WorldWideScience

Sample records for shift sequence based

  1. Adaptation of Shift Sequence Based Method for High Number in Shifts Rostering Problem for Health Care Workers

    Mindaugas Liogys

    2013-08-01

    Full Text Available Purpose—is to investigate a shift sequence-based approach efficiency then problem consisting of a high number of shifts.Research objectives:• Solve health care workers rostering problem using a shift sequence based method.• Measure its efficiency then number of shifts increases.Design/methodology/approach—Usually rostering problems are highly constrained. Constraints are classified to soft and hard constraints. Soft and hard constraints of the problem are additionally classified to: sequence constraints, schedule constraints and roster constraints. Sequence constraints are considered when constructing shift sequences. Schedule constraints are considered when constructing a schedule. Roster constraints are applied, then constructing overall solution, i.e. combining all schedules.Shift sequence based approach consists of two stages:• Shift sequences construction,• The construction of schedules.In the shift sequences construction stage, the shift sequences are constructed for each set of health care workers of different skill, considering sequence constraints. Shifts sequences are ranked by their penalties for easier retrieval in later stage.In schedules construction stage, schedules for each health care worker are constructed iteratively, using the shift sequences produced in stage 1.Shift sequence based method is an adaptive iterative method where health care workers who received the highest schedule penalties in the last iteration are scheduled first at the current iteration.During the roster construction, and after a schedule has been generated for the current health care worker, an improvement method based on an efficient greedy local search is carried out on the partial roster. It simply swaps any pair of shifts between two health care workers in the (partial roster, as long as the swaps satisfy hard constraints and decrease the roster penalty.Findings—Using shift sequence method for solving health care workers rostering problem

  2. Adaptation of Shift Sequence Based Method for High Number in Shifts Rostering Problem for Health Care Workers

    Mindaugas Liogys

    2011-08-01

    Full Text Available Purpose—is to investigate a shift sequence-based approach efficiency then problem consisting of a high number of shifts. Research objectives:• Solve health care workers rostering problem using a shift sequence based method.• Measure its efficiency then number of shifts increases. Design/methodology/approach—Usually rostering problems are highly constrained.Constraints are classified to soft and hard constraints. Soft and hard constraints of the problem are additionally classified to: sequence constraints, schedule constraints and roster constraints. Sequence constraints are considered when constructing shift sequences. Schedule constraints are considered when constructing a schedule. Roster constraints are applied, then constructing overall solution, i.e. combining all schedules.Shift sequence based approach consists of two stages:• Shift sequences construction,• The construction of schedules.In the shift sequences construction stage, the shift sequences are constructed for each set of health care workers of different skill, considering sequence constraints. Shifts sequences are ranked by their penalties for easier retrieval in later stage.In schedules construction stage, schedules for each health care worker are constructed iteratively, using the shift sequences produced in stage 1. Shift sequence based method is an adaptive iterative method where health care workers who received the highest schedule penalties in the last iteration are scheduled first at the current iteration. During the roster construction, and after a schedule has been generated for the current health care worker, an improvement method based on an efficient greedy local search is carried out on the partial roster. It simply swaps any pair of shifts between two health care workers in the (partial roster, as long as the swaps satisfy hard constraints and decrease the roster penalty.Findings—Using shift sequence method for solving health care workers rostering

  3. Expectation violations in sensorimotor sequences: shifting from LTM-based attentional selection to visual search.

    Foerster, Rebecca M; Schneider, Werner X

    2015-03-01

    Long-term memory (LTM) delivers important control signals for attentional selection. LTM expectations have an important role in guiding the task-driven sequence of covert attention and gaze shifts, especially in well-practiced multistep sensorimotor actions. What happens when LTM expectations are disconfirmed? Does a sensory-based visual-search mode of attentional selection replace the LTM-based mode? What happens when prior LTM expectations become valid again? We investigated these questions in a computerized version of the number-connection test. Participants clicked on spatially distributed numbered shapes in ascending order while gaze was recorded. Sixty trials were performed with a constant spatial arrangement. In 20 consecutive trials, either numbers, shapes, both, or no features switched position. In 20 reversion trials, participants worked on the original arrangement. Only the sequence-affecting number switches elicited slower clicking, visual search-like scanning, and lower eye-hand synchrony. The effects were neither limited to the exchanged numbers nor to the corresponding actions. Thus, expectation violations in a well-learned sensorimotor sequence cause a regression from LTM-based attentional selection to visual search beyond deviant-related actions and locations. Effects lasted for several trials and reappeared during reversion. © 2015 New York Academy of Sciences.

  4. Sequence homolog-based molecular engineering for shifting the enzymatic pH optimum

    Fuqiang Ma

    2016-09-01

    Full Text Available Cell-free synthetic biology system organizes multiple enzymes (parts from different sources to implement unnatural catalytic functions. Highly adaption between the catalytic parts is crucial for building up efficient artificial biosynthetic systems. Protein engineering is a powerful technology to tailor various enzymatic properties including catalytic efficiency, substrate specificity, temperature adaptation and even achieve new catalytic functions. However, altering enzymatic pH optimum still remains a challenging task. In this study, we proposed a novel sequence homolog-based protein engineering strategy for shifting the enzymatic pH optimum based on statistical analyses of sequence-function relationship data of enzyme family. By two statistical procedures, artificial neural networks (ANNs and least absolute shrinkage and selection operator (Lasso, five amino acids in GH11 xylanase family were identified to be related to the evolution of enzymatic pH optimum. Site-directed mutagenesis of a thermophilic xylanase from Caldicellulosiruptor bescii revealed that four out of five mutations could alter the enzymatic pH optima toward acidic condition without compromising the catalytic activity and thermostability. Combination of the positive mutants resulted in the best mutant M31 that decreased its pH optimum for 1.5 units and showed increased catalytic activity at pH < 5.0 compared to the wild-type enzyme. Structure analysis revealed that all the mutations are distant from the active center, which may be difficult to be identified by conventional rational design strategy. Interestingly, the four mutation sites are clustered at a certain region of the enzyme, suggesting a potential “hot zone” for regulating the pH optima of xylanases. This study provides an efficient method of modulating enzymatic pH optima based on statistical sequence analyses, which can facilitate the design and optimization of suitable catalytic parts for the construction

  5. A Bayesian-probability-based method for assigning protein backbone dihedral angles based on chemical shifts and local sequences

    Wang Jun; Liu Haiyan [University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at the Microscale, and Key Laboratory of Structural Biology, School of Life Sciences (China)], E-mail: hyliu@ustc.edu.cn

    2007-01-15

    Chemical shifts contain substantial information about protein local conformations. We present a method to assign individual protein backbone dihedral angles into specific regions on the Ramachandran map based on the amino acid sequences and the chemical shifts of backbone atoms of tripeptide segments. The method uses a scoring function derived from the Bayesian probability for the central residue of a query tripeptide segment to have a particular conformation. The Ramachandran map is partitioned into representative regions at two levels of resolution. The lower resolution partitioning is equivalent to the conventional definitions of different secondary structure regions on the map. At the higher resolution level, the {alpha} and {beta} regions are further divided into subregions. Predictions are attempted at both levels of resolution. We compared our method with TALOS using the original TALOS database, and obtained comparable results. Although TALOS may produce the best results with currently available databases which are much enlarged, the Bayesian-probability-based approach can provide a quantitative measure for the reliability of predictions.

  6. Hepatic fat quantification using automated six-point Dixon: Comparison with conventional chemical shift based sequences and computed tomography.

    Shimizu, Kie; Namimoto, Tomohiro; Nakagawa, Masataka; Morita, Kosuke; Oda, Seitaro; Nakaura, Takeshi; Utsunomiya, Daisuke; Yamashita, Yasuyuki

    To compare automated six-point Dixon (6-p-Dixon) MRI comparing with dual-echo chemical-shift-imaging (CSI) and CT for hepatic fat fraction in phantoms and clinical study. Phantoms and fifty-nine patients were examined both MRI and CT for quantitative fat measurements. In phantom study, linear regression between fat concentration and 6-p-Dixon showed good agreement. In clinical study, linear regression between 6-p-Dixon and dual-echo CSI showed good agreement. CT attenuation value was strongly correlated with 6-p-Dixon (R 2 =0.852; PDixon and dual-echo CSI were accurate correlation with CT attenuation value of liver parenchyma. 6-p-Dixon has the potential for automated hepatic fat quantification. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Perturbation of frame sequences in shift-invariant spaces

    Christensen, Ole; Kim, Hong Oh; Kim, Rae Young

    2005-01-01

    We prove a new perturbation criteria for frame sequences, which generalizes previous results and is easier to apply. In the special case of frames infinitely generated shift-invariant subspaces of L2(ℝd) the condition can be formulated in terms of the norm of a finite Gram matrix and a correspond...

  8. Automated two-point dixon screening for the evaluation of hepatic steatosis and siderosis: comparison with R2*-relaxometry and chemical shift-based sequences

    Henninger, B.; Rauch, S.; Schocke, M.; Jaschke, W.; Kremser, C. [Medical University of Innsbruck, Department of Radiology, Innsbruck (Austria); Zoller, H. [Medical University of Innsbruck, Department of Internal Medicine, Innsbruck (Austria); Kannengiesser, S. [Siemens AG, Healthcare Sector, MR Applications Development, Erlangen (Germany); Zhong, X. [Siemens Healthcare, MR R and D Collaborations, Atlanta, GA (United States); Reiter, G. [Siemens AG, Healthcare Sector, MR R and D Collaborations, Graz (Austria)

    2015-05-01

    To evaluate the automated two-point Dixon screening sequence for the detection and estimated quantification of hepatic iron and fat compared with standard sequences as a reference. One hundred and two patients with suspected diffuse liver disease were included in this prospective study. The following MRI protocol was used: 3D-T1-weighted opposed- and in-phase gradient echo with two-point Dixon reconstruction and dual-ratio signal discrimination algorithm (''screening'' sequence); fat-saturated, multi-gradient-echo sequence with 12 echoes; gradient-echo T1 FLASH opposed- and in-phase. Bland-Altman plots were generated and correlation coefficients were calculated to compare the sequences. The screening sequence diagnosed fat in 33, iron in 35 and a combination of both in 4 patients. Correlation between R2* values of the screening sequence and the standard relaxometry was excellent (r = 0.988). A slightly lower correlation (r = 0.978) was found between the fat fraction of the screening sequence and the standard sequence. Bland-Altman revealed systematically lower R2* values obtained from the screening sequence and higher fat fraction values obtained with the standard sequence with a rather high variability in agreement. The screening sequence is a promising method with fast diagnosis of the predominant liver disease. It is capable of estimating the amount of hepatic fat and iron comparable to standard methods. (orig.)

  9. Automated two-point dixon screening for the evaluation of hepatic steatosis and siderosis: comparison with R2*-relaxometry and chemical shift-based sequences

    Henninger, B.; Rauch, S.; Schocke, M.; Jaschke, W.; Kremser, C.; Zoller, H.; Kannengiesser, S.; Zhong, X.; Reiter, G.

    2015-01-01

    To evaluate the automated two-point Dixon screening sequence for the detection and estimated quantification of hepatic iron and fat compared with standard sequences as a reference. One hundred and two patients with suspected diffuse liver disease were included in this prospective study. The following MRI protocol was used: 3D-T1-weighted opposed- and in-phase gradient echo with two-point Dixon reconstruction and dual-ratio signal discrimination algorithm (''screening'' sequence); fat-saturated, multi-gradient-echo sequence with 12 echoes; gradient-echo T1 FLASH opposed- and in-phase. Bland-Altman plots were generated and correlation coefficients were calculated to compare the sequences. The screening sequence diagnosed fat in 33, iron in 35 and a combination of both in 4 patients. Correlation between R2* values of the screening sequence and the standard relaxometry was excellent (r = 0.988). A slightly lower correlation (r = 0.978) was found between the fat fraction of the screening sequence and the standard sequence. Bland-Altman revealed systematically lower R2* values obtained from the screening sequence and higher fat fraction values obtained with the standard sequence with a rather high variability in agreement. The screening sequence is a promising method with fast diagnosis of the predominant liver disease. It is capable of estimating the amount of hepatic fat and iron comparable to standard methods. (orig.)

  10. Automated two-point dixon screening for the evaluation of hepatic steatosis and siderosis: comparison with R2-relaxometry and chemical shift-based sequences.

    Henninger, B; Zoller, H; Rauch, S; Schocke, M; Kannengiesser, S; Zhong, X; Reiter, G; Jaschke, W; Kremser, C

    2015-05-01

    To evaluate the automated two-point Dixon screening sequence for the detection and estimated quantification of hepatic iron and fat compared with standard sequences as a reference. One hundred and two patients with suspected diffuse liver disease were included in this prospective study. The following MRI protocol was used: 3D-T1-weighted opposed- and in-phase gradient echo with two-point Dixon reconstruction and dual-ratio signal discrimination algorithm ("screening" sequence); fat-saturated, multi-gradient-echo sequence with 12 echoes; gradient-echo T1 FLASH opposed- and in-phase. Bland-Altman plots were generated and correlation coefficients were calculated to compare the sequences. The screening sequence diagnosed fat in 33, iron in 35 and a combination of both in 4 patients. Correlation between R2* values of the screening sequence and the standard relaxometry was excellent (r = 0.988). A slightly lower correlation (r = 0.978) was found between the fat fraction of the screening sequence and the standard sequence. Bland-Altman revealed systematically lower R2* values obtained from the screening sequence and higher fat fraction values obtained with the standard sequence with a rather high variability in agreement. The screening sequence is a promising method with fast diagnosis of the predominant liver disease. It is capable of estimating the amount of hepatic fat and iron comparable to standard methods. • MRI plays a major role in the clarification of diffuse liver disease. • The screening sequence was introduced for the assessment of diffuse liver disease. • It is a fast and automated algorithm for the evaluation of hepatic iron and fat. • It is capable of estimating the amount of hepatic fat and iron.

  11. Statistical learning of music- and language-like sequences and tolerance for spectral shifts.

    Daikoku, Tatsuya; Yatomi, Yutaka; Yumoto, Masato

    2015-02-01

    In our previous study (Daikoku, Yatomi, & Yumoto, 2014), we demonstrated that the N1m response could be a marker for the statistical learning process of pitch sequence, in which each tone was ordered by a Markov stochastic model. The aim of the present study was to investigate how the statistical learning of music- and language-like auditory sequences is reflected in the N1m responses based on the assumption that both language and music share domain generality. By using vowel sounds generated by a formant synthesizer, we devised music- and language-like auditory sequences in which higher-ordered transitional rules were embedded according to a Markov stochastic model by controlling fundamental (F0) and/or formant frequencies (F1-F2). In each sequence, F0 and/or F1-F2 were spectrally shifted in the last one-third of the tone sequence. Neuromagnetic responses to the tone sequences were recorded from 14 right-handed normal volunteers. In the music- and language-like sequences with pitch change, the N1m responses to the tones that appeared with higher transitional probability were significantly decreased compared with the responses to the tones that appeared with lower transitional probability within the first two-thirds of each sequence. Moreover, the amplitude difference was even retained within the last one-third of the sequence after the spectral shifts. However, in the language-like sequence without pitch change, no significant difference could be detected. The pitch change may facilitate the statistical learning in language and music. Statistically acquired knowledge may be appropriated to process altered auditory sequences with spectral shifts. The relative processing of spectral sequences may be a domain-general auditory mechanism that is innate to humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. ALGEBRAIC EQUATIONS WITH LINEAR SHIFT OPERATORS ON SEQUENCES

    SEVER ANGEL POPESCU

    2016-04-01

    Full Text Available In this note we recall (see also [8] the structure of all recurrent sequences which satisfy a fixed recurrence relation, with entries in a perfect field. As a consequence of these considerations we give a reasonable proof for the known result that the Hadamard product of two recurrent sequences is also a recurrent sequence.

  13. Deep sequencing analysis of HBV genotype shift and correlation with antiviral efficiency during adefovir dipivoxil therapy.

    Yuwei Wang

    Full Text Available Viral genotype shift in chronic hepatitis B (CHB patients during antiviral therapy has been reported, but the underlying mechanism remains elusive.38 CHB patients treated with ADV for one year were selected for studying genotype shift by both deep sequencing and Sanger sequencing method.Sanger sequencing method found that 7.9% patients showed mixed genotype before ADV therapy. In contrast, all 38 patients showed mixed genotype before ADV treatment by deep sequencing. 95.5% mixed genotype rate was also obtained from additional 200 treatment-naïve CHB patients. Of the 13 patients with genotype shift, the fraction of the minor genotype in 5 patients (38% increased gradually during the course of ADV treatment. Furthermore, responses to ADV and HBeAg seroconversion were associated with the high rate of genotype shift, suggesting drug and immune pressure may be key factors to induce genotype shift. Interestingly, patients with genotype C had a significantly higher rate of genotype shift than genotype B. In genotype shift group, ADV treatment induced a marked enhancement of genotype B ratio accompanied by a reduction of genotype C ratio, suggesting genotype C may be more sensitive to ADV than genotype B. Moreover, patients with dominant genotype C may have a better therapeutic effect. Finally, genotype shifts was correlated with clinical improvement in terms of ALT.Our findings provided a rational explanation for genotype shift among ADV-treated CHB patients. The genotype and genotype shift might be associated with antiviral efficiency.

  14. Protein backbone angle restraints from searching a database for chemical shift and sequence homology

    Cornilescu, Gabriel; Delaglio, Frank; Bax, Ad [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    1999-03-15

    Chemical shifts of backbone atoms in proteins are exquisitely sensitive to local conformation, and homologous proteins show quite similar patterns of secondary chemical shifts. The inverse of this relation is used to search a database for triplets of adjacent residues with secondary chemical shifts and sequence similarity which provide the best match to the query triplet of interest. The database contains 13C{alpha}, 13C{beta}, 13C', 1H{alpha} and 15N chemical shifts for 20 proteins for which a high resolution X-ray structure is available. The computer program TALOS was developed to search this database for strings of residues with chemical shift and residue type homology. The relative importance of the weighting factors attached to the secondary chemical shifts of the five types of resonances relative to that of sequence similarity was optimized empirically. TALOS yields the 10 triplets which have the closest similarity in secondary chemical shift and amino acid sequence to those of the query sequence. If the central residues in these 10 triplets exhibit similar {phi} and {psi} backbone angles, their averages can reliably be used as angular restraints for the protein whose structure is being studied. Tests carried out for proteins of known structure indicate that the root-mean-square difference (rmsd) between the output of TALOS and the X-ray derived backbone angles is about 15 deg. Approximately 3% of the predictions made by TALOS are found to be in error.

  15. Michelson interferometer based spatial phase shift shearography.

    Xie, Xin; Yang, Lianxiang; Xu, Nan; Chen, Xu

    2013-06-10

    This paper presents a simple spatial phase shift shearography based on the Michelson interferometer. The Michelson interferometer based shearographic system has been widely utilized in industry as a practical nondestructive test tool. In the system, the Michelson interferometer is used as a shearing device to generate a shearing distance by tilting a small angle in one of the two mirrors. In fact, tilting the mirror in the Michelson interferometer also generates spatial frequency shift. Based on this feature, we introduce a simple Michelson interferometer based spatial phase shift shearography. The Fourier transform (FT) method is applied to separate the spectrum on the spatial frequency domain. The phase change due to the loading can be evaluated using a properly selected windowed inverse-FT. This system can generate a phase map of shearography by using only a single image. The effects of shearing angle, spatial resolution of couple charge device camera, and filter methods are discussed in detail. The theory and the experimental results are presented.

  16. Electrophoretic mobility shift assay reveals a novel recognition sequence for Setaria italica NAC protein.

    Puranik, Swati; Kumar, Karunesh; Srivastava, Prem S; Prasad, Manoj

    2011-10-01

    The NAC (NAM/ATAF1,2/CUC2) proteins are among the largest family of plant transcription factors. Its members have been associated with diverse plant processes and intricately regulate the expression of several genes. Inspite of this immense progress, knowledge of their DNA-binding properties are still limited. In our recent publication,1 we reported isolation of a membrane-associated NAC domain protein from Setaria italica (SiNAC). Transactivation analysis revealed that it was a functionally active transcription factor as it could stimulate expression of reporter genes in vivo. Truncations of the transmembrane region of the protein lead to its nuclear localization. Here we describe expression and purification of SiNAC DNA-binding domain. We further report identification of a novel DNA-binding site, [C/G][A/T][T/A][G/C]TC[C/G][A/T][C/G][G/C] for SiNAC by electrophoretic mobility shift assay. The SiNAC-GST protein could bind to the NAC recognition sequence in vitro as well as to sequences where some bases had been reshuffled. The results presented here contribute to our understanding of the DNA-binding specificity of SiNAC protein.

  17. Generalised Multi-sequence Shift-Register Synthesis using Module Minimisation

    Nielsen, Johan Sebastian Rosenkilde

    2013-01-01

    We show how to solve a generalised version of the Multi-sequence Linear Feedback Shift-Register (MLFSR) problem using minimisation of free modules over F[x]. We show how two existing algorithms for minimising such modules run particularly fast on these instances. Furthermore, we show how one...

  18. Efficient forward propagation of time-sequences in convolutional neural networks using Deep Shifting

    K.L. Groenland (Koen); S.M. Bohte (Sander)

    2016-01-01

    textabstractWhen a Convolutional Neural Network is used for on-the-fly evaluation of continuously updating time-sequences, many redundant convolution operations are performed. We propose the method of Deep Shifting, which remembers previously calculated results of convolution operations in order

  19. Correction of echo shift in reconstruction processing for ultra-short TE pulse sequence

    Takizawa, Masahiro; Ootsuka, Takehiro; Abe, Takayuki; Takahashi, Tetsuhiko

    2010-01-01

    An ultra-short echo time (TE) pulse sequence is composed of a radial sampling that acquires echo signals radially in the K-space and a half-echo acquisition that acquires only half of the echo signal. The shift in the position of the echo signal (echo shift) caused by the timing errors in the gradient magnetic field pulses affects the image quality in the radial sampling with the half-echo acquisition. To improve image quality, we have developed a signal correction algorithm that detects and eliminates this echo shift during reconstruction by performing a pre-scan within 10 seconds. The results showed that image quality is improved under oblique and/or off-centering conditions that frequently cause image distortion due to hardware error. In conclusion, we have developed a robust ultra-short TE pulse sequence that allows wide latitude in the scan parameters, including oblique and off-centering conditions. (author)

  20. Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology

    Shen Yang; Bax, Ad

    2007-01-01

    Chemical shifts of nuclei in or attached to a protein backbone are exquisitely sensitive to their local environment. A computer program, SPARTA, is described that uses this correlation with local structure to predict protein backbone chemical shifts, given an input three-dimensional structure, by searching a newly generated database for triplets of adjacent residues that provide the best match in φ/ψ/χ 1 torsion angles and sequence similarity to the query triplet of interest. The database contains 15 N, 1 H N , 1 H α , 13 C α , 13 C β and 13 C' chemical shifts for 200 proteins for which a high resolution X-ray (≤2.4 A) structure is available. The relative importance of the weighting factors for the φ/ψ/χ 1 angles and sequence similarity was optimized empirically. The weighted, average secondary shifts of the central residues in the 20 best-matching triplets, after inclusion of nearest neighbor, ring current, and hydrogen bonding effects, are used to predict chemical shifts for the protein of known structure. Validation shows good agreement between the SPARTA-predicted and experimental shifts, with standard deviations of 2.52, 0.51, 0.27, 0.98, 1.07 and 1.08 ppm for 15 N, 1 H N , 1 H α , 13 C α , 13 C β and 13 C', respectively, including outliers

  1. Adaptation to shift work: physiologically based modeling of the effects of lighting and shifts' start time.

    Svetlana Postnova

    Full Text Available Shift work has become an integral part of our life with almost 20% of the population being involved in different shift schedules in developed countries. However, the atypical work times, especially the night shifts, are associated with reduced quality and quantity of sleep that leads to increase of sleepiness often culminating in accidents. It has been demonstrated that shift workers' sleepiness can be improved by a proper scheduling of light exposure and optimizing shifts timing. Here, an integrated physiologically-based model of sleep-wake cycles is used to predict adaptation to shift work in different light conditions and for different shift start times for a schedule of four consecutive days of work. The integrated model combines a model of the ascending arousal system in the brain that controls the sleep-wake switch and a human circadian pacemaker model. To validate the application of the integrated model and demonstrate its utility, its dynamics are adjusted to achieve a fit to published experimental results showing adaptation of night shift workers (n = 8 in conditions of either bright or regular lighting. Further, the model is used to predict the shift workers' adaptation to the same shift schedule, but for conditions not considered in the experiment. The model demonstrates that the intensity of shift light can be reduced fourfold from that used in the experiment and still produce good adaptation to night work. The model predicts that sleepiness of the workers during night shifts on a protocol with either bright or regular lighting can be significantly improved by starting the shift earlier in the night, e.g.; at 21:00 instead of 00:00. Finally, the study predicts that people of the same chronotype, i.e. with identical sleep times in normal conditions, can have drastically different responses to shift work depending on their intrinsic circadian and homeostatic parameters.

  2. Adaptation to shift work: physiologically based modeling of the effects of lighting and shifts' start time.

    Postnova, Svetlana; Robinson, Peter A; Postnov, Dmitry D

    2013-01-01

    Shift work has become an integral part of our life with almost 20% of the population being involved in different shift schedules in developed countries. However, the atypical work times, especially the night shifts, are associated with reduced quality and quantity of sleep that leads to increase of sleepiness often culminating in accidents. It has been demonstrated that shift workers' sleepiness can be improved by a proper scheduling of light exposure and optimizing shifts timing. Here, an integrated physiologically-based model of sleep-wake cycles is used to predict adaptation to shift work in different light conditions and for different shift start times for a schedule of four consecutive days of work. The integrated model combines a model of the ascending arousal system in the brain that controls the sleep-wake switch and a human circadian pacemaker model. To validate the application of the integrated model and demonstrate its utility, its dynamics are adjusted to achieve a fit to published experimental results showing adaptation of night shift workers (n = 8) in conditions of either bright or regular lighting. Further, the model is used to predict the shift workers' adaptation to the same shift schedule, but for conditions not considered in the experiment. The model demonstrates that the intensity of shift light can be reduced fourfold from that used in the experiment and still produce good adaptation to night work. The model predicts that sleepiness of the workers during night shifts on a protocol with either bright or regular lighting can be significantly improved by starting the shift earlier in the night, e.g.; at 21:00 instead of 00:00. Finally, the study predicts that people of the same chronotype, i.e. with identical sleep times in normal conditions, can have drastically different responses to shift work depending on their intrinsic circadian and homeostatic parameters.

  3. Hunting down frame shifts: Ecological analysis of diverse functional gene sequences

    Michal eStrejcek

    2015-11-01

    Full Text Available Functional gene ecological analyses using amplicon sequencing can be challenging as translated sequences are often burdened with shifted reading frames. The aim of this work was to evaluate several bioinformatics tools designed to correct errors which arise during sequencing in an effort to reduce the number of frame-shifts (FS. Genes encoding for alpha subunits of biphenyl (bphA and benzoate (benA dioxygenases were used as model sequences. FrameBot, a FS correction tool, was able to reduce the number of detected FS to zero. However, up to 43.1% of sequences were discarded by FrameBot as non-specific targets. Therefore, we proposed a de novo mode of FrameBot for FS correction, which works on a similar basis as common chimera identifying platforms and is not dependent on reference sequences. By nature of FrameBot de novo design, it is crucial to provide it with data as error free as possible. We tested the ability of several publicly available correction tools to decrease the number of errors in the data sets. The combination of Maximum Expected Error (MEE filtering and single linkage pre-clustering (SLP proved the most efficient read procession. Applying FrameBot de novo on the processed data enabled analysis of BphA sequences with minimal losses of potentially functional sequences not homologous to those previously known. This experiment also demonstrated the extensive diversity of dioxygenases in soil. A script which performs FrameBot de novo is presented in the supplementary material to the study and the tool was implemented into FunGene Pipeline available at http://fungene.cme.msu.edu/FunGenePipeline/ and https://github.com/rdpstaff/Framebot.

  4. Compression of computer generated phase-shifting hologram sequence using AVC and HEVC

    Xing, Yafei; Pesquet-Popescu, Béatrice; Dufaux, Frederic

    2013-09-01

    With the capability of achieving twice the compression ratio of Advanced Video Coding (AVC) with similar reconstruction quality, High Efficiency Video Coding (HEVC) is expected to become the newleading technique of video coding. In order to reduce the storage and transmission burden of digital holograms, in this paper we propose to use HEVC for compressing the phase-shifting digital hologram sequences (PSDHS). By simulating phase-shifting digital holography (PSDH) interferometry, interference patterns between illuminated three dimensional( 3D) virtual objects and the stepwise phase changed reference wave are generated as digital holograms. The hologram sequences are obtained by the movement of the virtual objects and compressed by AVC and HEVC. The experimental results show that AVC and HEVC are efficient to compress PSDHS, with HEVC giving better performance. Good compression rate and reconstruction quality can be obtained with bitrate above 15000kbps.

  5. Mixed Sequence Reader: A Program for Analyzing DNA Sequences with Heterozygous Base Calling

    Chang, Chun-Tien; Tsai, Chi-Neu; Tang, Chuan Yi; Chen, Chun-Houh; Lian, Jang-Hau; Hu, Chi-Yu; Tsai, Chia-Lung; Chao, Angel; Lai, Chyong-Huey; Wang, Tzu-Hao; Lee, Yun-Shien

    2012-01-01

    The direct sequencing of PCR products generates heterozygous base-calling fluorescence chromatograms that are useful for identifying single-nucleotide polymorphisms (SNPs), insertion-deletions (indels), short tandem repeats (STRs), and paralogous genes. Indels and STRs can be easily detected using the currently available Indelligent or ShiftDetector programs, which do not search reference sequences. However, the detection of other genomic variants remains a challenge due to the lack of appropriate tools for heterozygous base-calling fluorescence chromatogram data analysis. In this study, we developed a free web-based program, Mixed Sequence Reader (MSR), which can directly analyze heterozygous base-calling fluorescence chromatogram data in .abi file format using comparisons with reference sequences. The heterozygous sequences are identified as two distinct sequences and aligned with reference sequences. Our results showed that MSR may be used to (i) physically locate indel and STR sequences and determine STR copy number by searching NCBI reference sequences; (ii) predict combinations of microsatellite patterns using the Federal Bureau of Investigation Combined DNA Index System (CODIS); (iii) determine human papilloma virus (HPV) genotypes by searching current viral databases in cases of double infections; (iv) estimate the copy number of paralogous genes, such as β-defensin 4 (DEFB4) and its paralog HSPDP3. PMID:22778697

  6. Prediction of Xaa-Pro peptide bond conformation from sequence and chemical shifts

    Shen Yang; Bax, Ad, E-mail: bax@nih.go [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Laboratory of Chemical Physics (United States)

    2010-03-15

    We present a program, named Promega, to predict the Xaa-Pro peptide bond conformation on the basis of backbone chemical shifts and the amino acid sequence. Using a chemical shift database of proteins of known structure together with the PDB-extracted amino acid preference of cis Xaa-Pro peptide bonds, a cis/trans probability score is calculated from the backbone and {sup 13}C{sup {beta}} chemical shifts of the proline and its neighboring residues. For an arbitrary number of input chemical shifts, which may include Pro-{sup 13}C{sup {gamma}}, Promega calculates the statistical probability that a Xaa-Pro peptide bond is cis. Besides its potential as a validation tool, Promega is particularly useful for studies of larger proteins where Pro-{sup 13}C{sup {gamma}} assignments can be challenging, and for on-going efforts to determine protein structures exclusively on the basis of backbone and {sup 13}C{sup {beta}} chemical shifts.

  7. Comparative genomics beyond sequence-based alignments

    Þórarinsson, Elfar; Yao, Zizhen; Wiklund, Eric D.

    2008-01-01

    Recent computational scans for non-coding RNAs (ncRNAs) in multiple organisms have relied on existing multiple sequence alignments. However, as sequence similarity drops, a key signal of RNA structure--frequent compensating base changes--is increasingly likely to cause sequence-based alignment me...

  8. Threshold secret sharing scheme based on phase-shifting interferometry.

    Deng, Xiaopeng; Shi, Zhengang; Wen, Wei

    2016-11-01

    We propose a new method for secret image sharing with the (3,N) threshold scheme based on phase-shifting interferometry. The secret image, which is multiplied with an encryption key in advance, is first encrypted by using Fourier transformation. Then, the encoded image is shared into N shadow images based on the recording principle of phase-shifting interferometry. Based on the reconstruction principle of phase-shifting interferometry, any three or more shadow images can retrieve the secret image, while any two or fewer shadow images cannot obtain any information of the secret image. Thus, a (3,N) threshold secret sharing scheme can be implemented. Compared with our previously reported method, the algorithm of this paper is suited for not only a binary image but also a gray-scale image. Moreover, the proposed algorithm can obtain a larger threshold value t. Simulation results are presented to demonstrate the feasibility of the proposed method.

  9. Simulation-based medical education: time for a pedagogical shift.

    Kalaniti, Kaarthigeyan; Campbell, Douglas M

    2015-01-01

    The purpose of medical education at all levels is to prepare physicians with the knowledge and comprehensive skills, required to deliver safe and effective patient care. The traditional 'apprentice' learning model in medical education is undergoing a pedagogical shift to a 'simulation-based' learning model. Experiential learning, deliberate practice and the ability to provide immediate feedback are the primary advantages of simulation-based medical education. It is an effective way to develop new skills, identify knowledge gaps, reduce medical errors, and maintain infrequently used clinical skills even among experienced clinical teams, with the overall goal of improving patient care. Although simulation cannot replace clinical exposure as a form of experiential learning, it promotes learning without compromising patient safety. This new paradigm shift is revolutionizing medical education in the Western world. It is time that the developing countries embrace this new pedagogical shift.

  10. Deep Ion Torrent sequencing identifies soil fungal community shifts after frequent prescribed fires in a southeastern US forest ecosystem.

    Brown, Shawn P; Callaham, Mac A; Oliver, Alena K; Jumpponen, Ari

    2013-12-01

    Prescribed burning is a common management tool to control fuel loads, ground vegetation, and facilitate desirable game species. We evaluated soil fungal community responses to long-term prescribed fire treatments in a loblolly pine forest on the Piedmont of Georgia and utilized deep Internal Transcribed Spacer Region 1 (ITS1) amplicon sequencing afforded by the recent Ion Torrent Personal Genome Machine (PGM). These deep sequence data (19,000 + reads per sample after subsampling) indicate that frequent fires (3-year fire interval) shift soil fungus communities, whereas infrequent fires (6-year fire interval) permit system resetting to a state similar to that without prescribed fire. Furthermore, in nonmetric multidimensional scaling analyses, primarily ectomycorrhizal taxa were correlated with axes associated with long fire intervals, whereas soil saprobes tended to be correlated with the frequent fire recurrence. We conclude that (1) multiplexed Ion Torrent PGM analyses allow deep cost effective sequencing of fungal communities but may suffer from short read lengths and inconsistent sequence quality adjacent to the sequencing adaptor; (2) frequent prescribed fires elicit a shift in soil fungal communities; and (3) such shifts do not occur when fire intervals are longer. Our results emphasize the general responsiveness of these forests to management, and the importance of fire return intervals in meeting management objectives. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. A molecular shift register based on electron transfer

    Hopfield, J. J.; Onuchic, Josenelson; Beratan, David N.

    1988-01-01

    An electronic shift-register memory at the molecular level is described. The memory elements are based on a chain of electron-transfer molecules and the information is shifted by photoinduced electron-transfer reactions. This device integrates designed electronic molecules onto a very large scale integrated (silicon microelectronic) substrate, providing an example of a 'molecular electronic device' that could actually be made. The design requirements for such a device and possible synthetic strategies are discussed. Devices along these lines should have lower energy usage and enhanced storage density.

  12. SNAD: sequence name annotation-based designer

    Gorbalenya Alexander E

    2009-08-01

    Full Text Available Abstract Background A growing diversity of biological data is tagged with unique identifiers (UIDs associated with polynucleotides and proteins to ensure efficient computer-mediated data storage, maintenance, and processing. These identifiers, which are not informative for most people, are often substituted by biologically meaningful names in various presentations to facilitate utilization and dissemination of sequence-based knowledge. This substitution is commonly done manually that may be a tedious exercise prone to mistakes and omissions. Results Here we introduce SNAD (Sequence Name Annotation-based Designer that mediates automatic conversion of sequence UIDs (associated with multiple alignment or phylogenetic tree, or supplied as plain text list into biologically meaningful names and acronyms. This conversion is directed by precompiled or user-defined templates that exploit wealth of annotation available in cognate entries of external databases. Using examples, we demonstrate how this tool can be used to generate names for practical purposes, particularly in virology. Conclusion A tool for controllable annotation-based conversion of sequence UIDs into biologically meaningful names and acronyms has been developed and placed into service, fostering links between quality of sequence annotation, and efficiency of communication and knowledge dissemination among researchers.

  13. Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution

    Kjærgaard, Magnus; Poulsen, Flemming Martin

    2011-01-01

    Random coil chemical shifts are necessary for secondary chemical shift analysis, which is the main NMR method for identification of secondary structure in proteins. One of the largest challenges in the determination of random coil chemical shifts is accounting for the effect of neighboring residues....... The contributions from the neighboring residues are typically removed by using neighbor correction factors determined based on each residue's effect on glycine chemical shifts. Due to its unusual conformational freedom, glycine may be particularly unrepresentative for the remaining residue types. In this study, we...... in the conformational ensemble are an important source of neighbor effects in disordered proteins. Glutamine derived random coil chemical shifts and correction factors modestly improve our ability to predict (13)C chemical shifts of intrinsically disordered proteins compared to existing datasets, and may thus improve...

  14. Paleo erosion rates and climate shifts recorded by Quaternary cut-and-fill sequences in the Pisco valley, central Peru

    Bekaddour, Toufik; Schlunegger, Fritz; Vogel, Hendrik; Delunel, Romain; Norton, Kevin P.; Akçar, Naki; Kubik, Peter

    2014-03-01

    Fluvial cut-and-fill sequences have frequently been reported from various sites on Earth. Nevertheless, the information about the past erosional regime and hydrological conditions have not yet been adequately deciphered from these archives. The Quaternary terrace sequences in the Pisco valley, located at ca. 13°S, offer a manifestation of an orbitally-driven cyclicity in terrace construction where phases of sediment accumulation have been related to the Minchin (48-36 ka) and Tauca (26-15 ka) lake level highstands on the Altiplano. Here, we present a 10Be-based sediment budget for the cut-and-fill terrace sequences in this valley to quantify the orbitally forced changes in precipitation and erosion. We find that the Minchin period was characterized by an erosional pulse along the Pacific coast where denudation rates reached values as high as 600±80 mm/ka for a relatively short time span lasting a few thousands of years. This contrasts to the younger pluvial periods and the modern situation when 10Be-based sediment budgets register nearly zero erosion at the Pacific coast. We relate these contrasts to different erosional conditions between the modern and the Minchin time. First, the sediment budget infers a precipitation pattern that matches with the modern climate ca. 1000 km farther north, where highly erratic and extreme El Niño-related precipitation results in fast erosion and flooding along the coast. Second, the formation of a thick terrace sequence requires sufficient material on catchment hillslopes to be stripped off by erosion. This was most likely the case immediately before the start of the Minchin period, because this erosional epoch was preceded by a >50 ka-long time span with poorly erosive climate conditions, allowing for sufficient regolith to build up on the hillslopes. Finally, this study suggests a strong control of orbitally and ice sheet forced latitudinal shifts of the ITCZ on the erosional gradients and sediment production on the western

  15. Neutrosophic Similarity Score Based Weighted Histogram for Robust Mean-Shift Tracking

    Keli Hu

    2017-10-01

    Full Text Available Visual object tracking is a critical task in computer vision. Challenging things always exist when an object needs to be tracked. For instance, background clutter is one of the most challenging problems. The mean-shift tracker is quite popular because of its efficiency and performance in a range of conditions. However, the challenge of background clutter also disturbs its performance. In this article, we propose a novel weighted histogram based on neutrosophic similarity score to help the mean-shift tracker discriminate the target from the background. Neutrosophic set (NS is a new branch of philosophy for dealing with incomplete, indeterminate, and inconsistent information. In this paper, we utilize the single valued neutrosophic set (SVNS, which is a subclass of NS to improve the mean-shift tracker. First, two kinds of criteria are considered as the object feature similarity and the background feature similarity, and each bin of the weight histogram is represented in the SVNS domain via three membership functions T(Truth, I(indeterminacy, and F(Falsity. Second, the neutrosophic similarity score function is introduced to fuse those two criteria and to build the final weight histogram. Finally, a novel neutrosophic weighted mean-shift tracker is proposed. The proposed tracker is compared with several mean-shift based trackers on a dataset of 61 public sequences. The results revealed that our method outperforms other trackers, especially when confronting background clutter.

  16. Criteria to average out the chemical shift anisotropy in solid-state NMR when irradiated with BABA I, BABA II, and C7 radiofrequency pulse sequences.

    Stephane Mananga, Eugene

    2013-01-01

    Floquet-Magnus expansion is used to study the effect of chemical shift anisotropy in solid-state NMR of rotating solids. The chemical shift interaction is irradiated with two types of radiofrequency pulse sequences: BABA and C7. The criteria for the chemical shift anisotropy to be averaged out in each rotor period are obtained. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Sequence-based classification and identification of Fungi.

    Hibbett, David; Abarenkov, Kessy; Kõljalg, Urmas; Öpik, Maarja; Chai, Benli; Cole, James; Wang, Qiong; Crous, Pedro; Robert, Vincent; Helgason, Thorunn; Herr, Joshua R; Kirk, Paul; Lueschow, Shiloh; O'Donnell, Kerry; Nilsson, R Henrik; Oono, Ryoko; Schoch, Conrad; Smyth, Christopher; Walker, Donald M; Porras-Alfaro, Andrea; Taylor, John W; Geiser, David M

    Fungal taxonomy and ecology have been revolutionized by the application of molecular methods and both have increasing connections to genomics and functional biology. However, data streams from traditional specimen- and culture-based systematics are not yet fully integrated with those from metagenomic and metatranscriptomic studies, which limits understanding of the taxonomic diversity and metabolic properties of fungal communities. This article reviews current resources, needs, and opportunities for sequence-based classification and identification (SBCI) in fungi as well as related efforts in prokaryotes. To realize the full potential of fungal SBCI it will be necessary to make advances in multiple areas. Improvements in sequencing methods, including long-read and single-cell technologies, will empower fungal molecular ecologists to look beyond ITS and current shotgun metagenomics approaches. Data quality and accessibility will be enhanced by attention to data and metadata standards and rigorous enforcement of policies for deposition of data and workflows. Taxonomic communities will need to develop best practices for molecular characterization in their focal clades, while also contributing to globally useful datasets including ITS. Changes to nomenclatural rules are needed to enable validPUBLICation of sequence-based taxon descriptions. Finally, cultural shifts are necessary to promote adoption of SBCI and to accord professional credit to individuals who contribute to community resources.

  18. Mitochondrial DNA sequence-based phylogenetic relationship ...

    cophaga ranges from 0.037–0.106 and 0.049–0.207 for COI and ND5 genes, respectively (tables 2 and 3). Analysis of genetic distance on the basis of sequence difference for both the mitochondrial genes shows very little genetic difference. The discrepancy in the phylogenetic trees based on individ- ual genes may be due ...

  19. Identify Beta-Hairpin Motifs with Quadratic Discriminant Algorithm Based on the Chemical Shifts.

    Feng YongE

    Full Text Available Successful prediction of the beta-hairpin motif will be helpful for understanding the of the fold recognition. Some algorithms have been proposed for the prediction of beta-hairpin motifs. However, the parameters used by these methods were primarily based on the amino acid sequences. Here, we proposed a novel model for predicting beta-hairpin structure based on the chemical shift. Firstly, we analyzed the statistical distribution of chemical shifts of six nuclei in not beta-hairpin and beta-hairpin motifs. Secondly, we used these chemical shifts as features combined with three algorithms to predict beta-hairpin structure. Finally, we achieved the best prediction, namely sensitivity of 92%, the specificity of 94% with 0.85 of Mathew's correlation coefficient using quadratic discriminant analysis algorithm, which is clearly superior to the same method for the prediction of beta-hairpin structure from 20 amino acid compositions in the three-fold cross-validation. Our finding showed that the chemical shift is an effective parameter for beta-hairpin prediction, suggesting the quadratic discriminant analysis is a powerful algorithm for the prediction of beta-hairpin.

  20. Determination of Shift/Bias in Digital Aerial Triangulation of UAV Imagery Sequences

    Wierzbicki, Damian

    2017-12-01

    Currently UAV Photogrammetry is characterized a largely automated and efficient data processing. Depicting from the low altitude more often gains on the meaning in the uses of applications as: cities mapping, corridor mapping, road and pipeline inspections or mapping of large areas e.g. forests. Additionally, high-resolution video image (HD and bigger) is more often use for depicting from the low altitude from one side it lets deliver a lot of details and characteristics of ground surfaces features, and from the other side is presenting new challenges in the data processing. Therefore, determination of elements of external orientation plays a substantial role the detail of Digital Terrain Models and artefact-free ortophoto generation. Parallel a research on the quality of acquired images from UAV and above the quality of products e.g. orthophotos are conducted. Despite so fast development UAV photogrammetry still exists the necessity of accomplishment Automatic Aerial Triangulation (AAT) on the basis of the observations GPS/INS and via ground control points. During low altitude photogrammetric flight, the approximate elements of external orientation registered by UAV are burdened with the influence of some shift/bias errors. In this article, methods of determination shift/bias error are presented. In the process of the digital aerial triangulation two solutions are applied. In the first method shift/bias error was determined together with the drift/bias error, elements of external orientation and coordinates of ground control points. In the second method shift/bias error was determined together with the elements of external orientation, coordinates of ground control points and drift/bias error equals 0. When two methods were compared the difference for shift/bias error is more than ±0.01 m for all terrain coordinates XYZ.

  1. Phase Difference Measurement Method Based on Progressive Phase Shift

    Min Zhang

    2018-06-01

    Full Text Available This paper proposes a method for phase difference measurement based on the principle of progressive phase shift (PPS. A phase difference measurement system based on PPS and implemented in the FPGA chip is proposed and tested. In the realized system, a fully programmable delay line (PDL is constructed, which provides accurate and stable delay, benefitting from the feed-back structure of the control module. The control module calibrates the delay according to process, voltage and temperature (PVT variations. Furthermore, a modified method based on double PPS is incorporated to improve the resolution. The obtained resolution is 25 ps. Moreover, to improve the resolution, the proposed method is implemented on the 20 nm Xilinx Kintex Ultrascale platform, and test results indicate that the obtained measurement error and clock synchronization error is within the range of ±5 ps.

  2. Design of Packet-Based Block Codes with Shift Operators

    Jacek Ilow

    2010-01-01

    Full Text Available This paper introduces packet-oriented block codes for the recovery of lost packets and the correction of an erroneous single packet. Specifically, a family of systematic codes is proposed, based on a Vandermonde matrix applied to a group of k information packets to construct r redundant packets, where the elements of the Vandermonde matrix are bit-level right arithmetic shift operators. The code design is applicable to packets of any size, provided that the packets within a block of k information packets are of uniform length. In order to decrease the overhead associated with packet padding using shift operators, non-Vandermonde matrices are also proposed for designing packet-oriented block codes. An efficient matrix inversion procedure for the off-line design of the decoding algorithm is presented to recover lost packets. The error correction capability of the design is investigated as well. The decoding algorithm, based on syndrome decoding, to correct a single erroneous packet in a group of n=k+r received packets is presented. The paper is equipped with examples of codes using different parameters. The code designs and their performance are tested using Monte Carlo simulations; the results obtained exhibit good agreement with the corresponding theoretical results.

  3. Design of Packet-Based Block Codes with Shift Operators

    Ilow Jacek

    2010-01-01

    Full Text Available This paper introduces packet-oriented block codes for the recovery of lost packets and the correction of an erroneous single packet. Specifically, a family of systematic codes is proposed, based on a Vandermonde matrix applied to a group of information packets to construct redundant packets, where the elements of the Vandermonde matrix are bit-level right arithmetic shift operators. The code design is applicable to packets of any size, provided that the packets within a block of information packets are of uniform length. In order to decrease the overhead associated with packet padding using shift operators, non-Vandermonde matrices are also proposed for designing packet-oriented block codes. An efficient matrix inversion procedure for the off-line design of the decoding algorithm is presented to recover lost packets. The error correction capability of the design is investigated as well. The decoding algorithm, based on syndrome decoding, to correct a single erroneous packet in a group of received packets is presented. The paper is equipped with examples of codes using different parameters. The code designs and their performance are tested using Monte Carlo simulations; the results obtained exhibit good agreement with the corresponding theoretical results.

  4. Unravelling biology and shifting paradigms in cancer with single-cell sequencing.

    Baslan, Timour; Hicks, James

    2017-08-24

    The fundamental operative unit of a cancer is the genetically and epigenetically innovative single cell. Whether proliferating or quiescent, in the primary tumour mass or disseminated elsewhere, single cells govern the parameters that dictate all facets of the biology of cancer. Thus, single-cell analyses provide the ultimate level of resolution in our quest for a fundamental understanding of this disease. Historically, this quest has been hampered by technological shortcomings. In this Opinion article, we argue that the rapidly evolving field of single-cell sequencing has unshackled the cancer research community of these shortcomings. From furthering an elemental understanding of intra-tumoural genetic heterogeneity and cancer genome evolution to illuminating the governing principles of disease relapse and metastasis, we posit that single-cell sequencing promises to unravel the biology of all facets of this disease.

  5. DNA sequence modeling based on context trees

    Kusters, C.J.; Ignatenko, T.; Roland, J.; Horlin, F.

    2015-01-01

    Genomic sequences contain instructions for protein and cell production. Therefore understanding and identification of biologically and functionally meaningful patterns in DNA sequences is of paramount importance. Modeling of DNA sequences in its turn can help to better understand and identify such

  6. Trait-based diversification shifts reflect differential extinction among fossil taxa.

    Wagner, Peter J; Estabrook, George F

    2014-11-18

    Evolution provides many cases of apparent shifts in diversification associated with particular anatomical traits. Three general models connect these patterns to anatomical evolution: (i) elevated net extinction of taxa bearing particular traits, (ii) elevated net speciation of taxa bearing particular traits, and (iii) elevated evolvability expanding the range of anatomies available to some species. Trait-based diversification shifts predict elevated hierarchical stratigraphic compatibility (i.e., primitive→derived→highly derived sequences) among pairs of anatomical characters. The three specific models further predict (i) early loss of diversity for taxa retaining primitive conditions (elevated net extinction), (ii) increased diversification among later members of a clade (elevated net speciation), and (iii) increased disparity among later members in a clade (elevated evolvability). Analyses of 319 anatomical and stratigraphic datasets for fossil species and genera show that hierarchical stratigraphic compatibility exceeds the expectations of trait-independent diversification in the vast majority of cases, which was expected if trait-dependent diversification shifts are common. Excess hierarchical stratigraphic compatibility correlates with early loss of diversity for groups retaining primitive conditions rather than delayed bursts of diversity or disparity across entire clades. Cambrian clades (predominantly trilobites) alone fit null expectations well. However, it is not clear whether evolution was unusual among Cambrian taxa or only early trilobites. At least among post-Cambrian taxa, these results implicate models, such as competition and extinction selectivity/resistance, as major drivers of trait-based diversification shifts at the species and genus levels while contradicting the predictions of elevated net speciation and elevated evolvability models.

  7. An improved chaotic cryptosystem based on circular bit shift and XOR operations

    Xu, Shu-Jiang; Chen, Xiu-Bo; Zhang, Ru; Yang, Yi-Xian; Guo, Yu-Cui

    2012-01-01

    A type of chaotic encryption scheme by combining circular bit shift with XOR operations was proposed in 2006 based on iterating chaotic maps. Soon after the proposal, it was cryptanalyzed and improved. Unfortunately, there are still two drawbacks in the two improved schemes. To strengthen the performance of the focused type of scheme, a new improved scheme based on Chen's chaotic system is proposed in this Letter. Simulation results and theoretical analysis show that our improved scheme is immune to information extracting by chosen plaintext attack and has expected cryptographic properties. -- Highlights: ► There are 2 drawbacks in 2 improved chaos-based encryption schemes by bit shift and XOR operation. ► FIPS 140-2 test show the random number sequence generated by CCS is statistical random. ► The plaintext is first permuted byte by byte, and then masked in the inverse order. ► Small perturbation based on output ciphertext is given to c of CCS after iterating it every time.

  8. An improved chaotic cryptosystem based on circular bit shift and XOR operations

    Xu, Shu-Jiang, E-mail: xushj@keylab.net [Information Security Center, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Security (Graduate University of Chinese Academy of Sciences), Beijing 100049 (China); Shandong Provincial Key Laboratory of Computer Network, Shandong Computer Science Center, Jinan 250014 (China); Chen, Xiu-Bo [Information Security Center, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Security (Graduate University of Chinese Academy of Sciences), Beijing 100049 (China); Zhang, Ru; Yang, Yi-Xian [Information Security Center, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Guo, Yu-Cui [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2012-02-20

    A type of chaotic encryption scheme by combining circular bit shift with XOR operations was proposed in 2006 based on iterating chaotic maps. Soon after the proposal, it was cryptanalyzed and improved. Unfortunately, there are still two drawbacks in the two improved schemes. To strengthen the performance of the focused type of scheme, a new improved scheme based on Chen's chaotic system is proposed in this Letter. Simulation results and theoretical analysis show that our improved scheme is immune to information extracting by chosen plaintext attack and has expected cryptographic properties. -- Highlights: ► There are 2 drawbacks in 2 improved chaos-based encryption schemes by bit shift and XOR operation. ► FIPS 140-2 test show the random number sequence generated by CCS is statistical random. ► The plaintext is first permuted byte by byte, and then masked in the inverse order. ► Small perturbation based on output ciphertext is given to c of CCS after iterating it every time.

  9. Relativistic theory of the Lamb shift based on self energy

    Barut, A.O.; Salamin, Y.I.

    1987-07-01

    A study is made to evaluate the Lamb shift to all orders in (Zα) using relativistic Dirac Coulomb wavefunctions and without resorting to the dipole approximation. Use is made of the angular integrals and spins sums performed elsewhere exactly. A regularization procedure is given that makes the sum over the positive and negative energy states finite. Finally, the energy shift ΔE n LS is given in terms of an integral that may be done numerically. (author). 19 refs

  10. Agent-based modelling of shifting cultivation field patterns, Vietnam

    Jepsen, Martin Rudbeck; Leisz, S.; Rasmussen, K.

    2006-01-01

    Shifting cultivation in the Nghe An Province of Vietnam's Northern Mountain Region produces a characteristic land-cover pattern of small and larger fields. The pattern is the result of farmers cultivating either individually or in spatially clustered groups. Using spatially explicit agent...

  11. Function-Based Algorithms for Biological Sequences

    Mohanty, Pragyan Sheela P.

    2015-01-01

    Two problems at two different abstraction levels of computational biology are studied. At the molecular level, efficient pattern matching algorithms in DNA sequences are presented. For gene order data, an efficient data structure is presented capable of storing all gene re-orderings in a systematic manner. A common characteristic of presented…

  12. Performance Analysis of Direct-Sequence Code-Division Multiple-Access Communications with Asymmetric Quadrature Phase-Shift-Keying Modulation

    Wang, C.-W.; Stark, W.

    2005-01-01

    This article considers a quaternary direct-sequence code-division multiple-access (DS-CDMA) communication system with asymmetric quadrature phase-shift-keying (AQPSK) modulation for unequal error protection (UEP) capability. Both time synchronous and asynchronous cases are investigated. An expression for the probability distribution of the multiple-access interference is derived. The exact bit-error performance and the approximate performance using a Gaussian approximation and random signature sequences are evaluated by extending the techniques used for uniform quadrature phase-shift-keying (QPSK) and binary phase-shift-keying (BPSK) DS-CDMA systems. Finally, a general system model with unequal user power and the near-far problem is considered and analyzed. The results show that, for a system with UEP capability, the less protected data bits are more sensitive to the near-far effect that occurs in a multiple-access environment than are the more protected bits.

  13. A SYNTHESIS METHOD OF BASIC TERNARY BENT-SQUARES BASED ON THE TRIAD SHIFT OPERATOR

    O. N. Zhdanov

    2017-01-01

    Full Text Available Practical application of advanced algebraic constructions in modern communication systems based on MC-CDMA (Multi Code Code Division Multiple Access technology and in cryptography necessitates their further research. One of the most commonly used advanced algebraic construction is the binary bent-function having a uniform amplitude spectrum of the Walsh-Hadamard transform and, accordingly, having the maximal distance from the codewords of affine code. In addition to the binary bent-functions researchers are currently focuses on the development of synthesis methods of their many-valued analogues. In particular, one of the most effective methods for the synthesis of many-valued bent-functions is the method based on the Agievich bent-squares. In this paper, we developed a regular synthesis method of the ternary bent-squares on the basis of an arbitrary spectral vector and the regular operator of the triad shift. The classification of spectral vectors of lengths N = 3 and N = 9 is performed. On the basis of spectral classification more precise definition of many-valued bent-sequences is given, taking into account the existence of the phenomenon of many-valued bent-sequences for the length, determined by odd power of base. The paper results are valuable for practical use: the development of new constant amplitude codes for MC-CDMA technology, cryptographic primitives, data compression algorithms, signal structures, algorithms of block and stream encryption, based on advanced principles of many-valued logic. The developed bent-squares design method is also a basis for further theoretical research: development of methods of the permutation of rows and columns of basic bent-squares and their sign coding, synthesis of composite bent-squares. In addition, the data on the spectral classification of vectors give the task of constructing the synthesis methods of bent-functions of lengths N = 32k+1, k Є ℕ.

  14. Adaptive learning with covariate shift-detection for motor imagery-based brain–computer interface

    Raza, H; Cecotti, H; Li, Y; Prasad, G

    2015-01-01

    A common assumption in traditional supervised learning is the similar probability distribution of data between the training phase and the testing/operating phase. When transitioning from the training to testing phase, a shift in the probability distribution of input data is known as a covariate shift. Covariate shifts commonly arise in a wide range of real-world systems such as electroencephalogram-based brain–computer interfaces (BCIs). In such systems, there is a necessity for continuous mo...

  15. What Do We Know About Base Erosion and Profit Shifting? A Review of the Empirical Literature

    Dhammika Dharmapala

    2014-01-01

    The issue of tax-motivated income shifting within multinational firms has attracted increasing global attention in recent years. It is of central importance to many current policy debates, including those related to recent initiatives by the OECD on base erosion and profit shifting (BEPS) and to proposals for US tax reform in a territorial direction. This paper provides a survey of the empirical literature on tax-motivated income-shifting within multinational firms. Its emphasis is on clarify...

  16. Adaptation to Shift Work: Physiologically Based Modeling of the Effects of Lighting and Shifts’ Start Time

    Postnova, Svetlana; Robinson, Peter A.; Postnov, Dmitry D.

    2013-01-01

    Shift work has become an integral part of our life with almost 20% of the population being involved in different shift schedules in developed countries. However, the atypical work times, especially the night shifts, are associated with reduced quality and quantity of sleep that leads to increase of sleepiness often culminating in accidents. It has been demonstrated that shift workers’ sleepiness can be improved by a proper scheduling of light exposure and optimizing shifts timing. Here, an integrated physiologically-based model of sleep-wake cycles is used to predict adaptation to shift work in different light conditions and for different shift start times for a schedule of four consecutive days of work. The integrated model combines a model of the ascending arousal system in the brain that controls the sleep-wake switch and a human circadian pacemaker model. To validate the application of the integrated model and demonstrate its utility, its dynamics are adjusted to achieve a fit to published experimental results showing adaptation of night shift workers (n = 8) in conditions of either bright or regular lighting. Further, the model is used to predict the shift workers’ adaptation to the same shift schedule, but for conditions not considered in the experiment. The model demonstrates that the intensity of shift light can be reduced fourfold from that used in the experiment and still produce good adaptation to night work. The model predicts that sleepiness of the workers during night shifts on a protocol with either bright or regular lighting can be significantly improved by starting the shift earlier in the night, e.g.; at 21∶00 instead of 00∶00. Finally, the study predicts that people of the same chronotype, i.e. with identical sleep times in normal conditions, can have drastically different responses to shift work depending on their intrinsic circadian and homeostatic parameters. PMID:23308206

  17. Sequence memory based on coherent spin-interaction neural networks.

    Xia, Min; Wong, W K; Wang, Zhijie

    2014-12-01

    Sequence information processing, for instance, the sequence memory, plays an important role on many functions of brain. In the workings of the human brain, the steady-state period is alterable. However, in the existing sequence memory models using heteroassociations, the steady-state period cannot be changed in the sequence recall. In this work, a novel neural network model for sequence memory with controllable steady-state period based on coherent spininteraction is proposed. In the proposed model, neurons fire collectively in a phase-coherent manner, which lets a neuron group respond differently to different patterns and also lets different neuron groups respond differently to one pattern. The simulation results demonstrating the performance of the sequence memory are presented. By introducing a new coherent spin-interaction sequence memory model, the steady-state period can be controlled by dimension parameters and the overlap between the input pattern and the stored patterns. The sequence storage capacity is enlarged by coherent spin interaction compared with the existing sequence memory models. Furthermore, the sequence storage capacity has an exponential relationship to the dimension of the neural network.

  18. Movement Pattern Analysis Based on Sequence Signatures

    Seyed Hossein Chavoshi

    2015-09-01

    Full Text Available Increased affordability and deployment of advanced tracking technologies have led researchers from various domains to analyze the resulting spatio-temporal movement data sets for the purpose of knowledge discovery. Two different approaches can be considered in the analysis of moving objects: quantitative analysis and qualitative analysis. This research focuses on the latter and uses the qualitative trajectory calculus (QTC, a type of calculus that represents qualitative data on moving point objects (MPOs, and establishes a framework to analyze the relative movement of multiple MPOs. A visualization technique called sequence signature (SESI is used, which enables to map QTC patterns in a 2D indexed rasterized space in order to evaluate the similarity of relative movement patterns of multiple MPOs. The applicability of the proposed methodology is illustrated by means of two practical examples of interacting MPOs: cars on a highway and body parts of a samba dancer. The results show that the proposed method can be effectively used to analyze interactions of multiple MPOs in different domains.

  19. A Rule-Based Local Search Algorithm for General Shift Design Problems in Airport Ground Handling

    Clausen, Tommy

    We consider a generalized version of the shift design problem where shifts are created to cover a multiskilled demand and fit the parameters of the workforce. We present a collection of constraints and objectives for the generalized shift design problem. A local search solution framework with mul......We consider a generalized version of the shift design problem where shifts are created to cover a multiskilled demand and fit the parameters of the workforce. We present a collection of constraints and objectives for the generalized shift design problem. A local search solution framework...... with multiple neighborhoods and a loosely coupled rule engine based on simulated annealing is presented. Computational experiments on real-life data from various airport ground handling organization show the performance and flexibility of the proposed algorithm....

  20. RESEARCH NOTE Genome-based exome-sequencing analysis ...

    Navya

    2017-02-22

    Feb 22, 2017 ... Genome-based exome-sequencing analysis identifies GYG1, DIS3L, DDRGK1 genes ... Cardiology Division, Department of Internal Medicine, Severance .... with p values of <0.05 byanalyzing differences in allele distribution.

  1. Swarm-based Sequencing Recommendations in E-learning

    Van den Berg, Bert; Tattersall, Colin; Janssen, José; Brouns, Francis; Kurvers, Hub; Koper, Rob

    2005-01-01

    Van den Berg, B., Tattersall, C., Janssen, J., Brouns, F., Kurvers, H., & Koper, R. (2006). Swarm-based Sequencing Recommendations in E-learning. International Journal of Computer Science & Applications, III(III), 1-11.

  2. Protein Function Prediction Based on Sequence and Structure Information

    Smaili, Fatima Z.

    2016-01-01

    operate. In this master thesis project, we worked on inferring protein functions based on the primary protein sequence. In the approach we follow, 3D models are first constructed using I-TASSER. Functions are then deduced by structurally matching

  3. Mapping Base Modifications in DNA by Transverse-Current Sequencing

    Alvarez, Jose R.; Skachkov, Dmitry; Massey, Steven E.; Kalitsov, Alan; Velev, Julian P.

    2018-02-01

    Sequencing DNA modifications and lesions, such as methylation of cytosine and oxidation of guanine, is even more important and challenging than sequencing the genome itself. The traditional methods for detecting DNA modifications are either insensitive to these modifications or require additional processing steps to identify a particular type of modification. Transverse-current sequencing in nanopores can potentially identify the canonical bases and base modifications in the same run. In this work, we demonstrate that the most common DNA epigenetic modifications and lesions can be detected with any predefined accuracy based on their tunneling current signature. Our results are based on simulations of the nanopore tunneling current through DNA molecules, calculated using nonequilibrium electron-transport methodology within an effective multiorbital model derived from first-principles calculations, followed by a base-calling algorithm accounting for neighbor current-current correlations. This methodology can be integrated with existing experimental techniques to improve base-calling fidelity.

  4. Sequence-specific assignment of methyl groups from the neuronal SNARE complex using lanthanide-induced pseudocontact shifts

    Pan, Yun-Zu; Quade, Bradley; Brewer, Kyle D.; Szabo, Monika; Swarbrick, James D.; Graham, Bim; Rizo, Josep

    2016-01-01

    Neurotransmitter release depends critically on the neuronal SNARE complex formed by syntaxin-1, SNAP-25 and synaptobrevin, as well as on other proteins such as Munc18-1, Munc13-1 and synaptotagmin-1. Although three-dimensional structures are available for these components, it is still unclear how they are assembled between the synaptic vesicle and plasma membranes to trigger fast, Ca 2+ -dependent membrane fusion. Methyl TROSY NMR experiments provide a powerful tool to study complexes between these proteins, but assignment of the methyl groups of the SNARE complex is hindered by its limited solubility. Here we report the assignment of the isoleucine, leucine, methionine and valine methyl groups of the four SNARE motifs of syntaxin-1, SNAP-25 and synaptobrevin within the SNARE complex based solely on measurements of lanthanide-induced pseudocontact shifts. Our results illustrate the power of this approach to assign protein resonances without the need of triple resonance experiments and provide an invaluable tool for future structural studies of how the SNARE complex binds to other components of the release machinery.

