adipic acid (AA), the other half being generated by inversion symmetry. The dihedral angle between the adenine and phenyl ring planes is 26.71 (7)°. The N (6)-benzoyl-adenine mol-ecule crystallizes in the N(7)-H tautomeric form with three non-protonated N atoms. This tautomeric form is stabilized by intra-molecular N-H⋯O hydrogen bonding between the carbonyl (C=O) group and the N(7)-H hydrogen atom on the Hoogsteen face of the purine ring, forming an S(7) ring motif. The two carboxyl groups of adipic acid inter-act with the Watson-Crick face of the BA mol-ecules through O-H⋯N and N-H⋯O hydrogen bonds, generating an R 2 (2)(8) ring motif. The latter units are linked by N-H⋯N hydrogen bonds, forming layers parallel to (10-5). A weak C-H⋯O hydrogen bond is also present, linking adipic acid mol-ecules in neighbouring layers, enclosing R (2) 2(10) ring motifs and forming a three-dimensional structure. C=O⋯π and C-H⋯π inter-actions are also present in the structure.

  13. FEM thermal and stress analysis of bonded GaN-on-diamond substrate

    Directory of Open Access Journals (Sweden)

    Wenbo Zhai

    2017-09-01

    Full Text Available A three-dimensional thermal and stress analysis of bonded GaN on diamond substrate is investigated using finite element method. The transition layer thickness, thermal conductivity of transition layer, diamond substrate thickness and the area ratio of diamond and GaN are considered and treated appropriately in the numerical simulation. The maximum channel temperature of GaN is set as a constant value and its corresponding heat power densities under different conditions are calculated to evaluate the influences that the diamond substrate and transition layer have on GaN. The results indicate the existence of transition layer will result in a decrease in the heat power density and the thickness and area of diamond substrate have certain impact on the magnitude of channel temperature and stress distribution. Channel temperature reduces with increasing diamond thickness but with a decreasing trend. The stress is reduced by increasing diamond thickness and the area ratio of diamond and GaN. The study of mechanical and thermal properties of bonded GaN on diamond substrate is useful for optimal designs of efficient heat spreader for GaN HEMT.

  14. Ionic ASi{sub 2}N{sub 3} (A=Li, Na, K and Rb) stabilized by the covalent Si–N bonding: First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huijun [College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Ren, Jiadong, E-mail: jdren@ysu.edu.cn [College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wu, Lailei [Key Laboratory of Metastable Materials Science and Technology, College of Material Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Zhang, Jingwu, E-mail: zjw@ysu.edu.cn [Key Laboratory of Metastable Materials Science and Technology, College of Material Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2017-01-15

    The structural, elastic and electronic properties of LiSi{sub 2}N{sub 3} and its substitutions by Na, K and Rb were investigated through first-principles computations. The expansion of lattice parameters of ASi{sub 2}N{sub 3} from Li, Na, K to Rb is found to be determined by the bond angle of Si–N1–Si, which suggests a possible way to improve the lithium ionic conductivity by substitutions. ASi{sub 2}N{sub 3} (A=Li, Na, K and Rb) shows the similar elastic behaviors, while the electronic band gap gradually decreases from 5.1 to 3.4 eV from LiSi{sub 2}N{sub 3} to RbSi{sub 2}N{sub 3}. Interestingly, the analysis of electronic structure, crystal orbital Hamiltonian populations and Bader charges shows that the covalence of Si–N bonding is critical for the stability of ASi{sub 2}N{sub 3} phase. Among ASi{sub 2}N{sub 3} phases, there is a relatively high ionicity in NaSi{sub 2}N{sub 3}; the Si–N bond strength in [Si{sub 2}N{sub 3}]{sup −} net for KSi{sub 2}N{sub 3} and RbSi{sub 2}N{sub 3} is comparable to LiSi{sub 2}N{sub 3}, but stronger than NaSi{sub 2}N{sub 3}. - Graphic abstract: Universal trend of structural and electronic properties in alkaline metal silicon nitrides, ASi{sub 2}N{sub 3}, A=Li, Na, K and Rb. - Highlights: • Trend in structure, electronic and mechanical properties of ASi{sub 2}N{sub 3} (A=Li-Rb) were predicted. • Lattice expansion of ASi{sub 2}N{sub 3} induced by the bond angle of Si–N1–Si was found. • Calculated band gap decreases from 5.1 to 3.4 eV from LiSi{sub 2}N{sub 3} to RbSi{sub 2}N{sub 3}. • Covalent Si–N bonding is critical for the stability of ASi{sub 2}N{sub 3}.

  15. Low temperature X-ray structure analyses combined with NBO studies of a new heteroleptic octa-coordinated Holmium(III) complex with N,N,N-tridentate hydrazono-phthalazine-type ligand

    Science.gov (United States)

    Soliman, Saied M.; El-Faham, Ayman

    2018-04-01

    The new heteroleptic [HoL(H2O)5]Br3 complex, L is hydrazono-phthalazine ligand, is synthesized and its molecular structure aspects were analyzed using single crystal X-ray structure (SCXRD), Hirshfeld (HF) analysis, quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) method. The SCXRD showed that the Ho is octa-coordinated with one N,N,N-tridentate ligand L and five water molecules. The HF analysis is used to analyze the molecular packing in the [HoL(H2O)5]Br3crystal structure. The complex cations are connected via strong Osbnd H⋯Br and Nsbnd H⋯Br H-bonding interactions which have greater importance than the Csbnd H⋯Br contacts. Also, all the Hosbnd N and Hosbnd O bonds have the characteristics of closed shell interactions using QTAIM. The natural orbitals included in these interactions were analyzed using NBO method. The alpha LP*(8)Ho and beta LP*(4)Ho which have mainly s-orbital characters are the most important anti-bonding natural orbitals included in all Ho-N and Hosbnd O bonds. The rest of the Ho anti-bonding orbitals which have either p or d-orbital characters shared partially in the Ho-ligands interactions. Natural charges analysis revealed the presence of significant amount of electron density (0.9225-0.9300 e) transferred from the ligands to Ho (2.0700-2.0775 e). Spherical spin density with ∼4.0 e is predicted over the Ho atom.

  16. Microstructural characterization in diffusion bonded TiC–Al 2 O 3 ...

    Indian Academy of Sciences (India)

    The diffusion bonded TiC–Al2O3/Cr18–Ni8 joint was investigated by a variety of characterization techniques such as scanning electron microscope (SEM) with energy dispersion ... Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University (South Campus), Jinan 250061, P.R. China ...

  17. Syntheses, Crystal Structures, Magnetic Behaviours, and Thermal Properties of Three Hydrogen-Bonding Networks Containing Dicyanamide and 4-Hydroxypyridine

    Directory of Open Access Journals (Sweden)

    Lingling Zheng

    2013-01-01

    Full Text Available Three new dicyanamide-bridged polymeric complexes of {[Mn(dca2(L2]·2H2O}n (1, {[Cd(dca2(L2]·2H2O}n (2, and {[Co(dca2(L2]2(L}n (3 (dca = dicyanamide, L = pyridinium-4-olate have been synthesized and structurally characterized. In the three compounds, the protons of hydroxyl groups of 4-hydroxypyridine transfer to pyridyl nitrogen atoms. Compounds 1 and 2 are isomorphous forming one-dimensional [M(dca2(L2]n chains where metals are connected by double dca anions. These one-dimensional chains are extended into two-dimensional layers through weak C–H⋯N hydrogen bonds. Further, these layers are assembled into a three-dimensional supramolecular network through N–H⋯O, O–H⋯O hydrogen bonds. Complex 3 is a coordination layer of (4, 4 topology with octahedral metal centers linked by four single μ1,5-bridges. These layers are interlocked by N–H⋯O, O–H⋯O hydrogen bonds from coordinated water molecules and free L molecules, which leads to a three-dimensional supramolecular architecture. The variable temperature magnetic susceptibilities measurement of compounds 1 and 3 shows the existence of weak antiferromagnetic interactions between the metal centers. The thermogravimetric analyses of the compounds 1–3 are also discussed.

  18. Ligand electronic parameters as a measure of the polarization of the C≡O bond in [M(CO)(x)L(y)]n complexes and of the relative stabilization of [M(CO)(x)L(y)](n/n+1) species.

    Science.gov (United States)

    Zobi, Fabio

    2010-11-15

    The electronic description of octahedral (fac-[M(CO)(3)L(3)](n), with M = Re, Ru, and Mn, and [Cr(CO)(5)L](n)), square-planar (cis-[Pt(CO)(2)L(2)](n)), and tetrahedral ([Ni(CO)(3)L](n)) carbonyl complexes (where L = monodentate ligand) was obtained via density functional theory and natural population analyses in order to understand what effects are probed in these species by vibrational spectroscopy and electrochemistry as a function of the ligand electronic parameter of the associated L. The analysis indicates that while ligand electronic parameters may be considered as a measure of the net donor power of the ligand, the net transfer of the electron density (or charge) does not occur from the ligand to the metal ion. In [M(CO)(x)L(y)](n) carbonyl species, the charge transfer occurs from the ligand L to the oxygen atom of the bound carbon monoxides. This charge transfer translates into changes of the polarization (or permanent dipole) and the covalency of the C≡O bonds, and it is this effect that is probed in IR spectroscopy. As the analysis shifts from IR radiations to electrochemical potentials, the parameters best describe the relative thermodynamic stability of the oxidized and reduced [M(CO)(x)L(y)](n/n+1) species. No relationship is found between the metal natural charge of the [M(CO)(x)L(y)](n) fragments analyzed and the parameters. Brief considerations are given on the possible design of CO-releasing molecules.

  19. Full article: The Reaction between MoO3 and Molten K2S2O7 forming K2MoO2(SO4)2

    DEFF Research Database (Denmark)

    Nørbygaard, Thomas; Berg, Rolf W.; Nielsen, Kurt

    1998-01-01

    .4540(4), c = 8.8874(3) Å, beta = 112.194(1)o, wR2 = 0.0897 for 3491 independent reflections. The compound, K2MoO2(SO4)2, contains (Mo02)2+ core ions in distorted octahedral coordination, with two short (ca. 1.69 Å) terminal bonds in cis-configuration (the O-Mo-O angle is 103.1(2)o), and with two long (ca. 2...

  20. European-scale modelling of groundwater denitrification and associated N2O production

    International Nuclear Information System (INIS)

    Keuskamp, J.A.; Drecht, G. van; Bouwman, A.F.

