WorldWideScience

Sample records for shielding experimental reactor

  1. Alternative methodology for irradiation reactor experimental shielding calculation

    International Nuclear Information System (INIS)

    Vellozo, Sergio de Oliveira; Vital, Helio de Carvalho

    1996-01-01

    Due to a change in the project of the Experimental Irradiation Reactor, its shielding design had to be recalculated according to an alternative simplified analytical approach, since the standard transport calculations were temporarily unavailable. In the calculation of the new width for the shielding made up of steel and high-density concrete layers, the following radiation components were considered: fast neutrons and primary gammas (produced by fission and beta decay), from the core; and secondary gammas, produced by thermal neutron capture in the shielding. (author)

  2. Radiation shielding for fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Yoshiaki [Tokyo Univ., Nuclear Engineering Research Laboratory, Tokyo (Japan)

    2000-03-01

    Radiation shielding aspects relating fission reactors have been reviewed. Domestic activities in the past five years have been mainly described concerning nuclear data, calculation methods, shielding and skyshine experiments, Advanced Boiling Water Reactor (ABWR), Advanced Pressurized Water Reactor (APWR), High Temperature Engineering Test Reactor (HTTR), Experimental and Prototype Fast Reactors (JOYO, MONJU), Demonstration FBR, core shroud replacement of BWR, and spent fuel transportation cask and vessel. These studies have valuable information in safety and cost reduction issues of fission reactor design for not only existing reactors but also new reactor concepts in the next century. It has been concluded that we should maintain existing shielding technologies and improve these data and methods for coming generations in the next millennium. (author)

  3. EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR

    International Nuclear Information System (INIS)

    Reid, Robert S.; Pearson, J. Bosie; Stewart, Eric T.

    2007-01-01

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  4. Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor

    International Nuclear Information System (INIS)

    Pearson, J. Boise; Stewart, Eric T.; Reid, Robert S.

    2007-01-01

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 deg. C. The CFD model with 1/6-g predicts a maximum water temperature of 88 deg. C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield

  5. EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    REID, ROBERT S. [Los Alamos National Laboratory; PEARSON, J. BOSIE [Los Alamos National Laboratory; STEWART, ERIC T. [Los Alamos National Laboratory

    2007-01-16

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  6. REACTOR SHIELD

    Science.gov (United States)

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  7. Shielding design to obtain compact marine reactor

    International Nuclear Information System (INIS)

    Yamaji, Akio; Sako, Kiyoshi

    1994-01-01

    The marine reactors equipped in previously constructed nuclear ships are in need of the secondary shield which is installed outside the containment vessel. Most of the weight and volume of the reactor plants are occupied by this secondary shield. An advanced marine reactor called MRX (Marine Reactor X) has been designed to obtain a more compact and lightweight marine reactor with enhanced safety. The MRX is a new type of marine reactor which is an integral PWR (The steam generator is installed in the pressure vessel.) with adopting a water-filled containment vessel and a new shielding design method of no installation of the secondary shield. As a result, MRX is considerably lighter in weight and more compact in size as compared with the reactors equipped in previously constructed nuclear ships. For instance, the plant weight and volume of the containment vessel of MRX are about 50% and 70% of those of the Nuclear Ship MUTSU, in spite of the power of MRX is 2.8 times as large as the MUTSU's reactor. The shielding design calculation was made using the ANISN, DOT3.5, QAD-CGGP2 and ORIGEN codes. The computational accuracy was confirmed by experimental analyses. (author)

  8. Radiation shielding for fusion reactors

    International Nuclear Information System (INIS)

    Santoro, R.T.

    2000-01-01

    Radiation shielding requirements for fusion reactors present different problems than those for fission reactors and accelerators. Fusion devices, particularly tokamak reactors, are complicated by geometry constraints that complicate disposition of fully effective shielding. This paper reviews some of these shielding issues and suggested solutions for optimizing the machine and biological shielding. Radiation transport calculations are essential for predicting and confirming the nuclear performance of the reactor and, as such, must be an essential part of the reactor design process. Development and optimization of reactor components from the first wall and primary shielding to the penetrations and containment shielding must be carried out in a sensible progression. Initial results from one-dimensional transport calculations are used for scoping studies and are followed by detailed two- and three-dimensional analyses to effectively characterize the overall radiation environment. These detail model calculations are essential for accounting for the radiation leakage through ports and other penetrations in the bulk shield. Careful analysis of component activation and radiation damage is cardinal for defining remote handling requirements, in-situ replacement of components, and personnel access at specific locations inside the reactor containment vessel. (author)

  9. Status of reactor-shielding research in the US

    International Nuclear Information System (INIS)

    Maienshein, F.C.

    1980-01-01

    While reactor programs change, shielding analysis methods are improved slowly. Version-V of ENDF/B provides improved data and Version-VI will be cost effective in advanced fission reactors are to be developed in the US. Benchmarks for data and methods validation are collected and distributed in the US in two series, one primarily for FBR-related experiments and one for LWR calculational methods. For LWR design, cavity streaming is now handled adequately, if with varying degrees of elegance. Investigations of improved detector response for LWRs rely upon transport methods. The great potential importance of pressure-vessel damage is dreflected in widespread studies to aid in the prediction of neutron fluences in vessels. For LMFBRS, the FFTF should give attenuation results on an operating reactor. For larger power reactors, the advantages of alternate shield materials appear compelling. A few other shielding studies appear to require experimental confirmation if LMFBRs are to be economically competitive. A coherent shielding program for the GCFR is nearing completion. For the fusion-reactor program, methods verification is under way, practical calculations are well advanced for test devices such as the TFTR and FMIT, and consideration is now given to shielding problems of large reactors, as in the ETF study

  10. Modular reactor head shielding system

    International Nuclear Information System (INIS)

    Jacobson, E. B.

    1985-01-01

    An improved modular reactor head shielding system is provided that includes a frame which is removably assembled on a reactor head such that no structural or mechanical alteration of the head is required. The shielding system also includes hanging assemblies to mount flexible shielding pads on trolleys which can be moved along the frame. The assemblies allow individual pivoting movement of the pads. The pivoting movement along with the movement allowed by the trolleys provides ease of access to any point on the reactor head. The assemblies also facilitate safe and efficient mounting of the pads directly to and from storage containers such that workers have additional shielding throughout virtually the entire installation and removal process. The flexible shielding pads are designed to interleave with one another when assembled around the reactor head for substantially improved containment of radiation leakage

  11. Design of a management information system for the Shielding Experimental Reactor ageing management

    International Nuclear Information System (INIS)

    He Jie; Xu Xianhong

    2010-01-01

    The problem of nuclear reactor ageing is a topic of increasing importance in nuclear safety recent years. Ageing management is usually implemented for reactors maintenance. In the practice, a large number of data and records need to be processed. However, there are few professional software applications that aid reactor ageing management, especially for research reactors. This paper introduces the design of a new web-based management information system (MIS), named the Shielding Experimental Reactor Ageing Management Information System (SERAMIS). It is an auxiliary means that helps to collect data, keep records, and retrieve information for a research reactor ageing management. The Java2 Enterprise Edition (J2EE) and network database techniques, such as three-tiered model, Model-View-Controller architecture, transaction-oriented operations, and JavaScript techniques, are used in the development of this system. The functionalities of the application cover periodic safety review (PSR), regulatory references, data inspection, and SSCs classification according to ageing management methodology. Data and examples are presented to demonstrate the functionalities. For future work, techniques of data mining will be employed to support decision-making.

  12. Design of a management information system for the Shielding Experimental Reactor ageing management

    Energy Technology Data Exchange (ETDEWEB)

    He Jie, E-mail: hejiejoe@163.co [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Xu Xianhong [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2010-01-15

    The problem of nuclear reactor ageing is a topic of increasing importance in nuclear safety recent years. Ageing management is usually implemented for reactors maintenance. In the practice, a large number of data and records need to be processed. However, there are few professional software applications that aid reactor ageing management, especially for research reactors. This paper introduces the design of a new web-based management information system (MIS), named the Shielding Experimental Reactor Ageing Management Information System (SERAMIS). It is an auxiliary means that helps to collect data, keep records, and retrieve information for a research reactor ageing management. The Java2 Enterprise Edition (J2EE) and network database techniques, such as three-tiered model, Model-View-Controller architecture, transaction-oriented operations, and JavaScript techniques, are used in the development of this system. The functionalities of the application cover periodic safety review (PSR), regulatory references, data inspection, and SSCs classification according to ageing management methodology. Data and examples are presented to demonstrate the functionalities. For future work, techniques of data mining will be employed to support decision-making.

  13. Nuclear design of the blanket/shield system for a Tokamak Experimental Power Reactor

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1976-01-01

    The various options and trade-offs in the nuclear design of the blanket/shield for a Tokamak Experimental Power Reactor (TEPR) are investigated. The TEPR size and cost are particularly sensitive to the blanket/shield thickness, Δ/sub BS/, on the inner side of the torus. Radition damage to the components of the superconducting magnet and refrigeration power requirements set lower limits on Δ/sub BS/. These limits are developed in terms of TEPR design parameters such as the wall loading, duty cycle, and frequency of magnet anneals. The study of the nuclear performance of various material compositions shows that mixtures of tungsten, or tantalum, or stainless-steel alloys and boron carbide require the smallest Δ/sub BS/ for a given attenuation. This Δ/sub BS/ has to be doubled if the low induced activation materials graphite and aluminum are used. The space problems are greatly eased in the Argonne National Laboratory ANL-TEPR reference design by using two separate segments of the blanket/shield. The inner segment occupies the region of the high magnetic field, uses very efficient attenuators (tungsten- or tantalum- or stainless-steel-boron carbide mixtures), and is only 1 m thick. The outer blanket/shield is 131 cm and consists of an optimized composition of stainless steel and boron carbide. For the design parameters of 0.2 MW/m 2 neutron wall loading and 50 percent duty cycle, the reactor components can operate satisfactorily up to (a) 10 yr for the stainless-steel first wall, (b) 10 yr for the superconductor composite after which magnet warmup becomes necessary, and (c) 30 yr for the Mylar insulation. Nuclear heat generation rates in the blanket/shield and magnet are well within the practical limits for heat removal

  14. MEANS FOR SHIELDING AND COOLING REACTORS

    Science.gov (United States)

    Wigner, E.P.; Ohlinger, L.A.; Young, G.J.; Weinberg, A.M.

    1959-02-10

    Reactors of the water-cooled type and a means for shielding such a rcactor to protect operating personnel from harmful radiation are discussed. In this reactor coolant tubes which contain the fissionable material extend vertically through a mass of moderator. Liquid coolant enters through the bottom of the coolant tubes and passes upwardly over the fissionable material. A shield tank is disposed over the top of the reactor and communicates through its bottom with the upper end of the coolant tubes. A hydrocarbon shielding fluid floats on the coolant within the shield tank. With this arrangements the upper face of the reactor can be opened to the atmosphere through the two superimposed liquid layers. A principal feature of the invention is that in the event radioactive fission products enter thc coolant stream. imposed layer of hydrocarbon reduces the intense radioactivity introduced into the layer over the reactors and permits removal of the offending fuel material by personnel shielded by the uncontaminated hydrocarbon layer.

  15. Radiation shield for nuclear reactors

    International Nuclear Information System (INIS)

    Weissenfluh, J.A.

    1978-01-01

    A shield for use with nuclear reactor systems to attenuate radiation resulting from reactor operation is described. The shield comprises a container preferably of a thin, flexible or elastic material, which may be in the form of a bag, a mattress, a toroidal segment or toroid or the like filled with radiation attenuating liuid. Means are provided in the container for filling and draining the container in place. Due to its flexibility, the shield readily conforms to irregularities in surfaces with which it may be in contact in a shielding position

  16. Experimental study of neutron streaming through steel-walled annular ducts in reactor shields

    International Nuclear Information System (INIS)

    Toshimas, M.; Nobuo, S.

    1983-01-01

    For the purpose of providing experimental data to assess neutron streaming calculations, neutron flux measurements were performed along the axes of the steel-walled annular ducts set up in a water shield of the pool-type reactor JRR-4. An annular duct simulated the air gap around the main coolant pipe. Another duct simulated the streaming path around the primary circulating pump of the integrated-type marine reactor. A 90-deg bend annular duct was also studied. In a set of measurements, the distance Z between the core center and the duct axis and the annular gap width delta were taken as parameters, that is, Z = 0, 80, and 160 cm and delta = 2.2, 4.7, and 10.1 cm. The reaction rates and the fluxes measured by the activation method are given in terms of absolute magnitude within an accuracy of + or - 30%. An empirical formula is derived based on those measured data, which describes the axial distribution of the neutron flux in the steel-walled annular duct in reactor shields. It is expressed by a simple function of the axial distance in units of the square root of the line-of-sight area, S /SUB l/ . The accuracy of the formula is examined by taking into account the duct location with respect to the reactor core, the neutron energy, the steel wall thickness, and the media outside of the steel wall. The accuracy of the formula is, in general, <30% in the axial distance between 3√S /SUB l/ and 30√S /SUB l/

  17. ITER [International Thermonuclear Experimental Reactor] shield and blanket work package report

    International Nuclear Information System (INIS)

    1988-06-01

    This report summarizes nuclear-related work in support of the US effort for the International Thermonuclear Experimental Reactor (ITER) Study. The purpose of this work was to prepare for the first international ITER workshop devoted to defining a basic ITER concept that will serve as a basis for an indepth conceptual design activity over the next 2-1/2 years. Primary tasks carried out during the past year included: design improvements of the inboard shield developed for the TIBER concept, scoping studies of a variety of tritium breeding blanket options, development of necessary design guidelines and evaluation criteria for the blanket options, further safety considerations related to nuclear components and issues regarding structural materials for an ITER device. 44 refs., 31 figs., 29 tabs

  18. Reactor head shielding apparatus

    International Nuclear Information System (INIS)

    Schukei, G.E.; Roebelen, G.J.

    1992-01-01

    This patent describes a nuclear reactor head shielding apparatus for mounting on spaced reactor head lifting members radially inwardly of the head bolts. It comprises a frame of sections for mounting on the lifting members and extending around the top central area of the head, mounting means for so mounting the frame sections, including downwardly projecting members on the frame sections and complementary upwardly open recessed members for fastening to the lifting members for receiving the downwardly projecting members when the frame sections are lowered thereto with lead shielding supported thereby on means for hanging lead shielding on the frame to minimize radiation exposure or personnel working with the head bolts or in the vicinity thereof

  19. Water and Regolith Shielding for Surface Reactor Missions

    Science.gov (United States)

    Poston, David I.; Ade, Brian J.; Sadasivan, Pratap; Leichliter, Katrina J.; Dixon, David D.

    2006-01-01

    This paper investigates potential shielding options for surface power fission reactors. The majority of work is focused on a lunar shield that uses a combination of water in stainless-steel cans and lunar regolith. The major advantage of a water-based shield is that development, testing, and deployment should be relatively inexpensive. This shielding approach is used for three surface reactor concepts: (1) a moderated spectrum, NaK cooled, Hastalloy/UZrH reactor, (2) a fast-spectrum, NaK-cooled, SS/UO2 reactor, and (3) a fast-spectrum, K-heat-pipe-cooled, SS/UO2 reactor. For this study, each of these reactors is coupled to a 25-kWt Stirling power system, designed for 5 year life. The shields are designed to limit the dose both to the Stirling alternators and potential astronauts on the surface. The general configuration used is to bury the reactor, but several other options exist as well. Dose calculations are presented as a function of distance from reactor, depth of buried hole, water boron concentration (if any), and regolith repacked density.

  20. Water and Regolith Shielding for Surface Reactor Missions

    International Nuclear Information System (INIS)

    Poston, David I.; Sadasivan, Pratap; Dixon, David D.; Ade, Brian J.; Leichliter, Katrina J.

    2006-01-01

    This paper investigates potential shielding options for surface power fission reactors. The majority of work is focused on a lunar shield that uses a combination of water in stainless-steel cans and lunar regolith. The major advantage of a water-based shield is that development, testing, and deployment should be relatively inexpensive. This shielding approach is used for three surface reactor concepts: (1) a moderated spectrum, NaK cooled, Hastalloy/UZrH reactor, (2) a fast-spectrum, NaK-cooled, SS/UO2 reactor, and (3) a fast-spectrum, K-heat-pipe-cooled, SS/UO2 reactor. For this study, each of these reactors is coupled to a 25-kWt Stirling power system, designed for 5 year life. The shields are designed to limit the dose both to the Stirling alternators and potential astronauts on the surface. The general configuration used is to bury the reactor, but several other options exist as well. Dose calculations are presented as a function of distance from reactor, depth of buried hole, water boron concentration (if any), and regolith repacked density

  1. Nuclear reactor shield including magnesium oxide

    International Nuclear Information System (INIS)

    Rouse, C.A.; Simnad, M.T.

    1981-01-01

    An improvement is described for nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux. The reactor shielding includes means providing structural support, neutron moderator material, neutron absorber material and other components, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron

  2. Fast reactor shield sensitivity studies for steel--sodium--iron systems

    International Nuclear Information System (INIS)

    Oblow, E.M.; Weisbin, C.R.

    1977-01-01

    A study was made of the adequacy of the current ENDF/B-IV sodium and iron neutron cross section data files for fast reactor shield design work. Experimental data from 21 fast reactor shield configurations containing large thicknesses of steel, sodium, and iron were analyzed with discrete ordinates calculations and sensitivity methods to assess the data files. This study represents the largest full-scale sensitivity analysis of benchmark quality experimental data to date. Included in the sensitivity studies were the results of the new cross section adjustment algorithms added to the FORSS code system. Conclusions were drawn about the need for more accurate data for sodium and iron elastic and discrete inelastic cross sections above 1 MeV and the values of the total cross section in the vicinity of important minima

  3. Design of radiation shields in nuclear reactor core

    International Nuclear Information System (INIS)

    Mousavi Shirazi, A.; Daneshvar, Sh.; Aghanajafi, C.; Jahanfarnia, Gh.; Rahgoshay, M.

    2008-01-01

    This article consists of designing radiation shields in the core of nuclear reactors to control and restrain the harmful nuclear radiations in the nuclear reactor cores. The radiation shields protect the loss of energy. caused by nuclear radiation in a nuclear reactor core and consequently, they cause to increase the efficiency of the reactor and decrease the risk of being under harmful radiations for the staff. In order to design these shields, by making advantages of the O ppenheim Electrical Network m ethod, the structure of the shields are physically simulated and by obtaining a special algorithm, the amount of optimized energy caused by nuclear radiations, is calculated

  4. ITER [International Thermonuclear Experimental Reactor] reactor building design study

    International Nuclear Information System (INIS)

    Thomson, S.L.; Blevins, J.D.; Delisle, M.W.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is at the midpoint of a two-year conceptual design. The ITER reactor building is a reinforced concrete structure that houses the tokamak and associated equipment and systems and forms a barrier between the tokamak and the external environment. It provides radiation shielding and controls the release of radioactive materials to the environment during both routine operations and accidents. The building protects the tokamak from external events, such as earthquakes or aircraft strikes. The reactor building requirements have been developed from the component designs and the preliminary safety analysis. The equipment requirements, tritium confinement, and biological shielding have been studied. The building design in progress requires continuous iteraction with the component and system designs and with the safety analysis. 8 figs

  5. Nuclear data requirements for fusion reactor shielding

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1979-01-01

    The nuclear data requirements for experimental, demonstration and commercial fusion reactors are reviewed. Particular emphasis is given to the shield as well as major reactor components of concern to the nuclear performance. The nuclear data requirements are defined as a result of analyzing four key areas. These are the most likely candidate materials, energy range, types of needed nuclear data, and the required accuracy in the data. Deducing the latter from the target goals for the accuracy in prediction is also discussed. A specific proposal of measurements is recommended. Priorities for acquisition of data are also assigned. (author)

  6. Important aspects of radiation shielding for fusion reactor tokamaks

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1977-01-01

    Radiation shielding is a key subsystem in tokamak reactors. Design of this shield must evolve from economic and technological trade-off studies that account for the strong interrelations among the various components of the reactor system. These trade-offs are examined for the bulk shield on the inner side of the torus and for the special shields of major penetrations. Results derived are applicable for a large class of tokamak-type reactors

  7. Radiation environment of fusion experimental reactor

    International Nuclear Information System (INIS)

    Mori, Seiji; Seki, Yasushi

    1988-01-01

    Next step device (experimental reactor), which is planned to succeed the large plasma experimental devices such as JT-60, JET and TFTR, generates radiation (neutron + gamma ray) during its operation. Radiation (neutronic) properties of the material are basis for the study on neutron utilization (energy recovery and tritium breeding), material selection (irradiation damage and lifetime evaluation) and radiation safety (personnel exposure and radiation waste). It is necessary, therefore, to predict radiation behaviour in the reactor correctly for the engineering design of the reactor. This report describes the outline of the radiation environment of the reactor based on the information obtained by the neutronic and shielding design calculation of the fusion experimental reactor (FER). (author)

  8. Shields for nuclear reactors

    International Nuclear Information System (INIS)

    Aspden, G.J.

    1984-01-01

    The patent concerns shields for nuclear reactors. The roof shield comprises a normally fixed radial outer portion, a radial inner portion rotatable about a vertical axis, and a connection between the inner and outer portions. In the event of hypothecal core disruption conditions, a cantilever system on the inner wall allows the upward movement of the inner wall, in order to prevent loss of containment. (UK)

  9. Method for temporary shielding of reactor vessel internals

    International Nuclear Information System (INIS)

    Grimm, N.P.; Sejvar, J.

    1991-01-01

    This patent describes a method for shielding stored internals for reactor vessel annealing. It comprises removing nuclear fuel from the reactor vessel containment building; removing and storing upper and lower core internals under water in a refueling canal storage area; assembling a support structure in the refueling canal between the reactor vessel and the stored internals; introducing vertical shielding tanks individually through a hatch in the containment building and positioning each into the support structure; introducing horizontal shielding tanks individually through a hatch in the containment building and positioning each above the stored internals and vertical tanks; draining water from the refueling canal to the level of a flange of the reactor vessel; placing an annealing apparatus in the reactor vessel; pumping the remaining water from the reactor vessel; and annealing the reactor vessel

  10. Dismantling method for reactor shielding wall and device therefor

    International Nuclear Information System (INIS)

    Akagawa, Katsuhiko.

    1995-01-01

    A ring member having an outer diameter slightly smaller than an inner diameter of a reactor shielding wall to be dismantled is lowered in the inside of the reactor shielding wall while keeping a horizontal posture. A cutting device is disposed at the lower peripheral edge of the ring member. The cutting device can move along the peripheral edge of the circular shape of the ring member. The ring member is urged against the inner surface of the reactor shielding wall by using an urging member to immobilize the ring member. Then, the cutting device is operated to cut the reactor shielding wall into a plurality of ring-like blocks at a plurality of inner horizontal ribs or block connection ribs. Then, the blocks of the cut reactor shielding wall are supported by the ring member, and transported out of the reactor container by a lift. The cut blocks transported to the outside are finely dismantled for every block in a closed chamber. (I.N.)

  11. RSMASS: A simple model for estimating reactor and shield masses

    International Nuclear Information System (INIS)

    Marshall, A.C.; Aragon, J.; Gallup, D.

    1987-01-01

    A simple mathematical model (RSMASS) has been developed to provide rapid estimates of reactor and shield masses for space-based reactor power systems. Approximations are used rather than correlations or detailed calculations to estimate the reactor fuel mass and the masses of the moderator, structure, reflector, pressure vessel, miscellaneous components, and the reactor shield. The fuel mass is determined either by neutronics limits, thermal/hydraulic limits, or fuel damage limits, whichever yields the largest mass. RSMASS requires the reactor power and energy, 24 reactor parameters, and 20 shield parameters to be specified. This parametric approach should be applicable to a very broad range of reactor types. Reactor and shield masses calculated by RSMASS were found to be in good agreement with the masses obtained from detailed calculations

  12. Gravity Scaling of a Power Reactor Water Shield

    International Nuclear Information System (INIS)

    Reid, Robert S.; Pearson, J. Boise

    2008-01-01

    Water based reactor shielding is being considered as an affordable option for potential use on initial lunar surface reactor power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxillary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2006). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRa n . These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined

  13. Radiation distribution through serpentine concrete using local materials and its application as a reactor biological shield

    International Nuclear Information System (INIS)

    Kansouh, W.A.

    2012-01-01

    Highlights: ► New serpentine concrete was made and examined as a reactor biological shield. ► Ilmenite–limonite concrete is a better reactor biological shield. ► New serpentine concrete is a better reactor fast neutrons shield than ordinary and hematite–serpentine concretes. ► Serpentine concrete has lower properties as a reactor total gamma rays shields. - Abstract: In the present work attempt has been made to estimate the shielding parameters of the new serpentine concrete (density = 2.4 g/cm 3 ) using local materials on the shielding parameters for two types of heat resistant concretes, namely hematite–serpentine (density = 2.5 g/cm 3 ) and ilmenite–limonite (density = 2.9 g/cm 3 ). Shielding parameters for ordinary concrete (density = 2.3 g/cm 3 ) were also discussed. These parameters were determined experimentally for serpentine concrete and compared with previously published values for other concretes, which had also been obtained using local materials. The leakage spectra of reactor fast neutrons and total gamma photon beams from cylindrical samples of these concrete shields were also investigated using a collimated beam from ET-RR-1 reactor. A neutron–gamma spectrometer was used in order to obtain pulse height spectra of reactor fast neutrons and the total gamma rays leakage through the investigated concrete samples. These spectra were utilized to obtain the energy spectra required in these investigations. Removal cross section Σ R (E n ) and linear attenuation coefficient μ(E g ) for reactor fast neutrons and total gamma rays and their relative coefficients were evaluated and presented. Measured results were compared with those previously measured for other concretes. The results show that ilmenite–limonite concrete is a better reactor biological shield than the other three concretes. Serpentine concrete under investigation is a better reactor fast neutrons shield than ordinary and hematite–serpentine concretes. Serpentine concrete

  14. Shielding device for control rod in nuclear reactor

    International Nuclear Information System (INIS)

    Sakamaki, Kazuo; Tomatsu, Tsutomu.

    1995-01-01

    The device of the present invention shields radiation emitted from control rods to greatly reduce an operator's radiation exposure even if reactor water level is lowered and the upper portion of the control rod is exposed upon inspection of a BWR type reactor. Namely, a shield assembly has a structure comprising a set of four columnar shields in a two-row and two-column arrangement, which can be inserted into a control rod guide tube. Upon conducting inspection, the control rod is lowered into the control rod guide tube, and in this state, the columnar shields of the shield assembly are inserted to the control rod in the control rod guide tube. With such procedures, the upper portion of the control rod protruded from the control rod guide tube is covered with the shield assembly. As a result, radiation leaked from the control rod is shielded. Accordingly, irradiation in the reactor due to leaked radiation can be prevented thereby enabling to reduce an operator's radiation exposure. (I.S.)

  15. Radiation shield for nuclear reactors

    International Nuclear Information System (INIS)

    Weissenfluh, J.A.

    1980-01-01

    A reusable radiation shield for use in a reactor installation comprises a thin-walled, flexible and resilient container, made of plastic or elastomeric material, containing a hydrogenous fluid with boron compounds in solution. The container can be filled and drained in position and the fluid can be recirculated if required. When not in use the container can be folded and stored in a small space. The invention relates to a shield to span the top of the annular space between a reactor vessel and the primary shield. For this purpose a continuous toroidal container or a series of discrete segments is used. Other forms can be employed for different purposes, e.g. mattress- or blanket-like forms can be draped over potential sources of radiation or suspended from a mobile carrier and placed between a worker and a radiation source. (author)

  16. Radiation shield for PWR reactors

    International Nuclear Information System (INIS)

    Esenov, Amra; Pustovgar, Andrey

    2013-01-01

    One of the chief structures of a reactor pit is a 'dry' shield. Setting up a 'dry' shield includes the technologically complex process of thermal processing of serpentinite concrete. Modern advances in the area of materials technology permit avoiding this complex and demanding procedure, and this significantly decreases the duration, labor intensity, and cost of setting it up. (orig.)

  17. Neutronics model of the bulk shielding reactor (BSR): validation by comparison of calculations with the experimental measurements

    International Nuclear Information System (INIS)

    Johnson, J.O.; Miller, L.F.; Kam, F.B.K.

    1981-05-01

    A neutronics model for the Oak Ridge National Laboratory Bulk Shielding Reactor (ORNL-SAR) was developed and verified by experimental measurements. A cross-section library was generated from the 218 group Master Library using the AMPX Block Code system. A series of one-, two-, and three-dimensional neutronics calculations were performed utilizing both transport and diffusion theory. Spectral comparison was made with 58 Ni(n,p) reaction. The results of the comparison between the calculational model and other experimental measurements showed agreement within 10% and therefore the model was determined to be adequate for calculating the neutron fluence for future irradiation experiments in the ORNL-BSR

  18. Neutronics model of the bulk shielding reactor (BSR): validation by comparison of calculations with the experimental measurements

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.O.; Miller, L.F.; Kam, F.B.K.

    1981-05-01

    A neutronics model for the Oak Ridge National Laboratory Bulk Shielding Reactor (ORNL-SAR) was developed and verified by experimental measurements. A cross-section library was generated from the 218 group Master Library using the AMPX Block Code system. A series of one-, two-, and three-dimensional neutronics calculations were performed utilizing both transport and diffusion theory. Spectral comparison was made with /sup 58/Ni(n,p) reaction. The results of the comparison between the calculational model and other experimental measurements showed agreement within 10% and therefore the model was determined to be adequate for calculating the neutron fluence for future irradiation experiments in the ORNL-BSR.

  19. Thermal shield support degradation in pressurized water reactors

    International Nuclear Information System (INIS)

    Sweeney, F.J.; Fry, D.N.

    1986-01-01

    Damage to the thermal shield support structures of three pressurized water reactors (PWRs) due to flow-induced vibrations was recently discovered during refueling. In two of the reactors, severe damage occurred to the thermal shield, and in one reactor the core support barrel (CSB) was damaged, necessitating extended outages for repairs. In all three reactors, several of the thermal shield supports were either loose, damaged, or missing. The three plants had been in operation for approximately 10 years before the damage was apparent by visual inspection. Because each of the three US PWR manufacturers have experienced thermal shield support degradation, the Nuclear Regulatory Commission requested that Oak Ridge National Laboratory analyze ex-core neutron detector noise data to determine the feasibility of detecting incipient thermal shield support degradation. Results of the noise data analysis indicate that thermal shield support degradation probably began early in the life of both severely damaged plants. The degradation was characterized by shifts in the resonant frequencies of core internal structures and the appearance of new resonances in the ex-core neutron detector noise. Both the data analyses and the finite element calculations indicate that these changes in resonant frequencies are less than 3 Hz. 11 refs., 16 figs

  20. Shielding in experimental areas

    International Nuclear Information System (INIS)

    Stevens, A.; Tarnopolsky, G.; Thorndike, A.; White, S.

    1979-01-01

    The amount of shielding necessary to protect experimental detectors from various sources of background radiation is discussed. As illustrated an experiment has line of sight to sources extending approx. 90 m upstream from the intersection point. Packing a significant fraction of this space with shielding blocks would in general be unacceptable because primary access to the ring tunnel is from the experimental halls. (1) From basic machine design considerations and the inherent necessity to protect superconducting magnets it is expected that experimental areas in general will be cleaner than at any existing accelerator. (2) Even so, it will likely be necessary to have some shielding blocks available to protect experimental apparatus, and it may well be necessary to have a large amount of shielding available in the WAH. (3) Scraping will likely have some influence on all halls, and retractable apparatus may sometimes be necessary. (4) If access to any tunnel is needed to replace a magnet, one has 96 h (4 days) available to move shielding away to permit access without additional downtime. This (the amount of shielding one can shuffle about in 96 h) is a reasonable upper limit to shielding necessary in a hall

  1. Space nuclear reactor shields for manned and unmanned applications

    International Nuclear Information System (INIS)

    McKissock, B.I.; Bloomfield, H.S.

    1990-01-01

    Missions which use nuclear reactor power systems require radiation shielding of payload and/or crew areas to predetermined dose rates. Since shielding can become a significant fraction of the total mass of the system, it is of interest to show the effect of various parameters on shield thickness and mass for manned and unmanned applications. Algorithms were developed to give the thicknesses needed if reactor thermal power, separation distances and dose rates are given as input. The thickness algorithms were combined with models for four different shield geometries to allow tradeoff studies of shield volume and mass for a variety of manned and unmanned missions. The shield design tradeoffs presented in this study include the effects of: higher allowable dose rates; radiation hardened electronics; shorter crew exposure times; shield geometry; distance of the payload and/or crew from the reactor; and changes in the size of the shielded area. Specific NASA missions that were considered in this study include unmanned outer planetary exploration, manned advanced/evolutionary space station and advanced manned lunar base. (author)

  2. Space nuclear reactor shields for manned and unmanned applications

    International Nuclear Information System (INIS)

    Mckissock, B.I.; Bloomfield, H.S.

    1989-01-01

    Missions which use nuclear reactor power systems require radiation shielding of payload and/or crew areas to predetermined dose rates. Since shielding can become a significant fraction of the total mass of the system, it is of interest to show the effect of various parameters on shield thickness and mass for manned and unmanned applications. Algorithms were developed to give the thicknesses needed if reactor thermal power, separation distances, and dose rates are given as input. The thickness algorithms were combined with models for four different shield geometries to allow tradeoff studies of shield volume and mass for a variety of manned and unmanned missions. Shield design tradeoffs presented in this study include the effects of: higher allowable dose rates; radiation hardened electronics; shorter crew exposure times; shield geometry; distance of the payload and/or crew from the reactor; and changes in the size of the shielded area. Specific NASA missions that were considered in this study include unmanned outer planetary exploration, manned advanced/evolutionary space station, and advanced manned lunar base

  3. Estimation of temperature distribution in a reactor shield

    International Nuclear Information System (INIS)

    Agarwal, R.A.; Goverdhan, P.; Gupta, S.K.