  5. Sequence-specific assignment of methyl groups from the neuronal SNARE complex using lanthanide-induced pseudocontact shifts

    Pan, Yun-Zu; Quade, Bradley; Brewer, Kyle D. [University of Texas Southwestern Medical Center, Department of Biophysics (United States); Szabo, Monika; Swarbrick, James D.; Graham, Bim [Monash Institute of Pharmaceutical Sciences, Monash University (Australia); Rizo, Josep, E-mail: Jose.Rizo-Rey@UTSouthwestern.edu [University of Texas Southwestern Medical Center, Department of Biophysics (United States)

    2016-12-15

    Neurotransmitter release depends critically on the neuronal SNARE complex formed by syntaxin-1, SNAP-25 and synaptobrevin, as well as on other proteins such as Munc18-1, Munc13-1 and synaptotagmin-1. Although three-dimensional structures are available for these components, it is still unclear how they are assembled between the synaptic vesicle and plasma membranes to trigger fast, Ca{sup 2+}-dependent membrane fusion. Methyl TROSY NMR experiments provide a powerful tool to study complexes between these proteins, but assignment of the methyl groups of the SNARE complex is hindered by its limited solubility. Here we report the assignment of the isoleucine, leucine, methionine and valine methyl groups of the four SNARE motifs of syntaxin-1, SNAP-25 and synaptobrevin within the SNARE complex based solely on measurements of lanthanide-induced pseudocontact shifts. Our results illustrate the power of this approach to assign protein resonances without the need of triple resonance experiments and provide an invaluable tool for future structural studies of how the SNARE complex binds to other components of the release machinery.

  6. An assembly sequence planning method based on composite algorithm

    Enfu LIU

    2016-02-01

    Full Text Available To solve the combination explosion problem and the blind searching problem in assembly sequence planning of complex products, an assembly sequence planning method based on composite algorithm is proposed. In the composite algorithm, a sufficient number of feasible assembly sequences are generated using formalization reasoning algorithm as the initial population of genetic algorithm. Then fuzzy knowledge of assembly is integrated into the planning process of genetic algorithm and ant algorithm to get the accurate solution. At last, an example is conducted to verify the feasibility of composite algorithm.

  7. An optical CDMA system based on chaotic sequences

    Liu, Xiao-lei; En, De; Wang, Li-guo

    2014-03-01

    In this paper, a coherent asynchronous optical code division multiple access (OCDMA) system is proposed, whose encoder/decoder is an all-optical generator. This all-optical generator can generate analog and bipolar chaotic sequences satisfying the logistic maps. The formula of bit error rate (BER) is derived, and the relationship of BER and the number of simultaneous transmissions is analyzed. Due to the good property of correlation, this coherent OCDMA system based on these bipolar chaotic sequences can support a large number of simultaneous users, which shows that these chaotic sequences are suitable for asynchronous OCDMA system.

  8. Automation tools for accelerator control a network based sequencer

    Clout, P.; Geib, M.; Westervelt, R.

    1991-01-01

    In conjunction with a major client, Vista Control Systems has developed a sequencer for control systems which works in conjunction with its realtime, distributed Vsystem database. Vsystem is a network-based data acquisition, monitoring and control system which has been applied successfully to both accelerator projects and projects outside this realm of research. The network-based sequencer allows a user to simply define a thread of execution in any supported computer on the network. The script defining a sequence has a simple syntax designed for non-programmers, with facilities for selectively abbreviating the channel names for easy reference. The semantics of the script contains most of the familiar capabilities of conventional programming languages, including standard stream I/O and the ability to start other processes with parameters passed. The script is compiled to threaded code for execution efficiency. The implementation is described in some detail and examples are given of applications for which the sequencer has been used

  9. A canonical correlation analysis based EMG classification algorithm for eliminating electrode shift effect.

    Zhe Fan; Zhong Wang; Guanglin Li; Ruomei Wang

    2016-08-01

    Motion classification system based on surface Electromyography (sEMG) pattern recognition has achieved good results in experimental condition. But it is still a challenge for clinical implement and practical application. Many factors contribute to the difficulty of clinical use of the EMG based dexterous control. The most obvious and important is the noise in the EMG signal caused by electrode shift, muscle fatigue, motion artifact, inherent instability of signal and biological signals such as Electrocardiogram. In this paper, a novel method based on Canonical Correlation Analysis (CCA) was developed to eliminate the reduction of classification accuracy caused by electrode shift. The average classification accuracy of our method were above 95% for the healthy subjects. In the process, we validated the influence of electrode shift on motion classification accuracy and discovered the strong correlation with correlation coefficient of >0.9 between shift position data and normal position data.

  10. Digital differential confocal microscopy based on spatial shift transformation.

    Liu, J; Wang, Y; Liu, C; Wilson, T; Wang, H; Tan, J

    2014-11-01

    Differential confocal microscopy is a particularly powerful surface profilometry technique in industrial metrology due to its high axial sensitivity and insensitivity to noise. However, the practical implementation of the technique requires the accurate positioning of point detectors in three-dimensions. We describe a simple alternative based on spatial transformation of a through-focus series of images obtained from a homemade beam scanning confocal microscope. This digital differential confocal microscopy approach is described and compared with the traditional Differential confocal microscopy approach. The ease of use of the digital differential confocal microscopy system is illustrated by performing measurements on a 3D standard specimen. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  11. Ordinal Regression Based Subpixel Shift Estimation for Video Super-Resolution

    Petrovic Nemanja

    2007-01-01

    Full Text Available We present a supervised learning-based approach for subpixel motion estimation which is then used to perform video super-resolution. The novelty of this work is the formulation of the problem of subpixel motion estimation in a ranking framework. The ranking formulation is a variant of classification and regression formulation, in which the ordering present in class labels namely, the shift between patches is explicitly taken into account. Finally, we demonstrate the applicability of our approach on superresolving synthetically generated images with global subpixel shifts and enhancing real video frames by accounting for both local integer and subpixel shifts.

  12. The mitochondrial genome sequence of the ciliate Paramecium caudatum reveals a shift in nucleotide composition and codon usage within the genus Paramecium

    Berendonk Thomas U

    2011-05-01

    Full Text Available Abstract Background Despite the fact that the organization of the ciliate mitochondrial genome is exceptional, only few ciliate mitochondrial genomes have been sequenced until today. All ciliate mitochondrial genomes are linear. They are 40 kb to 47 kb long and contain some 50 tightly packed genes without introns. Earlier studies documented that the mitochondrial guanine + cytosine contents are very different between Paramecium tetraurelia and all studied Tetrahymena species. This raises the question of whether the high mitochondrial G+C content observed in P. tetraurelia is a characteristic property of Paramecium mtDNA, or whether it is an exception of the ciliate mitochondrial genomes known so far. To test this question, we determined the mitochondrial genome sequence of Paramecium caudatum and compared the gene content and sequence properties to the closely related P. tetraurelia. Results The guanine + cytosine content of the P. caudatum mitochondrial genome was significantly lower than that of P. tetraurelia (22.4% vs. 41.2%. This difference in the mitochondrial nucleotide composition was accompanied by significantly different codon usage patterns in both species, i.e. within P. caudatum clearly A/T ending codons dominated, whereas for P. tetraurelia the synonymous codons were more balanced with a higher number of G/C ending codons. Further analyses indicated that the nucleotide composition of most members of the genus Paramecium resembles that of P. caudatum and that the shift observed in P. tetraurelia is restricted to the P. aurelia species complex. Conclusions Surprisingly, the codon usage bias in the P. caudatum mitochondrial genome, exemplified by the effective number of codons, is more similar to the distantly related T. pyriformis and other single-celled eukaryotes such as Chlamydomonas, than to the closely related P. tetraurelia. These differences in base composition and codon usage bias were, however, not reflected in the amino

  13. Design of high-power, broadband 180o pulses and mixing sequences for fast MAS solid state chemical shift correlation NMR spectroscopy

    Herbst, Christian; Herbst, Jirada; Kirschstein, Anika; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2009-01-01

    An approach for the design of high-power, broadband 180 o pulses and mixing sequences for generating dipolar and scalar coupling mediated 13 C- 13 C chemical shift correlation spectra of isotopically labelled biological systems at fast magic-angle spinning frequencies without 1 H decoupling during mixing is presented. Considering RF field strengths in the range of 100-120 kHz, as typically available in MAS probes employed at high spinning speeds, and limited B 1 field inhomogeneities, the Fourier coefficients defining the phase modulation profile of the RF pulses were optimised numerically to obtain broadband inversion and refocussing pulses and mixing sequences. Experimental measurements were carried out to assess the performance characteristics of the mixing sequences reported here

  14. The impact of exposure to shift-based schedules on medical students.

    Williams, David A; Kogan, Jennifer R; Hauer, Karen E; Yamashita, Traci; Aagaard, Eva M

    2015-01-01

    With new resident duty-hour regulations, resident work schedules have progressively transitioned towards shift-based systems, sometimes resulting in increased team fragmentation. We hypothesized that exposure to shift-based schedules and subsequent team fragmentation would negatively affect medical student experiences during their third-year internal medicine clerkship. As part of a larger national study on duty-hour reform, 67 of 150 eligible third-year medical students completed surveys about career choice, teaching and supervision, assessment, patient care, well-being, and attractiveness of a career in internal medicine after completing their internal medicine clerkship. Students who rotated to hospitals with shift-based systems were compared to those who did not. Non-demographic variables used a five-point Likert scale. Chi-squared and Fisher's exact tests were used to assess the relationships between exposure to shift-based schedules and student responses. Questions with univariate p ≤ 0.1 were included in multivariable logistic regression models. Thirty-six students (54%) were exposed to shift-based schedules. Students exposed to shift-based schedules were less likely to perceive that their attendings were committed to teaching (odds ratio [OR] 0.35, 95% confidence interval [CI]: 0.13-0.90, p = 0.01) or perceive that residents had sufficient exposure to assess their performance (OR 0.29, 95% CI: 0.09-0.91, p = 0.03). However, those students were more likely to feel their interns were able to observe them at the bedside (OR 1.89, 95% CI: 1.08-3.13, p = 0.02) and had sufficient exposure to assess their performance (OR 3.00, 95% CI: 1.01-8.86, p = 0.05). These findings suggest that shift-based schedules designed in response to duty-hour reform may have important broader implications for the teaching environment.

  15. Thermodynamics-based models of transcriptional regulation with gene sequence.

    Wang, Shuqiang; Shen, Yanyan; Hu, Jinxing

    2015-12-01

    Quantitative models of gene regulatory activity have the potential to improve our mechanistic understanding of transcriptional regulation. However, the few models available today have been based on simplistic assumptions about the sequences being modeled or heuristic approximations of the underlying regulatory mechanisms. In this work, we have developed a thermodynamics-based model to predict gene expression driven by any DNA sequence. The proposed model relies on a continuous time, differential equation description of transcriptional dynamics. The sequence features of the promoter are exploited to derive the binding affinity which is derived based on statistical molecular thermodynamics. Experimental results show that the proposed model can effectively identify the activity levels of transcription factors and the regulatory parameters. Comparing with the previous models, the proposed model can reveal more biological sense.

  16. Dynamic Shift Coordinated Control Based on Motor Active Speed Synchronization with the New Hybrid System

    Ting Yan

    2017-01-01

    Full Text Available Considering the inherent disadvantages that severely affect driving comfortability during the shift process in HEVs, a dynamic shift coordinated control based on motor active speed synchronization is proposed to improve shift quality by reduction of shift vibration. The whole control scheme is comprised of three phases, preparatory phase, speed regulation phase, and synchronization phase, which are implemented consecutively in order. The key to inhibiting impact and jerk depends on the speed regulation phase, where motor active speed synchronization is utilized to reach the minimum speed difference between the two ends of synchronizer. A new hybrid system with superior performances is applied to present the validity of the adopted control algorithm during upshift or downshift, which can represent planetary gear system and conventional AMT shift procedure, respectively. Bench test, simulation, and road test results show that, compared with other methods, the proposed dynamic coordinated control can achieve shifting control in real time to effectively improve gear-shift comfort and shorten power interruption transients, with robustness in both conventional AMT and planetary gear train.

  17. EEG-Based Emotion Recognition Using Deep Learning Network with Principal Component Based Covariate Shift Adaptation

    Suwicha Jirayucharoensak

    2014-01-01

    Full Text Available Automatic emotion recognition is one of the most challenging tasks. To detect emotion from nonstationary EEG signals, a sophisticated learning algorithm that can represent high-level abstraction is required. This study proposes the utilization of a deep learning network (DLN to discover unknown feature correlation between input signals that is crucial for the learning task. The DLN is implemented with a stacked autoencoder (SAE using hierarchical feature learning approach. Input features of the network are power spectral densities of 32-channel EEG signals from 32 subjects. To alleviate overfitting problem, principal component analysis (PCA is applied to extract the most important components of initial input features. Furthermore, covariate shift adaptation of the principal components is implemented to minimize the nonstationary effect of EEG signals. Experimental results show that the DLN is capable of classifying three different levels of valence and arousal with accuracy of 49.52% and 46.03%, respectively. Principal component based covariate shift adaptation enhances the respective classification accuracy by 5.55% and 6.53%. Moreover, DLN provides better performance compared to SVM and naive Bayes classifiers.

  18. Using the phase shift to asymptotically characterize the dipolar mixed modes in post-main-sequence stars

    Jiang, C.; Christensen-Dalsgaard, J.; Cunha, M.

    2018-01-01

    from the eigenvalue condition for mixed modes as a tool to characterize dipolar mixed modes from the theoretical as well as the practical point of view. Unlike the coupling strength, whose variation in a given star is very small over the relevant frequency range, the phase shifts vary significantly...

  19. Phase shifting-based debris effect detection in USV-assisted AFM nanomachining

    Shi, Jialin [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences (CAS), Shenyang, Liaoning 110016 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100049 (China); Liu, Lianqing, E-mail: lianqingliu@sia.cn [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences (CAS), Shenyang, Liaoning 110016 (China); Yu, Peng; Cong, Yang [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences (CAS), Shenyang, Liaoning 110016 (China); Li, Guangyong [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2017-08-15

    Highlights: • The mechanism of the debris effect on machining depth in force control mode operation is analyzed. • The relationship between phase shifting and pile-up of debris is investigated. • The phase shifting-based method is hardly affected by the pile-up of debris. • Debris effect detection by phase shifting-based method is achived. - Abstract: Atomic force microscopy (AFM) mechanical-based lithography attracts much attention in nanomanufacturing due to its advantages of low cost, high precision and high resolution. However, debris effects during mechanical lithography often lead to an unstable machining process and inaccurate results, which limits further applications of AFM-based lithography. There is a lack of a real-time debris detection approach, which is the prerequisite to eventually eliminating the influence of the debris, and of a method that can solve the above problems well. The ultrasonic vibration (USV)-assisted AFM has the ability to sense the machining depth in real time by detecting the phase shifting of cantilever. However, whether the pile-up of debris affect the phase response of cantilever is still lack of investigation. Therefore, we analyzed the mechanism of the debris effect on force control mode and investigated the relationship between phase shifting and pile-up of debris. Theoretical analysis and experimental results reveal that the pile-up of debris have negligible effect on phase shifting of cantilever. Therefore, the phase shifting-based method can detect the debris effect on machining depth in force control mode of AFM machining.

  20. PPM-One: a static protein structure based chemical shift predictor

    Li, Dawei; Brüschweiler, Rafael

    2015-01-01

    We mined the most recent editions of the BioMagResDataBank and the protein data bank to parametrize a new empirical knowledge-based chemical shift predictor of protein backbone atoms using either a linear or an artificial neural network model. The resulting chemical shift predictor PPM-One accepts a single static 3D structure as input and emulates the effect of local protein dynamics via interatomic steric contacts. Furthermore, the chemical shift prediction was extended to most side-chain protons and it is found that the prediction accuracy is at a level allowing an independent assessment of stereospecific assignments. For a previously established set of test proteins some overall improvement was achieved over current top-performing chemical shift prediction programs

  1. DNA cross-linking by dehydromonocrotaline lacks apparent base sequence preference.

    Rieben, W Kurt; Coulombe, Roger A

    2004-12-01

    Pyrrolizidine alkaloids (PAs) are ubiquitous plant toxins, many of which, upon oxidation by hepatic mixed-function oxidases, become reactive bifunctional pyrrolic electrophiles that form DNA-DNA and DNA-protein cross-links. The anti-mitotic, toxic, and carcinogenic action of PAs is thought to be caused, at least in part, by these cross-links. We wished to determine whether the activated PA pyrrole dehydromonocrotaline (DHMO) exhibits base sequence preferences when cross-linked to a set of model duplex poly A-T 14-mer oligonucleotides with varying internal and/or end 5'-d(CG), 5'-d(GC), 5'-d(TA), 5'-d(CGCG), or 5'-d(GCGC) sequences. DHMO-DNA cross-links were assessed by electrophoretic mobility shift assay (EMSA) of 32P endlabeled oligonucleotides and by HPLC analysis of cross-linked DNAs enzymatically digested to their constituent deoxynucleosides. The degree of DNA cross-links depended upon the concentration of the pyrrole, but not on the base sequence of the oligonucleotide target. Likewise, HPLC chromatograms of cross-linked and digested DNAs showed no discernible sequence preference for any nucleotide. Added glutathione, tyrosine, cysteine, and aspartic acid, but not phenylalanine, threonine, serine, lysine, or methionine competed with DNA as alternate nucleophiles for cross-linking by DHMO. From these data it appears that DHMO exhibits no strong base preference when forming cross-links with DNA, and that some cellular nucleophiles can inhibit DNA cross-link formation.

  2. Protein Function Prediction Based on Sequence and Structure Information

    Smaili, Fatima Z.

    2016-05-25

    The number of available protein sequences in public databases is increasing exponentially. However, a significant fraction of these sequences lack functional annotation which is essential to our understanding of how biological systems and processes operate. In this master thesis project, we worked on inferring protein functions based on the primary protein sequence. In the approach we follow, 3D models are first constructed using I-TASSER. Functions are then deduced by structurally matching these predicted models, using global and local similarities, through three independent enzyme commission (EC) and gene ontology (GO) function libraries. The method was tested on 250 “hard” proteins, which lack homologous templates in both structure and function libraries. The results show that this method outperforms the conventional prediction methods based on sequence similarity or threading. Additionally, our method could be improved even further by incorporating protein-protein interaction information. Overall, the method we use provides an efficient approach for automated functional annotation of non-homologous proteins, starting from their sequence.

  3. Transformative Shifts in Art History Teaching: The Impact of Standards-Based Assessment

    Ormond, Barbara

    2011-01-01

    This article examines pedagogical shifts in art history teaching that have developed as a response to the implementation of a standards-based assessment regime. The specific characteristics of art history standards-based assessment in the context of New Zealand secondary schools are explained to demonstrate how an exacting form of assessment has…

  4. Modelling regime shifts in the southern Benguela: a frame-based ...

    Modelling regime shifts in the southern Benguela: a frame-based approach. MD Smith, A Jarre. Abstract. This study explores the usefulness of a frame-based modelling approach in the southern Benguela upwelling ecosystem, with four frames describing observed small pelagic fish dominance patterns. We modelled the ...

  5. (Brassicaceae) based on nuclear ribosomal ITS DNA sequences

    Home; Journals; Journal of Genetics; Volume 93; Issue 2. Phylogeny and biogeography of Alyssum (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. Yan Li Yan Kong Zhe Zhang Yanqiang Yin Bin Liu Guanghui Lv Xiyong Wang. Research Article Volume 93 Issue 2 August 2014 pp 313-323 ...

  6. A New Images Hiding Scheme Based on Chaotic Sequences

    LIU Nian-sheng; GUO Dong-hui; WU Bo-xi; Parr G

    2005-01-01

    We propose a data hidding technique in a still image. This technique is based on chaotic sequence in the transform domain of covert image. We use different chaotic random sequences multiplied by multiple sensitive images, respectively, to spread the spectrum of sensitive images. Multiple sensitive images are hidden in a covert image as a form of noise. The results of theoretical analysis and computer simulation show the new hiding technique have better properties with high security, imperceptibility and capacity for hidden information in comparison with the conventional scheme such as LSB (Least Significance Bit).

  7. Breast cancer screening among shift workers: a nationwide population-based survey in Korea.

    Son, Heesook; Kang, Youngmi

    2017-04-01

    We aimed to examine the association between shift work types and participation in breast cancer screening (BCS) programs by comparing rates of participation for BCS among regular daytime workers and alternative shift workers using data from a nationally representative, population-based survey conducted in Korea. In addition, the results were analyzed according to sociodemographic factors, including occupation, education, income, private health insurance, age, and number of working hours a week. This secondary cross-sectional analysis used data from the 2012 Korean National Health and Nutritional Examination Survey. The target population included women aged ≥ 40 years who responded as to whether they had undergone BCS in the previous year. Accordingly, we analyzed survey data for a total of 1,193 women and used a multivariate logistic regression analysis to evaluate the differences in factors affecting BCS between regular daytime and alternative shift workers. A logistic regression analysis was performed considering private health insurance as a significant sociodemographic factor for BCS among regular daytime shift workers. In contrast, none of the tested variables could significantly predict adherence to BCS among alternative shift workers. The results of this study suggest the need for the development of comprehensive workplace breast cancer prevention programs by considering shift work types. More attention should be given to female workers with low education levels, those who are uninsured, and young workers to improve the participation rate for BCS at the workplace.

  8. Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer.

    Novak, Matt; Millerd, James; Brock, Neal; North-Morris, Michael; Hayes, John; Wyant, James

    2005-11-10

    Recent technological innovations have enabled the development of a new class of dynamic (vibration-insensitive) interferometer based on a CCD pixel-level phase-shifting approach. We present theoretical and experimental results for an interferometer based on this pixelated phase-shifting technique. Analyses of component errors and instrument functionality are presented. We show that the majority of error sources cause relatively small magnitude peak-to-valley errors in measurement of the order of 0.002-0.005lambda. These errors are largely mitigated by high-rate data acquisition and consequent data averaging.

  9. Skeleton-based human action recognition using multiple sequence alignment

    Ding, Wenwen; Liu, Kai; Cheng, Fei; Zhang, Jin; Li, YunSong

    2015-05-01

    Human action recognition and analysis is an active research topic in computer vision for many years. This paper presents a method to represent human actions based on trajectories consisting of 3D joint positions. This method first decompose action into a sequence of meaningful atomic actions (actionlets), and then label actionlets with English alphabets according to the Davies-Bouldin index value. Therefore, an action can be represented using a sequence of actionlet symbols, which will preserve the temporal order of occurrence of each of the actionlets. Finally, we employ sequence comparison to classify multiple actions through using string matching algorithms (Needleman-Wunsch). The effectiveness of the proposed method is evaluated on datasets captured by commodity depth cameras. Experiments of the proposed method on three challenging 3D action datasets show promising results.

  10. antaRNA: ant colony-based RNA sequence design.

    Kleinkauf, Robert; Mann, Martin; Backofen, Rolf

    2015-10-01

    RNA sequence design is studied at least as long as the classical folding problem. Although for the latter the functional fold of an RNA molecule is to be found ,: inverse folding tries to identify RNA sequences that fold into a function-specific target structure. In combination with RNA-based biotechnology and synthetic biology ,: reliable RNA sequence design becomes a crucial step to generate novel biochemical components. In this article ,: the computational tool antaRNA is presented. It is capable of compiling RNA sequences for a given structure that comply in addition with an adjustable full range objective GC-content distribution ,: specific sequence constraints and additional fuzzy structure constraints. antaRNA applies ant colony optimization meta-heuristics and its superior performance is shown on a biological datasets. http://www.bioinf.uni-freiburg.de/Software/antaRNA CONTACT: backofen@informatik.uni-freiburg.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  11. Effects of Accumulating Work Shifts on Performance-Based Fatigue Using Multiple Strength Measurements in Day and Night Shift Nurses and Aides.

    Thompson, Brennan J; Stock, Matt S; Banuelas, Victoria K

    2017-05-01

    Objective This study aimed to examine the effects of accumulating nursing work on maximal and rapid strength characteristics in female nurses and compare these effects in day versus night shift workers. Background Nurses exhibit among the highest nonfatal injury rates of all occupations, which may be a consequence of long, cumulative work shift schedules. Fatigue may accumulate across multiple shifts and lead to performance impairments, which in turn may be linked to injury risks. Method Thirty-seven nurses and aides performed isometric strength-based performance testing of three muscle groups, including the knee extensors, knee flexors, and wrist flexors (hand grip), as well as countermovement jumps, at baseline and following exposure to three 12-hour work shifts in a four-day period. Variables included peak torque (PT) and rate of torque development (RTD) from isometric strength testing and jump height and power output. Results The rigorous work period resulted in significant decreases (-7.2% to -19.2%) in a large majority (8/9) of the isometric strength-based measurements. No differences were noted for the day versus night shift workers except for the RTD at 200 millisecond variable, for which the night shift had greater work-induced decreases than the day shift workers. No changes were observed for jump height or power output. Conclusions A compressed nursing work schedule resulted in decreases in strength-based performance abilities, being indicative of performance fatigue. Application Compressed work schedules involving long shifts lead to functional declines in nurse performance capacities that may pose risks for both the nurse and patient quality of care. Fatigue management plans are needed to monitor and regulate increased levels of fatigue.

  12. Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra

    Bellstedt, Peter; Herbst, Christian; Häfner, Sabine; Leppert, Jörg; Görlach, Matthias; Ramachandran, Ramadurai

    2012-01-01

    We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH with dual receivers, 3D NC′C and 3D C′NCA with sequential 13 C acquisitions, 3D NHH and 3D NC′H with sequential 1 H acquisitions and 3D CANH and 3D C’NH with broadband 13 C– 15 N mixing are demonstrated using microcrystalline samples of the β1 immunoglobulin binding domain of protein G (GB1) and the chicken α-spectrin SH3 domain.

  13. Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra

    Bellstedt, Peter [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany); Herbst, Christian [Ubon Ratchathani University, Department of Physics, Faculty of Science (Thailand); Haefner, Sabine; Leppert, Joerg; Goerlach, Matthias; Ramachandran, Ramadurai, E-mail: raman@fli-leibniz.de [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany)

    2012-12-15

    We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH with dual receivers, 3D NC Prime C and 3D C Prime NCA with sequential {sup 13}C acquisitions, 3D NHH and 3D NC Prime H with sequential {sup 1}H acquisitions and 3D CANH and 3D C'NH with broadband {sup 13}C-{sup 15}N mixing are demonstrated using microcrystalline samples of the {beta}1 immunoglobulin binding domain of protein G (GB1) and the chicken {alpha}-spectrin SH3 domain.

  14. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions

    Adler, Christina J; Dobney, Keith; Weyrich, Laura S; Kaidonis, John; Walker, Alan W; Haak, Wolfgang; Bradshaw, Corey JA; Townsend, Grant; Sołtysiak, Arkadiusz; Alt, Kurt W; Parkhill, Julian; Cooper, Alan

    2013-01-01

    The importance of commensal microbes for human health is increasingly recognized1-5, yet the impacts of evolutionary changes in human diet and culture on commensal microbiota remain almost unknown. Two of the greatest dietary shifts in human evolution involved the adoption of carbohydrate-rich Neolithic (farming) diets6,7 (beginning ~10,000 years BP6,8), and the more recent advent of industrially processed flour and sugar (~1850)9. Here, we show that calcified dental plaque (dental calculus) ...

  15. A sequence-dependent rigid-base model of DNA

    Gonzalez, O.; Petkevičiutė, D.; Maddocks, J. H.

    2013-02-01

    A novel hierarchy of coarse-grain, sequence-dependent, rigid-base models of B-form DNA in solution is introduced. The hierarchy depends on both the assumed range of energetic couplings, and the extent of sequence dependence of the model parameters. A significant feature of the models is that they exhibit the phenomenon of frustration: each base cannot simultaneously minimize the energy of all of its interactions. As a consequence, an arbitrary DNA oligomer has an intrinsic or pre-existing stress, with the level of this frustration dependent on the particular sequence of the oligomer. Attention is focussed on the particular model in the hierarchy that has nearest-neighbor interactions and dimer sequence dependence of the model parameters. For a Gaussian version of this model, a complete coarse-grain parameter set is estimated. The parameterized model allows, for an oligomer of arbitrary length and sequence, a simple and explicit construction of an approximation to the configuration-space equilibrium probability density function for the oligomer in solution. The training set leading to the coarse-grain parameter set is itself extracted from a recent and extensive database of a large number of independent, atomic-resolution molecular dynamics (MD) simulations of short DNA oligomers immersed in explicit solvent. The Kullback-Leibler divergence between probability density functions is used to make several quantitative assessments of our nearest-neighbor, dimer-dependent model, which is compared against others in the hierarchy to assess various assumptions pertaining both to the locality of the energetic couplings and to the level of sequence dependence of its parameters. It is also compared directly against all-atom MD simulation to assess its predictive capabilities. The results show that the nearest-neighbor, dimer-dependent model can successfully resolve sequence effects both within and between oligomers. For example, due to the presence of frustration, the model can

  16. A sequence-dependent rigid-base model of DNA.

    Gonzalez, O; Petkevičiūtė, D; Maddocks, J H

    2013-02-07

    A novel hierarchy of coarse-grain, sequence-dependent, rigid-base models of B-form DNA in solution is introduced. The hierarchy depends on both the assumed range of energetic couplings, and the extent of sequence dependence of the model parameters. A significant feature of the models is that they exhibit the phenomenon of frustration: each base cannot simultaneously minimize the energy of all of its interactions. As a consequence, an arbitrary DNA oligomer has an intrinsic or pre-existing stress, with the level of this frustration dependent on the particular sequence of the oligomer. Attention is focussed on the particular model in the hierarchy that has nearest-neighbor interactions and dimer sequence dependence of the model parameters. For a Gaussian version of this model, a complete coarse-grain parameter set is estimated. The parameterized model allows, for an oligomer of arbitrary length and sequence, a simple and explicit construction of an approximation to the configuration-space equilibrium probability density function for the oligomer in solution. The training set leading to the coarse-grain parameter set is itself extracted from a recent and extensive database of a large number of independent, atomic-resolution molecular dynamics (MD) simulations of short DNA oligomers immersed in explicit solvent. The Kullback-Leibler divergence between probability density functions is used to make several quantitative assessments of our nearest-neighbor, dimer-dependent model, which is compared against others in the hierarchy to assess various assumptions pertaining both to the locality of the energetic couplings and to the level of sequence dependence of its parameters. It is also compared directly against all-atom MD simulation to assess its predictive capabilities. The results show that the nearest-neighbor, dimer-dependent model can successfully resolve sequence effects both within and between oligomers. For example, due to the presence of frustration, the model can

  17. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions.

    Adler, Christina J; Dobney, Keith; Weyrich, Laura S; Kaidonis, John; Walker, Alan W; Haak, Wolfgang; Bradshaw, Corey J A; Townsend, Grant; Sołtysiak, Arkadiusz; Alt, Kurt W; Parkhill, Julian; Cooper, Alan

    2013-04-01

    The importance of commensal microbes for human health is increasingly recognized, yet the impacts of evolutionary changes in human diet and culture on commensal microbiota remain almost unknown. Two of the greatest dietary shifts in human evolution involved the adoption of carbohydrate-rich Neolithic (farming) diets (beginning ∼10,000 years before the present) and the more recent advent of industrially processed flour and sugar (in ∼1850). Here, we show that calcified dental plaque (dental calculus) on ancient teeth preserves a detailed genetic record throughout this period. Data from 34 early European skeletons indicate that the transition from hunter-gatherer to farming shifted the oral microbial community to a disease-associated configuration. The composition of oral microbiota remained unexpectedly constant between Neolithic and medieval times, after which (the now ubiquitous) cariogenic bacteria became dominant, apparently during the Industrial Revolution. Modern oral microbiotic ecosystems are markedly less diverse than historic populations, which might be contributing to chronic oral (and other) disease in postindustrial lifestyles.

  18. Crash sequence based risk matrix for motorcycle crashes.

    Wu, Kun-Feng; Sasidharan, Lekshmi; Thor, Craig P; Chen, Sheng-Yin

    2018-04-05

    Considerable research has been conducted related to motorcycle and other powered-two-wheeler (PTW) crashes; however, it always has been controversial among practitioners concerning with types of crashes should be first targeted and how to prioritize resources for the implementation of mitigating actions. Therefore, there is a need to identify types of motorcycle crashes that constitute the greatest safety risk to riders - most frequent and most severe crashes. This pilot study seeks exhibit the efficacy of a new approach for prioritizing PTW crash causation sequences as they relate to injury severity to better inform the application of mitigating countermeasures. To accomplish this, the present study constructed a crash sequence-based risk matrix to identify most frequent and most severe motorcycle crashes in an attempt to better connect causes and countermeasures of PTW crashes. Although the frequency of each crash sequence can be computed from crash data, a crash severity model is needed to compare the levels of crash severity among different crash sequences, while controlling for other factors that also have effects on crash severity such drivers' age, use of helmet, etc. The construction of risk matrix based on crash sequences involve two tasks: formulation of crash sequence and the estimation of a mixed-effects (ME) model to adjust the levels of severities for each crash sequence to account for other crash contributing factors that would have an effect on the maximum level of crash severity in a crash. Three data elements from the National Automotive Sampling System - General Estimating System (NASS-GES) data were utilized to form a crash sequence: critical event, crash types, and sequence of events. A mixed-effects model was constructed to model the severity levels for each crash sequence while accounting for the effects of those crash contributing factors on crash severity. A total of 8039 crashes involving 8208 motorcycles occurred during 2011 and 2013 were

  19. Phylogeny of the Serrasalmidae (Characiformes based on mitochondrial DNA sequences

    Guillermo Ortí

    2008-01-01

    Full Text Available Previous studies based on DNA sequences of mitochondrial (mt rRNA genes showed three main groups within the subfamily Serrasalminae: (1 a "pacu" clade of herbivores (Colossoma, Mylossoma, Piaractus; (2 the "Myleus" clade (Myleus, Mylesinus, Tometes, Ossubtus; and (3 the "piranha" clade (Serrasalmus, Pygocentrus, Pygopristis, Pristobrycon, Catoprion, Metynnis. The genus Acnodon was placed as the sister taxon of clade (2+3. However, poor resolution within each clade was obtained due to low levels of variation among rRNA gene sequences. Complete sequences of the hypervariable mtDNA control region for a total of 45 taxa, and additional sequences of 12S and 16S rRNA from a total of 74 taxa representing all genera in the family are now presented to address intragroup relationships. Control region sequences of several serrasalmid species exhibit tandem repeats of short motifs (12 to 33 bp in the 3' end of this region, accounting for substantial length variation. Bayesian inference and maximum parsimony analyses of these sequences identify the same groupings as before and provide further evidence to support the following observations: (a Serrasalmus gouldingi and species of Pristobrycon (non-striolatus form a monophyletic group that is the sister group to other species of Serrasalmus and Pygocentrus; (b Catoprion, Pygopristis, and Pristobrycon striolatus form a well supported clade, sister to the group described above; (c some taxa assigned to the genus Myloplus (M. asterias, M tiete, M ternetzi, and M rubripinnis form a well supported group whereas other Myloplus species remain with uncertain affinities (d Mylesinus, Tometes and Myleus setiger form a monophyletic group.

  20. Revision of Begomovirus taxonomy based on pairwise sequence comparisons

    Brown, Judith K.

    2015-04-18

    Viruses of the genus Begomovirus (family Geminiviridae) are emergent pathogens of crops throughout the tropical and subtropical regions of the world. By virtue of having a small DNA genome that is easily cloned, and due to the recent innovations in cloning and low-cost sequencing, there has been a dramatic increase in the number of available begomovirus genome sequences. Even so, most of the available sequences have been obtained from cultivated plants and are likely a small and phylogenetically unrepresentative sample of begomovirus diversity, a factor constraining taxonomic decisions such as the establishment of operationally useful species demarcation criteria. In addition, problems in assigning new viruses to established species have highlighted shortcomings in the previously recommended mechanism of species demarcation. Based on the analysis of 3,123 full-length begomovirus genome (or DNA-A component) sequences available in public databases as of December 2012, a set of revised guidelines for the classification and nomenclature of begomoviruses are proposed. The guidelines primarily consider a) genus-level biological characteristics and b) results obtained using a standardized classification tool, Sequence Demarcation Tool, which performs pairwise sequence alignments and identity calculations. These guidelines are consistent with the recently published recommendations for the genera Mastrevirus and Curtovirus of the family Geminiviridae. Genome-wide pairwise identities of 91 % and 94 % are proposed as the demarcation threshold for begomoviruses belonging to different species and strains, respectively. Procedures and guidelines are outlined for resolving conflicts that may arise when assigning species and strains to categories wherever the pairwise identity falls on or very near the demarcation threshold value.

  1. Revision of Begomovirus taxonomy based on pairwise sequence comparisons

    Brown, Judith K.; Zerbini, F. Murilo; Navas-Castillo, Jesú s; Moriones, Enrique; Ramos-Sobrinho, Roberto; Silva, José C. F.; Fiallo-Olivé , Elvira; Briddon, Rob W.; Herná ndez-Zepeda, Cecilia; Idris, Ali; Malathi, V. G.; Martin, Darren P.; Rivera-Bustamante, Rafael; Ueda, Shigenori; Varsani, Arvind

    2015-01-01

    Viruses of the genus Begomovirus (family Geminiviridae) are emergent pathogens of crops throughout the tropical and subtropical regions of the world. By virtue of having a small DNA genome that is easily cloned, and due to the recent innovations in cloning and low-cost sequencing, there has been a dramatic increase in the number of available begomovirus genome sequences. Even so, most of the available sequences have been obtained from cultivated plants and are likely a small and phylogenetically unrepresentative sample of begomovirus diversity, a factor constraining taxonomic decisions such as the establishment of operationally useful species demarcation criteria. In addition, problems in assigning new viruses to established species have highlighted shortcomings in the previously recommended mechanism of species demarcation. Based on the analysis of 3,123 full-length begomovirus genome (or DNA-A component) sequences available in public databases as of December 2012, a set of revised guidelines for the classification and nomenclature of begomoviruses are proposed. The guidelines primarily consider a) genus-level biological characteristics and b) results obtained using a standardized classification tool, Sequence Demarcation Tool, which performs pairwise sequence alignments and identity calculations. These guidelines are consistent with the recently published recommendations for the genera Mastrevirus and Curtovirus of the family Geminiviridae. Genome-wide pairwise identities of 91 % and 94 % are proposed as the demarcation threshold for begomoviruses belonging to different species and strains, respectively. Procedures and guidelines are outlined for resolving conflicts that may arise when assigning species and strains to categories wherever the pairwise identity falls on or very near the demarcation threshold value.

  2. Corporate tax base erosion and profit shifting out of the Czech Republic

    Janský, Petr; Kokeš, O.

    2015-01-01

    Roč. 27, č. 4 (2015), s. 537-546 ISSN 1463-1377 R&D Projects: GA TA ČR(CZ) TD020039; GA ČR GA15-24642S Institutional support: RVO:67985998 Keywords : corporate tax base erosion * Czech Republic * profit shifting Subject RIV: AH - Economics Impact factor: 0.548, year: 2015

  3. Effect of acute metabolic acid/base shifts on the human airway calibre.

    Brijker, F.; Elshout, F.J.J. van den; Heijdra, Y.F.; Bosch, F.H.; Folgering, H.T.M.

    2001-01-01

    Acute metabolic alkalosis (NaHCO(3)), acidosis (NH(4)Cl), and placebo (NaCl) were induced in 15 healthy volunteers (12 females, median age 34 (range 24-56) years) in a double blind, placebo controlled study to evaluate the presence of the effects on airway calibre. Acid-base shifts were determined

  4. Speeding disease gene discovery by sequence based candidate prioritization

    Porteous David J

    2005-03-01

    Full Text Available Abstract Background Regions of interest identified through genetic linkage studies regularly exceed 30 centimorgans in size and can contain hundreds of genes. Traditionally this number is reduced by matching functional annotation to knowledge of the disease or phenotype in question. However, here we show that disease genes share patterns of sequence-based features that can provide a good basis for automatic prioritization of candidates by machine learning. Results We examined a variety of sequence-based features and found that for many of them there are significant differences between the sets of genes known to be involved in human hereditary disease and those not known to be involved in disease. We have created an automatic classifier called PROSPECTR based on those features using the alternating decision tree algorithm which ranks genes in the order of likelihood of involvement in disease. On average, PROSPECTR enriches lists for disease genes two-fold 77% of the time, five-fold 37% of the time and twenty-fold 11% of the time. Conclusion PROSPECTR is a simple and effective way to identify genes involved in Mendelian and oligogenic disorders. It performs markedly better than the single existing sequence-based classifier on novel data. PROSPECTR could save investigators looking at large regions of interest time and effort by prioritizing positional candidate genes for mutation detection and case-control association studies.

  5. Disk-based compression of data from genome sequencing.

    Grabowski, Szymon; Deorowicz, Sebastian; Roguski, Łukasz

    2015-05-01

    High-coverage sequencing data have significant, yet hard to exploit, redundancy. Most FASTQ compressors cannot efficiently compress the DNA stream of large datasets, since the redundancy between overlapping reads cannot be easily captured in the (relatively small) main memory. More interesting solutions for this problem are disk based, where the better of these two, from Cox et al. (2012), is based on the Burrows-Wheeler transform (BWT) and achieves 0.518 bits per base for a 134.0 Gbp human genome sequencing collection with almost 45-fold coverage. We propose overlapping reads compression with minimizers, a compression algorithm dedicated to sequencing reads (DNA only). Our method makes use of a conceptually simple and easily parallelizable idea of minimizers, to obtain 0.317 bits per base as the compression ratio, allowing to fit the 134.0 Gbp dataset into only 5.31 GB of space. http://sun.aei.polsl.pl/orcom under a free license. sebastian.deorowicz@polsl.pl Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. The impact of exposure to shift-based schedules on medical students

    David A. Williams

    2015-06-01

    Full Text Available Background: With new resident duty-hour regulations, resident work schedules have progressively transitioned towards shift-based systems, sometimes resulting in increased team fragmentation. We hypothesized that exposure to shift-based schedules and subsequent team fragmentation would negatively affect medical student experiences during their third-year internal medicine clerkship. Design: As part of a larger national study on duty-hour reform, 67 of 150 eligible third-year medical students completed surveys about career choice, teaching and supervision, assessment, patient care, well-being, and attractiveness of a career in internal medicine after completing their internal medicine clerkship. Students who rotated to hospitals with shift-based systems were compared to those who did not. Non-demographic variables used a five-point Likert scale. Chi-squared and Fisher's exact tests were used to assess the relationships between exposure to shift-based schedules and student responses. Questions with univariate p≤0.1 were included in multivariable logistic regression models. Results: Thirty-six students (54% were exposed to shift-based schedules. Students exposed to shift-based schedules were less likely to perceive that their attendings were committed to teaching (odds ratio [OR] 0.35, 95% confidence interval [CI]: 0.13–0.90, p=0.01 or perceive that residents had sufficient exposure to assess their performance (OR 0.29, 95% CI: 0.09–0.91, p=0.03. However, those students were more likely to feel their interns were able to observe them at the bedside (OR 1.89, 95% CI: 1.08–3.13, p=0.02 and had sufficient exposure to assess their performance (OR 3.00, 95% CI: 1.01–8.86, p=0.05. Conclusions: These findings suggest that shift-based schedules designed in response to duty-hour reform may have important broader implications for the teaching environment.

  7. Protein sequencing via nanopore based devices: a nanofluidics perspective

    Chinappi, Mauro; Cecconi, Fabio

    2018-05-01

    Proteins perform a huge number of central functions in living organisms, thus all the new techniques allowing their precise, fast and accurate characterization at single-molecule level certainly represent a burst in proteomics with important biomedical impact. In this review, we describe the recent progresses in the developing of nanopore based devices for protein sequencing. We start with a critical analysis of the main technical requirements for nanopore protein sequencing, summarizing some ideas and methodologies that have recently appeared in the literature. In the last sections, we focus on the physical modelling of the transport phenomena occurring in nanopore based devices. The multiscale nature of the problem is discussed and, in this respect, some of the main possible computational approaches are illustrated.

  8. Electronic shift register memory based on molecular electron-transfer reactions

    Hopfield, J. J.; Onuchic, Jose Nelson; Beratan, David N.

    1989-01-01

    The design of a shift register memory at the molecular level is described in detail. The memory elements are based on a chain of electron-transfer molecules incorporated on a very large scale integrated (VLSI) substrate, and the information is shifted by photoinduced electron-transfer reactions. The design requirements for such a system are discussed, and several realistic strategies for synthesizing these systems are presented. The immediate advantage of such a hybrid molecular/VLSI device would arise from the possible information storage density. The prospect of considerable savings of energy per bit processed also exists. This molecular shift register memory element design solves the conceptual problems associated with integrating molecular size components with larger (micron) size features on a chip.

  9. Response of Cryolite-Based Bath to a Shift in Heat Input/output Balance

    Liu, Jingjing; Taylor, Mark; Dorreen, Mark

    2017-04-01

    A technology for low amperage potline operation is now recognized as a competitive advantage for the aluminum smelting industry in order to align smelter operations with the power and aluminum price markets. This study investigates the cryolite-based bath response to heat balance shifts when the heat extraction from the bath is adjusted to different levels in a laboratory analogue. In the analogue experiments, the heat balance shift is driven by a graphite `cold finger' heat exchanger, which can control the heat extraction from the analogue, and a corresponding change in heat input from the furnace which maintains the control temperature of the lab "cell." This paper reports the first experimental results from shifting the steady state of the lab cell heat balance, and investigates the effects on the frozen ledge and bath superheat. The lab cell energy balances are compared with energy balances in a published industrial cell model.

  10. Spike-Based Bayesian-Hebbian Learning of Temporal Sequences.

    Philip J Tully

    2016-05-01

    Full Text Available Many cognitive and motor functions are enabled by the temporal representation and processing of stimuli, but it remains an open issue how neocortical microcircuits can reliably encode and replay such sequences of information. To better understand this, a modular attractor memory network is proposed in which meta-stable sequential attractor transitions are learned through changes to synaptic weights and intrinsic excitabilities via the spike-based Bayesian Confidence Propagation Neural Network (BCPNN learning rule. We find that the formation of distributed memories, embodied by increased periods of firing in pools of excitatory neurons, together with asymmetrical associations between these distinct network states, can be acquired through plasticity. The model's feasibility is demonstrated using simulations of adaptive exponential integrate-and-fire model neurons (AdEx. We show that the learning and speed of sequence replay depends on a confluence of biophysically relevant parameters including stimulus duration, level of background noise, ratio of synaptic currents, and strengths of short-term depression and adaptation. Moreover, sequence elements are shown to flexibly participate multiple times in the sequence, suggesting that spiking attractor networks of this type can support an efficient combinatorial code. The model provides a principled approach towards understanding how multiple interacting plasticity mechanisms can coordinate hetero-associative learning in unison.

  11. Digital chaotic sequence generator based on coupled chaotic systems

    Shu-Bo, Liu; Jing, Sun; Jin-Shuo, Liu; Zheng-Quan, Xu

    2009-01-01

    Chaotic systems perform well as a new rich source of cryptography and pseudo-random coding. Unfortunately their digital dynamical properties would degrade due to the finite computing precision. Proposed in this paper is a modified digital chaotic sequence generator based on chaotic logistic systems with a coupling structure where one chaotic subsystem generates perturbation signals to disturb the control parameter of the other one. The numerical simulations show that the length of chaotic orbits, the output distribution of chaotic system, and the security of chaotic sequences have been greatly improved. Moreover the chaotic sequence period can be extended at least by one order of magnitude longer than that of the uncoupled logistic system and the difficulty in decrypting increases 2 128 *2 128 times indicating that the dynamical degradation of digital chaos is effectively improved. A field programmable gate array (FPGA) implementation of an algorithm is given and the corresponding experiment shows that the output speed of the generated chaotic sequences can reach 571.4 Mbps indicating that the designed generator can be applied to the real-time video image encryption. (general)

  12. ACM-based automatic liver segmentation from 3-D CT images by combining multiple atlases and improved mean-shift techniques.

    Ji, Hongwei; He, Jiangping; Yang, Xin; Deklerck, Rudi; Cornelis, Jan

    2013-05-01

    In this paper, we present an autocontext model(ACM)-based automatic liver segmentation algorithm, which combines ACM, multiatlases, and mean-shift techniques to segment liver from 3-D CT images. Our algorithm is a learning-based method and can be divided into two stages. At the first stage, i.e., the training stage, ACM is performed to learn a sequence of classifiers in each atlas space (based on each atlas and other aligned atlases). With the use of multiple atlases, multiple sequences of ACM-based classifiers are obtained. At the second stage, i.e., the segmentation stage, the test image will be segmented in each atlas space by applying each sequence of ACM-based classifiers. The final segmentation result will be obtained by fusing segmentation results from all atlas spaces via a multiclassifier fusion technique. Specially, in order to speed up segmentation, given a test image, we first use an improved mean-shift algorithm to perform over-segmentation and then implement the region-based image labeling instead of the original inefficient pixel-based image labeling. The proposed method is evaluated on the datasets of MICCAI 2007 liver segmentation challenge. The experimental results show that the average volume overlap error and the average surface distance achieved by our method are 8.3% and 1.5 m, respectively, which are comparable to the results reported in the existing state-of-the-art work on liver segmentation.

  13. A Chaos-Based Secure Direct-Sequence/Spread-Spectrum Communication System

    Nguyen Xuan Quyen

    2013-01-01

    Full Text Available This paper proposes a chaos-based secure direct-sequence/spread-spectrum (DS/SS communication system which is based on a novel combination of the conventional DS/SS and chaos techniques. In the proposed system, bit duration is varied according to a chaotic behavior but is always equal to a multiple of the fixed chip duration in the communication process. Data bits with variable duration are spectrum-spread by multiplying directly with a pseudonoise (PN sequence and then modulated onto a sinusoidal carrier by means of binary phase-shift keying (BPSK. To recover exactly the data bits, the receiver needs an identical regeneration of not only the PN sequence but also the chaotic behavior, and hence data security is improved significantly. Structure and operation of the proposed system are analyzed in detail. Theoretical evaluation of bit-error rate (BER performance in presence of additive white Gaussian noise (AWGN is provided. Parameter choice for different cases of simulation is also considered. Simulation and theoretical results are shown to verify the reliability and feasibility of the proposed system. Security of the proposed system is also discussed.

  14. Development of Michelson interferometer based spatial phase-shift digital shearography

    Xie, Xin

    Digital shearography is a non-contact, full field, optical measurement method, which has the capability of directly measuring the gradient of deformation. For high measurement sensitivity, phase evaluation method has to be introduced into digital shearography by phase-shift technique. Catalog by phase-shift method, digital phase-shift shearography can be divided into Temporal Phase-Shift Digital Shearography (TPS-DS) and Spatial Phase-Shift Digital Shearography (SPS-DS). TPS-DS is the most widely used phase-shift shearography system, due to its simple algorithm, easy operation and good phase-map quality. However, the application of TPS-DS is only limited in static/step-by-step loading measurement situation, due to its multi-step shifting process. In order to measure the strain under dynamic/continuous loading situation, a SPS-DS system has to be developed. This dissertation aims to develop a series of Michelson Interferometer based SPS-DS measurement methods to achieve the strain measurement by using only a single pair of speckle pattern images. The Michelson Interferometer based SPS-DS systems utilize special designed optical setup to introduce extra carrier frequency into the laser wavefront. The phase information corresponds to the strain field can be separated on the Fourier domain using a Fourier Transform and can further be evaluated with a Windowed Inverse Fourier Transform. With different optical setups and carrier frequency arrangements, the Michelson Interferometer based SPS-DS method is capable to achieve a variety of measurement tasks using only single pair of speckle pattern images. Catalog by the aimed measurand, these capable measurement tasks can be divided into five categories: 1) measurement of out-of-plane strain field with small shearing amount; 2) measurement of relative out-of-plane deformation field with big shearing amount; 3) simultaneous measurement of relative out-of-plane deformation field and deformation gradient field by using multiple

  15. Prediction of potential drug targets based on simple sequence properties

    Lai Luhua

    2007-09-01

    Full Text Available Abstract Background During the past decades, research and development in drug discovery have attracted much attention and efforts. However, only 324 drug targets are known for clinical drugs up to now. Identifying potential drug targets is the first step in the process of modern drug discovery for developing novel therapeutic agents. Therefore, the identification and validation of new and effective drug targets are of great value for drug discovery in both academia and pharmaceutical industry. If a protein can be predicted in advance for its potential application as a drug target, the drug discovery process targeting this protein will be greatly speeded up. In the current study, based on the properties of known drug targets, we have developed a sequence-based drug target prediction method for fast identification of novel drug targets. Results Based on simple physicochemical properties extracted from protein sequences of known drug targets, several support vector machine models have been constructed in this study. The best model can distinguish currently known drug targets from non drug targets at an accuracy of 84%. Using this model, potential protein drug targets of human origin from Swiss-Prot were predicted, some of which have already attracted much attention as potential drug targets in pharmaceutical research. Conclusion We have developed a drug target prediction method based solely on protein sequence information without the knowledge of family/domain annotation, or the protein 3D structure. This method can be applied in novel drug target identification and validation, as well as genome scale drug target predictions.

  16. Modelling the acid/base 1H NMR chemical shift limits of metabolites in human urine.

    Tredwell, Gregory D; Bundy, Jacob G; De Iorio, Maria; Ebbels, Timothy M D

    2016-01-01

    Despite the use of buffering agents the 1 H NMR spectra of biofluid samples in metabolic profiling investigations typically suffer from extensive peak frequency shifting between spectra. These chemical shift changes are mainly due to differences in pH and divalent metal ion concentrations between the samples. This frequency shifting results in a correspondence problem: it can be hard to register the same peak as belonging to the same molecule across multiple samples. The problem is especially acute for urine, which can have a wide range of ionic concentrations between different samples. To investigate the acid, base and metal ion dependent 1 H NMR chemical shift variations and limits of the main metabolites in a complex biological mixture. Urine samples from five different individuals were collected and pooled, and pre-treated with Chelex-100 ion exchange resin. Urine samples were either treated with either HCl or NaOH, or were supplemented with various concentrations of CaCl 2 , MgCl 2 , NaCl or KCl, and their 1 H NMR spectra were acquired. Nonlinear fitting was used to derive acid dissociation constants and acid and base chemical shift limits for peaks from 33 identified metabolites. Peak pH titration curves for a further 65 unidentified peaks were also obtained for future reference. Furthermore, the peak variations induced by the main metal ions present in urine, Na + , K + , Ca 2+ and Mg 2+ , were also measured. These data will be a valuable resource for 1 H NMR metabolite profiling experiments and for the development of automated metabolite alignment and identification algorithms for 1 H NMR spectra.

  17. Simultaneous phase-shifting interferometry study based on the common-path Fizeau interferometer

    Liu, Feng-wei; Wu, Yong-qian

    2014-09-01

    A simultaneous phase-shifting interferometry(SPSI) based on the common-path Fizeau interferometer has been discussed.In this system,two orthogonal polarized beams, using as the reference beam and test beam ,are detached by a particular Wollaston prism at a very small angle,then four equal sub-beams are achieved by a combination of three non-polarizing beam splitters(NPBS),and the phase shifts are introduced by four polarizers whose polarization azimuths are 0°, 45°, 90°, 135° with the horizontal direction respectively,the four phase shift interferograms are collected simultaneously by controlling the CCDs working at the same time .The SPSI principle is studied at first,then is the error analysis, finally we emulate the process of surface recovery by four steps phase shifts algorithm,the results indicate that, to ensure the feasibility of the SPSI system, we have to control the polarization azimuth error of the polarizer in +/- 0.5°.

  18. Base Sequence Context Effects on Nucleotide Excision Repair

    Yuqin Cai

    2010-01-01

    Full Text Available Nucleotide excision repair (NER plays a critical role in maintaining the integrity of the genome when damaged by bulky DNA lesions, since inefficient repair can cause mutations and human diseases notably cancer. The structural properties of DNA lesions that determine their relative susceptibilities to NER are therefore of great interest. As a model system, we have investigated the major mutagenic lesion derived from the environmental carcinogen benzo[a]pyrene (B[a]P, 10S (+-trans-anti-B[a]P-2-dG in six different sequence contexts that differ in how the lesion is positioned in relation to nearby guanine amino groups. We have obtained molecular structural data by NMR and MD simulations, bending properties from gel electrophoresis studies, and NER data obtained from human HeLa cell extracts for our six investigated sequence contexts. This model system suggests that disturbed Watson-Crick base pairing is a better recognition signal than a flexible bend, and that these can act in concert to provide an enhanced signal. Steric hinderance between the minor groove-aligned lesion and nearby guanine amino groups determines the exact nature of the disturbances. Both nearest neighbor and more distant neighbor sequence contexts have an impact. Regardless of the exact distortions, we hypothesize that they provide a local thermodynamic destabilization signal for repair.

  19. A new license plate extraction framework based on fast mean shift

    Pan, Luning; Li, Shuguang

    2010-08-01

    License plate extraction is considered to be the most crucial step of Automatic license plate recognition (ALPR) system. In this paper, a region-based license plate hybrid detection method is proposed to solve practical problems under complex background in which existing large quantity of disturbing information. In this method, coarse license plate location is carried out firstly to get the head part of a vehicle. Then a new Fast Mean Shift method based on random sampling of Kernel Density Estimate (KDE) is adopted to segment the color vehicle images, in order to get candidate license plate regions. The remarkable speed-up it brings makes Mean Shift segmentation more suitable for this application. Feature extraction and classification is used to accurately separate license plate from other candidate regions. At last, tilted license plate regulation is used for future recognition steps.

  20. Studies of base pair sequence effects on DNA solvation based on all

    Detailed analyses of the sequence-dependent solvation and ion atmosphere of DNA are presented based on molecular dynamics (MD) simulations on all the 136 unique tetranucleotide steps obtained by the ABC consortium using the AMBER suite of programs. Significant sequence effects on solvation and ion localization ...

  1. Single-base resolution and long-coverage sequencing based on single-molecule nanomanipulation

    An Hongjie; Huang Jiehuan; Lue Ming; Li Xueling; Lue Junhong; Li Haikuo; Zhang Yi; Li Minqian; Hu Jun

    2007-01-01

    We show new approaches towards a novel single-molecule sequencing strategy which consists of high-resolution positioning isolation of overlapping DNA fragments with atomic force microscopy (AFM), subsequent single-molecule PCR amplification and conventional Sanger sequencing. In this study, a DNA labelling technique was used to guarantee the accuracy in positioning the target DNA. Single-molecule multiplex PCR was carried out to test the contamination. The results showed that the two overlapping DNA fragments isolated by AFM could be successfully sequenced with high quality and perfect contiguity, indicating that single-base resolution and long-coverage sequencing have been achieved simultaneously

  2. Improved medical image fusion based on cascaded PCA and shift invariant wavelet transforms.

    Reena Benjamin, J; Jayasree, T

    2018-02-01

    In the medical field, radiologists need more informative and high-quality medical images to diagnose diseases. Image fusion plays a vital role in the field of biomedical image analysis. It aims to integrate the complementary information from multimodal images, producing a new composite image which is expected to be more informative for visual perception than any of the individual input images. The main objective of this paper is to improve the information, to preserve the edges and to enhance the quality of the fused image using cascaded principal component analysis (PCA) and shift invariant wavelet transforms. A novel image fusion technique based on cascaded PCA and shift invariant wavelet transforms is proposed in this paper. PCA in spatial domain extracts relevant information from the large dataset based on eigenvalue decomposition, and the wavelet transform operating in the complex domain with shift invariant properties brings out more directional and phase details of the image. The significance of maximum fusion rule applied in dual-tree complex wavelet transform domain enhances the average information and morphological details. The input images of the human brain of two different modalities (MRI and CT) are collected from whole brain atlas data distributed by Harvard University. Both MRI and CT images are fused using cascaded PCA and shift invariant wavelet transform method. The proposed method is evaluated based on three main key factors, namely structure preservation, edge preservation, contrast preservation. The experimental results and comparison with other existing fusion methods show the superior performance of the proposed image fusion framework in terms of visual and quantitative evaluations. In this paper, a complex wavelet-based image fusion has been discussed. The experimental results demonstrate that the proposed method enhances the directional features as well as fine edge details. Also, it reduces the redundant details, artifacts, distortions.

  3. Spike-Based Bayesian-Hebbian Learning of Temporal Sequences

    Tully, Philip J; Lindén, Henrik; Hennig, Matthias H

    2016-01-01

    Many cognitive and motor functions are enabled by the temporal representation and processing of stimuli, but it remains an open issue how neocortical microcircuits can reliably encode and replay such sequences of information. To better understand this, a modular attractor memory network is proposed...... in which meta-stable sequential attractor transitions are learned through changes to synaptic weights and intrinsic excitabilities via the spike-based Bayesian Confidence Propagation Neural Network (BCPNN) learning rule. We find that the formation of distributed memories, embodied by increased periods...

  4. Centroid based clustering of high throughput sequencing reads based on n-mer counts.

    Solovyov, Alexander; Lipkin, W Ian

    2013-09-08

    Many problems in computational biology require alignment-free sequence comparisons. One of the common tasks involving sequence comparison is sequence clustering. Here we apply methods of alignment-free comparison (in particular, comparison using sequence composition) to the challenge of sequence clustering. We study several centroid based algorithms for clustering sequences based on word counts. Study of their performance shows that using k-means algorithm with or without the data whitening is efficient from the computational point of view. A higher clustering accuracy can be achieved using the soft expectation maximization method, whereby each sequence is attributed to each cluster with a specific probability. We implement an open source tool for alignment-free clustering. It is publicly available from github: https://github.com/luscinius/afcluster. We show the utility of alignment-free sequence clustering for high throughput sequencing analysis despite its limitations. In particular, it allows one to perform assembly with reduced resources and a minimal loss of quality. The major factor affecting performance of alignment-free read clustering is the length of the read.

  5. Ct shift: A novel and accurate real-time PCR quantification model for direct comparison of different nucleic acid sequences and its application for transposon quantifications.

    Kolacsek, Orsolya; Pergel, Enikő; Varga, Nóra; Apáti, Ágota; Orbán, Tamás I

    2017-01-20

    There are numerous applications of quantitative PCR for both diagnostic and basic research. As in many other techniques the basis of quantification is that comparisons are made between different (unknown and known or reference) specimens of the same entity. When the aim is to compare real quantities of different species in samples, one cannot escape their separate precise absolute quantification. We have established a simple and reliable method for this purpose (Ct shift method) which combines the absolute and the relative approach. It requires a plasmid standard containing both sequences of amplicons to be compared (e.g. the target of interest and the endogenous control). It can serve as a reference sample with equal copies of templates for both targets. Using the ΔΔCt formula we can quantify the exact ratio of the two templates in each unknown sample. The Ct shift method has been successfully applied for transposon gene copy measurements, as well as for comparison of different mRNAs in cDNA samples. This study provides the proof of concept and introduces some potential applications of the method; the absolute nature of results even without the need for real reference samples can contribute to the universality of the method and comparability of different studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Noncoding sequence classification based on wavelet transform analysis: part I

    Paredes, O.; Strojnik, M.; Romo-Vázquez, R.; Vélez Pérez, H.; Ranta, R.; Garcia-Torales, G.; Scholl, M. K.; Morales, J. A.

    2017-09-01

    DNA sequences in human genome can be divided into the coding and noncoding ones. Coding sequences are those that are read during the transcription. The identification of coding sequences has been widely reported in literature due to its much-studied periodicity. Noncoding sequences represent the majority of the human genome. They play an important role in gene regulation and differentiation among the cells. However, noncoding sequences do not exhibit periodicities that correlate to their functions. The ENCODE (Encyclopedia of DNA elements) and Epigenomic Roadmap Project projects have cataloged the human noncoding sequences into specific functions. We study characteristics of noncoding sequences with wavelet analysis of genomic signals.

  7. Streaming support for data intensive cloud-based sequence analysis.

    Issa, Shadi A; Kienzler, Romeo; El-Kalioby, Mohamed; Tonellato, Peter J; Wall, Dennis; Bruggmann, Rémy; Abouelhoda, Mohamed

    2013-01-01

    Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of "resources-on-demand" and "pay-as-you-go", scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client's site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation.

  8. Streaming Support for Data Intensive Cloud-Based Sequence Analysis

    Shadi A. Issa

    2013-01-01

    Full Text Available Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go”, scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client’s site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation.

  9. Streaming Support for Data Intensive Cloud-Based Sequence Analysis

    Issa, Shadi A.; Kienzler, Romeo; El-Kalioby, Mohamed; Tonellato, Peter J.; Wall, Dennis; Bruggmann, Rémy; Abouelhoda, Mohamed

    2013-01-01

    Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go”, scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client's site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation. PMID:23710461

  10. Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System

    Chunmei Liu

    2016-01-01

    Full Text Available This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour.

  11. A Mean-Shift-Based Feature Descriptor for Wide Baseline Stereo Matching

    Yiwen Dou

    2015-01-01

    Full Text Available We propose a novel Mean-Shift-based building approach in wide baseline. Initially, scale-invariance feature transform (SIFT approach is used to extract relatively stable feature points. As to each matching SIFT feature point, it needs a reasonable neighborhood range so as to choose feature points set. Subsequently, in view of selecting repeatable and high robust feature points, Mean-Shift controls corresponding feature scale. At last, our approach is employed to depth image acquirement in wide baseline and Graph Cut algorithm optimizes disparity information. Compared with the existing methods such as SIFT, speeded up robust feature (SURF, and normalized cross-correlation (NCC, the presented approach has the advantages of higher robustness and accuracy rate. Experimental results on low resolution image and weak feature description in wide baseline confirm the validity of our approach.

