WorldWideScience

Sample records for shock metamorphism appears

  1. Chemical-Petrographic Types and Shock Metamorphism of 184 Grove Mountains Equilibrated Ordinary Chondrites

    Directory of Open Access Journals (Sweden)

    Deqiu Dai

    2018-06-01

    Full Text Available We reported the petrography and mineral chemistry of 184 equilibrated ordinary chondrites collected from Grove Mountains, Antarctica. The chemical-petrographic types and shock metamorphism degrees of these chondrites were assigned. They were classified into 46 H groups (22 H4, 20 H5, and four H6, 133 L groups (eight L4, 75 L5, and 50 L6, and five LL groups (four LL4 and one LL5. Some of these chondrites could be paired; however, both H and L group meteorites were affected. Further studies such as terrestrial ages and thermal luminescence are required in order to confirm the pairings. The relative abundances of H, L, and LL are different in Grove Mountain meteorites, when compared to those in Transcontinental Ridge meteorites. Based on the shock effects, the shock metamorphism degrees of these chondrites were assigned. Compared to previous studies, the heavily shocked samples of S4 and S5 have a higher fraction (59 out of 184 in Grove Mountain ordinary chondrites. The L group (54 out of 59 is the dominant chemical group in the heavily shocked chondrites, except for five meteorites which belong to the H group. The shock metamorphism degrees of the H and L groups are distinct, which may indicate different surface properties in their parent bodies. In addition, the petrologic types and shock degrees are probably closely related, with the most heavily shocked chondrites observed in types 5 and 6.

  2. Material Evidence for Ocean Impact from Shock-Metamorphic Experiments

    Science.gov (United States)

    Miura, Y.; Takayama, K.; Iancu, O. G.

    1993-07-01

    Continental impact reveals an excavated crater that has few fresh fine ejecta showing major high shock metamorphism due to weathering [1]. A giant ocean impact rarely remains as an excavated crater mainly due to crushing by dynamic plate-tectonic movements on the crust [2]. However, all impact materials, including fine-grained ejecta, can be obtained with artificial impact experiments [3]. The purpose of this study is to discuss material evidence for ocean impact based on shock-metamorphic experiments. Artificial impact experiments indicate that fine shocked quartz (SQ) aggregates can be formed on several target rocks (Table 1) [1]. It is found in Table 1 that (1) the largest-density deviation of SQ grain is found not at the wall-rock or the impact crater but at fine-grained ejecta, and (2) silica-poor rocks of basalt, gabbro, and anorthosite can also make fine SQ aggregates by impact. Table 1, which appears here in the hard copy, shows formations of fine shocked quartz aggregates from ocean-floor rocks of basalt, gabbroic anorthosite, and granite [3]. An asteroid (about 10 km across) hits the Earth ~65 m.y. ago [4] to result in global catastrophe by titanic explosion and climate change. But shocked quartz grains found in the K/T boundary layer were considered to come from crystalline continental rocks [5]. The present result as listed in Table 1 indicates that fine SQ aggregates can also be formed at sea-floor basaltic and gabbroic rocks [3]. The present result of formation of the SQ grains from sea- floor target rocks is nearly consistent with the finding of a sea-impact crater at the K/T boundary near the Caribbean [6]. Impact-induced volcanism at the K/T boundary can explained by the penetration from thin ocean crust to upper mantle reservoirs, if giant impact of a 10-km- diameter asteroid hit the ocean [2,7]. The present result can explain "phreatomagmatic (magmatic vapor) explosion," which is created by abrupt boiling between high-temperature magma and cold

  3. Explosive volcanism, shock metamorphism and the K-T boundary

    International Nuclear Information System (INIS)

    Desilva, S.L.; Sharpton, V.L.

    1988-01-01

    The issue of whether shocked quartz can be produced by explosive volcanic events is important in understanding the origin of the K-T boundary constituents. Proponents of a volcanic origin for the shocked quartz at the K-T boundary cite the suggestion of Rice, that peak overpressures of 1000 kbars can be generated during explosive volcanic eruptions, and may have occurred during the May, 1980 eruption of Mt. St. Helens. Attention was previously drawn to the fact that peak overpressures during explosive eruptions are limited by the strength of the rock confining the magma chamber to less than 8 kbars even under ideal conditions. The proposed volcanic mechanisms for generating pressures sufficient to shock quartz are further examined. Theoretical arguments, field evidence and petrographic data are presented showing that explosive volcanic eruptions cannot generate shock metamorphic features of the kind seen in minerals at the K-T boundary

  4. Micro-Raman spectroscopy of plagioclase and maskelynite in Martian meteorites: Evidence of progressive shock metamorphism

    OpenAIRE

    Fritz,Jorg; Greshake,Ansgar; Stoffler,Dieter

    2005-01-01

    We present the first systematic Micro-Raman spectroscopic investigation of plagioclase of different degree of shock metamorphism in Martian meteorites. The equilibrium shock pressure of all plagioclase phases of seventeen unpaired Martian meteorites was determined by measuring the shock-induced reduction of the refractive index. Systematic variations in the recorded Raman spectra of the plagioclase phases correlate with increasing shock pressure. In general, the shock induced deformation of t...

  5. On the Magnitude and Orientation of Stress during Shock Metamorphism: Understanding Peak Ring Formation by Combining Observations and Models.

    Science.gov (United States)

    Rae, A.; Poelchau, M.; Collins, G. S.; Timms, N.; Cavosie, A. J.; Lofi, J.; Salge, T.; Riller, U. P.; Ferrière, L.; Grieve, R. A. F.; Osinski, G.; Morgan, J. V.; Expedition 364 Science Party, I. I.

    2017-12-01

    Shock metamorphism occurs during the earliest moments after impact. The magnitude and orientation of shock leaves recordable signatures in rocks, which spatially vary across an impact structure. Consequently, observations of shock metamorphism can be used to understand deformation and its history within a shock wave, and to examine subsequent deformation during crater modification. IODP-ICDP Expedition 364 recovered nearly 600 m of shocked target rocks from the peak ring of the Chicxulub Crater. Samples from the expedition were used to measure the magnitude and orientation of shock in peak ring materials, and to determine the mechanism of peak-ring emplacement. Here, we present the results of petrographic analyses of the shocked granitic target rocks of the Chicxulub peak ring; using universal-stage optical microscopy, back-scattered electron images, and electron back-scatter diffraction. Deformation microstructures in quartz include planar deformation features (PDFs), feather features (FFs), which are unique to shock conditions, as well as planar fractures and crystal-plastic deformation bands. The assemblage of PDFs in quartz suggest that the peak-ring rocks experienced shock pressures of 15 GPa throughout the recovered drill core, and that the orientation of FFs are consistent with the present-day orientation of the maximum principal stress direction during shock is close to vertical. Numerical impact simulations of the impact event were run to determine the magnitude and orientation of principal stresses during shock and track those orientations throughout crater formation. Our results are remarkably consistent with the geological data, and accurately predict both the shock-pressure magnitudes, and the final near-vertical orientation of the direction of maximum principal stress in the shock wave. Furthermore, analysis of the state of stress throughout the impact event can be used to constrain the timing of fracture and fault orientations observed in the core

  6. Reply to comment on "Direct evidence of ancient shock metamorphism at the site of the 1908 Tunguska event" by Vannucchi et al. (Earth Planet. Sci. Lett. 409 (2015) 168-174)

    Science.gov (United States)

    Vannucchi, Paola; Morgan, Jason P.

    2015-04-01

    Our paper (Vannucchi et al., 2015) focuses on geologic evidence for shock metamorphism found at the epicentral region of the 1908 Tunguska event. None of the currently proposed bolide explanations for the 1908 event can produce the shock pressures indicated by the geological evidence described in Vannucchi et al. (2015). If the 1908 event would have generated these pressures over the epicentral region, an observable crater should have also formed. The comment by Melott and Overholt discusses the possibility that a 1908 cometary bolide strike in Tunguska cannot be excluded because of the absence of a detectable 14C increase at this site. They dispute the findings of a recent Liu et al.'s (2014) study that an East Asian comet impact recorded by eyewitness accounts in 773 AD was coincident with a detectable 14C increase in regional South China Sea corals that grew at that time. Their point, whether true or not, is fairly peripheral to our study because the bolide hypothesis for the 1908 Tunguska event, no matter the nature of the bolide itself, does not provide a viable explanation for the geological evidence of shock metamorphism found at the 1908 Tunguska site. Furthermore, as we discuss in our paper, the probability of a prior large impact-shock event having occurred at the site of the 1908 event is extremely low, suggesting that a terrestrial shock-generating mechanism may be linked to the resolution of the Tunguska enigma. Our preferred resolution is that a terrestrial hyper-explosive gas release event, a Verneshot (Morgan et al., 2004), created the large shock-event during the emplacement of the Siberian Traps. In this scenario, the 1908 Tunguska event was due to a much smaller gas-burst that re-used the lithospheric weakness created by the ancient Verneshot. Melott and Overholt's discussion regarding the existence and size of regional and global 14C anomalies related to cometary impacts seems, therefore, to be better addressed in response to the work of Liu et

  7. Investigating the response of biotite to impact metamorphism: Examples from the Steen River impact structure, Canada

    Science.gov (United States)

    Walton, E. L.; Sharp, T. G.; Hu, J.; Tschauner, O.

    2018-01-01

    Impact metamorphic effects from quartz and feldspar and to a lesser extent olivine and pyroxene have been studied in detail. Comparatively, studies documenting shock effects in other minerals, such as double chain inosilicates, phyllosilicates, carbonates, and sulfates, are lacking. In this study, we investigate impact metamorphism recorded in crystalline basement rocks from the Steen River impact structure (SRIS), a 25 km diameter complex crater in NW Alberta, Canada. An array of advanced analytical techniques was used to characterize the breakdown of biotite in two distinct settings: along the margins of localized regions of shock melting and within granitic target rocks entrained as clasts in a breccia. In response to elevated temperature gradients along shock vein margins, biotite transformed at high pressure to an almandine-Ca/Fe majorite-rich garnet with a density of 4.2 g cm-3. The shock-produced garnets are poikilitic, with oxide and silicate glass inclusions. Areas interstitial to garnets are vesiculated, in support of models for the formation of shock veins via oscillatory slip, with deformation continuing during pressure release. Biotite within granitic clasts entrained within the hot breccia matrix thermally decomposed at ambient pressure to produce a fine-grained mineral assemblage of orthopyroxene + sanidine + titanomagnetite. These minerals are aligned to the (001) cleavage plane of the original crystal. In this and previous work, the transformation of an inosilicate (pargasite) and a phyllosilicate (biotite) to form garnet, an easily identifiable, robust mineral, has been documented. We contend that in deeply eroded astroblemes, high-pressure minerals that form within or in the environs of shock veins may serve as one of the possibly few surviving indicators of impact metamorphism.

  8. Phases of metamorphism in the metamorphic base of Xiangshan uranium orefield

    International Nuclear Information System (INIS)

    Jiang Zhenpin; Dong Yongjie; Hu Rongquan; Wu Shuilin

    2008-01-01

    Metamorphic rocks in the basement of Xiangshan uranium orefield, experienced long-term complex metamorphic-deformational evolution. From Jinning period to later Mesozoic era. It had suffered from four phase of superimposed metamorphism: regional dynamo thermal metamorphism in Mesoproterozoic era, contact-thermal metamorphism after mesoproterozoic era, dynamic metamorphism in Mesozoic era and contact-thermal metamorphism in the later of Mesozoic era. Multi-phase superimposed metamorphism show that Xiangshan area is a geothermally anomalous area ever since Proterozoic Eon. In Xiangshan area, the uranium mineralization are the outcome of superimposition of tectonism-magmatism-metamorphism. (authors)

  9. Kanfenggou UHP Metamorphic Fragment in Eastern Qinling Orogen and Its Relationship to Dabie-Sulu UHP and HP Metamorphic Belts, Central China

    Institute of Scientific and Technical Information of China (English)

    Suo Shutian; Zhong Zengqiu; Zhou Hanwen; You Zhendong

    2003-01-01

    In the Central Orogenic Belt, China, two UHP metamorphic belts are discriminated mainly based on a detailed structural analysis of the Kanfenggou UHP metamorphic fragment exposed in the eastern Qinling orogen, and together with previous regional structural, petrological and geochronological data at the scale of the orogenic domain. The first one corresponds to the South Altun-North QaidamNorth Qinling UHP metamorphic belt. The other is the Dabie-Sulu UHP and HP metamorphic belts. The two UHP metamorphic belts are separated by a series of tectonic slices composed by the Qinling rock group, Danfeng rock group and Liuling or Foziling rock group etc. respectively, and are different in age of the peak UHP metamorphism and geodynamic implications for continental deep subduction and collision. Regional field and petrological relationships suggest that the Kanfenggou UHP metamorphic fragment that contains a large volume of the coesite- and microdiamond-bearing eclogite lenses is compatible with the structures recognized in the South Altun and North Qaidam UHP metamorphic fragments exposed in the western part of China, thereby forming a large UHP metamorphic belt up to 1 000 km long along the orogen strike. This UHP metamorphic belt represents an intercontinental deep subduction and collision belt between the Yangtze and Sino-Korean cratons, occurred during the Paleozoic. On the other hand, the well-constrained Dabie-Sulu UHP and HP metamorphic belts occurred mainly during Triassic time (250-220 Ma), and were produced by the intrucontinental deep subduction and collision within the Yangtze craton. The Kanfenggou UHP metamorphic fragment does not appear to link with the Dabie-Sulu UHP and HP metamorphic belts along the orogen. There is no reason to assume the two UHP metamorphic belts us a single giant deep subduction and collision zone in the Central Orogenic Belt situated between the Yangtze and Sino-Korean cratons. Therefore, any dynamic model for the orogen must account

  10. Metamorphers

    KAUST Repository

    Sorger, Johannes; Mindek, Peter; Rautek, Peter; Grö ller, Eduard; Johnson, Graham; Viola, Ivan

    2018-01-01

    In molecular biology, illustrative animations are used to convey complex biological phenomena to broad audiences. However, such animations have to be manually authored in 3D modeling software, a time consuming task that has to be repeated from scratch for every new data set, and requires a high level of expertise in illustration, animation, and biology. We therefore propose metamorphers: a set of operations for defining animation states as well as the transitions to them in the form of re-usable storytelling templates. The re-usability is two-fold. Firstly, due to their modular nature, metamorphers can be re-used in different combinations to create a wide range of animations. Secondly, due to their abstract nature, metamorphers can be re-used to re-create an intended animation for a wide range of compatible data sets. Metamorphers thereby mask the low-level complexity of explicit animation specifications by exploiting the inherent properties of the molecular data, such as the position, size, and hierarchy level of a semantic data subset. We demonstrate the re-usability of our technique based on the authoring and application of two animation use-cases to three molecular data sets.

  11. Metamorphers

    KAUST Repository

    Sorger, Johannes

    2018-01-18

    In molecular biology, illustrative animations are used to convey complex biological phenomena to broad audiences. However, such animations have to be manually authored in 3D modeling software, a time consuming task that has to be repeated from scratch for every new data set, and requires a high level of expertise in illustration, animation, and biology. We therefore propose metamorphers: a set of operations for defining animation states as well as the transitions to them in the form of re-usable storytelling templates. The re-usability is two-fold. Firstly, due to their modular nature, metamorphers can be re-used in different combinations to create a wide range of animations. Secondly, due to their abstract nature, metamorphers can be re-used to re-create an intended animation for a wide range of compatible data sets. Metamorphers thereby mask the low-level complexity of explicit animation specifications by exploiting the inherent properties of the molecular data, such as the position, size, and hierarchy level of a semantic data subset. We demonstrate the re-usability of our technique based on the authoring and application of two animation use-cases to three molecular data sets.

  12. Recycling argon through metamorphic reactions: The record in symplectites

    Science.gov (United States)

    McDonald, Christopher S.; Regis, Daniele; Warren, Clare J.; Kelley, Simon P.; Sherlock, Sarah C.

    2018-02-01

    The 40Ar/39Ar ages of metamorphic micas that crystallized at high temperatures are commonly interpreted as cooling ages, with grains considered to have lost 40Ar via thermally-driven diffusion into the grain boundary network. Recently reported laser-ablation data suggest that the spatial distribution of Ar in metamorphic micas does not always conform to the patterns predicted by diffusion theory and that despite high metamorphic temperatures, argon was not removed efficiently from the local system during metamorphic evolution. In the Western Gneiss Region (WGR), Norway, felsic gneisses preserve microtextural evidence for the breakdown of phengite to biotite and plagioclase symplectites during near isothermal decompression from c. 20-25 to c. 8-12 kbar at 700 °C. These samples provide an ideal natural laboratory to assess whether the complete replacement of one K-bearing mineral by another at high temperatures completely 'resets' the Ar clock, or whether there is some inheritance of 40Ar in the neocrystallized phase. The timing of the high-temperature portion of the WGR metamorphic cycle has been well constrained in previous studies. However, the timing of cooling following the overprint is still much debated. In-situ laser ablation spot dating in phengite, biotite-plagioclase symplectites and coarser, texturally later biotite yielded 40Ar/39Ar ages that span much of the metamorphic cycle. Together these data show that despite residence at temperatures of 700 °C, Ar is not completely removed by diffusive loss or during metamorphic recrystallization. Instead, Ar released during phengite breakdown appears to be partially reincorporated into the newly crystallizing biotite and plagioclase (or is trapped in fluid inclusions in those phases) within a close system. Our data show that the microtextural and petrographic evolution of the sample being dated provides a critical framework in which local 40Ar recycling can be tracked, thus potentially allowing 40Ar/39Ar dates

  13. Thermal and impact history of the H chondrite parent asteroid during metamorphism: Constraints from metallic Fe-Ni

    Science.gov (United States)

    Scott, Edward R. D.; Krot, Tatiana V.; Goldstein, Joseph I.; Wakita, Shigeru

    2014-07-01

    We have studied cloudy taenite, metallographic cooling rates, and shock effects in 30 H3-6 chondrites to elucidate the thermal and early impact history of the H chondrite parent body. We focused on H chondrites with old Ar-Ar ages (>4.4 Gyr) and unshocked and mildly shocked H chondrites, as strongly shocked chondrites with such old ages are very rare. Cooling rates for most H chondrites at 500 °C are 10-50 °C/Myr and do not decrease systematically with increasing petrologic type as predicted by the onion-shell model in which types 3-5 are arranged in concentric layers around a type 6 core. Some type 4 chondrites cooled slower than some type 6 chondrites and type 3 chondrites did not cool faster than other types, contrary to the onion-shell model. Cloudy taenite particle sizes, which range from 40 to 120 nm, are inversely correlated with metallographic cooling rates and show that the latter were not compromised by shock heating. The three H4 chondrites that were used to develop the onion-shell model, Ste. Marguerite, Beaver Creek, and Forest Vale, cooled through 500 °C at ⩾5000 °C/Myr. Our thermal modeling shows that these rates are 50× higher than could be achieved in a body that was heated by 26Al and cooled without disturbance by impact. Published Ar-Ar ages do not decrease systematically with increasing petrologic type but do correlate inversely with cloudy taenite particle size suggesting that impact mixing decreased during metamorphism. Metal and silicate compositions in regolith breccias show that impacts mixed material after metamorphism without causing significant heating. Impacts during metamorphism created Portales Valley and two other H6 chondrites with large metallic veins, excavated the fast-cooled H4 chondrites around 3-4 Myr after accretion, and mixed petrologic types. Metallographic data do not require catastrophic disruption by impact during cooling.

  14. Evolutionary genetics of metamorphic failure using wild-caught vs. laboratory axolotls (Ambystoma mexicanum).

    Science.gov (United States)

    Voss, S R; Shaffer, H B

    2000-09-01

    In many organisms metamorphosis allows for an ecologically important habitat-shift from water to land. However, in some salamanders an adaptive life cycle mode has evolved that is characterized by metamorphic failure (paedomorphosis); these species remain in the aquatic habitat throughout the life cycle. Perhaps the most famous example of metamorphic failure is the Mexican axolotl (Ambystoma mexicanum), which has become a focal species for developmental biology since it was introduced into laboratory culture in the 1800s. Our previous genetic linkage mapping analysis, using an interspecific crossing design, demonstrated that a major gene effect underlies the expression of metamorphic failure in laboratory stocks of the Mexican axolotl. Here, we repeated this experiment using A. mexicanum that were sampled directly from their natural habitat at Lake Xochimilco, Mexico. We found no significant association between the major gene and metamorphic failure when wild-caught axolotls were used in the experimental design, although there is evidence of a smaller genetic effect. Thus, there appears to be genetic variation among Mexican axolotls (and possibly A. tigrinum tigrinum) at loci that contribute to metamorphic failure. This result suggests a role for more than one mutation and possibly artificial selection in the evolution of the major gene effect in the laboratory Mexican axolotl.

  15. Assessment of fire-damaged concrete. Combining metamorphic petrology and concrete petrography

    NARCIS (Netherlands)

    Larbi, J.A.; Nijland, T.G.

    2001-01-01

    Metamorphic petrology is a branch of geology that deals with the study of changes in rocks due changing physio-chemical conditions. As conditions shift in or out of the thermodynamic stability field of phases, new phases may appear whereas others disappear. A basic approach is mapping of so-called

  16. Ammonium in Witwatersrand reefs: a possible indicator of metamorphic fluid flow

    International Nuclear Information System (INIS)

    Meyer, F.M.

    1991-01-01

    Ammonium concentrations and NH 4 + /K ratios in the Kimberley Reef indicate chemical interaction with metamorphic fluids. The data, although preliminary, also suggests a gold-ammonium association in that higher gold levels are related to higher NH 4 + /K ratios. Samples from the Ventersdorp Contact Reef are also hydrothermally altered but no ammonium was detected. The low ammonium concentrations suggest that over-printing by NH 4 -bearing metamorphic fluids was negligible. From this it is concluded that chemically different fluid systems must have been operative, probably at different times, during Witwatersrand history. It appears, therefore, that ammonium geochemistry is potentially useful in the study of fluid flow and related gold (re)distribution in Witwatersrand reefs. 17 refs., 2 figs., 1 tab

  17. Time-resolved diffraction of shock-released SiO2 and diaplectic glass formation

    International Nuclear Information System (INIS)

    Gleason, A. E.; Bolme, C. A.; Lee, H. J.; Nagler, B.

    2017-01-01

    Understanding how rock-forming minerals transform under shock loading is critical for modeling collisions between planetary bodies, interpreting the significance of shock features in minerals and for using them as diagnostic indicators of impact conditions, such as shock pressure. To date, our understanding of the formation processes experienced by shocked materials is based exclusively on ex situ analyses of recovered samples. Formation mechanisms and origins of commonly observed mesoscale material features, such as diaplectic (i.e., shocked) glass, remain therefore controversial and unresolvable. Here in this paper we show in situ pump-probe X-ray diffraction measurements on fused silica crystallizing to stishovite on shock compression and then converting to an amorphous phase on shock release in only 2.4 ns from 33.6 GPa. Recovered glass fragments suggest permanent densification. These observations of real-time diaplectic glass formation attest that it is a back-transformation product of stishovite with implications for revising traditional shock metamorphism stages.

  18. Cordilleran metamorphic core complexes and their uranium favorability

    International Nuclear Information System (INIS)

    Coney, P.J.; Reynolds, S.J.

    1980-11-01

    The objective of this report is to provide a descriptive body of knowledge on Cordilleran metamorphic core complexes including their lithologic and structural characteristics, their distribution within the Cordillera, and their evolutionary history and tectonic setting. The occurrence of uranium in the context of possibility for uranium concentration is also examined. This volume contains appendices of the following: annotated bibliography of Cordilleran metamorphic core complexes; annotated bibliography of the uranium favorability of Cordilleran metamorphic core complexes; uranium occurrences in the Cordilleran metamorphic core complex belt; and geology, uranium favorability, uranium occurrences and tectonic maps of individual Cordilleran metamorphic core complexes; and locations, lithologic descriptions, petrographic information and analytical data for geochemical samples

  19. Cordilleran metamorphic core complexes and their uranium favorability. Final report

    International Nuclear Information System (INIS)

    Coney, P.J.; Reynolds, S.J.

    1980-11-01

    The objective of this report is to provide a descriptive body of knowledge on Cordilleran metamorphic core complexes including their lithologic and structural characteristics, their distribution within the Cordillera, and their evolutionary history and tectonic setting. The occurrence of uranium in the context of possibility for uranium concentration is also examined. Chapter 1 is an overview of Cordilleran metamorphic core complexes which describes their physical characteristics, tectonic setting and geologic history. This overview is accompanied by a tectonic map. Chapter 2 is a discussion of the mantled gneiss dome concept. The purpose of including this work is to provide a basic history of this concept and to describe the characteristics and distribution of gneiss domes throughout the world to enable one to compare and contrast them with the metamorphic core complexes as discussed in this report. Some gneiss domes are known producers of uranium (as are also some core complexes). Chapter 3 is an examination of the effects of the core complex process on adjacent sedimentary and volcanic cover terranes. Also included is a discussion of the kinematic significance of these cover terranes as they are related to process within the cores of the complexes. Some of the cover terranes have uranium prospects in them. Chapter 4 is a detailed discussion of uranium in Cordilleran metamorphic core complexes and includes the conceptual basis for the various types of occurrences and the processes that might favor concentration of uranium. The report is supported by a 5-part Appendix. The majority of the core complexes discussed in this report either do not appear or are not recognizable on existing published geologic maps

  20. Shock waves in gas and plasma

    International Nuclear Information System (INIS)

    Niu, K.

    1996-01-01

    A shock wave is a discontinuous surface that connects supersonic flow with subsonic flow. After a shock wave, flow velocity is reduced, and pressure and temperature increase; entropy especially increases across a shock wave. Therefore, flow is in nonequilibrium, and irreversible processes occur inside the shock layer. The thickness of a shock wave in neutral gas is of the order of the mean free path of the fluid particle. A shock wave also appears in magnetized plasma. Provided that when the plasma flow is parallel to the magnetic field, a shock wave appears if the governing equation for velocity potential is in hyperbolic type in relation with the Mach number and the Alfven number. When the flow is perpendicular to the magnetic field, the Maxwell stress, in addition to the pressure, plays a role in the shock wave in plasma. When the plasma temperature is so high, as the plasma becomes collision-free, another type of shock wave appears. In a collision-free shock wave, gyromotions of electrons around the magnetic field lines cause the shock formation instead of collisions in a collision-dominant plasma or neutral gas. Regardless of a collision-dominant or collision-free shock wave, the fluid that passes through the shock wave is heated in addition to being compressed. In inertial confinement fusion, the fuel must be compressed. Really, implosion motion performs fuel compression. A shock wave, appearing in the process of implosion, compresses the fuel. The shock wave, however, heats the fuel more intensively, and it makes it difficult to compress the fuel further because high temperatures invite high pressure. Adiabatic compression of the fuel is the desired result during the implosion, without the formation of a shock wave. (Author)

  1. Early planetary metamorphism in chondritic meteorites

    International Nuclear Information System (INIS)

    Hanan, B.B.; Tilton, G.R.

    1985-01-01

    Lead isotope relations were studied in whole rock and separated phases of Mezoe-Madaras (L3) and Sharps (H3) chondrites in order to study the record of early events in the solar system and to seek further information on the isotopic composition of primordial lead. The internal 207 Pb/ 206 Pb ages are 4.480+-0.011 AE (1 AE=10 9 years) for Mezoe-Madaras and 4.472+-0.005 AE for Sharps. The ages are not significantly changed when Canyon Diablo troilite lead is included in the data sets, suggesting that the initial Pb isotopic composition in both meteorites was the same as that in the troilite. U-Pb data from both meteorites plot along chords in concordia diagrams that indicate recent disturbances in U/Pb ratios. The chords are poorly defined owing to the relatively non-radiogenic character of the lead isotopes. Rb-Sr measurements on Sharps likewise fail to yield an isochron, in agreement with the U-Pb data. Data from the literature indicate a similar disturbance in the Rb-Sr system for Mezoe-Madaras. The 4.48 AE ages could be caused by pre-analysis contamination with terrestrial lead, however statistical comparison of isotope correlations between the acid-washes of analyzed samples and the residual washed samples suggests that the ages are real and not due to terrestrial contamination. The 4.48 AE age, which is distinctly younger than the well-established ages of 4.54-4.56 AE for the Allende chondrite and Angra dos Reis achondrite, appears to date an early metamorphic event rather than the formation of the chondrites. Rb-Sr, Sm-Nd and K-Ar ages in support of the 4.48 AE metamorphic event are reviewed. Such a metamorphic age is not necessarily in conflict with 129 I/ 129 Xe data which indicate that the parent material of most chondrites, including those of type 3, cooled through temperatures sufficient to retain radiogenic Xe within a time interval of ca. 0.02 AE. (orig.)

  2. Earthquakes, fluid pressures and rapid subduction zone metamorphism

    Science.gov (United States)

    Viete, D. R.

    2013-12-01

    High-pressure/low-temperature (HP/LT) metamorphism is commonly incomplete, meaning that large tracts of rock can remain metastable at blueschist- and eclogite-facies conditions for timescales up to millions of years [1]. When HP/LT metamorphism does take place, it can occur over extremely short durations (the role of fluids in providing heat for metamorphism [2] or catalyzing metamorphic reactions [1]. Earthquakes in subduction zone settings can occur to depths of 100s of km. Metamorphic dehydration and the associated development of elevated pore pressures in HP/LT metamorphic rocks has been identified as a cause of earthquake activity at such great depths [3-4]. The process of fracturing/faulting significantly increases rock permeability, causing channelized fluid flow and dissipation of pore pressures [3-4]. Thus, deep subduction zone earthquakes are thought to reflect an evolution in fluid pressure, involving: (1) an initial increase in pore pressure by heating-related dehydration of subduction zone rocks, and (2) rapid relief of pore pressures by faulting and channelized flow. Models for earthquakes at depth in subduction zones have focussed on the in situ effects of dehydration and then sudden escape of fluids from the rock mass following fracturing [3-4]. On the other hand, existing models for rapid and incomplete metamorphism in subduction zones have focussed only on the effects of heating and/or hydration with the arrival of external fluids [1-2]. Significant changes in pressure over very short timescales should result in rapid mineral growth and/or disequilibrium texture development in response to overstepping of mineral reaction boundaries. The repeated process of dehydration-pore pressure development-earthquake-pore pressure relief could conceivably produce a record of episodic HP/LT metamorphism driven by rapid pressure pulses. A new hypothesis is presented for the origins of HP/LT metamorphism: that HP/LT metamorphism is driven by effective pressure

  3. Metamorphic quantum dots: Quite different nanostructures

    International Nuclear Information System (INIS)

    Seravalli, L.; Frigeri, P.; Nasi, L.; Trevisi, G.; Bocchi, C.

    2010-01-01

    In this work, we present a study of InAs quantum dots deposited on InGaAs metamorphic buffers by molecular beam epitaxy. By comparing morphological, structural, and optical properties of such nanostructures with those of InAs/GaAs quantum dot ones, we were able to evidence characteristics that are typical of metamorphic InAs/InGaAs structures. The more relevant are: the cross-hatched InGaAs surface overgrown by dots, the change in critical coverages for island nucleation and ripening, the nucleation of new defects in the capping layers, and the redshift in the emission energy. The discussion on experimental results allowed us to conclude that metamorphic InAs/InGaAs quantum dots are rather different nanostructures, where attention must be put to some issues not present in InAs/GaAs structures, namely, buffer-related defects, surface morphology, different dislocation mobility, and stacking fault energies. On the other hand, we show that metamorphic quantum dot nanostructures can provide new possibilities of tailoring various properties, such as dot positioning and emission energy, that could be very useful for innovative dot-based devices.

  4. The magmatism and metamorphism at the Malayer area, Western Iran

    Science.gov (United States)

    Ahadnejad, V.; Valizadeh, M. V.; Esmaeily, D.

    2009-04-01

    The Malayer area is located in the NW-SE aligned Sanandaj-Sirjan metamorphic belt, western Iran and consists mainly of Mesozoic schists so-called Hamadan Phyllites, Jurassic to Tertiary intrusive rocks and related contact metamorphic aureoles, aplites and pegmatites. The Sanandj-Sirjan Zone is produced by oblique collisional event between Arabian plate and Central Iran microcontinent. Highest level of regional metamorphism in the area is greenschist facies and injection of felsic magmas is caused contact metamorphism. Magmatism is consist of a general northwest trend large felsic to intermediate intrusive bodies. The main trend of structural features i.e. faults, fractures and other structural features is NW-SE. The Malayer granitoid complex is ellipsoid in shape and has NW-SE foliation especially at the corners of the intrusions. Petrography of the magmatic rocks revealed recrystallization of quartz and feldspars, bending of biotite, and aligment of minerals paralle to the main trend of magmatic and metamorphic country rocks. These indicated that intrusion of felsic magma is coincide to the regional metamorphism and is syn-tectoinc. Non-extensive contact metamorphism aureoles and rareness of pegmatite and aplite in the area are interpreted as injection of felsic magmas into the high-strain metamorphic zone. The regional metamorphic rocks mainly consist of meta-sandstone, slate, phyllite, schist. These gray to dark metasedimentary rocks are consist of quartz, muscovite, turmaline, epidote, biotite and chlorite. Sheeted minerals form extended schistosity and study of porphyroblast-matrix relationships shows that injection of granitic magma into the country rocks is syn to post-tectonic. Syn-tectonic indicating porphyroblast growth synchronous with the development of the external fabric. The thermal contact area of the granite can be observed in the contact margin of granite and regional metamorphic rocks, where it produced hornfelses, andalusit-garnet schists and

  5. The timing of tertiary metamorphism and deformation in the Albion-Raft River-Grouse Creek metamorphic core complex, Utah and Idaho

    Science.gov (United States)

    Strickland, A.; Miller, E.L.; Wooden, J.L.

    2011-01-01

    The Albion-Raft River-Grouse Creek metamorphic core complex of southern Idaho and northern Utah exposes 2.56-Ga orthogneisses and Neoproterozoic metasedimentary rocks that were intruded by 32-25-Ma granitic plutons. Pluton emplacement was contemporaneous with peak metamorphism, ductile thinning of the country rocks, and top-to-thewest, normal-sense shear along the Middle Mountain shear zone. Monazite and zircon from an attenuated stratigraphic section in the Middle Mountain were dated with U-Pb, using a SHRIMP-RG (reverse geometry) ion microprobe. Zircons from the deformed Archean gneiss preserve a crystallization age of 2532 ?? 33 Ma, while monazites range from 32.6 ?? 0.6 to 27.1 ?? 0.6 Ma. In the schist of the Upper Narrows, detrital zircons lack metamorphic overgrowths, and monazites produced discordant U-Pb ages that range from 52.8 ?? 0.6 to 37.5 ?? 0.3 Ma. From the structurally and stratigraphically highest unit sampled, the schist of Stevens Spring, narrow metamorphic rims on detrital zircons yield ages from 140-110 Ma, and monazite grains contained cores that yield an age of 141 ??2 Ma, whereas rims and some whole grains ranged from 35.5 ?? 0.5 to 30.0 ?? 0.4 Ma. A boudinaged pegmatite exposed in Basin Creek is deformed by the Middle Mountains shear zone and yields a monazite age of 27.6 ?? 0.2 Ma. We interpret these data to indicate two periods of monazite and metamorphic zircon growth: a poorly preserved Early Cretaceous period (???140 Ma) that is strongly overprinted by Oligocene metamorphism (???32-27 Ma) related to regional plutonism and extension. ?? 2011 by The University of Chicago.

  6. The post collisional metamorphic evolution from Ultra High Temperature to Amphibolite facies metamorphism in the Odesan area during the Triassic collision between the North and South China cratons.

    Science.gov (United States)

    Lee, Byung Choon; Oh, Chang Whan; Kim, Tae Sung; Yi, Kee Wook

    2015-04-01

    The Odaesan Gneiss Complex (OGC) is the eastern end of the Hongseong-Odesan collision belt in Korean Peninsula which is the extension of the Dabie-Sulu collision belt between the North and South China blocks. The OGC mainly consists of banded and migmatitic gneiss with porphyritic granitoid and amphibolite. The banded gneiss can be subdivided into garnet-biotite and garnet-orthopyroxene banded gneisses. The highest metamorphic P/T conditions of the migmatitic and garnet-biotite banded gneiss were 760-820°C/6.3-7.2kbar and 810-840°C/7.2-7.8kbar respectively. On the other hand, the garnet-orthopyroxene banded gneiss records 940-950°C/10.5-10.7kbar that is corresponded to UHT metamorphic condition. These data indicate that the peak UHT metamorphic condition of the study area was preserved only within the garnet-orthopyroxene banded gneiss because its lower water content than other gneisses and UHT metamorphic mineral assemblage was completely replaced by the granulite facies metamorphism in other gneisses due to their higher water content than the garnet-orthopyroxene banded gneiss. Finally all gneisses experienced amphibolite facies retrograde metamorphism which is observed locally within rocks, such as garnet rim and surrounding area. The peak UHT metamorphism is estimated to occur at ca. 250-230 Ma using SHRIMP zircon U-Pb age dating and was caused by the heat supplied from asthenospheric mantle through the opening formed by slab break-off during early post collision stage. The calculated metamorphic conditions represent that geothermal gradient of the study area during the post collision stage was 86°C/kbar indicating the regional low-P/T metamorphic event. Besides the Triassic metamorphic age, two Paleoproterozoic metamorphic ages of ca. 1930 and 1886 Ma are also recognized by the SHRIMP age dating from the banded gneisses and Paleoproterozoic emplacement age of ca. 1847 Ma is identified from the porphyritic granitoid which formed in the within plate tectonic

  7. Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins

    Science.gov (United States)

    Zheng, Yong-Fei; Chen, Ren-Xu

    2017-09-01

    Regional metamorphism at extreme conditions refers either to Alpine-type metamorphism at low geothermal gradients of geothermal gradients of >30 °C/km. Extreme pressures refer to those above the polymorphic transition of quartz to coesite, so that ultrahigh-pressure (UHP) eclogite-facies metamorphism occurs at mantle depths of >80 km. Extreme temperatures refer to those higher than 900 °C at crustal depths of ≤80 km, so that ultrahigh-temperature (UHT) granulite-facies metamorphism occurs at medium to high pressures. While crustal subduction at the low geothermal gradients results in blueschist-eclogite facies series without arc volcanism, heating of the thinned orogenic lithosphere brings about the high geothermal gradients for amphibolite-granulite facies series with abundant magmatism. Therefore, UHP metamorphic rocks result from cold lithospheric subduction to the mantle depths, whereas UHT metamorphic rocks are produced by hot underplating of the asthenospheric mantle at the crustal depths. Active continental rifting is developed on the thinned lithosphere in response to asthenospheric upwelling, and this tectonism is suggested as a feasible mechanism for regional granulite-facies metamorphism, with the maximum temperature depending on the extent to which the mantle lithosphere is thinned prior to the rifting. While lithospheric compression is associated with subduction metamorphism in accretionary and collisional orogens, the thinned orogenic lithosphere undergoes extension due to the asthenospheric upwelling to result in orogen-parallel rifting metamorphism and magmatism. Thus, the rifting metamorphism provides a complement to the subduction metamorphism and its operation marks the asthenospheric heating of the orogenic lithosphere. Because of the partial melting and melt extraction of the lower continental crust, contemporaneous granite-migmatite-granulite associations may serve as a petrological indicator of rifting orogeny that is superimposed on

  8. The Chicxulub crater - impact metamorphism of sulfate and carbonate lithologies

    Science.gov (United States)

    Deutsch, A.; Langenhorst, F.; Hornemann, U.; Ivanov, B. A.

    2003-04-01

    It is discussed whether in the aftermath of the Chicxulub event, impact-released CO_2 and SO_x have changed the Earth's climate, acting also as lethal thread for life. Undoubtedly, vaporization of carbonates and sulfates, which are major target lithologies at the Chicxulub impact site, occurred in the footprint of the projectile. What happened to these lithologies outside this very restricted zone was so far unconstrained. Petrologic observations on PEMEX and UNAM as well as on the CSDP cores allow to set up a general classification for shock-related pro-grade effects on sulfate and carbonate sedimentary rocks. Shock effects in lithic breccias are restricted to brecciation and formation of twins in calcite. Suevites mostly lack melted carbonate clasts; annealing effects in anhydrite fragments are absent. The underlying melt breccias contain anhydrite fragments still displaying a sedimentary texture, and limestone clasts, whose texture reflect crystallization from melt. Impact melt breccias from deeper levels frequently contain partially resorbed anhydrite clasts and a melt matrix with the Ca-rich mineral assemblage quartz + plagioclase + clinopyroxene; this mineral assemblage provides evidence for partial dissociation of CaSO_4. Large clasts of anhydrite consist of equant crystals with 120^o triple junctions, a feature indicative for re-crystallization in the solid state. Tagamites (impact melt rocks) are virtually free of clasts from sedimentary lithologies. These rocks have an extremely high formation temperature, which caused total dissociation of CaSO_4 and CaCO_3. Finally, up to 100 μm wide veins of anhydrite + calcite + quartz cut the matrix of all lithologies except the tagamites. They probably represent "degassing vents". The given scheme is in qualitative accordance with data of shock recovery and annealing experiments as well as with modeling results. In addition, it substantiates that annealing plays a fundamental role in the impact metamorphism of

  9. Tectono-metamorphic evolution and magmatic processes in the thermo-metamorphic aureole of the Monte Capanne pluton (Elba Island, Northern Tyrrhenian Sea, Italy).

    Science.gov (United States)

    Morelli, M.; Pandeli, E.; Principi, G.

    2003-04-01

    Introduction In this work we present new structural and petrographic data collected in the thermo-metamorphic aureole of Monte Capanne (western Elba Island) and its metamorphic evolution. In the western Elba Island the Monte Capanne monzogranitic body (ca. 7 Ma) and its thermo-metamorphic aureole crop out. At least two different tectonic units can be distinguished: the Punta Le Tombe Unit, weak re-crystallized, and the Punta Nera Unit. In the latter one the re-crystallization is strong and a pre-intrusion tectono-metamorphic framework is evident (Morelli et al., 2002). The latter is mainly constituted by thermo-metamorphosed meta-ophiolites and meta-sedimentary successions previously correlated by Barberi et al. (1969) with the un-metamorphic ones (Complex IV and V of Trevisan, 1950) cropping out in the central-eastern Elba. According to Perrin (1975) and Reutter &Spohn (1982) a pre-intrusion tectono-metamorphic framework was recognized into such rocks. As suggested by Daniel &Jolivet (1995) complex relationships between metamorphic evolution and magmatic events are also recognizable. Geological Data The Punta Nera Unit crops out all around the Monte Capanne magmatic body and the primary contact with the underlying granitoid is somewhere preserved. This unit, strongly re-crystallized and locally crosscut by aplitic and porphyritic dikes, is represented by (Coli &Pandeli, 1997; Morelli, 2000) tectonized meta-serpentinites, meta-gabbros with rodingitic dikes, rare meta-basalts and meta-ophicalcites, meta-cherts, marbles, cherty meta-limestones, phyllites and meta-limestones with rare meta-arenites intercalations. A "pre-magmatic" tectono-metamorphic framework of this unit is well evident only in its meta-sedimentary portion. The meta-sediments are deformed by syn-metamorphic isoclinal folds caractherized by N-S trending axes, west dipping axial planes and easternward vergence. A later folding and flattening event clearly post-dated the above said folds and associated

  10. Radiation- and pair-loaded shocks

    Science.gov (United States)

    Lyutikov, Maxim

    2018-06-01

    We consider the structure of mildly relativistic shocks in dense media, taking into account the radiation and pair loading, and diffusive radiation energy transfer within the flow. For increasing shock velocity (increasing post-shock temperature), the first important effect is the efficient energy redistribution by radiation within the shock that leads to the appearance of an isothermal jump, whereby the flow reaches the final state through a discontinuous isothermal transition. The isothermal jump, on scales much smaller than the photon diffusion length, consists of a weak shock and a quick relaxation to the isothermal conditions. Highly radiation-dominated shocks do not form isothermal jump. Pair production can mildly increase the overall shock compression ratio to ≈10 (4 for matter-dominated shocks and 7 of the radiation-dominated shocks).

  11. Fluids in metamorphic rocks

    NARCIS (Netherlands)

    Touret, J.L.R.

    2001-01-01

    Basic principles for the study of fluid inclusions in metamorphic rocks are reviewed and illustrated. A major problem relates to the number of inclusions, possibly formed on a wide range of P-T conditions, having also suffered, in most cases, extensive changes after initial trapping. The

  12. Metamorphic and geochronogical study of the Triassic El Oro metamorphic complex, Ecuador: Implications for high-temperature metamorphism in a forearc zone

    Science.gov (United States)

    Riel, N.; Guillot, S.; Jaillard, E.; Martelat, J.-E.; Paquette, J.-L.; Schwartz, S.; Goncalves, P.; Duclaux, G.; Thebaud, N.; Lanari, P.; Janots, E.; Yuquilema, J.

    2013-01-01

    In the forearc of the Andean active margin in southwest Ecuador, the El Oro metamorphic complex exhibits a well exposed tilted forearc section partially migmatized. We used Raman spectroscopy on carbonaceous matter (RSCM) thermometry and pseudosections coupled with mineralogical and textural studies to constrain the pressure-temperature (P-T) evolution of the El Oro metamorphic complex during Triassic times. Our results show that anatexis of the continental crust occurred by white-mica and biotite dehydration melting along a 10 km thick crustal domain (from 4.5 to 8 kbar) with increasing temperature from 650 to 700 °C. In the biotite dehydration melting zone, temperature was buffered at 750-820 °C in a 5 km thick layer. The estimated average thermal gradient during peak metamorphism is of 30 °C/km within the migmatitic domain can be partitioned into two apparent gradients parts. The upper part from surface to 7 km depth records a 40-45 °C/km gradient. The lower part records a quasi-adiabatic geotherm with a 10 °C/km gradient consistent with an isothermal melting zone. Migmatites U-Th-Pb geochronology yielded zircon and monazite ages of 229.3 ± 2.1 Ma and 224.5 ± 2.3 Ma, respectively. This thermal event generated S-type magmatism (the Marcabeli granitoid) and was immediately followed by underplating of the high-pressure low-temperature (HP-LT) Arenillas-Panupalí unit at 225.8 ± 1.8 Ma. The association of high-temperature low-pressure (HT-LP) migmatites with HP-LT unit constitutes a new example of a paired metamorphic belt along the South American margin. We propose that in addition to crustal thinning, underplating of the Piedras gabbroic unit before 230 Ma provided the heat source necessary to foster crustal anatexis. Furthermore, its MORB signature shows that the asthenosphere was involved as the source of the heat anomaly. S-type felsic magmatism is widespread during this time and suggests that a large-scale thermal anomaly affected a large part of the

  13. Isotopic chronometry of zoned garnets: Growth kinetics and metamorphic histories

    International Nuclear Information System (INIS)

    Vance, D.; O'Nions, R.K.

    1990-01-01

    Basic information on the chronological and pressure-temperature evolution of regional metamorphic terrains may in principle be derived from metamorphic garnets because of the similarly low diffusivities of Sm, Nd and major cations in this mineral. We report here Sm-Nd and Rb-Sr isotopic and major element data on prograde garnets from regionally metamorphosed pelites from Newfoundland. The garnets preserve a prograde major element zonation as well as a sympathetic variation in Sm/Nd ratio. Sm-Nd data for separated portions of the garnet from core to rim provide both upper limits on the time for garnet growth and demonstrate synchronous growth of different garnet grains on a hand specimen scale. The Rb-Sr data on the same garnet fractions are in general agreement with these results but in some cases cannot be interpreted in terms of growth. A minimum heating rate of 3 K Ma -1 is derived by combining the estimates for garnet growth time with the apparent temperature interval over which the garnet grew, deduced from the major element zonation. This value is similar to the minimum suggested by theoretical models for the thermal evolution of thickened continental crust. The growth rate is within the range of 1.3-19 mm Ma -1 , set respectively by the isotopic data and the likely upper limit for heating rate during regional metamorphism. These growth rates appear too slow to be controlled by surface reaction and suggest that other factors, such as transport, may be rate-limiting. In this case, the limits set of the effective diffusion coefficient for material transport to the growth site (=0.4-6.1x10 -17 m 2 s -1 ) suggest that grain boundary diffusion is probably the transport mechanism for supply of material to the growing garnet. (orig.)

  14. Prograde and retrograde metamorphic processes in high-pressure subduction zone serpentinites from East Thessaly, Greece

    Science.gov (United States)

    Koutsovitis, Petros

    2016-04-01

    The East Thessaly region, Central Greece, includes metaophiolitic mélange formations which extend from the eastern foothills of Mt. Olympus and Ossa, throughout the Agia basin, Mt. Mavrovouni (Sklithro region), South Pelion and reaching up to northeast Othris (regions of Aerino and Velestino). They appear in the form of dispersed and deformed thrust sheets having been variably emplaced onto Mesozoic platform series rocks of the Pelagonian tectonostratigraphic zone[1]. These formations consist mainly of serpentinites, as well as metasediments, metagabbros, metadolerites, rodingites, ophicalcites, talc-schists and chromitites. Based upon petrographic observations, mineral chemistry data and XRD patterns, the subduction zone-related serpentinites from the regions of Potamia, Anavra, Aetolofos and Kalochori-Chasanbali (Agia basin), as well as from the regions of Aerino and Velestino, are characterized by the progressive transformation of lizardite to antigorite and are distinguished into two groups. The first group includes serpentinites from the metaophiolitic formations of Potamia, Anavra, Aerino and Velestino, which are marked by destibillization of lizardite to antigorite, mostly along the grain boundaries of the lizardite mesh textured relics. The presence of lizardite and antigorite in almost equal amounts indicates medium-temperature blueschist facies metamorphic conditions (˜340-370 ° C; P≈10-11 kbar)[2,3,4]. The second serpentinite group appears in the regions of Aetolofos and Kalochori, characterized by the predominance of antigorite, the minor occurrence of lizardite and the complete replacement of spinel by Cr-magnetite. The absence of metamorphic olivine suggests that these serpentinites were most likely formed at slightly higher temperature and pressure conditions compared to the first serpentinite group, corresponding to medium or high temperature blueschist facies metamorphism (˜360-380 ° C; P≈12 kbar)[2,3,4]. These metamorphic conditions are

  15. The discovery of hornblende-garnet-zoisite hornfels in the metamorphic basement of Xiangshan uranium ore field

    International Nuclear Information System (INIS)

    Jiang Zhenpin; Dong Yongjie; Yu Jianfa; Hu Rongquan; Wu Shuilin

    2007-01-01

    Some vein rocks are found among mica schist in the metamorphic rock area of the Xiangshan uranium ore field. They are petrologically denominated as hornblende-garnet-zoisite hornfels. The primitive rocks are basic vein rocks. The hornfels are formed under thermal metamorphism with the temperature about 640 degree C and belong to low-pressure faces. This is closed to the form condition of EarlyMiddle Proterozoic metamorphic rocks in the area. The metamorphism forming the hornfels means that the Early-Middle Proterozoic metamorphic rocks was superimposed to another thermal metamorphism and produced the second phase metamorphic minerals such as staurolite, almandine and biotite. The lattice of the second phase metamorphic mineral developed continuously with the first phase minerals. The overlapping metamorphism made the first phase metamorphic mineral suffer recrystallization, auto purification and idiomorphism. The discovery of hornfelsed basic rock veins discloses that strong geologic process with the activity of fault, magma and metamorphism were still taken placed in Paleozoic era within the metamorphic basement of the Xiangshan uranium ore field. (authors)

  16. Syn-extensional plutonism and peak metamorphism in the albion-raft river-grouse creek metamorphic core complex

    Science.gov (United States)

    Strickland, A.; Miller, E.L.; Wooden, J.L.; Kozdon, R.; Valley, J.W.

    2011-01-01

    The Cassia plutonic complex (CPC) is a group of variably deformed, Oligocene granitic plutons exposed in the lower plate of the Albion-Raft River- Grouse Creek (ARG) metamorphic core complex of Idaho and Utah. The plutons range from granodiorite to garnet-bearing, leucogranite, and during intrusion, sillimanite- grade peak metamorphism and ductile attenuation occurred in the country rocks and normal-sense, amphibolite-grade deformation took place along the Middle Mountain shear zone. U-Pb zircon geochronology from three variably deformed plutons exposed in the lower plate of the ARG metamorphic core complex revealed that each zircon is comprised of inherited cores (dominantly late Archean) and Oligocene igneous overgrowths. Within each pluton, a spread of concordant ages from the Oligocene zircon overgrowths is interpreted as zircon recycling within a long-lived magmatic system. The plutons of the CPC have very low negative whole rock ??Nd values of -26 to -35, and initial Sr values of 0.714 to 0.718, consistent with an ancient, crustal source. Oxygen isotope ratios of the Oligocene zircon overgrowths from the CPC have an average ??18O value of 5.40 ?? 0.63 permil (2SD, n = 65) with a slight trend towards higher ??18O values through time. The ??18O values of the inherited cores of the zircons are more variable at 5.93 ?? 1.51 permil (2SD, n = 29). Therefore, we interpret the plutons of the CPC as derived, at least in part, from melting Archean crust based on the isotope geochemistry. In situ partial melting of the exposed Archean basement that was intruded by the Oligocene plutons of the CPC is excluded as the source for the CPC based on field relationships, age and geochemistry. Correlations between Ti and Hf concentrations in zircons from the CPC suggest that the magmatic system may have become hotter (higher Ti concentration in zircon) and less evolved (lower Hf in zircon concentration) through time. Therefore, the CPC represents prolonged or episodic magmatism

  17. Histamine is a modulator of metamorphic competence in Strongylocentrotus purpuratus (Echinodermata: Echinoidea

    Directory of Open Access Journals (Sweden)

    Sutherby Josh

    2012-04-01

    Full Text Available Abstract Background A metamorphic life-history is present in the majority of animal phyla. This developmental mode is particularly prominent among marine invertebrates with a bentho-planktonic life cycle, where a pelagic larval form transforms into a benthic adult. Metamorphic competence (the stage at which a larva is capable to undergo the metamorphic transformation and settlement is an important adaptation both ecologically and physiologically. The competence period maintains the larval state until suitable settlement sites are encountered, at which point the larvae settle in response to settlement cues. The mechanistic basis for metamorphosis (the morphogenetic transition from a larva to a juvenile including settlement, i.e. the molecular and cellular processes underlying metamorphosis in marine invertebrate species, is poorly understood. Histamine (HA, a neurotransmitter used for various physiological and developmental functions among animals, has a critical role in sea urchin fertilization and in the induction of metamorphosis. Here we test the premise that HA functions as a developmental modulator of metamorphic competence in the sea urchin Strongylocentrotus purpuratus. Results Our results provide strong evidence that HA leads to the acquisition of metamorphic competence in S. purpuratus larvae. Pharmacological analysis of several HA receptor antagonists and an inhibitor of HA synthesis indicates a function of HA in metamorphic competence as well as programmed cell death (PCD during arm retraction. Furthermore we identified an extensive network of histaminergic neurons in pre-metamorphic and metamorphically competent larvae. Analysis of this network throughout larval development indicates that the maturation of specific neuronal clusters correlates with the acquisition of metamorphic competence. Moreover, histamine receptor antagonist treatment leads to the induction of caspase mediated apoptosis in competent larvae. Conclusions We

  18. CT appearance of renal hemorrhage after extracorporeal shock wave lithotripsy

    Energy Technology Data Exchange (ETDEWEB)

    Kanazawa, Susumu; Araki, Toru; Takamoto, Hitoshi; Hata, Kazuhiro

    1988-07-01

    Computed Tomography (CT) was performed in three patients who were suspicious of renal hemorrhage after extracorporeal shock wave lithotripsy (ESWL). Post-ESWL scans demonstrated subcapsular hematoma in all three cases, and intrarenal hemorrhage in two cases, one of which had fluid collection in the pararenal space and hemorrhage in the posterior pararenal space on CT. Thickening of gerota fascia and bridging septa in the perirenal space was visualized on CT in all of them. CT demonstrated clearly the anatomic distribution and extent of renal hemorrhage, and it is important to comprehend the imaging anatomy of the perirenal area for CT evaluation.

  19. CT appearance of renal hemorrhage after extracorporeal shock wave lithotripsy

    International Nuclear Information System (INIS)

    Kanazawa, Susumu; Araki, Toru; Takamoto, Hitoshi; Hata, Kazuhiro

    1988-01-01

    Computed Tomography (CT) was performed in three patients who were suspicious of renal hemorrhage after extracorporeal shock wave lithotripsy (ESWL). Post-ESWL scans demonstrated subcapsular hematoma in all three cases, and intrarenal hemorrhage in two cases, one of which had fluid collection in the pararenal space and hemorrhage in the posterior pararenal space on CT. Thickening of gerota fascia and bridging septa in the perirenal space was visualized on CT in all of them. CT demonstrated clearly the anatomic distribution and extent of renal hemorrhage, and it is important to comprehend the imaging anatomy of the perirenal area for CT evaluation. (author)

  20. Behaviour of uranium during late-Hercynian and alpine metamorphisms in the Aiguilles rouges and Belledonne (Valorcine, Lauziere) massifs. Western Alps

    International Nuclear Information System (INIS)

    Negga, H.S.

    1984-01-01

    The purpose of this research thesis is to define the origin of numerous uranium anomalies in the external crystalline Alpine massifs, more precisely the massif of the Aiguilles Rouges and the massif of Belledonne. The primary cause of uranium mineralization in the first massif appears to have been the retrograde metamorphism events of the late-Hercynian age. In the second massif, the same conditions of uranium mineralization appear to have been realised, but with a much higher calcium activity in the fluids. After having explained the choice of the selected areas, the sampling and the chemical analysis performed, the author describes the geological and structural framework of Western Alps: geological history of the paleozoic platform, regional geology of the studied massifs. The next part reports the petrographic and geochemical study, the analysis of the mineral chemistry, of the alteration and the metamorphism. Then the author describes the geochemistry of uranium and thorium within the studied structures

  1. Shock formation of HCO+

    International Nuclear Information System (INIS)

    Elitzur, M.

    1983-01-01

    It is shown that shocks propagating in dense molecular regions will lead to a decrease in HCO + relative abundance, in agreement with previous results by Iglesias and Silk. The shock enhancement of HCO + detected in the supernova remnant IC 443 by Dickenson et al. is due to enhanced ionization in the shocked material. This is the result of the material penetrating the remnant cavity where it becomes exposed to the trapped cosmic rays. A similar enhancement appears to have been detected by Wootten in W28 and is explained by the same model

  2. Isotopic studies of marbles in the Sanbagawa metamorphic terrain, central Shikoku, Japan

    International Nuclear Information System (INIS)

    Wada, Hideki; Enami, Masaki; Yanagi, Takeru.

    1984-01-01

    Carbon, oxygen and strontium isotopic studies were carried out on marbles occurring in crystalline schists and epidote amphibolites of the Sanbagawa metamorphic terrain, central Shikoku, Japan, in order to estimate metamorphic temperatures and to elucidate their origin. Carbon isotopic fractionation between calcite and graphite shows the metamorphic temperature of 460 deg C at the transitional part between the garnet and albite-biotite zones. Marbles are isotopically classified into two groups. (1) some marbles in epidote amphibolite masses show characteristically negative delta 13 C values and low 87 Sr/ 86 Sr ratios. These marbles are interpreted as have been derived from magmatic or deep-seated carbonates. (2) marbles collected from the crystalline schists and from the marginal part of epidote amphibolite masses, have high 87 Sr/ 86 Sr ratios and delta 13 C values similar to those of typical sedimentary carbonates. They were probably derived from sedimentary carbonates and/or carbonates re-equilibrated with metamorphic fluid segregated from crystalline schists during the Sanbagawa metamorphism. (author)

  3. Shock-induced kelyphite formation in the core of a complex impact crater

    Science.gov (United States)

    Deseta, Natalie; Boonsue, Suporn; Gibson, Roger L.; Spray, John G.

    2017-10-01

    We present a compositional and textural analysis of shock-induced microtextures in garnet porphyroblasts in migmatitic garnet-cordierite-biotite paragneisses from the centre of the Vredefort impact structure, South Africa. Detailed imaging and major element analysis of deformation features in, and adjacent to, the garnet porphyroblasts record a complex, heterogeneous distribution of shock effects at the microscale. As the most competent silicate mineral in the assemblage, with the highest Hugoniot Elastic Limit and a wide pressure-temperature stability field, the porphyroblastic garnet preserves a more diverse shock deformation response compared to minerals such as quartz and feldspar, which underwent more comprehensive shock metamorphism and subsequent annealing. The garnet porphyroblasts display pre-impact fractures that are overprinted by later intra-granular Hertzian and distinctive planar fractures associated with the impact event. Shock-induced strain localization occurred along internal slip planes and defects, including pre-existing fractures and inclusion boundaries in the garnet. Symplectitic (kelyphitic) coronas commonly enclose the garnet porphyroblasts, and inhabit intra-granular fractures. The kelyphite assemblage in fractures with open communication beyond garnet grain boundaries is characterized by orthopyroxene—cordierite—sapphirine. Conversely, the kelyphite assemblage in closed-off intra-granular fractures is highly variable, comprising spatially restricted combinations of a secondary garnet phase with a majoritic component, Al-rich orthopyroxene, sapphirine and cordierite. The impedance contrast between garnet porphyroblasts and their inclusions further facilitated the formation of shock-induced features (Al-rich orthopyroxene coronas). Together, the textural and mineralogical data suggest that these features provide a record of oscillatory shock perturbations initiated under confining pressure beneath the transient crater floor. This

  4. The next chapter in experimental petrology: Metamorphic dehydration of polycrystalline gypsum captured in 3D microtomographic time series datasets

    Science.gov (United States)

    Bedford, John; Fusseis, Florian; Leclere, Henry; Wheeler, John; Faulkner, Dan

    2016-04-01

    Nucleation and growth of new minerals in response to disequilibrium is the most fundamental metamorphic process. However, our current kinetic models of metamorphic reactions are largely based on inference from fossil mineral assemblages, rather than from direct observation. The experimental investigation of metamorphism has also been limited, typically to concealed vessels that restrict the possibility of direct microstructural monitoring. Here we present one of the first time series datasets that captures a metamorphic reaction, dehydration of polycrystalline gypsum to form hemihydrate, in a series of three dimensional x-ray microtomographic datasets. We achieved this by installing an x-ray transparent hydrothermal cell (Fusseis et al., 2014, J. Synchrotron Rad. 21, 251-253) in the microtomography beamline 2BM at the Advanced Photon Source (USA). In the cell, we heated a millimetre-sized sample of Volterra Alabaster to 388 K while applying an effective pressure of 5 MPa. Using hard x-rays that penetrate the pressure vessel, we imaged the specimen 40 times while it reacted for approximately 10 hours. Each microtomographic dataset was acquired in 300 seconds without interrupting the reaction. Our absorption microtomographic data have a voxel size of 1.3 μm, which suffices to analyse the reaction progress in 4D. Gypsum can clearly be distinguished from hemihydrate and pores, which form due to the large negative solid volume change. On the resolved scale, the first hemihydrate needles appear after about 2 hours. Our data allow tracking of individual needles throughout the entire experiment. We quantified their growth rates by measuring their circumference. While individual grains grow at different rates, they all start slowly during the initial nucleation stage, then accelerate and grow steadily between about 200 and 400 minutes before reaction rate decelerates again. Hemihydrate needles are surrounded by porous haloes, which grow with the needles, link up and

  5. Uranium and thorium migration under dislocative metamorphism

    International Nuclear Information System (INIS)

    Titov, V.K.; Bilibina, T.V.; Dashkova, A.D.; Il'in, V.K.; Makarova, L.I.; Shmuraeva, L.Ya.

    1978-01-01

    Investigated were peculiarities of uranium and thorium behaviour in the process of dislocation metamorphism on the basis of regional fracture zones of early-proterozoic embedding of Ukrainian, Aldan and Baltic shields. The studied zones correspond to tectonite of green-shale and almandin-amphibolite facies of regional metamorphism according to mineral associations. The most peculiar feature of the tectonites of green-shale facies is uranium presence in migrationally able forms, which can be involved afterwards into the ore process by hydrothermal solutions. Adsorved forms of uranium on the crystal surface or separate grains and in the cracks, as well as microinclusions of uranium minerals, selectively timed to mineral structure defects prevail among easily mobile uranium compounds. Dissolved uranium is present, evidently in gas-liquid inclusions in minerals and pore waters. There forms of uranium presence are peculiar for epidote-chlorite mylonites, as well as cataclasites and diaphthorites related to them by blastomylonites of almandin-amphibolite facies. Wide range of manifestation of this process, caused by multikilometer extension of deep fracture zones permit to consider the formations of green-shale facies of dislocation metamorphism as one of the main uranium sources in deposit formation in different uranium-ore associations different age

  6. Shear heating and metamorphism in subduction zones, 1. Thermal models

    Science.gov (United States)

    Kohn, M. J.; Castro, A. E.; Spear, F. S.

    2017-12-01

    Popular thermal-mechanical models of modern subduction systems are 100-500 °C colder at c. 50 km depth than pressure-temperature (P-T) conditions determined from exhumed metamorphic rocks. This discrepancy has been ascribed by some to profound bias in the rock record, i.e. metamorphic rocks reflect only anomalously warm subduction, not normal subduction. Accurately inferring subduction zone thermal structure, whether from models or rocks, is crucial for predicting depths of seismicity, fluid release, and sub-arc melting conditions. Here, we show that adding realistic shear stresses to thermal models implies P-T conditions quantitatively consistent with those recorded by exhumed metamorphic rocks, suggesting that metamorphic rock P-T conditions are not anomalously warm. Heat flow measurements from subduction zone fore-arcs typically indicate effective coefficients of friction (µ) ranging from 0.025 to 0.1. We included these coefficients of friction in analytical models of subduction zone interface temperatures. Using global averages of subducting plate age (50 Ma), subduction velocity (6 cm/yr), and subducting plate geometry (central Chile), temperatures at 50 km depth (1.5 GPa) increase by c. 200 °C for µ=0.025 to 700 °C for µ=0.1. However, at high temperatures, thermal softening will reduce frictional heating, and temperatures will not increase as much with depth. Including initial weakening of materials ranging from wet quartz (c. 300 °C) to diabase (c. 600 °C) in the analytical models produces concave-upward P-T distributions on P-T diagrams, with temperatures c. 100 to 500 °C higher than models with no shear heating. The absolute P-T conditions and concave-upward shape of the shear-heating + thermal softening models almost perfectly matches the distribution of P-T conditions derived from a compilation of exhumed metamorphic rocks. Numerical models of modern subduction zones that include shear heating also overlap metamorphic data. Thus, excepting the

  7. Metamorphic history and age of aluminous gneisses of the Belomorian belt of the Baltic shield

    International Nuclear Information System (INIS)

    Bibikova, E.V.; Borisova, E.Yu.; Makarov, V.A.; Drugova, G.M.

    1997-01-01

    Metamorphic conditions and age are determined for the early metamorphic stage of aluminous gneisses in the Chupa nappe in the Belomorian Mobile Belt. The granulite-facies metamorphic conditions during Late Archean time are determined based on the composition of garnet and biotie from the metapelites. The early metamorphic stage was dated at 2860 ± 30 Ma based on the U-Pb systematics of granulitic zircon from the metapelites. The U-Pb isotopic system of the zircon was strongly affected by Svecogennian metamorphism (at 1750 Ma). The geodynamic evolution of the Belomorian Mobile Belt is discussed in light of the data of this work

  8. Metamorphic evolution of the eastern part

    Directory of Open Access Journals (Sweden)

    Faryad Shah Wali

    1999-06-01

    Full Text Available The Inner to Central parts of the Western Carpathians consist of several tectonic units that provide unique opportunity to investigate Alpine and Pre-Alpine tectonothermal evolution in the Western Carpathians. Lithological and geochemical composition of sedimentary and igneous rocks indicate the presence of Alpine-Meliata and Pre-Alpine Rakovec suture zones. The Meliata blueschists are the only evidence of subducted Triassic Meliata-Hallstatt oceanic basin and adjacent continental wedge which occurred during the Jurassic time. These processes were followed by the Cretaceous collision that suffered not only the Gemer but also the Vepor Belts. Since Alpine and Variscan metamorphism occurred in most tectonic units under similar pressure and/or temperature conditions, for reconstruction of Alpine development is necessary to understand Pre-Alpine history of each tectonic unit. The Field Meeting is aimed to comprehend Alpine and Pre-Alpine tectonothermal evolution in the eastern parts of the Western Carpathians with a special respect to subduction and exhumation history of the Jurassic Meliata blueschists, as well as of Cretaceous collision in the Western Carpathians. In order to clear metamorphic characteristic and geological position of each unit a brief outline on structure and metamorphism of the Central Western Carpathians is given in the excursion guide. The manuscript of this work was improved by helpful suggestions of S. Jacko, D. Plašienka and M. Janák. This work was supported by Slovak Academic Agency, project WEGA-1/5003/98

  9. Collisionless shock waves

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Kennel, C.F.

    1991-01-01

    Collisionless shocks cannot occur naturally on the earth, because nearly all matter here consists of electrically neutral atoms and molecules. In space, however, high temperatures and ultraviolet radiation from hot stars decompose atoms into their constituent nuclei and electrons, producing a soup of electrically charged particles known as a plasma. Plasma physicists proposed that the collective electrical and magnetic properties of plasmas could produce interactions that take the place of collisions and permit shocks to form. In 1964 the theoretical work found its first experimental confirmation. Norman F. Ness and his colleagues at the Goddard Space Flight Center, using data collected from the iMP-1 spacecraft, detected clear signs that a collisionless shock exists where the solar wind encounters the earth's magnetic field. More recent research has demonstrated that collisionless shocks appear in a dazzling array of astronomical settings. For example, shocks have been found in the solar wind upstream (sunward) of all the planet and comets that have been visited by spacecraft. Violent flares on the sun generate shocks that propagate to the far reaches of the solar system; tremendous galactic outbursts create disruptions in the intergalactic medium that are trillions of times larger. In addition, many astrophysicists think that shocks from supernova explosions in our galaxy accelerate cosmic rays, a class of extraordinarily energetic elementary particles and atomic nuclei that rain down on the earth from all directions

  10. Stable isotope study of serpentinization and metamorphism in the Highland Border Suite, Scotland, UK

    Energy Technology Data Exchange (ETDEWEB)

    Ikin, N.P. (University Coll., Cardiff (UK)); Harmon, R.S. (Southern Methodist Univ., Dallas, TX (USA))

    1983-02-01

    D/H and /sup 18/O//sup 16/O ratios have been measured for whole-rock samples and mineral separates from the mafic and ultramafic rocks of the Cambro-Ordovician Highland Border Suite. The H- and O-isotopic compositions of these rocks record individual stages in a relatively complex 500 Myr old hydrothermal/ metamorphic history. Lizardite serpentinites record a premetamorphic history and indicate that parent harzburgites, dunites, and pyroxenites were serpentinized through low-temperature interaction with meteoric waters during cooling. The other rocks of the Highland Border Suite record subsequent interaction with metamorphic fluids. Amphibolite facies hornblende schists were produced through thrust-related metamorphism of spilitic pillow lavas. During dehydration, D-enriched fluids were driven off from the spilites thus leaving the hornblende schists to equilibrate with a relatively D-depleted internal fluid reservoir. The expelled D-enriched fluids may have mixed with more typical Dalradian metamorphic waters which then exchanged with the remaining mafic rocks and lizardite serpentinites during greenschist facies regional metamorphism to produce antigorite serpentinites and greenschist metaspilites with similar H- and O-isotopic compositions. Serpentinites which have been only partially metamorphosed show intermediate H-isotopic compositions between that of metamorphic antigorite and non-metamorphic lizardite end members.

  11. Metamorphism of cosmic dust: Processing from circumstellar outflows to the cometary regolith

    International Nuclear Information System (INIS)

    Nuth, J.A. III.

    1989-01-01

    Metamorphism of refractory particles continues in the interstellar medium (ISM) where the driving forces are sputtering by cosmic ray particles, annealing by high energy photons, and grain destruction in supernova generated shocks. Studies of the depletion of the elements from the gas phase of the interstellar medium tell us that if grain destruction occurs with high efficiency in the ISM, then there must be some mechanism by which grains can be formed in the ISM. Most grains in a cloud which collapses to form a star will be destroyed; many of the surviving grains will be severely processed. Grains in the outermost regions of the nebula may survive relatively unchanged by thermal processing or hydration. It is these grains which one hopes to find in comets. However, only those grains encased in ice at low temperature can be considered pristine since a considerable degree of hydrous alteration might occur in a cometary regolith if the comet enters the inner solar system. The physical, chemical and isotopic properties of a refractory grain at each stage of its life cycle will be discussed

  12. "Driverless" Shocks in the Interplanetary Medium

    Science.gov (United States)

    Gopalswamy, N.; Kaiser, M. L.; Lara, A.

    1999-01-01

    Many interplanetary shocks have been detected without an obvious driver behind them. These shocks have been thought to be either blast waves from solar flares or shocks due to sudden increase in solar wind speed caused by interactions between large scale open and closed field lines of the Sun. We investigated this problem using a set of interplanetary shock detected {\\it in situ} by the Wind space craft and tracing their solar origins using low frequency radio data obtained by the Wind/WAVES experiment. For each of these "driverless shocks" we could find a unique coronal mass ejections (CME) event observed by the SOHO (Solar and Heliospheric Observatory) coronagraphs. We also found that these CMEs were ejected at large angles from the Sun-Earth line. It appears that the "driverless shocks" are actually driver shocks, but the drivers were not intercepted by the spacecraft. We conclude that the interplanetary shocks are much more extended than the driving CMEs.