    1989-01-01

    Shielding is provided in a nuclear reactor to absorb the radiations emanating from the core. The energy of these radiations appear in the form of heat. Concrete which is commonly used as a shielding material in nuclear power plants must be able to withstand the temperatures and temperature gradients appearing in the shield due to this heat. High temperatures lead to dehydration of the concrete and in turn reduce the shielding effectiveness of the material. Adequate cooling needs to be provided in these shields in order to limit the maximum temperature. This paper describes a method to estimate steady state and transient temperature distribution in reactor shields. The results due to loss of coolant in the coolant tubes have been studied and presented in the paper. (author). 5 figs

  4. A Sensitivity Study on the Radiation Shield of KSPR Space Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cerba, S.; Lee, Hyun Chul; Lim, Hong Sik; Noh, Jae Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The idea of a space reactor was realised some decades ago and since that time several research activities have been performed into this field. The US National Aeronautics and Space Administration (NASA) has been developing a small fast reactor called as fission power system (FPS) for deep space mission, where highly enriched uranium (HEU) is used as fuel. On the other hand, other researchers have also surveyed a thermal reactor concept with low enriched uranium (LEU) for space applications. One of the main concerns in terms of a space reactor is the total size and the mass of the system including the reactor itself as well as the radiation shield. Since the reactor core is a source of neutrons and gamma photons of various energies, which may cause severe damage on the electronics of the space stations, the questions related to the development of a radiation shield should be address appropriately. The proposal of a radiation shield for a small space reactor is discussed in this paper. The requirements for the radiation shield have been addressed in terms of maximal absorbed doses and neutron flounces during 10 years of operation. In this study a radiation shield design for a small space reactor was investigated. All the presented calculations were performed using the multi-purpose stochastic MCNP code with temperature dependent continuous energy ENDF/B VII.0 neutron and photon cross section libraries. The aim of this study was to design a neutron and gamma shield that can meet the requirements of 250 Gy absorbed during 10 years of reactor operation. The comparison with a fast reactor design showed that high content of {sup 238}U strongly influences the shielding mass. This phenomenon is due to the higher photon production in case of the KSPR design and therefore the use of high {sup 235}U enrichments and the operation in fast neutron spectrum may be more desirable. In case if the KSPR space reactor the best shielding performance was achieved while utilizing a multi

  5. Tungsten-based composite materials for fusion reactor shields

    International Nuclear Information System (INIS)

    Greenspan, E.; Karni, Y.

    1985-01-01

    Composite tungsten-based materials were recently proposed for the heavy constituent of compact fusion reactor shields. These composite materials will enable the incorporation of tungsten - the most efficient nonfissionable inelastic scattering (as well as good neutron absorbing and very good photon attenuating) material - in the shield in a relatively cheap way and without introducing voids (so as to enable minimizing the shield thickness). It is proposed that these goals be achieved by bonding tungsten powder, which is significantly cheaper than high-density tungsten, with a material having the following properties: good shielding ability and relatively low cost and ease of fabrication. The purpose of this work is to study the effectiveness of the composite materials as a function of their composition, and to estimate the economic benefit that might be gained by the use of these materials. Two materials are being considered for the binder: copper, second to tungsten in its shielding ability, and iron (or stainless steel), the common fusion reactor shield heavy constituent

  6. Shield structure for a nuclear reactor

    International Nuclear Information System (INIS)

    Rouse, C.A.; Simnad, M.T.

    1979-01-01

    An improved nuclear reactor shield structure is described for use where there are significant amounts of fast neutron flux above an energy level of approximately 70 keV. The shield includes structural supports and neutron moderator and absorber systems. A portion at least of the neutron moderator material is magnesium oxide either alone or in combination with other moderator materials such as graphite and iron. (U.K.)

  7. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-02-01

    This report describes the engineering conceptual design of Fusion Experimental Reactor (FER) which is to be built as a next generation tokamak machine. This design covers overall reactor systems including MHD equilibrium analysis, mechanical configuration of reactor, divertor, pumped limiter, first wall/breeding blanket/shield, toroidal field magnet, poloidal field magnet, cryostat, electromagnetic analysis, vacuum system, power handling and conversion, NBI, RF heating device, tritium system, neutronics, maintenance, cooling system and layout of facilities. The engineering comparison of a divertor with pumped limiters and safety analysis of reactor systems are also conducted. (author)

  8. International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Blevins, J.D.; Stasko, R.R.

    1989-09-01

    An international design team comprised of members from Canada, Europe, Japan, the Soviet Union, and the United States of America, are designing an experimental fusion test reactor. The engineering and testing objectives of this International Thermonuclear Experimental Reactor (ITER) are to validate the design and to demonstrate controlled ignition, extended burn of a deuterium and tritium plasma, and achieve steady state using technology expected to be available by 1990. The concept maximizes flexibility while allowing for a variety of plasma configurations and operating scenarios. During physics phase operation, the machine produces a 22 MA plasma current. In the technology phase, the machine can be reconfigured with a thicker shield and a breeding blanket to operate with an 18 MA plasma current at a major radius of 5.5 meters. Canada's involvement in the areas of safety, facility design, reactor configuration and maintenance builds on our internationally recognized design and operational expertise in developing tritium processes and CANDU related technologies

  9. The optimum shielding for a power reactor using local components

    International Nuclear Information System (INIS)

    AlHajali, S.; Kharita, M. H.; Yousef, S.; Naoom, B.; Al-Nassar, M.

    2009-07-01

    Some local concrete mixtures have been picked out (selected) to be studied as shielding concrete for prospective nuclear power reactor in Syria. This research has interested in the attenuation of gamma radiation and neutron fluxes by these local concretes in the ordinary conditions. In addition to the heat effect on the shielding and physical properties of local concrete. Furthermore the neutron activation of the elements of the local concrete mixtures have been studied that for selection the low-activation materials (low dose rate and short half life radioisotopes). In this way biological shielding for nuclear reactor can be safe during operation of nuclear power reactor, in addition to be low radioactive waste after decommissioning the reactor. (author)

  10. Accuracy evaluation of the current data and method applied to shielding design of the Fusion Experimental Reactor (FER)

    International Nuclear Information System (INIS)

    Mori, Seiji; Kobayashi, Takeshi; Seki, Yasushi

    1988-06-01

    Shielding benchmarking study of the current data and method applied to the Fusion Experimental Reactor (FER) was performed. First, neutron and gamma ray fluxes were calculated by the one-dimensional S N code using various cross section libraries and the continuous energy Monte Carlo code. The results were compared in terms of the S N /MC ratio. The worst ratios are about 0.5 and 0.25 for neutron flux and gamma ray flux, respectively. Next, the analytical calculations of the iron sphere transmission experiment of 14 MeV neutrons were performed to examine the accuracy of cross section data of iron, which is the most important material of shield. The E/C ratio is larger than 2 even if the continuous energy Monte Carlo code was used. Thirdly, the influence of geometrical representation of the shield was investigated by comparing the homogeneous model and the heterogeneous model (alternating layers of SS316 and water). As a result, it was made clear that the homogeneous model underestimates neutron flux by a factor of 2. Finally, the necessity of benchmark experiment and improvement of cross section library was pointed out as the further R and D issues. (author)

  11. Parameters calculation of shielding experiment

    International Nuclear Information System (INIS)

    Gavazza, S.

    1986-02-01

    The radiation transport methodology comparing the calculated reactions and dose rates for neutrons and gama-rays, with experimental measurements obtained on iron shield, irradiated in the YAYOI reactor is evaluated. The ENDF/B-IV and VITAMIN-C libraries and the AMPX-II modular system, for cross sections generation collapsed by the ANISN code were used. The transport calculations were made using the DOT 3.5 code, adjusting the boundary iron shield source spectrum to the reactions and dose rates, measured at the beginning of shield. The neutron and gamma ray distributions calculated on the iron shield presented reasonable agreement with experimental measurements. An experimental arrangement using the IEA-R1 reactor to determine a shielding benchmark is proposed. (Author) [pt

  12. Core test reactor shield cooling system analysis

    International Nuclear Information System (INIS)

    Larson, E.M.; Elliott, R.D.

    1971-01-01

    System requirements for cooling the shield within the vacuum vessel for the core test reactor are analyzed. The total heat to be removed by the coolant system is less than 22,700 Btu/hr, with an additional 4600 Btu/hr to be removed by the 2-inch thick steel plate below the shield. The maximum temperature of the concrete in the shield can be kept below 200 0 F if the shield plug walls are kept below 160 0 F. The walls of the two ''donut'' shaped shield segments, which are cooled by the water from the shield and vessel cooling system, should operate below 95 0 F. The walls of the center plug, which are cooled with nitrogen, should operate below 100 0 F. (U.S.)

  13. Radiological Shielding Design for the Neutron High-Resolution Backscattering Spectrometer EMU at the OPAL Reactor

    Directory of Open Access Journals (Sweden)

    Ersez Tunay

    2017-01-01

    Full Text Available The shielding for the neutron high-resolution backscattering spectrometer (EMU located at the OPAL reactor (ANSTO was designed using the Monte Carlo code MCNP 5-1.60. The proposed shielding design has produced compact shielding assemblies, such as the neutron pre-monochromator bunker with sliding cylindrical block shields to accommodate a range of neutron take-off angles, and in the experimental area - shielding of neutron focusing guides, choppers, flight tube, backscattering monochromator, and additional shielding elements inside the Scattering Tank. These shielding assemblies meet safety and engineering requirements and cost constraints. The neutron dose rates around the EMU instrument were reduced to < 0.5 µSv/h and the gamma dose rates to a safe working level of ≤ 3 µSv/h.

  14. Radiological Shielding Design for the Neutron High-Resolution Backscattering Spectrometer EMU at the OPAL Reactor

    Science.gov (United States)

    Ersez, Tunay; Esposto, Fernando; Souza, Nicolas R. de

    2017-09-01

    The shielding for the neutron high-resolution backscattering spectrometer (EMU) located at the OPAL reactor (ANSTO) was designed using the Monte Carlo code MCNP 5-1.60. The proposed shielding design has produced compact shielding assemblies, such as the neutron pre-monochromator bunker with sliding cylindrical block shields to accommodate a range of neutron take-off angles, and in the experimental area - shielding of neutron focusing guides, choppers, flight tube, backscattering monochromator, and additional shielding elements inside the Scattering Tank. These shielding assemblies meet safety and engineering requirements and cost constraints. The neutron dose rates around the EMU instrument were reduced to < 0.5 µSv/h and the gamma dose rates to a safe working level of ≤ 3 µSv/h.

  15. Preliminary shielding analysis of VHTR reactors

    International Nuclear Information System (INIS)

    Flaspoehler, Timothy M.; Petrovic, Bojan

    2011-01-01

    Over the last 20 years a number of methods have been established for automated variance reduction in Monte Carlo shielding simulations. Hybrid methods rely on deterministic adjoint and/or forward calculations to generate these parameters. In the present study, we use the FWCADIS method implemented in MAVRIC sequence of the SCALE6 package to perform preliminary shielding analyses of a VHTR reactor. MAVRIC has been successfully used by a number of researchers for a range of shielding applications, including modeling of LWRs, spent fuel storage, radiation field throughout a nuclear power plant, study of irradiation facilities, and others. However, experience in using MAVRIC for shielding studies of VHTRs is more limited. Thus, the objective of this work is to contribute toward validating MAVRIC for such applications, and identify areas for potential improvement. A simplified model of a prismatic VHTR has been devised, based on general features of the 600 MWt reactor considered as one of the NGNP options. Fuel elements have been homogenized, and the core region is represented as an annulus. However, the overall mix of materials and the relatively large dimensions of the spatial domain challenging the shielding simulations have been preserved. Simulations are performed to evaluate fast neutron fluence, dpa, and other parameters of interest at relevant positions. The paper will investigate and discuss both the effectiveness of the automated variance reduction, as well as applicability of physics model from the standpoint of specific VHTR features. (author)

  16. Radiological shielding of low power compact reactor: calculation and design

    International Nuclear Information System (INIS)

    Marino, Raul

    2004-01-01

    The development of compact reactors becoming a technology that offers great projection and innumerable use possibilities, both in electricity generation and in propulsion.One of the requirements for the operation of this type of reactor is that it must include a radiological shield that will allow for different types of configurations and that, may be moved with the reactor if it needs to be transported.The nucleus of a reactor emits radiation, mainly neutrons and gamma rays in the heat of power, and gamma radiation during the radioactive decay of fission products.This radiation must be restrained in both conditions of operation to avoid it affecting workers or the public.The combination of different materials and properties in layers results in better performance in the form of a decrease in radiation, hence causing the dosage outside the reactor, whether in operation or shut down, to fall within the allowed limits.The calculations and design of radiological shields is therefore of paramount importance in reactor design.The choice of material and the design of the shield have a strong impact on the cost and the load capacity, the latter being one of the characteristics to optimize.The imposed condition of design is that the reactor can be transported together with the decay shield in a standard container of 40 foot [es

  17. Method for limiting movement of a thermal shield for a nuclear reactor, and thermal shield displacement limiter therefor

    International Nuclear Information System (INIS)

    Meuschke, R.E.; Boyd, C.H.

    1989-01-01

    This patent describes a method of limiting the movement of a thermal shield of a nuclear reactor. It comprises: machining at least four (4) pockets in upper portions of a thermal shield circumferentially about a core barrel of a nuclear reactor to receive key-wave inserts; tapping bolt holes in the pockets of the thermal shield to receive bolts; positioning key-wave inserts into the pockets of the thermal shield to be bolted in place with the bolt holes; machining dowel holes at least partially through the positioned key-way inserts and the thermal shield to receive dowel pins; positioning dowel pins in the dowel holes in the key-way insert and thermal shield to tangentially restrain movement of the thermal shield relative to the core barrel; sliding limiter keys into the key-way inserts and bolting the limiter keys to the core barrel to tangentially restrain movement of the thermal shield relative and the core barrel while allowing radial and axial movement of the thermal shield relative to the core barrel; machining dowel holes through the limiter key and at least partially through the core barrel to receive dowel pins; positioning dowel pins in the dowel holes in the limiter key and core barrel to restrain tangential movement of the thermal shield relative to the core barrel of the nuclear reactor

  18. Methods of preventing fast breeder reactor shield plug from adhesion of sodium

    International Nuclear Information System (INIS)

    Hashiguchi, Koh; Hara, Johji; Nei, Hiromichi; Daiku, Motoichi; Wagatsuma, Kenji

    1980-01-01

    The shield plug, which is located at the upper part of a reactor vessel of a sodium-cooled fast breeder reactor, is composed of a rotating and a stationary plug. Fuel exchange is performed easily by the rotation of the rotating plug. The vapor or mist of sodium evaporated from liquid sodium deposits on the gap surfaces of the rotating and stationary plugs and is solidified or changed into a solid reactant. If such condition continues for a long period, harmful effects are exerted on the fuel exchange operation. In order to develop methods of preventing the sodium deposition, investigation was made on the phenomenon of sodium deposition. By the use of the testing equipment simulating the shield plug, deposition tests and specimen measurements were made for different gap width test section size and condition. On the basis of the effects of these parameters clarified by experiments, the effectiveness of three kinds of mechanism for preventing sodium deposition were investigated experimentally. In addition, by using a thermo-siphon analogical model, analysis was performed to deduce experimental equations for sodium deposition. (author)

  19. Study of filtration of reactor beam of neutrons with cadmium in a multilayer shielding containing boron carbide

    International Nuclear Information System (INIS)

    Megahid, R.M.; El-Kall, E.H.

    1986-01-01

    Experimental measurements were carried out to study the effect of cadmium on the distribution and attenuation of reactor thermal neutrons emitted from a reactor core and the new thermal neutrons produced in a heterogeneous shield of water, iron, iron + B 4 C and ordinary concrete. The measurements were made using a reactor beam of neutrons filtered with cadmium emitted from one of the horizontal channels of ET-RR-1. It is found that the presence of cadmium sheet at channel exit causes a marked decrease in the thickness of the shield required to attenuate the thermal neutron flux by a certain factor. 12 refs., 5 figures. (author)

  20. Analysis of crack-formation in the shielding concrete of a TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Linsbauer, H.; Maydl, P.

    1978-01-01

    Within a short time after the start-up of the reactor several cracks appeared at the concrete surface and the number and width of the cracks had grown till now. Experimental and theoretical analysis were made in order to investigate the origin of the cracks and to prevent further crack increase. Crack movement was measured by inductive gages and simultaneously the temperature of the cooling water in the reactor tank at the top and at the bottom as well as the air and the concrete temperature were recorded. The calculations of the thermal stresses were made in two independent ways: 1. Analytically, simulating the shielding concrete as an infinite hollow cylinder of constant thickness and 2. Using the Finite Element method, for a better description of the geometry. It was concluded that the cracks of the shielding concrete are exclusively caused by the thermal stresses. The thermal insulation at the lower part of the shielding is not effective. The structural system of the shielding concrete as a monolithic block without joints produces automatically tensile stresses

  1. Numerical simulation of a reinforced concrete shield around a nuclear reactor

    International Nuclear Information System (INIS)

    Mahama, Mumuni Salifu

    1996-02-01

    Ghana currently operates a Research Reactor and other nuclear facilities including a Gamma Irradiation Facility, a Radiographic Non-Destructive Testing laboratory and would be operating in the nearest future a Radiotherapy Centre. Each of these has a concrete radiation shield as a major safety device. In carrying out its functions, a concrete radiation shield may be subjected to thermal and mechanical stresses. A facility for analysing these stresses is desirable. Two computer codes have been developed under this programme for radiation shielding computation and stress analysis of cylindrical reactor shields. (au)

  2. Engineering and Fabrication Considerations for Cost-Effective Space Reactor Shield Development

    International Nuclear Information System (INIS)

    Berg, Thomas A.; Disney, Richard K.

    2004-01-01

    Investment in developing nuclear power for space missions cannot be made on the basis of a single mission. Current efforts in the design and fabrication of the reactor module, including the reactor shield, must be cost-effective and take into account scalability and fabricability for planned and future missions. Engineering considerations for the shield need to accommodate passive thermal management, varying radiation levels and effects, and structural/mechanical issues. Considering these challenges, design principles and cost drivers specific to the engineering and fabrication of the reactor shield are presented that contribute to lower recurring mission costs

  3. Gamma dose from activation of internal shields in IRIS reactor.

    Science.gov (United States)

    Agosteo, Stefano; Cammi, Antonio; Garlati, Luisella; Lombardi, Carlo; Padovani, Enrico

    2005-01-01

    The International Reactor Innovative and Secure is a modular pressurised water reactor with an integral design. This means that all the primary system components, such as the steam generators, pumps, pressuriser and control rod drive mechanisms, are located inside the reactor vessel, which requires a large diameter. For the sake of better reliability and safety, it is desirable to achieve the reduction of vessel embrittlement as well as the lowering of the dose beyond the vessel. The former can be easily accomplished by the presence of a wide downcomer, filled with water, which surrounds the core region, while the latter needs the presence of additional internal shields. An optimal shielding configuration is under investigation, for reducing the ex-vessel dose due to activated internals and for limiting the amount of the biological shielding. MCNP 4C calculations were performed to evaluate the neutron and the gamma dose during operation and the 60Co activation of various shields configurations. The gamma dose beyond the vessel from activation of its structural components was estimated in a shutdown condition, with the Monte Carlo code FLUKA 2002 and the MicroShield software. The results of the two codes are in agreement and show that the dose is sufficiently low, even without an additional shield.

  4. Gamma dose from activation of internal shields in IRIS reactor

    International Nuclear Information System (INIS)

    Agosteo, S.; Cammi, A.; Garlati, L.; Lombardi, C.; Padovani, E.

    2005-01-01

    The International Reactor Innovative and Secure is a modular pressurised water reactor with an integral design. This means that all the primary system components, such as the steam generators, pumps, pressurizer and control rod drive mechanisms, are located inside the reactor vessel, which requires a large diameter. For the sake of better reliability and safety, it is desirable to achieve the reduction of vessel embrittlement as well as the lowering of the dose beyond the vessel. The former can be easily accomplished by the presence of a wide downcomer, filled with water, which surrounds the core region, while the latter needs the presence of additional internal shields. An optimal shielding configuration is under investigation, for reducing the ex-vessel dose due to activated internals and for limiting the amount of the biological shielding. MCNP 4C calculations were performed to evaluate the neutron and the gamma dose during operation and the 60 Co activation of various shields configurations. The gamma dose beyond the vessel from activation of its structural components was estimated in a shutdown condition, with the Monte Carlo code FLUKA 2002 and the MicroShield software. The results of the two codes are in agreement and show that the dose is sufficiently low, even without an additional shield. (authors)

  5. Monte Carlo based radial shield design of typical PWR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gul, Anas; Khan, Rustam; Qureshi, M. Ayub; Azeem, Muhammad Waqar; Raza, S.A. [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan). Dept. of Nuclear Engineering; Stummer, Thomas [Technische Univ. Wien (Austria). Atominst.

    2016-11-15

    Neutron and gamma flux and dose equivalent rate distribution are analysed in radial and shields of a typical PWR type reactor based on the Monte Carlo radiation transport computer code MCNP5. The ENDF/B-VI continuous energy cross-section library has been employed for the criticality and shielding analysis. The computed results are in good agreement with the reference results (maximum difference is less than 56 %). It implies that MCNP5 a good tool for accurate prediction of neutron and gamma flux and dose rates in radial shield around the core of PWR type reactors.

  6. Reactor vessel head permanent shield

    International Nuclear Information System (INIS)

    Hankinson, M.F.; Leduc, R.J.; Richard, J.W.; Malandra, L.J.

    1989-01-01

    A nuclear reactor is described comprising: a nuclear reactor pressure vessel closure head; control rod drive mechanisms (CRDMs) disposed within the closure head so as to project vertically above the closure head; cooling air baffle means surrounding the control rod drive mechanisms for defining cooling air paths relative to the control rod drive mechanisms; means defined within the periphery of the closure head for accommodating fastening means for securing the closure head to its associated pressure vessel; lifting lugs fixedly secured to the closure head for facilitating lifting and lowering movements of the closure head relative to the pressure vessel; lift rods respectively operatively associated with the plurality of lifting lugs for transmitting load forces, developed during the lifting and lowering movements of the closure head, to the lifting lugs; upstanding radiation shield means interposed between the cooling air baffle means and the periphery of the enclosure head of shielding maintenance personnel operatively working upon the closure head fastening means from the effects of radiation which may emanate from the control rod drive mechanisms and the cooling air baffle means; and connecting systems respectively associated with each one of the lifting lugs and each one of the lifting rods for connecting each one of the lifting rods to a respective one of each one of the lifting lugs, and for simultaneously connecting a lower end portion of the upstanding radiation shield means to each one of the respective lifting lugs

  7. Thermal shielding device in LMFBR type reactors

    International Nuclear Information System (INIS)

    Nakamura, Hiroshi.

    1985-01-01

    Purpose: To improve the soundness and earthquake proofness of mounting structures to a reactor vessel in a thermal shielding device comprising a plurality of tightly closed casings evacuated or shield with heat insulation gases, by reducing the wall thickness and weight of the casing. Constitution: the thermal shielding body comprises tightly closed casings and compressing core materials for preventing the deformation of the casings. The tightly closed casing is in the shape of a hollow vessel, completely sealed in gastight manner, and evacuated or sealed with heat insulation gases at a low pressure of about less than 0.5 kg/cm 2 G, such that the inner pressure is lower than the outer pressure. Compressing core materials made of porous metals or porous ceramics are contained to the inside of the casing. In this way, the wall thickness of the tightly closed casing can be reduced significantly as compared with the conventional case, whereby the mounting work on the site to the reactor container on the field can remarkably be improved and high reliability can be maintained at the mounting portion. (Kamimura, M.)

  8. Summary of the fifth international conference on reactor shielding

    International Nuclear Information System (INIS)

    Roussin, R.W.; Abbott, L.S.; Bartine, D.E.

    1977-01-01

    The Fifth International Conference on Reactor Shielding was held April 18-23, 1977 in Knoxville, Tennessee. The meeting was the largest in the series and attracted participants from 34 countries. The 10 invited papers and 10 of the contributed papers, selected as being representative of the Conference by the Technical Program Committee, are published in this issue of ATOMKERNENERGIE. This collection of papers demonstrates that the field of nuclear reactor shielding has developed into a mature discipline while retaining a definite vitality. (orig.) [de

  9. Comparison of In-Vessel Shielding Design Concepts between Sodium-cooled Fast Burner Reactor and the Sodium-cooled Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Yun, Sunghwan; Kim, Sang Ji

    2015-01-01

    In this study, quantities of in-vessel shields were derived and compared each other based on the replaceable shield assembly concept for both of the breeder and burner SFRs. Korean Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR) like SFR was used as the reference reactor and calculation method reported in the reference was used for shielding analysis. In this paper, characteristics of in-vessel shielding design were studied for the burner SFR and breeder SFR based on the replaceable shield assembly concept. An in-vessel shield to prevent secondary sodium activation (SSA) in the intermediate heat exchangers (IHXs) is one of the most important structures for the pool type Sodium-cooled Fast Reactor (SFR). In our previous work, two in-vessel shielding design concepts were compared each other for the burner SFR. However, a number of SFRs have been designed and operated with the breeder concept, in which axial and radial blankets were loaded for fuel breeding, during the past several decades. Since axial and radial blanket plays a role of neutron shield, comparison of required in-vessel shield amount between the breeder and burner SFRs may be an interesting work for SFR designer. Due to the blanket, the breeder SFR showed better performance in axial neutron shielding. Hence, 10.1 m diameter reactor vessel satisfied the design limit of SSA at the IHXs. In case of the burner SFR, due to more significant axial fast neutron leakage, 10.6 m diameter reactor vessel was required to satisfy the design limit of SSA at the IHXs. Although more efficient axial shied such as a mixture of ZrH 2 and B 4 C can improve shielding performance of the burner SFR, additional fabrication difficulty may mitigate the advantage of improved shielding performance. Therefore, it can be concluded that the breeder SFR has better characteristic in invessel shielding design to prevent SSA at the IHXs than the burner SFR in the pool-type reactor

  10. Second preliminary design of JAERI experimental fusion reactor (JXFR)

    International Nuclear Information System (INIS)

    Sako, Kiyoshi; Tone, Tatsuzo; Seki, Yasushi; Iida, Hiromasa; Yamato, Harumi

    1979-06-01

    Second preliminary design of a tokamak experimental fusion reactor to be built in the near future has been performed. This design covers overall reactor system including plasma characteristics, reactor structure, blanket neutronics radiation shielding, superconducting magnets, neutral beam injector, electric power supply system, fuel recirculating system, reactor cooling and tritium recovery systems and maintenance scheme. Safety analyses of the reactor system have been also performed. This paper gives a brief description of the design as of January, 1979. The feasibility study of raising the power density has been also studied and is shown as appendix. (author)

  11. Shield design and streaming calculations for the sodium cooled PEC reactor

    International Nuclear Information System (INIS)

    Prosperi, M.; Tavoni, R.; Travaglini, N.

    1977-01-01

    This paper summarises the shielding calculations carried out for the PEC reactor. A brief description of calculation methods and of the work carried out to set them up is given; the most representative calculations with the relative isoflux curves are also referred. A general outline is then given for the main shielding problems of the PEC reactor

  12. Radiation protection/shield design

    International Nuclear Information System (INIS)

    Disney, R.K.

    1977-01-01

    Radiation protection/shielding design of a nuclear facility requires a coordinated effort of many engineering disciplines to meet the requirements imposed by regulations. In the following discussion, the system approach to Clinch River Breeder Reactor Plant (CRBRP) radiation protection will be described, and the program developed to implement this approach will be defined. In addition, the principal shielding design problems of LMFBR nuclear reactor systems will be discussed in realtion to LWR nuclear reactor system shielding designs. The methodology used to analyze these problems in the U.S. LMFBR program, the resultant design solutions, and the experimental verification of these designs and/or methods will be discussed. (orig.) [de

  13. Up-dating of the RA-0 reactor shielding. Gamma and neutron isodoses

    International Nuclear Information System (INIS)

    Murua, Carlos A.; Chautemps, Norma A.; Ackerley, Alejandro F.; Alexeiew, Vladimiro

    1999-01-01

    A comparative analysis of the historical shielding configurations of the RA-0 reactor is performed and the comparison methodology is described. The gamma and neutron dose mapping of the last two stages of the reactor shielding has been carried out and the results are analysed

  14. Shielding assessment of the ETRR-1 Reactor Under power upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, E E [Reactor Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    The assessment of existing shielding of the ETRR-1 reactor in case of power upgrading is presented and discussed. It was carried out using both the present EK-10 type fuel elements and some other types of fuel elements with different enrichments. The shielding requirements for the ETRR-1 when power is upgraded are also discussed. The optimization curves between the upgraded reactor power and the shield thickness are presented. The calculation have been made using the ANISN code with the DLC-75 data library. The results showed that the present shield necessitates an additional layer of steel with thickness of 10.20 and 25 cm. When its power is upgraded to 3, 6 and 10 MWt in order to cutoff all neutron energy groups to be adequately safe under normal operating conditions. 4 figs.

  15. Shielding and maintainability in an experimental tokamak

    International Nuclear Information System (INIS)

    Abdou, M.A.; Fuller, G.; Hager, E.R.; Vogelsang, W.F.

    1979-01-01

    This paper presents the results of an attempt to develop an understanding of the various factors involved. This work was performed as a part of the task assigned to one of the expert groups on the International Tokamak Reactor (INTOR). However, the results of this investigation are believed to be generally applicable to the broad class of the next generation of experimental tokamak facilities such as ETF. The shielding penalties for requiring personnel access are quantified. This is followed by a quantitative estimate of the benefits associated with personnel access. The penalties are compared to the benefits and conclusions and recommendations are developed on resolving the issue

  16. Calculation of neutron fluxes in biological shield of the TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Bozic, M.; Zagar, T.; Ravnik, M.

    2001-01-01

    The complete calculation of neutron fluxes in biological shield and verification with experimental results is presented. Calculated results are obtained with TORT code (TORT-Three Dimensional Oak Ridge Discrete Ordinates Neutron/Photon Transport Code). Experimental results used for comparison are available from irradiation experiment with selected type of concrete and other materials in irradiation channel 4 in TRIGA Mark II reactor. These experimental results were used as a benchmark. Homogeneous type of problem (without inserted irradiation channel) and problem with asymmetry (inserted beam port 4, filled with different materials) were of interest for neutron flux calculation. Deviation from material data set up as original parameters is also considered (first of all presence of water in concrete and density of concrete) for type of concrete in biological shield and for selected type of concrete in irradiation channel. BUGLE-96 (47 neutron energy groups) library is used. Excellent agreement between calculated and experimental results for reaction rate is received.(author)

  17. Remote maintenance design for Fusion Experimental Reactor (FER)

    International Nuclear Information System (INIS)

    Tachikawa, K.; Iida, H.; Nishio, S.; Tone, T.; Aota, T.; Iwamoto, T.; Niikura, S.; Nishizawa, H.

    1984-01-01

    Design of Fusion Experimental Reactor, FER, has been conducted by Japan Atomic Energy Research Institute (JAERI) since 1981. Two typical reactors can be classified in general from the viewpoints of remote maintenance among four design concepts of FER. In the case of the type 1 FER, the torus module consists of shield structure and blanket, and the connective joints between toruses provided at the outer region of the reactor. As for the type 2 FER, the shield structure is joined with the vacuum cryostat, and only the blanket module is allowed to move, but connection between toruses are located in the inner region of the reactor. Comparing type 1 with type 2 FER, this paper describes on the remote maintenance of FER including reactor configurations, work procedures, remote systems/equipments, repairing facility and future R and D problems. Reviewing design studies and investigation for the existing robotics technologies, R and D for FER remote maintenance technology should be performed under the reasonable long-term program. The main items of remote technology required to start urgently are multi-purpose manipulator system with performance of dextrousity, tele-viewing system which reduces operator fatigue and remote tests for commercially available components

  18. Evaluation of ilmenite serpentine concrete and ordinary concrete as nuclear reactor shielding

    International Nuclear Information System (INIS)

    Abulfaraj, W.H.; Kamal, S.M.

    1994-01-01

    The present study involves adapting a formal decision methodology to the selection of alternative nuclear reactor concrete shielding. Multiattribute utility theory is selected to accommodate decision maker's preferences. Multiattribute utility theory (MAU) is here employed to evaluate two appropriate nuclear reactor shielding concretes in terms of effectiveness to determine the optimal choice in order to meet the radiation protection regulations. These concretes are Ordinary concrete (O.C.) and Illmenite Serpentile concrete (I.S.C.). These are normal weight concrete and heavy weight heat resistive concrete, respectively. The effectiveness objective of the nuclear reactor shielding is defined and structured into definite attributes and subattributes to evaluate the best alternative. Factors affecting the decision are dose received by reactor's workers, the material properties as well as cost of concrete shield. A computer program is employed to assist in performing utility analysis. Based upon data, the result shows the superiority of Ordinary concrete over Illmenite Serpentine concrete. (Author)

  19. Review of ORNL-TSF shielding experiments for the gas-cooled Fast Breeder Reactor Program

    International Nuclear Information System (INIS)

    Abbott, L.S.; Ingersoll, D.T.; Muckenthaler, F.J.; Slater, C.O.

    1982-01-01

    During the period between 1975 and 1980 a series of experiments was performed at the ORNL Tower Shielding Facility in support of the shield design for a 300-MW(e) Gas Cooled Fast Breeder Demonstration Plant. This report reviews the experiments and calculations, which included studies of: (1) neutron streaming in the helium coolant passageways in the GCFR core; (2) the effectiveness of the shield designed to protect the reactor grid plate from radiation damage; (3) the adequacy of the radial shield in protecting the PCRV (prestressed concrete reactor vessel) from radiation damage; (4) neutron streaming between abutting sections of the radial shield; and (5) the effectiveness of the exit shield in reducing the neutron fluxes in the upper plenum region of the reactor

  20. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-01-01

    Conceptual Design of Fusion Experimental Reactor (FER) of which the objective will be to realize self-ignition with D-T reaction is reported. Mechanical Configurations of FER are characterized with a noncircular plasma and a double-null divertor. The primary aim of design studies is to demonstrate fissibility of reactor structures as compact and simple as possible with removable torus sectors. The structures of each component such as a first-wall, blanket, shielding, divertor, magnet and so on have been designed. It is also discussed about essential reactor plant system requirements. In addition to the above, a brief concept of a steady-state reactor based on RF current drive is also discussed. The main aim, in this time, is to examine physical studies of a possible RF steady-state reactor. (author)

  1. Research reactor RB, technical characteristics and experimental possibilities

    International Nuclear Information System (INIS)

    Sotic, O.; Vranic, S.