    2012-01-01

    This paper presents a spatially explicit model for simulating the fate of nitrogen (N) in soil and groundwater and nitrous oxide (N 2 O) production in groundwater with a 1 km resolution at the European scale. The results show large heterogeneity of nitrate outflow from groundwater to surface water and production of N 2 O. This heterogeneity is the result of variability in agricultural and hydrological systems. Large parts of Europe have no groundwater aquifers and short travel times from soil to surface water. In these regions no groundwater denitrification and N 2 O production is expected. Predicted N leaching (16% of the N inputs) and N 2 O emissions (0.014% of N leaching) are much less than the IPCC default leaching rate and combined emission factor for groundwater and riparian zones, respectively. - Highlights: ► Groundwater denitrification and N 2 O production was modelled at the European scale. ► In large parts of Europe no groundwater denitrification is expected. ► N leaching and N 2 O emission in Europe are much less than the IPCC default values. - European groundwater denitrification is spatially variable, and associated nitrous oxide production is much less than based on the IPCC default estimate.

  1. Diverse Cd(II) compounds based on N-benzoyl-L-glutamic acid and N-donor ligands: Structures and photoluminescent properties

    Science.gov (United States)

    Ma, Ning; Guo, Wei-Ying; Song, Hui-Hua; Yu, Hai-Tao

    2016-01-01

    Five new Cd(II) coordination polymers with N-benzoyl-L-glutamic acid (H2bzgluO) and different N-donor ligands, [Cd(bzgluO)(2,2‧-bipy)(H2O)]n (1), [Cd(bzgluO)(2,4‧-bipy)2(H2O)·3H2O]n (2), [Cd(bzgluO)(phen)·H2O]n (3), [Cd(bzgluO)(4,4‧-bipy)(H2O)]n (4), [Cd(bzgluO)(bpp)(H2O)·2H2O]n (5) were synthesized (2,2‧-bipy=2,2‧-bipyridine, 2,4‧-bipy=2,4‧-bipyridine, phen=1,10-phenanthroline, 4,4‧-bipy=4,4‧-bipyridine, bpp=1,3-di(4-pyridyl)propane). Compounds 1-2 exhibit a 1D single-chain structure. Compound 1 generates a 2D supramolecular structure via π-π stacking and hydrogen bonding, 3D architecture of compound 2 is formed by hydrogen bonding. Compound 3 features a 1D double-chain structure, which are linked by π-π interactions into a 2D supramolecular layer. Compounds 4-5 display a 2D network structure. Neighboring layers of 4 are extended into a 3D supramolecular architecture through hydrogen bonding. The structural diversity of these compounds is attributed to the effect of ancillary N-donor ligands and coordination modes of H2bzgluO. Luminescent properties of 1-5 were studied at room temperature. Circular dichroism of compounds 1, 2 and 5 were investigated.

  2. Charge transfer and bond lengths in YBa2Cu3-xMxO6+y

    International Nuclear Information System (INIS)

    Jorgensen, J.D.; Rhyne, J.J.; Neumann, D.A.; Miceli, P.F.; Tarascon, J.M.; Greene, L.H.; Barboux, P.

    1989-01-01

    We discuss the effects of doping on the Cu chain sites in YBa 2 Cu 3-x M x O 6+y . The relationship between bond lengths obtained from neutron scattering and charge transfer is evaluated in terms of bond valence. In particular, it is concluded that removing an oxygen from the chains transfers one electron to the planes. 24 refs., 3 figs

  3. Synthesis and X-ray structure of the dysprosium(III complex derived from the ligand 5-chloro-1,3-diformyl-2-hydroxybenzene-bis-(2-hydroxybenzoylhydrazone [Dy2(C22H16ClN4O53](SCN 3.(H2O.(CH3OH

    Directory of Open Access Journals (Sweden)

    Aliou H. Barry

    2003-12-01

    Full Text Available The title compound [Dy2(C22H16ClN4O53](SCN 3.(H2O.(CH3OH has been synthesized and its crystal structure determined by single X-ray diffraction at room temperature. The two nine coordinated Dy(III are bound to three macromolecules ligand through the phenolic oxygens of the p-chlorophenol moieties, the nitrogen atoms and the carbonyl functions of the hydrazonic moieties. The phenolic oxygen atoms of the 2-hydroxybenzoyl groups are not bonded to the metal ions. In the bases of the coordination polyhedra the six Dy-N bonds are in the range 2.563(13-2.656(13 Å and the twelve Dy-O bonds are in the range 2.281(10-2.406(10 Å.

  4. An Icepak-PSpice Co-Simulation Method to Study the Impact of Bond Wires Fatigue on the Current and Temperature Distribution of IGBT Modules under Short-Circuit

    DEFF Research Database (Denmark)

    Wu, Rui; Iannuzzo, Francesco; Wang, Huai

    2014-01-01

    Bond wires fatigue is one of the dominant failure mechanisms of IGBT modules. Prior-art research mainly focuses on its impact on the end-of-life failure, while its effect on the short-circuit capability of IGBT modules is still an open issue. This paper proposes a new electro-thermal simulation...... approach enabling analyze the impact of the bond wires fatigue on the current and temperature distribution on IGBT chip surface under short-circuit. It is based on an Icepack-PSpice co-simulation by taking the advantage of both a finite element thermal model and an advanced PSpice-based multi-cell IGBT...

  5. Resistência de união entre liga de níquel-cromo e cimentos resinosos

    Directory of Open Access Journals (Sweden)

    FRANÇA Rodrigo de Oliveira

    1998-01-01

    Full Text Available O objetivo do trabalho foi a determinação da retentividade, por ensaio de tração, entre uma liga de níquel-cromo e cimentos resinosos (Comspan, Panavia Ex e All-Bond C & B, com quatro tratamentos superficiais (liso, microjateado, ataque eletrolítico e silicoater e armazenagem por 3 e 30 dias em solução de NaCl a 0,9%, a 37° C e termociclagem intercalada na segunda (a 5 e 55° C, por 1 minuto em cada banho, perfazendo 600 ciclos. Os corpos de prova eram discos, providos de alça fixadora entre si dois a dois. Os resultados permitiram concluir que: superfícies lisas conduzem a baixíssimas retentividades e tratadas com silicoater a altíssimos valores, com qualquer cimento e condição de armazenagem; Panavia Ex com superfícies microjateadas também conduz a altas retentividades; a maior retentividade foi obtida pela combinação silicoater/All-Bond C&B.

  6. Atomic resolution chemical bond analysis of oxygen in La2CuO4

    Science.gov (United States)

    Haruta, M.; Nagai, T.; Lugg, N. R.; Neish, M. J.; Nagao, M.; Kurashima, K.; Allen, L. J.; Mizoguchi, T.; Kimoto, K.

    2013-08-01

    The distorted CuO6 octahedron in La2CuO4 was studied using aberration-corrected scanning transmission electron microscopy at atomic resolution. The near-edge structure in the oxygen K-edge electron energy-loss spectrum was recorded as a function of the position of the electron probe. After background subtraction, the measured spectrum image was processed using a recently developed inversion process to remove the mixing of signals on the atomic columns due to elastic and thermal scattering. The spectra were then compared with first-principles band structure calculations based on the local-density approximation plus on-site Coulomb repulsion (LDA + U) approach. In this article, we describe in detail not only anisotropic chemical bonding of the oxygen 2p state with the Cu 3d state but also with the Cu 4p and La 5d/4f states. Furthermore, it was found that buckling of the CuO2 plane was also detectable at the atomic resolution oxygen K-edge. Lastly, it was found that the effects of core-hole in the O K-edge were strongly dependent on the nature of the local chemical bonding, in particular, whether it is ionic or covalent.

  7. Buthalital and methitural – 5,5-substituted derivatives of 2-thiobarbituric acid forming the same type of hydrogen-bonded chain

    Directory of Open Access Journals (Sweden)

    Thomas Gelbrich

    2017-12-01

    Full Text Available The molecule of buthalital, (I [systematic name: 5-(2-methylpropyl-5-(prop-2-en-1-yl-2-sulfanylidene-1,3-diazinane-4,6-dione], C11H16N2O2S, exhibits a planar pyrimidine ring, whereas the pyrimidine ring of methitural, (II [systematic name: 5-(1-methylbutyl-5-[2-(methylsulfanylethyl]-2-sulfanylidene-1,3-diazinane-4,6-dione], C12H20N2O2S2, is slightly puckered. (I and (II contain the same hydrogen-bonded chain structure in which each molecule is connected, via four N—H...O=C hydrogen bonds, to two other molecules, resulting in a hydrogen-bonded chain displaying a sequence of R22(8 rings. The same type of N—H...O=C hydrogen-bonded chain has previously been found in several 5,5-disubstituted derivatives of barbituric acid which are chemically closely related to (I and (II.

  8. The loss of NH2O from the N-hydroxyacetamide radical cation CH3C(O)NHOH+

    Science.gov (United States)

    Jobst, Karl J.; Burgers, Peter C.; Ruttink, Paul J. A.; Terlouw, Johan K.

    2006-08-01

    A previous study [Ch. Lifshitz, P.J.A. Ruttink, G. Schaftenaar, J.K. Terlouw, Rapid Commun. Mass Spectrom. 1 (1987) 61] shows that metastable N-hydroxyacetamide ions CH3C(O)NHOH+ (HA-1) do not dissociate into CH3CO+ + NHOH by direct bond cleavage but rather yield CH3CO+ + NH2OE The tandem mass spectrometry based experiments of the present study on the isotopologue CH3C(O)NDOD+ reveal that the majority of the metastable ions lose the NH2O radical as NHDO rather than ND2O. A mechanistic analysis using the CBS-QB3 model chemistry shows that the molecular ions HA-1 rearrange into hydrogen-bridged radical cations [OCC(H2)H...N(H)OH]+ whose acetyl cation component then catalyses the transformation NHOH --> NH2O prior to dissociation. The high barrier for the unassisted 1,2-H shift in the free radical, 43 kcal mol-1, is reduced to a mere 7 kcal mol-1 for the catalysed transformation which can be viewed as a quid-pro-quo reaction involving two proton transfers.

  9. Thermal stability and chemical bonding states of AlOxNy/Si gate stacks revealed by synchrotron radiation photoemission spectroscopy

    International Nuclear Information System (INIS)

    He, G.; Toyoda, S.; Shimogaki, Y.; Oshima, M.

    2010-01-01

    Annealing-temperature dependence of the thermal stability and chemical bonding states of AlO x N y /SiO 2 /Si gate stacks grown by metalorganic chemical vapor deposition (MOCVD) using new chemistry was investigated by synchrotron radiation photoemission spectroscopy (SRPES). Results have confirmed the formation of the AlN and AlNO compounds in the as-deposited samples. Annealing the AlO x N y samples in N 2 ambient in 600-800 deg. C promotes the formation of SiO 2 component. Meanwhile, there is no formation of Al-O-Si and Al-Si binding states, suggesting no interdiffusion of Al with the Si substrate. A thermally induced reaction between Si and AlO x N y to form volatile SiO and Al 2 O is suggested to be responsible for the full disappearance of the Al component that accompanies annealing at annealing temperature of 1000 deg. C. The released N due to the breakage of the Al-N bonding will react with the SiO 2 interfacial layer and lead to the formation of the Si 3 -N-O/Si 2 -N-O components at the top of Si substrate. These results indicate high temperature processing induced evolution of the interfacial chemistry and application range of AlO x N y /Si gate stacks in future CMOS devices.