  12. Thermal residual stress evaluation based on phase-shift lateral shearing interferometry

    Dai, Xiangjun; Yun, Hai; Shao, Xinxing; Wang, Yanxia; Zhang, Donghuan; Yang, Fujun; He, Xiaoyuan

    2018-06-01

    An interesting phase-shift lateral shearing interferometry system was proposed to evaluate the thermal residual stress distribution in transparent specimen. The phase-shift interferograms was generated by moving a parallel plane plate. Based on analyzing the fringes deflected by deformation and refractive index change, the stress distribution can be obtained. To verify the validity of the proposed method, a typical experiment was elaborately designed to determine thermal residual stresses of a transparent PMMA plate subjected to the flame of a lighter. The sum of in-plane stress distribution was demonstrated. The experimental data were compared with values measured by digital gradient sensing method. Comparison of the results reveals the effectiveness and feasibility of the proposed method.

  13. Parallel phase-shifting digital holography based on the fractional Talbot effect

    Martinez-Leon, Lluis; Climent, Vicent; Lancis, Jesus; Tajahuerce, Enrique [GROC-UJI, Departament de Fisica, Universitat Jaume I, 12071 Castello (Spain); Araiza-E, Maria [Laboratorio de Procesamiento Digital de Senales, Universidad Autonoma de Zacatecas, Zacatecas (Mexico); Javidi, Bahram [Department of Electrical and Computer Engineering, University of Connecticut, CT 06269-2157 (United States); Andres, Pedro, E-mail: enrique.tajahuerce@uji.e [Departament d' Optica, Universitat de Valencia, 46100 Burjassot (Spain)

    2010-02-01

    A method for recording on-axis single-shot digital holograms based on the self-imaging phenomenon is reported. A simple binary two-dimensional periodic amplitude is used to codify the reference beam in a Mach-Zehnder interferometer, generating a periodic three-step phase distribution with uniform irradiance over the sensor plane by fractional Talbot effect. An image sensor records only one shot of the interference between the light field scattered by the object and the codified parallel reference beam. Images of the object are digitally reconstructed from the digital hologram through the numerical evaluation of the Fresnel diffraction integral. This scheme provides an efficient way to perform dynamic phase-shifting interferometric techniques to determine the amplitude and phase of the object light field. Unlike other parallel phase-shifting techniques, neither complex pixelated polarization devices nor special phase diffractive elements are required. Experimental results confirm the feasibility and flexibility of our method.

  14. Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System

    2016-01-01

    This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour. PMID:27379165

  15. An encryption scheme based on phase-shifting digital holography and amplitude-phase disturbance

    Hua Li-Li; Xu Ning; Yang Geng

    2014-01-01

    In this paper, we propose an encryption scheme based on phase-shifting digital interferometry. According to the original system framework, we add a random amplitude mask and replace the Fourier transform by the Fresnel transform. We develop a mathematical model and give a discrete formula based on the scheme, which makes it easy to implement the scheme in computer programming. The experimental results show that the improved system has a better performance in security than the original encryption method. Moreover, it demonstrates a good capability of anti-noise and anti-shear robustness

  16. Cloning and sequencing of the gene coding for alcohol dehydrogenase of Bacillus stearothermophilus and rational shift of the optimum pH.

    Sakoda, H; Imanaka, T

    1992-02-01

    Using Bacillus subtilis as a host and pTB524 as a vector plasmid, we cloned the thermostable alcohol dehydrogenase (ADH-T) gene (adhT) from Bacillus stearothermophilus NCA1503 and determined its nucleotide sequence. The deduced amino acid sequence (337 amino acids) was compared with the sequences of ADHs from four different origins. The amino acid residues responsible for the catalytic activity of horse liver ADH had been clarified on the basis of three-dimensional structure. Since those catalytic amino acid residues were fairly conserved in ADH-T and other ADHs, ADH-T was inferred to have basically the same proton release system as horse liver ADH. The putative proton release system of ADH-T was elucidated by introducing point mutations at the catalytic amino acid residues, Cys-38 (cysteine at position 38), Thr-40, and His-43, with site-directed mutagenesis. The mutant enzyme Thr-40-Ser (Thr-40 was replaced by serine) showed a little lower level of activity than wild-type ADH-T did. The result indicates that the OH group of serine instead of threonine can also be used for the catalytic activity. To change the pKa value of the putative system, His-43 was replaced by the more basic amino acid arginine. As a result, the optimum pH of the mutant enzyme His-43-Arg was shifted from 7.8 (wild-type enzyme) to 9.0. His-43-Arg exhibited a higher level of activity than wild-type enzyme at the optimum pH.

  17. Sequence-based classification using discriminatory motif feature selection.

    Hao Xiong

    Full Text Available Most existing methods for sequence-based classification use exhaustive feature generation, employing, for example, all k-mer patterns. The motivation behind such (enumerative approaches is to minimize the potential for overlooking important features. However, there are shortcomings to this strategy. First, practical constraints limit the scope of exhaustive feature generation to patterns of length ≤ k, such that potentially important, longer (> k predictors are not considered. Second, features so generated exhibit strong dependencies, which can complicate understanding of derived classification rules. Third, and most importantly, numerous irrelevant features are created. These concerns can compromise prediction and interpretation. While remedies have been proposed, they tend to be problem-specific and not broadly applicable. Here, we develop a generally applicable methodology, and an attendant software pipeline, that is predicated on discriminatory motif finding. In addition to the traditional training and validation partitions, our framework entails a third level of data partitioning, a discovery partition. A discriminatory motif finder is used on sequences and associated class labels in the discovery partition to yield a (small set of features. These features are then used as inputs to a classifier in the training partition. Finally, performance assessment occurs on the validation partition. Important attributes of our approach are its modularity (any discriminatory motif finder and any classifier can be deployed and its universality (all data, including sequences that are unaligned and/or of unequal length, can be accommodated. We illustrate our approach on two nucleosome occupancy datasets and a protein solubility dataset, previously analyzed using enumerative feature generation. Our method achieves excellent performance results, with and without optimization of classifier tuning parameters. A Python pipeline implementing the approach is

  18. A trace display and editing program for data from fluorescence based sequencing machines.

    Gleeson, T; Hillier, L

    1991-12-11

    'Ted' (Trace editor) is a graphical editor for sequence and trace data from automated fluorescence sequencing machines. It provides facilities for viewing sequence and trace data (in top or bottom strand orientation), for editing the base sequence, for automated or manual trimming of the head (vector) and tail (uncertain data) from the sequence, for vertical and horizontal trace scaling, for keeping a history of sequence editing, and for output of the edited sequence. Ted has been used extensively in the C.elegans genome sequencing project, both as a stand-alone program and integrated into the Staden sequence assembly package, and has greatly aided in the efficiency and accuracy of sequence editing. It runs in the X windows environment on Sun workstations and is available from the authors. Ted currently supports sequence and trace data from the ABI 373A and Pharmacia A.L.F. sequencers.

  19. Sequence-Based Identification of Aspergillus, Fusarium, and Mucorales in the Clinical Laboratory: Where Are We and Where Should We Go From Here?

    Accurate identification of fungal species helps establish or exclude a fungal cause of disease. In the past, clinical microbiology labs were restricted to a limited array of phenotypic criteria for categorizing isolates to the species level. This scenario is shifting in favour of DNA sequence-base...

  20. Heart rate measurement based on face video sequence

    Xu, Fang; Zhou, Qin-Wu; Wu, Peng; Chen, Xing; Yang, Xiaofeng; Yan, Hong-jian

    2015-03-01

    This paper proposes a new non-contact heart rate measurement method based on photoplethysmography (PPG) theory. With this method we can measure heart rate remotely with a camera and ambient light. We collected video sequences of subjects, and detected remote PPG signals through video sequences. Remote PPG signals were analyzed with two methods, Blind Source Separation Technology (BSST) and Cross Spectral Power Technology (CSPT). BSST is a commonly used method, and CSPT is used for the first time in the study of remote PPG signals in this paper. Both of the methods can acquire heart rate, but compared with BSST, CSPT has clearer physical meaning, and the computational complexity of CSPT is lower than that of BSST. Our work shows that heart rates detected by CSPT method have good consistency with the heart rates measured by a finger clip oximeter. With good accuracy and low computational complexity, the CSPT method has a good prospect for the application in the field of home medical devices and mobile health devices.

  1. Development of Sequence-Based Microsatellite Marker for Phalaenopsis Orchid

    FATIMAH

    2011-06-01

    Full Text Available Phalaenopsis is one of the most interesting genera of orchids due to the members are often used as parents to produce hybrids. The establishment and development of highly reliable and discriminatory methods for identifying species and cultivars has become increasingly more important to plant breeders and members of the nursery industry. The aim of this research was to develop sequence-based microsatellite (eSSR markers for the Phalaenopsis orchid designed from the sequence of GenBank NCBI. Seventeen primers were designed and thirteen primers pairs could amplify the DNA giving the expected PCR product with polymorphism. A total of 51 alleles, with an average of 3 alleles per locus and polymorphism information content (PIC values at 0.674, were detected at the 16 SSR loci. Therefore, these markers could be used for identification of the Phalaenopsis orchid used in this study. Genetic similarity and principle coordinate analysis identified five major groups of Phalaenopsis sp. the first group consisted of P. amabilis, P. fuscata, P. javanica, and P. zebrine. The second group consisted of P. amabilis, P. amboinensis, P. bellina, P. floresens, and P. mannii. The third group consisted of P. bellina, P. cornucervi, P. cornucervi, P. violaceae sumatra, P. modesta. The forth group consisted of P. cornucervi and P. lueddemanniana, and the fifth group was P. amboinensis.

  2. Novel Quantum Encryption Algorithm Based on Multiqubit Quantum Shift Register and Hill Cipher

    Khalaf, Rifaat Zaidan; Abdullah, Alharith Abdulkareem

    2014-01-01

    Based on a quantum shift register, a novel quantum block cryptographic algorithm that can be used to encrypt classical messages is proposed. The message is encoded and decoded by using a code generated by the quantum shift register. The security of this algorithm is analysed in detail. It is shown that, in the quantum block cryptographic algorithm, two keys can be used. One of them is the classical key that is used in the Hill cipher algorithm where Alice and Bob use the authenticated Diffie Hellman key exchange algorithm using the concept of digital signature for the authentication of the two communicating parties and so eliminate the man-in-the-middle attack. The other key is generated by the quantum shift register and used for the coding of the encryption message, where Alice and Bob share the key by using the BB84 protocol. The novel algorithm can prevent a quantum attack strategy as well as a classical attack strategy. The problem of key management is discussed and circuits for the encryption and the decryption are suggested

  3. The sequence relay selection strategy based on stochastic dynamic programming

    Zhu, Rui; Chen, Xihao; Huang, Yangchao

    2017-07-01

    Relay-assisted (RA) network with relay node selection is a kind of effective method to improve the channel capacity and convergence performance. However, most of the existing researches about the relay selection did not consider the statically channel state information and the selection cost. This shortage limited the performance and application of RA network in practical scenarios. In order to overcome this drawback, a sequence relay selection strategy (SRSS) was proposed. And the performance upper bound of SRSS was also analyzed in this paper. Furthermore, in order to make SRSS more practical, a novel threshold determination algorithm based on the stochastic dynamic program (SDP) was given to work with SRSS. Numerical results are also presented to exhibit the performance of SRSS with SDP.

  4. Use of dextran nanoparticle: A paradigm shift in bacterial exopolysaccharide based biomedical applications.

    Banerjee, Aparna; Bandopadhyay, Rajib

    2016-06-01

    This review is a concise compilation of all the major researches on dextran nanoparticle based biomedical applications. Dextran is a highly biocompatible and biodegradable neutral bacterial exopolysaccharide with simple repeating glucose subunits. It's simple yet unique biopolymeric nature made it highly suitable as nanomedicine, nanodrug carrier, and cell imaging system or nanobiosensor. Most importantly, it is extremely water soluble and shows no post drug delivery cellular toxicity. Complete metabolism of dextran is possible inside body thus possibility of renal failure is minimum. Dextran based nanoparticles have superior aqueous solubility, high cargo capacity and intrinsic viscosity, and short storage period. The main focus area of this review is- past and present of major biomedical applications of dextran based nanomaterials thus showing a paradigm shift in bacterial exopolysaccharide based nanobiotechnology. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Combining the boundary shift integral and tensor-based morphometry for brain atrophy estimation

    Michalkiewicz, Mateusz; Pai, Akshay; Leung, Kelvin K.; Sommer, Stefan; Darkner, Sune; Sørensen, Lauge; Sporring, Jon; Nielsen, Mads

    2016-03-01

    Brain atrophy from structural magnetic resonance images (MRIs) is widely used as an imaging surrogate marker for Alzheimers disease. Their utility has been limited due to the large degree of variance and subsequently high sample size estimates. The only consistent and reasonably powerful atrophy estimation methods has been the boundary shift integral (BSI). In this paper, we first propose a tensor-based morphometry (TBM) method to measure voxel-wise atrophy that we combine with BSI. The combined model decreases the sample size estimates significantly when compared to BSI and TBM alone.

  6. Model-based quality assessment and base-calling for second-generation sequencing data.

    Bravo, Héctor Corrada; Irizarry, Rafael A

    2010-09-01

    Second-generation sequencing (sec-gen) technology can sequence millions of short fragments of DNA in parallel, making it capable of assembling complex genomes for a small fraction of the price and time of previous technologies. In fact, a recently formed international consortium, the 1000 Genomes Project, plans to fully sequence the genomes of approximately 1200 people. The prospect of comparative analysis at the sequence level of a large number of samples across multiple populations may be achieved within the next five years. These data present unprecedented challenges in statistical analysis. For instance, analysis operates on millions of short nucleotide sequences, or reads-strings of A,C,G, or T's, between 30 and 100 characters long-which are the result of complex processing of noisy continuous fluorescence intensity measurements known as base-calling. The complexity of the base-calling discretization process results in reads of widely varying quality within and across sequence samples. This variation in processing quality results in infrequent but systematic errors that we have found to mislead downstream analysis of the discretized sequence read data. For instance, a central goal of the 1000 Genomes Project is to quantify across-sample variation at the single nucleotide level. At this resolution, small error rates in sequencing prove significant, especially for rare variants. Sec-gen sequencing is a relatively new technology for which potential biases and sources of obscuring variation are not yet fully understood. Therefore, modeling and quantifying the uncertainty inherent in the generation of sequence reads is of utmost importance. In this article, we present a simple model to capture uncertainty arising in the base-calling procedure of the Illumina/Solexa GA platform. Model parameters have a straightforward interpretation in terms of the chemistry of base-calling allowing for informative and easily interpretable metrics that capture the variability in

  7. Performance Improvement of Space Shift Keying MIMO Systems with Orthogonal Codebook-Based Phase-Rotation Precoding

    Mohammed Al-Ansi

    2017-01-01

    Full Text Available This paper considers codebook-based precoding for Space Shift Keying (SSK modulation MIMO system. Codebook-based precoding avoids the necessity for full knowledge of Channel State Information (CSI at the transmitter and alleviates the complexity of generating a CSI-optimized precoder. The receiver selects the codeword that maximizes the Minimum Euclidean Distance (MED of the received constellation and feeds back its index to the transmitter. In this paper, we first develop a new accurate closed-form Bit Error Rate (BER for SSK without precoding. Then, we investigate several phase-rotation codebooks with quantized set of phases and systematic structure. Namely, we investigate the Full-Combination, Walsh-Hadamard, Quasi-Orthogonal Sequences, and Orthogonal Array Testing codebooks. In addition, since the size of the Full-Combination codebook may be large, we develop an iterative search method for fast selection of its best codeword. The proposed codebooks significantly improve the BER performance in Rayleigh and Nakagami fading channels, even at high spatial correlation among transmit antennas and CSI estimation error. Moreover, we show that only four phases {+1,+j,-1,-j} are sufficient and further phase granularity does yield significant gain. This avoids hardware multiplication during searching the codebook and applying the codeword.

  8. Amelioration of the cooling load based chiller sequencing control

    Huang, Sen; Zuo, Wangda; Sohn, Michael D.

    2016-01-01

    Highlights: • We developed a new approach for the optimal load distribution for chillers. • We proposed a new approach to optimize the number of operating chillers. • We provided a holistic solution to address chiller sequencing control problems. - Abstract: Cooling Load based Control (CLC) for the chiller sequencing is a commonly used control strategy for multiple-chiller plants. To improve the energy efficiency of these chiller plants, researchers proposed various CLC optimization approaches, which can be divided into two groups: studies to optimize the load distribution and studies to identify the optimal number of operating chillers. However, both groups have their own deficiencies and do not consider the impact of each other. This paper aims to improve the CLC by proposing three new approaches. The first optimizes the load distribution by adjusting the critical points for the chiller staging, which is easier to be implemented than existing approaches. In addition, by considering the impact of the load distribution on the cooling tower energy consumption and the pump energy consumption, this approach can achieve a better energy saving. The second optimizes the number of operating chillers by modulating the critical points and the condenser water set point in order to achieve the minimal energy consumption of the entire chiller plant that may not be guaranteed by existing approaches. The third combines the first two approaches to provide a holistic solution. The proposed three approaches were evaluated via a case study. The results show that the total energy consumption saving for the studied chiller plant is 0.5%, 5.3% and 5.6% by the three approaches, respectively. An energy saving of 4.9–11.8% can be achieved for the chillers at the cost of more energy consumption by the cooling towers (increases of 5.8–43.8%). The pumps’ energy saving varies from −8.6% to 2.0%, depending on the approach.

  9. Winnowing DNA for rare sequences: highly specific sequence and methylation based enrichment.

    Jason D Thompson

    Full Text Available Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue.

  10. Winnowing DNA for rare sequences: highly specific sequence and methylation based enrichment.

    Thompson, Jason D; Shibahara, Gosuke; Rajan, Sweta; Pel, Joel; Marziali, Andre

    2012-01-01

    Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue.

  11. Roche genome sequencer FLX based high-throughput sequencing of ancient DNA

    Alquezar-Planas, David E; Fordyce, Sarah Louise

    2012-01-01

    Since the development of so-called "next generation" high-throughput sequencing in 2005, this technology has been applied to a variety of fields. Such applications include disease studies, evolutionary investigations, and ancient DNA. Each application requires a specialized protocol to ensure...... that the data produced is optimal. Although much of the procedure can be followed directly from the manufacturer's protocols, the key differences lie in the library preparation steps. This chapter presents an optimized protocol for the sequencing of fossil remains and museum specimens, commonly referred...

  12. Three-dimensional digital imaging based on shifted point-array encoding.

    Tian, Jindong; Peng, Xiang

    2005-09-10

    An approach to three-dimensional (3D) imaging based on shifted point-array encoding is presented. A kind of point-array structure light is projected sequentially onto the reference plane and onto the object surface to be tested and thus forms a pair of point-array images. A mathematical model is established to formulize the imaging process with the pair of point arrays. This formulation allows for a description of the relationship between the range image of the object surface and the lateral displacement of each point in the point-array image. Based on this model, one can reconstruct each 3D range image point by computing the lateral displacement of the corresponding point on the two point-array images. The encoded point array can be shifted digitally along both the lateral and the longitudinal directions step by step to achieve high spatial resolution. Experimental results show good agreement with the theoretical predictions. This method is applicable for implementing 3D imaging of object surfaces with complex topology or large height discontinuities.

  13. Proposed Sandia frequency shift for anti-islanding detection method based on artificial immune system

    A.Y. Hatata

    2018-03-01

    Full Text Available Sandia frequency shift (SFS is one of the active anti-islanding detection methods that depend on frequency drift to detect an islanding condition for inverter-based distributed generation. The non-detection zone (NDZ of the SFS method depends to a great extent on its parameters. Improper adjusting of these parameters may result in failure of the method. This paper presents a proposed artificial immune system (AIS-based technique to obtain optimal parameters of SFS anti-islanding detection method. The immune system is highly distributed, highly adaptive, and self-organizing in nature, maintains a memory of past encounters, and has the ability to continually learn about new encounters. The proposed method generates less total harmonic distortion (THD than the conventional SFS, which results in faster island detection and better non-detection zone. The performance of the proposed method is derived analytically and simulated using Matlab/Simulink. Two case studies are used to verify the proposed method. The first case includes a photovoltaic (PV connected to grid and the second includes a wind turbine connected to grid. The deduced optimized parameter setting helps to achieve the “non-islanding inverter” as well as least potential adverse impact on power quality. Keywords: Anti-islanding detection, Sandia frequency shift (SFS, Non-detection zone (NDZ, Total harmonic distortion (THD, Artificial immune system (AIS, Clonal selection algorithm

  14. Self-stability analysis of MHTGRs: A shifted-ectropy based approach

    Dong Zhe

    2012-01-01

    Highlights: ► In this paper, self-stability of the MHTGR is analyzed from a physical viewpoint. ► A shifted-ectropy method for self-stability analysis of general thermodynamic systems is established. ► Then it is proved theoretically that the equilibriums of the MHTGR are globally asymptotically stable. ► Numerical verification results are consistent with the theoretical result. - Abstract: Because of the strong inherent safety, the modular high temperature gas-cooled nuclear reactor (MHTGR) has been seen as the chosen technology for the next generation of nuclear power plants (NPPs). Self-stability of a nuclear reactor, which is the ability that the reactor state can converge to an equilibrium point without control input, has great meaning in designing control and operation strategies for the NPPs based on MHTGR technology. In this paper, self-stability of the MHTGR is analyzed from a physical viewpoint. A shifted-ectropy method for analyzing the stability of the equilibriums of general thermodynamic systems is firstly established. Based upon this approach, it is proved theoretically that the equilibriums of the MHTGR dynamics are globally asymptotically stable. Numerical simulation results, which illustrate the MHTGR self-stability feature directly, are consistent with the theoretical result.

  15. Scan time reduction in {sup 23}Na-Magnetic Resonance Imaging using the chemical shift imaging sequence. Evaluation of an iterative reconstruction method

    Weingaertner, Sebastian; Konstandin, Simon; Schad, Lothar R. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Wetterling, Friedrich [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Dublin Univ. (Ireland) Trinity Inst. of Neuroscience; Fatar, Marc [Heidelberg Univ., Mannheim (Germany). Dept. of Neurology; Neumaier-Probst, Eva [Heidelberg Univ., Mannheim (Germany). Dept. of Neuroradiology

    2015-07-01

    To evaluate potential scan time reduction in {sup 23}Na-Magnetic Resonance Imaging with the chemical shift imaging sequence (CSI) using undersampled data of high-quality datasets, reconstructed with an iterative constrained reconstruction, compared to reduced resolution or reduced signal-to-noise ratio. CSI {sup 23}Na-images were retrospectively undersampled and reconstructed with a constrained reconstruction scheme. The results were compared to conventional methods of scan time reduction. The constrained reconstruction scheme used a phase constraint and a finite object support, which was extracted from a spatially registered {sup 1}H-image acquired with a double-tuned coil. The methods were evaluated using numerical simulations, phantom images and in-vivo images of a healthy volunteer and a patient who suffered from cerebral ischemic stroke. The constrained reconstruction scheme showed improved image quality compared to a decreased number of averages, images with decreased resolution or circular undersampling with weighted averaging for any undersampling factor. Brain images of a stroke patient, which were reconstructed from three-fold undersampled k-space data, resulted in only minor differences from the original image (normalized root means square error < 12%) and an almost identical delineation of the stroke region (mismatch < 6%). The acquisition of undersampled {sup 23}Na-CSI images enables up to three-fold scan time reduction with improved image quality compared to conventional methods of scan time saving.

  16. Prediction of Protein Structural Classes for Low-Similarity Sequences Based on Consensus Sequence and Segmented PSSM

    Yunyun Liang

    2015-01-01

    Full Text Available Prediction of protein structural classes for low-similarity sequences is useful for understanding fold patterns, regulation, functions, and interactions of proteins. It is well known that feature extraction is significant to prediction of protein structural class and it mainly uses protein primary sequence, predicted secondary structure sequence, and position-specific scoring matrix (PSSM. Currently, prediction solely based on the PSSM has played a key role in improving the prediction accuracy. In this paper, we propose a novel method called CSP-SegPseP-SegACP by fusing consensus sequence (CS, segmented PsePSSM, and segmented autocovariance transformation (ACT based on PSSM. Three widely used low-similarity datasets (1189, 25PDB, and 640 are adopted in this paper. Then a 700-dimensional (700D feature vector is constructed and the dimension is decreased to 224D by using principal component analysis (PCA. To verify the performance of our method, rigorous jackknife cross-validation tests are performed on 1189, 25PDB, and 640 datasets. Comparison of our results with the existing PSSM-based methods demonstrates that our method achieves the favorable and competitive performance. This will offer an important complementary to other PSSM-based methods for prediction of protein structural classes for low-similarity sequences.

  17. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data

    Novák, Petr; Neumann, Pavel; Macas, Jiří

    2010-01-01

    Roč. 11, č. 1 (2010), s. 378-389 ISSN 1471-2105 R&D Projects: GA MŠk(CZ) OC10037; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50510513 Keywords : repetitive DNA * plant genome * next generation sequencing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.028, year: 2010

  18. A physically-based correlation of irradiation-induced transition temperature shifts for RPV steels

    Eason, E.D.; Odette, G.R.; Nanstad, R.K.; Yamamoto, T.

    2013-01-01

    This paper presents a physically-based, empirically calibrated model for estimating irradiation-induced transition temperature shifts in reactor pressure vessel steels, based on a broader database and more complete understanding of embrittlement mechanisms than was available for earlier models. Brief descriptions of the underlying radiation damage mechanisms and the database are included, but the emphasis is on the model and the quality of its fit to U.S. power reactor surveillance data. The model is compared to a random sample of surveillance data that were set aside and not used in fitting and to selected independent data from test reactor irradiations, in both cases showing good ability to predict data that were not used for calibration. The model is a good fit to the surveillance data, with no significant residual error trends for variables included in the model or additional variables that could be included

  19. Algorithm based on regional separation for automatic grain boundary extraction using improved mean shift method

    Zhenying, Xu; Jiandong, Zhu; Qi, Zhang; Yamba, Philip

    2018-06-01

    Metallographic microscopy shows that the vast majority of metal materials are composed of many small grains; the grain size of a metal is important for determining the tensile strength, toughness, plasticity, and other mechanical properties. In order to quantitatively evaluate grain size in metals, grain boundaries must be identified in metallographic images. Based on the phenomenon of grain boundary blurring or disconnection in metallographic images, this study develops an algorithm based on regional separation for automatically extracting grain boundaries by an improved mean shift method. Experimental observation shows that the grain boundaries obtained by the proposed algorithm are highly complete and accurate. This research has practical value because the proposed algorithm is suitable for grain boundary extraction from most metallographic images.

  20. A criticism of big bang cosmological models based on interpretation of the red shift

    Kierein, J.W. (Ball Aerospace Systems Div., Boulder, CO (USA))

    1988-08-01

    The interaction of light with the intergalactic plasma produces the Hubble red shift versus distance relationship. This interaction also produces an isotopic long wavelength background radiation from the plasma. Intrinsic red shifts in quasars and other objects are similarly explained, showing why they are exceptions to Hubble's law. Because the red shift is not doppler-shifted, big bang cosmological models should be replaced with static models. (author).

  1. Microfluidic EBG Sensor Based on Phase-Shift Method Realized Using 3D Printing Technology.

    Radonić, Vasa; Birgermajer, Slobodan; Kitić, Goran

    2017-04-18

    In this article, we propose a novel microfluidic microstrip electromagnetic band gap (EBG) sensor realized using cost-effective 3D printing technology. Microstrip sensor allows monitoring of the fluid properties flowing in the microchannel embedded between the microstrip line and ground plane. The sensor's operating principle is based on the phase-shift method, which allows the characterization at a single operating frequency of 6 GHz. The defected electromagnetic band gap (EBG) structure is realized as a pattern in the microstrip ground plane to improve sensor sensitivity. The designed microfluidic channel is fabricated using a fused deposition modelling (FDM) 3D printing process without additional supporting layers, while the conductive layers are realized using sticky aluminium tape. The measurement results show that the change of permittivity of the fluid in the microfluidic channel from 1 to 80 results in the phase-shift difference of almost 90°. The potential application is demonstrated through the implementation of a proposed sensor for the detection of toluene concentration in toluene-methanol mixture where various concentrations of toluene were analysed.

  2. Microfluidic EBG Sensor Based on Phase-Shift Method Realized Using 3D Printing Technology

    Vasa Radonić

    2017-04-01

    Full Text Available In this article, we propose a novel microfluidic microstrip electromagnetic band gap (EBG sensor realized using cost-effective 3D printing technology. Microstrip sensor allows monitoring of the fluid properties flowing in the microchannel embedded between the microstrip line and ground plane. The sensor’s operating principle is based on the phase-shift method, which allows the characterization at a single operating frequency of 6 GHz. The defected electromagnetic band gap (EBG structure is realized as a pattern in the microstrip ground plane to improve sensor sensitivity. The designed microfluidic channel is fabricated using a fused deposition modelling (FDM 3D printing process without additional supporting layers, while the conductive layers are realized using sticky aluminium tape. The measurement results show that the change of permittivity of the fluid in the microfluidic channel from 1 to 80 results in the phase-shift difference of almost 90°. The potential application is demonstrated through the implementation of a proposed sensor for the detection of toluene concentration in toluene–methanol mixture where various concentrations of toluene were analysed.

  3. A Novel Method to Predict Genomic Islands Based on Mean Shift Clustering Algorithm.

    Daniel M de Brito

    Full Text Available Genomic Islands (GIs are regions of bacterial genomes that are acquired from other organisms by the phenomenon of horizontal transfer. These regions are often responsible for many important acquired adaptations of the bacteria, with great impact on their evolution and behavior. Nevertheless, these adaptations are usually associated with pathogenicity, antibiotic resistance, degradation and metabolism. Identification of such regions is of medical and industrial interest. For this reason, different approaches for genomic islands prediction have been proposed. However, none of them are capable of predicting precisely the complete repertory of GIs in a genome. The difficulties arise due to the changes in performance of different algorithms in the face of the variety of nucleotide distribution in different species. In this paper, we present a novel method to predict GIs that is built upon mean shift clustering algorithm. It does not require any information regarding the number of clusters, and the bandwidth parameter is automatically calculated based on a heuristic approach. The method was implemented in a new user-friendly tool named MSGIP--Mean Shift Genomic Island Predictor. Genomes of bacteria with GIs discussed in other papers were used to evaluate the proposed method. The application of this tool revealed the same GIs predicted by other methods and also different novel unpredicted islands. A detailed investigation of the different features related to typical GI elements inserted in these new regions confirmed its effectiveness. Stand-alone and user-friendly versions for this new methodology are available at http://msgip.integrativebioinformatics.me.

  4. Strontium isotopes provide clues for a process shift in base cation dynamics in young volcanic soils

    Bingham, N.; Jackson, M. G.; Bookhagen, B.; Maher, K.; Chadwick, O.

    2015-12-01

    Despite advances in soil development theory based on studies of old soils or over long timescales, little is known about soil thresholds (dramatic changes in soil properties associated with only small shifts in external forcing factors) that might be expressed in young soils (less than 10 kyr). Therefore, we seek to understand infant soil development in a tropical environment through the sourcing of plant available base cations by measuring the strontium (Sr) isotopic composition of the soil exchange complex. Our sampling strategy spans soils in three different precipitation ranges (950-1060 mm, 1180-1210 mm, and 1450-1500) and an array of soil ages from 500 to 7500 years in the Kona region on the island of Hawaii. In Hawaiian soils, 87Sr/86Sr values are determined by a mixture of three components: a mantle-derived component from the lava (0.7034), a rainfall component (0.7093) and a component from continental dust (0.720). Elevation-controlled leaching intensity in the wettest localities produces a decline in the concentration of base cations supplied by basalt and a dilute resupply by rainfall. In the driest sites, where leaching intensity is dramatically reduced, there is a buildup of rainfall-derived extractable Sr in the soil over time. Slow rock weathering rates produce a small rock-derived cation input to the soil. Thus, Sr isotope signatures reflect both the input of rainfall-derived cations and rock-derived cations with values that fall between rainfall and basaltic signatures. Soils in the intermediate precipitation range have Sr isotopic signatures consistent with both the wet and dry trends; suggesting that they lie close to the critical precipitation amount that marks a shift between these two processes. For the Kona region, this transition seems to occur at 1200 mm /yr. In contrast to the clear-cut differentiation in strontium isotopes with precipitation shifts observed in older soils, patterns on these young soils in Kona are complicated by low soil

  5. PHARMACOGENETIC TESTING OPPORTUNITIES IN CARDIOLOGY BASED ON EXOME SEQUENCING

    N. V. Shcherbakova

    2014-01-01

    Full Text Available Aim. To study what cardiac drugs currently have any comments on biomarkers and what information can be obtained by pharmacogenetic testing using data exome sequencing in patients with cardiac diseases.Material and methods. Exome sequencing in random participant of the ATEROGEN IVANOVO study and bioinformatics analysis of the data were performed. Point mutations were annotated using ANNOVAR program, as well as comparison with a number of specialized databases was done on the basis of user protocols.Results. 11 cardiac drugs and 7 genes which variants can influence cardiac drug metabolism were analyzed. According to exome sequencing of the participant we did not reveal allelic variants that require dose regime correction and careful efficacy control.Conclusion. The exome sequencing application is the next step to a wide range of personalized therapy. Future opportunities for improvement of the risk-benefit ratio in each patient are the main purpose of the collection and analysis of pharmacogenetic data.

  6. Spreadsheet-based program for alignment of overlapping DNA sequences.

    Anbazhagan, R; Gabrielson, E

    1999-06-01

    Molecular biology laboratories frequently face the challenge of aligning small overlapping DNA sequences derived from a long DNA segment. Here, we present a short program that can be used to adapt Excel spreadsheets as a tool for aligning DNA sequences, regardless of their orientation. The program runs on any Windows or Macintosh operating system computer with Excel 97 or Excel 98. The program is available for use as an Excel file, which can be downloaded from the BioTechniques Web site. Upon execution, the program opens a specially designed customized workbook and is capable of identifying overlapping regions between two sequence fragments and displaying the sequence alignment. It also performs a number of specialized functions such as recognition of restriction enzyme cutting sites and CpG island mapping without costly specialized software.

  7. Asynchronous error-correcting secure communication scheme based on fractional-order shifting chaotic system

    Chao, Luo

    2015-11-01

    In this paper, a novel digital secure communication scheme is firstly proposed. Different from the usual secure communication schemes based on chaotic synchronization, the proposed scheme employs asynchronous communication which avoids the weakness of synchronous systems and is susceptible to environmental interference. Moreover, as to the transmission errors and data loss in the process of communication, the proposed scheme has the ability to be error-checking and error-correcting in real time. In order to guarantee security, the fractional-order complex chaotic system with the shifting of order is utilized to modulate the transmitted signal, which has high nonlinearity and complexity in both frequency and time domains. The corresponding numerical simulations demonstrate the effectiveness and feasibility of the scheme.

  8. Optimum phase shift in the self-oscillating loop for piezoelectric transformer-based power converters

    Ekhtiari, Marzieh; Zsurzsan, Tiberiu-Gabriel; Andersen, Michael A. E.

    2017-01-01

    A new method is implemented in designing of self-oscillating loop for driving piezoelectric transformers. The implemented method is based on combining both analog and digital control systems. Digitally controlled time delay through the self-oscillating loop results in very precise frequency control...... and ensures optimum operation of the piezoelectric transformer in terms of gain and efficiency. Time delay is implemented digitally for the first time through a 16 bit digital-to-analog converter in the self-oscillating loop. The new design of the delay circuit provides 45 ps time resolution, enabling fine......-grained control of phase in the self-oscillating loop. This allows the control loop to dynamically follow frequency changes of the transformer in each resonant cycle. Ultimately, by selecting the optimum phase shift, maximum efficiency under the load and temperature condition is achievable....

  9. Hybridization and sequencing of nucleic acids using base pair mismatches

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    2001-01-01

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  10. SNBRFinder: A Sequence-Based Hybrid Algorithm for Enhanced Prediction of Nucleic Acid-Binding Residues.

    Yang, Xiaoxia; Wang, Jia; Sun, Jun; Liu, Rong

    2015-01-01

    Protein-nucleic acid interactions are central to various fundamental biological processes. Automated methods capable of reliably identifying DNA- and RNA-binding residues in protein sequence are assuming ever-increasing importance. The majority of current algorithms rely on feature-based prediction, but their accuracy remains to be further improved. Here we propose a sequence-based hybrid algorithm SNBRFinder (Sequence-based Nucleic acid-Binding Residue Finder) by merging a feature predictor SNBRFinderF and a template predictor SNBRFinderT. SNBRFinderF was established using the support vector machine whose inputs include sequence profile and other complementary sequence descriptors, while SNBRFinderT was implemented with the sequence alignment algorithm based on profile hidden Markov models to capture the weakly homologous template of query sequence. Experimental results show that SNBRFinderF was clearly superior to the commonly used sequence profile-based predictor and SNBRFinderT can achieve comparable performance to the structure-based template methods. Leveraging the complementary relationship between these two predictors, SNBRFinder reasonably improved the performance of both DNA- and RNA-binding residue predictions. More importantly, the sequence-based hybrid prediction reached competitive performance relative to our previous structure-based counterpart. Our extensive and stringent comparisons show that SNBRFinder has obvious advantages over the existing sequence-based prediction algorithms. The value of our algorithm is highlighted by establishing an easy-to-use web server that is freely accessible at http://ibi.hzau.edu.cn/SNBRFinder.

  11. Influence of CeO2 NPs on biological phosphorus removal and bacterial community shifts in a sequencing batch biofilm reactor with the differential effects of molecular oxygen

    Xu, Yi; Wang, Chao; Hou, Jun; Wang, Peifang; You, Guoxiang; Miao, Lingzhan; Lv, Bowen; Yang, Yangyang

    2016-01-01

    The effects of CeO 2 nanoparticles (CeO 2 NPs) on a sequencing batch biofilm reactor (SBBR) with established biological phosphorus (P) removal were investigated from the processes of anaerobic P release and aerobic P uptake. At low concentration (0.1 mg/L), no significant impact was observed on total phosphorus (TP) removal after operating for 8 h. However, at a concentration of 20 mg/L, TP removal efficiency decreased from 83.68% to 55.88% and 16.76% when the CeO 2 NPs were added at the beginning of the anaerobic and aerobic periods, respectively. Further studies illustrated that the inhibition of the specific P release rate was caused by the reversible states of Ce 3+ and Ce 4+ , which inhibited the activity of exopolyphosphatase (PPX) and transformation of poly-β-hydoxyalkanoates (PHA) and glycogen, as well as the uptake of volatile fatty acids (VFAs). The decrease in the specific P uptake rate was mainly attributed to the significantly suppressed energy generation and decreased abundance of Burkholderia caused by excess reactive oxygen species. The removal of chemical oxygen demand (COD) was not influenced by CeO 2 NPs under aerobic conditions, due to the increased abundance of Acetobacter and Acidocella after exposure. The inhibitory effects of CeO 2 NPs with molecular oxygen were reduced after anaerobic exposure due to the enhanced particle size and the presence of Ce 3+ . - Highlights: • CeO 2 NPs (20 mg/L) had a notable toxicity effect on P removal in SBBR system. • The deteriorated SPRR was caused by the inhibited key enzyme activity (PPX). • The decreased SPUR was caused by the bacterial community shifts. • Ce ions converting and excess ROS generation are related toxicity mechanisms.

  12. Highly accurate fluorogenic DNA sequencing with information theory-based error correction.

    Chen, Zitian; Zhou, Wenxiong; Qiao, Shuo; Kang, Li; Duan, Haifeng; Xie, X Sunney; Huang, Yanyi

    2017-12-01

    Eliminating errors in next-generation DNA sequencing has proved challenging. Here we present error-correction code (ECC) sequencing, a method to greatly improve sequencing accuracy by combining fluorogenic sequencing-by-synthesis (SBS) with an information theory-based error-correction algorithm. ECC embeds redundancy in sequencing reads by creating three orthogonal degenerate sequences, generated by alternate dual-base reactions. This is similar to encoding and decoding strategies that have proved effective in detecting and correcting errors in information communication and storage. We show that, when combined with a fluorogenic SBS chemistry with raw accuracy of 98.1%, ECC sequencing provides single-end, error-free sequences up to 200 bp. ECC approaches should enable accurate identification of extremely rare genomic variations in various applications in biology and medicine.

  13. LYAPUNOV-Based Sensor Failure Detection and Recovery for the Reverse Water Gas Shift Process

    Haralambous, Michael G.

    2002-01-01

    Livingstone, a model-based AI software system, is planned for use in the autonomous fault diagnosis, reconfiguration, and control of the oxygen-producing reverse water gas shift (RWGS) process test-bed located in the Applied Chemistry Laboratory at KSC. In this report the RWGS process is first briefly described and an overview of Livingstone is given. Next, a Lyapunov-based approach for detecting and recovering from sensor failures, differing significantly from that used by Livingstone, is presented. In this new method, models used are in t e m of the defining differential equations of system components, thus differing from the qualitative, static models used by Livingstone. An easily computed scalar inequality constraint, expressed in terms of sensed system variables, is used to determine the existence of sensor failures. In the event of sensor failure, an observer/estimator is used for determining which sensors have failed. The theory underlying the new approach is developed. Finally, a recommendation is made to use the Lyapunov-based approach to complement the capability of Livingstone and to use this combination in the RWGS process.

  14. A Novel Multi-Digital Camera System Based on Tilt-Shift Photography Technology

    Sun, Tao; Fang, Jun-yong; Zhao, Dong; Liu, Xue; Tong, Qing-xi

    2015-01-01

    Multi-digital camera systems (MDCS) are constantly being improved to meet the increasing requirement of high-resolution spatial data. This study identifies the insufficiencies of traditional MDCSs and proposes a new category MDCS based on tilt-shift photography to improve ability of the MDCS to acquire high-accuracy spatial data. A prototype system, including two or four tilt-shift cameras (TSC, camera model: Nikon D90), is developed to validate the feasibility and correctness of proposed MDCS. Similar to the cameras of traditional MDCSs, calibration is also essential for TSC of new MDCS. The study constructs indoor control fields and proposes appropriate calibration methods for TSC, including digital distortion model (DDM) approach and two-step calibrated strategy. The characteristics of TSC are analyzed in detail via a calibration experiment; for example, the edge distortion of TSC. Finally, the ability of the new MDCS to acquire high-accuracy spatial data is verified through flight experiments. The results of flight experiments illustrate that geo-position accuracy of prototype system achieves 0.3 m at a flight height of 800 m, and spatial resolution of 0.15 m. In addition, results of the comparison between the traditional (MADC II) and proposed MDCS demonstrate that the latter (0.3 m) provides spatial data with higher accuracy than the former (only 0.6 m) under the same conditions. We also take the attitude that using higher accuracy TSC in the new MDCS should further improve the accuracy of the photogrammetry senior product. PMID:25835187

  15. Rates for parallax-shifted microlensing events from ground-based observations of the galactic bulge

    Buchalter, A.; Kamionkowski, M.

    1997-01-01

    The parallax effect in ground-based microlensing (ML) observations consists of a distortion to the standard ML light curve arising from the Earth's orbital motion. This can be used to partially remove the degeneracy among the system parameters in the event timescale, t 0 . In most cases, the resolution in current ML surveys is not accurate enough to observe this effect, but parallax could conceivably be detected with frequent follow-up observations of ML events in progress, providing the photometric errors are small enough. We calculate the expected fraction of ML events where the shape distortions will be observable by such follow-up observations, adopting Galactic models for the lens and source distributions that are consistent with observed microlensing timescale distributions. We study the dependence of the rates for parallax-shifted events on the frequency of follow-up observations and on the precision of the photometry. For example, we find that for hourly observations with typical photometric errors of 0.01 mag, 6% of events where the lens is in the bulge, and 31% of events where the lens is in the disk (or ∼10% of events overall), will give rise to a measurable parallax shift at the 95% confidence level. These fractions may be increased by improved photometric accuracy and increased sampling frequency. While long-duration events are favored, the surveys would be effective in picking out such distortions in events with timescales as low as t 0 ∼20 days. We study the dependence of these fractions on the assumed disk mass function and find that a higher parallax incidence is favored by mass functions with higher mean masses. Parallax measurements yield the reduced transverse speed, v, which gives both the relative transverse speed and lens mass as a function of distance. We give examples of the accuracies with which v may be measured in typical parallax events. (Abstract Truncated)

  16. BPP: a sequence-based algorithm for branch point prediction.

    Zhang, Qing; Fan, Xiaodan; Wang, Yejun; Sun, Ming-An; Shao, Jianlin; Guo, Dianjing

    2017-10-15

    Although high-throughput sequencing methods have been proposed to identify splicing branch points in the human genome, these methods can only detect a small fraction of the branch points subject to the sequencing depth, experimental cost and the expression level of the mRNA. An accurate computational model for branch point prediction is therefore an ongoing objective in human genome research. We here propose a novel branch point prediction algorithm that utilizes information on the branch point sequence and the polypyrimidine tract. Using experimentally validated data, we demonstrate that our proposed method outperforms existing methods. Availability and implementation: https://github.com/zhqingit/BPP. djguo@cuhk.edu.hk. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  17. Predicting tissue-specific expressions based on sequence characteristics

    Paik, Hyojung; Ryu, Tae Woo; Heo, Hyoungsam; Seo, Seungwon; Lee, Doheon; Hur, Cheolgoo

    2011-01-01

    In multicellular organisms, including humans, understanding expression specificity at the tissue level is essential for interpreting protein function, such as tissue differentiation. We developed a prediction approach via generated sequence features from overrepresented patterns in housekeeping (HK) and tissue-specific (TS) genes to classify TS expression in humans. Using TS domains and transcriptional factor binding sites (TFBSs), sequence characteristics were used as indices of expressed tissues in a Random Forest algorithm by scoring exclusive patterns considering the biological intuition; TFBSs regulate gene expression, and the domains reflect the functional specificity of a TS gene. Our proposed approach displayed better performance than previous attempts and was validated using computational and experimental methods.

  18. Predicting tissue-specific expressions based on sequence characteristics

    Paik, Hyojung

    2011-04-30

    In multicellular organisms, including humans, understanding expression specificity at the tissue level is essential for interpreting protein function, such as tissue differentiation. We developed a prediction approach via generated sequence features from overrepresented patterns in housekeeping (HK) and tissue-specific (TS) genes to classify TS expression in humans. Using TS domains and transcriptional factor binding sites (TFBSs), sequence characteristics were used as indices of expressed tissues in a Random Forest algorithm by scoring exclusive patterns considering the biological intuition; TFBSs regulate gene expression, and the domains reflect the functional specificity of a TS gene. Our proposed approach displayed better performance than previous attempts and was validated using computational and experimental methods.

  19. Autonomously generating operations sequences for a Mars Rover using AI-based planning

    Sherwood, Rob; Mishkin, Andrew; Estlin, Tara; Chien, Steve; Backes, Paul; Cooper, Brian; Maxwell, Scott; Rabideau, Gregg

    2001-01-01

    This paper discusses a proof-of-concept prototype for ground-based automatic generation of validated rover command sequences from highlevel science and engineering activities. This prototype is based on ASPEN, the Automated Scheduling and Planning Environment. This Artificial Intelligence (AI) based planning and scheduling system will automatically generate a command sequence that will execute within resource constraints and satisfy flight rules.

  20. Shift Colors

    Publications & News Shift Colors Pages default Sign In NPC Logo Banner : Shift Colors Search Navy Personnel Command > Reference Library > Publications & News > Shift Colors Top Link Bar Navy Personnel Library Expand Reference Library Quick Launch Shift Colors Shift Colors Archives Mailing Address How to

  1. Two-step phase retrieval algorithm based on the quotient of inner products of phase-shifting interferograms

    Niu, Wenhu; Zhong, Liyun; Sun, Peng; Zhang, Wangping; Lu, Xiaoxu

    2015-01-01

    Based on the quotient of inner products, a simple and rapid algorithm is proposed to retrieve the measured phase from two-frame phase-shifting interferograms with unknown phase shifts. Firstly, we filtered the background of interferograms by a Gaussian high-pass filter. Secondly, we calculated the inner products of the background-filtered interferograms. Thirdly, we extracted the phase shifts by the quotient of the inner products then calculated the measured phase by an arctangent function. Finally, we tested the performance of the proposed algorithm by the simulation calculation and the experimental research for a vortex phase plate. Both the simulation calculation and the experimental result showed that the phase shifts and the measured phase with high accuracy can be obtained by the proposed algorithm rapidly and conveniently. (paper)

  2. Illumina-based de novo transcriptome sequencing and analysis

    In the present study, we used Illumina HiSeq technology to perform de novo assembly of heart and musk gland transcriptomes from the Chinese forest musk deer. A total of 239,383 transcripts and 176,450 unigenes were obtained, of which 37,329 unigenes were matched to known sequences in the NCBI nonredundant ...

  3. Whole-genome sequence-based analysis of thyroid function

    Taylor, Peter N.; Porcu, Eleonora; Chew, Shelby

    2015-01-01

    Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N = 2,287). Using additional whole-genome seque...

  4. An EM based approach for motion segmentation of video sequence

    Zhao, Wei; Roos, Nico; Pan, Zhigeng; Skala, Vaclav

    2016-01-01

    Motions are important features for robot vision as we live in a dynamic world. Detecting moving objects is crucial for mobile robots and computer vision systems. This paper investigates an architecture for the segmentation of moving objects from image sequences. Objects are represented as groups of

  5. Phylogenetic relationships of Salmonella based on rRNA sequences

    Christensen, H.; Nordentoft, Steen; Olsen, J.E.

    1998-01-01

    separated by 16S rRNA analysis and found to be closely related to the Escherichia coli and Shigella complex by both 16S and 23S rRNA analyses. The diphasic serotypes S. enterica subspp. I and VI were separated from the monophasic serotypes subspp. IIIa and IV, including S. bongori, by 23S rRNA sequence...

  6. Instruction sequence based non-uniform complexity classes

    Bergstra, J.A.; Middelburg, C.A.

    2013-01-01

    We present an approach to non-uniform complexity in which single-pass instruction sequences play a key part, and answer various questions that arise from this approach. We introduce several kinds of non-uniform complexity classes. One kind includes a counterpart of the well-known non-uniform

  7. Simple sequence repeat (SSR)-based genetic variability among ...

    The objective of this study was to compare if simple sequence repeat (SSR) markers could correctly identify peanut genotypes with difference in specific leaf weight (SLW) and relative water content (RWC). Four peanut genotypes and two water regimes (FC and 1/3 available water; 1/3 AW) were arranged in factorial ...

  8. Demodulation of acoustic telemetry binary phase shift keying signal based on high-order Duffing system

    Yan Bing-Nan; Liu Chong-Xin; Ni Jun-Kang; Zhao Liang

    2016-01-01

    In order to grasp the downhole situation immediately, logging while drilling (LWD) technology is adopted. One of the LWD technologies, called acoustic telemetry, can be successfully applied to modern drilling. It is critical for acoustic telemetry technology that the signal is successfully transmitted to the ground. In this paper, binary phase shift keying (BPSK) is used to modulate carrier waves for the transmission and a new BPSK demodulation scheme based on Duffing chaos is investigated. Firstly, a high-order system is given in order to enhance the signal detection capability and it is realized through building a virtual circuit using an electronic workbench (EWB). Secondly, a new BPSK demodulation scheme is proposed based on the intermittent chaos phenomena of the new Duffing system. Finally, a system variable crossing zero-point equidistance method is proposed to obtain the phase difference between the system and the BPSK signal. Then it is determined that the digital signal transmitted from the bottom of the well is ‘0’ or ‘1’. The simulation results show that the demodulation method is feasible. (paper)

  9. Reversible Data Hiding Using Two Marked Images Based on Adaptive Coefficient-Shifting Algorithm

    Ching-Yu Yang

    2012-01-01

    Full Text Available This paper proposes a novel form of reversible data hiding using two marked images by employing the adaptive coefficient-shifting (ACS algorithm. The proposed ACS algorithm consists of three parts: the minimum-preserved scheme, the minimum-preserved with squeezing scheme, and the base-value embedding scheme. More specifically, each input block of a host image can be encoded to two stego-blocks according to three predetermined rules by the above three schemes. Simulations validate that the proposed method not only completely recovers the host medium but also losslessly extracts the hidden message. The proposed method can handle various kinds of images without any occurrence of overflow/underflow. Moreover, the payload and peak signal-to-noise ratio (PSNR performance of the proposed method is superior to that of the conventional invertible data hiding schemes. Furthermore, the number of shadows required by the proposed method is less than that required by the approaches which are based upon secret image sharing with reversible steganography.

  10. Telecentric 3D profilometry based on phase-shifting fringe projection.

    Li, Dong; Liu, Chunyang; Tian, Jindong

    2014-12-29

    Three dimensional shape measurement in the microscopic range becomes increasingly important with the development of micro manufacturing technology. Microscopic fringe projection techniques offer a fast, robust, and full-field measurement for field sizes from approximately 1 mm2 to several cm2. However, the depth of field is very small due to the imaging of non-telecentric microscope, which is often not sufficient to measure the complete depth of a 3D-object. And the calibration of phase-to-depth conversion is complicated which need a precision translation stage and a reference plane. In this paper, we propose a novel telecentric phase-shifting projected fringe profilometry for small and thick objects. Telecentric imaging extends the depth of field approximately to millimeter order, which is much larger than that of microscopy. To avoid the complicated phase-to-depth conversion in microscopic fringe projection, we develop a new system calibration method of camera and projector based on telecentric imaging model. Based on these, a 3D reconstruction of telecentric imaging is presented with stereovision aided by fringe phase maps. Experiments demonstrated the feasibility and high measurement accuracy of the proposed system for thick object.

  11. Monitoring Bone Tissue Engineered (BTE) Constructs Based on the Shifting Metabolism of Differentiating Stem Cells.

    Simmons, Aaron D; Sikavitsas, Vassilios I

    2018-01-01

    Ever-increasing demand for bone grafts necessitates the realization of clinical implementation of bone tissue engineered constructs. The predominant hurdle to implementation remains to be securing FDA approval, based on the lack of viable methods for the rigorous monitoring of said constructs. The study presented herein details a method for such monitoring based on the shifting metabolism of mesenchymal stem cells (MSCs) as they differentiate into osteoblasts. To that end, rat MSCs seeded on 85% porous spunbonded poly(L-lactic acid) scaffolds were cultured in flow perfusion bioreactors with baseline or osteoinductive media, and levels of key physio-metabolic markers (oxygen, glucose, osteoprotegerin, and osteocalcin) were monitored throughout culture. Comparison of these non-destructively obtained values and current standard destructive analyses demonstrated key trends useful for the concurrent real-time monitoring of construct cellularity and maturation. Principle among these is the elucidation of the ratio of the rates of oxygen uptake to glucose consumption as a powerful quality marker. This ratio, supported on a physiological basis, has been shown herein to be reliable in the determination of both construct maturation (defined as osteoblastic differentiation and accompanying mineralization) and construct cellularity. Supplementary monitoring of OPG and OCN are shown to provide further validation of such metrics.

  12. A DNA Structure-Based Bionic Wavelet Transform and Its Application to DNA Sequence Analysis

    Fei Chen

    2003-01-01

    Full Text Available DNA sequence analysis is of great significance for increasing our understanding of genomic functions. An important task facing us is the exploration of hidden structural information stored in the DNA sequence. This paper introduces a DNA structure-based adaptive wavelet transform (WT – the bionic wavelet transform (BWT – for DNA sequence analysis. The symbolic DNA sequence can be separated into four channels of indicator sequences. An adaptive symbol-to-number mapping, determined from the structural feature of the DNA sequence, was introduced into WT. It can adjust the weight value of each channel to maximise the useful energy distribution of the whole BWT output. The performance of the proposed BWT was examined by analysing synthetic and real DNA sequences. Results show that BWT performs better than traditional WT in presenting greater energy distribution. This new BWT method should be useful for the detection of the latent structural features in future DNA sequence analysis.

  13. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli

    Hill, N. J.; Schölkopf, B.

    2012-04-01

    We report on the development and online testing of an electroencephalogram-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects' modulation of N1 and P3 ERP components measured during single 5 s stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare ‘oddball’ stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject's attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology.

  14. Optical image encryption using chaos-based compressed sensing and phase-shifting interference in fractional wavelet domain

    Liu, Qi; Wang, Ying; Wang, Jun; Wang, Qiong-Hua

    2018-02-01

    In this paper, a novel optical image encryption system combining compressed sensing with phase-shifting interference in fractional wavelet domain is proposed. To improve the encryption efficiency, the volume data of original image are decreased by compressed sensing. Then the compacted image is encoded through double random phase encoding in asymmetric fractional wavelet domain. In the encryption system, three pseudo-random sequences, generated by three-dimensional chaos map, are used as the measurement matrix of compressed sensing and two random-phase masks in the asymmetric fractional wavelet transform. It not only simplifies the keys to storage and transmission, but also enhances our cryptosystem nonlinearity to resist some common attacks. Further, holograms make our cryptosystem be immune to noises and occlusion attacks, which are obtained by two-step-only quadrature phase-shifting interference. And the compression and encryption can be achieved in the final result simultaneously. Numerical experiments have verified the security and validity of the proposed algorithm.

  15. A Effect on Environment and Countermeasures in accordance with a Shift to a Knowledge-Based Economy

    Jang, Ki Bok; Moon, Hyun Ju; Jeong, Hyun Keun; Kim, Tae Yol [Korea Environment Institute, Seoul (Korea)

    2000-12-01

    The importance of knowledge has been being more stressed now than any other time. How efficiently and effectively knowledge is created, spread, and applied is an important point to secure the competitiveness of an individual economic unit as well as to grow nation's economy. For that reason, the Government has been promoting various policies to accelerate a shift to a knowledge-based economy, establishing 'a Strategy for Knowledge-Based Economic Development', pan-governments level. Companies also have been positively accepting 'a Knowledge-Based Management' as a new strategy of managing companies. Accordingly, only knowledge-based industries, including a high technology manufacturing industry and an information/communication industry, are not sharply grow, but a knowledge-based activity in individual economic activities, such as R and D, has been expanding its share. As such a shift to a knowledge-based economy, it is expected that there are lots of effects in many-sided fields, society, culture, and politics, as well as economy. Based on due consideration to such various effects, the strategy for knowledge-based economic development and the policies on the related fields have to be promoted with a balance. An environmental field also cannot be exceptional. However, there has not yet been a concrete examination on which significance a shift to a knowledge-based economy environmentally has. The purpose of this study is to examine the effects on environment according to a shift to a knowledge-based economy and to find a countermeasure under the awareness of such problems. Anyhow, I hope that the results and the countermeasures from this study can contribute to achieving a shift to an environment-centered and knowledge-based economy. 82 refs., 30 figs., 10 tabs.

  16. Chemical shift homology in proteins

    Potts, Barbara C.M.; Chazin, Walter J.

    1998-01-01

    The degree of chemical shift similarity for homologous proteins has been determined from a chemical shift database of over 50 proteins representing a variety of families and folds, and spanning a wide range of sequence homologies. After sequence alignment, the similarity of the secondary chemical shifts of C α protons was examined as a function of amino acid sequence identity for 37 pairs of structurally homologous proteins. A correlation between sequence identity and secondary chemical shift rmsd was observed. Important insights are provided by examining the sequence identity of homologous proteins versus percentage of secondary chemical shifts that fall within 0.1 and 0.3 ppm thresholds. These results begin to establish practical guidelines for the extent of chemical shift similarity to expect among structurally homologous proteins

  17. Dynamics-based selective 2D 1H/1H chemical shift correlation spectroscopy under ultrafast MAS conditions

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-01

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of 1H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of 1H/1H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  18. Dynamics-based selective 2D 1H/1H chemical shift correlation spectroscopy under ultrafast MAS conditions

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-01-01

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of 1 H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of 1 H/ 1 H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials

  19. MR-based attenuation correction in brain PET based on UTE sequences

    Cabello, Jorge; Nekolla, Stephan G; Ziegler, Sibylle I [Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München (Germany)

    2014-07-29

    Attenuation correction (AC) in brain PET/MR has recently emerged as one of the challenging tasks in the PET/MR field. It has been shown that to ignore the attenuation produced by bone can lead to errors ranging from 5-30% in regions close to bone structures. Since the information provided by the MR signal is not directly related to tissue attenuation, alternative methods have to be developed. Signal from bone tissue is difficult to measure given its short transverse relaxation time (T2). Ultrashort-echo time (UTE) pulse sequences were developed to measure signal from tissues with short T2. A combination of two consecutive UTE echoes has been used in several works to measure signal from bone tissue. The first echo is able to measure signal from bone tissue in addition to soft tissue, while the second echo contains most of the soft tissue contained in the first echo but not bone. In this work we extract the attenuation information from the difference between the logarithm of two images obtained after applying two consecutive UTE pulse sequences using the mMR scanner (Siemens Healthcare). Subsequently, image processing techniques are applied to reduce the noise and extract air cavities within the head. The resulting image is converted to linear attenuation coefficients, generating what is known as µ-map, to be used during reconstruction. For comparison purposes PET/CT scans of the same patients were acquired prior to the PET/MR scan. Additional µ-maps obtained for comparison were extracted from a Dixon sequence (used in clinical routine) and an additional µ-map calculated by the scanner based on UTE pulse sequences. Preliminary quantitative results measured in the cerebellum, using the value obtained with CT-based AC as reference, show differences of 34% without AC, 13% using the Dixon-based and UTE-based provided by the scanner, and 0.8% with the AC strategy presented here.

  20. Novel DNA sequence detection method based on fluorescence energy transfer

    Kobayashi, S.; Tamiya, E.; Karube, I.

    1987-01-01

    Recently the detection of specific DNA sequence, DNA analysis, has been becoming more important for diagnosis of viral genomes causing infections disease and human sequences related to inherited disorders. These methods typically involve electrophoresis, the immobilization of DNA on a solid support, hybridization to a complementary probe, the detection using labeled with /sup 32/P or nonisotopically with a biotin-avidin-enzyme system, and so on. These techniques are highly effective, but they are very time-consuming and expensive. A principle of fluorescene energy transfer is that the light energy from an excited donor (fluorophore) is transferred to an acceptor (fluorophore), if the acceptor exists in the vicinity of the donor and the excitation spectrum of donor overlaps the emission spectrum of acceptor. In this study, the fluorescence energy transfer was applied to the detection of specific DNA sequence using the hybridization method. The analyte, single-stranded DNA labeled with the donor fluorophore is hybridized to a probe DNA labeled with the acceptor. Because of the complementary DNA duplex formation, two fluorophores became to be closed to each other, and the fluorescence energy transfer was occurred

  1. Urban Density Indices Using Mean Shift-Based Upsampled Elevetion Data

    Charou, E.; Gyftakis, S.; Bratsolis, E.; Tsenoglou, T.; Papadopoulou, Th. D.; Vassilas, N.

    2015-04-01

    Urban density is an important factor for several fields, e.g. urban design, planning and land management. Modern remote sensors deliver ample information for the estimation of specific urban land classification classes (2D indicators), and the height of urban land classification objects (3D indicators) within an Area of Interest (AOI). In this research, two of these indicators, Building Coverage Ratio (BCR) and Floor Area Ratio (FAR) are numerically and automatically derived from high-resolution airborne RGB orthophotos and LiDAR data. In the pre-processing step the low resolution elevation data are fused with the high resolution optical data through a mean-shift based discontinuity preserving smoothing algorithm. The outcome is an improved normalized digital surface model (nDSM) is an upsampled elevation data with considerable improvement regarding region filling and "straightness" of elevation discontinuities. In a following step, a Multilayer Feedforward Neural Network (MFNN) is used to classify all pixels of the AOI to building or non-building categories. For the total surface of the block and the buildings we consider the number of their pixels and the surface of the unit pixel. Comparisons of the automatically derived BCR and FAR indicators with manually derived ones shows the applicability and effectiveness of the methodology proposed.

  2. Shifting to Value-Based Principles in Sickness Insurance: Challenges in Changing Roles and Culture.

    Ståhl, Christian; Andersson, Frieda

    2018-02-12

    Purpose Management principles in insurance agencies influence how benefits are administered, and how return to work processes for clients are managed and supported. This study analyses a change in managerial principles within the Swedish Sickness Insurance Agency, and how this has influenced the role of insurance officials in relation to discretion and accountability, and their relationship to clients. Methods The study is based on a qualitative approach comprising 57 interviews with officials and managers in four insurance offices. Results The reforms have led to a change in how public and professional accountability is defined, where the focus is shifted from routines and performance measurements toward professional discretion and the quality of encounters. However, the results show how these changes are interpreted differently across different layers of the organization, where New Public Management principles prevail in how line managers give feedback on and reward the work of officials. Conclusions The study illustrates how the introduction of new principles to promote officials' discretion does not easily bypass longstanding management strategies, in this case managing accountability through top-down performance measures. The study points out the importance for public organizations to reconcile new organizational principles with the current organizational culture and how this is manifested through managerial styles, which may be resistant to change. Promoting client-oriented and value-driven approaches in client work hence needs to acknowledge the importance of organizational culture, and to secure that changes are reflected in organizational procedures and routines.