    1978-01-01

    Nuclear research reactor RB tn the Nuclear Engineering Laboratory at the Institute of Nuclear Sciences 'Boris Kidric' in Vinca is the first reactor system built in Yugoslavia in 1958. In this report, the basic technical characteristics of this reactor are described, as well as the experimental possibilities it offers to the users. Its relatively simple construction and flexibility enables direct measurements of a series of physical parameters, and the absence of the biological protection shield makes it very useful for Various biological and other irradiations and dosimetric measurements Where strong neutron source is required. (author) [sr

  2. PKI, Gamma Radiation Reactor Shielding Calculation by Point-Kernel Method

    International Nuclear Information System (INIS)

    Li Chunhuai; Zhang Liwu; Zhang Yuqin; Zhang Chuanxu; Niu Xihua

    1990-01-01

    1 - Description of program or function: This code calculates radiation shielding problem of gamma-ray in geometric space. 2 - Method of solution: PKI uses a point kernel integration technique, describes radiation shielding geometric space by using geometric space configuration method and coordinate conversion, and makes use of calculation result of reactor primary shielding and flow regularity in loop system for coolant

  3. Technical specifications for the bulk shielding reactor

    International Nuclear Information System (INIS)

    1986-05-01

    This report provides information concerning the technical specifications for the Bulk Shielding Reactor. Areas covered include: safety limits and limiting safety settings; limiting conditions for operation; surveillance requirements; design features; administrative controls; and monitoring of airborne effluents. 10 refs

  4. Neutronic reactor thermal shield

    International Nuclear Information System (INIS)

    Lowe, P.E.

    1976-01-01

    A shield for a nuclear reactor includes at least two layers of alternating wide and narrow rectangular blocks so arranged that the spaces between blocks in adjacent layers are out of registry, each block having an opening therein equally spaced from the sides of the blocks and nearer the top of the block than the bottom, the distance from the top of the block to the opening in one layer being different from this distance in adjacent layers, openings in blocks in adjacent layers being in registry. 1 claim, 7 drawing figures

  5. Investigation of water content in primary upper shield of high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Sumita, Junya; Sawa, Kazuhiro; Mogi, Haruyoshi; Itahashi, Shuuji; Kitami, Toshiyuki; Akutu, Youichi; Fuchita, Yasuhiro; Kawaguchi, Toru; Moriya, Masahiro

    1999-09-01

    A primary upper shield of the High Temperature Engineering Test Reactor (HTTR) is composed of concrete (grout) which is packed into iron frames. The main function of the primary upper shield is to attenuate neutron and gamma ray from the core, that leads to satisfy dose equivalent rate limit of operating floor and stand-pipe room. Water content in the concrete is one of the most important things because it strongly affects neutron-shielding ability. Then, we carried out out-of-pile experiments to investigate relationship between temperature and water content in the concrete. Based on the experimental results, a hydrolysis-diffusion model was developed to investigate water release behavior from the concrete. The model showed that water content used for shielding design in the primary upper shield of the HTTR will be maintained if temperature during operating life is under 110degC. (author)

  6. Loss of coolant analysis for the tower shielding reactor 2

    International Nuclear Information System (INIS)

    Radcliff, T.D.; Williams, P.T.

    1990-06-01

    The operational limits of the Tower Shielding Reactor-2 (TSR-2) have been revised to account for placing the reactor in a beam shield, which reduces convection cooling during a loss-of-coolant accident (LOCA). A detailed heat transfer analysis was performed to set operating time limits which preclude fuel damage during a LOCA. Since a LOCA is survivable, the pressure boundary need not be safety related, minimizing seismic and inspection requirements. Measurements of reactor component emittance for this analysis revealed that aluminum oxidized in water may have emittance much higher than accepted values, allowing higher operating limits than were originally expected. These limits could be increased further with analytical or hardware improvements. 5 refs., 7 figs

  7. Technical specifications: Tower Shielding Reactor II

    International Nuclear Information System (INIS)

    1979-02-01

    The technical specifications define the key limitations that must be observed for safe operation of the Tower Shielding Reactor II (TSR-II) and an envelope of operation within which there is reasonable assurance that these limits cannot be exceeded. The specifications were written to satisfy the requirements of the Department of Energy (DOE) Manual Chapter 0540, September 1, 1972

  8. Status of reactor shielding research in the United States

    International Nuclear Information System (INIS)

    Bartine, D.E.

    1983-01-01

    Shielding research in the United States continues to place emphasis on: (1) the development and refinement of shielding design calculational methods and nuclear data; and (2) the performance of confirmation experiments, both to evaluate specific design concepts and to verify specific calculational techniques and input data. The successful prediction of the radiation levels observed within the now-operating Fast Flux Test Facility (FFTF) has demonstrated the validity of this two-pronged approach, which has since been applied to US fast breeder reactor programs and is now being used to determine radiation levels and possible further shielding needs at operating light water reactors, especially under accident conditions. A similar approach is being applied to the back end of the fission fuel cycle to verify that radiation doses at fuel element storage and transportation facilities and within fuel reprocessing plants are kept at acceptable levels without undue economic penalties

  9. Space reactor system and subsystem investigations: assessment of technology issues for the reactor and shield subsystem. SP-100 Program

    International Nuclear Information System (INIS)

    Atkins, D.F.; Lillie, A.F.

    1983-01-01

    As part of Rockwell's effort on the SP-100 Program, preliminary assessment has been completed of current nuclear technology as it relates to candidate reactor/shield subsystems for the SP-100 Program. The scope of the assessment was confined to the nuclear package (to the reactor and shield subsystems). The nine generic reactor subsystems presented in Rockwell's Subsystem Technology Assessment Report, ESG-DOE-13398, were addressed for the assessment

  10. First preliminary design of an experimental fusion reactor

    International Nuclear Information System (INIS)

    1977-09-01

    A preliminary design of a tokamak experimental fusion reactor to be built in the near future is under way. The goals of the reactor are to achieve reactor-level plasma conditions for a sufficiently long operation period and to obtain design, construction and operational experience for the main components of full-scale power reactors. This design covers overall reactor system including plasma characteristics, reactor structure, blanket neutronics, shielding, superconducting magnets, neutral beam injector, electric power supply system, fuel circulating system, reactor cooling system, tritium recovery system and maintenance scheme. The main design parameters are as follows: the reactor fusion power 100 MW, torus radius 6.75 m, plasma radius 1.5 m, first wall radius 1.75 m, toroidal magnet field on axis 6 T, blanket fertile material Li 2 O, coolant He, structural material 316SS and tritium breeding ratio 0.9. (auth.)

  11. Multi-objective optimization of a compact pressurized water nuclear reactor computational model for biological shielding design using innovative materials

    Energy Technology Data Exchange (ETDEWEB)

    Tunes, M.A., E-mail: matheus.tunes@usp.br [Department of Metallurgical and Materials Engineering, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2463 – CEP 05508 – 030 São Paulo (Brazil); Oliveira, C.R.E. de, E-mail: cassiano@unm.edu [Department of Nuclear Engineering, The University of New Mexico, Farris Engineering Center, 221, Albuquerque, NM 87131-1070 (United States); Schön, C.G., E-mail: schoen@usp.br [Department of Metallurgical and Materials Engineering, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2463 – CEP 05508 – 030 São Paulo (Brazil)

    2017-03-15

    Highlights: • Use of two n-γ transport codes leads to optimized model of compact nuclear reactor. • It was possible to safely reduce both weight and volume of the biological shielding. • Best configuration obtained by using new composites for both γ and n attenuation. - Abstract: The aim of the present work is to develop a computational model of a compact pressurized water nuclear reactor (PWR) to investigate the use of innovative materials to enhance the biological shielding effectiveness. Two radiation transport codes were used: the first one – MCNP – for the PWR design and the GEM/EVENT to simulate (in a 1D slab) the behavior of several materials and shielding thickness on gamma and neutron radiation. Additionally MATLAB Optimization Toolbox was used to provide new geometric configurations of the slab aiming at reducing the volume and weight of the walls by means of a cost/objective function. It is demonstrated in the reactor model that the dose rate outside biological shielding has been reduced by one order of magnitude for the optimized model compared with the initial configuration. Volume and weight of the shielding walls were also reduced. The results indicated that one-dimensional deterministic code to reach an optimized geometry and test materials, combined with a three-dimensional model of a compact nuclear reactor in a stochastic code, is a fast and efficient procedure to test shielding performance and optimization before the experimental assessment. A major outcome of this research is that composite materials (ECOMASS 2150TU96) may replace (with advantages) traditional shielding materials without jeopardizing the nuclear power plant safety assurance.

  12. Tools and applications for core design and shielding in fast reactors

    International Nuclear Information System (INIS)

    Rachamin, Reuven

    2013-01-01

    Outline: • Modeling of SFR cores using the Serpent-DYN3D code sequence; • Core shielding assessment for the design of FASTEF-MYRRHA; • Neutron shielding studies on an advanced Molten Salt Fast Reactor (MSFR) design

  13. Structural design of shield-integrated thin-wall vacuum vessel and manufacturing qualification tests for International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Shimizu, Katsusuke; Shibui, Masanao; Koizumi, Koichi; Kanamori, Naokazu; Nishio, Satoshi; Sasaki, Takashi; Tada, Eisuke

    1992-09-01

    Conceptual design of shield-integrated thin-wall vacuum vessel has been done for ITER (International Thermonuclear Experimental Reactor). The vacuum vessel concept is based on a thin-double-wall structure, which consists of inner and outer plates and rib stiffeners. Internal shielding structures, which provide neutron irradiation shielding to protect TF coils, are set up between the inner plate and the outer plate of the vessel to avoid complexity of machine systems such as supporting systems of blanket modules. The vacuum vessel is assembled/disassembled by remote handling, so that welding joints are chosen as on-site joint method from reliability of mechanical strength. From a view point of assembling TF coils, the vacuum vessel is separated at the side of port, and is divided into 32 segments similar to the ITER-CDA reference design. Separatrix sweeping coils are located in the vacuum vessel to reduce heat fluxes onto divertor plates. Here, the coil structure and attachment to the vacuum vessel have been investigated. A sectorized saddle-loop coil is available for assembling and disassembling the coil. To support electromagnetic loads on the coils, they are attached to the groove in the vacuum vessel by welding. Flexible multi-plate supporting structure (compression-type gravity support), which was designed during CDA, is optimized by investigating buckling and frequency response properties, and concept on manufacturing and fabrication of the gravity support are proposed. Partial model of the vacuum vessel is manufactured for trial, so that fundamental data on welding and fabrication are obtained. From mechanical property tests of weldment and partial models, mechanical intensity and behaviors of the weldment are obtained. Informations on FEM-modeling are obtained by comparing analysis results with experimental results. (author)

  14. Calculation of parameters for an iron shield experiment

    International Nuclear Information System (INIS)

    Gavazza, S.

    1986-01-01

    In this text is carreid out the evaluation of radiation transport methodology, comparying the calculated reactions and dose rates, for neutrons and gama-rays, with the experimental measurements obtained on iron shield, irradiated in YAYOI reactor. Were employed the ENDF/B-IV and VITAMIN-C libraries and the AMPX-II modular system for generation of cross sections, collapsed by the ANISN code. The tranpsort calculations were made by using the DOT 3.5 code, adjusting the spectrum of the iron shield boundary source to the reaction and doses rates, measured at the beginning of shield. The distributions calculated for neutrons and gamma-rays, on iron shield, presented reasonable concordance with the experimental measurements. Finally, is presented a proposal for setting up of an experimental arrangement, using the IEA-R1 reactor, with the purpose of lay down a shielding benchmark. (Author) [pt

  15. Dosimetry and shielding

    International Nuclear Information System (INIS)

    Farinelli, U.

    1977-01-01

    Today, reactor dosimetry and shielding have wide areas of overlap as concerns both problems and methods. Increased interchange of results and know-how would benefit both. The areas of common interest include calculational methods, sensitivity studies, theoretical and experimental benchmarks, cross sections and other nuclear data, multigroup libraries and procedures for their adjustment, experimental techniques and damage functions. This paper reviews the state-of-the-art and the latest development in each of these areas as far as shielding is concerned, and suggests a number of interactions that could be profitable for reactor dosimetry. Among them, re-evaluation of the potentialities of calculational methods (in view of the recent developments) in predicting radiation environments of interest; the application of sensitivity analysis to dosimetry problems; a common effort in the field of theoretical benchmarks; the use of the shielding one-material propagation experiments as reference spectra for detector cross sections; common standardization of the detector nuclear data used in both fields; the setting up of a common (or compatible) multigroup structure and library applicable to shielding, dosimetry and core physics; the exchange of information and experience in the fields of cross section errors, correlations and adjustment; and the intercomparison of experimental techniques

  16. Experimental validation of thermal design of top shield for a pool type SFR

    International Nuclear Information System (INIS)

    Aithal, Sriramachandra; Babu, V. Rajan; Balasubramaniyan, V.; Velusamy, K.; Chellapandi, P.

    2016-01-01

    Highlights: • Overall thermal design of top shield in a SFR is experimentally verified. • Air jet cooling is effective in ensuring the temperatures limits for top shield. • Convection patterns in narrow annulus are in line with published CFD results. • Wire mesh insulation ensures gradual thermal gradient at top portion of main vessel. • Under loss of cooling scenario, sufficient time is available for corrective action. - Abstract: An Integrated Top Shield Test Facility towards validation of thermal design of top shield for a pool type SFR has been conceived, constructed & commissioned. Detailed experiments were performed in this experimental facility having full-scale features. Steady state temperature distribution within the facility is measured for various heater plate temperatures in addition to simulating different operating states of the reactor. Following are the important observations (i) jet cooling system is effective in regulating the roof slab bottom plate temperature and thermal gradient across roof slab simulating normal operation of reactor, (ii) wire mesh insulation provided in roof slab-main vessel annulus is effective in obtaining gradual thermal gradient along main vessel top portion and inhibiting the setting up of cellular convection within annulus and (iii) cellular convection with four distinct convective cells sets in the annular gap between roof slab and small rotatable plug measuring ∼ϕ4 m in diameter & gap width varying from 16 mm to 30 mm. Repeatability of results is also ensured during all the above tests. The results presented in this paper is expected to provide reference data for validation of thermal hydraulic models in addition to serving as design validation of jet cooling system for pool type SFR.

  17. A Shielding Analysis of Hot Cell for a 10 MW Research Reactor

    International Nuclear Information System (INIS)

    Alnajjar, Alaaddin; Park, Chang Je; Roh, Gyuhong; Lee, Byunchul

    2013-01-01

    In this paper, a shielding analysis has been performed for the hot cell in a 10 MW research reactor. Two kinds of shielding analysis code systems are used such as MCNPX2.7 and M-Shield7. The first one is Monte Carlo stochastic code and the second one is a deterministic point kernel code. The results are compared in this study. In order to obtain source term, the ORIGEN-S code is used for different kinds of source. Four kinds of sources are taken into consideration. From the simulation, it is also proposed that the proper thickness of shielding material and the maximum source capacity in the hot cell. This study shows preliminary analysis results of hot cell shielding for 10MW research reactor. Total four different source terms are considered such as spent fuel assembly, Ir-192, Mo-99, and I-131. For shielding material, general concrete, heavy concrete, and lead are used. MCNPX code is mainly used for a simplified hot cell model and the result are nearly consistent when compared with M-Shield code. Required shielding thickness and the hot cell capacity are also obtained for various criterion of surface dose rates

  18. TIBER II/ETR [Engineering Test Reactor] nuclear shielding and optional tritium breeding system: An overview

    International Nuclear Information System (INIS)

    Lee, J.D.; Sawan, M.

    1987-01-01

    TIBER II, the Tokamak Ignition/Burn Experimental Reactor II, is a design concept developed as the US candidate for an International Engineering Test Reactor (ETR). An important objective of this design is to minimize cost by minimizing major radius while providing a wall loading greater than 1.0 MW/m2 and a total fluence greater than 3.0 MWY/m2 needed for blanket module testing. The shielding required for the superconducting TF coils is an important element in setting TIBER II's 3.0m major radius. 6 refs., 1 fig., 1 tab

  19. Preliminary shielding design evaluation for reactor assembly of SMART

    International Nuclear Information System (INIS)

    Kim, Kyo Youn; Kang, Chang M.; Kim, Ha Yong; Zee, Sung Quun; Chang, Moon Hee

    1999-03-01

    This report describes a preliminary evaluations of SMART shielding design near the reactor core by using the DORT two-dimensional discrete ordinates transport code. The results indicate that maximum neutron fluence at the bottom of reactor vessel is 1.64x10 17 n/cm 2 and that on the radial surface of reactor vessel is 6.71x10 16 n/cm 2 . These results meet the requirement, 1.0x10 20 n/cm 2 , in 10 CFR 50.61 and the integrity of SMART reactor vessel is confirmed during the lifetime of reactor. (Author). 20 refs., 11 tabs., 8 figs

  20. Uranium self-shielding in fast reactor blankets

    Energy Technology Data Exchange (ETDEWEB)

    Kadiroglu, O.K.; Driscoll, M.J.

    1976-03-01

    The effects of heterogeneity on resonance self-shielding are examined with particular emphasis on the blanket region of the fast breeder reactor and on its dominant reaction--capture in /sup 238/U. The results, however, apply equally well to scattering resonances, to other isotopes (fertile, fissile and structural species) and to other environments, so long as the underlying assumptions of narrow resonance theory apply. The heterogeneous resonance integral is first cast into a modified homogeneous form involving the ratio of coolant-to-fuel fluxes. A generalized correlation (useful in its own right in many other applications) is developed for this ratio, using both integral transport and collision probability theory to infer the form of correlation, and then relying upon Monte Carlo calculations to establish absolute values of the correlation coefficients. It is shown that a simple linear prescription can be developed for the flux ratio as a function of only fuel optical thickness and the fraction of the slowing-down source generated by the coolant. This in turn permitted derivation of a new equivalence theorem relating the heterogeneous self-shielding factor to the homogeneous self-shielding factor at a modified value of the background scattering cross section per absorber nucleus. A simple version of this relation is developed and used to show that heterogeneity has a negligible effect on the calculated blanket breeding ratio in fast reactors.

  1. Photon spectrum behind biological shielding of the LVR-15 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Klupak, V.; Viererbl, L.; Lahodova, Z.; Marek, M.; Vins, M. [Research Centre Rez Ltd., Husinec-Rez 130 (Czech Republic)

    2011-07-01

    The LVR-15 reactor is a light water research reactor situated at the Research Centre Rez, near Prague. It operates as a multipurpose facility with a maximum thermal power of 10 MW. The reactor core usually contains from 28 to 32 fuel assemblies with a total mass of {sup 235}U of about 5 kg. Emitted radiation from the fuel caused by fission is shielded by moderating water, a steel reactor vessel, and heavy concrete. This paper deals with measurement and analysis of the gamma spectrum near the outer surface of the concrete wall, behind biological shielding, mainly in the 3- to 10-MeV energy range. A portable HPGe detector with a portable multichannel analyzer was used to measure gamma spectra. The origin of energy lines in gamma detector spectra was identified. (authors)

  2. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-03-01

    A conceptual design study (option C) has been carried out for the fusion experimental reactor (FER). In addition to design of the tokamak reactor and associated systems based on the reference design specifications, feasibility of a water-shield reactor concept was examined as a topical study. The design study for the reference tokamak reactor has produced a reactor concept for the FER, along with major R D items for the concept, based on close examinations on thermal design, electromagnetics, neutronics and remote maintenance. Particular efforts have been directed to the area of electromagnetics. Detailed analyses with close simulation models have been performed on PF coil arrangements and configurations, shell effects of the blanket for plasma position unstability, feedback control, and eddy currents during disruptions. The major design specifications are as follows; Peak fusion power 437 MW Major radius 5.5 m Minor radius 1.1 m Plasma elongation 1.5 Plasma current 5.3 MA Toroidal beta 4 % Field on axis 5.7 T (author)

  3. Status report on the Experimental Boiling Water Reactor (EBWR) Decontamination and Decommissioning (D ampersand D) Project

    International Nuclear Information System (INIS)

    Sears, L.; Garlock, G.; Mencarelli, R.; Fellhauer, C.

    1994-01-01

    ALARON Corporation is under contract, to Argonne National Laboratory - East (ANL-E), to complete the decontamination and decommissioning of the Experimental Boiling Water Reactor (EBWR). The project, begun, in 1986 by ANL-E personnel, is projected to be completed by the end of 1994. The final phase of work was awarded to ALARON in December 1993 with the scope of work including the disassembly and removal of all remaining reactor internals, the reactor vessel, the lead bio-shield, the core liner, and the activated portion of the concrete bio-shield. This paper discusses the work undertaken beginning in January 1994 and continuing through July 1994. During this period the required pre-mobilization documentation was prepared and approved, mobilization was completed, and the reactor internals, reactor vessel, lead bio-shield and core liner were removed. The paper will compare the planned schedule to the actual schedule, discuss problems encountered, review volume reduction techniques and health and safety issues including radiological aspects of the project

  4. Improvement of top shield analysis technology for CANDU 6 reactor

    International Nuclear Information System (INIS)

    Kim, Kyo Yoon; Jin, Young Kwon; Lee, Sung Hee; Moon, Bok Ja; Kim, Yong Il

    1996-07-01

    As for Wolsung NPP unit 1, radiation shielding analysis was performed by using neutron diffusion codes, one-dimensional discrete ordinates code ANISN, and analytical methods. But for Wolsung NPP unit 2, 3, and 4, two-dimensional discrete ordinates code DOT substituted for neutron diffusion codes. In other words, the method of analysis and computer codes used for radiation shielding of CANDU 6 type reactor have been improved. Recently Monte Carlo MCNP code has been widely utilized in the field of radiation physics and other radiation related areas because it can describe an object sophisticately by use of three-dimensional modelling and can adopt continuous energy cross-section library. Nowadays Monte Carlo method has been reported to be competitive to discrete ordinate method in the field of radiation shielding and the former has been known to be superior to the latter for complex geometry problem. However, Monte Carlo method had not been used for radiation streaming calculation in the shielding design of CANDU type reactor. Neutron and gamma radiations are expected to be streamed from calandria through the penetrations to reactivity mechanism deck (R/M deck) because many reactivity control units which are established on R/M deck extend from R/M deck to calandria within penetrations, which are provided by guide tube extensions. More precise estimation of radiation streaming is required because R/M deck is classified as an accessible area where atomic worker can access when necessary. Therefore neutron and gamma dose rates were estimated using MCNP code on the R/M deck in the top shield system of CANDU 6 reactor. 9 tabs., 17 figs., 21 refs. (Author)

  5. Shielding efficiency of metal hydrides and borohydrides in fusion reactors

    DEFF Research Database (Denmark)

    Singh, Vishvanath P.; Badiger, Nagappa M.; Gerward, Leif

    2016-01-01

    at energies 0.015 MeV to15 MeV, and for penetration depths up to 40 mean free paths. Fast-neutron shielding efficiency has been characterized by the effective neutron removal cross-section. It is shown that ZrH2 and VH2 are very good shielding materials for gamma rays and fast neutrons due to their suitable...... combination of low-and high-Z elements. The present work should be useful for the selection and design of blankets and shielding, and for dose evaluation for components in fusion reactors....

  6. Improvements at the biological shielding of BNCT research facility in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Souza, Gregorio Soares de

    2011-01-01

    The technique of neutron capture in boron is a promising technique in cancer treatment, it uses the high LET particles from the reaction 10 B (n, α) 7 Li to destroy cancer cells.The development of this technique began in the mid-'50s and even today it is the object of study and research in various centers around the world, Brazil has built a facility that aims to conduct research in BNCT, this facility is located next to irradiation channel number three at the research nuclear reactor IEA-R1 and has a biological shielding designed to meet the radiation protection standards. This biological shielding was developed to allow them to conduct experiments with the reactor at maximum power, so it is not necessary to turn on and off the reactor to irradiate samples. However, when the channel is opened for experiments the background radiation in the experiments salon increases and this background variation makes it impossible to perform measurements in a neutron diffraction research that utilizes the irradiation channel number six. This study aims to further improve the shielding in order to minimize the variation of background making it possible to perform the research facility in BNCT without interfering with the action of the research group of the irradiation channel number six. To reach this purpose, the code MCNP5, dosimeters and activation detectors were used to plan improvements in the biological shielding. It was calculated with the help of the code an improvement that can reduce the average heat flow in 71.2% ± 13 and verified experimentally a mean reduce of 70 ± 9% in dose due to thermal neutrons. (author)

  7. Radiation shielding provided by residential houses in Japan in reactor accidents accompanied with atmospheric release

    International Nuclear Information System (INIS)

    Yamaguchi, Yasuhiro; Minami, Kentaro

    1991-01-01

    The present report describes the radiation shielding effect of houses in Japan against the radioactive cloud resulting from a major reactor accident accompanied with atmospheric release. The shielding factor of houses, the ratio of indoor exposure rate to outdoor one, has been studied for the semi-infinite and finite clouds which contain γ-emitting radionuclides released from a reactor facility. The shielding factor of houses against γ-rays from the radioactive cloud decreases gradually with release delay time and keeps a minimum during the period from 50 to 1000 hours after reactor shutdown while 133 Xe predominates in the cloud. Radioiodines mixed in the cloud raise slightly the shielding factor, and the factor depends little on the shape of the cloud. A set of shielding factors for the use of emergency planning was consequently proposed as 0.4 for simple ferroconcrete residential house and 0.9 for other ordinary ones. (author)

  8. Shield materials recommended for space power nuclear reactors

    Science.gov (United States)

    Kaszubinski, L. J.

    1973-01-01

    Lithium hydride is recommended for neutron attenuation and depleted uranium is recommended for gamma ray attenuation. For minimum shield weights these materials must be arranged in alternate layers to attenuate the secondary gamma rays efficiently. In the regions of the shield near the reactor, where excessive fissioning occurs in the uranium, a tungsten alloy is used instead. Alloys of uranium such as either the U-0.5Ti or U-8Mo are available to accommodate structural requirements. The zone-cooled casting process is recommended for lithium hydride fabrication. Internal honeycomb reinforcement to control cracks in the lithium hydride is recommended.

  9. Shielding considerations for advanced space nuclear reactor systems

    International Nuclear Information System (INIS)

    Angelo, J.P. Jr.; Buden, D.

    1982-01-01

    To meet the anticipated future space power needs, the Los Alamos National Laboratory is developing components for a compact, 100 kW/sub e/-class heat pipe nuclear reactor. The reactor uses uranium dioxide (UO 2 ) as its fuel, and is designed to operate around 1500 k. Heat pipes are used to remove thermal energy from the core without the use of pumps or compressors. The reactor heat pipes transfer mal energy to thermoelectric conversion elements that are advanced versions of the converters used on the enormously successful Voyager missions to the outer planets. Advanced versions of this heat pipe reactor could also be used to provide megawatt-level power plants. The paper reviews the status of this advanced heat pipe reactor and explores the radiation environments and shielding requirements for representative manned and unmanned applications

  10. Radiological characterization of the concrete biological shield of the APSARA reactor

    OpenAIRE

    Srinivasan Priya; Srinivasan Panchapakesan; Thomas Shibu; Gopalakrishnan R.K.; Goswami A.

    2013-01-01

    The first Indian research reactor, APSARA, was utilized for various R&D programmes from 1956 until its shutdown in 2009. The biological shield of the reactor developed residual activity due to neutron irradiation during the operation of the reactor. Dose rate mapping and in-situ gamma spectrometry of the concrete structures of the reactor pool were carried out. Representative concrete samples collected from various locations were subjected to high-resolution gamma spectrometry analysis....

  11. Monte carlo calculation of the neutron effective dose rate at the outer surface of the biological shield of HTR-10 reactor

    International Nuclear Information System (INIS)

    Remetti, Romolo; Andreoli, Giulio; Keshishian, Silvina

    2012-01-01

    Highlights: ► We deal with HTR-10, that is a helium-cooled graphite-moderated pebble bed reactor. ► We carried out Monte Carlo simulation of the core by MCNP5. ► Extensive use of MCNP5 variance reduction methods has been done. ► We calculated the trend of neutron flux within the biological shield. ► We calculated neutron effective dose at the outer surface of biological shield. - Abstract: Research on experimental reactors, such as HTR-10, provide useful data about potentialities of very high temperature gas-cooled reactors (VHTR). The latter is today rated as one of the six nuclear reactor types involved in the Generation-IV International Forum (GIF) Initiative. In this study, the MCNP5 code has been employed to evaluate the neutron radiation trend vs. the biological shield's thickness and to calculate the neutron effective dose rate at the outer surface. The reactor's geometry has been completely modeled by means of lattices and universes provided by MCNP, even though some approximations were required. Monte Carlo calculations have been performed by means of a simple PC and, as a consequence, in order to obtain acceptable run times, it was made an extensive recourse to variance reduction methods.

  12. Neutron shielding studies on an advanced molten salt fast reactor design

    International Nuclear Information System (INIS)

    Merk, Bruno; Konheiser, Jörg

    2014-01-01

    Highlights: • Material damage due to irradiation has already been discovered at the MSRE. • Neutronic analysis of MSFR with curved blanket wall geometry. • Neutron fluence limit at the wall of the outer vessel can be kept for 80 years. • Shielded MSFR core will be of same dimension than a SFR core. - Abstract: The molten salt reactor technology has gained some new interest. In contrast to the historic molten salt reactors, the current projects are based on designing a molten salt fast reactor. Thus the shielding becomes significantly more challenging than in historic concepts. One very interesting and innovative result of the most recent EURATOM project on molten salt reactors – EVOL – is the fluid flow optimized design of the inner reactor vessel using curved blanket walls. The developed structure leads to a very uniform flow distribution. The design avoids all internal structures. Based on this new geometry a model for neutron physics calculation is presented. The major steps are: the modeling of the curved geometry in the unstructured mesh neutron transport code HELIOS and the determination of the real neutron flux and power distribution for this new geometry. The developed model is then used for the determination of the neutron fluence distribution in the inner and outer wall of the system. Based on these results an optimized shielding strategy is developed for the molten salt fast reactor to keep the fluence in the safety related outer vessel below expected limit values. A lifetime of 80 years can be assured, but the size of the core/blanket system will be comparable to a sodium cooled fast reactor. The HELIOS results are verified against Monte-Carlo calculations with very satisfactory agreement for a deep penetration problem

  13. The Tower Shielding Facility: Its glorious past

    Energy Technology Data Exchange (ETDEWEB)

    Muckenthaler, F.J.

    1997-05-07

    The Tower Shielding Facility (TSF) is the only reactor facility in the US that was designed and built for radiation-shielding studies in which both the reactor source and shield samples could be raised into the air to allow measurements to be made without interference from ground scattering or other spurious effects. The TSF proved its usefulness as many different programs were successfully completed. It became active in work for the Defense Atomic Support Agency (DASA) Space Nuclear Auxiliary Power, Defense Nuclear Agency, Liquid Metal Fast Breeder Reactor Program, the Gas-Cooled and High-Temperature Gas-Cooled Reactor programs, and the Japanese-American Shielding Program of Experimental Research, just to mention a few of the more extensive ones. The history of the TSF as presented in this report describes the various experiments that were performed using the different reactors. The experiments are categorized as to the programs which they supported and placed in corresponding chapters. The experiments are described in modest detail, along with their purpose when appropriate. Discussion of the results is minimal, but references are given to more extensive topical reports.

  14. The Tower Shielding Facility: Its glorious past

    International Nuclear Information System (INIS)

    Muckenthaler, F.J.

    1997-01-01

    The Tower Shielding Facility (TSF) is the only reactor facility in the US that was designed and built for radiation-shielding studies in which both the reactor source and shield samples could be raised into the air to allow measurements to be made without interference from ground scattering or other spurious effects. The TSF proved its usefulness as many different programs were successfully completed. It became active in work for the Defense Atomic Support Agency (DASA) Space Nuclear Auxiliary Power, Defense Nuclear Agency, Liquid Metal Fast Breeder Reactor Program, the Gas-Cooled and High-Temperature Gas-Cooled Reactor programs, and the Japanese-American Shielding Program of Experimental Research, just to mention a few of the more extensive ones. The history of the TSF as presented in this report describes the various experiments that were performed using the different reactors. The experiments are categorized as to the programs which they supported and placed in corresponding chapters. The experiments are described in modest detail, along with their purpose when appropriate. Discussion of the results is minimal, but references are given to more extensive topical reports

  15. Application of MCNP code in shielding calculation of minitype fast reactor

    International Nuclear Information System (INIS)

    He Keyu; Han Weishi

    2008-01-01

    An accurate shielding calculation model has been set up for the minitype sodium-cooled fast reactor (MFR) based on MCNP code and particular calculation of its primary shielding parameters has been carried out. The results indicate that the photon and neutron flux density of MFR has rapidly fallen to a low-level. The material for the shielding layer outside of main container is primarily of carbon steel, which can be design as a shielding structure satisfying the safety code. The sodium activation in primary circuit is extremely limited and it is simple to shield from. Both the output of helium in reflector and burn up of boron-10 in control rod are very small. These materials can be used for several cycle lives. (authors)

  16. Spatial distribution of reactor radiation around the horizontal experimental hole of the RA Reactor at Vinca; Prostorna raspodela reaktorskog zracenja oko horizontalnog eksperimentalnog kanala reaktora RA u Vinci

    Energy Technology Data Exchange (ETDEWEB)

    Ninkovic, M; Paligoric, D; Vujisic, B [Institute of Nuclear Sciences Vinca, Beograd (Serbia and Montenegro)

    1964-10-15

    A survey is given of the measurement of the spatial distribution of thermal and fast neutrons and gamma radiations inside and around the reactor radiation beam which is carried through the experimental channel outside the reactor biological shield thus being a potential danger for the personnel in the reactor hall. The results obtained are used to determine the optimal distribution of the shielding elements around the free radiation beam. The activation method was used to determine the distribution of slow and fast neutrons. The detectors were Au{sup 197} and In {sup 115} for slow, and the S{sup 32} (n,p) P{sup 32} reaction for fast neutrons. The relative distribution of slow and fast neutrons along the beam axis in the space outside the reactor, and evaluation of the absolute value of the flux at the place where the beam comes out from the biological shield are given (author)

  17. Concept of spatial channel theory applied to reactor shielding analysis

    International Nuclear Information System (INIS)

    Williams, M.L.; Engle, W.W. Jr.