  10. 4-Chloro-N-o-tolylbenzamide

    Directory of Open Access Journals (Sweden)

    Hiroyuki Ishida

    2008-10-01

    Full Text Available In the molecule of the title compound, C14H12ClNO, the two benzene rings are close to coplanar [dihedral angle = 7.85 (4°]. The amide N—C=O plane makes dihedral angles of 34.04 (4 and 39.90 (3°, respectively, with the 4-chloro- and 2-methylphenyl rings. In the crystal structure, intermolecular N—H...O hydrogen bonds link the molecules into chains.

  11. Syntheses, characterizations and crystal structures of three new organically templated or organically bonded zinc selenates

    International Nuclear Information System (INIS)

    Feng Meiling; Mao Jianggao; Song Junling

    2004-01-01

    Three new organically templated or organically bonded zinc selenates, namely, {H 2 bipy}Zn(SeO 4 ) 2 (H 2 O) 2 1 (bipy=4,4'-bipyridine), {H 2 pip}{Zn(SeO 4 ) 2 (H 2 O) 4 }·2H 2 O 2 (pip=piprazine), and Zn(SeO 4 )(phen)(H 2 O) 2 3 (phen=1,10-phenanthroline) have been synthesized by hydrothermal reactions. The structure of compound 1 features a 1D chain composed of [Zn(SeO 4 ) 2 (H 2 O) 2 ] 2- anions. Compound 2 has a 2D layer structure built from {Zn(SeO 4 ) 2 (H 2 O) 4 } 2- anions that are cross-linked by doubly protonated piperazine cations via N-H···O hydrogen bonds. The structure of compound 3 contains a 1D chain of Zn(SeO 4 )(phen)(H 2 O) 2 , such chains are further interlinked by hydrogen bonds and π···π interactions to form a layer. The different roles the templates played have also been discussed

  12. TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO2 thin films

    International Nuclear Information System (INIS)

    Lomenzo, Patrick D.; Nishida, Toshikazu; Takmeel, Qanit; Zhou, Chuanzhen; Fancher, Chris M.; Jones, Jacob L.; Lambers, Eric; Rudawski, Nicholas G.; Moghaddam, Saeed

    2015-01-01

    Ferroelectric HfO 2 -based thin films, which can exhibit ferroelectric properties down to sub-10 nm thicknesses, are a promising candidate for emerging high density memory technologies. As the ferroelectric thickness continues to shrink, the electrode-ferroelectric interface properties play an increasingly important role. We investigate the TaN interface properties on 10 nm thick Si-doped HfO 2 thin films fabricated in a TaN metal-ferroelectric-metal stack which exhibit highly asymmetric ferroelectric characteristics. To understand the asymmetric behavior of the ferroelectric characteristics of the Si-doped HfO 2 thin films, the chemical interface properties of sputtered TaN bottom and top electrodes are probed with x-ray photoelectron spectroscopy. Ta-O bonds at the bottom electrode interface and a significant presence of Hf-N bonds at both electrode interfaces are identified. It is shown that the chemical heterogeneity of the bottom and top electrode interfaces gives rise to an internal electric field, which causes the as-grown ferroelectric domains to preferentially polarize to screen positively charged oxygen vacancies aggregated at the oxidized bottom electrode interface. Electric field cycling is shown to reduce the internal electric field with a concomitant increase in remanent polarization and decrease in relative permittivity. Through an analysis of pulsed transient switching currents, back-switching is observed in Si-doped HfO 2 thin films with pinched hysteresis loops and is shown to be influenced by the internal electric field

  13. Effect of TiO2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in Orthodontics

    Directory of Open Access Journals (Sweden)

    Ahmad Sodagar

    Full Text Available ABSTRACT Introduction: Plaque accumulation and bond failure are drawbacks of orthodontic treatment, which requires composite for bonding of brackets. As the antimicrobial properties of TiO2 nanoparticles (NPs have been proven, the aim of this study was to evaluate the antimicrobial and mechanical properties of composite resins modified by the addition of TiO2 NPs. Methods: Orthodontics composite containing 0%, 1%, 5% and 10% NPs were prepared. 180 composite disks were prepared for elution test, disk agar diffusion test and biofilm inhibition test to collect the counts of microorganisms on three days, measure the inhibition diameter and quantify the viable counts of colonies consequently. For shear bond strength (SBS test, 48 intact bovine incisors were divided into four groups. Composites containing 0%, 1%, 5% and 10% NPs were used for bonding of bracket. The bracket/tooth SBS was measured by using an universal testing machine. Results: All concentration of TiO2 NPs had a significant effect on creation and extension of inhibition zone. For S. mutans and S. sanguinis, all concentration of TiO2 NPs caused reduction of the colony counts. Composite containing 10% TiO2 NPs had significant effect on reduction of colony counts for S. mutans and S. sanguinis in all three days. The highest mean shear bond strength belonged to the control group, while the lowest value was seen in 10% NPs composite. Conclusions: Incorporating TiO2 nanoparticles into composite resins confer antibacterial properties to adhesives, while the mean shear bond of composite containing 1% and 5% NPs still in an acceptable range.

  14. Crystal structure of tetrakis[μ2-2-(dimethylaminoethanolato-κ3N,O:O]di-μ3-hydroxido-dithiocyanato-κ2N-dichromium(IIIdilead(II dithiocyanate acetonitrile monosolvate

    Directory of Open Access Journals (Sweden)

    Julia A. Rusanova

    2016-04-01

    Full Text Available The tetranuclear complex cation of the title compound, [Cr2Pb2(NCS2(OH2(C4H10NO4](SCN2·CH3CN, lies on an inversion centre. The main structural feature of the cation is a distorted seco-norcubane Pb2Cr2O6 cage with a central four-membered Cr2O2 ring. The CrIII ion is coordinated in a distorted octahedron, which involves two N atoms of one bidentate ligand and one thiocyanate anion, two μ2-O atoms of 2-(dimethylaminoethanolate ligands and two μ3-O atoms of hydroxide ions. The coordination geometry of the PbII ion is a distorted disphenoid, which involves one N atom, two μ2-O atoms and one μ3-O atom. In addition, weak Pb...S interactions involving the coordinating and non-coordinating thiocyanate anions are observed. In the crystal, the complex cations are linked through the thiocyanate anions via the Pb...S interactions and O—H...N hydrogen bonds into chains along the c axis. The chains are further linked together via S...S contacts. The contribution of the disordered solvent acetonitrile molecule was removed with the SQUEEZE [Spek (2015. Acta Cryst. C71, 9–18] procedure in PLATON. The solvent is included in the reported molecular formula, weight and density.

  15. Competition between weak OH···π and CH··O hydrogen bonds: THz spectroscopy of the C2H2—H2O and C2H4—H2O complexes

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, Jimmy; Nelander, B.

    2017-01-01

    an intermolecular CH⋯O hydrogen-bonded configuration of C2v symmetry with the H2O subunit acting as the hydrogen bond acceptor. The observation and assignment of two large-amplitude donor OH librational modes of the C2H4—H2O complex at 255.0 and 187.5 cm−1, respectively, confirms an intermolecular OH⋯π hydrogen...

  16. Effect of oxygen incorporation on the structure and elasticity of Ti-Al-O-N coatings synthesized by cathodic arc and high power pulsed magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hans, M., E-mail: hans@mch.rwth-aachen.de; Baben, M. to; Music, D.; Ebenhöch, J.; Schneider, J. M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Primetzhofer, D. [Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, S-75120 Uppsala (Sweden); Kurapov, D.; Arndt, M.; Rudigier, H. [Oerlikon Balzers Coating AG, Iramali 18, LI-9496 Balzers, Principality of Liechtenstein (Liechtenstein)

    2014-09-07

    Ti-Al-O-N coatings were synthesized by cathodic arc and high power pulsed magnetron sputtering. The chemical composition of the coatings was determined by means of elastic recoil detection analysis and energy dispersive X-ray spectroscopy. The effect of oxygen incorporation on the stress-free lattice parameters and Young's moduli of Ti-Al-O-N coatings was investigated by X-ray diffraction and nanoindentation, respectively. As nitrogen is substituted by oxygen, implications for the charge balance may be expected. A reduction in equilibrium volume with increasing O concentration is identified by X-ray diffraction and density functional theory calculations of Ti-Al-O-N supercells reveal the concomitant formation of metal vacancies. Hence, the oxygen incorporation-induced formation of metal vacancies enables charge balancing. Furthermore, nanoindentation experiments reveal a decrease in elastic modulus with increasing O concentration. Based on ab initio data, two causes can be identified for this: First, the metal vacancy-induced reduction in elasticity; and second, the formation of, compared to the corresponding metal nitride bonds, relatively weak Ti-O and Al-O bonds.

  17. Effect of oxygen incorporation on the structure and elasticity of Ti-Al-O-N coatings synthesized by cathodic arc and high power pulsed magnetron sputtering

    International Nuclear Information System (INIS)

    Hans, M.; Baben, M. to; Music, D.; Ebenhöch, J.; Schneider, J. M.; Primetzhofer, D.; Kurapov, D.; Arndt, M.; Rudigier, H.