  13. Pathway to 50% Efficient Inverted Metamorphic Concentrator Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Geisz, John F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Steiner, Myles A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jain, Nikhil [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schulte, Kevin L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); France, Ryan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McMahon, William E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Perl, Emmett [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Horowitz, Kelsey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Friedman, Daniel J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-06

    Series-connected five (5J) and six junction (6J) concentrator solar cell strategies have the realistic potential to exceed 50% efficiency to enable low-cost CPV systems. We propose three strategies for developing a practical 6J device. We have overcome many of the challenges required to build such concentrator solar cell devices: We have developed 2.1 eV AlGaInP, 1.7 eV AlGaAs, and 1.7 eV GaInAsP junctions with external radiative efficiency greater than 0.1%. We have developed a transparent tunnel junction that absorbs minimal light intended for the second junction yet resists degradation under thermal load. We have developed metamorphic grades from the GaAs to the InP lattice constant that are transparent to sub-GaAs bandgap light. We have grown and compared low bandgap junctions (0.7eV - 1.2 eV) using metamorphic GaInAs, metamorphic GaInAsP, and GaInAsP lattice-matched to InP. And finally, we have demonstrated excellent performance in a high voltage, low current 4 junction inverted metamorphic device using 2.1, 1.7, 1.4, and 1.1 eV junctions with over 8.7 mA/cm2 one-sun current density that operates up to 1000 suns without tunnel junction failure.

  14. Ion transport in circulatory and/or septic shock

    International Nuclear Information System (INIS)

    Sayeed, M.M.

    1987-01-01

    This review surveys investigations of membrane ion transport in animals in hemorrhagic, endotoxic, or bacteremic shock. The focus of the review is on ion transport studies in the skeletal muscle and liver. Skeletal muscle Na + -K + transport alterations have been shown during the induction of shock via hemorrhage, endotoxin, or live Gram-negative bacteria in the rodent, canine, and primate species. These alterations include impairment of active cellular K + accumulation, increased permeability to 24 Na + and Cl - , and membrane depolarization. The ion transport alterations in the skeletal muscle are compatible with movement of extracellular fluid into the intracellular compartment. Such fluid movements can potentially lead to decreases in circulating plasma volume and thus to circulatory deficits in shock. Studies in the liver of rats subjected to hemorrhagic or endotoxic shock indicated the failure of electrogenic Na + pump. Although the hepatic cellular membrane permeability to Na + relative to permeability to K + appeared unaltered in hemorrhagic shock, endotoxic shock caused an increase in permeability to Na + . Hepatic cellular 45 Ca + regulation also appeared to be adversely affected during endotoxic shock. Alterations in hepatic Na + -K + transport and Ca + regulation could contribute to impairment in hepatic glucose production during shock. Although mechanisms of altered membrane ion transport during shock states remain unknown, such changes could occur prior to any substantial loss of cellular metabolic energy

  15. Isotopic evidence for two neoproterozoic high-grade metamorphic events in the Brazilia belt

    International Nuclear Information System (INIS)

    Pimentel, Marcio Martins; Fuck, Reinhardt Adolfo; Piuzanna, Danielle; Moraes, Renato de; Gioia, Simone Maria C.L

    2001-01-01

    The Brasilia Belt is part of a Brasiliano/Pan African orogen developed between the Amazon and Sao Francisco cratons. The stabilization of the belt occurred after the last metamorphic event at ca. 620 Ma. There has been increasing geochronological evidence, however, for an older Neoproterozoic metamorphic event at ca. 780 Ma, observed mainly in high grade rocks of three large mafic-ultramafic complexes in the northern part of the belt. In this study we present: (i) new U-Pb and Sm-Nd geochronological data, (ii) a review of the existing metamorphic ages in the Brasilia Belt, and (iii) a discussion on the tectonic model to explain the two Neoproterozoic metamorphic ages (au)

  16. Measuring metamorphic history of unequilibrated ordinary chondrites

    International Nuclear Information System (INIS)

    Sears, D.W.; Grossman, J.N.; Melcher, C.L.; Ross, L.M.; Mills, A.A.

    1980-01-01

    A thermoluminescence sensitivity technique is used to give a new measurement of the degree of metamorphism of unequilibrated ordinary chondrites. Consequently the petrological assignment of these meteorites is modified. (author)

  17. Pressure-temperature evolution of Neoproterozoic metamorphism in the Welayati Formation (Kabul Block), Afghanistan

    Science.gov (United States)

    Collett, Stephen; Faryad, Shah Wali

    2015-11-01

    The Welayati Formation, consisting of alternating layers of mica-schist and quartzite with lenses of amphibolite, unconformably overlies the Neoarchean Sherdarwaza Formation of the Kabul Block that underwent Paleoproterozoic granulite-facies and Neoproterozoic amphibolite-facies metamorphic events. To analyze metamorphic history of the Welayati Formation and its relations to the underlying Sherdarwaza Formation, petrographic study and pressure-temperature (P-T) pseudosection modeling were applied to staurolite- and kyanite-bearing mica-schists, which crop out to the south of Kabul City. Prograde metamorphism, identified by inclusion trails and chemical zonation in garnet from the micaschists indicates that the rocks underwent burial from around 6.2 kbar at 525 °C to maximum pressure conditions of around 9.5 kbar at temperatures of around 650 °C. Decompression from peak pressures under isothermal or moderate heating conditions are indicated by formation of biotite and plagioclase porphyroblasts which cross-cut and overgrow the dominant foliation. The lack of sillimanite and/or andalusite suggests that cooling and further decompression occurred in the kyanite stability field. The results of this study indicate a single amphibolite-facies metamorphism that based on P-T conditions and age dating correlates well with the Neoproterozoic metamorphism in the underlying Sherdarwaza Formation. The rocks lack any paragenetic evidence for a preceding granulite-facies overprint or subsequent Paleozoic metamorphism. Owing to the position of the Kabul Block, within the India-Eurasia collision zone, partial replacement of the amphibolite-facies minerals in the micaschist could, in addition to retrogression of the Neoproterozoic metamorphism, relate to deformation associated with the Alpine orogeny.

  18. Metamorphic Perspectives of Subduction Zone Volatiles Cycling

    Science.gov (United States)

    Bebout, G. E.

    2008-12-01

    indicates retention of seafloor N signatures and, in some cases, enrichments in sedimentary N due to forearc metamorphic fluid-rock interactions (Halama et al., this session). A global estimate of C cycling, using seafloor inputs (carbonate and organic matter) and estimates of volcanic CO2 outputs, indicates ~40% return (with large uncertainty) of the subducting C in volcanic gases. This imbalance appears plausible, given the evidence for deep carbonate subduction, in UHP marbles, and the preservation of graphite in UHP metasediments, together seemingly indicating that large fractions of subducting C survive forearc-to-subarc metamorphism. Estimates of return efficiency in the Central America arc, based on data for volcanic gases, are lower and variable along strike (12-29%), quite reasonably explained by de Leeuw et al. (2007, EPSL) as resulting from incomplete decarbonation of subducting sediment and AOC, fluid flow patterns expected given sediment section thickness, and varying degrees of forearc underplating. The attempts to mass-balance C and N across individual arc-trench systems demonstrate valuable integration of information from geophysical, field, petrologic, and geochemical observations. Studies of subduction-zone metamorphic suites can yield constraints on the evolution of deeply subducting rocks and the physicochemical characteristics of fluids released in forearcs and contributing to return flux in arc volcanic gases.

  19. Development of III-Sb metamorphic DBR membranes on InP for vertical cavity laser applications

    Science.gov (United States)

    Addamane, S. J.; Mansoori, A.; Renteria, E. J.; Dawson, N.; Shima, D. M.; Rotter, T. J.; Hains, C. P.; Dawson, L. R.; Balakrishnan, G.

    2016-04-01

    Sb-based metamorphic DBR membranes are developed for InP-based vertical cavity laser applications. The reflectivity of the metamorphic DBR membrane is compared to the reflectivity of a lattice-matched DBR to characterize the optical quality of the DBR membrane. The metamorphic interface between InP and the III-antimonides is found to degrade the reflectivity of the DBR. Therefore, the growth temperature for the metamorphic DBR is optimized in order to obtain highly reflective (>99.8%) III-Sb thin-film membranes.

  20. Tectono-metamorphic evolution of the Chinese Altai, central Asia: new insights from microstructures

    Science.gov (United States)

    Jiang, Yingde; Zhang, Jian; Schulmann, Karel; Sun, Min; Zhao, Guochun

    2013-04-01

    The Altai Orogen, extending from Russia, through northeast Kazakhstan and northwest China, to western and southern Mongolia, occupies a pivotal position in understanding the accretionary process of the Central Asian Orogenic Belt and has drawn much attention in recent years. However, its orogenic evolution remains poorly constrained, because previous studies were mainly focused on the geochronological and geochemical signatures and much less work has been done on metamorphic and structural studies. Metamorphic rocks widely occur in the southern Altai Range and have previously been separated into high-T/low-P and medium-P types. Recent studies demonstrated that these two kinds of rocks may have similar protoliths, i.e. early Paleozoic arc-related assemblages, but experienced different metamorphic histories. The development of biotite, garnet, staurolite and kyanite metamorphic zonal sequences in the low- to medium- grade rocks, demonstrate typical medium-pressure metamorphism that has been suggested as a major consequence of the orogenesis. The high-T/low-P metamorphism, represented by the growth of garnet+cordierite+sillimanite+k-feldspar and was accompanied by extensive anatexis, remains its tectonic significance poorly constrained. Field structural investigation in the Chinese Altai reveals that the high-T/low-P metamorphic rocks have major S-L fabrics (defined by the strongly aligned biotite and sillimanite) exactly in the same orientations as those developed in the associated medium-P grade rocks. Geochronological studies constrain the major fabrics in both kinds of rocks developed during mid-Devonian, coeval with the strong magmatism in the region. Micro-structural investigation on both kinds of rocks show similar prograde metamorphic history featured by clockwise P-T path evolution. Phase equilibrium modeling in the MnNCKFMASH system indicates that the development of major fabrics in the medium-P metamorphic rocks mainly recorded the notable increase of

  1. A stable isotope study of serpentinization and metamorphism in the Highland Border Suite, Scotland, UK

    International Nuclear Information System (INIS)

    Ikin, N.P.; Harmon, R.S.

    1983-01-01

    D/H and 18 O/ 16 O ratios have been measured for whole-rock samples and mineral separates from the mafic and ultramafic rocks of the Cambro-Ordovician Highland Border Suite. The H- and O-isotopic compositions of these rocks record individual stages in a relatively complex 500 Myr old hydrothermal/ metamorphic history. Lizardite serpentinites record a premetamorphic history and indicate that parent harzburgites, dunites, and pyroxenites were serpentinized through low-temperature interaction with meteoric waters during cooling. The other rocks of the Highland Border Suite record subsequent interaction with metamorphic fluids. Amphibolite facies hornblende schists were produced through thrust-related metamorphism of spilitic pillow lavas. During dehydration, D-enriched fluids were driven off from the spilites thus leaving the hornblende schists to equilibrate with a relatively D-depleted internal fluid reservoir. The expelled D-enriched fluids may have mixed with more typical Dalradian metamorphic waters which then exchanged with the remaining mafic rocks and lizardite serpentinites during greenschist facies regional metamorphism to produce antigorite serpentinites and greenschist metaspilites with similar H- and O-isotopic compositions. Serpentinites which have been only partially metamorphosed show intermediate H-isotopic compositions between that of metamorphic antigorite and non-metamorphic lizardite end members. (author)

  2. At what conditions does zircon grow/dissolve during high-T metamorphism? Relating zircon textures to PT-conditions

    Science.gov (United States)

    Kunz, Barbara E.; Regis, Daniele; Manzotti, Paola; Engi, Martin

    2015-04-01

    A key question in ziconology is when and how zircon grows during metamorphism. To shed light on zircon forming processes and the corresponding PT-conditions during high-T metamorphism a case study was undertaken. The Ivrea Zone (N-Italy) exposes a lower continental crustal section in which a continuous metamorphic field gradient from amphibolite to granulite facies is documented. This field gradient is thought to reflect protracted heating during late Paleozoic times, with a probable high-T peak in the Permian. We present first results from a primarily textural study supported by U-Pb ages, Th/U ratios and Ti-in-Zrn thermometry. Four types of zircon were identified based on their overgrowth proportions and the preservation of detrital cores. Zircon grains were thus classified as Type1 - detrital grains with no overgrowth or very narrow rims (300 Ma) and appears to reflect an early dehydration phase. Rim2b has Permian ages (median 275 Ma), is by far the most common overgrowth type, found in a wide PT-range. Its development appears related to biotite breakdown. Rim3 is texturally indicative of magmatic zircon, occurs only in diatexites. Rim4 is the latest overgrowth and is locally found at all metamorphic grades. Textural features suggest late fluid-related recrystallization of existing zircon. At lowest grade (675±35°C, 6±2 kbar) zircons show type1 only, overgrowths are too thin to clearly identify the rim type. Further upgrade (~700°C, 7 kbar) type1 and type2 dominate. Type2 zircons show rim1, rim2a and occasionally rim4. At the Mu-out isograd (750±50°C, 8.2±1.4 kbar) most zircons are of type2, now with rim2b instead of 2a, in addition to rim1 and rim4. Near and in granulite facies (to 800°C, 8±2 kbar) mostly zircon type2 and type4 are present. While rim1 gets more narrow with increasing metamorphic grade, rim2b grows significantly thicker. Occasionally rim2a and rim4 occur. Close to the Bt-out isograd (~860°C, 9.2±1.7 kbar), mostly type3 and type4 are

  3. K-Ar ages of the low-grade metamorphic rocks in the Altar massif, Northwest Sonora, Mexico

    International Nuclear Information System (INIS)

    Hayama, Yoshikazu; Shibata, Ken; Takeda, Hideo.

    1984-01-01

    The K-Ar ages of low-grade regional metamorphism, granodiorite intrusion and its contact metamorphism were studied in the Altar massif of Northwest Sonora, Mexico. The results gave the ages of 55 Ma for metamorphic hornblende and 15 to 17 Ma for mica of metamorphic rocks and granodiorite. About the meaning of these discordant ages and the too young ages of 15 to 17 Ma against the previously presented data, we pointed out the following two possibilities; 1) the contact effect of the Miocene granodiorite on the regional metamorphic rocks of the Laramide phase, 2) both regional metamorphism and granodiorite intrusion took place during the Laramide phase, whereas the young ages, 15 to 17 Ma, show the time of temperature release after the low-angle thrust movement, which is well known in the hinterland of the Sevier orogenic belt in Nevada and Utah. (author)

  4. Depletion of elements in shock-driven gas

    International Nuclear Information System (INIS)

    Gondhalekar, P.M.

    1985-01-01

    The depletion of elements in shocked gas in supernova remnants and in interstellar bubbles is examined. It is shown that elements are depleted in varying degrees in gas filaments shocked to velocities up to 200 km s -1 and that large differences in depletions are observed in gas filaments shocked to similar velocities. In the shocked gas the depletion of an element appears to be correlated with the electron density (or the neutral gas density) in the filaments. This correlation, if confirmed, is similar to the correlation between depletion and mean density of gas in the clouds in interstellar space. (author)

  5. First evidence of the Ellesmerian metamorphism on Svalbard

    Science.gov (United States)

    Kośmińska, Karolina; Majka, Jarosław; Manecki, Maciej; Schneider, David A.

    2016-04-01

    The Ellesmerian fold-and-thrust belt is exposed in the High Arctic from Ellesmere Island in the east, through North Greenland, to Svalbard in the west (e.g. Piepjohn et al., 2015). It developed during Late Devonian - Early Carboniferous, and overprinted older (mainly Caledonian) structures. It is thought that this fold-and-thrust belt was formed due to collision of the Pearya Terrane and Svalbard with the Franklinian Basin of Laurentia. Traditionally, the Ellesmerian fold-and-thrust belt comprises a passive continental margin affected by foreland deformation processes, but the exact larger scale tectonic context of this belt is disputable. It is partly because the Eocene Eurekan deformation superimposed significantly the Ellesmerian structures, thus making the reconstruction of the pre-Eurekan history very difficult. Here we present for the first time evidence for Ellesmerian metamorphism within the crystalline basement of Svalbard. These rocks are exposed in the Pinkie unit on Prins Karls Forland (W-Svalbard), which exhibits tectonic contacts with the overlying sequences. The Pinkie unit is mainly composed of strongly deformed lithologies such as laminated quartzites, siliciclastic rocks and garnet-bearing mica schists. Detrital zircon dating yielded ages as young as Neoproterozoic (0.95-1.05 Ga), thus the Pinkie unit is considered to be Neoproterozoic (Kośmińska et al., 2015a). The M1 assemblages and D1 structures are affected by D2 mylonitization (cf. Faehnrich et al., 2016, this meeting). Petrological characterization and Th-U-total Pb chemical monazite dating have been performed on the Pinkie metapelites. These rocks exhibit an apparent inverted Barrovian metamorphic sequence, within which three metamorphic zones have been distinguished: garnet+staurolite+muscovite+biotite, garnet+staurolite+kyanite+muscovite+biotite, garnet+kyanite+muscovite+biotite. The P-T estimates using the QuiG barometry coupled with thermodynamic modelling revealed that the

  6. Metamorphism and partial melting of ordinary chondrites: Calculated phase equilibria

    Science.gov (United States)

    Johnson, T. E.; Benedix, G. K.; Bland, P. A.

    2016-01-01

    Constraining the metamorphic pressures (P) and temperatures (T) recorded by meteorites is key to understanding the size and thermal history of their asteroid parent bodies. New thermodynamic models calibrated to very low P for minerals and melt in terrestrial mantle peridotite permit quantitative investigation of high-T metamorphism in ordinary chondrites using phase equilibria modelling. Isochemical P-T phase diagrams based on the average composition of H, L and LL chondrite falls and contoured for the composition and abundance of olivine, ortho- and clinopyroxene, plagioclase and chromite provide a good match with values measured in so-called equilibrated (petrologic type 4-6) samples. Some compositional variables, in particular Al in orthopyroxene and Na in clinopyroxene, exhibit a strong pressure dependence when considered over a range of several kilobars, providing a means of recognising meteorites derived from the cores of asteroids with radii of several hundred kilometres, if such bodies existed at that time. At the low pressures (recorders of peak conditions. The intersection of isopleths of these variables may allow pressures to be quantified, even at low P, permitting constraints on the minimum size of parent asteroid bodies. The phase diagrams predict the onset of partial melting at 1050-1100 °C by incongruent reactions consuming plagioclase, clinopyroxene and orthopyroxene, whose compositions change abruptly as melting proceeds. These predictions match natural observations well and support the view that type 7 chondrites represent a suprasolidus continuation of the established petrologic types at the extremes of thermal metamorphism. The results suggest phase equilibria modelling has potential as a powerful quantitative tool in investigating, for example, progressive oxidation during metamorphism, the degree of melting and melt loss or accumulation required to produce the spectrum of differentiated meteorites, and whether the onion shell or rubble pile

  7. Geochemistry and paleotectonomagmatic setting of metabasites protolith from Asalem metamorphic complex (northwest Rasht

    Directory of Open Access Journals (Sweden)

    Mohsen Nasrabady

    2016-12-01

    Full Text Available Asalem metamorphic complex consists mostly of metabasite, metapelite and serpentinite. Metabasites display metamorphic features of greenschist and blueschist facies. Greenschist facies rocks that found as both foliated and massive types contain mineralogical assemblage of actinolite, chlorite, albite and epidote. Blueschists contain mineralogical assemblage of sodic amphibole, epidote and phengite. Whole rock analyses of the metabasites indicate basaltic to andesitic composition with mainly calcalkaline nature of their protolith. According to the discrimination diagrams of tectonomagmatic setting, the protolith of investigated metabasites has been islands arc and somewhat mid ocean ridge. The patterns of rare earth elements and spider diagrams of the Asalem metabasites resemble to the basic and intermediate magmatism of islands arc or suprasubduction setting as well. Greenschists and blueschists facies rocks of the Asalem metamorphic complex have been probably equivalent to islands arc or young and hot oceanic crust of suprasubduction zone setting. This portion of oceanic basin unlike the subducted even and thick oceanic lithosphere of Paleotethys during accretion in the shallower levels of accretionary prisms, have underwent metamorphic conditions of blueschist and greenschist facies and finally gave rise to the formation of the metabasites of the Asalem metamorphic complex.

  8. The diagenesis-metamorphism limit in pelitic rocks: an X-ray diffraction and decomposition study of illite and interstratified illite/smectite minerals

    International Nuclear Information System (INIS)

    Gharrabi, M.

    1995-01-01

    The definition of the limit between diagenesis and metamorphism has long been debated. Various approaches have been used to describe this limit including mineral reaction such as the appearance of pyrophyllite, illite crystallinity and rock textures (i.e. the development of schistosity). The aim of this study is to characterize the illite clays transformation during this transition. Study of the (001) and (003) XRD peaks of illite and illite-rich interstratified illite/smectite (I/S) by decomposition of XRD spectra allows to define the transformation that affect these minerals in the transition from extensive diagenesis to low grade metamorphism. We studied Paleozoic pelites from the Illinois Basin (USA), Cornwall (UK), Brittany (France) and the Anti-Atlas mountains and the Eastern-Haou/Basin (Morocco) that have undergone this transition. Illite clays pass through three evolutionary stages during the transition from diagenesis to metamorphism: advanced diagenesis where the population of illite particles is composed of the following phases: interstratified illite/smectite (I/S), small illite crystallites (PCI) and large illite crystallites (WCI). The composition of I/S particles that contain approximately 95 % illite layers changes very little at low temperatures even over long periods of time. The most important change during this stage is the reduction in the amount of this phase. These I/S particles (<5% smectite layers) dissolve and furnish the chemical constituents necessary for the growth of PCI and WCI before they are transformed into 100 % illite. Particles of PCI also contain smectite interlayers in their structure. These smectite interlayers may be considered as a characteristic of diagenetic conditions. The second stage, corresponding to anchizone metamorphism is characterized by the disappearance of I/S. The disappearance is caused by higher thermal regime. In the last stage corresponding to epizone metamorphism there exists only one population of illite

  9. Mars on Earth: Analog basaltic soils and particulates from Lonar Crater, India, include Deccan soil, shocked soil, reworked lithic and glassy ejecta, and both shocked and unshocked baked zones

    Science.gov (United States)

    Wright, S. P.

    2017-12-01

    "There is no perfect analog for Mars on Earth" [first line of Hipkin et al. (2013) Icarus, 261-267]. However, fieldwork and corresponding sample analyses from laboratory instrumentation (to proxy field instruments) has resulted in the finding of unique analog materials that suggest that detailed investigations of Lonar Crater, India would be beneficial to the goals of the Mars Program. These are briefly described below as Analog Processes, Materials, and Fieldwork. Analog Processes: The geologic history of Lonar Crater emulates localities on Mars with 1.) flood basaltic volcanism with interlayer development of 2.) baked zones or "boles" and 3.) soil formation. Of six flows, the lower three are aqueously altered by groundwater to produce a range of 4.) alteration products described below. The impact event 570 ka produced a range of 5.) impactites including shocked baked zones, shocked soils, and altered basalt shocked to a range of shock pressures [Kieffer et al., 1976]. Analog Materials: 65 Ma Deccan basalt contains augite and labradorite. Baked zones are higher in hematite and other iron oxides. Soil consists of calcite and organic matter. Several basalts with secondary alteration are listed here and these mirror alteration on Mars: hematite, chlorite, serpentine, zeolite, and palagonite, with varying combinations of these with primary igneous minerals. All of these materials (#1 through 4 above) are shocked to a range of shocked pressures to produce maskelynite, flowing plagioclase glass, vesiculated plagioclase glass, and complete impact melts. Shocked soils contain schlieren calcite amidst comminuted grains of augite, labradorite, and these glasses. Shocked baked zones unsurprisingly have a petrographic texture similar to hornfels, another product of contact metamorphism. Analog Fieldwork: The ejecta consists of two layers: 8 m of lithic breccia with unshocked and fractured basalts under a 1 m suevite consisting of all ranges of shock pressure described above

  10. Thermal effects of metamorphic reactions in a three-component slab

    DEFF Research Database (Denmark)

    Chemia, Zurab; Dolejš, David; Steinle-Neumann, Gerd

    2010-01-01

    Thermal evolution of a subducting crust is of primary importance for understanding physical properties, phase transformations, fluid migration and melting regimes at convergent plate boundaries. Various factors influencing the thermal structure of a subduction zone have been considered previously......), and moderately serpentinized harzburgite (SHB). These layers are examined over the range of pressure-temperature conditions of interest by computing metamorphic phase diagrams and retrieving whole-rock thermodynamic properties. Our results suggest that metamorphic reactions consume a significant amount of slab...

  11. Pre-Alpine contrasting tectono-metamorphic evolutions within the Southern Steep Belt, Central Alps

    Science.gov (United States)

    Roda, Manuel; Zucali, Michele; Li, Zheng-Xiang; Spalla, Maria Iole; Yao, Weihua

    2018-06-01

    In the Southern Steep Belt, Italian Central Alps, relicts of the pre-Alpine continental crust are preserved. Between Valtellina and Val Camonica, a poly-metamorphic rock association occurs, which belongs to the Austroalpine units and includes two classically subdivided units: the Languard-Campo nappe (LCN) and the Tonale Series (TS). The outcropping rocks are low to medium grade muscovite, biotite and minor staurolite-bearing gneisses and micaschists, which include interlayered garnet- and biotite-bearing amphibolites, marbles, quartzites and pegmatites, as well as sillimanite-bearing gneisses and micaschists. Permian intrusives (granitoids, diorites and minor gabbros) emplaced in the metamorphic rocks. We performed a detailed structural, petrological and geochronological analysis focusing on the two main lithotypes, namely, staurolite-bearing micaschists and sillimanite-bearing paragneisses, to reconstruct the Variscan and Permian-Triassic history of this crustal section. The reconstruction of the tectono-metamorphic evolution allows for the distinction between two different tectono-metamorphic units during the early pre-Alpine evolution (D1) and predates the Permian intrusives, which comprise rocks from both TS and LCN. In the staurolite-bearing micaschists, D1 developed under amphibolite facies conditions (P = 0.7-1.1 GPa, T = 580-660 °C), while in the sillimanite-bearing paragneisses formed under granulite facies conditions (P = 0.6-1.0 GPa, T> 780 °C). The two tectono-metamorphic units coupled together during the second pre-Alpine stage (D2) under granulite-amphibolite facies conditions at a lower pressure (P = 0.4-0.6 GPa, T = 620-750 °C) forming a single tectono-metamorphic unit (Languard-Tonale Tectono-Metamorphic Unit), which comprised the previously distinguished LCN and TS. Geochronological analyses on zircon rims indicate ages ranging between 250 and 275 Ma for D2, contemporaneous with the emplacement of Permian intrusives. This event developed under

  12. Neutral hydrogen in the galaxy and the galactic shocks

    International Nuclear Information System (INIS)

    Sawa, T.

    1978-01-01

    To discriminate the galactic shock theory from the linear density-wave theory in comparison with neutral hydrogen data in the Galaxy, model-line profiles and Tsub(b)(l, γ) (brightness temperature) diagrams of 21-cm line are calculated both for the two theories in the longitude range 15 0 0 . It is shown that major differences between the two models appear in the tangential directions of spiral arms and of inter-arm regions. The inter-arm region appears as a trough of the brightness temperature in the shock model. An observed trough on a Tsub(b)(l, γ) diagram at l = 80 0 -100 0 , γ = -20 km s -1 is reproduced reasonably well by the shock model, while the linear model fails to reproduce it. Effects of the galactic shocks on the terminal velocity is also discussed. (Auth.)

  13. Cathodoluminescence (CL Characteristics of Quartz from Different Metamorphic Rocks within the Kaoko Belt (Namibia

    Directory of Open Access Journals (Sweden)

    Jonathan Sittner

    2018-05-01

    Full Text Available Quartz of metamorphic rocks from the Kaoko belt (Namibia representing metamorphic zones from greenshist to granulite facies were investigated by cathodoluminescence (CL microscopy and spectroscopy to characterize their CL properties. The samples cover P-T conditions from the garnet zone (500 ± 30 °C, 9 ± 1 kbar up to the garnet-cordierite-sillimanite-K-feldspar zone (750 ± 30 °C, 4.0–5.5 kbar. Quartz from 10 different localities and metamorphic environments exclusively exhibits blue CL. The observed CL colors and spectra seem to be more or less independent of the metamorphic grade of the host rocks, but are determined by the regional geological conditions. Quartz from different localities of the garnet-cordierite-sillimanite-K-feldspar zone shows a dominant 450 nm emission band similar to quartz from igneous rocks, which might be related to recrystallization processes. In contrast, quartz from different metamorphic zones in the western part of the central Kaoko zone (garnet, staurolite, kyanite, and kyanite-sillimanite-muscovite zone is characterized by a heterogeneous blue-green CL and a dominant 500 nm emission band that strongly decreases in intensity under electron irradiation. Such CL characteristics are typical for quartz of pegmatitic and/or hydrothermal origin and indicate the participation of fluids during neoformation of quartz during metamorphism.

  14. Petrographic and Geochemical Study of Low Grade Metamorphic ...

    African Journals Online (AJOL)

    Key words: Low grade metamorphic rocks, Base metal mineralization, Petrography,. Hydrogeochemistry, Negash ... Use of mineral deposit genetic models has become an important ..... The clasts show elongation due to deformation, parallel.

  15. Structural evolution of the Semail Ophiolite metamorphic sole, Wadi Hawasina and Northern Jebel Nakhl Culmination, Oman

    Science.gov (United States)

    Hurtado, C.; Bailey, C.; Visokay, L.; Scharf, A.

    2017-12-01

    The Semail ophiolite is the world's largest and best-exposed ophiolite sequence, however the processes associated with both oceanic detachment and later emplacement onto the Arabian continental margin remain enigmatic. This study examines the upper mantle section of the ophiolite, its associated metamorphic sole, and the autochthonous strata beneath the ophiolite at two locations in northern Oman. Our purpose is to understand the structural history of ophiolite emplacement and evaluate the deformation kinematics of faulted and sheared rocks in the metamorphic sole. At Wadi Hawasina, the base of the ophiolite is defined by a 5- to 15-m thick zone of penetratively-serpentinized mylonitic peridotite. Kinematic indicators record top-to-the SW (reverse) sense-of-shear with a triclinic deformation asymmetry. An inverted metamorphic grade is preserved in the 300- to 500-m thick metamorphic sole that is thrust over deep-water sedimentary rocks of the Hawasina Group. The study site near Buwah, in the northern Jebel Nakhl culmination, contains a N-to-S progression of mantle peridotite, metamorphic sole, and underlying Jurassic carbonates. Liswanite crops out in NW-SE trending linear ridges in the peridotite. The metamorphic sole includes well-foliated quartzite, metachert, and amphibolite. Kinematic evidence indicates that the liswanite and a serpentinized mélange experienced top to-the north (normal) sense-of-shear. Two generations of E-W striking, N-dipping normal faults separate the autochthonous sequence from the metamorphic sole, and also cut out significant sections of the metamorphic sole. Fabric analysis reveals that the metamorphic sole experienced flattening strain (K<0.2) that accumulated during pure shear-dominated general shear (Wk<0.4). Normal faulting and extension at the Buwah site indicates that post-ophiolite deformation is significant in the Jebel Akhdar and Jebel Nakhl culminations.

  16. Effect of food on metamorphic competence in the model system Crepidula fornicata.

    Science.gov (United States)

    Padilla, Dianna K; McCann, Michael J; Glenn, Mica McCarty; Hooks, Alexandra P; Shumway, Sandra E

    2014-12-01

    Food quality and quantity, as well as temperature, are all factors that are expected to affect rates of development, and are likely to be affected by expected climatic change. We tested the effect of a mixed diet versus a single-food diet on metamorphic competence in the emerging model species Crepidula fornicata. We then compared our results with other published studies on this species that examined time to metamorphic competence across a range of food concentrations and rearing temperatures. Ours was the only study to test the effects of single food versus a mixed diet on metamorphic competence for this species. Diet composition did not affect metamorphic competence or survivorship. Comparing results across studies, we found that the shortest time to metamorphic competence was typically found when the food availability per larva was the greatest, independent of rearing temperature. Unfortunately, some published studies did not include important metadata needed for comparison with other studies; these data included larval rearing density, food density, frequency of feeding, and rearing temperature. Mortality rates were not always reported and when reported were often measured in different ways, preventing comparison. Such metadata are essential for comparisons among studies as well as among taxa, and for the determination of generalizable patterns and evolutionary trends. Increased reporting of all such metadata is essential if we are to use scientific studies performed to their fullest potential. © 2014 Marine Biological Laboratory.

  17. Fluid heterogeneity during granulite facies metamorphism in the Adirondacks: stable isotope evidence

    Science.gov (United States)

    Valley, J.W.; O'Neil, J.R.

    1984-01-01

    The preservation of premetamorphic, whole-rock oxygen isotope ratios in Adirondack metasediments shows that neither these rocks nor adjacent anorthosites and gneisses have been penetrated by large amounts of externally derived, hot CO2-H2O fluids during granulite facies metamorphism. This conclusion is supported by calculations of the effect of fluid volatilization and exchange and is also independently supported by petrologic and phase equilibria considerations. The data suggest that these rocks were not an open system during metamorphism; that fluid/rock ratios were in many instances between 0.0 and 0.1; that externally derived fluids, as well as fluids derived by metamorphic volatilization, rose along localized channels and were not pervasive; and thus that no single generalization can be applied to metamorphic fluid conditions in the Adirondacks. Analyses of 3 to 4 coexisting minerals from Adirondack marbles show that isotopic equilibrium was attained at the peak of granulite and upper amphibolite facies metamorphism. Thus the isotopic compositions of metamorphic fluids can be inferred from analyses of carbonates and fluid budgets can be constructed. Carbonates from the granulite facies are on average, isotopically similar to those from lower grade or unmetamorphosed limestones of the same age showing that no large isotopic shifts accompanied high grade metamorphism. Equilibrium calculations indicate that small decreases in ??18O, averaging 1 permil, result from volatilization reactions for Adirondack rock compositions. Additional small differences between amphibolite and granulite facies marbles are due to systematic lithologie differences. The range of Adirondack carbonate ??18O values (12.3 to 27.2) can be explained by the highly variable isotopic compositions of unmetamorphosed limestones in conjunction with minor 18O and 13C depletions caused by metamorphic volatilization suggesting that many (and possibly most) marbles have closely preserved their

  18. Tectono-metamorphic evolution of the Jomolhari massif: Variations in timing of syn-collisional metamorphism across western Bhutan

    Science.gov (United States)

    Regis, Daniele; Warren, Clare J.; Young, David; Roberts, Nick M. W.

    2014-03-01

    Our current understanding of the rates and timescales of mountain-building processes is largely based on information recorded in U-bearing accessory minerals such as monazite, which is found in low abundance but which hosts the majority of the trace element budget. Monazite petrochronology was used to investigate the timing of crustal melting in migmatitic metasedimentary rocks from the Jomolhari massif (NW Bhutan). The samples were metamorphosed at upper amphibolite to granulite facies conditions (~ 0.85 GPa, ~ 800 °C), after an earlier High-Pressure stage (P > 1.4 GPa), and underwent partial melting through dehydration melting reactions involving muscovite and biotite. In order to link the timing of monazite growth/dissolution to the pressure-temperature (P-T) evolution of the samples, we identified 'chemical fingerprints' in major and accessory phases that were used to back-trace specific metamorphic reactions. Variations in Eu anomaly and Ti in garnet were linked to the growth and dissolution of major phases (e.g. growth of K-feldspar and dehydration melting of muscovite/biotite). Differences in M/HREE and Y from garnet core to rim were instead related to apatite breakdown and monazite-forming reactions. Chemically zoned monazite crystals reacted multiple times during the metamorphic evolution suggesting that the Jomolhari massif experienced a prolonged high-temperature metamorphic evolution from 36 Ma to 18 Ma, significantly different from the P-T-time path recorded in other portions of the Greater Himalayan Sequence (GHS) in Bhutan. Our data demonstrate unequivocally that the GHS in Bhutan consists of units that experienced independent high-grade histories and that were juxtaposed across different tectonic structures during exhumation. The GHS may have been exhumed in response to (pulsed) mid-crustal flow but cannot be considered a coherent block.

  19. Constraining metamorphic rates through allanite and monazite petrochronology: a case study from the Miyar Valley (High Himalayan Crystalline of Zanskar, NW India)

    Science.gov (United States)

    Robyr, Martin; Goswami-Banerjee, Sriparna

    2014-05-01

    Dating metamorphic rocks raises specific issues because metamorphism comprises a complex sequence of structural changes and chemical reactions that can be extended over millions or tens of millions of years so that metamorphic rocks cannot in general be said to have "an age". Therefore, an accurate interpretation of radiometric age data from metamorphic rocks requires first to establish the behavior of the isotopic system used for dating relative to the pressure and temperature (P-T) conditions that a metamorphic rock experienced. As the U-Th-Pb system in LREE-accessory phases like monazite and allanite is not easily reset during subsequent temperature increase, allanite and monazite U-Th-Pb ages are collectively interpreted as reflecting crystallization ages. As a consequence, to correctly interpret allanite and monazite crystallization ages, it is essential to accurately determine the physical conditions of their crystallization. A meticulous account of the chemical and textural evolution of monazite and allanite along a well constrained prograde pelitic sequence of the High Himalayan Crystalline of Zanskar (Miyar Valley; e.g. Robyr et al., 2002; 2006; 2014) reveals that: (1) the occurrence of the first metamorphic allanite coincides with the biotite-in isograd and (2) the formation of the first metamorphic monazite occurs at the staurolite-in isograd. The finding of both monazite and allanite as inclusion in staurolite porphyroblasts indicates that the breakdown of allanite and the formation of monazite occurred during staurolite crystallization. Thermobarometry results show that the metamorphic allanites are appeared in the 400-420 °C, while the signature of the first metamorphic monazite is found at ~ 600 °C with staurolite-in isograd. Allanite and monazite U-Th-Pb ages thus constrain the timing when the rocks reached the ~ 420 °C and ~ 600 °C isotherms respectively. In situ LA-ICPMS dating of coexisting allanite and monazite inclusions in garnet

  20. Computations of slowly moving shocks

    International Nuclear Information System (INIS)

    Karni, S.; Canic, S.

    1997-01-01

    Computations of slowly moving shocks by shock capturing schemes may generate oscillations are generated already by first-order schemes, but become more pronounced in higher-order schemes which seem to exhibit different behaviors: (i) the first-order upwind (UW) scheme which generates strong oscillations and (ii) the Lax-Friedrichs scheme which appears not to generate any disturbances at all. A key observation is that in the UW case, the numerical viscosity in the shock family vanishes inside the slow shock layer. Simple scaling arguments show the third-order effects on the solution may no longer be neglected. We derive the third-order modified equation for the UW scheme and regard the oscillatory solution as a traveling wave solution of the parabolic modified equation for the perturbation. We then look at the governing equation for the perturbation, which points to a plausible mechanism by which postshock oscillations are generated. It contains a third-order source term that becomes significant inside the shock layer, and a nonlinear coupling term which projects the perturbation on all characteristic fields, including those not associated with the shock family. 5 refs., 8 figs

  1. Anisotropy effect on strengths of metamorphic rocks

    Directory of Open Access Journals (Sweden)

    Ahmet Özbek

    2018-02-01

    Full Text Available This paper aims to study the effect of anisotropy on strengths of several metamorphic rocks of southern (Çine submassif of Menderes metamorphic massif in southwest Turkey. Four different metamorphic rocks including foliated phyllite, schist, gneiss and marble (calcschist were selected and examined. Discontinuity surveys were made along lines for each rock and evaluated with DIPS program. L-type Schmidt hammer was applied in the directions parallel and perpendicular to foliation during the field study. Several hand samples and rock blocks were collected during the field study for measurements of dry and saturated densities, dry and saturated unit weights and porosity, and for petrographic analysis and strength determination in laboratory. L- and N-type Schmidt hammers were applied in the directions perpendicular (anisotropy angle of 0° and parallel (anisotropy angle of 90° to the foliation on selected blocks of phyllite, schist, gneiss and marble (calcschist. The phyllite and schist have higher porosity and lower density values than the other rocks. However, coarse crystalline gneiss and marble (calcschist have higher rebound values and strengths, and they are classified as strong–very strong rocks. Generally, the rebound values in the direction perpendicular to the foliation are slightly higher than that in the direction parallel to foliation. Rebound values of N-type Schmidt hammer are higher than the L-type values except for phyllite. Sometimes, the rebound values of laboratory and field applications gave different results. This may result from variable local conditions such as minerals differentiation, discontinuities, water content, weathering degree and thickness of foliated structure.

  2. Shock-wave induced mechanoluminescence: A new technique for studying effects of shock pressure on crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, B.P.; Parganiha, S.; Sonwane, V.D. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India); Chandra, V.K. [Department of Electrical and Electronics Engineering, Chhatrapati Shivaji Institute of Technology, Shivaji Nagar, Kolihapuri, Durg 491001, Chhattisgarh (India); Jha, Piyush, E-mail: piyushjha22@rediffmail.com [Department of Applied Physics, Raipur Institute of Technology, Chhatauna, Mandir Hasuad, Raipur 492101, Chhattisgarh (India); Baghel, R.N. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India)

    2016-10-15

    The impact of a projectile propelled to velocities in the range of 0.5–2.5 km/s on to a target (X-cut quartz crystal) produces shock waves travelling at velocity of nearly 10 km/s in target, in which intense mechanoluminescence (ML) pulses of microsecond duration are produced, both in compression and post-compression conditions. The piezoelectric field produced due to surface charges of fractured target, causes band bending and subsequently, the free charge carriers are generated in the respective bands and the emission of ML occurs. The ML appears after a delay time t{sub th} whose value decreases with increasing value of the shock pressure. Initially, the ML intensity increases with the shock pressure because of the creation of more surfaces; however, for higher values of the shock pressure, the ML intensity tends to attain a saturation value because of the hardening of the crystals due to the creation of small crystallites in which the creation of new surfaces becomes difficult. The ratio between peak ML intensity in the uncompressed region and the maximum ML intensity in the compressed region decreases with increasing shock pressure because more defects produced at high pressure generate higher barrier for the relaxation of blocked cracks under compression. The expressions derived for characteristics of shock-induced ML are able to explain satisfactorily the experimental results. Shock-wave velocity, shock pressure, transit time, lifetime of electrons in conduction band, etc. can be determined by the shock-induced ML.As such, the shock-induced ML provides a new optical technique for the studies of materials under shock pressure.

  3. Particle acceleration by coronal and interplanetary shock waves

    International Nuclear Information System (INIS)

    Pesses, M.E.

    1982-01-01

    Utilizing many years of observation from deep space and near-earth spacecraft a theoretical understanding has evolved on how ions and electrons are accelerated in interplanetary shock waves. This understanding is now being applied to solar flare-induced shock waves propagating through the solar atmosphere. Such solar flare phenomena as gamma-ray line and neutron emissions, interplanetary energetic electron and ion events, and Type II and moving Type IV radio bursts appear understandable in terms of particle acceleration in shock waves

  4. Metamorphic Testing for Cybersecurity.

    Science.gov (United States)

    Chen, Tsong Yueh; Kuo, Fei-Ching; Ma, Wenjuan; Susilo, Willy; Towey, Dave; Voas, Jeffrey; Zhou, Zhi Quan

    2016-06-01

    Testing is a major approach for the detection of software defects, including vulnerabilities in security features. This article introduces metamorphic testing (MT), a relatively new testing method, and discusses how the new perspective of MT can help to conduct negative testing as well as to alleviate the oracle problem in the testing of security-related functionality and behavior. As demonstrated by the effectiveness of MT in detecting previously unknown bugs in real-world critical applications such as compilers and code obfuscators, we conclude that software testing of security-related features should be conducted from diverse perspectives in order to achieve greater cybersecurity.

  5. Metamorphic rocks in the deep boreholes near Maribor

    Directory of Open Access Journals (Sweden)

    Mirka Trajanova

    2002-12-01

    Full Text Available Six research-captive boreholes for thermal water passed through a pile of metamorphic rocks near Maribor (Eastern Slovenia that is on average about 1000 m thick. The succession of metamorphic rocks is characteristic for the Pohorje Mt. and eastern Kobansko region. In the area of the boreholes two tectonic zones are more pronounced: the upper one, at a depth of about 510 to 550 m at the contact of the Štelenska Gora and Phyllite formations and the deeper one at a depth of about 460 to 590 m, indicating the reverse fault junction of the Phyllite and Kobansko formations. They belong to the second andthe third thrust unit of the accretionary wedge formed at the collision of the European and African plates. Four Alpine nappe units are proven in the Slovenian part of the Eastern Alps.

  6. An overview on the small heat shock proteins | Mahmood | African ...

    African Journals Online (AJOL)

    In eukaryotes, different heat shock genes are expressed uncoordinatedly, whereas in prokaryote, heat shock genes form a regulon and appear simultaneously. sHSPs are associated with nuclei, cytoskeleton and membranes. They bind partially to denatured proteins, preventing irreversible protein aggregation during stress.

  7. The effects of metamorphism on iron mineralogy and the iron speciation redox proxy

    Science.gov (United States)

    Slotznick, Sarah P.; Eiler, John M.; Fischer, Woodward W.

    2018-03-01

    As the most abundant transition metal in the Earth's crust, iron is a key player in the planetary redox budget. Observations of iron minerals in the sedimentary record have been used to describe atmospheric and aqueous redox environments over the evolution of our planet; the most common method applied is iron speciation, a geochemical sequential extraction method in which proportions of different iron minerals are compared to calibrations from modern sediments to determine water-column redox state. Less is known about how this proxy records information through post-depositional processes, including diagenesis and metamorphism. To get insight into this, we examined how the iron mineral groups/pools (silicates, oxides, sulfides, etc.) and paleoredox proxy interpretations can be affected by known metamorphic processes. Well-known metamorphic reactions occurring in sub-chlorite to kyanite rocks are able to move iron between different iron pools along a range of proxy vectors, potentially affecting paleoredox results. To quantify the effect strength of these reactions, we examined mineralogical and geochemical data from two classic localities where Silurian-Devonian shales, sandstones, and carbonates deposited in a marine sedimentary basin with oxygenated seawater (based on global and local biological constraints) have been regionally metamorphosed from lower-greenschist facies to granulite facies: Waits River and Gile Mountain Formations, Vermont, USA and the Waterville and Sangerville-Vassalboro Formations, Maine, USA. Plotting iron speciation ratios determined for samples from these localities revealed apparent paleoredox conditions of the depositional water column spanning the entire range from oxic to ferruginous (anoxic) to euxinic (anoxic and sulfidic). Pyrrhotite formation in samples highlighted problems within the proxy as iron pool assignment required assumptions about metamorphic reactions and pyrrhotite's identification depended on the extraction techniques

  8. Metamorphic complexes in accretionary orogens: Insights from the Beishan collage, southern Central Asian Orogenic Belt

    Science.gov (United States)

    Song, Dongfang; Xiao, Wenjiao; Windley, Brian F.; Han, Chunming; Yang, Lei

    2016-10-01

    The sources of ancient zircons and the tectonic attributions and origins of metamorphic complexes in Phanerozoic accretionary orogens have long been difficult issues. Situated between the Tianshan and Inner Mongolia orogens, the Beishan orogenic collage (BOC) plays a pivotal role in understanding the accretionary processes of the southern Central Asian Orogenic Belt (CAOB), particularly the extensive metamorphic and high-strained complexes on the southern margin. Despite their importance in understanding the basic architecture of the southern CAOB, little consensus has been reached on their ages and origins. Our new structural, LA-ICP-MS zircon U-Pb and Hf isotopic data from the Baidunzi, Shibandun, Qiaowan and Wutongjing metamorphic complexes resolve current controversial relations. The metamorphic complexes have varied lithologies and structures. Detrital zircons from five para-metamorphic rocks yield predominantly Phanerozoic ages with single major peaks at ca. 276 Ma, 286 Ma, 427 Ma, 428 Ma and 461 Ma. Two orthogneisses have weighted mean ages of 294 ± 2 Ma and 304 ± 2 Ma with no Precambrian inherited zircons. Most Phanerozoic zircons show positive εHf(t) values indicating significant crustal growth in the Ordovician, Silurian and Permian. The imbricated fold-thrust deformation style combined with diagnostic zircon U-Pb-Hf isotopic data demonstrate that the metamorphic rocks developed in a subduction-accretion setting on an arc or active continental margin. This setting and conclusion are supported by the nearby occurrence of Ordovician-Silurian adakites, Nb-rich basalts, Carboniferous-Permian ophiolitic mélanges, and trench-type turbidites. Current data do not support the presence of a widespread Precambrian basement in the evolution of the BOC; the accretionary processes may have continued to the early Permian in this part of the CAOB. These relationships have meaningful implications for the interpretation of the tectonic attributions and origins of other

  9. High Radiation Resistance Inverted Metamorphic Solar Cell, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation in this SBIR Phase II project is the development of a unique triple junction inverted metamorphic technology (IMM), which will enable the...

  10. Heat shock proteins of higher plants

    International Nuclear Information System (INIS)

    Key, J.L.; Lin, C.Y.; Chen, Y.M.

    1981-01-01

    The pattern of protein synthesis changes rapidly and dramatically when the growth temperture of soybean seedling tissue is increased from 28 0 C (normal) to about 40 0 C (heat shock). The synthesis of normal proteins is greatly decreased and a new set of proteins, heat shock proteins, is induced. The heat shock proteins of soybean consist of 10 new bands on one-dimensional NaDodSO 4 gels; a more complex pattern is observed on two-dimensional gels. when the tissue is returned to 28 0 C after 4 hr at 40 0 C, there is progressive decline in the synthesis of heat shock proteins and reappearance of a normal pattern of synthesis by 3 or 4 hr. In vitro translation of poly(A) + RNAs isolated from tissued grown at 28 and 40 0 C shows that the heat shock proteins are translated from a ndw set of mRNAs induced at 40 0 C; furthermore, the abundant class mRNAs for many of the normal proteins persist even though they are translated weakly (or not at all) in vivo at 40 or 42.5 0 C. The heat shock response in soybean appears similar to the much-studied heat shock phenomenon in Drosophila

  11. Shock waves in helium at low temperatures

    International Nuclear Information System (INIS)

    Liepmann, H.W.; Torczynski, J.R.

    1986-01-01

    Results are reported from studies of the properties of low temperature He-4 using shock waves as a probe. Ideal shock tube theory is used to show that sonic speeds of Mach 40 are attainable in He at 300 K. Viscosity reductions at lower temperatures minimize boundary layer effects at the side walls. A two-fluid model is described to account for the phase transition which He undergoes at temperatures below 2.2 K, after which the quantum fluid (He II) and the normal compressed superfluid (He I) coexist. Analytic models are provided for pressure-induced shocks in He I and temperature-induced shock waves (called second sound) which appear in He II. The vapor-fluid interface of He I is capable of reflecting second and gasdynamic sound shocks, which can therefore be used as probes for studying phase transitions between He I and He II. 17 references

  12. Preliminary study of the uranium favorability of granitic and contact-metamorphic rocks of the Owens Valley area, Inyo and Mono Counties, California, and Esmeralda and Mineral Counties, Nevada

    International Nuclear Information System (INIS)

    Cupp, G.M.; Mitchell, T.P.

    1978-01-01

    Granitic and contact-metamorphic rocks of the Owens Valley area were sampled to determine their favorability for uranium. Uranium deposits associated with these rocks were examined to determine the mode of occurrence. Metamorphic rocks near contacts with intrusive rocks include skarns, schists, quartzites, metaconglomerates, hornfels, gneisses, and metavolcanics. The grade of contact metamorphism ranges from slight to intense, depending upon the distance from the intrusive contact. The average U 3 O 8 content of the metamorphic rock samples is 3 ppM. Metamorphic rock samples in a roof pendant at the Claw prospect contain as much as 3 percent U 3 O 8 . Skarn samples from the Birch Creek pluton contain as much as 114 ppM U 3 O 8 ; those from the Santa Rita Flat pluton contain as much as 23 ppM U 3 O 8 . Most of the intrusive rocks are granite, quartz monzonite, or monzonite. Granodiorite and diorite are less common, and gabbro is rare. The average U 3 O 8 content of the crystalline rock samples is 4 ppM. Samples from a quartz-monzonite pluton east of Lone Pine, California, and quartz monzonite in the Santa Rosa Hills had maximum contents of 28 and 13 ppM U 3 O 8 , respectively. Areas of contact metamorphism and metasomatism, such as those at the Claw prospect and Birch Creek pluton, are probably the most favorable sites for uranium deposits. There are many miles of granitic and contact-metamorphic zones in which undiscovered uranium deposits may exist. Although the overall uranium content of granitic rocks appears to be low, the pluton east of Lone Pine and the Hunter Mountain pluton in the area of the Santa Rosa Hills have sufficient uranium to have acted as uranium and detrital source rocks for uranium deposits that may now be buried in Tertiary sediments in the basins around the plutons. The Claw deposit is the only known uranium deposit of a size and grade to be of possible commercial interest

  13. Metamorphic Testing for Cybersecurity

    Science.gov (United States)

    Chen, Tsong Yueh; Kuo, Fei-Ching; Ma, Wenjuan; Susilo, Willy; Towey, Dave; Voas, Jeffrey

    2016-01-01

    Testing is a major approach for the detection of software defects, including vulnerabilities in security features. This article introduces metamorphic testing (MT), a relatively new testing method, and discusses how the new perspective of MT can help to conduct negative testing as well as to alleviate the oracle problem in the testing of security-related functionality and behavior. As demonstrated by the effectiveness of MT in detecting previously unknown bugs in real-world critical applications such as compilers and code obfuscators, we conclude that software testing of security-related features should be conducted from diverse perspectives in order to achieve greater cybersecurity. PMID:27559196

  14. Shock Heating of the Merging Galaxy Cluster A521

    Science.gov (United States)

    Bourdin, H.; Mazzotta, P.; Markevitch, M.; Giacintucci, S.; Brunetti, G.

    2013-01-01

    A521 is an interacting galaxy cluster located at z = 0.247, hosting a low-frequency radio halo connected to an eastern radio relic. Previous Chandra observations hinted at the presence of an X-ray brightness edge at the position of the relic, which may be a shock front. We analyze a deep observation of A521 recently performed with XMM-Newton in order to probe the cluster structure up to the outermost regions covered by the radio emission. The cluster atmosphere exhibits various brightness and temperature anisotropies. In particular, two cluster cores appear to be separated by two cold fronts. We find two shock fronts, one that was suggested by Chandra and that is propagating to the east, and another to the southwestern cluster outskirt. The two main interacting clusters appear to be separated by a shock-heated region, which exhibits a spatial correlation with the radio halo. The outer edge of the radio relic coincides spatially with a shock front, suggesting that this shock is responsible for the generation of cosmic-ray electrons in the relic. The propagation direction and Mach number of the shock front derived from the gas density jump, M = 2.4 +/- 0.2, are consistent with expectations from the radio spectral index, under the assumption of Fermi I acceleration mechanism.

  15. Monazite behaviours during high-temperature metamorphism: a case study from Dinggye region, Tibetan Himalaya

    Science.gov (United States)

    Wang, Jia-Min; Wu, Fu-Yuan; Rubatto, Daniela; Liu, Shi-Ran; Zhang, Jin-Jiang

    2017-04-01

    Monazite is a key accessory mineral for metamorphic geochronology, but its growth mechanisms during melt-bearing high-temperature metamorphism is not well understood. Therefore, the petrology, pressure-temperature and timing of metamorphism have been investigated in pelitic and psammitic granulites from the Greater Himalayan Crystalline Complex (GHC) in Dinggye, southern Tibet. These rocks underwent an isothermal decompression process from pressure conditions of >10 kbar to armour effect of matrix crystals (biotite and quartz). Most monazite grains formed at the M3-stage (21-19 Ma) through either dissolution-reprecipitation or recrystallization that was related to biotite dehydration melting reaction. These monazite grains record HREE and Y signatures in local equilibrium with different reactions involving either garnet breakdown or peritectic garnet growth. Another peak of monazite growth occurs during melt crystallization ( 15 Ma), and these monazites are unzoned and have homogeneous compositions. Our results documented the widespread recrystallization to account for monazite growth during high-temperature metamorphism and related melting reactions that trigger monazite recrystallization. In a regional sense, our P-T-t data along with published data indicate that the pre-M1 eclogite-facies metamorphism occurred at 39-30 Ma in the Dinggye Himalaya. Our results are in favour of a steady exhumation of the GHC rocks since Oligocene that was contributed by partial melting. Key words: U-Th-Pb geochronology, Monazite, Recrystallization, Pelitic granulite, Himalaya

  16. On the K-Ar ages of the rocks of two kinds existed in the Kamuikotan metamorphic rocks located in the Horokanai district, Hokkaido

    International Nuclear Information System (INIS)

    Imaizumi, Masayuki; Ueda, Yoshio.

    1981-01-01

    In the Fransiscan metamorphic rocks known as the typical high-pressure type metamorphic belts, existence of the blocks of high grade metamorphic rocks of older age in the widely distributed low grade ones of younger age is commonly noticed. This feature has been explained as a phenomenon that the blocks had been tectonically mixed with the surroundings - so-called tectonic blocks - based on the absolute age determination of the component minerals. The Kamuikotan tectonic belt is a melange zone in which occur various kinds of metamorphic rocks of high-pressure and low-pressure types. The high-pressure Kamuikotan metamorphic rocks can be classified into two kinds based upon the modes of occurrence and mineral paragenesis. One is the low grade metamorphic rocks of greenschist and glaucophane schist and the other, the high grade metamorphic rocks of epidote glaucophane schist and epidote amphibolite. The high grade metamorphic rocks always occur as isolated blocks in the low grade metamorphics and associated serpentinite. The report discusses the age of muscovites separated from the two types of high-pressure Kamuikotan metamorphic rocks in the Horokanai district, central Hokkaido. The muscovites separated from the low grade metamorphics of the district give the age of 72 - 116 m.y., while those separated from the high grade metamorphics give the age of 132 - 145 m.y. These ages seem to agree with the idea that the blocks of high grade metamorphics (epidote glaucophane schist and epidote amphibolite) would be the ''tectonic blocks'' - namely the fragments tectonically mixed into the low grade metamorphics of younger age. (author)

  17. Metamorphic Evolution of Garnet-bearing Epidote-Barroisite Schist from the Meratus Complex in South Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    Nugroho Imam Setiawan

    2015-09-01

    Full Text Available DOI:10.17014/ijog.2.3.139-156This paper presents metamorphic evolution of metamorphic rocks from the Meratus Complex in South Kalimantan, Indonesia. Eight varieties of metamorphic rocks samples from this location, which are garnet-bearing epidote-barroisite schist, epidote-barroisite schist, glaucophane-quartz schist, garnet-muscovite schist, actinolite-talc schist, epidote schist, muscovite schist, and serpentinite, were investigated in detail its petrological and mineralogical characteristics by using polarization microscope and electron probe micro analyzer (EPMA. Furthermore, the pressure-temperature path of garnet-bearing epidote-barroisite schist was estimated by using mineral parageneses, reaction textures, and mineral chemistries to assess the metamorphic history. The primary stage of this rock might be represented by the assemblage of glaucophane + epidote + titanite ± paragonite. The assemblage yields 1.7 - 1.0 GPa in assumed temperature of 300 - 550 °C, which is interpreted as maximum pressure limit of prograde stage. The peak P-T condition estimated on the basis of the equilibrium of garnet rim, barroisite, phengite, epidote, and quartz, yields 547 - 690 °C and 1.1 - 1.5 GPa on the albite epidote amphibolite-facies that correspond to the depth of 38 - 50 km. The retrograde stage was presented by changing mineral compositions of amphiboles from the Si-rich barroisite to the actinolite, which lies near 0.5 GPa at 350 °C. It could be concluded that metamorphic rocks from the Meratus Complex experienced low-temperature and high-pressure conditions (blueschist-facies prior to the peak metamorphism of the epidote amphibolite-facies. The subduction environments in Meratus Complex during Cretaceous should be responsible for this metamorphic condition.

  18. Geology and genesis of uranium deposits in sedimentary and metamorphic formation

    International Nuclear Information System (INIS)

    Danchev, V.I.; Belevtsev, Ya.N.

    1980-01-01

    Main genetic types of uranium deposits in sedimentary cover are described. Their genetic classification is based on the principle of conjugation of ore-forming process with the stages of lithogenesis of ore-enclosing rocks. Examples of poligeneity of uranium mineralization are presented. Texture-structural peculiarities of ores and types of ore-controlling zonality are considered as criteria of definite deposits belonging to various genetic classes. The analysis is given of main regularities of location of exogenous and poligenic uranium deposits. Processes of uranium ore-formation under the conditions of low and high degrees of metamorphism are considered. On the basis of separate types of deposits shown is the possibility of mobilization, transfer and concentration of ore substance, its transformation from primary to secondary forms. Metamorphous and ultrametamorphous deposits are formed as a result of ore element translocation within considerable distances under the effect of endogenous solutions and their concentration in favourable structures. Conclusions on the effect of lithogenesis and metamorphism processes on the ore formation are substantiated by field observations, analyses (including methods of isotopic geochemistry) as well as by experiments

  19. Study of the metamorphic belts and tectonics; Henseitai kenkyu to tectonics

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. [Hokkaido University, Sapporo (Japan)

    1997-10-25

    Study of metamorphic belts and tectonics is introduced. Minerals supposedly originating in the transitional zone and the lower mantle, that is, inclusions in diamond in kimberlite, are deemed to carry information about the depth level of 670km and lower. The place of origin of peridotite, Alpe Arami of Switzerland, is again estimated at a level of 300km or deeper. In the tectonic cross section in this region, the oceanic crust is bent and folded, and such a structure enables the supposition that fragments off the transitional zone may be carried upward to the ground surface. This region is now being limelighted, with plume tectonics enjoying popularity. The split of Pangaea is related with the ascent of plume. In the eastern part of Australia, there are alkali rocks attributable to the plume that was supposedly active at the end of the Proterozoic. Zircon U-Pb dating by SHRIMP offers a new approach to the tectonics of metamorphic rocks, and is reinforcing the position of metamorphic petrology relative to the study of collision and split of continents. 64 refs., 10 figs.

  20. Metamorphic core complex formation by density inversion and lower-crust extrusion.

    Science.gov (United States)

    Martinez, F; Goodliffe, A M; Taylor, B

    2001-06-21

    Metamorphic core complexes are domal uplifts of metamorphic and plutonic rocks bounded by shear zones that separate them from unmetamorphosed cover rocks. Interpretations of how these features form are varied and controversial, and include models involving extension on low-angle normal faults, plutonic intrusions and flexural rotation of initially high-angle normal faults. The D'Entrecasteaux islands of Papua New Guinea are actively forming metamorphic core complexes located within a continental rift that laterally evolves to sea-floor spreading. The continental rifting is recent (since approximately 6 Myr ago), seismogenic and occurring at a rapid rate ( approximately 25 mm yr-1). Here we present evidence-based on isostatic modelling, geological data and heat-flow measurements-that the D'Entrecasteaux core complexes accommodate extension through the vertical extrusion of ductile lower-crust material, driven by a crustal density inversion. Although buoyant extrusion is accentuated in this region by the geological structure present-which consists of dense ophiolite overlaying less-dense continental crust-this mechanism may be generally applicable to regions where thermal expansion lowers crustal density with depth.

  1. Age and duration of eclogite-facies metamorphism, North Qaidam HP/UHP terrane, Western China

    Science.gov (United States)

    Mattinson, C.G.; Wooden, J.L.; Liou, J.G.; Bird, D.K.; Wu, C.L.

    2006-01-01

    Amphibolite-facies para-and orthogneisses near Dulan, at the southeast end of the North Qaidam terrane, enclose minor eclogite and peridotite which record ultra-high pressure (UHP) metamorphism associated with the Early Paleozoic continental collision of the Qilian and Qaidam microplates. Field relations and coesite inclusions in zircons from paragneiss suggest that felsic, mafic, and ultramafic rocks all experienced UHP metamorphism and a common amphibolite-facies retrogression. SHRIMP-RG U-Pb and REE analyses of zircons from four eclogites yield weighted mean ages of 449 to 422 Ma, and REE patterns (flat HREE, no Eu anomaly) and inclusions of garnet, omphacite, and rutile indicate these ages record eclogite-facies metamorphism. The coherent field relations of these samples, and the similar range of individual ages in each sample suggests that the ???25 m.y. age range reflects the duration of eclogite-facies conditions in the studied samples. Analyses from zircon cores in one sample yield scattered 433 to 474 Ma ages, reflecting partial overlap on rims, and constrain the minimum age of eclogite protolith crystallization. Inclusions of Th + REE-rich epidote, and zircon REE patterns are consistent with prograde metamorphic growth. In the Lu??liang Shan, approximately 350 km northwest in the North Qaidam terrane, ages interpreted to record eclogite-facies metamorphism of eclogite and garnet peridotite are as old as 495 Ma and as young as 414 Ma, which suggests that processes responsible for extended high-pressure residence are not restricted to the Dulan region. Evidence of prolonged eclogite-facies metamorphism in HP/UHP localities in the Northeast Greenland eclogite province, the Western Gneiss Region of Norway, and the western Alps suggests that long eclogite-facies residence may be globally significant in continental subduction/collision zones.

  2. Shock compaction of molybdenum powder

    Science.gov (United States)

    Ahrens, T. J.; Kostka, D.; Vreeland, T., Jr.; Schwarz, R. B.; Kasiraj, P.

    1983-01-01

    Shock recovery experiments which were carried out in the 9 to 12 GPa range on 1.4 distension Mo and appear adequate to compact to full density ( 45 (SIGMA)m) powders were examined. The stress levels, however, are below those calculated to be from 100 to approx. 22 GPa which a frictional heating model predicts are required to consolidate approx. 10 to 50 (SIGMA)m particles. The model predicts that powders that have a distension of m=1.6 shock pressures of 14 to 72 GPa are required to consolidate Mo powders in the 50 to 10 (SIGMA)m range.

  3. Mechanics of lung ventilation in a post-metamorphic salamander, Ambystoma Tigrinum.

    Science.gov (United States)

    Simons, R S; Bennett, W O; Brainerd, E L

    2000-03-01

    The mechanics of lung ventilation in frogs and aquatic salamanders has been well characterized, whereas lung ventilation in terrestrial-phase (post-metamorphic) salamanders has received little attention. We used electromyography (EMG), X-ray videography, standard videography and buccal and body cavity pressure measurements to characterize the ventilation mechanics of adult (post-metamorphic) tiger salamanders (Ambystoma tigrinum). Three results emerged: (i) under terrestrial conditions or when floating at the surface of the water, adult A. tigrinum breathed through their nares using a two-stroke buccal pump; (ii) in addition to this narial two-stroke pump, adult tiger salamanders also gulped air in through their mouths using a modified two-stroke buccal pump when in an aquatic environment; and (iii) exhalation in adult tiger salamanders is active during aquatic gulping breaths, whereas exhalation appears to be passive during terrestrial breathing at rest. Active exhalation in aquatic breaths is indicated by an increase in body cavity pressure during exhalation and associated EMG activity in the lateral hypaxial musculature, particularly the M. transversus abdominis. In terrestrial breathing, no EMG activity in the lateral hypaxial muscles is generally present, and body cavity pressure decreases during exhalation. In aquatic breaths, tidal volume is larger than in terrestrial breaths, and breathing frequency is much lower (approximately 1 breath 10 min(-)(1 )versus 4-6 breaths min(-)(1)). The use of hypaxial muscles to power active exhalation in the aquatic environment may result from the need for more complete exhalation and larger tidal volumes when breathing infrequently. This hypothesis is supported by previous findings that terrestrial frogs ventilate their lungs with small tidal volumes and exhale passively, whereas aquatic frogs and salamanders use large tidal volumes and and exhale actively.

  4. Revisiting the thermal effect on shock wave propagation in weakly ionized plasmas

    International Nuclear Information System (INIS)

    Zhou, Qianhong; Dong, Zhiwei; Yang, Wei

    2016-01-01

    Many researchers have investigated shock propagation in weakly ionized plasmas and observed the following anomalous effects: shock acceleration, shock recovery, shock weakening, shock spreading, and splitting. It was generally accepted that the thermal effect can explain most of the experimental results. However, little attention was paid to the shock recovery. In this paper, the shock wave propagation in weakly ionized plasmas is studied by fluid simulation. It is found that the shock acceleration, weakening, and splitting appear after it enters the plasma (thermal) region. The shock splits into two parts right after it leaves the thermal region. The distance between the splitted shocks keeps decreasing until they recover to one. This paper can explain a whole set of features of the shock wave propagation in weakly ionized plasmas. It is also found that both the shock curvature and the splitting present the same photoacoustic deflection (PAD) signals, so they cannot be distinguished by the PAD experiments.

  5. New data on tectono-metamorphic evolution of the Peri-Trasmontano domain (Schistose Domain) in Northeastern Portugal

    International Nuclear Information System (INIS)

    Dias da Silva, I.; Gonzalez Clavijo, E.

    2010-01-01

    Under the main Tras-os-Montes thrust plane, in the easternmost region of the Morais Allochthonous Complex, a geologic unit has been identified. It shows syn-tectonic S 2 -related andalusite blastesis, representative of low pressure thermal metamorphism. In the studied sector this metamorphism affects essentially the black slaty lithologies present in Neoproterozoic to Silurian formations. This kind of thermal metamorphism is easily distinguishable from the late to post S 3 plutonic-related metamorphism, due to the existence of evidence of syn kinematic mineral blastesis with rotation and boudinage, synchronously with S 2 development. Syn-kinematic andalusite blastesis seems to affect only the autochthonous Central Iberian Zone rocks and it could be associated to crustal extensional phenomena like the ones identified in the Tormes Gneissic Dome. It is proposed that at least part of this andalusite blast generation could have a distinct origin, reflecting earlier low pressure thermal metamorphic events in inner Variscan orogen zones that were tectonically imbricated to present coordinates during the second Variscan phase. The vertical proximity of only a few hundred meters between extensional structures, to the East, and the compressive ones, to the West of the studied sector, could justify the presence of both pre- and syn-S 2 andalusite blasts inside the above mentioned tectono-metamorphic unit. The kinematic criteria (top to SE) are consistent with the ones of the Variscan synorogenic extensional structures placed nearby to the SE, pointing to a possible genetic relation with those crustal thinning processes. (Author) 42 refs.

  6. The Katmandu and Gosainkund nappes, central Nepal Himalaya (cartography, structure, metamorphism, geochemistry and radio-chronology)

    International Nuclear Information System (INIS)

    Rai, S.M.

    1998-10-01

    In central Nepal, a multidisciplinary study has been carried out to characterize and distinguish the crystalline nappes of Katmandu and Gosainkund from the Midland formations. Two principal deformations are recorded: one ductile, syn-metamorphic, marked by microstructures (stretching lineation, S-C structures, etc. ), another, post-metamorphic, recorded by an anticline, roughly EW -directed, and by NNE-SSW -directed folds. The syn-metamorphic P-T conditions show differences between Katmandu Crystalline Nappe (900-720 MPa; 700-480 deg C) and Gosainkund Crystalline Nappe (890-580 MPa; 750-590 deg C). They exhibit well preserved inverted metamorphism between the Upper Midland Formations (750 Mpa; 560 deg C) and the Gosainkund Nappe. In central Nepal, the augen gneisses and the 'Lesser Himalayan' Cambro-Ordovician granites bear similar petrographic and geochemical characteristics which suggest a common origin. However, the geological setting and age of the Proterozoic Ulleri augen gneiss rule out correlation with these formations. 40 Ar/ 39 Ar analyses of muscovite, indicate cooling ages younger from south to north: 22 to 13 Ma in the Katmandu Nappe, 16 to 5 Ma in the Gosainkund Nappe, and 12 to 6 Ma in the Midland Formation. The principal points summarized by this study are the following: clear distinction between two nappes marked by their litho-stratigraphy and metamorphism; the ductile movement of MCT in the north of Katmandu is blocked since approximately 25 Ma; the late emplacement and late or common post metamorphic history of the two nappes; but earlier cooling history of the Katmandu nappe; the present uplift of the Katmandu region, underlined by the intense micro-seismicity, concerns indifferently the two nappes that form a single tectonic block at present; the combined uplift of the two nappes is due to the displacement on a ramp of major decollement surface. (author)

  7. POSTURAL SHOCK IN PREGNANCY

    Science.gov (United States)

    Wilkening, Ralph L.; Knauer, John; Larson, Roger K.

    1955-01-01

    Signs and symptoms of shock may be produced in some patients in late pregnancy by putting them in the dorsal recumbent posture. Change from this position will relieve the condition. The features of the supine hypotensive syndrome can be duplicated by applying pressure to the abdomen with the patient in a lateral position. The postural variations of venous pressure, blood pressure, and pulse appear to be due to obstruction of venous return from the lower portion of the body caused by the large uterus of late pregnancy compressing the vena cava. When shock is observed in a woman in late pregnancy, she should be turned to a lateral position before more active measures of treatment are begun. ImagesFigure 1. PMID:14351983

  8. Post-peak metamorphic evolution of the Sumdo eclogite from the Lhasa terrane of southeast Tibet

    Science.gov (United States)

    Cao, Dadi; Cheng, Hao; Zhang, Lingmin; Wang, Ke

    2017-08-01

    A reconstruction of the pressure-temperature-time (P-T-t) path of high-pressure eclogite-facies rocks in subduction zones may reveal important information about the tectono-metamorphic processes that occur at great depths along the plate interface. The majority of studies have focused on prograde to peak metamorphism of these rocks, whereas after-peak metamorphism has received less attention. Herein, we present a detailed petrological, pseudosection modeling and radiometric dating study of a retrograded eclogite sample from the Sumdo ultrahigh pressure belt of the Lhasa terrane, Tibet. Mineral chemical variations, textural discontinuities and thermodynamic modeling suggest that the eclogite underwent an exhumation-heating period. Petrographic observations and phase equilibria modeling suggest that the garnet cores formed at the pressure peak (∼2.5 GPa and ∼520 °C) within the lawsonite eclogite-facies and garnet rims (∼1.5 GPa and spans an interval of ∼7 million years, which is a minimum estimate of the duration of the eclogite-facies metamorphism of the Sumdo eclogite.