  3. Deblending using an improved apex-shifted hyperbolic radon transform based on the Stolt migration operator

    Gong, Xiangbo; Feng, Fei; Jiao, Xuming; Wang, Shengchao

    2017-10-01

    Simultaneous seismic source separation, also known as deblending, is an essential process for blended acquisition. With the assumption that the blending noise is coherent in the common shot domain but is incoherent in other domains, traditional deblending methods are commonly performed in the common receiver, common midpoint or common offset domain. In this paper, we propose an improved apex-shifted hyperbolic radon transform (ASHRT) to deblend directly in the common shot domain. A time-axis stretch strategy named Stolt-stretch is introduced to overcome the limitation of the constant velocity assumption of Stolt-based operators. To improve the sparsity in the transform domain, a total variation (TV) norm inversion is implemented to enhance the energy convergence in the radon panel. Because of highly efficient Stolt migration and the demigration operator in the frequency-wavenumber domain, as well as the flexible geometry condition of the source-receiver, this approach is quite suitable for quality control (QC) during streamer acquisition. The synthetic and field examples demonstrate that our proposition is robust and efficient.

  4. A Dynamic Programming-Based Heuristic for the Shift Design Problem in Airport Ground Handling

    Clausen, Tommy

    We consider the heterogeneous shift design problem for a workforce with multiple skills, where work shifts are created to cover a given demand as well as possible while minimizing cost and satisfying a flexible set of constraints. We focus mainly on applications within airport ground handling whe...... programming that allows flexibility in modeling the workforce. Parameters allow a planner to determine the level of demand coverage that best fulfills the requirements of the organization. Results are presented from several diverse real-life ground handling instances.......We consider the heterogeneous shift design problem for a workforce with multiple skills, where work shifts are created to cover a given demand as well as possible while minimizing cost and satisfying a flexible set of constraints. We focus mainly on applications within airport ground handling where...

  5. Nature-Based Tourism Elicits a Phenotypic Shift in the Coping Abilities of Fish.

    Geffroy, Benjamin; Sadoul, Bastien; Bouchareb, Amine; Prigent, Sylvain; Bourdineaud, Jean-Paul; Gonzalez-Rey, Maria; Morais, Rosana N; Mela, Maritana; Nobre Carvalho, Lucélia; Bessa, Eduardo

    2018-01-01

    Nature-based tourism is gaining extensive popularity, increasing the intensity and frequency of human-wildlife contacts. As a consequence, behavioral and physiological alterations were observed in most exposed animals. However, while the majority of these studies investigated the effects of punctual exposure to tourists, the consequences of constant exposition to humans in the wild remains overlooked. This is an important gap considering the exponential interest for recreational outdoor activities. To infer long-term effects of intensive tourism, we capitalized on Odontostilbe pequira , a short-lived sedentary Tetra fish who spends its life close to humans, on which it feeds on dead skin. Hence, those fish are constantly exposed to tourists throughout their lifecycle. Here we provide an integrated picture of the whole phenomenon by investigating, for the first time, the expression of genes involved in stress response and neurogenesis, as well as behavioral and hormonal responses of animals consistently exposed to tourists. Gene expression of the mineralocorticoid (and cortisol) receptor ( mr ) and the neurogenic differentiation factor ( NeuroD ) were significantly higher in fish sampled in the touristic zone compared to those sampled in the control zone. Additionally, after a simulated stress in artificial and controlled conditions, those fish previously exposed to visitors produced more cortisol and presented increased behavioral signs of stress compared to their non-exposed conspecifics. Overall, nature-based tourism appeared to shift selection pressures, favoring a sensitive phenotype that does not thrive under natural conditions. The ecological implications of this change in coping style remain, nevertheless, an open question.

  6. Nature-Based Tourism Elicits a Phenotypic Shift in the Coping Abilities of Fish

    Benjamin Geffroy

    2018-02-01

    Full Text Available Nature-based tourism is gaining extensive popularity, increasing the intensity and frequency of human-wildlife contacts. As a consequence, behavioral and physiological alterations were observed in most exposed animals. However, while the majority of these studies investigated the effects of punctual exposure to tourists, the consequences of constant exposition to humans in the wild remains overlooked. This is an important gap considering the exponential interest for recreational outdoor activities. To infer long-term effects of intensive tourism, we capitalized on Odontostilbe pequira, a short-lived sedentary Tetra fish who spends its life close to humans, on which it feeds on dead skin. Hence, those fish are constantly exposed to tourists throughout their lifecycle. Here we provide an integrated picture of the whole phenomenon by investigating, for the first time, the expression of genes involved in stress response and neurogenesis, as well as behavioral and hormonal responses of animals consistently exposed to tourists. Gene expression of the mineralocorticoid (and cortisol receptor (mr and the neurogenic differentiation factor (NeuroD were significantly higher in fish sampled in the touristic zone compared to those sampled in the control zone. Additionally, after a simulated stress in artificial and controlled conditions, those fish previously exposed to visitors produced more cortisol and presented increased behavioral signs of stress compared to their non-exposed conspecifics. Overall, nature-based tourism appeared to shift selection pressures, favoring a sensitive phenotype that does not thrive under natural conditions. The ecological implications of this change in coping style remain, nevertheless, an open question.

  7. Nature-Based Tourism Elicits a Phenotypic Shift in the Coping Abilities of Fish

    Geffroy, Benjamin; Sadoul, Bastien; Bouchareb, Amine; Prigent, Sylvain; Bourdineaud, Jean-Paul; Gonzalez-Rey, Maria; Morais, Rosana N.; Mela, Maritana; Nobre Carvalho, Lucélia; Bessa, Eduardo

    2018-01-01

    Nature-based tourism is gaining extensive popularity, increasing the intensity and frequency of human-wildlife contacts. As a consequence, behavioral and physiological alterations were observed in most exposed animals. However, while the majority of these studies investigated the effects of punctual exposure to tourists, the consequences of constant exposition to humans in the wild remains overlooked. This is an important gap considering the exponential interest for recreational outdoor activities. To infer long-term effects of intensive tourism, we capitalized on Odontostilbe pequira, a short-lived sedentary Tetra fish who spends its life close to humans, on which it feeds on dead skin. Hence, those fish are constantly exposed to tourists throughout their lifecycle. Here we provide an integrated picture of the whole phenomenon by investigating, for the first time, the expression of genes involved in stress response and neurogenesis, as well as behavioral and hormonal responses of animals consistently exposed to tourists. Gene expression of the mineralocorticoid (and cortisol) receptor (mr) and the neurogenic differentiation factor (NeuroD) were significantly higher in fish sampled in the touristic zone compared to those sampled in the control zone. Additionally, after a simulated stress in artificial and controlled conditions, those fish previously exposed to visitors produced more cortisol and presented increased behavioral signs of stress compared to their non-exposed conspecifics. Overall, nature-based tourism appeared to shift selection pressures, favoring a sensitive phenotype that does not thrive under natural conditions. The ecological implications of this change in coping style remain, nevertheless, an open question. PMID:29459828

  8. Validation of model-based brain shift correction in neurosurgery via intraoperative magnetic resonance imaging: preliminary results

    Luo, Ma; Frisken, Sarah F.; Weis, Jared A.; Clements, Logan W.; Unadkat, Prashin; Thompson, Reid C.; Golby, Alexandra J.; Miga, Michael I.

    2017-03-01

    The quality of brain tumor resection surgery is dependent on the spatial agreement between preoperative image and intraoperative anatomy. However, brain shift compromises the aforementioned alignment. Currently, the clinical standard to monitor brain shift is intraoperative magnetic resonance (iMR). While iMR provides better understanding of brain shift, its cost and encumbrance is a consideration for medical centers. Hence, we are developing a model-based method that can be a complementary technology to address brain shift in standard resections, with resource-intensive cases as referrals for iMR facilities. Our strategy constructs a deformation `atlas' containing potential deformation solutions derived from a biomechanical model that account for variables such as cerebrospinal fluid drainage and mannitol effects. Volumetric deformation is estimated with an inverse approach that determines the optimal combinatory `atlas' solution fit to best match measured surface deformation. Accordingly, preoperative image is updated based on the computed deformation field. This study is the latest development to validate our methodology with iMR. Briefly, preoperative and intraoperative MR images of 2 patients were acquired. Homologous surface points were selected on preoperative and intraoperative scans as measurement of surface deformation and used to drive the inverse problem. To assess the model accuracy, subsurface shift of targets between preoperative and intraoperative states was measured and compared to model prediction. Considering subsurface shift above 3 mm, the proposed strategy provides an average shift correction of 59% across 2 cases. While further improvements in both the model and ability to validate with iMR are desired, the results reported are encouraging.

  9. High-Throughput Sequencing Based Methods of RNA Structure Investigation

    Kielpinski, Lukasz Jan

    In this thesis we describe the development of four related methods for RNA structure probing that utilize massive parallel sequencing. Using them, we were able to gather structural data for multiple, long molecules simultaneously. First, we have established an easy to follow experimental...... and computational protocol for detecting the reverse transcription termination sites (RTTS-Seq). This protocol was subsequently applied to hydroxyl radical footprinting of three dimensional RNA structures to give a probing signal that correlates well with the RNA backbone solvent accessibility. Moreover, we applied...

  10. Discrimination of multilocus sequence typing-based Campylobacter jejuni subgroups by MALDI-TOF mass spectrometry.

    Zautner, Andreas Erich; Masanta, Wycliffe Omurwa; Tareen, Abdul Malik; Weig, Michael; Lugert, Raimond; Groß, Uwe; Bader, Oliver

    2013-11-07

    Campylobacter jejuni, the most common bacterial pathogen causing gastroenteritis, shows a wide genetic diversity. Previously, we demonstrated by the combination of multi locus sequence typing (MLST)-based UPGMA-clustering and analysis of 16 genetic markers that twelve different C. jejuni subgroups can be distinguished. Among these are two prominent subgroups. The first subgroup contains the majority of hyperinvasive strains and is characterized by a dimeric form of the chemotaxis-receptor Tlp7(m+c). The second has an extended amino acid metabolism and is characterized by the presence of a periplasmic asparaginase (ansB) and gamma-glutamyl-transpeptidase (ggt). Phyloproteomic principal component analysis (PCA) hierarchical clustering of MALDI-TOF based intact cell mass spectrometry (ICMS) spectra was able to group particular C. jejuni subgroups of phylogenetic related isolates in distinct clusters. Especially the aforementioned Tlp7(m+c)(+) and ansB+/ ggt+ subgroups could be discriminated by PCA. Overlay of ICMS spectra of all isolates led to the identification of characteristic biomarker ions for these specific C. jejuni subgroups. Thus, mass peak shifts can be used to identify the C. jejuni subgroup with an extended amino acid metabolism. Although the PCA hierarchical clustering of ICMS-spectra groups the tested isolates into a different order as compared to MLST-based UPGMA-clustering, the isolates of the indicator-groups form predominantly coherent clusters. These clusters reflect phenotypic aspects better than phylogenetic clustering, indicating that the genes corresponding to the biomarker ions are phylogenetically coupled to the tested marker genes. Thus, PCA clustering could be an additional tool for analyzing the relatedness of bacterial isolates.

  11. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli

    Hill, N J; Schölkopf, B

    2012-01-01

    We report on the development and online testing of an EEG-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects’ modulation of N1 and P3 ERP components measured during single 5-second stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare “oddball” stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly-known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention-modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject’s attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology. PMID:22333135

  12. SNBRFinder: A Sequence-Based Hybrid Algorithm for Enhanced Prediction of Nucleic Acid-Binding Residues.

    Xiaoxia Yang

    Full Text Available Protein-nucleic acid interactions are central to various fundamental biological processes. Automated methods capable of reliably identifying DNA- and RNA-binding residues in protein sequence are assuming ever-increasing importance. The majority of current algorithms rely on feature-based prediction, but their accuracy remains to be further improved. Here we propose a sequence-based hybrid algorithm SNBRFinder (Sequence-based Nucleic acid-Binding Residue Finder by merging a feature predictor SNBRFinderF and a template predictor SNBRFinderT. SNBRFinderF was established using the support vector machine whose inputs include sequence profile and other complementary sequence descriptors, while SNBRFinderT was implemented with the sequence alignment algorithm based on profile hidden Markov models to capture the weakly homologous template of query sequence. Experimental results show that SNBRFinderF was clearly superior to the commonly used sequence profile-based predictor and SNBRFinderT can achieve comparable performance to the structure-based template methods. Leveraging the complementary relationship between these two predictors, SNBRFinder reasonably improved the performance of both DNA- and RNA-binding residue predictions. More importantly, the sequence-based hybrid prediction reached competitive performance relative to our previous structure-based counterpart. Our extensive and stringent comparisons show that SNBRFinder has obvious advantages over the existing sequence-based prediction algorithms. The value of our algorithm is highlighted by establishing an easy-to-use web server that is freely accessible at http://ibi.hzau.edu.cn/SNBRFinder.

  13. Elman RNN based classification of proteins sequences on account of their mutual information.

    Mishra, Pooja; Nath Pandey, Paras

    2012-10-21

    In the present work we have employed the method of estimating residue correlation within the protein sequences, by using the mutual information (MI) of adjacent residues, based on structural and solvent accessibility properties of amino acids. The long range correlation between nonadjacent residues is improved by constructing a mutual information vector (MIV) for a single protein sequence, like this each protein sequence is associated with its corresponding MIVs. These MIVs are given to Elman RNN to obtain the classification of protein sequences. The modeling power of MIV was shown to be significantly better, giving a new approach towards alignment free classification of protein sequences. We also conclude that sequence structural and solvent accessible property based MIVs are better predictor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. The PROSECCO server for chemical shift predictions in ordered and disordered proteins.

    Sanz-Hernández, Máximo; De Simone, Alfonso

    2017-11-01

    The chemical shifts measured in solution-state and solid-state nuclear magnetic resonance (NMR) are powerful probes of the structure and dynamics of protein molecules. The exploitation of chemical shifts requires methods to correlate these data with the protein structures and sequences. We present here an approach to calculate accurate chemical shifts in both ordered and disordered proteins using exclusively the information contained in their sequences. Our sequence-based approach, protein sequences and chemical shift correlations (PROSECCO), achieves the accuracy of the most advanced structure-based methods in the characterization of chemical shifts of folded proteins and improves the state of the art in the study of disordered proteins. Our analyses revealed fundamental insights on the structural information carried by NMR chemical shifts of structured and unstructured protein states.

  15. Cluster-Based Multipolling Sequencing Algorithm for Collecting RFID Data in Wireless LANs

    Choi, Woo-Yong; Chatterjee, Mainak

    2015-03-01

    With the growing use of RFID (Radio Frequency Identification), it is becoming important to devise ways to read RFID tags in real time. Access points (APs) of IEEE 802.11-based wireless Local Area Networks (LANs) are being integrated with RFID networks that can efficiently collect real-time RFID data. Several schemes, such as multipolling methods based on the dynamic search algorithm and random sequencing, have been proposed. However, as the number of RFID readers associated with an AP increases, it becomes difficult for the dynamic search algorithm to derive the multipolling sequence in real time. Though multipolling methods can eliminate the polling overhead, we still need to enhance the performance of the multipolling methods based on random sequencing. To that extent, we propose a real-time cluster-based multipolling sequencing algorithm that drastically eliminates more than 90% of the polling overhead, particularly so when the dynamic search algorithm fails to derive the multipolling sequence in real time.

  16. A base composition analysis of natural patterns for the preprocessing of metagenome sequences.

    Bonham-Carter, Oliver; Ali, Hesham; Bastola, Dhundy

    2013-01-01

    On the pretext that sequence reads and contigs often exhibit the same kinds of base usage that is also observed in the sequences from which they are derived, we offer a base composition analysis tool. Our tool uses these natural patterns to determine relatedness across sequence data. We introduce spectrum sets (sets of motifs) which are permutations of bacterial restriction sites and the base composition analysis framework to measure their proportional content in sequence data. We suggest that this framework will increase the efficiency during the pre-processing stages of metagenome sequencing and assembly projects. Our method is able to differentiate organisms and their reads or contigs. The framework shows how to successfully determine the relatedness between these reads or contigs by comparison of base composition. In particular, we show that two types of organismal-sequence data are fundamentally different by analyzing their spectrum set motif proportions (coverage). By the application of one of the four possible spectrum sets, encompassing all known restriction sites, we provide the evidence to claim that each set has a different ability to differentiate sequence data. Furthermore, we show that the spectrum set selection having relevance to one organism, but not to the others of the data set, will greatly improve performance of sequence differentiation even if the fragment size of the read, contig or sequence is not lengthy. We show the proof of concept of our method by its application to ten trials of two or three freshly selected sequence fragments (reads and contigs) for each experiment across the six organisms of our set. Here we describe a novel and computationally effective pre-processing step for metagenome sequencing and assembly tasks. Furthermore, our base composition method has applications in phylogeny where it can be used to infer evolutionary distances between organisms based on the notion that related organisms often have much conserved code.

  17. Complex programmable logic device based alarm sequencer for nuclear power plants

    Khedkar, Ravindra; Solomon, J. Selva; KrishnaKumar, B.

    2001-01-01

    Complex Programmable Logic Device based Alarm Sequencer is an instrument, which detects alarms, memorizes them and displays the sequences of occurrence of alarms. It caters to sixteen alarm signals and distinguishes the sequence among any two alarms with a time resolution of 1 ms. The system described has been designed for continuous operation in process plants, nuclear power plants etc. The system has been tested and found to be working satisfactorily. (author)

  18. LookSeq: A browser-based viewer for deep sequencing data

    Manske, Heinrich Magnus; Kwiatkowski, Dominic P.

    2009-01-01

    Sequencing a genome to great depth can be highly informative about heterogeneity within an individual or a population. Here we address the problem of how to visualize the multiple layers of information contained in deep sequencing data. We propose an interactive AJAX-based web viewer for browsing large data sets of aligned sequence reads. By enabling seamless browsing and fast zooming, the LookSeq program assists the user to assimilate information at different levels of resolution, from an ov...

  19. Recent advances in nanopore-based nucleic acid analysis and sequencing

    Shi, Jidong; Fang, Ying; Hou, Junfeng

    2016-01-01

    Nanopore-based sequencing platforms are transforming the field of genomic science. This review (containing 116 references) highlights some recent progress on nanopore-based nucleic acid analysis and sequencing. These studies are classified into three categories, biological, solid-state, and hybrid nanopores, according to their nanoporous materials. We begin with a brief description of the translocation-based detection mechanism of nanopores. Next, specific examples are given in nanopore-based nucleic acid analysis and sequencing, with an emphasis on identifying strategies that can improve the resolution of nanopores. This review concludes with a discussion of future research directions that will advance the practical applications of nanopore technology. (author)

  20. A resonance shift prediction based on the Boltzmann-Ehrenfest principle for cylindrical cavities with a rigid sphere

    Orozco Santillan, Arturo; Cutanda Henríquez, Vicente

    2008-01-01

    devices. It is shown that the use of the Boltzmann-Ehrenfest principle of adiabatic invariance allows the derivation of an expression for the resonance frequency shift in a simpler and more direct way than a method based on a Green’s function reported in the literature. The position of the sphere can...

  1. Output Legitimacy Deficits and the Inclusive Framework of the OECD/G20 Base Erosion and Profit Shifting Initiative

    Mosquera, Valderrama I.J.

    2018-01-01

    In this article, the author considers output legitimacy deficits in the context of the Inclusive Framework of the OECD/G20 Base Erosion and Profit Shifting Initiative, with special emphasis on the issues and problems that this raises for developing countries.

  2. Fiber-Optic Refractometer Based on an Etched High-Q ?-Phase-Shifted Fiber-Bragg-Grating

    Zhang, Qi; Ianno, Natale J.; Han, Ming

    2013-01-01

    We present a compact and highly-sensitive fiber-optic refractometer based on a high-Q p-phase-shifted fiber-Bragg-grating (pFBG) that is chemically etched to the core of the fiber. Due to the p phase-shift, a strong pFBG forms a high-Q optical resonator and the reflection spectrum features an extremely narrow notch that can be used for highly sensitivity refractive index measurement. The etched pFBG demonstrated here has a diameter of ~9.3 μm and a length of only 7 mm, leading to a refractive...

  3. NMR-based Enantiodifferentiation of Chiral trans-2-Phenylcyclopropane Derivatives Using a Chiral Lanthanide Shift Reagent

    Cho, Nam Sook; Kim, Hyun Sook; Song, Mi Sook

    2011-01-01

    In contrast with optical methods, there is no need to characterize the pure enantiomers. Instead, the NMR method makes use of chiral reagents that convert a mixture of enantiomers into a mixture of diastereomeric complexes. Integration of the resulting NMR spectra yields a direct measurement of enantiomeric purity as long as there is a sufficiently large difference between the chemical shifts of the two diastereoisomeric complexes to produce baseline-resolved peaks. Absolute enantiomeric configurations can also be determined using this method. Chiral lanthanide shift reagents have been used since the 1970s to form addition complexes with various compounds through interactions with electron donor sites. Lanthanide-induced, pseudo-contact shifts (LIS) are a function of the distance, r, between the nuclei under observation and the lanthanide center, and the angle, θ, between the line connecting the metal ion with the observed nucleus and the line representing the CLSR magnetic axis

  4. Spin-echo based diagonal peak suppression in solid-state MAS NMR homonuclear chemical shift correlation spectra

    Wang, Kaiyu; Zhang, Zhiyong; Ding, Xiaoyan; Tian, Fang; Huang, Yuqing; Chen, Zhong; Fu, Riqiang

    2018-02-01

    The feasibility of using the spin-echo based diagonal peak suppression method in solid-state MAS NMR homonuclear chemical shift correlation experiments is demonstrated. A complete phase cycling is designed in such a way that in the indirect dimension only the spin diffused signals are evolved, while all signals not involved in polarization transfer are refocused for cancellation. A data processing procedure is further introduced to reconstruct this acquired spectrum into a conventional two-dimensional homonuclear chemical shift correlation spectrum. A uniformly 13C, 15N labeled Fmoc-valine sample and the transmembrane domain of a human protein, LR11 (sorLA), in native Escherichia coli membranes have been used to illustrate the capability of the proposed method in comparison with standard 13C-13C chemical shift correlation experiments.

  5. An Analysis of Delay-based and Integrator-based Sequence Detectors for Grid-Connected Converters

    Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2017-01-01

    -signal cancellation operators are the main members of the delay-based sequence detectors. The aim of this paper is to provide a theoretical and experimental comparative study between integrator and delay based sequence detectors. The theoretical analysis is conducted based on the small-signal modelling......Detecting and separating positive and negative sequence components of the grid voltage or current is of vital importance in the control of grid-connected power converters, HVDC systems, etc. To this end, several techniques have been proposed in recent years. These techniques can be broadly...... classified into two main classes: The integrator-based techniques and Delay-based techniques. The complex-coefficient filter-based technique, dual second-order generalized integrator-based method, multiple reference frame approach are the main members of the integrator-based sequence detector and the delay...

  6. National Drought Policy: Shifting the Paradigm from Crisis to Risk-based Management

    Wilhite, D. A.; Sivakumar, M. K.; Stefanski, R.

    2011-12-01

    Drought is a normal part of climate for virtually all of the world's climatic regimes. To better address the risks associated with this hazard and societal vulnerability, there must be a dramatic paradigm shift in our approach to drought management in the coming decade in the light of the increasing frequency of droughts and projections of increased severity and duration of these events in the future for many regions, especially in the developing world. Addressing this challenge will require an improved awareness of drought as a natural hazard, the establishment of integrated drought monitoring and early warning systems, a higher level of preparedness that fully incorporates risk-based management, and the adoption of national drought policies that are directed at increasing the coping capacity and resilience of populations to future drought episodes. The World Meteorological Organization (WMO), in partnership with other United Nations' agencies, the National Drought Mitigation Center at the University of Nebraska, NOAA, the U.S. Department of Agriculture, and other partners, is currently launching a program to organize a High Level Meeting on National Drought Policy (HMNDP) in March 2013 to encourage the development of national drought policies through the development of a compendium of key policy elements. The key objectives of a national drought policy are to: (1) encourage vulnerable economic sectors and population groups to adopt self-reliant measures that promote risk management; (2) promote sustainable use of the agricultural and natural resource base; and (3) facilitate early recovery from drought through actions consistent with national drought policy objectives. The key elements of a drought policy framework are policy and governance, including political will; addressing risk and improving early warnings, including vulnerability analysis, impact assessment, and communication; mitigation and preparedness, including the application of effective and

  7. Cloning and sequencing of the gene coding for alcohol dehydrogenase of Bacillus stearothermophilus and rational shift of the optimum pH.

    Sakoda, H; Imanaka, T

    1992-01-01

    Using Bacillus subtilis as a host and pTB524 as a vector plasmid, we cloned the thermostable alcohol dehydrogenase (ADH-T) gene (adhT) from Bacillus stearothermophilus NCA1503 and determined its nucleotide sequence. The deduced amino acid sequence (337 amino acids) was compared with the sequences of ADHs from four different origins. The amino acid residues responsible for the catalytic activity of horse liver ADH had been clarified on the basis of three-dimensional structure. Since those cata...

  8. Comparison of ompP5 sequence-based typing and pulsed-filed gel ...

    In this study, comparison of the outer membrane protein P5 gene (ompP5) sequence-based typing with pulsed-field gel electrophoresis (PFGE) for the genotyping of Haemophilus parasuis, the 15 serovar reference strains and 43 isolates were investigated. When comparing the two methods, 31 ompP5 sequence types ...

  9. pyPaSWAS : Python-based multi-core CPU and GPU sequence alignment

    Warris, Sven; Timal, N Roshan N; Kempenaar, Marcel; Poortinga, Arne M; van de Geest, Henri; Varbanescu, Ana L; Nap, Jan-Peter

    2018-01-01

    BACKGROUND: Our previously published CUDA-only application PaSWAS for Smith-Waterman (SW) sequence alignment of any type of sequence on NVIDIA-based GPUs is platform-specific and therefore adopted less than could be. The OpenCL language is supported more widely and allows use on a variety of

  10. COI (cytochrome oxidase-I) sequence based studies of Carangid fishes from Kakinada coast, India.

    Persis, M; Chandra Sekhar Reddy, A; Rao, L M; Khedkar, G D; Ravinder, K; Nasruddin, K

    2009-09-01

    Mitochondrial DNA, cytochrome oxidase-1 gene sequences were analyzed for species identification and phylogenetic relationship among the very high food value and commercially important Indian carangid fish species. Sequence analysis of COI gene very clearly indicated that all the 28 fish species fell into five distinct groups, which are genetically distant from each other and exhibited identical phylogenetic reservation. All the COI gene sequences from 28 fishes provide sufficient phylogenetic information and evolutionary relationship to distinguish the carangid species unambiguously. This study proves the utility of mtDNA COI gene sequence based approach in identifying fish species at a faster pace.

  11. Sparc: a sparsity-based consensus algorithm for long erroneous sequencing reads

    Chengxi Ye

    2016-06-01

    Full Text Available Motivation. The third generation sequencing (3GS technology generates long sequences of thousands of bases. However, its current error rates are estimated in the range of 15–40%, significantly higher than those of the prevalent next generation sequencing (NGS technologies (less than 1%. Fundamental bioinformatics tasks such as de novo genome assembly and variant calling require high-quality sequences that need to be extracted from these long but erroneous 3GS sequences. Results. We describe a versatile and efficient linear complexity consensus algorithm Sparc to facilitate de novo genome assembly. Sparc builds a sparse k-mer graph using a collection of sequences from a targeted genomic region. The heaviest path which approximates the most likely genome sequence is searched through a sparsity-induced reweighted graph as the consensus sequence. Sparc supports using NGS and 3GS data together, which leads to significant improvements in both cost efficiency and computational efficiency. Experiments with Sparc show that our algorithm can efficiently provide high-quality consensus sequences using both PacBio and Oxford Nanopore sequencing technologies. With only 30× PacBio data, Sparc can reach a consensus with error rate <0.5%. With the more challenging Oxford Nanopore data, Sparc can also achieve similar error rate when combined with NGS data. Compared with the existing approaches, Sparc calculates the consensus with higher accuracy, and uses approximately 80% less memory and time. Availability. The source code is available for download at https://github.com/yechengxi/Sparc.

  12. SUGAR: graphical user interface-based data refiner for high-throughput DNA sequencing.

    Sato, Yukuto; Kojima, Kaname; Nariai, Naoki; Yamaguchi-Kabata, Yumi; Kawai, Yosuke; Takahashi, Mamoru; Mimori, Takahiro; Nagasaki, Masao

    2014-08-08

    Next-generation sequencers (NGSs) have become one of the main tools for current biology. To obtain useful insights from the NGS data, it is essential to control low-quality portions of the data affected by technical errors such as air bubbles in sequencing fluidics. We develop a software SUGAR (subtile-based GUI-assisted refiner) which can handle ultra-high-throughput data with user-friendly graphical user interface (GUI) and interactive analysis capability. The SUGAR generates high-resolution quality heatmaps of the flowcell, enabling users to find possible signals of technical errors during the sequencing. The sequencing data generated from the error-affected regions of a flowcell can be selectively removed by automated analysis or GUI-assisted operations implemented in the SUGAR. The automated data-cleaning function based on sequence read quality (Phred) scores was applied to a public whole human genome sequencing data and we proved the overall mapping quality was improved. The detailed data evaluation and cleaning enabled by SUGAR would reduce technical problems in sequence read mapping, improving subsequent variant analysis that require high-quality sequence data and mapping results. Therefore, the software will be especially useful to control the quality of variant calls to the low population cells, e.g., cancers, in a sample with technical errors of sequencing procedures.

  13. SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics.

    Will, Sebastian; Otto, Christina; Miladi, Milad; Möhl, Mathias; Backofen, Rolf

    2015-08-01

    RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard for their analysis based on simultaneous alignment and folding suffers from extreme time complexity of [Formula: see text]. Subsequently, numerous faster 'Sankoff-style' approaches have been suggested. Commonly, the performance of such methods relies on sequence-based heuristics that restrict the search space to optimal or near-optimal sequence alignments; however, the accuracy of sequence-based methods breaks down for RNAs with sequence identities below 60%. Alignment approaches like LocARNA that do not require sequence-based heuristics, have been limited to high complexity ([Formula: see text] quartic time). Breaking this barrier, we introduce the novel Sankoff-style algorithm 'sparsified prediction and alignment of RNAs based on their structure ensembles (SPARSE)', which runs in quadratic time without sequence-based heuristics. To achieve this low complexity, on par with sequence alignment algorithms, SPARSE features strong sparsification based on structural properties of the RNA ensembles. Following PMcomp, SPARSE gains further speed-up from lightweight energy computation. Although all existing lightweight Sankoff-style methods restrict Sankoff's original model by disallowing loop deletions and insertions, SPARSE transfers the Sankoff algorithm to the lightweight energy model completely for the first time. Compared with LocARNA, SPARSE achieves similar alignment and better folding quality in significantly less time (speedup: 3.7). At similar run-time, it aligns low sequence identity instances substantially more accurate than RAF, which uses sequence-based heuristics. © The Author 2015. Published by Oxford University Press.

  14. SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics

    Will, Sebastian; Otto, Christina; Miladi, Milad; Möhl, Mathias; Backofen, Rolf

    2015-01-01

    Motivation: RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard for their analysis based on simultaneous alignment and folding suffers from extreme time complexity of O(n6). Subsequently, numerous faster ‘Sankoff-style’ approaches have been suggested. Commonly, the performance of such methods relies on sequence-based heuristics that restrict the search space to optimal or near-optimal sequence alignments; however, the accuracy of sequence-based methods breaks down for RNAs with sequence identities below 60%. Alignment approaches like LocARNA that do not require sequence-based heuristics, have been limited to high complexity (≥ quartic time). Results: Breaking this barrier, we introduce the novel Sankoff-style algorithm ‘sparsified prediction and alignment of RNAs based on their structure ensembles (SPARSE)’, which runs in quadratic time without sequence-based heuristics. To achieve this low complexity, on par with sequence alignment algorithms, SPARSE features strong sparsification based on structural properties of the RNA ensembles. Following PMcomp, SPARSE gains further speed-up from lightweight energy computation. Although all existing lightweight Sankoff-style methods restrict Sankoff’s original model by disallowing loop deletions and insertions, SPARSE transfers the Sankoff algorithm to the lightweight energy model completely for the first time. Compared with LocARNA, SPARSE achieves similar alignment and better folding quality in significantly less time (speedup: 3.7). At similar run-time, it aligns low sequence identity instances substantially more accurate than RAF, which uses sequence-based heuristics. Availability and implementation: SPARSE is freely available at http://www.bioinf.uni-freiburg.de/Software/SPARSE. Contact: backofen@informatik.uni-freiburg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25838465

  15. Rescheduling nursing shifts: scoping the challenge and examining the potential of mathematical model based tools.

    Clark, Alistair; Moule, Pam; Topping, Annie; Serpell, Martin

    2015-05-01

    To review research in the literature on nursing shift scheduling / rescheduling, and to report key issues identified in a consultation exercise with managers in four English National Health Service trusts to inform the development of mathematical tools for rescheduling decision-making. Shift rescheduling is unrecognised as an everyday time-consuming management task with different imperatives from scheduling. Poor rescheduling decisions can have quality, cost and morale implications. A systematic critical literature review identified rescheduling issues and existing mathematic modelling tools. A consultation exercise with nursing managers examined the complex challenges associated with rescheduling. Minimal research exists on rescheduling compared with scheduling. Poor rescheduling can result in greater disruption to planned nursing shifts and may impact negatively on the quality and cost of patient care, and nurse morale and retention. Very little research examines management challenges or mathematical modelling for rescheduling. Shift rescheduling is a complex and frequent management activity that is more challenging than scheduling. Mathematical modelling may have potential as a tool to support managers to minimise rescheduling disruption. The lack of specific methodological support for rescheduling that takes into account its complexity, increases the likelihood of harm for patients and stress for nursing staff and managers. © 2013 John Wiley & Sons Ltd.

  16. A Computer-Based Laboratory Project for the Study of Stimulus Generalization and Peak Shift

    Derenne, Adam; Loshek, Eevett

    2009-01-01

    This paper describes materials designed for classroom projects on stimulus generalization and peak shift. A computer program (originally written in QuickBASIC) is used for data collection and a Microsoft Excel file with macros organizes the raw data on a spreadsheet and creates generalization gradients. The program is designed for use with human…

  17. Graph-based sequence annotation using a data integration approach

    Pesch Robert

    2008-06-01

    Full Text Available The automated annotation of data from high throughput sequencing and genomics experiments is a significant challenge for bioinformatics. Most current approaches rely on sequential pipelines of gene finding and gene function prediction methods that annotate a gene with information from different reference data sources. Each function prediction method contributes evidence supporting a functional assignment. Such approaches generally ignore the links between the information in the reference datasets. These links, however, are valuable for assessing the plausibility of a function assignment and can be used to evaluate the confidence in a prediction. We are working towards a novel annotation system that uses the network of information supporting the function assignment to enrich the annotation process for use by expert curators and predicting the function of previously unannotated genes. In this paper we describe our success in the first stages of this development. We present the data integration steps that are needed to create the core database of integrated reference databases (UniProt, PFAM, PDB, GO and the pathway database Ara- Cyc which has been established in the ONDEX data integration system. We also present a comparison between different methods for integration of GO terms as part of the function assignment pipeline and discuss the consequences of this analysis for improving the accuracy of gene function annotation.

  18. Graph-based sequence annotation using a data integration approach.

    Pesch, Robert; Lysenko, Artem; Hindle, Matthew; Hassani-Pak, Keywan; Thiele, Ralf; Rawlings, Christopher; Köhler, Jacob; Taubert, Jan

    2008-08-25

    The automated annotation of data from high throughput sequencing and genomics experiments is a significant challenge for bioinformatics. Most current approaches rely on sequential pipelines of gene finding and gene function prediction methods that annotate a gene with information from different reference data sources. Each function prediction method contributes evidence supporting a functional assignment. Such approaches generally ignore the links between the information in the reference datasets. These links, however, are valuable for assessing the plausibility of a function assignment and can be used to evaluate the confidence in a prediction. We are working towards a novel annotation system that uses the network of information supporting the function assignment to enrich the annotation process for use by expert curators and predicting the function of previously unannotated genes. In this paper we describe our success in the first stages of this development. We present the data integration steps that are needed to create the core database of integrated reference databases (UniProt, PFAM, PDB, GO and the pathway database Ara-Cyc) which has been established in the ONDEX data integration system. We also present a comparison between different methods for integration of GO terms as part of the function assignment pipeline and discuss the consequences of this analysis for improving the accuracy of gene function annotation. The methods and algorithms presented in this publication are an integral part of the ONDEX system which is freely available from http://ondex.sf.net/.

  19. An efficient binomial model-based measure for sequence comparison and its application.

    Liu, Xiaoqing; Dai, Qi; Li, Lihua; He, Zerong

    2011-04-01

    Sequence comparison is one of the major tasks in bioinformatics, which could serve as evidence of structural and functional conservation, as well as of evolutionary relations. There are several similarity/dissimilarity measures for sequence comparison, but challenges remains. This paper presented a binomial model-based measure to analyze biological sequences. With help of a random indicator, the occurrence of a word at any position of sequence can be regarded as a random Bernoulli variable, and the distribution of a sum of the word occurrence is well known to be a binomial one. By using a recursive formula, we computed the binomial probability of the word count and proposed a binomial model-based measure based on the relative entropy. The proposed measure was tested by extensive experiments including classification of HEV genotypes and phylogenetic analysis, and further compared with alignment-based and alignment-free measures. The results demonstrate that the proposed measure based on binomial model is more efficient.

  20. AlignMiner: a Web-based tool for detection of divergent regions in multiple sequence alignments of conserved sequences

    Claros M Gonzalo

    2010-06-01

    Full Text Available Abstract Background Multiple sequence alignments are used to study gene or protein function, phylogenetic relations, genome evolution hypotheses and even gene polymorphisms. Virtually without exception, all available tools focus on conserved segments or residues. Small divergent regions, however, are biologically important for specific quantitative polymerase chain reaction, genotyping, molecular markers and preparation of specific antibodies, and yet have received little attention. As a consequence, they must be selected empirically by the researcher. AlignMiner has been developed to fill this gap in bioinformatic analyses. Results AlignMiner is a Web-based application for detection of conserved and divergent regions in alignments of conserved sequences, focusing particularly on divergence. It accepts alignments (protein or nucleic acid obtained using any of a variety of algorithms, which does not appear to have a significant impact on the final results. AlignMiner uses different scoring methods for assessing conserved/divergent regions, Entropy being the method that provides the highest number of regions with the greatest length, and Weighted being the most restrictive. Conserved/divergent regions can be generated either with respect to the consensus sequence or to one master sequence. The resulting data are presented in a graphical interface developed in AJAX, which provides remarkable user interaction capabilities. Users do not need to wait until execution is complete and can.even inspect their results on a different computer. Data can be downloaded onto a user disk, in standard formats. In silico and experimental proof-of-concept cases have shown that AlignMiner can be successfully used to designing specific polymerase chain reaction primers as well as potential epitopes for antibodies. Primer design is assisted by a module that deploys several oligonucleotide parameters for designing primers "on the fly". Conclusions AlignMiner can be used

  1. ABI Base Recall: Automatic Correction and Ends Trimming of DNA Sequences.

    Elyazghi, Zakaria; Yazouli, Loubna El; Sadki, Khalid; Radouani, Fouzia

    2017-12-01

    Automated DNA sequencers produce chromatogram files in ABI format. When viewing chromatograms, some ambiguities are shown at various sites along the DNA sequences, because the program implemented in the sequencing machine and used to call bases cannot always precisely determine the right nucleotide, especially when it is represented by either a broad peak or a set of overlaying peaks. In such cases, a letter other than A, C, G, or T is recorded, most commonly N. Thus, DNA sequencing chromatograms need manual examination: checking for mis-calls and truncating the sequence when errors become too frequent. The purpose of this paper is to develop a program allowing the automatic correction of these ambiguities. This application is a Web-based program powered by Shiny and runs under R platform for an easy exploitation. As a part of the interface, we added the automatic ends clipping option, alignment against reference sequences, and BLAST. To develop and test our tool, we collected several bacterial DNA sequences from different laboratories within Institut Pasteur du Maroc and performed both manual and automatic correction. The comparison between the two methods was carried out. As a result, we note that our program, ABI base recall, accomplishes good correction with a high accuracy. Indeed, it increases the rate of identity and coverage and minimizes the number of mismatches and gaps, hence it provides solution to sequencing ambiguities and saves biologists' time and labor.

  2. Fragment-based {sup 13}C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods

    Hartman, Joshua D.; Beran, Gregory J. O., E-mail: gregory.beran@ucr.edu [Department of Chemistry, University of California, Riverside, California 92521 (United States); Monaco, Stephen; Schatschneider, Bohdan [The Pennsylvania State University, The Eberly Campus, 2201 University Dr, Lemont Furnace, Pennsylvania 15456 (United States)

    2015-09-14

    We assess the quality of fragment-based ab initio isotropic {sup 13}C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic {sup 13}C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.

  3. A Window Into Clinical Next-Generation Sequencing-Based Oncology Testing Practices.

    Nagarajan, Rakesh; Bartley, Angela N; Bridge, Julia A; Jennings, Lawrence J; Kamel-Reid, Suzanne; Kim, Annette; Lazar, Alexander J; Lindeman, Neal I; Moncur, Joel; Rai, Alex J; Routbort, Mark J; Vasalos, Patricia; Merker, Jason D

    2017-12-01

    - Detection of acquired variants in cancer is a paradigm of precision medicine, yet little has been reported about clinical laboratory practices across a broad range of laboratories. - To use College of American Pathologists proficiency testing survey results to report on the results from surveys on next-generation sequencing-based oncology testing practices. - College of American Pathologists proficiency testing survey results from more than 250 laboratories currently performing molecular oncology testing were used to determine laboratory trends in next-generation sequencing-based oncology testing. - These presented data provide key information about the number of laboratories that currently offer or are planning to offer next-generation sequencing-based oncology testing. Furthermore, we present data from 60 laboratories performing next-generation sequencing-based oncology testing regarding specimen requirements and assay characteristics. The findings indicate that most laboratories are performing tumor-only targeted sequencing to detect single-nucleotide variants and small insertions and deletions, using desktop sequencers and predesigned commercial kits. Despite these trends, a diversity of approaches to testing exists. - This information should be useful to further inform a variety of topics, including national discussions involving clinical laboratory quality systems, regulation and oversight of next-generation sequencing-based oncology testing, and precision oncology efforts in a data-driven manner.

  4. Multifunctional hybrid networks based on self assembling peptide sequences

    Sathaye, Sameer

    The overall aim of this dissertation is to achieve a comprehensive correlation between the molecular level changes in primary amino acid sequences of amphiphilic beta-hairpin peptides and their consequent solution-assembly properties and bulk network hydrogel behavior. This has been accomplished using two broad approaches. In the first approach, amino acid substitutions were made to peptide sequence MAX1 such that the hydrophobic surfaces of the folded beta-hairpins from the peptides demonstrate shape specificity in hydrophobic interactions with other beta-hairpins during the assembly process, thereby causing changes to the peptide nanostructure and bulk rheological properties of hydrogels formed from the peptides. Steric lock and key complementary hydrophobic interactions were designed to occur between two beta-hairpin molecules of a single molecule, LNK1 during beta-sheet fibrillar assembly of LNK1. Experimental results from circular dichroism, transmission electron microscopy and oscillatory rheology collectively indicate that the molecular design of the LNK1 peptide can be assigned the cause of the drastically different behavior of the networks relative to MAX1. The results indicate elimination or significant reduction of fibrillar branching due to steric complementarity in LNK1 that does not exist in MAX1, thus supporting the original hypothesis. As an extension of the designed steric lock and key complementarity between two beta-hairpin molecules of the same peptide molecule. LNK1, three new pairs of peptide molecules LP1-KP1, LP2-KP2 and LP3-KP3 that resemble complementary 'wedge' and 'trough' shapes when folded into beta-hairpins were designed and studied. All six peptides individually and when blended with their corresponding shape complement formed fibrillar nanostructures with non-uniform thickness values. Loose packing in the assembled structures was observed in all the new peptides as compared to the uniform tight packing in MAX1 by SANS analysis. This

  5. Associations between number of consecutive night shifts and impairment of neurobehavioral performance during a subsequent simulated night shift.

    Magee, Michelle; Sletten, Tracey L; Ferguson, Sally A; Grunstein, Ronald R; Anderson, Clare; Kennaway, David J; Lockley, Steven W; Rajaratnam, Shantha Mw

    2016-05-01

    This study aimed to investigate sleep and circadian phase in the relationships between neurobehavioral performance and the number of consecutive shifts worked. Thirty-four shift workers [20 men, mean age 31.8 (SD 10.9) years] worked 2-7 consecutive night shifts immediately prior to a laboratory-based, simulated night shift. For 7 days prior, participants worked their usual shift sequence, and sleep was assessed with logs and actigraphy. Participants completed a 10-minute auditory psychomotor vigilance task (PVT) at the start (~21:00 hours) and end (~07:00 hours) of the simulated night shift. Mean reaction times (RT), number of lapses and RT distribution was compared between those who worked 2-3 consecutive night shifts versus those who worked 4-7 shifts. Following 4-7 shifts, night shift workers had significantly longer mean RT at the start and end of shift, compared to those who worked 2-3 shifts. The slowest and fastest 10% RT were significantly slower at the start, but not end, of shift among participants who worked 4-7 nights. Those working 4-7 nights also demonstrated a broader RT distribution at the start and end of shift and had significantly slower RT based on cumulative distribution analysis (5 (th), 25 (th), 50 (th), 75 (th)percentiles at the start of shift; 75th percentile at the end of shift). No group differences in sleep parameters were found for 7 days and 24 hours prior to the simulated night shift. A greater number of consecutive night shifts has a negative impact on neurobehavioral performance, likely due to cognitive slowing.

  6. Characteristic evaluations of BWR uprate method based on heat balance shift concept

    Kitou, Kazuaki; Aoyama, Motoo; Shiina, Kouji; Sasaki, Hiroshi; Yoshikawa, Kazuhiro

    2007-01-01

    Reactor power uprate of nuclear power plants is an efficient plant operating method. Most BWR plants need the exchange of high pressure turbines when plant thermal power increases over 5% because main steam flow rate exceeds the limitation of inlet steam flow rate of a high pressure turbine. Therefore, the new power uprate method named heat balance shift power uprate method has been developed. This method decreases feedwater temperature with increasing plant thermal power not to increase main steam flower rate. This study clarified that the heat balance shift method could increase plant electric power up to 2.8% compared with conventional power uprate method without the exchange of a high pressure turbine. (author)

  7. High Interlaboratory Reprocucibility of DNA Sequence-based Typing of Bacteria in a Multicenter Study

    Sousa, MA de; Boye, Kit; Lencastre, H de

    2006-01-01

    Current DNA amplification-based typing methods for bacterial pathogens often lack interlaboratory reproducibility. In this international study, DNA sequence-based typing of the Staphylococcus aureus protein A gene (spa, 110 to 422 bp) showed 100% intra- and interlaboratory reproducibility without...... extensive harmonization of protocols for 30 blind-coded S. aureus DNA samples sent to 10 laboratories. Specialized software for automated sequence analysis ensured a common typing nomenclature....

  8. Desynchronization Chaos Shift Keying Method Based on the Error Second Derivative and Its Security Analysis

    Čelikovský, Sergej; Lynnyk, Volodymyr

    2012-01-01

    Roč. 22, č. 9 (2012), 1250231-1-1250231-11 ISSN 0218-1274 R&D Projects: GA ČR(CZ) GAP103/12/1794 Institutional support: RVO:67985556 Keywords : Nonlinear system * desynchronization * chaos shift keying * generalized Lorenz system Subject RIV: BC - Control Systems Theory Impact factor: 0.921, year: 2012 http://library.utia.cas.cz/separaty/2012/TR/celikovsky-0381701.pdf

  9. Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters.

    Lan, Haidong; Chan, Yuandong; Xu, Kai; Schmidt, Bertil; Peng, Shaoliang; Liu, Weiguo

    2016-07-19

    Computing alignments between two or more sequences are common operations frequently performed in computational molecular biology. The continuing growth of biological sequence databases establishes the need for their efficient parallel implementation on modern accelerators. This paper presents new approaches to high performance biological sequence database scanning with the Smith-Waterman algorithm and the first stage of progressive multiple sequence alignment based on the ClustalW heuristic on a Xeon Phi-based compute cluster. Our approach uses a three-level parallelization scheme to take full advantage of the compute power available on this type of architecture; i.e. cluster-level data parallelism, thread-level coarse-grained parallelism, and vector-level fine-grained parallelism. Furthermore, we re-organize the sequence datasets and use Xeon Phi shuffle operations to improve I/O efficiency. Evaluations show that our method achieves a peak overall performance up to 220 GCUPS for scanning real protein sequence databanks on a single node consisting of two Intel E5-2620 CPUs and two Intel Xeon Phi 7110P cards. It also exhibits good scalability in terms of sequence length and size, and number of compute nodes for both database scanning and multiple sequence alignment. Furthermore, the achieved performance is highly competitive in comparison to optimized Xeon Phi and GPU implementations. Our implementation is available at https://github.com/turbo0628/LSDBS-mpi .

  10. K2 and K2*: efficient alignment-free sequence similarity measurement based on Kendall statistics.

    Lin, Jie; Adjeroh, Donald A; Jiang, Bing-Hua; Jiang, Yue

    2018-05-15

    Alignment-free sequence comparison methods can compute the pairwise similarity between a huge number of sequences much faster than sequence-alignment based methods. We propose a new non-parametric alignment-free sequence comparison method, called K2, based on the Kendall statistics. Comparing to the other state-of-the-art alignment-free comparison methods, K2 demonstrates competitive performance in generating the phylogenetic tree, in evaluating functionally related regulatory sequences, and in computing the edit distance (similarity/dissimilarity) between sequences. Furthermore, the K2 approach is much faster than the other methods. An improved method, K2*, is also proposed, which is able to determine the appropriate algorithmic parameter (length) automatically, without first considering different values. Comparative analysis with the state-of-the-art alignment-free sequence similarity methods demonstrates the superiority of the proposed approaches, especially with increasing sequence length, or increasing dataset sizes. The K2 and K2* approaches are implemented in the R language as a package and is freely available for open access (http://community.wvu.edu/daadjeroh/projects/K2/K2_1.0.tar.gz). yueljiang@163.com. Supplementary data are available at Bioinformatics online.

  11. Advances of zeolite based membrane for hydrogen production via water gas shift reaction

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-07-01

    Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.

  12. Refractive shifts in four selected artificial vitreous substitutes based on Gullstrand-Emsley and Liou-Brennan schematic eyes.

    Gao, Qianying; Chen, Xiang; Ge, Jian; Liu, Yongji; Jiang, Zhaoxin; Lin, Zhi; Liu, Yaqin

    2009-07-01

    To determine and compare the refractive shifts based on Gullstrand-Emsley and Liou-Brennan schematic eyes after filling them with four selected artificial vitreous substitutes: silicone oil, heavy silicone oil, hydrogels, and encapsuled balanced salt solution. The optical constants of artificial vitreous body-filled eyes were calculated based on Gullstrand-Emsley and Liou-Brennan schematic eyes with accommodation relaxed. The theoretical refractive shifts in these two models were compared in pars plana vitrectomy (PPV), PPV plus lensectomized and PPV plus intraocular lens (IOL) eyes after four artificial vitreous tamponades. The Gullstrand-Emsley schematic eye shows refractive shifts of +8.710, -4.544, +1.136, and -0.338 D in PPV eyes; +11.044, +20.332, +16.351, and +17.413 D in PPV plus lensectomized eyes; and the need for IOL powers of +22.195, +22.366, +22.292, and +22.312 D in PPV plus IOL eyes in silicone oil, heavy silicone oil, hydrogels, and encapsuled balanced salt solution tamponade eyes, respectively. Similarly, the Liou-Brennan schematic eye induced shifts of +6.260, -3.266, +0.817, and -0.272 D in PPV eyes; +13.181, +20.654, +17.451, and +18.305 D in PPV plus lensectomized eyes; and the need IOL powers of +13.522, +23.767, +19.389, and +20.558 D in PPV plus IOL eyes, respectively. The Gullstrand-Emsley schematic eye is a convenient and accurate model for predicting refractive shifts for hydrogels and encapsuled balanced salt solution substitutes in PPV eyes. The Liou-Brennan schematic eye is recommended for silicone oil and heavy silicone oil in PPV eyes and for all four substitutes in PPV plus lensectomized eyes and PPV plus IOL eyes. In addition, the encapsuled balanced salt solution changes the refraction little in either schematic eye.

  13. Implication of the cause of differences in 3D structures of proteins with high sequence identity based on analyses of amino acid sequences and 3D structures.

    Matsuoka, Masanari; Sugita, Masatake; Kikuchi, Takeshi

    2014-09-18

    Proteins that share a high sequence homology while exhibiting drastically different 3D structures are investigated in this study. Recently, artificial proteins related to the sequences of the GA and IgG binding GB domains of human serum albumin have been designed. These artificial proteins, referred to as GA and GB, share 98% amino acid sequence identity but exhibit different 3D structures, namely, a 3α bundle versus a 4β + α structure. Discriminating between their 3D structures based on their amino acid sequences is a very difficult problem. In the present work, in addition to using bioinformatics techniques, an analysis based on inter-residue average distance statistics is used to address this problem. It was hard to distinguish which structure a given sequence would take only with the results of ordinary analyses like BLAST and conservation analyses. However, in addition to these analyses, with the analysis based on the inter-residue average distance statistics and our sequence tendency analysis, we could infer which part would play an important role in its structural formation. The results suggest possible determinants of the different 3D structures for sequences with high sequence identity. The possibility of discriminating between the 3D structures based on the given sequences is also discussed.

  14. MR imaging of osteonecrosis using frequency selective chemical shift sequences; Neue Aspekte in der MR-Diagnostik der Osteonekrose: Selektive Fett/Wasser-Bildgebung

    Duda, S H [Abt. fuer Radiologische Diagnostik, Tuebingen Univ. (Germany); Laniado, M [Abt. fuer Radiologische Diagnostik, Tuebingen Univ. (Germany); Schick, F [Inst. fuer Physik, Tuebingen Univ. (Germany)

    1994-12-31

    The MR appearance of osteonecrosis was assessed on selective fat- and water images to further evaluate the nature of double-line sign. Conventional T1- and T2-weighted SE and frequency selective chemical shift images of eight patients with avascular necrosis of the femoral head and three patients with bone infarcts were retrospectively reviewed. Eight of 11 patients showed a double-line sign on T2-weighted SE images. In these cases, correlation with selective water images revealed that a chemical shift artifact contributed to appearance and location of the hyperintense line. The authors conclude that chemical shift imaging improves our understanding of the nature of the double-line sign. (orig.) [Deutsch] Das MR-tomographische Erscheinungsbild der Osteonekrose auf selektiven Fett- und Wasserbildern wurde analysiert, um das in der Literatur beschriebene Doppellinienzeichen naeher zu untersuchen. Hierfuer wurden sowohl die herkoemmlichen T1- und T2-gewichteten Spin-Echo-Sequenzen herangezogen, als auch frequenzselektive Bilder, die aufgrund chemischer Verschiebung gewonnen wurden (1,5 T). Es wurden die Untersuchungen von acht Patienten mit avaskulaerer Hueftkopfnekrose und von drei Patienten mit Knocheninfarkten retrospektiv ausgewertet. Acht von 11 Patienten zeigten ein Doppellinienzeichen auf den T2-gewichteten Bildern. Die Korrelation mit den selektiven Wasserbildern ergab, dass durch chemische Verschiebung bedingte Artefakte das Erscheinungsbild und den Ort der hyperintensen Linie beeinflussten. Die Bildgebung mit Hilfe der chemischen Verschiebung verbessert unser Verstaendnis der MRT-Charakteristika der Osteonekrose. (orig.)

  15. Design of all-optical high-order temporal integrators based on multiple-phase-shifted Bragg gratings.

    Asghari, Mohammad H; Azaña, José

    2008-07-21

    In exact analogy with their electronic counterparts, photonic temporal integrators are fundamental building blocks for constructing all-optical circuits for ultrafast information processing and computing. In this work, we introduce a simple and general approach for realizing all-optical arbitrary-order temporal integrators. We demonstrate that the N(th) cumulative time integral of the complex field envelope of an input optical waveform can be obtained by simply propagating this waveform through a single uniform fiber/waveguide Bragg grating (BG) incorporating N pi-phase shifts along its axial profile. We derive here the design specifications of photonic integrators based on multiple-phase-shifted BGs. We show that the phase shifts in the BG structure can be arbitrarily located along the grating length provided that each uniform grating section (sections separated by the phase shifts) is sufficiently long so that its associated peak reflectivity reaches nearly 100%. The resulting designs are demonstrated by numerical simulations assuming all-fiber implementations. Our simulations show that the proposed approach can provide optical operation bandwidths in the tens-of-GHz regime using readily feasible photo-induced fiber BG structures.

  16. SPiCE : A web-based tool for sequence-based protein classification and exploration

    Van den Berg, B.A.; Reinders, M.J.; Roubos, J.A.; De Ridder, D.

    2014-01-01

    Background Amino acid sequences and features extracted from such sequences have been used to predict many protein properties, such as subcellular localization or solubility, using classifier algorithms. Although software tools are available for both feature extraction and classifier construction,

  17. A Comparison of Phase-Shift Self- Oscillating and Carrier-based PWM Modulation for Embedded Audio Amplifiers

    Huffenus , Alexandre; Pillonnet , Gaël; Abouchi , Nacer; Goutti , Frédéric

    2010-01-01

    International audience; This paper compares two modulation schemes for Class-D amplifiers: Phase-Shift Self-Oscillating (PSSO) and Carrier-Based Pulse Width Modulation (PWM). Theoretical analysis (modulation, frequency of oscillation, bandwidth…), design procedure, and IC silicon evaluation will be shown for mono and stereo operation (on the same silicon die) on both structures. The design of both architectures will use as many identical building blocks as possible, to provide a fair, "all el...

  18. Pressure-Induced Structural Evolution and Band Gap Shifts of Organometal Halide Perovskite-Based Methylammonium Lead Chloride.

    Wang, Lingrui; Wang, Kai; Xiao, Guanjun; Zeng, Qiaoshi; Zou, Bo

    2016-12-15

    Organometal halide perovskites are promising materials for optoelectronic devices. Further development of these devices requires a deep understanding of their fundamental structure-property relationships. The effect of pressure on the structural evolution and band gap shifts of methylammonium lead chloride (MAPbCl 3 ) was investigated systematically. Synchrotron X-ray diffraction and Raman experiments provided structural information on the shrinkage, tilting distortion, and amorphization of the primitive cubic unit cell. In situ high pressure optical absorption and photoluminescence spectra manifested that the band gap of MAPbCl 3 could be fine-tuned to the ultraviolet region by pressure. The optical changes are correlated with pressure-induced structural evolution of MAPbCl 3 , as evidenced by band gap shifts. Comparisons between Pb-hybrid perovskites and inorganic octahedra provided insights on the effects of halogens on pressure-induced transition sequences of these compounds. Our results improve the understanding of the structural and optical properties of organometal halide perovskites.

  19. Sector-based political analysis of energy transition: Green shift in the forest policy regime in France

    Sergent, Arnaud

    2014-01-01

    This article examines energy transition political process from a sector-based approach, through the analysis of recent shift in the French forest policy regime. We demonstrate that, since 2007, energy transition policies have led to a harvesting turn within the French forest policy framework, meaning that priority is given to wood mobilisation, mainly for biomass uses. In addition, our findings suggest that the political authority wielded by the state over forest policy has shifted from forest administrative services to energy agencies and local authorities. Finally, we show that, although implementation of the harvesting turn is a cause of sectoral and inter-sectoral tensions, energy transition challenge also contributes to a process of (re)institutionalisation of mediation relationships among forestry stakeholders and wood-based industries representatives. The article concludes by arguing that sectors should retain relevant institutional frameworks for actors when choosing political arrangements required for implementing energy transition policy. - Highlights: • Implementing energy transition policy potentially challenges sector-based politics. • We propose a policy regime framework and socio-political investigations. • We analyse the political impact of energy transition policy on French forest sector. • Shifts occur in sectoral policy framework, authority, and mediation relationships

  20. Establishment of screening technique for mutant cell and analysis of base sequence in the mutation

    Sofuni, Toshio; Nomi, Takehiko; Yamada, Masami; Masumura, Kenichi

    2000-01-01

    This research project aimed to establish an easy and quick detection method for radiation-induced mutation using molecular-biological techniques and an effective analyzing method for the molecular changes in base sequence. In this year, Spi mutants derived from γ-radiation exposed mouse were analyzed by PCR method and DNA sequence method. Male transgenic mice were exposed to γ-ray at 5,10, 50 Gy and the transgene was taken out from the genome DNA from the spleen in vivo packaging method. Spi mutant plaques were obtained by infecting the recovered phage to E. coli. Sequence analysis for the mutants was made using ALFred DNA sequencer and SequiTherm TM Long-Red Cycle sequencing kit. Sequence analysis was carried out for 41 of 50 independent Spi mutants obtained. The deletions were classified into 4 groups; Group 1 included 15 mutants that were characterized with a large deletion (43 bp-10 kb) with a short homologous sequence. Group 2 included 11 mutants of a large deletion having no homologous sequence at the connecting region. Group 3 included 11 mutants having a short deletion of less than 20 bp, which occurred in the non-repetitive sequence of gam gene and possibly caused by oxidative breakage of DNA or recombination of DNA fragment produced by the breakage. Group 4 included 4 mutants having deletions as short as 20 bp or less in the repetitive sequence of gam gene, resulting in an alteration of the reading frame. Thus, the synthesis of Gam protein was terminated by the appearance of TGA between code 13 and 14 of redB gene, leading to inactivation of gam gene and redBA gene. These results indicated that most of Spi mutants had a deletion in red/gam region and the deletions in more than half mutants occurred in homologous sequences as short as 8 bp. (M.N.)

  1. Human Gait Recognition Based on Multiview Gait Sequences

    Xiaxi Huang

    2008-05-01

    Full Text Available Most of the existing gait recognition methods rely on a single view, usually the side view, of the walking person. This paper investigates the case in which several views are available for gait recognition. It is shown that each view has unequal discrimination power and, therefore, should have unequal contribution in the recognition process. In order to exploit the availability of multiple views, several methods for the combination of the results that are obtained from the individual views are tested and evaluated. A novel approach for the combination of the results from several views is also proposed based on the relative importance of each view. The proposed approach generates superior results, compared to those obtained by using individual views or by using multiple views that are combined using other combination methods.

  2. Context-dependent motor skill: perceptual processing in memory-based sequence production.

    Ruitenberg, Marit F L; Abrahamse, Elger L; De Kleine, Elian; Verwey, Willem B

    2012-10-01

    Previous studies have shown that motor sequencing skill can benefit from the reinstatement of the learning context-even with respect to features that are formally not required for appropriate task performance. The present study explored whether such context-dependence develops when sequence execution is fully memory-based-and thus no longer assisted by stimulus-response translations. Specifically, we aimed to distinguish between preparation and execution processes. Participants performed two keying sequences in a go/no-go version of the discrete sequence production task in which the context consisted of the color in which the target keys of a particular sequence were displayed. In a subsequent test phase, these colors either were the same as during practice, were reversed for the two sequences or were novel. Results showed that, irrespective of the amount of practice, performance across all key presses in the reversed context condition was impaired relative to performance in the same and novel contexts. This suggests that the online preparation and/or execution of single key presses of the sequence is context-dependent. We propose that a cognitive processor is responsible both for these online processes and for advance sequence preparation and that combined findings from the current and previous studies build toward the notion that the cognitive processor is highly sensitive to changes in context across the various roles that it performs.

  3. A Synoptic of Software Implementation for Shift Registers Based on 16th Degree Primitive Polynomials

    Mirella Amelia Mioc

    2016-08-01

    Full Text Available Almost all of the major applications in the specific Fields of Communication used a well-known device called Linear Feedback Shift Register. Usually LFSR functions in a Galois Field GF(2n, meaning that all the operations are done with arithmetic modulo n degree Irreducible  and especially  Primitive Polynomials. Storing data in Galois Fields allows effective and manageable manipulation, mainly in computer cryptographic applications. The analysis of functioning for Primitive Polynomials of 16th degree shows that almost all the obtained results are in the same time distribution.

  4. Robust calibration of an optical-lattice depth based on a phase shift

    Cabrera-Gutiérrez, C.; Michon, E.; Brunaud, V.; Kawalec, T.; Fortun, A.; Arnal, M.; Billy, J.; Guéry-Odelin, D.

    2018-04-01

    We report on a method to calibrate the depth of an optical lattice. It consists of triggering the intrasite dipole mode of the cloud by a sudden phase shift. The corresponding oscillatory motion is directly related to the interband frequencies on a large range of lattice depths. Remarkably, for a moderate displacement, a single frequency dominates the oscillation of the zeroth and first orders of the interference pattern observed after a sufficiently long time of flight. The method is robust against atom-atom interactions and the exact value of the extra weak external confinement superimposed to the optical lattice.

  5. Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley.

    Martin Mascher

    Full Text Available The rapid development of next-generation sequencing platforms has enabled the use of sequencing for routine genotyping across a range of genetics studies and breeding applications. Genotyping-by-sequencing (GBS, a low-cost, reduced representation sequencing method, is becoming a common approach for whole-genome marker profiling in many species. With quickly developing sequencing technologies, adapting current GBS methodologies to new platforms will leverage these advancements for future studies. To test new semiconductor sequencing platforms for GBS, we genotyped a barley recombinant inbred line (RIL population. Based on a previous GBS approach, we designed bar code and adapter sets for the Ion Torrent platforms. Four sets of 24-plex libraries were constructed consisting of 94 RILs and the two parents and sequenced on two Ion platforms. In parallel, a 96-plex library of the same RILs was sequenced on the Illumina HiSeq 2000. We applied two different computational pipelines to analyze sequencing data; the reference-independent TASSEL pipeline and a reference-based pipeline using SAMtools. Sequence contigs positioned on the integrated physical and genetic map were used for read mapping and variant calling. We found high agreement in genotype calls between the different platforms and high concordance between genetic and reference-based marker order. There was, however, paucity in the number of SNP that were jointly discovered by the different pipelines indicating a strong effect of alignment and filtering parameters on SNP discovery. We show the utility of the current barley genome assembly as a framework for developing very low-cost genetic maps, facilitating high resolution genetic mapping and negating the need for developing de novo genetic maps for future studies in barley. Through demonstration of GBS on semiconductor sequencing platforms, we conclude that the GBS approach is amenable to a range of platforms and can easily be modified as new

  6. Benchmark fragment-based 1H, 13C, 15N and 17O chemical shift predictions in molecular crystals†

    Hartman, Joshua D.; Kudla, Ryan A.; Day, Graeme M.; Mueller, Leonard J.; Beran, Gregory J. O.