    2014-01-01

    Ti-Al-O-N coatings were synthesized by cathodic arc and high power pulsed magnetron sputtering. The chemical composition of the coatings was determined by means of elastic recoil detection analysis and energy dispersive X-ray spectroscopy. The effect of oxygen incorporation on the stress-free lattice parameters and Young's moduli of Ti-Al-O-N coatings was investigated by X-ray diffraction and nanoindentation, respectively. As nitrogen is substituted by oxygen, implications for the charge balance may be expected. A reduction in equilibrium volume with increasing O concentration is identified by X-ray diffraction and density functional theory calculations of Ti-Al-O-N supercells reveal the concomitant formation of metal vacancies. Hence, the oxygen incorporation-induced formation of metal vacancies enables charge balancing. Furthermore, nanoindentation experiments reveal a decrease in elastic modulus with increasing O concentration. Based on ab initio data, two causes can be identified for this: First, the metal vacancy-induced reduction in elasticity; and second, the formation of, compared to the corresponding metal nitride bonds, relatively weak Ti-O and Al-O bonds

  18. Supramolecular architecture in a co-crystal of the N(7—H tautomeric form of N6-benzoyladenine with adipic acid (1/0.5

    Directory of Open Access Journals (Sweden)

    Robert Swinton Darious

    2016-06-01

    Full Text Available The asymmetric unit of the title co-crystal, C12H9N5O·0.5C6H10O4, consists of one molecule of N6-benzoyladenine (BA and one half-molecule of adipic acid (AA, the other half being generated by inversion symmetry. The dihedral angle between the adenine and phenyl ring planes is 26.71 (7°. The N6-benzoyladenine molecule crystallizes in the N(7—H tautomeric form with three non-protonated N atoms. This tautomeric form is stabilized by intramolecular N—H...O hydrogen bonding between the carbonyl (C=O group and the N(7—H hydrogen atom on the Hoogsteen face of the purine ring, forming an S(7 ring motif. The two carboxyl groups of adipic acid interact with the Watson–Crick face of the BA molecules through O—H...N and N—H...O hydrogen bonds, generating an R22(8 ring motif. The latter units are linked by N—H...N hydrogen bonds, forming layers parallel to (10-5. A weak C—H...O hydrogen bond is also present, linking adipic acid molecules in neighbouring layers, enclosing R22(10 ring motifs and forming a three-dimensional structure. C=O...π and C—H...π interactions are also present in the structure.

  19. High thermal stability of abrupt SiO2/GaN interface with low interface state density

    Science.gov (United States)

    Truyen, Nguyen Xuan; Taoka, Noriyuki; Ohta, Akio; Makihara, Katsunori; Yamada, Hisashi; Takahashi, Tokio; Ikeda, Mitsuhisa; Shimizu, Mitsuaki; Miyazaki, Seiichi

    2018-04-01

    The effects of postdeposition annealing (PDA) on the interface properties of a SiO2/GaN structure formed by remote oxygen plasma-enhanced chemical vapor deposition (RP-CVD) were systematically investigated. X-ray photoelectron spectroscopy clarified that PDA in the temperature range from 600 to 800 °C has almost no effects on the chemical bonding features at the SiO2/GaN interface, and that positive charges exist at the interface, the density of which can be reduced by PDA at 800 °C. The capacitance-voltage (C-V) and current density-SiO2 electric field characteristics of the GaN MOS capacitors also confirmed the reduction in interface state density (D it) and the improvement in the breakdown property of the SiO2 film after PDA at 800 °C. Consequently, a high thermal stability of the SiO2/GaN structure with a low fixed charge density and a low D it formed by RP-CVD was demonstrated. This is quite informative for realizing highly robust GaN power devices.

  20. A comparative computational study of Csbnd N and Csbnd C bonding visible to NIR absorbing croconines

    Science.gov (United States)

    Chetti, Prabhakar; Tripathi, Anuj

    2018-03-01

    The lowest electronic excitations and charge transfer properties in two series of croconine dyes; 1) molecules with Csbnd N bonding, having an absorption in the visible region (400-600 nm) and 2) molecules with Csbnd C bonding, showing absorption in visible to near infrared (NIR) region (600-1100 nm) are analyzed by quantum-chemical calculations. The absorption maxima in Csbnd C bonding croconines (CCR) are always having 200-300 nm red shifted than its corresponding Csbnd N bonding croconines (NCR). The reason for this drastic red shift in CCR series than its corresponding NCR has been systematically studied by DFT, TDDFT and SAC-CI methods. It is found that, CCR series are with less charge transfer in nature and are having larger diradical character, whereas NCR series molecules showing larger charge transfer with lower diradical character. The change in bonding mode of central five membered croconate ring, from Csbnd N to Csbnd C, destabilization and/stabilization of HOMO LUMO levels were observed. This study may helpful in the design and synthesis of new visible to NIR absorbing croconine dyes which are useful in materials applications.

  1. Twisted Amides: From Obscurity to Broadly Useful Transition-Metal-Catalyzed Reactions by N-C Amide Bond Activation.

    Science.gov (United States)

    Liu, Chengwei; Szostak, Michal

    2017-05-29

    The concept of using amide bond distortion to modulate amidic resonance has been known for more than 75 years. Two classic twisted amides (bridged lactams) ingeniously designed and synthesized by Kirby and Stoltz to feature fully perpendicular amide bonds, and as a consequence emanate amino-ketone-like reactivity, are now routinely recognized in all organic chemistry textbooks. However, only recently the use of amide bond twist (distortion) has advanced to the general organic chemistry mainstream enabling a host of highly attractive N-C amide bond cross-coupling reactions of broad synthetic relevance. In this Minireview, we discuss recent progress in this area and present a detailed overview of the prominent role of amide bond destabilization as a driving force in the development of transition-metal-catalyzed cross-coupling reactions by N-C bond activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Influence of H on the composition and atomic concentrations of 'N-rich' plasma deposited SiOxNyHz films

    International Nuclear Information System (INIS)

    Prado, A. del; San Andres, E.; Martil, I.; Gonzalez-Diaz, G.; Bohne, W.; Roehrich, J.; Selle, B.

    2004-01-01

    The influence of H on the composition and atomic concentrations of Si, O, and N of plasma deposited SiO x N y H z films was investigated. The bonding scheme of H was analyzed by Fourier-transform infrared spectroscopy. The composition and absolute concentrations of all the species present in the SiO x N y H z , including H, was measured by heavy-ion elastic recoil detection analysis (HI-ERDA). Samples were deposited from SiH 4 , O 2 , and N 2 gas mixtures, with different gas flow ratios in order to obtain compositions ranging from SiN y H z to SiO 2 . Those samples deposited at higher SiH 4 partial pressures show both Si-H and N-H bonds, while those deposited at lower SiH 4 partial pressures show N-H bonds only. The Si-H and N-H bond concentrations were found to be proportional to the N concentration. The concentration of H was evaluated from the Si-H and N-H stretching absorption bands and compared to the HI-ERDA results, finding good agreement between both measurements. The deviation from H-free stoichiometric SiO x N y composition due to the presence of N-H bonds results in an effective coordination number of N to produce Si-N bonds lower than 3. By fitting the experimental composition data to a theoretical model taking into account the influence of N-H bonds, the actual concentration of N-H bonds was obtained, making evident the presence of nonbonded H. The presence of Si-H and Si-Si bonds was found to partially compensate the effect of N-H bonds, from the point of view of the relative N and Si contents. Finally, the presence of N-H bonds results in a lower Si atom concentration with respect to the stoichiometric film, due to a replacement of Si atoms by H atoms. This decrease of the Si concentration is lower in those films containing Si-H and Si-Si bonds. A model was developed to calculate the Si, O, and N atom concentrations taking into account the influence of N-H, Si-H, and Si-Si bonds, and was found to be in perfect agreement with the experimental data

  3. Climate, duration, and N placement determine N2 O emissions in reduced tillage systems: a meta-analysis.

    Science.gov (United States)

    van Kessel, Chris; Venterea, Rodney; Six, Johan; Adviento-Borbe, Maria Arlene; Linquist, Bruce; van Groenigen, Kees Jan

    2013-01-01

    No-tillage and reduced tillage (NT/RT) management practices are being promoted in agroecosystems to reduce erosion, sequester additional soil C and reduce production costs. The impact of NT/RT on N2 O emissions, however, has been variable with both increases and decreases in emissions reported. Herein, we quantitatively synthesize studies on the short- and long-term impact of NT/RT on N2 O emissions in humid and dry climatic zones with emissions expressed on both an area- and crop yield-scaled basis. A meta-analysis was conducted on 239 direct comparisons between conventional tillage (CT) and NT/RT. In contrast to earlier studies, averaged across all comparisons, NT/RT did not alter N2 O emissions compared with CT. However, NT/RT significantly reduced N2 O emissions in experiments >10 years, especially in dry climates. No significant correlation was found between soil texture and the effect of NT/RT on N2 O emissions. When fertilizer-N was placed at ≥5 cm depth, NT/RT significantly reduced area-scaled N2 O emissions, in particular under humid climatic conditions. Compared to CT under dry climatic conditions, yield-scaled N2 O increased significantly (57%) when NT/RT was implemented <10 years, but decreased significantly (27%) after ≥10 years of NT/RT. There was a significant decrease in yield-scaled N2 O emissions in humid climates when fertilizer-N was placed at ≥5 cm depth. Therefore, in humid climates, deep placement of fertilizer-N is recommended when implementing NT/RT. In addition, NT/RT practices need to be sustained for a prolonged time, particularly in dry climates, to become an effective mitigation strategy for reducing N2 O emissions. © 2012 Blackwell Publishing Ltd.

  4. Bond length contraction in Au nanocrystals formed by ion implantation into thin SiO2

    International Nuclear Information System (INIS)

    Kluth, P.; Johannessen, B.; Giraud, V.; Cheung, A.; Glover, C.J.; Azevedo, G. de M; Foran, G.J.; Ridgway, M.C.

    2004-01-01

    Au nanocrystals (NCs) fabricated by ion implantation into thin SiO 2 and annealing were investigated by means of extended x-ray absorption fine structure (EXAFS) spectroscopy and transmission electron microscopy. A bond length contraction was observed and can be explained by surface tension effects in a simple liquid-drop model. Such results are consistent with previous reports on nonembedded NCs implying a negligible influence of the SiO 2 matrix. Cumulant analysis of the EXAFS data suggests surface reconstruction or relaxation involving a further shortened bond length. A deviation from the octahedral closed shell structure is apparent for NCs of size 25 A

  5. The special bond of care: construction of a grounded theory El vínculo especial de cuidado: construcción de una teoría fundamentada O vínculo especial de cuidado: construção de uma teoria fundamentada

    Directory of Open Access Journals (Sweden)

    CHAPARRO DÍAZ LORENA

    2010-12-01

    Full Text Available

    Taking care of a person that suffers a chronic disease is increasingly more usual today. This affects the day-to-day life of many families who realize how their living pace, personal relationships and family roles change altogether. In most cases, when one member of the family assumes the role of main caregiver, he/she has the opportunity of creating a "special bond" of care with the person taken care of. The special bond of care between this dyad formed by the caregiver and the disabled or ill person is a new, different and meaningful partnership.

    Objective: understand the meaning of care for the dyad family caregiver – chronically ill person.
    Method: a grounded theory was devised based on 10 dyads made up by twenty participants residing in Bogotá.

    Results: the theory intends to transcend on the 'special bond' of care: this step from evident to intangible was created as a result of the study with three variables: the limitation and need of help, going from challenge or commitment to achievement and the way of transcending on this "special bond".

    Discussion: theory is analyzed in the light of human bondage theories, meaning of life, self-transcendence, and development of the concept of care.

    Conclusions: these dyads perceive themselves as moving across an axes leading to situations of lower physical functionality that demand instrumental responses of care, and simultaneously, a "special bond" emerges through projection and transcendence venues that reshape experience, thus, going from the evident to the intangible.