  9. Teaching Igneous and Metamorphic Petrology Through Guided Inquiry Projects

    Science.gov (United States)

    McMillan, N. J.

    2003-12-01

    Undergraduate Petrology at New Mexico State University (GEOL 399) has been taught using three, 5-6 week long projects in place of lectures, lab, and exams for the last six years. Reasons for changing from the traditional format include: 1) to move the focus from identification and memorization to petrologic thinking; 2) the need for undergraduate students to apply basic chemical, structural, and field concepts to igneous and metamorphic rocks; 3) student boredom in the traditional mode by the topic that has captivated my professional life, in spite of my best efforts to offer thrilling lectures, problems, and labs. The course has three guided inquiry projects: volcanic, plutonic, and pelitic dynamothermal. Two of the rock suites are investigated during field trips. Each project provides hand samples and thin sections; the igneous projects also include whole-rock major and trace element data. Students write a scientific paper that classifies and describes the rocks, describes the data (mineralogical and geochemical), and uses data to interpret parameters such as tectonic setting, igneous processes, relationship to phase diagrams, geologic history, metamorphic grade, metamorphic facies, and polymetamorphic history. Students use the text as a major resource for self-learning; mini-lectures on pertinent topics are presented when needed by the majority of students. Project scores include evaluation of small parts of the paper due each Friday and participation in peer review as well as the final report. I have found that petrology is much more fun, although more difficult, to teach using this method. It is challenging to be totally prepared for class because students are working at different speeds on different levels on different aspects of the project. Students enjoy the course, especially the opportunity to engage in scientific investigation and debate. A significant flaw in this course is that students see fewer rocks and have less experience in rock classification

  10. Electron beams by shock waves in the solar corona

    International Nuclear Information System (INIS)

    Mann, G.; Klassen, A.

    2005-07-01

    Beams of energetic electrons can be generated by shock waves in the solar corona. At the Sun shock waves are produced either by flares and/or by coronal mass ejections (CMEs). They can be observed as type II bursts in the solar radio radiation. Shock accelerated electron beams appear as rapidly drifting emission stripes (so-called ''herringbones'') in dynamic radio spectra of type II bursts. A large sample of type II bursts showing ''herringbones'' was statistically analysed with respect to their properties in dynamic radio spectra. The electron beams associated with the ''herringbones'' are considered to be generated by shock drift acceleration. Then, the accelerated electrons establish a shifted loss-cone distribution in the upstream region of the associated shock wave. Such a distribution causes plasma instabilities leading to the emission of radio waves observed as ''herringbones''. Consequences of a shifted loss-cone distribution of the shock accelerated electrons are discussed in comparison with the observations of ''herringbones'' within solar type II radio bursts. (orig.)

  11. Radioactive occurrences in veins and igneous and metamorphic rocks of New Mexico with annotated bibliography

    International Nuclear Information System (INIS)

    McLemore, V.T.

    1982-02-01

    The primary objectives of this report are to list known radioactive occurrences in veins and igneous and metamorphic rocks in New Mexico, and to provide an annotated bibliography of geologic reports concerning these regions. Only plutonic, metamorphic, vein, and Precambrian quartz-pebble conglomerate uranium deposits are considered in this report; other nonsandstone uranium deposits (such as shale, limestone, phosphorite, coal, evaporative precipitates, and fossil placer deposits) will be considered at a later time. These objectives were achieved through a literature search. Some field examinations of some of the radioactive occurrences have been completed. A table of known radioactive occurrences in veins and igneous and metamorphic rocks was compiled from the literature (Appendix I)

  12. Conversion of piston-driven shocks from powerful solar flares to blast wave shocks in the solar wind

    International Nuclear Information System (INIS)

    Pinter, S.

    1990-01-01

    It was suggested by Smart and Shea (1985) that the time of arrival of solar-flare-generated shock waves at any point in space may be predicted by assuming that they are first driven from the Sun after which they decay into blast shocks. Their study was extended by using the duration of the Type IV radio emission as a phenomenological symptom of the piston-driven phase of these shocks. Using a sample of 39 cases of combined Type II/Type IV observations from 1972 to 1982 solar flares, it was found that the average predicted times-of-arrival of these shocks to Earth (and elsewhere) deviate from the actual times by 1.40 hr with a standard deviation of 1.25 hr. On the average, a representative shock from this sample is emitted from a powerful flare with a velocity of 1,560 km sec -1 ; moves at a constant inertial velocity to a distance of 0.12 AU after which it begins to decelerate as a classical (Sedov-type) blast shock that is convected by the ambient solar wind as suggested by Smart and Shea; and arrives to Earth 45.8 hr after its initiation in the Sun. Shocks that appear to deviate from this phenomenological scenario by virtue of lack of detection on Earth are assumed to decay into fast mode MHD waves. (author). 7 figs., 1 tab., 53 refs

  13. A versatile digitally-graded buffer structure for metamorphic device applications

    Science.gov (United States)

    Ma, Yingjie; Zhang, Yonggang; Chen, Xingyou; Gu, Yi; Shi, Yanhui; Ji, Wanyan; Du, Ben

    2018-04-01

    Exploring more effective buffer schemes for mitigating dislocation deficiencies is the key technology towards higher performance metamorphic devices. Here we demonstrate a versatile metamorphic grading structure consisting of 38-period alternated multilayers of In0.52Al0.48As and In0.82Al0.18As on InP substrate, thicknesses of which in each period were gradually varied in opposite directions from 48.7 and 1.3 nm to 1.3 and 48.7 nm, respectively, akin to a digital alloy. Both preferentially dislocation nucleation and blocking of threading dislocation transmission are observed near the In0.82Al0.18As/In0.52Al0.48As interfaces, which help relax the strain and lower the residual defect density. A 2.6 μm In0.83Ga0.17As pin photodetector is fabricated on this pseudo-substrate, attaining a low dark current density of 2.9  ×  10‑6 A cm‑2 and a high detectivity of 1.8  ×  1010 cmHz1/2W‑1 at room temperature, comparable with the states of the art that on linearly-graded buffer layers. These results indicate such digitally-graded buffer structures are promising for enhancing performances of metamorphic devices, and can be easily generalized to other lattice-mismatched material systems.

  14. Electron microprobe Th-U-Pb monazite dating and metamorphic evolution of the Acaiaca Granulite Complex, Minas Gerais, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros Junior, Edgar Batista; Marques, Rodson Abreu, E-mail: edgarjr@ymail.com, E-mail: rodson.marques@ufes.br [Universidade Federal do Espirito Santo (UFES), Alegre, ES (Brazil). Departamento de Geologia; Jordt-Evangelista, Hanna; Queiroga, Glaucia Nascimento, E-mail: hanna@degeo.ufop.br, E-mail: glauciaqueiroga@yahoo.com.br [Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG (Brazil). Escola de Minas. Departamento de Geologia; Schulz, Bernhard, E-mail: bernhard.schulz@mineral.tu-freiberg.de [TU Bergakademie - Institute of Mineralogy, Freiberg - Saxony (Germany)

    2016-01-15

    The Acaiaca Complex (AC) is located in southeastern Minas Gerais state, and comprises felsic, mafic, ultramafic, and aluminous granulite as well as lower grade gneisses and mylonite. The complex is distributed over an area of ca. 36 km by 6 km, surrounded by amphibolite facies gneisses of the Mantiqueira Complex (MC). The discrepancy in the metamorphic grade between both complexes led to the present study aiming to understand the metamorphic history of the AC by means of geothermobarometry calculations and electron microprobe Th-U-Pb monazite dating. Estimates of the metamorphic conditions of the granulite based on conventional geothermobarometry and THERMOCALC resulted in temperatures around 800 deg C and pressures between of 5.0 and 9.9 kbar and a retro metamorphic path characterized by near-isobaric cooling. Part of the granulite was affected by anatexis. The melting of felsic granulite resulted in the generation of pegmatites and two aluminous lithotypes. These are: 1) garnet-sillimanite granulite with euhedral plagioclase and cordierite that show straight faces against quartz, and is the crystallization product of an anatectic melt, and 2) garnet-kyanite-cordierite granulite, which is probably the restite of anatexis, as indicated by textures and high magnesium contents. Th-U-Pb monazite geochronology of two granulite samples resulted in a metamorphic age around 2060 Ma, which is similar to the age of the MC registered in the literature. The similar Paleoproterozoic metamorphic ages of both complexes lead to the conclusion that the Acaiaca Complex may be the high grade metamorphic unit geochronological related to the lower grade Mantiqueira Complex. (author)

  15. Mechanical Properties of Shock-Damaged Rocks

    Science.gov (United States)

    He, Hongliang; Ahrens, T. J.

    1994-01-01

    Stress-strain tests were performed both on shock-damaged gabbro and limestone. The effective Young's modulus decreases with increasing initial damage parameter value, and an apparent work-softening process occurs prior to failure. To further characterize shock-induced microcracks, the longitudinal elastic wave velocity behavior of shock-damaged gabbro in the direction of compression up to failure was measured using an acoustic transmission technique under uniaxial loading. A dramatic increase in velocity was observed for the static compressive stress range of 0-50 MPa. Above that stress range, the velocity behavior of lightly damaged (D(sub 0) less than 0.1) gabbro is almost equal to unshocked gabbro. The failure strength of heavily-damaged (D(sub 0) greater than 0.1) gabbro is approx. 100-150 MPa, much lower than that of lightly damaged and unshocked gabbros (approx. 230-260 MPa). Following Nur's theory, the crack shape distribution was analyzed. The shock-induced cracks in gabbro appear to be largely thin penny-shaped cracks with c/a values below 5 x 10(exp -4). Moreover, the applicability of Ashby and Sammis's theory relating failure strength and damage parameter of shock-damaged rocks was examined and was found to yield a good estimate of the relation of shock-induced deficit in elastic modulus with the deficit in compressive strength.

  16. U-Th-PbT Monazite Gechronology in the South Carpathian Basement: Variscan Syn-Metamorphic Tectonic Stacking and Long-Lasting Post-Peak Decompressional Overprints

    Science.gov (United States)

    Săbău, G.; Negulescu, E.

    2012-12-01

    Dating metamorphic events appears to be unsatisfactorily addressed by most of the widely-employed and otherwise accurate and productive isotopic techniques, because the phases and systems investigated do not directly relate to the metamorphic events themselves. An adequate answer to this challenge is instead provided by microprobe-assisted chemical U-Th-PbT monazite geochronology, by its spatial resolution, truly in situ character and the possibility to reference analyses against well-defined textural environments and features, as well as a qualitative timeframe derived therefrom. Though chemical U-Th-PbT monazite geochronology is increasingly applied to seek answers ranging form a general characterization to fine details of the thermotectonic evolution of magmatic and metamorphic rocks, there are so far, unlike in the case of isotopic geochronological methods, no clearly defined standard analytical and data processing protocols. Two main reasons for this have to be mentioned, namely that chemical U-Th-PbT chronology is actually a proxy for isotopic geochronology, and the quantification of the errors and their propagation cannot be directly assessed because apparent ages are related to the measured element concentrations by an implicit function, the law of radioactive decay. Current approaches rely on treating calculated individual age values as primary data, a priori grouping of analyses supposed (and subsequently tested) to be coeval, and their statistical processing in order to obtain age values. An alternative approach we applied in basement units of the South Carpathians consists in an explicit approximation of the age formula and associated errors propagated from element concentrations to age values, and individual treatment of each age datum. The separation of the age clusters from the overall age spectrum of each sample was operated by tracing the variations of the normalized age gradient on the age spectrum sorted by increasing age values, and fine

  17. Shock-wave structure formation in a dusty plasma

    International Nuclear Information System (INIS)

    Popel', S.I.; Golub', A.P.; Loseva, T.V.; Bingkhem, R.; Benkadda, S.

    2001-01-01

    Nonstationary problem on evolution perturbation and its transformation into nonlinear wave structure is considered. The method developed permits finding solution to the system of nonlinear evolution equations describing dust particles with variable charge, Boltzmann electron and inertia ions. An accurate stationary solution as ion-sonic wave structures explained by anomalous dissipation due to electric discharge of dust particles was found. Evolution of two types of initial perturbations was studied, i.e.: soliton and immobile region with increased density of ions - a step. Soliton evolution in plasma with variable charge of dust particles results in the appearance on nonstationary shock-wave structure, whereas the step evolution gives rise to appearance of a shock wave similar to the stationary one along with rarefaction wave [ru

  18. contact metamorphism in the supracrustal rocks of the sukumaland ...

    African Journals Online (AJOL)

    Mgina

    University of Dar es Salaam, College of Natural and Applied Sciences, Department of Geology,. P. O. Box 35052, Dar es Salaam, Tanzania ... bounded by rational crystal faces (decussate texture). Keywords. Contact metamorphism, intrusions ..... electron microbeam X-ray analysis of thick polished materials, thin films and.

  19. Gneiss Macuira: tectonic evolution of Paleozoic metamorphic rocks of the Alta Guajira, Colombia

    International Nuclear Information System (INIS)

    Lopez I; A Julian; Zuluaga C; A, Carlos

    2012-01-01

    The Macuira Gneiss is a Paleozoic metamorphic unit that outcrops in the Simarua, Jarara and Macuira ranges, Alta Guajira. It is composed by a lithologies metamorphosed under amphibolite facies P-T conditions and consist of amphibolitic and quartz feldspathic gneisses, amphibolites, schists, pegmatites, calc-silicated rocks and marbles, with migmatization evidences in gneisses and amphibolites. Five foliations (S1-5) and three folding events (F1-3) were identified and interpreted as product of two metamorphic events, developed in a progressive barrovian metamorphic gradient of intermediate pressure with intermediate P-T ratio, interpreted as product of continental collision tectonics. This unit is important in understanding of the tectonic evolution of the Alta Guajira and Caribbean because it records different deformational phases pre-, syn- and post-migmatitic, that could be related with different tectonic episodes: the first associated with the collision between Laurasia and Gondwana (Alleghanian Orogeny - Late Paleozoic), and the second related with the Caribbean Plate evolution (Andean Orogeny - Meso-Cenozoic).

  20. Isolation and characterization of the metamorphic inducer of the common mud crab, Panopeus herbstii.

    Science.gov (United States)

    Andrews, W R.; Targett, N M.; Epifanio, C E.

    2001-06-15

    Several items from the natural habitat of adult Panopeus herbstii were examined to determine if they had the ability to produce a metamorphic cue. These included adult conspecifics, natural rock/shell substratum, the co-occurring species Hemigrapsus sanguineus and bacterial biofilms. Adult conspecifics, H. sangineus and natural rock/shell all accelerated metamorphosis. However, adult conspecifics accelerated metamorphosis to the greatest extent. The cue associated with adult conspecifics was found to be water-soluble, stable following boiling and freezing, and of relatively small molecular size (<1 kDa). Furthermore, the cue appears to be produced from the conspecifics themselves, rather than from biofilms colonizing the surfaces of the crabs. The results of this experiment suggest that postlarvae of P. herbstii are able to distinguish suitable habitat through chemical signals, thus greatly increasing their chances for survival.

  1. Plasma and energetic particle structure upstream of a quasi-parallel interplanetary shock

    Science.gov (United States)

    Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Wenzel, K.-P.; Sanderson, T. R.; Van Nes, P.; Smith, E. J.; Tsurutani, B. T.; Scudder, J. D.

    1984-01-01

    ISEE 1, 2 and 3 data from 1978 on interplanetary magnetic fields, shock waves and particle energetics are examined to characterize a quasi-parallel shock. The intense shock studied exhibited a 640 km/sec velocity. The data covered 1-147 keV protons and electrons and ions with energies exceeding 30 keV in regions both upstream and downstream of the shock, and also the magnitudes of ion-acoustic and MHD waves. The energetic particles and MHD waves began being detected 5 hr before the shock. Intense halo electron fluxes appeared ahead of the shock. A closed magnetic field structure was produced with a front end 700 earth radii from the shock. The energetic protons were cut off from the interior of the magnetic bubble, which contained a markedly increased density of 2-6 keV protons as well as the shock itself.

  2. Electromagnetic Structure and Electron Acceleration in Shock–Shock Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Nakanotani, Masaru [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Matsukiyo, Shuichi; Hada, Tohru [Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Mazelle, Christian X., E-mail: nakanot@esst.kyushu-u.ac.jp [IRAP, Université Paul Sabatier Toulouse III-CNRS, F-31028 Toulouse Cedex 4 (France)

    2017-09-10

    A shock–shock interaction is investigated by using a one-dimensional full particle-in-cell simulation. The simulation reproduces the collision of two symmetrical high Mach number quasi-perpendicular shocks. The basic structure of the shocks and ion dynamics is similar to that obtained by previous hybrid simulations. The new aspects obtained here are as follows. Electrons are already strongly accelerated before the two shocks collide through multiple reflection. The reflected electrons self-generate waves upstream between the two shocks before they collide. The waves far upstream are generated through the right-hand resonant instability with the anomalous Doppler effect. The waves generated near the shock are due to firehose instability and have much larger amplitudes than those due to the resonant instability. The high-energy electrons are efficiently scattered by the waves so that some of them gain large pitch angles. Those electrons can be easily reflected at the shock of the other side. The accelerated electrons form a power-law energy spectrum. Due to the accelerated electrons, the pressure of upstream electrons increases with time. This appears to cause the deceleration of the approaching shock speed. The accelerated electrons having sufficiently large Larmor radii are further accelerated through the similar mechanism working for ions when the two shocks are colliding.

  3. Shock-induced luminescence from Z-cut lithium niobate

    International Nuclear Information System (INIS)

    Brannon, P.J.; Morris, R.W.; Asay, J.R.

    1985-01-01

    Shock-induced luminescence from lithium niobate has been studied in the stress range 1.6--21.0 GPa. Both fast-framing photography and five-channel optical pyrometry were used to observe the luminescence. The framing photography showed that the emission pattern is heterogeneous for stresses just above the dynamic yield point. A further increase of the stress resulted in a pattern which was essentially homogeneous to within the experimental spatial resolution of about 30 μm. Narrowband filters and photomultiplier tubes were used in the optical pyrometry experiments. A broadband spectrum with a peak near 700 nm was observed. A plot of the energy dissipated by the shock versus shock stress correlates very well with a plot of the 700-nm intensity versus shock stress. The mechanism for light emission in lithium niobate appears to be closely related to the dynamic yielding process

  4. Uranium, rare metals, and granulite-facies metamorphism

    Directory of Open Access Journals (Sweden)

    Michel Cuney

    2014-09-01

    The Tranomaro metasomatized marbles recrystallizing under granulite-facies conditions represent a demonstrative example of fluid transfer from granulite-facies supracrustals to traps represented by regional scale skarns. Such fluids may be at the origin of the incompatible element enrichment detected in leucosomes of migmatites from St Malo in Brittany (France and Black Hills in South Dakota. The northern French Massif Central provides us with an example of a potential association between incompatible element enrichment of granitic melts and granulite-facies metamorphism. U- and F-enriched fine-grained granites are emplaced along a crustal scale shear zone active during the emplacement within the St Sylvestre peraluminous leucogranitic complex. We propose that during granulite-facies metamorphism dominated by carbonic waves in a deep segment of the continental crust, these shear zones control: (i the percolation of F-, LILE-, rare metal-rich fluids liberated primarily by the breakdown of biotite; (ii the enhancement of partial melting by F-rich fluids at intermediate crustal levels with the generation of F-, LILE-, rare metal-rich granitic melts; (iii their transfer through the crust with protracted fractionation facilitated by their low viscosity due to high F-Li contents; and finally (iv their emplacement as rare metal intrusions at shallow crust levels.

  5. Telescoping metamorphic isograds: Evidence from 40Ar/39A dating in the Orange-Milford belt, southern Connecticut

    Science.gov (United States)

    Kunk, Michael J.; Walsh, Gregory J.; Growdon, Martha L.; Wintsch, Robert P.

    2013-01-01

    New 40Ar/39Ar ages for hornblende and muscovite from the Orange-Milford belt in southern Connecticut reflect cooling from Acadian amphibolite facies metamorphism between ∼380 to 360 Ma followed by retrograde recrystallization of fabric-forming muscovite and chlorite during lower greenschist facies Alleghanian transpression at ∼280 Ma. Reported field temperature and pressure gradients are improbably high for these rocks and a NW metamorphic field gradient climbing from chlorite-grade to staurolite-grade occurs over less than 5 km. Simple tilting cannot account for this compressed isograd spacing given the geothermal gradient of ∼20 °C/km present at the time of regional metamorphism. However, post-metamorphic transpression could effectively telescope the isograds by stretching the belt at an oblique angle to the isograd traces. Textures in the field and in thin section reveal several older prograde schistosities overprinted by lower greenschist facies fabrics. The late cleavages commonly occur at the scale of ∼100 μm and these samples contain multiple age populations of white mica. 40Ar/39Ar analysis of these poly-metamorphic samples with mixed muscovite populations yield climbing or U-shaped age spectra. The ages of the low temperature steps are late Paleozoic, while the ages of the older steps are late Devonian. These results support our petrologic interpretation that the younger cleavage developed under metamorphic conditions below the closure temperature for Ar diffusion in muscovite, that is, in the lower greenschist facies. The correlation of a younger regionally reproducible age population with a pervasive retrograde muscovite ± chlorite cleavage reveals an Alleghanian (∼280 Ma) overprint on the Acadian metamorphic gradient (∼380 Ma). Outcrop-scale structures including drag folds and imbricate boudins suggest that Alleghanian deformation and cleavage development occurred in response to dextral transpression along a northeast striking boundary

  6. Analysis of lineament swarms in a Precambrian metamorphic rocks

    Indian Academy of Sciences (India)

    Addressing the geologic significance of lineaments and their correlation with joints/fractures is still unclear. The present study attempts to analyse the lineament swarms developed in a Precambrian metamorphic terrain in India using both unfiltered and filtered techniques. The unfiltered analysis technique shows that the ...

  7. Peak metamorphic temperatures from cation diffusion zoning in garnet

    DEFF Research Database (Denmark)

    Smit, Matthijs Arjen; Scherer, Erik; Mezger, Klaus

    2013-01-01

    ) to develop a tool that uses the diffusion zoning of these cations in garnet to constrain peak temperature conditions for garnet-bearing rocks. The thermometric approach was externally tested by applying it to garnet crystals from various metamorphic terranes worldwide and comparing the results to published...

  8. Semantically Enabling Knowledge Representation of Metamorphic Petrology Data

    Science.gov (United States)

    West, P.; Fox, P. A.; Spear, F. S.; Adali, S.; Nguyen, C.; Hallett, B. W.; Horkley, L. K.

    2012-12-01

    More and more metamorphic petrology data is being collected around the world, and is now being organized together into different virtual data portals by means of virtual organizations. For example, there is the virtual data portal Petrological Database (PetDB, http://www.petdb.org) of the Ocean Floor that is organizing scientific information about geochemical data of ocean floor igneous and metamorphic rocks; and also The Metamorphic Petrology Database (MetPetDB, http://metpetdb.rpi.edu) that is being created by a global community of metamorphic petrologists in collaboration with software engineers and data managers at Rensselaer Polytechnic Institute. The current focus is to provide the ability for scientists and researchers to register their data and search the databases for information regarding sample collections. What we present here is the next step in evolution of the MetPetDB portal, utilizing semantically enabled features such as discovery, data casting, faceted search, knowledge representation, and linked data as well as organizing information about the community and collaboration within the virtual community itself. We take the information that is currently represented in a relational database and make it available through web services, SPARQL endpoints, semantic and triple-stores where inferencing is enabled. We will be leveraging research that has taken place in virtual observatories, such as the Virtual Solar Terrestrial Observatory (VSTO) and the Biological and Chemical Oceanography Data Management Office (BCO-DMO); vocabulary work done in various communities such as Observations and Measurements (ISO 19156), FOAF (Friend of a Friend), Bibo (Bibliography Ontology), and domain specific ontologies; enabling provenance traces of samples and subsamples using the different provenance ontologies; and providing the much needed linking of data from the various research organizations into a common, collaborative virtual observatory. In addition to better

  9. Petrographic and EMP study of metamorphic rocks from the Variscan basement of Dinarides (Vranica Mountains, Bosnia and Herzegovina)

    Energy Technology Data Exchange (ETDEWEB)

    Hrvanovic, S [Department of Mineralogy and Petrology, Faculty of Natural Sciences, Comenius University, 84215 Bratislava (Slovakia)

    2012-04-25

    The Vranica Mountains are located in the middle part of Bosnia and Herzegovina or in the southeastern part of the Mid - Bosnian schist Mountains (MBSM). The Mid - Bosnian schist Mountains represent one of the largest allochtonous Paleozoic terranes in the Dinarides. This region is characterized by a multistage geodynamic evolution. The presented results concern Variscan metamorphism of the Silur-Devonian protolith formations that occurred mainly during the Early Carboniferous in LT/MP greenschist facies. Petrographical description of metamorphic rocks is completed by EMPA of muscovite, chlorite and chloritoid. The Early Alpine metamorphic overprint is related to the closure of a Tethyan Basin and Early Cretaceous collision of the Adria microplate with the Tissia-Moesia continental Blocks. The Neo-Alpine metamorphic overprint occurred due to the collision of the African and Euroasian Plates. (authors)

  10. The ammonium content in the Malayer igneous and metamorphic rocks (Sanandaj-Sirjan Zone, Western Iran)

    Science.gov (United States)

    Ahadnejad, Vahid; Hirt, Ann Marie; Valizadeh, Mohammad-Vali; Bokani, Saeed Jabbari

    2011-04-01

    The ammonium (NH4+) contents of the Malayer area (Western Iran) have been determined by using the colorimetric method on 26 samples from igneous and metamorphic rocks. This is the first analysis of the ammonium contents of Iranian metamorphic and igneous rocks. The average ammonium content of metamorphic rocks decreases from low-grade to high-grade metamorphic rocks (in ppm): slate 580, phyllite 515, andalusite schist 242. In the case of igneous rocks, it decreases from felsic to mafic igneous types (in ppm): granites 39, monzonite 20, diorite 17, gabbro 10. Altered granitic rocks show enrichment in NH4+ (mean 61 ppm). The high concentration of ammonium in Malayer granites may indicate metasedimentary rocks as protoliths rather than meta-igneous rocks. These granitic rocks (S-types) have high K-bearing rock-forming minerals such as biotite, muscovite and K-feldspar which their potassium could substitute with ammonium. In addition, the high ammonium content of metasediments is probably due to inheritance of nitrogen from organic matter in the original sediments. The hydrothermally altered samples of granitic rocks show highly enrichment of ammonium suggesting external sources which intruded additional content by either interaction with metasedimentary country rocks or meteoritic solutions.

  11. Uranium deposits in the metamorphic basement of the Rouergue massif. Genesis and extension of related albitization processes

    International Nuclear Information System (INIS)

    Schmitt, J.M.

    1982-02-01

    Albitization processes in the Rouergue metamorphic basement, probably Permian aged is evidenced. Late development of uranium orebodies occured within albitized zones. The detection of the latter serves as a highly valuable indirect guide for prospecting this type of deposits in a metamorphic basement [fr

  12. Uranium cycle and tectono-metamorphic evolution of the Lufilian Pan-African orogenic belt (Zambia)

    International Nuclear Information System (INIS)

    Eglinger, Aurelien

    2013-01-01

    Uranium is an incompatible and lithophile element, and thus more concentrated in silicate melt produced by the partial melting of the mantle related to continental crust formation. Uranium can be used as a geochemical tracer to discuss the generation and the evolution of continental crust. This thesis, focused on the Pan-African Lufilian belt in Zambia, combines structural geology, metamorphic petrology and thermos-barometry, fluid inclusions, geochemistry and geochronology in order to characterize the uranium cycle for this crustal segment. Silici-clastic and evaporitic sediments have been deposited within an intra-continental rift during the dislocation of the Rodinia super-continent during the early Neo-proterozoic. U-Pb ages on detrital zircon grains in these units indicate a dominant Paleo-proterozoic provenance. The same zircon grains show sub-chondritic εHf (between 0 and -15) and yield Hf model ages between ∼2.9 and 2.5 Ga. These data suggest that the continental crust was generated before the end of the Archean (< 2.5 Ga) associated with uranium extraction from the mantle. This old crust has been reworked by deformation and metamorphism during the Proterozoic. Uranium has been re-mobilized and reconcentrated during several orogenic cycles until the Pan-African orogeny. During this Pan-African cycle, U-Pb and REY (REE and Yttrium) signatures of uranium oxides indicate a first mineralizing event at ca. 650 Ma during the continental rifting. This event is related to late diagenesis hydrothermal processes at the basement/cover interface with the circulation of basinal brines linked to evaporites of the Roan. The second stage, dated at 530 Ma, is connected to metamorphic highly saline fluid circulations, synchronous to the metamorphic peak of the Lufilian orogeny (P=9±3 kbar; T=610±30 deg. C). These fluids are derived from the Roan evaporite dissolution. Some late uranium re-mobilizations are described during exhumation of metamorphic rocks and their

  13. Gold, uranium and thorium in zones of greenschist displacement metamorphism

    International Nuclear Information System (INIS)

    Gavrilenko, B.V.; Savitskij, A.V.; Titov, V.V.

    1987-01-01

    Distribution of gold, uranium (bar and mobile) and thorium in 15 zones of greenschist dislocated metamorphism in different structures of the Karelo-Kola region carried out by geologic formations of the Early-Archean-Late-Proterozoic age has been studied. More than 200 samples of well core from 0-200 m depths have been analyzed. The results obtained testify to the increase of gold, uranium and less thorium content in zones of green-schist dislocated metamorphism in comparison with the enclosing rocks 1.4-3.1 times. The variation coefficient of gold, uranium and thorium content in green-schist dislocated tectonites increases 1.5-2.9 times. The correlation coefficient of Au/U mob. pair is +0.69, and Au/U bar pair -+0.87. Essential correlation between concentrations of all three elements in enclosing rocks is absent

  14. Petrology of blueschist facies metamorphic rocks of the Meliata Unit

    Directory of Open Access Journals (Sweden)

    Faryad Shah Wali

    1997-06-01

    Full Text Available Meliata blueschists originated from basalts, limestones, pelites, psammitic and amphibolite facies basement rocks. Compositionally, the metabasalts have a geochemical signature mostly indicative of a transitional arc-MORB origin, but some mafic rocks having affinity with within plate basalts also present. The mafic blueschists consist of blue amphibole, epidote and albite, rarely also garnet, Na-pyroxene and chloritoid. Apart from phengite and quartz the metapelites and metapsammites contain one or more of the minerals: chloritoid, paragonite, glaucophane, albite, chlorite, occasionally also Na-pyroxene and garnet. Amphibolite facies rocks contain relic garnet, plagioclase and hornblende, the latter two replaced by albite and blue amphibole, respectively. The zoning patterns of blue amphibole, garnet and chloritoid suggest their formation during prograde stage of metamorphism. P-T conditions of meta-morphism are estimated to be about 350-460 oC and 10-12 kbar.

  15. Riemann solvers and undercompressive shocks of convex FPU chains

    International Nuclear Information System (INIS)

    Herrmann, Michael; Rademacher, Jens D M

    2010-01-01

    We consider FPU-type atomic chains with general convex potentials. The naive continuum limit in the hyperbolic space–time scaling is the p-system of mass and momentum conservation. We systematically compare Riemann solutions to the p-system with numerical solutions to discrete Riemann problems in FPU chains, and argue that the latter can be described by modified p-system Riemann solvers. We allow the flux to have a turning point, and observe a third type of elementary wave (conservative shocks) in the atomistic simulations. These waves are heteroclinic travelling waves and correspond to non-classical, undercompressive shocks of the p-system. We analyse such shocks for fluxes with one or more turning points. Depending on the convexity properties of the flux we propose FPU-Riemann solvers. Our numerical simulations confirm that Lax shocks are replaced by so-called dispersive shocks. For convex–concave flux we provide numerical evidence that convex FPU chains follow the p-system in generating conservative shocks that are supersonic. For concave–convex flux, however, the conservative shocks of the p-system are subsonic and do not appear in FPU-Riemann solutions

  16. Computations of the Shock Waves at Hypersonic Velocities Taken into Account the Chemical Reactions that Appear in the Air at High Temperatures

    Directory of Open Access Journals (Sweden)

    Mihai Leonida NICULESCU

    2015-09-01

    Full Text Available The temperature in the nose region of a hypersonic vehicle can be extremely high, for example, reaching approximately 11 000 K at a Mach number of 36 (Apollo reentry. The bow shock wave is normal, or nearly normal, in the nose region of a blunt body, and the gas temperature behind this shock wave can be enormous at hypersonic speeds. In this case, the assumption of a calorically perfect nonreacting gas with the ratio of specific heats  of 1.4 gives an unrealistically high value of temperature. Therefore, the proper inclusion of chemically reacting effects is vital to the calculation of an accurate normal shock wave temperature.

  17. PRECURSORS TO INTERSTELLAR SHOCKS OF SOLAR ORIGIN

    Energy Technology Data Exchange (ETDEWEB)

    Gurnett, D. A.; Kurth, W. S. [University of Iowa, Department of Physics and Astronomy, Iowa City, IA 52242 (United States); Stone, E. C.; Cummings, A. C. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Krimigis, S. M.; Decker, R. B. [Applied Physics Laboratory/JHU, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Ness, N. F. [Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Burlaga, L. F., E-mail: donald-gurnett@uiowa.edu [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2015-08-20

    On or about 2012 August 25, the Voyager 1 spacecraft crossed the heliopause into the nearby interstellar plasma. In the nearly three years that the spacecraft has been in interstellar space, three notable particle and field disturbances have been observed, each apparently associated with a shock wave propagating outward from the Sun. Here, we present a detailed analysis of the third and most impressive of these disturbances, with brief comparisons to the two previous events, both of which have been previously reported. The shock responsible for the third event was first detected on 2014 February 17 by the onset of narrowband radio emissions from the approaching shock, followed on 2014 May 13 by the abrupt appearance of intense electron plasma oscillations generated by electrons streaming outward ahead of the shock. Finally, the shock arrived on 2014 August 25, as indicated by a jump in the magnetic field strength and the plasma density. Various disturbances in the intensity and anisotropy of galactic cosmic rays were also observed ahead of the shock, some of which are believed to be caused by the reflection and acceleration of cosmic rays by the magnetic field jump at the shock, and/or by interactions with upstream plasma waves. Comparisons to the two previous weaker events show somewhat similar precursor effects, although differing in certain details. Many of these effects are very similar to those observed in the region called the “foreshock” that occurs upstream of planetary bow shocks, only on a vastly larger spatial scale.

  18. Topics in Computational Modeling of Shock and Wave Propagation

    National Research Council Canada - National Science Library

    Gazonas, George A; Main, Joseph A; Laverty, Rich; Su, Dan; Santare, Michael H; Raghupathy, R; Molinari, J. F; Zhou, F

    2006-01-01

    This report contains reprints of four papers that focus on various aspects of shock and wave propagation in cellular, viscoelastic, microcracked, and fragmented media that appear in the Proceedings...

  19. Shock loading and reactive flow modeling studies of void induced AP/AL/HTPB propellant

    Science.gov (United States)

    Miller, P. J.; Lindfors, A. J.

    1998-07-01

    The unreactive Hugoniot of a class 1.3 propellant has been investigated by shock compression experiments. The results are analyzed in terms of an ignition and growth reactive flow model using the DYNA2D hydrocode. The calculated shock ignition parameters of the model show a linear dependence on measured void volume which appears to reproduce the observed gauge records well. Shock waves were generated by impact in a 75 mm single stage powder gun. Manganin and PVDF pressure gauges provided pressure-time histories to 140 kbar. The propellants were of similar formulation differing only in AP particle size and the addition of a burn rate modifer (Fe2O3) from that of previous investigations. Results show neglible effect of AP particle size on shock response in contrast to the addition of Fe2O3 which appears to `stiffen' the unreactive Hugoniot and enhances significantly the reactive rates under shock. The unreactive Hugoniot, within experimental error, compares favorably to the solid AP Hugoniot. Shock experiments were performed on propellant samples strained to induce insitu voids. The material state was quantified by uniaxial tension dialatometry. The experimental records show a direct correlation between void volume (0 to 1.7%) and chemical reactivity behind the shock front. These results are discussed in terms of `hot spot' ignition resulting from the shock collapse of the voids.

  20. Amphiboles and their host rocks in the high-grade metamorphic Precambrin of Rogaland/Vest-Agder, Sw. Norway

    NARCIS (Netherlands)

    Dekker, A.G.C.

    1978-01-01

    In the high-grade metamorphic Precambrian of the Sirdal-¢rsdal area, Rogaland/Vest-Agder,south-west Norway, the Ca-amphiboles show a change in pleochroic colours, not only with changes in metamorphic grade, but also to some extend in bulk composition. A regional study was performed on the

  1. Development of a General Shocked-Materials-Response Description for Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Steven M. Valone

    2000-07-01

    This report outlines broad modeling issues pertaining to polymeric materials behavior under detonation conditions. Models applicable system wide are necessary to cope with the broad range of polymers and complex composite forms that can appear in Laboratory weapons systems. Nine major topics are discussed to span the breadth of materials, forms, and physical phenomena encountered when shocking polymers and foams over wide ranges of temperatures, pressures, shock strengths, confinement conditions, and geometries. The recommendations for directions of more intensive investigation consider physical fidelity, computational complexity, and application over widely varying physical conditions of temperature, pressure, and shock strength.

  2. On the origin of field-aligned beams at the quasi-perpendicular bow shock: multi-spacecraft observations by Cluster

    Directory of Open Access Journals (Sweden)

    H. Kucharek

    2004-07-01

    Full Text Available Two distinct populations of reflected and accelerated ions are known to originate from quasi-perpendicular shocks, gyrating ions and reflected ion beams. Recent observations under such bow shock conditions with Cluster have shown strong evidence that both particle distributions appear to emerge from the same reflection process. In this paper the basic production mechanism of field-aligned beams has been investigated by using CLUSTER multi-spacecraft measurements. We have analyzed several quasi-perpendicular shocks with the Cluster Ion Spectrometry experiment (CIS and followed the spatial and temporal evolution of the reflected and transmitted ion populations across the shock. These observations show that the field-aligned beams most likely result from effective scattering in pitch angle during reflection in the shock ramp. Investigating a low Mach number shock, leakage of a fraction of the thermalized ion distribution in the downstream region does not appear to be the source as the volume in phase space occupied by beam ions is empty downstream of the shock ramp.

  3. Evaluating the importance of metamorphism in the foundering of continental crust.

    Science.gov (United States)

    Chapman, Timothy; Clarke, Geoffrey L; Piazolo, Sandra; Daczko, Nathan R

    2017-10-12

    The metamorphic conditions and mechanisms required to induce foundering in deep arc crust are assessed using an example of representative lower crust in SW New Zealand. Composite plutons of Cretaceous monzodiorite and gabbro were emplaced at ~1.2 and 1.8 GPa are parts of the Western Fiordland Orthogneiss (WFO); examples of the plutons are tectonically juxtaposed along a structure that excised ~25 km of crust. The 1.8 GPa Breaksea Orthogneiss includes suitably dense minor components (e.g. eclogite) capable of foundering at peak conditions. As the eclogite facies boundary has a positive dP/dT, cooling from supra-solidus conditions (T > 950 ºC) at high-P should be accompanied by omphacite and garnet growth. However, a high monzodioritic proportion and inefficient metamorphism in the Breaksea Orthogneiss resulted in its positive buoyancy and preservation. Metamorphic inefficiency and compositional relationships in the 1.2 GPa Malaspina Pluton meant it was never likely to have developed densities sufficiently high to founder. These relationships suggest that the deep arc crust must have primarily involved significant igneous accumulation of garnet-clinopyroxene (in proportions >75%). Crustal dismemberment with or without the development of extensional shear zones is proposed to have induced foundering of excised cumulate material at P > 1.2 GPa.

  4. Amphiboles and their host rocks in the high-grade metamorphic Precambrin of Rogaland/Vest-Agder, Sw. Norway

    NARCIS (Netherlands)

    Dekker, A.G.C.

    1978-01-01

    In the high-grade metamorphic Precambrian of the Sirdal-¢rsdal area, Rogaland/Vest-Agder,south-west Norway, the Ca-amphiboles show a change in pleochroic colours, not only with changes in metamorphic grade, but also to some extend in bulk composition. A regional study was performed on the amphiboles

  5. RELATIONSHIP BETWEEN METAMORPHISM DEGREE AND LIBERATION SIZE OF COMPACT ITABIRITES FROM THE IRON QUADRANGLE

    Directory of Open Access Journals (Sweden)

    Rodrigo Fina Ferreira

    2015-06-01

    Full Text Available Iron ore exploited in Brazil can be classified into several lithological types which have distinct features. The progress of mining over time leads to scarcity of high grade iron ores, leading to the exploitation of poor, contaminated and compact ores. There is a growing trend of application of process flowsheets involving grinding to promote mineral liberation, essential condition for concentration processes. Several authors have correlated metamorphism processes of banded iron formations to mineralogical features observed on itabirites from the Iron Quadrangle, mainly the crystals size. This paper presents the implications of such variation in defining the mesh of grinding. Mineralogical characterization and grinding, desliming and flotation tests have been carried out with samples from two regions of the Iron Quadrangle subjected to different degrees of metamorphism. It was found a trend of reaching satisfactory liberation degree in coarser size for the itabirite of higher metamorphic degree, which has larger crystals. The flotation tests have confirmed the mineralogical findings.

  6. Distributed consensus for metamorphic systems using a gossip algorithm for CAT(0) metric spaces

    Science.gov (United States)

    Bellachehab, Anass; Jakubowicz, Jérémie

    2015-01-01

    We present an application of distributed consensus algorithms to metamorphic systems. A metamorphic system is a set of identical units that can self-assemble to form a rigid structure. For instance, one can think of a robotic arm composed of multiple links connected by joints. The system can change its shape in order to adapt to different environments via reconfiguration of its constituting units. We assume in this work that several metamorphic systems form a network: two systems are connected whenever they are able to communicate with each other. The aim of this paper is to propose a distributed algorithm that synchronizes all the systems in the network. Synchronizing means that all the systems should end up having the same configuration. This aim is achieved in two steps: (i) we cast the problem as a consensus problem on a metric space and (ii) we use a recent distributed consensus algorithm that only make use of metrical notions.

  7. SHRIMP U-Pb dating of detrital zircons in metamorphic rocks from northern Kyushu, western Japan

    International Nuclear Information System (INIS)

    Tsutsumi, Yukiyasu; Yokoyama, Kazumi; Terada, Kentaro; Sano, Yuji

    2003-01-01

    Radiometric ages of detrital zircons in psammitic schists from the Nagasaki, Kurume, Konoha and Kiyama areas, northern Kyushu, were obtained from 238 U/ 206 Pb ratio and isotopic compositions of Pb using a Sensitive High Resolution Ion Microprobe (SHRIMP II). Zircons from the Nagasaki, Kurume and Konoha areas show bimodal age distribution with peaks at ca. 1900 Ma and 250 Ma. It is suggested from this study that the older zircons were derived from Proterozoic landmass and the Korean Peninsula. Zircons from the Kiyama metamorphic rock show a different pattern with ages concentrated at 380-590 Ma. Such zircons are rare in rock samples from the Nagasaki, Kurume and Konoha areas, indicating that Kiyama rocks and a different origin than those from the other three areas. The youngest zircons from the Kiyama, Nagasaki, Kurume and Konoha areas show ages of 382±23 Ma, 238±13 Ma, 249±13 Ma, and 175±4 Ma, respectively, These data mark the upper age limit of their deposition. Since a continuous igneous activity occurred during the period from 300 to 170 Ma in Far East Asia, and the metamorphic age has been close to the zircon age of each area, these youngest ages for the Nagasaki, Kurume and Konoha areas are considered nearly contemporary to the depositional ages. An evaluation of the nature of metamorphism and available ages suggest the possibility that the Nagasaki metamorphic rocks as well as the schist from the Kurume area belong to the Suo zone of the Sangun belt, whereas the metamorphic rocks in the Konoha area may belong to the Ryoke belt or Suo zone of the Sangun belt. (author)

  8. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.

    2016-01-01

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  9. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.

    2016-12-12

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  10. Experimental and Theoretical Investigation of Shock-Induced Reactions in Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Jeffrey J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Park, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kohl, Ian Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knepper, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farrow, Darcie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tappan, Alexander S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    In this work, shock-induced reactions in high explosives and their chemical mechanisms were investigated using state-of-the-art experimental and theoretical techniques. Experimentally, ultrafast shock interrogation (USI, an ultrafast interferometry technique) and ultrafast absorption spectroscopy were used to interrogate shock compression and initiation of reaction on the picosecond timescale. The experiments yielded important new data that appear to indicate reaction of high explosives on the timescale of tens of picoseconds in response to shock compression, potentially setting new upper limits on the timescale of reaction. Theoretically, chemical mechanisms of shock-induced reactions were investigated using density functional theory. The calculations generated important insights regarding the ability of several hypothesized mechanisms to account for shock-induced reactions in explosive materials. The results of this work constitute significant advances in our understanding of the fundamental chemical reaction mechanisms that control explosive sensitivity and initiation of detonation.

  11. Electron velocity distributions near the earth's bow shock

    International Nuclear Information System (INIS)

    Feldman, W.C.; Anderson, R.C.; Bame, S.J.; Gary, S.P.; Gosling, J.T.; McComas, D.J.; Thomsen, M.F.; Paschmann, G.; Hoppe, M.M.

    1983-01-01

    A survey of two-dimensional electron velocity distributions, f(V), measured near the earth's bow shock using Los Alamos/Garching plasma instrumentation aboard ISEE 2 is presented. This survey provides clues to the mechanisms of electron thermalization within the shock and the relaxation of both the upsteam and downstream velocity distributions. First, near the foreshock boundary, fluxes of electrons having a power law shape at high energies backstream from the shock. Second, within the shock, cuts through f(V) along B. f(V), often show single maxima offset toward the magnetosheath by speeds comparable to, but larger than, the upstream thermal speed.Third, magnetosheath distributions generally have flat tops out to an energy, E 0 , with maxima substantially lower than that in the solar wind. Occasionally, cuts through f(V) along B show one and sometimes two small peaks at the edge of the flat tops making them appear concave upward. The electron distributions characteristic of these three regions are interpreted as arising from the effects of macroscopic (scale size comparable to or larger than the shock width) electric and magnetic fields and the subsequent effects of microscopic (scale size small in comparison with the shock width) fields. In particular, our results suggest that field-aligned instabilities are likely to be present in the earth's bow shock

  12. First data on Sm-Nd systematization of Khanka Massif metamorphic rocks, Primor'e

    International Nuclear Information System (INIS)

    Mishkin, M.A.; Khanchuk, A.I.; Zhuravlev, D.Z.; Lavrik, S.N.

    2000-01-01

    The age of the metamorphic rocks of the Khanka massif, Primor'e, is determined through the method of the Sm-Nd isotopic dating. The results of the isotopic studies on the amphibolites of the Nakhimov suite of the Khanka massif indicated that the rocks of this suite are not older than 1.7 billion years. The obtained age corresponds to the time of the amphibolite protolith formation, the source whereof is the moderately depleted mantle. The isotopic age of the amphibole and plagioclase mineral fractions constitutes 733 ± 25 mln years, which reflects the time of the Nakhimov suite rocks metamorphism [ru

  13. Mobility enhancement in tensile-strained Ge grown on InAlP metamorphic templates

    International Nuclear Information System (INIS)

    Wang, Kai; Gong, Qian; Zhou, Haifei; Kang, Chuanzhen; Yan, Jinyi; Liu, Qingbo; Wang, Shumin

    2014-01-01

    We investigated the growth of tensile-strained Ge on InAlP metamorphic templates by gas source molecular beam epitaxy. Good control of biaxial tensile strain in the Ge layer was demonstrated in the range of 0.5–2.0% by adjusting the In content of the metamorphic template. It was found that the growth of Ge was layer-by-layer (2D) even under high tensile strain of 2.0%, resulting in a smooth surface with roughness less than 1.5 nm. Hall results showed that the electron mobility of Ge increased monotonically with tensile strain.

  14. The shock tube as wave reactor for kinetic studies and material systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, K.A. [Indian Institute of Technology, Chennai (India). Department of Mechanical Engineering; Roth, P. [Gerhard Mercator Universitat, Duisberg (Germany). Institut fur Verbrennung und Gasdynamik

    2002-07-01

    Several important reviews of shock tube kinetics have appeared earlier, prominent among them being 'Shock Tube Technique in Chemical Kinetics' by Belford and Strehlow (Ann Rev Phys Chem 20 (1969) 247), 'Chemical Reaction of Shock Waves' by Wagner (Proceedings of the Eighth International Shock Tube Symposium (1971) 4/1), 'Shock Tube and Shock Wave Research' by Bauer and Lewis (Proceedings of the 11th International Symposium on Shock Tubes and Waves (1977) 269), 'Shock Waves in Chemistry' edited by Assa Lifshitz (Shock Waves in Chemistry, 1981) and 'Shock Tube Techniques in Chemical Kinetics' by Wing Tsang and Assa Lifshitz (Annu Rev Phys Chem 41 (1990) 559). A critical analysis of the different shock tube techniques, their limitations and suggestions to improve the accuracy of the data produced are contained in these reviews. The purpose of this article is to present the current status of kinetic research with emphasis on the diagnostic techniques. Selected studies on homogeneous and dispersed systems are presented to bring out the versatility of the shock tube technique. The use of the shock tube as high temperature wave reactor for gas phase material synthesis is also highlighted. (author)

  15. Uraniferous leukogranites from the Namaqualand metamorphic complex: Pt. 1

    International Nuclear Information System (INIS)

    Robb, L.J.

    1986-01-01

    A number of small leucogranite or alaskite bodies intrude the Modderfontein augen gneiss on the farm Nooitgedacht, south-west of Springbok. These intrusions, correlated with the Kweekfontein Granite of the Spektakel Suite, are anomalously enriched in uranium and thorium, and certain of them have been assessed as potential low-grade deposits. The leucogranites are highly differentiated and are characterized by a pervasive alteration which has sericitized the feldspars and propylitized the biotite. Alteration was probably of a deuteric nature, associated with the late magmatic-early subsolidus stages, and was neither a low-temperature, open-system event, nor was it related to regional retrogressive metamorphism. The leucogranite bodies have I-type characteristics and appear to have been derived by partial melting of lower crustal material. A subset of eight leucogranites were analysed by neutron activation analysis for the rare-earth elements. Typical depleted lower crust is ruled out as a source, however, because of the necessity to markedly enrich the leucogranite magma in elements such as K, Rb, U, and Th. Scatter in Rb-Sr isotope ratios for the Nooitgedacht alaskites indicates that the source may have been heterogeneous and/or anomalously fertile in certain selected elements. In addition, a component of scatter was probably introduced during the extensive alteration of the rocks

  16. Shock-induced nanobubble collapse and its applications

    Science.gov (United States)

    Vedadi, Mohammad Hossein

    The shock-induced collapse of nanobubbles in water is investigated using molecular dynamics simulations based on a reactive force field. Monitoring the collapse of a cavitation nanobubble, we observe a focused nanojet at the onset of bubble shrinkage and a water hammer shock wave upon bubble collapse. The nanojet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. The shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of approximately 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. Moreover, a substantial number of positive and negative ions appear when the nanojet hits the distal side of the nanobubble and the water hammer shock forms. Furthermore, two promising applications of shock-induced nanobubble collapse have been explored. Our simulations of poration in lipid bilayers due to shock-induced collapse of nanobubbles reveal penetration of nanojets into lipid bilayers. The nanojet impact generates shear flow of water on bilayer leaflets and pressure gradients across them, which transiently enhance the bilayer permeability by creating nanopores through which water molecules translocate across the bilayer. The effects of nanobubble size and temperature on the porosity of lipid bilayers are examined. Finally, the shock-induced collapse of CO2-filled nanobubbles in water is investigated. The energetic nanojet and high-pressure water hammer shock formed during and after collapse of the nanobubble trigger mechano-chemical H2O-CO2 reactions, some of which lead to splitting of water molecules. The dominant pathways through which splitting of water molecules occur are identified.

  17. Evaluation of defect density by top-view large scale AFM on metamorphic structures grown by MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Gocalinska, Agnieszka, E-mail: agnieszka.gocalinska@tyndall.ie; Manganaro, Marina; Dimastrodonato, Valeria; Pelucchi, Emanuele

    2015-09-15

    Highlights: • Metamorphic buffer layers of In{sub x}Ga{sub 1−x}As were grown by MOVPE and characterised by AFM and TEM. • It was found that AFM provides sufficient information to estimate threading defect density in metamorphic structures, even when significant roughness is present. • When planar-view TEM is lacking, a combination of cross-sectional TEM and large scale AFM can provide good evaluation of the material quality. • It is fast, cheap and non-destructive – can be very useful in development process of complicated structures, requiring multiple test growths and characterisation. - Abstract: We demonstrate an atomic force microscopy based method for estimation of defect density by identification of threading dislocations on a non-flat surface resulting from metamorphic growth. The discussed technique can be applied as an everyday evaluation tool for the quality of epitaxial structures and allow for cost reduction, as it lessens the amount of the transmission electron microscopy analysis required at the early stages of projects. Metamorphic structures with low surface defectivities (below 10{sup 6}) were developed successfully with the application of the technique, proving its usefulness in process optimisation.

  18. New P-T and U-Pb constraints on Alpine Schist metamorphism in south Westland, New Zealand

    International Nuclear Information System (INIS)

    Scott, J.M.; Auer, A.; Muhling, J.R.; Czertowicz, T.A.; Cooper, A.F.; Billia, M.A.; Kennedy, A.K.

    2015-01-01

    Metamorphic mineral compositions of a staurolite-bearing greyschist from the middle reaches of the Moeraki River valley in south Westland reveal peak equilibration at c. 558±50 degrees C and c. 6.1±1.2 kbar. Two c. 83 Ma U-Pb monazite age populations from the cores of monazite-apatite-allanite-epidote corona structures in mylonitised schists from near Fox Glacier confirm that Alpine Schist metamorphism occurred during the Late Cretaceous. The published spread in Late Cretaceous metamorphic ages indicates that metamorphism was diachronous or was a protracted event. Further dating is required to pin down the cryptic transition into the Jurassic-Early Cretaceous metamorphosed Otago Schist, but the Alpine Schist must extend at least 11 km east of the Alpine Fault in south Westland and overprint the suture between the Pounamu and Rakaia terranes. The P-T-t results imply that the Late Cretaceous crust represented by portions of the Alpine Schist was probably of similar thickness to that beneath the Southern Alps today, but with dehydration and partial melting occurring near the base. The crust under Westland and Otago may be dry and therefore strong. (author).

  19. Metamorphic and tectonic evolution of the Greater Himalayan Crystalline Complex in Nyalam region, south Tibet

    Science.gov (United States)

    Wang, Jia-Min; Zhang, Jin-Jiang; Rubatto, Daniela

    2016-04-01

    Recent studies evoke dispute whether the Himalayan metamorphic core - Greater Himalayan Crystalline Complex (GHC) - was exhumed as a lateral crustal flow or a critical taper wedge during the India-Asia collision. This contribution investigated the evolution of the GHC in the Nyalam region, south Tibet, with comprehensive studies on structural kinematics, metamorphic petrology and geochronology. The GHC in the Nyalam region can be divided into the lower and upper GHC. Phase equilibria modelling and conventional thermobarometric results show that peak temperature conditions are lower in the lower GHC (~660-700°C) and higher in the upper GHC (~740-780°C), whereas corresponding pressure conditions at peak-T decrease from ~9-13 kbar to ~4 kbar northward. Monazite, zircon and rutile U-Pb dating results reveal two distinct blocks within the GHC of the Nyalam region. The upper GHC underwent higher degree of partial melting (15-25%, via muscovite dehydration melting) that initiated at ~32 Ma, peaked at ~29 Ma to 25 Ma, possibly ended at ~20 Ma. The lower GHC underwent lower degree of melting (0-10%) that lasted from 19 to 16 Ma, which was produced mainly via H2O-saturated melting. At different times, both the upper and lower blocks underwent initial slow cooling (35 ± 8 and 10 ± 5°C/Myr, respectively) and subsequent rapid cooling (120 ± 40°C/Myr). The established timescale of metamorphism suggests that high-temperature metamorphism within the GHC lasted a long duration (~15 Myr), whereas duration of partial melting lasted for ~3 Myr in the lower GHC and lasted for 7-12 Myr in the upper GHC. The documented diachronous metamorphism and discontinuity of peak P-T conditions implies the presence of the Nyalam Thrust in the study area. This thrust is probably connected to the other thrusts in Nepal and Sikkim Himalaya, which extends over ~800 km and is named the "High Himalayan Thrust". Timing of activity along this thrust is at ~25-16 Ma, which is coeval with active

  20. Microjetting from a grooved Al surface under supported and unsupported shocks

    Science.gov (United States)

    Shao, Jian-Li; Wang, Pei; He, An-Min

    2014-08-01

    Using molecular dynamics methods, we simulate and compare the microjetting from a grooved Al surface induced by supported and unsupported shocks at different breakout pressures. Via the analysis on the microjetting morphologies and mass distributions, we find that the threshold of shock breakout pressure for the microjetting formation is almost same, but the variation of microjet mass with shock pressure shows a great difference for the two loading patterns. Under supported shock loading, the microjet mass keeps a continuous increase with increasing shock pressure, and release melting can enhance it markedly. By contrast, the microjet mass under unsupported shocks is smaller and seems no remarkable increase with shock pressure in our simulations (at extremely short pulses), implying the shock decaying can weaken the microjetting. Of course, a large area of fragments near the surface may form in this case. The microjet source distributions corresponding to supported and unsupported shocks are presented. It is found that the former becomes apparently broader than the latter with increasing shock pressure. Besides, the microjet tip velocity under supported shocks may appear a reduction because of the material strength effect below release melting. While under unsupported shocks, all the microjets in solid and melted states will experience the reduction of tip velocity. These decrements of tip velocity can be fitted by an exponential function.

  1. Rubidium-strontium chronology of the metamorphism and prehistory of central Australian granulites

    Energy Technology Data Exchange (ETDEWEB)

    Gray, C M [La Trobe Univ., Bundoora (Australia); Compston, W

    1978-11-01

    Rubidium-strontium isotopic study of intermediate-pressure granulites at Mt. Aloysius, central Australia reveals total rock isochrons that either record the metamorphism or predate it. The gneisses involved, typically quartz + feldspar + orthopyroxene + garnet granulites, occur in five lithological units which outline a simple fold structure. The distribution of isotopic ages in a 25 km/sup 2/ area is tested using 74 samples collected in groups of 2 to 4 both along and across strike in each of the units. Two total rock isochron ages of 1200 and 1550 Myr occur, and both are found at different sites in one unit. Mineral ages are younger and independent of location, with feldspars giving 800 Myr and biotites 730 Myr. The 1200 Myr isochrons show the features of outcrop-scale Sr isotopic homogenisation and are taken to record the time of metamorphism. Contemporaneous regional depletion of U, commonly associated with granulite facies metamorphism, confirms the interpretation. The 1550 Myr isochrons describe entire lithological units and are best assigned to the supracrustal genesis of the rocks. The preservation of two ages indicates that isotopic equilibration of anhydrous total rocks is incomplete even within the granulite facies. Careful interpretation is required to assign geological meaning to granulite isochrons.

  2. Type II solar radio bursts, interplanetary shocks, and energetic particle events

    International Nuclear Information System (INIS)

    Cane, H.V.; Stone, R.G.

    1984-01-01

    Using the ISEE 3 radio astronomy experiment data we have identified 37 interplanetary type II bursts in the period 1978 September to 1981 December. We lists these events and the associated phenomena. The events are preceded by intense, soft X-ray events with long decay times and type II or type IV bursts, or both, at meter wavelengths. The meter wavelength type II bursts are usually intense and exhibit herringbone structure. The extension of the herringbone structure into the kilometer wavelength range appears as a fast drift radio feature which we refer to as a shock associated radio event. The shock associated event is an important diagnostic for the presence of a strong shock and particle acceleration. The majority of the interplanetary type II bursts are associated with energetic particle events. Our results support other studies which indicate that energetic soalr particles detected at 1 A.U. are generatd by shock acceleration. From a preliminary analysis of the available data there appears to be a high correlation with white light coronal transients. The transients are fast: i.e., velocities greater than 500 km s -1

  3. Multiple tectonic mode switches indicate short-duration heat pulses in a Mio-Pliocene metamorphic core complex, West Papua, Indonesia

    Science.gov (United States)

    White, L. T.; Hall, R.; Gunawan, I.

    2017-12-01

    The Wandaman Peninsula is a narrow (2 km) promontory in remote western New Guinea. The peninsula is almost entirely composed of medium- to high-grade metamorphic rocks considered to be associated with a Mio-Pliocene metamorphic core complex. Previous work has shown that the uplift and exhumation of the core complex has potentially brought some extremely young eclogite to the surface. These might be comparable to the world's youngest (4.3 Ma) eclogites found in the D'Entrecasteaux Islands at the opposite end of New Guinea. We show that tectonic history of this region is complex. This is because the metamorphic sequences in the Wandaman Peninsula record multiple phases of deformation, all within the last few million years. This is demonstrated through methodical collation of cross-cutting relations from field and microstructural studies across the peninsula. The first phase of deformation and metamorphism is associated with crustal extension and partial melting that took place at 5-7 Ma according to new U-Pb data from metamorphic zircons. This extensional phase ceased after a tectonic mode switch and the region was shortened. This is demonstrated by two phases of folding (1. recumbent and 2. open) that overprint the earlier extensional fabrics. All previous structures were later overprinted by brittle extensional faults and uplift. This extensional phase is still taking place today, as is indicated by submerged forests exposed along the coastline associated with recent earthquakes and hot springs. The sequence of metamorphic rocks that are exposed in the Wandaman Peninsula show that stress and thermal conditions can change rapidly. If we consider that the present is a key to the past, then such results can identify the duration of deformation and metamorphic events more accurately than in much older orogenic systems.

  4. Silicate-Oxide Equilibria in the Wilson Lake Terrane, Labrador - Evidence for a Pre- Metamorphic Oxidizing Event

    Science.gov (United States)

    Korhonen, F. J.; Stout, J. H.

    2006-05-01

    The presence of Fe3+ and Ti in silicates and their presumed equilibration with Fe2+-Fe3+-Ti oxide minerals has long been recognized as an important factor in metamorphic phase equilibria. The Red Wine Mountains massif is a granulite facies unit in the Wilson Lake terrane of central Labrador, where this equilibration is especially important for estimating both temperature and fO2 during peak metamorphism. Peak assemblages are sapphirine + quartz, and orthopyroxene + sillimanite + quartz. The coexisting oxides, which are largely responsible for the pronounced aeromagnetic high of the massif, consist of nearly pure magnetite and an exsolved titanohematite. Estimates of fO2 based on magnetite + integrated titanohematite compositions are slightly below that defined by the pure magnetite-hematite buffer. This assemblage is also responsible for the magnetic signature of metagabbro and metanorite dikes, a fact which challenges the conventional wisdom that the high Fe3+ content of the host paragneisses was inherited from a highly oxidized ferruginous shale. We suggest here that prior to granulite facies metamorphism, an oxidizing hydrothermal event either coeval or following the emplacement of mafic dikes into the paragneiss host was responsible for the highly oxidized nature of the massif as a whole. Subsequent metamorphism then produced the observed assemblages. This scenario is supported by recent U-Pb zircon and monazite ages of ca. 1626 ± 10 Ma, which indicate that both metagabbro dikes and host paragneiss were metamorphosed at the same time. Dike emplacement and the oxidizing event must have preceded 1626 Ma. The implications of this pre-metamorphic oxidizing event is that Fe3+ becomes an inherent and fixed component in the chemical system during metamorphism. Phase relationships, preliminary thermodynamic modeling, and geothermobarometric constraints indicate that peak temperatures are lower than those previously determined for Fe3+-absent systems. More appropriate

  5. Stacking and metamorphism of continuous segments of subducted lithosphere in a high-pressure wedge: The example of Alpine Corsica (France)

    Science.gov (United States)

    Vitale Brovarone, Alberto; Beyssac, Olivier; Malavieille, Jacques; Molli, Giancarlo; Beltrando, Marco; Compagnoni, Roberto

    2013-01-01

    Alpine Corsica consists of a stack of variably metamorphosed units of continental and Tethys-derived rocks. It represents an excellent example of high-pressure (HP) orogenic belt, such as the Western Alps, exposed over a small and accessible area. Compared to the Western Alps, the geology of Alpine Corsica is poorly unraveled. During the 1970s-80s, based on either lithostratigraphic or metamorphic field observations, various classifications of the belt have been proposed, but these classifications have been rarely matched together. Furthermore, through time, the internal complexity of large domains has been progressively left aside in the frame of large-scale geodynamic reconstructions. As a consequence, major open questions on the internal structure of the belt have remained unsolved. Apart from a few local studies, Alpine Corsica has not benefited of modern developments in petrology and basin research. This feature results in several uncertainties when combining lithostratigraphic and metamorphic patterns and, consequently, in the definition of an exhaustive architecture of the belt. In this paper we provide a review on the geology of Alpine Corsica, paying particular attention to the available lithostratigraphic and metamorphic classifications of the metamorphic terranes. These data are completed by a new and exhaustive metamorphic dataset obtained by means of thermometry based on Raman Spectroscopy of Carbonaceous Material (RSCM). This technique provides reliable insights on the peak temperature of the metamorphic history for CM-bearing metasediments. A detailed metamorphic characterization of metasediments, which have been previously largely ignored due to retrogression or to the lack of diagnostic mineralogy, is thus obtained and fruitfully coupled with the available lithostratigraphic data. Nine main tectono-metamorphic units are defined, from subgreenschist (ca. 280-300 °C) to the lawsonite-eclogite-facies (ca. 500-550 °C) condition. These units are

  6. The structure of steady shock waves in porous metals

    Science.gov (United States)

    Czarnota, Christophe; Molinari, Alain; Mercier, Sébastien

    2017-10-01

    The paper aims at developing an understanding of steady shock wave propagation in a ductile metallic material containing voids. Porosity is assumed to be less than 0.3 and voids are not connected (foams are not considered). As the shock wave is traveling in the porous medium, the voids are facing a rapid collapse. During this dynamic compaction process, material particles are subjected to very high acceleration in the vicinity of voids, thus generating acceleration forces at the microscale that influence the overall response of the porous material. Analyzing how stationary shocks are influenced by these micro-inertia effects is the main goal of this work. The focus is essentially on the shock structure, ignoring oscillatory motion of pores prevailing at the tail of the shock wave. Following the constitutive framework developed by Molinari and Ravichandran (2004) for the analysis of steady shock waves in dense metals, an analytical approach of steady state propagation of plastic shocks in porous metals is proposed. The initial void size appears as a characteristic internal length that scales the overall dynamic response, thereby contributing to the structuring of the shock front. This key feature is not captured by standard damage models where the porosity stands for the single damage parameter with no contribution of the void size. The results obtained in this work provide a new insight in the fundamental understanding of shock waves in porous media. In particular, a new scaling law relating the shock width to the initial void radius is obtained when micro-inertia effects are significant.

  7. MAGNETIC-RECONNECTION GENERATED SHOCK WAVES AS A DRIVER OF SOLAR SURGES

    International Nuclear Information System (INIS)

    Yang, Heesu; Chae, Jongchul; Park, Hyungmin; Song, Dong-uk; Cho, Kyuhyoun; Lim, Eun-Kyung; Lee, Kyoung-sun

    2014-01-01

    We found that a surge consists of multiple shock features. In our high-spatiotemporal spectroscopic observation of the surge, each shock is identified with the sudden appearance of an absorption feature at the blue wings of the Ca II 8542 Å line and Hα line that gradually shifts to the red wings. The shock features overlap with one another with the time interval of 110 s, which is much shorter than the duration of each shock feature, 300-400 s. This finding suggests that the multiple shocks might not have originated from a train of sinusoidal waves generated by oscillations and flows in the photosphere. As we found the signature of the magnetic flux cancelations at the base of the surge, we conclude that the multiple shock waves in charge of the surge were generated by the magnetic reconnection that occurred in the low atmosphere in association with the flux cancelation

  8. Transformations to granular zircon revealed: Twinning, reidite, and ZrO2 in shocked zircon from Meteor Crater (Arizona, USA)

    Science.gov (United States)

    Cavosie, Aaron; Timms, Nicholas E.; Erickson, Timmons M.; Hagerty, Justin J.; Hörz, Friedrich

    2016-01-01

    Granular zircon in impact environments has long been recognized but remains poorly understood due to lack of experimental data to identify mechanisms involved in its genesis. Meteor Crater in Arizona (United States) contains abundant evidence of shock metamorphism, including shocked quartz, the high pressure polymorphs coesite and stishovite, diaplectic SiO2 glass, and lechatelierite (fused SiO2). Here we report the presence of granular zircon, a new shocked mineral discovery at Meteor Crater, that preserve critical orientation evidence of specific transformations that occurred during its formation at extreme impact conditions. The zircon grains occur as aggregates of sub-µm neoblasts in highly shocked Coconino Formation Sandstone (CFS) comprised of lechatelierite. Electron backscatter diffraction shows that each grain consists of multiple domains, some with boundaries disoriented by 65°, a known {112} shock-twin orientation. Other domains have crystallographic c-axes in alignment with {110} of neighboring domains, consistent with the former presence of the high pressure ZrSiO4 polymorph reidite. Additionally, nearly all zircon preserve ZrO2 + SiO2, providing evidence of partial dissociation. The genesis of CFS granular zircon started with detrital zircon that experienced shock-twinning and reidite formation from 20 to 30 GPa, ultimately yielding a phase that retained crystallographic memory; this phase subsequently recrystallized to systematically oriented zircon neoblasts, and in some areas partially dissociated to ZrO2. The lechatelierite matrix, experimentally constrained to form at >2000 °C, provided an ultra high-temperature environment for zircon dissociation (~1670 °C) and neoblast formation. The capacity of granular zircon to preserve a cumulative P-T record has not been recognized previously, and provides a new method for retrieving histories of impact-related mineral transformations in the crust at conditions far beyond which most rocks melt.

  9. Tectonic origin and deformation process of the Mayer Kangri medium-high pressure metamorphic dome in Central Qiangtang of Tibet

    Science.gov (United States)

    Wang, Y.; Liang, X.

    2016-12-01

    The metamorphic characteristics, deformation process, geochronology of the medium-high pressure metamorphic rocks in blueschist bearing Central Qiangtang Metamorphic belt (CQMB) of Tibet were less well constrained. It is, however, commonly assumed that these rock slices in the margin also contain important implications on the evolution of the entire metamorphic belt. The well-exposed Mayer Kangri medium-high pressure metamorphic dome in north flank of the CQMB provides an unique opportunity to investigate the outer part of the CQMB, which could facilitate the study on the subduction-exhumation-post orogenic scenarios of the Triassic accretionary orogeny in Central Qiangtang. Field structural analyses indicate the Mayer Kangri metamorphic dome are bounded by low-angle normal faults (LANF) within the hanging wall of low-green schist facies mélange. It majorly consists of epidote-amphibolites, quartz-phengite schist, epidote-albite schist. The outcrop and micro structural observations of footwall metamorphic rocks show an open anticline with multiple foliation replacement, which largely differentiate themselves from the dextral strike-slip shearing of the hanging wall. Well-zoned amphiboles were found within the epidote-amphibolite after micro-structural observations and electron probe microanalyses (EPMA), which indicate that the amphibole zonation demonstrates a Hastingsite core, a Ferro-actinolite mantle and a Ferro-winchite rim in most cases. The mean temperature and pressure estimates of the zoned amphibolites change from 544 °, 0.98Gpa in the core, to 426°, 0.34Gpa in the mantle, and to ca.364° and 0.70 GPa in the rim. The detailed analyses on the stepwise-heating Ar-Ar results of the zoned amphiboles provide good constrains on the episodic deformation process of the CQMB. For Hast-cores, we obtained near plateau ages of 242.4-241.2 Ma, indicating the onset of the oceanic subduction is earlier than the Anisian stage of Middle Triassic. The subsequent

  10. Physics of Collisionless Shocks Space Plasma Shock Waves

    CERN Document Server

    Balogh, André

    2013-01-01

    The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...

  11. Epitaxial nanowire formation in metamorphic GaAs/GaPAs short-period superlattices

    Science.gov (United States)

    Zheng, Nan; Ahrenkiel, S. Phillip

    2017-07-01

    Metamorphic growth presents routes to novel nanomaterials with unique properties that may be suitable for a range of applications. We discuss self-assembled, epitaxial nanowires formed during metalorganic chemical vapor deposition of metamorphic GaAs/GaPAs short-period superlattices. The heterostructures incorporate strain-engineered GaPAs compositional grades on 6°-B miscut GaAs substrates. Lateral diffusion within the SPS into vertically aligned, three-dimensional columns results in nanowires extending along A directions with a lateral period of 70-90 nm. The microstructure is probed by transmission electron microscopy to confirm the presence of coherent GaAs nanowires within GaPAs barriers. The compositional profile is inferred from analysis of {200} dark-field image contrast and lattice images.