    2016-01-01

    The performance of fragment-based ab initio 1H, 13C, 15N and 17O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. 1H, 13C, 15N, and 17O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same 1H, 13C, 15N, and 17O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tertbutyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2. PMID:27431490

  7. Benchmark fragment-based (1)H, (13)C, (15)N and (17)O chemical shift predictions in molecular crystals.

    Hartman, Joshua D; Kudla, Ryan A; Day, Graeme M; Mueller, Leonard J; Beran, Gregory J O

    2016-08-21

    The performance of fragment-based ab initio(1)H, (13)C, (15)N and (17)O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. (1)H, (13)C, (15)N, and (17)O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same (1)H, (13)C, (15)N, and (17)O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tert-butyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2.

  8. A priori Considerations When Conducting High-Throughput Amplicon-Based Sequence Analysis

    Aditi Sengupta

    2016-03-01

    Full Text Available Amplicon-based sequencing strategies that include 16S rRNA and functional genes, alongside “meta-omics” analyses of communities of microorganisms, have allowed researchers to pose questions and find answers to “who” is present in the environment and “what” they are doing. Next-generation sequencing approaches that aid microbial ecology studies of agricultural systems are fast gaining popularity among agronomy, crop, soil, and environmental science researchers. Given the rapid development of these high-throughput sequencing techniques, researchers with no prior experience will desire information about the best practices that can be used before actually starting high-throughput amplicon-based sequence analyses. We have outlined items that need to be carefully considered in experimental design, sampling, basic bioinformatics, sequencing of mock communities and negative controls, acquisition of metadata, and in standardization of reaction conditions as per experimental requirements. Not all considerations mentioned here may pertain to a particular study. The overall goal is to inform researchers about considerations that must be taken into account when conducting high-throughput microbial DNA sequencing and sequences analysis.

  9. Quality Control of the Traditional Patent Medicine Yimu Wan Based on SMRT Sequencing and DNA Barcoding

    Jia, Jing; Xu, Zhichao; Xin, Tianyi; Shi, Linchun; Song, Jingyuan

    2017-01-01

    Substandard traditional patent medicines may lead to global safety-related issues. Protecting consumers from the health risks associated with the integrity and authenticity of herbal preparations is of great concern. Of particular concern is quality control for traditional patent medicines. Here, we establish an effective approach for verifying the biological composition of traditional patent medicines based on single-molecule real-time (SMRT) sequencing and DNA barcoding. Yimu Wan (YMW), a classical herbal prescription recorded in the Chinese Pharmacopoeia, was chosen to test the method. Two reference YMW samples were used to establish a standard method for analysis, which was then applied to three different batches of commercial YMW samples. A total of 3703 and 4810 circular-consensus sequencing (CCS) reads from two reference and three commercial YMW samples were mapped to the ITS2 and psbA-trnH regions, respectively. Moreover, comparison of intraspecific genetic distances based on SMRT sequencing data with reference data from Sanger sequencing revealed an ITS2 and psbA-trnH intergenic spacer that exhibited high intraspecific divergence, with the sites of variation showing significant differences within species. Using the CCS strategy for SMRT sequencing analysis was adequate to guarantee the accuracy of identification. This study demonstrates the application of SMRT sequencing to detect the biological ingredients of herbal preparations. SMRT sequencing provides an affordable way to monitor the legality and safety of traditional patent medicines. PMID:28620408

  10. Typing of canine parvovirus isolates using mini-sequencing based single nucleotide polymorphism analysis.

    Naidu, Hariprasad; Subramanian, B Mohana; Chinchkar, Shankar Ramchandra; Sriraman, Rajan; Rana, Samir Kumar; Srinivasan, V A

    2012-05-01

    The antigenic types of canine parvovirus (CPV) are defined based on differences in the amino acids of the major capsid protein VP2. Type specificity is conferred by a limited number of amino acid changes and in particular by few nucleotide substitutions. PCR based methods are not particularly suitable for typing circulating variants which differ in a few specific nucleotide substitutions. Assays for determining SNPs can detect efficiently nucleotide substitutions and can thus be adapted to identify CPV types. In the present study, CPV typing was performed by single nucleotide extension using the mini-sequencing technique. A mini-sequencing signature was established for all the four CPV types (CPV2, 2a, 2b and 2c) and feline panleukopenia virus. The CPV typing using the mini-sequencing reaction was performed for 13 CPV field isolates and the two vaccine strains available in our repository. All the isolates had been typed earlier by full-length sequencing of the VP2 gene. The typing results obtained from mini-sequencing matched completely with that of sequencing. Typing could be achieved with less than 100 copies of standard plasmid DNA constructs or ≤10¹ FAID₅₀ of virus by mini-sequencing technique. The technique was also efficient for detecting multiple types in mixed infections. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. A Receiver for Differential Space-Time -Shifted BPSK Modulation Based on Scalar-MSDD and the EM Algorithm

    Kim Jae H

    2005-01-01

    Full Text Available In this paper, we consider the issue of blind detection of Alamouti-type differential space-time (ST modulation in static Rayleigh fading channels. We focus our attention on a -shifted BPSK constellation, introducing a novel transformation to the received signal such that this binary ST modulation, which has a second-order transmit diversity, is equivalent to QPSK modulation with second-order receive diversity. This equivalent representation allows us to apply a low-complexity detection technique specifically designed for receive diversity, namely, scalar multiple-symbol differential detection (MSDD. To further increase receiver performance, we apply an iterative expectation-maximization (EM algorithm which performs joint channel estimation and sequence detection. This algorithm uses minimum mean square estimation to obtain channel estimates and the maximum-likelihood principle to detect the transmitted sequence, followed by differential decoding. With receiver complexity proportional to the observation window length, our receiver can achieve the performance of a coherent maximal ratio combining receiver (with differential decoding in as few as a single EM receiver iteration, provided that the window size of the initial MSDD is sufficiently long. To further demonstrate that the MSDD is a vital part of this receiver setup, we show that an initial ST conventional differential detector would lead to strange convergence behavior in the EM algorithm.

  12. Real - time Optimization of Distributed Energy Storage System Operation Strategy Based on Peak Load Shifting

    Wang, Qian; Lu, Guangqi; Li, Xiaoyu; Zhang, Yichi; Yun, Zejian; Bian, Di

    2018-01-01

    To take advantage of the energy storage system (ESS) sufficiently, the factors that the service life of the distributed energy storage system (DESS) and the load should be considered when establishing optimization model. To reduce the complexity of the load shifting of DESS in the solution procedure, the loss coefficient and the equal capacity ratio distribution principle were adopted in this paper. Firstly, the model was established considering the constraint conditions of the cycles, depth, power of the charge-discharge of the ESS, the typical daily load curves, as well. Then, dynamic programming method was used to real-time solve the model in which the difference of power Δs, the real-time revised energy storage capacity Sk and the permission error of depth of charge-discharge were introduced to optimize the solution process. The simulation results show that the optimized results was achieved when the load shifting in the load variance was not considered which means the charge-discharge of the energy storage system was not executed. In the meantime, the service life of the ESS would increase.

  13. Stereovision-based integrated system for point cloud reconstruction and simulated brain shift validation.

    Yang, Xiaochen; Clements, Logan W; Luo, Ma; Narasimhan, Saramati; Thompson, Reid C; Dawant, Benoit M; Miga, Michael I

    2017-07-01

    Intraoperative soft tissue deformation, referred to as brain shift, compromises the application of current image-guided surgery navigation systems in neurosurgery. A computational model driven by sparse data has been proposed as a cost-effective method to compensate for cortical surface and volumetric displacements. We present a mock environment developed to acquire stereoimages from a tracked operating microscope and to reconstruct three-dimensional point clouds from these images. A reconstruction error of 1 mm is estimated by using a phantom with a known geometry and independently measured deformation extent. The microscope is tracked via an attached tracking rigid body that facilitates the recording of the position of the microscope via a commercial optical tracking system as it moves during the procedure. Point clouds, reconstructed under different microscope positions, are registered into the same space to compute the feature displacements. Using our mock craniotomy device, realistic cortical deformations are generated. When comparing our tracked microscope stereo-pair measure of mock vessel displacements to that of the measurement determined by the independent optically tracked stylus marking, the displacement error was [Formula: see text] on average. These results demonstrate the practicality of using tracked stereoscopic microscope as an alternative to laser range scanners to collect sufficient intraoperative information for brain shift correction.

  14. Analyzing Plasmodium falciparum erythrocyte membrane protein 1 gene expression by a next generation sequencing based method

    Jespersen, Jakob S.; Petersen, Bent; Seguin-Orlando, Andaine

    2013-01-01

    at identifying PfEMP1 features associated with high virulence. Here we present the first effective method for sequence analysis of var genes expressed in field samples: a sequential PCR and next generation sequencing based technique applied on expressed var sequence tags and subsequently on long range PCR......, encoded by ~60 highly variable 'var' genes per haploid genome. PfEMP1 is exported to the surface of infected erythrocytes and is thought to be fundamental to immune evasion by adhesion to host and parasite factors. The highly variable nature has constituted a roadblock in var expression studies aimed...

  15. A Shellcode Detection Method Based on Full Native API Sequence and Support Vector Machine

    Cheng, Yixuan; Fan, Wenqing; Huang, Wei; An, Jing

    2017-09-01

    Dynamic monitoring the behavior of a program is widely used to discriminate between benign program and malware. It is usually based on the dynamic characteristics of a program, such as API call sequence or API call frequency to judge. The key innovation of this paper is to consider the full Native API sequence and use the support vector machine to detect the shellcode. We also use the Markov chain to extract and digitize Native API sequence features. Our experimental results show that the method proposed in this paper has high accuracy and low detection rate.

  16. Predicting effects of noncoding variants with deep learning-based sequence model.

    Zhou, Jian; Troyanskaya, Olga G

    2015-10-01

    Identifying functional effects of noncoding variants is a major challenge in human genetics. To predict the noncoding-variant effects de novo from sequence, we developed a deep learning-based algorithmic framework, DeepSEA (http://deepsea.princeton.edu/), that directly learns a regulatory sequence code from large-scale chromatin-profiling data, enabling prediction of chromatin effects of sequence alterations with single-nucleotide sensitivity. We further used this capability to improve prioritization of functional variants including expression quantitative trait loci (eQTLs) and disease-associated variants.

  17. Shifting Sugars and Shifting Paradigms

    Siegal, Mark L.

    2015-01-01

    No organism lives in a constant environment. Based on classical studies in molecular biology, many have viewed microbes as following strict rules for shifting their metabolic activities when prevailing conditions change. For example, students learn that the bacterium Escherichia coli makes proteins for digesting lactose only when lactose is available and glucose, a better sugar, is not. However, recent studies, including three PLOS Biology papers examining sugar utilization in the budding yeast Saccharomyces cerevisiae, show that considerable heterogeneity in response to complex environments exists within and between populations. These results join similar recent results in other organisms that suggest that microbial populations anticipate predictable environmental changes and hedge their bets against unpredictable ones. The classical view therefore represents but one special case in a range of evolutionary adaptations to environmental changes that all organisms face. PMID:25688600

  18. Shifting sugars and shifting paradigms.

    Mark L Siegal

    2015-02-01

    Full Text Available No organism lives in a constant environment. Based on classical studies in molecular biology, many have viewed microbes as following strict rules for shifting their metabolic activities when prevailing conditions change. For example, students learn that the bacterium Escherichia coli makes proteins for digesting lactose only when lactose is available and glucose, a better sugar, is not. However, recent studies, including three PLOS Biology papers examining sugar utilization in the budding yeast Saccharomyces cerevisiae, show that considerable heterogeneity in response to complex environments exists within and between populations. These results join similar recent results in other organisms that suggest that microbial populations anticipate predictable environmental changes and hedge their bets against unpredictable ones. The classical view therefore represents but one special case in a range of evolutionary adaptations to environmental changes that all organisms face.

  19. Sequence-based model of gap gene regulatory network.

    Kozlov, Konstantin; Gursky, Vitaly; Kulakovskiy, Ivan; Samsonova, Maria

    2014-01-01

    The detailed analysis of transcriptional regulation is crucially important for understanding biological processes. The gap gene network in Drosophila attracts large interest among researches studying mechanisms of transcriptional regulation. It implements the most upstream regulatory layer of the segmentation gene network. The knowledge of molecular mechanisms involved in gap gene regulation is far less complete than that of genetics of the system. Mathematical modeling goes beyond insights gained by genetics and molecular approaches. It allows us to reconstruct wild-type gene expression patterns in silico, infer underlying regulatory mechanism and prove its sufficiency. We developed a new model that provides a dynamical description of gap gene regulatory systems, using detailed DNA-based information, as well as spatial transcription factor concentration data at varying time points. We showed that this model correctly reproduces gap gene expression patterns in wild type embryos and is able to predict gap expression patterns in Kr mutants and four reporter constructs. We used four-fold cross validation test and fitting to random dataset to validate the model and proof its sufficiency in data description. The identifiability analysis showed that most model parameters are well identifiable. We reconstructed the gap gene network topology and studied the impact of individual transcription factor binding sites on the model output. We measured this impact by calculating the site regulatory weight as a normalized difference between the residual sum of squares error for the set of all annotated sites and for the set with the site of interest excluded. The reconstructed topology of the gap gene network is in agreement with previous modeling results and data from literature. We showed that 1) the regulatory weights of transcription factor binding sites show very weak correlation with their PWM score; 2) sites with low regulatory weight are important for the model output; 3

  20. A resonance shift prediction based on the Boltzmann-Ehrenfest principle for cylindrical cavities with a rigid sphere.

    Santillan, Arturo O; Cutanda-Henríquez, Vicente

    2008-11-01

    An investigation on the resonance frequency shift for a plane-wave mode in a cylindrical cavity produced by a rigid sphere is reported in this paper. This change of the resonance frequency has been previously considered as a cause of oscillational instabilities in single-mode acoustic levitation devices. It is shown that the use of the Boltzmann-Ehrenfest principle of adiabatic invariance allows the derivation of an expression for the resonance frequency shift in a simpler and more direct way than a method based on a Green's function reported in literature. The position of the sphere can be any point along the axis of the cavity. Obtained predictions of the resonance frequency shift with the deduced equation agree quite well with numerical simulations based on the boundary element method. The results are also confirmed by experiments. The equation derived from the Boltzmann-Ehrenfest principle appears to be more general, and for large spheres, it gives a better approximation than the equation previously reported.

  1. Phase gradient algorithm based on co-axis two-step phase-shifting interferometry and its application

    Wang, Yawei; Zhu, Qiong; Xu, Yuanyuan; Xin, Zhiduo; Liu, Jingye

    2017-12-01

    A phase gradient method based on co-axis two-step phase-shifting interferometry, is used to reveal the detailed information of a specimen. In this method, the phase gradient distribution can only be obtained by calculating both the first-order derivative and the radial Hilbert transformation of the intensity difference between two phase-shifted interferograms. The feasibility and accuracy of this method were fully verified by the simulation results for a polystyrene sphere and a red blood cell. The empirical results demonstrated that phase gradient is sensitive to changes in the refractive index and morphology. Because phase retrieval and tedious phase unwrapping are not required, the calculation speed is faster. In addition, co-axis interferometry has high spatial resolution.

  2. Design of high-order all-optical temporal differentiators based on multiple-phase-shifted fiber Bragg gratings.

    Kulishov, Mykola; Azaña, José

    2007-05-14

    A simple and general approach for designing practical all-optical (all-fiber) arbitrary-order time differentiators is introduced here for the first time. Specifically, we demonstrate that the Nth time derivative of an input optical waveform can be obtained by reflection of this waveform in a single uniform fiber Bragg grating (FBG) incorporating N &pi-phase shifts properly located along its grating profile. The general design procedure of an arbitrary-order optical time differentiator based on a multiple-phase-shifted FBG is described and numerically demonstrated for up to fourth-order time differentiation. Our simulations show that the proposed approach can provide optical operation bandwidths in the tens-of-GHz regime using readily feasible FBG structures.

  3. MGmapper: Reference based mapping and taxonomy annotation of metagenomics sequence reads

    Petersen, Thomas Nordahl; Lukjancenko, Oksana; Thomsen, Martin Christen Frølund

    2017-01-01

    number of false positive species annotations are a problem unless thresholds or post-processing are applied to differentiate between correct and false annotations. MGmapper is a package to process raw next generation sequence data and perform reference based sequence assignment, followed by a post...... pipeline is freely available as a bitbucked package (https://bitbucket.org/genomicepidemiology/mgmapper). A web-version (https://cge.cbs.dtu.dk/services/MGmapper) provides the basic functionality for analysis of small fastq datasets....

  4. Implementing OpenShift

    Miller, Adam

    2013-01-01

    A standard tutorial-based approach to using OpenShift and deploying custom or pre-built web applications to the OpenShift Online cloud.This book is for software developers and DevOps alike who are interested in learning how to use the OpenShift Platform-as-a-Service for developing and deploying applications, how the environment works on the back end, and how to deploy their very own open source Platform-as-a-Service based on the upstream OpenShift Origin project.

  5. SDT: a virus classification tool based on pairwise sequence alignment and identity calculation.

    Brejnev Muhizi Muhire

    Full Text Available The perpetually increasing rate at which viral full-genome sequences are being determined is creating a pressing demand for computational tools that will aid the objective classification of these genome sequences. Taxonomic classification approaches that are based on pairwise genetic identity measures are potentially highly automatable and are progressively gaining favour with the International Committee on Taxonomy of Viruses (ICTV. There are, however, various issues with the calculation of such measures that could potentially undermine the accuracy and consistency with which they can be applied to virus classification. Firstly, pairwise sequence identities computed based on multiple sequence alignments rather than on multiple independent pairwise alignments can lead to the deflation of identity scores with increasing dataset sizes. Also, when gap-characters need to be introduced during sequence alignments to account for insertions and deletions, methodological variations in the way that these characters are introduced and handled during pairwise genetic identity calculations can cause high degrees of inconsistency in the way that different methods classify the same sets of sequences. Here we present Sequence Demarcation Tool (SDT, a free user-friendly computer program that aims to provide a robust and highly reproducible means of objectively using pairwise genetic identity calculations to classify any set of nucleotide or amino acid sequences. SDT can produce publication quality pairwise identity plots and colour-coded distance matrices to further aid the classification of sequences according to ICTV approved taxonomic demarcation criteria. Besides a graphical interface version of the program for Windows computers, command-line versions of the program are available for a variety of different operating systems (including a parallel version for cluster computing platforms.

  6. Internal electric fields and color shift in Cr3+-based gemstones

    Aramburu, J. A.; Garcia-Fernandez, P.; García-Lastra, J. M.; Barriuso, M. T.; Moreno, M.

    2012-06-01

    Seeking to better understand the origin of the different colors of emerald and ruby, both ab initio periodic and cluster calculations have been carried out. The calculations reproduce the interatomic distances measured for pure Be3Si6Al2O18 and Al2O3 as well as the Cr3+-O2- distances in emerald and ruby. The mean Cr3+-O2- distance for Be3Si6Al2O18:Cr3+ and Al2O3:Cr3+ is found to be practically equal to 1.97 Å, in agreement with recent experimental values. The present calculations confirm that the variations of optical properties due to Cr3+ impurities along the series of ionic oxides can be understood merely through the CrO69- unit but subject to the electric field due to the rest of the lattice ions. As a salient feature it is proved that changes in electronic density and covalency due to the internal field are not the cause of the color shift. Therefore, the red color of ruby is not due to the polarization of the electronic cloud around chromium as a result of the C3 local symmetry. The present study also demonstrates that the variation of the ligand field splitting parameter, 10Dq, induced by the internal electric field comes mainly from the contributions of first shells of ions around the CrO69- unit. As a consequence, 10Dq in emerald is not influenced by the internal field, as the contribution from Be2+ first neighbors is practically compensated by that of Si4+ second neighbors. In contrast, in ruby the t2g levels are shifted by the internal field 0.24 eV more than the eg ones, so explaining the color shift in this gemstone in comparison with emerald. This result is shown to arise partially from the asymmetric form of the internal electrostatic potential along the C3 axis in Al2O3.

  7. An accurate clone-based haplotyping method by overlapping pool sequencing.

    Li, Cheng; Cao, Changchang; Tu, Jing; Sun, Xiao

    2016-07-08

    Chromosome-long haplotyping of human genomes is important to identify genetic variants with differing gene expression, in human evolution studies, clinical diagnosis, and other biological and medical fields. Although several methods have realized haplotyping based on sequencing technologies or population statistics, accuracy and cost are factors that prohibit their wide use. Borrowing ideas from group testing theories, we proposed a clone-based haplotyping method by overlapping pool sequencing. The clones from a single individual were pooled combinatorially and then sequenced. According to the distinct pooling pattern for each clone in the overlapping pool sequencing, alleles for the recovered variants could be assigned to their original clones precisely. Subsequently, the clone sequences could be reconstructed by linking these alleles accordingly and assembling them into haplotypes with high accuracy. To verify the utility of our method, we constructed 130 110 clones in silico for the individual NA12878 and simulated the pooling and sequencing process. Ultimately, 99.9% of variants on chromosome 1 that were covered by clones from both parental chromosomes were recovered correctly, and 112 haplotype contigs were assembled with an N50 length of 3.4 Mb and no switch errors. A comparison with current clone-based haplotyping methods indicated our method was more accurate. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. TRX-LOGOS - a graphical tool to demonstrate DNA information content dependent upon backbone dynamics in addition to base sequence.

    Fortin, Connor H; Schulze, Katharina V; Babbitt, Gregory A

    2015-01-01

    It is now widely-accepted that DNA sequences defining DNA-protein interactions functionally depend upon local biophysical features of DNA backbone that are important in defining sites of binding interaction in the genome (e.g. DNA shape, charge and intrinsic dynamics). However, these physical features of DNA polymer are not directly apparent when analyzing and viewing Shannon information content calculated at single nucleobases in a traditional sequence logo plot. Thus, sequence logos plots are severely limited in that they convey no explicit information regarding the structural dynamics of DNA backbone, a feature often critical to binding specificity. We present TRX-LOGOS, an R software package and Perl wrapper code that interfaces the JASPAR database for computational regulatory genomics. TRX-LOGOS extends the traditional sequence logo plot to include Shannon information content calculated with regard to the dinucleotide-based BI-BII conformation shifts in phosphate linkages on the DNA backbone, thereby adding a visual measure of intrinsic DNA flexibility that can be critical for many DNA-protein interactions. TRX-LOGOS is available as an R graphics module offered at both SourceForge and as a download supplement at this journal. To demonstrate the general utility of TRX logo plots, we first calculated the information content for 416 Saccharomyces cerevisiae transcription factor binding sites functionally confirmed in the Yeastract database and matched to previously published yeast genomic alignments. We discovered that flanking regions contain significantly elevated information content at phosphate linkages than can be observed at nucleobases. We also examined broader transcription factor classifications defined by the JASPAR database, and discovered that many general signatures of transcription factor binding are locally more information rich at the level of DNA backbone dynamics than nucleobase sequence. We used TRX-logos in combination with MEGA 6.0 software

  9. A New High Frequency Injection Method Based on Duty Cycle Shifting without Maximum Voltage Magnitude Loss

    Wang, Dong; Lu, Kaiyuan; Rasmussen, Peter Omand

    2015-01-01

    The conventional high frequency signal injection method is to superimpose a high frequency voltage signal to the commanded stator voltage before space vector modulation. Therefore, the magnitude of the voltage used for machine torque production is limited. In this paper, a new high frequency...... amplitude. This may be utilized to develop new position estimation algorithm without involving the inductance in the medium to high speed range. As an application example, a developed inductance independent position estimation algorithm using the proposed high frequency injection method is applied to drive...... injection method, in which high frequency signal is generated by shifting the duty cycle between two neighboring switching periods, is proposed. This method allows injecting a high frequency signal at half of the switching frequency without the necessity to sacrifice the machine fundamental voltage...

  10. Long-term Shifting Patterns in Quality of Life After Distal Subtotal Gastrectomy: Preoperative- and Healthy-based Interpretations.

    Lee, Seung Soo; Chung, Ho Young; Kwon, Ohkyoung; Yu, Wansik

    2015-06-01

    The study assessed long-term shifting patterns in quality of life (QoL) after distal subtotal gastrectomy relative to an estimated healthy population QoL (HPQoL), and compared them to shifting patterns interpreted in terms of a preoperative QoL baseline. QoL data from 127 gastric cancer patients who underwent open distal subtotal gastrectomy were obtained at the preoperative period and at 6, 12, 18, 24, and 36 months after surgery. QoL data obtained from 127 age- and sex-adjusted healthy individuals were used to estimate HPQoL. The study used the European Organization for Research and Treatment of Cancer (EORTC) QoL Questionnaire Core 30 (QLQ-C30) and a gastric cancer module (QLQ-STO22) to assess QoL. Comparisons were made between preoperative-based and healthy-based interpretations of longitudinal QoL shifting patterns. Among the persistently deteriorated QoL variables indicated by the preoperative-based interpretation (physical functioning, role functioning, cognitive functioning, nausea and vomiting, dyspnea, diarrhea, dysphagia, eating restrictions, dry mouth, and body image), eating restrictions and body image concerns were the only factors indicated by a healthy-based interpretation. In this interpretation, financial difficulties were evident at the preoperative period and persisted for at least 36 months. When preoperative QoL was used as a baseline, decreased QoL due to financial difficulties was not revealed. Persistent QoL deterioration after distal subtotal gastrectomy is primarily due to financial difficulties, eating restrictions, and body image concerns. Preoperative-based interpretation of postoperative QoL may exaggerate the persistency of reduced QoL and conceal on-going QoL deterioration after surgery.

  11. Shifting Attention

    Ingram, Jenni

    2014-01-01

    This article examines the shifts in attention and focus as one teacher introduces and explains an image that represents the processes involved in a numeric problem that his students have been working on. This paper takes a micro-analytic approach to examine how the focus of attention shifts through what the teacher and students do and say in the…

  12. Semi-automatic breast ultrasound image segmentation based on mean shift and graph cuts.

    Zhou, Zhuhuang; Wu, Weiwei; Wu, Shuicai; Tsui, Po-Hsiang; Lin, Chung-Chih; Zhang, Ling; Wang, Tianfu

    2014-10-01

    Computerized tumor segmentation on breast ultrasound (BUS) images remains a challenging task. In this paper, we proposed a new method for semi-automatic tumor segmentation on BUS images using Gaussian filtering, histogram equalization, mean shift, and graph cuts. The only interaction required was to select two diagonal points to determine a region of interest (ROI) on an input image. The ROI image was shrunken by a factor of 2 using bicubic interpolation to reduce computation time. The shrunken image was smoothed by a Gaussian filter and then contrast-enhanced by histogram equalization. Next, the enhanced image was filtered by pyramid mean shift to improve homogeneity. The object and background seeds for graph cuts were automatically generated on the filtered image. Using these seeds, the filtered image was then segmented by graph cuts into a binary image containing the object and background. Finally, the binary image was expanded by a factor of 2 using bicubic interpolation, and the expanded image was processed by morphological opening and closing to refine the tumor contour. The method was implemented with OpenCV 2.4.3 and Visual Studio 2010 and tested for 38 BUS images with benign tumors and 31 BUS images with malignant tumors from different ultrasound scanners. Experimental results showed that our method had a true positive rate (TP) of 91.7%, a false positive (FP) rate of 11.9%, and a similarity (SI) rate of 85.6%. The mean run time on Intel Core 2.66 GHz CPU and 4 GB RAM was 0.49 ± 0.36 s. The experimental results indicate that the proposed method may be useful in BUS image segmentation. © The Author(s) 2014.

  13. A next generation semiconductor based sequencing approach for the identification of meat species in DNA mixtures.

    Francesca Bertolini

    Full Text Available The identification of the species of origin of meat and meat products is an important issue to prevent and detect frauds that might have economic, ethical and health implications. In this paper we evaluated the potential of the next generation semiconductor based sequencing technology (Ion Torrent Personal Genome Machine for the identification of DNA from meat species (pig, horse, cattle, sheep, rabbit, chicken, turkey, pheasant, duck, goose and pigeon as well as from human and rat in DNA mixtures through the sequencing of PCR products obtained from different couples of universal primers that amplify 12S and 16S rRNA mitochondrial DNA genes. Six libraries were produced including PCR products obtained separately from 13 species or from DNA mixtures containing DNA from all species or only avian or only mammalian species at equimolar concentration or at 1:10 or 1:50 ratios for pig and horse DNA. Sequencing obtained a total of 33,294,511 called nucleotides of which 29,109,688 with Q20 (87.43% in a total of 215,944 reads. Different alignment algorithms were used to assign the species based on sequence data. Error rate calculated after confirmation of the obtained sequences by Sanger sequencing ranged from 0.0003 to 0.02 for the different species. Correlation about the number of reads per species between different libraries was high for mammalian species (0.97 and lower for avian species (0.70. PCR competition limited the efficiency of amplification and sequencing for avian species for some primer pairs. Detection of low level of pig and horse DNA was possible with reads obtained from different primer pairs. The sequencing of the products obtained from different universal PCR primers could be a useful strategy to overcome potential problems of amplification. Based on these results, the Ion Torrent technology can be applied for the identification of meat species in DNA mixtures.

  14. Discrepancy between Hepatitis C Virus Genotypes and NS4-Based Serotypes: Association with Their Subgenomic Sequences

    Nan Nwe Win

    2017-01-01

    Full Text Available Determination of hepatitis C virus (HCV genotypes plays an important role in the direct-acting agent era. Discrepancies between HCV genotyping and serotyping assays are occasionally observed. Eighteen samples with discrepant results between genotyping and serotyping methods were analyzed. HCV serotyping and genotyping were based on the HCV nonstructural 4 (NS4 region and 5′-untranslated region (5′-UTR, respectively. HCV core and NS4 regions were chosen to be sequenced and were compared with the genotyping and serotyping results. Deep sequencing was also performed for the corresponding HCV NS4 regions. Seventeen out of 18 discrepant samples could be sequenced by the Sanger method. Both HCV core and NS4 sequences were concordant with that of genotyping in the 5′-UTR in all 17 samples. In cloning analysis of the HCV NS4 region, there were several amino acid variations, but each sequence was much closer to the peptide with the same genotype. Deep sequencing revealed that minor clones with different subgenotypes existed in two of the 17 samples. Genotyping by genome amplification showed high consistency, while several false reactions were detected by serotyping. The deep sequencing method also provides accurate genotyping results and may be useful for analyzing discrepant cases. HCV genotyping should be correctly determined before antiviral treatment.

  15. Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments

    Motackova, Veronika; Novacek, Jiri [Masaryk University, Faculty of Science, National Centre for Biomolecular Research (Czech Republic); Zawadzka-Kazimierczuk, Anna; Kazimierczuk, Krzysztof [University of Warsaw, Faculty of Chemistry (Poland); Zidek, Lukas, E-mail: lzidek@chemi.muni.c [Masaryk University, Faculty of Science, National Centre for Biomolecular Research (Czech Republic); Sanderova, Hana; Krasny, Libor [Academy of Sciences of the Czech Republic, Laboratory of Molecular Genetics of Bacteria and Department of Bacteriology, Institute of Microbiology (Czech Republic); Kozminski, Wiktor [University of Warsaw, Faculty of Chemistry (Poland); Sklenar, Vladimir [Masaryk University, Faculty of Science, National Centre for Biomolecular Research (Czech Republic)

    2010-11-15

    A strategy for complete backbone and side-chain resonance assignment of disordered proteins with highly repetitive sequence is presented. The protocol is based on three resolution-enhanced NMR experiments: 5D HN(CA)CONH provides sequential connectivity, 5D HabCabCONH is utilized to identify amino acid types, and 5D HC(CC-TOCSY)CONH is used to assign the side-chain resonances. The improved resolution was achieved by a combination of high dimensionality and long evolution times, allowed by non-uniform sampling in the indirect dimensions. Random distribution of the data points and Sparse Multidimensional Fourier Transform processing were used. Successful application of the assignment procedure to a particularly difficult protein, {delta} subunit of RNA polymerase from Bacillus subtilis, is shown to prove the efficiency of the strategy. The studied protein contains a disordered C-terminal region of 81 amino acids with a highly repetitive sequence. While the conventional assignment methods completely failed due to a very small differences in chemical shifts, the presented strategy provided a complete backbone and side-chain assignment.

  16. Optimal protein library design using recombination or point mutations based on sequence-based scoring functions.

    Pantazes, Robert J; Saraf, Manish C; Maranas, Costas D

    2007-08-01

    In this paper, we introduce and test two new sequence-based protein scoring systems (i.e. S1, S2) for assessing the likelihood that a given protein hybrid will be functional. By binning together amino acids with similar properties (i.e. volume, hydrophobicity and charge) the scoring systems S1 and S2 allow for the quantification of the severity of mismatched interactions in the hybrids. The S2 scoring system is found to be able to significantly functionally enrich a cytochrome P450 library over other scoring methods. Given this scoring base, we subsequently constructed two separate optimization formulations (i.e. OPTCOMB and OPTOLIGO) for optimally designing protein combinatorial libraries involving recombination or mutations, respectively. Notably, two separate versions of OPTCOMB are generated (i.e. model M1, M2) with the latter allowing for position-dependent parental fragment skipping. Computational benchmarking results demonstrate the efficacy of models OPTCOMB and OPTOLIGO to generate high scoring libraries of a prespecified size.

  17. Pd based ultrathin membranes for the tritiated water gas shift reaction in the ITER breeder recovery system

    Tosti, S.; Bettinali, L.; Violante, V.; Basile, A.; Chiappetta, M.; Criscuoli, A.; Drioli, E.; Rizzelo, C.

    1998-01-01

    A mathematical model of a catalytic membrane reactor (CMR) for the water gas shift reaction has been carried out. Based on the model, a new closed loop process for the tritium removal system for the ITER test module of helium cooled pebble bed blanket concept has been studied. A CMR is the main equipment of the proposed process. The main advantages of the closed loop process are related to the absence of secondary wastes, low tritium inventories, moderate operating temperatures and pressures, low dilution of the stream to be processed by isotopic separation. As permeating membranes in the CMR ultra-thin metallic membranes of Pd and PdAg (50-70 μm thick) have been studied. A ceramic porous tube, containing the catalyst in the lumen, has been put in the metallic tube to obtain the CMR for the water gas shifting. Experimental tests, carried out both on ultra-thin membranes and CMRs for the water gas shift reaction, confirmed the behavior studied by the theoretical model and showed a long live of the membrane. (authors)

  18. Shifting Patterns of the HIV Epidemic in Southwest China: A Case Study Based on Sentinel Surveillance, 1995-2012.

    Chow, Eric P F; Gao, Liangmin; Chen, Liang; Jing, Jun; Zhang, Lei

    2015-06-01

    The HIV epidemic is experiencing a rapid shift in transmission profile in China. This study aims to examine the changes in magnitude, transmission pattern, and trend of the HIV epidemic in a typical Southwest Chinese prefecture over the period of 1995-2012. HIV surveillance data from the web-based reporting system were analyzed during this period. We investigated the temporal trends in the changing characteristics of HIV transmission, the HIV disease burden in key affected populations, and assessed the impacts on HIV disease progression due to scale-up of antiretroviral treatment. A total of 3556 HIV/AIDS cases were reported in Yuxi prefecture, Yunnan, over the study period. The number of HIV tests conducted has dramatically increased from 1041 in 1995 to 247,859 in 2012, resulting in a substantial increase in HIV diagnoses from 11 cases to 327 cases over the same period. Since 2005, cumulatively 1250 eligible people living with HIV (PLHIV) have received combination antiretroviral therapy which reduced AIDS disease progression from 9.0% (95% CI: 6.7-11.4%) in 1995 to 0.1% (0-0.3%) in 2012 (ptrend=0.0002). The primary mode of HIV transmission has been shifted from injection sharing (71.9% diagnoses in 1995-2004) to unsafe sexual contacts (82.6% diagnoses in 2012). Yuxi prefecture is experiencing a concentrated but shifting HIV epidemic. Scale-up of HIV testing is essential to effective sentinel surveillance and enhancing early diagnosis and treatment in PLHIV.

  19. Study design requirements for RNA sequencing-based breast cancer diagnostics.

    Mer, Arvind Singh; Klevebring, Daniel; Grönberg, Henrik; Rantalainen, Mattias

    2016-02-01

    Sequencing-based molecular characterization of tumors provides information required for individualized cancer treatment. There are well-defined molecular subtypes of breast cancer that provide improved prognostication compared to routine biomarkers. However, molecular subtyping is not yet implemented in routine breast cancer care. Clinical translation is dependent on subtype prediction models providing high sensitivity and specificity. In this study we evaluate sample size and RNA-sequencing read requirements for breast cancer subtyping to facilitate rational design of translational studies. We applied subsampling to ascertain the effect of training sample size and the number of RNA sequencing reads on classification accuracy of molecular subtype and routine biomarker prediction models (unsupervised and supervised). Subtype classification accuracy improved with increasing sample size up to N = 750 (accuracy = 0.93), although with a modest improvement beyond N = 350 (accuracy = 0.92). Prediction of routine biomarkers achieved accuracy of 0.94 (ER) and 0.92 (Her2) at N = 200. Subtype classification improved with RNA-sequencing library size up to 5 million reads. Development of molecular subtyping models for cancer diagnostics requires well-designed studies. Sample size and the number of RNA sequencing reads directly influence accuracy of molecular subtyping. Results in this study provide key information for rational design of translational studies aiming to bring sequencing-based diagnostics to the clinic.

  20. Construction of a phylogenetic tree of photosynthetic prokaryotes based on average similarities of whole genome sequences.

    Soichirou Satoh

    Full Text Available Phylogenetic trees have been constructed for a wide range of organisms using gene sequence information, especially through the identification of orthologous genes that have been vertically inherited. The number of available complete genome sequences is rapidly increasing, and many tools for construction of genome trees based on whole genome sequences have been proposed. However, development of a reasonable method of using complete genome sequences for construction of phylogenetic trees has not been established. We have developed a method for construction of phylogenetic trees based on the average sequence similarities of whole genome sequences. We used this method to examine the phylogeny of 115 photosynthetic prokaryotes, i.e., cyanobacteria, Chlorobi, proteobacteria, Chloroflexi, Firmicutes and nonphotosynthetic organisms including Archaea. Although the bootstrap values for the branching order of phyla were low, probably due to lateral gene transfer and saturated mutation, the obtained tree was largely consistent with the previously reported phylogenetic trees, indicating that this method is a robust alternative to traditional phylogenetic methods.

  1. Visual Localization across Seasons Using Sequence Matching Based on Multi-Feature Combination.

    Qiao, Yongliang

    2017-10-25

    Visual localization is widely used in autonomous navigation system and Advanced Driver Assistance Systems (ADAS). However, visual-based localization in seasonal changing situations is one of the most challenging topics in computer vision and the intelligent vehicle community. The difficulty of this task is related to the strong appearance changes that occur in scenes due to weather or season changes. In this paper, a place recognition based visual localization method is proposed, which realizes the localization by identifying previously visited places using the sequence matching method. It operates by matching query image sequences to an image database acquired previously (video acquired during traveling period). In this method, in order to improve matching accuracy, multi-feature is constructed by combining a global GIST descriptor and local binary feature CSLBP (Center-symmetric local binary patterns) to represent image sequence. Then, similarity measurement according to Chi-square distance is used for effective sequences matching. For experimental evaluation, the relationship between image sequence length and sequences matching performance is studied. To show its effectiveness, the proposed method is tested and evaluated in four seasons outdoor environments. The results have shown improved precision-recall performance against the state-of-the-art SeqSLAM algorithm.

  2. Visual Localization across Seasons Using Sequence Matching Based on Multi-Feature Combination

    Yongliang Qiao

    2017-10-01

    Full Text Available Visual localization is widely used in autonomous navigation system and Advanced Driver Assistance Systems (ADAS. However, visual-based localization in seasonal changing situations is one of the most challenging topics in computer vision and the intelligent vehicle community. The difficulty of this task is related to the strong appearance changes that occur in scenes due to weather or season changes. In this paper, a place recognition based visual localization method is proposed, which realizes the localization by identifying previously visited places using the sequence matching method. It operates by matching query image sequences to an image database acquired previously (video acquired during traveling period. In this method, in order to improve matching accuracy, multi-feature is constructed by combining a global GIST descriptor and local binary feature CSLBP (Center-symmetric local binary patterns to represent image sequence. Then, similarity measurement according to Chi-square distance is used for effective sequences matching. For experimental evaluation, the relationship between image sequence length and sequences matching performance is studied. To show its effectiveness, the proposed method is tested and evaluated in four seasons outdoor environments. The results have shown improved precision–recall performance against the state-of-the-art SeqSLAM algorithm.

  3. Barriers to electricity load shift in companies: A survey-based exploration of the end-user perspective

    Olsthoorn, Mark; Schleich, Joachim; Klobasa, Marian

    2015-01-01

    As countries move toward larger shares of renewable electricity, the slow diffusion of active electricity load management should concern energy policy makers and users alike. Active load management can increase capacity factors and thereby reduce the need for new capacity, improve reliability, and lower electricity prices. This paper conceptually and empirically explores barriers to load shift in industry from an end-user perspective. An online survey, based on a taxonomy of barriers developed in the realm of energy efficiency, was carried out among manufacturing sites in mostly Southern Germany. Findings suggest that the most important barriers are risk of disruption of operations, impact on product quality, and uncertainty about cost savings. Of little concern are access to capital, lack of employee skills, and data security. Statistical tests suggest that companies for which electricity has higher strategic value rate financial and regulatory risk higher than smaller ones. Companies with a continuous production process report lower barrier scores than companies using batch or just-in-time production. A principal component analysis clusters the barriers and multivariate analysis with the factor scores confirms the prominence of technical risk as a barrier to load shift. The results provide guidance for policy making and future empirical studies. - Highlights: • We quantitatively assess barriers to load shift adoption among manufacturing firms. • Conceptually, we build on the literature on barriers to energy efficiency. • The most important barriers are interference with production and with product quality. • Companies with a continuous production process report lower barrier scores. • The barriers to load shift may be organized in distinct clusters via principal component analysis

  4. The shifting dynamics of social roles and project ownership over the lifecycle of a community-based participatory research project.

    Salsberg, Jon; Macridis, Soultana; Garcia Bengoechea, Enrique; Macaulay, Ann C; Moore, Spencer

    2017-06-01

    . Community based participatory research (CBPR) is often initiated by academic researchers, yet relies on meaningful community engagement and ownership to have lasting impact. Little is understood about how ownership shifts from academic to community partners. . We examined a CBPR project over its life course and asked: what does the evolution of ownership look like from project initiation by an academic (non-community) champion (T1); to maturation-when the intervention is ready to be deployed (T2); to independence-the time when the original champion steps aside (T3); and finally, to its maintenance-when the community has had an opportunity to function independently of the original academic champion (T4)? . Using sociometric (whole network) social network analysis, knowledge leadership was measured using 'in-degree centrality'. Stakeholder network structure was measured using 'centralisation' and 'core-periphery analysis'. Friedman rank sum test was used to measure change in actor roles over time from T1 to T4. . Project stakeholder roles were observed to shift significantly (P project maintenance (T4). Community stakeholders emerged into positions of knowledge leadership, while the roles of academic partners diminished in importance. The overall stakeholder network demonstrated a structural shift towards a core of densely interacting community stakeholders. . This was the first study to use Social network analysis to document a shift in ownership from academic to community partners, indicating community self-determination over the research process. Further analysis of qualitative data will determine which participatory actions or strategies were responsible for this observed change. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. LookSeq: a browser-based viewer for deep sequencing data.

    Manske, Heinrich Magnus; Kwiatkowski, Dominic P

    2009-11-01

    Sequencing a genome to great depth can be highly informative about heterogeneity within an individual or a population. Here we address the problem of how to visualize the multiple layers of information contained in deep sequencing data. We propose an interactive AJAX-based web viewer for browsing large data sets of aligned sequence reads. By enabling seamless browsing and fast zooming, the LookSeq program assists the user to assimilate information at different levels of resolution, from an overview of a genomic region to fine details such as heterogeneity within the sample. A specific problem, particularly if the sample is heterogeneous, is how to depict information about structural variation. LookSeq provides a simple graphical representation of paired sequence reads that is more revealing about potential insertions and deletions than are conventional methods.

  6. Pigs in sequence space: A 0.66X coverage pig genome survey based on shotgun sequencing

    Wernersson, Rasmus; Schierup, M.H.; Jorgensen, F.G.

    2005-01-01

    sequences (0.66X coverage) from the pig genome. The data are hereby released (NCBI Trace repository with center name "SDJVP", and project name "Sino-Danish Pig Genome Project") together with an initial evolutionary analysis. The non-repetitive fraction of the sequences was aligned to the UCSC human...

  7. Sequencing-based breast cancer diagnostics as an alternative to routine biomarkers.

    Rantalainen, Mattias; Klevebring, Daniel; Lindberg, Johan; Ivansson, Emma; Rosin, Gustaf; Kis, Lorand; Celebioglu, Fuat; Fredriksson, Irma; Czene, Kamila; Frisell, Jan; Hartman, Johan; Bergh, Jonas; Grönberg, Henrik

    2016-11-30

    Sequencing-based breast cancer diagnostics have the potential to replace routine biomarkers and provide molecular characterization that enable personalized precision medicine. Here we investigate the concordance between sequencing-based and routine diagnostic biomarkers and to what extent tumor sequencing contributes clinically actionable information. We applied DNA- and RNA-sequencing to characterize tumors from 307 breast cancer patients with replication in up to 739 patients. We developed models to predict status of routine biomarkers (ER, HER2,Ki-67, histological grade) from sequencing data. Non-routine biomarkers, including mutations in BRCA1, BRCA2 and ERBB2(HER2), and additional clinically actionable somatic alterations were also investigated. Concordance with routine diagnostic biomarkers was high for ER status (AUC = 0.95;AUC(replication) = 0.97) and HER2 status (AUC = 0.97;AUC(replication) = 0.92). The transcriptomic grade model enabled classification of histological grade 1 and histological grade 3 tumors with high accuracy (AUC = 0.98;AUC(replication) = 0.94). Clinically actionable mutations in BRCA1, BRCA2 and ERBB2(HER2) were detected in 5.5% of patients, while 53% had genomic alterations matching ongoing or concluded breast cancer studies. Sequencing-based molecular profiling can be applied as an alternative to histopathology to determine ER and HER2 status, in addition to providing improved tumor grading and clinically actionable mutations and molecular subtypes. Our results suggest that sequencing-based breast cancer diagnostics in a near future can replace routine biomarkers.

  8. A Physically Based Correlation of Irradiation-Induced Transition Temperature Shifts for RPV Steels

    Eason, Ernest D. [Modeling and Computing Services, LLC; Odette, George Robert [UCSB; Nanstad, Randy K [ORNL; Yamamoto, Takuya [ORNL

    2007-11-01

    The reactor pressure vessels (RPVs) of commercial nuclear power plants are subject to embrittlement due to exposure to high-energy neutrons from the core, which causes changes in material toughness properties that increase with radiation exposure and are affected by many variables. Irradiation embrittlement of RPV beltline materials is currently evaluated using Regulatory Guide 1.99 Revision 2 (RG1.99/2), which presents methods for estimating the shift in Charpy transition temperature at 30 ft-lb (TTS) and the drop in Charpy upper shelf energy (ΔUSE). The purpose of the work reported here is to improve on the TTS correlation model in RG1.99/2 using the broader database now available and current understanding of embrittlement mechanisms. The USE database and models have not been updated since the publication of NUREG/CR-6551 and, therefore, are not discussed in this report. The revised embrittlement shift model is calibrated and validated on a substantially larger, better-balanced database compared to prior models, including over five times the amount of data used to develop RG1.99/2. It also contains about 27% more data than the most recent update to the surveillance shift database, in 2000. The key areas expanded in the current database relative to the database available in 2000 are low-flux, low-copper, and long-time, high-fluence exposures, all areas that were previously relatively sparse. All old and new surveillance data were reviewed for completeness, duplicates, and discrepancies in cooperation with the American Society for Testing and Materials (ASTM) Subcommittee E10.02 on Radiation Effects in Structural Materials. In the present modeling effort, a 10% random sample of data was reserved from the fitting process, and most aspects of the model were validated with that sample as well as other data not used in calibration. The model is a hybrid, incorporating both physically motivated features and empirical calibration to the U.S. power reactor surveillance

  9. Efficient Retrieval of Massive Ocean Remote Sensing Images via a Cloud-Based Mean-Shift Algorithm.

    Yang, Mengzhao; Song, Wei; Mei, Haibin

    2017-07-23

    The rapid development of remote sensing (RS) technology has resulted in the proliferation of high-resolution images. There are challenges involved in not only storing large volumes of RS images but also in rapidly retrieving the images for ocean disaster analysis such as for storm surges and typhoon warnings. In this paper, we present an efficient retrieval of massive ocean RS images via a Cloud-based mean-shift algorithm. Distributed construction method via the pyramid model is proposed based on the maximum hierarchical layer algorithm and used to realize efficient storage structure of RS images on the Cloud platform. We achieve high-performance processing of massive RS images in the Hadoop system. Based on the pyramid Hadoop distributed file system (HDFS) storage method, an improved mean-shift algorithm for RS image retrieval is presented by fusion with the canopy algorithm via Hadoop MapReduce programming. The results show that the new method can achieve better performance for data storage than HDFS alone and WebGIS-based HDFS. Speedup and scaleup are very close to linear changes with an increase of RS images, which proves that image retrieval using our method is efficient.

  10. Experimental design-based functional mining and characterization of high-throughput sequencing data in the sequence read archive.

    Takeru Nakazato

    Full Text Available High-throughput sequencing technology, also called next-generation sequencing (NGS, has the potential to revolutionize the whole process of genome sequencing, transcriptomics, and epigenetics. Sequencing data is captured in a public primary data archive, the Sequence Read Archive (SRA. As of January 2013, data from more than 14,000 projects have been submitted to SRA, which is double that of the previous year. Researchers can download raw sequence data from SRA website to perform further analyses and to compare with their own data. However, it is extremely difficult to search entries and download raw sequences of interests with SRA because the data structure is complicated, and experimental conditions along with raw sequences are partly described in natural language. Additionally, some sequences are of inconsistent quality because anyone can submit sequencing data to SRA with no quality check. Therefore, as a criterion of data quality, we focused on SRA entries that were cited in journal articles. We extracted SRA IDs and PubMed IDs (PMIDs from SRA and full-text versions of journal articles and retrieved 2748 SRA ID-PMID pairs. We constructed a publication list referring to SRA entries. Since, one of the main themes of -omics analyses is clarification of disease mechanisms, we also characterized SRA entries by disease keywords, according to the Medical Subject Headings (MeSH extracted from articles assigned to each SRA entry. We obtained 989 SRA ID-MeSH disease term pairs, and constructed a disease list referring to SRA data. We previously developed feature profiles of diseases in a system called "Gendoo". We generated hyperlinks between diseases extracted from SRA and the feature profiles of it. The developed project, publication and disease lists resulting from this study are available at our web service, called "DBCLS SRA" (http://sra.dbcls.jp/. This service will improve accessibility to high-quality data from SRA.

  11. HLA class I sequence-based typing using DNA recovered from frozen plasma.

    Cotton, Laura A; Abdur Rahman, Manal; Ng, Carmond; Le, Anh Q; Milloy, M-J; Mo, Theresa; Brumme, Zabrina L

    2012-08-31

    We describe a rapid, reliable and cost-effective method for intermediate-to-high-resolution sequence-based HLA class I typing using frozen plasma as a source of genomic DNA. The plasma samples investigated had a median age of 8.5 years. Total nucleic acids were isolated from matched frozen PBMC (~2.5 million) and plasma (500 μl) samples from a panel of 25 individuals using commercial silica-based kits. Extractions yielded median [IQR] nucleic acid concentrations of 85.7 [47.0-130.0]ng/μl and 2.2 [1.7-2.6]ng/μl from PBMC and plasma, respectively. Following extraction, ~1000 base pair regions spanning exons 2 and 3 of HLA-A, -B and -C were amplified independently via nested PCR using universal, locus-specific primers and sequenced directly. Chromatogram analysis was performed using commercial DNA sequence analysis software and allele interpretation was performed using a free web-based tool. HLA-A, -B and -C amplification rates were 100% and chromatograms were of uniformly high quality with clearly distinguishable mixed bases regardless of DNA source. Concordance between PBMC and plasma-derived HLA types was 100% at the allele and protein levels. At the nucleotide level, a single partially discordant base (resulting from a failure to call both peaks in a mixed base) was observed out of >46,975 bases sequenced (>99.9% concordance). This protocol has previously been used to perform HLA class I typing from a variety of genomic DNA sources including PBMC, whole blood, granulocyte pellets and serum, from specimens up to 30 years old. This method provides comparable specificity to conventional sequence-based approaches and could be applied in situations where cell samples are unavailable or DNA quantities are limiting. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Genomic prediction in families of perennial ryegrass based on genotyping-by-sequencing

    Ashraf, Bilal

    In this thesis we investigate the potential for genomic prediction in perennial ryegrass using genotyping-by-sequencing (GBS) data. Association method based on family-based breeding systems was developed, genomic heritabilities, genomic prediction accurancies and effects of some key factors wer...... explored. Results show that low sequencing depth caused underestimation of allele substitution effects in GWAS and overestimation of genomic heritability in prediction studies. Other factors susch as SNP marker density, population structure and size of training population influenced accuracy of genomic...... prediction. Overall, GBS allows for genomic prediction in breeding families of perennial ryegrass and holds good potential to expedite genetic gain and encourage the application of genomic prediction...

  13. Report on OCDE’s tax bases erosion and shifting benefits: origin and implementation within international and global framework

    Fernando Serrano Antón

    2014-07-01

    Full Text Available This work is intended to analyze circumstances leading to OCDE’s report on tax bases erosion and shifting benefits. Inconsistency of tax systems and unilateralism in current economic globalization framework might have led to asymmetric tax situations, mostly exploited by multinational companies. Means and tools used and proposed by several international institutions in order to implement legally binding actions through soft law and acceptance by different countries as method used in the fight against tax avoidance and fraud are also discussed.

  14. Spectral BRDF-based determination of proper measurement geometries to characterize color shift of special effect coatings.

    Ferrero, Alejandro; Rabal, Ana; Campos, Joaquín; Martínez-Verdú, Francisco; Chorro, Elísabet; Perales, Esther; Pons, Alicia; Hernanz, María Luisa

    2013-02-01

    A reduced set of measurement geometries allows the spectral reflectance of special effect coatings to be predicted for any other geometry. A physical model based on flake-related parameters has been used to determine nonredundant measurement geometries for the complete description of the spectral bidirectional reflectance distribution function (BRDF). The analysis of experimental spectral BRDF was carried out by means of principal component analysis. From this analysis, a set of nine measurement geometries was proposed to characterize special effect coatings. It was shown that, for two different special effect coatings, these geometries provide a good prediction of their complete color shift.

  15. Development of a two-dimensional imaging detector based on a neutron scintillator with wavelength-shifting fibers

    Sakai, K; Oku, T; Morimoto, K; Shimizu, H M; Tokanai, F; Gorin, A; Manuilov, I V; Ryazantsev, A; Ino, T; Kuroda, K; Suzuki, J

    2002-01-01

    For evaluating neutron optical devices, a two-dimensional (2D) detector based on a neutron scintillator with wavelength-shifting fibers has been developed at RIKEN. We have investigated a ZnS(Ag)+LiF and a Li glass plate as neutron scintillators with the coding technique for realizing the large sensitive area of 50 x 50 mm sup 2. After fabricating the 2D detector, its performance was tested using cold neutrons at JAERI. As a result, a spatial resolution of propor to 1.0 mm was obtained. (orig.)

  16. Modelling and analysis of a novel compressed air energy storage system for trigeneration based on electrical energy peak load shifting

    Lv, Song; He, Wei; Zhang, Aifeng; Li, Guiqiang; Luo, Bingqing; Liu, Xianghua

    2017-01-01

    Highlights: • A new CAES system for trigeneration based on electrical peak load shifting is proposed. • The theoretical models and the thermodynamics process are established and analyzed. • The relevant parameters influencing its performance have been discussed and optimized. • A novel energy and economic evaluation methods is proposed to evaluate the performance of the system. - Abstract: The compressed air energy storage (CAES) has made great contribution to both electricity and renewable energy. In the pursuit of reduced energy consumption and relieving power utility pressure effectively, a novel trigeneration system based on CAES for cooling, heating and electricity generation by electrical energy peak load shifting is proposed in this paper. The cooling power is generated by the direct expansion of compressed air, and the heating power is recovered in the process of compression and storage. Based on the working principle of the typical CAES, the theoretical analysis of the thermodynamic system models are established and the characteristics of the system are analyzed. A novel method used to evaluate energy and economic performance is proposed. A case study is conducted, and the economic-social and technical feasibility of the proposed system are discussed. The results show that the trigeneration system works efficiently at relatively low pressure, and the efficiency is expected to reach about 76.3% when air is compressed and released by 15 bar. The annual monetary cost saving annually is about 53.9%. Moreover, general considerations about the proposed system are also presented.

  17. Shifted Independent Component Analysis

    Mørup, Morten; Madsen, Kristoffer Hougaard; Hansen, Lars Kai

    2007-01-01

    Delayed mixing is a problem of theoretical interest and practical importance, e.g., in speech processing, bio-medical signal analysis and financial data modelling. Most previous analyses have been based on models with integer shifts, i.e., shifts by a number of samples, and have often been carried...

  18. CodonLogo: a sequence logo-based viewer for codon patterns.

    Sharma, Virag; Murphy, David P; Provan, Gregory; Baranov, Pavel V

    2012-07-15

    Conserved patterns across a multiple sequence alignment can be visualized by generating sequence logos. Sequence logos show each column in the alignment as stacks of symbol(s) where the height of a stack is proportional to its informational content, whereas the height of each symbol within the stack is proportional to its frequency in the column. Sequence logos use symbols of either nucleotide or amino acid alphabets. However, certain regulatory signals in messenger RNA (mRNA) act as combinations of codons. Yet no tool is available for visualization of conserved codon patterns. We present the first application which allows visualization of conserved regions in a multiple sequence alignment in the context of codons. CodonLogo is based on WebLogo3 and uses the same heuristics but treats codons as inseparable units of a 64-letter alphabet. CodonLogo can discriminate patterns of codon conservation from patterns of nucleotide conservation that appear indistinguishable in standard sequence logos. The CodonLogo source code and its implementation (in a local version of the Galaxy Browser) are available at http://recode.ucc.ie/CodonLogo and through the Galaxy Tool Shed at http://toolshed.g2.bx.psu.edu/.

  19. Sequence comparison alignment-free approach based on suffix tree and L-words frequency.

    Soares, Inês; Goios, Ana; Amorim, António

    2012-01-01

    The vast majority of methods available for sequence comparison rely on a first sequence alignment step, which requires a number of assumptions on evolutionary history and is sometimes very difficult or impossible to perform due to the abundance of gaps (insertions/deletions). In such cases, an alternative alignment-free method would prove valuable. Our method starts by a computation of a generalized suffix tree of all sequences, which is completed in linear time. Using this tree, the frequency of all possible words with a preset length L-L-words--in each sequence is rapidly calculated. Based on the L-words frequency profile of each sequence, a pairwise standard Euclidean distance is then computed producing a symmetric genetic distance matrix, which can be used to generate a neighbor joining dendrogram or a multidimensional scaling graph. We present an improvement to word counting alignment-free approaches for sequence comparison, by determining a single optimal word length and combining suffix tree structures to the word counting tasks. Our approach is, thus, a fast and simple application that proved to be efficient and powerful when applied to mitochondrial genomes. The algorithm was implemented in Python language and is freely available on the web.

  20. Sequence Comparison Alignment-Free Approach Based on Suffix Tree and L-Words Frequency

    Inês Soares

    2012-01-01

    Full Text Available The vast majority of methods available for sequence comparison rely on a first sequence alignment step, which requires a number of assumptions on evolutionary history and is sometimes very difficult or impossible to perform due to the abundance of gaps (insertions/deletions. In such cases, an alternative alignment-free method would prove valuable. Our method starts by a computation of a generalized suffix tree of all sequences, which is completed in linear time. Using this tree, the frequency of all possible words with a preset length L—L-words—in each sequence is rapidly calculated. Based on the L-words frequency profile of each sequence, a pairwise standard Euclidean distance is then computed producing a symmetric genetic distance matrix, which can be used to generate a neighbor joining dendrogram or a multidimensional scaling graph. We present an improvement to word counting alignment-free approaches for sequence comparison, by determining a single optimal word length and combining suffix tree structures to the word counting tasks. Our approach is, thus, a fast and simple application that proved to be efficient and powerful when applied to mitochondrial genomes. The algorithm was implemented in Python language and is freely available on the web.

  1. MISTICA: Minimum Spanning Tree-Based Coarse Image Alignment for Microscopy Image Sequences.

    Ray, Nilanjan; McArdle, Sara; Ley, Klaus; Acton, Scott T

    2016-11-01

    Registration of an in vivo microscopy image sequence is necessary in many significant studies, including studies of atherosclerosis in large arteries and the heart. Significant cardiac and respiratory motion of the living subject, occasional spells of focal plane changes, drift in the field of view, and long image sequences are the principal roadblocks. The first step in such a registration process is the removal of translational and rotational motion. Next, a deformable registration can be performed. The focus of our study here is to remove the translation and/or rigid body motion that we refer to here as coarse alignment. The existing techniques for coarse alignment are unable to accommodate long sequences often consisting of periods of poor quality images (as quantified by a suitable perceptual measure). Many existing methods require the user to select an anchor image to which other images are registered. We propose a novel method for coarse image sequence alignment based on minimum weighted spanning trees (MISTICA) that overcomes these difficulties. The principal idea behind MISTICA is to reorder the images in shorter sequences, to demote nonconforming or poor quality images in the registration process, and to mitigate the error propagation. The anchor image is selected automatically making MISTICA completely automated. MISTICA is computationally efficient. It has a single tuning parameter that determines graph width, which can also be eliminated by the way of additional computation. MISTICA outperforms existing alignment methods when applied to microscopy image sequences of mouse arteries.

  2. Histoimmunogenetics Markup Language 1.0: Reporting next generation sequencing-based HLA and KIR genotyping.

    Milius, Robert P; Heuer, Michael; Valiga, Daniel; Doroschak, Kathryn J; Kennedy, Caleb J; Bolon, Yung-Tsi; Schneider, Joel; Pollack, Jane; Kim, Hwa Ran; Cereb, Nezih; Hollenbach, Jill A; Mack, Steven J; Maiers, Martin

    2015-12-01

    We present an electronic format for exchanging data for HLA and KIR genotyping with extensions for next-generation sequencing (NGS). This format addresses NGS data exchange by refining the Histoimmunogenetics Markup Language (HML) to conform to the proposed Minimum Information for Reporting Immunogenomic NGS Genotyping (MIRING) reporting guidelines (miring.immunogenomics.org). Our refinements of HML include two major additions. First, NGS is supported by new XML structures to capture additional NGS data and metadata required to produce a genotyping result, including analysis-dependent (dynamic) and method-dependent (static) components. A full genotype, consensus sequence, and the surrounding metadata are included directly, while the raw sequence reads and platform documentation are externally referenced. Second, genotype ambiguity is fully represented by integrating Genotype List Strings, which use a hierarchical set of delimiters to represent allele and genotype ambiguity in a complete and accurate fashion. HML also continues to enable the transmission of legacy methods (e.g. site-specific oligonucleotide, sequence-specific priming, and Sequence Based Typing (SBT)), adding features such as allowing multiple group-specific sequencing primers, and fully leveraging techniques that combine multiple methods to obtain a single result, such as SBT integrated with NGS. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. A DNA sequence obtained by replacement of the dopamine RNA aptamer bases is not an aptamer.

    Álvarez-Martos, Isabel; Ferapontova, Elena E

    2017-08-05

    A unique specificity of the aptamer-ligand biorecognition and binding facilitates bioanalysis and biosensor development, contributing to discrimination of structurally related molecules, such as dopamine and other catecholamine neurotransmitters. The aptamer sequence capable of specific binding of dopamine is a 57 nucleotides long RNA sequence reported in 1997 (Biochemistry, 1997, 36, 9726). Later, it was suggested that the DNA homologue of the RNA aptamer retains the specificity of dopamine binding (Biochem. Biophys. Res. Commun., 2009, 388, 732). Here, we show that the DNA sequence obtained by the replacement of the RNA aptamer bases for their DNA analogues is not able of specific biorecognition of dopamine, in contrast to the original RNA aptamer sequence. This DNA sequence binds dopamine and structurally related catecholamine neurotransmitters non-specifically, as any DNA sequence, and, thus, is not an aptamer and cannot be used neither for in vivo nor in situ analysis of dopamine in the presence of structurally related neurotransmitters. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. 3D knee segmentation based on three MRI sequences from different planes.

    Zhou, L; Chav, R; Cresson, T; Chartrand, G; de Guise, J

    2016-08-01

    In clinical practice, knee MRI sequences with 3.5~5 mm slice distance in sagittal, coronal, and axial planes are often requested for the knee examination since its acquisition is faster than high-resolution MRI sequence in a single plane, thereby reducing the probability of motion artifact. In order to take advantage of the three sequences from different planes, a 3D segmentation method based on the combination of three knee models obtained from the three sequences is proposed in this paper. In the method, the sub-segmentation is respectively performed with sagittal, coronal, and axial MRI sequence in the image coordinate system. With each sequence, an initial knee model is hierarchically deformed, and then the three deformed models are mapped to reference coordinate system defined by the DICOM standard and combined to obtain a patient-specific model. The experimental results verified that the three sub-segmentation results can complement each other, and their integration can compensate for the insufficiency of boundary information caused by 3.5~5 mm gap between consecutive slices. Therefore, the obtained patient-specific model is substantially more accurate than each sub-segmentation results.