    El cuidado de una persona en situación de enfermedad crónica es cada día más frecuente y afecta la cotidianidad de muchas familias, pues les implica modificar el curso de la vida, las relaciones personales y

  6. [(Nitrato-κ2 O,O′)(nitrito-κ2 O,O′)(0.25/1.75)]bis­(1,10-phenanthroline-κ2 N,N′)cadmium(II)

    Science.gov (United States)

    Najafi, Ezzatollah; Amini, Mostafa M.; Ng, Seik Weng

    2011-01-01

    The reaction of cadmium nitrate and sodium nitrite in the presence of 1,10-phenanthroline yields the mixed nitrate–nitrite title complex, [Cd(NO2)1.75(NO3)0.25(C12H8N2)2]. The metal ion is bis-chelated by two N-heterocycles as well as by the nitrate/nitrite ions in a distorted dodeca­hedral CdN4O4 coordination environment. One nitrite group is ordered; the other is disordered with respect to a nitrate group (ratio 0.75:0.25) concerning the O atom that is not involved in bonding to the metal ion. PMID:21522904

  7. Hydrogen bonding in protic ionic liquids: structural correlations, vibrational spectroscopy, and rotational dynamics of liquid ethylammonium nitrate

    Science.gov (United States)

    Zentel, Tobias; Overbeck, Viviane; Michalik, Dirk; Kühn, Oliver; Ludwig, Ralf

    2018-02-01

    The properties of the hydrogen bonds in ethylammonium nitrate (EAN) are analyzed by using molecular dynamics simulations and infrared as well as nuclear magnetic resonance experiments. EAN features a flexible three-dimensional network of hydrogen bonds with moderate strengths, which makes it distinct from related triethylammonium-based ionic liquids. First, the network’s flexibility is manifested in a not very pronounced correlation of the hydrogen bond geometries, which is caused by rapid interchanges of bonding partners. The large flexibility of the network also leads to a substantial broadening of the mid-IR absorption band, with the contributions due to N-H stretching motions ranging from 2800 to 3250 cm-1. Finally, the different dynamics are also seen in the rotational correlation of the N-H bond vector, where a correlation time as short as 16.1 ps is observed.

  8. Crystal structure of an unknown tetrahydrofuran solvate of tetrakis(μ3-cyanato-κ3N:N:Ntetrakis[(triphenylphosphane-κPsilver(I

    Directory of Open Access Journals (Sweden)

    Peter Frenzel

    2015-10-01

    Full Text Available In the title compound, [{[(C6H53P]Ag}4{NCO}4], a distorted Ag4N4-heterocubane core is set up by four AgI ions being coordinated by the N atoms of the cyanato anions in a μ3-bridging mode. In addition, a triphenylphosphine ligand is datively bonded to each of the AgI ions. Intramolecular Ag...Ag distances as short as 3.133 (9 Å suggest the presence of argentophilic (d10...d10 interactions. Five moderate-to-weak C—H...O hydrogen-bonding interactions are observed in the crystal structure, spanning a three-dimensional network. A region of electron density was treated with the SQUEEZE procedure in PLATON [Spek (2015. Acta Cryst. C71, 9–18] following unsuccessful attempts to model it as being part of disordered tetrahydrofuran solvent molecules. The given chemical formula and other crystal data do not take into account these solvent molecules.

  9. Nickel-Catalyzed C sp2 –C sp3 Cross-Coupling via C–O Bond Activation

    KAUST Repository

    Guo, Lin; Hsiao, Chien-Chi; Yue, Huifeng; Liu, Xiangqian; Rueping, Magnus

    2016-01-01

    through Csp2-O substitution, without the restriction of β-hydride elimination. Moreover, the advantage of the newly developed method was demonstrated in a selective and sequential C-O bond activation process. © 2016 American Chemical Society.

  10. Aquabis(4-methylbenzoato-κO;κ2O,O′-bis(pyridine-κNnickel(II

    Directory of Open Access Journals (Sweden)

    Li-Li Ji

    2008-04-01

    Full Text Available In the title mononuclear complex, [Ni(C8H7O22(C5H5N2(H2O], the NiII atom is in a distorted octahedral arrangement, coordinated by three carboxylate O atoms from one bidentate 4-methylbenzoate ligand and one monodentate 4-methylbenzoate ligand, two N atoms from pyridine ligands, axially positioned, and a water molecule. The equatorially positioned water molecule and uncoordinated carboxylate O atom form an intramolecular hydrogen bond. An intermolecular O—H...O hydrogen bond between the coordinated water molecule and carboxylate O atom of the 4-methylbenzoate ligand forms infinite chains along the b axis. These chains are connected by C—H...π interactions.

  11. 2-[N-(3-Amino-4-nitrophenylcarboximidoyl]phenol

    Directory of Open Access Journals (Sweden)

    Gholam Hossein Shahverdizadeh

    2011-11-01

    Full Text Available The title compound, C13H11N3O3, is essentially planar (r.m.s. for the 19 non-H atoms = 0.031 Å, a conformation stabilized in part by intramolecular O—H...N and N—H...O hydrogen bonds. The configuration about the imine bond [1.2919 (12 Å] is E. The presence of N—H...O(nitro hydrogen bonds leads to the formation of supramolecular tapes in the crystal structure. These are connected into layers by π–π interactions [centroid–centroid distance = 3.6046 (6 Å] occurring between the hydroxy- and amino-substituted benzene rings.

  12. Understanding of chemical bonding towards the enhancement of catalytic of Co(III)-doped ZrO2 catalyst material using x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Nor Aziah Buang; Wan Azelee Wan Abu Bakar; Harrison, P.G.

    2000-01-01

    The x-ray photoelectron spectroscopy (XPS) analysis has demonstrated the formation metal ions in different oxidation states or similar oxidation state with different bonding character in the ZrO 2 based catalyst material. Interaction of cobalt oxide with ZrO 2 matrixes shows the formation of surface species of Zr-O-Co with Co in the +2 oxidation state and Co 3 O 4 -CoO in a mixture of +2 and +3 oxidation states. The formation of Zr-O-Co species in sample calcined at 400 degree C results in the more ionic character of Co-O bond and more covalent character of Zr-0 bond compared to their ordinary oxides. These behaviour cause the shifting of Co(2p) XPS peaks position towards higher binding energy and the Zr(3d) XPS peaks position towards lower binding energy. Meanwhile, the formation Of Co 3 0 4 -CoO in sample calcined at temperature of 600 degree C exhibits Co(2p) XPS peaks in the region correspond to the Co in the +2 and +3 oxidation states, which is more covalent in bonding character. The catalytic activity measurement of the catalyst material calcined at 600 o C showed that the existence of Co-O species with more covalent in bonding character gave the best catalytic performance towards 100 % conversion of carbon monoxide and propane. (Author)

  13. Vibrational tug-of-war: The pKA dependence of the broad vibrational features of strongly hydrogen-bonded carboxylic acids

    Science.gov (United States)

    Van Hoozen, Brian L.; Petersen, Poul B.

    2018-04-01

    Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm-1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pKA values. Dimers with large pKA differences are found to have features that can extend to frequencies below 1000 cm-1. The relationships between mean OH/NH frequency, aqueous pKA, and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm-1. Understanding how the vibrational features

  14. 1,5-Bis(2-hydroxy-3-methoxybenzylidenecarbonohydrazide methanol 0.47-solvate

    Directory of Open Access Journals (Sweden)

    Mouhamadou Moustapha Sow

    2014-04-01

    Full Text Available In the title compound, C17H18N4O5·0.47CH3OH, the virtually planar (r.m.s. deviation = 0.128 Å carbonohydrazide molecule is located on a twofold axis and conformation of its C=N bonds is E. There are short intramolecular O—H...N hydrogen bonds between the hydroxy groups and hydrazide N atoms. In the crystal, bifurcated N—H...(O,O hydrogen bonds assemble the carbonohydrazide molecules into a three-dimensional network. There are C2 symmetric voids in this network, 47% of which are occupied by disordered methanol molecules.

  15. Charge-Shift Corrected Electronegativities and the Effect of Bond Polarity and Substituents on Covalent-Ionic Resonance Energy.

    Science.gov (United States)

    James, Andrew M; Laconsay, Croix J; Galbraith, John Morrison

    2017-07-13

    Bond dissociation energies and resonance energies for H n A-BH m molecules (A, B = H, C, N, O, F, Cl, Li, and Na) have been determined in order to re-evaluate the concept of electronegativity in the context of modern valence bond theory. Following Pauling's original scheme and using the rigorous definition of the covalent-ionic resonance energy provided by the breathing orbital valence bond method, we have derived a charge-shift corrected electronegativity scale for H, C, N, O, F, Cl, Li, and Na. Atomic charge shift character is defined using a similar approach resulting in values of 0.42, 1.06, 1.43, 1.62, 1.64, 1.44, 0.46, and 0.34 for H, C, N, O, F, Cl, Li, and Na, respectively. The charge-shift corrected electronegativity values presented herein follow the same general trends as Pauling's original values with the exception of Li having a smaller value than Na (1.57 and 1.91 for Li and Na respectively). The resonance energy is then broken down into components derived from the atomic charge shift character and polarization effects. It is then shown that most of the resonance energy in the charge-shift bonds H-F, H 3 C-F, and Li-CH 3 and borderline charge-shift H-OH is associated with polarity rather than the intrinsic atomic charge-shift character of the bonding species. This suggests a rebranding of these bonds as "polar charge-shift" rather than simply "charge-shift". Lastly, using a similar breakdown method, it is shown that the small effect the substituents -CH 3 , -NH 2 , -OH, and -F have on the resonance energy (<10%) is mostly due to changes in the charge-shift character of the bonding atom.

  16. Effects of extrinsic point defects in phosphorene: B, C, N, O, and F adatoms

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gaoxue, E-mail: gaoxuew@mtu.edu, E-mail: pandey@mtu.edu, E-mail: shashi.p.karna.civ@mail.mil; Pandey, Ravindra, E-mail: gaoxuew@mtu.edu, E-mail: pandey@mtu.edu, E-mail: shashi.p.karna.civ@mail.mil [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Karna, Shashi P., E-mail: gaoxuew@mtu.edu, E-mail: pandey@mtu.edu, E-mail: shashi.p.karna.civ@mail.mil [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, ATTN: RDRL-WM, Aberdeen Proving Ground, Maryland 21005-5069 (United States)

    2015-04-27

    Phosphorene is emerging as a promising 2D semiconducting material with a direct band gap and high carrier mobility. In this paper, we examine the role of the extrinsic point defects including surface adatoms in modifying the electronic properties of phosphorene using density functional theory. The surface adatoms considered are B, C, N, O, and F with a [He] core electronic configuration. Our calculations show that B and C, with electronegativity close to P, prefer to break the sp{sup 3} bonds of phosphorene and reside at the interstitial sites in the 2D lattice by forming sp{sup 2} like bonds with the native atoms. On the other hand, N, O, and F, which are more electronegative than P, prefer the surface sites by attracting the lone pairs of phosphorene. B, N, and F adsorption will also introduce local magnetic moment to the lattice. Moreover, B, C, N, and F adatoms will modify the band gap of phosphorene, yielding metallic transverse tunneling characters. Oxygen does not modify the band gap of phosphorene, and a diode like tunneling behavior is observed. Our results therefore offer a possible route to tailor the electronic and magnetic properties of phosphorene by the adatom functionalization and provide the physical insights of the environmental sensitivity of phosphorene, which will be helpful to experimentalists in evaluating the performance and aging effects of phosphorene-based electronic devices.