  12. K-Ar and Ar-Ar dating of the Palaeozoic metamorphic complex from the Mid-Bosnian Schist Mts., Central Dinarides, Bosnia and Hercegovina

    International Nuclear Information System (INIS)

    Pamic, J.; Balogh, K.; Hrvatovic, H.; Balen, D.; Palinkas, L.; Jurkovic, I.

    2004-01-01

    K-Ar and Ar-Ar whole rock and mineral ages are presented for 25 samples of metamorphic rocks from the Mid-Bosnian Schist Mts., representing one of the largest allochthonous Palaeozoic terranes incorporated within the Internal Dinarides. Four main age groups can be distinguished: 1) Variscan (∼ 343 Ma), 2) post-Variscan (288-238 Ma), 3) Early Cretaceous (mainly 121-92 Ma), and 4) Eocene (59--35 Ma) ages. Apart from this, an Oligocene (31 Ma) age was obtained on Alpine vein hyalophane. The radiometric dating indicates a polyphase metamorphic evolution of the Palaeozoic formations and suggests a pre-Carboniferous age of the volcano-sedimentary protoliths, an Early Carboniferous age of Variscan metamorphism and deformation, post-Variscan volcanism, an Early Cretaceous metamorphic overprint related to out-of-sequence thrusting of the Palaeozoic complex, and an Eocene and Oligocene metamorphic overprint related to the main Alpine compressional deformation and subsequent strike-slip faulting, and uplift of the metamorphic core. Accordingly, the Mid-Bosnian Schist Mts. can be correlated in its multistage geodynamic evolution with some Palaeozoic tectonostratigraphic units from the Austroalpine domain in the Eastern Alps. (author)

  13. Shocked molecular gas and the origin of cosmic rays

    Science.gov (United States)

    Reach, William; Gusdorf, Antoine; Richter, Matthew

    2018-06-01

    When massive stars reach the end of their ability to remain stable with core nuclear fusion, they explode in supernovae that drive powerful shocks into their surroundings. Because massive stars form in and remain close to molecular clouds they often drive shocks into dense gas, which is now believed to be the origin of a significant fraction of galactic cosmic rays. The nature of the supernova-molecular cloud interaction is not well understood, though observations are gradually elucidating their nature. The range of interstellar densities, and the inclusion of circumstellar matter from the late-phase mass-loss of the stars before their explosions, leads to a wide range of possible appearances and outcomes. In particular, it is not even clear what speed or physical type of shocks are present: are they dense, magnetically-mediated shocks where H2 is not dissociated, or are they faster shocks that dissociate molecules and destroy some of the grains? SOFIA is observing some of the most significant (in terms of cosmic ray production potential and infrared energy output) supernova-molecular cloud interactions for measurement of the line widths of key molecular shocks tracers: H2, [OI], and CO. The presence of gas at speeds 100 km/s or greater would indicate dissociative shocks, while speeds 30 km/s and slower retain most molecules. The shock velocity is a key ingredient in modeling the interaction between supernovae and molecular clouds including the potential for formation of cosmic rays.

  14. X-ray color maps of the zoned garnets from Silgará Formation metamorphic rocks,SantanderMassif, Eastern Cordillera (Colombia

    Directory of Open Access Journals (Sweden)

    Takasu Akira

    2010-12-01

    Full Text Available

    The metamorphic rocks of the Lower Paleozoic Silgará Formation of the Santander Massif, Eastern Cordillera (Colombia, were affected by a Barrovian-type metamorphism under low to high temperature and medium pressure conditions. These rocks contain garnet porphyroblasts, which show several kinds of chemical zoning patterns. The garnet grains behave as closed systems with respect to the rock matrix. Most of the observed zoning patterns are due to gradual changes in physicochemical conditions during growth. However, some garnet grains show complex zoning patterns during multiple deformation and metamorphic events.

  15. Eclogite-high-pressure granulite metamorphism records early collision in West Gondwana: new data from the Southern Brasilia Belt, Brazil

    DEFF Research Database (Denmark)

    Reno II, Barry Len; Brown, Michael; Kobayashi, Katsura

    2009-01-01

    constrain the age of. (1) retrograded eclogite from a block along the tectonic contact beneath the uppermost nappe in a stack of passive margin-derived nappes; (2) high-pressure granulite-facies metamorphism in the uppermost passive margin-derived nappe; (3) high-pressure granulite-facies metamorphism...... in the overlying arc-derived nappe. Rare zircons from a retrograded eclogite yield a Pb-206/U-238 age of 678 +/- 29 Ma. which we interpret as most likely to (late close-to-peak-P metamorphism and to provide a minimum age for detachment of the overlying passive margin-derived nappe from the subducting plate. Zircon...

  16. Estimating average shock pressures recorded by impactite samples based on universal stage investigations of planar deformation features in quartz - Sources of error and recommendations

    Science.gov (United States)

    Holm-Alwmark, S.; Ferrière, L.; Alwmark, C.; Poelchau, M. H.

    2018-01-01

    Planar deformation features (PDFs) in quartz are the most widely used indicator of shock metamorphism in terrestrial rocks. They can also be used for estimating average shock pressures that quartz-bearing rocks have been subjected to. Here we report on a number of observations and problems that we have encountered when performing universal stage measurements and crystallographically indexing of PDF orientations in quartz. These include a comparison between manual and automated methods of indexing PDFs, an evaluation of the new stereographic projection template, and observations regarding the PDF statistics related to the c-axis position and rhombohedral plane symmetry. We further discuss the implications that our findings have for shock barometry studies. Our study shows that the currently used stereographic projection template for indexing PDFs in quartz might induce an overestimation of rhombohedral planes with low Miller-Bravais indices. We suggest, based on a comparison of different shock barometry methods, that a unified method of assigning shock pressures to samples based on PDFs in quartz is necessary to allow comparison of data sets. This method needs to take into account not only the average number of PDF sets/grain but also the number of high Miller-Bravais index planes, both of which are important factors according to our study. Finally, we present a suggestion for such a method (which is valid for nonporous quartz-bearing rock types), which consists of assigning quartz grains into types (A-E) based on the PDF orientation pattern, and then calculation of a mean shock pressure for each sample.

  17. The Heart of China revisited: II Early Paleozoic (ultra)high-pressure and (ultra)high-temperature metamorphic Qinling orogenic collage

    Science.gov (United States)

    Bader, Thomas; Franz, Leander; Ratschbacher, Lothar; de Capitani, Christian; Webb, A. Alexander G.; Yang, Zhao; Pfänder, Jörg A.; Hofmann, Mandy; Linnemann, Ulf

    2013-07-01

    Orogens with multiple (ultra)high-pressure ((U)HP) and (ultra)high-temperature ((U)HT) metamorphic events provide a complex but telling record of oceanic and continental interaction. The Early Paleozoic history of the "Heart of China," the Qinling orogenic collage, offers snapshots of at least three (U)HP and two (U)HT metamorphic events. The preservation of remnants of both oceanic and continental domains together with a ≥110 Myr record of magmatism allows the reconstruction of the processes that resulted in this disparate metamorphism. Herein, we first illuminate the pressure-temperature-time (P-T-t) evolution of the Early Paleozoic (U)HP and (U)HT events by refining the petrographic descriptions and P-T estimates, assess published, and employ new U/Th-Pb zircon, monazite, and titanite, and 40Ar-39Ar phengite geochronology to date the magmatic and metamorphic events. Then we explore how the metamorphic and magmatic events are related tectonically and how they elucidate the affinities among the various complexes in the Qinling orogenic collage. We argue that a Meso-Neoproterozoic crustal fragment—the Qinling complex—localized subduction-accretion events that involved subduction, oceanic-arc formation, and back-arc spreading along its northern margin, and mtantle-wedge exhumation and spreading-ridge subduction along its southern margin.

  18. International Shock-Wave Database: Current Status

    Science.gov (United States)

    Levashov, Pavel

    2013-06-01

    Shock-wave and related dynamic material response data serve for calibrating, validating, and improving material models over very broad regions of the pressure-temperature-density phase space. Since the middle of the 20th century vast amount of shock-wave experimental information has been obtained. To systemize it a number of compendiums of shock-wave data has been issued by LLNL, LANL (USA), CEA (France), IPCP and VNIIEF (Russia). In mid-90th the drawbacks of the paper handbooks became obvious, so the first version of the online shock-wave database appeared in 1997 (http://www.ficp.ac.ru/rusbank). It includes approximately 20000 experimental points on shock compression, adiabatic expansion, measurements of sound velocity behind the shock front and free-surface-velocity for more than 650 substances. This is still a useful tool for the shock-wave community, but it has a number of serious disadvantages which can't be easily eliminated: (i) very simple data format for points and references; (ii) minimalistic user interface for data addition; (iii) absence of history of changes; (iv) bad feedback from users. The new International Shock-Wave database (ISWdb) is intended to solve these and some other problems. The ISWdb project objectives are: (i) to develop a database on thermodynamic and mechanical properties of materials under conditions of shock-wave and other dynamic loadings, selected related quantities of interest, and the meta-data that describes the provenance of the measurements and material models; and (ii) to make this database available internationally through the Internet, in an interactive form. The development and operation of the ISWdb is guided by an advisory committee. The database will be installed on two mirrored web-servers, one in Russia and the other in USA (currently only one server is available). The database provides access to original experimental data on shock compression, non-shock dynamic loadings, isentropic expansion, measurements of sound

  19. Relationships among seismic velocity, metamorphism, and seismic and aseismic fault slip in the Salton Sea Geothermal Field region

    Science.gov (United States)

    McGuire, Jeffrey J.; Lohman, Rowena B.; Catchings, Rufus D.; Rymer, Michael J.; Goldman, Mark R.

    2015-01-01

    The Salton Sea Geothermal Field is one of the most geothermally and seismically active areas in California and presents an opportunity to study the effect of high-temperature metamorphism on the properties of seismogenic faults. The area includes numerous active tectonic faults that have recently been imaged with active source seismic reflection and refraction. We utilize the active source surveys, along with the abundant microseismicity data from a dense borehole seismic network, to image the 3-D variations in seismic velocity in the upper 5 km of the crust. There are strong velocity variations, up to ~30%, that correlate spatially with the distribution of shallow heat flow patterns. The combination of hydrothermal circulation and high-temperature contact metamorphism has significantly altered the shallow sandstone sedimentary layers within the geothermal field to denser, more feldspathic, rock with higher P wave velocity, as is seen in the numerous exploration wells within the field. This alteration appears to have a first-order effect on the frictional stability of shallow faults. In 2005, a large earthquake swarm and deformation event occurred. Analysis of interferometric synthetic aperture radar data and earthquake relocations indicates that the shallow aseismic fault creep that occurred in 2005 was localized on the Kalin fault system that lies just outside the region of high-temperature metamorphism. In contrast, the earthquake swarm, which includes all of the M > 4 earthquakes to have occurred within the Salton Sea Geothermal Field in the last 15 years, ruptured the Main Central Fault (MCF) system that is localized in the heart of the geothermal anomaly. The background microseismicity induced by the geothermal operations is also concentrated in the high-temperature regions in the vicinity of operational wells. However, while this microseismicity occurs over a few kilometer scale region, much of it is clustered in earthquake swarms that last from

  20. Thermal Shock Property of Al/Ni-ZrO2 Gradient Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    FANJin-juan; WANGQuan-sheng; ZHANGWei-fang

    2004-01-01

    Al/Ni-ZrO2 gradient thermal barrier coatings are made on aluminum substrate using plasma spraying method and one direction thermal shock properties of the coatings are studied in this paper. The results show that pores in coatings link to form cracks vertical to coating surface. They go through the whole ZrO2 coating once vertical cracks form. When thermal shock cycles increase, horizontal cracks that result in coatings failure forms in the coatings and interface. And vertical cracks delay appearance of horizontal cracks and enhance thermal shock property of coatings. Failure mechanisms of coating thermal shock are discussed using experiments and finite element method.

  1. Simulations of Converging Shock Collisions for Shock Ignition

    Science.gov (United States)

    Sauppe, Joshua; Dodd, Evan; Loomis, Eric

    2016-10-01

    Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.

  2. Selective activation of human heat shock gene transcription by nitrosourea antitumor drugs mediated by isocyanate-induced damage and activation of heat shock transcription factor.

    Science.gov (United States)

    Kroes, R A; Abravaya, K; Seidenfeld, J; Morimoto, R I

    1991-01-01

    Treatment of cultured human tumor cells with the chloroethylnitrosourea antitumor drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) selectively induces transcription and protein synthesis of a subset of the human heat shock or stress-induced genes (HSP90 and HSP70) with little effect on other stress genes or on expression of the c-fos, c-myc, or beta-actin genes. The active component of BCNU and related compounds appears to be the isocyanate moiety that causes carbamoylation of proteins and nucleic acids. Transcriptional activation of the human HSP70 gene by BCNU is dependent on the heat shock element and correlates with the level of heat shock transcription factor and its binding to the heat shock element in vivo. Unlike activation by heat or heavy metals, BCNU-mediated activation is strongly dependent upon new protein synthesis. This suggests that BCNU-induced, isocyanate-mediated damage to newly synthesized protein(s) may be responsible for activation of the heat shock transcription factor and increased transcription of the HSP90 and HSP70 genes. Images PMID:2052560

  3. Schedules of electric shock presentation in the behavioral control of imprinted ducklings.

    Science.gov (United States)

    Barrett, J E

    1972-09-01

    The behavioral effects of various schedules of electric shock presentation were investigated during and after the imprinting of Peking ducklings to moving stimuli. The behavior of following a moving imprinted stimulus was differentially controlled by a multiple schedule of punishment and avoidance that respectively suppressed and maintained following behavior. Pole-pecking, reinforced by presentations of the imprinted stimulus, was suppressed by response-produced shock (punishment); various schedules of response-independent shock and delayed punishment had an overall minimal effect. The delivery of response-independent shock in the presence of one of two stimuli, both during and after imprinting, resulted in a marked reduction in choice of the stimulus paired with shock. The experiments provide no support for a differentiation of imprinting from learning on the basis of the behavioral effects of aversive stimuli. Instead, as is the case with other organisms, the schedule under which shock is delivered to imprinted ducklings appears to be an important determinant of the temporal patterning of subsequent behavior.

  4. Metamorphic Testing Integer Overflow Faults of Mission Critical Program: A Case Study

    Directory of Open Access Journals (Sweden)

    Zhanwei Hui

    2013-01-01

    Full Text Available For mission critical programs, integer overflow is one of the most dangerous faults. Different testing methods provide several effective ways to detect the defect. However, it is hard to validate the testing outputs, because the oracle of testing is not always available or too expensive to get, unless the program throws an exception obviously. In the present study, the authors conduct a case study, where the authors apply a metamorphic testing (MT method to detect the integer overflow defect and alleviate the oracle problem in testing critical program of Traffic Collision Avoidance System (TCAS. Experimental results show that, in revealing typical integer mutations, compared with traditional safety property testing method, MT with a novel symbolic metamorphic relation is more effective than the traditional method in some cases.

  5. Mapping contact metamorphic aureoles in Extremadura, Spain, using Landsat thematic mapper images

    Science.gov (United States)

    Rowan, L.C.; Anton-Pacheco, C.; Brickey, D.W.; Kingston, M.J.; Payas, A.

    1987-01-01

    In the Extremadura region of western Spain, Ag, Pb, Zn, and Sn deposits occur in the pieces of late Hercynian granitic plutons and near the pluton contacts in late Proterozoic slate and metagraywacke that have been regionally metamorphosed to the green schist facies. The plutons generally are well exposed and have distinctive geomorphological expression and vegetation; poor exposures of the metasedimentary host rocks and extensive cultivation, however, make delineation of the contact aureoles difficult. Landsat Thematic Mapper (TM) images have been used to distinguish soil developed on the contact metamorphic rocks from soil formed on the stratigraphically equivalent slate-metagraywacke sequence. The mineral constituents of these soils are similar, except that muscovite is more common in the contact metamorphic soil; carbonaceous material is common in both soils. Contact metamorphic soil have lower reflectance, especially in the 1.6-micrometers wavelength region (TM 5), and weaker Al-OH, Mg-OH, and Fe3+ absorption features than do spectra of the slate-metagraywacke soil. The low-reflectance and subdued absorption features exhibited by the contact metamorphic soil spectra are attributed to the high absorption coefficient f the carbonaceous material caused by heating during emplacement of the granitic plutons. These spectral differences are evident in a TM 4/3, 4/5, 3/1 color-composite image. Initially, this image was used to outline the contact aureoles, but digital classification of the TM data was necessary for generating internally consistent maps of the distribution of the exposed contact metamorphic soil. In an August 1984, TM scene of the Caceras area, the plowed, vegetation-free fields were identified by their low TM 4/3 values. Then, ranges of TM 4/5 and 3/1 values were determine for selected plower fields within and outside the contact aureoles; TM 5 produced results similar to TM 4/5. Field evaluation, supported by X-ray diffraction and petrographic

  6. Criterion for vortex breakdown on shock wave and streamwise vortex interactions.

    Science.gov (United States)

    Hiejima, Toshihiko

    2014-05-01

    The interactions between supersonic streamwise vortices and oblique shock waves are theoretically and numerically investigated by three-dimensional (3D) Navier-Stokes equations. Based on the two inequalities, a criterion for shock-induced breakdown of the streamwise vortex is proposed. The simple breakdown condition depends on the Mach number, the swirl number, the velocity deficit, and the shock angle. According to the proposed criterion, the breakdown region expands as the Mach number increases. In numerical simulations, vortex breakdown appeared under conditions of multiple pressure increases and the helicity disappeared behind the oblique shock wave along the line of the vortex center. The numerical results are consistent with the predicted breakdown condition at Mach numbers 2.0 and 3.0. This study also found that the axial velocity deficit is important for classifying the breakdown configuration.

  7. Reconnaissance and economic geology of Copper Mountain metamorphic complex, Owl Creek Mountains, Wyoming

    International Nuclear Information System (INIS)

    Hausel, W.D.

    1983-01-01

    The Copper Mountain metamorphic complex lies within a westerly trending belt of Precambrian exposures known as the Owl Creek Mountains uplift. The metamorphic complex at Copper Mountain is part of a larger complex known as the Owl Creek Mountains greenstone belt. Until more detailed mapping and petrographic studies can be completed, the Copper Mountain area is best referred to as a complex, even though it has some characteristics of a greestone belt. At least three episodes of Precambrian deformation have affected the supracrustals, and two have disturbed the granites. The final Precambrian deformation event was preceded by a weak thermal event expressed by retrogressive metamorphism and restricted metasomatic alteration. During this event, a second phase of pegmatization was accompanied by hydrothermal solutions. During the Laramide orogeny, Copper Mountain was again modified by deformation. Laramide deformation produced complex gravity faults and keystone grabens. Uranium deposits were formed following major Laramide deformation. The genesis of these deposits is attributable to either the leaching of granites or the leaching of overlying tuffaceous sediments during the Tertiary. Production of metals and industrial minerals has been limited, although some gold, copper, silver, tungsten, beryl, feldspar, and lithium ore have been shipped from Copper Mountain. A large amount of uranium was produced from the Copper Mountain district in the 1950s

  8. Time-dependent bow shocks and the condensation structure of Herbig-Haro objects

    International Nuclear Information System (INIS)

    Raga, A.C.; Bohm, K.H.

    1987-01-01

    Some Herbig-Haro objects show a structure which appears to look like a bow shock, but also show a number of condensations superposed on this bow-shaped structure. In the case of HH 1 and HH 2 considerably different proper motions have been measured for the individual condensations. It is, however, very hard to explain why the condensations remain so close to each other if they are indeed separate entities. In this paper it is shown that an interpretation of the whole Herbig-Haro object as a single, time-dependent bow shock provides a natural explanation for the occurrence of condensations (which in numerical calculations appear to be associated with thermal instabilities in the postshock flow) with different proper motions. To this effect, time-dependent, axisymmetric, nonadiabatic bow shock models have been developed from which predictions were obtained for spatially resolved H-alpha intensity maps, and then these predictions are compared qualitatively with observations of a few Herbig-Haro objects. 57 references

  9. CL-imaging and ion microprobe dating of single zircons from a high-grade rock from the Central Zone, Limpopo Belt, South Africa: Evidence for a single metamorphic event at ˜2.0 Ga

    Science.gov (United States)

    Mouri, H.; Brandl, G.; Whitehouse, M.; de Waal, S.; Guiraud, M.

    2008-02-01

    The combination of ion microprobe dating and cathodoluminescence (CL) imaging of zircons from a high-grade rock from the Central Zone of the Limpopo Belt were used to constrain the age of metamorphic events in the area. Zircon grains extracted from an orthopyroxene-gedrite-bearing granulite were prepared for single crystal CL-imaging and ion microprobe dating. The grains display complex zoning when using SEM-based CL-imaging. A common feature in most grains is the presence of a distinct core with a broken oscillatory zoned structure, which clearly appears to be the remnant of an original grain of igneous origin. This core is overgrown by an unzoned thin rim measuring about 10-30 μm in diameter, which is considered as new zircon growth during a single metamorphic event. Selected domains of the zircon grains were analysed for U, Pb and Th isotopic composition using a CAMECA IMS 1270 ion microprobe (Nordsim facility). Most of the grains define a near-concordant cluster with some evidence of Pb loss. The most concordant ages of the cores yielded a weighted mean 207Pb/ 206Pb age of 2689 ± 15 (2 σ) Ma, interpreted as the age of the protolith of an igneous origin. The unzoned overgrowths of the zircon grains yielded a considerably younger weighted mean 207Pb/ 206Pb age of ˜2006.5 ± 8.0 Ma (2 σ), and these data are interpreted to reflect closely the age of the ubiquitous high-grade metamorphic event in the Central Zone. This study shows clearly, based on both the internal structure of the zircons and the data obtained by ion microprobe dating, that only a single metamorphic event is recorded by the studied 2.69 Ga old rocks, and we found no evidence of an earlier metamorphic event at ˜2.5 Ga as postulated earlier by some workers.

  10. Numerical study of the Kadomtsev-Petviashvili equation and dispersive shock waves

    Science.gov (United States)

    Grava, T.; Klein, C.; Pitton, G.

    2018-02-01

    A detailed numerical study of the long time behaviour of dispersive shock waves in solutions to the Kadomtsev-Petviashvili (KP) I equation is presented. It is shown that modulated lump solutions emerge from the dispersive shock waves. For the description of dispersive shock waves, Whitham modulation equations for KP are obtained. It is shown that the modulation equations near the soliton line are hyperbolic for the KPII equation while they are elliptic for the KPI equation leading to a focusing effect and the formation of lumps. Such a behaviour is similar to the appearance of breathers for the focusing nonlinear Schrödinger equation in the semiclassical limit.

  11. A shock surface geometry: The February 15--16, 1967, event

    International Nuclear Information System (INIS)

    Lepping, R.P.; Chao, J.K.

    1976-01-01

    The flare-associated interplanetary (IP) shock of February 15--16, 1967, observed by Explorer 33 and Pioneer 7 is analyzed to yield an estimation of the ecliptic plane geometry of the shock surface near 1 AU. These spacecraft were separated by 23degree in heliocentric longitude, and Pioneer 7 was at a distance of 1.12 AU from the sun. There was an 18.9-hour delay between the two observations. The estimated shock normal, obtained by using a least squares shock parameter fitting procedure for the Explorer 33 data, is found to be theta/subS//subE/=-53degree and phi/subS//subE/=198degree. The error cone angle for the shock normal of the Explorer 33 observation was approximately 7degree. This severely inclined shock normal is not typical of IP shocks. The shock normal at the Pioneer 7 position is found to be theta/subn/=-14degree and phi/subn/=161degree. However, the uncertainty is large (approx. =25degree for a 1sigma cone angle). Although a data gap occurred at the apparent time of passage of the disturbance at Pioneer 6,the recovered data did not suggest such a passage. A consistent picture of the shock propagation is given. The average shock speed from the sun to each spacecraft and the local speed at Explorer 33 and their relations to the position of the initiating solar flare are obtained and discussed. In the region of space between the earth and Pioneer 7 the shock surface radius of curvature in the ecliptic plane appears to have been 0.4 AU or less

  12. Spatiotemporal evolution of magmatic pulses and regional metamorphism during a Cretaceous flare-up event: Constraints from the Ryoke belt (Mikawa area, central Japan)

    Science.gov (United States)

    Takatsuka, Kota; Kawakami, Tetsuo; Skrzypek, Etienne; Sakata, Shuhei; Obayashi, Hideyuki; Hirata, Takafumi

    2018-05-01

    The spatiotemporal relationship between granitoid intrusions and low-pressure/temperature type regional metamorphism in the Ryoke belt (Mikawa area) is investigated to understand the tectono-thermal evolution of the upper- to middle-crust during a Cretaceous flare-up event at the Eurasian active continental margin. Three plutono-metamorphic stages are recognized; (1) 99-84 Ma: intrusion of granitoids (99-95 Ma pulse) into the upper crust and high-T regional metamorphism reaching sillimanite-grade (97.0 ± 4.4 Ma to 88.5 ± 2.5 Ma) in the middle crust, (2) 81-75 Ma: intrusion of gneissose granitoids (81-75 Ma Ma pulse) into the middle crust at 19-24 km depth, and (3) 75-69 Ma: voluminous intrusions of massive to weakly-foliated granitoids (75-69 Ma pulse) at 9-13 km depth and formation of contact metamorphic aureoles. Cooling of the highest-grade metamorphic zone below the wet solidus of granitic rocks is estimated at 88.5 ± 2.5 Ma. At ca. 75 Ma, the upper-middle crustal section underwent northward tilting, resulting in the exhumation of regional metamorphic zones to 9-13 km depth. Although the highest-grade metamorphic rocks and the 99-95 Ma pulse granitoids preserve similar U-Pb zircon ages, the absence of spatial association suggests that the regional metamorphic zones were mainly produced by a transient thermal anomaly in the mantle and thermal conduction through the crust, supplemented by localized advection due to granitoid intrusions. The successive emplacement of granitoids into shallow, deep and shallow levels of the crust was probably controlled by the combination of change in thermal structure of the crust and tectonics during granitoid intrusions.

  13. Shock Dynamics in Stellar Outbursts. I. Shock Formation

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

    2017-05-20

    Wave-driven outflows and non-disruptive explosions have been implicated in pre-supernova outbursts, supernova impostors, luminous blue variable eruptions, and some narrow-line and superluminous supernovae. To model these events, we investigate the dynamics of stars set in motion by strong acoustic pulses and wave trains, focusing on nonlinear wave propagation, shock formation, and an early phase of the development of a weak shock. We identify the shock formation radius, showing that a heuristic estimate based on crossing characteristics matches an exact expansion around the wave front and verifying both with numerical experiments. Our general analytical condition for shock formation applies to one-dimensional motions within any static environment, including both eruptions and implosions. We also consider the early phase of shock energy dissipation. We find that waves of super-Eddington acoustic luminosity always create shocks, rather than damping by radiative diffusion. Therefore, shock formation is integral to super-Eddington outbursts.

  14. Dynamic strength behavior of a Zr-based bulk metallic glass under shock loading

    International Nuclear Information System (INIS)

    Yu Yu-Ying; Xi Feng; Dai Cheng-Da; Cai Ling-Cang; Tan Ye; Li Xue-Mei; Wu Qiang; Tan Hua

    2015-01-01

    Dynamic strength behavior of Zr 51 Ti 5 Ni 10 Cu 25 Al 9 bulk metallic glass (BMG) up to 66 GPa was investigated in a series of plate impact shock-release and shock-reload experiments. Particle velocity profiles measured at the sample/LiF window interface were used to estimate the shear stress, shear modulus, and yield stress in shocked BMG. Beyond confirming the previously reported strain-softening of shear stress during the shock loading process for BMGs, it is also shown that the softened Zr-BMG still has a high shear modulus and can support large yield stress when released or reloaded from the shocked state, and both the shear modulus and the yield stress appear as strain-hardening behaviors. The work provides a much clearer picture of the strength behavior of BMGs under shock loading, which is useful to comprehensively understand the plastic deformation mechanisms of BMGs. (paper)

  15. Higher vs. lower haemoglobin threshold for transfusion in septic shock

    DEFF Research Database (Denmark)

    Rygård, S L; Holst, L B; Wetterslev, J

    2017-01-01

    . a lower haemoglobin threshold. METHODS: In post-hoc analyses of the full trial population of 998 patients from the Transfusion Requirements in Septic Shock (TRISS) trial, we investigated the intervention effect on 90-day mortality in patients with severe comorbidity (chronic lung disease, haematological......BACKGROUND: Using a restrictive transfusion strategy appears to be safe in sepsis, but there may be subgroups of patients who benefit from transfusion at a higher haemoglobin level. We explored if subgroups of patients with septic shock and anaemia had better outcome when transfused at a higher vs.......51), in those who had undergone surgery (P = 0.99) or in patients with septic shock by the new definition (P = 0.20). CONCLUSION: In exploratory analyses of a randomized trial in patients with septic shock and anaemia, we observed no survival benefit in any subgroups of transfusion at a haemoglobin threshold...

  16. Dynamic behaviors of a Zr-based bulk metallic glass under ramp wave and shock wave loading

    Directory of Open Access Journals (Sweden)

    Binqiang Luo

    2015-06-01

    Full Text Available Dynamic behaviors of Zr51Ti5Ni10Cu25Al9 bulk metallic glass were investigated using electric gun and magnetically driven isentropic compression device which provide shock and ramp wave loading respectively. Double-wave structure was observed under shock compression while three-wave structure was observed under ramp compression in 0 ∼ 18GPa. The HEL of Zr51Ti5Ni10Cu25Al9 is 8.97 ± 0.61GPa and IEL is 8.8 ± 0.3GPa, respectively. Strength of Zr51Ti5Ni10Cu25Al9 estimated from HEL is 5.0 ± 0.3GPa while the strength estimated from IEL is 3.6 ± 0.1GPa. Shock wave velocity versus particle velocity curve of Zr51Ti5Ni10Cu25Al9 under shock compression appears to be bilinear and a kink appears at about 18GPa. The Lagrangian sound speed versus particle velocity curve of Zr51Ti5Ni10Cu25Al9 under ramp wave compression exhibits two discontinuances and are divided to three regions: elastic, plastic-I and plastic-II. The first jump-down occurs at elastic-plastic transition and the second appears at about 17GPa. In elastic and plastic-I regions, Lagrangian sound speed increases linearly with particle velocity, respectively. Characteristic response of sound speed in plastic-I region disagree with shock result in the same pressure region(7GPa ∼ 18GPa, but is consistent with shock result at higher pressure(18-110GPa.

  17. INAA of CAIs from the Maralinga CK4 chondrite: Effects of parent body thermal metamorphism

    Science.gov (United States)

    Lindstrom, D. J.; Keller, L. P.; Martinez, R. R.

    1993-01-01

    Maralinga is an anomalous CK4 carbonaceous chondrite which contains numerous Ca-, Al-rich inclusions (CAI's) unlike the other members of the CK group. These CAI's are characterized by abundant green hercynitic spinel intergrown with plagioclase and high-Ca clinopyroxene, and a total lack of melilite. Instrumental Neutron Activation Analysis (INAA) was used to further characterize the meteorite, with special focus on the CAI's. High sensitivity INAA was done on eight sample disks about 100-150 microns in diameter obtained from a normal 30 micron thin section with a diamond microcoring device. The CAI's are enriched by 60-70X bulk meteorite values in Zn, suggesting that the substantial exchange of Fe for Mg that made the spinel in the CAI's hercynitic also allowed efficient scavenging of Zn from the rest of the meteorite during parent body thermal metamorphism. Less mobile elements appear to have maintained their initial heterogeneity.

  18. Late-Paleozoic-Mesozoic deformational and deformation related metamorphic structures of Kuznetsk-Altai region

    Science.gov (United States)

    Zinoviev, Sergei

    2014-05-01

    Kuznetsk-Altai region is a part of the Central Asian Orogenic Belt. The nature and formation mechanisms of the observed structure of Kuznetsk-Altai region are interpreted by the author as the consequence of convergence of Tuva-Mongolian and Junggar lithospheric block structures and energy of collision interaction between the blocks of crust in Late-Paleozoic-Mesozoic period. Tectonic zoning of Kuznetsk-Altai region is based on the principle of adequate description of geological medium (without methods of 'primary' state recovery). The initial indication of this convergence is the crust thickening in the zone of collision. On the surface the mechanisms of lateral compression form a regional elevation; with this elevation growth the 'mountain roots' start growing. With an approach of blocks an interblock elevation is divided into various fragments, and these fragments interact in the manner of collision. The physical expression of collision mechanisms are periodic pulses of seismic activity. The main tectonic consequence of the block convergence and collision of interblock units is formation of an ensemble of regional structures of the deformation type on the basis of previous 'pre-collision' geological substratum [Chikov et al., 2012]. This ensemble includes: 1) allochthonous and autochthonous blocks of weakly deformed substratum; 2) folded (folded-thrust) systems; 3) dynamic metamorphism zones of regional shears and main faults. Characteristic of the main structures includes: the position of sedimentary, magmatic and PT-metamorphic rocks, the degree of rock dynamometamorphism and variety rock body deformation, as well as the styles and concentrations of mechanic deformations. 1) block terranes have weakly elongated or isometric shape in plane, and they are the systems of block structures of pre-collision substratum separated by the younger zones of interblock deformations. They stand out among the main deformation systems, and the smallest are included into the

  19. High-pressure granulites in the Fuping Complex of the central North China Craton: Metamorphic P-T-t evolution and tectonic implications

    Science.gov (United States)

    Qian, Jiahui; Yin, Changqing; Zhang, Jian; Ma, Li; Wang, Luojuan

    2018-04-01

    Mafic granulites in the Fuping Complex occur as lenses or boudins within high-grade TTG (Trondhjemite-Tonalite-Granodiorite) gneisses. Petrographic observations reveal four generations of mineral assemblage in the granulites: an inclusion assemblage of hornblende + plagioclase + ilmenite + quartz within garnet core; an inferred peak assemblage composed of garnet ± hornblende + plagioclase + clinopyroxene + rutile/ilmenite + quartz; a decompression assemblage characterized by symplectites of clinopyroxene ± orthopyroxene + plagioclase, coronae of plagioclase ± clinopyroxene ± hornblende around embayed garnet porphyroblasts or a two-pyroxene association; and a late amphibolite-facies retrogressive assemblage. Two representative samples were used for pseudosection modeling in NCFMASHTO model system to determine their metamorphic evolution. The results show that these granulites experienced a high-pressure stage of metamorphism with peak P-T conditions of 12-13 kbar and 760-800 °C (Pmax) and a post-peak history under P-T conditions of ∼9.0 kbar and 805-835 °C (Tmax), indicating a nearly isothermal decompression process (ITD) with a slight heating. Metamorphic evolution from the Pmax to the Tmax is predicted to be dominated by garnet breakdown through continuous metamorphic reactions of garnet + quartz ± diopside = hornblende + plagioclase + liquid and garnet + quartz + hornblende = plagioclase + diopside + liquid + orthopyroxene. Further metamorphic evolution after the Tmax is dominated by cooling, suggesting that high-pressure (HP) granulites may also exist in the Fuping Complex. Metamorphic zircons in the Fuping HP mafic granulites have left inclined REE patterns, Ti contents of 1.68-6.88 ppm and crystallization temperatures of 602-712 °C. SIMS zircon U-Pb dating on these zircons yields 207Pb/206Pb ages of 1891 ± 14 Ma and 1849 ± 6 Ma, interpreted to represent the cooling stage of metamorphism. The P-T-t evolution of the Fuping HP mafic granulites records

  20. Study on Kalimantan uranium province: The assessment on uranium mineralization of metamorphic and granitic rocks at Schwaner mountains

    International Nuclear Information System (INIS)

    Tjokrokardono, Soeprapto

    2002-01-01

    Uranium exploration activities done by CEA-BATAN had discovered uranium occurrences as the radiometric and uranium content anomalies at metamorphic and granite rocks of Schwaner Mountains, Kalimantan. A part of the occurrences on metamorphic rocks at Kalan basin has been evaluated and be developed onto follow-up step of prospecting by construction of some drilling holes and an exploration adit. In order to increase the national uranium resources, it is necessarily to extent the exploration activity to out side or nearby of Kalan basin. The goal of this assessment is to understand the uranium accumulation mechanism at Pinoh metamorphic rocks of Kalan Kalimantan and to delineate areas that uranium may exist. The assessment was based on the aspect of geology, anomaly of radioactivity and uranium contents, tectonics and alterations. Pinoh metamorphic rocks which is influenced by Sukadana granite intrusion are the high potential rocks for the uranium accumulation, because the intrusion contains a relatively high of U, Th, Cu, Zn, Nb, Mn, and W. The potential rock distributions are in between G. Ransa granite intrusion at the east and Kotabaru granite intrusions at the west. The mineralizations are categorized as vein type deposits of granitic association

  1. Argon and fission track dating of Alpine metamorphism and basement exhumation in the Sopron Mts. (Eastern Alps, Hungary): thermochronology or mineral growth?

    International Nuclear Information System (INIS)

    Balogh, K.; Dunkl, I.

    2005-01-01

    The crystalline basement rocks of the Sopron Mountains are the easternmost and most isolated outcrops of the Austroalpine basement of the Eastern Alps. Ar/Ar and K/Ar dating of phengitic mica indicates that the Eoalpine high-pressure metamorphism of the area occurred between 76 and 71 Ma. Short-lived metamorphism is characterized by fluid-poor conditions. Fluid circulation was mostly restricted to shear zones, thus the degree of Alpine overprint has an extreme spatial variation. In several metamorphic slices Variscan mineral assemblages have been preserved and biotite yielded Variscan and Permo-Triassic Ar ages. Different mineral and isotope thermometers (literature data) yielded temperatures of 500-600 o C for the peak of Alpine metamorphism in the Sopron Mountains, but muscovite and biotite do not show complete argon resetting. Thus, we consider this crystalline area as a well constrained natural test site, which either indicates considerably high closure temperatures (around 550 o C) for Ar in muscovite and biotite in a dry metamorphic environment, or which is suitable for testing the widely applied methods of temperature estimations under disequilibrium conditions. Apatite fission track results and their thermal modeling, together with structural, mineralogical and sedimentological observations, allows the identification of a post-metamorphic, Eocene hydrothermal event and Late Miocene-Pliocene sediment burial of the crystalline rocks of the Sopron Mountains. (author)

  2. Elastic-plastic collapse of super-elastic shock waves in face-centered-cubic solids

    International Nuclear Information System (INIS)

    Zhakhovsky, Vasily V; Demaske, Brian J; Oleynik, Ivan I; Inogamov, Nail A; White, Carter T

    2014-01-01

    Shock waves in the [110] and [111] directions of single-crystal Al samples were studied using molecular dynamics (MD) simulations. Piston-driven simulations were performed to investigate the split shock-wave regime. At low piston velocities, the material is compressed initially to a metastable over-compressed elastic state leading to a super-elastic single shock wave. This metastable elastic state later collapses to a plastic state resulting in the formation of a two-wave structure consisting of an elastic precursor followed by a slower plastic wave. The single two-zone elastic-plastic shock-wave regime appearing at higher piston velocities was studied using moving window MD. The plastic wave attains the same average speed as the elastic precursor to form a single two-zone shock wave. In this case, repeated collapse of the highly over-compressed elastic state near the plastic shock front produces ultrashort triangle pulses that provide the pressure support for the leading elastic precursor.

  3. First report of garnet corundum rocks from southern India: Implications for prograde high-pressure (eclogite-facies?) metamorphism

    Science.gov (United States)

    Shimpo, Makoto; Tsunogae, Toshiaki; Santosh, M.

    2006-02-01

    We report here for the first time the occurrence of garnet and corundum in Mg-Al-rich rocks at Sevitturangampatti (Namakkal district) in the Palghat-Cauvery Shear Zone System (PCSS), southern India. The rocks contain several rare mineral assemblages such as garnet-corundum-sillimanite-cordierite-sapphirine-spinel-Mg-rich staurolite, garnet-corundum-sodic gedrite-cordierite-sillimanite/kyanite, garnet-Mg-rich staurolite-sillimanite/kyanite, sodic gedrite-Mg-rich staurolite-corundum-sapphirine, biotite-corundum-sapphirine and sodic gedrite-sapphirine-spinel-cordierite. Both garnet and corundum in these rocks occur as coarse-grained (1 mm to 10 cm) porphyroblasts in the matrix of sillimanite, cordierite and gedrite. Kyanite is common as inclusions in garnet, but matrix aluminosilicates are mainly sillimanite. The presence of rare garnet + corundum, which has so far been reported from kimberlite xenoliths, aluminous eclogites and ultrahigh-pressure metamorphic rocks as well as in high-pressure experiments, suggests that the assemblage is an indicator of an unusually high-pressure event, which has not been recorded in previous studies from southern India. Phase analysis of quartz-absent MAS system also suggests high-pressure stability of the assemblage. The inference of high pressure metamorphism is also supported by the presence of Mg-rich [Mg/(Fe + Mg) = 0.51] staurolite, which has been reported from high-pressure rocks, included from cores of coarse-grained garnet and gedrite. Porphyroblastic occurrence of garnet + corundum as well as staurolite and kyanite inclusions suggests that the area underwent prograde high-pressure metamorphism, probably in the eclogite field. The rocks subsequently underwent continuous heating at 940 to 990 °C, suggesting ultrahigh-temperature (UHT) metamorphism along a clockwise trajectory. Sapphirine + cordierite and spinel + cordierite symplectites between garnet and sillimanite suggest near isothermal decompression after the peak event

  4. Fluid-driven metamorphism of the continental crust governed by nanoscale fluid flow

    NARCIS (Netherlands)

    Plümper, O.; Botan, Alexandru; Los, Catharina; Liu, Yang; Malthe-Sorenssen, Anders; Jamtveit, Bjørn

    2017-01-01

    The transport of fluids through the Earth’s crust controls the redistribution of elements to form mineral and hydrocarbon deposits, the release and sequestration of greenhouse gases, and facilitates metamorphic reactions that influence lithospheric rheology. In permeable systems with a

  5. Slow shocks and their transition to fast shocks in the inner solar wind

    International Nuclear Information System (INIS)

    Wang, Y.C.

    1987-01-01

    The jump conditions of MHD shocks may be directly calculated as functions of three upstream conditions: the shock Alfven number based on the normal component of the relative shock speed, the shock angle, and the plasma β value. The shock Alfven number is less than 1 for a slow shock and greater than 1 for a fast shock. A traveling, forward shock can be a slow shock in coronal space, where the Alfven speed is of the order of 1000 km/s. The surface of a forward slow shock has a bow-shaped geometry with its nose facing toward the sun. The decrease in the Alfven speed at increasing heliocentric distance causes the shock Alfven number of a forward slow shock to become greater than 1, and the shock eventually evolves from a slow shock into a fast shock. During the transition the shock system consists of a slow shock, a fast shock, and a rotational discontinuity. They intersect along a closed transition line. As the system moves outward from the sun, the area enclosed by the transition line expands, the fast shock grows stronger, and the slow shock becomes weaker. Eventually, the slow shock diminishes, and the entire shock system evolves into a forward fast shock. copyrightAmerican Geophysical Union 1987

  6. Post-Metamorphic Thermal Anomaly across the Nacimiento Block, Central California: a Hydrothermal Overprint?

    Science.gov (United States)

    Lacroix, B.; Hughes, J.; Lahfid, A.; Delchini, S.

    2017-12-01

    The thermal history of the Nacimiento block located within the Franciscan Complex (California, USA) has been previously proposed based on both vitrinite reflectance (Rm) and illite cristallinity methods (Underwood et al., 1995). These authors suggest that the Nacimiento block is locally perturbed by a thermal anomaly (up to 300ºC), probably caused by post-metamorphic hydrothermal activity linked to the emplacement of an Au-deposit: the Los Burros Gold deposit. Although both thermal anomaly and deposit seem spatially correlated, their relationship is still poorly constrained. Detailed geological and structural mapping within the Los Burros Mining District (LBMD) coupled with a thermal study was conducted to better understand processes responsible for the anomalous temperatures recorded near the deposit. The regional maximum temperature reached by metasediments from the Nacimiento block have been first investigated using the Raman Spectroscopy of Carbonaceous Materials (RSCM) method. In addition, through careful fluid-inclusion and stable isotopes (O and C) studies on the deposit, the temperature and the potential source of the fluid responsible for the Los Burros Au-deposit emplacement were investigated. RSCM technique confirms the presence of a thermal anomaly in the range 260-320ºC near LBMD. However, our structural and petrographic results suggest that the thermal anomaly is not correlated to a post-metamorphic hydrothermal overprint but rather to a late, transpressive deformation uplifting buried metamorphic rocks.

  7. Fore arc tectonothermal evolution of the El Oro metamorphic province (Ecuador) during the Mesozoic

    Science.gov (United States)

    Riel, Nicolas; Martelat, Jean-Emmanuel; Guillot, Stéphane; Jaillard, Etienne; Monié, Patrick; Yuquilema, Jonatan; Duclaux, Guillaume; Mercier, Jonathan

    2014-10-01

    The El Oro metamorphic province of SW Ecuador is a composite massif made of juxtaposed terranes of both continental and oceanic affinity that has been located in a fore-arc position since Late Paleozoic times. Various geochemical, geochronological, and metamorphic studies have been undertaken on the El Oro metamorphic province, providing an understanding of the origin and age of the distinct units. However, the internal structures and geodynamic evolution of this area remain poorly understood. Our structural analysis and thermal modeling in the El Oro metamorphic province show that this fore-arc zone underwent four main geological events. (1) During Triassic times (230-225 Ma), the emplacement of the Piedras gabbroic unit at crustal-root level ( 9 kbar) triggered partial melting of the metasedimentary sequence under an E-W extensional regime at pressure-temperature conditions ranging from 4.5 to 8.5 kbar and from 650 to 900°C for the migmatitic unit. (2) At 226 Ma, the tectonic underplating of the Arenillas-Panupalí oceanic unit (9 kbar and 300°C) thermally sealed the fore-arc region. (3) Around the Jurassic-Cretaceous boundary, the shift from trench-normal to trench-parallel subduction triggered the exhumation and underplating of the high-pressure, oceanic Raspas Ophiolitic Complex (18 kbar and 600°C) beneath the El Oro Group (130-120 Ma). This was followed by the opening of a NE-SW pull-apart basin, which tilted the massif along an E-W subhorizontal axis (110 Ma). (4) In Late Cretaceous times, an N-S compressional event generated heterogeneous deformation due to the presence of the Cretaceous Celica volcanic arc, which acted as a buttress and predominantly affected the central and eastern part of the massif.

  8. Design and accuracy analysis of a metamorphic CNC flame cutting machine for ship manufacturing

    Science.gov (United States)

    Hu, Shenghai; Zhang, Manhui; Zhang, Baoping; Chen, Xi; Yu, Wei

    2016-09-01

    The current research of processing large size fabrication holes on complex spatial curved surface mainly focuses on the CNC flame cutting machines design for ship hull of ship manufacturing. However, the existing machines cannot meet the continuous cutting requirements with variable pass conditions through their fixed configuration, and cannot realize high-precision processing as the accuracy theory is not studied adequately. This paper deals with structure design and accuracy prediction technology of novel machine tools for solving the problem of continuous and high-precision cutting. The needed variable trajectory and variable pose kinematic characteristics of non-contact cutting tool are figured out and a metamorphic CNC flame cutting machine designed through metamorphic principle is presented. To analyze kinematic accuracy of the machine, models of joint clearances, manufacturing tolerances and errors in the input variables and error models considering the combined effects are derived based on screw theory after establishing ideal kinematic models. Numerical simulations, processing experiment and trajectory tracking experiment are conducted relative to an eccentric hole with bevels on cylindrical surface respectively. The results of cutting pass contour and kinematic error interval which the position error is from-0.975 mm to +0.628 mm and orientation error is from-0.01 rad to +0.01 rad indicate that the developed machine can complete cutting process continuously and effectively, and the established kinematic error models are effective although the interval is within a `large' range. It also shows the matching property between metamorphic principle and variable working tasks, and the mapping correlation between original designing parameters and kinematic errors of machines. This research develops a metamorphic CNC flame cutting machine and establishes kinematic error models for accuracy analysis of machine tools.

  9. Metamorphism and plutonism around the middle and south forks of the Feather River, California

    Science.gov (United States)

    Hietanen, Anna Martta

    1976-01-01

    The area around the Middle and South Forks of the Feather River provides information on metamorphic and igneous processes that bear on the origin of andesitic and granitic magmas in general and on the variation of their potassium content in particular. In the north, the area joins the Pulga and Bucks Lake quadrangles studied previously. Tectonically, this area is situated in the southern part of an arcuate segment of the Nevadan orogenic belt in the northwestern Sierra Nevada. The oldest rocks are metamorphosed calcalkaline island-arc-type andesite, dacite, and sodarhyolite with interbedded tuff layers (the Franklin Canyon Formation), all probably correlative with Devonian rocks in the Klamath Mountains. Younger rocks form a sequence of volcanic, volcaniclastic, and sedimentary rocks including some limestone (The Horseshoe Bend Formation), probably Permian in age. All the volcanic and sedimentary rocks were folded and recrystallized to the greenschist facies during the Nevadan (Jurassic) orogeny and were invaded by monzotonalitic magmas shortly thereafter. A second lineation and metamorphism to the epidote-amphibolite facies developed in a narrow zone around the plutons. In light of the concept of plate tectonics, it is suggested that the early (Devonian?) island-arc-type andesite, dacite, and sodarhyolite (the Franklin Canyon Formation) were derived from the mantle above a Benioff zone by partial melting of peridotite in hydrous conditions. The water was probably derived from an oceanic plate descending to the mantle. Later (Permian?) magmas were mainly basaltic; some discontinuous layers of potassium-rich rhyolite indicate a change into anhydrous conditions and a deeper level of magma generation. The plutonic magmas that invaded the metamorphic rocks at the end of the Jurassic may contain material from the mantle, the subducted oceanic lithosphere, and the downfolded metamorphic rocks. The ratio of partial melts from these three sources may have changed with time

  10. Structure of oblique subcritical bow shocks: ISEE 1 and 2 observations

    International Nuclear Information System (INIS)

    Mellott, M.M.; Greenstadt, E.W.

    1984-01-01

    We have studied the structural elements, including shock ramps and precursor wave trains, of a series of oblique low-Mach number terrestrial bow shocks. We used magnetic field data from the dual ISEE 1 and 2 spacecraft to determine the scale lengths of various elements of shock structure as well as wavelengths and wave polarizations. Bow shocks structure under these conditions is esstentially that of a large-amplitude damped whistler mode wave which extends upstream in the form of a precursor wave train. Shock thicknesses, which are determined by the dispersive properties of the ambient plasma, are too broad to support current-driven electrostatic waves, ruling out such turbulence as the source of dissipation in these shocks. Dissipative processes are reflected in the damping of the precursors, and dissipative scale lengths are approx.200--800 km (several times greater than shock thicknesses). Precursor damping is not related to shock normal angle or Mach number, but is correlated with T/sub e//T/sub t/. The source of the dissipation in the shocks does not appear to be wave-wave decay of the whistlers, for which no evidence is found. We cannot rule out the possibility of contribution to the dissipation from ion acoustic and, or lower hybrid mode turbulence, but interaction of the whistler itself with upstream electrons offers a simpler and more self-consistent explanation for the observed wave train damping

  11. The Metamorphic Rocks-Hosted Gold Mineralization At Rumbia Mountains Prospect Area In The Southeastern Arm of Sulawesi Island, Indonesia

    Directory of Open Access Journals (Sweden)

    Hasria Hasria

    2017-09-01

    Full Text Available Recently, in Indonesia gold exploration activities  are not only focused along volcanic-magmatic belts, but also starting to shift along metamorphic and sedimentary terrains. The study area is located in Rumbia mountains, Bombana Regency, Southeast Sulawesi Province. This paper is aimed to describe characteristics of alteration and ore mineralization associated  with metamorphic rock-related gold deposits.  The study area is found the placer and  primary gold hosted by metamorphic rocks. The gold is evidently derived from gold-bearing quartz veins hosted by Pompangeo Metamorphic Complex (PMC. These quartz veins are currently recognized in metamorphic rocks at Rumbia Mountains. The quartz veins are mostly sheared/deformed, brecciated, irregular vein, segmented and  relatively massive and crystalline texture with thickness from 1 cm to 15.7 cm. The wallrock are generally weakly altered. Hydrothermal alteration types include sericitization, argillic, inner propylitic, propylitic, carbonization and carbonatization. There some precious metal identified consist of native gold and ore mineralization including pyrite (FeS2, chalcopyrite (CuFeS2, hematite (Fe2O3, cinnabar (HgS, stibnite (Sb2S3 and goethite (FeHO2. The veins contain erratic gold in various grades from below detection limit <0.0002 ppm to 18.4 ppm. Based on those characteristics, it obviously indicates that the primary gold deposit present in the study area is of orogenic gold deposit type. The orogenic gold deposit is one of the new targets for exploration in Indonesia

  12. The age of the rocks and the metamorphic episodes from the Southeastern of Sao Paulo state

    International Nuclear Information System (INIS)

    Tassinari, C.C.G.; Kawashita, K.; Schmuss, R. van; Taylor, P.N.

    1988-01-01

    Rb-Sr, Pb-Pb and U-Pb geochronologic studies carried out on precambrian rocks from the southeastern Sao Paulo state suggest a Complex geologic evolution during the Archean and Proterozoic times. This region is divided in five differents allochthonous terranes named Itapira-Amparo, Piracaiba-Jundiai, Sao Roque, Embu and Costeiro, separated by thrust and strike-slip faults. The Itapira-Amparo domain has a original history dating back to 3.4 Ga. and since 2.6 to 2.5 Ga. and 2.2 to 1.9 Ga. metamorphic rockformation episode occurred involving both mantle-derived magmas and recycled material. Supracrustal sequences developed around 1.4 Ga. The domain was locally reworked in 0.8 - 0.65 Ga. In the Piracaia-Jundiai the main rock-formation event occurred at 1.4 Ga., but this domian was affected by strong granization and migmatization episodes during the period 1.1 - 0.6 Ga. The third terrain is characterized by the Sao Roque metavolcanossedimentary sequence developed during the time period 1.8 - 0.7 Ga., and comprising two metamorphic superimposed events (1.4 and 0.8 - 0.7 Ga.). the post-tectonics granites ranging in ages from 0.7 to 0.55 Ga. Within the Embu terrain ages of 2.5, 1.4 and 0,75 Ga. were obtained for the metamorphic terrain, with post-tectonic activities around 650 Ma. In the Costeiro domain all the metamorphic rocks developed in late-Proterozoic time, with syntectonic phase around 650 Ma [pt

  13. Assessment of role of metamorphic remobilization in genesis of uranium ores from Ralston Buttes area, Colorado

    International Nuclear Information System (INIS)

    Chatterjee, S.K.

    1984-01-01

    The Ralston Buttes mining district, the principal source of commercial uranium in the Front Range since the late 1940s, is located northeast of Golden and southeast of the Front Range mineral belt. Uranium ore occurs in veins emplaced in fault breccia in Precambrian metamorphic rocks. The progenitors of the metamorphic rocks are a possible source for the uranium. Hornblende gneisses of the Idaho Springs Formation is the major rock type in the area, thus its origin is a major consideration in assessing the quantity of uranium that might have been contributed by metamorphic processes. To evaluate this, 41 rock samples (19 hornblende gneisses, 7 biotite gneisses, 5 chlorite gneisses, and 10 metapelites) were analyzed for major elements, and 3 rock samples (16 hornblende gneisses, 8 biotite gneisses, 4 chlorite gneisses, and 5 mica schists) were analyzed for trace metals (Rb, Sc, Zr, V, Ni, Co, Cr, Ba, U, and Th). Four samples of hornblende gneiss and 1 sample of mica schists were also analyzed for rare earth elements. Major elements are rare earth data indicate that the hornblende gneiss was derived from sediments and tholeiitic basalts. Trace element data suggest a volcanic provenance for these sediments. Rare earth patterns and uranium and thorium abundances of metapelites are similar to average North American shales. Low uranium and thorium values and low thorium-uranium ratios in hornblende gneisses and mica schists preclude large-scale uranium remobilization during metamorphism of these source rocks

  14. Features in the Behavior of the Solar Wind behind the Bow Shock Front near the Boundary of the Earth's Magnetosphere

    Science.gov (United States)

    Grib, S. A.; Leora, S. N.

    2017-12-01

    Macroscopic discontinuous structures observed in the solar wind are considered in the framework of magnetic hydrodynamics. The interaction of strong discontinuities is studied based on the solution of the generalized Riemann-Kochin problem. The appearance of discontinuities inside the magnetosheath after the collision of the solar wind shock wave with the bow shock front is taken into account. The propagation of secondary waves appearing in the magnetosheath is considered in the approximation of one-dimensional ideal magnetohydrodynamics. The appearance of a compression wave reflected from the magnetopause is indicated. The wave can nonlinearly break with the formation of a backward shock wave and cause the motion of the bow shock towards the Sun. The interaction between shock waves is considered with the well-known trial calculation method. It is assumed that the velocity of discontinuities in the magnetosheath in the first approximation is constant on the average. All reasonings and calculations correspond to consideration of a flow region with a velocity less than the magnetosonic speed near the Earth-Sun line. It is indicated that the results agree with the data from observations carried out on the WIND and Cluster spacecrafts.

  15. Inheritance, Variscan tectonometamorphic evolution and Permian to Mesozoic rejuvenations in the metamorphic basement complexes of the Romanian Carpathians revealed by monazite microprobe geochronology

    Science.gov (United States)

    Săbău, Gavril; Negulescu, Elena

    2014-05-01

    Monazite U-Th-Pb chemical dating reaches an acceptable compromise between precision and accuracy on one side, and spatial resolution and textural constraints on the other side. Thus it has a powerful potential in testing the coherence of individual metamorphic basement units, and enabling correlations among them. Yet, sensitivity and specificity issues in monazite response to thermotectonic events, especially in the case of superposed effects, remain still unclear. Monazite dating at informative to detailed scale in the main metamorphic basement units of the Carpathians resulted in complex age spectra. In the main, the spectra are dominated by the most pervasive thermal and structural overprint, as checked against independent geochronological data. Post-peak age resetting is mostly present, but statistically subordinate. Resetting in case of superposed events is correlated with the degree of textural and paragenetic overprinting, inheritances being always indicated by more or less well-defined age clusters. The lack of relict ages correlating with prograde structural and porphyroblast zonation patterns is indicative for juvenile formations. Age data distribution in the Carpathians allowed distinction of pre-Variscan events, syn-metamorphic Variscan tectonic stacking of juvenile and reworked basement, post-Variscan differential tectonic uplift, as well as prograde metamorphic units ranging down to Upper Cretaceous ages. In the South Carpathians, the Alpine Danubian domain consists of several Variscan and Alpine thrust sheets containing a metamorphic complex dominated by Upper Proterozoic to Lower Cambrian metamorphic and magmatic ages (Lainici-Păiuş), and several complexes with metamorphic overprints ranging from Carboniferous to Lower Permian. Any correlation among these units, as well as geotectonic models placing a Lower Paleozoic oceanic domain between pre-existing Lainici-Păiuş and Drăgşan terranes are precluded by the age data. Other basement of the

  16. Impact of Heat-Shock Treatment on Yellowing of Pak Choy Leaves

    Institute of Scientific and Technical Information of China (English)

    WANG Xiang-yang; SHEN Lian-qing; YUAN Hai-na

    2004-01-01

    The physiological mechanism of maintaining the green colour of pak choy leaves (Brassica rapa var chinensis) with heat-shock treatment was studied. Chlorophyll in the outer leaves of pak choy degraded rapidly during storage at ambient temperature (20 ± 2℃), a slight yellow appeared. Heat-shock treatment (46- 50℃) had a mild effect on maintaining the green colour of outer leaves. Normal chlorophyll degradation was associated with a binding of chlorophyll with chlorophyll-binding-protein preceding chlorophyll breakdown.Heat-shock treatment was found to reduce the binding-capacity between chlorophyllbinding-protein and chlorophyll. In the chlorophyll degradation pathway, pheide dioxygenase was synthesized during leaf senescence which was considered to be a key enzyme in chlorophyll degradation. Activity of this enzyme was reduced following heat-shock treatment, which might explain the observed reduction in chlorophyll breakdown. Two groups of heat-shock proteins were detected in treated leaves, the first group containing proteins from 54KDa to 74 Kda, and the second group contained proteins from 15 KDa to 29KDa. Heat-shock treatment was also found to retard the decline of glucose and fructose (the main energy substrates) of outer leaves.

  17. Characteristics of coronal shock waves and solar type 2 radio bursts

    Science.gov (United States)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.

  18. Influence of recrystallization on thermal shock resistance of various tungsten grades

    International Nuclear Information System (INIS)

    Uytdenhouwen, I.; Decreton, M.; Hirai, T.; Linke, J.; Pintsuk, G.; Oost, G. van

    2007-01-01

    Thermal shock resistance of various tungsten grades (different manufacturing technologies and heat treatments) was examined under plasma disruption conditions, especially in the cracking regime, i.e. below the melting threshold. The tests have been simulated with the electron beam test facility JUDITH. The comparison of the thermal shock resistance showed that sintered tungsten appeared to be better than the deformed tungsten material and clear degradation after recrystallization was found. Damage processes linked to the mechanical properties of W are discussed

  19. Oxygen isotope thermometry of quartz-Al2SiO5veins in high-grade metamorphic rocks on Naxos island (Greece)

    Science.gov (United States)

    Putlitz, Benita; Valley, John; Matthews, Alan; Katzir, Yaron

    2002-04-01

    Diffusion models predict that peak metamorphic temperatures are best recorded by the oxygen isotope fractionation between minerals in a bi-mineralic rock in which a refractory accessory mineral with slow oxygen diffusion rate is modally minor to a mineral with a faster diffusion rate. This premise is demonstrated for high-grade metamorphism on the island of Naxos, Greece, where quartz-kyanite oxygen isotope thermometry from veins in high-grade metamorphic pelites gives temperatures of 635-690 °C. These temperatures are in excellent agreement with independent thermometry for the regional M2 peak metamorphic conditions and show that the vein minerals isotopically equilibrated at the peak of metamorphism. Quartz-sillimanite fractionations in the same veins give similar temperatures (680+/-35 °C) and suggest that the veins grew near to the kyanite-sillimanite boundary, corresponding to pressures of 6.5 to 7.5 kbar for temperatures of 635-685 °C. By contrast, quartz-kyanite and quartz-biotite pairs in the host rocks yield lower temperature estimates than the veins (590-600 and 350-550 °C, respectively). These lower apparent temperatures are also predicted from calculations of diffusional resetting in the polyphase host-rock system. The data demonstrate that bimineralic vein assemblages can be used as accurate thermometers in high-temperature rocks whereas retrograde exchange remains a major problem in many polymineralic rocks.

  20. Evolution of Migmatitic Granulite Complexes: implications from Lapland Granulite Belt, Part I: metamorphic geology

    Directory of Open Access Journals (Sweden)

    Pekka Tuisku

    2006-01-01

    Full Text Available The Palaeoproterozoic Lapland granulite belt was juxtaposed between Archaean and Proterozoic terrains in the NE part of the Fennoscandian Shield concurrently with the accretion of Svecofennian arc complexes at ~1.9 Ga. The belt consists mainly of aluminous migmatiticmetagreywackes. Abundant noritic to enderbitic magmas were intruded concordantly into the metasediments and were probably an important heat source for metamorphism, which took place during the crystallization of the magmas. This is supported by structural and contact relations of metasediments and igneous rocks, and by the lack progressive metamorphic reaction textures in the igneous rock series. The peak of metamorphism took place above the dehydration melting temperature of the biotite-sillimanite-plagioclase-quartz assemblageat 750−850°C and 5−8.5 kbar which lead to formation of a restitic palaeosome and peraluminous granitic melt in metapelites. Subsequently, the rocks were decompressed and cooled below the wet melting temperature of pelitic rocks (650°C under the stability field of andalusite coexisting with potassium feldspar (2−3 kbar. Cooling was accompanied by the crystallization of the neosomes, often carrying aluminium-rich phases. Postmetamorphic duplexing of the LGB is clearly seen in the distribution of calculated PT conditions.

  1. Pseudo- and real-inverted metamorphism caused by the superposition and extrusion of a stack of nappes: a case study of the Southern Brasília Orogen, Brazil

    Science.gov (United States)

    da Motta, Rafael Gonçalves; Moraes, Renato

    2017-10-01

    The Southern Brasília Orogen is a Neoproterozoic belt that occurs along the southernmost border of the São Francisco Craton where the Andrelândia Nappe System represents the subducted sedimentary domain and is divided into three allochthonous groups, of which the ages and P-T conditions of metamorphism are studied here. The basal unit, the Andrelândia Nappe, exhibits an inverted metamorphic pattern. The base of the structure, composed of staurolite, garnet, biotite, kyanite, quartz, and muscovite, marks the metamorphic peak, whereas at the top, the association of the metamorphic peak does not contain staurolite. The Liberdade Nappe, the middle unit, presents a normal metamorphic pattern; its base, close to the Andrelândia Nappe, shows paragneiss with evidence of in situ partial melting, and towards the top, coarse-grained staurolite schist is found. The staurolite-out and melt-in isograds are coincident and parallel to the main foliation. Thus, the shear zone that limits the nappes is syn-metamorphic, reheating the underlying Andrelândia Nappe and influencing the establishment of metamorphic inversion. This suggestion is supported by the monazite chemical ages, which indicates that the Andrelândia Nappe metamorphic peak (586 ± 15 Ma) is younger than that of the Liberdade Nappe (622.3 ± 7.6 Ma). The upper unit, the Serra da Natureza Klippe, bears a typical high-pressure granulite mineral assemblage that is composed of kyanite, garnet, K-feldspar, rutile, and leucosome, as well as a metamorphic peak at 604.5 ± 6.1 Ma. This tectonic assembly, with inverted and non-inverted metamorphic patterns and generation of klippen structures, is consistent with exhumation models and a strong indentor located in the lower continental crust.

  2. Toxic shock syndrome

    Science.gov (United States)

    Staphylococcal toxic shock syndrome; Toxic shock-like syndrome; TSLS ... Toxic shock syndrome is caused by a toxin produced by some types of staphylococcus bacteria. A similar problem, called toxic shock- ...

  3. Extensional ductile tectonics of the Sioule metamorphic series (Variscan French Massif Central)

    Science.gov (United States)

    Faure, M.; Grolier, J.; Pons, J.

    1993-09-01

    In the Northern part of the Variscan French Massif Central, the Sioule series, from top to bottom, consists of a pre-Viséan granite, migmatite, gneiss and mica schist. Two ductile deformations have been recognized. The earlier phase is characterized by a north-east-south-west trending stretching lineation; the second phase, characterized by a north-west-south-east trending mineral, stretching and crenulation lineation, is better marked in the lower mica schist part than in the upper granito-gneissic part. This second phase occurred during retrogression of the metamorphic rocks; related shear criteria indicate a top to the south-west shear. The Namurian-Westphalian magmatic bodies such as the Echassières leucogranite, Pouzol-Servant microgranite and numerous north-east -south-west trending microgranite dykes are emplaced in extensional fractures related to the same north-west-south-east maximum stretching direction. The asymmetrical shapes of the two granitic massifs indicate that they intruded towards the south-east. The synkinematic retrogression of the metamorphic rocks, the shape of the magmatic bodies and a re-examination of the numerous available data support the interpretation that the deformation is due to the extensional tectonic regime related to the Variscan crustal re-quilibration. This interpretation is in agreement with the correlation of the Sioule series with the Chavanon series. The two series belong to a unique tectono-metamorphic unit left-laterally offset by the Stephanian motion of the Sillon Houiller fault. This study also shows that the Sillon Houiller did not play a significant part during the Namurian-Westphalian extensional tectonics of the Massif Central.

  4. Thermal modeling of pluton emplacement and associated contact metamorphism:Parashi stock emplacement in the Serranía de Jarara (Alta Guajira, Colombia

    Directory of Open Access Journals (Sweden)

    Zuluaga C. Carlos A.

    2010-12-01

    Full Text Available

    In the northernmost portion of the Serrania de Jarara (Alta Guajira, Colombia, low - medium grade metamorphic rocks from the Etpana Metamorphic Suite were thermally affected by emplacement of a small calc-alkaline intrusion (Parashi Stock. Detailed petrographic analysis in collected rock samples across the NE and NW plutonic contacts show occurrences of textural and mineralogical changes in the country rock fabric that evidence contact metamorphism overprinting regional metamorphism of the Etpana Suite. These changes include growth of andalusite (chiastolite, calcic clinopyroxeneand amphibole porphyroblast crosscutting Sn+1 metamorphicfoliation. Hornblende-plagioclase barometry (ca. 3.1 kbar and cooling models for the stock show maximum time temperature evolution in the country rock at the interpreted depth of intrusion (ca. 11 km and help to evaluate the behavior of the country rock with the changing local geotherm.

  5. Breccia pipes in the Karoo Basin, South Africa, as conduits for metamorphic gases to the Early Jurassic atmosphere

    Science.gov (United States)

    Silkoset, Petter; Svensen, Henrik; Planke, Sverre

    2014-05-01

    The Toarcian (Early Jurassic) event was manifested by globally elevated temperatures and anoxic ocean conditions that particularly affected shallow marine taxa. The event coincided with the emplacement of the vast Karoo-Ferrar Large Igneous Province. Among the suggestions for trigger mechanisms for the climatic perturbation is metamorphic methane generation from black shale around the sills in the Karoo Basin, South Africa. The sill emplacement provides a mechanism for voluminous in-situ production and emission of greenhouse gases, and establishes a distinct link between basin-trapped and atmospheric carbon. In the lower stratigraphic levels of the Karoo Basin, black shales are metamorphosed around sills and the sediments are cut by a large number of pipe structures with metamorphic haloes. The pipes are vertical, cylindrical structures that contain brecciated and baked sediments with variable input of magmatic material. Here, we present borehole, petrographic, geochemical and field data from breccia pipes and contact aureoles based on field campaigns over a number of years (2004-2014). The metamorphism around the pipes show equivalent metamorphic grade as the sediments around nearby sills, suggesting a more prominent phreatomagmatic component than previously thought. The stratigraphic position of pipes and the breccia characteristics strengthens the hypothesis of a key role in the Toarcian carbon isotope excursion.

  6. Ionospheric shock waves triggered by rockets

    Directory of Open Access Journals (Sweden)

    C. H. Lin

    2014-09-01

    Full Text Available This paper presents a two-dimensional structure of the shock wave signatures in ionospheric electron density resulting from a rocket transit using the rate of change of the total electron content (TEC derived from ground-based GPS receivers around Japan and Taiwan for the first time. From the TEC maps constructed for the 2009 North Korea (NK Taepodong-2 and 2013 South Korea (SK Korea Space Launch Vehicle-II (KSLV-II rocket launches, features of the V-shaped shock wave fronts in TEC perturbations are prominently seen. These fronts, with periods of 100–600 s, produced by the propulsive blasts of the rockets appear immediately and then propagate perpendicularly outward from the rocket trajectory with supersonic velocities between 800–1200 m s−1 for both events. Additionally, clear rocket exhaust depletions of TECs are seen along the trajectory and are deflected by the background thermospheric neutral wind. Twenty minutes after the rocket transits, delayed electron density perturbation waves propagating along the bow wave direction appear with phase velocities of 800–1200 m s−1. According to their propagation character, these delayed waves may be generated by rocket exhaust plumes at earlier rocket locations at lower altitudes.

  7. Lithium, boron and chlorine as tracers for metasomatism in high-pressure metamorphic rocks: a case study from Syros (Greece)

    Science.gov (United States)

    Marschall, Horst R.; Altherr, Rainer; Gméling, Katalin; Kasztovszky, Zsolt

    2009-03-01

    High-pressure metamorphic (HPM) rocks (derived from igneous protoliths) and their metasomatised rinds from the island of Syros (Greece) were analysed for their B and Cl whole-rock abundances and their H2O content by prompt-gamma neutron-activation analysis (PGNAA) and for their Li and Be whole-rock abundances by ICP-OES. In the HPM rocks, B /Be and Cl /Be ratios correlate with H2O contents and appear to be controlled by extraction of B and Cl during dehydration and prograde metamorphism. In contrast, samples of the metasomatised rinds show no such correlation. B /Be ratios in the rinds are solely governed by the presence or absence of tourmaline, and Cl /Be ratios vary significantly, possibly related to fluid inclusions. Li/Be ratios do not correlate with H2O contents in the HPM rocks, which may in part be explained by a conservative behaviour of Li during dehydration. However, Li abundances exceed the vast majority of published values for Li abundances in fresh, altered, or differentiated oceanic igneous rocks and presumably result from metasomatic enrichment of Li. High Li concentrations and highly elevated Li/Be ratios in most metasomatised samples demonstrate an enrichment of Li in the Syros HP mélange during fluid infiltration. This study suggests that B and Cl abundances of HPM meta-igneous rocks can be used to trace prograde dehydration, while Li concentrations seem to be more sensitive for retrograde metasomatic processes in such lithologies.

  8. Coronal mass ejection shock fronts containing the two types of intermediate shocks

    International Nuclear Information System (INIS)

    Steinolfson, R.S.; Hundhausen, A.J.