  5. Taxonomy and phylogeny of the genus citrus based on the nuclear ribosomal dna its region sequence

    Sun, Y.L.

    2015-01-01

    The genus Citrus (Aurantioideae, Rutaceae) is the sole source of the citrus fruits of commerce showing high economic values. In this study, the taxonomy and phylogeny of Citrus species is evaluated using sequence analysis of the ITS region of nrDNA. This study is based on 26 plants materials belonging to 22 Citrus species having wild, domesticated, and cultivated species. Through DNA alignment of the ITS sequence, ITS1 and ITS2 regions showed relatively high variations of sequence length and nucleotide among these Citrus species. According to previous six-tribe discrimination theory by Swingle and Reece, the grouping in our ITS phylogenetic tree reconstructed by ITS sequences was not related to tribe discrimination but species discrimination. However, the molecular analysis could provide more information on citrus taxonomy. Combined with ITS sequences of other subgenera in then true citrus fruit tree group, the ITS phylogenetic tree indicated subgenera Citrus was monophyletic and nearer to Fortunella, Poncirus, and Clymenia compared to Microcitrus and Eremocitrus. Abundant sequence variations of the ITS region shown in this study would help species identification and tribe differentiation of the genus Citrus. (author)

  6. SiC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION; F

    Paul K.T. Liu

    2001-01-01

    This technical report summarizes our activities conducted in Yr II. In Yr I we successfully demonstrated the feasibility of preparing the hydrogen selective SiC membrane with a chemical vapor deposition (CVD) technique. In addition, a SiC macroporous membrane was fabricated as a substrate candidate for the proposed SiC membrane. In Yr II we have focused on the development of a microporous SiC membrane as an intermediate layer between the substrate and the final membrane layer prepared from CVD. Powders and supported thin silicon carbide films (membranes) were prepared by a sol-gel technique using silica sol precursors as the source of silicon, and phenolic resin as the source of carbon. The powders and films were prepared by the carbothermal reduction reaction between the silica and the carbon source. The XRD analysis indicates that the powders and films consist of SiC, while the surface area measurement indicates that they contain micropores. SEM and AFM studies of the same films also validate this observation. The powders and membranes were also stable under different corrosive and harsh environments. The effects of these different treatments on the internal surface area, pore size distribution, and transport properties, were studied for both the powders and the membranes using the aforementioned techniques and XPS. Finally the SiC membrane materials are shown to have satisfactory hydrothermal stability for the proposed application. In Yr III, we will focus on the demonstration of the potential benefit using the SiC membrane developed from Yr I and II for the water-gas-shift (WGS) reaction

  7. Molecular diagnosis of Usher syndrome: application of two different next generation sequencing-based procedures.

    Danilo Licastro

    Full Text Available Usher syndrome (USH is a clinically and genetically heterogeneous disorder characterized by visual and hearing impairments. Clinically, it is subdivided into three subclasses with nine genes identified so far. In the present study, we investigated whether the currently available Next Generation Sequencing (NGS technologies are already suitable for molecular diagnostics of USH. We analyzed a total of 12 patients, most of which were negative for previously described mutations in known USH genes upon primer extension-based microarray genotyping. We enriched the NGS template either by whole exome capture or by Long-PCR of the known USH genes. The main NGS sequencing platforms were used: SOLiD for whole exome sequencing, Illumina (Genome Analyzer II and Roche 454 (GS FLX for the Long-PCR sequencing. Long-PCR targeting was more efficient with up to 94% of USH gene regions displaying an overall coverage higher than 25×, whereas whole exome sequencing yielded a similar coverage for only 50% of those regions. Overall this integrated analysis led to the identification of 11 novel sequence variations in USH genes (2 homozygous and 9 heterozygous out of 18 detected. However, at least two cases were not genetically solved. Our result highlights the current limitations in the diagnostic use of NGS for USH patients. The limit for whole exome sequencing is linked to the need of a strong coverage and to the correct interpretation of sequence variations with a non obvious, pathogenic role, whereas the targeted approach suffers from the high genetic heterogeneity of USH that may be also caused by the presence of additional causative genes yet to be identified.

  8. Molecular Diagnosis of Usher Syndrome: Application of Two Different Next Generation Sequencing-Based Procedures

    Licastro, Danilo; Mutarelli, Margherita; Peluso, Ivana; Neveling, Kornelia; Wieskamp, Nienke; Rispoli, Rossella; Vozzi, Diego; Athanasakis, Emmanouil; D'Eustacchio, Angela; Pizzo, Mariateresa; D'Amico, Francesca; Ziviello, Carmela; Simonelli, Francesca; Fabretto, Antonella; Scheffer, Hans; Gasparini, Paolo; Banfi, Sandro; Nigro, Vincenzo

    2012-01-01

    Usher syndrome (USH) is a clinically and genetically heterogeneous disorder characterized by visual and hearing impairments. Clinically, it is subdivided into three subclasses with nine genes identified so far. In the present study, we investigated whether the currently available Next Generation Sequencing (NGS) technologies are already suitable for molecular diagnostics of USH. We analyzed a total of 12 patients, most of which were negative for previously described mutations in known USH genes upon primer extension-based microarray genotyping. We enriched the NGS template either by whole exome capture or by Long-PCR of the known USH genes. The main NGS sequencing platforms were used: SOLiD for whole exome sequencing, Illumina (Genome Analyzer II) and Roche 454 (GS FLX) for the Long-PCR sequencing. Long-PCR targeting was more efficient with up to 94% of USH gene regions displaying an overall coverage higher than 25×, whereas whole exome sequencing yielded a similar coverage for only 50% of those regions. Overall this integrated analysis led to the identification of 11 novel sequence variations in USH genes (2 homozygous and 9 heterozygous) out of 18 detected. However, at least two cases were not genetically solved. Our result highlights the current limitations in the diagnostic use of NGS for USH patients. The limit for whole exome sequencing is linked to the need of a strong coverage and to the correct interpretation of sequence variations with a non obvious, pathogenic role, whereas the targeted approach suffers from the high genetic heterogeneity of USH that may be also caused by the presence of additional causative genes yet to be identified. PMID:22952768

  9. Investigating the shifts in Thai teachers' views of learning and pedagogical practices while adopting an argument-based inquiry approach

    Promyod, Nattida

    The purpose of this study was to investigate the shift of Thai teachers' views of learning and their pedagogical practices from the traditional approach to be more centered on an argument-based inquiry approach (ABI) in Thai classrooms, where teachers and learners have long been familiar with the lecture-based tradition. Other than examining the changes, the study further explored the relationship throughout the ABI implementation phase with a specific focus on driving questions, problem solving and reasoning, and establishing a supportive learning environment. The study was conducted in Thailand with five physics teachers. Data collection involved classroom observations and teacher interviews. The constant comparative method was employed throughout the data analysis process. The research questions that guided this study were: (1) What changes occurred in teachers' pedagogical practices and views of learning throughout the implementation phase of the argument-based inquiry approach? (2) If change did occur, what was the relationship of the change among the observed criteria (questioning, problem solving, and the establishing of a supportive learning environment)? The results revealed that after fourteen weeks, the three teachers who expressed a positive attitude toward the ABI approach and expressed their willingness to practice started to shift their practices and views of learning toward a student-centered model. Although each teacher exhibited a different starting point within the three observed criteria, they all began to shift their practices first, before reflecting on their beliefs. In contrast to these teachers, the other two teachers were impeded by several barriers and therefore failed to implement the approach. These positive attitude, willingness, and shift of practice appear to be connected and necessary for change. The study highlights that in order to support the implementation of the ABI approach, especially in a large class size cultural setting

  10. Structured Light Based 3d Scanning for Specular Surface by the Combination of Gray Code and Phase Shifting

    Zhang, Yujia; Yilmaz, Alper

    2016-06-01

    Surface reconstruction using coded structured light is considered one of the most reliable techniques for high-quality 3D scanning. With a calibrated projector-camera stereo system, a light pattern is projected onto the scene and imaged by the camera. Correspondences between projected and recovered patterns are computed in the decoding process, which is used to generate 3D point cloud of the surface. However, the indirect illumination effects on the surface, such as subsurface scattering and interreflections, will raise the difficulties in reconstruction. In this paper, we apply maximum min-SW gray code to reduce the indirect illumination effects of the specular surface. We also analysis the errors when comparing the maximum min-SW gray code and the conventional gray code, which justifies that the maximum min-SW gray code has significant superiority to reduce the indirect illumination effects. To achieve sub-pixel accuracy, we project high frequency sinusoidal patterns onto the scene simultaneously. But for specular surface, the high frequency patterns are susceptible to decoding errors. Incorrect decoding of high frequency patterns will result in a loss of depth resolution. Our method to resolve this problem is combining the low frequency maximum min-SW gray code and the high frequency phase shifting code, which achieves dense 3D reconstruction for specular surface. Our contributions include: (i) A complete setup of the structured light based 3D scanning system; (ii) A novel combination technique of the maximum min-SW gray code and phase shifting code. First, phase shifting decoding with sub-pixel accuracy. Then, the maximum min-SW gray code is used to resolve the ambiguity resolution. According to the experimental results and data analysis, our structured light based 3D scanning system enables high quality dense reconstruction of scenes with a small number of images. Qualitative and quantitative comparisons are performed to extract the advantages of our new

  11. Context based computational analysis and characterization of ARS consensus sequences (ACS of Saccharomyces cerevisiae genome

    Vinod Kumar Singh

    2016-09-01

    Full Text Available Genome-wide experimental studies in Saccharomyces cerevisiae reveal that autonomous replicating sequence (ARS requires an essential consensus sequence (ACS for replication activity. Computational studies identified thousands of ACS like patterns in the genome. However, only a few hundreds of these sites act as replicating sites and the rest are considered as dormant or evolving sites. In a bid to understand the sequence makeup of replication sites, a content and context-based analysis was performed on a set of replicating ACS sequences that binds to origin-recognition complex (ORC denoted as ORC-ACS and non-replicating ACS sequences (nrACS, that are not bound by ORC. In this study, DNA properties such as base composition, correlation, sequence dependent thermodynamic and DNA structural profiles, and their positions have been considered for characterizing ORC-ACS and nrACS. Analysis reveals that ORC-ACS depict marked differences in nucleotide composition and context features in its vicinity compared to nrACS. Interestingly, an A-rich motif was also discovered in ORC-ACS sequences within its nucleosome-free region. Profound changes in the conformational features, such as DNA helical twist, inclination angle and stacking energy between ORC-ACS and nrACS were observed. Distribution of ACS motifs in the non-coding segments points to the locations of ORC-ACS which are found far away from the adjacent gene start position compared to nrACS thereby enabling an accessible environment for ORC-proteins. Our attempt is novel in considering the contextual view of ACS and its flanking region along with nucleosome positioning in the S. cerevisiae genome and may be useful for any computational prediction scheme.

  12. Simultaneous genomic identification and profiling of a single cell using semiconductor-based next generation sequencing

    Manabu Watanabe

    2014-09-01

    Full Text Available Combining single-cell methods and next-generation sequencing should provide a powerful means to understand single-cell biology and obviate the effects of sample heterogeneity. Here we report a single-cell identification method and seamless cancer gene profiling using semiconductor-based massively parallel sequencing. A549 cells (adenocarcinomic human alveolar basal epithelial cell line were used as a model. Single-cell capture was performed using laser capture microdissection (LCM with an Arcturus® XT system, and a captured single cell and a bulk population of A549 cells (≈106 cells were subjected to whole genome amplification (WGA. For cell identification, a multiplex PCR method (AmpliSeq™ SNP HID panel was used to enrich 136 highly discriminatory SNPs with a genotype concordance probability of 1031–35. For cancer gene profiling, we used mutation profiling that was performed in parallel using a hotspot panel for 50 cancer-related genes. Sequencing was performed using a semiconductor-based bench top sequencer. The distribution of sequence reads for both HID and Cancer panel amplicons was consistent across these samples. For the bulk population of cells, the percentages of sequence covered at coverage of more than 100× were 99.04% for the HID panel and 98.83% for the Cancer panel, while for the single cell percentages of sequence covered at coverage of more than 100× were 55.93% for the HID panel and 65.96% for the Cancer panel. Partial amplification failure or randomly distributed non-amplified regions across samples from single cells during the WGA procedures or random allele drop out probably caused these differences. However, comparative analyses showed that this method successfully discriminated a single A549 cancer cell from a bulk population of A549 cells. Thus, our approach provides a powerful means to overcome tumor sample heterogeneity when searching for somatic mutations.

  13. Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy?

    Yeo, Chien Ing; Ooi, Kah Kooi; Tiekink, Edward R T

    2018-06-11

    A new era of metal-based drugs started in the 1960s, heralded by the discovery of potent platinum-based complexes, commencing with cisplatin [(H₃N)₂PtCl₂], which are effective anti-cancer chemotherapeutic drugs. While clinical applications of gold-based drugs largely relate to the treatment of rheumatoid arthritis, attention has turned to the investigation of the efficacy of gold(I) and gold(III) compounds for anti-cancer applications. This review article provides an account of the latest research conducted during the last decade or so on the development of gold compounds and their potential activities against several cancers as well as a summary of possible mechanisms of action/biological targets. The promising activities and increasing knowledge of gold-based drug metabolism ensures that continued efforts will be made to develop gold-based anti-cancer agents.

  14. Implementation of an RFID-Based Sequencing-Error-Proofing System for Automotive Manufacturing Logistics

    Yong-Shin Kang

    2018-01-01

    Full Text Available Serialized tracing provides the ability to track and trace the lifecycle of the products and parts. Unlike barcodes, Radio frequency identification (RFID, which is an important building block for internet of things (IoT, does not require a line of sight and has the advantages of recognizing many objects simultaneously and rapidly, and storing more information than barcodes. Therefore, RFID has been used in a variety of application domains such as logistics, distributions, and manufacturing, significantly improving traceability and process efficiency. In this study, we applied RFID to improve the just-in-sequence operation of an automotive inbound logistics process. First, we implemented an RFID-based visibility system for real-time traceability and control of part supply from the production lines of suppliers to the assembly line of a car manufacturer. Second, we developed an RFID-based sequence-error proofing system to avoid accidental line stops due to incorrect part sequencing. The whole system has been successfully installed in a rear-axle inbound logistics process of GM Korea. We achieved a significant amount of cost savings, especially due to the prevention of sequencing errors and part shortages, and the reduction of manual operations. Thorough cost-benefit analysis demonstrates the clear economic feasibility of using RFID technologies for the just-in-sequence inbound logistics in an automobile manufacturing environment.

  15. Galaxy Workflows for Web-based Bioinformatics Analysis of Aptamer High-throughput Sequencing Data

    William H Thiel

    2016-01-01

    Full Text Available Development of RNA and DNA aptamers for diagnostic and therapeutic applications is a rapidly growing field. Aptamers are identified through iterative rounds of selection in a process termed SELEX (Systematic Evolution of Ligands by EXponential enrichment. High-throughput sequencing (HTS revolutionized the modern SELEX process by identifying millions of aptamer sequences across multiple rounds of aptamer selection. However, these vast aptamer HTS datasets necessitated bioinformatics techniques. Herein, we describe a semiautomated approach to analyze aptamer HTS datasets using the Galaxy Project, a web-based open source collection of bioinformatics tools that were originally developed to analyze genome, exome, and transcriptome HTS data. Using a series of Workflows created in the Galaxy webserver, we demonstrate efficient processing of aptamer HTS data and compilation of a database of unique aptamer sequences. Additional Workflows were created to characterize the abundance and persistence of aptamer sequences within a selection and to filter sequences based on these parameters. A key advantage of this approach is that the online nature of the Galaxy webserver and its graphical interface allow for the analysis of HTS data without the need to compile code or install multiple programs.

  16. pyPaSWAS: Python-based multi-core CPU and GPU sequence alignment.

    Warris, Sven; Timal, N Roshan N; Kempenaar, Marcel; Poortinga, Arne M; van de Geest, Henri; Varbanescu, Ana L; Nap, Jan-Peter

    2018-01-01

    Our previously published CUDA-only application PaSWAS for Smith-Waterman (SW) sequence alignment of any type of sequence on NVIDIA-based GPUs is platform-specific and therefore adopted less than could be. The OpenCL language is supported more widely and allows use on a variety of hardware platforms. Moreover, there is a need to promote the adoption of parallel computing in bioinformatics by making its use and extension more simple through more and better application of high-level languages commonly used in bioinformatics, such as Python. The novel application pyPaSWAS presents the parallel SW sequence alignment code fully packed in Python. It is a generic SW implementation running on several hardware platforms with multi-core systems and/or GPUs that provides accurate sequence alignments that also can be inspected for alignment details. Additionally, pyPaSWAS support the affine gap penalty. Python libraries are used for automated system configuration, I/O and logging. This way, the Python environment will stimulate further extension and use of pyPaSWAS. pyPaSWAS presents an easy Python-based environment for accurate and retrievable parallel SW sequence alignments on GPUs and multi-core systems. The strategy of integrating Python with high-performance parallel compute languages to create a developer- and user-friendly environment should be considered for other computationally intensive bioinformatics algorithms.

  17. Battery Internal Temperature Estimation for LiFePO4 Battery Based on Impedance Phase Shift under Operating Conditions

    Jiangong Zhu

    2017-01-01

    Full Text Available An impedance-based temperature estimation method is investigated considering the electrochemical non-equilibrium with short-term relaxation time for facilitating the vehicular application. Generally, sufficient relaxation time is required for battery electrochemical equilibrium before the impedance measurement. A detailed experiment is performed to investigate the regularity of the battery impedance in short-term relaxation time after switch-off current excitation, which indicates that the impedance can be measured and also has systematical decrement with the relaxation time growth. Based on the discussion of impedance variation in electrochemical perspective, as well as the monotonic relationship between impedance phase shift and battery internal temperature in the electrochemical equilibrium state, an exponential equation that accounts for both measured phase shift and relaxation time is established to correct the measuring deviation caused by electrochemical non-equilibrium. Then, a multivariate linear equation coupled with ambient temperature is derived considering the temperature gradients between the active part and battery surface. Equations stated above are all identified with the embedded thermocouple experimentally. In conclusion, the temperature estimation method can be a valuable alternative for temperature monitoring during cell operating, and serve the functionality as an efficient implementation in battery thermal management system for electric vehicles (EVs and hybrid electric vehicles (HEVs.

  18. Fiber-optic refractometer based on an etched high-Q π-phase-shifted fiber-Bragg-grating.

    Zhang, Qi; Ianno, Natale J; Han, Ming

    2013-07-10

    We present a compact and highly-sensitive fiber-optic refractometer based on a high-Q π-phase-shifted fiber-Bragg-grating (πFBG) that is chemically etched to the core of the fiber. Due to the p phase-shift, a strong πFBG forms a high-Q optical resonator and the reflection spectrum features an extremely narrow notch that can be used for highly sensitivity refractive index measurement. The etched πFBG demonstrated here has a diameter of ~9.3 μm and a length of only 7 mm, leading to a refractive index responsivity of 2.9 nm/RIU (RIU: refractive index unit) at an ambient refractive index of 1.318. The reflection spectrum of the etched πFBG features an extremely narrow notch with a linewidth of only 2.1 pm in water centered at ~1,550 nm, corresponding to a Q-factor of 7.4 × 10(5), which allows for potentially significantly improved sensitivity over refractometers based on regular fiber Bragg gratings.

  19. Fiber-Optic Refractometer Based on an Etched High-Q π-Phase-Shifted Fiber-Bragg-Grating

    Ming Han

    2013-07-01

    Full Text Available We present a compact and highly-sensitive fiber-optic refractometer based on a high-Q p-phase-shifted fiber-Bragg-grating (pFBG that is chemically etched to the core of the fiber. Due to the p phase-shift, a strong pFBG forms a high-Q optical resonator and the reflection spectrum features an extremely narrow notch that can be used for highly sensitivity refractive index measurement. The etched pFBG demonstrated here has a diameter of ~9.3 μm and a length of only 7 mm, leading to a refractive index responsivity of 2.9 nm/RIU (RIU: refractive index unit at an ambient refractive index of 1.318. The reflection spectrum of the etched pFBG features an extremely narrow notch with a linewidth of only 2.1 pm in water centered at ~1,550 nm, corresponding to a Q-factor of 7.4 ´ 105, which allows for potentially significantly improved sensitivity over refractometers based on regular fiber Bragg gratings.

  20. A new approach way for white organic light-emitting diodes based on single emitting layer and large stokes shift.

    Kim, Beomjin; Park, Youngil; Shin, Yunseop; Lee, Jiwon; Shin, Hwangyu; Park, Jongwook

    2014-07-01

    New red dopant, DPPZ based on porphyrin moiety was synthesized. DPPZ showed UV-Vis and PL maximum values of 412 and 638 nm, indicating the large stokes shift. New blue host compound, TATa was also synthesized and used for co-mixed white emission. TATa exhibited UV-Vis. and PL maximum values of 403 nm and 463 nm in film state. Thus, when two compounds are used as co-mixed emitter in OLED device, there is no energy transfer from blue emission of TATa to DPPZ due to large stokes shift of DPPZ. Based on the PL result, it is available to realize two-colored white in PL and EL spectra. As a result of this, two-mixed compounds showed vivid their own PL emission peaks of 466 and 638 nm in film state. Also, white OLED device using two-mixed compounds system was fabricated. EL spectrum shows 481 and 646 nm peaks and two separate EL peaks. As the operation voltage is increased from 8 to 11 V, EL spectrum does not change the peak shape and maximum wavelength values. EL performance of white device showed 0.041 cd/A, 0.018 Im/W, and CIE (0.457, 0.331) at 8 V.

  1. A new RF tagging pulse based on the Frank poly-phase perfect sequence

    Laustsen, Christoffer; Greferath, Marcus; Ringgaard, Steffen

    2014-01-01

    Radio frequency (RF) spectrally selective multiband pulses or tagging pulses, are applicable in a broad range of magnetic resonance methods. We demonstrate through simulations and experiments a new phase-modulation-only RF pulse for RF tagging based on the Frank poly-phase perfect sequence...

  2. State of the art and challenges in sequence based T-cell epitope prediction

    Lundegaard, Claus; Hoof, Ilka; Lund, Ole

    2010-01-01

    Sequence based T-cell epitope predictions have improved immensely in the last decade. From predictions of peptide binding to major histocompatibility complex molecules with moderate accuracy, limited allele coverage, and no good estimates of the other events in the antigen-processing pathway, the...

  3. Teaching Research Methodology Using a Project-Based Three Course Sequence Critical Reflections on Practice

    Braguglia, Kay H.; Jackson, Kanata A.

    2012-01-01

    This article presents a reflective analysis of teaching research methodology through a three course sequence using a project-based approach. The authors reflect critically on their experiences in teaching research methods courses in an undergraduate business management program. The introduction of a range of specific techniques including student…

  4. Magnetism Teaching Sequences Based on an Inductive Approach for First-Year Thai University Science Students

    Narjaikaew, Pattawan; Emarat, Narumon; Arayathanitkul, Kwan; Cowie, Bronwen

    2010-01-01

    The study investigated the impact on student motivation and understanding of magnetism of teaching sequences based on an inductive approach. The study was conducted in large lecture classes. A pre- and post-Conceptual Survey of Electricity and Magnetism was conducted with just fewer than 700 Thai undergraduate science students, before and after…

  5. Method for Generating Pseudorandom Sequences with the Assured Period Based on R-blocks

    M. A. Ivanov

    2011-03-01

    Full Text Available The article describes the characteristics of a new class of fast-acting pseudorandom number generators, based on the use of stochastic adders or R-blocks. A new method for generating pseudorandom sequences with the assured length of period is offered.

  6. Reproducible analysis of sequencing-based RNA structure probing data with user-friendly tools

    Kielpinski, Lukasz Jan; Sidiropoulos, Nikos; Vinther, Jeppe

    2015-01-01

    time also made analysis of the data challenging for scientists without formal training in computational biology. Here, we discuss different strategies for data analysis of massive parallel sequencing-based structure-probing data. To facilitate reproducible and standardized analysis of this type of data...

  7. CGKB: an annotation knowledge base for cowpea (Vigna unguiculata L. methylation filtered genomic genespace sequences

    Spraggins Thomas A

    2007-04-01

    Full Text Available Abstract Background Cowpea [Vigna unguiculata (L. Walp.] is one of the most important food and forage legumes in the semi-arid tropics because of its ability to tolerate drought and grow on poor soils. It is cultivated mostly by poor farmers in developing countries, with 80% of production taking place in the dry savannah of tropical West and Central Africa. Cowpea is largely an underexploited crop with relatively little genomic information available for use in applied plant breeding. The goal of the Cowpea Genomics Initiative (CGI, funded by the Kirkhouse Trust, a UK-based charitable organization, is to leverage modern molecular genetic tools for gene discovery and cowpea improvement. One aspect of the initiative is the sequencing of the gene-rich region of the cowpea genome (termed the genespace recovered using methylation filtration technology and providing annotation and analysis of the sequence data. Description CGKB, Cowpea Genespace/Genomics Knowledge Base, is an annotation knowledge base developed under the CGI. The database is based on information derived from 298,848 cowpea genespace sequences (GSS isolated by methylation filtering of genomic DNA. The CGKB consists of three knowledge bases: GSS annotation and comparative genomics knowledge base, GSS enzyme and metabolic pathway knowledge base, and GSS simple sequence repeats (SSRs knowledge base for molecular marker discovery. A homology-based approach was applied for annotations of the GSS, mainly using BLASTX against four public FASTA formatted protein databases (NCBI GenBank Proteins, UniProtKB-Swiss-Prot, UniprotKB-PIR (Protein Information Resource, and UniProtKB-TrEMBL. Comparative genome analysis was done by BLASTX searches of the cowpea GSS against four plant proteomes from Arabidopsis thaliana, Oryza sativa, Medicago truncatula, and Populus trichocarpa. The possible exons and introns on each cowpea GSS were predicted using the HMM-based Genscan gene predication program and the

  8. Solvent-dependent reactions for the synthesis of β-keto-benzo-δ-sultone scaffolds via DBU-catalyzed O-sulfonylation/intramolecular Baylis-Hillman/1,3-H shift or dehydration tandem sequences.

    Ghandi, Mehdi; Bozcheloei, Abolfazl Hasani; Nazari, Seyed Hadi; Sadeghzadeh, Masoud

    2011-12-16

    We have developed a solvent-dependent method for the synthesis of novel benzo-δ-sultone scaffolds. A variety of benzylbenzo[e][1,2]oxathiin-4(3H)-one-2,2-dioxides were obtained in high yields in DMF using a one-pot, DBU-catalyzed condensation of 2-hydroxybenzaldehydes with a number of (E)-2-phenylethenesulfonyl chlorides. On the other hand, the initially prepared 2-formylphenyl-(E)-2-phenylethenesulfonate derivatives underwent DBU-catalyzed reactions to a series of 3-[methoxy(phenyl)methyl]benzo[e][1,2]oxathiine-2,2-dioxides in moderate to good yields in MeOH. These reactions presumably proceed via DBU-catalyzed O-sulfonylation/intramolecular Baylis-Hillman/1,3-H shift or dehydration tandem sequences, respectively.

  9. Face recognition based on matching of local features on 3D dynamic range sequences

    Echeagaray-Patrón, B. A.; Kober, Vitaly

    2016-09-01

    3D face recognition has attracted attention in the last decade due to improvement of technology of 3D image acquisition and its wide range of applications such as access control, surveillance, human-computer interaction and biometric identification systems. Most research on 3D face recognition has focused on analysis of 3D still data. In this work, a new method for face recognition using dynamic 3D range sequences is proposed. Experimental results are presented and discussed using 3D sequences in the presence of pose variation. The performance of the proposed method is compared with that of conventional face recognition algorithms based on descriptors.

  10. Security problems for a pseudorandom sequence generator based on the Chen chaotic system

    Özkaynak, Fatih; Yavuz, Sırma

    2013-09-01

    Recently, a novel pseudorandom number generator scheme based on the Chen chaotic system was proposed. In this study, we analyze the security weaknesses of the proposed generator. By applying a brute force attack on a reduced key space, we show that 66% of the generated pseudorandom number sequences can be revealed. Executable C# code is given for the proposed attack. The computational complexity of this attack is O(n), where n is the sequence length. Both mathematical proofs and experimental results are presented to support the proposed attack.

  11. Study of key technology of ghost imaging via compressive sensing for a phase object based on phase-shifting digital holography

    Leihong, Zhang; Dong, Liang; Bei, Li; Zilan, Pan; Dawei, Zhang; Xiuhua, Ma

    2015-01-01

    In this article, the algorithm of compressing sensing is used to improve the imaging resolution and realize ghost imaging via compressive sensing for a phase object based on the theoretical analysis of the lensless Fourier imaging of the algorithm of ghost imaging based on phase-shifting digital holography. The algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography uses the bucket detector to measure the total light intensity of the interference and the four-step phase-shifting method is used to obtain the total light intensity of differential interference light. The experimental platform is built based on the software simulation, and the experimental results show that the algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography can obtain the high-resolution phase distribution figure of the phase object. With the same sampling times, the phase clarity of the phase distribution figure obtained by the algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography is higher than that obtained by the algorithm of ghost imaging based on phase-shift digital holography. In this article, this study further extends the application range of ghost imaging and obtains the phase distribution of the phase object. (letter)

  12. Molecular diversification of Trichuris spp. from Sigmodontinae (Cricetidae) rodents from Argentina based on mitochondrial DNA sequences.

    Callejón, Rocío; Robles, María Del Rosario; Panei, Carlos Javier; Cutillas, Cristina

    2016-08-01

    A molecular phylogenetic hypothesis is presented for the genus Trichuris based on sequence data from mitochondrial cytochrome c oxidase 1 (cox1) and cytochrome b (cob). The taxa consisted of nine populations of whipworm from five species of Sigmodontinae rodents from Argentina. Bayesian Inference, Maximum Parsimony, and Maximum Likelihood methods were used to infer phylogenies for each gene separately but also for the combined mitochondrial data and the combined mitochondrial and nuclear dataset. Phylogenetic results based on cox1 and cob mitochondrial DNA (mtDNA) revealed three clades strongly resolved corresponding to three different species (Trichuris navonae, Trichuris bainae, and Trichuris pardinasi) showing phylogeographic variation, but relationships among Trichuris species were poorly resolved. Phylogenetic reconstruction based on concatenated sequences had greater phylogenetic resolution for delimiting species and populations intra-specific of Trichuris than those based on partitioned genes. Thus, populations of T. bainae and T. pardinasi could be affected by geographical factors and co-divergence parasite-host.

  13. A robust cloud registration method based on redundant data reduction using backpropagation neural network and shift window

    Xin, Meiting; Li, Bing; Yan, Xiao; Chen, Lei; Wei, Xiang

    2018-02-01

    A robust coarse-to-fine registration method based on the backpropagation (BP) neural network and shift window technology is proposed in this study. Specifically, there are three steps: coarse alignment between the model data and measured data, data simplification based on the BP neural network and point reservation in the contour region of point clouds, and fine registration with the reweighted iterative closest point algorithm. In the process of rough alignment, the initial rotation matrix and the translation vector between the two datasets are obtained. After performing subsequent simplification operations, the number of points can be reduced greatly. Therefore, the time and space complexity of the accurate registration can be significantly reduced. The experimental results show that the proposed method improves the computational efficiency without loss of accuracy.

  14. Phylogenetic analysis of Demodex caprae based on mitochondrial 16S rDNA sequence.

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Demodex caprae infests the hair follicles and sebaceous glands of goats worldwide, which not only seriously impairs goat farming, but also causes a big economic loss. However, there are few reports on the DNA level of D. caprae. To reveal the taxonomic position of D. caprae within the genus Demodex, the present study conducted phylogenetic analysis of D. caprae based on mt16S rDNA sequence data. D. caprae adults and eggs were obtained from a skin nodule of the goat suffering demodicidosis. The mt16S rDNA sequences of individual mite were amplified using specific primers, and then cloned, sequenced, and aligned. The sequence divergence, genetic distance, and transition/transversion rate were computed, and the phylogenetic trees in Demodex were reconstructed. Results revealed the 339-bp partial sequences of six D. caprae isolates were obtained, and the sequence identity was 100% among isolates. The pairwise divergences between D. caprae and Demodex canis or Demodex folliculorum or Demodex brevis were 22.2-24.0%, 24.0-24.9%, and 22.9-23.2%, respectively. The corresponding average genetic distances were 2.840, 2.926, and 2.665, and the average transition/transversion rates were 0.70, 0.55, and 0.54, respectively. The divergences, genetic distances, and transition/transversion rates of D. caprae versus the other three species all reached interspecies level. The five phylogenetic trees all presented that D. caprae clustered with D. brevis first, and then with D. canis, D. folliculorum, and Demodex injai in sequence. In conclusion, D. caprae is an independent species, and it is closer to D. brevis than to D. canis, D. folliculorum, or D. injai.

  15. Security Analysis of a Block Encryption Algorithm Based on Dynamic Sequences of Multiple Chaotic Systems

    Du, Mao-Kang; He, Bo; Wang, Yong

    2011-01-01

    Recently, the cryptosystem based on chaos has attracted much attention. Wang and Yu (Commun. Nonlin. Sci. Numer. Simulat. 14 (2009) 574) proposed a block encryption algorithm based on dynamic sequences of multiple chaotic systems. We analyze the potential flaws in the algorithm. Then, a chosen-plaintext attack is presented. Some remedial measures are suggested to avoid the flaws effectively. Furthermore, an improved encryption algorithm is proposed to resist the attacks and to keep all the merits of the original cryptosystem.

  16. Action Plan on Base Erosion and Profit Shifting: An Indian Perspective.

    Rao, R. Kavita; Sengupta, D.P.

    2014-01-01

    The discussion in this paper highlights some evidence to support the notion that there is base erosion in India. On the specific action points listed in the OECD's Action Plan, a perspective from India's stand point has been presented along with a brief discussion on the steps needed to prepare for complying with likely proposed measures.

  17. The Impact of the Shifting Knowledge Base, from Development to Achievement, on Early Childhood Education Programs

    Tyler, Kathleen P.

    2012-01-01

    Interest in child development as a knowledge base for early childhood education programs flourished in the 1970s as a result of the theories and philosophies of Jean Piaget and other cognitive developmentalists. During subsequent decades in America, reform movements emphasizing accountability and achievement became a political and social…

  18. The Strength-Based Counseling Model: A Paradigm Shift in Psychology

    Smith, Elsie J.

    2006-01-01

    Sometimes, it is difficult for a profession to move forward because its members interpret emerging conceptual models from the perspective of old frameworks. Each of the five reactants in this issue of "The Counseling Psychologist" interpreted the strength-based counseling model within their own self-adopted framework--Adlerian psychology, role…

  19. Autonomously Generating Operations Sequences for a Mars Rover Using Artificial Intelligence-Based Planning

    Sherwood, R.; Mutz, D.; Estlin, T.; Chien, S.; Backes, P.; Norris, J.; Tran, D.; Cooper, B.; Rabideau, G.; Mishkin, A.; Maxwell, S.

    2001-07-01

    This article discusses a proof-of-concept prototype for ground-based automatic generation of validated rover command sequences from high-level science and engineering activities. This prototype is based on ASPEN, the Automated Scheduling and Planning Environment. This artificial intelligence (AI)-based planning and scheduling system will automatically generate a command sequence that will execute within resource constraints and satisfy flight rules. An automated planning and scheduling system encodes rover design knowledge and uses search and reasoning techniques to automatically generate low-level command sequences while respecting rover operability constraints, science and engineering preferences, environmental predictions, and also adhering to hard temporal constraints. This prototype planning system has been field-tested using the Rocky 7 rover at JPL and will be field-tested on more complex rovers to prove its effectiveness before transferring the technology to flight operations for an upcoming NASA mission. Enabling goal-driven commanding of planetary rovers greatly reduces the requirements for highly skilled rover engineering personnel. This in turn greatly reduces mission operations costs. In addition, goal-driven commanding permits a faster response to changes in rover state (e.g., faults) or science discoveries by removing the time-consuming manual sequence validation process, allowing rapid "what-if" analyses, and thus reducing overall cycle times.

  20. Structured prediction models for RNN based sequence labeling in clinical text.

    Jagannatha, Abhyuday N; Yu, Hong

    2016-11-01

    Sequence labeling is a widely used method for named entity recognition and information extraction from unstructured natural language data. In clinical domain one major application of sequence labeling involves extraction of medical entities such as medication, indication, and side-effects from Electronic Health Record narratives. Sequence labeling in this domain, presents its own set of challenges and objectives. In this work we experimented with various CRF based structured learning models with Recurrent Neural Networks. We extend the previously studied LSTM-CRF models with explicit modeling of pairwise potentials. We also propose an approximate version of skip-chain CRF inference with RNN potentials. We use these methodologies for structured prediction in order to improve the exact phrase detection of various medical entities.

  1. On the Power and Limits of Sequence Similarity Based Clustering of Proteins Into Families

    Wiwie, Christian; Röttger, Richard

    2017-01-01

    Over the last decades, we have observed an ongoing tremendous growth of available sequencing data fueled by the advancements in wet-lab technology. The sequencing information is only the beginning of the actual understanding of how organisms survive and prosper. It is, for instance, equally...... important to also unravel the proteomic repertoire of an organism. A classical computational approach for detecting protein families is a sequence-based similarity calculation coupled with a subsequent cluster analysis. In this work we have intensively analyzed various clustering tools on a large scale. We...... used the data to investigate the behavior of the tools' parameters underlining the diversity of the protein families. Furthermore, we trained regression models for predicting the expected performance of a clustering tool for an unknown data set and aimed to also suggest optimal parameters...

  2. Shift work, night work, and the risk of prostate cancer: A meta-analysis based on 9 cohort studies.

    Du, Hong-Bing; Bin, Kai-Yun; Liu, Wen-Hong; Yang, Feng-Sheng

    2017-11-01

    Epidemiology studies suggested that shift work or night work may be linked to prostate cancer (PCa); the relationship, however, remains controversy. PubMed, ScienceDirect, and Embase (Ovid) databases were searched before (started from the building of the databases) February 4, 2017 for eligible cohort studies. We pooled the evidence included by a random- or fixed-effect model, according to the heterogeneity. A predefined subgroup analysis was conducted to see the potential discrepancy between groups. Sensitivity analysis was used to test whether our results were stale. Nine cohort studies were eligible for meta-analysis with 2,570,790 male subjects. Our meta-analysis showed that, under the fixed-effect model, the pooled relevant risk (RR) of PCa was 1.05 (95% confidence interval [CI]: 1.00, 1.11; P = .06; I = 24.00%) for men who had ever engaged in night shift work; and under the random-effect model, the pooled RR was 1.08 (0.99, 1.17; P = .08; I = 24.00%). Subgroup analysis showed the RR of PCa among males in western countries was 1.05 (95% CI: 0.99, 1.11; P = .09; I = 0.00%), while among Asian countries it was 2.45 (95% CI: 1.19, 5.04; P = .02; I = 0.00%); and the RR was 1.04 (95% CI: 0.95, 1.14; P = .40; I = 29.20%) for the high-quality group compared with 1.21 (95% CI: 1.03, 1.41; P = .02; I = 0.00%) for the moderate/low-quality group. Sensitivity analysis showed robust results. Based on the current evidence of cohort studies, we found no obvious association between night shift work and PCa. However, our subgroup analysis suggests that night shift work may increase the risk of PCa in Asian men. Some evidence of a small study effect was observed in this meta-analysis.

  3. MendeLIMS: a web-based laboratory information management system for clinical genome sequencing.

    Grimes, Susan M; Ji, Hanlee P

    2014-08-27

    Large clinical genomics studies using next generation DNA sequencing require the ability to select and track samples from a large population of patients through many experimental steps. With the number of clinical genome sequencing studies increasing, it is critical to maintain adequate laboratory information management systems to manage the thousands of patient samples that are subject to this type of genetic analysis. To meet the needs of clinical population studies using genome sequencing, we developed a web-based laboratory information management system (LIMS) with a flexible configuration that is adaptable to continuously evolving experimental protocols of next generation DNA sequencing technologies. Our system is referred to as MendeLIMS, is easily implemented with open source tools and is also highly configurable and extensible. MendeLIMS has been invaluable in the management of our clinical genome sequencing studies. We maintain a publicly available demonstration version of the application for evaluation purposes at http://mendelims.stanford.edu. MendeLIMS is programmed in Ruby on Rails (RoR) and accesses data stored in SQL-compliant relational databases. Software is freely available for non-commercial use at http://dna-discovery.stanford.edu/software/mendelims/.

  4. Extracting flat-field images from scene-based image sequences using phase correlation

    Caron, James N., E-mail: Caron@RSImd.com [Research Support Instruments, 4325-B Forbes Boulevard, Lanham, Maryland 20706 (United States); Montes, Marcos J. [Naval Research Laboratory, Code 7231, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States); Obermark, Jerome L. [Naval Research Laboratory, Code 8231, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States)

    2016-06-15

    Flat-field image processing is an essential step in producing high-quality and radiometrically calibrated images. Flat-fielding corrects for variations in the gain of focal plane array electronics and unequal illumination from the system optics. Typically, a flat-field image is captured by imaging a radiometrically uniform surface. The flat-field image is normalized and removed from the images. There are circumstances, such as with remote sensing, where a flat-field image cannot be acquired in this manner. For these cases, we developed a phase-correlation method that allows the extraction of an effective flat-field image from a sequence of scene-based displaced images. The method uses sub-pixel phase correlation image registration to align the sequence to estimate the static scene. The scene is removed from sequence producing a sequence of misaligned flat-field images. An average flat-field image is derived from the realigned flat-field sequence.

  5. [Characterization of Black and Dichothrix Cyanobacteria Based on the 16S Ribosomal RNA Gene Sequence

    Ortega, Maya

    2010-01-01

    My project focuses on characterizing different cyanobacteria in thrombolitic mats found on the island of Highborn Cay, Bahamas. Thrombolites are interesting ecosystems because of the ability of bacteria in these mats to remove carbon dioxide from the atmosphere and mineralize it as calcium carbonate. In the future they may be used as models to develop carbon sequestration technologies, which could be used as part of regenerative life systems in space. These thrombolitic communities are also significant because of their similarities to early communities of life on Earth. I targeted two cyanobacteria in my research, Dichothrix spp. and whatever black is, since they are believed to be important to carbon sequestration in these thrombolitic mats. The goal of my summer research project was to molecularly identify these two cyanobacteria. DNA was isolated from each organism through mat dissections and DNA extractions. I ran Polymerase Chain Reactions (PCR) to amplify the 16S ribosomal RNA (rRNA) gene in each cyanobacteria. This specific gene is found in almost all bacteria and is highly conserved, meaning any changes in the sequence are most likely due to evolution. As a result, the 16S rRNA gene can be used for bacterial identification of different species based on the sequence of their 16S rRNA gene. Since the exact sequence of the Dichothrix gene was unknown, I designed different primers that flanked the gene based on the known sequences from other taxonomically similar cyanobacteria. Once the 16S rRNA gene was amplified, I cloned the gene into specialized Escherichia coli cells and sent the gene products for sequencing. Once the sequence is obtained, it will be added to a genetic database for future reference to and classification of other Dichothrix sp.

  6. Hidden shift of the ionome of plants exposed to elevated CO₂depletes minerals at the base of human nutrition.

    Loladze, Irakli

    2014-05-07

    Mineral malnutrition stemming from undiversified plant-based diets is a top global challenge. In C3 plants (e.g., rice, wheat), elevated concentrations of atmospheric carbon dioxide (eCO2) reduce protein and nitrogen concentrations, and can increase the total non-structural carbohydrates (TNC; mainly starch, sugars). However, contradictory findings have obscured the effect of eCO2 on the ionome-the mineral and trace-element composition-of plants. Consequently, CO2-induced shifts in plant quality have been ignored in the estimation of the impact of global change on humans. This study shows that eCO2 reduces the overall mineral concentrations (-8%, 95% confidence interval: -9.1 to -6.9, p carbon:minerals in C3 plants. The meta-analysis of 7761 observations, including 2264 observations at state of the art FACE centers, covers 130 species/cultivars. The attained statistical power reveals that the shift is systemic and global. Its potential to exacerbate the prevalence of 'hidden hunger' and obesity is discussed.DOI: http://dx.doi.org/10.7554/eLife.02245.001. Copyright © 2014, Loladze.

  7. Long-lived, charge-shift states in heterometallic, porphyrin-based dendrimers formed via click chemistry.

    Le Pleux, Loïc; Pellegrin, Yann; Blart, Errol; Odobel, Fabrice; Harriman, Anthony

    2011-05-26

    A series of multiporphyrin clusters has been synthesized and characterized in which there exists a logical gradient for either energy or electron transfer between the porphyrins. A central free-base porphyrin (FbP), for example, is equipped with peripheral zinc(II) porphyrins (ZnP) which act as ancillary light harvesters and transfer excitation energy to the FbP under visible light illumination. Additional energy-transfer steps occur at the triplet level, and the series is expanded by including magnesium(II) porphyrins and/or tin(IV) porphyrins as chromophores. Light-induced electron transfer is made possible by incorporating a gold(III) porphyrin (AuP(+)) into the array. Although interesting by themselves, these clusters serve as control compounds by which to understand the photophysical processes occurring within a three-stage dendrimer comprising an AuP(+) core, a second layer formed from four FbP units, and an outer layer containing 12 ZnP residues. Here, illumination into a peripheral ZnP leads to highly efficient electronic energy transfer to FbP, followed by charge transfer to the central AuP(+). Charge recombination within the resultant charge-shift state is intercepted by secondary hole transfer to the ZnP, which occurs with a quantum yield of around 20%. The final charge-shift state survives for some microseconds in fluid solution at room temperature.

  8. Novel Variants of a Histogram Shift-Based Reversible Watermarking Technique for Medical Images to Improve Hiding Capacity

    Vishakha Kelkar

    2017-01-01

    Full Text Available In telemedicine systems, critical medical data is shared on a public communication channel. This increases the risk of unauthorised access to patient’s information. This underlines the importance of secrecy and authentication for the medical data. This paper presents two innovative variations of classical histogram shift methods to increase the hiding capacity. The first technique divides the image into nonoverlapping blocks and embeds the watermark individually using the histogram method. The second method separates the region of interest and embeds the watermark only in the region of noninterest. This approach preserves the medical information intact. This method finds its use in critical medical cases. The high PSNR (above 45 dB obtained for both techniques indicates imperceptibility of the approaches. Experimental results illustrate superiority of the proposed approaches when compared with other methods based on histogram shifting techniques. These techniques improve embedding capacity by 5–15% depending on the image type, without affecting the quality of the watermarked image. Both techniques also enable lossless reconstruction of the watermark and the host medical image. A higher embedding capacity makes the proposed approaches attractive for medical image watermarking applications without compromising the quality of the image.

  9. Phase accuracy evaluation for phase-shifting fringe projection profilometry based on uniform-phase coded image

    Zhang, Chunwei; Zhao, Hong; Zhu, Qian; Zhou, Changquan; Qiao, Jiacheng; Zhang, Lu

    2018-06-01

    Phase-shifting fringe projection profilometry (PSFPP) is a three-dimensional (3D) measurement technique widely adopted in industry measurement. It recovers the 3D profile of measured objects with the aid of the fringe phase. The phase accuracy is among the dominant factors that determine the 3D measurement accuracy. Evaluation of the phase accuracy helps refine adjustable measurement parameters, contributes to evaluating the 3D measurement accuracy, and facilitates improvement of the measurement accuracy. Although PSFPP has been deeply researched, an effective, easy-to-use phase accuracy evaluation method remains to be explored. In this paper, methods based on the uniform-phase coded image (UCI) are presented to accomplish phase accuracy evaluation for PSFPP. These methods work on the principle that the phase value of a UCI can be manually set to be any value, and once the phase value of a UCI pixel is the same as that of a pixel of a corresponding sinusoidal fringe pattern, their phase accuracy values are approximate. The proposed methods provide feasible approaches to evaluating the phase accuracy for PSFPP. Furthermore, they can be used to experimentally research the property of the random and gamma phase errors in PSFPP without the aid of a mathematical model to express random phase error or a large-step phase-shifting algorithm. In this paper, some novel and interesting phenomena are experimentally uncovered with the aid of the proposed methods.

  10. Novel Variants of a Histogram Shift-Based Reversible Watermarking Technique for Medical Images to Improve Hiding Capacity

    Tuckley, Kushal

    2017-01-01

    In telemedicine systems, critical medical data is shared on a public communication channel. This increases the risk of unauthorised access to patient's information. This underlines the importance of secrecy and authentication for the medical data. This paper presents two innovative variations of classical histogram shift methods to increase the hiding capacity. The first technique divides the image into nonoverlapping blocks and embeds the watermark individually using the histogram method. The second method separates the region of interest and embeds the watermark only in the region of noninterest. This approach preserves the medical information intact. This method finds its use in critical medical cases. The high PSNR (above 45 dB) obtained for both techniques indicates imperceptibility of the approaches. Experimental results illustrate superiority of the proposed approaches when compared with other methods based on histogram shifting techniques. These techniques improve embedding capacity by 5–15% depending on the image type, without affecting the quality of the watermarked image. Both techniques also enable lossless reconstruction of the watermark and the host medical image. A higher embedding capacity makes the proposed approaches attractive for medical image watermarking applications without compromising the quality of the image. PMID:29104744

  11. Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition

    Loladze, Irakli

    2014-01-01

    Mineral malnutrition stemming from undiversified plant-based diets is a top global challenge. In C3 plants (e.g., rice, wheat), elevated concentrations of atmospheric carbon dioxide (eCO2) reduce protein and nitrogen concentrations, and can increase the total non-structural carbohydrates (TNC; mainly starch, sugars). However, contradictory findings have obscured the effect of eCO2 on the ionome—the mineral and trace-element composition—of plants. Consequently, CO2-induced shifts in plant quality have been ignored in the estimation of the impact of global change on humans. This study shows that eCO2 reduces the overall mineral concentrations (−8%, 95% confidence interval: −9.1 to −6.9, p carbon:minerals in C3 plants. The meta-analysis of 7761 observations, including 2264 observations at state of the art FACE centers, covers 130 species/cultivars. The attained statistical power reveals that the shift is systemic and global. Its potential to exacerbate the prevalence of ‘hidden hunger’ and obesity is discussed. DOI: http://dx.doi.org/10.7554/eLife.02245.001 PMID:24867639

  12. The impact of a workplace-based weight loss program on work-related outcomes in overweight male shift workers.

    Morgan, Philip J; Collins, Clare E; Plotnikoff, Ronald C; Cook, Alyce T; Berthon, Bronwyn; Mitchell, Simon; Callister, Robin

    2012-02-01

    The aim of this study was to evaluate the impact of a workplace-based weight loss program (Workplace POWER [Preventing Obesity Without Eating like a Rabbit]) for male shift workers on a number of work-related outcomes. A total of 110 overweight/obese (body mass index = 25-40) (mean [SD] age = 44.3 [8.6] years; body mass index = 30.5 [3.6]) male employees at Tomago Aluminium (New South Wales, Australia) were randomized to either (i) Workplace POWER program (n = 65) or (ii) a 14-week wait-list control group (n = 45). Men were assessed at baseline and 14-week follow-up for weight, quality of life, sleepiness, productivity at work (presenteeism), absenteeism, and workplace injuries. Retention was 81%. Intention-to-treat analysis using linear mixed models revealed a significant intervention effect for weight, quality of life (mental), presenteeism, absenteeism, and injuries. The Workplace POWER weight loss program improved a number of important work-related outcomes in male shift workers.

  13. HomPPI: a class of sequence homology based protein-protein interface prediction methods

    Dobbs Drena

    2011-06-01

    Full Text Available Abstract Background Although homology-based methods are among the most widely used methods for predicting the structure and function of proteins, the question as to whether interface sequence conservation can be effectively exploited in predicting protein-protein interfaces has been a subject of debate. Results We studied more than 300,000 pair-wise alignments of protein sequences from structurally characterized protein complexes, including both obligate and transient complexes. We identified sequence similarity criteria required for accurate homology-based inference of interface residues in a query protein sequence. Based on these analyses, we developed HomPPI, a class of sequence homology-based methods for predicting protein-protein interface residues. We present two variants of HomPPI: (i NPS-HomPPI (Non partner-specific HomPPI, which can be used to predict interface residues of a query protein in the absence of knowledge of the interaction partner; and (ii PS-HomPPI (Partner-specific HomPPI, which can be used to predict the interface residues of a query protein with a specific target protein. Our experiments on a benchmark dataset of obligate homodimeric complexes show that NPS-HomPPI can reliably predict protein-protein interface residues in a given protein, with an average correlation coefficient (CC of 0.76, sensitivity of 0.83, and specificity of 0.78, when sequence homologs of the query protein can be reliably identified. NPS-HomPPI also reliably predicts the interface residues of intrinsically disordered proteins. Our experiments suggest that NPS-HomPPI is competitive with several state-of-the-art interface prediction servers including those that exploit the structure of the query proteins. The partner-specific classifier, PS-HomPPI can, on a large dataset of transient complexes, predict the interface residues of a query protein with a specific target, with a CC of 0.65, sensitivity of 0.69, and specificity of 0.70, when homologs of

  14. Shifting the evaluative gaze: Community-based program evaluation in the homeless sector

    Bruce Wallace

    2015-09-01

    Full Text Available Homelessness is a growing social issue that is a consequence of structural inequities and contributor to the development of health inequities. Community-based research (CBR has been proposed as an effective research strategy for addressing health equities and promoting social justice through participatory processes. The purpose of this article is to examine the application of CBR principles and practices in the homeless sector and the implications for the production of knowledge and social change to address homelessness. Drawing on our experiences as researchers and service providers, we reflect on the significant successes and challenges associated with using CBR in the homelessness sector. In our discussion we emphasise insights, challenges and lessons learned from a community-university partnership that focused on an evaluation of a transitional shelter program in a large urban centre where housing is expensive and often unavailable. Keywords: Homelessness, housing, transitional housing, transitional shelter, program evaluation, community-based research

  15. Investigation of next-generation sequencing data of Klebsiella pneumoniae using web-based tools.

    Brhelova, Eva; Antonova, Mariya; Pardy, Filip; Kocmanova, Iva; Mayer, Jiri; Racil, Zdenek; Lengerova, Martina

    2017-11-01

    Rapid identification and characterization of multidrug-resistant Klebsiella pneumoniae strains is necessary due to the increasing frequency of severe infections in patients. The decreasing cost of next-generation sequencing enables us to obtain a comprehensive overview of genetic information in one step. The aim of this study is to demonstrate and evaluate the utility and scope of the application of web-based databases to next-generation sequenced (NGS) data. The whole genomes of 11 clinical Klebsiella pneumoniae isolates were sequenced using Illumina MiSeq. Selected web-based tools were used to identify a variety of genetic characteristics, such as acquired antimicrobial resistance genes, multilocus sequence types, plasmid replicons, and identify virulence factors, such as virulence genes, cps clusters, urease-nickel clusters and efflux systems. Using web-based tools hosted by the Center for Genomic Epidemiology, we detected resistance to 8 main antimicrobial groups with at least 11 acquired resistance genes. The isolates were divided into eight sequence types (ST11, 23, 37, 323, 433, 495 and 562, and a new one, ST1646). All of the isolates carried replicons of large plasmids. Capsular types, virulence factors and genes coding AcrAB and OqxAB efflux pumps were detected using BIGSdb-Kp, whereas the selected virulence genes, identified in almost all of the isolates, were detected using CLC Genomic Workbench software. Applying appropriate web-based online tools to NGS data enables the rapid extraction of comprehensive information that can be used for more efficient diagnosis and treatment of patients, while data processing is free of charge, easy and time-efficient.

  16. Shifting the lens: the introduction of population-based funding in Alberta.

    Smith, Neale; Church, John

    2008-01-01

    This paper offers a detailed historical description of the development of Alberta's population-based funding model for Regional Health Authorities (RHAs). It focuses on key political factors that may have facilitated this transition--in particular, the role of institutions, organized interests, and ideas and values. Understanding the politics of policy change as exemplified in this case can be useful in assessing future prospects for health system reform in Canada and laying the groundwork for further comparative study.

  17. Comparison of Enzymes / Non-Enzymes Proteins Classification Models Based on 3D, Composition, Sequences and Topological Indices

    Munteanu, Cristian Robert

    2014-01-01

    Comparison of Enzymes / Non-Enzymes Proteins Classification Models Based on 3D, Composition, Sequences and Topological Indices, German Conference on Bioinformatics (GCB), Potsdam, Germany (September, 2007)

  18. Generalized min-max bound-based MRI pulse sequence design framework for wide-range T1 relaxometry: A case study on the tissue specific imaging sequence.

    Yang Liu

    Full Text Available This paper proposes a new design strategy for optimizing MRI pulse sequences for T1 relaxometry. The design strategy optimizes the pulse sequence parameters to minimize the maximum variance of unbiased T1 estimates over a range of T1 values using the Cramér-Rao bound. In contrast to prior sequences optimized for a single nominal T1 value, the optimized sequence using our bound-based strategy achieves improved precision and accuracy for a broad range of T1 estimates within a clinically feasible scan time. The optimization combines the downhill simplex method with a simulated annealing process. To show the effectiveness of the proposed strategy, we optimize the tissue specific imaging (TSI sequence. Preliminary Monte Carlo simulations demonstrate that the optimized TSI sequence yields improved precision and accuracy over the popular driven-equilibrium single-pulse observation of T1 (DESPOT1 approach for normal brain tissues (estimated T1 700-2000 ms at 3.0T. The relative mean estimation error (MSE for T1 estimation is less than 1.7% using the optimized TSI sequence, as opposed to less than 7.0% using DESPOT1 for normal brain tissues. The optimized TSI sequence achieves good stability by keeping the MSE under 7.0% over larger T1 values corresponding to different lesion tissues and the cerebrospinal fluid (up to 5000 ms. The T1 estimation accuracy using the new pulse sequence also shows improvement, which is more pronounced in low SNR scenarios.

  19. Poster - 19: Investigation of Electron Reference Dosimetry Based on Optimal Chamber Shift

    Zhan, Lixin; Jiang, Runqing; Liu, Baochang; Osei, Ernest [Grand River Regional Cancer Centre (Canada)

    2016-08-15

    An addendum/revision to AAPM TG-51 electron reference dosimetry is highly expected to meet the clinical requirement with the increasing usage of new ion chambers not covered in TG-51. A recent study, Med. Phys. 41, 111701, proposed a new fitting equation for the beam quality conversion factor k’{sub Q} to a wide spectrum of chambers. In the study, an optimal Effective Point of Measurement (EPOM) from Monte Carlo calculations was recommended and the fitting parameters to k’{sub Q} was based on it. We investigated the absolute dose obtained based on the optimal EPOM method and the original TG-51 method with k’{sub R50} determined differently. The results showed that using the Markus curve is a better choice than the well-guarded chamber fitting for an IBA PPC-05 parallel plate chamber if we need to strictly follow the AAPM TG-51 protocol. We also examined the usage of the new fitting equation with measurement performed at the physical EPOM, instead of the optimal EPOM. The former is more readily determined and more practical in clinics. Our study indicated that the k’{sub Q} fitting based on the optimal EPOM can be used to measurement at the physical EPOM with no significant clinical impact. The inclusion of Farmer chamber gradient correction P{sub gr} in k’{sub Q}, as in the mentioned study, asks for the precise positioning of chamber center at dref. It is not recommended in clinics to avoid over-correction for low electron energies, especially for an institute having matching Linacs implemented.

  20. Haematobia irritans dataset of raw sequence reads from Illumina-based transcriptome sequencing of specific tissues and life stages

    Illumina HiSeq technology was used to sequence the transcriptome from various dissected tissues and life stages from the horn fly, Haematobia irritans. These samples include eggs (0, 2, 4, and 9 hours post-oviposition), adult fly gut, adult fly legs, adult fly malpighian tubule, adult fly ovary, adu...

  1. Genetic diversity in breonadia salicina based on intra-species sequence variation of chloroplast dna spacer sequence

    Qurainy, F.A.; Gaafar, A.R.Z.

    2014-01-01

    Assessment and knowledge of the genetic diversity and variation within and between populations of rare and endangered plants is very important for effective conservation. Intergenic spacer sequences variation of psbA-trnH locus of chloroplast genome was assessed within Breonadia salicina (Rubiaceae), a critically endangered and endemic plant species to South western part of Kingdom of Saudi Arabia. The obtained sequence data from 19 individuals in three populations revealed nine haplotypes. The aligned sequences obtained from the overall Saudi accessions extended to 355 bp, revealing nine haplotypes. A high level of haplotype diversity (Hd = 0.842) and low level of nucleotide diversity (Pi = 0.0058) were detected. Consistently, both hierarchical analysis of molecular variance (AMOVA) and constructed neighbor-joining tree indicated null genetic differentiation among populations. This level of differentiation between populations or between regions in psbA-trnH sequences may be due to effects of the abundance of ancestral haplotype sharing and the presence of private haplotypes fixed for each population. Furthermore, the results revealed almost the same level of genetic diversity in comparison with Yemeni accessions, in which Saudi accessions were sharing three haplotypes from the four haplotypes found in Yemeni accessions. (author)

  2. Market shifting

    Forst, Michael

    2013-11-01

    After years of oversupply and artificially low module pricing, market analysts believe that the solar industry will begin to stabilize by 2017. While the market activities are shifting from Europe to the Asia Pacific region and the United States, the solar shakeout continues to be in full swing including solar cell and module manufacturing. (orig.)

  3. Tough Shift

    Brewer, Robert S.; Verdezoto, Nervo; Holst, Thomas

    2015-01-01

    people to change their behavior at home. Leveraging prior research on encouraging reductions in residential energy use through game play, we introduce ShareBuddy: a casual mobile game intended to encourage players not only to reduce, but also to shift their electricity use. We conducted two field studies...... real-world resource use into a game....

  4. Genome Sequencing

    Sato, Shusei; Andersen, Stig Uggerhøj

    2014-01-01

    The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based on transcr......The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based...

  5. Cloud-Based Automated Design and Additive Manufacturing: A Usage Data-Enabled Paradigm Shift.

    Lehmhus, Dirk; Wuest, Thorsten; Wellsandt, Stefan; Bosse, Stefan; Kaihara, Toshiya; Thoben, Klaus-Dieter; Busse, Matthias

    2015-12-19

    Integration of sensors into various kinds of products and machines provides access to in-depth usage information as basis for product optimization. Presently, this large potential for more user-friendly and efficient products is not being realized because (a) sensor integration and thus usage information is not available on a large scale and (b) product optimization requires considerable efforts in terms of manpower and adaptation of production equipment. However, with the advent of cloud-based services and highly flexible additive manufacturing techniques, these obstacles are currently crumbling away at rapid pace. The present study explores the state of the art in gathering and evaluating product usage and life cycle data, additive manufacturing and sensor integration, automated design and cloud-based services in manufacturing. By joining and extrapolating development trends in these areas, it delimits the foundations of a manufacturing concept that will allow continuous and economically viable product optimization on a general, user group or individual user level. This projection is checked against three different application scenarios, each of which stresses different aspects of the underlying holistic concept. The following discussion identifies critical issues and research needs by adopting the relevant stakeholder perspectives.

  6. Cloud-Based Automated Design and Additive Manufacturing: A Usage Data-Enabled Paradigm Shift

    Lehmhus, Dirk; Wuest, Thorsten; Wellsandt, Stefan; Bosse, Stefan; Kaihara, Toshiya; Thoben, Klaus-Dieter; Busse, Matthias

    2015-01-01

    Integration of sensors into various kinds of products and machines provides access to in-depth usage information as basis for product optimization. Presently, this large potential for more user-friendly and efficient products is not being realized because (a) sensor integration and thus usage information is not available on a large scale and (b) product optimization requires considerable efforts in terms of manpower and adaptation of production equipment. However, with the advent of cloud-based services and highly flexible additive manufacturing techniques, these obstacles are currently crumbling away at rapid pace. The present study explores the state of the art in gathering and evaluating product usage and life cycle data, additive manufacturing and sensor integration, automated design and cloud-based services in manufacturing. By joining and extrapolating development trends in these areas, it delimits the foundations of a manufacturing concept that will allow continuous and economically viable product optimization on a general, user group or individual user level. This projection is checked against three different application scenarios, each of which stresses different aspects of the underlying holistic concept. The following discussion identifies critical issues and research needs by adopting the relevant stakeholder perspectives. PMID:26703606

  7. Genome survey sequencing and genetic background characterization of Gracilariopsis lemaneiformis (Rhodophyta) based on next-generation sequencing.

    Zhou, Wei; Hu, Yiyi; Sui, Zhenghong; Fu, Feng; Wang, Jinguo; Chang, Lianpeng; Guo, Weihua; Li, Binbin

    2013-01-01

    Gracilariopsis lemaneiformis has a high economic value and is one of the most important aquaculture species in China. Despite it is economic importance, it has remained largely unstudied at the genomic level. In this study, we conducted a genome survey of Gp. lemaneiformis using next-generation sequencing (NGS) technologies. In total, 18.70 Gb of high-quality sequence data with an estimated genome size of 97 Mb were obtained by HiSeq 2000 sequencing for Gp. lemaneiformis. These reads were assembled into 160,390 contigs with a N50 length of 3.64 kb, which were further assembled into 125,685 scaffolds with a total length of 81.17 Mb. Genome analysis predicted 3490 genes and a GC% content of 48%. The identified genes have an average transcript length of 1,429 bp, an average coding sequence size of 1,369 bp, 1.36 exons per gene, exon length of 1,008 bp, and intron length of 191 bp. From the initial assembled scaffold, transposable elements constituted 54.64% (44.35 Mb) of the genome, and 7737 simple sequence repeats (SSRs) were identified. Among these SSRs, the trinucleotide repeat type was the most abundant (up to 73.20% of total SSRs), followed by the di- (17.41%), tetra- (5.49%), hexa- (2.90%), and penta- (1.00%) nucleotide repeat type. These characteristics suggest that Gp. lemaneiformis is a model organism for genetic study. This is the first report of genome-wide characterization within this taxon.