    1977-01-01

    The concept of channel theory is used to locate spatial regions that are important in contributing to a shielding response. The method is analogous to the channel-theory method developed for ascertaining important energy channels in cross-section analysis. The mathematical basis for the theory is shown to be the generalized reciprocity relation, and sample problems are given to exhibit and verify properties predicted by the mathematical equations. A practical example is cited from the shielding analysis of the Fast Flux Test Facility performed at Oak Ridge National Laboratory, in which a perspective plot of channel-theory results was found useful in locating streaming paths around the reactor cavity shield

  18. Neutron multiplication and shielding problems in pressurized water reactor spent fuel shipping casks

    International Nuclear Information System (INIS)

    Devillers, C.; Blum, P.

    1977-01-01

    To evaluate the degree of accuracy of computational methods used in the shield design of spent fuel shipping casks, comparisons have been made between biological dose-rate calculations and measurements at the surface of a cask carrying three pressurized water reactor fuel assemblies. Neutron dose-rate measurements made with the fuel-carrying region successively wet and dry are also used to derive an experimental value of the k/sub eff/ of the wet fuel assemblies. Results obtained by this method are shown to be consistent with criticality calculations, taking into account fuel depletion

  19. Methodology of shielding calculation for nuclear reactors

    International Nuclear Information System (INIS)

    Maiorino, J.R.; Mendonca, A.G.; Otto, A.C.; Yamaguchi, Mitsuo

    1982-01-01

    A methodology of calculation that coupling a serie of computer codes in a net that make the possibility to calculate the radiation, neutron and gamma transport, is described, for deep penetration problems, typical of nuclear reactor shielding. This net of calculation begining with the generation of constant multigroups, for neutrons and gamma, by the AMPX system, coupled to ENDF/B-IV data library, the transport calculation of these radiations by ANISN, DOT 3.5 and Morse computer codes, up to the calculation of absorbed doses and/or equivalents buy SPACETRAN code. As examples of the calculation method, results from benchmark n 0 6 of Shielding Benchmark Problems - ORNL - RSIC - 25, namely Neutron and Secondary Gamma Ray fluence transmitted through a Slab of Borated Polyethylene, are presented. (Author) [pt

  20. Upper shielding body in LMFBR type reactors

    International Nuclear Information System (INIS)

    Shoji, Koichi.

    1986-01-01

    Purpose: Preference is given to the strength and thermal insulation of a roof slab thereby ensuring axial size and improving the operationability upon inserting the control rod in the upper shielding body of LMFBR type reactors. Constitution: In an upper shielding body in which a large rotational plug is rotatably mounted to a circular hole formed at an eccentric position of a roof slab, while a small rotational plug is rotatably mounted to a circular hole disposed at an eccentric position of the large rotational plug and the reactor core upper mechanisms are supported on the small rotational plug, heat insulation layers are attached to the inside of the inner circumferential wall of the roof slab and the outer circumferential wall of the large rotational plug. By attaching the heat insulation layers, the heat conduction between the roof slab and the large rotational plug can be suppressed remarkably, by which occurrence of specific heat pass or local generation of large thermal stresses can be avoided even if difference is resulted to the temperature distribution between them. In this way, functions taking advantage of respective features of the roof slab and the small rotational plug can be obtained to achieve the purpose. (Kamimura, M.)

  1. Neutron activation measurements in research reactor concrete shield

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.; Bozic, M.

    2001-01-01

    The results of activation measurement inside TRIGA research reactor concrete shielding are given. Samples made of ordinary and barytes concrete together with gold and nickel foils were irradiated in the reactor body. Long-lived neutron-induced gamma-ray-emitting radioactive nuclides in the samples were measured with HPGe detector. The most active longlived radioactive nuclides in ordinary concrete samples were found to be 60 Co and 152 Eu and in barytes concrete samples 60 Co, 152 Eu and 133 Ba. Measured activity density of all nuclides was found to decrease almost linearly with depth in logarithmic scale.(author)

  2. Verification of using SABINE-3.1 code for calculations of radioactive inventory in reactor shield

    International Nuclear Information System (INIS)

    Moukhamadeev, R.; Suvorov, A.

    2000-01-01

    This report presents the results of calculations of radioactive inventory and doses of activation radiation for the International Benchmark Calculations of Radioactive Inventory for Fission Reactor Decommissioning, IAEA, and measurements of activation doses in shield of WWER-440 (Armenian NPP), using one-dimension modified code SABINE-3.1. For decommissioning of NPP it is very important to evaluate in correct manner radioactive inventory in reactor construction and shield materials. One-dimension code SABINE-3.1 (removing-diffusion method for neutron calculation) was modified to perform calculation of radioactive inventory in reactor shield materials and dose from activation photons behind them. These calculations are carried out on the base of nuclear constant system ABBN-78 and new library of activation data for a number of long-lived isotopes, prepared by authors on the base of [9], which present at shield materials as microimpurities and manage radiation situation under the decay more than 1 year. (Authors)

  3. Basic nuclear data and reactor shielding design formulaire PROPANE Do

    International Nuclear Information System (INIS)

    Estiot, J.C.; Salvatores, M.; Trapp, J.P.

    1979-01-01

    This paper presents a calculational scheme - formulaire PROPANE - to calculate the deep neutron penetration in the fast reactor shield. The emphasis is put on the multigroup data and method approximations. The performances of this formulaire are presented

  4. Radiation protection/shield design: a need for a systems approach

    International Nuclear Information System (INIS)

    Disney, R.K.

    1977-01-01

    Radiation protection/shielding design of a nuclear facility requires a coordinated effort of many engineering disciplines to meet the requirements imposed by regulations. The system approach to Clinch River Breeder Reactor Plant (CRBRP) radiation protection is described, and the program developed to implement this approach is defined. In addition, the principal shielding design problems for LMFBR nuclear reactor systems are discussed in relation to LWR nuclear reactor system shielding designs. The methodology used to analyze these problems in the U.S. LMFBR program, the resultant design solutions, and the experimental verification of these designs and/or methods are discussed

  5. Minimum thickness blanket-shield for fusion reactors

    International Nuclear Information System (INIS)

    Karni, Y.; Greenspan, E.

    1989-01-01

    A lower bound on the minimum thickness fusion reactor blankets can be designed to have, if they are to breed 1.267 tritons per fusion neutron, is identified by performing a systematic nucleonic optimization of over a dozen different blanket concepts which use either Be, Li 17 Pb 83 , W or Zr for neutron multiplication. It is found that Be offers minimum thickness blankets; that the blanket and shield (B/S) thickness of Li 17 Pb 83 based blankets which are supplemented by Li 2 O and/or TiH 2 are comparable to the thickness of Be based B/S; that of the Be based blankets, the aqueous self-cooled one offers one of the most compact B/S; and that a number of blanket concepts might enable the design of B/S which is approximately 12 cm and 39 cm thinner than the B/S thickness of, respectively, conventional self-cooled Li 17 Pb 83 and Li blankets. Aqueous self-cooled tungsten blankets could be useful for experimental fusion devices provided they are designed to be heterogeneous. (orig.)

  6. Bench-mark experiments to study the neutron distribution in a heterogeneous reactor shielding

    International Nuclear Information System (INIS)

    Bolyatko, V.V.; Vyrskij, M.Yu.; Mashkovich, V.P.; Nagaev, R.Kh.; Prit'mov, A.P.; Sakharov, V.K.; Troshin, V.S.; Tikhonov, E.G.

    1981-01-01

    The bench-mark experiments performed at the B-2 facility of the BR-10 reactor to investigate the spatial and energy neutron distributions are described. The experimental facility includes the neutron beam channel with a slide, a mo shielding composition investigated consisted of sequential layers of steel (1KH18N9T) and graphite slabs. The neutron spectra were measured by activation method, a set of treshold and resonance detectors having been used. The detectors made it possible to obtain the absolute neutron spectra in the 1.4 eV-10 MeV range. The comparison of calculations with the results of the bench-mark experiments made it possible to prove the neutron transport calculational model realized in the ROZ-9 and ARAMAKO-2F computer codes and evaluate the validity of the ARAMAKO constants for the class of shielding compositions in question [ru

  7. Shielding research in France

    Energy Technology Data Exchange (ETDEWEB)

    Lafore, P

    1964-10-01

    Shielding research as an independent subject in France dates from 1956. The importance of these studies has been reflected in the contribution which they have made to power reactor design and in the resultant savings in expenditure for civil engineering and machinery for the removal of mobile shields. The Reactor Shielding Research Division numbers approximately 60 persons and uses several experimental facilities. These include: NAIADE I, installed near the ZOE reactor and operating with a natural uranium slab 2 cm thick (an effective diameter of 60 cm is the one most commonly used); the TRITON pool-type reactor, mainly used in shielding studies, includes an active-water loop, by means of which the secondary shields required for light-water reactors can be studied; core, NEREIDE, which is situated near a 2 m x 2 m aluminium window enables a large neutron source to be placed in a compartment without water in which large-scale mock-ups can be mounted for the study, in particular, of neutron diffusion in large cavities, and of reactor shielding of greater thickness than that in NAIADE I; SAMES 600 keV accelerator is used for monoenergetic neutron studies. Instrumentation studies are an important part of the work, mainly in the measurement of fast neutrons and their spectra by activation detectors. Of late, attention has been directed towards the use of (n, n') (rhodium) reactions and of heavy detectors for low-flux measurements. The simultaneous use of a large number of detectors poses automation problems. With our installation we can count 16 detectors simultaneously. Neutron spectrum studies are conducted with nuclear emulsions and a lithium-6 semiconductor spectrometer. As to the materials used, the research carried out in France involves chiefly graphite, iron and concrete at various temperatures up to 800 deg C. Different compounds, borated and non-borated and of densities up to between 1 and 9 are under consideration. Problems connected with applications are

  8. Neutron and gamma-ray spectra measurement on the model of the KS-150 reactor radial shielding

    International Nuclear Information System (INIS)

    Holman, M.; Hogel, J.; Marik, J.; Kovarik, K.; Franc, L.; Vespalec, R.

    1977-01-01

    A shortened model of the peripheral region of the KS-150 reactor core consisting of two rows of fuel elements and a reflector was constructed from the peripheral fuel elements of the KS-150 reactor core in an experiment on the TR-0 reactor. The mockup of the thermal shield (10 cm of steel), the pressure vessel (15 cm of steel) and the inner wall of the water biological shielding (2 cm of steel) of the KS-150 reactor were erected outside the TR-0 vessel. Fast neutron and gamma spectra were measured with a stilbene crystal scintillation spectrometer. The resonance neutron spectra were measured with 197 Au, 63 Cu and 23 Na resonance activation detectors. Fast neutron spectra inside the reactor were measured with a 10 mm diameter by 10 mm thick stilbene crystal spectrometer, outside the reactor with a 10 mm diameter by 10 mm thick and a 20 mm diameter by 20 mm thick stilbene crystal spectrometer. Neutron spectra in the energy regions of 1 eV to 3 keV and 0.6 MeV to 0.8 MeV were obtained on the core periphery, on the reflector half-thickness and in front of and behind the reactor thermal shield. Gamma spectra were obtained in front of and behind the thermal shield. It was found that the attenuation of neutron fluxes by the reflector and the thermal shield increased with increasing energy while gamma radiation attenuation decreased with increasing energy. It was not possible to obtain the neutron spectrum in the 10 to 600 keV energy range because suitable detection instrumentation was not available. (J.P.)

  9. Radiation shielding considerations for the repair and maintenance of a swimming pool-type tokamak reactor

    International Nuclear Information System (INIS)

    Seki, Y.; Mori, S.

    1984-01-01

    The radiation shielding relevant to the repair and maintenance of a swimming pool-type tokamak reactor is considered. The dose rate during the reactor operation can be made low enough for personnel access into the reactor room if a 2m thick water layer is installed above the magnet cryostat. The dose rate 24 h after shutdown is such that the human access is allowed above the magnet cryostat. Sufficient water layer thickness is provided in the inboard space for the operation of automatic welder/cutter while retaining the magnet shielding capability. Some forced cooling is required for the decay heat removal in the first wall. The penetration shield thickness around the neutral beam injector port is estimated to be barely sufficient in terms of the magnet radiation damage. (orig.)

  10. Apparatus for sealing a rotatable shield plug in a liquid metal nuclear reactor

    International Nuclear Information System (INIS)

    Winkleblack, R.K.

    1980-01-01

    An apparatus for sealing a rotatable shield plug in a nuclear reactor having liquid metal coolant is described. The apparatus includes a dip -ring seal adapted to provide a fluid barrier between the liquid metal and the atmosphere and to permit rotation of the shield plug. The apparatus also includes a static seal for the rotatable shield plug located between the dip-ring seal and the liquid metal. The static seal isolates the dip-ring seal from the liquid metal vapor during operation at power and can be disengaged for rotation of the shield plug

  11. Experimental study on fast neutron streaming through grid-plate shield of a LMFBR

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Wakabayashi, Hiroaki; An, Shigehiro; Suzuki, Ikunori.

    1976-01-01

    Neutron streaming through the holes penetrating the grid plate shield of a prototype LMFBR was experimentally examined. The mockups of the grid plate shield were made of iron and aluminum. Experiments were conducted at the vertical column of ''YAYOI'', the fast neutron source reactor of University of Tokyo. A He-3 spectrometer was employed in order to measure the transmitted neutron spectrum, while rhodium and indium threshold foils were for the integral flux above specific energies and their spatial distributions in the form of reaction rates. The streaming factor for usual small bended holes is 1.28+-0.04 as to the integral neutron flux above 0.1 MeV and 1.30+-0.12 as to the reaction rate of indium foil. Use were made of the one and two dimensional neutron transport code ANISN and TWOTRAN for evaluation by computation. The reaction rates calculated by infinite slab model with ANISN code agree well with the experiments when normalized at the source point where neutrons are incident on the grid plate shield. (auth.)

  12. Shielding methods development in the United States

    International Nuclear Information System (INIS)

    Mynatt, F.R.

    1977-01-01

    A generalized shielding methodology has been developed in the U.S.A. that is adaptable to the shielding analyses of all reactor types. Thus far used primarily for liquid-metal fast breeder reactors, the methodology includes several component activities: (1) developing methods for calculating radiation transport through reactor-shield systems; (2) processing cross-section libraries; (3) performing design calculations for specific systems; (4) performing and analyzing pertinent integral experiments; (5) performing sensitivity studies on both the design calculations and the experimental analyses; and, finally, (6) calculating shield design parameters and their uncertainties. The criteria for the methodology are a 5 to 10 percent accuracy for responses at locations near the core and a factor of 2 accuracy for responses at distant locations. The methodology has been successfully adapted to most in-vessel and ex-vessel problems encountered in the shield analyses of the Fast Flux Test Facility and the Fast Flux Test Facility and the Clinch River Breeder Reactor; however, improved techniques are needed for calculating regions in which radiation streaming is dominant. Areas of the methodology in which significant progress has recently been made are those involving the development of cross-section libraries, sensitivity analysis methods, and transport codes

  13. Design of the shield door and transporter for the Culham Conceptual Tokamak Reactor Mark II

    International Nuclear Information System (INIS)

    Guthrie, J.A.S.

    1980-04-01

    In the Culham Conceptual Tokamak Reactor MK II access to the interior for blanket maintenance is through large openings in the fixed shield structure closed by removable shield doors when the reactor is operational. This report describes the design of the 200 tonne doors and the associated special-purpose remote operating transporter manipulator. The design, which has not been optimised, generally uses available commercial equipment and state-of-the-art techniques. (U.K.)

  14. The computer code system for reactor radiation shielding in design of nuclear power plant

    International Nuclear Information System (INIS)

    Li Chunhuai; Fu Shouxin; Liu Guilian

    1995-01-01

    The computer code system used in reactor radiation shielding design of nuclear power plant includes the source term codes, discrete ordinate transport codes, Monte Carlo and Albedo Monte Carlo codes, kernel integration codes, optimization code, temperature field code, skyshine code, coupling calculation codes and some processing codes for data libraries. This computer code system has more satisfactory variety of codes and complete sets of data library. It is widely used in reactor radiation shielding design and safety analysis of nuclear power plant and other nuclear facilities

  15. Seismic and cask drop excitation evaluation of the tower shielding reactor

    International Nuclear Information System (INIS)

    Harris, S.P.; Stover, R.L.; Johnson, J.J.; Sumodobila, B.N.

    1989-01-01

    During the current shutdown of the Tower Shielding Reactor II (TSR-II), analyses were performed to determine the effect of nearby cask drops on the structural and mechanical integrity of the reactor. This evaluation was then extended to include the effects of earthquakes. Several analytic models were developed to simulate the effects of earthquake and cask drop excitation. A coupled soil-structure model was developed. As a result of the analyses, several hardware modifications and enhancements were implemented to ensure reactor integrity during future operations. 6 figs

  16. Seismic and cask drop excitation evaluation of the Tower Shielding Reactor

    International Nuclear Information System (INIS)

    Stover, R.L.; Harris, S.P.; Johnson, J.J.; Sumodobila, B.N.

    1989-01-01

    During the current shutdown of the Tower Shielding Reactor II (TSR-II), analyses were performed to determine the effect of nearby cask drops on the structural and mechanical integrity of the reactor. This evaluation was then extended to include the effects of earthquakes. Several analytic models were developed to simulate the effects of earthquake and cask drop excitation. A coupled soil-structure model was developed. As a result of the analyses, several hardware modifications and enhancements were implemented to ensure reactor integrity during future operations

  17. Conceptual design study of fusion experimental reactor (FY86 FER)

    International Nuclear Information System (INIS)

    Kobayashi, Takeshi; Yamada, Masao; Mizoguchi, Tadanori

    1987-09-01

    This report describes the results of the reactor configuration/structure design for the fusion experimental reactor (FER) performed in FY 1986. The design was intended to meet the physical and engineering mission of the next step device which was decided by the subcommittee on the next step device of the nuclear fusion council. The objectives of the design study in FY 1986 are to advance and optimize the design concept of the last year because the recommendation of the subcommittee was basically the same as the design philosophy of the last year. Six candidate reactor configurations which correspond to options C ∼ D presented by the subcommittee were extensively examined. Consequently, ACS reactor (Advanced Option-C with Single Null Divertor) was selected as the reference configuration from viewpoints of technical risks and cost performance. Regarding the reactor structure, the following items were investigated intensively: minimization of reactor size, protection of first wall against plasma disruption, simplification of shield structure, reactor configuration which enables optimum arrangement of poloidal field coils. (author)

  18. Proposal for a radiation shielding study aiming the implantation of neutrons beam shutter in the J-9 radiation channel of the Argonauta reactor of the Nuclear Engineering Institute

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, Larissa R.P.; Cardoso, Domingos D’Oliveira, E-mail: larissa.xavier@cnen.gov.br, E-mail: domingosoliveiralvr71@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Ferreira, Francisco José de Oliveira; Voi, Dante Luiz, E-mail: fferreira@ien.gov.br, E-mail: dante@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Argonauta, the only nuclear research reactor situated in Rio de Janeiro, located at the Institute of Nuclear Engineering (IEN), regularly serves a network of users focused on research and development, and also provides its infrastructure for experimental classes and completion work course. Due to increasing demand for non-destructive thermal neutron assays and production of radioisotopes, there is a search for new procedures and/or devices that optimize users' exposure to neutrons. The implementation of mechanisms that allow access to the irradiation channels without the reactor being turned off and with a shielding configuration that limits the occupational doses at this location is very useful for the operation of the reactor. In order to achieve this, the present work proposes the establishment of a neutron beam shutter of the J-9 irradiation channel of the IEN's Argonauta reactor. In a first step, experimental measurements were made in the irradiation channel of the reactor using a BF3 detector, which is coupled to a spectrometer. In this phase, the neutron beam was aligned to the spectrometer, and different materials were used as shields, aiming the attenuation of the beam. To validate and/or change the configuration of the barrier that best meets the material irradiation needs, a second planned phase is involving the neutron flux simulation of the reactor and the various shields with different boundary conditions using the particle transport code, Monte Carlo N-Particle Extended (MCNP- X). (author)

  19. Proposal for a radiation shielding study aiming the implantation of neutrons beam shutter in the J-9 radiation channel of the Argonauta reactor of the Nuclear Engineering Institute

    International Nuclear Information System (INIS)

    Xavier, Larissa R.P.; Cardoso, Domingos D’Oliveira; Ferreira, Francisco José de Oliveira; Voi, Dante Luiz

    2017-01-01

    Argonauta, the only nuclear research reactor situated in Rio de Janeiro, located at the Institute of Nuclear Engineering (IEN), regularly serves a network of users focused on research and development, and also provides its infrastructure for experimental classes and completion work course. Due to increasing demand for non-destructive thermal neutron assays and production of radioisotopes, there is a search for new procedures and/or devices that optimize users' exposure to neutrons. The implementation of mechanisms that allow access to the irradiation channels without the reactor being turned off and with a shielding configuration that limits the occupational doses at this location is very useful for the operation of the reactor. In order to achieve this, the present work proposes the establishment of a neutron beam shutter of the J-9 irradiation channel of the IEN's Argonauta reactor. In a first step, experimental measurements were made in the irradiation channel of the reactor using a BF3 detector, which is coupled to a spectrometer. In this phase, the neutron beam was aligned to the spectrometer, and different materials were used as shields, aiming the attenuation of the beam. To validate and/or change the configuration of the barrier that best meets the material irradiation needs, a second planned phase is involving the neutron flux simulation of the reactor and the various shields with different boundary conditions using the particle transport code, Monte Carlo N-Particle Extended (MCNP- X). (author)

  20. FFTF reactor-characterization program: gamma-ray measurements and shield characterization

    International Nuclear Information System (INIS)

    Bunch, W.L.; Moore, F.S. Jr.

    1983-02-01

    A series of experiments is to be made during the acceptance test program of the Fast Flux Test Facility (FFTF) to measure the gamma ray characteristics of the Fast Test Reactor (FTR) and to establish the performance characteristics of the reactor shield. These measurements are a part of the FFTF Reactor Characterization Program (RCP). Detailed plans have been developed for these experiments. During the initial phase of the Characteristics Program, which will be carried out in the In-Reactor Thimble (IRT), both active and passive measurement methods will be employed to obtain as much information concerning the gamma ray environment as is practical. More limited active gamma ray measurements also will be made in the Vibration Open Test Assembly (VOTA)

  1. Shielding consideration for the SSCL experimental halls

    International Nuclear Information System (INIS)

    Bull, J.; Coyne, J.; Mokhov, N.; Stapleton, G.

    1994-03-01

    The Superconducting Super Collider which is being designed and built in Waxahachie, Texas consists Of series of proton accelerators, culminating in a 20 Te proton on proton collider. The collider will be in a tunnel which will be 87 km in circumference and. on average about 30 meters underground. The present design calls for two large interaction halls on the east side of the ring. The shielding for these halls is being designed for an interaction rate of 10 9 Hz or 10 16 interactions per year, based on 10 7 seconds per operational year. SSC guidelines require that the shielding be designed to meet the criterion of 1mSv per year for open areas off site 2mSv per year for open areas on site, and 2mSv per year for controlled areas. Only radiation workers will be routinely allowed to work in controlled areas. It should be pointed that there is a potential for an accidental full beam loss in either of the experimental halls, and this event would consist of the loss of the full circulating beam up to 4 x 10 14 protons. With the present design. the calculated dose equivalent for this event is about 10% of the annual dose equivalent for the normal p-p interactions, so that die accident condition does not control the shielding. If, for instance, local shielding within the experimental hall is introduced into the calculations, this could change. The shielding requirements presented here are controlled by the normal p-p interactions. Three important questions were addressed in the present calculations. They are (1) the thickness of the roof over the experimental halls, (2) the configuration of the shafts and adits which give access to the halls, and (3) the problem of ground water and air activation

  2. Design of a permanent Cd-shielded epithermal neutron irradiation site in the Syrian Miniature Neutron Source Reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Haddad, Kh.; Haj-Hassan, H.

    2008-01-01

    A Cd-shield (cylindrical shell 1 mm in thickness, 34 mm in diameter and 180 mm in length) was used to design a permanent epithermal neutron irradiation site for epithermal neutron activation analysis (ENAA) in the Syrian Miniature Neutron Source Reactor (MNSR). This site was achieved by shielding the surface of the aluminum tube of one of the outer irradiation sites. The calculated depression ratio of thermal neutron flux was 1/10. Homogeneity of the neutron flux in the first outer irradiation site has been found numerically using the WIMSD4 and CITATION codes and experimentally by irradiating five short copper wires using the outer irradiation capsule. Good agreement was obtained between the calculated and the measured results of the neutron flux distributions. (author)

  3. Design of a permanent Cd-shielded epithermal neutron irradiation site in the Syrian Miniature Neutron Source Reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Haddad, Kh.; Haj-Hassan, H.

    2009-01-01

    A Cd-shield (cylindrical shell 1 mm in thickness, 34 mm in diameter and 180 mm in length) was used to design a permanent epithermal neutron irradiation site for epithermal neutron activation analysis (ENAA) in the Syrian Miniature Neutron Source Reactor (MNSR). This site was achieved by shielding the surface of the aluminum tube of one of the outer irradiation sites. The calculated depression ratio of thermal neutron flux was 1/10. Homogeneity of the neutron flux in the first outer irradiation site has been found numerically using the WIMSD4 and CITATION codes and experimentally by irradiating five short copper wires using the outer irradiation capsule. Good agreement was obtained between the calculated and the measured results of the neutron flux distributions. (author)

  4. Neutron flux measurements at the TRIGA reactor in Vienna for the prediction of the activation of the biological shield

    International Nuclear Information System (INIS)

    Merz, Stefan; Djuricic, Mile; Villa, Mario; Boeck, Helmuth; Steinhauser, Georg

    2011-01-01

    The activation of the biological shield is an important process for waste management considerations of nuclear facilities. The final activity can be estimated by modeling using the neutron flux density rather than the radiometric approach of activity measurements. Measurement series at the TRIGA reactor Vienna reveal that the flux density next to the biological shield is in the order of 10 9 cm -2 s -1 at maximum power; but it is strongly influenced by reactor installations. The data allow the estimation of the final waste categorization of the concrete according to the Austrian legislation. - Highlights: → Neutron activation is an important process for the waste management of nuclear facilities. → Biological shield of the TRIGA reactor Vienna has been topic of investigation. → Flux values allow a categorization of the concrete concerning radiation protection legislation. → Reactor installations are of great importance as neutron sources into the biological shield. → Every installation shows distinguishable flux profiles.

  5. Shielding and maintainability in an experimental tokamak

    International Nuclear Information System (INIS)

    Abdou, M.A.; Fuller, G.; Hager, E.R.; Vogelsang, W.F.

    1979-01-01

    This paper presents the results of an attempt to develop an understanding of the various factors involved. This work was performed as a part of the task assigned to one of the expert groups on the International Tokamak Reactor (INTOR). The shielding penalties for requiring personnel access are quantified. This is followed by a quantitative estimate of the benefits associated with personnel access. The penalties to the benefits and conclusions and recommendations on resolving the issue are discussed

  6. Nuclear Reactor RA Safety Report, Vol. 4, Reactor

    International Nuclear Information System (INIS)

    1986-11-01

    RA research reactor is thermal heavy water moderated and cooled reactor. Metal uranium 2% enriched fuel elements were used at the beginning of its operation. Since 1976, 80% enriched uranium oxide dispersed in aluminium fuel elements were gradually introduced into the core and are the only ones presently used. Reactor core is cylindrical, having diameter 40 cm and 123 cm high. Reaktor core is made up of 82 fuel elements in aluminium channels, lattice is square, lattice pitch 13 cm. Reactor vessel is cylindrical made of 8 mm thick aluminium, inside diameter 140 cm and 5.5 m high surrounded with neutron reflector and biological shield. There is no containment, the reactor building is playing the shielding role. Three pumps enable circulation of heavy water in the primary cooling circuit. Degradation of heavy water is prevented by helium cover gas. Control rods with cadmium regulate the reactor operation. There are eleven absorption rods, seven are used for long term reactivity compensation, two for automatic power regulation and two for safety shutdown. Total anti reactivity of the rods amounts to 24%. RA reactor is equipped with a number of experimental channels, 45 vertical (9 in the core), 34 in the graphite reflector and two in the water biological shield; and six horizontal channels regularly distributed in the core. This volume include detailed description of systems and components of the RA reactor, reactor core parameters, thermal hydraulics of the core, fuel elements, fuel elements handling equipment, fuel management, and experimental devices [sr

  7. Shielding design study of the demonstration fast breeder reactor. 2. Shielding design on the basis of the JASPER analysis

    International Nuclear Information System (INIS)

    Suzuoki, Zenro; Tabayashi, Masao; Handa, Hiroyuki; Iida, Masaaki; Takemura, Morio

    2000-01-01

    Conceptual shielding design has been performed for the Demonstration Fast Breeder Reactor (DFBR) to achieve further optimization and reduction of the plant construction cost. The design took into account its implications in overall plant configuration such as reduction of shields in the core, adoption of fission gas plenum in the lower portion of fuel assemblies, and adoption of gas expansion modules. Shielding criteria applied for the design are to secure fast neutron fluence on in-vessel structures as well as responses of the nuclear instrumentation system and to restrict secondary sodium activation. The design utilized the cross sections and the one- and two-dimensional discrete ordinates transport codes, whose verification had been performed by the JASPER experiment analysis. Correction factors yielded by the JASPER analysis were applied to the design calculations to obtain design values with improved accuracy. Design margins, which are defined by the ratios of the design criteria to the design values, were more than two for all shielding issues of interest, showing the adequacy of the shielding design of the DFBR. (author)

  8. Computational methodology for the Oak Ridge Research Reactor (ORR) and Bulk Shielding Reactor (BSR): cross-section and validation. Volume 1

    International Nuclear Information System (INIS)

    Miller, L.F.; Williams, M.L.

    1986-03-01

    A neutronics library suitable for low-enrichment uranium (LEU) and high-enrichment uranium (HEU) fueled cores for both the Oak Ridge Research Reactor (ORR) and the Bulk Shielding Reactor (BSR) is documented herein. The library is obtained from version V of the Evaluated Nuclear Data File (ENDF/B-V) and contains 223 nuclides weighted over a variety of region-dependent neutron spectra. Self-shielding and zone-weighting effects are incorporated with 227-group calculations for several reactor-core configurations. Libraries are archived for both transport and diffusion theory seven-group calculations. Complete listings of processing details are included so that libraries with different specifications can be easily obtained. Results from validation calculations indicate that the neutronics libraries obtained from this effort are suitable for neutronics computations for the ORR and BSR. 12 refs., 5 figs., 15 tabs

  9. Shielding modefication and safety review on Mutsu

    International Nuclear Information System (INIS)

    Osanai, Masao

    1978-01-01

    The Japan Atomic Energy Commission requests strongly to repair the shielding and make general safety inspection on Mutsu after an accident of radiation leakage from the reactor. The content and procedure of this repair of shielding and general safety inspection are outlined. The neutron leakage location in the reactor proper, technical shielding investigation, conceptual design of relating shielding repair, the mock up test of the shielding on the neutron streaming, the final conceptual design of repair, the relating research and development experiment and the detailed basic design of repair are explained, comparing the original design and the modified one. The modified design depends on the experimental results of neutron streaming test between the reactor vessel and the primary shield. As for the general safety inspection, the functional test of control rod driving mechanism and other main components, the flaw detection for heat transfer tubes of the steam generator and primary cooling pipings are carried out in hardwares, and the integrity analysis of fuel assemblies, stress corrosion cracking of fuel claddings and primary cooling pipings, the natural circulation analysis of primary cooling system, and integrity check of the heat transfer tubes of steam generator are carried out in softwares. The burst test and the strength test after high temperature oxidation for fuel claddings made of stainless steel were carried out. (Nakai, Y.)

  10. Resonance shielding in thermal reactor lattices

    International Nuclear Information System (INIS)

    Rothenstein, W.; Taviv, E.; Aminpour, M.

    1982-01-01

    The theoretical foundations of a new methodology for the accurate treatment of resonance absorption in thermal reactor lattice analysis are presented. This methodology is based on the solution of the point-energy transport equation in its integral or integro-differential form for a heterogeneous lattice using detailed resonance cross-section profiles. The methodology is applied to LWR benchmark analysis, with emphasis on temperature dependence of resonance absorption during fuel depletion, spatial and mutual self-shielding, integral parameter analysis and treatment of cluster geometry. The capabilities of the OZMA code, which implements the new methodology are discussed. These capabilities provide a means against which simpler and more rapid resonance absorption algorithms can be checked. (author)

  11. The shielding calculation for the CN guide shielding assembly in HANARO

    International Nuclear Information System (INIS)

    Kim, H. S.; Lee, B. C.; Lee, K. H.; Kim, H.

    2006-01-01

    The cold neutron research facility in HANARO is under construction. The area including neutron guides and rotary shutter in the reactor hall should be shielded by the guide shielding assembly which is constructed of heavy concrete blocks and structure. The guide shielding assembly is divided into 2 parts, A and B. Part A is about 6.4 meters apart from the reactor biological shield and it is constructed of heavy concrete blocks whose density is above 4.0g/cm 3 . And part B is a fixed heavy concrete structure whose density is above 3.5g/cm 3 . The rotary shutter is also made with heavy concrete whose density is above 4.0g/cm 3 and includes 5 neutron guides inside. It can block the neutron beam by rotating when CNS is not operating. The dose criterion outside the guide shielding assembly is established as 12.5 μSv/hr which is also applied to reactor shielding in HANARO

  12. ETDR, The European Union's Experimental Gas-Cooled Fast Reactor Project

    International Nuclear Information System (INIS)

    Poette, Christian; Brun-Magaud, Valerie; Morin, Franck; Dor, Isabelle; Pignatel, Jean-Francois; Bertrand, Frederic; Stainsby, Richard; Pelloni, Sandro; Every, Denis; Da Cruz, Dirceu

    2008-01-01

    In the Gas-Cooled Fast Reactor (GFR) development plan, the Experimental Technology Demonstration Reactor (ETDR) is the first necessary step towards the electricity generating prototype GFR. It is a low power (∼50 MWth) Helium cooled fast reactor. The pre-conceptual design of the ETDR is shared between European partners through the GCFR Specifically Targeted Research Project (STREP) within the European Commission's 6. R and D Framework Program. After recalling the place of ETDR in the GFR development plan, the main reactor objectives, the role of the European partners in the different design and safety tasks, the paper will give an overview of the current design with recent progresses in various areas like: - Sub-assembly technology for the starting core (pin bundle with MOX fuel and stainless steel cladding). - The design of experimental advanced ceramic GFR fuel sub-assemblies included in several locations of the starting core. - Starting Core reactivity management studies model including experimental GFR sub-assemblies. - Neutron and radiation shielding calculations using a specific MCNP model. The model allows evaluation of the neutron doses for the vessel and internals and radiation doses for maintenance operations. - System design and safety considerations, with a reactor architecture largely influenced by the Decay Heat Removal strategy (DHR) for de-pressurized accidents. The design of the reactor raises a number of issues in terms of fuel, neutronics, thermal-hydraulics codes qualification as well as critical components (blowers, IHX, thermal barriers) qualification. An overview of the R and D development on codes and technology qualification program is presented. Finally, the status of international collaborations and their perspectives for the ETDR are mentioned. (authors)

  13. Shielding computations for solution transfer lines from Analytical Lab to process cells of Demonstration Fast Reactor Plant (DFRP)

    International Nuclear Information System (INIS)

    Baskar, S.; Jose, M.T.; Baskaran, R.; Venkatraman, B.