    1990-01-01

    Numerical solutions of the time-dependent, magnetohydrodynamic (MHD) equations in two dimensions are used to demonstrate the formation of both types of intermediate shocks in a single shock front for physical conditions that are an idealization of those expected to occur in some observed coronal mass ejections. The key to producing such a shock configuration in the simulations is the use of an initial atmosphere containing a magnetic field representative of that in a coronal streamer with open field lines overlying a region of closed field lines. Previous attempts using just open field lines (perpendicular to the surface) produced shock configurations containing just one of the two intermediate shock types. A schematic of such a shock front containing both intermediate shock types has been constructed previously based solely on the known properties of MHD shocks from the Rankine-Hugoniot equations and specific requirements placed on the shock solution at points along the front where the shock normal and upstream magnetic field are aligned. The shock front also contains, at various locations along the front, a hydrodynamic (nonmagnetic) shock, a switch-on shock, and a fast shock in addition to the intermediate shocks. This particular configuration occurs when the shock front speed exceeds the upstream (preshock) intermediate wave speed but is less than a critical speed defined in the paper (equation 1) along at least some portion of the shock front. A distinctive feature of the front is that it is concave upward (away from the surface) near the region where the field in the preshock plasma is normal to the front of near the central portion of the shock front

  9. A nova outburst powered by shocks

    Science.gov (United States)

    Li, Kwan-Lok; Metzger, Brian D.; Chomiuk, Laura; Vurm, Indrek; Strader, Jay; Finzell, Thomas; Beloborodov, Andrei M.; Nelson, Thomas; Shappee, Benjamin J.; Kochanek, Christopher S.; Prieto, José L.; Kafka, Stella; Holoien, Thomas W.-S.; Thompson, Todd A.; Luckas, Paul J.; Itoh, Hiroshi

    2017-10-01

    Classical novae are runaway thermonuclear burning events on the surfaces of accreting white dwarfs in close binary star systems, sometimes appearing as new naked-eye sources in the night sky1. The standard model of novae predicts that their optical luminosity derives from energy released near the hot white dwarf, which is reprocessed through the ejected material2-5. Recent studies using the Fermi Large Area Telescope have shown that many classical novae are accompanied by gigaelectronvolt γ-ray emission6,7. This emission likely originates from strong shocks, providing new insights into the properties of nova outflows and allowing them to be used as laboratories for the study of the unknown efficiency of particle acceleration in shocks. Here, we report γ-ray and optical observations of the Milky Way nova ASASSN-16ma, which is among the brightest novae ever detected in γ-rays. The γ-ray and optical light curves show a remarkable correlation, implying that the majority of the optical light comes from reprocessed emission from shocks rather than the white dwarf8. The ratio of γ-ray to optical flux in ASASSN-16ma directly constrains the acceleration efficiency of non-thermal particles to be around 0.005, favouring hadronic models for the γ-ray emission9. The need to accelerate particles up to energies exceeding 100 gigaelectronvolts provides compelling evidence for magnetic field amplification in the shocks.

  10. Diffusion models in metamorphic thermo chronology: philosophy and methods

    International Nuclear Information System (INIS)

    Munha, Jose Manuel; Tassinari, Colombo Celso Gaeta

    1999-01-01

    Understanding kinetics of diffusion is of major importance to the interpretation of isotopic ages in metamorphic rocks. This paper provides a review of concepts and methodologies involved on the various diffusion models that can be applied to radiogenic systems in cooling rocks. The central concept of closure temperature is critically discussed and quantitative estimates for the various diffusion models are evaluated, in order to illustrate the controlling factors and the limits of their practical application. (author)

  11. demystifying the shock of shocking

    African Journals Online (AJOL)

    (with a pulse), atrial fibrillation and atrial flutter. The energy dose in cardioversion is less (0.5. - 2 J/kg) than in defibrillation (2 - 4 J/kg). In cardioversion the shock is discharged synchronously with the native R wave of the patient. Without synchronisation,. VF can be induced if a shock is delivered during the refractory period ...

  12. Shock absorbing structure

    International Nuclear Information System (INIS)

    Kojima, Naoki; Matsushita, Kazuo.

    1992-01-01

    Small pieces of shock absorbers are filled in a space of a shock absorbing vessel which is divided into a plurality of sections by partitioning members. These sections function to prevent excess deformation or replacement of the fillers upon occurrence of falling accident. Since the shock absorbing small pieces in the shock absorbing vessel are filled irregularly, shock absorbing characteristics such as compression strength is not varied depending on the direction, but they exhibit excellent shock absorbing performance. They surely absorb shocks exerted on a transportation vessel upon falling or the like. If existing artificial fillers such as pole rings made of metal or ceramic and cut pieces such as alumium extrusion molding products are used as the shock absorbing pieces, they have excellent fire-proofness and cold resistance since the small pieces are inflammable and do not contain water. (T.M.)

  13. Shock response of porous metals: characterization of pressure field

    International Nuclear Information System (INIS)

    Xu Aiguo; Zhang Guangcai; Hao Pengcheng; Dong Yinfeng; Wei Xijun; Zhu Jianshi

    2012-01-01

    Shock wave reaction on porous metals is numerically simulated. When the pressure threshold is low, the increasing rate of high-pressure area gives roughly the propagation velocity of the compressive waves in the porous material. and the wave front in the condensed pressure map is nearly a plane: with the increasing of pressure threshold. more low-pressure-spots appear in the high-pressure background, and neighboring spots may coalesce, consequently, the topology of the pressure Turing pattern may change. The deviation from linearity of the increasing rate of high-pressure area is a pronounced effect of porous material under shock. The stronger the initial shock, the more pronounced the porosity effects. When the initial yield of material becomes higher, the material shows more elastic behaviors and the less porous effects, compressive and tension waves propagate more quickly, and the porous material becomes less compressible. (authors)

  14. Neoarchean metamorphism recorded in high-precision Sm-Nd isotope systematics of garnets from the Jack Hills (Western Australia)

    Science.gov (United States)

    Eccles, K. A.; Baxter, E. F.; Mojzsis, S. J.; Marschall, H.; Williams, M. L.; Jercinovic, M. J.

    2013-12-01

    Studies of metasedimentary rocks from the Jack Hills, which host Earth's oldest known detrital minerals, have focused on zircon and occasionally monazite or xenotime, but no attention has been directed toward one of the most common mineral markers of metamorphism: garnet. Garnet can provide a record of the post-depositional, prograde metamorphic history of Archean metasedimentary rocks. Additionally, the use of a newly developed detrital garnet dating technique [1,2] may reveal information about pre-depositional metamorphism that could address lingering questions about the nature and timing of Earth's earliest tectonometamorphic events. Here we investigate garnet from the Jack Hills metasedimentary rocks to test whether they record in situ metamorphism or are a detrital relict of even older metamorphic events. We identified garnet in two bulk quartz-pebble conglomerate samples collected from the 'discovery' outcrop at Eranondoo Hill in the Jack Hills of Western Australia. Electron microprobe analyses of polished grains and SEM measurements of unpolished grain surfaces are consistent, revealing garnet composition indicative of a single generation/population of predominantly almandine-spessartine solid solution (~10-35% mole fraction spessartine). Compositional maps of garnet grains reveal little zoning and no discontinuities, most consistent with a single growth event. Dating Jack Hills' garnet via the Sm-Nd system is possible due to continued development of small sample analysis techniques, including running NdO+ TIMS analyses with Ta2O5 activator [3] permitting Ma for two point isochrons between clean garnet (Sm/Nd ≥ 1.0) and their leached inclusion populations [2]. Four grouped garnet grain separates from one sample yield preliminary dates of 2703.6×6.0Ma, 2612.4×6.0Ma, 2605.0×5.5Ma, and 2567.3×8.3Ma, while the second sample yielded a date of 2579.6×4.6 Ma (2σ). Compositional and geochronologic data indicate likely in situ garnet growth during a late

  15. IRC -10414: a bow-shock-producing red supergiant star

    Science.gov (United States)

    Gvaramadze, V. V.; Menten, K. M.; Kniazev, A. Y.; Langer, N.; Mackey, J.; Kraus, A.; Meyer, D. M.-A.; Kamiński, T.

    2014-01-01

    Most runaway OB stars, like the majority of massive stars residing in their parent clusters, go through the red supergiant (RSG) phase during their lifetimes. Nonetheless, although many dozens of massive runaways were found to be associated with bow shocks, only two RSG bow-shock-producing stars, Betelgeuse and μ Cep, are known to date. In this paper, we report the discovery of an arc-like nebula around the late M-type star IRC -10414 using the SuperCOSMOS H-alpha Survey. Our spectroscopic follow-up of IRC -10414 with the Southern African Large Telescope (SALT) showed that it is a M7 supergiant, which supports previous claims on the RSG nature of this star based on observations of its maser emission. This was reinforced by our new radio- and (sub)millimetre-wavelength molecular line observations made with the Atacama Pathfinder Experiment 12-m telescope and the Effelsberg 100-m radio telescope, respectively. The SALT spectrum of the nebula indicates that its emission is the result of shock excitation. This finding along with the arc-like shape of the nebula and an estimate of the space velocity of IRC -10414 (≈70 ± 20 km s-1) imply the bow shock interpretation for the nebula. Thus, IRC -10414 represents the third case of a bow-shock-producing RSG and the first one with a bow shock visible at optical wavelengths. We discuss the smooth appearance of the bow shocks around IRC -10414 and Betelgeuse and propose that one of the necessary conditions for stability of bow shocks generated by RSGs is the ionization of the stellar wind. Possible ionization sources of the wind of IRC -10414 are proposed and discussed.

  16. Formation of X-ray emitting stationary shocks in magnetized protostellar jets

    Science.gov (United States)

    Ustamujic, S.; Orlando, S.; Bonito, R.; Miceli, M.; Gómez de Castro, A. I.; López-Santiago, J.

    2016-12-01

    Context. X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. Aims: We investigate the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets; the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks; and the physical properties of the shocked plasma. Methods: We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations that modelled supersonic jets ramming into a magnetized medium and explored different configurations of the magnetic field. The model takes into account the most relevant physical effects, namely thermal conduction and radiative losses. We compared the model results with observations, via the emission measure and the X-ray luminosity synthesized from the simulations. Results: Our model explains the formation of X-ray emitting stationary shocks in a natural way. The magnetic field collimates the plasma at the base of the jet and forms a magnetic nozzle there. After an initial transient, the nozzle leads to the formation of a shock diamond at its exit which is stationary over the time covered by the simulations ( 40-60 yr; comparable with timescales of the observations). The shock generates a point-like X-ray source located close to the base of the jet with luminosity comparable with that inferred from X-ray observations of protostellar jets. For the range of parameters explored, the evolution of the post-shock plasma is dominated by the radiative cooling, whereas the thermal conduction slightly affects the structure of the shock. A movie is available at http://www.aanda.org

  17. Study on Reflected Shock Wave/Boundary Layer Interaction in a Shock Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Wook; Kim, Tae Ho; Kim, Heuy Dong [Andong Nat’l Univ., Andong (Korea, Republic of)

    2017-07-15

    The interaction between a shock wave and a boundary layer causes boundary layer separation, shock train, and in some cases, strong unsteadiness in the flow field. Such a situation is also observed in a shock tube, where the reflected shock wave interacts with the unsteady boundary layer. However, only a few studies have been conducted to investigate the shock train phenomenon in a shock tube. In the present study, numerical studies were conducted using the two-dimensional axisymmetric domain of a shock tube, and compressible Navier-Stokes equations were solved to clarify the flow characteristics of shock train phenomenon inside a shock tube. A detailed wave diagram was developed based on the present computational results, which were validated with existing experimental data.

  18. Nonlinear theory of diffusive acceleration of particles by shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Malkov, M.A. [University of California at San Diego, La Jolla, CA (United States)]. E-mail: mmalkov@ucsd.edu; Drury, L. O' C. [Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2 (Ireland)

    2001-04-01

    Among the various acceleration mechanisms which have been suggested as responsible for the nonthermal particle spectra and associated radiation observed in many astrophysical and space physics environments, diffusive shock acceleration appears to be the most successful. We review the current theoretical understanding of this process, from the basic ideas of how a shock energizes a few reactionless particles to the advanced nonlinear approaches treating the shock and accelerated particles as a symbiotic self-organizing system. By means of direct solution of the nonlinear problem we set the limit to the test-particle approximation and demonstrate the fundamental role of nonlinearity in shocks of astrophysical size and lifetime. We study the bifurcation of this system, proceeding from the hydrodynamic to kinetic description under a realistic condition of Bohm diffusivity. We emphasize the importance of collective plasma phenomena for the global flow structure and acceleration efficiency by considering the injection process, an initial stage of acceleration and, the related aspects of the physics of collisionless shocks. We calculate the injection rate for different shock parameters and different species. This, together with differential acceleration resulting from nonlinear large-scale modification, determines the chemical composition of accelerated particles. The review concentrates on theoretical and analytical aspects but our strategic goal is to link the fundamental theoretical ideas with the rapidly growing wealth of observational data. (author)

  19. Clinical impact of stress dose steroids in patients with septic shock: insights from the PROWESS-Shock trial.

    Science.gov (United States)

    Póvoa, Pedro; Salluh, Jorge I F; Martinez, Maria L; Guillamat-Prats, Raquel; Gallup, Dianne; Al-Khalidi, Hussein R; Thompson, B Taylor; Ranieri, V Marco; Artigas, Antonio

    2015-04-28

    The aim of our study was to evaluate the clinical impact of the administration of intravenous steroids, alone or in conjunction with drotrecogin-alfa (activated) (DrotAA), on the outcomes in septic shock patients. We performed a sub-study of the PROWESS-Shock trial (septic shock patients who received fluids and vasopressors above a predefined threshold for at least 4 hours were randomized to receive either DrotAA or placebo for 96 hours). A propensity score for the administration of intravenous steroids for septic shock at baseline was constructed using multivariable logistic regression. Cox proportional hazards model using inverse probability of treatment weighting of the propensity score was used to estimate the effect of intravenous steroids, alone or in conjunction with DrotAA, on 28-day and 90-day all-cause mortality. A total of 1695 patients were enrolled of which 49.5% received intravenous steroids for treatment of septic shock at baseline (DrotAA + steroids N = 436; DrotAA + no steroids N = 414; placebo + steroids N = 403; placebo + no steroids N = 442). The propensity weighted risk of 28-day as well as 90-day mortality in those treated vs. those not treated with steroids did not differ among those randomized to DrotAA vs. placebo (interaction p-value = 0.38 and p = 0.27, respectively) nor was a difference detected within each randomized treatment. Similarly, the course of vasopressor use and cardiovascular SOFA did not appear to be influenced by steroid therapy. In patients with lung infection (N = 744), abdominal infection (N = 510), Gram-positive sepsis (N = 420) and Gram-negative sepsis (N = 461), the propensity weighted risk of 28-day as well as 90-day mortality in those treated vs. those not treated with steroids did not differ among those randomized to DrotAA vs. placebo nor was a difference detected within each randomized treatment. In the present study of septic shock patients, after

  20. Subduction metamorphism in the Himalayan ultrahigh-pressure Tso Morari massif: An integrated geodynamic and petrological modelling approach

    Science.gov (United States)

    Palin, Richard M.; Reuber, Georg S.; White, Richard W.; Kaus, Boris J. P.; Weller, Owen M.

    2017-06-01

    The Tso Morari massif is one of only two regions where ultrahigh-pressure (UHP) metamorphism of subducted crust has been documented in the Himalayan Range. The tectonic evolution of the massif is enigmatic, as reported pressure estimates for peak metamorphism vary from ∼2.4 GPa to ∼4.8 GPa. This uncertainty is problematic for constructing large-scale numerical models of the early stages of India-Asia collision. To address this, we provide new constraints on the tectonothermal evolution of the massif via a combined geodynamic and petrological forward-modelling approach. A prograde-to-peak pressure-temperature-time (P-T-t) path has been derived from thermomechanical simulations tailored for Eocene subduction in the northwestern Himalaya. Phase equilibrium modelling performed along this P-T path has described the petrological evolution of felsic and mafic components of the massif crust, and shows that differences in their fluid contents would have controlled the degree of metamorphic phase transformation in each during subduction. Our model predicts that peak P-T conditions of ∼2.6-2.8 GPa and ∼600-620 ∘C, representative of 90-100 km depth (assuming lithostatic pressure), could have been reached just ∼3 Myr after the onset of subduction of continental crust. This P-T path and subduction duration correlate well with constraints reported for similar UHP eclogite in the Kaghan Valley, Pakistan Himalaya, suggesting that the northwest Himalaya contains dismembered remnants of what may have been a ∼400-km-long UHP terrane comparable in size to the Western Gneiss Region, Norway, and the Dabie-Sulu belt, China. A maximum overpressure of ∼0.5 GPa was calculated in our simulations for a homogeneous crust, although small-scale mechanical heterogeneities may produce overpressures that are larger in magnitude. Nonetheless, the extremely high pressures for peak metamorphism reported by some workers (up to 4.8 GPa) are unreliable owing to conventional thermobarometry

  1. Distribution of uranium in two sulphide ore environments from the reversed metamorphic sequence of the Daling Rocks in the Dargeeling-Sikkim Himalaya, India

    International Nuclear Information System (INIS)

    Ghosh, A.K.

    1988-01-01

    In the low-grade Daling metasediments of Gorubathan, the average U content of 3-4 ppm reflects the original U content of the unmetamorphosed sediments. The high-grade metasediments of Dichu averag 6 ppm, and the sulphide ores of this area also have more U compared to Gorubathan ores.This higher U content in the high-grade rocks and in the associated ores is believed to be the result of enrichment during metasomatic activity in the area. Neverthelessthe fact that the Daling metasediments have higher U contents thanthat of the sulphide ores appears to be independent of the grade of metamorphism in the progressive sequence

  2. Magnetotelluric investigation in and around southern part of Hidaka metamorphic belt in Hokkaido, Japan; Hidaka henseitai nanbuiki ni okeru MT kansoku

    Energy Technology Data Exchange (ETDEWEB)

    Sato, H; Utsugi, M; Hirano, K; Doi, T; Nishida, Y; Arita, K [Hokkaido University, Sapporo (Japan)

    1996-05-01

    An MT observation was conducted in the Hidaka district, Hokkaido, for the estimation of the 2D resistivity structure in the southern part of the metamorphic belt, when frequencies of the VLF, ELF, and ULF bands were used. An approximately 42km-long traverse line was set to cross the Hidaka metamorphic belt from east to west. As for the observation points, 48 VLF points, 16 ELF points, and 4 ULF points were provided. During the data processing, impedance tensor was calculated in the frequency domain for the determination of the apparent resistivity relative to frequency and the phase difference. As the result, it was found that there is a fairly large resistivity gap between observation spots MNS and KWR and that the boundary corresponds to the Hidaka metamorphic belt, that the metamorphic belt that is reflected as a conspicuous high-resistivity layer in the VLF-, ELF-MT slopes down toward the east and has a distribution as deep as 10km in the vicinity of observation point KWR, that this high-resistivity layer sandwiches a low-resistivity layer at a depth of 5-7km, and that on the east side of the metamorphic belt there is a medium-resistivity layer creeping under the belt from the east side toward the west side. 5 refs., 6 figs.

  3. Metamorphic P-T conditions and CO2 influx history of medium-grade metapelites from Karakorum, Trans-Himalaya, India

    Science.gov (United States)

    Sachan, Himanshu K.; Santosh, M.; Prakash, Divya; Kharya, Aditya; Chandra Singh, P.; Rai, Santosh K.

    2016-07-01

    The medium grade metapelites of Pangong-Tso area in the trans-Himalayan region underwent sillimanite-grade metamorphism initiated during the Cretaceous, associated with the collision of the Kohistan arc and the Indian plate with Asia. This paper present results from a petrological and fluid inclusion study to understand the metamorphic P-T conditions and fluid history of these rocks. The calculated phase equilibria in the Na2O-CaO-K2O-FeO-MgO-MnO-Al2O3-SiO2-H2O-TiO2 (NCKFMMnASHT) system suggest P-T conditions of 8 kbar and 650 °C for the peak metamorphic event. Primary fluid inclusions occur in staurolite and garnet, whereas quartz carries mostly secondary fluid inclusions. The trapped fluids in primary inclusions show initial melting temperatures in the range of -56.9 to -56.6 °C, suggesting nearly pure CO2 composition. The secondary fluids are of mixed carbonic-aqueous nature. The re-equilibrated inclusions show annular morphology as well as necking phenomena. The CO2 isochores for the primary inclusions indicate pressures of 6.1-6.7 kbar, suggesting that the CO2-rich fluids were trapped during post-peak exhumation of the rocks, or that synmetamorphic carbonic fluids underwent density reversal during isothermal decompression. The secondary CO2-H2O fluids must have been trapped during the late exhumation stage, as their isochores define further lower pressures of 4.8 kbar. The morphology of re-equilibrated fluid inclusions and the rapid decrease in pressure are consistent with a near-isothermal decompression trajectory following the peak metamorphism. The carbonic fluids were probably derived locally from decarbonation reactions of the associated carbonate rocks during metamorphism or from a deep-seated reservoir through Karakorum fault.

  4. A metamorphic controller for plant control system design

    Directory of Open Access Journals (Sweden)

    Tomasz Klopot

    2016-07-01

    Full Text Available One of the major problems in the design of industrial control systems is the selection and parameterization of the control algorithm. In practice, the most common solution is the PI (proportional-integral controller, which is simple to implement, but is not always the best control strategy. The use of more advanced controllers may result in a better efficiency of the control system. However, the implementation of advanced control algorithms is more time-consuming and requires specialized knowledge from control engineers. To overcome these problems and to support control engineers at the controller design stage, the paper describes a tool, i.e., a metamorphic controller with extended functionality, for selection and implementation of the most suitable control algorithm. In comparison to existing solutions, the main advantage of the metamorphic controller is its possibility of changing the control algorithm. In turn, the candidate algorithms can be tested through simulations and the total time needed to perform all simulations can be less than a few minutes, which is less than or comparable to the design time in the concurrent design approach. Moreover, the use of well-known tuning procedures, makes the system easy to understand and operate even by inexperienced control engineers. The application was implemented in the real industrial programmable logic controller (PLC and tested with linear and nonlinear virtual plants. The obtained simulation results confirm that the change of the control algorithm allows the control objectives to be achieved at lower costs and in less time.

  5. Determination of fluorine by proton induced gamma ray emission (PIGE) spectrometry in igneous and metamorphic charnockitic rocks from Rogaland (S.W. Norway)

    International Nuclear Information System (INIS)

    Roelandts, I.; Robaye, G.; Weber, G.; Delbrouck, J.M.; Duchesne, J.C.

    1986-01-01

    More than 200 specimens from different occurrences of the Rogaland igneous complex and surrounding granulite facies metamorphic rocks (S.W. Norway) have been analysed by a direct non-destructive proton induced gamma ray emission (PIGE) technique. The fluorine contents vary from < 25 ppm to 3500 ppm. There is a good correlation between the concentration of fluorine and that of phosphorus for igneous rocks, suggesting a control of apatite on the F content. In metamorphic rocks, amphibole and biotite besides apatite are the principal concentrations of fluorine indicating that fluorine in the system is controlled by granulite facies metamorphism conditions. (author)

  6. Investigation of In0.7Ga0.3As/In0.7Al0.3As metamorphic HEMT- heterostructures by photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    LETT', Prof. Popova 5, St. Petersburg 197376 (Russian Federation))" data-affiliation=" (Saint-Petersburg Electrotechnical University LETT', Prof. Popova 5, St. Petersburg 197376 (Russian Federation))" >Romanovskiy, D S; LETT', Prof. Popova 5, St. Petersburg 197376 (Russian Federation))" data-affiliation=" (Saint-Petersburg Electrotechnical University LETT', Prof. Popova 5, St. Petersburg 197376 (Russian Federation))" >Tarasov, S A; Galiev, G B; Pushkarev, S S

    2014-01-01

    Low-temperature photoluminescence and photoreflectance have been studied in several metamorphic HEMT- (MHEMT-) heterostructures with the same active regions and different buffer layer designs grown by solid-source molecular beam epitaxy. The indium mole fraction in InAlAs/InGaAs/InAlAs single quantum well (QW) is 0.7. It was found that structures with step-graded metamorphic buffer have better quality. Also it was shown that mismatched superlattices in metamorphic buffer can influence on the half-width of photoluminescence spectra. The possible attribution of photoluminescence and photoreflectance spectral lines and their thermal behaviour are critically discussed

  7. Collisionless electrostatic shocks

    DEFF Research Database (Denmark)

    Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla

    1970-01-01

    An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...

  8. The impact of monetary policy and exchange rate shocks in Poland: evidence from a time-varying VAR

    OpenAIRE

    Arratibel, Olga; Michaelis, Henrike

    2014-01-01

    This paper follows the Bayesian time-varying VAR approach with stochastic volatility developed by Primiceri (2005), to analyse whether the reaction of output and prices to interest rate and exchange rate shocks has changed across time (1996-2012) in the Polish economy. The empirical findings show that: (1) output appears more responsive to an interest rate shock at the beginning of our sample. Since 2000, absorbing this shock has become less costly in terms of output, notwithstanding some rev...

  9. Evidence of an upper ordovician thermo-metamorphic event in the SW-Corner of the Cantabrian Mountains (N-Spain

    Directory of Open Access Journals (Sweden)

    Krumm, S.

    1992-12-01

    Full Text Available According to Illite «crystallinity» (IC data, the metamorphic evolution of the SW Cantabrian Mountains took place in several steps. After a Precambrian deformation with accompanying low-grade metamorphism a thermal event during the Upper Ordovician affected the Cambro-Ordovician sediments. This event is marked by anchizonal IC values in the Pre-Silurian sequence contrasting the diagenetic data obtained from Siluro-Devonian rocks.Apparently, the metamorphic history in that part of the Cantabrian Mountains ended during the Late Ordovician, a Hercynian metamorphism cannot be proven conclusively.Segun la cristalinidad de Illita (IC la evolución metamórfica de la zona sudoeste de la Cordillera Cantábrica tuvo lugar en varias etapas. Siguiendo una deformación precámbrica con un metamorfismo de bajo grado, un evento térmico durante el Ordovícico Superior afecto a la secuencia Cambro-Ordovícica. Este evento esta marcado en las rocas pre-Silúricas por valores de IC indicando la anchizona. Estos datos contrastan con valores obtenidos de la secuencia Siluro-Devónica, que son característicos de la diagénesis.Aparentemente, la evolución metamórfica del sudoeste de la Cordillera Cantábrica termino durante el Ordovícico, un metamorfismo Hercínico no pudo ser comprobado.

  10. Radioactive occurrences in veins and igneous and metamorphic rocks of New Mexico with annotated bibliography

    International Nuclear Information System (INIS)

    McLemore, V.T.

    1982-01-01

    From an extensive literature search and field examination of 96 nonsandstone radioactive occurrences, the author compiled an annotated bibliography of over 600 citations and a list of 327 radioactive occurrences in veins and igneous and metamorphic rocks of New Mexico. The citations are indexed by individual radioactive occurrence, geographic area, county, fluorspar deposits and occurrences, geochemical analyses, and geologic maps. In addition, the geology, mineralization, and uranium and thorium potential of 41 geographic areas in New Mexico containing known radioactive occurrences in veins and igneous and metamorphic rocks or that contain host rocks considered favorable for uranium or thorium mineralization are summarized. A list of aerial-radiometric, magnetic, hydrogeochemical, and stream-sediment survey reports is included

  11. On protolith-, metamorphic overprint, microstructure and rheology of mineral assemblages in orogenic peridotites of the central Scandinavian Caledonides

    Science.gov (United States)

    Gilio, Mattia; Clos, Frediano; Van Roermund, Herman L. M.

    2013-04-01

    The Scandinavian Caledonides (SC) are a deeply eroded Alpine-type orogenic belt formed by closure of the Iapetus ocean and collision between Baltica and Laurentia (500-380 Ma). The SC consists of a stack of Nappe Complexes (from bottom to top called Lower, Middle, Upper and Uppermost Allochthons) thrusted to the east over the Baltic Shield (Brueckner and Van Roermund, 2004; Gee et al., 2008). Fossil lithospheric mantle fragments, called orogenic peridotites, have been found within the (upper part of) middle, upper and uppermost Allochthons, as well as in the reworked basement gneisses (a.o Western Gneiss Complex (WGC)) along the Norwegian west coast. They occur as isolated lenses that contain diverse mineral parageneses and/or bulk rock compositions. Crustal incorporation of orogenic peridotite is classically interpreted to be the result of plate collisional processes related to orogeny (Brueckner and Medaris, 2000). The WGC and parts of the upper part of the Middle Allochthon (a.o. Seve Nappe Complex (SNC) in N Jämtland/S Västerbotten, central Sweden), are well known for the occurrence of high (HP) and ultrahigh pressure (UHP) metamorphic terranes (of Caledonian age). The (U)HPM evidence clearly demonstrates the deep metamorphic origin of these rocks interpreted to be caused by continental subduction and/or collision. Other metamorphic rocks (of Caledonian age) exposed in allochthonous nappes are solely characterised by greenschist-, amphibolite- and/or MP granulite "facies" mineral assemblages that can be interpreted, in the absence of retrogression, to have formed in less deeply subducted (and/or metamorphic) environments. This duality in metamorphic "facies" allows for a discrimination (at least theoretically) between "deep" versus "shallow" rooted nappes (in central parts of the Scandinavian Caledonides). Conform this reasoning, this duality should also be present within the Caledonian mineral assemblages (= metamorphic overprint) of orogenic peridotites (in

  12. Mid amphibolite facies metamorphism of harzburgites in the Neoproterozoic Cerro Mantiqueiras Ophiolite, southernmost Brazil

    Directory of Open Access Journals (Sweden)

    HARTMANN LÉO A.

    2003-01-01

    Full Text Available Valuable information is retrieved from the integrated investigation of the field relationships, microstructure and mineral compositions of harzburgites from the Neoproterozoic Cerro Mantiqueiras Ophiolite. This important tectonic marker of the geological evolution of southernmost Brazilian Shield was thoroughly serpentinized during progressive metamorphism, because the oldest mineral assemblage is: olivine + orthopyroxene + tremolite + chlorite + chromite. This M1 was stabilized in mid amphibolite facies - 550-600ºC as calculated from mineral equilibria. No microstructural (e.g. ductile deformation of olivine or chromite or compositional (e.g. mantle spinel remnant of mantle history was identified. A metamorphic event M2 occurred in the low amphibolite facies along 100 m-wide shear zones, followed by intense serpentinization (M3 and narrow 1-3 m-wide shear zones (M4 containing asbestos.

  13. Enzyme clusters during the metamorphic period of Ambystoma mexicanum: role of thyroid hormone

    NARCIS (Netherlands)

    Lamers, W. H.; Mooren, P. G.; de Graaf, A.

    1982-01-01

    Enzyme activities and DNA content have been measure in axolotl liver during the metamorphic period (4-8 months after spawning). Three different types of enzyme activity profiles were observed. In the type I profile (carbamoyl-phosphate synthase, arginase, ornithine transcarbamoylase, and glutamate

  14. New test of bow-shock models of Herbig-Haro objects

    International Nuclear Information System (INIS)

    Raga, A.C.; Bohm, K.H.; Solf, J.; Max-Planck-Institut fuer Astronomie, Heidelberg, West Germany)

    1986-01-01

    Long-slit, high-resolution spectroscopy of the Herbig-Haro oject HH 32 has shown that the emission-line profiles in all four condensations A, B, C, and D show high- and low-velocity components. The spatial maxima of these two components are always arranged in a double-layer pattern, with the maximum of the high-velocity component 0.6-1.0 arcsecs closer to the central star (AS 353A) than the low-velocity maximum. A study of the emission-line profiles predicted from a model of a radiating bow shock shows that such a double-layer structure appears naturally for this type of flow. In this case both the high-velocity and the low-velocity components come from the post-shock gas, in agreement with the theoretical prediction that it should be very difficult to detect the pre-shock gas observationally. The present results agree qualitatively well with observations of HH 32, strengthening the case for a bow-shock interpretation of this Herbig-Haro object. It is shown that the double-layer effect will be more easily observable for bow shocks which move at a relatively large angle with respect to the plane of the sky (i.e., for Herbig-Haro objects which have large radial velocities). 31 references

  15. Effect of Surface Coatings on Cylinders Exposed to Underwater Shock

    Directory of Open Access Journals (Sweden)

    Y.W. Kwon

    1994-01-01

    Full Text Available The response of a coated cylinder (metallic cylinder coated with a rubber material subjected to an underwater explosion is analyzed numerically. The dynamic response of the coated cylinder appears to be adversely affected when impacted by an underwater shock wave under certain conditions of geometry and material properties of the coating. When adversely affected, significant deviations in values of axial stress, hoop stress, and strain are observed. The coated cylinder exhibits a larger deformation and higher internal energy in the metallic material. Rubber coatings appeared to inhibit energy dissipation from the metallic material to the surrounding water medium. A parametric study of various coatings was performed on both aluminum and steel cylinders. The adverse effect of the coating decreased when the stiffness of the rubber layer increased, indicating the existence of a threshold value. The results of this study indicate that the stiffness of the coating is a critical factor to the shock hardening of the coated cylinder.

  16. Photoelectric properties of the metamorphic InAs/InGaAs quantum dot structure at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Golovynskyi, S. L., E-mail: golovynskyi@isp.kiev.ua [Institute of Semiconductor Physics, National Academy of Sciences, pr. Nauki 45, 03028 Kyiv (Ukraine); Seravalli, L.; Trevisi, G.; Frigeri, P.; Gombia, E. [Institute of Materials for Electronics and Magnetism, CNR-IMEM, Parco delle Scienze 37a, I-43100 Parma (Italy); Dacenko, O. I.; Kondratenko, S. V. [Department of Physics, Taras Shevchenko National University of Kyiv, 64 Volodymyrska St., 01601 Kyiv (Ukraine)

    2015-06-07

    We present the study of optical and photoelectric properties of InAs quantum dots (QDs) grown on a metamorphic In{sub 0.15}Ga{sub 0.85}As buffer layer: such nanostructures show efficient light emission in the telecom window at 1.3 μm (0.95 eV) at room temperature. We prepared a sample with vertical geometry of contacts isolated from the GaAs substrate. The structure is found to be photosensitive in the spectral range above 0.9 eV at room temperature, showing distinctive features in the photovoltage and photocurrent spectra attributed to QDs, InAs wetting layer, and In{sub 0.15}Ga{sub 0.85}As metamorphic buffer, while a drop in the photoelectric signal above 1.36 eV is related to the GaAs layer. No effect of defect centers on the photoelectrical properties is found, although they are observed in the absorption spectrum. We conclude that metamorphic QDs have a low amount of interface-related defects close to the optically active region and charge carriers can be effectively collected into InAs QDs.

  17. Precipitation of Oriented Rutile and Ilmenite Needles in Garnet, Northeastern Connecticut, USA: Evidence for Extreme Metamorphic Conditions?

    Science.gov (United States)

    Ague, J. J.; Eckert, J. O.

    2011-12-01

    We report the discovery of oriented needles of rutile and, less commonly, ilmenite in the cores of garnets from northeastern CT, USA. The rocks preserve granulite facies mineral assemblages, form part of the Merrimack Synclinorium, and underwent metamorphism and deformation during the Acadian orogeny. The needles appear identical to those reported from a number of extreme P-T environments worldwide, including UHP metamorphic rocks, high-P granulites, and garnet peridotites. The needles are predominantly oriented along directions in garnet. The long axes of the rutile needles commonly do not go extinct parallel to the cross hairs under cross-polarized light (e.g., Griffin et al., 1971). This anomalous extinction indicates that the needles do not preserve a specific crystallographic relationship with their garnet hosts (e.g., Hwang et al., 2007). The needles range from a few hundred nm to a few um in diameter, and can be mm-scale in length. Micrometer-scale plates of rutile, srilankite and crichtonite have also been observed in some garnets together with the Fe-Ti oxide needles. Several origins for the needles have been proposed in the literature; we investigate the hypothesis that they precipitated in situ from originally Ti-rich garnet. Chemical profiles across garnets indicate that some retain Ti zoning, with elevated-Ti concentrations in the cores dropping to low values in the rims. For these zoned garnets, high-resolution, 2-D chemical mapping using the JEOL JXA-8530F field emission gun electron microprobe at Yale University reveals that the needles are surrounded by well-defined Ti-depletion halos. Chemical profiles also document strong depletions of Cr (which is present in both rutile and ilmenite) directly adjacent to needles. The observed Ti-depletions demonstrate that the needles precipitated from Ti-bearing garnet, probably during cooling and/or decompression associated with exhumation. The rutile precipitates must be largely incoherent with respect to the

  18. Effects of Atwood number on shock focusing in shock-cylinder interaction

    Science.gov (United States)

    Ou, Junfeng; Ding, Juchun; Luo, Xisheng; Zhai, Zhigang

    2018-02-01

    The evolution of shock-accelerated heavy-gas cylinder surrounded by the air with different Atwood numbers (A_t=0.28, 0.50, 0.63) is investigated, concentrating on shock focusing and jet formation. Experimentally, a soap film technique is used to generate an ideal two-dimensional discontinuous gas cylinder with a clear surface, which can guarantee the observation of shock wave movements inside the cylinder. Different Atwood numbers are realized by different mixing ratios of SF_6 and air inside the cylinder. A high-speed schlieren system is adopted to capture the shock motions and jet morphology. Numerical simulations are also performed to provide more information. The results indicate that an inward jet is formed for low Atwood numbers, while an outward jet is generated for high Atwood numbers. Different Atwood numbers will lead to the differences in the relative velocities between the incident shock and the refraction shock, which ultimately results in the differences in shock competition near the downstream pole. The morphology and feature of the jet are closely associated with the position and intensity of shock focusing. The pressure and vorticity contours indicate that the jet formation should be attributed to the pressure pulsation caused by shock focusing, and the jet development is ascribed to the vorticity induction. Finally, a time ratio proposed in the previous work for determining the shock-focusing type is verified by experiments.

  19. Shock parameter calculations at weak interplanetary shock waves

    Directory of Open Access Journals (Sweden)

    J. M. Gloag

    2005-02-01

    Full Text Available A large set of interplanetary shock waves observed using the Ulysses spacecraft is analysed in order to determine their local parameters. For the first time a detailed analysis is extended to the thermodynamic properties of a large number of events. The intention is to relate the shock parameters to the requirements set by MHD shock theory. A uniform approach is adopted in the selection of up and downstream regions for this analysis and applied to all the shock waves. Initially, the general case of a 3 component adiabatic plasma is considered. However, the calculation of magnetosonic and Alfvénic Mach numbers and the ratio of downstream to upstream entropy produce some unexpected results. In some cases there is no clear increase in entropy across the shock and also the magnetosonic Mach number can be less than 1. It is found that a more discerning use of data along with an empirical value for the polytropic index can raise the distribution of downstream to upstream entropy ratios to a more acceptable level. However, it is also realised that many of these shocks are at the very weakest end of the spectrum and associated phenomena may also contribute to the explanation of these results.

  20. Petrological evolution of subducted rodingite from seafloor metamorphism to dehydration of enclosing antigorite-serpentinite (Cerro del Almirez massif, southern Spain)

    Science.gov (United States)

    Laborda-López, Casto; López Sánchez-Vizcaíno, Vicente; Marchesi, Claudio; Gómez-Pugnaire, María Teresa; Garrido, Carlos J.; Jabaloy-Sánchez, Antonio; Padrón-Navarta, José Alberto

    2016-04-01

    Rodingites are common rocks associated with serpentinites in exhumed terrains that experienced subduction and high pressure metamorphism. However, the response of these rocks to devolatilization and redox reactions in subduction settings is not well constrained. In the Cerro del Almirez ultramafic massif (southern Spain) rodingites constitute about 1-2% of the total volume of exposed rocks. Metarodingites are enclosed in antigorite-serpentinite and chlorite-harzburgite separated by a transitional zone that represents the front of prograde serpentinite-dehydration in a paleo-subduction setting (Padrón-Navarta et al., 2011). Metarodingites occur as boudin lenses, 1 to 20 m in length and 30 cm to 2 m in thickness. During serpentinization of peridotite host rocks, dolerites and basalts precursor of rodingites underwent intense seafloor metasomatism, causing the enrichment in Ca and remobilization of Na and K. Subsequent metamorphism during subduction transformed the original igneous and seafloor metamorphic mineralogy into an assemblage of garnet (Ti-rich hydrogrossular), diopside, chlorite, and epidote. During prograde metamorphism, garnet composition changed towards higher andradite contents. High-pressure transformation of enclosing antigorite-serpentinite to chlorite-harzburgite released fluids which induced breakdown of garnet to epidote in metarodingites. Ti liberation by this latter reaction produced abundant titanite. Released fluids also triggered the formation of amphibole by alkalis addition. Highly recrystallized metarodingites in chlorite-harzburgite present a new generation of idiomorphic garnet with composition equal to 10-30% pyrope, 30-40% grossular and 35-55% almandine + spessartine. This garnet has titanite inclusions in the core and rutile inclusions in the rim. The contact between metarodingites and ultramafic rocks consists of a metasomatic zone (blackwall) with variable thickness (7 to 40 cm) constituted by chlorite, diopside, and titanite

  1. Eclogite-facies metamorphism in impure marble from north Qaidam orogenic belt: Geodynamic implications for early Paleozoic continental-arc collision

    Science.gov (United States)

    Chen, Xin; Xu, Rongke; Schertl, Hans-Peter; Zheng, Youye

    2018-06-01

    In the North Qaidam ultrahigh-pressure (UHP) metamorphic belt, impure marble and interbedded eclogite represent a particular sedimentary provenance and tectonic setting, which have important implications for a controversial problem - the dynamic evolution of early Paleozoic subduction-collision complexes. In this contribution, detailed field work, mineral chemistry, and whole-rock geochemistry are presented for impure marble to provide the first direct evidence for the recycling of carbonate sediments under ultrahigh-pressures during subduction and collision in the Yuka terrane, in the North Qaidam UHP metamorphic belt. According to conventional geothermobarometry, pre-peak subduction to 0.8-1.3 GPa/485-569 °C was followed by peak UHP metamorphism at 2.5-3.3 GPa/567-754 °C and cooling to amphibolite facies conditions at 0.6-0.7 GPa/571-589 °C. U-Pb dating of zircons from impure marble reveals a large group with ages ranging from 441 to 458 Ma (peak at 450 Ma), a smaller group ranging from 770 to 1000 Ma (peak at 780 Ma), and minor >1.8 Ga zircon aged ca. 430 Ma UHP metamorphism. The youngest detrital zircons suggest a maximum depositional age of ca. 442 Ma and a burial rate of ca. 1.0-1.1 cm/yr when combined with P-T conditions and UHP metamorphic age. The REE and trace element patterns of impure marble with positive Sr and U anomalies, negative high field strength elements (Nb, Ta, Zr, Hf, and Ti), and Ce anomalies imply that the marble had a marine limestone precursor. Impure marble intercalated with micaschist and eclogite was similar to limestone and siltstone protoliths deposited in continental fore-arc or arc setting with basic volcanic activity. Therefore, the Yuka terrane most likely evolved in a continental island arc setting during the Paleozoic. These data suggest that metasediments were derived from a mixture of Proterozoic continental crust and juvenile early Paleozoic oceanic and/or island arc crust. In addition, their protoliths were likely

  2. Reaction induced nucleation and growth v. grain coarsening in contact metamorphic, impure carbonates

    DEFF Research Database (Denmark)

    Berger, Alfons; Brodhag, Sabine; Herwegh, Marco

    2010-01-01

    aureole of the Adamello pluton (N-Italy). As a function of increasing distance from the pluton contact, the investigated samples have peak metamorphic temperatures ranging from the stability field of diopside/tremolite down to diagenetic conditions. All samples consist of calcite as the dominant matrix...

  3. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiansheng; Yang, Dangguo; Wu, Junqiang [High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000 (China); Luo, Xisheng, E-mail: xluo@ustc.edu.cn [Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026 (China)

    2015-06-15

    The interaction between a cylindrical inhomogeneity and a weak planar shock wave is investigated experimentally and numerically, and special attention is given to the wave patterns and vortex dynamics in this scenario. A soap-film technique is realized to generate a well-controlled discontinuous cylinder (SF{sub 6} surrounded by air) with no supports or wires in the shock-tube experiment. The symmetric evolving interfaces and few disturbance waves are observed in a high-speed schlieren photography. Numerical simulations are also carried out for a detailed analysis. The refracted shock wave inside the cylinder is perturbed by the diffracted shock waves and divided into three branches. When these shock branches collide, the shock focusing occurs. A nonlinear model is then proposed to elucidate effects of the wave patterns on the evolution of the cylinder. A distinct vortex pair is gradually developing during the shock-cylinder interaction. The numerical results show that a low pressure region appears at the vortex core. Subsequently, the ambient fluid is entrained into the vortices which are expanding at the same time. Based on the relation between the vortex motion and the circulation, several theoretical models of circulation in the literature are then checked by the experimental and numerical results. Most of these theoretical circulation models provide a reasonably good prediction of the vortex motion in the present configuration.

  4. Sc, Y, La-Lu. Rare earth elements. Vol. A 6a. Y, La, and the lanthanoids. Geochemistry: Sedimentary cycle. Metamorphic cycle. 8. rev. ed

    Energy Technology Data Exchange (ETDEWEB)

    Ditz, R; Sarbas, B; Schubert, P; Toepper, W

    1988-01-01

    The present volume 'Rare Earth Elements' A 6a describes origin, mode of occurrence, and behavior of Y and RE elements in the sedimentary and metamorphic cycles, and completes the series of volumes describing cosmo- and geochemistry of these elements. In the chapter 'Sedimentary Cycle', the behavior of Y and RE during the weathering process is first outlined under both marine and terrestrial conditions, including a short compilation for migration and precipitation in surficial weathering and oxidation zones. The main part of the chapter treats, in addition to the mode of occurrence, predominantly the distribution of Y and RE in the different types of sedimentary rocks in relation to genetic processes (comprising physical and/or spatial factors such as geological age of the deposition). A concluding part gives a description of mobilization, migration, and precipitation of Y and RE during the diagenetic transformation of sediments, especially in relation to the various types of ferromanganese concretions. In the chapter 'Metamorphic Cycle', the first, extensive part gives examples of mode of occurrence and behavior of Y and RE during both the contact-metamorphic and prograde and retrograde regional-metamorphic processes affecting sedimentary and igeneous source rocks. The second part briefly describes behaviour of Y and RE during ultrametamorphism of metamorphic rocks, and during metamorphic processes in connection with special types of geologic events (as, e.g., subduction of crustal material into the earth's mantle and impact of extraterrestrial material). (orig.) With 4 figs.

  5. Significance of production of peptide leukotrienes in murine traumatic shock

    International Nuclear Information System (INIS)

    Craft, D.V.; Lefer, D.J.; Hock, C.E.; Lefer, A.M.

    1986-01-01

    The authors studied the formation of a leukotriene metabolite in plasma and bile during traumatic shock. Anesthetized rats subjected to Noble-Collip drum trauma developed a lethal shock state characterized by a survival time of 1.9 +/- 0.3h, a 4.5-fold increase in plasma cathepsin D activity, and a reduction in mean arterial blood pressure to 45 +/- 2 mmHg compared with 108 +/- 5 mmHg in sham-shock controls. Plasma and bile samples were analyzed by reverse-phase high-pressure liquid chromatography (HPLC) for peptide leukotrienes, and their retention times were confirmed by co-elution with radioactive standards, radioimmunoassay (RIA), and UV spectrophotometry. No leukotrienes or metabolites were found in plasma. The major peptide leukotriene from bile was eluted between LTC 4 and LTD 4 and corresponds to a metabolite of LTE 4 , N-acetyl-LTE 4 , which is also produced during endotoxin shock. The metabolite increased nearly sevenfold in traumatic shock compared with sham trauma. The identity of the metabolite was confirmed by UV scan, which revealed a spectrum consistent with a peptide leukotriene and similar to that of previously reported spectra for N-acetyl-LTE 4 . In conclusion, peptide leukotrienes are rapidly cleared from the blood and appear in the bile as N-acetyl-LTE 4 , a metabolite of the peptide leukotrienes. These findings support a role of the peptide leukotrienes in the pathogenesis of traumatic shock

  6. Shock Mechanism Analysis and Simulation of High-Power Hydraulic Shock Wave Simulator

    Directory of Open Access Journals (Sweden)

    Xiaoqiu Xu

    2017-01-01

    Full Text Available The simulation of regular shock wave (e.g., half-sine can be achieved by the traditional rubber shock simulator, but the practical high-power shock wave characterized by steep prepeak and gentle postpeak is hard to be realized by the same. To tackle this disadvantage, a novel high-power hydraulic shock wave simulator based on the live firing muzzle shock principle was proposed in the current work. The influence of the typical shock characteristic parameters on the shock force wave was investigated via both theoretical deduction and software simulation. According to the obtained data compared with the results, in fact, it can be concluded that the developed hydraulic shock wave simulator can be applied to simulate the real condition of the shocking system. Further, the similarity evaluation of shock wave simulation was achieved based on the curvature distance, and the results stated that the simulation method was reasonable and the structural optimization based on software simulation is also beneficial to the increase of efficiency. Finally, the combination of theoretical analysis and simulation for the development of artillery recoil tester is a comprehensive approach in the design and structure optimization of the recoil system.

  7. Alfven shock trains

    International Nuclear Information System (INIS)

    Malkov, M.A.; Kennel, C.F.; Wu, C.C.; Pellat, R.; Shapiro, V.D.

    1991-01-01

    The Cohen--Kulsrud--Burgers equation (CKB) is used to consider the nonlinear evolution of resistive, quasiparallel Alfven waves subject to a long-wavelength, plane-polarized, monochromatic instability. The instability saturates by nonlinear steepening, which proceeds until the periodic waveform develops an interior scale length comparable to the dissipation length; a fast or an intermediate shock then forms. The result is a periodic train of Alfven shocks of one or the other type. For propagation strictly parallel to the magnetic field, there will be two shocks per instability wavelength. Numerical integration of the time-dependent CKB equation shows that an initial, small-amplitude growing wave asymptotes to a stable, periodic stationary wave whose analytic solution specifies how the type of shock embedded in the shock train, and the amplitude and speed of the shock train, depend on the strength and phase of the instability. Waveforms observed upstream of the Earth's bowshock and cometary shocks resemble those calculated here

  8. Heat production rate from radioactive elements in igneous and metamorphic rocks in Eastern Desert, Egypt

    International Nuclear Information System (INIS)

    Abbady, Adel G.E.; El-Arabi, A.M.; Abbady, A.

    2006-01-01

    Radioactive heat-production data of Igneous and Metamorphic outcrops in the Eastern Desert are presented. Samples were analysed using a low level gamma-ray spectrometer (HPGe) in the laboratory. A total of 205 rock samples were investigated, covering all major rock types of the area. The heat-production rate of igneous rocks ranges from 0.11 (basalt) to 9.53 μW m -3 (granite). In metamorphic rocks it varies from 0.28 (serpentinite ) to 0.91 μW m -3 (metagabbro). The contribution due to U is about 51%, as that from Th is 31% and 18% from K. The corresponding values in igneous rocks are 76%, 19% and 5%, respectively. The calculated values showed good agreement with global values except in some areas containing granites

  9. Heat production rate from radioactive elements in igneous and metamorphic rocks in eastern desert, Egypt

    International Nuclear Information System (INIS)

    Abbady, A G.E.; Arabi, A.M.; Abbay, A.

    2005-01-01

    Radioactive heat - production data of igneous and metamorphic rocks cropping out from the eastern desert are presented. Samples were analysed using low level gamma-ray spectrometer (HPGe) in the laboratory. A total of 205 rock samples were investigated, covering all major rock types of the area. The heat-production rate of igneous rocks ranges from 0.11 (basalt) to 9.53 Μ Wm-3 (granite). In metamorphic rocks it varies from 0.28 (serpentinite) to 0.91 (metagabroo) Μ W.m-3. The contribution due to U is about (51%), whereas that of Th (31%) and (18%) by K. The corresponding values in igneous rocks are 76%: 19%: 5%, respectively. The calculated values showed good agreement with global values expect in some areas contained granite rocks

  10. Alkali control of high-grade metamorphism and granitization

    Directory of Open Access Journals (Sweden)

    Oleg G. Safonov

    2014-09-01

    Full Text Available We review petrologic observations of reaction textures from high-grade rocks that suggest the passage of fluids with variable alkali activities. Development of these reaction textures is accompanied by regular compositional variations in plagioclase, pyroxenes, biotite, amphibole and garnet. The textures are interpreted in terms of exchange and net-transfer reactions controlled by the K and Na activities in the fluids. On the regional scale, these reactions operate in granitized, charnockitized, syenitized etc. shear zones within high-grade complexes. Thermodynamic calculations in simple chemical systems show that changes in mineral assemblages, including the transition from the hydrous to the anhydrous ones, may occur at constant pressure and temperature due only to variations in the H2O and the alkali activities. A simple procedure for estimating the activity of the two major alkali oxides, K2O and Na2O, is implemented in the TWQ software. Examples of calculations are presented for well-documented dehydration zones from South Africa, southern India, and Sri Lanka. The calculations have revealed two end-member regimes of alkalis during specific metamorphic processes: rock buffered, which is characteristic for the precursor rocks containing two feldspars, and fluid-buffered for the precursor rocks without K-feldspar. The observed reaction textures and the results of thermodynamic modeling are compared with the results of available experimental studies on the interaction of the alkali chloride and carbonate-bearing fluids with metamorphic rocks at mid-crustal conditions. The experiments show the complex effect of alkali activities in the fluid phase on the mineral assemblages. Both thermodynamic calculations and experiments closely reproduce paragenetic relations theoretically predicted by D.S. Korzhinskii in the 1940s.

  11. Spherical strong-shock generation for shock-ignition inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Theobald, W.; Seka, W.; Lafon, M.; Anderson, K. S.; Hohenberger, M.; Marshall, F. J.; Michel, D. T.; Solodov, A. A.; Stoeckl, C.; Edgell, D. H.; Yaakobi, B.; Shvydky, A. [Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Nora, R.; Betti, R. [Laboratory for Laser Energetics and Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Department of Mechanical Engineering and Department of Physics, University of Rochester, Rochester, New York 14623 (United States); Casner, A.; Reverdin, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Ribeyre, X.; Vallet, A. [Université de Bordeaux-CNRS-CEA, CELIA (Centre Lasers Intenses et Applications) UMR 5107 F-33400 Talence (France); Peebles, J.; Beg, F. N. [University of California, San Diego, La Jolla, California 92093 (United States); and others

    2015-05-15

    Recent experiments on the Laboratory for Laser Energetics' OMEGA laser have been carried out to produce strong shocks in solid spherical targets with direct laser illumination. The shocks are launched at pressures of several hundred Mbars and reach Gbar upon convergence. The results are relevant to the validation of the shock-ignition scheme and to the development of an OMEGA experimental platform to study material properties at Gbar pressures. The experiments investigate the strength of the ablation pressure and the hot-electron production at incident laser intensities of ∼2 to 6 × 10{sup 15 }W/cm{sup 2} and demonstrate ablation pressures exceeding 300 Mbar, which is crucial to developing a shock-ignition target design for the National Ignition Facility. The timing of the x-ray flash from shock convergence in the center of the solid plastic target is used to infer the ablation and shock pressures. Laser–plasma instabilities produce hot-electrons with a moderate temperature (<100 keV). The instantaneous conversion efficiencies of laser power into hot-electron power reached up to ∼15% in the intensity spike. The large amount of hot electrons is correlated with an earlier x-ray flash and a strong increase in its magnitude. This suggests that hot electrons contribute to the augmentation of the shock strength.

  12. Bubbles with shock waves and ultrasound: a review.

    Science.gov (United States)

    Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong

    2015-10-06

    The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed 'acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics-bubble interactions, with a focus on shock wave-bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the 'resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave-bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead.

  13. Is shock index associated with outcome in children with sepsis/septic shock?*.

    Science.gov (United States)

    Yasaka, Yuki; Khemani, Robinder G; Markovitz, Barry P

    2013-10-01

    To investigate the association between PICU shock index (the ratio of heart rate to systolic blood pressure) and PICU mortality in children with sepsis/septic shock. To explore cutoff values for shock index for ICU mortality, how change in shock index over the first 6 hours of ICU admission is associated with outcome, and how the use of vasoactive therapy may affect shock index and its association with outcome. Retrospective cohort. Single-center tertiary PICU. Five hundred forty-four children with the diagnosis of sepsis/septic shock. None. From January 2003 to December 2009, 544 children met International Pediatric Sepsis Consensus Conference of 2005 criteria for sepsis/septic shock. Overall mortality was 23.7%. Among all patients, hourly shock index was associated with mortality: odds ratio of ICU mortality at 0 hour, 1.08, 95% CI (1.04-1.12); odds ratio at 1 hour, 1.09 (1.04-1.13); odds ratio at 2 hours, 1.09 (1.05-1.13); and odds ratio at 6 hours, 1.11 (1.06-1.15). When stratified by age, early shock index was associated with mortality only in children 1-3 and more than or equal to 12 years old. Area under the receiver operating characteristic curve in age 1-3 and more than or equal to 12 years old for shock index at admission was 0.69 (95% CI, 0.58-0.80) and 0.62 (95% CI, 0.52-0.72) respectively, indicating a fair predictive marker. Although higher shock index was associated with increased risk of mortality, there was no particular cutoff value with adequate positive or negative likelihood ratios to identify mortality in any age group of children. The improvement of shock index in the first 6 hours of ICU admission was not associated with outcome when analyzed in all patients. However, among patients whose shock index were above the 50th percentile at ICU admission for each age group, improvement of shock index was associated with lower ICU mortality in children between 1-3 and more than or equal to 12 years old (p = 0.02 and p = 0.03, respectively). When

  14. Upstream region, foreshock and bow shock wave at Halley's Comet from plasma electron measurements

    International Nuclear Information System (INIS)

    Anderson, K.A.; Carlson, C.W.; Curtis, D.W.

    1986-01-01

    Halley plasma electron parameters from 2.7 million km from the comet nucleus to the bow shock wave at 1.1 million km and beyond are surveyed. The features of the electron foreshock lying outside the shock to a distance of 230,000 km are described. It is a region of intense solar wind-comet plasma interaction in which energetic electrons are prominent. Several spikes of electrons whose energies extend to 2.5 keV appear in front of the shock. These energetic electrons may be accelerated in the same way electrons are accelerated at the Earth's bow shock to energies of 1 to 10 keV. The direction of the electron bulk flow direction changes abruptly between 1920 and 1922 UT, and the flow speed begins a sharp decline at the same time. It is suggested that the spacecraft entered the bow shock wave between 1920 and 1922 UT. Electron density variations at Halley are very much smaller than those at Giacobini-Zinner

  15. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  16. Cosmic-ray shock acceleration in oblique MHD shocks

    Science.gov (United States)

    Webb, G. M.; Drury, L. OC.; Volk, H. J.

    1986-01-01

    A one-dimensional, steady-state hydrodynamical model of cosmic-ray acceleration at oblique MHD shocks is presented. Upstream of the shock the incoming thermal plasma is subject to the adverse pressure gradient of the accelerated particles, the J x B force, as well as the thermal gas pressure gradient. The efficiency of the acceleration of cosmic-rays at the shock as a function of the upstream magnetic field obliquity and upstream plasma beta is investigated. Astrophysical applications of the results are briefly discussed.

  17. On the stability of bow shocks generated by red supergiants: the case of IRC -10414

    Science.gov (United States)

    Meyer, D. M.-A.; Gvaramadze, V. V.; Langer, N.; Mackey, J.; Boumis, P.; Mohamed, S.

    2014-03-01

    In this Letter, we explore the hypothesis that the smooth appearance of bow shocks around some red supergiants (RSGs) might be caused by the ionization of their winds by external sources of radiation. Our numerical simulations of the bow shock generated by IRC -10414 (the first-ever RSG with an optically detected bow shock) show that the ionization of the wind results in its acceleration by a factor of 2, which reduces the difference between the wind and space velocities of the star and makes the contact discontinuity of the bow shock stable for a range of stellar space velocities and mass-loss rates. Our best-fitting model reproduces the overall shape and surface brightness of the observed bow shock and suggests that the space velocity and mass-loss rate of IRC -10414 are ≈50 km s-1 and ≈10-6 M⊙ yr-1, respectively, and that the number density of the local interstellar medium is ≈3 cm-3. It also shows that the bow shock emission comes mainly from the shocked stellar wind. This naturally explains the enhanced nitrogen abundance in the line-emitting material, derived from the spectroscopy of the bow shock. We found that photoionized bow shocks are ≈15-50 times brighter in optical line emission than their neutral counterparts, from which we conclude that the bow shock of IRC -10414 must be photoionized.

  18. Mineral chemistry of garnet in pegmatite and metamorphic rocks in the Hamedan area

    Directory of Open Access Journals (Sweden)

    Ahmad Ahmadi Khalaji

    2015-10-01

    Full Text Available Introduction The area of this study is located near Hamadan within the Sanandaj - Sirjan tectonic zone. In the Hamadan area, consisting mainly of Mesozoic plutonic and metamorphic rocks, aplites and pegmatites locally contain garnets.(Baharifar et al., 2004, Amidi and Majidi, 1977; Torkian, 1995. Garnet-bearing schists and hornfelses in the area are products of regional metamorphism shown by slate and phyllite (Baharifar, 2004. In this investigation the distribution of elements in garnet in different rock type was studied to determine their mineral types and conditions of formation. Garnet samples from igneous and metamorphic rocks were analyzed by electron microprobe (EMPA, the results of which are presented in this article. Materials and methods Thirty-five samples were selected for thin section preparation and twenty thin-polished sections were prepared for mineralogical and microprobe analysis. Thin sections of garnet-bearing igneous (pegmatite and metamorphic rocks (schist and hornfels were studied by polarizing microscope. Chemical analysis was performed on the garnets (38 points using a Caimeca SX100 electron microprobe at an acceleration voltage of 15 kV and electric current of 15 nA in the Mineral Processing Research Center, Iran. Separation of iron (II and Fe (III was calculated by Droop’s method (1987 and the structural formulas of the garnets were calculated using 24 oxygens to determine the relative proportions of the end-members using the mineral spreadsheet software of Preston and Still (2001. Results Based on the analyses, almandine (Fe - Al garnet and spessartine (Mn - Al garnet are the principal types of the (Kamari metamorphic and (Abaro pegmatitic garnets, that belong to the well-known pyralspite garnet group. Chemical zoning patterns of the garnets in the metamorphic rocks (schists differ from those in the igneous rocks (pegmatite, showing different compositions from core to rim. Petrographic evidence such as: co

  19. New evidence for an old idea: Geochronological constraints for a paired metamorphic belt in the central European Variscides

    Science.gov (United States)

    Will, T. M.; Schmädicke, E.; Ling, X.-X.; Li, X.-H.; Li, Q.-L.

    2018-03-01

    New geochronological data reveal a prolonged tectonothermal evolution of the Variscan Odenwald-Spessart basement, being part of the Mid-German Crystalline Zone in central Europe. We report the results from (i) secondary ion mass spectrometry (SIMS) U-Pb dating of zircon, rutile and monazite, (ii) SIMS zircon oxygen isotope analyses, (iii) laser ablation-multicollector-inductively coupled plasma mass spectrometry (LA-MC-ICPMS) zircon Lu-Hf isotope analyses and, (iv) LA-ICPMS zircon and rutile trace element data for a suite of metamorphic rocks (five amphibolite- and eclogite-facies mafic meta-igneous rocks and one granulite-facies paragneiss). The protoliths of the mafic rocks formed from juvenile as well as depleted mantle sources in distinct tectonic environments at different times. Magmatism took place at a divergent oceanic margin (possibly in a back-arc setting) at 460 Ma, in an intraoceanic basin at ca. 445 Ma and at a continental margin at 329 Ma. Regardless of lithology, zircon in eclogite, amphibolite and high-temperature paragneiss provide almost identical Carboniferous ages of 333.7 ± 4.1 Ma (eclogite), 329.1 ± 1.8 to 328.4 ± 8.9 Ma (amphibolite), and 334.0 ± 2.0 Ma (paragneiss), respectively. Rutile yielded ages of 328.6 ± 4.7 and 321.4 ± 7.0 Ma in eclogite and amphibolite, and monazite in high-temperature paragneiss grew at 330.1 ± 2.4 Ma (all ages are quoted at the 2σ level). The data constrain coeval high-pressure eclogite- and high-temperature granulite-facies metamorphism of the Odenwald-Spessart basement at ca. 330 Ma. Amphibolite-facies conditions were attained shortly afterwards. The lower plate eclogite formed in a fossil subduction zone and the upper plate high-temperature, low-pressure rocks are the remains of an eroded Carboniferous magmatic arc. The close proximity of tectonically juxtaposed units of such radically different metamorphic conditions and thermal gradients is characteristic for a paired metamorphic belt sensu Miyashiro

  20. Preliminary isotopic data from some amphibolites of the metamorphic basement of the Colombian Central Cordillera

    International Nuclear Information System (INIS)

    Correa M, Ana Maria; Martens K, Uwe; Ordonez C, Oswaldo; Pimentel, Marcio M; Restrepo A, Jorge Julian

    2001-01-01

    Various amphibolite bodies are exposed in the Antioquia Department, Colombia, mainly around the cities of Medellin and El Retiro. Two types of amphibolites occur in the study area; the first one is considered as part of an ophiolite complex and the second one correspond to amphibolites associated to metasediments from the basement of the Colombian Central Cordillera. The present work refers to these last ones. The relationships between amphibolite bodies and other lythological units are the following ones: Intercalation of amphibolites layers with metasediments in the unit migmatites and granulites of El Retiro. The Medellin amphibolites are conformably overlaid by the paragneisses of Las Penas. The granodiorite body represented by the Antioquian Batolith is intrusive in the metamorphic rocks and the Medellin Dunites unit is in thrust fault contact with Medellin amphibolites. These amphibolites have been studied by Botero (1963), Gonzalez (1976 and 1980), Restrepo and Toussaint (1984), Ardila (1986), Restrepo (1986), Rendon (1999) and, Correa and Martens (2000). Available radiometric ages on the amphibolites come from former works by Restrepo y Toussaint (1978), Restrepo et al. (1991) that presented K-Ar ages in amphiboles and a Rb-Sr isochron which yielded a Cretaceous age that they interpreted as a metamorphic age. This work presents new evidences, obtained from field work, petrography, rock geochemistry and specially the first isotopic data on these amphibolites from the Central Cordillera Metamorphic Basement (au)

  1. Universal shocks in the Wishart random-matrix ensemble.

    Science.gov (United States)

    Blaizot, Jean-Paul; Nowak, Maciej A; Warchoł, Piotr

    2013-05-01

    We show that the derivative of the logarithm of the average characteristic polynomial of a diffusing Wishart matrix obeys an exact partial differential equation valid for an arbitrary value of N, the size of the matrix. In the large N limit, this equation generalizes the simple inviscid Burgers equation that has been obtained earlier for Hermitian or unitary matrices. The solution, through the method of characteristics, presents singularities that we relate to the precursors of shock formation in the Burgers equation. The finite N effects appear as a viscosity term in the Burgers equation. Using a scaling analysis of the complete equation for the characteristic polynomial, in the vicinity of the shocks, we recover in a simple way the universal Bessel oscillations (so-called hard-edge singularities) familiar in random-matrix theory.

  2. Shock structure in continuum models of gas dynamics: stability and bifurcation analysis

    International Nuclear Information System (INIS)

    Simić, Srboljub S

    2009-01-01

    The problem of shock structure in gas dynamics is analysed through a comparative study of two continuum models: the parabolic Navier–Stokes–Fourier model and the hyperbolic system of 13 moments equations modeling viscous, heat-conducting monatomic gases within the context of extended thermodynamics. When dissipative phenomena are neglected these models both reduce to classical Euler's equations of gas dynamics. The shock profile solution, assumed in the form of a planar travelling wave, reduces the problem to a system of ordinary differential equations, and equilibrium states appear to be stationary points of the system. It is shown that in both models an upstream equilibrium state suffers an exchange of stability when the shock speed crosses the critical value which coincides with the highest characteristic speed of the Euler's system. At the same time a downstream equilibrium state could be seen as a steady bifurcating solution, while the shock profile represents a heteroclinic orbit connecting the two stationary points. Using centre manifold reduction it is demonstrated that both models, although mathematically different, obey the same transcritical bifurcation pattern in the neighbourhood of the bifurcation point corresponding to the critical value of shock speed, the speed of sound

  3. Electrical and structural characteristics of metamorphic In0.38Al0.62As/In0.37Ga0.63As/In0.38Al0.62As HEMT nanoheterostructures

    International Nuclear Information System (INIS)

    Galiev, G. B.; Klimov, E. A.; Klochkov, A. N.; Maltsev, P. P.; Pushkarev, S. S.; Zhigalina, O. M.; Imamov, R. M.; Kuskova, A. N.; Khmelenin, D. N.

    2013-01-01

    The influence of the metamorphic buffer design and epitaxial growth conditions on the electrical and structural characteristics of metamorphic In 0.38 Al 0.62 As/In 0.37 Ga 0.63 As/In 0.38 Al 0.62 As high electron mobility transistor (MHEMT) nanoheterostructures has been investigated. The samples were grown on GaAs(100) substrates by molecular beam epitaxy. The active regions of the nanoheterostructures are identical, while the metamorphic buffer In x Al 1−x As is formed with a linear or stepwise (by Δ x = 0.05) increase in the indium content over depth. It is found that MHEMT nanoheterostructures with a step metamorphic buffer have fewer defects and possess higher values of two-dimensional electron gas mobility at T = 77 K. The structures of the active region and metamorphic buffer have been thoroughly studied by transmission electron microscopy. It is shown that the relaxation of metamorphic buffer in the heterostructures under consideration is accompanied by the formation of structural defects of the following types: dislocations, microtwins, stacking faults, and wurtzite phase inclusions several nanometers in size

  4. Metaultramafic schists and dismembered ophiolites of the Ashe Metamorphic Suite of northwestern North Carolina, USA

    Science.gov (United States)

    Raymond, Loren A.; Merschat, Arthur J.; Vance, R. Kelly

    2016-01-01

    Metaultramafic rocks (MUR) in the Ashe Metamorphic Suite (AMS) of northwestern North Carolina include quartz ± feldspar-bearing QF-amphibolites and quartz-deficient, locally talc-, chlorite-, and/or Mg-amphibole-bearing TC-amphibolites. Some workers divide TC-amphibolites into Todd and Edmonds types, based on mineral and geochemical differences, and we provisionally add a third type – olivine ± pyroxene-rich, Rich Mountain-type rocks. Regionally, MUR bodies range from equant, Rich Mountain- to highly elongate, Todd-TC-amphibolite-type bodies. The MURs exhibit three to five mineral associations containing assemblages with olivine, anthophyllitic amphibole, Mg-hornblende, Mg-actinolite, cummingtonite, and serpentine representing decreasing eclogite to greenschist facies grades of metamorphism over time. MUR protoliths are difficult to determine. Southwestern MUR bodies have remnant olivine ± pyroxene-rich assemblages representing ultrabasic-basic, dunite-peridotite-pyroxenite protoliths. Northeastern TC-amphibolite MURs contain hornblende and actinolitic amphiboles plus chlorites – aluminous and calcic assemblages suggesting to some that metasomatism of basic, QF-amphibolites yields all TC-amphibolites. Yet MgO-CaO-Al2O3 and trace element chemistries of many TC-amphibolites resemble compositions of plagioclase peridotites. We show that a few AMS TC-amphibolites had basaltic/gabbroic protoliths, while presenting arguments opposing application of the metasomatic hypothesis to all TC-amphibolites. We establish that MUR bodies are petrologically heterolithic and that TC-amphibolites are in contact with many rock types; that those with high Cr, Ni, and Mg have olivine- or pyroxene-dominated protoliths; that most exhibit three or more metamorphic mineral associations; and that contacts thought to be metasomatic are structural. Clearly, different MUR bodies have different chemistries representing various protoliths, and have different mineral assemblages, reflecting

  5. Optimization of structural and growth parameters of metamorphic InGaAs photovoltaic converters grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Rybalchenko, D. V.; Mintairov, S. A.; Salii, R. A.; Shvarts, M. Z.; Timoshina, N. Kh.; Kalyuzhnyy, N. A., E-mail: nickk@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-01-15

    Metamorphic Ga{sub 0.76}In{sub 0.24}As heterostructures for photovoltaic converters are grown by the MOCVD (metal–organic chemical vapor deposition) technique. It is found that, due to the valence-band offset at the p-In{sub 0.24}Al{sub 0.76}As/p-In{sub 0.24}Ga{sub 0.76}As (wide-gap window/emitter) heterointerface, a potential barrier for holes arises as a result of a low carrier concentration in the wide-gap material. The use of an InAlGaAs solid solution with an Al content lower than 40% makes it possible to raise the hole concentration in the widegap window up ~9 × 10{sup 18} cm{sup –3} and completely remove the potential barrier, thereby reducing the series resistance of the device. The parameters of an GaInAs metamorphic buffer layer with a stepwise In content profile are calculated and its epitaxial growth conditions are optimized, which improves carrier collection from the n-GaInAs base region and provides a quantum efficiency of 83% at a wavelength of 1064 nm. Optimization of the metamorphic heterostructure of the photovoltaic converter results in that its conversion efficiency for laser light with a wavelength of 1064 nm is 38.5%.

  6. Unified Singularity Modeling and Reconfiguration of 3rTPS Metamorphic Parallel Mechanisms with Parallel Constraint Screws

    Directory of Open Access Journals (Sweden)

    Yufeng Zhuang

    2015-01-01

    Full Text Available This paper presents a unified singularity modeling and reconfiguration analysis of variable topologies of a class of metamorphic parallel mechanisms with parallel constraint screws. The new parallel mechanisms consist of three reconfigurable rTPS limbs that have two working phases stemming from the reconfigurable Hooke (rT joint. While one phase has full mobility, the other supplies a constraint force to the platform. Based on these, the platform constraint screw systems show that the new metamorphic parallel mechanisms have four topologies by altering the limb phases with mobility change among 1R2T (one rotation with two translations, 2R2T, and 3R2T and mobility 6. Geometric conditions of the mechanism design are investigated with some special topologies illustrated considering the limb arrangement. Following this and the actuation scheme analysis, a unified Jacobian matrix is formed using screw theory to include the change between geometric constraints and actuation constraints in the topology reconfiguration. Various singular configurations are identified by analyzing screw dependency in the Jacobian matrix. The work in this paper provides basis for singularity-free workspace analysis and optimal design of the class of metamorphic parallel mechanisms with parallel constraint screws which shows simple geometric constraints with potential simple kinematics and dynamics properties.