  8. Genome Survey Sequencing and Genetic Background Characterization of Gracilariopsis lemaneiformis (Rhodophyta) Based on Next-Generation Sequencing

    Sui, Zhenghong; Fu, Feng; Wang, Jinguo; Chang, Lianpeng; Guo, Weihua; Li, Binbin

    2013-01-01

    Gracilariopsis lemaneiformis has a high economic value and is one of the most important aquaculture species in China. Despite it is economic importance, it has remained largely unstudied at the genomic level. In this study, we conducted a genome survey of Gp. lemaneiformis using next-generation sequencing (NGS) technologies. In total, 18.70 Gb of high-quality sequence data with an estimated genome size of 97 Mb were obtained by HiSeq 2000 sequencing for Gp. lemaneiformis. These reads were assembled into 160,390 contigs with a N50 length of 3.64 kb, which were further assembled into 125,685 scaffolds with a total length of 81.17 Mb. Genome analysis predicted 3490 genes and a GC% content of 48%. The identified genes have an average transcript length of 1,429 bp, an average coding sequence size of 1,369 bp, 1.36 exons per gene, exon length of 1,008 bp, and intron length of 191 bp. From the initial assembled scaffold, transposable elements constituted 54.64% (44.35 Mb) of the genome, and 7737 simple sequence repeats (SSRs) were identified. Among these SSRs, the trinucleotide repeat type was the most abundant (up to 73.20% of total SSRs), followed by the di- (17.41%), tetra- (5.49%), hexa- (2.90%), and penta- (1.00%) nucleotide repeat type. These characteristics suggest that Gp. lemaneiformis is a model organism for genetic study. This is the first report of genome-wide characterization within this taxon. PMID:23875008

  9. Implementation of Cloud based next generation sequencing data analysis in a clinical laboratory.

    Onsongo, Getiria; Erdmann, Jesse; Spears, Michael D; Chilton, John; Beckman, Kenneth B; Hauge, Adam; Yohe, Sophia; Schomaker, Matthew; Bower, Matthew; Silverstein, Kevin A T; Thyagarajan, Bharat

    2014-05-23

    The introduction of next generation sequencing (NGS) has revolutionized molecular diagnostics, though several challenges remain limiting the widespread adoption of NGS testing into clinical practice. One such difficulty includes the development of a robust bioinformatics pipeline that can handle the volume of data generated by high-throughput sequencing in a cost-effective manner. Analysis of sequencing data typically requires a substantial level of computing power that is often cost-prohibitive to most clinical diagnostics laboratories. To address this challenge, our institution has developed a Galaxy-based data analysis pipeline which relies on a web-based, cloud-computing infrastructure to process NGS data and identify genetic variants. It provides additional flexibility, needed to control storage costs, resulting in a pipeline that is cost-effective on a per-sample basis. It does not require the usage of EBS disk to run a sample. We demonstrate the validation and feasibility of implementing this bioinformatics pipeline in a molecular diagnostics laboratory. Four samples were analyzed in duplicate pairs and showed 100% concordance in mutations identified. This pipeline is currently being used in the clinic and all identified pathogenic variants confirmed using Sanger sequencing further validating the software.

  10. incaRNAfbinv: a web server for the fragment-based design of RNA sequences

    Drory Retwitzer, Matan; Reinharz, Vladimir; Ponty, Yann; Waldispühl, Jérôme; Barash, Danny

    2016-01-01

    Abstract In recent years, new methods for computational RNA design have been developed and applied to various problems in synthetic biology and nanotechnology. Lately, there is considerable interest in incorporating essential biological information when solving the inverse RNA folding problem. Correspondingly, RNAfbinv aims at including biologically meaningful constraints and is the only program to-date that performs a fragment-based design of RNA sequences. In doing so it allows the design of sequences that do not necessarily exactly fold into the target, as long as the overall coarse-grained tree graph shape is preserved. Augmented by the weighted sampling algorithm of incaRNAtion, our web server called incaRNAfbinv implements the method devised in RNAfbinv and offers an interactive environment for the inverse folding of RNA using a fragment-based design approach. It takes as input: a target RNA secondary structure; optional sequence and motif constraints; optional target minimum free energy, neutrality and GC content. In addition to the design of synthetic regulatory sequences, it can be used as a pre-processing step for the detection of novel natural occurring RNAs. The two complementary methodologies RNAfbinv and incaRNAtion are merged together and fully implemented in our web server incaRNAfbinv, available at http://www.cs.bgu.ac.il/incaRNAfbinv. PMID:27185893

  11. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods

    Francisco Alexandre P

    2012-05-01

    Full Text Available Abstract Background With the decrease of DNA sequencing costs, sequence-based typing methods are rapidly becoming the gold standard for epidemiological surveillance. These methods provide reproducible and comparable results needed for a global scale bacterial population analysis, while retaining their usefulness for local epidemiological surveys. Online databases that collect the generated allelic profiles and associated epidemiological data are available but this wealth of data remains underused and are frequently poorly annotated since no user-friendly tool exists to analyze and explore it. Results PHYLOViZ is platform independent Java software that allows the integrated analysis of sequence-based typing methods, including SNP data generated from whole genome sequence approaches, and associated epidemiological data. goeBURST and its Minimum Spanning Tree expansion are used for visualizing the possible evolutionary relationships between isolates. The results can be displayed as an annotated graph overlaying the query results of any other epidemiological data available. Conclusions PHYLOViZ is a user-friendly software that allows the combined analysis of multiple data sources for microbial epidemiological and population studies. It is freely available at http://www.phyloviz.net.

  12. Robust Automatic Target Recognition via HRRP Sequence Based on Scatterer Matching

    Yuan Jiang

    2018-02-01

    Full Text Available High resolution range profile (HRRP plays an important role in wideband radar automatic target recognition (ATR. In order to alleviate the sensitivity to clutter and target aspect, employing a sequence of HRRP is a promising approach to enhance the ATR performance. In this paper, a novel HRRP sequence-matching method based on singular value decomposition (SVD is proposed. First, the HRRP sequence is decoupled into the angle space and the range space via SVD, which correspond to the span of the left and the right singular vectors, respectively. Second, atomic norm minimization (ANM is utilized to estimate dominant scatterers in the range space and the Hausdorff distance is employed to measure the scatter similarity between the test and training data. Next, the angle space similarity between the test and training data is evaluated based on the left singular vector correlations. Finally, the range space matching result and the angle space correlation are fused with the singular values as weights. Simulation and outfield experimental results demonstrate that the proposed matching metric is a robust similarity measure for HRRP sequence recognition.

  13. HIV-1 envelope sequence-based diversity measures for identifying recent infections.

    Alexis Kafando

    Full Text Available Identifying recent HIV-1 infections is crucial for monitoring HIV-1 incidence and optimizing public health prevention efforts. To identify recent HIV-1 infections, we evaluated and compared the performance of 4 sequence-based diversity measures including percent diversity, percent complexity, Shannon entropy and number of haplotypes targeting 13 genetic segments within the env gene of HIV-1. A total of 597 diagnostic samples obtained in 2013 and 2015 from recently and chronically HIV-1 infected individuals were selected. From the selected samples, 249 (134 from recent versus 115 from chronic infections env coding regions, including V1-C5 of gp120 and the gp41 ectodomain of HIV-1, were successfully amplified and sequenced by next generation sequencing (NGS using the Illumina MiSeq platform. The ability of the four sequence-based diversity measures to correctly identify recent HIV infections was evaluated using the frequency distribution curves, median and interquartile range and area under the curve (AUC of the receiver operating characteristic (ROC. Comparing the median and interquartile range and evaluating the frequency distribution curves associated with the 4 sequence-based diversity measures, we observed that the percent diversity, number of haplotypes and Shannon entropy demonstrated significant potential to discriminate recent from chronic infections (p<0.0001. Using the AUC of ROC analysis, only the Shannon entropy measure within three HIV-1 env segments could accurately identify recent infections at a satisfactory level. The env segments were gp120 C2_1 (AUC = 0.806, gp120 C2_3 (AUC = 0.805 and gp120 V3 (AUC = 0.812. Our results clearly indicate that the Shannon entropy measure represents a useful tool for predicting HIV-1 infection recency.

  14. One step shift towards flexible supercapacitors based on carbon nanotubes - A review

    Yar, A., E-mail: asfandyarhargan@gmail.com, E-mail: johndennis@petronas.com.my, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: asad-032@yahoo.com, E-mail: imrancssp@gmail.com; Dennis, J. O., E-mail: asfandyarhargan@gmail.com, E-mail: johndennis@petronas.com.my, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: asad-032@yahoo.com, E-mail: imrancssp@gmail.com; Mohamed, N. M., E-mail: asfandyarhargan@gmail.com, E-mail: johndennis@petronas.com.my, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: asad-032@yahoo.com, E-mail: imrancssp@gmail.com; Mumtaz, A., E-mail: asfandyarhargan@gmail.com, E-mail: johndennis@petronas.com.my, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: asad-032@yahoo.com, E-mail: imrancssp@gmail.com; Irshad, M. I., E-mail: asfandyarhargan@gmail.com, E-mail: johndennis@petronas.com.my, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: asad-032@yahoo.com, E-mail: imrancssp@gmail.com [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS (Malaysia); Ahmad, F., E-mail: ahmad-1234farooq@yahoo.com [Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS (Malaysia)

    2014-10-24

    Supercapacitors have emerged as prominent energy storage devices that offer high energy density compared to conventional capacitors and high power density which is not found in batteries. Carbon nanotubes (CNTs) because of their high surface area and tremendous electrical properties are used as electrode material for supercapacitors. In this review we focused on the factors like surface area, role of the electrolyte and techniques adopted to improve performance of CNTs based supercapacitors. The supercapacitors are widely tested in liquid electrolytes which are normally hazardous in nature, toxic, flammable and their leakage has safety concerns. This review also focuses on research which is replacing these unsafe electrolytes by solid electrolytes with the combination of low cost CNTs deposited flexible supports for supercapacitors.

  15. One step shift towards flexible supercapacitors based on carbon nanotubes - A review

    Yar, A.; Dennis, J. O.; Mohamed, N. M.; Mumtaz, A.; Irshad, M. I.; Ahmad, F.

    2014-10-01

    Supercapacitors have emerged as prominent energy storage devices that offer high energy density compared to conventional capacitors and high power density which is not found in batteries. Carbon nanotubes (CNTs) because of their high surface area and tremendous electrical properties are used as electrode material for supercapacitors. In this review we focused on the factors like surface area, role of the electrolyte and techniques adopted to improve performance of CNTs based supercapacitors. The supercapacitors are widely tested in liquid electrolytes which are normally hazardous in nature, toxic, flammable and their leakage has safety concerns. This review also focuses on research which is replacing these unsafe electrolytes by solid electrolytes with the combination of low cost CNTs deposited flexible supports for supercapacitors.

  16. Shifting from region of interest (ROI) to voxel-based analysis in human brain mapping

    Astrakas, Loukas G.; Argyropoulou, Maria I.

    2010-01-01

    Current clinical studies involve multidimensional high-resolution images containing an overwhelming amount of structural and functional information. The analysis of such a wealth of information is becoming increasingly difficult yet necessary in order to improve diagnosis, treatment and healthcare. Voxel-wise analysis is a class of modern methods of image processing in the medical field with increased popularity. It has replaced manual region of interest (ROI) analysis and has provided tools to make statistical inferences at voxel level. The introduction of voxel-based analysis software in all modern commercial scanners allows clinical use of these techniques. This review will explain the main principles, advantages and disadvantages behind these methods of image analysis. (orig.)

  17. Analysis of Power System Low Frequency Oscillation Based on Energy Shift Theory

    Zhang, Junfeng; Zhang, Chunwang; Ma, Daqing

    2018-01-01

    In this paper, a new method for analyzing low-frequency oscillation between analytic areas based on energy coefficient is proposed. The concept of energy coefficient is proposed by constructing the energy function, and the low-frequency oscillation is analyzed according to the energy coefficient under the current operating conditions; meanwhile, the concept of model energy is proposed to analyze the energy exchange behavior between two generators. Not only does this method provide an explanation of low-frequency oscillation from the energy point of view, but also it helps further reveal the dynamic behavior of complex power systems. The case analysis of four-machine two-area and the power system of Jilin Power Grid proves the correctness and effectiveness of the proposed method in low-frequency oscillation analysis of power system.

  18. One step shift towards flexible supercapacitors based on carbon nanotubes - A review

    Yar, A.; Dennis, J. O.; Mohamed, N. M.; Mumtaz, A.; Irshad, M. I.; Ahmad, F.

    2014-01-01

    Supercapacitors have emerged as prominent energy storage devices that offer high energy density compared to conventional capacitors and high power density which is not found in batteries. Carbon nanotubes (CNTs) because of their high surface area and tremendous electrical properties are used as electrode material for supercapacitors. In this review we focused on the factors like surface area, role of the electrolyte and techniques adopted to improve performance of CNTs based supercapacitors. The supercapacitors are widely tested in liquid electrolytes which are normally hazardous in nature, toxic, flammable and their leakage has safety concerns. This review also focuses on research which is replacing these unsafe electrolytes by solid electrolytes with the combination of low cost CNTs deposited flexible supports for supercapacitors

  19. SimShiftDB; local conformational restraints derived from chemical shift similarity searches on a large synthetic database

    Ginzinger, Simon W.; Coles, Murray

    2009-01-01

    We present SimShiftDB, a new program to extract conformational data from protein chemical shifts using structural alignments. The alignments are obtained in searches of a large database containing 13,000 structures and corresponding back-calculated chemical shifts. SimShiftDB makes use of chemical shift data to provide accurate results even in the case of low sequence similarity, and with even coverage of the conformational search space. We compare SimShiftDB to HHSearch, a state-of-the-art sequence-based search tool, and to TALOS, the current standard tool for the task. We show that for a significant fraction of the predicted similarities, SimShiftDB outperforms the other two methods. Particularly, the high coverage afforded by the larger database often allows predictions to be made for residues not involved in canonical secondary structure, where TALOS predictions are both less frequent and more error prone. Thus SimShiftDB can be seen as a complement to currently available methods

  20. SimShiftDB; local conformational restraints derived from chemical shift similarity searches on a large synthetic database

    Ginzinger, Simon W. [Center of Applied Molecular Engineering, University of Salzburg, Department of Molecular Biology, Division of Bioinformatics (Austria)], E-mail: simon@came.sbg.ac.at; Coles, Murray [Max-Planck-Institute for Developmental Biology, Department of Protein Evolution (Germany)], E-mail: Murray.Coles@tuebingen.mpg.de

    2009-03-15

    We present SimShiftDB, a new program to extract conformational data from protein chemical shifts using structural alignments. The alignments are obtained in searches of a large database containing 13,000 structures and corresponding back-calculated chemical shifts. SimShiftDB makes use of chemical shift data to provide accurate results even in the case of low sequence similarity, and with even coverage of the conformational search space. We compare SimShiftDB to HHSearch, a state-of-the-art sequence-based search tool, and to TALOS, the current standard tool for the task. We show that for a significant fraction of the predicted similarities, SimShiftDB outperforms the other two methods. Particularly, the high coverage afforded by the larger database often allows predictions to be made for residues not involved in canonical secondary structure, where TALOS predictions are both less frequent and more error prone. Thus SimShiftDB can be seen as a complement to currently available methods.

  1. Studies of base pair sequence effects on DNA solvation based on all-atom molecular dynamics simulations.

    Dixit, Surjit B; Mezei, Mihaly; Beveridge, David L

    2012-07-01

    Detailed analyses of the sequence-dependent solvation and ion atmosphere of DNA are presented based on molecular dynamics (MD) simulations on all the 136 unique tetranucleotide steps obtained by the ABC consortium using the AMBER suite of programs. Significant sequence effects on solvation and ion localization were observed in these simulations. The results were compared to essentially all known experimental data on the subject. Proximity analysis was employed to highlight the sequence dependent differences in solvation and ion localization properties in the grooves of DNA. Comparison of the MD-calculated DNA structure with canonical A- and B-forms supports the idea that the G/C-rich sequences are closer to canonical A- than B-form structures, while the reverse is true for the poly A sequences, with the exception of the alternating ATAT sequence. Analysis of hydration density maps reveals that the flexibility of solute molecule has a significant effect on the nature of observed hydration. Energetic analysis of solute-solvent interactions based on proximity analysis of solvent reveals that the GC or CG base pairs interact more strongly with water molecules in the minor groove of DNA that the AT or TA base pairs, while the interactions of the AT or TA pairs in the major groove are stronger than those of the GC or CG pairs. Computation of solvent-accessible surface area of the nucleotide units in the simulated trajectories reveals that the similarity with results derived from analysis of a database of crystallographic structures is excellent. The MD trajectories tend to follow Manning's counterion condensation theory, presenting a region of condensed counterions within a radius of about 17 A from the DNA surface independent of sequence. The GC and CG pairs tend to associate with cations in the major groove of the DNA structure to a greater extent than the AT and TA pairs. Cation association is more frequent in the minor groove of AT than the GC pairs. In general, the

  2. Leveraging the contribution of thermodynamics in drug discovery with the help of fluorescence-based thermal shift assays.

    Hau, Jean Christophe; Fontana, Patrizia; Zimmermann, Catherine; De Pover, Alain; Erdmann, Dirk; Chène, Patrick

    2011-06-01

    The development of new drugs with better pharmacological and safety properties mandates the optimization of several parameters. Today, potency is often used as the sole biochemical parameter to identify and select new molecules. Surprisingly, thermodynamics, which is at the core of any interaction, is rarely used in drug discovery, even though it has been suggested that the selection of scaffolds according to thermodynamic criteria may be a valuable strategy. This poor integration of thermodynamics in drug discovery might be due to difficulties in implementing calorimetry experiments despite recent technological progress in this area. In this report, the authors show that fluorescence-based thermal shift assays could be used as prescreening methods to identify compounds with different thermodynamic profiles. This approach allows a reduction in the number of compounds to be tested in calorimetry experiments, thus favoring greater integration of thermodynamics in drug discovery.

  3. Impact of frequency modulation ratio on capacitor cells balancing in phase-shifted PWM based chain-link STATCOM

    Behrouzian, Ehsan; Bongiorno, Massimo; Teodorescu, Remus

    2014-01-01

    to provide more uniform power distribution among the cells, two different methods called, a) carrier swapping and b) non-integer frequency modulation ratio are studied. In particular, it is shown that the selection of a non-integer frequency modulation ratio helps in providing a more uniform power......The purpose of this paper is to investigate the impact of switching harmonics on the instantaneous power that flows in the cells of a chain-link based STATCOM when using Phase-Shifted PWM. Two different cases are investigated for the converter cells: low, and high switching frequency. It is shown...... that any deviation from the ideal conditions lead to undesired harmonics, which will impact the charge of the dc capacitors. It is also shown that for low switching frequencies, cells voltage sideband harmonics interact with baseband harmonics of the current and causes extra source of unbalance. In order...

  4. Molecular dynamics with phase-shift-based electronic stopping for calibration of ion implantation profiles in crystalline silicon

    Chan, H.Y.; Nordlund, K.; Gossmann, H.-J.L.; Harris, M.; Montgomery, N.J.; Mulcahy, C.P.A.; Biswas, S.; Srinivasan, M.P.; Benistant, F.; Ng, C.M.; Chan, Lap

    2006-01-01

    Prediction of the final dopant positions after ion implantation has always been strongly influenced by the choice of stopping models. A molecular dynamics (MD) method is used in this work; the nuclear stopping is treated by accurate pair potentials calculated by density functional theory (DFT). The slowing down due to collisions with electrons will be described by both a non-local semi-empirical model and a local model based on Fermi level phase shift factors. Comparisons with experimental data using both models show that a local pair-specific electronic stopping model is essential in accurately predicting range profiles for any element even at low implant energies where nuclear effects are dominant

  5. Molecular characterization of Fasciola gigantica from Mauritania based on mitochondrial and nuclear ribosomal DNA sequences.

    Amor, Nabil; Farjallah, Sarra; Salem, Mohamed; Lamine, Dia Mamadou; Merella, Paolo; Said, Khaled; Ben Slimane, Badreddine

    2011-10-01

    Fasciolosis caused by Fasciola hepatica and Fasciola gigantica (Platyhelminthes: Trematoda: Digenea) is considered the most important helminth infection of ruminants in tropical countries, causing considerable socioeconomic problems. From Africa, F. gigantica has been previously characterized from Burkina Faso, Senegal, Kenya, Zambia and Mali, while F. hepatica has been reported from Morocco and Tunisia, and both species have been observed from Ethiopia and Egypt on the basis of morphometric differences, while the use of molecular markers is necessary to distinguish exactly between species. Samples identified morphologically as F. gigantica (n=60) from sheep and cattle from different geographical localities of Mauritania were genetically characterized by sequences of the first (ITS-1), the 5.8S, and second (ITS-2) Internal Transcribed Spacers (ITS) of nuclear ribosomal DNA (rDNA) genes and the mitochondrial Cytochrome c Oxidase I (COI) gene. Comparison of the sequences of the Mauritanian samples with sequences of Fasciola spp. from GenBank confirmed that all samples belong to the species F. gigantica. The nucleotide sequencing of ITS rDNA of F. gigantica showed no nucleotide variation in the ITS-1, 5.8S, and ITS-2 rDNA sequences among all samples examined and those from Burkina Faso, Kenya, Egypt and Iran. The phylogenetic trees based on the ITS-1 and ITS-2 sequences showed a close relationship of the Mauritanian samples with isolates of F. gigantica from different localities of Africa and Asia. The COI genotypes of the Mauritanian specimens of F. gigantica had a high level of diversity, and they belonged to the F. gigantica phylogenically distinguishable clade. The present study is the first molecular characterization of F. gigantica in sheep and cattle from Mauritania, allowing a reliable approach for the genetic differentiation of Fasciola spp. and providing basis for further studies on liver flukes in the African countries. Copyright © 2011 Elsevier Inc. All

  6. Quantitative evaluation of vertebral marrow adipose tissue in postmenopausal female using MRI chemical shift-based water–fat separation

    Li, G.-W.; Xu, Z.; Chen, Q.-W.; Tian, Y.-N.; Wang, X.-Y.; Zhou, L.; Chang, S.-X.

    2014-01-01

    Aim: To investigate the feasibility of assessing vertebral marrow adipose tissue using a magnetic resonance imaging (MRI) chemical shift-based water–fat separation technique at 3 T. Material and methods: A modified Dixon technique was performed to obtain the vertebral marrow fat fraction (FF) in a study of 58 postmenopausal females (age range 49.2–77.4 years), including 24 normal bone density, 19 osteopaenia, and 15 osteoporosis as documented with dual-energy X-ray absorptiometry. The reliability of FF measurements performed by two radiologists independently was evaluated with the intraclass correlation coefficient (ICC). Ten participants were scanned twice to assess the reproducibility of FF measurements. FF values were compared between each vertebral level and between groups. Results: The mean coefficient of variation of FF measurements was 2.1%. According to the ICC, the measurements were reliable (ICC = 0.900 for normal bone density, ICC = 0.937 for osteopaenia and ICC = 0.909 for osteoporosis, p < 0.001 for all). There was an inverse association between mean FF at L1–L4 vertebrae and lumbar spine BMD (r = −0.459, p = 0.006), which remained significant even after controlling for confounders (age, height, and body weight). FF values at different vertebral levels were significantly correlated to each other (r = 0.703–0.921, p < 0.05 for all). There was a general trend toward increased marrow adiposity for more inferior vertebral bodies. Patients with osteopaenia and osteoporosis had a higher marrow fat content compared with normal bone mass after adjusting for confounders, although no significant differences in each vertebral level and average marrow fat content were found between the osteopaenia and osteoporosis groups. Conclusion: Chemical shift-based water–fat separation enables the quantitation of vertebral marrow adiposity with excellent reproducibility, which appears to be a useful method to provide complementary information to osteoporosis

  7. Fuel economy improvement based on a many-gear shifting strategy

    Mashadi, B. [School of Automotive Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Baghaei Lakeh, R. [Department of Mechanical Engineering, Southern Illinois University, Edwardsville (United States)

    2012-07-01

    Considering the engine operating condition in terms of engine load and engine speed, a fuzzy decision making system has been developed. The objective was to controlling the engine operating point in the engine torque-rpm map, in order to enhance fuel economy. The main idea stems from the approach of tracking the defined target curve in the engine map similar to the CVT control criteria. To provide resemblance between a traditional geared transmission and a CVT, a many-gear transmission concept was introduced. A Fuzzy control was utilized by defining proper membership functions for the inputs and output. The efficient fuel consumption curve in the engine map was taken as the target of controller. The effect of engine output power on fuel consumption has also been taken into consideration. Making use of ADVISOR software, vehicle simulations was performed for the many-gear base case and a very good consistency was found with the CVT case. As a result the fuel consumption was found to become considerably less than existing values. The developed strategy was then applied to other cases including conventional manual and automatic transmissions and improvements in the fuel economy was observed.

  8. The Flash-Lag Effect as a Motion-Based Predictive Shift.

    Mina A Khoei

    2017-01-01

    Full Text Available Due to its inherent neural delays, the visual system has an outdated access to sensory information about the current position of moving objects. In contrast, living organisms are remarkably able to track and intercept moving objects under a large range of challenging environmental conditions. Physiological, behavioral and psychophysical evidences strongly suggest that position coding is extrapolated using an explicit and reliable representation of object's motion but it is still unclear how these two representations interact. For instance, the so-called flash-lag effect supports the idea of a differential processing of position between moving and static objects. Although elucidating such mechanisms is crucial in our understanding of the dynamics of visual processing, a theory is still missing to explain the different facets of this visual illusion. Here, we reconsider several of the key aspects of the flash-lag effect in order to explore the role of motion upon neural coding of objects' position. First, we formalize the problem using a Bayesian modeling framework which includes a graded representation of the degree of belief about visual motion. We introduce a motion-based prediction model as a candidate explanation for the perception of coherent motion. By including the knowledge of a fixed delay, we can model the dynamics of sensory information integration by extrapolating the information acquired at previous instants in time. Next, we simulate the optimal estimation of object position with and without delay compensation and compared it with human perception under a broad range of different psychophysical conditions. Our computational study suggests that the explicit, probabilistic representation of velocity information is crucial in explaining position coding, and therefore the flash-lag effect. We discuss these theoretical results in light of the putative corrective mechanisms that can be used to cancel out the detrimental effects of neural

  9. Pigs in sequence space: A 0.66X coverage pig genome survey based on shotgun sequencing

    Li Wei

    2005-05-01

    Full Text Available Abstract Background Comparative whole genome analysis of Mammalia can benefit from the addition of more species. The pig is an obvious choice due to its economic and medical importance as well as its evolutionary position in the artiodactyls. Results We have generated ~3.84 million shotgun sequences (0.66X coverage from the pig genome. The data are hereby released (NCBI Trace repository with center name "SDJVP", and project name "Sino-Danish Pig Genome Project" together with an initial evolutionary analysis. The non-repetitive fraction of the sequences was aligned to the UCSC human-mouse alignment and the resulting three-species alignments were annotated using the human genome annotation. Ultra-conserved elements and miRNAs were identified. The results show that for each of these types of orthologous data, pig is much closer to human than mouse is. Purifying selection has been more efficient in pig compared to human, but not as efficient as in mouse, and pig seems to have an isochore structure most similar to the structure in human. Conclusion The addition of the pig to the set of species sequenced at low coverage adds to the understanding of selective pressures that have acted on the human genome by bisecting the evolutionary branch between human and mouse with the mouse branch being approximately 3 times as long as the human branch. Additionally, the joint alignment of the shot-gun sequences to the human-mouse alignment offers the investigator a rapid way to defining specific regions for analysis and resequencing.

  10. Optimal pseudorandom sequence selection for online c-VEP based BCI control applications

    Isaksen, Jonas L.; Mohebbi, Ali; Puthusserypady, Sadasivan

    2017-01-01

    to predict the chance of completion and accuracy score. Results: No specific pseudorandom sequence showed superior accuracy on the group basis. When isolating the individual performances with the highest accuracy, time consumption per identification was not significantly increased. The Accuracy Score aids...... is a laborious process. Aims: This study aimed to suggest an efficient method for choosing the optimal stimulus sequence based on a fast test and simple measures to increase the performance and minimize the time consumption for research trials. Methods: A total of 21 healthy subjects were included in an online...... wheelchair control task and completed the same task using stimuli based on the m-code, the gold-code, and the Barker-code. Correct/incorrect identification and time consumption were obtained for each identification. Subject-specific templates were characterized and used in a forward-step first-order model...

  11. Research on Image Encryption Based on DNA Sequence and Chaos Theory

    Tian Zhang, Tian; Yan, Shan Jun; Gu, Cheng Yan; Ren, Ran; Liao, Kai Xin

    2018-04-01

    Nowadays encryption is a common technique to protect image data from unauthorized access. In recent years, many scientists have proposed various encryption algorithms based on DNA sequence to provide a new idea for the design of image encryption algorithm. Therefore, a new method of image encryption based on DNA computing technology is proposed in this paper, whose original image is encrypted by DNA coding and 1-D logistic chaotic mapping. First, the algorithm uses two modules as the encryption key. The first module uses the real DNA sequence, and the second module is made by one-dimensional logistic chaos mapping. Secondly, the algorithm uses DNA complementary rules to encode original image, and uses the key and DNA computing technology to compute each pixel value of the original image, so as to realize the encryption of the whole image. Simulation results show that the algorithm has good encryption effect and security.

  12. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms

    Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources. PMID:26151450

  13. Discrimination of the Lactobacillus acidophilus group using sequencing, species-specific PCR and SNaPshot mini-sequencing technology based on the recA gene.

    Huang, Chien-Hsun; Chang, Mu-Tzu; Huang, Mu-Chiou; Wang, Li-Tin; Huang, Lina; Lee, Fwu-Ling

    2012-10-01

    To clearly identify specific species and subspecies of the Lactobacillus acidophilus group using phenotypic and genotypic (16S rDNA sequence analysis) techniques alone is difficult. The aim of this study was to use the recA gene for species discrimination in the L. acidophilus group, as well as to develop a species-specific primer and single nucleotide polymorphism primer based on the recA gene sequence for species and subspecies identification. The average sequence similarity for the recA gene among type strains was 80.0%, and most members of the L. acidophilus group could be clearly distinguished. The species-specific primer was designed according to the recA gene sequencing, which was employed for polymerase chain reaction with the template DNA of Lactobacillus strains. A single 231-bp species-specific band was found only in L. delbrueckii. A SNaPshot mini-sequencing assay using recA as a target gene was also developed. The specificity of the mini-sequencing assay was evaluated using 31 strains of L. delbrueckii species and was able to unambiguously discriminate strains belonging to the subspecies L. delbrueckii subsp. bulgaricus. The phylogenetic relationships of most strains in the L. acidophilus group can be resolved using recA gene sequencing, and a novel method to identify the species and subspecies of the L. delbrueckii and L. delbrueckii subsp. bulgaricus was developed by species-specific polymerase chain reaction combined with SNaPshot mini-sequencing. Copyright © 2012 Society of Chemical Industry.

  14. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms.

    Francesca Bertolini

    Full Text Available Few studies investigated the donkey (Equus asinus at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca. The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing and Ion Torrent (RRL runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources.

  15. Structural protein descriptors in 1-dimension and their sequence-based predictions.

    Kurgan, Lukasz; Disfani, Fatemeh Miri

    2011-09-01

    The last few decades observed an increasing interest in development and application of 1-dimensional (1D) descriptors of protein structure. These descriptors project 3D structural features onto 1D strings of residue-wise structural assignments. They cover a wide-range of structural aspects including conformation of the backbone, burying depth/solvent exposure and flexibility of residues, and inter-chain residue-residue contacts. We perform first-of-its-kind comprehensive comparative review of the existing 1D structural descriptors. We define, review and categorize ten structural descriptors and we also describe, summarize and contrast over eighty computational models that are used to predict these descriptors from the protein sequences. We show that the majority of the recent sequence-based predictors utilize machine learning models, with the most popular being neural networks, support vector machines, hidden Markov models, and support vector and linear regressions. These methods provide high-throughput predictions and most of them are accessible to a non-expert user via web servers and/or stand-alone software packages. We empirically evaluate several recent sequence-based predictors of secondary structure, disorder, and solvent accessibility descriptors using a benchmark set based on CASP8 targets. Our analysis shows that the secondary structure can be predicted with over 80% accuracy and segment overlap (SOV), disorder with over 0.9 AUC, 0.6 Matthews Correlation Coefficient (MCC), and 75% SOV, and relative solvent accessibility with PCC of 0.7 and MCC of 0.6 (0.86 when homology is used). We demonstrate that the secondary structure predicted from sequence without the use of homology modeling is as good as the structure extracted from the 3D folds predicted by top-performing template-based methods.

  16. DipoCoup: A versatile program for 3D-structure homology comparison based on residual dipolar couplings and pseudocontact shifts

    Meiler, Jens; Peti, Wolfgang; Griesinger, Christian

    2000-01-01

    A program, DipoCoup, is presented that allows to search the protein data bank for proteins which have a three dimensional fold that is at least partially homologous to a protein under investigation. The three dimensional homology search uses secondary structure alignment based on chemical shifts and dipolar couplings or pseudocontact shifts for the three dimensional orientation of secondary structure elements. Moreover, the program offers additional tools for handling and analyzing dipolar couplings

  17. BioPig: a Hadoop-based analytic toolkit for large-scale sequence data.

    Nordberg, Henrik; Bhatia, Karan; Wang, Kai; Wang, Zhong

    2013-12-01

    The recent revolution in sequencing technologies has led to an exponential growth of sequence data. As a result, most of the current bioinformatics tools become obsolete as they fail to scale with data. To tackle this 'data deluge', here we introduce the BioPig sequence analysis toolkit as one of the solutions that scale to data and computation. We built BioPig on the Apache's Hadoop MapReduce system and the Pig data flow language. Compared with traditional serial and MPI-based algorithms, BioPig has three major advantages: first, BioPig's programmability greatly reduces development time for parallel bioinformatics applications; second, testing BioPig with up to 500 Gb sequences demonstrates that it scales automatically with size of data; and finally, BioPig can be ported without modification on many Hadoop infrastructures, as tested with Magellan system at National Energy Research Scientific Computing Center and the Amazon Elastic Compute Cloud. In summary, BioPig represents a novel program framework with the potential to greatly accelerate data-intensive bioinformatics analysis.

  18. CT Image Sequence Restoration Based on Sparse and Low-Rank Decomposition

    Gou, Shuiping; Wang, Yueyue; Wang, Zhilong; Peng, Yong; Zhang, Xiaopeng; Jiao, Licheng; Wu, Jianshe

    2013-01-01

    Blurry organ boundaries and soft tissue structures present a major challenge in biomedical image restoration. In this paper, we propose a low-rank decomposition-based method for computed tomography (CT) image sequence restoration, where the CT image sequence is decomposed into a sparse component and a low-rank component. A new point spread function of Weiner filter is employed to efficiently remove blur in the sparse component; a wiener filtering with the Gaussian PSF is used to recover the average image of the low-rank component. And then we get the recovered CT image sequence by combining the recovery low-rank image with all recovery sparse image sequence. Our method achieves restoration results with higher contrast, sharper organ boundaries and richer soft tissue structure information, compared with existing CT image restoration methods. The robustness of our method was assessed with numerical experiments using three different low-rank models: Robust Principle Component Analysis (RPCA), Linearized Alternating Direction Method with Adaptive Penalty (LADMAP) and Go Decomposition (GoDec). Experimental results demonstrated that the RPCA model was the most suitable for the small noise CT images whereas the GoDec model was the best for the large noisy CT images. PMID:24023764

  19. A method to prioritize quantitative traits and individuals for sequencing in family-based studies.

    Kaanan P Shah

    Full Text Available Owing to recent advances in DNA sequencing, it is now technically feasible to evaluate the contribution of rare variation to complex traits and diseases. However, it is still cost prohibitive to sequence the whole genome (or exome of all individuals in each study. For quantitative traits, one strategy to reduce cost is to sequence individuals in the tails of the trait distribution. However, the next challenge becomes how to prioritize traits and individuals for sequencing since individuals are often characterized for dozens of medically relevant traits. In this article, we describe a new method, the Rare Variant Kinship Test (RVKT, which leverages relationship information in family-based studies to identify quantitative traits that are likely influenced by rare variants. Conditional on nuclear families and extended pedigrees, we evaluate the power of the RVKT via simulation. Not unexpectedly, the power of our method depends strongly on effect size, and to a lesser extent, on the frequency of the rare variant and the number and type of relationships in the sample. As an illustration, we also apply our method to data from two genetic studies in the Old Order Amish, a founder population with extensive genealogical records. Remarkably, we implicate the presence of a rare variant that lowers fasting triglyceride levels in the Heredity and Phenotype Intervention (HAPI Heart study (p = 0.044, consistent with the presence of a previously identified null mutation in the APOC3 gene that lowers fasting triglyceride levels in HAPI Heart study participants.

  20. Sequence-specific inhibition of Dicer measured with a force-based microarray for RNA ligands.

    Limmer, Katja; Aschenbrenner, Daniela; Gaub, Hermann E

    2013-04-01

    Malfunction of protein translation causes many severe diseases, and suitable correction strategies may become the basis of effective therapies. One major regulatory element of protein translation is the nuclease Dicer that cuts double-stranded RNA independently of the sequence into pieces of 19-22 base pairs starting the RNA interference pathway and activating miRNAs. Inhibiting Dicer is not desirable owing to its multifunctional influence on the cell's gene regulation. Blocking specific RNA sequences by small-molecule binding, however, is a promising approach to affect the cell's condition in a controlled manner. A label-free assay for the screening of site-specific interference of small molecules with Dicer activity is thus needed. We used the Molecular Force Assay (MFA), recently developed in our lab, to measure the activity of Dicer. As a model system, we used an RNA sequence that forms an aptamer-binding site for paromomycin, a 615-dalton aminoglycoside. We show that Dicer activity is modulated as a function of concentration and incubation time: the addition of paromomycin leads to a decrease of Dicer activity according to the amount of ligand. The measured dissociation constant of paromomycin to its aptamer was found to agree well with literature values. The parallel format of the MFA allows a large-scale search and analysis for ligands for any RNA sequence.

  1. A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification.

    Yildirim, Özal

    2018-05-01

    Long-short term memory networks (LSTMs), which have recently emerged in sequential data analysis, are the most widely used type of recurrent neural networks (RNNs) architecture. Progress on the topic of deep learning includes successful adaptations of deep versions of these architectures. In this study, a new model for deep bidirectional LSTM network-based wavelet sequences called DBLSTM-WS was proposed for classifying electrocardiogram (ECG) signals. For this purpose, a new wavelet-based layer is implemented to generate ECG signal sequences. The ECG signals were decomposed into frequency sub-bands at different scales in this layer. These sub-bands are used as sequences for the input of LSTM networks. New network models that include unidirectional (ULSTM) and bidirectional (BLSTM) structures are designed for performance comparisons. Experimental studies have been performed for five different types of heartbeats obtained from the MIT-BIH arrhythmia database. These five types are Normal Sinus Rhythm (NSR), Ventricular Premature Contraction (VPC), Paced Beat (PB), Left Bundle Branch Block (LBBB), and Right Bundle Branch Block (RBBB). The results show that the DBLSTM-WS model gives a high recognition performance of 99.39%. It has been observed that the wavelet-based layer proposed in the study significantly improves the recognition performance of conventional networks. This proposed network structure is an important approach that can be applied to similar signal processing problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Prediction of peptide drift time in ion mobility mass spectrometry from sequence-based features

    Wang, Bing; Zhang, Jun; Chen, Peng; Ji, Zhiwei; Deng, Shuping; Li, Chi

    2013-01-01

    Background: Ion mobility-mass spectrometry (IMMS), an analytical technique which combines the features of ion mobility spectrometry (IMS) and mass spectrometry (MS), can rapidly separates ions on a millisecond time-scale. IMMS becomes a powerful tool to analyzing complex mixtures, especially for the analysis of peptides in proteomics. The high-throughput nature of this technique provides a challenge for the identification of peptides in complex biological samples. As an important parameter, peptide drift time can be used for enhancing downstream data analysis in IMMS-based proteomics.Results: In this paper, a model is presented based on least square support vectors regression (LS-SVR) method to predict peptide ion drift time in IMMS from the sequence-based features of peptide. Four descriptors were extracted from peptide sequence to represent peptide ions by a 34-component vector. The parameters of LS-SVR were selected by a grid searching strategy, and a 10-fold cross-validation approach was employed for the model training and testing. Our proposed method was tested on three datasets with different charge states. The high prediction performance achieve demonstrate the effectiveness and efficiency of the prediction model.Conclusions: Our proposed LS-SVR model can predict peptide drift time from sequence information in relative high prediction accuracy by a test on a dataset of 595 peptides. This work can enhance the confidence of protein identification by combining with current protein searching techniques. 2013 Wang et al.; licensee BioMed Central Ltd.

  3. Prediction of peptide drift time in ion mobility mass spectrometry from sequence-based features

    Wang, Bing

    2013-05-09

    Background: Ion mobility-mass spectrometry (IMMS), an analytical technique which combines the features of ion mobility spectrometry (IMS) and mass spectrometry (MS), can rapidly separates ions on a millisecond time-scale. IMMS becomes a powerful tool to analyzing complex mixtures, especially for the analysis of peptides in proteomics. The high-throughput nature of this technique provides a challenge for the identification of peptides in complex biological samples. As an important parameter, peptide drift time can be used for enhancing downstream data analysis in IMMS-based proteomics.Results: In this paper, a model is presented based on least square support vectors regression (LS-SVR) method to predict peptide ion drift time in IMMS from the sequence-based features of peptide. Four descriptors were extracted from peptide sequence to represent peptide ions by a 34-component vector. The parameters of LS-SVR were selected by a grid searching strategy, and a 10-fold cross-validation approach was employed for the model training and testing. Our proposed method was tested on three datasets with different charge states. The high prediction performance achieve demonstrate the effectiveness and efficiency of the prediction model.Conclusions: Our proposed LS-SVR model can predict peptide drift time from sequence information in relative high prediction accuracy by a test on a dataset of 595 peptides. This work can enhance the confidence of protein identification by combining with current protein searching techniques. 2013 Wang et al.; licensee BioMed Central Ltd.

  4. Ultra-short FBG based distributed sensing using shifted optical Gaussian filters and microwave-network analysis.

    Cheng, Rui; Xia, Li; Sima, Chaotan; Ran, Yanli; Rohollahnejad, Jalal; Zhou, Jiaao; Wen, Yongqiang; Yu, Can

    2016-02-08

    Ultrashort fiber Bragg gratings (US-FBGs) have significant potential as weak grating sensors for distributed sensing, but the exploitation have been limited by their inherent broad spectra that are undesirable for most traditional wavelength measurements. To address this, we have recently introduced a new interrogation concept using shifted optical Gaussian filters (SOGF) which is well suitable for US-FBG measurements. Here, we apply it to demonstrate, for the first time, an US-FBG-based self-referencing distributed optical sensing technique, with the advantages of adjustable sensitivity and range, high-speed and wide-range (potentially >14000 με) intensity-based detection, and resistance to disturbance by nonuniform parameter distribution. The entire system is essentially based on a microwave network, which incorporates the SOGF with a fiber delay-line between the two arms. Differential detections of the cascaded US-FBGs are performed individually in the network time-domain response which can be obtained by analyzing its complex frequency response. Experimental results are presented and discussed using eight cascaded US-FBGs. A comprehensive numerical analysis is also conducted to assess the system performance, which shows that the use of US-FBGs instead of conventional weak FBGs could significantly improve the power budget and capacity of the distributed sensing system while maintaining the crosstalk level and intensity decay rate, providing a promising route for future sensing applications.

  5. Phylogenetic relationships among amphisbaenian reptiles based on complete mitochondrial genomic sequences.

    Macey, J Robert; Papenfuss, Theodore J; Kuehl, Jennifer V; Fourcade, H Mathew; Boore, Jeffrey L

    2004-10-01

    Complete mitochondrial genomic sequences are reported from 12 members in the four families of the reptile group Amphisbaenia. Analysis of 11,946 aligned nucleotide positions (5797 informative) produces a robust phylogenetic hypothesis. The family Rhineuridae is basal and Bipedidae is the sister taxon to the Amphisbaenidae plus Trogonophidae. Amphisbaenian reptiles are surprisingly old, predating the breakup of Pangaea 200 million years before present, because successive basal taxa (Rhineuridae and Bipedidae) are situated in tectonic regions of Laurasia and nested taxa (Amphisbaenidae and Trogonophidae) are found in Gondwanan regions. Thorough sampling within the Bipedidae shows that it is not tectonic movement of Baja California away from the Mexican mainland that is primary in isolating Bipes species, but rather that primary vicariance occurred between northern and southern groups. Amphisbaenian families show parallel reduction in number of limbs and Bipes species exhibit parallel reduction in number of digits. A measure is developed for comparing the phylogenetic information content of various genes. A synapomorphic trait defining the Bipedidae is a shift from the typical vertebrate mitochondrial gene arrangement to the derived state of trnE and nad6. In addition, a tandem duplication of trnT and trnP is observed in Bipes biporus with a pattern of pseudogene formation that varies among populations. The first case of convergent rearrangement of the mitochondrial genome among animals demonstrated by complete genomic sequences is reported. Relative to most vertebrates, the Rhineuridae has the block nad6, trnE switched in order with the block cob, trnT, trnP, as they are in birds.

  6. Phylogenetic relationships among amphisbaenian reptiles based on complete mitochondrial genomic sequences

    Macey, J. Robert; Papenfuss, Theodore J.; Kuehl, Jennifer V.; Fourcade, H. Matthew; Boore, Jeffrey L.

    2004-05-19

    Complete mitochondrial genomic sequences are reported from 12 members in the four families of the reptile group Amphisbaenia. Analysis of 11,946 aligned nucleotide positions (5,797 informative) produces a robust phylogenetic hypothesis. The family Rhineuridae is basal and Bipedidae is the sister taxon to the Amphisbaenidae plus Trogonophidae. Amphisbaenian reptiles are surprisingly old, predating the breakup of Pangaea 200 million years before present, because successive basal taxa (Rhineuridae and Bipedidae) are situated in tectonic regions of Laurasia and nested taxa (Amphisbaenidae and Trogonophidae) are found in Gondwanan regions. Thorough sampling within the Bipedidae shows that it is not tectonic movement of Baja California away from the Mexican mainland that is primary in isolating Bipes species, but rather that primary vicariance occurred between northern and southern groups. Amphisbaenian families show parallel reduction in number of limbs and Bipes species exhibit parallel reduction in number of digits. A measure is developed for comparing the phylogenetic information content of various genes. A synapomorphic trait defining the Bipedidae is a shift from the typical vertebrate mitochondrial gene arrangement to the derived state of trnE and nad6. In addition, a tandem duplication of trnT and trnP is observed in B. biporus with a pattern of pseudogene formation that varies among populations. The first case of convergent rearrangement of the mitochondrial genome among animals demonstrated by complete genomic sequences is reported. Relative to most vertebrates, the Rhineuridae has the block nad6, trnE switched in order with cob, trnT, trnP, as they are in birds.

  7. Molecular Electronic Shift Registers

    Beratan, David N.; Onuchic, Jose N.

    1990-01-01

    Molecular-scale shift registers eventually constructed as parts of high-density integrated memory circuits. In principle, variety of organic molecules makes possible large number of different configurations and modes of operation for such shift-register devices. Several classes of devices and implementations in some specific types of molecules proposed. All based on transfer of electrons or holes along chains of repeating molecular units.

  8. Molecular Characterization of Five Potyviruses Infecting Korean Sweet Potatoes Based on Analyses of Complete Genome Sequences

    Hae-Ryun Kwak

    2015-12-01

    Full Text Available Sweet potatoes (Ipomea batatas L. are grown extensively, in tropical and temperate regions, and are important food crops worldwide. In Korea, potyviruses, including Sweet potato feathery mottle virus (SPFMV, Sweet potato virus C (SPVC, Sweet potato virus G (SPVG, Sweet potato virus 2 (SPV2, and Sweet potato latent virus (SPLV, have been detected in sweet potato fields at a high (~95% incidence. In the present work, complete genome sequences of 18 isolates, representing the five potyviruses mentioned above, were compared with previously reported genome sequences. The complete genomes consisted of 10,081 to 10,830 nucleotides, excluding the poly-A tails. Their genomic organizations were typical of the Potyvirus genus, including one target open reading frame coding for a putative polyprotein. Based on phylogenetic analyses and sequence comparisons, the Korean SPFMV isolates belonged to the strains RC and O with >98% nucleotide sequence identity. Korean SPVC isolates had 99% identity to the Japanese isolate SPVC-Bungo and 70% identity to the SPFMV isolates. The Korean SPVG isolates showed 99% identity to the three previously reported SPVG isolates. Korean SPV2 isolates had 97% identity to the SPV2 GWB-2 isolate from the USA. Korean SPLV isolates had a relatively low (88% nucleotide sequence identity with the Taiwanese SPLV-TW isolates, and they were phylogenetically distantly related to SPFMV isolates. Recombination analysis revealed that possible recombination events occurred in the P1, HC-Pro and NIa-NIb regions of SPFMV and SPLV isolates and these regions were identified as hotspots for recombination in the sweet potato potyviruses.

  9. Estimation of physiological parameters using knowledge-based factor analysis of dynamic nuclear medicine image sequences

    Yap, J.T.; Chen, C.T.; Cooper, M.

    1995-01-01

    The authors have previously developed a knowledge-based method of factor analysis to analyze dynamic nuclear medicine image sequences. In this paper, the authors analyze dynamic PET cerebral glucose metabolism and neuroreceptor binding studies. These methods have shown the ability to reduce the dimensionality of the data, enhance the image quality of the sequence, and generate meaningful functional images and their corresponding physiological time functions. The new information produced by the factor analysis has now been used to improve the estimation of various physiological parameters. A principal component analysis (PCA) is first performed to identify statistically significant temporal variations and remove the uncorrelated variations (noise) due to Poisson counting statistics. The statistically significant principal components are then used to reconstruct a noise-reduced image sequence as well as provide an initial solution for the factor analysis. Prior knowledge such as the compartmental models or the requirement of positivity and simple structure can be used to constrain the analysis. These constraints are used to rotate the factors to the most physically and physiologically realistic solution. The final result is a small number of time functions (factors) representing the underlying physiological processes and their associated weighting images representing the spatial localization of these functions. Estimation of physiological parameters can then be performed using the noise-reduced image sequence generated from the statistically significant PCs and/or the final factor images and time functions. These results are compared to the parameter estimation using standard methods and the original raw image sequences. Graphical analysis was performed at the pixel level to generate comparable parametric images of the slope and intercept (influx constant and distribution volume)

  10. MetaSeq: privacy preserving meta-analysis of sequencing-based association studies.

    Singh, Angad Pal; Zafer, Samreen; Pe'er, Itsik

    2013-01-01

    Human genetics recently transitioned from GWAS to studies based on NGS data. For GWAS, small effects dictated large sample sizes, typically made possible through meta-analysis by exchanging summary statistics across consortia. NGS studies groupwise-test for association of multiple potentially-causal alleles along each gene. They are subject to similar power constraints and therefore likely to resort to meta-analysis as well. The problem arises when considering privacy of the genetic information during the data-exchange process. Many scoring schemes for NGS association rely on the frequency of each variant thus requiring the exchange of identity of the sequenced variant. As such variants are often rare, potentially revealing the identity of their carriers and jeopardizing privacy. We have thus developed MetaSeq, a protocol for meta-analysis of genome-wide sequencing data by multiple collaborating parties, scoring association for rare variants pooled per gene across all parties. We tackle the challenge of tallying frequency counts of rare, sequenced alleles, for metaanalysis of sequencing data without disclosing the allele identity and counts, thereby protecting sample identity. This apparent paradoxical exchange of information is achieved through cryptographic means. The key idea is that parties encrypt identity of genes and variants. When they transfer information about frequency counts in cases and controls, the exchanged data does not convey the identity of a mutation and therefore does not expose carrier identity. The exchange relies on a 3rd party, trusted to follow the protocol although not trusted to learn about the raw data. We show applicability of this method to publicly available exome-sequencing data from multiple studies, simulating phenotypic information for powerful meta-analysis. The MetaSeq software is publicly available as open source.

  11. Next-generation Sequencing-based genomic profiling: Fostering innovation in cancer care?

    Gustavo S. Fernandes

    Full Text Available OBJECTIVES: With the development of next-generation sequencing (NGS technologies, DNA sequencing has been increasingly utilized in clinical practice. Our goal was to investigate the impact of genomic evaluation on treatment decisions for heavily pretreated patients with metastatic cancer. METHODS: We analyzed metastatic cancer patients from a single institution whose cancers had progressed after all available standard-of-care therapies and whose tumors underwent next-generation sequencing analysis. We determined the percentage of patients who received any therapy directed by the test, and its efficacy. RESULTS: From July 2013 to December 2015, 185 consecutive patients were tested using a commercially available next-generation sequencing-based test, and 157 patients were eligible. Sixty-six patients (42.0% were female, and 91 (58.0% were male. The mean age at diagnosis was 52.2 years, and the mean number of pre-test lines of systemic treatment was 2.7. One hundred and seventy-seven patients (95.6% had at least one identified gene alteration. Twenty-four patients (15.2% underwent systemic treatment directed by the test result. Of these, one patient had a complete response, four (16.7% had partial responses, two (8.3% had stable disease, and 17 (70.8% had disease progression as the best result. The median progression-free survival time with matched therapy was 1.6 months, and the median overall survival was 10 months. CONCLUSION: We identified a high prevalence of gene alterations using an next-generation sequencing test. Although some benefit was associated with the matched therapy, most of the patients had disease progression as the best response, indicating the limited biological potential and unclear clinical relevance of this practice.

  12. Shift work and the incidence of prostate cancer: a 10-year follow-up of a German population-based cohort study.

    Behrens, Thomas; Rabstein, Sylvia; Wichert, Katharina; Erbel, Raimund; Eisele, Lewin; Arendt, Marina; Dragano, Nico; Brüning, Thomas; Jöckel, Karl-Heinz

    2017-11-01

    Objectives We investigated the association of shift and night work with the incidence of prostate cancer using data of the population-based prospective Heinz Nixdorf Recall Study from the highly industrialized Ruhr area in Germany. Methods Participants of the baseline survey were recruited between 2000-2003. A follow-up survey including, a detailed interview on shift and night work, was conducted from 2011-2014. We included 1757 men who did not report a history of prostate cancer at baseline. We assessed shift- and night-work exposure up to time of the baseline interview. Incident prostate cancers were recorded from baseline through September 2014. We calculated hazard ratios (HR) of shift- and night-work exposure using Cox proportional hazards regression with age at event as timescale, adjusting for smoking status, family history of prostate cancer, education (≤13, 14-17, ≥18 years), and equivalent income (low, medium, high). Results We observed a twofold increased HR for prostate cancer among shift and night workers. Ever employment in shift work was associated with HR 2.29, 95% confidence interval (CI) 1.43-3.67 and night work with HR 2.27, 95% CI 1.42-3.64. HR increased steadily with duration of employment in shift or night work. Stratifying analyses by preferred midpoint of sleep, yielded strongly elevated HR among subjects with early sleep preference, although these analyses were limited by small number of cases. Conclusions We identified increased risks for prostate cancer among men with employment in shift or night work. HR were strongly elevated among long-term employed shift workers and men with early preferred midpoint of sleep.

  13. Fluid Shifts

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  14. Chemical shift imaging: a review

    Brateman, L.

    1986-01-01

    Chemical shift is the phenomenon that is seen when an isotope possessing a nuclear magnetic dipole moment resonates at a spectrum of resonance frequencies in a given magnetic field. These resonance frequencies, or chemical shifts, depend on the chemical environments of particular nuclei. Mapping the spatial distribution of nuclei associated with a particular chemical shift (e.g., hydrogen nuclei associated with water molecules or with lipid groups) is called chemical shift imaging. Several techniques of proton chemical shift imaging that have been applied in vivo are presented, and their clinical findings are reported and summarized. Acquiring high-resolution spectra for large numbers of volume elements in two or three dimensions may be prohibitive because of time constraints, but other methods of imaging lipid of water distributions (i.e., selective excitation, selective saturation, or variations in conventional magnetic resonance imaging pulse sequences) can provide chemical shift information. These techniques require less time, but they lack spectral information. Since fat deposition seen by chemical shift imaging may not be demonstrated by conventional magnetic resonance imaging, certain applications of chemical shift imaging, such as in the determination of fatty liver disease, have greater diagnostic utility than conventional magnetic resonance imaging. Furthermore, edge artifacts caused by chemical shift effects can be eliminated by certain selective methods of data acquisition employed in chemical shift imaging

  15. A Decentralized Wireless Solution to Monitor and Diagnose PV Solar Module Performance Based on Symmetrized-Shifted Gompertz Functions

    Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C.

    2015-01-01

    This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper. PMID:26230694

  16. Evidence for the frequency-shift of the OA A_1g mode in Hg-based superconductors

    Yang, In-Sang; Lee, Hye-Gyong

    1996-03-01

    The Hg-based superconductors, HgBa_2Ca_n-1Cu_nO_2n+2+δ (n=1,2,3) have two strong Raman peaks at ~ 570 and 590 cm-1 in the high-frequency region. From the results of Raman measurements of Tl-doped Hg-1223 system, it is concluded that the peak at ~ 570 cm-1 does not arise from the vibration of the interstitial oxygen O_δ in the Hg/Tl-O plane, but from the frequency-shift of the A_1g-type vibration of the apical oxygen O_A. The peak at 570 cm-1 is from the O_As surrounded by the O_δs in the nearest neighbor, while the 590 cm-1 mode is from the O_As without the O_δs in the immediate neighbor. The intensity of the 570 cm-1 mode increases with the O_δ content, but the Raman frequencies of both modes do not change significantly. This suggests that the increase of the frequency of the OA A_1g mode under high pressure (I.-S. Yang et al., Phys. Rev. B 51, 644 (1995)) is independent from the O_δ content, in the Hg-based superconductors.

  17. A Decentralized Wireless Solution to Monitor and Diagnose PV Solar Module Performance Based on Symmetrized-Shifted Gompertz Functions

    Angel Molina-García

    2015-07-01

    Full Text Available This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors. Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper.

  18. A Decentralized Wireless Solution to Monitor and Diagnose PV Solar Module Performance Based on Symmetrized-Shifted Gompertz Functions.

    Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C

    2015-07-29

    This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper.

  19. Protection algorithm for a wind turbine generator based on positive- and negative-sequence fault components

    Zheng, Tai-Ying; Cha, Seung-Tae; Crossley, Peter A.

    2011-01-01

    A protection relay for a wind turbine generator (WTG) based on positive- and negative-sequence fault components is proposed in the paper. The relay uses the magnitude of the positive-sequence component in the fault current to detect a fault on a parallel WTG, connected to the same power collection...... feeder, or a fault on an adjacent feeder; but for these faults, the relay remains stable and inoperative. A fault on the power collection feeder or a fault on the collection bus, both of which require an instantaneous tripping response, are distinguished from an inter-tie fault or a grid fault, which...... in the fault current is used to decide on either instantaneous or delayed operation. The operating performance of the relay is then verified using various fault scenarios modelled using EMTP-RV. The scenarios involve changes in the position and type of fault, and the faulted phases. Results confirm...

  20. Precision toxicology based on single cell sequencing: an evolving trend in toxicological evaluations and mechanism exploration.

    Zhang, Boyang; Huang, Kunlun; Zhu, Liye; Luo, Yunbo; Xu, Wentao

    2017-07-01

    In this review, we introduce a new concept, precision toxicology: the mode of action of chemical- or drug-induced toxicity can be sensitively and specifically investigated by isolating a small group of cells or even a single cell with typical phenotype of interest followed by a single cell sequencing-based analysis. Precision toxicology can contribute to the better detection of subtle intracellular changes in response to exogenous substrates, and thus help researchers find solutions to control or relieve the toxicological effects that are serious threats to human health. We give examples for single cell isolation and recommend laser capture microdissection for in vivo studies and flow cytometric sorting for in vitro studies. In addition, we introduce the procedures for single cell sequencing and describe the expected application of these techniques to toxicological evaluations and mechanism exploration, which we believe will become a trend in toxicology.

  1. Discriminatory usefulness of pulsed-field gel electrophoresis and sequence-based typing in Legionella outbreaks.

    Quero, Sara; García-Núñez, Marian; Párraga-Niño, Noemí; Barrabeig, Irene; Pedro-Botet, Maria L; de Simon, Mercè; Sopena, Nieves; Sabrià, Miquel

    2016-06-01

    To compare the discriminatory power of pulsed-field gel electrophoresis (PFGE) and sequence-based typing (SBT) in Legionella outbreaks for determining the infection source. Twenty-five investigations of Legionnaires' disease were analyzed by PFGE, SBT and Dresden monoclonal antibody. The results suggested that monoclonal antibody could reduce the number of Legionella isolates to be characterized by molecular methods. The epidemiological concordance PFGE-SBT was 100%, while the molecular concordance was 64%. Adjusted Wallace index (AW) showed that PFGE has better discriminatory power than SBT (AWSBT→PFGE = 0.767; AWPFGE→SBT = 1). The discrepancies appeared mostly in sequence type (ST) 1, a worldwide distributed ST for which PFGE discriminated different profiles. SBT discriminatory power was not sufficient verifying the infection source, especially in worldwide distributed STs, which were classified into different PFGE patterns.

  2. Screening for SNPs with Allele-Specific Methylation based on Next-Generation Sequencing Data.

    Hu, Bo; Ji, Yuan; Xu, Yaomin; Ting, Angela H

    2013-05-01

    Allele-specific methylation (ASM) has long been studied but mainly documented in the context of genomic imprinting and X chromosome inactivation. Taking advantage of the next-generation sequencing technology, we conduct a high-throughput sequencing experiment with four prostate cell lines to survey the whole genome and identify single nucleotide polymorphisms (SNPs) with ASM. A Bayesian approach is proposed to model the counts of short reads for each SNP conditional on its genotypes of multiple subjects, leading to a posterior probability of ASM. We flag SNPs with high posterior probabilities of ASM by accounting for multiple comparisons based on posterior false discovery rates. Applying the Bayesian approach to the in-house prostate cell line data, we identify 269 SNPs as candidates of ASM. A simulation study is carried out to demonstrate the quantitative performance of the proposed approach.

  3. Intergeneric Classification of Genus Bulbophyllum from Peninsular Malaysia Based on Combined Morphological and RBCL Sequence Data

    Hosseini, S.; Dadkhah, K.

    2016-01-01

    Bulbophyllum Thou. is largest genus in Orchidaceae family and a well-known plant of tropical area. The present study provides a comparative morphological study of 38 Bulbophyllum spp. as well as molecular sequence analysis of large subunit of rubisco (rbcL), to infer the intergeneric classification for studied taxa of genus Bulbophyllum. Thirty morphological characters were coded in a data matrix, and used in phenetic analysis. Morphological result was strongly consistent with earlier classification, with exception of B. auratum, B. gracillimum, B. mutabile and B. limbatum status. Furthermore Molecular data analysis of rbcL was congruent with morphological data in some aspects. Species interrelationships specified using combination of rbcL sequence data with morphological data. The results revealed close affiliation in 11 sections of Bulbophyllum from Peninsular Malaysia. Consequently, based on this study generic status of sections Cirrhopetalum and Epicrianthes cannot longer be supported, as they are deeply embedded within the genus Bulbophyllum. (author)

  4. Analysis Of Segmental Duplications In The Pig Genome Based On Next-Generation Sequencing

    Fadista, João; Bendixen, Christian

    Segmental duplications are >1kb segments of duplicated DNA present in a genome with high sequence identity (>90%). They are associated with genomic rearrangements and provide a significant source of gene and genome evolution within mammalian genomes. Although segmental duplications have been...... extensively studied in other organisms, its analysis in pig has been hampered by the lack of a complete pig genome assembly. By measuring the depth of coverage of Illumina whole-genome shotgun sequencing reads of the Tabasco animal aligned to the latest pig genome assembly (Sus scrofa 10 – based also...... and their associated copy number alterations, focusing on the global organization of these segments and their possible functional significance in porcine phenotypes. This work provides insights into mammalian genome evolution and generates a valuable resource for porcine genomics research...

  5. ITS-2 sequences-based identification of Trichogramma species in South America

    R. P. Almeida

    Full Text Available Abstract ITS2 (Internal transcribed spacer 2 sequences have been used in systematic studies and proved to be useful in providing a reliable identification of Trichogramma species. DNAr sequences ranged in size from 379 to 632 bp. In eleven T. pretiosum lines Wolbachia-induced parthenogenesis was found for the first time. These thelytokous lines were collected in Peru (9, Colombia (1 and USA (1. A dichotomous key for species identification was built based on the size of the ITS2 PCR product and restriction analysis using three endonucleases (EcoRI, MseI and MaeI. This molecular technique was successfully used to distinguish among seventeen native/introduced Trichogramma species collected in South America.

  6. High-throughput Sequencing Based Immune Repertoire Study during Infectious Disease

    Dongni Hou

    2016-08-01

    Full Text Available The selectivity of the adaptive immune response is based on the enormous diversity of T and B cell antigen-specific receptors. The immune repertoire, the collection of T and B cells with functional diversity in the circulatory system at any given time, is dynamic and reflects the essence of immune selectivity. In this article, we review the recent advances in immune repertoire study of infectious diseases that achieved by traditional techniques and high-throughput sequencing techniques. High-throughput sequencing techniques enable the determination of complementary regions of lymphocyte receptors with unprecedented efficiency and scale. This progress in methodology enhances the understanding of immunologic changes during pathogen challenge, and also provides a basis for further development of novel diagnostic markers, immunotherapies and vaccines.