    2018-01-01

    The diluted virgin solutions (both aqueous and organic) and aqueous analytical waste generated from experimental analysis of process solutions, pertaining to Fast Breeder Test Reactor (FBTR) and Prototype Fast Breeder Reactor (PFBR), in glove boxes of active analytical Laboratory (AAL) are pumped back to the process cells through a pipe in pipe arrangement. There are 6 transfer lines (Length 15-32 m), 2 for each type of transfer. The transfer lines passes through the area inside the AAL and also the operating area. Hence it is required to compute the necessary radial shielding requirement around the lines to limit the dose rates in both the areas to the permissible values as per the regulatory requirement

  14. General description of preliminary design of an experimental fusion reactor and the future problems

    International Nuclear Information System (INIS)

    Sako, Kiyoshi

    1976-01-01

    Recently, the studies on plasma physics has progressed rapidly, and promising experimental data emerged successively. Especially expectation mounts high that Tokamak will develop into power reactors. In Japan, the construction of large plasma devices such as JT-60 of JAERI is going to start, and after several years, the studies on plasma physics will come to the end of first stage, then the main research and development will be directed to power reactors. The studies on the design of practical fusion reactors have been in progress since 1973 in JAERI, and the preliminary design is being carried out. The purposes of the preliminary design are the clarification of the concept of the experimental reactor and the requirements for the studies on core plasma, the examination of the problems for developing main components and systems of the reactor, and the development of design technology. The experimental reactor is the quasi-steady reactor of 100 MW fusion reaction output, and the conditions set for the design and the basis of their setting are explained. The outline of the design, namely core plasma, blankets, superconductive magnets and the shielding with them, vacuum wall, neutral particle injection heating device, core fuel supply and exhaust system, and others, is described. In case of scale-up the reactor structural material which can withstand neutron damage must be developed. (Kako, I.)

  15. A cryogenic system for TIBER II [Tokamak Ignition/Burn Experimental Reactor

    International Nuclear Information System (INIS)

    Slack, D.S.; Kerns, J.A.

    1987-01-01

    Phase II of the Tokamak Ignition/Burn Experimental Reactor (TIBER II) study describes one option for a small, economical, next-generation tokamak [1,2]. Because of its small size, minimum shielding is used between the plasma and the toroidal-field (TF) coils. Consequently, a large cryogenic system (approximately 70 kW at 4.5 K) capable of delivering forced-flow helium is required. This paper describes a cryogenic system that meets this requirement and includes TIBER-II requirements. 3 refs

  16. Conceptual design study of fusion experimental reactor (FY 86 FER)

    International Nuclear Information System (INIS)

    Kobayashi, Takeshi; Yamada, Masao; Mizoguchi, Tadanori

    1987-09-01

    This report describes the results of the investigation on critical issues of FY 86 FER reactor configuration/structure design. Accuracy evaluation of shielding calculation and crack growth prediction of first wall and divertor based on the elastic-plastic fracture mechanics were performed. Further, optimization of shield configuration, graphite first wall armor and flexifility of reactor were investigated to support future design work. Feasibilities of innovative ideas were also examined, such as the ripple insert effect and the application of shape memory alloys. (author)

  17. Methods and experimental coefficients used in the computation of reactor shielding; Methodes et coefficients experimentaux pour le calcul des protections de reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, J; Lafore, P; Millot, J P; Rastoin, J; Vathaire, F de [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    1) The concept of an effective removal cross section has been developed in order more easily to compute reactor shielding thicknesses. We have built an experimental facility for the purpose of measuring effective removal cross sections, the value of which had not been published at that time. The first part of this paper describes the device or facility used, the computation method applied, and the results obtained. 2) Starting from this concept, we endeavoured to define a removal cross section as a function of energy. This enabled us to use the method for computations bearing on the attenuation of fast neutrons of any spectrum. An experimental verification was carried out for the case of fission neutrons filtered by a substantial thickness of graphite. 3) Finally, we outline a computation method enabling us to determine the sources of captured gamma rays by the age theory and we give an example of the application in a composite shield. (author) [French] 1) La notion de section efficace effective de deplacement a ete introduite pour calculer commodement les epaisseurs de protection des reacteurs. Nous avons construit un dispositif experimental destine a mesurer les sections efficaces effectives de deplacement dont la valeur n'avait pas ete publiee a cette epoque. La premiere partie de cette communication decrit le dispositif utilise, la methode de calcul employee et les resultats obtenus. 2) A partir de cette notion, nous avons essaye de definir une section efficace de deplacement fonction de l'energie. Ceci permet d'utiliser la methode du deplacement pour des calculs d'attenuation de neutrons rapides dont le spectre est quelconque. Une verification experimentale a ete faite dans le cas de neutrons de fission filtres par une epaisseur notable de graphite. 3) Enfin une methode de calcul permettant de determiner les sources de gamma de capture par la theorie de l'age est exposee et un exemple d'application donne dans une protection composite. (auteur)

  18. Methods and experimental coefficients used in the computation of reactor shielding; Methodes et coefficients experimentaux pour le calcul des protections de reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, J; Lafore, P; Millot, J P; Rastoin, J; Vathaire, F de [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    1. The concept of an effective removal cross section has been developed in order more easily to compute reactor shielding thicknesses. We have built an experimental facility for the purpose of measuring effective removal cross sections, the value of which had not been published at that time. The first part of this paper describes the device or facility used, the computation method applied, and the results obtained. 2. Starting from this concept, we endeavored to define a removal cross section as a function of energy. This enabled us to use the method for computations bearing on the attenuation of fast neutrons of any spectrum. An experimental verification was carried out for the case of fission neutrons filtered by a substantial thickness of graphite. 3. Finally, we outline a computation method enabling us to determine the sources of captured gamma rays by the age theory and we give an example of the application in a composite shield. (author)Fren. [French] 1. La notion de section efficace effective de deplacement a ete introduite pour calculer commodement les epaisseurs de protection des reacteurs. Nous avons construit un dispositif experimental destine a mesurer les sections efficaces effectives de deplacement dont la valeur n'avait pas ete publiee a cette epoque. La premiere partie de cette communication decrit le dispositif utilise, la methode de calcul employee et les resultats obtenus. 2. A partir de cette notion, nous avons essaye de definir une section efficace de deplacement fonction de l'energie. Ceci permet d'utiliser la methode du deplacement pour des calculs d'attenuation de neutrons rapides dont le spectre est quelconque. Une verification experimentale a ete faite dans le cas de neutrons de fission filtres par une epaisseur notable de graphite. 3. Enfin une mde de calcul permettant de determiner les sources de gamma de capture par la theorie de l'age est exposee et un exemple d'application donne dans une protection composite. (auteur)

  19. First results with the experimental set-up at a Bugey reactor: neutrino oscillations, search of axions

    International Nuclear Information System (INIS)

    Hoummada, A.

    1982-07-01

    This work presents an experimental set-up at the Bugey PWR reactor to put into evidence neutrino oscillations. The first part describes a neutrino detector specially designed for the investigation of neutrino oscillations at two distances (13.50 m and 19 m) under the core of the reactor. Preliminary analysis are presented. The second part reports a search for axions, using the neutrino detector well-shielded volume. Created in competition with electro magnetic transitions, axion should be produced in abondance in the reactor core. This experiment excludes the existence of the axion of the standard model [fr

  20. Magnet systems for the International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Henning, C.D.; Miller, J.R.

    1988-01-01

    The definition phase for the International Thermonuclear Experimental Reactor (ITER) has been nearly completed, thus beginning a three-year design effort by teams from the European Community (EC), Japan, US, and USSR. Preliminary parameters for the superconducting magnet system have been established to guide more detailed design work. Radiation tolerance of the superconductors and insulators has been important because it sets requirements for the neutron-shield dimension and sensitively influences reactor size. Major levels of mechanical stress appear in the structural cases of the inboard legs of the toroidal-field (TF) coils. The winding packs of the TF coils include significant fractions of steel that provide support against in-plane separating loads, but they offer little support against out-of-plane loads unless shear-bonding of the conductors can be maintained. Heat removal from nuclear and ac loads has not limited the fundamental design, but it has nonnegligible economic consequences. 3 refs., 3 figs., 5 tabs

  1. Bibliography, subject index, and author index of the literature examined by the Radiation Shielding Information Center (Reactor and Weapons Radiation Shielding)

    International Nuclear Information System (INIS)

    1978-01-01

    An indexed bibliography is presented of literature selected by the Radiation Shielding Information Center since the previous volume was published in 1974 in the area of radiation transport and shielding against radiation from nuclear reactors, x-ray machines, radioisotopes, nuclear weapons (including fallout), and low-energy accelerators (e.g., neutron generators). In addition to lists of literature titles by subject categories (accessions 3501-4950), author and keyword indexes are given. Most of the literature selected for Vol. V was published in the years 1973 to 1976

  2. Shielding plugs

    International Nuclear Information System (INIS)

    Makishima, Kenji.

    1986-01-01

    Purpose: In shielding plugs of an LMFBR type reactor, to restrain natural convection of heat in an annular space between a thermal shield layer and a shield shell, to prevent the lowering of heat-insulation performance, and to alleviate a thermal stress in a reactor container and the shield shell. Constitution: A ring-like leaf spring split in the direction of height is disposed in an annular space between a thermal shield layer and a shield shell. In consequence, the space is partitioned in the direction of height and, therefore, if axial temperature conditions and space width are the same and the space is low, the natural convection is hard to occur. Thus the rise of upper surface temperature of the shielding plugs can prevent the lowering of the heat insulation performance which will result in the increment of shielding plug cooling capacity, thereby improving reliability. In the meantime, since there is mounted an earthquake-resisting support, the thermal shield layer will move for a slight gap in case of an earthquake, being supported by the earthquake-resisting support, and the movement of the thermal shield layer is restricted, thereby maintaining integrity without increasing the stroke of the ring-like spring. (Kawakami, Y.)

  3. Shielding analysis of the LMR in-vessel fuel storage experiments

    International Nuclear Information System (INIS)

    Bucholz, J.A.

    1994-01-01

    The In-Vessel Fuel Storage (IVFS) experiments analyzed in this paper were conducted at the Oak Ridge National Laboratory's Tower Shielding Reactor (TSR) as part of the Japanese-American Shielding Program for Experimental Research (JASPER). These IVFS experiments were designed to study source multiplication and three-dimensional effects related to in-vessel storage of spent fuel elements in liquid metal reactor (LMR) systems. The present paper describes the 2- and 3-D calculations and results corresponding to a limited subset of those IVFS experiments in which the US LMR program had a particular interest

  4. Activation of concrete samples from the biological shield of the ASTRA reactor

    International Nuclear Information System (INIS)

    Smecka, F.

    2006-09-01

    Drill cores from the biological shield of the ASTRA reactor in Seibersdorf were taken and milled because of the different size of the Baryt crystals in the concrete in order to get homogenous samples. The powder samples were put into bore holes of a graphite block which was placed into the thermal column of the TRIGA Mark II reactor. The block was irradiated for 10 minutes at a reactor power of 25 kW. After one hour the dose rate was examined and the samples were ready for further save handling. The gamma spectrum was measured with a Ge detector and the results were compared with simulation data. (nevyjel)

  5. Magnetic field shielding system in a tokamak experimental power reactor (EPR): concept and calculations

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Marcus, F.B.; Dory, R.A.; Moore, J.R.

    1975-01-01

    A poloidal magnetic field shielding system is proposed for a tokamak EPR. This coil system minimizes the pulsed poloidal field that intersects the TF (toroidal field) coils and hence reduces the risk of superconductor quenching and structural failure of the coils. Based on an idealized shielding model, we have determined the configurations for the OH (ohmic heating), the S-VF (shield-vertical field), and the T-VF (trimming-vertical field) coils in a typical tokamak EPR. It is found that the pulsed poloidal field strength is greatly reduced in the TF coil region. The overall requirement in stored plasma and vertical field energy is also substantially reduced when compared with conventional EPR designs. Use of this field shielding system is expected to enhance reliability of the superconducting TF coils in a tokamak EPR

  6. Radiation shielding for neutron guides

    International Nuclear Information System (INIS)

    Ersez, T.; Braoudakis, G.; Osborn, J.C.

    2005-01-01

    Full text: Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions. (authors)

  7. Radiation shielding for neutron guides

    International Nuclear Information System (INIS)

    Ersez, T.; Braoudakis, G.; Osborn, J.C.

    2006-01-01

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions

  8. Characterisation of the inventory of radioisotopes induced in the biological shield a WWER-440 reactor

    International Nuclear Information System (INIS)

    Feher, S.; Czifrus, Sz.; Zsolnay, E.M.; Szondi, E.

    2001-01-01

    A significant part of the radwaste originating from the decommissioning of NPPs is made up of the activated concrete and steel components of the biological shield. The paper presents the results of studies aimed at the determination of the amount of radionuclides accumulating in the serpentinous and ordinary concrete shield around the WWER-440 reactors of the Paks NPP. For the calculations, the reactor, vessel and shield were modelled in detail both in terms of geometry and material composition. The spatial and energy distribution of the activating neutron spectrum was determined by certain modules of SCALE 4.3 and the code TORT in two and three dimensions, while the activation was calculated using ORIGEN-S for 22 geometrical regions. The results showed that the activity of the concrete structures at final shutdown after 30 years of operation is approximately 50 TBq, which decreases to 20, 12, 1.1 TBq and 27 GBq after 1 month, 1 year, 10 and 100 years, respectively (Authors)

  9. Parameters calculation of a shielding experiment and evaluation of calculation methodology

    International Nuclear Information System (INIS)

    Gavazza, S.; Otto, A.C.; Gomes, I.C.; Maiorino, J.R.

    1986-01-01

    In this text is carried out the evaluation of radiation transport methodology, comparying the calculated reactions and dose rates, for neutrons and gamma-rays, with the experimental measurements obtained on iron shield, irradiated in YAYOI reactor. Were employed the ENDF/B-IV and VITAMIN-C libraries and the AMPX-II modular system for generation of cross sections, collapsed by the ANISN code. The transport calculation were made by using the DOT 3.5 code, adjusting the spectrum of the iron shield boundary source to the reactions and dose rates, measured at the beginning of shield. The distributions calculated for neutrons and gamma-rays, on iron shield, presented coherence with the experimental measurements. (Author) [pt

  10. Neutronics shielding analysis of the last mirror-beam duct system for a laser fusion power reactor

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.; Klein, A.C.

    1981-01-01

    A Monte Carlo three-dimensional neutronics analysis for the last mirror-beam duct system for the SOLASE conceptual laser-driven fusion power reactor design is presented. Detailed geometric configurations including the reactor cavity, the two last mirrors, and the three-section two-right-angle bends duct are modeled. Measurements are given of the dimensions and compositions of the reactor components, and of neutron scalar fluxes, spatial dependencies and neutron volumetric heating rates for the cases of aluminum or Boral as laser beam duct liners, and ordinary concrete or lead mortar as shield material. A three-dimensional modeling of laser-driven reactor penetrations is employed. The particle leakage is found to be excessively high for the configuration of the conceptual design considered and the advantages and disadvantages of various solutions, such as the use of Boral as a duct liner and the use of lead mortar instead of ordinary concrete as a shield material, are considered

  11. Method of shielding a liquid-metal-cooled reactor

    International Nuclear Information System (INIS)

    Sayre, R.K.

    1978-01-01

    The primary heat transport system of a nuclear reactor - particularly for a liquid-metal-cooled fast-breeder reactor - is shielded and protected from leakage by establishing and maintaining a bed of a powdered oxide closely and completely surrounding all components thereof by passing a gas upwardly therethrough at such a rate as to slightly expand the bed to the extent that the components of the system are able to expand without damage and yet the particles of a the bed remain close enough so that the bed acts as a guard vessel for the system. Preferably the gas contains 1 to 10% oxygen and the gas is passed upwardly through the bed at such a rate that the lower portion of the bed is a fixed bed while the upper portion is a fluidized bed, the line of demarcation therebetween being high enough that the fixed bed portion of the bed serves as guard vessel for the system

  12. Comparison of calculational methods for liquid metal reactor shields

    International Nuclear Information System (INIS)

    Carter, L.L.; Moore, F.S.; Morford, R.J.; Mann, F.M.

    1985-09-01

    A one-dimensional comparison is made between Monte Carlo (MCNP), discrete ordinances (ANISN), and diffusion theory (MlDX) calculations of neutron flux and radiation damage from the core of the Fast Flux Test Facility (FFTF) out to the reactor vessel. Diffusion theory was found to be reasonably accurate for the calculation of both total flux and radiation damage. However, for large distances from the core, the calculated flux at very high energies is low by an order of magnitude or more when the diffusion theory is used. Particular emphasis was placed in this study on the generation of multitable cross sections for use in discrete ordinates codes that are self-shielded, consistent with the self-shielding employed in the generation of cross sections for use with diffusion theory. The Monte Carlo calculation, with a pointwise representation of the cross sections, was used as the benchmark for determining the limitations of the other two calculational methods. 12 refs., 33 figs

  13. LOFT shield tank steady state temperatures with addition of gamma and neutron shielding

    International Nuclear Information System (INIS)

    Kyllingstad, G.

    1977-01-01

    The effect of introducing a neutron and gamma shield into the annulus between the reactor vessel and the shield tank is analyzed. This addition has been proposed in order to intercept neutron streaming up the annulus during nuclear operations. Its installation will require removal of approximately 20- 1 / 2 inches of stainless steel foil insulation at the top of the annulus. The resulting conduction path is believed to result in increased water temperatures within the shield tank, possibly beyond the 150 0 F limit, and/or cooling of the reactor vessel nozzles such that adverse thermal stresses would be generated. A two dimensional thermal analysis using the finite element code COUPLE/MOD2 was done for the shield tank system illustrated in the figure (1). The reactor was assumed to be at full power, 55 MW (th), with a loop flow rate of 2.15 x 10 6 lbm/hr (268.4 kg/s) at 2250 psi (15.51 MPa). Calculations indicate a steady state shield tank water temperature of 140 0 F (60 0 C). This is below the 150 0 F (65.56 0 C) limit. Also, no significant changes in thermal gradients within the nozzle or reactor vessel wall are generated. A spacer between the gamma shield and the shield tank is recommended, however, in order to ensure free air circulation through the annulus

  14. Structure shielding from cloud and fallout gamma ray sources for assessing the consequences of reactor accidents

    International Nuclear Information System (INIS)

    Burson, Z.G.; Profio, A.E.

    1975-12-01

    Radiation shielding provided by transportation vehicles and structures typical of where people live and work were estimated for cloud and fallout gamma-ray sources resulting from a hypothetical reactor accident. Dose reduction factors are recommended for a variety of situations for realistically assessing the consequences of reactor accidents

  15. Resonance self-shielding effect in uncertainty quantification of fission reactor neutronics parameters

    International Nuclear Information System (INIS)

    Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi

    2014-01-01

    In order to properly quantify fission reactor neutronics parameter uncertainties, we have to use covariance data and sensitivity profiles consistently. In the present paper, we establish two consistent methodologies for uncertainty quantification: a self-shielded cross section-based consistent methodology and an infinitely-diluted cross section-based consistent methodology. With these methodologies and the covariance data of uranium-238 nuclear data given in JENDL-3.3, we quantify uncertainties of infinite neutron multiplication factors of light water reactor and fast reactor fuel cells. While an inconsistent methodology gives results which depend on the energy group structure of neutron flux and neutron-nuclide reaction cross section representation, both the consistent methodologies give fair results with no such dependences.

  16. Bibliography, subject index, and author index of the literature examined by the radiation shielding information center. Volume 6. Reactor and weapons radiation shielding

    International Nuclear Information System (INIS)

    1980-05-01

    An indexed bibliography is presented of literature selected by the Radiation Shielding Information Center since the previous volume was published in 1978 in the area of radiation transport and shielding against radiation from nuclear reactors, x-ray machines, radioisotopes, nuclear weapons (including fallout), and low energy accelerators (e.g., neutron generators). The bibliography was typeset from data processed by computer from magnetic tape files. In addition to lists of literature titles by subject categories (accessions 4951-6200), an author index is given

  17. Evaluation of some resonance self-shielding procedures employed in high conversion light water reactor design

    International Nuclear Information System (INIS)

    Patino, N.E.; Abbate, M.J.; Sbaffoni, M.M.

    1990-01-01

    The procedures employed in the treatment of the resonance shielding effect have been identified as one of the causes of the large discrepancies found in the neutronic calculation of high conversion light water reactors (HCLWRs), indicating the need for a revision of the self-shielding procedures employed. In this work some well known techniques applied in HCLWR self-shielding calculations are evaluated; the study involves the comparison of methods for the generation of group constants, the analysis of the impact of considering some isotopes as infinitely diluted and the evaluation of the usual approximations utilized for the treatment of heterogeneities

  18. Development of a new measurement method for fast breeder reactor fuel burnup using a shielded ion microprobe analyzer

    International Nuclear Information System (INIS)

    Mizuno, M.; Enokido, Y.; Itaki, T.; Kono, K.; Unno, I.; Yamanouchi, S.

    1985-01-01

    A new method of burnup measurement using a shielded ion microprobe analyzer (SIMA) has been developed. The method is based on the isotope analysis of uranium, plutonium, and fission products in irradiated mixed oxide fuel by means of secondary ion mass spectrometry (SIMS). Fourteen samples irradiated in the Japanese experimental fast reactor JOYO were examined. The maximum local burnup of JOYO MK-I core fuels was about5.1 at. %. The axial burnup distribution of the fuel pin was in good agreement with that of the sibling pin in the same subassembly, measured by surface ionization mass spectrometry, which requires the chemical separation of fission products and heavy metals. The new method facilitates the rapid and accurate measurement of fast breeder reactor fuel burnup without human radiation exposure during sample preparation and analysis

  19. Primary shield displacement and bowing

    International Nuclear Information System (INIS)

    Scott, K.V.

    1978-01-01

    The reactor primary shield is constructed of high density concrete and surrounds the reactor core. The inlet, outlet and side primary shields were constructed in-place using 2.54 cm (1 in) thick steel plates as the forms. The plates remained as an integral part of the shields. The elongation of the pressure tubes due to thermal expansion and pressurization is not moving through the inlet nozzle hardware as designed but is accommodated by outward displacement and bowing of the inlet and outlet shields. Excessive distortion of the shields may result in gas seal failures, intolerable helium gas leaks, increased argon-41 emissions, and shield cooling tube failures. The shield surveillance and testing results are presented

  20. Radiological dose rate calculations for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Khater, H.Y.; Santoro, R.T.

    1996-01-01

    Two-dimensional biological dose rates were calculated at different locations outside the International Thermonuclear Experimental Reactor (ITER) design. An 18 degree sector of the reactor was modeled in r-θ geometry. The calculations were performed for three different pulsing scenarios. This included a single pulse of 1000 s duration, 10 pulses of 1000 s duration with a 50% duty factor, and 9470 pulses of 1000 s duration with a 50% duty factor for a total fluence of 0.3 MW.a/m 2 . The dose rates were calculated as a function of toroidal angle at locations in the space between the toroidal field (TF) coils and cryostat, and in the space between the cryostat and the biological shield. The two-dimensional results clearly showed the toroidal effect, which is dominated by contribution from the activation of the cryostat and the biological shield. After one pulse, full access to the machine is possible within a few hours following shutdown. After 10 pulses, full access is also possible within the first day following shutdown. At the end of the Basic Performance Phase (BPP), full access is possible at any of the locations considered after one week following shutdown. 5 refs., 5 figs., 2 tabs

  1. An experimental study on a superconducting generator with dual machine shield system

    International Nuclear Information System (INIS)

    Ishigohka, T.; Ninomiya, A.; Okada, T.; Nitta, T.; Shintani, T.; Mukai, E.

    1988-01-01

    The authors have studied the optimal machine shield system through experiments on a 20kVa superconducting generator. The first experiment is carried out on a fully iron-less aluminum-shield machine which has only an aluminum eddy current machine shield in the stator. The second experiment is carried out on a generator with a dual-shield system which has both an aluminum eddy current shield and an iron magnetic shield. From the first one, the authors have got an experimental result that the aluminum-shield machine exhibits so large eddy current loss in the shield that it would be difficult to operate the machine continuously. On the other hand, the second experiment shows that the dual-shield machine exhibits much smaller loss in the shielding system, and that it has higher output power than the aluminum-shield machine. From these experiments, it becomes clear that insertion of a very thin iron shield between the armature winding and the eddy current shield can improve the machine performance eminently without large weight increase even if the iron shield were saturated

  2. Bibliography, subject index, and author index of the literature examined by the Radiation Shielding Information Center (Reactor and Weapons Radiation Shielding). [1973--1976

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    An indexed bibliography is presented of literature selected by the Radiation Shielding Information Center since the previous volume was published in 1974 in the area of radiation transport and shielding against radiation from nuclear reactors, x-ray machines, radioisotopes, nuclear weapons (including fallout), and low-energy accelerators (e.g., neutron generators). In addition to lists of literature titles by subject categories (accessions 3501-4950), author and keyword indexes are given. Most of the literature selected for Vol. V was published in the years 1973 to 1976.

  3. Superconducting coil design for a tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Turner, L.R.; Wang, S.T.; Smelser, P.

    1977-01-01

    Superconducting toroidal field (TF) and polodial-field (PF) coils have been designed for the proposed Argonne National Laboratory experimental power reactor (EPR). Features of the design include: (1) Peak field of 8 T at 4.2 K or 10 T at 3.0 K. (2) Constant-tension shape for the TF coils, corrected for the finite number (16) of coils. (3) Analysis of errors in coil alignment. (4) Comparison of safety aspects of series-connected and parallel-connected coils. (5) A 60 kA sheet conductor of NbTi with copper stabilizer and stainless steel for support. (6) Superconducting PF coils outside the TF coils. (7) The TF coils shielded from pulsed fields by high-purity aluminum

  4. Project and characteristics of a 5MW experimental fast reactor

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Nascimento, J.A. do.

    1986-05-01

    Characteristics of a 5 MW experimental fast reactor are reported. The reactor is designed with emphasis on fuel and materials irradiation and uses fuel assemblies of a standard structure. The reference core consist of 37 fuel assemblies, each of which contains 19 pins of metallic Pu/Zr fuel. With a core height of 17.6 cm the core volume is 11.4 liter and the central fast (E >=100 KeV) flux is 0.9 x 10 15 n/cm 2 sec. In addition to twelve control rod assemblies with a total reactivity worth of 5.5% Δk, 42 assemblies for reactivity compensation are placed in the two rings outside the core. Replacing these assemblies with driver, blanket, or refletor-shield assemblies, large reactivities can be added to make the central assembly position available for test irradiations and to assure high levels of burnup of driver assemblies. (Author) [pt

  5. RESONANCE SELF-SHIELDING EFFECT IN UNCERTAINTY QUANTIFICATION OF FISSION REACTOR NEUTRONICS PARAMETERS

    Directory of Open Access Journals (Sweden)

    GO CHIBA

    2014-06-01

    Full Text Available In order to properly quantify fission reactor neutronics parameter uncertainties, we have to use covariance data and sensitivity profiles consistently. In the present paper, we establish two consistent methodologies for uncertainty quantification: a self-shielded cross section-based consistent methodology and an infinitely-diluted cross section-based consistent methodology. With these methodologies and the covariance data of uranium-238 nuclear data given in JENDL-3.3, we quantify uncertainties of infinite neutron multiplication factors of light water reactor and fast reactor fuel cells. While an inconsistent methodology gives results which depend on the energy group structure of neutron flux and neutron-nuclide reaction cross section representation, both the consistent methodologies give fair results with no such dependences.

  6. Problems related to the definition of the shielding of a large fast power reactor

    International Nuclear Information System (INIS)

    Moreau, J.

    Solutions for the shielding of a 1000 MW(e) power plant in the same technological line as Phenix are given. They have been evaluated with a monodimensional transport code. The choice is based on the comparison of their efficiency towards neutrons and on the consequences of their characteristics on the conception of the reactor tank. A few economical considerations give an idea of the influence of the choice in shielding on the cost of the power plant. At last the problem of the optimization possibilities is approached from the designer's point of view

  7. Radiation shielding design for a hot repair facility

    International Nuclear Information System (INIS)

    Courtney, J.C.; Dwight, C.C.

    1991-01-01

    A new repair and decontamination area is being built to support operations at the demonstration fuel cycle facility for the Integral Fast Reactor program at Argonne National Laboratory's site at the Idaho National Engineering Laboratory. Provisions are made for remote, glove wall, and contact maintenance on equipment removed from hot cells where spent fuel will be electrochemically processed and recycled to the Experimental Breeder Reactor-II. The source for the shielding design is contamination from a mix of fission and activation products present on items removed from the hot cells. The repair facility also serves as a transfer path for radioactive waste produced by processing operations. Radiation shields are designed to limit dose rates to no more than 5 microSv h-1 (0.5 mrem h-1) in normally occupied areas. Point kernel calculations with buildup factors have been used to design the shielding and to position radiation monitors within the area

  8. Monte Carlo analysis of the effects of a blanket-shield penetration on the performance of a tokamak fusion reactor

    International Nuclear Information System (INIS)

    Santoro, R.T.; Tang, J.S.; Alsmiller, R.G. Jr.; Barnes, J.M.

    1977-05-01

    Adjoint Monte Carlo calculations have been carried out using the three-dimensional radiation transport code, MORSE, to estimate the nuclear heating and radiation damage in the toroidal field (TF) coils adjacent to a 28 x 68 cm 2 rectangular neutral beam injector duct that passes through the blanket and shield of a D-T burning Tokamak reactor. The plasma region, blanket, shield, and TF coils were represented in cylindrical geometry using the same dimensions and compositions as those of the Experimental Power Reactor. The radiation transport was accomplished using coupled 35-group neutron, 21-group gamma-ray cross sections obtained by collapsing the DLC-37 cross-section library. Nuclear heating and radiation damage rates were estimated using the latest available nuclear response functions. The presence of the neutral beam injector duct leads to increases in the nuclear heating rates in the TF coils ranging from a factor of 3 to a factor of 196 depending on the location. Increases in the radiation damage also result in the TF coils. The atomic displacement rates increase from factors of 2 to 138 and the hydrogen and helium gas production rates increase from factors of 11 to 7600 and from 15 to 9700, respectively

  9. INTOR radiation shielding for personnel access

    International Nuclear Information System (INIS)

    Gohar, Y.; Abdou, M.

    1981-01-01

    The INTOR reactor shield system consists of the blanket, bulk shield, penetration shield, component shield, and biological shield. The bulk shield consists of two parts: (a) the inboard shield; and (b) the outboard shield. The distinction between the different components of the shield system is essential to satisfy the different design constraints and achieve various objectives

  10. PWR upper/lower internals shield

    Energy Technology Data Exchange (ETDEWEB)

    Homyk, W.A. [Indian Point Station, Buchanan, NY (United States)

    1995-03-01

    During refueling of a nuclear power plant, the reactor upper internals must be removed from the reactor vessel to permit transfer of the fuel. The upper internals are stored in the flooded reactor cavity. Refueling personnel working in containment at a number of nuclear stations typically receive radiation exposure from a portion of the highly contaminated upper intervals package which extends above the normal water level of the refueling pool. This same issue exists with reactor lower internals withdrawn for inservice inspection activities. One solution to this problem is to provide adequate shielding of the unimmersed portion. The use of lead sheets or blankets for shielding of the protruding components would be time consuming and require more effort for installation since the shielding mass would need to be transported to a support structure over the refueling pool. A preferable approach is to use the existing shielding mass of the refueling pool water. A method of shielding was devised which would use a vacuum pump to draw refueling pool water into an inverted canister suspended over the upper internals to provide shielding from the normally exposed components. During the Spring 1993 refueling of Indian Point 2 (IP2), a prototype shield device was demonstrated. This shield consists of a cylindrical tank open at the bottom that is suspended over the refueling pool with I-beams. The lower lip of the tank is two feet below normal pool level. After installation, the air width of the natural shielding provided by the existing pool water. This paper describes the design, development, testing and demonstration of the prototype device.

  11. Demonstration test on manufacturing 200 l drum inner shielding material for recycling of reactor operating metal scrap

    International Nuclear Information System (INIS)

    Umemura, A.; Kimura, K.; Ueno, H.

    1993-01-01

    Low-level reactor wastes should be safely recycled considering those resource values, the reduction of waste disposal volume and environmental effects. The reasonable recycling system of reactor operating metal scrap has been studied and it was concluded that the 200 liter drum inner shielding material is a very promising product for recycling within the nuclear industry. The drum inner shielding material does not require high quality and so it is expected to be easily manufactured by melting and casting from roughly sorted scrap metals. This means that the economical scrap metal recycling system can be achieved by introducing it. Furthermore its use will ensure safety because of being contained in a drum. In order to realize this recycling system with the drum inner shielding material, the demonstration test program is being conducted. The construction of the test facility, which consists of a melting and refining furnace, a casting apparatus, a machining apparatus etc., was finishing in September, 1992

  12. BUGLE-93 (ENDF/B-VI) cross-section library data testing using shielding benchmarks

    International Nuclear Information System (INIS)

    Hunter, H.T.; Slater, C.O.; White, J.E.