  7. Coupling of Oceanic and Continental Crust During Eocene Eclogite-Facies Metamorphism: Evidence From the Monte Rosa Nappe, Western Alps, Italy

    Science.gov (United States)

    Lapen, T. J.; Johnson, C. M.; Baumgartner, L. P.; Skora, S.; Mahlen, N. J.; Beard, B. L.

    2006-12-01

    Subduction of continental crust to HP-UHP metamorphic conditions requires overcoming density contrasts that are unfavorable to deep burial, whereas exhumation of these rocks can be reasonably explained through buoyancy-assisted transport in the subduction channel to more shallow depths. In the western Alps, both continental and oceanic lithosphere has been subducted to eclogite-facies metamorphic conditions. The burial and exhumation histories of these sections of lithosphere bear directly on the dynamics of subduction and the stacking of units within the subduction channel. We address the burial history of the continental crust with high precision U-Pb rutile and Lu-Hf garnet geochronology of the eclogite-facies Monte Rosa nappe (MR), western Alps, Italy. U-Pb rutile ages from quartz-carbonate-white mica-rutile veins that are hosted within eclogite and schist of the MR, Gressoney Valley, Italy, indicate that it was at eclogite-facies metamorphic conditions at 42.6 +/- 0.6 Ma. The sample area (Indren glacier, Furgg zone; Dal Piaz, 2001) consists of eclogite boudins that are surrounded by micaceous schist. Associated with the eclogite and schist are quartz-carbonate-white mica-rutile veins that formed in tension cracks in the eclogite and along the contact between eclogite and surrounding schist. Intrusion of the veins occurred at eclogite-facies metamorphic conditions (480-570°C, >1.3-1.4 GPa) based on textural relations, oxygen isotope thermometry, and geothermobarometry. Lu-Hf geochronology of garnet from a chloritoid-talc-garnet-phengite-quartz-calcite-pyrite - chalcopyrite bearing boudin within talc-chloritoid whiteschists of the MR, Val d'Ayas, Italy (Chopin and Monie, 1984; Pawlig, 2001) yields an age of 40.54 +/- 0.36 Ma. The talc-chloritoid whiteschists from the area record pressures and temperatures of 1.6-2.4 GPa and 500-530°C (Chopin and Monie, 1984; Le Bayon et al., 2006) indicating near UHP metamorphic conditions. Based on the age, P-T, and textural

  8. Ediacaran ( 620 Ma) high grade regional metamorphism in the northern Arabian Nubian Shield: U/Th-Pb monazite ages of the Elat schist

    Science.gov (United States)

    Elisha, Bar; Katzir, Yaron; Kylander-Clark, Andrew

    2017-04-01

    Ediacaran times witnessed a hemisphere-scale orogenesis forming the extensive Pan-African mountain ranges and resulting in the final assembly of Gondwana supercontinent. The Elat metamorphic basement (S Israel) located at the northernmost tip of a major Pan-African orogenic suture, the Arabian Nubian Shield (ANS), comprises amphibolite facies schists and gneisses and was most likely shaped by this major continental collision. However the timing, number and duration of metamorphic events in Elat and elsewhere in the ANS are non-conclusive and a major emphasis was given to pre-Ediacaran island-arc related tectonics. This is mostly because U-Pb dating of zircon, widely used in Elat and elsewhere, is very successful in constraining the ages of the igneous and sedimentary protoliths, but is 'blind' to metamorphism at grades lower than granulite. Here U/Th-Pb dating of monazite, a precise chronometer of metamorphic mineral growth, is systematically applied to the Elat schist and unveils the tectono-metamorphic evolution of the Elat basement. Previous U-Pb dating of detrital zircon has shown that the sedimentary protoliths of the Elat schist are the oldest basement components (≥800 Ma), and detailed structural observations of the schists portrayed a complex deformation history including four successive phases (Shimron, 1972). The earliest three phases were defined as ductile and penetrative, but some of the available geochronological data apparently contradict field relations. In-situ analysis of metamorphic monazites by LASS (Laser Ablation Split Stream) involves simultaneous measurement of U/Th-Pb isotope ratios and REE contents in a single 10 μm sized grain or domain, thus allowing determining the age of specific texture and metamorphic assemblage. Monazite dating of the Elat schist yielded two concordant age clusters at 712±6 and 613±5 Ma. The corresponding REE patterns of the dated monazite grains indicate that porphyroblast growth, either garnet or staurolite

  9. Collisionless shock experiments with lasers and observation of Weibel instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.-S., E-mail: park1@llnl.gov; Huntington, C. M.; Fiuza, F.; Levy, M. C.; Pollock, B. B.; Remington, B. A.; Ross, J. S.; Ryutov, D. D.; Turnbull, D. P.; Weber, S. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Drake, R. P.; Kuranz, C. C. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Froula, D. H.; Rosenberg, M. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14636 (United States); Gregori, G.; Meinecke, J. [University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Koenig, M. [LULI, Ecole Polytechnique, Palaiseau (France); Kugland, N. L. [Lam Research Corporation, Fremont, California 94538 (United States); Lamb, D. Q.; Tzeferacos, P. [University of Chicago, Chicago, California 94538 (United States); and others

    2015-05-15

    Astrophysical collisionless shocks are common in the universe, occurring in supernova remnants, gamma ray bursts, and protostellar jets. They appear in colliding plasma flows when the mean free path for ion-ion collisions is much larger than the system size. It is believed that such shocks could be mediated via the electromagnetic Weibel instability in astrophysical environments without pre-existing magnetic fields. Here, we present laboratory experiments using high-power lasers and investigate the dynamics of high-Mach-number collisionless shock formation in two interpenetrating plasma streams. Our recent proton-probe experiments on Omega show the characteristic filamentary structures of the Weibel instability that are electromagnetic in nature with an inferred magnetization level as high as ∼1% [C. M. Huntington et al., “Observation of magnetic field generation via the weibel instability in interpenetrating plasma flows,” Nat. Phys. 11, 173–176 (2015)]. These results imply that electromagnetic instabilities are significant in the interaction of astrophysical conditions.

  10. Nitric oxide is not a negative regulator of metamorphic induction in the abalone Haliotis asinina

    Directory of Open Access Journals (Sweden)

    Nobuo eUeda

    2014-07-01

    Full Text Available Nitric oxide (NO is a second messenger molecule synthesized by the enzyme nitric oxide synthase (NOS that requires the molecular chaperone heat shock protein 90 (HSP90 for normal enzymatic activity. Past studies have revealed that both NO and HSP90 act as negative regulators (repressors of metamorphosis in a diverse range of marine invertebrates, including several molluscan species. Here, we test the role of NO in the metamorphic induction of a vetigastropod mollusc, the tropical abalone Haliotis asinina. Specifically, we 1 test the effects of NO-manipulating pharmacological agents, 2 measure the temporal expression of NOS and HSP90 genes through metamorphosis, and 3 assess the spatial expression of NOS and HSP90 in larvae. We find that inhibition of NOS reduces rates of metamorphosis, indicating that NO facilitates, rather than represses, induction of metamorphosis in H. asinina. The marked increase in NOS expression in putative sensory cells localized to the anterior foot of competent larvae is consistent with NO as an inductive molecule for metamorphosis. In contrast to NOS, HSP90 transcript abundance decreases at competence and there is no evidence of NOS and HSP90 transcript co-localization. This study provides the first evidence of NO as an inductive facilitator of molluscan metamorphosis. Our experimental data suggest that NO modulates signals derived from live inductive substrates via the larval foot to regulate metamorphosis. Inter-specific comparisons of spatial NOS expression in molluscs suggest that the localized pattern of NOS or its protein product is related to the regulatory action of NO in metamorphosis.

  11. Shock Producers and Shock Absorbers in the Crisis

    OpenAIRE

    Sinn, Hans-Werner

    2009-01-01

    It is not surprising that the U.S. has been by far the world’s largest shock producer in this crisis. The big shock absorbers on the other hand were Japan, Russia and Germany, whose exports shrank more than their imports.

  12. Shock loading predictions from application of indicial theory to shock-turbulence interactions

    Science.gov (United States)

    Keefe, Laurence R.; Nixon, David

    1991-01-01

    A sequence of steps that permits prediction of some of the characteristics of the pressure field beneath a fluctuating shock wave from knowledge of the oncoming turbulent boundary layer is presented. The theory first predicts the power spectrum and pdf of the position and velocity of the shock wave, which are then used to obtain the shock frequency distribution, and the pdf of the pressure field, as a function of position within the interaction region. To test the validity of the crucial assumption of linearity, the indicial response of a normal shock is calculated from numerical simulation. This indicial response, after being fit by a simple relaxation model, is used to predict the shock position and velocity spectra, along with the shock passage frequency distribution. The low frequency portion of the shock spectra, where most of the energy is concentrated, is satisfactorily predicted by this method.

  13. Stress proteins in lymphocytes: Membrane stabilization does not affect the heat shock response

    International Nuclear Information System (INIS)

    Hughes, C.S.; Repasky, E.A.; Subjeck, J.R.

    1987-01-01

    Temperatures which have been used to induce heat shock proteins (hsps) have been at the upper physiologic limit or well above this limit. In addition, little attention has been given to the effects of physiologic heat exposures on hsp induction in lymphocytes. The author examined temperatures between 39 0 C and 41 0 C on protein synthesis in the following lymphoid cell lines and cells: BDK, EL-4, JM, DO.11, and in dispersed lymph nodes and thymic tissues. In these studies, 39.5 0 appears to be the threshold for hsp induction (as distinguished by gel electrophoresis). At this temperature the induction of the major hsps at 70 and 89 kDa are observed. Hsp 89 appears to be the most strongly induced in all cells examined. In JM cells, a human cell line, heat shock also induces hsp 68, the non-constitutive hsp at this size. These temperatures do not depress normal levels of protein synthesis. When stearic acid or cholesterol was added to lymphocyte cultures prior to heating (which stabilize membranes), hsp induction appears to occur in a manner indistinguishable from cells heated in normal media. This suggests that membrane fluidity (as influenced by these agents) does not affect or depress the heat shock response in these cells. Finally, the authors observed that 2-deoxyglucose and other inducers of glucose regulated proteins in fibroblasts also induce the major glucose regulated proteins in lymphocytes

  14. Shock Isolation Elements Testing for High Input Loadings. Volume II. Foam Shock Isolation Elements.

    Science.gov (United States)

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*EXPANDED PLASTICS, (*SHOCK(MECHANICS), REDUCTION), TEST METHODS, SHOCK WAVES, STRAIN(MECHANICS), LOADS(FORCES), MATHEMATICAL MODELS, NUCLEAR EXPLOSIONS, HARDENING.

  15. Cristal size distribution in metamorphic rocks: an example for the relationship between nucleation and growth rates with overstepping

    International Nuclear Information System (INIS)

    Homan, S. M.

    2003-01-01

    Crystal size distribution in metamorphic rocks provide fundamental information about crystal nucleation and growth rate, growth time and the degree of overstepping. Crystal size distribution data for garnet, saluretil, keynote, and and alusite crystals from the aureole demonstrate that the earliest formed of this minerals, garnet, has the highest population density and the shortest growth time. The last formed mineral, and alusite, has the lowest population density and longest growth time. keynote and saluretil have the similar population density and growth times intermediate between those of overstepping on the nucleation and growth rates of minerals during metamorphism

  16. Gravitational shock waves and extreme magnetomaterial shock waves

    International Nuclear Information System (INIS)

    Lichnerowicz, Andre.

    1975-01-01

    Within an astrophysical context corresponding to high densities, a self-gravitating model is studied, which is the set of an extreme material medium of infinite conductivity and of a magnetic field. Corresponding shock waves generate necessarily, in general, gravitational shock waves [fr

  17. Crack propagation behavior of TiN coatings by laser thermal shock experiments

    International Nuclear Information System (INIS)

    Choi, Youngkue; Jeon, Seol; Jeon, Min-seok; Shin, Hyun-Gyoo; Chun, Ho Hwan; Lee, Youn-seoung; Lee, Heesoo

    2012-01-01

    Highlights: ► The crack propagation behavior of TiN coating after laser thermal shock experiment was observed by using FIB and TEM. ► Intercolumnar cracks between TiN columnar grains were predominant cracking mode after laser thermal shock. ► Cracks were propagated from the coating surface to the substrate at low laser pulse energy and cracks were originated at coating-substrate interface at high laser pulse energy. ► The cracks from the interface spread out transversely through the weak region of the columnar grains by repetitive laser shock. - Abstract: The crack propagation behavior of TiN coatings, deposited onto 304 stainless steel substrates by arc ion plating technique, related to a laser thermal shock experiment has been investigated using focused ion beam (FIB) and transmission electron microscopy (TEM). The ablated regions of TiN coatings by laser ablation system have been investigated under various conditions of pulse energies and number of laser pulses. The intercolumnar cracks were predominant cracking mode following laser thermal shock tests and the cracks initiated at coating surface and propagated in a direction perpendicular to the substrate under low loads conditions. Over and above those cracks, the cracks originated from coating-substrate interface began to appear with increasing laser pulse energy. The cracks from the interface also spread out transversely through the weak region of the columnar grains by repetitive laser shock.

  18. Anatexis and metamorphism in tectonically thickened continental crust exemplified by the Sevier hinterland, western North America

    Science.gov (United States)

    Patino Douce, Alberto E.; Humphreys, Eugene D.; Johnston, A. Dana

    1990-01-01

    This paper presents a thermal and petrologic model of anatexis and metamorphism in regions of crustal thickening exemplified by the Sevier hinterland in western North America, and uses the model to examine the geological and physical processes leading to crustally derived magmatism. The results of numerical experiments show that anatexis was an inevitable end-product of Barrovian metamorphism in the thickened crust of the late Mesozoic Sevier orogenic belt and that the advection of heat across the lithosphere, in the form of mantle-derived mafic magmas, was not required for melting of metasedimentary rocks. It is suggested that, in the Sevier belt, as in other intracontinental orogenic belts, anatexis occurred in the midcrust and not at the base of the crust.

  19. Importance of CME Radial Expansion on the Ability of Slow CMEs to Drive Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Lugaz, Noé; Farrugia, Charles J.; Winslow, Reka M. [Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH (United States); Small, Colin R.; Manion, Thomas [Department of Physics, University of New Hampshire, Durham, NH (United States); Savani, Neel P. [NASA/GSFC and University of Maryland Baltimore County, Greenbelt, MD (United States)

    2017-10-20

    Coronal mass ejections (CMEs) may disturb the solar wind by overtaking it or expanding into it, or both. CMEs whose front moves faster in the solar wind frame than the fast magnetosonic speed drive shocks. Such shocks are important contributors to space weather, by triggering substorms, compressing the magnetosphere, and accelerating particles. In general, near 1 au, CMEs with speed greater than about 500 km s{sup −1} drive shocks, whereas slower CMEs do not. However, CMEs as slow as 350 km s{sup −1} may sometimes, although rarely, drive shocks. Here we study these slow CMEs with shocks and investigate the importance of CME expansion in contributing to their ability to drive shocks and in enhancing shock strength. Our focus is on CMEs with average speeds under 375 km s{sup −1}. From Wind measurements from 1996 to 2016, we find 22 cases of such shock-driving slow CMEs, and for about half of them (11 out of the 22), the existence of the shock appears to be strongly related to CME expansion. We also investigate the proportion of all CMEs with speeds under 500 km s{sup −1} with and without shocks in solar cycles 23 and 24, depending on their speed. We find no systematic difference, as might have been expected on the basis of the lower solar wind and Alfvén speeds reported for solar cycle 24 versus 23. The slower expansion speed of CMEs in solar cycle 24 might be an explanation for this lack of increased frequency of shocks, but further studies are required.

  20. The Lost South Gobi Microcontinent: Protolith Studies of Metamorphic Tectonites and Implications for the Evolution of Continental Crust in Southeastern Mongolia

    Directory of Open Access Journals (Sweden)

    Matthew J. Heumann

    2013-08-01

    Full Text Available The Central Asian Orogenic Belt, or Altaids, is an amalgamation of volcanic arcs and microcontinent blocks that records a complex late Precambrian–Mesozoic accretionary history. Although microcontinents cored by Precambrian basement are proposed to play an integral role in the accretion process, a lack of isotopic data hampers volume estimates of newly produced arc-derived versus old-cratonic crust in southeastern Mongolia. This study investigates metamorphic tectonites in southern Mongolia that have been mapped as Precambrian in age, largely on the basis of their high metamorphic grade and high strain. Here we present results from microstructural analyses and U-Pb zircon geochronology on samples from Tavan Har (44.05° N, 109.55° E and the Yagan-Onch Hayrhan metamorphic core complex (41.89° N, 104.24° E. Our results show no compelling evidence for Precambrian basement in southeastern Mongolia. Rather, the protoliths to all tectonites examined are Paleozoic–Mesozoic age rocks, formed during Devonian–Carboniferous arc magmatism and subsequent Permian–Triassic orogenesis during collision of the South Mongolia arc with the northern margin of China. These results yield important insights into the Paleozoic accretionary history of southern Mongolia, including the genesis of metamorphic and igneous basement during the Paleozoic, as well as implications for subsequent intracontinental reactivation.

  1. Mesozoic monazite in Neoproterozoic metasediments. Evidence for low-grade metamorphism of Sinian sediments during Triassic continental collision, Liaodong Peninsula, NE China

    International Nuclear Information System (INIS)

    Wan Yusheng; Song Tianrui; Liu Dunyi; Yang Tiannan; Yin Xiaoyan; Zhang Qiaoda; Chen Zhenyu

    2007-01-01

    Sericite phyllite from the Sinian Shisanlitai Formation, Dalian area, Liaodong Peninsula, NE China, contains an assemblage of newly-formed lower-greenschist facies minerals (sericite, chlorite, Fe minerals and Ti minerals) plus aggregates of fine-grained monazite. The texture of the monazite, its mineral inclusions, and its close association with Fe oxide minerals show that it is not detrital or diagenetic, but a product of the low-grade metamorphism. SHRIMP U-Th-Pb dating of the monazite at 217±15 Ma shows that the metamorphism, and associated regional deformation and fluid flow, occurred in the Late Triassic, coeval with the waning stages of the Dabie-Sulu orogeny. The Dabie-Sulu tectonothermal event has produced both deformation and metamorphism in rocks of the eastern North China Block at least up to ∼200 km north of the main continent-continent collision zone. (author)

  2. Quasilinear simulations of interplanetary shocks and Earth's bow shock

    Science.gov (United States)

    Afanasiev, Alexandr; Battarbee, Markus; Ganse, Urs; Vainio, Rami; Palmroth, Minna; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2016-04-01

    We have developed a new self-consistent Monte Carlo simulation model for particle acceleration in shocks. The model includes a prescribed large-scale magnetic field and plasma density, temperature and velocity profiles and a self-consistently computed incompressible ULF foreshock under the quasilinear approximation. Unlike previous analytical treatments, our model is time dependent and takes full account of the anisotropic particle distributions and scattering in the wave-particle interaction process. We apply the model to the problem of particle acceleration at traveling interplanetary (IP) shocks and Earth's bow shock and compare the results with hybrid-Vlasov simulations and spacecraft observations. A qualitative agreement in terms of spectral shape of the magnetic fluctuations and the polarization of the unstable mode is found between the models and the observations. We will quantify the differences of the models and explore the region of validity of the quasilinear approach in terms of shock parameters. We will also compare the modeled IP shocks and the bow shock, identifying the similarities and differences in the spectrum of accelerated particles and waves in these scenarios. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support. We acknowledge the computational resources provided by CSC - IT Centre for Science Ltd., Espoo.

  3. An Approach Toward Synthesis of Bridgmanite in Dynamic Compression Experiments

    Science.gov (United States)

    Reppart, J. J.

    2015-12-01

    Bridgmanite occurs in heavily shocked meteorites and provides a useful constraint on pressure-temperature conditions during shock-metamorphism. Its occurrence also provides constraints on the shock release path. Shock-release and shock duration are important parameters in estimating the size of impactors that generate the observed shock metamorphic record. Thus, it is timely to examine if bridgmanite can be synthesized in dynamic compression experiments with the goal of establishing a correlation between shock duration and grainsize. Up to now only one high pressure polymorph of an Mg-silicate has been synthesized AND recovered in a shock experiment (wadsleyite). Therefore, it is not given that shock synthesis of bridgmanite is possible. This project started recently, so we present an outline of shock experiment designs and potentially results from the first experiments. FUNDING ACKNOWLEDGMENT UNLV HiPSEC: This research was sponsored (or sponsored in part) by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement #DE-NA0001982. HPCAT: "[Portions of this work were]/[This work was] performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357."

  4. Multiple spacecraft observations of interplanetary shocks Four spacecraft determination of shock normals

    Science.gov (United States)

    Russell, C. T.; Mellott, M. M.; Smith, E. J.; King, J. H.

    1983-01-01

    ISEE 1, 2, 3, IMP 8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for future investigations these data allow the evaluation of the accuracy of several shock normal determination techniques. When the angle between upstream and downstream magnetic field is greater than 20 deg, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, the use of overdetermined shock normal solutions, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints, is recommended whenever possible.

  5. Erosion of the Alps: use of Rb-Sr isotopic data from molassic sediments to identify the ages of the metamorphism recorded by the eroded rocks

    International Nuclear Information System (INIS)

    Henry, P.; Deloule, E.

    1994-01-01

    Rb-Sr isotopic data from Oligocene and Miocene peri-alpine molassic sediments allow us to identify the different periods for which the eroded rocks have or have not recorded an alpine metamorphism. The Chattian and the Burdigalian sediments result from the erosion of rocks for which the latest metamorphic event was variscan, while the Stampian, Aquitanian and ''Helvetian'' sediments show evidence for the erosion of rocks which have recorded alpine metamorphic events. The application of this method to old detrital sediments could permit determination of the ages of the tectonic events which occurred in the sediment source regions. (authors). 18 refs., 6 figs

  6. Are Credit Shocks Supply or Demand Shocks?

    OpenAIRE

    Bijapur, Mohan

    2013-01-01

    This paper provides new insights into the relationship between the supply of credit and the macroeconomy. We present evidence that credit shocks constitute shocks to aggregate supply in that they have a permanent effect on output and cause inflation to rise in the short term. Our results also suggest that the effects on aggregate supply have grown stronger in recent decades.

  7. Miniature shock tube for laser driven shocks.

    Science.gov (United States)

    Busquet, Michel; Barroso, Patrice; Melse, Thierry; Bauduin, Daniel

    2010-02-01

    We describe in this paper the design of a miniature shock tube (smaller than 1 cm(3)) that can be placed in a vacuum vessel and allows transverse optical probing and longitudinal backside extreme ultraviolet emission spectroscopy in the 100-500 A range. Typical application is the study of laser launched radiative shocks, in the framework of what is called "laboratory astrophysics."

  8. Pb-Pb zircon ages of the Porto Nacional high-grade metamorphic terrain, northern portion of the Goias Massif, central Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Gorayeb, Paulo Sergio de Sousa; Moura, Candido Augusto Veloso [Para Univ., Belem, PA (Brazil). Centro de Geociencias]. E-mail: gorayebp@ufpa.br; c_moura@ufpa.br; Barros, Gisele Ribeiro de [Para Univ., Belem, PA (Brazil). Programa Institucional de Bolsas de Iniciacao Cientifica (PIBIC)]. E-mail: agbarros@amazon.com.br

    2000-03-01

    Single zircon Pb-evaporation ages were determined for a mafic granulite, two enderbites and a kinzigite of the Porto Nacional High-Grade Metamorphic Terrain (PNHGT) in the Goias massif. Zircons from mafic granulites and one of the enderbites of yielded average {sup 207} Pb/{sup 206} Pb ages of 2125{+-}3 Ma and 2153{+-}1 Ma, respectively, being interpreted as minimum ages of the igneous protoliths. The other enderbite, whose zircons presented round terminations, yielded an average {sup 207} Pb/{sup 206} Pb age of 2097 {+-} 2 Ma. Zircons from the kinzigite, displaying cores and rims overgrowth, presented {sup 207} Pb/{sup 206} Pb ages ranging between 2027 and 2115 Ma. However, a very homogeneous zircon crystal without overgrowth yielded age of 2100 {+-} 2 Ma, with a distinctive low Th/U value (0.02). This zircon is interpreted as a metamorphic crystal and its age probably sets the age of the granulite facies metamorphism, indicating that the PNHGT is a result of the Transamazonian thermotectonic event. (author)

  9. Constraint-plane-based synthesis and topology variation of a class of metamorphic parallel mechanisms

    International Nuclear Information System (INIS)

    Gan, Dongming; Dias, Jorge; Seneviratne, Lakmal; Dai, Jian S.

    2014-01-01

    This paper investigates various topologies and mobility of a class of metamorphic parallel mechanisms synthesized with reconfigurable rTPS limbs. Based on the reconfigurable Hooke (rT) joint, the rTPS limb has two phases which result in parallel mechanisms having ability of mobility change. While in one phase the limb has no constraint to the platform, in the other it constrains the spherical joint center to lie on a plane which is used to demonstrate different topologies of the nrTPS metamorphic parallel mechanisms by investigating various relations (parallel or intersecting) among the n constraint planes (n = 2,3,..,6). Geometric constraint equations of the platform rotation matrix and translation vector are set up based on the point-plane constraint, which reveals mobility and redundant geometric conditions of the mechanism topologies. By altering the limbs into the non-constraint phase without constraint plane, new mechanism phases are deduced with mobility change based on each mechanism topology.

  10. Carboniferous high-pressure metamorphism of Ordovician protoliths in the Argentera Massif (Italy), Southern European Variscan belt

    Science.gov (United States)

    Rubatto, Daniela; Ferrando, Simona; Compagnoni, Roberto; Lombardo, Bruno

    2010-04-01

    The age of high-pressure metamorphism is crucial to identify a suitable tectonic model for the vast Variscan orogeny. Banded H P granulites from the Gesso-Stura Terrain in the Argentera Massif, Italy, have been recently described (Ferrando et al., 2008) relicts of high-pressure metamorphism in the western part of the Variscan orogen. Bulk rock chemistry of representative lithologies reveals intermediate silica contents and calc-alkaline affinity of the various cumulate layers. Enrichment in incompatible elements denotes a significant crustal component in line with intrusion during Ordovician rifting. Magmatic zircon cores from a Pl-rich layer yield scattered ages indicating a minimum protolith age of 486 ± 7 Ma. Carboniferous zircons (340.7 ± 4.2 and 336.3 ± 4.1 Ma) are found in a Pl-rich and a Pl-poor layer, respectively. Their zoning, chemical composition (low Th/U, flat HREE pattern and Ti-in-zircon temperature) and deformation indicate that they formed during the high-pressure event before decompression and mylonitisation. The proposed age for high-pressure metamorphism in the Argentera Massif proves that subduction preceded anatexis by less than 20 Ma. The new data allow a first-order comparison with the Bohemian Massif, which is located at the eastern termination of the Variscan orogen. Similarities in evolution at either end of the orogen support a Himalayan-type tectonic model for the entire European Variscides.

  11. Tectonic superposition of the Kurosegawa Terrane upon the Sanbagawa metamorphic belt in eastern Shikoku, southwest Japan

    International Nuclear Information System (INIS)

    Suzuki, Hisashi; Isozaki, Yukio; Itaya, Tetsumaru.

    1990-01-01

    Weakly metamorphosed pre-Cenozoic accretionary complex in the northern part of the Chichibu Belt in Kamikatsu Town, eastern Shikoku, consists of two distinct geologic units; the Northern Unit and Southern Unit. The Northern Unit is composed mainly of phyllitic pelites and basic tuff with allochthonous blocks of chert and limestone, and possesses mineral paragenesis of the glaucophane schist facies. The Southern Unit is composed mainly of phyllitic pelites with allochthonous blocks of sandstone, limestone, massive green rocks, and chert, and possesses mineral paragenesis of the pumpellyite-actinolite facies. The Southern Unit tectonically overlies the Northern Univ by the south-dipping Jiganji Fault. K-Ar ages were dated for the recrystallized white micas from 11 samples of pelites and basic tuff in the Northern Unit, and from 6 samples of pelites in the Southern Unit. The K-Ar ages of the samples from the Northern Unit range in 129-112 Ma, and those from the Southern Unit in 225-194 Ma. In terms of metamorphic ages, the Northern Unit and Southern Unit are referred to the constituents of the Sanbagawa Metamorphic Belt, and to those of the Kurosegawa Terrane, respectively. Thus, tectonic superposition of these two units in the study area suggests that the Kurosegawa Terrane occurs in a higher structural position over the Sanbagawa Metamorphic Belt in eastern Shikoku. (author)

  12. Metamorphic history and geodynamic significance of the Early Cretaceous Sabzevar granulites (Sabzevar structural zone, NE Iran

    Directory of Open Access Journals (Sweden)

    M. Nasrabady

    2011-11-01

    Full Text Available The Iranian ophiolites are part of the vast orogenic suture zones that mark the Alpine-Himalayan convergence zone. Few petrological and geochronological data are available from these ophiolitic domains, hampering a full assessment of the timing and regimes of subduction zone metamorphism and orogenic construction in the region. This paper describes texture, geochemistry, and the pressure-temperature path of the Early Cretaceous mafic granulites that occur within the Tertiary Sabzevar ophiolitic suture zone of NE Iran. Whole rock geochemistry indicates that the Sabzevar granulites are likely derived from a MORB-type precursor. They are thus considered as remnants of a dismembered dynamo-thermal sole formed during subduction of a back-arc basin (proto-Sabzevar Ocean formed in the upper-plate of the Neotethyan slab. The metamorphic history of the granulites suggests an anticlockwise pressure-temperature loop compatible with burial in a hot subduction zone, followed by cooling during exhumation. Transition from a nascent to a mature stage of oceanic subduction is the geodynamic scenario proposed to accomplish for the reconstructed thermobaric evolution. When framed with the regional scenario, results of this study point to diachronous and independent tectonic evolutions of the different ophiolitic domains of central Iran, for which a growing disparity in the timing of metamorphic equilibration and of pressure-temperature paths can be expected to emerge with further investigations.

  13. Electric field scales at quasi-perpendicular shocks

    Directory of Open Access Journals (Sweden)

    S. N. Walker

    2004-07-01

    Full Text Available This paper investigates the short scale structures that are observed in the electric field during crossings of the quasi-perpendicular bow shock using data from the Cluster satellites. These structures exhibit large amplitudes, as high as 70 m Vm-1 and so make a significant contribution to the overall change in potential at the shock front. It is shown that the scale size of these short-lived electric field structures is of the order of a few cpe. The relationships between the scale size and the upstream Mach number and θBn are studied. It is found that the scale size of these structures decreases with increasing plasma β and as θBn→90°. The amplitude of the spikes remains fairly constant with increasing Ma and appears to increase as θBn→90°.

  14. Dynamical behaviors of the shock compacton in the nonlinearly Schrödinger equation with a source term

    International Nuclear Information System (INIS)

    Yin, Jiuli; Zhao, Liuwei

    2014-01-01

    In this paper, the dynamics from the shock compacton to chaos in the nonlinearly Schrödinger equation with a source term is investigated in detail. The existence of unclosed homoclinic orbits which are not connected with the saddle point indicates that the system has a discontinuous fiber solution which is a shock compacton. We prove that the shock compacton is a weak solution. The Melnikov technique is used to detect the conditions for the occurrence from the shock compacton to chaos and further analysis of the conditions for chaos suppression. The results show that the system turns to chaos easily under external disturbances. The critical parameter values for chaos appearing are obtained analytically and numerically using the Lyapunov exponents and the bifurcation diagrams

  15. INTERFERENCE OF UNIDIRECTIONAL SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-05-01

    Full Text Available Subject of study.We consider interference of unidirectional shock waves or, as they are called, catching up shock waves. The scope of work is to give a classification of the shock-wave structures that arise in this type of interaction of shock waves, and the area of their existence. Intersection of unidirectional shock waves results in arising of a shock-wave structure at the intersection point, which contains the main shock wave, tangential discontinuity and one more reflected gas-dynamic discontinuity of unknown beforehand type. The problem of determining the type of reflected discontinuity is the main problem that one has to solve in the study of catching shock waves interference. Main results.The paper presents the pictures of shock-wave structures arising at the interaction of catching up shock waves. The areas with a regular and irregular unidirectional interaction of shocks are described. Characteristic shock-wave structures are of greatest interest, where reflected gas-dynamic discontinuity degenerates into discontinuous characteristics. Such structures have a number of extreme properties. We have found the areas of existence for such shock-wave structures. There are also areas in which the steady-state solution is not available. The latter has determined revival of interest for the theoretical study of the problem, because the facts of sudden shock-wave structure destruction inside the air intake of supersonic aircrafts at high Mach numbers have been discovered. Practical significance.The theory of interference for unidirectional shock waves and design procedure are usable in the design of supersonic air intakes. It is also relevant for application possibility investigation of catching up oblique shock waves to create overcompressed detonation in perspective detonation air-jet and rocket engines.

  16. Metamorphic evolution and U-Pb zircon SHRIMP geochronology of the Belizário ultramafic amphibolite, Encantadas Complex, southernmost Brazil

    Directory of Open Access Journals (Sweden)

    Hartmann Léo A.

    2003-01-01

    Full Text Available The integrated investigation of metamorphism and zircon U-Pb SHRIMP geochronology of the Belizário ultramafic amphibolite from southernmost Brazil leads to a better understanding of the processes involved in the generation of the Encantadas Complex. Magmatic evidence of the magnesian basalt or pyroxenite protolith is only preserved in cores of zircon crystals, which are dated at 2257 ± 12 Ma. Amphibolite facies metamorphism M1 formed voluminous hornblende in the investigated rock possibly at 1989 ± 21 Ma. This ultramafic rock was re-metamorphosed at 702±21 Ma during a greenschist facies eventM2; the assemblage actinolite + oligoclase + microcline + epidote + titanite + monazite formed by alteration of hornblende. The metamorphic events are probably related to the Encantadas Orogeny (2257±12 Ma and Camboriú Orogeny (~ 1989 Ma of the Trans-Amazonian Cycle, followed by an orogenic event (702±21 Ma of the Brasiliano Cycle. The intervening cratonic period (2000-700 Ma corresponds to the existence of the Supercontinent Atlantica, known regionally as the Rio de la Plata Craton.

  17. Shock/shock interactions between bodies and wings

    Directory of Open Access Journals (Sweden)

    Gaoxiang XIANG

    2018-02-01

    Full Text Available This paper examines the Shock/Shock Interactions (SSI between the body and wing of aircraft in supersonic flows. The body is simplified to a flat wedge and the wing is assumed to be a sharp wing. The theoretical spatial dimension reduction method, which transforms the 3D problem into a 2D one, is used to analyze the SSI between the body and wing. The temperature and pressure behind the Mach stem induced by the wing and body are obtained, and the wave configurations in the corner are determined. Numerical validations are conducted by solving the inviscid Euler equations in 3D with a Non-oscillatory and Non-free-parameters Dissipative (NND finite difference scheme. Good agreements between the theoretical and numerical results are obtained. Additionally, the effects of the wedge angle and sweep angle on wave configurations and flow field are considered numerically and theoretically. The influences of wedge angle are significant, whereas the effects of sweep angle on wave configurations are negligible. This paper provides useful information for the design and thermal protection of aircraft in supersonic and hypersonic flows. Keywords: Body and wing, Flow field, Hypersonic flow, Shock/shock interaction, Wave configurations

  18. STEREO interplanetary shocks and foreshocks

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Cano, X. [Instituto de Geofisica, UNAM, CU, Coyoacan 04510 DF (Mexico); Kajdic, P. [IRAP-University of Toulouse, CNRS, Toulouse (France); Aguilar-Rodriguez, E. [Instituto de Geofisica, UNAM, Morelia (Mexico); Russell, C. T. [ESS and IGPP, University of California, Los Angeles, 603 Charles Young Drive, Los Angeles, CA 90095 (United States); Jian, L. K. [NASA Goddard Space Flight Center, Greenbelt, MD and University of Maryland, College Park, MD (United States); Luhmann, J. G. [SSL, University of California Berkeley (United States)

    2013-06-13

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and {theta}{sub Bn}{approx}20-86 Degree-Sign . We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr {<=}0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at {approx}1 AU and have been producing suprathermal particles for a shorter time.

  19. STEREO interplanetary shocks and foreshocks

    International Nuclear Information System (INIS)

    Blanco-Cano, X.; Kajdič, P.; Aguilar-Rodríguez, E.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.

    2013-01-01

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and θ Bn ∼20-86°. We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr ≤0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at ∼1 AU and have been producing suprathermal particles for a shorter time.

  20. First results of U-Pb dating of metamorphic rocks of the Greater Antilles arc: age of the Mabujina complex (Cuba)

    International Nuclear Information System (INIS)

    Bibikova, E.V.; Somin, M.L.; Gracheva, T.V.; Makarov, V.A.; Mil'yan, G.; Shukolyukov, Yu.A.; AN SSSR, Moscow

    1988-01-01

    U-Pb-dating of zircons, entering the composition of metamorphic rocks of the Mabujina complex, was conducted in order to solve the problem concerming the place of metamorphic complexes in the structure and tectonic evolution of the Greater Antilles arc. The accuracy of uranium and lead determination was equal to ± 1%, the accuracy of lead isotopic ratio determination with the use of TSN-206A mass-spectrometer- ±0.15%. Isotope data showed, that all examined zircons crystallized about 100 mil. years ago

  1. Paleozoic age of high-pressure metamorphic rocks of the Dakh salient, North-Western Caucasus: results of U-Pb-geochronological study

    International Nuclear Information System (INIS)

    Somin, M.L.; Levchenkov, O.A.; Kotov, A.B.; Makeev, A.F.; Komarov, A.N.; Ro, N.I.; Lavrishchev, V.A.; Lebedev, V.A.

    2007-01-01

    U-Pb geochronological studies of an ancient component of the Dakh salient, i.e. metaaplites, which are vein fine-grained rocks made up by albite, microcline, quartz and potash mica, were made. Besides, K-Ar dating of granodiorites breaking through metamorphic rocks was conducted. U-Pb dating of accessory zircons (353 mln. years) defines the lower age boundary of the Dakh salient rock metamorphism. Its upper boundary was identified by K-Ar dating (301 ± 10 mln. years) of hornfels blende of nonmetamophized granodiorites [ru

  2. Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite

    Science.gov (United States)

    Aleinikoff, J.N.; Schenck, W.S.; Plank, M.O.; Srogi, L.A.; Fanning, C.M.; Kamo, S.L.; Bosbyshell, H.

    2006-01-01

    High-grade rocks of the Wilmington Complex, northern Delaware and adjacent Maryland and Pennsylvania, contain morphologically complex zircons that formed through both igneous and metamorphic processes during the development of an island-arc complex and suturing of the arc to Laurentia. The arc complex has been divided into several members, the protoliths of which include both intrusive and extrusive rocks. Metasedimentary rocks are interlayered with the complex and are believed to be the infrastructure upon which the arc was built. In the Wilmingto n Complex rocks, both igneous and metamorphic zircons occur as elongate and equant forms. Chemical zoning, shown by cathodoluminescence (CL), includes both concentric, oscillatory patterns, indicative of igneous origin, and patchwork and sector patterns, suggestive of metamorphic growth. Metamorphic monazites are chemically homogeneous, or show oscillatory or spotted chemical zoning in backscattered electron images. U-Pb geochronology by sensitive high resolution ion microprobe (SHRIMP) was used to date complexly zoned zircon and monazite. All but one member of the Wilmington Complex crystallized in the Ordovician between ca. 475 and 485 Ma; these rocks were intruded by a suite of gabbro-to-granite plutonic rocks at 434 ?? Ma. Detrital zircons in metavolcanic and metasedimentary units were derived predominantly from 0.9 to 1.4 Ga (Grenvillian) basement, presumably of Laurentian origin. Amphibolite to granulite facies metamorphism of the Wilmington Complex, recorded by ages of metamorphic zircon (428 ?? 4 and 432 ?? 6 Ma) and monazite (429 ?? 2 and 426 ?? 3 Ma), occurred contemporaneously with emplacement of the younger plutonic rocks. On the basis of varying CL zoning patterns and external morphologies, metamorphic zircons formed by different processes (presumably controlled by rock chemistry) at slightly different times and temperatures during prograde metamorphism. In addition, at least three other thermal episodes are

  3. Towards an integrated magmatic, structural and metamorphic model for the 1.1-0.9 Ga Sveconorwegian orogeny

    Science.gov (United States)

    Slagstad, Trond; Roberts, Nick M. W.; Røhr, Torkil S.; Marker, Mogens K.

    2013-04-01

    Orogeny involves magmatic, metamorphic, deformational and erosional processes that are caused by or lead to crustal thickening and the development of high topography. In general, these processes operate along the margins of continental plates, either as a result of subduction of oceanic crust (accretionary) or collision between two or more continental plates (collisional). Many of these processes are common to accretionary and collisional orogeny, and do not uniquely discriminate between the two. With only a fragmented geological record, unravelling the style of orogenesis in ancient orogens may, therefore, be far from straightforward. Adding to the complexity, modern continental margins, e.g., the southern Asian margin, display significant variation in orogenic style along strike, rendering along-strike comparisons and correlations unreliable. The late Mesoproterozoic Sveconorwegian province in SW Baltica is traditionally interpreted as the eastward continuation of the Grenville province in Canada, resulting from collision with Amazonia and forming a central part in the assembly of the Rodinia supercontinent. We recently proposed that the Sveconorwegian segment of this orogen formed as a result of accretionary processes rather than collision. This hypothesis was based mainly on considerations of the Sveconorwegian magmatic evolution. Here, we show how the metamorphic/structural record supports (or at least may be integrated in) our model as well. The key elements in our accretionary model are: 1) formation of the Sirdal Magmatic Belt (SMB) between 1070 and 1020 Ma, most likely representing a continental arc batholith. Coeval deformation and high-grade metamorphism farther east in the orogen could represent deformation in the retroarc. 2) cessation of SMB magmatism at 1020 Ma followed by UHT conditions at 1010-1005 Ma, with temperatures in excess of 1000°C at 7.5 kbar. Subduction of a spreading ridge at ca. 1020 Ma would result in an end to arc magmatism and

  4. Measurement of the development and evolution of shock waves in a laser-induced gas breakdown plasma

    International Nuclear Information System (INIS)

    Chu, T.K.; Johnson, L.C.

    1975-01-01

    Space- and time-resolved interferometric measurements of electron density in CO 2 -laser produced plasmas in helium or hydrogen are made near the laser focal spot. Immediately after breakdown, a rapidly growing region of approximately uniform plasma density appears at the focal spot. After a few tens of nanoseconds, shock waves are formed, propagating both transverse and parallel to the incident laser beam direction. Behind the transverse propagating shock is an on-axis density minimum, which results in laser-beam self-trapping. The shock wave propagating toward the focusing lens effectively shields the interior plasma from the incident beam because the lower plasma temperature and higher plasma density in the shock allow strong absorption of the incident beam energy. By arranging the laser radiation-plasma interaction to begin at a plasma-vacuum interface at the exit of a free-expansion jet, this backward propagating shock wave is eliminated, thus permitting efficient energy deposition in the plasma interior

  5. The collision of a strong shock with a gas cloud: a model for Cassiopeia A

    International Nuclear Information System (INIS)

    Sgro, A.G.

    1975-01-01

    The result of the collision of the shock with the cloud is a shock traveling around the cloud, a shock transmitted into the cloud, and a shock reflected from the cloud. By equating the cooling time of the posttransmitted shock gas to the time required for the transmitted shock to travel the length of the cloud, a critical cloud density n/subc/ /sup prime/ is defined. For clouds with density greater than n/subc/ /sup prime/, the posttransmitted shock gas cools rapidly and then emits the lines of the lower ionization stages of its constituent elements. The structure of such and its expected appearance to an observer are discussed and compared with the quasi-stationary condensations of Cas A. Conversely, clouds with density less than n/subc//sup prime/ remain hot for several thousand years, and are sources of X-radiation whose temperatures are much less than that of the intercloud gas. After the transmitted shock passes, the cloud pressure is greater than the pressure in the surrounding gas, causing the cloud to expand and the emission to decrease from its value just after the collision. A model in which the soft X-radiation of Cas A is due to a collection of such clouds is discussed. The faint emission patches to the north of Cas A are interpreted as preshocked clouds which will probably become quasi-stationary condensations after being hit by the shock

  6. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  7. Metamorphism, P-T-t Conditions of Formation, and Prospects for the Practical Use of Al2SiO5 Polymorphs, Chloritoid, and Staurolite (Yenisei Ridge)

    Science.gov (United States)

    Kozlov, P. S.

    2017-12-01

    The Yenisei Ridge is an accretion-collisional orogen located in the southwestern frame of the Siberian Craton in the interfluve between Podkamennaya Tunguska, Angara, Kan, and Yenisei rivers. The Precambrian mono- and polymetamorphic complexes composed predominantly of the Mesoarchean-Neoproterozoic metapelitic rocks have been studied. Based on the typification of metamorphic complexes by pressure, temperature, metamorphic gradient, as well as age of metamorphism, the location scheme of the fields of the Precambrian sedimentary-metamorphic rock which are prospective for searching deposits of high-alumina metamorphic minerals (andalusite, kyanite, and sillimanite, chloritoid, and staurolite) in the Trans-Angara segment of the Yenisei Region, was compiled. The Teya sillimanite and Panimbinsk andalusite deposits, which are confined to the fields of regional metamorphic complexes of iron-alumina metapelites of the And-Sill facies series, are recommended as a priority for the organization of prospecting works and the subsequent involvement to the metallurgical industry. These metapelites are classified as monomineral. Owing to widespread occurrence and abundance of andalusite and sillimanite, the above deposits have significant inferred resources. Stratiform deposits of garnet-staurolite and chloritoid high-alumina rocks are still insufficiently studied and should be investigated further. The prospects for the possible use of high-alumina andalusite and sillimanite together with Middle Tatarka and Kiya nepheline syenite massifs and the bauxites of the Chadobets uplift, already being explored in the region, for production of aluminum oxide, silumin, and aluminum, as well as, the prospects for the expansion of the raw material base of the Boguchansk Electrometallurgical Complex, brought into operation in 2016 in the Lower Angara region, are considered.

  8. Short-Wavelength Infrared (SWIR) spectroscopy of low-grade metamorphic volcanic rocks of the Pilbara Craton

    NARCIS (Netherlands)

    Abweny, Mohammad S.; van Ruitenbeek, Frank J A; de Smeth, Boudewijn; Woldai, Tsehaie; van der Meer, Freek D.; Cudahy, Thomas; Zegers, Tanja; Blom, Jan Kees; Thuss, Barbara

    This paper shows the results of Short-Wavelength Infrared (SWIR) spectroscopy investigations of volcanic rocks sampled from low-grade metamorphic greenstone belts of the Archean Pilbara Craton in Western Australia. From the reflectance spectra a range of spectrally active minerals were identified,

  9. Chemical zoning and homogenization of Pasamonte-type pyroxene and their bearing on thermal metamorphism of a howardite parent body

    Science.gov (United States)

    Miyamoto, M.; Duke, M. B.; Mckay, D. S.

    1985-01-01

    The Mg-Fe zoning of pyroxenes in Pasamonte and Juvinas eucrites is examined in order to gain a better understanding of the metamorphism in the surface layer of a eucrite/howardite parent body. Three distinct types of Ca-Mg-Fe zoning of Pasamonte pyroxenes are identified. The wide compositional range of the zoned pyroxenes suggests that Pasamonte is less metamorphosed than previously believed. It is also found that a Pasamonte-type pyroxene may yield a Juvinas-type pyroxene by thermal metamorphism. Calculations imply that the homogenization of Juvinas pyroxenes may have occurred during later reheating events rather than during initial cooling.

  10. On possible structures of normal ionizing shock waves in electromagnetic shock tubes

    International Nuclear Information System (INIS)

    Liberman, M.A.; Synakh, V.S.; Zakajdakhov, V.V.; Velikovich, A.L.

    1982-01-01

    The problem of possible structures of normal ionizing shock waves is studied. On the basis of the general theory of ionizing shock waves in magnetic fields, a similarity solution of the piston problem for an impenetrable piston and a magnetic piston is described and a numerical solution of the non-stationary piston problem is obtained. It is shown that precursor photo-ionization of the neutral gas by the radiation of the shock-heated gas is the dominant factor in shaping normal ionizing shock structures. In particular, it is shown that the strong overheating of atoms and ions in shock fronts is due to the tensor form of Ohm's law in the precursor region. (author)

  11. Multiple spacecraft observations of interplanetary shocks: four spacecraft determination of shock normals

    International Nuclear Information System (INIS)

    Russell, C.T.; Mellott, M.M.; Smith, E.J.; King, J.H.

    1983-01-01

    ISEE 1,2,3 IMP8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for furture techniques. When the angle between upstream and downstream magnetic field is greater than 20, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, we recommend using overdetermined shock normal solutions whenever possible, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints

  12. Shock absorber

    International Nuclear Information System (INIS)

    Nemeth, J.D.

    1981-01-01

    A shock absorber for the support of piping and components in a nuclear power plant is described. It combines a high degree of stiffness under sudden shocks, e.g. seismic disturbances, with the ability to allow for thermal expansion without resistance when so required. (JIW)

  13. Distinct metamorphic evolution of alternating silica-saturated and silica-deficient microdomains within garnet in ultrahigh-temperature granulites: An example from Sri Lanka

    Directory of Open Access Journals (Sweden)

    P.L. Dharmapriya

    2017-09-01

    Full Text Available Here we report the occurrence of garnet porphyroblasts that have overgrown alternating silica-saturated and silica deficient microdomains via different mineral reactions. The samples were collected from ultrahigh-temperature (UHT metapelites in the Highland Complex, Sri Lanka. In some of the metapelites, garnet crystals have cores formed via a dehydration reaction, which had taken place at silica-saturated microdomains and mantle to rim areas formed via a dehydration reaction at silica-deficient microdomains. In contrast, some other garnets in the same rock cores had formed via a dehydration reaction which occurred at silica-deficient microdomains while mantle to rim areas formed via a dehydration reaction at silica-saturated microdomains. Based on the textural observations, we conclude that the studied garnets have grown across different effective bulk compositional microdomains during the prograde evolution. These microdomains could represent heterogeneous compositional layers (paleobedding/laminations in the precursor sediments or differentiated crenulation cleavages that existed during prograde metamorphism. UHT metamorphism associated with strong ductile deformation, metamorphic differentiation and crystallization of locally produced melt may have obliterated the evidence for such microdomains in the matrix. The lack of significant compositional zoning in garnet probably due to self-diffusion during UHT metamorphism had left mineral inclusions as the sole evidence for earlier microdomains with contrasting chemistry.

  14. Review of the intrusive, structural and metamorphic history of the Namaqualand geotraverse and environs

    International Nuclear Information System (INIS)

    Blignault, H.J.; Van Aswegen, G.; Van der Merwe, S.W.

    1981-01-01

    The Namaqualand excursion is concerned with the geologic strata, stratigraphy and metamorhic history of the Namaqualand geotraverse and its environs. The general aim of the project was to decipher the history and interactions of tectonic, metamorphic and magmatic processes. Isotope dating were used to determine the ages of various rock formations

  15. System Shock: The Archetype of Operational Shock

    Science.gov (United States)

    2017-05-25

    the battle space. They can also facilitate a much greater understanding of the variables involved in each party’s decision - making process. However...system shock nests within current US Army Unified Land Operations doctrine. In order to test the utility of system shock theory to Gray Zone...23 Neil E. Harrison, “Thinking about the World We Make ” in Chaos Theory in the Social Sciences: Foundations and Applications

  16. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  17. The Basic Research for Pulverization of Rice Using Underwater Shock Wave by Electric Discharge

    Directory of Open Access Journals (Sweden)

    M Ide

    2016-09-01

    Full Text Available In recent years, the food self-support rate of Japan is 40%, and this value is the lowest level in major developed countries. This reason includes decreasing of diverting rice consumption in Japan and increasing abandonment of cultivation. Therefore, these problems are solved by using rice powder instead of expensive flour, and we manage to increase the food selfsupport rate. Previously, the rice powder is manufactured by two methods. One is dry type, and the other is wet type. The former is the method getting rice powder by running dried rice to rotating metal, and has a problem which that starch is damaged by heat when processing was performed. The latter is performed same method against wet rice, and has a problem which a large quantity of water is used. As a method to solve these problems, an underwater shock wave is used. Shock wave is the pressure wave which is over speed of sound by discharging high energy in short time. Propagating shock wave in water is underwater shock wave. The characters of underwater shock wave are long duration of shock wave because water density is uniform, water is low price and easy to get and not heat processing. Thinking of industrialization, the electric discharge is used as the generating source of underwater shock wave in the experiment. As the results, the efficiency of obtaining enough grain size, 100ìm, of rice powder was too bad only using the simple processing using underwater shock wave. Therefore, in Okinawa National College of Technology collaborating with us, obtaining rice powder with higher efficiency by using converged underwater shock wave is the goal of this research. In this research, the underwater shock wave with equal energy of the experimental device of underwater shock wave is measured by the optical observation. In addition, the appearance converging underwater shock wave is simulated by numerical analysis, and the pressure appreciation rate between the first wave and converged

  18. Observation and Control of Shock Waves in Individual Nanoplasmas

    Science.gov (United States)

    2014-03-18

    quasimonoenergetic ions with an energy spread of less than 15%. Numerical hydrodynamic calculations confirm the appearance of accelerating shock waves and provide...and observed ion energies indicates that the hydrodynamic calculations capture the physics of the plasma expansion. The hydrodynamic calculations ...2006). [23] A. Kawabata and R. Kubo , J. Phys. Soc. Jpn. 21, 1765 (1966). [24] M.M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S

  19. Shock-like structures in the tropical cyclone boundary layer

    Science.gov (United States)

    Williams, Gabriel J.; Taft, Richard K.; McNoldy, Brian D.; Schubert, Wayne H.

    2013-06-01

    This paper presents high horizontal resolution solutions of an axisymmetric, constant depth, slab boundary layer model designed to simulate the radial inflow and boundary layer pumping of a hurricane. Shock-like structures of increasing intensity appear for category 1-5 hurricanes. For example, in the category 3 case, the u>(∂u/∂r>) term in the radial equation of motion produces a shock-like structure in the radial wind, i.e., near the radius of maximum tangential wind the boundary layer radial inflow decreases from approximately 22 m s-1 to zero over a radial distance of a few kilometers. Associated with this large convergence is a spike in the radial distribution of boundary layer pumping, with updrafts larger than 22 m s-1 at a height of 1000 m. Based on these model results, it is argued that observed hurricane updrafts of this magnitude so close to the ocean surface are attributable to the dry dynamics of the frictional boundary layer rather than moist convective dynamics. The shock-like structure in the boundary layer radial wind also has important consequences for the evolution of the tangential wind and the vertical component of vorticity. On the inner side of the shock the tangential wind tendency is essentially zero, while on the outer side of the shock the tangential wind tendency is large due to the large radial inflow there. The result is the development of a U-shaped tangential wind profile and the development of a thin region of large vorticity. In many respects, the model solutions resemble the remarkable structures observed in the boundary layer of Hurricane Hugo (1989).

  20. Effects of response-shock interval and shock intensity on free-operant avoidance responding in the pigeon1

    Science.gov (United States)

    Klein, Marty; Rilling, Mark

    1972-01-01

    Two experiments investigated free-operant avoidance responding with pigeons using a treadle-pressing response. In Experiment I, pigeons were initially trained on a free-operant avoidance schedule with a response-shock interval of 32 sec and a shock-shock interval of 10 sec, and were subsequently exposed to 10 values of the response-shock parameter ranging from 2.5 to 150 sec. The functions relating response rate to response-shock interval were similar to the ones reported by Sidman in his 1953 studies employing rats, and were independent of the order of presentation of the response-shock values. Shock rates decreased as response-shock duration increased. In Experiment II, a free-operant avoidance schedule with a response-shock interval of 20 sec and a shock-shock interval of 5 sec was used, and shock intensities were varied over five values ranging from 2 to 32 mA. Response rates increased markedly as shock intensity increased from 2 to 8 mA, but rates changed little with further increases in shock intensity. Shock rates decreased as intensity increased from 2 to 8 mA, and showed little change as intensity increased from 8 to 32 mA. PMID:4652617

  1. Dating of retrograde metamorphism in Western Carpathians by K-Ar analysis of muscovites

    International Nuclear Information System (INIS)

    Cambel, B.; Korikovskij, S.P.; Krasivskaya, I.S.; Arakelyants, M.M.

    1986-01-01

    Using the K-Ar isotope dating method of muscovites it was found that many retrogradely metamorphosed rocks are the results of Variscan retrograde metamorphism and are not pre-Cambrian or Alpine metamorphites (diaphthorites). Samples for dating were taken from the Western Carpathian crystalline formation. The content of radiogenic argon was determined by mass spectrometry using the method of isotope dilution. (M.D.)

  2. Diaphragmless shock wave generators for industrial applications of shock waves

    Science.gov (United States)

    Hariharan, M. S.; Janardhanraj, S.; Saravanan, S.; Jagadeesh, G.

    2011-06-01

    The prime focus of this study is to design a 50 mm internal diameter diaphragmless shock tube that can be used in an industrial facility for repeated loading of shock waves. The instantaneous rise in pressure and temperature of a medium can be used in a variety of industrial applications. We designed, fabricated and tested three different shock wave generators of which one system employs a highly elastic rubber membrane and the other systems use a fast acting pneumatic valve instead of conventional metal diaphragms. The valve opening speed is obtained with the help of a high speed camera. For shock generation systems with a pneumatic cylinder, it ranges from 0.325 to 1.15 m/s while it is around 8.3 m/s for the rubber membrane. Experiments are conducted using the three diaphragmless systems and the results obtained are analyzed carefully to obtain a relation between the opening speed of the valve and the amount of gas that is actually utilized in the generation of the shock wave for each system. The rubber membrane is not suitable for industrial applications because it needs to be replaced regularly and cannot withstand high driver pressures. The maximum shock Mach number obtained using the new diaphragmless system that uses the pneumatic valve is 2.125 ± 0.2%. This system shows much promise for automation in an industrial environment.

  3. Coronitic metagabbro and eclogite from the Grenville Province of western Quebec: interpretation of U-Pb geochronology and metamorphism

    International Nuclear Information System (INIS)

    Indares, A.; Dunning, G.

    1997-01-01

    We present new U-Pb and metamorphic data on high-pressure coronitic metagabbros from three distinct structural settings in the Parautochthonous belt of the Grenville Province in western Quebec. Intrusive ages are (i) 1217 -10 +15 Ma, for metagabbro close to the Grenville Front, correlative with the Sudbury dykes, defined in Ontario; (ii) 1403 -11 +14 Ma for an eclogitized lens at the base of the highest structural level (SL4), a new age for mafic magmatism in the western Grenville; and (iii) 1218 -34 +53 Ma for metagabbro from SL4, interpreted as correlative with metagabbros from the Algonquin and Shawanaga domains in Ontario. Metamorphism in all cases is Grenvillian, with the best constrained age of 1069 ± 3 Ma for the metagabbro of SL4. Metamorphic grade increases from the Grenville Front to the south. The mafic rocks preserve relict igneous textures overprinted by garnet + clinopyroxene that developed as coronas and (or) pseudomorphs after igneous phases. The highest grade metagabbros contain omphacite and some lack primary plagioclase, therefore being eclogites. However, interpretation of textures and mineral chemistry indicates that they were equilibrated during decompression (at 1350 MPa and 720 o C, sample 51: and at 1200 MPa and 740 o C, sample 29), so maximum depths of burial remain unconstrained. Their evolution is interpreted as follows: (i) high-pressure metamorphism by burial of the Laurentian margin under accreted terranes thrust toward the northwest between 1080 and 1060 Ma; (ii) residence at intermediate crustal levels, for a few tens of millions of years; and (iii) rapid exhumation by renewed thrusting that led to the emplacement of the high-pressure units over the northerly adjacent structural units of the Parautochthonous Belt. (author)

  4. Holographic interferometric observation of shock wave focusing to extracorporeal shock wave lithotripsy

    Science.gov (United States)

    Takayama, Kazuyoshi; Obara, Tetsuro; Onodera, Osamu

    1991-04-01

    Underwater shock wave focusing is successfully applied to disintegrate and remove kidney stones or gallbladder stones without using surgical operations. This treatment is one of the most peaceful applications ofshock waves and is named as the Extracorporeal Shock Wave Lithotripsy. Ajoint research project is going on between the Institute ofFluid Science, Tohoku University and the School ofMedicine, Tohoku University. The paper describes a result of the fundamental research on the underwater shock wave focusing applied to the ESWL. Quantitatively to visualize the underwater shock waves, various optical flow visualization techniques were successfully used such as holographic interferometry, and shadowgraphs combined with Ima-Con high speed camera. Double exposure holographic interferometric observation revealed the mechanism of generation, propagation and focusing of underwater shock waves. The result of the present research was already used to manufacture a prototype machine and it has already been applied successfully to ESWL crinical treatments. However, despite of success in the clinical treatments, important fundamental questions still remain unsolved, i.e., effects of underwater shock wave focusing on tissue damage during the treatment. Model experiments were conducted to clarify mechanism of the tissue damage associated with the ESWL. Shock-bubble interactions were found responsible to the tissue damage during the ESWL treatment. In order to interprete experimental findings and to predict shock wave behavior and high pressures, a numerical simulation was carried. The numerical results agreed with the experiments.

  5. The role of evaporites in the formation of gems during metamorphism of carbonate platforms: a review

    Science.gov (United States)

    Giuliani, Gaston; Dubessy, Jean; Ohnenstetter, Daniel; Banks, David; Branquet, Yannick; Feneyrol, Julien; Fallick, Anthony E.; Martelat, Jean-Emmanuel

    2018-01-01

    The mineral and fluid inclusions trapped by gemstones during the metamorphism of carbonate platform successions are precious markers for the understanding of gem genesis. The nature and chemical composition of inclusions highlight the major contribution of evaporites through dissolution or fusion, depending on the temperature of formation from greenschist to granulite facies. The fluids are highly saline NaCl-brines circulating either in an open system in the greenschist facies (Colombian and Afghan emeralds) and with huge fluid-rock metasomatic interactions, or sulphurous fluids (ruby, garnet tsavorite, zoisite tanzanite and lapis-lazuli) or molten salts formed in a closed system with a low fluid mobility (ruby in marble) in the conditions of the amphibolite to granulite facies. These chloride-fluoride-sulphate ± carbonate-rich fluids scavenged the metals essential for gem formation. At high temperature, the anions SO4 2-, NO3 -, BO3 - and F- are powerful fluxes which lower the temperature of chloride- and fluoride-rich ionic liquids. They provided transport over a very short distance of aluminium and/or silica and transition metals which are necessary for gem growth. In summary, the genetic models proposed for these high-value and ornamental gems underline the importance of the metamorphism of evaporites formed on continental carbonate shelves and emphasise the chemical power accompanying metamorphism at moderate to high temperatures of evaporite-rich and organic matter-rich protoliths to form gem minerals.

  6. Dissecting the dynamic conformations of the metamorphic protein lymphotactin.

    Science.gov (United States)

    Harvey, Sophie R; Porrini, Massimiliano; Konijnenberg, Albert; Clarke, David J; Tyler, Robert C; Langridge-Smith, Patrick R R; MacPhee, Cait E; Volkman, Brian F; Barran, Perdita E

    2014-10-30

    A mass spectrometer provides an ideal laboratory to probe the structure and stability of isolated protein ions. Interrogation of each discrete mass/charge-separated species enables the determination of the intrinsic stability of a protein fold, gaining snapshots of unfolding pathways. In solution, the metamorphic protein lymphotactin (Ltn) exists in equilibrium between two distinct conformations, a monomeric (Ltn10) and a dimeric (Ltn40) fold. Here, we use electron capture dissociation (ECD) and drift tube ion mobility-mass spectrometry (DT IM-MS) to analyze both forms and use molecular dynamics (MD) to consider how the solution fold alters in a solvent-free environment. DT IM-MS reveals significant conformational flexibility for the monomer, while the dimer appears more conformationally restricted. These findings are supported by MD calculations, which reveal how salt bridges stabilize the conformers in vacuo. Following ECD experiments, a distinctive fragmentation pattern is obtained for both the monomer and dimer. Monomer fragmentation becomes more pronounced with increasing charge state especially in the disordered regions and C-terminal α-helix in the solution fold. Lower levels of fragmentation are seen in the β-sheet regions and in regions that contain salt bridges, identified by MD simulations. The lowest charge state of the dimer for which we obtain ECD data ([D+9H](9+)) exhibits extensive fragmentation with no relationship to the solution fold and has a smaller collision cross section (CCS) than charge states 10-13+, suggesting a "collapsed" encounter complex. Other charge states of the dimer, as for the monomer, are resistant to fragmentation in regions of β-sheets in the solution fold. This study provides evidence for preservation and loss of global fold and secondary structural elements, providing a tantalizing glimpse into the power of the emerging field of native top-down mass spectrometry.

  7. Shock Isolation Elements Testing for High Input Loadings. Volume III. Mechanical Shock Isolation Elements.

    Science.gov (United States)

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*SPRINGS, (*SHOCK(MECHANICS), REDUCTION), TORSION BARS, ELASTOMERS, DAMPING, EQUATIONS OF MOTION, MODEL TESTS, TEST METHODS, NUCLEAR EXPLOSIONS, HARDENING.

  8. Possible zircon U-Pb evidence for Pan-African granulite-facies metamorphism in the Mozambique belt of southern Tanzania

    International Nuclear Information System (INIS)

    Coolen, J.J.M.M.M.

    1982-01-01

    Four zircon fractions of garnet-bearing two-pyroxene granulite, from the Furua granulite complex of southern Tanzania, plot very close to concordia. A discordia yields a lower intercept at 652 +- 10 Ma, an age slightly higher than the Rb-Sr whole-rock and mineral ages reported from the surrounding amphibolite-facies rocks. The U-Pb systematics indicate the presence of a very small amount of older (2-3 Ga) radiogenic lead. The zircon data may be interpreted as indicating an event of granulite-facies metamorphism during the Pan-African thermotectonic episode. This interpretation is at variance with current models postulating that the granulite complexes in the Mozambique belt are relicts of older, possibly Archaean events of metamorphism. (Auth.)

  9. PARTICLE ACCELERATION AT THE HELIOSPHERIC TERMINATION SHOCK WITH A STOCHASTIC SHOCK OBLIQUITY APPROACH

    International Nuclear Information System (INIS)

    Arthur, Aaron D.; Le Roux, Jakobus A.

    2013-01-01

    Observations by the plasma and magnetic field instruments on board the Voyager 2 spacecraft suggest that the termination shock is weak with a compression ratio of ∼2. However, this is contrary to the observations of accelerated particle spectra at the termination shock, where standard diffusive shock acceleration theory predicts a compression ratio closer to ∼2.9. Using our focused transport model, we investigate pickup proton acceleration at a stationary spherical termination shock with a moderately strong compression ratio of 2.8 to include both the subshock and precursor. We show that for the particle energies observed by the Voyager 2 Low Energy Charged Particle (LECP) instrument, pickup protons will have effective length scales of diffusion that are larger than the combined subshock and precursor termination shock structure observed. As a result, the particles will experience a total effective termination shock compression ratio that is larger than values inferred by the plasma and magnetic field instruments for the subshock and similar to the value predicted by diffusive shock acceleration theory. Furthermore, using a stochastically varying magnetic field angle, we are able to qualitatively reproduce the multiple power-law structure observed for the LECP spectra downstream of the termination shock

  10. Shock Revival in Core-collapse Supernovae: A Phase-diagram Analysis

    Science.gov (United States)

    Gabay, Daniel; Balberg, Shmuel; Keshet, Uri

    2015-12-01

    We examine the conditions for the revival of the stalled accretion shock in core-collapse supernovae, in the context of the neutrino heating mechanism. We combine one-dimensional simulations of the shock revival process with a derivation of a quasi-stationary approximation, which is both accurate and efficient in predicting the flow. In particular, this approach is used to explore how the evolution of the accretion shock depends on the shock radius, RS, and velocity, VS (in addition to other global properties of the system). We do so through a phase-space analysis of the shock acceleration, aS, in the {R}S{--}{V}S plane, shown to provide quantitative insights into the initiation and nature of runaway expansion. In the particular case of an initially stationary ({V}S=0, {a}S=0) profile, the prospects for an explosion can be assessed by the initial signs of the partial derivatives of the shock acceleration, in analogy to a linear damped/anti-damped oscillator. If \\partial {a}S/\\partial {R}S\\lt 0 and \\partial {a}S/\\partial {V}S\\gt 0, runaway will likely occur after several oscillations, while if \\partial {a}S/\\partial {R}S\\gt 0, runaway expansion will commence in a non-oscillatory fashion. These two modes of runaway correspond to low and high mass accretion rates, respectively. We also use the quasi-stationary approximation to assess the advection-to-heating timescale ratio in the gain region, often used as an explosion proxy. Indeed, this ratio does tend to ∼1 in conjunction with runaway conditions, but neither this unit value nor the specific choice of the gain region as a point of reference appear to be unique in this regard.

  11. Sr and Nd isotope composition of the metamorphic, sedimentary and ultramafic xenoliths of Lanzarote (Canary Islands): Implications for magma sources

    Science.gov (United States)

    Aparicio, Alfredo; Tassinari, Colombo C. G.; García, Roberto; Araña, Vicente

    2010-01-01

    The lavas produced by the Timanfaya eruption of 1730-1736 (Lanzarote, Canary Islands) contain a great many sedimentary and metamorphic (metasedimentary), and mafic and ultramafic plutonic xenoliths. Among the metamorphosed carbonate rocks (calc-silicate rocks [CSRs]) are monomineral rocks with forsterite or wollastonite, as well as rocks containing olivine ± orthopyroxene ± clinopyroxene ± plagioclase; their mineralogical compositions are identical to those of the mafic (gabbros) and ultramafic (dunite, wherlite and lherzolite) xenoliths. The 87Sr/ 86Sr (around 0.703) and 143Nd/ 144Nd (around 0.512) isotope ratios of the ultramafic and metasedimentary xenoliths are similar, while the 147Sm/ 144Nd ratios show crustal values (0.13-0.16) in the ultramafic xenoliths and mantle values (0.18-0.25) in some CSRs. The apparent isotopic anomaly of the metamorphic xenoliths can be explained in terms of the heat source (basaltic intrusion) inducing strong isotopic exchange ( 87Sr/ 86Sr and 143Nd/ 144Nd) between metasedimentary and basaltic rocks. Petrofabric analysis also showed a possible relationship between the ultramafic and metamorphic xenoliths.

  12. Metamorphic history of the Central Pyrenees Part II, Valle de Arán, Sheet 4

    NARCIS (Netherlands)

    Zwart, H.J.

    1963-01-01

    The structural geology and metamorphic petrology of the Bosost area in the Valle de Arán (Central Pyrenees) is discussed. The rocks exposed in this area consist of Cambro-Ordovician mica-schists with numerous granite and pegmatite bodies, phyllites and limestones; Silurian slates and schists and

  13. Comparative study of the thermoluminescence properties of natural metamorphic quartz belonging to Turkey and Spain

    International Nuclear Information System (INIS)

    Topaksu, M.; Dogan, T.; Yüksel, M.; Kurt, K.; Topak, Y.; Yegingil, Z.

    2014-01-01

    The aim of this study is to investigate the sensitization of the thermoluminescence (TL) peak of metamorphic quartzes from Adiyaman in Turkey (TMQ) and from Madrid in Spain (SMQ). Quartz samples of two different origins were β-irradiated between ∼6.689 Gy and 4816 Gy at room temperature. X-ray diffraction analysis has indicated that both TMQ and SMQ have the same crystal structure. Chemical analyses of both TMQ and SMQ were performed using the XRF technique. The preheat processes were carried out at 125 °C for 10 s in the TL measurement. TMQ and SMQ samples have different TL properties in two ways. First TMQ has four first order TL glow peaks while SMQ has five first order TL peaks and secondly, the observed dose sensitivity of TMQ samples is higher than the SMQ samples. - Highlights: • The thermoluminescence (TL) peak of metamorphic quartzes was investigated. • Comparable differences were seen between low and high dose levels. • AD and CGCD methods were used

  14. Comparison of three methods for the estimation of cross-shock electric potential using Cluster data

    Directory of Open Access Journals (Sweden)

    A. P. Dimmock

    2011-05-01

    Full Text Available Cluster four point measurements provide a comprehensive dataset for the separation of temporal and spatial variations, which is crucial for the calculation of the cross shock electrostatic potential using electric field measurements. While Cluster is probably the most suited among present and past spacecraft missions to provide such a separation at the terrestrial bow shock, it is far from ideal for a study of the cross shock potential, since only 2 components of the electric field are measured in the spacecraft spin plane. The present paper is devoted to the comparison of 3 different techniques that can be used to estimate the potential with this limitation. The first technique is the estimate taking only into account the projection of the measured components onto the shock normal. The second uses the ideal MHD condition E·B = 0 to estimate the third electric field component. The last method is based on the structure of the electric field in the Normal Incidence Frame (NIF for which only the potential component along the shock normal and the motional electric field exist. All 3 approaches are used to estimate the potential for a single crossing of the terrestrial bow shock that took place on the 31 March 2001. Surprisingly all three methods lead to the same order of magnitude for the cross shock potential. It is argued that the third method must lead to more reliable results. The effect of the shock normal inaccuracy is investigated for this particular shock crossing. The resulting electrostatic potential appears too high in comparison with the theoretical results for low Mach number shocks. This shows the variability of the potential, interpreted in the frame of the non-stationary shock model.