  17. Crystal structures of N-(4-chlorophenyl-2-[(4,6-diaminopyrimidin-2-ylsulfanyl]acetamide and N-(3-chlorophenyl-2-[(4,6-diaminopyrimidin-2-ylsulfanyl]acetamide

    Directory of Open Access Journals (Sweden)

    S. Subasri

    2017-04-01

    Full Text Available The title compounds, C12H12ClN5OS, (I, and C12H12ClN5OS, (II, are 2-[(diaminopyrimidin-2-ylsulfanyl]acetamides. Compound (II, crystallizes with two independent molecules (A and B in the asymmetric unit. In each of the molecules, in both (I and (II, an intramolecular N—H...N hydrogen bond forms an S(7 ring motif. The pyrimidine ring is inclined to the benzene ring by 42.25 (14° in (I, and by 59.70 (16 and 62.18 (15° in molecules A and B, respectively, of compound (II. In the crystal of (I, molecules are linked by pairs of N—H...N hydrogen bonds, forming inversion dimers with an R22(8 ring motif. The dimers are linked via bifurcated N—H...O and C—H...O hydrogen bonds, forming corrugated layers parallel to the ac plane. In the crystal of (II, the A molecules are linked through N—H...O and N—H...Cl hydrogen bonds, forming layers parallel to (100. The B molecules are also linked by N—H...O and N—H...Cl hydrogen bonds, also forming layers parallel to (100. The parallel layers of A and B molecules are linked via N—H...N hydrogen bonds, forming a three-dimensional structure.

  18. Activation and thermodynamic parameter study of the heteronuclear C=O···H-N hydrogen bonding of diphenylurethane isomeric structures by FT-IR spectroscopy using the regularized inversion of an eigenvalue problem.

    Science.gov (United States)

    Spegazzini, Nicolas; Siesler, Heinz W; Ozaki, Yukihiro

    2012-08-02

    The doublet of the ν(C=O) carbonyl band in isomeric urethane systems has been extensively discussed in qualitative terms on the basis of FT-IR spectroscopy of the macromolecular structures. Recently, a reaction extent model was proposed as an inverse kinetic problem for the synthesis of diphenylurethane for which hydrogen-bonded and non-hydrogen-bonded C=O functionalities were identified. In this article, the heteronuclear C=O···H-N hydrogen bonding in the isomeric structure of diphenylurethane synthesized from phenylisocyanate and phenol was investigated via FT-IR spectroscopy, using a methodology of regularization for the inverse reaction extent model through an eigenvalue problem. The kinetic and thermodynamic parameters of this system were derived directly from the spectroscopic data. The activation and thermodynamic parameters of the isomeric structures of diphenylurethane linked through a hydrogen bonding equilibrium were studied. The study determined the enthalpy (ΔH = 15.25 kJ/mol), entropy (TΔS = 14.61 kJ/mol), and free energy (ΔG = 0.6 kJ/mol) of heteronuclear C=O···H-N hydrogen bonding by FT-IR spectroscopy through direct calculation from the differences in the kinetic parameters (δΔ(‡)H, -TδΔ(‡)S, and δΔ(‡)G) at equilibrium in the chemical reaction system. The parameters obtained in this study may contribute toward a better understanding of the properties of, and interactions in, supramolecular systems, such as the switching behavior of hydrogen bonding.

  19. Short-range structure and thermal properties of barium tellurite glasses

    Science.gov (United States)

    Kaur, Amarjot; Khanna, Atul; Gonzàlez, Fernando

    2017-05-01

    BaO-TeO2 glasses containing 10 to 20 BaO mol% were prepared and characterized by X-ray diffraction, density measurements, differential scanning calorimetry and Raman spectroscopy. Glass density decreases with increase in BaO concentration from 10 to 20 mol%, due to replacement of heavier TeO2 by lighter BaO, however glass transition temperature (Tg) increases significantly from a value of 318°C to 327°C due to increase in average single bond enthalpy of the tellurite network. Raman studies found that glass short-range structure consists of TeO4 and TeO3 structural units and BaO modifies the network by producing the structural transformation: TeO4→ TeO3.

  20. N,N-Diethylanilinium 2,4-dioxo-5-(2,4,6-trinitrophenyl-1,2,3,4-tetrahydropyrimidin-6-olate

    Directory of Open Access Journals (Sweden)

    Manickam Buvaneswari

    2011-12-01

    Full Text Available In the crystal structure of the title molecular salt, C10H16N+·C10H4N5O9−, the components are linked through a N—H...O hydrogen bonds. R22(8 ring motifs are formed between inversion-related barbiturate residues. Two intramoleculer N—H...O hydrogen bonds are observed in the anion. The dihedral angle between 2,4,6-trinitrophenyl and barbiturate rings is 53.6 (2°. The N,N-diethylamine substituent is disordered and was modeled as two geometrically equivalent conformers with occupancies of 0.737 (2 and 0.273 (2.

  1. Different Supramolecular Coordination Polymers of [N,N'-di(pyrazin-2-yl-pyridine-2,6-diamine]Ni(II with Anions and Solvent Molecules as a Result of Hydrogen Bonding

    Directory of Open Access Journals (Sweden)

    Hsin-Ta Wang

    2007-04-01

    Full Text Available Ni(II complexes of N,N'–di(pyrazin–2–ylpyridine–2,6–diamine (H2dpzpda with different anions were synthesized and their structures were determined by X-ray diffraction. Hydrogen bonds between the amino groups and anions assembled the mononuclear molecules into different architectures. The perchlorate complex had a 1-D chain structure, whereas switching the anion from perchlorate to nitrate resulted in a corresponding change of the supramolecular structure from 1-D to 3-D. When the nitrate complex packed with the co-crystallized water, a double chain structure was formed through hydrogen bonding. The magnetic studies revealed values of g = 2.14 and D = 3.11 cm-1 for [Ni(H2dpzpda2](ClO42 (1 and g = 2.18 and D = 2.19 cm-1 for [Ni(H2dpzpda2](NO32 (2, respectively.

  2. (Carbonato-κ2 O,O′)bis­(5,5′-dimethyl-2,2′-bipyridyl-κ2 N,N′)cobalt(III) bromide trihydrate

    Science.gov (United States)

    Arun Kumar, Kannan; Meera, Parthsarathi; Amutha Selvi, Madhavan; Dayalan, Arunachalam

    2012-01-01

    In the title complex, [Co(CO3)(C12H12N2)2]Br·3H2O, the CoIII cation has a distorted octa­hedral coordination environment. It is chelated by four N atoms of two different 5,5′-dimethyl-2,2′-bipyridyl (dmbpy) ligands in axial and equatorial positions, and by two O atoms of a carbonate anion completing the equatorial positions. Although the water mol­ecules are disordered and their H atoms were not located, there are typical O⋯O distances between 2.8 and 3.0 Å, indicating O—H⋯O hydrogen bonding. The crystal packing is consolidated by C—H⋯O and C—H⋯Br hydrogen bonds, as well as π–π stacking inter­actions between adjacent pyridine rings of the dmbpy ligands, with centroid–centroid distances of 3.694 (3) and 3.7053 (3) Å. PMID:22589773

  3. Tailoring the surface chemical bond states of the NbN films by doping Ag: Achieving hard hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ping; Zhang, Kan; Du, Suxuan [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Meng, Qingnan [College of Construction Engineering, Jilin University, Changchun, 130026 (China); He, Xin [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Wang, Shuo [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Wen, Mao, E-mail: wenmao225@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Zheng, Weitao, E-mail: WTZheng@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China)

    2017-06-15

    Highlights: • Intrinsically hydrophilic NbN films can transfer to hydrophobic Nb-Ag-N films by doping Ag atoms into NbN sublattice. • Solute Ag can promote that the hydrophobic Ag{sub 2}O groups formed on the Nb-Ag-N film surface through self-oxidation. • The present work may provide a straightforward approach for the production of robust hydrophobic ceramic surfaces. - Abstract: Robust hydrophobic surfaces based on ceramics capable of withstanding harsh conditions such as abrasion, erosion and high temperature, are required in a broad range of applications. The metal cations with coordinative saturation or low electronegativity are commonly chosen to achieve the intrinsically hydrophobic ceramic by reducing Lewis acidity, and thus the ceramic systems are limited. In this work, we present a different picture that robust hydrophobic surface with high hardness (≥20 GPa) can be fabricated through doping Ag atoms into intrinsically hydrophilic ceramic film NbN by reactive co-sputtering. The transition of wettability from hydrophilic to hydrophobic of Nb-Ag-N films induced by Ag doping results from the appearance of Ag{sub 2}O groups on the films surfaces through self-oxidation, because Ag cations (Ag{sup +}) in Ag{sub 2}O are the filled-shell (4d{sup 10}5S{sup 0}) electronic structure with coordinative saturation that have no tendency to interact with water. The results show that surface Ag{sub 2}O benefited for hydrophobicity comes from the solute Ag atoms rather than precipitate metal Ag, in which the more Ag atoms incorporated into Nb-sublattice are able to further improve the hydrophobicity, whereas the precipitation of Ag nanoclusters would worsen it. The present work opens a window for fabricating robust hydrophobic surface through tailoring surface chemical bond states by doping Ag into transition metal nitrides.

  4. Intermolecular hydrogen bonds: From temperature-driven proton ...

    Indian Academy of Sciences (India)

    Abstract. We have combined neutron scattering and a range of numerical simulations to study hydrogen bonds in condensed matter. Two examples from a recent thesis will be presented. The first concerns proton transfer with increasing temperature in short inter- molecular hydrogen bonds [1,2]. These bonds have unique ...