    1994-01-01

    Several integral shielding benchmarks were selected to perform data testing for new multigroup cross-section libraries compiled from the ENDF/B-VI data for light water reactor (LWR) shielding and dosimetry. The new multigroup libraries, BUGLE-93 and VITAMIN-B6, were studied to establish their reliability and response to the benchmark measurements by use of radiation transport codes, ANISN and DORT. Also, direct comparisons of BUGLE-93 and VITAMIN-B6 to BUGLE-80 (ENDF/B-IV) and VITAMIN-E (ENDF/B-V) were performed. Some benchmarks involved the nuclides used in LWR shielding and dosimetry applications, and some were sensitive specific nuclear data, i.e. iron due to its dominant use in nuclear reactor systems and complex set of cross-section resonances. Five shielding benchmarks (four experimental and one calculational) are described and results are presented

  13. Tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Abdou, M.A.; Bertoncini, P.J.

    1976-01-01

    A conceptual design has been developed for a tokamak Experimental Power Reactor to operate at net electrical power conditions with a plant capacity factor of 50 percent for 10 yr. The EPR operates in a pulsed mode at a frequency of approximately 1/min, with approximately 75 percent duty cycle, is capable of producing approximately 72 MWe and requires 42 MWe. The annual tritium consumption is 16 kg. The EPR vacuum chamber is 6.25 m in major radius and 2.4 m in minor radius, is constructed of 2 cm thick stainless steel, and has 2 cm thick detachable, beryllium-coated coolant panels mounted on the interior. A 0.28 m stainless steel blanket and a shield ranging from 0.6 to 1.0 m surround the vacuum vessel. The coolant is H 2 O. Sixteen niobium-titanium superconducting toroidal field coils provide a field of 10 T at the coil and 4.47 T at the plasma. Superconducting ohmic heating and equilibrium field coils provide 135 V-s to drive the plasma current. Plasma heating is accomplished by 12 neutral beam injectors which provide 60 MW. The energy transfer and storage system consists of a central superconducting storage ring, a homopolar energy storage unit, and a variety of inductor-convertors

  14. Determination of boron in Jabroc wood used as a shielding material in nuclear reactors

    International Nuclear Information System (INIS)

    Kamble, Granthali S.; Manisha, V.; Venkatesh, K.

    2015-01-01

    Jabroc are non-impregnated, densified wood laminates developed commercially for a wide range of industrial applications. Jabroc can be used with other neutron shielding materials such as Lead to form complex shielding structures. Its relative light weight and cleanliness in handling are additional features that make it a suitable candidate for the standard design of neutron shielding equipment. Jabroc can also be impregnated with Boron up to a maximum of 4% to be used in areas where Gamma radiation produced on Neutron capture reaches unacceptable dose rates. Boron impregnated Jabroc wood finds application in TAPS 3 and 4 as a shielding material for the Ion Chambers and the Horizontal Flux Units (HFU). The shielding property of this material is optimized by incorporating requisite amount of boron in wood. Boron content in this material has to be determined accurately prior to its use in the nuclear reactors. In this work a method was standardized to determine boron in Jabroc wood samples to check for conformance to specifications. The wood sample flakes were wetted with saturated barium hydroxide solution and dries under IR. The sample was ashed in a muffle furnace at 600℃ for 2 h

  15. High performance inboard shield design for the compact TIBER-II test reactor: Appendix A-2

    International Nuclear Information System (INIS)

    El-Guebaly, L.A.; Sviatoslavsky, I.N.

    1987-01-01

    The compactness of the TIBER-II reactor has placed a premium on the design of a high performance inboard shield to protect the inner legs of the toroidal field (TF) coils. The available space for shield is constrained to 48 cm and the use of tungsten is mandatory to protect the magnet against the 1.53 MW/m 2 neutron wall loading. The primary requirement for the shield is to limit the fast neutron fluence to 10 19 n/cm 2 . In an optimization study, the performance of various candidate materials for protecting the magnet was examined. The optimum shield consists of a 40 cm thick W layer, followed by an 8 cm thick H 2 O/LiNO 3 layer. The mechanical design of the shield calls for tungsten blocks within SS stiffened panels. All the coolant channels are vertical with more of them in the front where there is a high heat load. The coolant pressure is 0.2 MPa and the maximum structural surface temperature is 0 C. The effects of the detailed mechanical design of the shield and the assembly gaps between the shield sectors on the damage in the magnet were analyzed and peaking factors of ∼2 were found at the hot spots. 2 refs., 6 figs., 2 tabs

  16. Thermal design of top shield for PFBR

    International Nuclear Information System (INIS)

    Gajapathy, R.; Jalaludeen, S.; Selvaraj, A.; Bhoje, S.B.

    1988-01-01

    India's Liquid Metal Cooled Fast Breeder Reactor programme started with the construction of loop type 13MW(e) Fast Breeder Test Reactor (FBTR) which attained criticality in October 1985. With the experience of FBTR, the design work on pool type 500 MW(e) Prototype Fast Breeder Reactor (PFBR) which will be a forerunner for future commercial fast breeder reactors, has been started. The Top Shield forms the cover for the main vessel which contains the primary circuit. Argon cover gas separates the Top Shield from the free level of hot sodium pool (803K). The Top Shield which is of box type construction consists of control plug, two rotatable plugs and roof slab, assembled together, which provide biological shielding, thermal shielding and leak tight containment at the top of the main vessel. Heat is transferred from the sodium pool to the Top Shield through argon cover gas and through components supported by it and dipped in the sodium pool. The Top Shield should be maintained at the desired operating temperature by incorporating a cooling system inside it. Insulation may be provided below the bottom plate to reduce the heat load to the cooling system, if required. The thermal design of Top Shield consists of estimation of heat transfer to the Top Shield, selection of operating temperature, assessment of insulation requirement, design of cooling system and evaluation of transient temperature changes

  17. ORNL fusion reactor shielding integral experiments

    International Nuclear Information System (INIS)

    Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.; Chapman, G.T.

    1980-01-01

    Integral experiments that measure the neutron and gamma-ray energy spectra resulting from the attenuation of approx. 14 MeV T(D,n) 4 He reaction neutrons in laminated slabs of stainless steel type 304, borated polyethylene, and a tungsten alloy (Hevimet) and from neutrons streaming through a 30-cm-diameter iron duct (L/D = 3) imbedded in a concrete shield have been performed. The facility, the NE-213 liquid scintillator detector system, and the experimental techniques used to obtain the measured data are described. The two-dimensional discrete ordinates radiation transport codes, calculational models, and nuclear data used in the analysis of the experiments are reviewed

  18. Importance of self-shielding for improving sensitivity coefficients in light water nuclear reactors

    International Nuclear Information System (INIS)

    Foad, Basma; Takeda, Toshikazu

    2014-01-01

    Highlights: • A new method has been developed for calculating sensitivity coefficients. • This method is based on the use of infinite dilution cross-sections instead of effective cross-sections. • The change of self-shielding factor due to cross-section perturbation has been considered. • SRAC and SAINT codes are used for calculating improved sensitivities, while MCNP code has been used for verification. - Abstract: In order to perform sensitivity analyzes in light water reactors where self-shielding effect becomes important, a new method has been developed for calculating sensitivity coefficient of core characteristics relative to the infinite dilution cross-sections instead of the effective cross-sections. This method considers the change of the self-shielding factor due to cross-section perturbation for different nuclides and reactions. SRAC and SAINT codes are used to calculate the improved sensitivity; while the accuracy of the present method has been verified by MCNP code and good agreement has been found

  19. Burst shield for a pressurized nuclear-reactor core and method of operating same

    International Nuclear Information System (INIS)

    Beine, B.; Schilling, F.

    1976-01-01

    A pressurized nuclear-reactor core stands on a base up from which extends a cylindrical side wall formed of a plurality of hollow iron castings held together by circumferential and longitudinal prestressed elements. A cylindrical space between this shield and the core serves for inspection of the core and is normally filled with cast-iron segmental slabs so that if the core bursts pieces thrown out do not acquire any dangerous kinetic energy before engaging the burst shield. The top of the shield is removably secured to the side so that it can be moved out of the way periodically for removal of the filler slabs and inspection of the core. An anchor on the upper end of each longitudinal prestressing element bears against a sleeve pressing against the uppermost side element, and a nut engageable with this anchor is engageable down over the top to hold it in place, removal of this nut leaving the element prestressed in the side wall. 11 claims, 16 drawing figures

  20. Review of the conceptual design of a Doublet fusion experimental power reactor

    International Nuclear Information System (INIS)

    Baker, C.C.

    1976-01-01

    The results of a two-year, conceptual design study of a fusion experimental power reactor (EPR) are presented. For this study, the primary objectives of the EPR are to obtain plasma ignition conditions and produce net electrical power. The design features a Doublet plasma configuration with a major radius of 4.5 m. The average plasma beta is 10 percent which yields a thermonuclear power level of 410 MW during a 105-sec burn period. With a duty factor of 0.84, the gross electrical output is 124 MW(e) while the net output is 37 MW(e). The design features a 25-cm-thick, helium-cooled, modular, stainless-steel blanket with a 1-cm-thick, silicon carbide first wall. Sufficient shielding is provided to permit contact maintenance outside the shield envelope within 24 hr after shutdown. An overall plant concept has been developed including a superheated steam cycle power conversion system. Preliminary cost estimates and construction schedules have also been developed. 3 refs

  1. Design experience: CRBRP radiation shielding

    International Nuclear Information System (INIS)

    Disney, R.K.; Chan, T.C.; Gallo, F.G.; Hedgecock, L.R.; McGinnis, C.A.; Wrights, G.N.

    1978-11-01

    The Clinch River Breeder Reactor Plant (CRBRP) is being designed as a fast breeder demonstration project in the U.S. Liquid Metal Fast Breeder Reactor (LMFBR) program. Radiation shielding design of the facility consists of a comprehensive design approach to assure compliance with design and government regulatory requirements. Studies conducted during the CRBRP design process involved the aspects of radiation shielding dealing with protection of components, systems, and personnel from radiation exposure. Achievement of feasible designs, while considering the mechanical, structural, nuclear, and thermal performance of the component or system, has required judicious trade-offs in radiation shielding performance. Specific design problems which have been addressed are in-vessel radial shielding to protect permanent core support structures, flux monitor system shielding to isolate flux monitoring systems for extraneous background sources, reactor vessel support shielding to allow personnel access to the closure head during full power operation, and primary heat transport system pipe chaseway shielding to limit intermediate heat transport system sodium system coolant activation. The shielding design solutions to these problems defined a need for prototypic or benchmark experiments to provide assurance of the predicted shielding performance of selected design solutions and the verification of design methodology. Design activities of CRBRP plant components an systems, which have the potential for radiation exposure of plant personnel during operation or maintenance, are controlled by a design review process related to radiation shielding. The program implements design objectives, design requirements, and cost/benefit guidelines to assure that radiation exposures will be ''as low as reasonably achievable''

  2. Experimental research of the effects of different shields on power frequency electric field mitigation

    Directory of Open Access Journals (Sweden)

    Nahman Jovan

    2012-01-01

    Full Text Available The paper describes experimental research on the effects of different shields on power frequency electric field mitigation. This research was performed in order to determine those materials that may be used for electric field mitigation in cases where the reference level is exceeded. Using measured results, the value of the shielding factor has been calculated for all tested shields and the most efficient shields were determined.

  3. Conceptual design studies of experimental and demonstration fusion reactors

    International Nuclear Information System (INIS)

    1978-01-01

    Since 1973 the FINTOR Group has been involved in conceptual design studies of TOKAMAK-type fusion reactors to precede the construction of a prototype power reactor plant. FINTOR-1 was the first conceptual design aimed at investigating the main physics and engineering constraints on a minimum-size (both dimensions and thermal power) tokamak experimental reactor. The required plasma energy confinement time as evaluated by various power balance models was compared with the values resulting from different transport models. For the reference design, an energy confinement time ten times smaller than neoclassical was assumed. This also implied a rather high (thermally stable) working temperature (above 20 keV) for the reactor. Other relevant points of the design were: circular plasma cross section, single-null axisymmetric divertor; lithium breeder, stainless steel structures, helium coolant; modular blanket and shield structure; copper-stabilized, superconducting Nb-Ti toroidal field and divertor coils; vertical field and transformer coils inside the toroidal coils; vacuum-tight containment vessel. Solutions involving air and iron transformer cores were compared. These assumptions led to a minimum size reactor with a thermal power of about 100MW and rather large dimensions (major radius of about 9m) similar to those of full-scale power reactors considered in other conceptual studies. The FINTOR-1 analysis was completed by the end of 1976. In 1977 a conceptual design of a Demonstration Power Reactor Plant (FINTOR-D) was started. In this study the main working assumptions differing from those of FINTOR-1 are: non-circular plasma cross section; plasma confinement compatible with trapped ion instabilities; cold (gas) blanket sufficient for wall protection (no divertor); wall loading between 1-3MW/m 2 and thermal power of a few GW. (author)

  4. Embrittlement of the Shippingport reactor shield tank

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.

    1989-01-01

    Surveillance specimens from the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory showed an unexpectedly high degree of embrittlement relative to the data obtained on similar materials in Materials Testing Reactors (MTRs). The results suggest a possible negative flux effect and raise the issue of embrittlement of the pressure vessel support structures of commercial light water reactors. To help resolve this issues, a program was initiated to characterize the irradiation embrittlement of the neutron shield tank (NST) from the decommissioned Shippingport reactor. The Shippingport NST operated at 55 degree C (130 degree F) and was fabricated from A212 Grade B steel, similar to the vessel material in HFIR. The inner wall of the NST was exposed to a total maximum fluence of ∼ 6 x 10 17 n/cm 2 (E > 1 MeV) over a life of 9.25 effective full power years. This corresponds to a fast flux of 2.1 x 10 9 n/cm 2 x s and is comparable to the conditions for the HFIR surveillance specimens. The results indicate that irradiation increases the 15 ft x lb Charpy transition temperature (CTT) by ∼25 degree C (45 degree F) and decreases the upper shelf energy. The shift in CTT is not as severe as that observed in the HFIR surveillance specimens and is consistent with that expected from the MTR data base. However, the actual value of CTT is high, and the toughness at service temperature is low, even when compared with the HFIR data. The increase in yield stress is ∼50 MPa, which is comparable to the HFIR data. The results also indicate a lower impact strength and higher transition temperature for the TL orientation than that for the LT orientation. Some effects of the location across the thickness of the wall are also observed for the LT specimens; CTT is slightly greater for the specimens from the inner region of the wall

  5. Nuclear data needs for fast breeder reactor shielding

    International Nuclear Information System (INIS)

    Oblow, E.M.; Perey, F.G.

    1978-11-01

    A review of neutron and gamma-ray cross section data needs for fast reactor shielding is presented in light of the recent advances made in assessing these needs through sensitivity studies. Total and partial cross sections and energy and angular distribution data for neutrons are surveyed as well as gamma-ray production cross sections. The strengths and deficiencies of currently available benchmark-quality integral experiments are also discussed with respect to their use in creating adjusted cross section libraries for design work. The availability of first round covariance data in ENDF/B-IV and plans for ENDF/B-V are also reviewed. This latter information makes it possible to quantitatively assess the quality of current cross section data libraries and also puts adjustment and data assessment procedures on a firmer basis

  6. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  7. Generation of an activation map for decommissioning planning of the Berlin Experimental Reactor-II

    Science.gov (United States)

    Lapins, Janis; Guilliard, Nicole; Bernnat, Wolfgang

    2017-09-01

    The BER-II is an experimental facility with 10 MW that was operated since 1974. Its planned operation will end in 2019. To support the decommissioning planning, a map with the overall distribution of relevant radionuclides has to be created according to the state of the art. In this paper, a procedure to create these 3-d maps using a combination of MCNP and deterministic methods is presented. With this approach, an activation analysis is performed for the whole reactor geometry including the most remote parts of the concrete shielding.

  8. Method for dismantling shields

    International Nuclear Information System (INIS)

    Fukuzawa, Rokuro; Kondo, Nobuhiro; Kamiyama, Yoshinori; Kawasato, Ken; Hiraga, Tomoaki.

    1990-01-01

    The object of the present invention is to enable operators to dismantle shieldings contaminated by radioactivity easily and in a short period of time without danger of radiation exposure. A plurality of introduction pipes are embedded previously to the shielding walls of shielding members which contain a reactor core in a state where both ends of the introduction pipes are in communication with the outside. A wire saw is inserted into the introduction pipes to cut the shieldings upon dismantling. Then, shieldings can be dismantled easily in a short period of time with no radiation exposure to operator's. Further, according to the present invention, since the wire saw can be set easily and a large area can be cut at once, operation efficiency is improved. Further, since remote control is possible, cutting can be conducted in water and complicated places of the reactor. Biting upon starting the wire saw in the introduction pipe is reduced to facilitate startup for the rotation. (I.S.)

  9. Improved Nuclear Reactor and Shield Mass Model for Space Applications

    Science.gov (United States)

    Robb, Kevin

    2004-01-01

    New technologies are being developed to explore the distant reaches of the solar system. Beyond Mars, solar energy is inadequate to power advanced scientific instruments. One technology that can meet the energy requirements is the space nuclear reactor. The nuclear reactor is used as a heat source for which a heat-to-electricity conversion system is needed. Examples of such conversion systems are the Brayton, Rankine, and Stirling cycles. Since launch cost is proportional to the amount of mass to lift, mass is always a concern in designing spacecraft. Estimations of system masses are an important part in determining the feasibility of a design. I worked under Michael Barrett in the Thermal Energy Conversion Branch of the Power & Electric Propulsion Division. An in-house Closed Cycle Engine Program (CCEP) is used for the design and performance analysis of closed-Brayton-cycle energy conversion systems for space applications. This program also calculates the system mass including the heat source. CCEP uses the subroutine RSMASS, which has been updated to RSMASS-D, to estimate the mass of the reactor. RSMASS was developed in 1986 at Sandia National Laboratories to quickly estimate the mass of multi-megawatt nuclear reactors for space applications. In response to an emphasis for lower power reactors, RSMASS-D was developed in 1997 and is based off of the SP-100 liquid metal cooled reactor. The subroutine calculates the mass of reactor components such as the safety systems, instrumentation and control, radiation shield, structure, reflector, and core. The major improvements in RSMASS-D are that it uses higher fidelity calculations, is easier to use, and automatically optimizes the systems mass. RSMASS-D is accurate within 15% of actual data while RSMASS is only accurate within 50%. My goal this summer was to learn FORTRAN 77 programming language and update the CCEP program with the RSMASS-D model.

  10. ANS shielding standards for light-water reactors

    International Nuclear Information System (INIS)

    Trubey, D.K.

    1982-01-01

    The purpose of the American Nuclear Society Standards Subcommittee, ANS-6, Radiation Protection and Shielding, is to develop standards for radiation protection and shield design, to provide shielding information to other standards-writing groups, and to develop standard reference shielding data and test problems. A total of seven published ANS-6 standards are now current. Additional projects of the subcommittee, now composed of nine working groups, include: standard reference data for multigroup cross sections, gamma-ray absorption coefficients and buildup factors, additional benchwork problems for shielding problems and energy spectrum unfolding, power plant zoning design for normal and accident conditions, process radiation monitors, and design for postaccident radiological conditions

  11. Benchmark shielding calculations for the NEACRP [Nuclear Energy Agency-Committee on Reactor Physics] Working Group on shielding assessment of transportation packages

    International Nuclear Information System (INIS)

    Broadhead, B.L.; Brady, M.C.; Parks, C.V.

    1990-11-01

    In 1985, the Nuclear Energy Agency-Committee on Reactor Physics (NEACRP) established a working group on shielding assessment of transportation packages. Following the initial distribution of a set of six problems, discussions were held at the Organization for Economic Cooperation and Development (OECD) Headquarters in Paris, France, in June/July 1986, May 1988, and February/March 1990. The US contribution to the working group is documented in this report. The results from this effort permit the evaluation of a number of approximations and effects that must be considered in a typical shielding analysis of a transportation cask. Among the effects reported here are the performance of multiple cross-section sets, the comparison of several source generation codes, and multidimensional versus one-dimensional (1-D) analyses. 18 refs., 16 figs., 33 tabs

  12. FBR type reactors

    International Nuclear Information System (INIS)

    Nakamura, Tsugio.

    1986-01-01

    Purpose: To ensure the thermal integrity of a reactor vessel in FBR type reactors by preventing sodium vapors or the likes from intruding into a shielding chamber and avoiding spontaneous convection thereof. Constitution: There are provided a shielding plug for shielding the upper opening of a reactor container, an annular thermal member disposed to the circumferential side in the container, a shielding member for shielding upper end of the shielding chamber and a plurality of convection preventive plates suspended from the thermal member into the shielding chamber, and the shielding chamber is communicated by way of the relatively low temperature portion of the container with a gas communication pipe. That is, by closing the upper end of the shielding chamber with the shielding member, coolant vapors, etc. can be prevented from intruding into the shielding chamber. Further, the convection preventive plates prevent the occurrence of spontaneous convection in the shielding chamber. Further, the gas communication pipe absorbs the expansion and contraction of gases in the shielding chamber to effectively prevent the deformation or the like for each of the structural materials. In this way, the thermal integrity of the reactor container can surely be maintained. (Horiuchi, T.)

  13. Acoustic emission technique for leak detection in an end shield of a pressurized heavy water reactor

    International Nuclear Information System (INIS)

    Kalyanasundaram, P.; Jayakumar, T.; Raj, B.

    1989-01-01

    This paper discusses the successful application of the Acoustic Emission Technique (AET) for detection and location of leak paths present on the inaccessible side of an end shield of a Pressurized Heavy Water Reactor (PHWR). The methodology was based on the fact that air and water leak AE signals have different characteristic features. Baseline data was generated from a sound end-shield of a PHWR for characterizing the background noise. A mock up end-shield system with saw cut leak paths was used to verify the validity of the methodology. It was found that air leak signals under pressurisation (as low as 3 psi) could be detected by frequency domain analysis. Signals due to air leaks from various locations of a defective end-shield were acquired and analysed. It was possible to detect and locate leak paths. Presence of detected leak paths were further confirmed by alternate test. (orig.)

  14. Shielding Calculations for PUSPATI TRIGA Reactor (RTP) Fuel Transfer Cask with Micro shield

    International Nuclear Information System (INIS)

    Nurhayati Ramli; Ahmad Nabil Abdul Rahim; Ariff Shah Ismail

    2011-01-01

    The shielding calculations for RTP fuel transfer cask was performed by using computer code Micro shield 7.02. Micro shield is a computer code designed to provide a model to be used for shielding calculations. The results of the calculations can be obtained fast but the code is not suitable for complex geometries with a shielding composed of more than one material. Nevertheless, the program is sufficient for As Low As Reasonable Achievable (ALARA) optimization calculations. In this calculation, a geometry based on the conceptual design of RTP fuel transfer cask was modeled. Shielding material used in the calculations were lead (Pb) and stainless steel 304 (SS304). The results obtained from these calculations are discussed in this paper. (author)

  15. Development of a low activation concrete shielding wall by multi-layered structure for a fusion reactor

    International Nuclear Information System (INIS)

    Sato, Satoshi; Maegawa, Toshio; Yoshimatsu, Kenji; Sato, Koichi; Nonaka, Akira; Takakura, Kosuke; Ochiai, Kentaro; Konno, Chikara

    2011-01-01

    A multi-layered concrete structure has been developed to reduce induced activity in the shielding for neutron generating facilities such as a fusion reactor. The multi-layered concrete structure is composed of: (1) an inner low activation concrete, (2) a boron-doped low activation concrete as the second layer, and (3) ordinary concrete as the outer layer of the neutron shield. With the multi-layered concrete structure the volume of boron is drastically decreased compared to a monolithic boron-doped concrete. A 14 MeV neutron shielding experiment with multi-layered concrete structure mockups was performed at FNS and several reaction rates and induced activity in the mockups were measured. This demonstrated that the multi-layered concrete effectively reduced low energy neutrons and induced activity.

  16. Study of neutron and gamma shielding by lead borate and bismuth lead borate glasses: transparent radiation shielding

    International Nuclear Information System (INIS)

    Singh, Vishwanath P.; Badiger, N.M.

    2013-01-01

    Radiation shielding for gamma and neutron is the prominent area in nuclear reactor technology, medical application, dosimetry and other industries. Shielding of these types of radiation requires an appropriate concrete with mixture of low-to-high Z elements which is an opaque medium. The transparent radiation shielding in visible light for gamma and neutron is also extremely essential in the nuclear facilities as lead window. Presently various types of lead equivalent glass oxides have been invented which are transparent as well as provide protection from radiation. In our study we have assessment of effectiveness of neutron and gamma radiation shielding of xPbO.(1-x) B 2 O 3 (x=0.15 to 0.60) and xBi 2 O 3 .(0.80-x) PbO.0.20 B 2 O 3 (x=0.10 to 0.70) transparent borate and bismuth glasses by NXCOM program. The neutron effective mass removal cross section, Σ R /ρ (cm 2 /g) of the lead, bismuth and boron oxides are given. We found invariable Σ R /ρ of various combinations of the lead borate glass for x=0.15 to 0.60 and bismuth lead borate glass for x=0.10 to 0.70. It is observed that the effective removal cross-section for fast neutron (cm -1 ) of lead borate reduces significantly whereas roughly constant for bismuth borate. The gamma mass attenuation coefficients (μ/ρ) of the glasses were also compared with possible experimental values and found comparable. High (μ/ρ) for gamma radiation of the bismuth glasses shows that it is better gamma shielding compared with lead containing glass. However lead borate glasses are better neutron shielding as the neutron removal coefficient are higher. Our investigation is very useful for nuclear reactor technology where prompt neutron of energy 17 MeV and gamma photon up to 10 MeV produced. (author)

  17. The application of semianalytic method for calculating the thickness of biological shields of nuclear reactors. Part 2. Attenuation of gamma rays. An example of shield's thickness calculation

    International Nuclear Information System (INIS)

    Lukaszek, W.; Kucypera, S.

    1982-01-01

    The semianalytic method was used for calculating the attenuation of gamma rays and the thickness of biological shield of graphite moderated reactor. A short description of computer code as well as the exemplary results of calculations are given. (A.S.)

  18. Methods for calculating radiation attenuation in shields

    Energy Technology Data Exchange (ETDEWEB)

    Butler, J; Bueneman, D; Etemad, A; Lafore, P; Moncassoli, A M; Penkuhn, H; Shindo, M; Stoces, B

    1964-10-01

    In recent years the development of high-speed digital computers of large capacity has revolutionized the field of reactor shield design. For compact special-purpose reactor shields, Monte-Carlo codes in two- and three dimensional geometries are now available for the proper treatment of both the neutron and gamma- ray problems. Furthermore, techniques are being developed for the theoretical optimization of minimum-weight shield configurations for this type of reactor system. In the design of land-based power reactors, on the other hand, there is a strong incentive to reduce the capital cost of the plant, and economic considerations are also relevant to reactors designed for merchant ship propulsion. In this context simple methods are needed which are economic in their data input and computing time requirements and which, at the same time, are sufficiently accurate for design work. In general the computing time required for Monte-Carlo calculations in complex geometry is excessive for routine design calculations and the capacity of the present codes is inadequate for the proper treatment of large reactor shield systems in three dimensions. In these circumstances a wide range of simpler techniques are currently being employed for design calculations. The methods of calculation for neutrons in reactor shields fall naturally into four categories: Multigroup diffusion theory; Multigroup diffusion with removal sources; Transport codes; and Monte Carlo methods. In spite of the numerous Monte- Carlo techniques which are available for penetration and back scattering, serious problems are still encountered in practice with the scattering of gamma rays from walls of buildings which contain critical facilities and also concrete-lined discharge shafts containing irradiated fuel elements. The considerable volume of data in the unclassified literature on the solution of problems of this type in civil defence work appears not to have been evaluated for reactor shield design. In

  19. Concrete shielding for nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Nagase, Tetsuo; Saito, Tetsuo

    1983-01-01

    The repair works of the shielding for the nuclear ship ''Mutsu'' were completed in August, 1982. For the primary shielding, serpentine concrete was adopted as it contains a large quantity of water required for neutron shielding, and in the secondary shielding at the upper part of the reactor containment vessel, the original shielding was abolished, and the heavy concrete (high water content, high density concrete) which is effective for neutron and gamma-ray shielding was newly adopted. In this report, the design and construction using these shielding concrete are outlined. In September, 1974, Mutsu caused radiation leak during the test, and the cause was found to be the fast neutrons streaming through a gap between the reactor pressure vessel and the primary shielding. The repair works were carried out in the Sasebo Shipyard. The outline of the repair works of the shielding is described. The design condition for the shielding, the design standard for the radiation dose outside and inside the ship, the method of shielding analysis and the performance required for shielding concrete are reported. The selection of materials, the method of construction and mixing ratio, the evaluation of the soundness and properties of concrete, and the works of placing the shielding concrete are outlined. (Kako, I.)

  20. Shielding augmentation of roll-on shield from NAPS to Kaiga-2

    International Nuclear Information System (INIS)

    Pradhan, A.S.; Kumar, A.N.

    2000-01-01

    Extensive radiation field surveys were conducted in NAPS and KAPS reactor buildings as a part of commissioning checks on radiation shielding. During such surveys, dose rate higher than the expected values were noticed in fuelling machine service areas. A movable shield, separating high field area fuelling machine vault and low field area fuelling machine service area, known as roll-on shield was identified as one of the causes of high field in fuelling machine service area along with weaker end-shield. This paper discusses systematic approach adopted in bringing down the dose rates in fuelling machine service area by augmentation of roll-on shield. (author)

  1. Integrated thermal analysis of top-shield and reactor vault of Indian FBR-600

    International Nuclear Information System (INIS)

    Rajendrakumar, M.; Velusamy, K.; Selvaraj, P.

    2015-01-01

    The design for next generation fast breeder reactors (FBR-600) has been commenced with enhanced safety and improved economy as the main targets. The Top Shield (TS) of Prototype Fast Breeder Reactor (PFBR) is a box type structure consisting of Roof Slab (RS), Small Rotatable Plug (SRP), and Large Rotatable Plug (LRP). The large box type structure with many penetrations posed difficulties during manufacturing. Because of the required high load carrying capabilities, a dome shaped thick plate roof slab is conceived for FBR-600. Main Vessel (MV) which holds the primary sodium and associated components is welded to the RS through a triple joint. Reactor vault (RV) is a thick concrete structure which supports MV and Safety Vessel (SV). The temperature of RV concrete has to be less than 338 K (65°C) under normal operating heat loads (full and part load conditions) and less than 363 K (90°C) under Safety Grade Decay Heat Removal (SGDHR) conditions with one cooling loop in service. The temperature in the component penetrations of the RS should be greater than 120°C to avoid sodium aerosol deposition. Similarly, the temperature of the LRP and SRP has to be ∼120°C to protect the elastomeric seals provided to these structures. Further, the heat load to RV transferred by direct conduction by roof slab support has to be minimum. To meet these conflicting thermal requirements, detailed multi-physics CFD calculations have been performed to finalize, (i) the insulation requirements on the top of roof slab, (ii) number and position of reflective insulation plates below the bottom plate of roof slab/rotating plugs, (iii) air flow rate for various zones of the top shield and (iv) water flow rate and pitch of water cooling pipes for the reactor vault. (author)

  2. Fast Neutron Transport in the Biological Shielding Model and Other Regions of the VVER-1000 Mock-Up on the LR-0 Research Reactor

    Directory of Open Access Journals (Sweden)

    Košťál Michal

    2016-01-01

    Full Text Available A set of benchmark experiments was carried out in the full scale VVER-1000 mock-up on the reactor LR-0 in order to validate neutron transport calculation methodologies and to perform the optimization of the shape and locations of neutron flux operation monitors channels inside the shielding of the new VVER-1000 type reactors. Compared with previous experiments on the VVER-1000 mock-up on the reactor LR-0, the fast neutron spectra were measured in the extended neutron energy interval (0.1–10 MeV and new calculations were carried out with the MCNPX code using various nuclear data libraries (ENDF/B VII.0, JEFF 3.1, JENDL 3.3, JENDL 4, ROSFOND 2009, and CENDL 3.1. Measurements and calculations were carried out at different points in the mock-up. The calculation and experimental data are compared.

  3. Production of a datolite-based heavy concrete for shielding nuclear reactors and megavoltage radiotherapy rooms

    International Nuclear Information System (INIS)

    Mortazavi, S. M. J.; Mosleh-Shirazi, M.A.; Baradaran-Ghahfarokhi, M.; Siavashpour, Z.; Farshadi, A.; Ghafoori, M.; Shahvar, A.

    2010-01-01

    Biological shielding of nuclear reactors has always been a great concern and decreasing the complexity and expense of these installations is of great interest. In this study, we used datolite and galena minerals for production of a high performance heavy concrete. Materials and Methods: Datolite and galena minerals which can be found in many parts of Iran were used in the concrete mix design. To measure the gamma radiation attenuation of the Datolite and galena concrete samples, they were exposed to both narrow and wide beams of gamma rays emitted from a cobalt-60 radiotherapy unit. An Am-Be neutron source was used for assessing the shielding properties of the samples against neutrons. To test the compression strengths, both types of concrete mixes (Datolite and galena and ordinary concrete) were investigated. Results: The concrete samples had a density of 4420-4650 kg/m 3 compared to that of ordinary concrete (2300-2500 kg/m 3 ) or barite high density concrete (up to 3500 kg/m 3 ). The measured half value layer thickness of the Datolite and galena concrete samples for cobalt-60 gamma rays was much less than that of ordinary concrete (2.56 cm compared to 6.0 cm). Furthermore, the galena concrete samples had a significantly higher compressive strength as well as 20% more neutron absorption. Conclusion: The Datolite and galena concrete samples showed good shielding/engineering properties in comparison with other reported samples made, using high-density materials other than depleted uranium. It is also more economic than the high-density concretes. Datolite and galena concrete may be a suitable option for shielding nuclear reactors and megavoltage radiotherapy rooms.

  4. Status report of shielding investigation in Japan

    International Nuclear Information System (INIS)

    Shindo, M.