  15. Blood volume determination with two radioisotopes: application to non-cardiogenic shock

    International Nuclear Information System (INIS)

    Mallet, J.-J.

    1975-01-01

    Knowledge of the circulating blood volume may be of great assistance in the study of clinical shock. The isotope dilution principle is used to measure both plasma and red cell volume. Considering the increased capillary permeability in patients in shock, it may be of considerable value to quantify the diffusion of liquid through the capillary walls. A double determination of the volume of distribution of the tracer is to be envisaged. Two methods are described. The first one uses a non-diffusible tracer (sup(99m)Tc-labelled red cells) confined to the intravascular space, giving a measure of the intravascular blood volume. The latter uses 131 I-labelled serum albumin which remains, usually, in the vascular bed, but is able to diffuse through the pores of the capillary membrane, because of its low molecular weight. A resulting increase of the tracer volume distribution, with regard to this capillary diffusion is considered. A comparison of the two methods used simultaneously appear to provide information on the possible liquid diffusion in clinical shock. The results obtained in several pathological conditions are described. They enable conclusion to be drawn on the possibility of errors introduced by the use of 131 I-labelled serum albumin alone in determining the circulating blood volume in clinical shock [fr

  16. Sensitivity towards fear of electric shock in passive threat situations.

    Science.gov (United States)

    Ring, Patrick; Kaernbach, Christian

    2015-01-01

    Human judgment and decision-making (JDM) requires an assessment of different choice options. While traditional theories of choice argue that cognitive processes are the main driver to reach a decision, growing evidence highlights the importance of emotion in decision-making. Following these findings, it appears relevant to understand how individuals asses the attractiveness or riskiness of a situation in terms of emotional processes. The following study aims at a better understanding of the psychophysiological mechanisms underlying threat sensitivity by measuring skin conductance responses (SCRs) in passive threat situations. While previous studies demonstrate the role of magnitude on emotional body reactions preceding an outcome, this study focuses on probability. In order to analyze emotional body reactions preceding negative events with varying probability of occurrence, we have our participants play a two-stage card game. The first stage of the card game reveals the probability of receiving an unpleasant electric shock. The second stage applies the electric shock with the previously announced probability. For the analysis, we focus on the time interval between the first and second stage. We observe a linear relation between SCRs in anticipation of receiving an electric shock and shock probability. This finding indicates that SCRs are able to code the likelihood of negative events. We outline how this coding function of SCRs during the anticipation of negative events might add to an understanding of human JDM.

  17. Metamorphic distributed Bragg reflectors for the 1440–1600 nm spectral range: Epitaxy, formation, and regrowth of mesa structures

    International Nuclear Information System (INIS)

    Egorov, A. Yu.; Karachinsky, L. Ya.; Novikov, I. I.; Babichev, A. V.; Berezovskaya, T. N.; Nevedomskiy, V. N.

    2015-01-01

    It is shown that metamorphic In 0.3 Ga 0.7 As/In 0.3 Al 0.7 As distributed Bragg reflectors (DBRs) with a reflection band at 1440–1600 nm and a reflectance of no less than 0.999 can be fabricated by molecular beam epitaxy (MBE) on a GaAs substrate. It is demonstrated that mesa structures formed from metamorphic DBRs on a GaAs substrate can be regrown by MBE and microcavities can be locally formed in two separate epitaxial processes. The results obtained can find wide application in the fabrication of vertical-cavity surface-emitting lasers (VCSELs) with a buried tunnel junction

  18. Vapor flux and recrystallization during dry snow metamorphism under a steady temperature gradient as observed by time-lapse micro-tomography

    Directory of Open Access Journals (Sweden)

    B. R. Pinzer

    2012-10-01

    Full Text Available Dry snow metamorphism under an external temperature gradient is the most common type of recrystallization of snow on the ground. The changes in snow microstructure modify the physical properties of snow, and therefore an understanding of this process is essential for many disciplines, from modeling the effects of snow on climate to assessing avalanche risk. We directly imaged the microstructural changes in snow during temperature gradient metamorphism (TGM under a constant gradient of 50 K m−1, using in situ time-lapse X-ray micro-tomography. This novel and non-destructive technique directly reveals the amount of ice that sublimates and is deposited during metamorphism, in addition to the exact locations of these phase changes. We calculated the average time that an ice volume stayed in place before it sublimated and found a characteristic residence time of 2–3 days. This means that most of the ice changes its phase from solid to vapor and back many times in a seasonal snowpack where similar temperature conditions can be found. Consistent with such a short timescale, we observed a mass turnover of up to 60% of the total ice mass per day. The concept of hand-to-hand transport for the water vapor flux describes the observed changes very well. However, we did not find evidence for a macroscopic vapor diffusion enhancement. The picture of {temperature gradient metamorphism} produced by directly observing the changing microstructure sheds light on the micro-physical processes and could help to improve models that predict the physical properties of snow.

  19. The cosmic-ray shock structure problem for relativistic shocks

    Science.gov (United States)

    Webb, G. M.

    1985-01-01

    The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.

  20. Numerical Study of Shock Wave Attenuation in Two-Dimensional Ducts Using Solid Obstacles: How to Utilize Shock Focusing Techniques to Attenuate Shock Waves

    Directory of Open Access Journals (Sweden)

    Qian Wan

    2015-04-01

    Full Text Available Research on shock wave mitigation in channels has been a topic of much attention in the shock wave community. One approach to attenuate an incident shock wave is to use obstacles of various geometries arranged in different patterns. This work is inspired by the study from Chaudhuri et al. (2013, in which cylinders, squares and triangles placed in staggered and non-staggered subsequent columns were used to attenuate a planar incident shock wave. Here, we present numerical simulations using a different obstacle pattern. Instead of using a matrix of obstacles, an arrangement of square or cylindrical obstacles placed along a logarithmic spiral curve is investigated, which is motivated by our previous work on shock focusing using logarithmic spirals. Results show that obstacles placed along a logarithmic spiral can delay both the transmitted and the reflected shock wave. For different incident shock Mach numbers, away from the logarithmic spiral design Mach number, this shape is effective to either delay the transmitted or the reflected shock wave. Results also confirm that the degree of attenuation depends on the obstacle shape, effective flow area and obstacle arrangement, much like other obstacle configurations.

  1. Rb-Sr dating of low-grade metamorphics in the U.S.S.R

    International Nuclear Information System (INIS)

    Gorokhov, I.M.; Varshavskaya, E.S.; Kutyavin, E.P.; Melnikov, N.N.

    1982-01-01

    Geologically well-dated low-grade metasedimentary and metavolcanic rocks from five localities have been studied using the whole-rock Rb-Sr age method. All age values obtained are younger than those suggested by stratigraphy. When whole-rock points fit either an isochron or an errorchron with low value of the mean square of weighted deviates, the slope of this line gives the age of metamorphism. (Auth.)

  2. Metamorphic brines and no surficial fluids trapped in the detachment footwall of a Metamorphic Core Complex (Nevado-Filábride units, Betics, Spain)

    Science.gov (United States)

    Dyja-Person, Vanessa; Tarantola, Alexandre; Richard, Antonin; Hibsch, Christian; Siebenaller, Luc; Boiron, Marie-Christine; Cathelineau, Michel; Boulvais, Philippe

    2018-03-01

    The ductile-brittle transition zone in extensional regimes can play the role of a hydrogeological barrier. Quartz veins developed within an orthogneiss body located in the detachment footwall of a Metamorphic Core Complex (MCC) in the Nevado-Filábride units (Betics, Spain). The detachment footwall is composed mainly of gneisses, schists and metacarbonates from the Bédar-Macael sub-unit. Schist and metacarbonate bodies show evidence of ductile deformation at the time the gneiss was already undergoing brittle deformation and vein opening during exhumation. The vein system provides the opportunity to investigate the origin, composition and PVTX conditions of the fluids that circulated in the detachment footwall while the footwall units were crossing the ductile-brittle transition. The analysis of fluid inclusions reveals the presence of a single type of fluid: 30-40 mass% NaCl > KCl > CaCl2 > MgCl2 brines, with trace amounts of CO2 and N2 and tens to thousands of ppm of metals such as Fe, Sr, Li, Zn, Ba, Pb and Cu. δDfluid values between -39.8 and -16.7‰ and δ18Ofluid values between 4.4 and 11.7 ± 0.5‰ show that the brines have undergone protracted interaction with the host orthogneissic body. Coupled salinity and Cl/Br ratios (200 to 4400) indicate that the brines originate from dissolution of Triassic metaevaporites by metamorphic fluids variably enriched in Br by interaction with graphitic schists. This study highlights the absence of any record of surficial fluids within the veins, despite the brittle deformation conditions prevailing in this orthogneiss body. The fact that fluids from the detachment footwall were isolated from surficial fluid reservoirs may result from the presence of overlying schists and metacarbonates that continued to be affected by ductile deformation during vein formation in the gneiss, preventing downward circulation of surface-derived fluids.

  3. Converging cylindrical shocks in ideal magnetohydrodynamics

    KAUST Repository

    Pullin, D. I.

    2014-09-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then

  4. Converging cylindrical shocks in ideal magnetohydrodynamics

    International Nuclear Information System (INIS)

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.

    2014-01-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ 0 /p 0 ) I/(2 π) where I is the current, μ 0 is the permeability, and p 0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field

  5. Converging cylindrical shocks in ideal magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pullin, D. I. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States); Mostert, W.; Wheatley, V. [School of Mechanical and Mining Engineering, University of Queensland, Queensland 4072 (Australia); Samtaney, R. [Mechanical Engineering, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2014-09-15

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ{sub 0}/p{sub 0}) I/(2 π) where I is the current, μ{sub 0} is the permeability, and p{sub 0} is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The

  6. Converging cylindrical shocks in ideal magnetohydrodynamics

    KAUST Repository

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, Ravi

    2014-01-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then

  7. A shock surface geometry - The February 15-16, 1967, event. [solar flare associated interplanetary shock

    Science.gov (United States)

    Lepping, R. P.; Chao, J. K.

    1976-01-01

    An estimated shape is presented for the surface of the flare-associated interplanetary shock of February 15-16, 1967, as seen in the ecliptic-plane cross section. The estimate is based on observations by Explorer 33 and Pioneers 6 and 7. The estimated shock normal at the Explorer 33 position is obtained by a least-squares shock parameter-fitting procedure for that satellite's data; the shock normal at the Pioneer 7 position is found by using the magnetic coplanarity theorem and magnetic-field data. The average shock speed from the sun to each spacecraft is determined along with the local speed at Explorer 33 and the relations between these speeds and the position of the initiating solar flare. The Explorer 33 shock normal is found to be severely inclined and not typical of interplanetary shocks. It is shown that the curvature of the shock surface in the ecliptic plane near the earth-Pioneer 7 region is consistent with a radius of not more than 0.4 AU.

  8. GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK

    International Nuclear Information System (INIS)

    Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Khotyaintsev, Yuri V.; Dandouras, Iannis

    2013-01-01

    It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Cluster spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.

  9. Pediatric Toxic Shock Syndrome

    Directory of Open Access Journals (Sweden)

    Jennifer Yee

    2017-09-01

    Full Text Available Audience: This scenario was developed to educate emergency medicine residents on the diagnosis and management of a pediatric patient with toxic shock syndrome. The case is also appropriate for teaching of medical students and advanced practice providers, as well as a review of the principles of crisis resource management, teamwork, and communication. Introduction: Toxic shock syndrome is a low-frequency, high-acuity scenario requiring timely identification and aggressive management. If patients suffering from this condition are managed incorrectly, they may progress into multi-organ dysfunction and potentially death. Toxic shock syndrome has been associated with Streptococcus and Staphylococcus aureus (Staph. Approximately half of Staph cases are associated with menstruation, which was first described in the 1970s-1980s and was associated with the use of absorbent tampons.1 Group A Streptococcus may cause complications such as necrotizing fasciitis and gangrenous myositis.2 Pediatric patients may present critically ill from toxic shock syndrome. Providers need to perform a thorough history and physical exam to discern the source of infection. Management requires aggressive care with antibiotics and IV fluids. Objectives: By the end of this simulation session, the learner will be able to: 1 Recognize toxic shock syndrome. 2 Review the importance of a thorough physical exam. 3 Discuss management of toxic shock syndrome, including supportive care and the difference in antibiotic choices for streptococcal and staphylococcal toxic shock syndrome. 4 Appropriately disposition a patient suffering from toxic shock syndrome. 5 Communicate effectively with team members and nursing staff during a resuscitation of a critically ill patient. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session and lecture on toxic shock syndrome.

  10. Selfsimilar time dependent shock structures

    International Nuclear Information System (INIS)

    Beck, R.; Drury, L.O.

    1985-01-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The same argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions

  11. Selfsimilar time dependent shock structures

    Science.gov (United States)

    Beck, R.; Drury, L. O.

    1985-01-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.

  12. Geology of uranium vein deposits (including Schwartzwalder Mine) in Proterozoic metamorphic rocks, Front Range, Colorado

    International Nuclear Information System (INIS)

    Voto, R.H. de; Paschis, J.A.

    1980-01-01

    The Schwartzwalder uranium deposit is one of many uranium vein occurrences in the Lower Proterozoic metamorphic rocks of the Front Range, Colorado. The principal veins of significant uranium content occur marginal to the Colorado Mineral Belt; are localized by structural dilation zones, vein junctions, fault deflections or branching; and occur dominantly within or at the contact of certain preferred metamorphic-stratigraphic units, particularly the siliceous, garnetiferous gneisses, where these rock units are broken by faults and fractures associated with the north-northwest-trending throughgoing faults. Uranium at the Schwartzwalder mine occurs primarily as open-space brecciated vein filling along the steeply west-dipping Illinois vein and numerous east-dipping subsidiary veins where they cut preferred metamorphic host rocks that are tightly folded. Uraninite occurs with molybdenite, adularia, jordisite, ankerite, pyrite, base-metal sulphides, and calcite in vein-filling paragenetic sequence. Minor wall-rock alteration is mainly hematite alteration and bleaching. Vertical relief on the developed ore deposit is 900 metres and still open-ended at depth. No vertical zonation of alteration, vein mineralogy, density of the subsidiary veins, or ore grade has been detected. The Schwartzwalder uranium deposit is of substantial tonnage (greater than 10,000 metric tons of U 3 O 8 ) and grade (averaging 0.57% U 3 O 8 ). Structural mapping shows that the Illinois vein-fault is a Proterozoic structure. Discordant Proterozoic (suggested) and Laramide dates have been obtained from Schwartzwalder ore. The data suggest, therefore, a Proterozoic ancestry of this heretofore presumed Laramide (Late Cretaceous-Early Tertiary) hydrothermal uranium deposit. The authors suggest a polygenetic model for the origin of the Schwartzwalder uranium deposit

  13. Inferring Pre-shock Acoustic Field From Post-shock Pitot Pressure Measurement

    Science.gov (United States)

    Wang, Jian-Xun; Zhang, Chao; Duan, Lian; Xiao, Heng; Virginia Tech Team; Missouri Univ of Sci; Tech Team

    2017-11-01

    Linear interaction analysis (LIA) and iterative ensemble Kalman method are used to convert post-shock Pitot pressure fluctuations to static pressure fluctuations in front of the shock. The LIA is used as the forward model for the transfer function associated with a homogeneous field of acoustic waves passing through a nominally normal shock wave. The iterative ensemble Kalman method is then employed to infer the spectrum of upstream acoustic waves based on the post-shock Pitot pressure measured at a single point. Several test cases with synthetic and real measurement data are used to demonstrate the merits of the proposed inference scheme. The study provides the basis for measuring tunnel freestream noise with intrusive probes in noisy supersonic wind tunnels.

  14. THE EFFECTS OF AREA CONTRACTION ON SHOCK WAVE STRENGTH AND PEAK PRESSURE IN SHOCK TUBE

    Directory of Open Access Journals (Sweden)

    A. M. Mohsen

    2012-06-01

    Full Text Available This paper presents an experimental investigation into the effects of area contraction on shock wave strength and peak pressure in a shock tube. The shock tube is an important component of the short duration, high speed fluid flow test facility, available at the Universiti Tenaga Nasional (UNITEN, Malaysia. The area contraction was facilitated by positioning a bush adjacent to the primary diaphragm section, which separates the driver and driven sections. Experimental measurements were performed with and without the presence of the bush, at various diaphragm pressure ratios, which is the ratio of air pressure between the driver (high pressure and driven (low pressure sections. The instantaneous static pressure variations were measured at two locations close to the driven tube end wall, using high sensitivity pressure sensors, which allow the shock wave strength, shock wave speed and peak pressure to be analysed. The results reveal that the area contraction significantly reduces the shock wave strength, shock wave speed and peak pressure. At a diaphragm pressure ratio of 10, the shock wave strength decreases by 18%, the peak pressure decreases by 30% and the shock wave speed decreases by 8%.

  15. Structure of intermediate shocks and slow shocks in a magnetized plasma with heat conduction

    International Nuclear Information System (INIS)

    Tsai, C.L.; Wu, B.H.; Lee, L.C.

    2005-01-01

    The structure of slow shocks and intermediate shocks in the presence of a heat conduction parallel to the local magnetic field is simulated from the set of magnetohydrodynamic equations. This study is an extension of an earlier work [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002)], in which the effects of heat conduction are examined for the case that the tangential magnetic fields on the two side of initial current sheet are exactly antiparallel (B y =0). For the B y =0 case, a pair of slow shocks is formed as the result of evolution of the initial current sheet, and each slow shock consists of two parts: the isothermal main shock and the foreshock. In the present paper, cases with B y ≠0 are also considered, in which the evolution process leads to the presence of an additional pair of time-dependent intermediate shocks (TDISs). Across the main shock of the slow shock, jumps in plasma density, velocity, and magnetic field are significant, but the temperature is continuous. The plasma density downstream of the main shock decreases with time, while the downstream temperature increases with time, keeping the downstream pressure constant. The foreshock is featured by a smooth temperature variation and is formed due to the heat flow from downstream to upstream region. In contrast to the earlier study, the foreshock is found to reach a steady state with a constant width in the slow shock frame. In cases with B y ≠0, the plasma density and pressure increase and the magnetic field decreases across TDIS. The TDIS initially can be embedded in the slow shock's foreshock structure, and then moves out of the foreshock region. With an increasing B y , the propagation speed of foreshock leading edge tends to decrease and the foreshock reaches its steady state at an earlier time. Both the pressure and temperature downstreams of the main shock decrease with increasing B y . The results can be applied to the shock heating in the solar corona and

  16. CellDyM: A room temperature operating cryogenic cell for the dynamic monitoring of snow metamorphism by time-lapse X-ray microtomography

    Science.gov (United States)

    Calonne, N.; Flin, F.; Lesaffre, B.; Dufour, A.; Roulle, J.; Puglièse, P.; Philip, A.; Lahoucine, F.; Geindreau, C.; Panel, J.-M.; Roscoat, S. Rolland; Charrier, P.

    2015-05-01

    Monitoring the time evolution of snow microstructure in 3-D is crucial for a better understanding of snow metamorphism. We, therefore, designed a cryogenic cell that precisely controls the experimental conditions of a sample while it is scanned by X-ray tomography. Based on a thermoelectrical regulation and a vacuum insulation, the cell operates at room temperature. It is, thus, adaptable to diverse scanners, offering advantages in terms of imaging techniques, resolution, and speed. Three-dimensional time-lapse series were obtained under equitemperature and temperature gradient conditions at a 7.8 μm precision. The typical features of each metamorphism and the anisotropic faceting behavior between the basal and prismatic planes, known to occur close to -2°C, were observed in less than 30 h. These results are consistent with the temperature fields expected from heat conduction simulations through the cell. They confirm the cell's accuracy and the interest of relatively short periods to study snow metamorphism.

  17. Shock therapy: Gris Gun's shock absorber can take the punch

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-04-01

    A newly developed shock impedance tool that isolates downhole tools that measure the effects of well stimulation techniques from being damaged by the violent shaking caused by various well stimulation techniques which combine perforating and propellant technology in a single tool, is discussed. The shock exerted by a perforating gun can exceed 25,000 G forces within 100 to 300 milliseconds, may damage or even destroy the sensitive electronics housed in the various recorders that record data about fracture gradients, permeability and temperature. The shock absorber developed by Tesco Gris Gun and Computalog, incorporates the mechanics of a piston style shock absorber in combination with a progressive spring stack and energy-dampening silicone oil chambers. The end results is an EUE 'slim line' assembly that is adaptable between the gun perforating string and the electronic equipment. It is typically attached below, reducing the shock load by as much as 90 per cent. The shock absorber is now available commercially through Gris Gun's exclusive distributorship. An improved version, currently under development, will be used for wireline perforating and tubing-conveyed perforating applications. 2 figs.

  18. Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections

    International Nuclear Information System (INIS)

    Gosling, J.T.; McComas, D.J.; Phillips, J.L.; Bame, S.J.

    1991-01-01

    Previous work indicates that virtually all transient shock wave disturbances in the solar wind are driven by fast coronal mass ejection events (CMEs). Using a recently appreciated capability for distinguishing CMEs in solar wind data in the form of counterstreaming solar wind electron events, this paper explores the overall effectiveness of shock wave disturbances and CMEs in general in stimulating geomagnetic activity. The study is confined to the interval from mid-August 1978 through mid-October 1982, spanning the last solar activity maximum, when ISEE 3 was in orbit about the L1 Lagrange point 220 R e upstream from Earth. The authors find that all but one of the 37 largest geomagnetic storms in that era were associated with Earth passage of CMEs and/or shock disturbances, with the large majority of these storms being associated with interplanetary events where Earth encountered both a shock and the CME driving the shock (shock/CME events). Although CMEs and/or shock disturbances were increasingly the cause of geomagnetic activity as the level of geomagnetic activity increased, many smaller geomagnetic disturbances were unrelated to these events. Further, approximately half of all CMEs and half of all shock disturbances encountered by Earth did not produce any substantial geomagnetic activity as measured by the planetary geomagnetic index Kp. The geomagnetic effectiveness of Earth directed CMEs and shock wave disturbances was directly related to the flow speed, the magnetic field magnitude, and the strength of the southward (GSM) field component associated with the events. The initial speed of a CME close to the Sun appears to be the most crucial factor in determining if an earthward directed event will be effective in exciting a large geomagnetic disturbance

  19. Uranium mineralization possibilities in metamorphic Massif of Isla de Juventud, Cuba

    International Nuclear Information System (INIS)

    Gongora Dominguez, L.E.; Llanes Castro, A.I.; Pena Fortes, B.; Capote Rodriguez, G.

    1996-01-01

    The geologic and metallogenic characteristic of the metamorphic Massif shows the presence of possible uranium vein type mineralization as a result of a hidrotermal genetic process. Metalliferous fluids rising along the fault system were responsible for the deposition of the uranium in the reduction zones, i.e. presence of pyrite, organic matter and others. This type of uranium minerization is proposed for the Bibijagua area and for the Revolucion and Lela area the same type is expected. The gamma spectrometric analysis was used to evaluate the geological samples

  20. Initial ISEE magnetometer results: shock observation

    International Nuclear Information System (INIS)

    Russell, C.T.

    1979-01-01

    ISEE-1 and -2 magnetic field profiles across 6 terrestrial bow shock and one interplanetary shock are examined. The inteplanetary shock illustrates the behavior of a low Mach number shock. Three examples of low or moderate β, high Mach number, quasi-perpendicular shocks are examined. These did not have upstream waves, but rather had waves growing in the field gradient. Two examples of high β shocks showed little coherence in field variation even though the two vehicles were only a few hundred kilometers apart. The authors present the joint behavior of wave, particle and field data across some of these shocks to show some of the myriad of shock features whose behavior they are now beginning to investigate. (Auth.)

  1. Analytical solutions of hypersonic type IV shock - shock interactions

    Science.gov (United States)

    Frame, Michael John

    An analytical model has been developed to predict the effects of a type IV shock interaction at high Mach numbers. This interaction occurs when an impinging oblique shock wave intersects the most normal portion of a detached bow shock. The flowfield which develops is complicated and contains an embedded jet of supersonic flow, which may be unsteady. The jet impinges on the blunt body surface causing very high pressure and heating loads. Understanding this type of interaction is vital to the designers of cowl lips and leading edges on air- breathing hypersonic vehicles. This analytical model represents the first known attempt at predicting the geometry of the interaction explicitly, without knowing beforehand the jet dimensions, including the length of the transmitted shock where the jet originates. The model uses a hyperbolic equation for the bow shock and by matching mass continuity, flow directions and pressure throughout the flowfield, a prediction of the interaction geometry can be derived. The model has been shown to agree well with the flowfield patterns and properties of experiments and CFD, but the prediction for where the peak pressure is located, and its value, can be significantly in error due to a lack of sophistication in the model of the jet fluid stagnation region. Therefore it is recommended that this region of the flowfield be modeled in more detail and more accurate experimental and CFD measurements be used for validation. However, the analytical model has been shown to be a fast and economic prediction tool, suitable for preliminary design, or for understanding the interactions effects, including the basic physics of the interaction, such as the jet unsteadiness. The model has been used to examine a wide parametric space of possible interactions, including different Mach number, impinging shock strength and location, and cylinder radius. It has also been used to examine the interaction on power-law shaped blunt bodies, a possible candidate for

  2. Acceleration of Solar Energetic Particles at a Fast Traveling Shock in Non-uniform Coronal Conditions

    Science.gov (United States)

    Le Roux, J. A.; Arthur, A. D.

    2017-09-01

    Time-dependent solar energetic particle (SEP) acceleration is investigated at a fast, nearly parallel spherical traveling shock in the strongly non-uniform corona by solving the standard focused transport equation for SEPs and transport equations for parallel propagating Alfvén waves that form a set of coupled equations. This enables the modeling of self-excitation of Alfvén waves in the inertial range by SEPs ahead of the shock and its role in enhancing the efficiency of the diffusive shock acceleration (DSA) of SEPs in a self-regulatory fashion. Preliminary results suggest that, because of the highly non-uniform coronal conditions that the shock encounters, both DSA and wave excitation are highly time-dependent processes. Thus, DSA spectra of SEPs strongly deviate from the simple power-law prediction of standard steady-state DSA theory and initially strong wave excitation weakens rapidly. Consequently, the ability of DSA to produce high energy SEPs in the corona of ∼1 GeV, as observed in the strongest gradual SEP events, appears to be strongly curtailed at a fast nearly parallel shock, but further research is needed before final conclusions can be drawn.

  3. Mechanical shock absorber

    International Nuclear Information System (INIS)

    Vrillon, Bernard.

    1973-01-01

    The mechanical shock absorber described is made of a constant thickness plate pierced with circular holes regularly distributed in such a manner that for all the directions along which the strain is applied during the shock, the same section of the substance forming the plate is achieved. The shock absorber is made in a metal standing up to extensive deformation before breaking, selected from a group comprising mild steels and austenitic stainless steels. This apparatus is used for handling pots of fast neutron reactor fuel elements [fr

  4. Effects of Alfvénic Drift on Diffusive Shock Acceleration at Weak Cluster Shocks

    Science.gov (United States)

    Kang, Hyesung; Ryu, Dongsu

    2018-03-01

    Non-detection of γ-ray emission from galaxy clusters has challenged diffusive shock acceleration (DSA) of cosmic-ray (CR) protons at weak collisionless shocks that are expected to form in the intracluster medium. As an effort to address this problem, we here explore possible roles of Alfvén waves self-excited via resonant streaming instability during the CR acceleration at parallel shocks. The mean drift of Alfvén waves may either increase or decrease the scattering center compression ratio, depending on the postshock cross-helicity, leading to either flatter or steeper CR spectra. We first examine such effects at planar shocks, based on the transport of Alfvén waves in the small amplitude limit. For the shock parameters relevant to cluster shocks, Alfvénic drift flattens the CR spectrum slightly, resulting in a small increase of the CR acceleration efficiency, η. We then consider two additional, physically motivated cases: (1) postshock waves are isotropized via MHD and plasma processes across the shock transition, and (2) postshock waves contain only forward waves propagating along with the flow due to a possible gradient of CR pressure behind the shock. In these cases, Alfvénic drift could reduce η by as much as a factor of five for weak cluster shocks. For the canonical parameters adopted here, we suggest η ∼ 10‑4–10‑2 for shocks with sonic Mach number M s ≈ 2–3. The possible reduction of η may help ease the tension between non-detection of γ-rays from galaxy clusters and DSA predictions.

  5. The Heliospheric Termination Shock

    Science.gov (United States)

    Jokipii, J. R.

    2013-06-01

    The heliospheric termination shock is a vast, spheroidal shock wave marking the transition from the supersonic solar wind to the slower flow in the heliosheath, in response to the pressure of the interstellar medium. It is one of the most-important boundaries in the outer heliosphere. It affects energetic particles strongly and for this reason is a significant factor in the effects of the Sun on Galactic cosmic rays. This paper summarizes the general properties and overall large-scale structure and motions of the termination shock. Observations over the past several years, both in situ and remote, have dramatically revised our understanding of the shock. The consensus now is that the shock is quite blunt, is with the front, blunt side canted at an angle to the flow direction of the local interstellar plasma relative to the Sun, and is dynamical and turbulent. Much of this new understanding has come from remote observations of energetic charged particles interacting with the shock, radio waves and radiation backscattered from interstellar neutral atoms. The observations and the implications are discussed.

  6. Timing of metamorphism of the Lansang gneiss and implications for left-lateral motion along the Mae Ping (Wang Chao) strike-slip fault, Thailand

    Science.gov (United States)

    Palin, R. M.; Searle, M. P.; Morley, C. K.; Charusiri, P.; Horstwood, M. S. A.; Roberts, N. M. W.

    2013-10-01

    The Mae Ping fault (MPF), western Thailand, exhibits dominantly left-lateral strike-slip motion and stretches for >600 km, reportedly branching off the right-lateral Sagaing fault in Myanmar and extending southeast towards Cambodia. Previous studies have suggested that the fault assisted the large-scale extrusion of Sundaland that occurred during the Late Eocene-Early Oligocene, with a geological offset of ˜120-150 km estimated from displaced high-grade gneisses and granites of the Chiang Mai-Lincang belt. Exposures of high-grade orthogneiss in the Lansang National Park, part of this belt, locally contain strong mylonitic textures and are bounded by strike-slip ductile shear zones and brittle faults. Geochronological analysis of monazite from a sample of sheared biotite-K-feldspar orthogneiss suggests two episodes of crystallization, with core regions documenting Th-Pb ages between c. 123 and c. 114 Ma and rim regions documenting a significantly younger age range between c. 45-37 Ma. These data are interpreted to represent possible magmatic protolith emplacement for the Lansang orthogneiss during the Early Cretaceous, with a later episode of metamorphism occurring during the Eocene. Textural relationships provided by in situ analysis suggest that ductile shearing along the MPF occurred during the latter stages of, or after, this metamorphic event. In addition, monazite analyzed from an undeformed garnet-two-mica granite dyke intruding metamorphic units at Bhumipol Lake outside of the Mae Ping shear zone produced a Th-Pb age of 66.2 ± 1.6 Ma. This age is interpreted to date the timing of dyke emplacement, implying that the MPF cuts through earlier formed magmatic and high-grade metamorphic rocks. These new data, when combined with regional mapping and earlier geochronological work, show that neither metamorphism, nor regional cooling, was directly related to strike-slip motion.

  7. Expression profile of a Laccase2 encoding gene during the metamorphic molt in Apis mellifera (Hymenoptera,Apidae

    Directory of Open Access Journals (Sweden)

    Moysés Elias-Neto

    2013-06-01

    Full Text Available Expression profile of a Laccase2 encoding gene during the metamorphic molt in Apis mellifera (Hymenoptera, Apidae. Metamorphosis in holometabolous insects occurs through two subsequent molting cycles: pupation (metamorphic molt and adult differentiation (imaginal molt. The imaginal molt in Apis mellifera L. was recently investigated in both histological and physiological-molecular approaches. Although the metamorphic molt in this model bee is extremely important to development, it is not well-known yet. In the current study we used this stage as an ontogenetic scenario to investigate the transcriptional profile of the gene Amlac2, which encodes a laccase with an essential role in cuticle differentiation. Amlac2 expression in epidermis was contrasted with the hemolymph titer of ecdysteroid hormones and with the most evident morphological events occurring during cuticle renewal. RT-PCR semiquantitative analyses using integument samples revealed increased levels of Amlac2 transcripts right after apolysis and during the subsequent pharate period, and declining levels near pupal ecdysis. Compared with the expression of a cuticle protein gene, AmelCPR14, these results highlighted the importance of the ecdysteroid-induced apolysis as an ontogenetic marker of gene reactivation in epidermis for cuticle renewal. The obtained results strengthen the comprehension of metamorphosis in Apis mellifera. In addition, we reviewed the literature about the development of A. mellifera, and emphasize the importance of revising the terminology used to describe honey bee molting cycles.

  8. A Prognostic Model for Development of Profound Shock among Children Presenting with Dengue Shock Syndrome.

    Directory of Open Access Journals (Sweden)

    Phung Khanh Lam

    Full Text Available To identify risk factors and develop a prediction model for the development of profound and recurrent shock amongst children presenting with dengue shock syndrome (DSS.We analyzed data from a prospective cohort of children with DSS recruited at the Paediatric Intensive Care Unit of the Hospital for Tropical Disease in Ho Chi Minh City, Vietnam. The primary endpoint was "profound DSS", defined as ≥2 recurrent shock episodes (for subjects presenting in compensated shock, or ≥1 recurrent shock episodes (for subjects presenting initially with decompensated/hypotensive shock, and/or requirement for inotropic support. Recurrent shock was evaluated as a secondary endpoint. Risk factors were pre-defined clinical and laboratory variables collected at the time of presentation with shock. Prognostic model development was based on logistic regression and compared to several alternative approaches.The analysis population included 1207 children of whom 222 (18% progressed to "profound DSS" and 433 (36% had recurrent shock. Independent risk factors for both endpoints included younger age, earlier presentation, higher pulse rate, higher temperature, higher haematocrit and, for females, worse hemodynamic status at presentation. The final prognostic model for "profound DSS" showed acceptable discrimination (AUC=0.69 for internal validation and calibration and is presented as a simple score-chart.Several risk factors for development of profound or recurrent shock among children presenting with DSS were identified. The score-chart derived from the prognostic models should improve triage and management of children presenting with DSS in dengue-endemic areas.

  9. Bubble Dynamics and Shock Waves

    CERN Document Server

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  10. Shocks near Jamming

    Science.gov (United States)

    Gómez, Leopoldo R.; Turner, Ari M.; van Hecke, Martin; Vitelli, Vincenzo

    2012-02-01

    Nonlinear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are dynamically compressed and demonstrate that the elementary excitations are strongly nonlinear shocks, rather than ordinary phonons. We capture the full dependence of the shock speed on pressure and impact intensity by a surprisingly simple analytical model.

  11. K-Ar dating celadonite: A contribution to timing of a very low-grade metamorphism in the Central Andes of Chile

    International Nuclear Information System (INIS)

    Belmar, M; Schmidt, S.; Frey, M

    2001-01-01

    Clay minerals have been used in several studies to date very low-grade metamorphism processes and hydrothermal episodes. The technique of using the K-Ar isotopic dating was demonstrated by many authors (e.g. Hunziker et al., 1986; Clauer et al., 1995; Kirschner et al 1995; Zhao et al., 1997; Glasmacher et al., 2001). White mica and illitic materials of different size are usually analysed, whereasceladonite mineral with high potassium content has been low developed and few data are published. Successful dating of continental Andean celadonite could mean that is possible to date the very low-grade metamorphism (zeolites facies) in which celadonites are very often observed (au)

  12. Prediction of massive bleeding. Shock index and modified shock index.

    Science.gov (United States)

    Terceros-Almanza, L J; García-Fuentes, C; Bermejo-Aznárez, S; Prieto-Del Portillo, I J; Mudarra-Reche, C; Sáez-de la Fuente, I; Chico-Fernández, M

    2017-12-01

    To determine the predictive value of the Shock Index and Modified Shock Index in patients with massive bleeding due to severe trauma. Retrospective cohort. Severe trauma patient's initial attention at the intensive care unit of a tertiary hospital. Patients older than 14 years that were admitted to the hospital with severe trauma (Injury Severity Score >15) form January 2014 to December 2015. We studied the sensitivity (Se), specificity (Sp), positive and negative predictive value (PV+ and PV-), positive and negative likelihood ratio (LR+ and LR-), ROC curves (Receiver Operating Characteristics) and the area under the same (AUROC) for prediction of massive hemorrhage. 287 patients were included, 76.31% (219) were male, mean age was 43,36 (±17.71) years and ISS was 26 (interquartile range [IQR]: 21-34). The overall frequency of massive bleeding was 8.71% (25). For Shock Index: AUROC was 0.89 (95% confidence intervals [CI] 0.84 to 0.94), with an optimal cutoff at 1.11, Se was 91.3% (95% CI: 73.2 to 97.58) and Sp was 79.69% (95% CI: 74.34 to 84.16). For the Modified Shock Index: AUROC was 0.90 (95% CI: 0.86 to 0.95), with an optimal cutoff at 1.46, Se was 95.65% (95% CI: 79.01 to 99.23) and Sp was 75.78% (95% CI: 70.18 to 80.62). Shock Index and Modified Shock Index are good predictors of massive bleeding and could be easily incorporated to the initial workup of patients with severe trauma. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  13. A FOCUSED TRANSPORT APPROACH TO THE TIME-DEPENDENT SHOCK ACCELERATION OF SOLAR ENERGETIC PARTICLES AT A FAST TRAVELING SHOCK

    International Nuclear Information System (INIS)

    Le Roux, J. A.; Webb, G. M.

    2012-01-01

    Some of the most sophisticated models for solar energetic particle (SEP) acceleration at coronal mass ejection driven shocks are based on standard diffusive shock acceleration theory. However, this theory, which only applies when SEP pitch-angle anisotropies are small, might have difficulty in describing first-order Fermi acceleration or the shock pre-heating and injection of SEPs into first-order Fermi acceleration accurately at lower SEP speeds where SEP pitch-angle anisotropies upstream near the shock can be large. To avoid this problem, we use a time-dependent focused transport model to reinvestigate first-order Fermi acceleration at planar parallel and quasi-parallel spherical traveling shocks between the Sun and Earth with high shock speeds associated with rare extreme gradual SEP events. The focused transport model is also used to investigate and compare three different shock pre-heating mechanisms associated with different aspects of the nonuniform cross-shock solar wind flow, namely, the convergence of the flow (adiabatic compression), the shear tensor of the flow, and the acceleration of the flow, and a fourth shock pre-heating mechanism associated with the cross-shock electric field, to determine which pre-heating mechanism contributes the most to injecting shock pre-heated source particles into the first-order Fermi acceleration process. The effects of variations in traveling shock conditions, such as increasing shock obliquity and shock slowdown, and variations in the SEP source with increasing shock distance from the Sun on the coupled processes of shock pre-heating, injection, and first-order Fermi acceleration are analyzed. Besides the finding that the cross-shock acceleration of the solar wind flow yields the dominant shock pre-heating mechanism at high shock speeds, we find that first-order Fermi acceleration at fast traveling shocks differs in a number of respects from the predictions and assumptions of standard steady-state diffusive shock

  14. 30th International Symposium on Shock Waves

    CERN Document Server

    Sadot, Oren; Igra, Ozer

    2017-01-01

    These proceedings collect the papers presented at the 30th International Symposium on Shock Waves (ISSW30), which was held in Tel-Aviv Israel from July 19 to July 24, 2015. The Symposium was organized by Ortra Ltd. The ISSW30 focused on the state of knowledge of the following areas: Nozzle Flow, Supersonic and Hypersonic Flows with Shocks, Supersonic Jets, Chemical Kinetics, Chemical Reacting Flows, Detonation, Combustion, Ignition, Shock Wave Reflection and Interaction, Shock Wave Interaction with Obstacles, Shock Wave Interaction with Porous Media, Shock Wave Interaction with Granular Media, Shock Wave Interaction with Dusty Media, Plasma, Magnetohyrdrodynamics, Re-entry to Earth Atmosphere, Shock Waves in Rarefied Gases, Shock Waves in Condensed Matter (Solids and Liquids), Shock Waves in Dense Gases, Shock Wave Focusing, Richtmyer-Meshkov Instability, Shock Boundary Layer Interaction, Multiphase Flow, Blast Waves, Facilities, Flow Visualization, and Numerical Methods. The two volumes serve as a reference ...

  15. Advanced and Exploratory Shock Sensing Mechanisms.

    Energy Technology Data Exchange (ETDEWEB)

    Nelsen, Nicholas H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kolb, James D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kulkarni, Akshay G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorscher, Zachary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Habing, Clayton D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mathis, Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Beller, Zachary J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Mechanical component response to shock environments must be predictable in order to ensure reliability and safety. Whether the shock input results from accidental drops during transportation to projectile impact scenarios, the system must irreversibly transition into a safe state that is incapable of triggering the component . With this critical need in mind, the 2017 Nuclear Weapons Summer Product Realization Institute (NW SPRINT) program objective sought the design of a passive shock failsafe with emphasis on additively manufactured (AM) components. Team Advanced and Exploratory (A&E) responded to the challenge by designing and delivering multiple passive shock sensing mech anisms that activate within a prescribed mechanical shock threshold. These AM failsafe designs were tuned and validated using analytical and computational techniques including the shock response spectrum (SRS) and finite element analysis (FEA). After rapid prototyping, the devices experienced physical shock tests conducted on Sandia drop tables to experimentally verify performance. Keywords: Additive manufacturing, dynamic system, failsafe, finite element analysis, mechanical shock, NW SPRINT, shock respon se spectrum

  16. Sensitivity towards fear of electric shock in passive threat situations.

    Directory of Open Access Journals (Sweden)

    Patrick Ring

    Full Text Available Human judgment and decision-making (JDM requires an assessment of different choice options. While traditional theories of choice argue that cognitive processes are the main driver to reach a decision, growing evidence highlights the importance of emotion in decision-making. Following these findings, it appears relevant to understand how individuals asses the attractiveness or riskiness of a situation in terms of emotional processes. The following study aims at a better understanding of the psychophysiological mechanisms underlying threat sensitivity by measuring skin conductance responses (SCRs in passive threat situations. While previous studies demonstrate the role of magnitude on emotional body reactions preceding an outcome, this study focuses on probability. In order to analyze emotional body reactions preceding negative events with varying probability of occurrence, we have our participants play a two-stage card game. The first stage of the card game reveals the probability of receiving an unpleasant electric shock. The second stage applies the electric shock with the previously announced probability. For the analysis, we focus on the time interval between the first and second stage. We observe a linear relation between SCRs in anticipation of receiving an electric shock and shock probability. This finding indicates that SCRs are able to code the likelihood of negative events. We outline how this coding function of SCRs during the anticipation of negative events might add to an understanding of human JDM.

  17. Research advances in contact model and mechanism configuration for nut shelling manipulation based on metamorphic method

    Directory of Open Access Journals (Sweden)

    Xiulan BAO

    2017-04-01

    Full Text Available Nuts are the important economic forest tree species of China. De-shell is the key operation of nut deep processing. There are some problems in the current nut cracking devices such as the low decorticating rate, the high nuts losses rate and nutmeat integrity problems, etc.. The foundation of force analysis is to establish contact model for nut and mechanical. The nut surface is rough and irregular, so the contact area cannot be modeled as regular shape. How to set up contact constraint model is the key problem to accomplish non-loss shelling. In order to study the shell-breaking mechanism and structural design of the nut shelling manipulation, a multi-fingered metamorphic manipulator is presented. An overview of the nut shelling technology and the contact manipulator modeling are proposed. The origin and application of metamorphic mechanisms are introduced. Then the research contents and development prospects of nut shelling manipulator are described.

  18. The MHD intermediate shock interaction with an intermediate wave: Are intermediate shocks physical?

    International Nuclear Information System (INIS)

    Wu, C.C.

    1988-01-01

    Contrary to the usual belief that MHD intermediate shocks are extraneous, the authors have recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear steepening from a continuous wave. In this paper, he clarifies the differences between the conventional view and the results by studying the interaction of an MHD intermediate shock with an intermediate wave. The study reaffirms his results. In addition, the study shows that there exists a larger class of shocklike solutions in the time-dependent dissiaptive MHD equations than are given by the MHD Rankine-Hugoniot relations. it also suggests a mechanism for forming rotational discontinuities through the interaction of an intermediate shock with an intermediate wave. The results are of importance not only to the MHD shock theory but also to studies such as magnetic field reconnection models

  19. Tectonic and metamorphic discontinuities in the Greater Himalayan Sequence in Central Himalaya: in-sequence shearing by accretion from the Indian plate

    Science.gov (United States)

    Carosi, Rodolfo

    2016-04-01

    The Greater Himalayan Sequence (GHS) is the main metamorphic unit of the Himalayas, stretching for over 2400 km, bounded to the South by the Main Central Thrust (MCT) and to the North by the South Tibetan Detachment (STD) whose contemporanous activity controlled its exhumation between 23 and 17 Ma (Godin et al., 2006). Several shear zones and/or faults have been recognized within the GHS, usually regarded as out of sequence thrusts. Recent investigations, using a multitechnique approach, allowed to recognize a tectonic and metamorphic discontinuity, localized in the mid GHS, with a top-to-the SW sense of shear (Higher Himalayan Discontinuity: HHD) (Carosi et al., 2010; Montomoli et al., 2013). U-(Th)-Pb in situ monazite ages provide temporal constraint of the acitivity of the HHD from ~ 27-25 Ma to 18-17 Ma. Data on the P and T evolution testify that this shear zone affected the tectono-metamorphic evolution of the belt and different P and T conditions have been recorded in the hanging-wall and footwall of the HHD. The HHD is a regional tectonic feature running for more than 700 km, dividing the GHS in two different portions (Iaccarino et al., 2015; Montomoli et al., 2015). The occurrence of even more structurally higher contractional shear zone in the GHS (above the HHD): the Kalopani shear zone (Kali Gandaki valley, Central Nepal), active from ~ 41 to 30 Ma (U-Th-Pb on monazite) points out to a more complex deformation pattern in the GHS characterized by in sequence shearing. The actual proposed models of exhumation of the GHS, based exclusively on the MCT and STD activities, are not able to explain the occurrence of the HHD and other in-sequence shear zones. Any model of the tectonic and metamorphic evolution of the GHS should account for the occurrence of the tectonic and metamorphic discontinuities within the GHS and its consequences on the metamorphic paths and on the assembly of Himalayan belt. References Godin L., Grujic D., Law, R. D. & Searle, M. P. 2006

  20. Geochronologic constraints of the uplift and metamorphism along the Alpine Fault, South Island, New Zealand

    International Nuclear Information System (INIS)

    Chamberlain, C.P.; Zeitler, P.K.; Cooper, A.F.

    1995-01-01

    Geochronological studies of pegmatites and Alpine Schist exposed east of the Alpine Fault, South Island, New Zealand, reveal a complex history beginning with magmatism and metamorphism at c. 68 m.y. ago and ending with rapid uplift and exhumation in the last 5 m.y. Pegmatites exposed in the Mataketake Range give conventional U-Pb monazite and SHRIMP ion-probe zircon ages of 68 ± 2.6 Ma and 67.9 ± 2.5 Ma, respectively. Inasmuch as petrologic and isotopic data indicate that the Alpine pegmatites are melts derived from the Alpine Schist, the age of the pegmatites suggests that, at least locally, the high-grade metamorphism is considerably younger than previously assumed. We tentatively suggest that metamorphism, in at least some areas of the Alpine Schist, may be associated with Late Cretaceous transtension rather than resulting from the consequences of collision during the Rangitata Orogeny. 40 Ar/ 39 Ar studies of hornblendes from the Alpine Schist, collected from the Haast River to the Franz Josef Glacier area, reveal highly disturbed spectra. Despite this complexity, these analyses define a systematic decrease in ages both across-strike toward the Alpine Fault (Haast River traverse) and northwards along-strike towards Mt Cook. This pattern of decreasing 40 Ar/ 39 Ar hornblende ages is also observed in lower closure temperature systems such as zircon and apatite fission-track ages. We interpret the decrease in ages toward the fault to be the result of deeper exhumation in the immediate vicinity of the Alpine Fault, whereas we interpret the northward younging of fault-proximal samples to be a result of both more recent and possibly more extensive exhumation than occurred in areas to the south. (author). 55 refs., 4 figs., 2 tabs

  1. Late Cretaceous extension and exhumation of the Stong and Taku magmatic and metamorphic complexes, NE Peninsular Malaysia

    NARCIS (Netherlands)

    François, T.; Md Ali, M.A.; Matenco, L.; Willingshofer, E.; Ng, T.F.; Taib, N.I.; Shuib, M.K.

    2017-01-01

    Fragmentation of large continental areas by post-orogenic extension requires favourable geodynamic conditions and frequently occurs along pre-existing suture zones or nappe contacts, as exemplified by the Stong and Taku magmatic and metamorphic complexes of northern Peninsular Malaysia. For this

  2. The metamorphic basement of the Cordillera Frontal of Mendoza: New geochronologic and isotopic data

    International Nuclear Information System (INIS)

    Basei, Miguel; Ramos, Victor A.; Vujovich, Graciela I.; Poma, Stella

    1998-01-01

    The metamorphic rocks of the Cordillera Frontal exposed in the Cordon del Portillo, Mendoza were examined by Rb/Sr geochronology and Nd/Sm isotopic analysis. The Rb/Sr data defined a Devonian age for the last metamorphic episode, similar to the previous K/Ar and Ar/Ar ages obtained in this region and western Precordillera. The isotopic analysis identified three sets of model ages: 1.- The oldest corresponds to a set of meta sedimentary rocks with a model age of 1,400 to 1,700 Ma; 2.- A monzogranodiorite with a model age of 1,000 Ma; and 3.- Metabasites with model ages between 577 and 330 Ma. These rocks are interpreted as 1.- A typical Grenvillian derived basement; 2.- Late Paleozoic granitoids derived from a different Proterozoic basement; and 3.- Some Eopaleozoic metabasites tectonically inter fingered with the Grenvillian basement. These new data are coherent with the existence of a Laurentia derived terrane, Chilenia, that was separated by oceanic rocks from the basement of Pre cordillera during Eopaleozoic times. This last basement known as the Cuyania terrane, was also derived from Laurentia. (author)

  3. The Septic Shock 3.0 Definition and Trials: A Vasopressin and Septic Shock Trial Experience.

    Science.gov (United States)

    Russell, James A; Lee, Terry; Singer, Joel; Boyd, John H; Walley, Keith R

    2017-06-01

    The Septic Shock 3.0 definition could alter treatment comparisons in randomized controlled trials in septic shock. Our first hypothesis was that the vasopressin versus norepinephrine comparison and 28-day mortality of patients with Septic Shock 3.0 definition (lactate > 2 mmol/L) differ from vasopressin versus norepinephrine and mortality in Vasopressin and Septic Shock Trial. Our second hypothesis was that there are differences in plasma cytokine levels in Vasopressin and Septic Shock Trial for lactate less than or equal to 2 versus greater than 2 mmol/L. Retrospective analysis of randomized controlled trial. Multicenter ICUs. We compared vasopressin-to-norepinephrine group 28- and 90-day mortality in Vasopressin and Septic Shock Trial in lactate subgroups. We measured 39 cytokines to compare patients with lactate less than or equal to 2 versus greater than 2 mmol/L. Patients with septic shock with lactate greater than 2 mmol/L or less than or equal to 2 mmol/L, randomized to vasopressin or norepinephrine. Concealed vasopressin (0.03 U/min.) or norepinephrine infusions. The Septic Shock 3.0 definition would have decreased sample size by about half. The 28- and 90-day mortality rates were 10-12 % higher than the original Vasopressin and Septic Shock Trial mortality. There was a significantly (p = 0.028) lower mortality with vasopressin versus norepinephrine in lactate less than or equal to 2 mmol/L but no difference between treatment groups in lactate greater than 2 mmol/L. Nearly all cytokine levels were significantly higher in patients with lactate greater than 2 versus less than or equal to 2 mmol/L. The Septic Shock 3.0 definition decreased sample size by half and increased 28-day mortality rates by about 10%. Vasopressin lowered mortality versus norepinephrine if lactate was less than or equal to 2 mmol/L. Patients had higher plasma cytokines in lactate greater than 2 versus less than or equal to 2 mmol/L, a brisker cytokine response to infection. The Septic

  4. Motion of shocks through interplanetary streams

    International Nuclear Information System (INIS)

    Burlaga, L.F.; Scudder, J.D.

    1975-01-01

    A model for the motion of flare-generated shocks through interplanetary streams is presented, illustrating the effects of a stream-shock interaction on the shock strength and geometry. It is a gas dynamic calculation based on Whitham's method and on an empirical approximation for the relevant characteristics of streams. The results show that the Mach number of a shock can decrease appreciably to near unity in the interaction region ahead of streams and that the interaction of a spherically symmetric shock with a spiral-shaped corotating stream can cause significant distortions of the initial shock front geometry. The geometry of the February 15--16, 1967, shock discussed by Lepping and Chao (1972) is qualitatively explained by this model

  5. Late Mesoproterozoic to Early Paleozoic history of metamorphic basement from the southeastern Chiapas Massif Complex, Mexico, and implications for the evolution of NW Gondwana

    Science.gov (United States)

    Weber, Bodo; González-Guzmán, Reneé; Manjarrez-Juárez, Román; Cisneros de León, Alejandro; Martens, Uwe; Solari, Luigi; Hecht, Lutz; Valencia, Victor

    2018-02-01

    In this paper, U-Pb zircon geochronology, Lu-Hf and Sm-Nd isotope systematics, geochemistry and geothermobarometry of metaigneous basement rocks exposed in the southeastern Chiapas Massif Complex are presented. Geologic mapping of the newly defined "El Triunfo Complex" located at the southeastern edge of the Chiapas Massif reveals (1) partial melting of a metamorphic basement mainly constituted by mafic metaigneous rocks (Candelaria unit), (2) an Ediacaran metasedimentary sequence (Jocote unit), and (3) occurrence of massif-type anorthosite. All these units are intruded by undeformed Ordovician plutonic rocks of the Motozintla suite. Pressure and temperature estimates using Ca-amphiboles, plagioclase and phengite revealed prograde metamorphism that reached peak conditions at 650 °C and 6 kbar, sufficient for partial melting under water saturated conditions. Relict rutile in titanite and clinopyroxene in amphibolite further indicate a previous metamorphic event at higher P-T conditions. U-Pb zircon ages from felsic orthogneiss boudins hosted in deformed amphibolite and migmatite yield crystallization ages of 1.0 Ga, indicating that dry granitic protoliths represent remnants of Rodinia-type basement. Additionally, a mid-Tonian ( 920 Ma) metamorphic overprint is suggested by recrystallized zircon from a banded gneiss. Zircon from folded amphibolite samples yield mainly Ordovician ages ranging from 457 to 444 Ma that are indistinguishable from the age of the undeformed Motozintla plutonic suite. Similar ages between igneous- and metamorphic- zircon suggest a coeval formation during a high-grade metamorphic event, in which textural discrepancies are explained in terms of differing zircon formation mechanisms such as sub-solidus recrystallization and precipitation from anatectic melts. In addition, some amphibolite samples contain inherited zircon yielding Stenian-Tonian ages around 1.0 Ga. Lu-Hf and Sm-Nd isotopes and geochemical data indicate that the protoliths of

  6. Effects of shock pressure on 40Ar-39Ar radiometric age determinations

    International Nuclear Information System (INIS)

    Davis, P.K.

    1977-01-01

    The relation of shock to the drop in the 40 *Ar/ 39 *Ar ratio seen at high release temperatures in some neutron-irradiated lunar samples is investigated through measurements of the 40 *Ar/ 39 *Ar ratio in gas samples released by stepwise heating of rock samples previously subjected to shock, either in the laboratory or in nature. Explosives were used to shock solid pieces and powder of a basalt from a diabase dike in Liberia to calculated pressures of 65, 150 and 270 kbar. These, an unshocked sample of the powder, two naturally shocked samples from the Brent impact crater in Canada, one unshocked sample from near the crater, and appropriate monitors were irradiated. Ar from stepwise heating was analyzed. The unshocked basalt shows a good 40 *Ar/ 39 *Ar plateau at age 198 +-9 m.y. in agreement with a previous result of 186 +- 2 m.y. The shocked samples contain varying amounts of implanted atmospheric Ar, the isotopes of which have experienced mass fractionation. This effect is small enough in four samples so that the linearity of their graphs of 39 *Ar/ 40 Ar vs 36 Ar/ 40 Ar is evidence of a plateau. The ages of these samples are then 201 +- 10, 205 +- 12 and 201 +-9 m.y. It appears that the shock has had little effect on the 40 Ar- 39 Ar age spectrum, although the release patterns of the 39 *Ar are shifted downward by the order of 200 0 C. Shock implantation of Ar was at lower shock pressure, in the presence of less Ar, and into a less porous material than previously demonstrated. The Brent Crater samples do not all show good plateaus, but do indicate an age of 420 m.y. for the crater event and 795 +- 24 m.y. for the rock formation, in agreement with previous results. None of the 40 *Ar/ 39 *Ar profiles shows a drop at high temperature, but a possible role of shock implantation of Ar is indicated in the production of this effect. Further experiments are suggested. (author)

  7. Shock-induced microdeformations in quartz and other mineralogical indications of an impact event at the Cretaceous-Tertiary boundary

    Science.gov (United States)

    Bohor, B.F.

    1990-01-01

    The event terminating the Cretaceous period and the Mesozoic era caused massive extinctions of flora and fauna worldwide. Theories of the nature of this event can be classed as endogenic (volcanic, climatic, etc.) or exogenic (extraterrestrial causes). Mineralogical evidence from the boundary clays and claystones strongly favor the impact of an extraterrestrial body as the cause of this event. Nonmarine KT boundary claystones are comprised of two separate layers-an upper layer composed of high-angle ejecta material (shocked quartz, altered glass and spinel) and a basal kaolinitic layer containing spherules, clasts, and altered glass, together with some shocked grains. Recognition of this dual-layered nature of the boundary clay is important for the determination of the timing and processes involved in the impact event and in the assignment and interpretation of geochemical signatures. Multiple sets of shock-induced microdeformations (planar features) in quartz grains separated from KT boundary clays provide compelling evidence of an impact event. This mineralogical manifestation of shock metamorphism is associated worldwide with a large positive anomaly of iridium in these boundary clays, which has also been considered indicative of the impact of a large extraterrestrial body. Global distributions of maximum sizes of shocked quartz grains from the boundary clays and the mineralogy of the ejecta components favor an impact on or near the North American continent. Spinel crystals (magnesioferrite) occur in the boundary clays as micrometer-sized octahedra or skeletal forms. Their composition differs from that of spinels found in terrestrial oceanic basalts. Magnesioferrite crystals are restricted to the high-angle ejecta layer of the boundary clays and their small size and skeletal morphology suggest that they are condensation products of a vaporized bolide. Hollow spherules ranging up to 1 mm in size are ubiquitously associated with the boundary clays. In nonmarine

  8. Grain destruction in interstellar shocks

    International Nuclear Information System (INIS)

    Seab, C.G.; Shull, J.M.

    1984-01-01

    One of the principal methods for removing grains from the Interstellar Medium is to destroy them in shock waves. Previous theoretical studies of shock destruction have generally assumed only a single size and type of grain; most do not account for the effect of the grain destruction on the structure of the shock. Earlier calculations have been improved in three ways: first, by using a ''complete'' grain model including a distribution of sizes and types of grains; second, by using a self-consistent shock structure that incorporates the changing elemental depletions as the grains are destroyed; and third, by calculating the shock-processed ultraviolet extinction curves for comparison with observations. (author)

  9. Impact of Shock Front Rippling and Self-reformation on the Electron Dynamics at Low-Mach-number Shocks

    Science.gov (United States)

    Yang, Zhongwei; Lu, Quanming; Liu, Ying D.; Wang, Rui

    2018-04-01

    Electron dynamics at low-Mach-number collisionless shocks are investigated by using two-dimensional electromagnetic particle-in-cell simulations with various shock normal angles. We found: (1) The reflected ions and incident electrons at the shock front provide an effective mechanism for the quasi-electrostatic wave generation due to the charge-separation. A fraction of incident electrons can be effectively trapped and accelerated at the leading edge of the shock foot. (2) At quasi-perpendicular shocks, the electron trapping and reflection is nonuniform due to the shock rippling along the shock surface and is more likely to take place at some locations accompanied by intense reflected ion-beams. The electron trapping process has a periodical evolution over time due to the shock front self-reformation, which is controlled by ion dynamics. Thus, this is a cross-scale coupling phenomenon. (3) At quasi-parallel shocks, reflected ions can travel far back upstream. Consequently, quasi-electrostatic waves can be excited in the shock transition and the foreshock region. The electron trajectory analysis shows these waves can trap electrons at the foot region and reflect a fraction of them far back upstream. Simulation runs in this paper indicate that the micro-turbulence at the shock foot can provide a possible scenario for producing the reflected electron beam, which is a basic condition for the type II radio burst emission at low-Mach-number interplanetary shocks driven by Coronal Mass Ejections (CMEs).

  10. Parallel implementation of geometrical shock dynamics for two dimensional converging shock waves

    Science.gov (United States)

    Qiu, Shi; Liu, Kuang; Eliasson, Veronica

    2016-10-01

    Geometrical shock dynamics (GSD) theory is an appealing method to predict the shock motion in the sense that it is more computationally efficient than solving the traditional Euler equations, especially for converging shock waves. However, to solve and optimize large scale configurations, the main bottleneck is the computational cost. Among the existing numerical GSD schemes, there is only one that has been implemented on parallel computers, with the purpose to analyze detonation waves. To extend the computational advantage of the GSD theory to more general applications such as converging shock waves, a numerical implementation using a spatial decomposition method has been coupled with a front tracking approach on parallel computers. In addition, an efficient tridiagonal system solver for massively parallel computers has been applied to resolve the most expensive function in this implementation, resulting in an efficiency of 0.93 while using 32 HPCC cores. Moreover, symmetric boundary conditions have been developed to further reduce the computational cost, achieving a speedup of 19.26 for a 12-sided polygonal converging shock.

  11. Cures for the shock instability: Development of a shock-stable Roe scheme

    CERN Document Server

    Kim, S S; Rho, O H; Kyu-Hong, S

    2003-01-01

    This paper deals with the development of an improved Roe scheme that is free from the shock instability and still preserves the accuracy and efficiency of the original Roe's Flux Difference Splitting (FDS). Roe's FDS is known to possess good accuracy but to suffer from the shock instability, such as the carbuncle phenomenon. As the first step towards a shock-stable scheme, Roe's FDS is compared with the HLLE scheme to identify the source of the shock instability. Through a linear perturbation analysis on the odd-even decoupling problem, damping characteristic is examined and Mach number-based functions f and g are introduced to balance damping and feeding rates, which leads to a shock-stable Roe scheme. In order to satisfy the conservation of total enthalpy, which is crucial in predicting surface heat transfer rate in high-speed steady flows, an analysis of dissipation mechanism in the energy equation is carried out to find out the error source and to make the proposed scheme preserve total enthalpy. By modif...

  12. Shock dynamics in layered periodic media

    KAUST Repository

    Ketcheson, David I.

    2012-01-01

    Solutions of constant-coeffcient nonlinear hyperbolic PDEs generically develop shocks, even if the initial data is smooth. Solutions of hyperbolic PDEs with variable coeffcients can behave very differently. We investigate formation and stability of shock waves in a one-dimensional periodic layered medium by a computational study of time-reversibility and entropy evolution. We find that periodic layered media tend to inhibit shock formation. For small initial conditions and large impedance variation, no shock formation is detected even after times much greater than the time of shock formation in a homogeneous medium. Furthermore, weak shocks are observed to be dynamically unstable in the sense that they do not lead to significant long-term entropy decay. We propose a characteristic condition for admissibility of shocks in heterogeneous media that generalizes the classical Lax entropy condition and accurately predicts the formation or absence of shocks in these media.

  13. Experimental Shock Transformation of Gypsum to Anhydrite: A New Low Pressure Regime Shock Indicator

    Science.gov (United States)

    Bell, Mary S.; Zolensky, Michael E.

    2011-01-01

    The shock behavior of gypsum is important in understanding the Cretaceous/Paleogene event and other terrestrial impacts that contain evaporite sediments in their targets (e.g., Mars Exploration Rover Spirit detected sulfate at Gusev crater, [1]). Most interest focuses on issues of devolatilization to quantify the production of SO2 to better understand its role in generating a temporary atmosphere and its effects on climate and biota [2,3]. Kondo and Ahrens [4] measured induced radiation emitted from single crystal gypsum shocked to 30 and 40 GPa. They observed greybody emission spectra corresponding to temperatures in the range of 3,000 to 4,000 K that are a factor of 2 to 10 times greater than calculated pressure-density energy equation of state temperatures (Hugoniot) and are high enough to melt gypsum. Chen et al. [5] reported results of shock experiments on anhydrite, gypsum, and mixtures of these phases with silica. Their observations indicated little or no devolatilization of anhydrite shocked to 42 GPa and that the fraction of sulfur, by mass, that degassed is approx.10(exp -2) of theoretical prediction. In another report of shock experiments on calcite, anhydrite, and gypsum, Badjukov et al. [6] observed only intensive plastic deformation in anhydrite shock loaded at 63 GPa, and gypsum converted to anhydrite when shock loaded at 56 GPa but have not experimentally shocked gypsum in a step-wise manner to constrain possible incipient transformation effects. Schmitt and Hornemann [7] shock loaded anhydrite and quartz to a peak pressure of 60 GPa and report the platy anhydrite grains were completely pseudomorphed by small crystallized anhydrite grains. However, no evidence of interaction between the two phases could be observed and they suggested that recrystallization of anhydrite grains is the result of a solid-state transformation. They concluded that significant decomposition of anhydrite requires shock pressures higher than 60 GPa. Gupta et al. [8

  14. Shock-induced chemistry in organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve [Los Alamos National Laboratory; Engelke, Ray [Los Alamos National Laboratory; Manner, Virginia [Los Alamos National Laboratory; Chellappa, Raja [Los Alamos National Laboratory; Yoo, Choong - Shik [WASHINGTON STATE UNIV

    2011-01-20

    The combined 'extreme' environments of high pressure, temperature, and strain rates, encountered under shock loading, offer enormous potential for the discovery of new paradigms in chemical reactivity not possible under more benign conditions. All organic materials are expected to react under these conditions, yet we currently understand very little about the first bond-breaking steps behind the shock front, such as in the shock initiation of explosives, or shock-induced reactivity of other relevant materials. Here, I will present recent experimental results of shock-induced chemistry in a variety of organic materials under sustained shock conditions. A comparison between the reactivity of different structures is given, and a perspective on the kinetics of reaction completion under shock drives.

  15. Nanodiamond Formation at the Lithogenesis and Low-Stages of Regional Metamorphism

    Science.gov (United States)

    Simakov, S. K.; Melnik, N. N.; Vyalov, V. I.

    2018-02-01

    Samples of gilsonite from Adzharia, anthraxolite and graphite of coal from Taimyr, shungite from Karelia, and anthracite from Donbass are studied using Raman spectroscopy. Peaks at 1600 cm-1, indicating the presence of nanographite, are recorded in all samples. The anthracite sample from Donbass, 1330 cm-1, corresponds to the sp 3-line of carbon hybridization conforming to a nanodiamond. It is concluded that in nature diamonds can be formed at late stages of lithogenesis (catagensis, metagenesis), and for coals, it can occur at the zeolite stage of regional metamorphism of rocks, before the green schist stage.

  16. Shocks in fragile matter

    Science.gov (United States)

    Vitelli, Vincenzo

    2012-02-01

    Non-linear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they unjam, these fragile and disordered solids exhibit vanishing elastic moduli and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are continuously compressed, and demonstrate that the resulting excitations are strongly nonlinear shocks, rather than linear waves. We capture the full dependence of the shock speed on pressure and compression speed by a surprisingly simple analytical model. We also treat shear shocks within a simplified viscoelastic model of nearly-isostatic random networks comprised of harmonic springs. In this case, anharmonicity does not originate locally from nonlinear interactions between particles, as in granular media; instead, it emerges from the global architecture of the network. As a result, the diverging width of the shear shocks bears a nonlinear signature of the diverging isostatic length associated with the loss of rigidity in these floppy networks.

  17. Polymerized phase and amorphous diamond synthesized from C60 fullerene by shock compression

    International Nuclear Information System (INIS)

    Niwase, K.; Homae, T.; Nakamura, K.G.; Kondo, K.

    2006-01-01

    C 60 fullerene films were shock compressed to 23 and 52GPa. Both the recovered samples exhibit fracture into platelets and broad photoluminescence, and intensity of these increases with increasing pressure. At 23GPa, a characteristic single broad band appears at 1560-1570cm -1 , which is similar to the one found for three-dimensional (3D) polymerized C 60 fullerene under high-pressure-high-temperature treatment. At 52GPa, on the other hand, the single broad band has disappeared and a diamond peak sometimes appears, depending on platelets

  18. Energetic ion acceleration at collisionless shocks

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1985-01-01

    An example is presented from a test particle simulation designed to study ion acceleration at oblique turbulent shocks. For conditions appropriate at interplanetary shocks near 1 AU, it is found that a shock with theta sub B n = 60 deg is capable of producing an energy spectrum extending from 10 keV to approx. 1 MeV in approx 1 hour. In this case total energy gains result primarily from several separate episodes of shock drift acceleration, each of which occurs when particles are scattered back to the shock by magnetic fluctuations in the shock vicinity.

  19. Energetic ion acceleration at collisionless shocks

    International Nuclear Information System (INIS)

    Decker, R.B.; Vlahos, L.

    1985-01-01

    An example is presented from a test particle simulation designed to study ion acceleration at oblique turbulent shocks. For conditions appropriate at interplanetary shocks near 1 AU, it is found that a shock with theta sub B n = 60 deg is capable of producing an energy spectrum extending from 10 keV to approx 1 MeV in approx 1 hour. In this case total energy gains result primarily from several separate episodes of shock drift acceleration, each of which occurs when particles are scattered back to the shock by magnetic fluctuations in the shock vicinity

  20. Particle Acceleration in Two Converging Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Wang, Na; Shan, Hao [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011 (China); Giacalone, Joe [Lunar and Planetary Laboratory, University of Arizona, Tucson AZ 85721 (United States); Yan, Yihua [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing 100012 (China); Ding, Mingde, E-mail: wangxin@xao.ac.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University) Ministry of Education, Nanjing 210093 (China)

    2017-06-20

    Observations by spacecraft such as ACE , STEREO , and others show that there are proton spectral “breaks” with energy E {sub br} at 1–10 MeV in some large CME-driven shocks. Generally, a single shock with the diffusive acceleration mechanism would not predict the “broken” energy spectrum. The present paper focuses on two converging shocks to identify this energy spectral feature. In this case, the converging shocks comprise one forward CME-driven shock on 2006 December 13 and another backward Earth bow shock. We simulate the detailed particle acceleration processes in the region of the converging shocks using the Monte Carlo method. As a result, we not only obtain an extended energy spectrum with an energy “tail” up to a few 10 MeV higher than that in previous single shock model, but also we find an energy spectral “break” occurring on ∼5.5 MeV. The predicted energy spectral shape is consistent with observations from multiple spacecraft. The spectral “break,” then, in this case is caused by the interaction between the CME shock and Earth’s bow shock, and otherwise would not be present if Earth were not in the path of the CME.

  1. Underwater electrical wire explosion: Shock wave from melting being overtaken by shock wave from vaporization

    Science.gov (United States)

    Li, Liuxia; Qian, Dun; Zou, Xiaobing; Wang, Xinxin

    2018-05-01

    The shock waves generated by an underwater electrical wire explosion were investigated. A microsecond time-scale pulsed current source was used to trigger the electrical explosion of copper wires with a length of 5 cm and a diameter of 200 μm. The energy-storage capacitor was charged to a relatively low energy so that the energy deposited onto the wire was not large enough to fully vaporize the whole wire. Two shock waves were recorded with a piezoelectric gauge that was located at a position of 100 mm from the exploding wire. The first and weak shock wave was confirmed to be the contribution from wire melting, while the second and stronger shock wave was the contribution from wire vaporization. The phenomenon whereby the first shock wave generated by melting being overtaken by the shock wave due to vaporization was observed.