  5. Aqua[N-phenyl-2-(quinolin-8-yloxyacetamide]dinitratozinc(II

    Directory of Open Access Journals (Sweden)

    Qiu-Fen Wang

    2010-03-01

    Full Text Available In the title complex, [Zn(NO32(C17H14N2O2(H2O], the six-coordinated Zn atom is in a distorted octahedral geometry, the donor centers being two O atoms and one N atom from the tridentate organic ligand, a water O atom and two O atoms from two monodentate nitrate ions. In the crystal, O—H...O hydrogen bonds between the coordinated water molecules and nitrate O atoms and N—H...O hydrogen bonds between the main ligand and nitrate O atoms consolidate the three-dimensional network.

  6. N,N-Dimethyl-N-propyl-propan-1-aminium chloride monohydrate.

    Science.gov (United States)

    Kärnä, Minna; Lahtinen, Manu; Valkonen, Jussi

    2008-10-11

    The title compound, C(8)H(20)N(+)·Cl(-)·H(2)O, has been prepared by a simple one-pot synthesis route followed by anion exchange using resin. In the crystal structure, the cations are packed in such a way that channels exist parallel to the b axis. These channels are filled by the anions and water mol-ecules, which inter-act via O-H⋯Cl hydrogen bonds [O⋯Cl = 3.285 (3) and 3.239 (3) Å] to form helical chains. The cations are involved in weak inter-molecular C-H⋯Cl and C-H⋯O hydrogen bonds. The title compound is not isomorphous with the bromo or iodo analogues.

  7. 2,6-Diaminopyridinium bis(4-hydroxypyridine-2,6-dicarboxylato-κ3O2,N,O6ferrate(III dihydrate

    Directory of Open Access Journals (Sweden)

    Andya Nemati

    2008-10-01

    Full Text Available The reaction of iron(II sulfate heptahydrate with the proton-transfer compound (pydaH(hypydcH (pyda = pyridine-2,6-diamine; hypydcH2 = 4-hydroxypyridine-2,6-dicarboxylic acid in an aqueous solution led to the formation of the title compound, (C5H8N3[Fe(C7H3NO52]·2H2O. The anion is a six-coordinated complex with a distorted octahedral geometry around the FeIII atom. Extensive intermolecular O—H...O, N—H...O and C—H...O hydrogen bonds, involving the complex anion, (pydaH+ counter-ion and two uncoordinated water molecules, and π–π [centroid-to-centroid distance 3.323 (11 Å] and C—O...π [O–centroid distance 3.150 (15 Å] interactions connect the various components into a supramolecular structure.

  8. Elucidating bonding preferences in tetrakis(imido)uranate(VI) dianions

    Science.gov (United States)

    Anderson, Nickolas H.; Xie, Jing; Ray, Debmalya; Zeller, Matthias; Gagliardi, Laura; Bart, Suzanne C.

    2017-09-01

    Actinyl species, [AnO2]2+, are well-known derivatives of the f-block because of their natural occurrence and essential roles in the nuclear fuel cycle. Along with their nitrogen analogues, [An(NR)2]2+, actinyls are characterized by their two strong trans-An-element multiple bonds, a consequence of the inverse trans influence. We report that these robust bonds can be weakened significantly by increasing the number of multiple bonds to uranium, as demonstrated by a family of uranium(VI) dianions bearing four U-N multiple bonds, [M]2[U(NR)4] (M = Li, Na, K, Rb, Cs). Their geometry is dictated by cation coordination and sterics rather than by electronic factors. Multiple bond weakening by the addition of strong π donors has the potential for applications in the processing of high-valent actinyls, commonly found in environmental pollutants and spent nuclear fuels.

  9. Tensile bond strength of adhesive systems: effects of primer and thermocycling Resistência à tração de sistemas adesivos: efeitos do “ primer” e dos ciclos térmicos

    Directory of Open Access Journals (Sweden)

    Luciana Tibiriçá AGUILAR

    2002-03-01

    Full Text Available The objective of this study was to evaluate the effects of primer and thermocycling on the bond strength of multi-purpose adhesive systems applied to enamel, under tensile stress. The following bonding systems were applied, according to the manufacturers' instructions, on unground enamel buccal surfaces of 96 premolars, with or without the application of primer: Scotchbond MP, OptiBond FL, Amalgambond Plus and OptiBond (dual-cure. A composite resin (Z100, 3M was applied and light-cured in a cast metal hollow cone, which was previously fixed to the enamel surfaces. Half of the sample was subjected to 3,000 thermocycles (5-37ºC; 37-55ºC, dwell time of 60 s, and the other half was stored in water at 37ºC for the same period. The data were treated by means of ANOVA and no significant effects were detected, which indicates that tensile bond strength was not affected by the adhesive systems, application of primer or thermocycling.O objetivo desta pesquisa foi o de verificar o efeito do "primer" e dos ciclos térmicos na resistência da união entre adesivos multiuso e esmalte dental, sob ensaios de tração. Os seguintes sistemas adesivos foram aplicados, de acordo com as instruções dos fabricantes, na superfície vestibular (sem desgaste de 96 pré-molares com ou sem a aplicação prévia do "primer": Scotchbond MP, OptiBond FL, Amalgambond Plus e OptiBond - "dual cure". Após a aplicação do sistema adesivo, foi confeccionado um cone de resina composta (Z100, 3M, e fotoativado dentro de um molde metálico. Metade do total de espécimes foi submetida a 3.000 ciclos térmicos (5-37ºC; 37-55ºC, 60 s de imersão; a outra metade permaneceu imersa em água a 37ºC pelo mesmo tempo dispensado no procedimento anterior. Os dados foram submetidos a uma análise de variância (p = 0,05 e nenhum efeito significante foi detectado, indicando que a resistência de união não foi afetada pelo sistema adesivo, pela aplicação do "primer" ou pelos ciclos térmicos.

  10. Two independent hydrogen bonded complexes of bis(1-piperidiniumacetate) hydrochloride in crystal and in the PM3 optimized structure

    International Nuclear Information System (INIS)

    Dega-Szafran, Z.; Petryna, M.; Dutkiewicz, G.; Kosturkiewicz, Z.

    2003-01-01

    Bis(1-piperidiniumacetate) hydrochloride, (PAA) 2 H · Cl + , has been synthesized and its structure solved by X-ray diffraction. The crystals belong to the triclinic system with two symmetrically independent hydrogen bonded complexes, denoted A and B, at two different inversion centers. The compound crystallizes in the space group P1 with a = 8.559(1), b = 9.625(1), c = 11.441(1) A, α = 74.85(1) o , β = 68.22(1) o , γ 84.10(1) o , Z = 2, R = 0.036. Each complex consists of two 1-piperidiniumacetate moieties. Four 1-piperidiniumacetates, as zwitterions, are held together by a network of hydrogen bonds of the types O...H...O (2.462(3) and 2.463(3) A), N-H...O (2.755(2) A) and N-H...Cl (3.167(2) A). Both N-H atoms in a complex A interact with chlorine anions. A number of weak C-H...Cl contacts stabilize the three-dimensional crystal structure. In the isolated molecule of (PAA) 2 H · Cl + optimized by the PM3 method, there also are two independent hydrogen bonded complexes. In complex A the natural form of 1-piperidineacetic acid interacts with its anionic form, while in complex B the 1-piperidiniumacetic acid, as a cation, forms a hydrogen bond with its zwitterionic form. FTIR spectrum of bis(1-piperidiniumacetate) hydrochloride has been analysed and discussed. (author)

  11. Diaqua­bis­(pyridine-2-carboxyl­ato-κ2 N,O)manganese(II) dimethyl­formamide hemisolvate

    Science.gov (United States)

    Golenya, Irina A.; Boyko, Alexander N.; Kalibabchuk, Valentina A.; Haukka, Matti; Tomyn, Stefania V.

    2011-01-01

    There are two crystallographically independent complex mol­ecules with very similar geometries in the unit cell of the title compound, [Mn(C6H4NO2)2(H2O)2]·0.5C3H7NO. The central ion is situated in a distorted octa­hedral environment of two N- and four O-donor atoms from two pyridine-2-carboxyl­ate ligands and two cis-disposed water mol­ecules. The carboxyl­ate ligands are coordinated in a chelate fashion with the formation of two five-membered rings. In the crystal, the complex mol­ecules are connected by O—H⋯O hydrogen bonds between the coordinated water mol­ecules and the uncoordinated carboxyl­ate O atoms, thus forming hydrogen-bonded walls disposed perpendicularly to the bc plane. PMID:22219799

  12. Diverse Cd(II) compounds based on N-benzoyl-L-glutamic acid and N-donor ligands: Structures and photoluminescent properties

    International Nuclear Information System (INIS)

    Ma, Ning; Guo, Wei-Ying; Song, Hui-Hua; Yu, Hai-Tao

    2016-01-01

    Five new Cd(II) coordination polymers with N-benzoyl-L-glutamic acid (H_2bzgluO) and different N-donor ligands, [Cd(bzgluO)(2,2′-bipy)(H_2O)]_n (1), [Cd(bzgluO)(2,4′-bipy)_2(H_2O)·3H_2O]_n (2), [Cd(bzgluO)(phen)·H_2O]_n (3), [Cd(bzgluO)(4,4′-bipy)(H_2O)]_n (4), [Cd(bzgluO)(bpp)(H_2O)·2H_2O]_n (5) were synthesized (2,2′-bipy=2,2′-bipyridine, 2,4′-bipy=2,4′-bipyridine, phen=1,10-phenanthroline, 4,4′-bipy=4,4′-bipyridine, bpp=1,3-di(4-pyridyl)propane). Compounds 1–2 exhibit a 1D single-chain structure. Compound 1 generates a 2D supramolecular structure via π–π stacking and hydrogen bonding, 3D architecture of compound 2 is formed by hydrogen bonding. Compound 3 features a 1D double-chain structure, which are linked by π–π interactions into a 2D supramolecular layer. Compounds 4-5 display a 2D network structure. Neighboring layers of 4 are extended into a 3D supramolecular architecture through hydrogen bonding. The structural diversity of these compounds is attributed to the effect of ancillary N-donor ligands and coordination modes of H_2bzgluO. Luminescent properties of 1–5 were studied at room temperature. Circular dichroism of compounds 1, 2 and 5 were investigated. - Graphical abstract: Five new Cd(II) metal coordination compounds with H_2bzgluO and different N-donor ligands were synthesized and characterized. Compounds 1, 2 and 3 present 1D structures, compounds 4 and 5 display 2D networks. Results indicate that auxiliary ligands and coordination modes of H_2bzgluO play an important role in governing the formation of final frameworks, and the hydrogen-bonding and π–π stacking interactions contribute the formation of the diverse supramolecular architectures. Furthermore, the different crystal structures influence the emission spectra significantly. - Highlights: • It is rarely reported that complexes prepared with N-benzoyl-L-glutamic acid. • Each complex displays diverse structures and different supramolecular

  13. A Discovery of Strong Metal-Support Bonding in Nanoengineered Au-Fe3O4 Dumbbell-like Nanoparticles by in Situ Transmission Electron Microscopy.