    1964-01-01

    The Japan Atomic Energy Research Institute (JAERI) was established in 1954, and immediately proceeded with the construction of a research reactor. The first symposium in Japan on nuclear energy was held in 1957. Most of the papers presented in the field of reactor shielding were limited to shielding materials and their fabrication. In the first stage of our investigations, our efforts were devoted to practical design studies of reactor shielding. As a result of these studies, it was found that the formulae at hand for calculations were inadequate, but at that time no electronic computer was available in Japan nor were theoretical calculations very actively undertaken. Problems on nuclear ship shielding had been investigated at the Ship Research Institute, since 1956 and many fruitful results had been obtained. About that time the Japan Atomic Industry Forum started activities and took the initiative in organizing shielding research. Research workers in the shipbuilding industry in particular have been seriously studying shielding problems. Few years after the first symposium, problems concerning more fundamental studies were treated by many research workers. Shielding experiments using radioisotopes were carried out and many fruitful results were obtained. They are described in the this paper. Medium size electronic computers became available in Japan, permitting a theoretical study group to make an active contribution. They produced some codes, and their results are also described in the following sections. This constituted the second stage of our investigations. A swimming-pool reactor, JRR-4 (Japan Research Reactor-4), has been under construction at JAERI since 1962 and will become critical in autumn 1964. After characteristic tests it will be a very powerful tool for the shielding investigations. This id the beginning of the third stage of investigations

  5. Activation of TRIGA Mark II research reactor concrete shield

    International Nuclear Information System (INIS)

    Zagar, Tomaz; Ravnik, Matjaz; Bozic, Matjaz

    2002-01-01

    To determine neutron activation inside the TRIGA research reactor concrete body a special sample-holder for irradiation inside horizontal channel was developed and tested. In the sample-holder various samples can be irradiated at different concrete shielding depths. In this paper the description of the sample-holder, experiment conditions and results of long-lived activation measurements are given. Long-lived neutron-induced gamma-ray-emitting radioactive nuclides in the samples were measured with HPGe detector. The most active long-lived radioactive nuclides in ordinary concrete samples were found to be 60 Co and 152 Eu and in barytes concrete samples 60 Co, 152 Eu and 133 Ba. Measured activity density of all nuclides was found to decrease almost linearly with depth in logarithmic scale. (author)

  6. Shielding requirements for particle bed propulsion systems

    Science.gov (United States)

    Gruneisen, S. J.

    1991-06-01

    Nuclear Thermal Propulsion systems present unique challenges in reliability and safety. Due to the radiation incident upon all components of the propulsion system, shielding must be used to keep nuclear heating in the materials within limits; in addition, electronic control systems must be protected. This report analyzes the nuclear heating due to the radiation and the shielding required to meet the established criteria while also minimizing the shield mass. Heating rates were determined in a 2000 MWt Particle Bed Reactor (PBR) system for all materials in the interstage region, between the reactor vessel and the propellant tank, with special emphasis on meeting the silicon dose criteria. Using a Lithium Hydride/Tungsten shield, the optimum shield design was found to be: 50 cm LiH/2 cm W on the axial reflector in the reactor vessel and 50 cm LiH/2 cm W in a collar extension of the inside shield outside of the pressure vessel. Within these parameters, the radiation doses in all of the components in the interstage and lower tank regions would be within acceptable limits for mission requirements.

  7. Design of an integral missile shield in integrated head assembly for pressurized water reactor at commercial nuclear plants

    International Nuclear Information System (INIS)

    Baliga, Ravi; Watts, Tom Neal; Kamath, Harish

    2015-01-01

    In ICONE22, the authors presented the Integrated Head Assembly (IHA) design concept implemented at Callaway Nuclear Power Plant in Missouri, USA. The IHA concept is implemented to reduce the outage duration and the associated radiation exposure to the workers by reducing critical path time during Plant Refueling Outage. One of the head area components in the IHA is a steel missile shield designed to protect the Control Rod Drive Mechanism (CRDM) assembly from damaging other safety-related components in the vicinity in the Containment. Per Federally implemented General Design Criteria for commercial nuclear plants in the USA, the design of Nuclear Steam Supply System (NSSS) must provide protection from the damages caused by a postulated event of CRDM housing units and their associated parts disengaging from the reactor vessel assembly. This event is considered as a Loss of Coolant Accident (LOCA) and assumes that once the CRDM housing unit and their associated parts disengage from the reactor vessel internals assembly, they travel upward by the water jet with the following sequence of events: Per Reference 1, the drive shaft and control rod cluster are forced out of the reactor core by the differential pressure across the drive shaft with the assumption that the drive shaft and control rod cluster, latched together, are fully inserted when the accident occurs. After the travel, the rod cluster control spider will impact the lower side of the upper support plate inside the reactor vessel fracturing the flexure arms in the joint freeing the drive shaft from the control rod cluster. The control rod cluster is stopped by the upper support plate and will remain below the upper support plate during this accident. However, the drive shaft will continue to accelerate in the upward direction until it is stopped by a safety feature in the IHA. The integral missile shield as a safety feature in the IHA is designed to stop the CRDM drive shaft from moving further up in the

  8. Maintenance features of the Compact Ignition Tokamak fusion reactor

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Hager, E.R.

    1987-01-01

    The Compact Ignition Tokamak (CIT) is envisaged to be the next experimental machine in the US Fusion Program. Its use of deuterium/tritium fuel requires the implementation of remote handling technology for maintenance and disassembly operations. The reactor is surrounded by a close-proximity nuclear shield which is designed to permit personnel access within the test cell, one day after shutdown. With the shield in place, certain maintenance activities in the cell may be done hands-on. Maintenance on the reactor is accomplished remotely using a boom-mounted manipulator after disassembling the shield. Maintenance within the plasma chamber is accomplished with two articulated boom manipulators that are capable of operating in a vacuum environment. They are stored in a vacuum enclosure behind movable shield plugs

  9. {sup 3}He detector analysis of some special shielding materials

    Energy Technology Data Exchange (ETDEWEB)

    Avdic, S; Pesic, M [Boris Kidric, Institute of Nuclear Sciences, Beograd (Yugoslavia); Marinkovic, P [ETF Belgrade Univ. (Yugoslavia)

    1990-07-01

    The shielding properties of commercial materials of reactor Experiments, Inc. (R/X) were analyzed at the facility which includes bare heavy water experimental reactor RB with external neutron converter ENC, The fast neutron spectrum measurements in energy range from 1 MeV to 10 MeV was performed using ORTEC semiconductor neutron detector with He{sup 3} in diode coincidence arrangement. The neutron spectra have been evaluated from measured pulse-height distribution using numerical code HE3 for computation of detector efficiency in a collimated neutron beam. The neutron dose rates behind ENC with and without sample R/X material were determined using cubic spline interpolation routine for calculating the corresponding flux-dose rate conversion factors. Satisfactory shielding properties of the examined material in a fast neutron field in measurements and calculations are demonstrated. (author)

  10. Experimental facilities for gas-cooled reactor safety studies. Task group on Advanced Reactor Experimental Facilities (TAREF)

    International Nuclear Information System (INIS)

    2009-01-01

    In 2007, the NEA Committee on the Safety of Nuclear Installations (CSNI) completed a study on Nuclear Safety Research in OECD Countries: Support Facilities for Existing and Advanced Reactors (SFEAR) which focused on facilities suitable for current and advanced water reactor systems. In a subsequent collective opinion on the subject, the CSNI recommended to conduct a similar exercise for Generation IV reactor designs, aiming to develop a strategy for ' better preparing the CSNI to play a role in the planned extension of safety research beyond the needs set by current operating reactors'. In that context, the CSNI established the Task Group on Advanced Reactor Experimental Facilities (TAREF) in 2008 with the objective of providing an overview of facilities suitable for performing safety research relevant to gas-cooled reactors and sodium fast reactors. This report addresses gas-cooled reactors; a similar report covering sodium fast reactors is under preparation. The findings of the TAREF are expected to trigger internationally funded CSNI projects on relevant safety issues at the key facilities identified. Such CSNI-sponsored projects constitute a means for efficiently obtaining the necessary data through internationally co-ordinated research. This report provides an overview of experimental facilities that can be used to carry out nuclear safety research for gas-cooled reactors and identifies priorities for organizing international co-operative programmes at selected facilities. The information has been collected and analysed by a Task Group on Advanced Reactor Experimental Facilities (TAREF) as part of an ongoing initiative of the NEA Committee on the Safety of Nuclear Installations (CSNI) which aims to define and to implement a strategy for the efficient utilisation of facilities and resources for Generation IV reactor systems. (author)

  11. MFTF-α + T shield design

    International Nuclear Information System (INIS)

    Gohar, Y.

    1985-01-01

    MFTF-α+T is a DT upgrade option of the Tandem Mirror Fusion Test Facility (MFTF-B) to study better plasma performance, and test tritium breeding blankets in an actual fusion reactor environment. The central cell insert, designated DT axicell, has a 2-MW/m 2 neutron wall loading at the first wall for blanket testing. This upgrade is completely shielded to protect the reactor components, the workers, and the general public from the radiation environment during operation and after shutdown. The shield design for this upgrade is the subject of this paper including the design criteria and the tradeoff studies to reduce the shield cost

  12. TIBER II: an upgraded tokamak igntion/burn experimental reactor

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Perkins, L.J.

    1986-01-01

    We are disIgning a minimum-size Tokamak ignition/Burn Reactor (TIBER II). This design incorporates physics requirements, neutron wall loading and fluence parameters that will make it compatible with a nuclear testing mission. Reactor relevant physics will be tested by using current drive and steady-state operation. Although the design accommodates several current drive options, including neutral beams, the base case uses a combination of lower hybrid and electron-cyclotron radio frequency power. Minimum neutron shielding, compact structures, high magnet-current densities, and remotely maintainable vacuum seals, all contribute to the compact size

  13. Application of SCALE 6.1 MAVRIC Sequence for Activation Calculation in Reactor Primary Shield Concrete

    International Nuclear Information System (INIS)

    Kim, Yong IL

    2014-01-01

    Activation calculation requires flux information at desired location and reaction cross sections for the constituent elements to obtain production rate of activation products. Generally it is not an easy task to obtain fluxes or reaction rates with low uncertainties in a reasonable time for deep penetration problems by using standard Monte Carlo methods. The MAVRIC (Monaco with Automated Variance Reduction using Importance Calculations) sequence in SCALE 6.1 code package is intended to perform radiation transport on problems that are too challenging for standard, unbiased Monte Carlo methods. And the SCALE code system provides plenty of ENDF reaction types enough to consider almost all activation reactions in the nuclear reactor materials. To evaluate the activation of the important isotopes in primary shield, SCALE 6.1 MAVRIC sequence has been utilized for the KSNP reactor model and the calculated results are compared to the isotopic activity concentration of related standard. Related to the planning for decommission, the activation products in concrete primary shield such as Fe-55, Co-60, Ba-133, Eu-152, and Eu-154 are identified as important elements according to the comparisons with related standard for exemption. In this study, reference data are used for the concrete compositions in the activation calculation to see the applicability of MAVRIC code to the evaluation of activation inventory in the concrete primary shield. The composition data of trace elements as shown in Table 1 are obtained from various US power plant sites and accordingly they have large variations in quantity due to the characteristics of concrete composition. In practical estimation of activation radioactivity for a specific plant related to decommissioning, rigorous chemical analysis of concrete samples of the plant would first have to be performed to get exact information for compositions of concrete. Considering the capability of solving deep penetration transport problems and richness

  14. Beta Bremsstrahlung dose in concrete shielding

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H.C., E-mail: manjunatha@rediffmail.com [Department of Physics, Government college for women, Kolar 563101, Karnataka (India); Chandrika, B.M. [Shravana, 592, Ist Cross, Behind St.Anne s School, PC Extension, Kolar 563101, Karnataka (India); Rudraswamy, B. [Department of Physics, Bangalore University, Bangalore 560056, Karnataka (India); Sankarshan, B.M. [Shravana, 592, Ist Cross, Behind St.Anne s School, PC Extension, Kolar 563101, Karnataka (India)

    2012-05-11

    In a nuclear reactor, beta nuclides are released during nuclear reactions. These betas interact with shielding concrete and produces external Bremsstrahlung (EB) radiation. To estimate Bremsstrahlung dose and shield efficiency in concrete, it is essential to know Bremsstrahlung distribution or spectra. The present work formulated a new method to evaluate the EB spectrum and hence Bremsstrahlung dose of beta nuclides ({sup 32}P, {sup 89}Sr, {sup 90}Sr-{sup 90}Y, {sup 90}Y, {sup 91}Y, {sup 208}Tl, {sup 210}Bi, {sup 234}Pa and {sup 40}K) in concrete. The Bremsstrahlung yield of these beta nuclides in concrete is also estimated. The Bremsstrahlung yield in concrete due to {sup 90}Sr-{sup 90}Y is higher than those of other given nuclides. This estimated spectrum is accurate because it is based on more accurate modified atomic number (Z{sub mod}) and Seltzer's data, where an electron-electron interaction is also included. Presented data in concrete provide a quick and convenient reference for radiation protection. The present methodology can be used to calculate the Bremsstrahlung dose in nuclear shielding materials. It can be quickly employed to give a first pass dose estimate prior to a more detailed experimental study. - Highlights: Black-Right-Pointing-Pointer Betas released in a nuclear reactor interact with shielding concrete and produces Bremsstrahlung. Black-Right-Pointing-Pointer The present work formulated a new method to evaluate the Bremsstrahlung spectrum and dose in concrete. Black-Right-Pointing-Pointer Presented data in concrete provide a quick and convenient reference for radiation protection.

  15. Divertor impurity monitor for the International Thermonuclear Experimental Reactor

    Science.gov (United States)

    Sugie, T.; Ogawa, H.; Nishitani, T.; Kasai, S.; Katsunuma, J.; Maruo, M.; Ebisawa, K.; Ando, T.; Kita, Y.

    1999-01-01

    The divertor impurity monitoring system of the International Thermonuclear Experimental Reactor has been designed. The main functions of this system are to identify impurity species and to measure the two-dimensional distributions of the particle influxes in the divertor plasmas. The wavelength range is 200-1000 nm. The viewing fans are realized by molybdenum mirrors located in the divertor cassette. With additional viewing fans seeing through the gap between the divertor cassettes, the region approximately from the divertor leg to the x point will be observed. The light from the divertor region passes through the quartz windows on the divertor port plug and the cryostat, and goes through the dog-leg optics in the biological shield. Three different type of spectrometers: (i) survey spectrometers for impurity species monitoring, (ii) filter spectrometers for the particle influx measurement with the spatial resolution of 10 mm and the time resolution of 1 ms, and (iii) high dispersion spectrometers for high resolution wavelength measurements are designed. These spectrometers are installed just behind the biological shield (for λthe transmission loss in fiber and in the diagnostic room (for λ⩾450 nm) from the point of view of accessibility and flexibility. The optics have been optimized by a ray trace analysis. As a result, 10-15 mm spatial resolution will be achieved in all regions of the divertor.

  16. Where have the neutrons gone: A history of the Tower Shielding Facility

    International Nuclear Information System (INIS)

    Muckenthaler, F.J.

    1992-01-01

    In the early 1950's, the concept of the unit shield for the nuclear powered aircraft reactor changed to one of the divided shield concept where the reactor and crew compartment shared the shielding load. Design calculations for the divided shield were being made based on data obtained in studies for the, unit shield. It was believed that these divided shield designs were subject to error, the magnitude of which could not be estimated. This belief led to the design of the Tower Shielding Facility where divided-shield-type measurements could be made without interference from ground or structural scattering. This paper discusses that facility, its reactors, and some chosen experiments from the list of many that were performed at that facility during the past 38 years

  17. Design of boron carbide-shielded irradiation channel of the outer irradiation channel of the Ghana Research Reactor-1 using MCNP.

    Science.gov (United States)

    Abrefah, R G; Sogbadji, R B M; Ampomah-Amoako, E; Birikorang, S A; Odoi, H C; Nyarko, B J B

    2011-01-01

    The MCNP model for the Ghana Research Reactor-1 was redesigned to incorporate a boron carbide-shielded irradiation channel in one of the outer irradiation channels. Extensive investigations were made before arriving at the final design of only one boron carbide covered outer irradiation channel; as all the other designs that were considered did not give desirable results of neutronic performance. The concept of redesigning a new MCNP model, which has a boron carbide-shielded channel is to equip the Ghana Research Reactor-1 with the means of performing efficient epithermal neutron activation analysis. After the simulation, a comparison of the results from the original MCNP model for the Ghana Research Reactor-1 and the new redesigned model of the boron carbide shielded channel was made. The final effective criticality of the original MCNP model for the GHARR-1 was recorded as 1.00402 while that of the new boron carbide designed model was recorded as 1.00282. Also, a final prompt neutron lifetime of 1.5245 × 10(-4)s was recorded for the new boron carbide designed model while a value of 1.5571 × 10(-7)s was recorded for the original MCNP design of the GHARR-1. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. TFTR radiation contour and shielding efficiency measurements during D-D operations

    International Nuclear Information System (INIS)

    Kugel, H.W.; Ascione, G.; Elwood, S.; Gilbert, J.; Hwang, D.; Lewis, M.; Levine, J.; Ku, L.P.; Rule, K.; Hajnal, F.

    1994-11-01

    Extensive neutron and gamma radiation contour, shielding efficiency, and spectral measurements were performed during high power TFTR D-D operations at the tokamak Test Cell inner walls, ceiling, roof, and outer walls, in nearby control rooms, work areas, and personnel pathways, outdoors along the site fence at 125 m, and out to the nearest property lines at 180 m. The results confirmed that the efficiency of the basic radiation shielding was sufficient to allow the TFTR D-T experimental plan, and provide empirical guidance for simulating the radiation fields of future fusion reactors

  19. Fault current limiter-predominantly resistive behavior of a BSCCO shielded-core reactor

    International Nuclear Information System (INIS)

    Ennis, M. G.; Tobin, T. J.; Cha, Y. S.; Hull, J. R.

    2000-01-01

    Tests were conducted to determine the electrical and magnetic characteristics of a superconductor shielded core reactor (SSCR). The results show that a closed-core SSCR is predominantly a resistive device and an open-core SSCR is a hybrid resistive/inductive device. The open-core SSCR appears to dissipate less than the closed-core SSCR. However, the impedance of the open-core SSCR is less than that of the closed-core SSCR. Magnetic and thermal diffusion are believed to be the mechanism that facilitates the penetration of the superconductor tube under fault conditions

  20. Tower Shielding Reactor II design and operation report. Vol. 3. Assembling and testing of the control mechanism assembly

    International Nuclear Information System (INIS)

    Ward, D.R.; Holland, L.B.

    1979-09-01

    The mechanisms that are operated to control the reactivity of the Tower Shielding Reactor II(TSR-II) are mounted on a Control Mechanism Housing (CMH) that is centered inside the reactor core. The information required to procure, fabricate, inspect, and assemble a CMH is contained in the ORNL engineering drawings listed in the appropriate sections. The components are fabricated and inspected from these drawings in accordance with a Quality Assurance Plan and a Manufacturing Plan. The material in this report describes the acceptance and performance tests of CMH subassemblies used ty the Tower Shielding Facility (TSF) staff but it can also be used by personnel fabricating the components. This information which was developed and used before the advent of the formalized QA Program and Manufacturing Plans evolved during the fabrication and testing of the first five CMHs

  1. The experimental and technological developments reactor

    International Nuclear Information System (INIS)

    Carbonnier, J.L.

    2003-01-01

    THis presentation concerns the REDT, gas coolant reactor for experimental and technological developments. The specifications and the research programs concerning this reactor are detailed;: materials, safety aspects, core physic, the corresponding fuel cycle, the reactor cycle and the program management. (A.L.B.)

  2. Effects of neutron source ratio on nuclear characteristics of D-D fusion reactor blankets and shields

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Nakao, Yasuyuki; Ohta, Masao

    1978-01-01

    An examination is made of the dependence shown by the nuclear characteristics of the blanket and shield of D-D fusion reactors on S sub( d d)/S sub( d t), the ratio between the 2.45 MeV neutrons resulting from the D-D reaction and those of 14.06 MeV from the D-T reaction. Also, an estimate is presented of this neutron source ratio S sub( d d)/S sub( d t) for the case of D-D reactors, taken as an example. It is shown that an increase of S sub( d d)/S sub( d t) reduces the amount of nuclear heating per unit source neutron, while at the same time improving the shielding characteristics. This is accountable to lowering of the energy and penetrability of incident neutrons into the blanket brought about by the increase of S sub( d d)/S sub( d t). The value of S sub( d d)/S sub( d t) in a steady state D-D fusioning plasma core is estimated to be 1.46 -- 1.72 for an ion temperature ranging from 60 -- 180 keV. The reductions obtained on H sub( t)sup( b) (total heating in the blanket), H sub( t)sup( m g)/H sub( t)sup( b) (shielding indicator = ratio between total heating in superconducting magnet and that in the blanket) and phi sup( m g)/phi sup( w) (ratio of fast neutron fluxes between that at the magnet inner surface and that at the first wall inner surface) brought about by increasing S sub( d d)/S sub( d t) from unity to the value cited above do not differ to any appreciable extent, whichever is adopted among the design models considered here, the differences being at most about 10, 15 and 25%, respectively, for these three parameters. These results would broaden the validity of the conclusion derived in the previous paper for the case of S sub( d d)/S sub( d t) = 1.0, that the blanket-shield concept would appear to be the most suitable for D-D fusion reactors. (author)

  3. Transient temperature response of in-vessel components due to pulsed operation in tokamak fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    Minato, Akio; Tone, Tatsuzo

    1985-12-01

    A transient temperature response of the in-vessel components (first wall, blanket, divertor/limiter and shielding) surrounding plasma in Tokamak Fusion Experimental Reactor (FER) has been analysed. Transient heat load during start up/shut down and pulsed operation cycles causes the transient temperature response in those components. The fatigue lifetime of those components significantly depends upon the resulting cyclic thermal stress. The burn time affects the temperature control in the solid breeder (Li 2 O) and also affects the thermo-mechanical design of the blanket and shielding which are constructed with thick structure. In this report, results of the transient temperature response obtained by the heat transfer and conduction analyses for various pulsed operation scenarios (start up, shut down, burn and dwell times) have been investigated in view of thermo-mechanical design of the in-vessel components. (author)

  4. Rectification of leak from upper aluminium thermal shield cooling water inlet line of Cirus reactor

    International Nuclear Information System (INIS)

    Bhatnagar, Anil; Joshi, N.S.; Kharpate, A.V.; Marik, S.K.

    2006-01-01

    During 1994, a small water leak was observed from the upper aluminium thermal shield of Cirus reactor. Detailed investigations revealed that the leakage was from the weld joint of one of the 1 1/4 inch NB Sch. 80 coolant inlet pipes connected to the upper aluminium thermal shield. The location of the leak was identified by monitoring the stabilised water level in the vertical inlet pipe under stagnant condition. The exact location was identified by installing an inflatable seal arrangement inside the leaky pipe and inflating the seal at different elevations to isolate the leaky location and ensuring that the leak was completely stopped. This location was about 15 feet below the operating floor of the reactor. The pipe was visually inspected with the help of a fibre-scope to assess the condition of the inner surface. Eddy current testing was also carried out for volumetric examination. This revealed one more localised flaw on the outer surface little above the leaky joint. A hollow plug, with expandable rings, having C-shaped cross section at both the ends and a straight portion in the middle to cover the defective region, was developed and qualified in a mock-up station after extensive trials. In view of the site constraints, a flexible hollow link assembly was engineered, for installing the plug remotely. The inner surface of the pipe was cleaned using an emery brush and a deburring tool. The plug was then installed covering the leak area and the rings were expanded by remote tightening. The shield was hydro-tested satisfactorily. (author)

  5. Radiation shielding

    International Nuclear Information System (INIS)

    Yue, D.D.

    1979-01-01

    Details are given of a cylindrical electric penetration assembly for carrying instrumentation leads, used in monitoring the performance of a nuclear reactor, through the containment wall of the reactor. Effective yet economical shielding protection against both fast neutron and high-energy gamma radiation is provided. Adequate spacing within the assembly allows excessive heat to be efficiently dissipated and means of monitoring all potential radiation and gas leakage paths are provided. (UK)

  6. Radiation shielding activities at the OECD/Nuclear Energy Agency

    International Nuclear Information System (INIS)

    Sartori, Enrico; Vaz, Pedro

    2000-01-01

    The OECD Nuclear Energy Agency (NEA) has devoted considerable effort over the years to radiation shielding issues. The issues are addressed through international working groups. These activities are carried out in close co-ordination and co-operation with the Radiation Safety Information Computational Center (RSICC). The areas of work include: basic nuclear data activities in support of radiation shielding, computer codes, shipping cask shielding applications, reactor pressure vessel dosimetry, shielding experiments database. The method of work includes organising international code comparison exercises and benchmark studies. Training courses on radiation shielding computer codes are organised regularly including hands-on experience in modelling skills. The scope of the activity covers mainly reactor shields and spent fuel transportation packages, but also fusion neutronics and in particular shielding of accelerators and irradiation facilities. (author)

  7. Device for rearranging control rods of experimental reactors

    International Nuclear Information System (INIS)

    Louda, J.

    1975-01-01

    The invention claims a means for the adjustment of control rods in experimental reactors with a continuously variable pitch of the fuel element spacer. The proposed device permits obtaining maximum variability in the physical modelling of nuclear power reactor cores in experimental reactors. (F.M.)

  8. Shielded transport containers for reactor waste

    International Nuclear Information System (INIS)

    Grundfelt, B.; Eriksson, E.

    The report presents that part of risk analysis which deals with the frequency of breakdowns and the damage on containers. The report focusses on shielded containers made of reinforced concrete. Also a container made of steel is referred to the cases of breakdown are closely allied to collisions with ships. The frequency of breakdowns which might damage the containers is low in all respects, namely 1.10 -5 per year or lower for the shielded container. (G.B.)

  9. Collimator and shielding design for boron neutron capture therapy (BNCT) facility at TRIGA MARK II reactor

    International Nuclear Information System (INIS)

    Mohd Rafi Mohd Solleh; Abdul Aziz Tajuddin; Abdul Aziz Mohamed; Eid Mahmoud Eid Abdel Munem; Mohamad Hairie Rabir; Julia Abdul Karim; Yoshiaki, Kiyanagi

    2011-01-01

    The geometry of reactor core, thermal column, collimator and shielding system for BNCT application of TRIGA MARK II Reactor were simulated with MCNP5 code. Neutron particle lethargy and dose were calculated with MCNPX code. Neutron flux in a sample located at the end of collimator after normalized to measured value (Eid Mahmoud Eid Abdel Munem, 2007) at 1 MW power was 1.06 x 10 8 n/ cm 2 / s. According to IAEA (2001) flux of 1.00 x 10 9 n/ cm 2 / s requires three hours of treatment. Few modifications were needed to get higher flux. (Author)

  10. Measurement of the thermal neutron self shielding coefficient in the Syrian miniature neutron source reactor inner irradiation site using the dy soils

    International Nuclear Information System (INIS)

    Khattab, K.; Khamis, I.

    2007-01-01

    Measurement of the thermal self shielding coefficient ( Gth ) in the Syrian Miniature Neutron Source Reactor (MNSR) inner irradiation site using Dy foils is presented in this paper. The thermal self shielding coefficient is measured as a function of the foil thickness or numbers. The mathematical equation which calculates the average relative radioactivity (Bq/g) versus the foil number is found as well.

  11. Nuclear data for radiation shielding

    International Nuclear Information System (INIS)

    Miyasaka, Shunichi; Takahashi, Hiroshi.

    1976-01-01

    The third shielding expert conference was convened in Paris in Oct. 1975 for exchanging informations about the sensitivity evaluation of nuclear data in shielding calculation and integral bench mark experiment. The requirements about nuclear data presented at present from the field of nuclear design do not reflect sufficiently the requirements of shielding design, therefore it was the object to gather the requirements about nuclear data from the field of shielding. The nuclides used for shielding are numerous, and the nuclear data on these isotopes are required. Some of them cannot be ignored as the source of secondary γ-ray or in view of the radioactivation of materials. The requirements for the nuclear data of neutrons in the field of shielding are those concerning the reaction cross sections producing secondary γ-ray, the reaction cross sections including the production of secondary neutrons, elastic scattering cross sections, and total cross sections. The topics in the Paris conference about neutron shielding data are described, such as the methodology of sensitivity evaluation, the standardization of group constant libraries, the bench mark experiment on iron and sodium, and the cross section of γ-ray production. In the shielding of nuclear fission reactors, the γ-ray production owing to nuclear fission reaction is also important. In (d, t) fusion reactors, high energy neutrons are generated, and high energy γ-ray is emitted through giant E1 resonance. (Kako, I.)

  12. Nuclear reactor

    International Nuclear Information System (INIS)

    Scholz, M.

    1976-01-01

    An improvement of the accessibility of that part of a nuclear reactor serving for biological shield is proposed. It is intended to provide within the biological shield, distributed around the circumference of the reactor pressure vessel, several shielding chambers filled with shielding material, which are isolated gastight from the outside by means of glass panes with a given bursting strength. It is advantageous that, on the one hand, inspection and maintenance will be possible without great effort and, on the other, a large relief cross section will be at desposal if required. (UWI) [de

  13. Experimental and numerical analysis of fluid - structure interaction effects in a fast reactor core

    International Nuclear Information System (INIS)

    Martelli, A.; Forni, M.; Melloni, R.; Paoluzzi, R.; Bonacina, G.; Castoldi, A.; Zola, M.

    1990-01-01

    Dynamic experiments in air and water (simulating liquid sodium) were performed by ISMES, on behalf of ENEA, on various core element groups of the Italian PEC fast reactor. Bundles of one, seven and nineteen mock-ups reproducing fuel, reflecting and neutron shield elements in full scale were analysed on shaking tables. Tests concerned both groups of equal elements and mixed configurations which corresponded to real core parts. The effects of PEC core-restraint ring were also studied. Seismic excitations of up to 2.5 g were applied to core diagrid. Test results were analysed by use of the one-dimensional program CORALIE and the two-dimensional program CLASH. The study allowed the fluid effects in the PEC core to be evaluated; it also contributed to validation of the above mentioned programs for their general use for fast reactor core analysis. This paper presents the main features of the experimental and the numerical studies and reports comparisons between calculations and measurements. (author)

  14. Dose rate in the reactor room and environment during maintenance in fusion reactors

    International Nuclear Information System (INIS)

    Maki, Koichi; Satoh, Satoshi; Takatsu, Hideyuki; Seki, Yasushi

    1995-01-01

    According to the International Thermonuclear Experimental Reactor (ITER) conceptual design activity, after reactor shutdown, damaged segments are pulled up from the reactor and hung from the reactor room ceiling by a remote handling device. The dose rate in the reactor room and the environment is estimated for this situation, and the following results are obtained. First, the dose rate in the room is > 10 8 μSv/h. Since this dose rate is 10 7 times greater than the biological radiation shielding design limit of 25 μSv/h, workers cannot enter the room. Second, lenses and optical fiber composed of glass that is radiation resistant up to 10 6 Gy would be damaged after <100 h near the segment, and devices using semiconductors could not work after several hours or so in the aforementioned dose-rate conditions. Third, during suspension of one blanket segment from the ceiling, the dose rate in the site boundary can be reduced by one order by a 23-cm-thicker reactor building roof. To reduce dose rate in public exposure to a value that is less than one-tenth of the public exposure radiation shielding design limit of 100 μSv/yr, the distance of the site boundary from the reactor must be greater than 200 m for a reactor building with a 160-cm-thick concrete roof. 9 refs., 6 figs., 2 tabs

  15. Biological shield around the neutral beam injector ducts in the ITER conceptual design

    International Nuclear Information System (INIS)

    Maki, Koichi; Takatsu, Hideyuki; Satoh, Satoshi; Seki, Yasushi

    1994-01-01

    There are gaps between the toroidal field coils and neutral beam injector (NBI) duct wall for the thermal insulator in tokamak reactors such as ITER (International Thermonuclear Experimental Reactor). Neutrons stream through the duct, and some of them penetrate the wall and stream through the gaps. These neutrons activate the materials composing the duct wall, toroidal field coil (TFC) case and cryostat wall surfaces. The dose rate is enhanced just outside the cryostat around the ducts in the reactor room after reactor operation by activation. We investigated the gamma-ray dose rate just outside the cryostat after shutdown due to gamma-rays from activity induced by the neutrons streaming through the gaps. By evaluating the difference between the dose rate in models with and without gaps, we decided whether the thickness of the cryostat as biological shielding is sufficient or not. From these investigations, we recommend a cryostat design suitable for radiation shielding. Dose rates after shutdown at a point just outside the cryostat around the NBI ducts in the model with gaps are two orders larger than those without gaps. The value at this point is approximately 400 mrem h -1 (4 mSv h -1 ), which is two orders larger than the design value for workers to enter the reactor room. In order to reduce the dose rate after shutdown, a method of providing the shielding function of the cryostat is suggested. ((orig.))

  16. FELIX construction status and experimental program

    International Nuclear Information System (INIS)

    Turner, L.R.; Praeg, W.F.; Knott, M.J.; Lari, R.J.; McGhee, D.G.; Wehrle, R.B.

    1983-01-01

    FELIX (Fusion Electromagnetic Induction Experiment) is an experimental test facility being constructed at Argonne National Laboratory (ANL) for the study of electromagnetic effects in the first wall/blanket/shield (FWBS) systems of fusion reactors. The facility design, construction status, experimental program, instrumentation, and associated computer-code comparisons are described

  17. Training reactor deployment. Advanced experimental course on designing new reactor cores

    International Nuclear Information System (INIS)

    Skoda, Radek

    2009-01-01

    Czech Technical University in Prague (CTU) operating its training nuclear reactor VR1, in cooperation with the North West University of South Africa (NWU), is applying for accreditation of the experimental training course ''Advanced experimental course on designing the new reactor core'' that will guide the students, young nuclear engineering professionals, through designing, calculating, approval, and assembling a new nuclear reactor core. Students, young professionals from the South African nuclear industry, face the situation when a new nuclear reactor core is to be build from scratch. Several reactor core design options are pre-calculated. The selected design is re-calculated by the students, the result is then scrutinized by the regulator and, once all the analysis is approved, physical dismantling of the current core and assembling of the new core is done by the students, under a close supervision of the CTU staff. Finally the reactor is made critical with the new core. The presentation focuses on practical issues of such a course, desired reactor features and namely pedagogical and safety aspects. (orig.)