  2. INTERFERENCE OF COUNTERPROPAGATING SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-03-01

    Full Text Available The subject of study. We examined the interaction of counterpropagating shock waves. The necessity of counterpropagating shock waves studying occurs at designing of high Mach number modern internal compression air intakes, Ramjets with subsonic and supersonic combustion, in asymmetrical supersonic nozzles and in some other cases. In a sense, this problem is a generalization of the case of an oblique shock reflection from the wall or from the plane of symmetry. With the renewed vigor, the interest to this problem emerged at the end of the 90s. This was due to the start of the programs for flight study at hypersonic speeds. The first experiments performed with air intakes, which realized the interaction of counterpropagating shock waves have shown that the change in flow velocity is accompanied by abrupt alteration of shock-wave structure, the occurrence of nonstationary and oscillatory phenomena. With an increase of flow velocity these phenomena undesirable for aircraft structure became more marked. The reason is that there are two fundamentally different modes of interaction of counterpropagating shock waves: a four-wave regular and a five-wave irregular. The transition from one mode to another can be nonstationary abrupt or gradual, it can also be accompanied by hysteresis. Main results. Criteria for the transition from regular reflection of counterpropagating shock waves to irregular are described: the criterion of von Neumann and the stationary Mach configuration criterion. We described areas in which the transition from one reflection type to another is possible only in abrupt way, as well as areas of possible gradual transition. Intensity dependences of the reflected shock waves from the intensity of interacting counterpropagating shocks were given. Qualitative pictures of shock-wave structures arising from the interaction of counterpropagating shock waves were shown. Calculation results of the intensity of outgoing gas

  3. Migmatization and low-pressure overprinting metamorphism as record of two pre-Cretaceous tectonic episodes in the Santander Massif of the Andean basement in northern Colombia (NW South America)

    Science.gov (United States)

    Zuluaga, C. A.; Amaya, S.; Urueña, C.; Bernet, M.

    2017-03-01

    The core of the Santander Massif in the northern Andes of Colombia is dominated by migmatitic gneisses with a 7.5 kbar. Lithologies are overprinted by low-pressure metamorphism, related to extensive Jurassic intrusions and linked with growth of cordierite and equilibration of low-pressure mineral assemblages, recorded metamorphic conditions are Pangaea.

  4. Petrological and zircon evidence for the Early Cretaceous granulite-facies metamorphism in the Dabie orogen, China

    Science.gov (United States)

    Gao, Xiao-Ying; Zhang, Qiang-Qiang; Zheng, Yong-Fei; Chen, Yi-Xiang

    2017-07-01

    An integrated study of petrology, mineralogy, geochemistry, and geochronology was carried out for contemporaneous mafic granulite and diorite from the Dabie orogen. The results provide evidence for granulite-facies reworking of the ultrahigh-pressure (UHP) metamorphic rock in the collisional orogen. Most zircons from the granulite are new growth, and their U-Pb ages are clearly categorized into two groups at 122-127 Ma and 188 ± 2 Ma. Although these two groups of zircons show similarly steep HREE patterns and variably negative Eu anomalies, the younger group has much higher U, Th and REE contents and Th/U ratios, much lower εHf(t) values than the older group. This suggests their growth is associated with different types of dehydration reactions. The older zircon domains contain mineral inclusions of garnet + clinopyroxene ± quartz, indicating their growth through metamorphic reactions at high pressures. In contrast, the young zircon domains only contain a few quartz inclusions and the garnet-clinopyroxene-plagioclase-quartz barometry yields pressures of 4.9 to 12.5 kb. In addition, the clinopyroxene-garnet Fe-Mg exchange thermometry gives temperatures of 738-951 °C. Therefore, the young zircon domains would have grown through peritectic reaction at low to medium pressures. The younger granulite-facies metamorphic age is in agreement not only with the adjacent diorite at 125 ± 1 Ma in this study but also the voluminous emplacement of coeval mafic and felsic magmas in the Dabie orogen. Mineral separates from both mafic granulite and its adjacent diorite show uniformly lower δ18O values than normal mantle, similar to those for UHP eclogite-facies metaigneous rocks in the Dabie orogen. In combination with major-trace elements and zircon Lu-Hf isotope compositions, it is inferred that the protolith of mafic granulites shares with the source rock of diorites, both being a kind of mafic metasomatites at the slab-mantle interface in the continental subduction channel

  5. Inferior vena cava obstruction and shock

    Directory of Open Access Journals (Sweden)

    Megri Mohammed

    2018-01-01

    Full Text Available Shock is one of the most challenging life-threatening conditions with high mortality and morbidity; the outcomes are highly dependent on the early detection and management of the condition. Septic shock is the most common type of shock in the Intensive Care Unit. While not as common as other subsets of shock, obstructive shock is a significant subtype due to well defined mechanical and pathological causes, including tension pneumothorax, massive pulmonary embolism, and cardiac tamponade. We are presenting a patient with obstructive shock due to inferior vena cava obstruction secondary to extensive deep venous thrombosis. Chance of survival from obstructive shock in our patient was small; however, there was complete and immediate recovery after treatment of the obstruction on recognizing the affected vessels. This case alerts the practicing intensivist and the emergency medicine physician to consider occlusion of the great vessels other than the pulmonary artery or aorta as causes of obstructive shock.

  6. Hydraulic shock absorbers

    International Nuclear Information System (INIS)

    Thatcher, G.; Davidson, D. F.

    1984-01-01

    A hydraulic shock absorber of the dash pot kind for use with electrically conducting liquid such as sodium, has magnet means for electro magnetically braking a stream of liquid discharged from the cylinder. The shock absorber finds use in a liquid metal cooled nuclear reactor for arresting control rods

  7. Using a Differential Scanning Calorimeter to Teach Phase Equilibria to Students of Igneous and Metamorphic Petrology

    Science.gov (United States)

    Maria, Anton H.; Millam, Evan L.; Wright, Carrie L.

    2011-01-01

    As an aid for teaching phase equilibria to undergraduate students of igneous and metamorphic petrology, we have designed a laboratory exercise that allows them to create a phase diagram from data produced by differential scanning calorimetry. By preparing and analyzing samples of naphthalene and phenanthrene, students acquire hands-on insight into…

  8. Chemical and oxygen isotopic properties of ordinary chondrites (H5, L6) from Oman: Signs of isotopic equilibrium during thermal metamorphism

    Science.gov (United States)

    Ali, Arshad; Nasir, Sobhi J.; Jabeen, Iffat; Al Rawas, Ahmed; Banerjee, Neil R.; Osinski, Gordon R.

    2017-10-01

    Mean bulk chemical data of recently found H5 and L6 ordinary chondrites from the deserts of Oman generally reflect isochemical features which are consistent with the progressive thermal metamorphism of a common, unequilibrated starting material. Relative differences in abundances range from 0.5-10% in REE (Eu = 14%), 6-13% in siderophile elements (Co = 48%), and >10% in lithophile elements (exceptions are Ba, Sr, Zr, Hf, U = >30%) between H5 and L6 groups. These differences may have accounted for variable temperature conditions during metamorphism on their parent bodies. The CI/Mg-normalized mean abundances of refractory lithophile elements (Al, Ca, Sm, Yb, Lu, V) show no resolvable differences between H5 and L6 suggesting that both groups have experienced the same fractionation. The REE diagram shows subtle enrichment in LREE with a flat HREE pattern. Furthermore, overall mean REE abundances are 0.6 × CI with enriched La abundance ( 0.9 × CI) in both groups. Precise oxygen isotope compositions demonstrate the attainment of isotopic equilibrium by progressive thermal metamorphism following a mass-dependent isotope fractionation trend. Both groups show a slope-1/2 line on a three-isotope plot with subtle negative deviation in Δ17O associated with δ18O enrichment relative to δ17O. These deviations are interpreted as the result of liberation of water from phyllosilicates and evaporation of a fraction of the water during thermal metamorphism. The resultant isotope fractionations caused by the water loss are analogous to those occurring between silicate melt and gas phase during CAI and chondrule formation in chondrites and are controlled by cooling rates and exchange efficiency.

  9. Supersonic flow. Pt. 5 Shock waves; Fondamenti fisici dei fasci molecolari supersonici. Pt 5 Onde di Shock

    Energy Technology Data Exchange (ETDEWEB)

    Sanna, G.; Tomassetti, G. [L`Aquila Univ. (Italy). Dipt. di Fisica

    1998-02-01

    The discontinuities in the flow fields (both tangential and shocks) are considered and the equations for the quantities conserved across them are written. The post-shock flow variables are expressed by the Mach number of the incident supersonic flow and its deflection angle operated by rigid wall. Normal and oblique shocks are considered and graphs and polar diagrams are introduced. Then the reflections of a shock wave operated by a rigid wall and by the boundary between a jet and a stagnating gas are analyzed. Finally, the interactions between two distinct shock waves are considered. [Italiano] Vengono considerate le discontinuita` (tangenziali e shocks) nei campi di flusso e sono scritte le equazioni per le quantita` che si conservano attraverso di esse. Le variabili del flusso oltre lo shock sono espresse in funzione del numero di Mach del flusso supersonico incidente e dell`angolo di deflessione di questo operato da una parete rigida. I casi di shock normale, obliquo e distaccato sono considerati e sono introdotti grafici vari e rappresentazioni polari. Sono quindi considerate le riflessioni di un fronte di shock da una parete rigida e dalla frontiera tra un gas in moto ed uno stagnante. Sono infine considerate le diverse interazioni tra due shock distinti.

  10. The Marbat metamorphic core-complex (Southern Arabian Peninsula) : reassessment of the evolution of a Neoproterozoic island-arc from petrological, geochemical and U-Pb zircon data

    OpenAIRE

    Barbey, P.; Denele, Y.; Paquette, J. L.; Berger, J.; Ganne, Jérôme; Roques, D.

    2018-01-01

    The Marbat basement (Sultanate of Oman) belongs to the Neoproterozoic accretion domain of the Arabian-Nubian shield. We present new geochronological, petrological and geochemical data as an extension of our previous study (Denele et al., 2017) re-interpreting this basement as a metamorphic core complex (MCC). We showed that this MCC consists of a metamorphic unit (Juffa complex) separated by an extensional detachment from a plutonic unit (Sadh complex and Tonalite plutons). Geochemical data s...

  11. MHD intermediate shock discontinuities: Pt. 1

    International Nuclear Information System (INIS)

    Kennel, C.F.; Blandford, R.D.; Coppi, P.

    1989-01-01

    Recent numerical investigations have focused attention once more on the role of intermediate shocks in MHD. Four types of intermediate shock are identified using a graphical representation of the MHD Rankine-Hugoniot conditions. This same representation can be used to exhibit the close relationship of intermediate shocks to switch-on shocks and rotational discontinuities. The conditions under which intermediate discontinuities can be found are elucidated. The variations in velocity, pressure, entropy and magnetic-field jumps with upstream parameters in intermediate shocks are exhibited graphically. The evolutionary arguments traditionally advanced against intermediate shocks may fail because the equations of classical MHD are not strictly hyperbolic. (author)

  12. Charnockites and UHT metamorphism in the Bakhuis Granulite Belt, western Suriname : Evidence for two separate UHT events

    NARCIS (Netherlands)

    Klaver, Martijn; de Roever, Emond W F; Nanne, Josefine A M; Mason, Paul R D; Davies, Gareth R.

    The Bakhuis Granulite Belt in western Suriname is an ultrahigh-temperature (UHT) metamorphic terrain in the centre of the Paleoproterozoic (Transamazonian) Guiana Shield. Next to the UHT granulites, the belt contains a 30 by 30km body of orthopyroxene-bearing granitoids: the Kabalebo charnockites.

  13. Perpendicular relativistic shocks in magnetized pair plasma

    Science.gov (United States)

    Plotnikov, Illya; Grassi, Anna; Grech, Mickael

    2018-04-01

    Perpendicular relativistic (γ0 = 10) shocks in magnetized pair plasmas are investigated using two dimensional Particle-in-Cell simulations. A systematic survey, from unmagnetized to strongly magnetized shocks, is presented accurately capturing the transition from Weibel-mediated to magnetic-reflection-shaped shocks. This transition is found to occur for upstream flow magnetizations 10-3 10-2, it leaves place to a purely electromagnetic precursor following from the strong emission of electromagnetic waves at the shock front. Particle acceleration is found to be efficient in weakly magnetized perpendicular shocks in agreement with previous works, and is fully suppressed for σ > 10-2. Diffusive Shock Acceleration is observed only in weakly magnetized shocks, while a dominant contribution of Shock Drift Acceleration is evidenced at intermediate magnetizations. The spatial diffusion coefficients are extracted from the simulations allowing for a deeper insight into the self-consistent particle kinematics and scale with the square of the particle energy in weakly magnetized shocks. These results have implications for particle acceleration in the internal shocks of AGN jets and in the termination shocks of Pulsar Wind Nebulae.

  14. VLBI detection of the internal shocks in nova V959 Mon

    Science.gov (United States)

    Yang, J.; Paragi, Z.; O'Brien, T.; Chomiuk, L.; Linford, J. D.

    V959 Mon is a classical nova detected at GeV gamma-ray wavelengths on 2012 June 19. While classical novae are now routinely detected in gamma-rays, the origin of the shocks that produce relativistic particles has remained unknown. We carried out electronic European VLBI Network (e-EVN) observations that revealed a pair of compact synchrotron emission features in V959 Mon on 2012 Sep 18. Since synchrotron emission requires strong shocks as well, we identify these features as the location where the gamma rays were produced. We also detected the extended ejecta in the follow-up EVN observations. They expanded much faster in East-West direction than the compact knots detected in the aforementioned e-EVN measurements. By comparing the VLBI results with lower resolution images obtained using e-MERLIN and the VLA - as reported by Chomiuk et al. (2014) - it appears that 1) influenced by the binary orbit, the nova ejecta was highly asymmetric with a dense and slow outflow in the equatorial plane and low-density and faster ejecta along the poles; and 2) the VLBI knots were related to shocks formed in the interaction region of these outflows.

  15. Electron velocity distributions near collisionless shocks

    International Nuclear Information System (INIS)

    Feldman, W.C.

    1984-01-01

    Recent studies of the amount of electron heating and of the shapes of electron velocity distributions across shocks near the earth are reviewed. It is found that electron heating increases with increasing shock strength but is always less than the ion heating. The scale length of electron heating is also less than that for the ions. Electron velocity distributions show characteristic shapes which depend on the strength of the shocks. At the weaker shocks, electron heating is mostly perpendicular to the ambient magnetic field, bar B, and results in Gaussian-shaped velocity distributions at low-to-moderate energies. At the stronger shocks, parallel heating predominates resulting in flat-topped velocity distributions. A reasonable interpretation of these results indicates that at the weaker shocks electron heating is dominated by a tendency toward conservation of the magnetic moment. At the stronger fast-mode shocks, this heating is thought to be dominated by an acceleration parallel to bar B produced by the macroscopic shock electric field followed by beam driven plasma instabilities. Some contribution to the heating at the stronger shocks from conservation of the magnetic moment and cross-field current-driven instabilities cannot be ruled out. Although the heating at slow-mode shocks is also dominated by instabilities driven by magnetic field-aligned electron beams, their acceleration mechanism is not yet established

  16. Shock absorber

    International Nuclear Information System (INIS)

    Housman, J.J.

    1978-01-01

    A shock absorber is described for use in a hostile environment at the end of a blind passage for absorbing impact loads. The shock absorber includes at least one element which occupies the passage and which is comprised of a porous brittle material which is substantially non-degradable in the hostile environment. A void volume is provided in the element to enable the element to absorb a predetermined level of energy upon being crushed due to impact loading

  17. INJECTION TO RAPID DIFFUSIVE SHOCK ACCELERATION AT PERPENDICULAR SHOCKS IN PARTIALLY IONIZED PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Ohira, Yutaka, E-mail: ohira@phys.aoyama.ac.jp [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara 252-5258 (Japan)

    2016-08-10

    We present a three-dimensional hybrid simulation of a collisionless perpendicular shock in a partially ionized plasma for the first time. In this simulation, the shock velocity and upstream ionization fraction are v {sub sh} ≈ 1333 km s{sup −1} and f {sub i} ∼ 0.5, which are typical values for isolated young supernova remnants (SNRs) in the interstellar medium. We confirm previous two-dimensional simulation results showing that downstream hydrogen atoms leak into the upstream region and are accelerated by the pickup process in the upstream region, and large magnetic field fluctuations are generated both in the upstream and downstream regions. In addition, we find that the magnetic field fluctuations have three-dimensional structures and the leaking hydrogen atoms are injected into the diffusive shock acceleration (DSA) at the perpendicular shock after the pickup process. The observed DSA can be interpreted as shock drift acceleration with scattering. In this simulation, particles are accelerated to v ∼ 100 v {sub sh} ∼ 0.3 c within ∼100 gyroperiods. The acceleration timescale is faster than that of DSA in parallel shocks. Our simulation results suggest that SNRs can accelerate cosmic rays to 10{sup 15.5} eV (the knee) during the Sedov phase.

  18. Tectono-metamorphic evolution of high-P/T and low-P/T metamorphic rocks in the Tia Complex, southern New England Fold Belt, eastern Australia: Insights from K-Ar chronology

    Science.gov (United States)

    Fukui, Shiro; Tsujimori, Tatsuki; Watanabe, Teruo; Itaya, Tetsumaru

    2012-10-01

    The Tia Complex in the southern New England Fold Belt is a poly-metamorphosed Late Paleozoic accretionary complex. It consists mainly of high-P/low-T type pumpellyite-actinolite facies (rare blueschist facies) schists, phyllite and serpentinite (T = 300 °C and P = 5 kbar), and low-P/high-T type amphibolite facies schist and gneiss (T = 600 °C and P Tia granodiorite). White mica and biotite K-Ar ages distinguish Carboniferous subduction zone metamorphism and Permian granitic intrusions, respectively. The systematic K-Ar age mapping along a N-S traverse of the Tia Complex exhibits a gradual change. The white mica ages become younger from the lowest-grade zone (339 Ma) to the highest-grade zone (259 Ma). In contrast, Si content of muscovite changes drastically only in the highest-grade zone. The regional changes of white mica K-Ar ages and chemical compositions of micas indicate argon depletion from precursor high-P/low-T type phengitic white mica during the thermal overprinting and recrystallization by granitoids intrusions. Our new K-Ar ages and available geological data postulate a model of the eastward rollback of a subduction zone in Early Permian. The eastward shift of a subduction zone system and subsequent magmatic activities of high-Mg andesite and adakite might explain formation of S-type granitoids (Hillgrove suite) and coeval low-P/high-T type metamorphism in the Tia Complex.

  19. Miocene metamorphism of pan-African granites in the Edough Massif (NE Algeria)

    International Nuclear Information System (INIS)

    Hammor, D.; Lancelot, J.

    1998-01-01

    The Edough Massif is the eastern most crystalline core of the Maghrebides that represents the African segment of the west Mediterranean Alpine belt. U-Pb zircon dating provides upper intercept ages of 595± My and 606±55 My and orthogneiss of the lower unit and a deformed leucogranite of the upper pelitic unit, respectively. These ages suggest emplacement of the two granitoids during the Pan-African orogeny. Monazites from a paragneiss sample gave a 18± My U-Pb age that points to a Miocene age of the high-temperature metamorphism. (authors)

  20. Research of the chemical activity of microgrinding coals of various metamorphism degree

    Science.gov (United States)

    Burdukov, A. P.; Butakov, E. B.; Kuznetsov, A. V.

    2017-09-01

    In this paper, we investigate the effect of mechanically activating grinding of coals of various degrees of metamorphism by two different methods - determination of the flash time in a vertical tubular furnace and thermogravimetric analysis. In the experiments, the coals that had been processed on a vibrating centrifugal mill and a disintegrator, aged for some time, were compared. The experiments showed a decrease in the ignition temperature of mechanically activated coals - deactivation of fuel, as well as the effect of mechanical activation on the further process of thermal-oxidative degradation.

  1. Shock compression of diamond crystal

    OpenAIRE

    Kondo, Ken-ichi; Ahrens, Thomas J.

    1983-01-01

    Two shock wave experiments employing inclined mirrors have been carried out to determine the Hugoniot elastic limit (HEL), final shock state at 191 and 217 GPa, and the post-shock state of diamond crystal, which is shock-compressed along the intermediate direction between the and crystallographic axes. The HEL wave has a velocity of 19.9 ± 0.3 mm/µsec and an amplitude of 63 ± 28 GPa. An alternate interpretation of the inclined wedge mirror streak record suggests a ramp precursor wave and th...

  2. Electron transport and shock ignition

    Energy Technology Data Exchange (ETDEWEB)

    Bell, A R; Tzoufras, M, E-mail: t.bell1@physics.ox.ac.uk [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2011-04-15

    Inertial fusion energy (IFE) offers one possible route to commercial energy generation. In the proposed 'shock ignition' route to fusion, the target is compressed at a relatively low temperature and then ignited using high intensity laser irradiation which drives a strong converging shock into the centre of the fuel. With a series of idealized calculations we analyse the electron transport of energy into the target, which produces the pressure responsible for driving the shock. We show that transport in shock ignition lies near the boundary between ablative and heat front regimes. Moreover, simulations indicate that non-local effects are significant in the heat front regime and might lead to increased efficiency by driving the shock more effectively and reducing heat losses to the plasma corona.

  3. Application of Underwater Shock Wave Focusing to the Development of Extracorporeal Shock Wave Lithotripsy

    Science.gov (United States)

    Takayama, Kazuyoshi

    1993-05-01

    This paper describes a summary of a research project for the development of extracorporeal shock wave lithotripsy (ESWL), which has been carried out, under close collaboration between the Shock Wave Research Center of Tohoku University and the School of Medicine, Tohoku University. The ESWL is a noninvasive clinical treatment of disintegrating human calculi and one of the most peaceful applications of shock waves. Underwater spherical shock waves were generated by explosion of microexplosives. Characteristics of the underwater shock waves and of ultrasound focusing were studied by means of holographic interferometric flow visualization and polyvinyliden-difluoride (PVDF) pressure transducers. These focused pressures, when applied to clinical treatments, could effectively and noninvasively disintegrate urinary tract stones or gallbladder stones. However, despite clincal success, tissue damage occurs during ESWL treatments, and the possible mechanism of tissue damage is briefly described.

  4. Adrenal gland volume measurement in septic shock and control patients: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Nougaret, Stephanie; Aufort, S.; Gallix, B. [Hopital Saint Eloi, Department of Abdominal Imaging, CHU Montpellier, Montpellier, Cedex 5 (France); Jung, B.; Chanques, G.; Jaber, S. [Hopital Saint Eloi, Intensive Care Unit, Department of Critical Care and Anesthesiology: DAR B, CHU Montpellier, Montpellier, Cedex 5 (France)

    2010-10-15

    To compare adrenal gland volume in septic shock patients and control patients by using semi-automated volumetry. Adrenal gland volume and its inter-observer variability were measured with tomodensitometry using semi-automated software in 104 septic shock patients and in 40 control patients. The volumes of control and septic shock patients were compared and the relationship between volume and outcome in intensive care was studied. The mean total volume of both adrenal glands was 7.2 {+-} 2.0 cm{sup 3} in control subjects and 13.3 {+-} 4.7 cm{sup 3} for total adrenal gland volume in septic shock patients (p < 0.0001). Measurement reproducibility was excellent with a concordance correlation coefficient value of 0.87. The increasing adrenal gland volume was associated with a higher rate of survival in intensive care. The present study reports that with semi-automated software, adrenal gland volume can be measured easily and reproducibly. Adrenal gland volume was found to be nearly double in sepsis compared with control patients. The absence of increased volume during sepsis would appear to be associated with a higher rate of mortality and may represent a prognosis factor which may help the clinician to guide their strategy. (orig.)

  5. Adrenal gland volume measurement in septic shock and control patients: a pilot study

    International Nuclear Information System (INIS)

    Nougaret, Stephanie; Aufort, S.; Gallix, B.; Jung, B.; Chanques, G.; Jaber, S.

    2010-01-01

    To compare adrenal gland volume in septic shock patients and control patients by using semi-automated volumetry. Adrenal gland volume and its inter-observer variability were measured with tomodensitometry using semi-automated software in 104 septic shock patients and in 40 control patients. The volumes of control and septic shock patients were compared and the relationship between volume and outcome in intensive care was studied. The mean total volume of both adrenal glands was 7.2 ± 2.0 cm 3 in control subjects and 13.3 ± 4.7 cm 3 for total adrenal gland volume in septic shock patients (p < 0.0001). Measurement reproducibility was excellent with a concordance correlation coefficient value of 0.87. The increasing adrenal gland volume was associated with a higher rate of survival in intensive care. The present study reports that with semi-automated software, adrenal gland volume can be measured easily and reproducibly. Adrenal gland volume was found to be nearly double in sepsis compared with control patients. The absence of increased volume during sepsis would appear to be associated with a higher rate of mortality and may represent a prognosis factor which may help the clinician to guide their strategy. (orig.)

  6. Felsic granulite with layers of eclogite facies rocks in the Bohemian Massif; did they share a common metamorphic history?

    Science.gov (United States)

    Jedlicka, Radim; Faryad, Shah Wali

    2017-08-01

    High pressure granulite and granulite gneiss from the Rychleby Mountains in the East Sudetes form an approximately 7 km long and 0.8 km wide body, which is enclosed by amphibolite facies orthogneiss with a steep foliation. Well preserved felsic granulite is located in the central part of the body, where several small bodies of mafic granulite are also present. In comparison to other high pressure granulites in the Bohemian Massif, which show strong mineral and textural re-equilibration under granulite facies conditions, the mafic granulite samples preserve eclogite facies minerals (garnet, omphacite, kyanite, rutile and phengite) and their field and textural relations indicate that both mafic and felsic granulites shared common metamorphic history during prograde eclogite facies and subsequent granulite facies events. Garnet from both granulite varieties shows prograde compositional zoning and contains inclusions of phengite. Yttrium and REEs in garnet show typical bell-shaped distributions with no annular peaks near the grain rims. Investigation of major and trace elements zoning, including REEs distribution in garnet, was combined with thermodynamic modelling to constrain the early eclogite facies metamorphism and to estimate pressure-temperature conditions of the subsequent granulite facies overprint. The first (U)HP metamorphism occurred along a low geothermal gradient in a subduction-related environment from its initial stage at 0.8 GPa/460 °C and reached pressures up to 2.5 GPa at 550 °C. The subsequent granulite facies overprint (1.6-1.8 GPa/800-880 °C) affected the rocks only partially; by replacement of omphacite into diopside + plagioclase symplectite and by compositional modification of garnet rims. The mineral textures and the preservation of the eclogite facies prograde compositional zoning in garnet cores confirm that the granulite facies overprint was either too short or too faint to cause recrystallisation and homogenisation of the eclogite

  7. Shock dynamics of weak imploding cylindrical and spherical shock waves with non-ideal gas effects

    International Nuclear Information System (INIS)

    Anand, R K

    2013-01-01

    The author (Anand 2012 Astrophys. Space Sci. 342 377–88) recently obtained jump relations across a shock front in non-ideal gas flow taking into consideration the equation of state for a non-ideal gas as given by Landau and Lifshitz. In this paper an analytical solution for one-dimensional adiabatic flow behind weak converging shock waves propagating in a non-ideal gas is obtained by using Whitham's (1974 Linear and Nonlinear Waves (New York: Wiley)) geometrical shock dynamics approach. The effects of an increase in (i) the propagation distance from the centre of convergence, (ii) the non-idealness parameter and (iii) the adiabatic index of the gas, on the shock velocity, pressure, density, particle velocity, adiabatic compressibility and the change in entropy across the shock front, are analyzed. The results provided a clear picture of whether and how the non-idealness parameter and the adiabatic index affect the flow field behind the imploding shock front. (paper)

  8. GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor [Research Centre for Astronomy and Earth Sciences, Geodetic and Geophysical Institute, Sopron (Hungary); Agapitov, Oleksiy; Krasnoselskikh, Vladimir [LPC2E/CNRS, F-45071 Orleans (France); Khotyaintsev, Yuri V. [Swedish Institute of Space Physics, SE- 751 21 Uppsala (Sweden); Dandouras, Iannis, E-mail: akis@ggki.hu, E-mail: Kis.Arpad@csfk.mta.hu [CESR, F-31028 Toulouse (France)

    2013-07-01

    It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Cluster spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.

  9. Shock wave interaction with turbulence: Pseudospectral simulations

    International Nuclear Information System (INIS)

    Buckingham, A.C.

    1986-01-01

    Shock waves amplify pre-existing turbulence. Shock tube and shock wave boundary layer interaction experiments provide qualitative confirmation. However, shock pressure, temperature, and rapid transit complicate direct measurement. Computational simulations supplement the experimental data base and help isolate the mechanisms responsible. Simulations and experiments, particularly under reflected shock wave conditions, significantly influence material mixing. In these pseudospectral Navier-Stokes simulations the shock wave is treated as either a moving (tracked or fitted) domain boundary. The simulations assist development of code mix models. Shock Mach number and pre-existing turbulence intensity initially emerge as key parameters. 20 refs., 8 figs

  10. Converging shocks in elastic-plastic solids.

    Science.gov (United States)

    Ortega, A López; Lombardini, M; Hill, D J

    2011-11-01

    We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e=e(s)(I(1))+e(h)(ρ,ς), where e(s) accounts for shear through the first invariant of the Cauchy-Green tensor, and e(h) represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., e(h)=e(h)(ρ), with a power-law dependence e(h) is proportional to ρ(α), shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M is proportional to [log(1/R)](α), independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M is proportional to R(-(s-1)) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part e(h) is that of an ideal gas, is also tested, recovering the strong-shock limit M is proportional to R(-(s-1)/n(γ)) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ-1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the

  11. Experimental methods of shock wave research

    CERN Document Server

    Seiler, Friedrich

    2016-01-01

    This comprehensive and carefully edited volume presents a variety of experimental methods used in Shock Waves research. In 14 self contained chapters this 9th volume of the “Shock Wave Science and Technology Reference Library” presents the experimental methods used in Shock Tubes, Shock Tunnels and Expansion Tubes facilities. Also described is their set-up and operation. The uses of an arc heated wind tunnel and a gun tunnel are also contained in this volume. Whenever possible, in addition to the technical description some typical scientific results obtained using such facilities are described. Additionally, this authoritative book includes techniques for measuring physical properties of blast waves and laser generated shock waves. Information about active shock wave laboratories at different locations around the world that are not described in the chapters herein is given in the Appendix, making this book useful for every researcher involved in shock/blast wave phenomena.

  12. Exploratory laser-driven shock wave studies

    International Nuclear Information System (INIS)

    Solem, J.C.; Veeser, L.R.

    1977-11-01

    We show the results of a feasibility study for investigating shock structure and for measuring equation-of-state parameters using high-energy, short-pulse lasers. We discuss the temporal and spatial structure of the luminosity from laser-driven shock unloading in aluminum foils. We demonstrate that shock velocity can be measured by observing the time interval between shock emergence across two thicknesses and show data for shocks of 1.3 and 2.1 Mbar. The fact that we observe shock fronts cleanly breaking through steps as small as 3 μm indicates that the shock front thickness is very small in the few megabar region; this is the first experimental verification that these fronts are not more than a few micrometers thick. We present approximate measurements of free-surface velocity. Finally, we speculate on the use of these techniques to obtain detailed equation-of-state data

  13. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

    Science.gov (United States)

    Zhu, Ling; Huang, Wenzhi; Cheng, Haifeng; Cao, Xueqiang

    2014-12-01

    Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

  14. Dynamics of the aortic arch submitted to a shock loading: Parametric study with fluid-structure models.

    Science.gov (United States)

    El Baroudi, A; Razafimahery, F; Rakotomanana, L

    2012-01-01

    This work aims to present some fluid-structure models for analyzing the dynamics of the aorta during a brusque loading. Indeed, various lesions may appear at the aortic arch during car crash or other accident such as brusque falling. Aortic stresses evolution are simulated during the shock at the cross section and along the aorta. One hot question was that if a brusque deceleration can generate tissue tearing, or a shock is necessary to provoke such a damage. Different constitutive laws of blood are then tested whereas the aorta is assumed linear and elastic. The overall shock model is inspired from an experimental jig. We show that the viscosity has strong influence on the stress and parietal moments and forces. The nonlinear viscosity has no significant additional effects for healthy aorta, but modifies the stress and parietal loadings for the stenotic aorta.

  15. Inappropriate shocks in the subcutaneous ICD

    DEFF Research Database (Denmark)

    Olde Nordkamp, Louise R A; Brouwer, Tom F; Barr, Craig

    2015-01-01

    shocks have been reported. METHODS: We analyzed the incidence, predictors and management of inappropriate shocks in the EFFORTLESS S-ICD Registry, which collects S-ICD implantation information and follow-up data from clinical centers in Europe and New Zealand. RESULTS: During a follow-up of 21 ± 13...... xyphoid to V6) reduced the risk. Reprogramming or optimization of SVT treatment after the first clinical event of inappropriate shock was successful in preventing further inappropriate shocks for cardiac oversensing and SVT events. CONCLUSIONS: Inappropriate shocks, mainly due to cardiac oversensing...

  16. Exhumation And Evolution Of Al-Taif Metamorphic Core Complex (Western Arabian Shield) During Dextral Transpressional Regime

    Science.gov (United States)

    El-Fakharani, Abdelhamid; El-Shafei, Mohamed; Hamimi, Zakaria

    2013-04-01

    Al-Taif metamorphic belt is a NE-trending belt decorating steeply dipping major transpressional shear zone in western central Arabian Shield. It comprises gneisses and migmatites that were syn-kinematically invaded under relatively high-grade metamorphic conditions by voluminous granitic bodies and a confluence of pegmatitic veins. Field mapping and outcrop investigation reveal that the belt was evolved during at least three Neoproterozoic deformations (D1-D3). D1 and D2 were progressive deformations, took place during a contractional regime, and resulted in SW-mildly plunging isoclinal folds, superimposed by NE- gently to moderately plunging folds. The prevailed tectonic regime during D3was primordially plastic, accompanied with a NE-oriented oblique shearing that was subsequently evolved as semi ductile-semi brittle shearing during an episode of exhumation. Mesoscopic kinematic indicators, as well as microstructural analysis of the collected rock samples, reflect dextral sense of shearing. Such style of shearing is most probably the conjugate trend of the NNW- to NW- oriented sinistral Najd Fault System. Various cross cutting structures and overprinting relations were detected at both the outcrop- and microscopic scales, including; ductile S2folia with ESE-plunging amphibole mineral lineations; narrow, steeply dipping ductile D2 shear zones; and semi brittle to brittle fault zones. S-C' fabrics, asymmetric strain shadows around porphyroclasts and drag fault indicate a top-to-the-NE sense of shear for most structures. The geometry and style of deformation, together with map pattern highlighted in this study attest a simple shear rotational strain origin for the domed mylonitic foliation (S1) and mineral elongation lineation (L1). This result is in congruent with the landform pattern recorded in the inner parts of the metamorphic core complexes.

  17. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  18. Grain coarsening in polymineralic contact metamorphic carbonate rocks: The role of different physical interactions during coarsening

    DEFF Research Database (Denmark)

    Brodhag, Sabine; Herwegh, Marco; Berger, Alfons

    2011-01-01

    ) and microstructures with considerable second-phase volume fractions of up to 0.5. The variations might be of general validity for any polymineralic rock, which undergoes grain coarsening during metamorphism. The new findings are important for a better understanding of the initiation of strain localization based...... on the activation of grain size dependent deformation mechanisms....

  19. A Shocking Surprise in Stephan's Quintet

    Science.gov (United States)

    2006-01-01

    This false-color composite image of the Stephan's Quintet galaxy cluster clearly shows one of the largest shock waves ever seen (green arc). The wave was produced by one galaxy falling toward another at speeds of more than one million miles per hour. The image is made up of data from NASA's Spitzer Space Telescope and a ground-based telescope in Spain. Four of the five galaxies in this picture are involved in a violent collision, which has already stripped most of the hydrogen gas from the interiors of the galaxies. The centers of the galaxies appear as bright yellow-pink knots inside a blue haze of stars, and the galaxy producing all the turmoil, NGC7318b, is the left of two small bright regions in the middle right of the image. One galaxy, the large spiral at the bottom left of the image, is a foreground object and is not associated with the cluster. The titanic shock wave, larger than our own Milky Way galaxy, was detected by the ground-based telescope using visible-light wavelengths. It consists of hot hydrogen gas. As NGC7318b collides with gas spread throughout the cluster, atoms of hydrogen are heated in the shock wave, producing the green glow. Spitzer pointed its infrared spectrograph at the peak of this shock wave (middle of green glow) to learn more about its inner workings. This instrument breaks light apart into its basic components. Data from the instrument are referred to as spectra and are displayed as curving lines that indicate the amount of light coming at each specific wavelength. The Spitzer spectrum showed a strong infrared signature for incredibly turbulent gas made up of hydrogen molecules. This gas is caused when atoms of hydrogen rapidly pair-up to form molecules in the wake of the shock wave. Molecular hydrogen, unlike atomic hydrogen, gives off most of its energy through vibrations that emit in the infrared. This highly disturbed gas is the most turbulent molecular hydrogen ever seen. Astronomers were surprised not only by the turbulence

  20. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    International Nuclear Information System (INIS)

    Bershader, D.; Hanson, R.

    1986-01-01

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles

  1. Initial conditions of radiative shock experiments

    International Nuclear Information System (INIS)

    Kuranz, C. C.; Drake, R. P.; Krauland, C. M.; Marion, D. C.; Grosskopf, M. J.; Rutter, E.; Torralva, B.; Holloway, J. P.; Bingham, D.; Goh, J.; Boehly, T. R.; Sorce, A. T.

    2013-01-01

    We performed experiments at the Omega Laser Facility to characterize the initial, laser-driven state of a radiative shock experiment. These experiments aimed to measure the shock breakout time from a thin, laser-irradiated Be disk. The data are then used to inform a range of valid model parameters, such as electron flux limiter and polytropic γ, used when simulating radiative shock experiments using radiation hydrodynamics codes. The characterization experiment and the radiative shock experiment use a laser irradiance of ∼7 × 10 14 W cm −2 to launch a shock in the Be disk. A velocity interferometer and a streaked optical pyrometer were used to infer the amount of time for the shock to move through the Be disk. The experimental results were compared with simulation results from the Hyades code, which can be used to model the initial conditions of a radiative shock system using the CRASH code

  2. Fourier–transform infrared spectroscopic characterization of natu ...

    Indian Academy of Sciences (India)

    WINTEC

    Indian Academy of Sciences. 155. Fourier–transform ... Department of Physics, Dibrugarh University, Dibrugarh 786 004, India ... glasses, which are formed by shock metamorphism. ... glass-lined tubes with sand adhering to the outside. Rock.

  3. Genomics of a Metamorphic Timing QTL: met1 Maps to a Unique Genomic Position and Regulates Morph and Species-Specific Patterns of Brain Transcription

    Science.gov (United States)

    Page, Robert B.; Boley, Meredith A.; Kump, David K.; Voss, Stephen R.

    2013-01-01

    Very little is known about genetic factors that regulate life history transitions during ontogeny. Closely related tiger salamanders (Ambystoma species complex) show extreme variation in metamorphic timing, with some species foregoing metamorphosis altogether, an adaptive trait called paedomorphosis. Previous studies identified a major effect quantitative trait locus (met1) for metamorphic timing and expression of paedomorphosis in hybrid crosses between the biphasic Eastern tiger salamander (Ambystoma tigrinum tigrinum) and the paedomorphic Mexican axolotl (Ambystoma mexicanum). We used existing hybrid mapping panels and a newly created hybrid cross to map the met1 genomic region and determine the effect of met1 on larval growth, metamorphic timing, and gene expression in the brain. We show that met1 maps to the position of a urodele-specific chromosome rearrangement on linkage group 2 that uniquely brought functionally associated genes into linkage. Furthermore, we found that more than 200 genes were differentially expressed during larval development as a function of met1 genotype. This list of differentially expressed genes is enriched for proteins that function in the mitochondria, providing evidence of a link between met1, thyroid hormone signaling, and mitochondrial energetics associated with metamorphosis. Finally, we found that met1 significantly affected metamorphic timing in hybrids, but not early larval growth rate. Collectively, our results show that met1 regulates species and morph-specific patterns of brain transcription and life history variation. PMID:23946331

  4. Collisionless Electrostatic Shock Modeling and Simulation

    Science.gov (United States)

    2016-10-21

    equations with piston -like boundary conditions gives a solution for the shock behavior. • Assumes cold upstream ions, therefore neglecting shock...temperature ratio (>10) – Wave Train Wavelength – Shock-Front Mach Number – Reflected Ion Beam Velocity Gathering Experiment Data – Double Plasma Device...experimental shock data. • Inconsistencies in published 1969 double -plasma device data hampered validation. Future Work: Extension to Moderately

  5. Experimental investigation of shock wave - bubble interaction

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Mohsen

    2010-04-09

    In this work, the dynamics of laser-generated single cavitation bubbles exposed to lithotripter shock waves has been investigated experimentally. The energy of the impinging shock wave is varied in several steps. High-speed photography and pressure field measurements simultaneously with image acquisition provide the possibility of capturing the fast bubble dynamics under the effect of the shock wave impact. The pressure measurement is performed using a fiber optic probe hydrophone (FOPH) which operates based on optical diagnostics of the shock wave propagating medium. After a short introduction in chapter 1 an overview of the previous studies in chapter 2 is presented. The reported literatures include theoretical and experimental investigations of several configurations of physical problems in the field of bubble dynamics. In chapter 3 a theoretical description of propagation of a shock wave in a liquid like water has been discussed. Different kinds of reflection of a shock wave at an interface are taken into account. Undisturbed bubble dynamics as well as interaction between a planar shock wave and an initially spherical bubble are explored theoretically. Some physical parameters which are important in this issue such as the velocity of the shock-induced liquid jet, Kelvin impulse and kinetic energy are explained. The shock waves are generated in a water filled container by a focusing piezoelectric generator. The shock wave profile has a positive part with pulse duration of ∼1 μs followed by a longer tension tail (i.e. ∼3 μs). In chapter 4 high-speed images depict the propagation of a shock wave in the water filled tank. The maximum pressure is also derived for different intensity levels of the shock wave generator. The measurement is performed in the free field (i.e. in the absence of laser-generated single bubbles). In chapter 5 the interaction between lithotripter shock waves and laserinduced single cavitation bubbles is investigated experimentally. An

  6. Multiple shocks, coping and welfare consequences: natural disasters and health shocks in the Indian Sundarbans.

    Science.gov (United States)

    Mazumdar, Sumit; Mazumdar, Papiya Guha; Kanjilal, Barun; Singh, Prashant Kumar

    2014-01-01

    Based on a household survey in Indian Sundarbans hit by tropical cyclone Aila in May 2009, this study tests for evidence and argues that health and climatic shocks are essentially linked forming a continuum and with exposure to a marginal one, coping mechanisms and welfare outcomes triggered in the response is significantly affected. The data for this study is based on a cross-sectional household survey carried out during June 2010. The survey was aimed to assess the impact of cyclone Aila on households and consequent coping mechanisms in three of the worst-affected blocks (a sub-district administrative unit), viz. Hingalganj, Gosaba and Patharpratima. The survey covered 809 individuals from 179 households, cross cutting age and gender. A separate module on health-seeking behaviour serves as the information source of health shocks defined as illness episodes (ambulatory or hospitalized) experienced by household members. Finding reveals that over half of the households (54%) consider that Aila has dealt a high, damaging impact on their household assets. Result further shows deterioration of health status in the period following the incidence of Aila. Finding suggests having suffered multiple shocks increases the number of adverse welfare outcomes by 55%. Whereas, suffering either from the climatic shock (33%) or the health shock (25%) alone increases such risks by a much lesser extent. The multiple-shock households face a significantly higher degree of difficulty to finance expenses arising out of health shocks, as opposed to their counterparts facing only the health shock. Further, these households are more likely to finance the expenses through informal loans and credit from acquaintances or moneylenders. This paper presented empirical evidence on how natural and health shocks mutually reinforce their resultant impact, making coping increasingly difficult and present significant risks of welfare loss, having short as well as long-run development manifestations.

  7. Health shocks and risk aversion.

    Science.gov (United States)

    Decker, Simon; Schmitz, Hendrik

    2016-12-01

    We empirically assess whether a health shock influences individual risk aversion. We use grip strength data to obtain an objective health shock indicator. In order to account for the non-random nature of our data regression-adjusted matching is employed. Risk preferences are traditionally assumed to be constant. However, we find that a health shock increases individual risk aversion. The finding is robust to a series of sensitivity analyses and persists for at least four years after the shock. Income changes do not seem to be the driving mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Shock in the emergency department

    DEFF Research Database (Denmark)

    Holler, Jon Gitz; Henriksen, Daniel Pilsgaard; Mikkelsen, Søren

    2016-01-01

    BACKGROUND: The knowledge of the frequency and associated mortality of shock in the emergency department (ED) is limited. The aim of this study was to describe the incidence, all-cause mortality and factors associated with death among patients suffering shock in the ED. METHODS: Population...... failures. Outcomes were annual incidence per 100,000 person-years at risk (pyar), all-cause mortality at 0-7, and 8-90 days and risk factors associated with death. RESULTS: We identified 1646 of 438,191 (0.4 %) ED patients with shock at arrival. Incidence of shock increased from 53.8 to 80.6 cases per 100...

  9. The source of real and nominal exchange rate fluctuations in Thailand: Real shock or nominal shock

    OpenAIRE

    Le Thanh, Binh

    2015-01-01

    This paper examines the source of exchange rate fluctuations in Thailand. We employed a structural vector auto-regression (SVAR) model with the long-run neutrality restriction of Blanchard and Quah (1989) to investigate the changes in real and nominal exchange rates from 1994 to 2015. In this paper, we assume that there are two types of shocks which related to exchange rate movements: real shocks and nominal shocks. The empirical analysis indicates that real shocks are the fundamental compon...

  10. Pressure thermal shock analysis for nuclear reactor pressure vessel

    International Nuclear Information System (INIS)

    Galik, G.; Kutis, V.; Jakubec, J.; Paulech, J.; Murin, J.

    2015-01-01

    The appearance of structural weaknesses within the reactor pressure vessel or its structural failure caused by crack formation during pressure thermal shock processes pose as a severe environmental hazard. Coolant mixing during ECC cold water injection was simulated in a detailed CFD analysis. The temperature distribution acting on the pipe wall internal surface was calculated. Although, the results show the formation of high temperature differences and intense gradients, an additional structural analysis is required to determine the possibility of structural damage from PTS. Such an analysis will be the subject of follow-up research. (authors)

  11. Enhanced Contacts for Inverted Metamorphic Multi-Junction Solar Cells Using Carbon Nanotube Metal Matrix Composites

    Science.gov (United States)

    2018-01-18

    substrates through a shadow mask. The native oxide was removed by HCl (hydrochloric acid) immersion immediately before the deposition process...34Pushing Inverted Metamorphic Multijunction Solar Cells Toward Higher Efficiency at Realistic Operating Conditions," IEEE Journal of Photovoltaics, vol. 3...Multijunction Solar Cells," IEEE Journal of Photovoltaics, vol. 2, pp. 377-381, Jul 2012. [7] F. Newman, et al., "PROGRESS IN ADAPTING INVERTED

  12. Remote shock sensing and notification system

    Science.gov (United States)

    Muralidharan, Govindarajan; Britton, Charles L.; Pearce, James; Jagadish, Usha; Sikka, Vinod K.

    2008-11-11

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  13. Life shocks and homelessness.

    Science.gov (United States)

    Curtis, Marah A; Corman, Hope; Noonan, Kelly; Reichman, Nancy E

    2013-12-01

    We exploited an exogenous health shock-namely, the birth of a child with a severe health condition-to investigate the effect of a life shock on homelessness in large cities in the United States as well as the interactive effects of the shock with housing market characteristics. We considered a traditional measure of homelessness, two measures of housing instability thought to be precursors to homelessness, and a combined measure that approximates the broadened conceptualization of homelessness under the 2009 Homeless Emergency Assistance and Rapid Transition to Housing Act (2010). We found that the shock substantially increases the likelihood of family homelessness, particularly in cities with high housing costs. The findings are consistent with the economic theory of homelessness, which posits that homelessness results from a conjunction of adverse circumstances in which housing markets and individual characteristics collide.

  14. Oil shock transmission to stock market returns: Wavelet-multivariate Markov switching GARCH approach

    International Nuclear Information System (INIS)

    Jammazi, Rania

    2012-01-01

    Since oil prices are typically governed by nonlinear and chaotic behavior, it’s become rather difficult to capture the dominant properties of their fluctuations. In recent years, unprecedented interest emerged on the decomposition methods in order to capture drifts or spikes relatively to this data. Together, our understanding of the nature of crude oil price shocks and their effects on the stock market returns has evolved noticeably. We accommodate these findings to investigate two issues that have been at the center of recent debates on the effect of crude oil shocks on the stock market returns of five developed countries (USA, UK, Japan, Germany and Canada). First, we analyze whether shocks and or volatility emanating from two major crude oil markets are transmitted to the equity markets. We do this by applying, the Haar A Trous Wavelet decomposition to monthly real crude oil series in a first step, and the trivariate BEKK Markov Switching GARCH model to analyze the effect of the smooth part on the degree of the stock market instability in a second step. The motivation behind the use of the former method is that noises and erratic behavior often appeared at the edge of the signal, can affect the quality of the shock and thus increase erroneous results of the shock transmission to the stock market. The proposed model is able to circumvent the path dependency problem that can influence the prediction’s robustness and can provide useful information for investors and government agencies that have largely based their views on the notion that crude oil markets affect negatively stock market returns. Second, under the hypothesis of common increased volatility, we investigate whether these states happen around the identified international crises. Indeed, the results show that the A Haar Trous Wavelet decomposition method appears to be an important step toward improving accuracy of the smooth signal in detecting key real crude oil volatility features. Additionally

  15. ShockOmics: multiscale approach to the identification of molecular biomarkers in acute heart failure induced by shock.

    Science.gov (United States)

    Aletti, Federico; Conti, Costanza; Ferrario, Manuela; Ribas, Vicent; Bollen Pinto, Bernardo; Herpain, Antoine; Post, Emiel; Romay Medina, Eduardo; Barlassina, Cristina; de Oliveira, Eliandre; Pastorelli, Roberta; Tedeschi, Gabriella; Ristagno, Giuseppe; Taccone, Fabio S; Schmid-Schönbein, Geert W; Ferrer, Ricard; De Backer, Daniel; Bendjelid, Karim; Baselli, Giuseppe

    2016-01-28

    The ShockOmics study (ClinicalTrials.gov identifier NCT02141607) is a multicenter prospective observational trial aimed at identifying new biomarkers of acute heart failure in circulatory shock, by means of a multiscale analysis of blood samples and hemodynamic data from subjects with circulatory shock. Ninety septic shock and cardiogenic shock patients will be recruited in three intensive care units (ICU) (Hôpital Erasme, Université Libre de Bruxelles, Belgium; Hospital Universitari Mutua Terrassa, Spain; Hôpitaux Universitaires de Genève, Switzerland). Hemodynamic signals will be recorded every day for up to seven days from shock diagnosis (time T0). Clinical data and blood samples will be collected for analysis at: i) T1  5 and lactate levels ≥ 2 mmol/L. The exclusion criteria are: expected death within 24 h since ICU admission; > 4 units of red blood cells or >1 fresh frozen plasma transfused; active hematological malignancy; metastatic cancer; chronic immunodepression; pre-existing end stage renal disease requiring renal replacement therapy; recent cardiac surgery; Child-Pugh C cirrhosis; terminal illness. Enrollment will be preceded by the signature of the Informed Consent by the patient or his/her relatives and by the physician in charge. Three non-shock control groups will be included in the study: a) healthy blood donors (n = 5); b) septic patients (n = 10); c) acute myocardial infarction or patients with prolonged acute arrhythmia (n = 10). The hemodynamic data will be downloaded from the ICU monitors by means of dedicated software. The blood samples will be utilized for transcriptomics, proteomics and metabolomics ("-omics") analyses. ShockOmics will provide new insights into the pathophysiological mechanisms underlying shock as well as new biomarkers for the timely diagnosis of cardiac dysfunction in shock and quantitative indices for assisting the therapeutic management of shock patients.

  16. Nitric oxide acts as a positive regulator to induce metamorphosis of the ascidian Herdmania momus.

    Science.gov (United States)

    Ueda, Nobuo; Degnan, Sandie M

    2013-01-01

    Marine invertebrates commonly have a biphasic life cycle in which the metamorphic transition from a pelagic larva to a benthic post-larva is mediated by the nitric oxide signalling pathway. Nitric oxide (NO) is synthesised by nitric oxide synthase (NOS), which is a client protein of the molecular chaperon heat shock protein 90 (HSP90). It is notable, then, that both NO and HSP90 have been implicated in regulating metamorphosis in marine invertebrates as diverse as urochordates, echinoderms, molluscs, annelids, and crustaceans. Specifically, the suppression of NOS activity by the application of either NOS- or HSP90-inhibiting pharmacological agents has been shown consistently to induce the initiation of metamorphosis, leading to the hypothesis that a negative regulatory role of NO is widely conserved in biphasic life cycles. Further, the induction of metamorphosis by heat-shock has been demonstrated for multiple species. Here, we investigate the regulatory role of NO in induction of metamorphosis of the solitary tropical ascidian, Herdmania momus. By coupling pharmacological treatments with analysis of HmNOS and HmHSP90 gene expression, we present compelling evidence of a positive regulatory role for NO in metamorphosis of this species, in contrast to all existing ascidian data that supports the hypothesis of NO as a conserved negative regulator of metamorphosis. The exposure of competent H. momus larvae to a NOS inhibitor or an NO donor results in an up-regulation of NOS and HSP90 genes. Heat shock of competent larvae induces metamorphosis in a temperature dependent manner, up to a thermal tolerance that approaches 35°C. Both larval/post-larval survival and the appearance of abnormal morphologies in H. momus post-larvae reflect the magnitude of up-regulation of the HSP90 gene in response to heat-shock. The demonstrated role of NO as a positive metamorphic regulator in H. momus suggests the existence of inter-specific adaptations of NO regulation in ascidian

  17. Particle acceleration at shocks in the inner heliosphere

    Science.gov (United States)

    Parker, Linda Neergaard

    This dissertation describes a study of particle acceleration at shocks via the diffusive shock acceleration mechanism. Results for particle acceleration at both quasi-parallel and quasi-perpendicular shocks are presented to address the question of whether there are sufficient particles in the solar wind thermal core, modeled as either a Maxwellian or kappa- distribution, to account for the observed accelerated spectrum. Results of accelerating the theoretical upstream distribution are compared to energetic observations at 1 AU. It is shown that the particle distribution in the solar wind thermal core is sufficient to explain the accelerated particle spectrum downstream of the shock, although the shape of the downstream distribution in some cases does not follow completely the theory of diffusive shock acceleration, indicating possible additional processes at work in the shock for these cases. Results show good to excellent agreement between the theoretical and observed spectral index for one third to one half of both quasi-parallel and quasi-perpendicular shocks studied herein. Coronal mass ejections occurring during periods of high solar activity surrounding solar maximum can produce shocks in excess of 3-8 shocks per day. During solar minimum, diffusive shock acceleration at shocks can generally be understood on the basis of single independent shocks and no other shock necessarily influences the diffusive shock acceleration mechanism. In this sense, diffusive shock acceleration during solar minimum may be regarded as Markovian. By contrast, diffusive shock acceleration of particles at periods of high solar activity (e.g. solar maximum) see frequent, closely spaced shocks that include the effects of particle acceleration at preceding and following shocks. Therefore, diffusive shock acceleration of particles at solar maximum cannot be modeled on the basis of diffusive shock acceleration as a single, independent shock and the process is essentially non-Markovian. A

  18. Melting under shock compression

    International Nuclear Information System (INIS)

    Bennett, B.I.

    1980-10-01

    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  19. Nanodiamonds and silicate minerals in ordinary chondrites as determined by micro-Raman spectroscopy

    Science.gov (United States)

    Saikia, Bhaskar J.; Parthasarathy, Gopalakrishnarao; Borah, Rashmi R.

    2017-06-01

    We present here the Raman spectroscopic study of silicate and carbonaceous minerals in three ordinary chondrites with the aim to improve our understanding the impact process including the peak metamorphic pressures present in carbon-bearing ordinary chondites. The characteristic Raman vibrational peaks of olivines, pyroxenes, and plagioclase have been determined on three ordinary chondrites from India, Dergaon (H5), Mahadevpur (H4/5), and Kamargaon (L6). The Raman spectra of these meteorite samples show the presence of nanodiamonds at 1334-1345 cm-1 and 1591-1619 cm-1. The full-width at half maximum (FWHM) of Raman peaks for Mahadevpur and Dergaon reflect the nature of shock metamorphism in these meteorites. The frequency shift in Raman spectra might be because of shock effects during the formation of the diamond/graphite grains.

  20. 29th International Symposium on Shock Waves

    CERN Document Server

    Ranjan, Devesh

    2015-01-01

    This proceedings present the results of the 29th International Symposium on Shock Waves (ISSW29) which was held in Madison, Wisconsin, U.S.A., from July 14 to July 19, 2013. It was organized by the Wisconsin Shock Tube Laboratory, which is part of the College of Engineering of the University of Wisconsin-Madison. The ISSW29 focused on the following areas: Blast Waves, Chemically Reactive Flows, Detonation and Combustion,  Facilities, Flow Visualization, Hypersonic Flow, Ignition, Impact and Compaction, Industrial Applications, Magnetohydrodynamics, Medical and Biological Applications, Nozzle Flow, Numerical Methods, Plasmas, Propulsion, Richtmyer-Meshkov Instability, Shock-Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shock Waves in Condensed Matter, Shock Waves in Multiphase Flow, as well as Shock Waves in Rarefield Flow. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 29 and individuals interes...

  1. Shock compression of synthetic opal

    International Nuclear Information System (INIS)

    Inoue, A; Okuno, M; Okudera, H; Mashimo, T; Omurzak, E; Katayama, S; Koyano, M

    2010-01-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO 4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO 2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  2. Focusing of Shear Shock Waves

    Science.gov (United States)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  3. Shock compression of synthetic opal

    Science.gov (United States)

    Inoue, A.; Okuno, M.; Okudera, H.; Mashimo, T.; Omurzak, E.; Katayama, S.; Koyano, M.

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  4. Shock compression of synthetic opal

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A; Okuno, M; Okudera, H [Department of Earth Sciences, Kanazawa University Kanazawa, Ishikawa, 920-1192 (Japan); Mashimo, T; Omurzak, E [Shock Wave and Condensed Matter Research Center, Kumamoto University, Kumamoto, 860-8555 (Japan); Katayama, S; Koyano, M, E-mail: okuno@kenroku.kanazawa-u.ac.j [JAIST, Nomi, Ishikawa, 923-1297 (Japan)

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO{sub 4} tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO{sub 2} glass. However, internal silanole groups still remain even at 38.1 GPa.

  5. Do oil shocks predict economic policy uncertainty?

    Science.gov (United States)

    Rehman, Mobeen Ur

    2018-05-01

    Oil price fluctuations have influential role in global economic policies for developed as well as emerging countries. I investigate the role of international oil prices disintegrated into structural (i) oil supply shock, (ii) aggregate demand shock and (iii) oil market specific demand shocks, based on the work of Kilian (2009) using structural VAR framework on economic policies uncertainty of sampled markets. Economic policy uncertainty, due to its non-linear behavior is modeled in a regime switching framework with disintegrated structural oil shocks. Our results highlight that Indian, Spain and Japanese economic policy uncertainty responds to the global oil price shocks, however aggregate demand shocks fail to induce any change. Oil specific demand shocks are significant only for China and India in high volatility state.

  6. Shock Wave Dynamics in Weakly Ionized Plasmas

    Science.gov (United States)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  7. Existence and Stability of Viscous Shock Profiles for 2-D Isentropic MHD with Infinite Electrical Resistivity

    International Nuclear Information System (INIS)

    Blake, B.; Zumbrun, K.; Lafitte, O.

    2010-01-01

    For the two-dimensional Navier Stokes equations of isentropic magnetohydrodynamics (MHD) with γ-law gas equation of state, γ≥1, and infinite electrical resistivity, we carry out a global analysis categorizing all possible viscous shock profiles. Precisely, we show that the phase portrait of the Crave ling-wave ODE generically consists of either two rest points connected by a viscous Lax profile, or else four rest points, two saddles and two nodes. In the latter configuration, which rest points are connected by profiles depends on the ratio of viscosities, and can involve Lax, over-compressive, or under-compressive shock profiles. Considered as three-dimensional solutions, under-compressive shocks are Lax-type (Alfven) waves. For the monatomic and diatomic cases γ=5/3 and γ=7/5, with standard viscosity ratio for a nonmagnetic gas, we find numerically that the the nodes are connected by a family of over-compressive profiles bounded by Lax profiles connecting saddles to nodes, with no under-compressive shocks occurring. We carry out a systematic numerical Evans function analysis indicating that all of these two-dimensional shock profiles are linearly and nonlinearly stable, both with respect to two- and three-dimensional perturbations. For the same gas constants, but different viscosity ratios, we investigate also cases for which under-compressive shocks appear; these are seen numerically to be stable as well, both with respect to two-dimensional and (in the neutral sense of convergence to nearby Riemann solutions) three-dimensional perturbations. (authors)

  8. A simulation study of the reaction of human heart to biphasic electrical shocks

    Directory of Open Access Journals (Sweden)

    Seemann Gunnar

    2004-06-01

    Full Text Available Abstract Background This article presents a study, which examines the effects of biphasic electrical shocks on human ventricular tissue. The effects of this type of shock are not yet fully understood. Animal experiments showed the superiority of biphasic shocks over monophasic ones in defibrillation. A mathematical computer simulation can increase the knowledge of human heart behavior. Methods The research presented in this article was done with different models representing a three-dimensional wedge of ventricular myocardium. The electrophysiology was described with Priebe-Beuckelmann model. The realistic fiber twist, which is specific to human myocardium was included. Planar electrodes were placed at the ends of the longest side of the virtual cardiac wedge, in a bath medium. They were sources of electrical shocks, which varied in magnitude from 0.1 to 5 V. In a second arrangement ring electrodes were placed directly on myocardium for getting a better view on secondary electrical sources. The electrical reaction of the tissue was generated with a bidomain model. Results The reaction of the tissue to the electrical shock was specific to the initial imposed characteristics. Depolarization appeared in the first 5 ms in different locations. A further study of the cardiac tissue behavior revealed, which features influence the response of the considered muscle. It was shown that the time needed by the tissue to be totally depolarized is much shorter when a biphasic shock is applied. Each simulation ended only after complete repolarization was achieved. This created the possibility of gathering information from all states corresponding to one cycle of the cardiac rhythm. Conclusions The differences between the reaction of the homogeneous tissue and a tissue, which contains cleavage planes, reveals important aspects of superiority of biphasic pulses. ...

  9. Shock waves in weakly compressed granular media.

    Science.gov (United States)

    van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin

    2013-11-22

    We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.

  10. A comparative study on shock compression of nanocrystalline Al and Cu: Shock profiles and microscopic views of plasticity

    International Nuclear Information System (INIS)

    Ma, Wen; Hou, Yong; Zhu, Wenjun

    2013-01-01

    Shock compressions of nanocrystalline (nc) metals Al and Cu with the same grain size and texture are studied by using molecular dynamics simulations. Results have revealed that the shock front of both Al and Cu can be divided into three stages: elastic, grain-boundary-mediated, and dislocation-mediated plastic deformation. The transition planes among these three stages are proven to be non-planar by two-dimensional shock response analysis, including local stress, shear, temperature, and atom configuration. The difference between shocked Al and Cu is that the rise rate of the elastic stage of Cu is slightly higher than that of Al, and that the shock-front width of Al is wider than Cu at the same loading conditions. For the plastic stage, the dislocation density of shocked Al is lower than Cu, and the contribution of grain-boundary-mediated plasticity to shock front and strain for nc Al is more pronounced than for nc Cu. These results are explained through intrinsic material properties and atomistic analysis of the plastic process. In the case of the shocked Al sample, partial dislocations, perfect dislocations, and twins are observed, but few evidence of perfect dislocations and twins are observed in the shocked Cu

  11. Shock wave dynamics derivatives and related topics

    CERN Document Server

    Emanuel, George

    2012-01-01

    "...this monograph develops an esoteric niche within shock wave theory. …treats shock waves from an analytical approach assuming perfect gas. Emanuel has made significant contributions to the theory of shock waves and has selected a number of topics that reflect those contributions."-Shock Waves, 2013.

  12. Chondrule destruction in nebular shocks

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, Emmanuel; Thompson, Christopher, E-mail: ejacquet@mnhn.fr [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, Toronto, ON M5S 3H8 (Canada)

    2014-12-10

    Chondrules are millimeter-sized silicate spherules ubiquitous in primitive meteorites, but whose origin remains mysterious. One of the main proposed mechanisms for producing them is melting of solids in shock waves in the gaseous protoplanetary disk. However, evidence is mounting that chondrule-forming regions were enriched in solids well above solar abundances. Given the high velocities involved in shock models, destructive collisions would be expected between differently sized grains after passage of the shock front as a result of differential drag. We investigate the probability and outcome of collisions of particles behind a one-dimensional shock using analytic methods as well as a full integration of the coupled mass, momentum, energy, and radiation equations. Destruction of protochondrules seems unavoidable for solid/gas ratios ε ≳ 0.1, and possibly even for solar abundances because of 'sandblasting' by finer dust. A flow with ε ≳ 10 requires much smaller shock velocities (∼2 versus 8 km s{sup –1}) in order to achieve chondrule-melting temperatures, and radiation trapping allows slow cooling of the shocked fragments. Initial destruction would still be extensive; although re-assembly of millimeter-sized particles would naturally occur by grain sticking afterward, the compositional heterogeneity of chondrules may be difficult to reproduce. We finally note that solids passing through small-scale bow shocks around few kilometer-sized planetesimals might experience partial melting and yet escape fragmentation.

  13. Role of echocardiography in reducing shock reversal time in pediatric septic shock: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Ahmed A. EL-Nawawy

    Full Text Available Abstract Objective: To evaluate the role of echocardiography in reducing shock reversal time in pediatric septic shock. Methods: A prospective study conducted in the pediatric intensive care unit of a tertiary care teaching hospital from September 2013 to May 2016. Ninety septic shock patients were randomized in a 1:1 ratio for comparing the serial echocardiography-guided therapy in the study group with the standard therapy in the control group regarding clinical course, timely treatment, and outcomes. Results: Shock reversal was significantly higher in the study group (89% vs. 67%, with significantly reduced shock reversal time (3.3 vs. 4.5 days. Pediatric intensive care unit stay in the study group was significantly shorter (8 ± 3 vs. 14 ± 10 days. Mortality due to unresolved shock was significantly lower in the study group. Fluid overload was significantly lower in the study group (11% vs. 44%. In the study group, inotropes were used more frequently (89% vs. 67% and initiated earlier (12[0.5-24] vs. 24[6-72] h with lower maximum vasopressor inotrope score (120[30-325] vs. 170[80-395], revealing predominant use of milrinone (62% vs. 22%. Conclusion: Serial echocardiography provided crucial data for early recognition of septic myocardial dysfunction and hypovolemia that was not apparent on clinical assessment, allowing a timely management and resulting in shock reversal time reduction among children with septic shock.

  14. High resolution TEM of chondritic carbonaceous matter: Metamorphic evolution and heterogeneity

    Science.gov (United States)

    Le Guillou, Corentin; Rouzaud, Jean-Noël.; Bonal, Lydie; Quirico, Eric; Derenne, Sylvie; Remusat, Laurent

    2012-03-01

    The insoluble carbonaceous matter from 12 chondrites (CI, CM, CO, CV, EH, and UOC), was characterized by high resolution transmission electron microscopy (HRTEM). Besides ubiquitous nanoglobules, the insoluble organic matter from petrologic type 1 and 2 chondrites and Semarkona (LL 3.0) is composed of a highly disordered polyaromatic component. No structural differences were observed between these IOMs, in agreement with the limited thermal metamorphism they all experienced. In chondrites of petrologic type >3.0, the evolution of the IOM is controlled by the extent of thermal metamorphism. The polyaromatic layers, shorter than 1 nm in petrologic type ≤3.0 chondrites, grow up to sizes between 5 and 10 nm in petrologic type >3.6 chondrites, contributing to the increase of the degree of structural order. In addition, we find rare, but ubiquitous onion-like carbons, which may be the product of nanodiamond graphitization. The insoluble carbonaceous matter of the enstatite chondrite Sahara 97096 (EH 3) is different from the other meteorites studied here. It is more heterogeneous and displays a high abundance of graphitized particles. This may be the result of a mixture between (1) the disordered carbon located in the matrix, and (2) catalytic graphitized phases associated with metal, potentially originating from partial melting events. The structural and nanostructural evolution are similar in all IOMs. This suggests that the structure of the accreted precursors and the parent body conditions of their secondary thermal modifications (temperature, duration, and pressure) were similar. The limited degree of organization of the most metamorphosed IOMs compared with terrestrial rocks submitted to similar temperature suggests that the conditions are not favorable to graphitization processes, due to the chemical nature of the precursor or the lack of confinement pressure.

  15. UHP metamorphism recorded by kyanite-bearing eclogite in the Seve Nappe Complex of northern Jämtland, Swedish Caledonides

    NARCIS (Netherlands)

    Janák, M.; Van Roermund, H.; Majka, J.; Gee, D.

    The first evidence for ultrahigh-pressure (UHP) metamorphism in the Seve Nappe Complex of the Scandinavian Caledonides is recorded by kyanite-bearing eclogite, found in a basic dyke within a garnet peridotite body exposed close to the lake Friningen in northern Jämtland (central Sweden). UHP

  16. International oil shocks and household consumption in China

    International Nuclear Information System (INIS)

    Zhang, Dayong; Broadstock, David C.; Cao, Hong

    2014-01-01

    We investigate the impacts that oil price shocks have on residential consumption in China. While it is well understood that oil prices affect consumption in a multitude of ways, the timing and directness of these effects on specific consumption categories is not clear. We demonstrate that the most immediate and direct effect passes through transportation consumption, as might be expected. But we also show that significant effects pass through consumption in other sectors—including “food and clothes”, “medical expenditure”, and other general “living expenditure”—with less immediacy. Given the results, particularly observed asymmetries with respect to rises and falls in international oil prices, we discuss some implications for future adjustments to domestic price policies, in particular the case for removal of domestic price regulation. - Highlights: • We study the impact of oil price shocks on residential consumption in China. • The most immediate effect passes through expenditure on transportation. • Effects also appear for health, education and food and clothing expenditure. • Existing price regulation offers no great benefit. • We argue that a compelling case for removing current price regulation exists

  17. Shock Wave Diffraction Phenomena around Slotted Splitters

    Directory of Open Access Journals (Sweden)

    Francesca Gnani

    2015-01-01

    Full Text Available In the field of aerospace engineering, the study of the characteristics of vortical flows and their unsteady phenomena finds numerous engineering applications related to improvements in the design of tip devices, enhancement of combustor performance, and control of noise generation. A large amount of work has been carried out in the analysis of the shock wave diffraction around conventional geometries such as sharp and rounded corners, but the employment of splitters with lateral variation has hardly attracted the attention of researchers. The investigation of this phenomenon around two-dimensional wedges has allowed the understanding of the basic physical principles of the flow features. On the other hand, important aspects that appear in the third dimension due to the turbulent nature of the vortices are omitted. The lack of studies that use three-dimensional geometries has motivated the current work to experimentally investigate the evolution of the shock wave diffraction around two splitters with spike-shaped structures for Mach numbers of 1.31 and 1.59. Schlieren photography was used to obtain an insight into the sequential diffraction processes that take place in different planes. Interacting among them, these phenomena generate a complicated turbulent cloud with a vortical arrangement.

  18. Shock waves in luminous early-type stars

    International Nuclear Information System (INIS)

    Castor, J.I.

    1986-01-01

    Shock waves that occur in stellar atmospheres have their origin in some hydrodynamic instability of the atmosphere itself or of the stellar interior. In luminous early-type stars these two possibilities are represented by shocks due to an unstable radiatively-accelerated wind, and to shocks generated by the non-radial pulsations known to be present in many or most OB stars. This review is concerned with the structure and development of the shocks in these two cases, and especially with the mass loss that may be due specifically to the shocks. Pulsation-produced shocks are found to be very unfavorable for causing mass loss, owing to the great radiation efficiency that allows them to remain isothermal. The situation regarding radiatively-driven shocks remains unclear, awaiting detailed hydrodynamics calculations. 20 refs., 2 figs

  19. Computer simulations of collisionless shock waves

    International Nuclear Information System (INIS)

    Leroy, M.M.

    1984-01-01

    A review of the contributions of particle computer simulations to the understanding of the physics of magnetic shock waves in collisionless plasmas is presented. The emphasis is on the relation between the computer simulation results, spacecraft observations of shocks in space, and related theories, rather than on technical aspects of the numerics. It is shown that much has been learned from the comparison of ISEE spacecraft observations of the terrestrial bow shock and particle computer simulations concerning the quasi-perpendicular, supercritical shock (ion scale structure, ion reflection mechanism and ultimate dissipation processes). Particle computer simulations have also had an appreciable prospective role in the investigation of the physics of quasi-parallel shocks, about which still little is known observationally. Moreover, these numerical techniques have helped to clarify the process of suprathermal ion rejection by the shock into the foreshock, and the subsequent evolution of the ions in the foreshock. 95 references

  20. Shock-induced devolatilization of calcite

    Science.gov (United States)

    Boslough, M. B.; Ahrens, T. J.; Vizgirda, J.; Becker, R. H.; Epstein, S.

    1982-01-01

    Experimental measurements of the release adiabats by Vizgirda (1981) indicate that substantial vaporization takes place upon release from shock pressures of 37 GPa for calcite and 14 GPa for aragonite. The present investigation includes the first controlled partial vaporization experiments on calcite. The experiments were conducted to test the predictions of the release adiabat experiments. The quantities of the gaseous species produced from shocked calcite and their carbon and oxygen isotopic compositions were determined, and the shock-induced effect on the Mn(2+) electron spin resonance spectrum in the shock-recovered calcite was observed. On the basis of the obtained results, it is concluded that shock stresses at the 17-18 GPa level give rise to volatilization of 0.03-0.3 (mole) percent of calcite to CO2 and CO. The devolatilization of calcite occurs at low pressure at significantly lower entropy densities than predicted on the basis of thermodynamic continuum models.