    Science.gov (United States)

    Han, Chang Wan; Choksi, Tej; Milligan, Cory; Majumdar, Paulami; Manto, Michael; Cui, Yanran; Sang, Xiahan; Unocic, Raymond R; Zemlyanov, Dmitry; Wang, Chao; Ribeiro, Fabio H; Greeley, Jeffrey; Ortalan, Volkan

    2017-08-09

    The strength of metal-support bonding in heterogeneous catalysts determines their thermal stability, therefore, a tremendous amount of effort has been expended to understand metal-support interactions. Herein, we report the discovery of an anomalous "strong metal-support bonding" between gold nanoparticles and "nano-engineered" Fe 3 O 4 substrates by in situ microscopy. During in situ vacuum annealing of Au-Fe 3 O 4 dumbbell-like nanoparticles, synthesized by the epitaxial growth of nano-Fe 3 O 4 on Au nanoparticles, the gold nanoparticles transform into the gold thin films and wet the surface of nano-Fe 3 O 4 , as the surface reduction of nano-Fe 3 O 4 proceeds. This phenomenon results from a unique coupling of the size-and shape-dependent high surface reducibility of nano-Fe 3 O 4 and the extremely strong adhesion between Au and the reduced Fe 3 O 4 . This strong metal-support bonding reveals the significance of controlling the metal oxide support size and morphology for optimizing metal-support bonding and ultimately for the development of improved catalysts and functional nanostructures.

  14. Tensile bond strength of self-etching versus total-etching adhesive systems under different dentinal substrate conditions Resistência de união à tração de sistemas adesivos autocondicionantes versus de condicionamento total, em diferentes condições de substrato dentinário

    Directory of Open Access Journals (Sweden)

    Alexandre Henrique Susin

    2007-03-01

    Full Text Available The use of acid etchants to produce surface demineralization and collagen network exposure, allowing adhesive monomers interdiffusion and consequently the formation of a hybrid layer, has been considered the most efficient mechanism of dentin bonding. The aim of this study was to compare the tensile bond strength to dentin of three adhesive systems, two self-etching ones (Clearfil SE Bond - CSEB and One Up Bond F - OUBF and one total-etching one (Single Bond - SB, under three dentinal substrate conditions (wet, dry and re-wet. Ninety human, freshly extracted third molars were sectioned at the occlusal surface to remove enamel and to form a flat dentin wall. The specimens were restored with composite resin (Filtek Z250 and submitted to tensile bond strength testing (TBS in an MTS 810. The data were submitted to two-way ANOVA and Tukey's test (p = 0.05. Wet dentin presented the highest TBS values for SB and CSEB. Dry dentin and re-wet produced significantly lower TBS values when using SB. OUBF was not affected by the different conditions of the dentin substrate, producing similar TBS values regardless of the surface pretreatments.O uso de condicionadores ácidos para desmineralizar a superfície dental e expor a rede de fibras colágenas para interdifusão dos monômeros adesivos e conseqüente formação da camada híbrida tem sido considerado o mais eficiente mecanismo de adesão dos agentes de união. O objetivo deste estudo foi comparar a resistência de união à dentina de três sistemas adesivos, dois autocondicionantes (Clearfil SE Bond - CSEB e One Up Bond F - OUBF e um de condicionamento total (Single Bond - SB, sob três diferentes condições de substrato dentinário (úmido, seco e reidratado. Noventa terceiros molares humanos recém-extraídos foram cortados na superfície oclusal, para se remover o esmalte e formar uma parede plana de dentina. Os espécimes foram restaurados com resina composta (Filtek Z250 e submetidos ao teste de

  15. Hydrogen bonding properties and intermediate structure of N-(2-carboxyphenyl)salicylidenimine

    NARCIS (Netherlands)

    Ligtenbarg, Alette G.J.; Hage, Ronald; Meetsma, Auke; Feringa, Ben L.

    1999-01-01

    The hydrogen bonding properties, the nature of the tautomeric structure and dimerization of N-(2-carboxyphenyl)salicylidenimine 1 has been studied. The crystal and molecular structure of 1 has been determined by single-crystal X-ray diffraction analysis. This compound forms a dimer in the solid

  16. Tetrel, Chalcogen, and Charge-Assisted Hydrogen Bonds in 2-((2-Carboxy-1-(substituted-2-hydroxyethylthio Pyridin-1-ium Chlorides

    Directory of Open Access Journals (Sweden)

    Firudin I. Guseinov

    2017-10-01

    Full Text Available Reaction of 2-chloro-2-(diethoxymethyl-3-substitutedoxirane or 1-chloro-1-(substituted -3,3-diethoxypropan-2-one with pyridine-2-thiol in EtOH at 25 °C yields 3-(diethoxymethyl-3-hydroxy-2-substituted-2,3-dihydrothiazolo[3,2-a]pyridin-4-ium chlorides, which subsequently, in MeCN at 85°C, transforms into ring-opening products, 2-((2-carboxy-1-(substituted -2-hydroxyethylthiopyridin-1-ium chlorides. The tetrel (C···O and chalcogen (S···O bonds are found in the structures of 5 and 6, respectively. Compound 6 is also present in halogen bonding with a short O···Cl distance (3.067 Å. Both molecules are stabilized in crystal by tetrel, chalcogen, and multiple charge-assisted hydrogen bonds.

  17. Study of interfaces and band offsets in TiN/amorphous LaLuO3 gate stacks

    KAUST Repository

    Mitrovic, Ivona Z.

    2011-07-01

    TiN/LaLuO3 (LLO) gate stacks formed by molecular beam deposition have been investigated by X-ray photoelectron spectroscopy, medium energy ion scattering, spectroscopic ellipsometry, scanning transmission electron microscopy, electron energy loss spectroscopy and atomic force microscopy. The results indicate an amorphous structure for deposited LLO films. The band offset between the Fermi level of TiN and valence band of LLO is estimated to be 2.65 ± 0.05 eV. A weaker La-O-Lu bond and a prominent Ti2p sub-peak which relates to Ti bond to interstitial oxygen have been identified for an ultra-thin 1.7 nm TiN/3 nm LLO gate stack. The angle-dependent XPS analysis of Si2s spectra as well as shifts of La4d, La3d and Lu4d core levels suggests a silicate-type with Si-rich SiOx LLO/Si interface. Symmetrical valence and conduction band offsets for LLO to Si of 2.2 eV and the bandgap of 5.5 ± 0.1 eV have been derived from the measurements. The band alignment for ultra-thin TiN/LLO gate stack is affected by structural changes. Copyright © 2011 Published by Elsevier B.V. All rights reserved.

  18. Unprecedented linking of two polyoxometalate units with a metal-metal multiple bond.

    Science.gov (United States)

    Sokolov, Maxim N; Korenev, Vladimir S; Izarova, Natalya V; Peresypkina, Eugenia V; Vicent, Cristian; Fedin, Vladimir P

    2009-03-02

    The reaction of (Bu(4)N)(2)[Re(2)Cl(8)] with lacunary Keggin polyoxometalate K(7)[PW(11)O(39)] in water produces a new dumbbell-shaped heteropolyoxometalate anion, [Re(2)(PW(11)O(39))(2)](8-), whose structure contains a central Re(2) core with a quadruple bond between Re atoms (Re-Re 2.25 A), coordinated to two polyoxometalate units. This complex represents the first example of the direct linking of two polyoxometalate units via a metal-metal multiple bond. The compounds were characterized by X-ray analysis, IR, and electrospray ionization mass spectrometry.

  19. Estudo comparativo de seis tipos de braquetes ortodônticos quanto à força de adesão A comparative study of six types of orthodontic brackets with regard to bond strength

    Directory of Open Access Journals (Sweden)

    Leonardo de Aquino Fleischmann

    2008-08-01

    Full Text Available INTRODUÇÃO: a realização de um diagnóstico acurado, assim como a correta seleção de materiais, especificamente dos braquetes, são requisitos importantes para o êxito da terapia ortodôntica. OBJETIVOS: investigar a influência de variados tipos de desenho da base de braquetes na força de adesão. METODOLOGIA: seis modelos foram avaliados mediante ensaio de cisalhamento - Discovery (Dentaurum - metálico com retenções por laser e 13,12mm² de área da base; Monobloc (Morelli - metálico em corpo único com protuberâncias e 10,22mm² de área; Edgewise Standard (Ortho Organizers - metálico com base MIM (Metal Injection Molding e 12,02mm² de área; Illusion Plus (Ortho Organizers - porcelana com sulcos de retenção e 13,49mm² de área; Composite (Morelli - policarbonato com protuberâncias para retenção mecânica e 14,68mm² de área; e Edgewise Standard (Morelli - metálico com tela de retenção e 14,31mm² de área. Os braquetes foram colados em dentes bovinos (incisivos com o sistema adesivo Fill Magic Ortodôntico (Vigodent, para a realização do teste. O ensaio foi executado em uma máquina de ensaios universal (EMIC, e a força de adesão foi computada, no momento da cisão, pelo software TESC, versão 3.01, medida em Newtons (N e em Megapascal (Mpa. RESULTADOS E CONCLUSÕES: não houve diferença estatística entre os braquetes testados, sendo que o grupo que apresentou a maior média de força de adesão foi o Discovery com 10,12Mpa.INTRODUCTION: An accurate diagnosis as well as the correct selection of materials, brackets in particular, are important pre-requisites for success in orthodontic therapy. AIM: The aim of this study was to examine the influence of various brackets-base designs on bond strength. METHODS: Six models were evaluated by a test of sheer bond strength: Discovery (Dentaurum - metallic with laser grooves and 13.12mm² of base area; Monobloc (Morelli - metallic one-piece with raised bumps and 10.22mm

  20. Side-by-Side Comparison of Hydroperoxide and Corresponding Alcohol as Hydrogen-Bond Donors

    DEFF Research Database (Denmark)

    Møller, Kristian Holten; Tram, Camilla Mia; Kjærgaard, Henrik Grum

    2017-01-01

    tert-butanol (t-BuOH), with dimethyl ether (DME) as the hydrogen-bond acceptor. Using a combination of Fourier-transform infrared spectroscopy and quantum chemical calculations, we compare the strength of the OH-O hydrogen bond and the total strength of complexation. We find that, both in terms...... results, we find that the hydroperoxide complex is stabilized by ∼4 kJ/mol (Gibbs free energy) more than the alcohol complex. Measured red shifts show the same trend in hydrogen-bond strength with trimethylamine (N acceptor atom) and dimethyl sulfide (S acceptor atom) as the hydrogen-bond acceptors....