  7. Multiple ECG Fiducial Points-Based Random Binary Sequence Generation for Securing Wireless Body Area Networks.

    Zheng, Guanglou; Fang, Gengfa; Shankaran, Rajan; Orgun, Mehmet A; Zhou, Jie; Qiao, Li; Saleem, Kashif

    2017-05-01

    Generating random binary sequences (BSes) is a fundamental requirement in cryptography. A BS is a sequence of N bits, and each bit has a value of 0 or 1. For securing sensors within wireless body area networks (WBANs), electrocardiogram (ECG)-based BS generation methods have been widely investigated in which interpulse intervals (IPIs) from each heartbeat cycle are processed to produce BSes. Using these IPI-based methods to generate a 128-bit BS in real time normally takes around half a minute. In order to improve the time efficiency of such methods, this paper presents an ECG multiple fiducial-points based binary sequence generation (MFBSG) algorithm. The technique of discrete wavelet transforms is employed to detect arrival time of these fiducial points, such as P, Q, R, S, and T peaks. Time intervals between them, including RR, RQ, RS, RP, and RT intervals, are then calculated based on this arrival time, and are used as ECG features to generate random BSes with low latency. According to our analysis on real ECG data, these ECG feature values exhibit the property of randomness and, thus, can be utilized to generate random BSes. Compared with the schemes that solely rely on IPIs to generate BSes, this MFBSG algorithm uses five feature values from one heart beat cycle, and can be up to five times faster than the solely IPI-based methods. So, it achieves a design goal of low latency. According to our analysis, the complexity of the algorithm is comparable to that of fast Fourier transforms. These randomly generated ECG BSes can be used as security keys for encryption or authentication in a WBAN system.

  8. DNA sequence of 15 base pairs is sufficient to mediate both glucocorticoid and progesterone induction of gene expression

    Straehle, U.; Klock, G.; Schuetz, G.

    1987-01-01

    To define the recognition sequence of the glucocorticoid receptor and its relationship with that of the progesterone receptor, oligonucleotides derived from the glucocorticoid response element of the tyrosine aminotransferase gene were tested upstream of a heterologous promoter for their capacity to mediate effects of these two steroids. The authors show that a 15-base-pair sequence with partial symmetry is sufficient to confer glucocorticoid inducibility on the promoter of the herpes simplex virus thymidine kinase gene. The same 15-base-pair sequence mediates induction by progesterone. Point mutations in the recognition sequence affect inducibility by glucocorticoids and progesterone similarly. Together with the strong conservation of the sequence of the DNA-binding domain of the two receptors, these data suggest that both proteins recognize a sequence that is similar, if not the same

  9. A model-based clustering method to detect infectious disease transmission outbreaks from sequence variation.

    Rosemary M McCloskey

    2017-11-01

    Full Text Available Clustering infections by genetic similarity is a popular technique for identifying potential outbreaks of infectious disease, in part because sequences are now routinely collected for clinical management of many infections. A diverse number of nonparametric clustering methods have been developed for this purpose. These methods are generally intuitive, rapid to compute, and readily scale with large data sets. However, we have found that nonparametric clustering methods can be biased towards identifying clusters of diagnosis-where individuals are sampled sooner post-infection-rather than the clusters of rapid transmission that are meant to be potential foci for public health efforts. We develop a fundamentally new approach to genetic clustering based on fitting a Markov-modulated Poisson process (MMPP, which represents the evolution of transmission rates along the tree relating different infections. We evaluated this model-based method alongside five nonparametric clustering methods using both simulated and actual HIV sequence data sets. For simulated clusters of rapid transmission, the MMPP clustering method obtained higher mean sensitivity (85% and specificity (91% than the nonparametric methods. When we applied these clustering methods to published sequences from a study of HIV-1 genetic clusters in Seattle, USA, we found that the MMPP method categorized about half (46% as many individuals to clusters compared to the other methods. Furthermore, the mean internal branch lengths that approximate transmission rates were significantly shorter in clusters extracted using MMPP, but not by other methods. We determined that the computing time for the MMPP method scaled linearly with the size of trees, requiring about 30 seconds for a tree of 1,000 tips and about 20 minutes for 50,000 tips on a single computer. This new approach to genetic clustering has significant implications for the application of pathogen sequence analysis to public health, where

  10. Sequence-Based Introgression Mapping Identifies Candidate White Mold Tolerance Genes in Common Bean

    Sujan Mamidi

    2016-07-01

    Full Text Available White mold, caused by the necrotrophic fungus (Lib. de Bary, is a major disease of common bean ( L.. WM7.1 and WM8.3 are two quantitative trait loci (QTL with major effects on tolerance to the pathogen. Advanced backcross populations segregating individually for either of the two QTL, and a recombinant inbred (RI population segregating for both QTL were used to fine map and confirm the genetic location of the QTL. The QTL intervals were physically mapped using the reference common bean genome sequence, and the physical intervals for each QTL were further confirmed by sequence-based introgression mapping. Using whole-genome sequence data from susceptible and tolerant DNA pools, introgressed regions were identified as those with significantly higher numbers of single-nucleotide polymorphisms (SNPs relative to the whole genome. By combining the QTL and SNP data, WM7.1 was located to a 660-kb region that contained 41 gene models on the proximal end of chromosome Pv07, while the WM8.3 introgression was narrowed to a 1.36-Mb region containing 70 gene models. The most polymorphic candidate gene in the WM7.1 region encodes a BEACH-domain protein associated with apoptosis. Within the WM8.3 interval, a receptor-like protein with the potential to recognize pathogen effectors was the most polymorphic gene. The use of gene and sequence-based mapping identified two candidate genes whose putative functions are consistent with the current model of pathogenicity.

  11. Molecular Phylogeny of Triticum and Aegilops Genera Based on ITS and MATK Sequence Data

    Dizkirici, A.; Kansu, C.; Onde, S.

    2016-01-01

    Understanding the phylogenetic relationship between Triticum and Aegilops species, which form a vast gene pool of wheat, is very important for breeding new cultivated wheat varieties. In the present study, phylogenetic relationships between Triticum (12 samples from 4 species) and Aegilops (24 samples from 8 species) were investigated using sequences of the nuclear ITS rDNA gene and partial sequences of the matK gene of chloroplast genome. The phylogenetic relationships among species were reconstructed using Maximum Likelihood method. The constructed tree based on the sequences of the nuclear component (ITS) displayed a close relationship between polyploid wheats and Aegilops speltoides species which provided new evidence for the source of the enigmatic B genome donor as Ae. speltoides. Concurrent clustering of Ae. cylindrica and Ae. tauschii and their close positioning to polyploid wheats pointed the source of the D genome as one of these species. As reported before, diploid Triticum species (i.e. T. urartu) were identified as the A genome donors and the positioning of these diploid wheats on the constructed tree are meaningful. The constructed tree based on the chloroplastic matK sequences displayed same relationship between polyploid wheats and Ae. speltoides species providing evidence for the later species being the chloroplast donors for polyploid wheats. Therefore, our results supported the idea of coinheritance of nuclear and chloroplast genomes where Ae. speltoides was the maternal donor. For both trees the remaining Aegilops species produced a distinct cluster whereas with the exception of T. urartu, diploid Triticum species displayed a monophyletic structure. (author)

  12. TFpredict and SABINE: sequence-based prediction of structural and functional characteristics of transcription factors.

    Johannes Eichner

    Full Text Available One of the key mechanisms of transcriptional control are the specific connections between transcription factors (TF and cis-regulatory elements in gene promoters. The elucidation of these specific protein-DNA interactions is crucial to gain insights into the complex regulatory mechanisms and networks underlying the adaptation of organisms to dynamically changing environmental conditions. As experimental techniques for determining TF binding sites are expensive and mostly performed for selected TFs only, accurate computational approaches are needed to analyze transcriptional regulation in eukaryotes on a genome-wide level. We implemented a four-step classification workflow which for a given protein sequence (1 discriminates TFs from other proteins, (2 determines the structural superclass of TFs, (3 identifies the DNA-binding domains of TFs and (4 predicts their cis-acting DNA motif. While existing tools were extended and adapted for performing the latter two prediction steps, the first two steps are based on a novel numeric sequence representation which allows for combining existing knowledge from a BLAST scan with robust machine learning-based classification. By evaluation on a set of experimentally confirmed TFs and non-TFs, we demonstrate that our new protein sequence representation facilitates more reliable identification and structural classification of TFs than previously proposed sequence-derived features. The algorithms underlying our proposed methodology are implemented in the two complementary tools TFpredict and SABINE. The online and stand-alone versions of TFpredict and SABINE are freely available to academics at http://www.cogsys.cs.uni-tuebingen.de/software/TFpredict/ and http://www.cogsys.cs.uni-tuebingen.de/software/SABINE/.

  13. Shift Verification and Validation

    Pandya, Tara M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Evans, Thomas M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Davidson, Gregory G [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Seth R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Godfrey, Andrew T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-07

    This documentation outlines the verification and validation of Shift for the Consortium for Advanced Simulation of Light Water Reactors (CASL). Five main types of problems were used for validation: small criticality benchmark problems; full-core reactor benchmarks for light water reactors; fixed-source coupled neutron-photon dosimetry benchmarks; depletion/burnup benchmarks; and full-core reactor performance benchmarks. We compared Shift results to measured data and other simulated Monte Carlo radiation transport code results, and found very good agreement in a variety of comparison measures. These include prediction of critical eigenvalue, radial and axial pin power distributions, rod worth, leakage spectra, and nuclide inventories over a burn cycle. Based on this validation of Shift, we are confident in Shift to provide reference results for CASL benchmarking.

  14. A rule of seven in Watson-Crick base-pairing of mismatched sequences.

    Cisse, Ibrahim I; Kim, Hajin; Ha, Taekjip

    2012-05-13

    Sequence recognition through base-pairing is essential for DNA repair and gene regulation, but the basic rules governing this process remain elusive. In particular, the kinetics of annealing between two imperfectly matched strands is not well characterized, despite its potential importance in nucleic acid-based biotechnologies and gene silencing. Here we use single-molecule fluorescence to visualize the multiple annealing and melting reactions of two untethered strands inside a porous vesicle, allowing us to precisely quantify the annealing and melting rates. The data as a function of mismatch position suggest that seven contiguous base pairs are needed for rapid annealing of DNA and RNA. This phenomenological rule of seven may underlie the requirement for seven nucleotides of complementarity to seed gene silencing by small noncoding RNA and may help guide performance improvement in DNA- and RNA-based bio- and nanotechnologies, in which off-target effects can be detrimental.

  15. A sampling and metagenomic sequencing-based methodology for monitoring antimicrobial resistance in swine herds

    Munk, Patrick; Dalhoff Andersen, Vibe; de Knegt, Leonardo

    2016-01-01

    Objectives Reliable methods for monitoring antimicrobial resistance (AMR) in livestock and other reservoirs are essential to understand the trends, transmission and importance of agricultural resistance. Quantification of AMR is mostly done using culture-based techniques, but metagenomic read...... mapping shows promise for quantitative resistance monitoring. Methods We evaluated the ability of: (i) MIC determination for Escherichia coli; (ii) cfu counting of E. coli; (iii) cfu counting of aerobic bacteria; and (iv) metagenomic shotgun sequencing to predict expected tetracycline resistance based...... cultivation-based techniques in terms of predicting expected tetracycline resistance based on antimicrobial consumption. Our metagenomic approach had sufficient resolution to detect antimicrobial-induced changes to individual resistance gene abundances. Pen floor manure samples were found to represent rectal...

  16. Efficient DNA fingerprinting based on the targeted sequencing of active retrotransposon insertion sites using a bench-top high-throughput sequencing platform.

    Monden, Yuki; Yamamoto, Ayaka; Shindo, Akiko; Tahara, Makoto

    2014-10-01

    In many crop species, DNA fingerprinting is required for the precise identification of cultivars to protect the rights of breeders. Many families of retrotransposons have multiple copies throughout the eukaryotic genome and their integrated copies are inherited genetically. Thus, their insertion polymorphisms among cultivars are useful for DNA fingerprinting. In this study, we conducted a DNA fingerprinting based on the insertion polymorphisms of active retrotransposon families (Rtsp-1 and LIb) in sweet potato. Using 38 cultivars, we identified 2,024 insertion sites in the two families with an Illumina MiSeq sequencing platform. Of these insertion sites, 91.4% appeared to be polymorphic among the cultivars and 376 cultivar-specific insertion sites were identified, which were converted directly into cultivar-specific sequence-characterized amplified region (SCAR) markers. A phylogenetic tree was constructed using these insertion sites, which corresponded well with known pedigree information, thereby indicating their suitability for genetic diversity studies. Thus, the genome-wide comparative analysis of active retrotransposon insertion sites using the bench-top MiSeq sequencing platform is highly effective for DNA fingerprinting without any requirement for whole genome sequence information. This approach may facilitate the development of practical polymerase chain reaction-based cultivar diagnostic system and could also be applied to the determination of genetic relationships. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  17. Long term energy and emission implications of a global shift to electricity-based public rail transportation system

    Chaturvedi, Vaibhav; Kim, Son H.

    2015-01-01

    With high reliance on light-duty vehicles in the present, the future of global transportation system is also geared towards private modes, which has significant energy and emission implications. Public transportation has been argued as an alternative strategy for meeting the rising transportation demands of the growing world, especially the poor, in a sustainable and energy efficient way. The present study analyzes an important yet under-researched question – what are the long-term energy and emission implications of an electric rail based passenger transportation system for meeting both long and short distance passenter transportation needs? We analyze a suite of electric rail share scenarios with and without climate policy. In the reference scenario, the transportation system will evolve towards dominance of fossil based light-duty vehicles. We find that an electric rail policy is more successful than an economy wide climate policy in reducing transport sector energy demand and emissions. Economy wide emissions however can only be reduced through a broader climate policy, the cost of which can be reduced by hundreds of billions of dollars across the century when implemented in combination with the transport sector focused electric rail policy. Moreover, higher share of electric rail enhances energy security for oil importing nations and reduces vehicular congestion and road infrastructure requirement as well. -- Highlights: •Economy wide carbon price policy will have little impact on transportation emissions. •Focused energy and emission mitigation policies required for transportation sector. •Large global shift towards electric rail based public transport is one possible option. •Transport sector focused policy will have marginal impact on total global emissions. •A combined transport sector and economy wide policy can reduce costs significantly

  18. Sonication-based isolation and enrichment of Chlorella protothecoides chloroplasts for illumina genome sequencing

    Angelova, Angelina [University of Arizona; Park, Sang-Hycuk [University of Arizona; Kyndt, John [Bellevue University; Fitzsimmons, Kevin [University of Arizona; Brown, Judith K [University of Arizona

    2013-09-01

    With the increasing world demand for biofuel, a number of oleaginous algal species are being considered as renewable sources of oil. Chlorella protothecoides Krüger synthesizes triacylglycerols (TAGs) as storage compounds that can be converted into renewable fuel utilizing an anabolic pathway that is poorly understood. The paucity of algal chloroplast genome sequences has been an important constraint to chloroplast transformation and for studying gene expression in TAGs pathways. In this study, the intact chloroplasts were released from algal cells using sonication followed by sucrose gradient centrifugation, resulting in a 2.36-fold enrichment of chloroplasts from C. protothecoides, based on qPCR analysis. The C. protothecoides chloroplast genome (cpDNA) was determined using the Illumina HiSeq 2000 sequencing platform and found to be 84,576 Kb in size (8.57 Kb) in size, with a GC content of 30.8 %. This is the first report of an optimized protocol that uses a sonication step, followed by sucrose gradient centrifugation, to release and enrich intact chloroplasts from a microalga (C. prototheocoides) of sufficient quality to permit chloroplast genome sequencing with high coverage, while minimizing nuclear genome contamination. The approach is expected to guide chloroplast isolation from other oleaginous algal species for a variety of uses that benefit from enrichment of chloroplasts, ranging from biochemical analysis to genomics studies.

  19. The Teaching of Biochemistry: An Innovative Course Sequence Based on the Logic of Chemistry

    Jakubowski, Henry V.; Owen, Whyte G.

    1998-06-01

    An innovative course sequence for the teaching of biochemistry is offered, which more truly reflects the common philosophy found in biochemistry texts: that the foundation of biological phenomena can best be understood through the logic of chemistry. Topic order is chosen to develop an emerging understanding that is based on chemical principles. Preeminent biological questions serve as a framework for the course. Lipid and lipid-aggregate structures are introduced first, since it is more logical to discuss the intermolecular association of simple amphiphiles to form micelle and bilayer formations than to discuss the complexities of protein structure/folding. Protein, nucleic acid, and carbohydrate structures are studied next. Binding, a noncovalent process and the simplest expression of macromolecular function, follows. The physical (noncovalent) transport of solute molecules across a biological membrane is studied next, followed by the chemical transformation of substrates by enzymes. These are logical extensions of the expression of molecular function, first involving a simpler (physical transport) and second, a more complex (covalent transformation) process. The final sequence involves energy and signal transduction. This unique course sequence emerges naturally when chemical logic is used as an organizing paradigm for structuring a biochemistry course. Traditional order, which seems to reflect historic trends in research, or even an order derived from the central dogma of biology can not provide this logical framework.

  20. TranslatomeDB: a comprehensive database and cloud-based analysis platform for translatome sequencing data.

    Liu, Wanting; Xiang, Lunping; Zheng, Tingkai; Jin, Jingjie; Zhang, Gong

    2018-01-04

    Translation is a key regulatory step, linking transcriptome and proteome. Two major methods of translatome investigations are RNC-seq (sequencing of translating mRNA) and Ribo-seq (ribosome profiling). To facilitate the investigation of translation, we built a comprehensive database TranslatomeDB (http://www.translatomedb.net/) which provides collection and integrated analysis of published and user-generated translatome sequencing data. The current version includes 2453 Ribo-seq, 10 RNC-seq and their 1394 corresponding mRNA-seq datasets in 13 species. The database emphasizes the analysis functions in addition to the dataset collections. Differential gene expression (DGE) analysis can be performed between any two datasets of same species and type, both on transcriptome and translatome levels. The translation indices translation ratios, elongation velocity index and translational efficiency can be calculated to quantitatively evaluate translational initiation efficiency and elongation velocity, respectively. All datasets were analyzed using a unified, robust, accurate and experimentally-verifiable pipeline based on the FANSe3 mapping algorithm and edgeR for DGE analyzes. TranslatomeDB also allows users to upload their own datasets and utilize the identical unified pipeline to analyze their data. We believe that our TranslatomeDB is a comprehensive platform and knowledgebase on translatome and proteome research, releasing the biologists from complex searching, analyzing and comparing huge sequencing data without needing local computational power. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. A new feedback image encryption scheme based on perturbation with dynamical compound chaotic sequence cipher generator

    Tong, Xiaojun; Cui, Minggen; Wang, Zhu

    2009-07-01

    The design of the new compound two-dimensional chaotic function is presented by exploiting two one-dimensional chaotic functions which switch randomly, and the design is used as a chaotic sequence generator which is proved by Devaney's definition proof of chaos. The properties of compound chaotic functions are also proved rigorously. In order to improve the robustness against difference cryptanalysis and produce avalanche effect, a new feedback image encryption scheme is proposed using the new compound chaos by selecting one of the two one-dimensional chaotic functions randomly and a new image pixels method of permutation and substitution is designed in detail by array row and column random controlling based on the compound chaos. The results from entropy analysis, difference analysis, statistical analysis, sequence randomness analysis, cipher sensitivity analysis depending on key and plaintext have proven that the compound chaotic sequence cipher can resist cryptanalytic, statistical and brute-force attacks, and especially it accelerates encryption speed, and achieves higher level of security. By the dynamical compound chaos and perturbation technology, the paper solves the problem of computer low precision of one-dimensional chaotic function.

  2. SVM-PB-Pred: SVM based protein block prediction method using sequence profiles and secondary structures.

    Suresh, V; Parthasarathy, S

    2014-01-01

    We developed a support vector machine based web server called SVM-PB-Pred, to predict the Protein Block for any given amino acid sequence. The input features of SVM-PB-Pred include i) sequence profiles (PSSM) and ii) actual secondary structures (SS) from DSSP method or predicted secondary structures from NPS@ and GOR4 methods. There were three combined input features PSSM+SS(DSSP), PSSM+SS(NPS@) and PSSM+SS(GOR4) used to test and train the SVM models. Similarly, four datasets RS90, DB433, LI1264 and SP1577 were used to develop the SVM models. These four SVM models developed were tested using three different benchmarking tests namely; (i) self consistency, (ii) seven fold cross validation test and (iii) independent case test. The maximum possible prediction accuracy of ~70% was observed in self consistency test for the SVM models of both LI1264 and SP1577 datasets, where PSSM+SS(DSSP) input features was used to test. The prediction accuracies were reduced to ~53% for PSSM+SS(NPS@) and ~43% for PSSM+SS(GOR4) in independent case test, for the SVM models of above two same datasets. Using our method, it is possible to predict the protein block letters for any query protein sequence with ~53% accuracy, when the SP1577 dataset and predicted secondary structure from NPS@ server were used. The SVM-PB-Pred server can be freely accessed through http://bioinfo.bdu.ac.in/~svmpbpred.

  3. Feasibility of a RARE-based sequence for quantitative diffusion-weighted MRI of the spine

    Raya, J.G.; Dietrich, O.; Sommer, J.; Reiser, M.F.; Baur-Melnyk, A.; Birkenmaier, C.

    2007-01-01

    The feasibility of a diffusion-weighted single-shot fast-spin-echo sequence for the diagnostic work-up of bone marrow diseases was assessed. Twenty healthy controls and 16 patients with various bone marrow pathologies of the spine (bone marrow edema, tumor and inflammation) were examined with a diffusion-weighted single-shot sequence based on a modified rapid acquisition with relaxation enhancement (mRARE) technique; four diffusion weightings (b-values: 50, 250, 500 and 750 s/mm 2 ) in three orthogonal orientations were applied. Apparent diffusion coefficients (ADCs) were determined in the bone marrow and in the intervertebral discs of healthy volunteers and in diseased bone marrow. Ten of the 20 volunteers were repeatedly scanned within 30 min to examine short-time reproducibility. Spatial reproducibility was assessed by measuring ADCs in two different slices including the same lesion in 12 patients. The ADCs of the lesions exhibited significantly higher values, (1.27 ± 0.32) x 10 -3 mm 2 /s, compared with healthy bone marrow, (0.21 ± 0.10) x 10 -3 mm 2 /s. Short-time and spatial reproducibility had a mean coefficient of variation of 2.1% and 6.4%, respectively. The diffusion-weighted mRARE sequence provides a reliable tool for determining quantitative ADCs in vertebral bone marrow with adequate image quality. (orig.)

  4. Genotyping of B. licheniformis based on a novel multi-locus sequence typing (MLST scheme

    Madslien Elisabeth H

    2012-10-01

    Full Text Available Abstract Background Bacillus licheniformis has for many years been used in the industrial production of enzymes, antibiotics and detergents. However, as a producer of dormant heat-resistant endospores B. licheniformis might contaminate semi-preserved foods. The aim of this study was to establish a robust and novel genotyping scheme for B. licheniformis in order to reveal the evolutionary history of 53 strains of this species. Furthermore, the genotyping scheme was also investigated for its use to detect food-contaminating strains. Results A multi-locus sequence typing (MLST scheme, based on the sequence of six house-keeping genes (adk, ccpA, recF, rpoB, spo0A and sucC of 53 B. licheniformis strains from different sources was established. The result of the MLST analysis supported previous findings of two different subgroups (lineages within this species, named “A” and “B” Statistical analysis of the MLST data indicated a higher rate of recombination within group “A”. Food isolates were widely dispersed in the MLST tree and could not be distinguished from the other strains. However, the food contaminating strain B. licheniformis NVH1032, represented by a unique sequence type (ST8, was distantly related to all other strains. Conclusions In this study, a novel and robust genotyping scheme for B. licheniformis was established, separating the species into two subgroups. This scheme could be used for further studies of evolution and population genetics in B. licheniformis.

  5. Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses.

    Liu, Bo; Madduri, Ravi K; Sotomayor, Borja; Chard, Kyle; Lacinski, Lukasz; Dave, Utpal J; Li, Jianqiang; Liu, Chunchen; Foster, Ian T

    2014-06-01

    Due to the upcoming data deluge of genome data, the need for storing and processing large-scale genome data, easy access to biomedical analyses tools, efficient data sharing and retrieval has presented significant challenges. The variability in data volume results in variable computing and storage requirements, therefore biomedical researchers are pursuing more reliable, dynamic and convenient methods for conducting sequencing analyses. This paper proposes a Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses, which enables reliable and highly scalable execution of sequencing analyses workflows in a fully automated manner. Our platform extends the existing Galaxy workflow system by adding data management capabilities for transferring large quantities of data efficiently and reliably (via Globus Transfer), domain-specific analyses tools preconfigured for immediate use by researchers (via user-specific tools integration), automatic deployment on Cloud for on-demand resource allocation and pay-as-you-go pricing (via Globus Provision), a Cloud provisioning tool for auto-scaling (via HTCondor scheduler), and the support for validating the correctness of workflows (via semantic verification tools). Two bioinformatics workflow use cases as well as performance evaluation are presented to validate the feasibility of the proposed approach. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. [Sequence-based typing of enviromental Legionella pneumophila isolates in Guangzhou].

    Zhang, Ying; Qu, Pinghua; Zhang, Jian; Chen, Shouyi

    2011-03-01

    To characterize the genes of Legionella pneumophila isolated from different water source in Guangzhou from 2006 to 2009. To genotype the strains by using sequence-based typing (SBT) scheme. In total 44 L. pneumophila strains were identified by SBT with 7 diversifying genes of flaA, asd, mip, pilE, mompS, proA and neuA. Analysis of the amplicons sequence was taken in the European Working Group for Legionella Infections (EWGLI) international SBT database to obtain the allelic profiles and sequence types (STs). Serogroups were typed by latex agglutination test. Data from SBT revealed a high diversity among the strains and ST01 accounts for 30% (13/ 44). Fifteen new STs were discovered from 20 STs and 2 of them were newly assigned (ST887 and ST888) by EWGLI. SBT Phylogenetic tree was generated by SplitsTree and BURST programs. High diversity and specificity were observed of the L. pneumophila strains in Guangzhou. SBT is useful for L. pneumophila genomic study and epidemiological surveillance.

  7. Moving target detection based on temporal-spatial information fusion for infrared image sequences

    Toing, Wu-qin; Xiong, Jin-yu; Zeng, An-jun; Wu, Xiao-ping; Xu, Hao-peng

    2009-07-01

    Moving target detection and localization is one of the most fundamental tasks in visual surveillance. In this paper, through analyzing the advantages and disadvantages of the traditional approaches about moving target detection, a novel approach based on temporal-spatial information fusion is proposed for moving target detection. The proposed method combines the spatial feature in single frame and the temporal properties within multiple frames of an image sequence of moving target. First, the method uses the spatial image segmentation for target separation from background and uses the local temporal variance for extracting targets and wiping off the trail artifact. Second, the logical "and" operator is used to fuse the temporal and spatial information. In the end, to the fusion image sequence, the morphological filtering and blob analysis are used to acquire exact moving target. The algorithm not only requires minimal computation and memory but also quickly adapts to the change of background and environment. Comparing with other methods, such as the KDE, the Mixture of K Gaussians, etc., the simulation results show the proposed method has better validity and higher adaptive for moving target detection, especially in infrared image sequences with complex illumination change, noise change, and so on.

  8. Design of a hybrid reconfigurable Software Defined Radio transceiver based on frequency shift keying using multiple encoding schemes

    Nikhil Marriwala

    2016-03-01

    The aim of this paper was to analyze Frequency Shift Keying (FSK Transceiver built using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW and to measure the reduction in data errors in the presence of Forward Error Correction (FEC channel coding algorithms namely the Convolution and the Turbo Codes. Through this design a graphical representation of Bit Error Rate (BER vs Eb/N0 where (Eb is Energy per bit and (N0 is Spectral noise density has been given in the presence of Additive White Gaussian Noise (AWGN introduced in the channel. FSK is widely used for data transmission over band pass channels; hence, we have chosen FSK for the implementation of SDR. The SDR transceiver module designed has been fully implemented and has the ability to navigate over a wide range of frequencies with programmable channel bandwidth and modulation characteristics. We are able to build an interactive FSK based SDR transceiver in a shorter time with the use of LabVIEW. The outputs achieved show a low BER for very high data rates in the presence of AWGN noise.

  9. Toward Understanding Dynamics in Shifting Biomes: An Individual Based Modeling Approach to Characterizing Drought and Mortality in Central Western Canada

    Armstrong, A. H.; Foster, A.; Rogers, B. M.; Hogg, T.; Michaelian, M.; Shuman, J. K.; Shugart, H. H., Jr.; Goetz, S. J.

    2017-12-01

    The Arctic-Boreal zone is known be warming at an accelerated rate relative to other biomes. Persistent warming has already affected the high northern latitudes, altering vegetation productivity, carbon sequestration, and many other ecosystem processes and services. The central-western Canadian boreal forests and aspen parkland are experiencing a decade long drought, and rainfall has been identified as a key factor controlling the location of the boundary between forest and prairie in this region. Shifting biome with related greening and browning trends are readily measureable with remote sensing, but the dynamics that create and result from them are not well understood. In this study, we use the University of Virginia Forest Model Enhanced (UVAFME), an individual-based forest model, to simulate the changes that are occurring across the southern boreal and parkland forests of west-central Canada. We present a parameterization of UVAFME for western central Canadian forests, validated with CIPHA data (Climate Change Impacts on the Productivity and Health of Aspen), and improved mortality. In order to gain a fine-scale understanding of how climate change and specifically drought will continue to affect the forests of this region, we simulated forest conditions following CMIP5 climate scenarios. UVAFME predictions were compared with statistical models and satellite observations of productivity across the landscape. Changes in forest cover, forest type, aboveground biomass, and mortality and recruitment dynamics are presented, highlighting the high vulnerability of this region to vegetation transitions associated with future droughts.

  10. Design considerations in projection phase-shift moiré topography based on theoretical analysis of fringe formation.

    Buytaert, Jan A N; Dirckx, Joris J J

    2007-07-01

    Moiré topography is a well-established optical technique to measure the shape of three-dimensional surfaces, based on the geometric interference between an optical grid and its image deformed by an object surface. The technique produces fringes that represent contours of equal height, and from the recordings of several phase-shifted topograms surface height coordinates can be calculated. To perform these calculations, it is assumed that object height variation is small in comparison with the measurement setup dimensions, and this approximation leads to systematic errors in measurement accuracy. We present the mathematical description of the fringe formation process in projection moiré topography, and on the basis of these equations we establish the relation between setup geometry and upper limits of the systematic measurement errors. We derive the equations that determine design specifications needed to reduce the effects of approximations to be below the measurement resolution of the setup. It is shown that setup geometry should be adapted to the gray-scale measurement resolution of the imaging system. We show that, using an iterative correction from one fringe order to the next, measurement accuracy can be maintained over the entire object depth.

  11. Omics-Based Strategies in Precision Medicine: Toward a Paradigm Shift in Inborn Errors of Metabolism Investigations

    Abdellah Tebani

    2016-09-01

    Full Text Available The rise of technologies that simultaneously measure thousands of data points represents the heart of systems biology. These technologies have had a huge impact on the discovery of next-generation diagnostics, biomarkers, and drugs in the precision medicine era. Systems biology aims to achieve systemic exploration of complex interactions in biological systems. Driven by high-throughput omics technologies and the computational surge, it enables multi-scale and insightful overviews of cells, organisms, and populations. Precision medicine capitalizes on these conceptual and technological advancements and stands on two main pillars: data generation and data modeling. High-throughput omics technologies allow the retrieval of comprehensive and holistic biological information, whereas computational capabilities enable high-dimensional data modeling and, therefore, accessible and user-friendly visualization. Furthermore, bioinformatics has enabled comprehensive multi-omics and clinical data integration for insightful interpretation. Despite their promise, the translation of these technologies into clinically actionable tools has been slow. In this review, we present state-of-the-art multi-omics data analysis strategies in a clinical context. The challenges of omics-based biomarker translation are discussed. Perspectives regarding the use of multi-omics approaches for inborn errors of metabolism (IEM are presented by introducing a new paradigm shift in addressing IEM investigations in the post-genomic era.

  12. Omics-Based Strategies in Precision Medicine: Toward a Paradigm Shift in Inborn Errors of Metabolism Investigations.

    Tebani, Abdellah; Afonso, Carlos; Marret, Stéphane; Bekri, Soumeya

    2016-09-14

    The rise of technologies that simultaneously measure thousands of data points represents the heart of systems biology. These technologies have had a huge impact on the discovery of next-generation diagnostics, biomarkers, and drugs in the precision medicine era. Systems biology aims to achieve systemic exploration of complex interactions in biological systems. Driven by high-throughput omics technologies and the computational surge, it enables multi-scale and insightful overviews of cells, organisms, and populations. Precision medicine capitalizes on these conceptual and technological advancements and stands on two main pillars: data generation and data modeling. High-throughput omics technologies allow the retrieval of comprehensive and holistic biological information, whereas computational capabilities enable high-dimensional data modeling and, therefore, accessible and user-friendly visualization. Furthermore, bioinformatics has enabled comprehensive multi-omics and clinical data integration for insightful interpretation. Despite their promise, the translation of these technologies into clinically actionable tools has been slow. In this review, we present state-of-the-art multi-omics data analysis strategies in a clinical context. The challenges of omics-based biomarker translation are discussed. Perspectives regarding the use of multi-omics approaches for inborn errors of metabolism (IEM) are presented by introducing a new paradigm shift in addressing IEM investigations in the post-genomic era.

  13. A WEB-BASED FRAMEWORK FOR VISUALIZING INDUSTRIAL SPATIOTEMPORAL DISTRIBUTION USING STANDARD DEVIATIONAL ELLIPSE AND SHIFTING ROUTES OF GRAVITY CENTERS

    Y. Song

    2017-09-01

    Full Text Available Analysing spatiotemporal distribution patterns and its dynamics of different industries can help us learn the macro-level developing trends of those industries, and in turn provides references for industrial spatial planning. However, the analysis process is challenging task which requires an easy-to-understand information presentation mechanism and a powerful computational technology to support the visual analytics of big data on the fly. Due to this reason, this research proposes a web-based framework to enable such a visual analytics requirement. The framework uses standard deviational ellipse (SDE and shifting route of gravity centers to show the spatial distribution and yearly developing trends of different enterprise types according to their industry categories. The calculation of gravity centers and ellipses is paralleled using Apache Spark to accelerate the processing. In the experiments, we use the enterprise registration dataset in Mainland China from year 1960 to 2015 that contains fine-grain location information (i.e., coordinates of each individual enterprise to demonstrate the feasibility of this framework. The experiment result shows that the developed visual analytics method is helpful to understand the multi-level patterns and developing trends of different industries in China. Moreover, the proposed framework can be used to analyse any nature and social spatiotemporal point process with large data volume, such as crime and disease.

  14. a Web-Based Framework for Visualizing Industrial Spatiotemporal Distribution Using Standard Deviational Ellipse and Shifting Routes of Gravity Centers

    Song, Y.; Gui, Z.; Wu, H.; Wei, Y.

    2017-09-01

    Analysing spatiotemporal distribution patterns and its dynamics of different industries can help us learn the macro-level developing trends of those industries, and in turn provides references for industrial spatial planning. However, the analysis process is challenging task which requires an easy-to-understand information presentation mechanism and a powerful computational technology to support the visual analytics of big data on the fly. Due to this reason, this research proposes a web-based framework to enable such a visual analytics requirement. The framework uses standard deviational ellipse (SDE) and shifting route of gravity centers to show the spatial distribution and yearly developing trends of different enterprise types according to their industry categories. The calculation of gravity centers and ellipses is paralleled using Apache Spark to accelerate the processing. In the experiments, we use the enterprise registration dataset in Mainland China from year 1960 to 2015 that contains fine-grain location information (i.e., coordinates of each individual enterprise) to demonstrate the feasibility of this framework. The experiment result shows that the developed visual analytics method is helpful to understand the multi-level patterns and developing trends of different industries in China. Moreover, the proposed framework can be used to analyse any nature and social spatiotemporal point process with large data volume, such as crime and disease.

  15. "Polymeromics": Mass spectrometry based strategies in polymer science toward complete sequencing approaches: a review.

    Altuntaş, Esra; Schubert, Ulrich S

    2014-01-15

    Mass spectrometry (MS) is the most versatile and comprehensive method in "OMICS" sciences (i.e. in proteomics, genomics, metabolomics and lipidomics). The applications of MS and tandem MS (MS/MS or MS(n)) provide sequence information of the full complement of biological samples in order to understand the importance of the sequences on their precise and specific functions. Nowadays, the control of polymer sequences and their accurate characterization is one of the significant challenges of current polymer science. Therefore, a similar approach can be very beneficial for characterizing and understanding the complex structures of synthetic macromolecules. MS-based strategies allow a relatively precise examination of polymeric structures (e.g. their molar mass distributions, monomer units, side chain substituents, end-group functionalities, and copolymer compositions). Moreover, tandem MS offer accurate structural information from intricate macromolecular structures; however, it produces vast amount of data to interpret. In "OMICS" sciences, the software application to interpret the obtained data has developed satisfyingly (e.g. in proteomics), because it is not possible to handle the amount of data acquired via (tandem) MS studies on the biological samples manually. It can be expected that special software tools will improve the interpretation of (tandem) MS output from the investigations of synthetic polymers as well. Eventually, the MS/MS field will also open up for polymer scientists who are not MS-specialists. In this review, we dissect the overall framework of the MS and MS/MS analysis of synthetic polymers into its key components. We discuss the fundamentals of polymer analyses as well as recent advances in the areas of tandem mass spectrometry, software developments, and the overall future perspectives on the way to polymer sequencing, one of the last Holy Grail in polymer science. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Origin and spread of photosynthesis based upon conserved sequence features in key bacteriochlorophyll biosynthesis proteins.

    Gupta, Radhey S

    2012-11-01

    The origin of photosynthesis and how this capability has spread to other bacterial phyla remain important unresolved questions. I describe here a number of conserved signature indels (CSIs) in key proteins involved in bacteriochlorophyll (Bchl) biosynthesis that provide important insights in these regards. The proteins BchL and BchX, which are essential for Bchl biosynthesis, are derived by gene duplication in a common ancestor of all phototrophs. More ancient gene duplication gave rise to the BchX-BchL proteins and the NifH protein of the nitrogenase complex. The sequence alignment of NifH-BchX-BchL proteins contain two CSIs that are uniquely shared by all NifH and BchX homologs, but not by any BchL homologs. These CSIs and phylogenetic analysis of NifH-BchX-BchL protein sequences strongly suggest that the BchX homologs are ancestral to BchL and that the Bchl-based anoxygenic photosynthesis originated prior to the chlorophyll (Chl)-based photosynthesis in cyanobacteria. Another CSI in the BchX-BchL sequence alignment that is uniquely shared by all BchX homologs and the BchL sequences from Heliobacteriaceae, but absent in all other BchL homologs, suggests that the BchL homologs from Heliobacteriaceae are primitive in comparison to all other photosynthetic lineages. Several other identified CSIs in the BchN homologs are commonly shared by all proteobacterial homologs and a clade consisting of the marine unicellular Cyanobacteria (Clade C). These CSIs in conjunction with the results of phylogenetic analyses and pair-wise sequence similarity on the BchL, BchN, and BchB proteins, where the homologs from Clade C Cyanobacteria and Proteobacteria exhibited close relationship, provide strong evidence that these two groups have incurred lateral gene transfers. Additionally, phylogenetic analyses and several CSIs in the BchL-N-B proteins that are uniquely shared by all Chlorobi and Chloroflexi homologs provide evidence that the genes for these proteins have also been

  17. Detection and quantification of Plasmodium falciparum in blood samples using quantitative nucleic acid sequence-based amplification

    Schoone, G. J.; Oskam, L.; Kroon, N. C.; Schallig, H. D.; Omar, S. A.

    2000-01-01

    A quantitative nucleic acid sequence-based amplification (QT-NASBA) assay for the detection of Plasmodium parasites has been developed. Primers and probes were selected on the basis of the sequence of the small-subunit rRNA gene. Quantification was achieved by coamplification of the RNA in the

  18. Armillaria phylogeny based on tef-1α sequences suggests ongoing divergent speciation within the boreal floristic kingdom

    Ned B. Klopfenstein; John W. Hanna; Amy L. Ross-Davis; Jane E. Stewart; Yuko Ota; Rosario Medel-Ortiz; Miguel Armando Lopez-Ramirez; Ruben Damian Elias-Roman; Dionicio Alvarado-Rosales; Mee-Sook Kim

    2013-01-01

    Armillaria plays diverse ecological roles in forests worldwide, which has inspired interest in understanding phylogenetic relationships within and among species of this genus. Previous rDNA sequence-based phylogenetic analyses of Armillaria have shown general relationships among widely divergent taxa, but rDNA sequences were not reliable for separating closely related...

  19. Next Generation Sequencing-Based Analysis of Repetitive DNA in the Model Dioceous Plant Silene latifolia

    Macas, Jiří; Kejnovský, Eduard; Neumann, Pavel; Novák, Petr; Koblížková, Andrea; Vyskot, Boris

    2011-01-01

    Roč. 6, č. 11 (2011), e27335 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) OC10037; GA MŠk(CZ) LC06004; GA MŠk(CZ) LH11058; GA ČR(CZ) GAP501/10/0102; GA ČR(CZ) GAP305/10/0930 Institutional research plan: CEZ:AV0Z50510513; CEZ:AV0Z50040702 Keywords : Plant genome * Sequencing-Based Analyses * Repetitive DNA * Silene latifolia Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.092, year: 2011

  20. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction

    Chen, Peng

    2015-12-03

    Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein sequences and that of experimentally solved structures

  1. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction

    Chen, Peng; Hu, ShanShan; Zhang, Jun; Gao, Xin; Li, Jinyan; Xia, Junfeng; Wang, Bing

    2015-01-01

    Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein sequences and that of experimentally solved structures

  2. MARTA: a suite of Java-based tools for assigning taxonomic status to DNA sequences.

    Horton, Matthew; Bodenhausen, Natacha; Bergelson, Joy

    2010-02-15

    We have created a suite of Java-based software to better provide taxonomic assignments to DNA sequences. We anticipate that the program will be useful for protistologists, virologists, mycologists and other microbial ecologists. The program relies on NCBI utilities including the BLAST software and Taxonomy database and is easily manipulated at the command-line to specify a BLAST candidate's query-coverage or percent identity requirements; other options include the ability to set minimal consensus requirements (%) for each of the eight major taxonomic ranks (Domain, Kingdom, Phylum, ...) and whether to consider lower scoring candidates when the top-hit lacks taxonomic classification.

  3. Fluorescence turn-on detection of target sequence DNA based on silicon nanodot-mediated quenching.

    Zhang, Yanan; Ning, Xinping; Mao, Guobin; Ji, Xinghu; He, Zhike

    2018-05-01

    We have developed a new enzyme-free method for target sequence DNA detection based on the dynamic quenching of fluorescent silicon nanodots (SiNDs) toward Cy5-tagged DNA probe. Fascinatingly, the water-soluble SiNDs can quench the fluorescence of cyanine (Cy5) in Cy5-tagged DNA probe in homogeneous solution, and the fluorescence of Cy5-tagged DNA probe can be restored in the presence of target sequence DNA (the synthetic target miRNA-27a). Based on this phenomenon, a SiND-featured fluorescent sensor has been constructed for "turn-on" detection of the synthetic target miRNA-27a for the first time. This newly developed approach possesses the merits of low cost, simple design, and convenient operation since no enzymatic reaction, toxic reagents, or separation procedures are involved. The established method achieves a detection limit of 0.16 nM, and the relative standard deviation of this method is 9% (1 nM, n = 5). The linear range is 0.5-20 nM, and the recoveries in spiked human fluids are in the range of 90-122%. This protocol provides a new tactic in the development of the nonenzymic miRNA biosensors and opens a promising avenue for early diagnosis of miRNA-associated disease. Graphical abstract The SiND-based fluorescent sensor for detection of S-miR-27a.

  4. Molecular phylogeny of Toxoplasmatinae: comparison between inferences based on mitochondrial and apicoplast genetic sequences

    Michelle Klein Sercundes

    2016-03-01

    Full Text Available Abstract Phylogenies within Toxoplasmatinae have been widely investigated with different molecular markers. Here, we studied molecular phylogenies of the Toxoplasmatinae subfamily based on apicoplast and mitochondrial genes. Partial sequences of apicoplast genes coding for caseinolytic protease (clpC and beta subunit of RNA polymerase (rpoB, and mitochondrial gene coding for cytochrome B (cytB were analyzed. Laboratory-adapted strains of the closely related parasites Sarcocystis falcatula and Sarcocystis neurona were investigated, along with Neospora caninum, Neospora hughesi, Toxoplasma gondii (strains RH, CTG and PTG, Besnoitia akodoni, Hammondia hammondiand two genetically divergent lineages of Hammondia heydorni. The molecular analysis based on organellar genes did not clearly differentiate between N. caninum and N. hughesi, but the two lineages of H. heydorni were confirmed. Slight differences between the strains of S. falcatula and S. neurona were encountered in all markers. In conclusion, congruent phylogenies were inferred from the three different genes and they might be used for screening undescribed sarcocystid parasites in order to ascertain their phylogenetic relationships with organisms of the family Sarcocystidae. The evolutionary studies based on organelar genes confirm that the genusHammondia is paraphyletic. The primers used for amplification of clpC and rpoB were able to amplify genetic sequences of organisms of the genus Sarcocystisand organisms of the subfamily Toxoplasmatinae as well.

  5. Spatiotemporal Super-Resolution Reconstruction Based on Robust Optical Flow and Zernike Moment for Video Sequences

    Meiyu Liang

    2013-01-01

    Full Text Available In order to improve the spatiotemporal resolution of the video sequences, a novel spatiotemporal super-resolution reconstruction model (STSR based on robust optical flow and Zernike moment is proposed in this paper, which integrates the spatial resolution reconstruction and temporal resolution reconstruction into a unified framework. The model does not rely on accurate estimation of subpixel motion and is robust to noise and rotation. Moreover, it can effectively overcome the problems of hole and block artifacts. First we propose an efficient robust optical flow motion estimation model based on motion details preserving, then we introduce the biweighted fusion strategy to implement the spatiotemporal motion compensation. Next, combining the self-adaptive region correlation judgment strategy, we construct a fast fuzzy registration scheme based on Zernike moment for better STSR with higher efficiency, and then the final video sequences with high spatiotemporal resolution can be obtained by fusion of the complementary and redundant information with nonlocal self-similarity between the adjacent video frames. Experimental results demonstrate that the proposed method outperforms the existing methods in terms of both subjective visual and objective quantitative evaluations.

  6. An exponential combination procedure for set-based association tests in sequencing studies.

    Chen, Lin S; Hsu, Li; Gamazon, Eric R; Cox, Nancy J; Nicolae, Dan L

    2012-12-07

    State-of-the-art next-generation-sequencing technologies can facilitate in-depth explorations of the human genome by investigating both common and rare variants. For the identification of genetic factors that are associated with disease risk or other complex phenotypes, methods have been proposed for jointly analyzing variants in a set (e.g., all coding SNPs in a gene). Variants in a properly defined set could be associated with risk or phenotype in a concerted fashion, and by accumulating information from them, one can improve power to detect genetic risk factors. Many set-based methods in the literature are based on statistics that can be written as the summation of variant statistics. Here, we propose taking the summation of the exponential of variant statistics as the set summary for association testing. From both Bayesian and frequentist perspectives, we provide theoretical justification for taking the sum of the exponential of variant statistics because it is particularly powerful for sparse alternatives-that is, compared with the large number of variants being tested in a set, only relatively few variants are associated with disease risk-a distinctive feature of genetic data. We applied the exponential combination gene-based test to a sequencing study in anticancer pharmacogenomics and uncovered mechanistic insights into genes and pathways related to chemotherapeutic susceptibility for an important class of oncologic drugs. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. Sequence-based analysis of the microbial composition of water kefir from multiple sources.

    Marsh, Alan J; O'Sullivan, Orla; Hill, Colin; Ross, R Paul; Cotter, Paul D

    2013-11-01

    Water kefir is a water-sucrose-based beverage, fermented by a symbiosis of bacteria and yeast to produce a final product that is lightly carbonated, acidic and that has a low alcohol percentage. The microorganisms present in water kefir are introduced via water kefir grains, which consist of a polysaccharide matrix in which the microorganisms are embedded. We aimed to provide a comprehensive sequencing-based analysis of the bacterial population of water kefir beverages and grains, while providing an initial insight into the corresponding fungal population. To facilitate this objective, four water kefirs were sourced from the UK, Canada and the United States. Culture-independent, high-throughput, sequencing-based analyses revealed that the bacterial fraction of each water kefir and grain was dominated by Zymomonas, an ethanol-producing bacterium, which has not previously been detected at such a scale. The other genera detected were representatives of the lactic acid bacteria and acetic acid bacteria. Our analysis of the fungal component established that it was comprised of the genera Dekkera, Hanseniaspora, Saccharomyces, Zygosaccharomyces, Torulaspora and Lachancea. This information will assist in the ultimate identification of the microorganisms responsible for the potentially health-promoting attributes of these beverages. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Re-scheduling nursing shifts: Scoping the challenge and examining the potential of mathematical model based tools

    Clark, A.; Moule, P.; Topping, A.; Serpell, M.

    2015-01-01

    Aims: To review research in the literature on nursing shift scheduling/rescheduling, and report key issues identified in a listening exercise with managers in four English NHS trusts to inform the development of mathematical tools for rescheduling decision-making.\\ud Background: Shift rescheduling is unrecognised as an everyday time-consuming management task with different imperatives than scheduling. Poor rescheduling decisions can have quality, cost and morale implications.\\ud Evaluation: A...

  9. Aviram–Ratner rectifying mechanism for DNA base-pair sequencing through graphene nanogaps

    Agapito, Luis A; Gayles, Jacob; Wolowiec, Christian; Kioussis, Nicholas

    2012-01-01

    We demonstrate that biological molecules such as Watson–Crick DNA base pairs can behave as biological Aviram–Ratner electrical rectifiers because of the spatial separation and weak hydrogen bonding between the nucleobases. We have performed a parallel computational implementation of the ab initio non-equilibrium Green’s function (NEGF) theory to determine the electrical response of graphene—base-pair—graphene junctions. The results show an asymmetric (rectifying) current–voltage response for the cytosine–guanine base pair adsorbed on a graphene nanogap. In sharp contrast we find a symmetric response for the thymine–adenine case. We propose applying the asymmetry of the current–voltage response as a sensing criterion to the technological challenge of rapid DNA sequencing via graphene nanogaps. (paper)

  10. Automated Clustering Analysis of Immunoglobulin Sequences in Chronic Lymphocytic Leukemia Based on 3D Structural Descriptors

    Marcatili, Paolo; Mochament, Konstantinos; Agathangelidis, Andreas

    2016-01-01

    study, we used the structure prediction tools PIGS and I-TASSER for creating the 3D models and the TM-align algorithm to superpose them. The innovation of the current methodology resides in the usage of methods adapted from 3D content-based search methodologies to determine the local structural...... determine it are extremely laborious and demanding. Hence, the ability to gain insight into the structure of Igs at large relies on the availability of tools and algorithms for producing accurate Ig structural models based on their primary sequence alone. These models can then be used to determine...... to achieve an optimal solution to this task yet their results were hindered mainly due to the lack of efficient clustering methods based on the similarity of 3D structure descriptors. Here, we present a novel workflow for robust Ig 3D modeling and automated clustering. We validated our protocol in chronic...

  11. SHIFT: server for hidden stops analysis in frame-shifted translation.

    Gupta, Arun; Singh, Tiratha Raj

    2013-02-23

    Frameshift is one of the three classes of recoding. Frame-shifts lead to waste of energy, resources and activity of the biosynthetic machinery. In addition, some peptides synthesized after frame-shifts are probably cytotoxic which serve as plausible cause for innumerable number of diseases and disorders such as muscular dystrophies, lysosomal storage disorders, and cancer. Hidden stop codons occur naturally in coding sequences among all organisms. These codons are associated with the early termination of translation for incorrect reading frame selection and help to reduce the metabolic cost related to the frameshift events. Researchers have identified several consequences of hidden stop codons and their association with myriad disorders. However the wealth of information available is speckled and not effortlessly acquiescent to data-mining. To reduce this gap, this work describes an algorithmic web based tool to study hidden stops in frameshifted translation for all the lineages through respective genetic code systems. This paper describes SHIFT, an algorithmic web application tool that provides a user-friendly interface for identifying and analyzing hidden stops in frameshifted translation of genomic sequences for all available genetic code systems. We have calculated the correlation between codon usage frequencies and the plausible contribution of codons towards hidden stops in an off-frame context. Markovian chains of various order have been used to model hidden stops in frameshifted peptides and their evolutionary association with naturally occurring hidden stops. In order to obtain reliable and persuasive estimates for the naturally occurring and predicted hidden stops statistical measures have been implemented. This paper presented SHIFT, an algorithmic tool that allows user-friendly exploration, analysis, and visualization of hidden stop codons in frameshifted translations. It is expected that this web based tool would serve as a useful complement for

  12. Transverse magnetic field effect on the giant Goos–Hänchen shifts based on a degenerate two-level system

    Nasehi, R.

    2018-06-01

    We study the effect of the Goos–Hänchen (GH) shifts through a cavity with degenerate two-level systems in the line of . For this purpose, we focus on the transverse magnetic field (TMF) in a Floquet frame to obtain the giant GH shifts. Physically, the collisional effects of TMF lead to increasing the population trapping in the ground state. However, we demonstrate that the population trapping generates the large negative or positive GH shifts and simultaneously switches from superluminal to subluminal (or vice versa). Also, we investigate the other optical properties such as the longitudinal magnetic field (LMF), which plays an important role in the control of the GH shifts and leads to the generation of new subsystems. In the next step, we evaluate the GH shifts beyond the multi-photon resonance condition by the control of TMF. Moreover, we compute the appearance of negative and positive GH shifts by setting the width of the incident Gaussian beams in the presence of a multi-photon resonance condition. Our results show that superluminal or subluminal light propagation can be simultaneously controlled by adjusting the rates of the TMF and LMF. The significant effects of these factors on the degenerate two-level systems provide different applications such as slow light, optical switches and quantum information storage.

  13. Integrated ergonomics approach toward designing night and shift work in developing countries based on experiences in Bali, Indonesia.

    Manuaba, A

    2001-12-01

    Recently, the effort in carrying out an integrated ergonomics approach known as "SHIP" (systemic, holistic, interdisciplinary and participatory) approach has been intensively undertaken in Bali with the aim of sustaining improvements being done. The People's Consultative Assembly of the Republic of Indonesia issued for the 1999-2004 period a "SHIP" Act on the Macro Guidelines of Tourism Development in which ergonomics and other factors must be considered comprehensively to attain sustainable development in tourism. Therefore the night and shift work that is recently increasingly applied in the tourism industry must also be designed and organized through this approach. In fact, however, economic factors have still been the predominant reason for workers to accept any type of night and shift work decided by the management, without taking into account possible impacts and consequences. For example, rapid forward rotation schemes seem more adapted to the hotel industry instead of traditional 6-6-6 rotation. Further, inter-city bus drivers are approved to work a 24-hour shift followed by one day off. These drivers often work an additional risky night shift after two consecutive night shifts so as to meet needed expenses for the family. Cultural or religious activities still presented constraints for workers as they carried out subsequently the night work. Therefore, proactive steps should be taken in a timely manner through the integrated SHIP approach in designing night and shift work so as to achieve work schedules compatible with both social life of shiftworkers and business concerns.

  14. Improved protection system for phase faults on marine vessels based on ratio between negative sequence and positive sequence of the fault current

    Ciontea, Catalin-Iosif; Hong, Qiteng; Booth, Campbell

    2018-01-01

    algorithm is implemented in a programmable digital relay embedded in a hardware-in-the-loop (HIL) test set-up that emulates a typical maritime feeder using a real-time digital simulator. The HIL set-up allows testing of the new protection method under a wide range of faults and network conditions......This study presents a new method to protect the radial feeders on marine vessels. The proposed protection method is effective against phase–phase (PP) faults and is based on evaluation of the ratio between the negative sequence and positive sequence of the fault currents. It is shown...... that the magnitude of the introduced ratio increases significantly during the PP fault, hence indicating the fault presence in an electric network. Here, the theoretical background of the new method of protection is firstly discussed, based on which the new protection algorithm is described afterwards. The proposed...

  15. Cytochrome oxidase-I sequence based studies of commercially available Pangasius hypophthalmus in Italy

    Federica Bellagamba

    2015-09-01

    Full Text Available Pangasius hypophthalmus is one of the fish consumed in the Italian diet. It is farmed and imported from Mekong delta region of Vietnam. Among several types of Pangasius, Tra (Pangasius hypophthalmus is permitted for sales by the European Union. Since these fish species are often allegedly substituted with other morphologically similar fish due to commercial benefits, authentication of the products in the international markets become often necessary to prevent fraud and safety issues. In addition, this fish is imported as fillets without skin and bone, thus leaving the consumer’s at the risk of buying a substandard nutritional food. In this article we present the molecular approach we developed to identify Pangasius hypophthalmus from other closely related species based on cytochrome oxidase-I (COI mitochondrial barcoding gene and further described the variants in the studied population genetic of this species. Fifty-one samples of Pangasius hypophthalmus fillets labelled as Pangasio were obtained from various markets around Milan and their COI mitochondrial barcoding gene was sequenced and studied in our bioinformatics pipeline. All samples were successfully amplified and Basic Local Alignment Search Tool results of the amplified region confirmed that all sequences analysed belonged to Pangasius hypophthalmus. Based on the variations in their barcoding region single nucleotide polymorphisms were identified and delineative statistics was calculated on the sequences. Although Pangasius hypophthalmus is considered as a monophyly, seven polymorphisms were identified. The neighbour-joining tree and the Median-joining network of haplotypes showed for all the identified haplotypes a unique cluster, with the exception of one sample.

  16. A new trilocus sequence-based multiplex-PCR to detect major Acinetobacter baumannii clones.

    Martins, Natacha; Picão, Renata Cristina; Cerqueira-Alves, Morgana; Uehara, Aline; Barbosa, Lívia Carvalho; Riley, Lee W; Moreira, Beatriz Meurer

    2016-08-01

    A collection of 163 Acinetobacter baumannii isolates detected in a large Brazilian hospital, was potentially related with the dissemination of four clonal complexes (CC): 113/79, 103/15, 109/1 and 110/25, defined by University of Oxford/Institut Pasteur multilocus sequence typing (MLST) schemes. The urge of a simple multiplex-PCR scheme to specify these clones has motivated the present study. The established trilocus sequence-based typing (3LST, for ompA, csuE and blaOXA-51-like genes) multiplex-PCR rapidly identifies international clones I (CC109/1), II (CC118/2) and III (CC187/3). Thus, the system detects only one (CC109/1) out of four main CC in Brazil. We aimed to develop an alternative multiplex-PCR scheme to detect these clones, known to be present additionally in Africa, Asia, Europe, USA and South America. MLST, performed in the present study to complement typing our whole collection of isolates, confirmed that all isolates belonged to the same four CC detected previously. When typed by 3LST-based multiplex-PCR, only 12% of the 163 isolates were classified into groups. By comparative sequence analysis of ompA, csuE and blaOXA-51-like genes, a set of eight primers was designed for an alternative multiplex-PCR to distinguish the five CC 113/79, 103/15, 109/1, 110/25 and 118/2. Study isolates and one CC118/2 isolate were blind-tested with the new alternative PCR scheme; all were correctly clustered in groups of the corresponding CC. The new multiplex-PCR, with the advantage of fitting in a single reaction, detects five leading A. baumannii clones and could help preventing the spread in healthcare settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Amplicon-based semiconductor sequencing of human exomes: performance evaluation and optimization strategies.

    Damiati, E; Borsani, G; Giacopuzzi, Edoardo

    2016-05-01

    The Ion Proton platform allows to perform whole exome sequencing (WES) at low cost, providing rapid turnaround time and great flexibility. Products for WES on Ion Proton system include the AmpliSeq Exome kit and the recently introduced HiQ sequencing chemistry. Here, we used gold standard variants from GIAB consortium to assess the performances in variants identification, characterize the erroneous calls and develop a filtering strategy to reduce false positives. The AmpliSeq Exome kit captures a large fraction of bases (>94 %) in human CDS, ClinVar genes and ACMG genes, but with 2,041 (7 %), 449 (13 %) and 11 (19 %) genes not fully represented, respectively. Overall, 515 protein coding genes contain hard-to-sequence regions, including 90 genes from ClinVar. Performance in variants detection was maximum at mean coverage >120×, while at 90× and 70× we measured a loss of variants of 3.2 and 4.5 %, respectively. WES using HiQ chemistry showed ~71/97.5 % sensitivity, ~37/2 % FDR and ~0.66/0.98 F1 score for indels and SNPs, respectively. The proposed low, medium or high-stringency filters reduced the amount of false positives by 10.2, 21.2 and 40.4 % for indels and 21.2, 41.9 and 68.2 % for SNP, respectively. Amplicon-based WES on Ion Proton platform using HiQ chemistry emerged as a competitive approach, with improved accuracy in variants identification. False-positive variants remain an issue for the Ion Torrent technology, but our filtering strategy can be applied to reduce erroneous variants.

  18. Subgrouping Automata: automatic sequence subgrouping using phylogenetic tree-based optimum subgrouping algorithm.

    Seo, Joo-Hyun; Park, Jihyang; Kim, Eun-Mi; Kim, Juhan; Joo, Keehyoung; Lee, Jooyoung; Kim, Byung-Gee

    2014-02-01

    Sequence subgrouping for a given sequence set can enable various informative tasks such as the functional discrimination of sequence subsets and the functional inference of unknown sequences. Because an identity threshold for sequence subgrouping may vary according to the given sequence set, it is highly desirable to construct a robust subgrouping algorithm which automatically identifies an optimal identity threshold and generates subgroups for a given sequence set. To meet this end, an automatic sequence subgrouping method, named 'Subgrouping Automata' was constructed. Firstly, tree analysis module analyzes the structure of tree and calculates the all possible subgroups in each node. Sequence similarity analysis module calculates average sequence similarity for all subgroups in each node. Representative sequence generation module finds a representative sequence using profile analysis and self-scoring for each subgroup. For all nodes, average sequence similarities are calculated and 'Subgrouping Automata' searches a node showing statistically maximum sequence similarity increase using Student's t-value. A node showing the maximum t-value, which gives the most significant differences in average sequence similarity between two adjacent nodes, is determined as an optimum subgrouping node in the phylogenetic tree. Further analysis showed that the optimum subgrouping node from SA prevents under-subgrouping and over-subgrouping. Copyright © 2013. Published by Elsevier Ltd.

  19. Changes in DNA base sequence induced by gamma-ray mutagenesis of lambda phage and prophage

    Tindall, K.R.; Stein, J.; Hutchinson, F.

    1988-04-01

    Mutations in the cI (repressor) gene were induced by gamma-ray irradiation of lambda phage and of prophage, and 121 mutations were sequenced. Two-thirds of the mutations in irradiated phage assayed in recA host cells (no induction of the SOS response) were G:C to A:T transitions; it is hypothesized that these may arise during DNA replication from adenine mispairing with a cytosine product deaminated by irradiation. For irradiated phage assayed in host cells in which the SOS response had been induced, 85% of the mutations were base substitutions, and in 40 of the 41 base changes, a preexisting base pair had been replaced by an A:T pair; these might come from damaged bases acting as AP (apurinic or apyrimidinic) sites. The remaining mutations were 1 and 2 base deletions. In irradiated prophage, base change mutations involved the substitution of both A:T and of G:C pairs for the preexisting pairs; the substitution of G:C pairs shows that some base substitution mechanism acts on the cell genome but not on the phage. In the irradiated prophage, frameshifts and a significant number of gross rearrangements were also found.

  20. Evaluation of the Terminal Sequencing and Spacing System for Performance Based Navigation Arrivals

    Thipphavong, Jane; Jung, Jaewoo; Swenson, Harry N.; Martin, Lynne; Lin, Melody; Nguyen, Jimmy

    2013-01-01

    NASA has developed the Terminal Sequencing and Spacing (TSS) system, a suite of advanced arrival management technologies combining timebased scheduling and controller precision spacing tools. TSS is a ground-based controller automation tool that facilitates sequencing and merging arrivals that have both current standard ATC routes and terminal Performance-Based Navigation (PBN) routes, especially during highly congested demand periods. In collaboration with the FAA and MITRE's Center for Advanced Aviation System Development (CAASD), TSS system performance was evaluated in human-in-the-loop (HITL) simulations with currently active controllers as participants. Traffic scenarios had mixed Area Navigation (RNAV) and Required Navigation Performance (RNP) equipage, where the more advanced RNP-equipped aircraft had preferential treatment with a shorter approach option. Simulation results indicate the TSS system achieved benefits by enabling PBN, while maintaining high throughput rates-10% above baseline demand levels. Flight path predictability improved, where path deviation was reduced by 2 NM on average and variance in the downwind leg length was 75% less. Arrivals flew more fuel-efficient descents for longer, spending an average of 39 seconds less in step-down level altitude segments. Self-reported controller workload was reduced, with statistically significant differences at the p less than 0.01 level. The RNP-equipped arrivals were also able to more frequently capitalize on the benefits of being "Best-Equipped, Best- Served" (BEBS), where less vectoring was needed and nearly all RNP approaches were conducted without interruption.