  18. Shield verification and validation action matrix summary

    International Nuclear Information System (INIS)

    Boman, C.

    1992-02-01

    WSRC-RP-90-26, Certification Plan for Reactor Analysis Computer Codes, describes a series of action items to be completed for certification of reactor analysis computer codes used in Technical Specifications development and for other safety and production support calculations. Validation and verification are integral part of the certification process. This document identifies the work performed and documentation generated to satisfy these action items for the SHIELD, SHLDED, GEDIT, GENPRT, FIPROD, FPCALC, and PROCES modules of the SHIELD system, it is not certification of the complete SHIELD system. Complete certification will follow at a later date. Each action item is discussed with the justification for its completion. Specific details of the work performed are not included in this document but can be found in the references. The validation and verification effort for the SHIELD, SHLDED, GEDIT, GENPRT, FIPROD, FPCALC, and PROCES modules of the SHIELD system computer code is completed

  19. Gamma ray shielding study of barium-bismuth-borosilicate glasses as transparent shielding materials using MCNP-4C code, XCOM program, and available experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Reza; Yousefinia, Hassan [Nuclear Fuel Cycle Research School (NFCRS), Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Moghaddam, Alireza Khorrami [Radiology Department, Paramedical Faculty, Mazandaran University of Medical Sciences, Sari (Iran, Islamic Republic of)

    2017-02-15

    In this work, linear and mass attenuation coefficients, effective atomic number and electron density, mean free paths, and half value layer and 10th value layer values of barium-bismuth-borosilicate glasses were obtained for 662 keV, 1,173 keV, and 1,332 keV gamma ray energies using MCNP-4C code and XCOM program. Then obtained data were compared with available experimental data. The MCNP-4C code and XCOM program results were in good agreement with the experimental data. Barium-bismuth-borosilicate glasses have good gamma ray shielding properties from the shielding point of view.

  20. New developments in resonant mixture self-shielding treatment with Apollo code and application to Jules Horowitz reactor core calculation

    International Nuclear Information System (INIS)

    Coste-Delclaux, M.; Aggery, A.; Huot, N.

    2005-01-01

    APOLLO2 is a modular multigroup transport code developed by Cea in Saclay. Until last year, the self-shielding module could only treat one resonant isotope mixed with moderator isotopes. Consequently, the resonant mixture self-shielding treatment was an iterative one. Each resonant isotope of the mixture was treated separately, the other resonant isotopes of the mixture being then considered as moderator isotopes, that is to say non-resonant isotopes. This treatment could be iterated. Last year, we have developed a new method that consists in treating the resonant mixture as a unique entity. A main feature of APOLLO2 self-shielding module is that some implemented models are very general and therefore very powerful and versatile. We can give, as examples, the use of probability tables in order to describe the microscopic cross-section fluctuations or the TR slowing-down model that can deal with any resonance shape. The self-shielding treatment of a resonant mixture was developed essentially thanks to these two models. The calculations of a simplified Jules Horowitz reactor using a Monte-Carlo code (TRIPOLI4) as a reference and APOLLO2 in its standard and improved versions, show that, as far as the effective multiplication factor is concerned, the mixture treatment does not bring an improvement, because the new treatment suppresses compensation between the reaction rate discrepancies. The discrepancy of 300 pcm that appears with the reference calculation is in accordance with the technical specifications of the Jules Horowitz reactor

  1. Experimental Studies on Shadow Shields for Thermal Protection of Cryogenic Tanks in Space

    National Research Council Canada - National Science Library

    Knoll, Richard

    1968-01-01

    ... (high-emissivity coatings on annular rings of shields) on thermal performance. The experimental data, in general, agreed closely with an analytical model which assumed diffuse surfaces with nonuniform radiosity...

  2. Conceptual design of blanket structures for fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-03-01

    Conceptual design study for in-vessel components including tritium breeding blanket of FER has been carried out. The objective of this study is to obtain the engineering and technological data for selecting the reactor concept and for its construction by investigating fully and broadly. The design work covers in-vessel components (such as tritium breeding blanket, first wall, shield, divertor and blanket test module), remote handling system and tritium system. The designs of those components and systems are accomplished in consideration of their accomodation to whole reactor system and problems for furthur study are clarified. (author)

  3. Conceptual design of superconducting magnet systems for the Argonne Tokamak Experimental Power Reactor

    International Nuclear Information System (INIS)

    Wang, S.T.; Turner, L.R.; Mills, F.E.; DeMichele, D.W.; Smelser, P.; Kim, S.H.

    1976-01-01

    As an integral effort in the Argonne Tokamak Experimental Power Reactor Conceptual Design, the conceptual design of a 10-tesla, pure-tension superconducting toroidal-field (TF) coil system has been developed in sufficient detail to define a realistic design for the TF coil system that could be built based upon the current state of technology with minimum technological extrapolations. A conceptual design study on the superconducting ohmic-heating (OH) coils and the superconducting equilibrium-field (EF) coils were also completed. These conceptual designs are developed in sufficient detail with clear information on high current ac conductor design, cooling, venting provision, coil structural support and zero loss poloidal coil cryostat design. Also investigated is the EF penetration into the blanket and shield

  4. FELIX construction status and experimental program

    International Nuclear Information System (INIS)

    Turner, L.R.; Peag, W.F.

    1983-01-01

    FELIX (Fusion Electromagnetic Induction eXperiment) is an experimental test facility being constructed at Argonne National Laboratory (ANL) for the study of electromagnetic effects in the first wall/blanket/shield (FWBS) systems of fusion reactors. The facility design, construction status, experimental program, instrumentation, and associated computer-code comparisons are described

  5. Design of the segment structure and coolant ducts for a fusion reactor blanket and shield

    International Nuclear Information System (INIS)

    Briaris, D.A.; Stanbridge, J.R.

    1978-05-01

    An outline design and analysis of a support structure for the replaceable first wall of a helium cooled fusion reactor blanket has been undertaken. The proposed structure supports all the segment gravitational loads with maximum deflections limited to < 10 mm, and is itself supported off the outer shield by a simple vee-in-groove arrangement. It is a feature of the design that the coaxial coolant pipes and the segment structure operate at the same temperature, making it possible for them to be integrated, thereby avoiding the necessity for pipe bellows. The requirements of cooling the inner arm of the structure and increasing the major radius of the torus by approximately = 0.5 m, have been identified as problems associated with the 'horseshoe' shaped structure applicable to the reactor with divertor. For a ring structure, i.e. reactor without divertor, these problems do not arise. (author)

  6. [International Thermonuclear Experimental Reactor support

    International Nuclear Information System (INIS)

    Dean, S.O.

    1990-01-01

    This report summarizes the activities under LLNL Purchase Order B089367, the purpose of which is to ''support the University/Lawrence Livermore National Laboratory Magnetic Fusion Program by evaluating the status of research relative to other national and international programs and assist in long-range plans and development strategies for magnetic fusion in general and for ITER in particular.'' Two specific subtasks are included: ''to review the LLNL Magnet Technology Development Program in the context of the International Thermonuclear Experimental Reactor Design Study'' and to ''assist LLNL to organize and prepare materials for an International Thermonuclear Experimental Reactor Design Study information meeting.''

  7. Hot-cell shielding system for high power transmission in DUPIC fuel fabrication

    International Nuclear Information System (INIS)

    Kim, K.; Lee, J.; Park, J.; Yang, M.; Park, H.

    2000-01-01

    This paper presents a newly designed hot-cell shielding system for use in the development of DUPIC (Direct Use of spent PWR fuel In CANDU reactors) fuel at KAERI (Korea Atomic Energy Research Institute). This hot-cell shielding system that was designed to transmit high power to sintering furnace in-cell from the out-of-cell through a thick cell wall has three subsystems - a steel shield plug with embedded spiral cooling line, stepped copper bus bars, and a shielding lead block. The dose-equivalent rates of the hot-cell shielding system and of the apertures between this system and the hot-cell wall were calculated. Calculated results were compared with the allowable dose limit of the existing hot-cell. Experiments for examining the temperature changes of the shielding system developed during normal furnace operation were also carried out. Finally, gamma-ray radiation survey experiments were conducted by Co-60 source. It is demonstrated that, from both calculated and experimental results, the newly designed hot-cell shielding system meets all the shielding requirements of the existing hot-cell facility, enabling high power transmission to the in-cell sintering furnace. (author)

  8. Nuclear reactor cavity streaming shield

    International Nuclear Information System (INIS)

    Klotz, R.J.; Stephen, D.W.

    1978-01-01

    The upper portion of a nuclear reactor vessel supported in a concrete reactor cavity has a structure mounted below the top of the vessel between the outer vessel wall and the reactor cavity wall which contains hydrogenous material which will attenuate radiation streaming upward between vessel and the reactor cavity wall while preventing pressure buildup during a loss of coolant accident

  9. Shielding analysis method applied to nuclear ship 'MUTSU' and its evaluation based on experimental analyses

    International Nuclear Information System (INIS)

    Yamaji, Akio; Miyakoshi, Jun-ichi; Iwao, Yoshiaki; Tsubosaka, Akira; Saito, Tetsuo; Fujii, Takayoshi; Okumura, Yoshihiro; Suzuoki, Zenro; Kawakita, Takashi.

    1984-01-01

    Procedures of shielding analysis are described which were used for the shielding modification design of the Nuclear Ship ''MUTSU''. The calculations of the radiation distribution on board were made using Sn codes ANISN and TWOTRAN, a point kernel code QAD and a Monte Carlo code MORSE. The accuracies of these calculations were investigated through the analysis of various shielding experiments: the shield tank experiment of the Nuclear Ship ''Otto Hahn'', the shielding mock-up experiment for ''MUTSU'' performed in JRR-4, the shielding benchmark experiment using the 16 N radiation facility of AERE Harwell and the shielding effect experiment of the ship structure performed in the training ship ''Shintoku-Maru''. The values calculated by the ANISN agree with the data measured at ''Otto Hahn'' within a factor of 2 for fast neutrons and within a factor of 3 for epithermal and thermal neutrons. The γ-ray dose rates calculated by the QAD agree with the measured values within 30% for the analysis of the experiment in JRR-4. The design values for ''MUTSU'' were determined in consequence of these experimental analyses. (author)

  10. Measurements of neutron flux in the RA reactor; Merenje karakteristika neutronskog fluksa u reaktoru RA

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    This report includes results of the following measurements performed at the RA reactor: thermal neutron flux in the experimental channels, epithermal and fast neutron flux, neutron flux in the biological shield, neutron flux distribution in the reactor cell.

  11. Analysis of shield for the nuclear ship MUTSU

    International Nuclear Information System (INIS)

    Fuse, Takayoshi; Takeuchi, Kiyoshi; Yamaji, Akio

    1975-01-01

    On the nuclear ship MUTSU, a higher-than-expected level of radiation was found, with output raised to 1.4 per cent. To investigate the radiation leakage, the analysis of the shielding problem utilized a four-step sequence of PALLAS-2DCY cylindrical r-z calculations with fixed sources distributions in the core. The neutron dose contours show the importance of streaming in the gap between the reactor vessel and the primary shield. Dominant consideration of thermal insulation exclude shielding from this area resulting in an imbalance in the shielding effectiveness. The neutron dose rate at the upper part of the reactor vessel is increased by neutrons incident on the head from cavity scattering. The calculation indicates that the neutron dose rate at the top of the primary shield is 5 rem/hr at 100 per cent output. (auth.)

  12. Gamma Ray Shielding Study of Barium–Bismuth–Borosilicate Glasses as Transparent Shielding Materials using MCNP-4C Code, XCOM Program, and Available Experimental Data

    Directory of Open Access Journals (Sweden)

    Reza Bagheri

    2017-02-01

    Full Text Available In this work, linear and mass attenuation coefficients, effective atomic number and electron density, mean free paths, and half value layer and 10th value layer values of barium–bismuth–borosilicate glasses were obtained for 662 keV, 1,173 keV, and 1,332 keV gamma ray energies using MCNP-4C code and XCOM program. Then obtained data were compared with available experimental data. The MCNP-4C code and XCOM program results were in good agreement with the experimental data. Barium–bismuth–borosilicate glasses have good gamma ray shielding properties from the shielding point of view.

  13. SP-100 GES/NAT radiation shielding systems design and development testing

    International Nuclear Information System (INIS)

    Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.; Reese, J.C.; Thomas, K.; Wiltshire, F.

    1991-01-01

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned

  14. An experimental study of the shielding characteristics of the dwelling house building materials against gamma radiations in the Central Region of Syria

    International Nuclear Information System (INIS)

    Albarhoum, M.; Soufan, A.H.; Mustafa, H.

    2011-01-01

    Highlights: → We measure shielding properties of dwelling houses in the central region of Syria. → The concrete used for ceiling construction is good for shielding from gamma radiations. → Fairly high linear attenuation coefficients are obtained (from 0.173 to 0.198 cm -1 ). → Blocks used for house walls are not effective against gamma radiations. → Blocks efficiency can be improved by filling their holes with a cement paste. - Abstract: The shielding properties of the concrete and blocks used for the construction of dwelling houses in the Central Region of Syria (CRS) were measured and studied. The concrete used for the ceiling construction was found to have optimum shielding properties with 0.182 cm -1 (or equivalently 0.0859 cm 2 g -1 ) for the linear (mass) attenuation coefficient [L(M)AC]. In addition gamma radiation is attenuated by 73.221% on average, while the blocks used for the walls have smaller LACs (0.082 cm -1 for the bare blocks, and 0.118 cm -1 for the coated ones). Although the LACs for the blocks are smaller than those for the concrete their shielding properties are good to protect from the gamma radiations coming from radioactive or nuclear accidents (78.630% attenuation), even Chernobyl - like disasters, because of their big width (10-12 cm). The LACs were measured by an ionization chamber and simple theoretical calculations have been made to predict the concrete LACs. The calculations showed an average LAC for the six samples equal to 0.1664 cm -1 with 8.47% error with respect to the experimental values. The average LAC for the concrete used for ceiling construction in the CRS was found to be comparable or even better than the average of some international values for the reactor shielding concretes, which are about 0.163 cm -1 .

  15. Experimental neutronic science and instrumentation: from hybrid reactors to fourth generation reactors

    International Nuclear Information System (INIS)

    Jammes, Ch.

    2010-07-01

    After an overview of his academic career and scientific and research activities, the author proposes a rather detailed synthesis and overview of his scientific activities in the fields of cross sections and Doppler effect (development and validation of a code), on the MUSE-4 hybrid reactor (experiments, static and dynamic measurements), on the TRADE hybrid reactor (experimental means, sub-critical reactivity measurement), on the RACE hybrid reactor (experimental results, modelling and interpretation), and on neutron detection (design and modelling of fission chamber, on-line measurement of the fast flow). The next part gives an overview of some research programs (neutron monitoring in sodium-cool fast reactors, research and development on fission chambers, improvement of effective delayed neutron measurements)

  16. Thermal neutron self-shielding correction factors for large sample instrumental neutron activation analysis using the MCNP code

    International Nuclear Information System (INIS)

    Tzika, F.; Stamatelatos, I.E.

    2004-01-01

    Thermal neutron self-shielding within large samples was studied using the Monte Carlo neutron transport code MCNP. The code enabled a three-dimensional modeling of the actual source and geometry configuration including reactor core, graphite pile and sample. Neutron flux self-shielding correction factors derived for a set of materials of interest for large sample neutron activation analysis are presented and evaluated. Simulations were experimentally verified by measurements performed using activation foils. The results of this study can be applied in order to determine neutron self-shielding factors of unknown samples from the thermal neutron fluxes measured at the surface of the sample

  17. Shielding measurements and augmentation for high power operations of FBTR

    International Nuclear Information System (INIS)

    Jose, M.T.; Baskar, S.; Viswanathan, S.; Balasundar, S.; Subramanian, V.; Ravi, T.; Sundaram, V.M.; Raghunath, V.M.; Varadarajan, S.; Jena, A.K.

    1996-01-01

    Fast breeder test reactor (FBTR) at Kalpakkam is a 40 MWt loop type fast reactor with sodium coolant. Since criticality in 1985, radiation surveys were carried out at all accessible locations at different power levels to find out the hot spots and evaluate the shielding adequacy. This paper gives the details of findings of these measurements, consequent changes in shielding, and the present status of dose profile after the augmentation of shielding. (author). 1 ref., 1 fig., 1 tab

  18. Formulary for neutron propagation in sodium-steel media for the fast reactor shields

    International Nuclear Information System (INIS)

    Bouteau, F.; Caumette, P.; Khairallah, A.; Oceraies, Y.; Devillers, C.

    1975-01-01

    The simplified calculational tool (''formulary'') for neutron propagation in the shields of fast reactors, being developed at CEA, has two objectives: to reduce the cost of the major part of design calculations, without a significant loss of accuracy; to facilitate the adjustment of the calculational tool with the results of the program of integral propagation experiments, which is conducted in parallel with the development of the calculational method. The version 0 (i.e. before any adjustment) of the formulary and a first test of its validity as compared to the results of integral measurements are presented [fr

  19. The experimental nuclear reactor: AQUILON

    International Nuclear Information System (INIS)

    Girard, Y.; Koechlin, J.C.; Moreau, J.M.

    1958-01-01

    'Aquilon' is an experimental reactor specially designed for the neutronic study of heterogeneous multiplying media with solid fuel and liquid moderator. Since this study is in general incompatible with energy production, the power of the reactor has been limited to a minimum so as to be able to obtain a simple and compact structure, easy access, good handling and great flexibility of operation and utilisation. (author) [fr

  20. Development of a shielded ion microprobe analyzer (SIMA) and its application to fast reactor fuel elements

    International Nuclear Information System (INIS)

    Yuji, E.; Junji, K.; Sadamu, Y.; Toshiyuki, I.

    1983-01-01

    A shielded ion microprobe analyzer for elemental and isotopic analyses of irradiated fast reactor fuel and fuel component has been developed and installed in an alpha-gamma hot cell. Radiation shielding of the equipment ensures the radiation dose of -7 C/kg) for 5 Ci (1.85 x 10 11 Bq) of a 60 Co source. Hot samples can be automatically transferred from the cell to the sample chamber of the analyzer. Contamination inside the equipment through sputtering of the radioactive materials can be reduced with a special device. Distribution and migration of fission products, such as 137 Cs, 138 Ba, and 90 Sr, and of fissile materials, such as 235 U and 239 Pu in irradiated mixed-oxide fuel, and isotopic ratios of the elements can be obtained very precisely and quickly

  1. Development of a shielded ion microprobe analyzer (SIMA) and its application to fast reactor fuel elements

    International Nuclear Information System (INIS)

    Enokido, Y.; Itaki, T.; Komatsu, J.; Yamanouchi, S.

    1983-01-01

    A shielded ion microprobe analyzer for elemental and isotopic analyses of irradiated fast reactor fuel and fuel component has been developed and installed in an alpha-gamma hot cell. Radiation shielding of the equipment ensures the radiation dose of -7 C/kg) for 5 Ci (1.85 X 10 11 Bq) of a 60 Co source. Hot samples can be automatically transferred from the cell to the sample chamber of the analyzer. Contamination inside the equipment through sputtering of the radioactive materials can be reduced with a special device. Distribution and migration of fission products, such as 137 Cs, 138 Ba, and 90 Sr, and of fissile materials, such as 235 U and 239 Pu in irradiated mixed-oxide fuel, and isotopic ratios of the elements can be obtained very precisely and quickly

  2. The problem of resonance self-shielding effect in neutron multigroup calculations

    International Nuclear Information System (INIS)

    Wang Qingming; Huang Jinghua

    1991-01-01

    It is not allowed to neglect the resonance self-shielding effect in hybrid blanket and fast reactor neutron designs. The authors discussed the importance as well as the method of considering the resonance self-shielding effect in hybrid blanket and fast reactor neutron multigroup calculations

  3. Orphee reactor experimental equipment

    International Nuclear Information System (INIS)

    1987-01-01

    Experimental equipment around the ORPHEE reactor is presented. The neutron source; and the spectrometers and sample environment (inelastic and quasi-elastic scattering, elastic scattering, spread scattering, small angle scattering) are described. An experiment proposal and reports guide is supplied [fr

  4. Experimental fusion power reactor conceptual design study. Final report. Volume III

    International Nuclear Information System (INIS)

    Baker, C.C.

    1976-12-01

    This document is the final report which describes the work carried out by General Atomic Company for the Electric Power Research Institute on a conceptual design study of a fusion experimental power reactor (EPR) and an overall EPR facility. The primary objective of the two-year program was to develop a conceptual design of an EPR that operates at ignition and produces continuous net power. A conceptual design was developed for a Doublet configuration based on indications that a noncircular tokamak offers the best potential of achieving a sufficiently high effective fuel containment to provide a viable reactor concept at reasonable cost. Other objectives included the development of a planning cost estimate and schedule for the plant and the identification of critical R and D programs required to support the physics development and engineering and construction of the EPR. This volume contains the following appendices: (1) tradeoff code analysis, (2) residual mode transport, (3) blanket/first wall design evaluations, (4) shielding design evaluation, (5) toroidal coil design evaluation, (6) E-coil design evaluation, (7) F-coil design evaluation, (8) plasma recycle system design evaluation, (9) primary coolant purification design evaluation, (10) power supply system design evaluation, (11) number of coolant loops, (12) power conversion system design evaluation, and (13) maintenance methods evaluation

  5. Nuclear reactor assembly

    International Nuclear Information System (INIS)

    Dorner, H.; Scholz, M.; Jungmann, A.

    1975-01-01

    A nuclear reactor assembly includes a reactor pressure tank having a substantially cylindrical side wall surrounded by the wall of a cylindrical cavity formed by a biological shield. A rotative cylindrical wall is interposed between the walls and has means for rotating it from outside of the shield, and a probe is carried by the rotative wall for monitoring the pressure tank's wall. The probe is vertically movable relative to the rotative cylindrical wall, so that by the probe's vertical movement and rotation of the rotative cylinder, the reactor's wall can be very extensively monitored. If the reactor pressure tank's wall fails, it is contained by the rotative wall which is backed-up by the shield cavity wall. (Official Gazette)

  6. Conceptual design study of fusion experimental reactor (FY86 FER)

    International Nuclear Information System (INIS)

    Nakashima, Kunihiko; Okano, Kunihiko; Miyamoto, Kazuhiro.

    1987-09-01

    This report describes the results of a conceptual study on the RF system in the typical candidates for the Fusion Experimental Reactor (FER), which were picked out through the '86FER scoping studies. According to the FER operation scenario, three RF systems, that is, ICRF (heating), LHRF (current drive and heating), ECRF (auxiliary heating) were studied. Main concern in these RF systems is the launcher, which may be so designed that required power match the geometrical constraints of the reactor. Then studies were concentrated on the launcher configuration. A prug-in concept of the launcher was adopted in each system and vacancies except transmission space were filled with water. The ICRF launcher had the 2 x 2 loop arrays antenna and the faraday shield area of 1.5 m x 1 m to provide a power of 20 MW. The LHRF launcher had the grillantenna with 28 x 8 open waveguides, and included multi junction-type power splitters which were connected to 56 transmission wave guides. The grild was designed to have two functions of current drive and heating, and provide a power of 20 MW each. The ECRF launcher had a boundle of open wave guides which a reflection mirror each, and three plain mirrors. Assuming a oscillator unit size of 200 kW, it had 40 oversized wave guides to provide a power of 3 MW. (author)

  7. Introduction of the experimental fast reactor JOYO

    International Nuclear Information System (INIS)

    Matsuba, Ken-ichi; Kawahara, Hirotaka; Aoyama, Takafumi

    2006-01-01

    The experimental fast reactor JOYO at O-arai Engineering Center of Japan Nuclear Cycle Development Institute is the first liquid metal cooled fast reactor in Japan. This paper describes the plant outline, experiences on the fast reactor technology and test results accumulated through twenty eight years successful operation of JOYO. (author)

  8. Current status of methods for shielding analysis

    International Nuclear Information System (INIS)

    Engle, W.W.

    1980-01-01

    Current methods used in shielding analysis and recent improvements in those methods are discussed. The status of methods development is discussed based on needs cited at the 1977 International Conference on Reactor Shielding. Additional areas where methods development is needed are discussed

  9. Reactor noise analysis of experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Ohtani, Hideji; Yamamoto, Hisashi

    1980-01-01

    As a part of dynamics tests in experimental fast reactor ''JOYO'', reactor noise tests were carried out. The reactor noise analysis techniques are effective for study of plant characteristics by determining fluctuations of process signals (neutron signal, reactor inlet temperature signals, etc.), which are able to be measured without disturbances for reactor operations. The aims of reactor noise tests were to confirm that no unstable phenomenon exists in ''JOYO'' and to gain initial data of the plant for reference of the future data. Data for the reactor noise tests treated in this paper were obtained at 50 MW power level. Fluctuations of process signals were amplified and recorded on analogue tapes. The analysis was performed using noise code (NOISA) of digital computer, with which statistical values of ASPD (auto power spectral density), CPSD (cross power spectral density), and CF (coherence function) were calculated. The primary points of the results are as follows. 1. RMS value of neutron signal at 50 MW power level is about 0.03 MW. This neutron fluctuation is not disturbing reactor operations. 2. The fluctuations of A loop reactor inlet temperatures (T sub(AI)) are larger than the fluctuations of B loop reactor inlet temperature (T sub(BI)). For this reason, the major driving force of neutron fluctuations seems to be the fluctuations of T sub(AI). 3. Core and blanket subassemblies can be divided into two halves (A and B region), with respect to the spacial motion of temperature in the reactor core. A or B region means the region in which sodium temperature fluctuations in subassembly are significantly affected by T sub(AI) or T sub(BI), respectively. This phenomenon seems to be due to the lack of mixing of A and B loop sodium in lower plenum of reactor vessel. (author)

  10. Possibilities of miniaturizing the TRIGA-reactor

    International Nuclear Information System (INIS)

    Bobleter, O.; Brunner, P.; Schachner, H.

    1976-01-01

    It is proposed to decrease the depth of the TRIGA pool in cases where the construction of the normal-sized pool causes difficulty. The loss of shielding in the vertical direction will be compensated by lead and lead glass. The influence of these changes in design on the reactor components (control rods, instrumentation, neutron beam tubes, pneumatic system, etc.) is discussed. The experimental part of the work concerns the irradiation of lead glasses with varying contents of lead and cerium, which was carried out in the pool at different distances from the TRIGA core. The advantages of a possible reduction in size of the TRIGA reactor by using lead and lead glass as shielding are compared with the main disadvantages of these materials (darkening of the glass and high prices). (author)

  11. Thermo-hydraulic simulations of the experimental fast reactor core

    International Nuclear Information System (INIS)

    Silveira Luz, M. da; Braz Filho, F.A.; Borges, E.M.

    1985-01-01

    A study of the core and performance of metallic fuel of the experimental fast reactor, from the thermal-hydraulic point of view, was carried out employing the COBRA IV-I code. The good safety characteristics of this reactor and the feasibility of using metallic fuel in experimental fast reactor were demonstrated. (Author) [pt

  12. Nuclear reactor installation

    International Nuclear Information System (INIS)

    Keller, W.

    1976-01-01

    A nuclear reactor installation includes a pressurized-water coolant reactor vessel and a concrete biological shield surrounding this vessel. The shield forms a space between it and the vessel large enough to permit rapid escape of the pressurized-water coolant therefrom in the event the vessel ruptures. Struts extend radially between the vessel and shield for a distance permitting normal radial thermal movement of the vessel, while containing the vessel in the event it ruptures, the struts being interspaced from each other to permit rapid escape of the pressurized-water coolant from the space between the shield and the vessel

  13. Operational reactor physics analysis codes (ORPAC)

    International Nuclear Information System (INIS)

    Kumar, Jainendra; Singh, K.P.; Singh, Kanchhi

    2007-07-01

    For efficient, smooth and safe operation of a nuclear research reactor, many reactor physics evaluations are regularly required. As part of reactor core management the important activities are maintaining core reactivity status, core power distribution, xenon estimations, safety evaluation of in-pile irradiation samples and experimental assemblies and assessment of nuclear safety in fuel handling/storage. In-pile irradiation of samples requires a prior estimation of the reactivity load due to the sample, the heating rate and the activity developed in it during irradiation. For the safety of personnel handling irradiated samples the dose rate at the surface of shielded flask housing the irradiated sample should be less than 200 mR/Hr.Therefore, a proper shielding and radioactive cooling of the irradiated sample are required to meet the said requirement. Knowledge of xenon load variation with time (Startup-curve) helps in estimating Xenon override time. Monitoring of power in individual fuel channels during reactor operation is essential to know any abnormal power distribution to avoid unsafe situations. Complexities in the estimation of above mentioned reactor parameters and their frequent requirement compel one to use computer codes to avoid possible human errors. For efficient and quick evaluation of parameters related to reactor operations such as xenon load, critical moderator height and nuclear heating and reactivity load of isotope samples/experimental assembly, a computer code ORPAC (Operational Reactor Physics Analysis Codes) has been developed. This code is being used for regular assessment of reactor physics parameters in Dhruva and Cirus. The code ORPAC written in Visual Basic 6.0 environment incorporates several important operational reactor physics aspects on a single platform with graphical user interfaces (GUI) to make it more user-friendly and presentable. (author)

  14. Improved Monte Carlo modelling of multi-energy a-rays penetration through thick stratified shielding slabs

    International Nuclear Information System (INIS)

    Bakos, G.C.

    2001-01-01

    This paper deals with the application of Monte Carlo method for the calculation of dose build up factor of, mixed 1.37 and 2.75 MeV, a-rays penetration through stratified shielding slabs. Six double layer shielding slabs namely, 12 A l+Fe, 12 A l+Pb, 6 F e+Al, 6 F e+Pb, 4 P b+Al, 4 P b+Fe were examined. Furthermore, experimental and theoretical results are also presented. The experimental results were taken from the experimental facility installed at the Universities Research reactor Center (Risley, UK). Activated Na2SO3 solution provided a uniform Na-24 disc source of a-rays at both energies (1.37 and 2.75 MeV) with equal intensity. The theoretical results were calculated using the Bowman and Trubey formula. This formula takes into account an exponentially decaying function of the shield thickness (in mfp) to the end point of the multi-layer slab. The experimental and theoretical results were used to evaluate the simulation results produced from a Monte Carlo program (DUTMONCA code) which was developed in Democritus University of Thrace (Xanthi, Greece). The DUTMONCA code was written in Pascal language and run on an Intel PIII-800 microprocessor. The developed code (which is an improved version of an existing Monte Carlo program) has the ability to produce good results for thick shielding slabs overcoming the problems encountered in older version program. The simulation results are compared with experimental and theoretical results. Good agreement can be observed, even for thick layer shielding slabs, although there are some wayward experimental values which are due to sources of error associated with the experimental procedure

  15. Experimental Breeder Reactor I Preservation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun

    2006-10-01

    Experimental Breeder Reactor I (EBR I) is a National Historic Landmark located at the Idaho National Laboratory, a Department of Energy laboratory in southeastern Idaho. The facility is significant for its association and contributions to the development of nuclear reactor testing and development. This Plan includes a structural assessment of the interior and exterior of the EBR I Reactor Building from a preservation, rather than an engineering stand point and recommendations for maintenance to ensure its continued protection.

  16. Opportunities for reactor scale experimental physics

    International Nuclear Information System (INIS)

    1999-01-01

    A reactor scale tokamak plasma will exhibit three areas of physics phenomenology not accessible by contemporary experimental facilities. These are: (1) instabilities generated by energetic alpha particles; (2) self-heating phenomena; and (3) reactor scale physics, which includes integration of diverse physics phenomena, each with its own scaling properties. In each area, selected examples are presented that demonstrate the importance and uniqueness of physics results from reactor scale facilities for both inductive and steady state reactor options. It is concluded that the physics learned in such investigations will be original physics not attainable with contemporary facilities. In principle, a reactor scale facility could have a good measure of flexibility to optimize the tokamak approach to magnetic fusion energy. (author)

  17. Mirror reactor studies

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Bender, D.J.

    1977-01-01

    Design studies of a fusion mirror reactor, a fusion-fission mirror reactor, and two small mirror reactors are summarized. The fusion reactor uses 150-keV neutral-beam injectors based on the acceleration of negative ions. The injectors provide over 1 GW of continuous power at an efficiency greater than 80%. The fusion reactor has three-stage, modularized, Venetian blind, plasma direct converter with a predicted efficiency of 59% and a new concept for removal of the lune-shaped blanket: a crane is brought between the two halves of the Yin-Yang magnet, which are separated by a float. The design has desirable features such as steady-state operation, minimal impurity problems, and low first-wall thermal stress. The major disadvantage is low Q resulting in high re-circulating power and hence high cost of electrical power. However, the direct capital cost per unit of gross electrical power is reasonable [$1000/kW(e)]. By contrast, the fusion-fission reactor design is not penalized by re-circulating power and uses relatively near-term fusion technology being developed for the fusion power program. New results are presented on the Th- 233 U and the U- 239 Pu fuel cycles. The purpose of this hybrid is fuel production, with projected costs at $55/g of Pu or $127/g of 233 U. Blanket and cooling system designs, including an emergency cooling system, by General Atomic Company, lead us to the opinion that the reactor can meet expected safety standards for licensing. The smallest mirror reactor having only a shield between the plasma and the coil is the 4.2-m long fusion engineering research facility (FERF) designed for material irradiation. The smallest mirror reactor having both a blanket and shield is the 7.5-m long experimental power reactor (EPR), which has both a fusion and a fusion-fission version. (author)

  18. MMW [multimegawatt] shielding design and analysis

    International Nuclear Information System (INIS)

    Olson, A.P.

    1988-01-01

    Reactor shielding for multimegawatt (MMW) space power must satisfy a mass constraint as well as performance specifications for neutron fluence and gamma dose. A minimum mass shield is helpful in attaining the launch mass goal for the entire vehicle, because the shield comprises about 1% to 2% of the total vehicle mass. In addition, the shield internal heating must produce tolerable temperatures. The analysis of shield performance for neutrons and gamma rays is emphasized. Topics addressed include cross section preparation for multigroup 2D S/sub n/-transport analyses, and the results of parametric design studies on shadow shield performance and mass versus key shield design variables such as cone angle, number, placement, and thickness of layers of tungsten, and shield top radius. Finally, adjoint methods are applied to the shield in order to spatially map its relative contribution to dose reduction, and to provide insight into further design optimization. 7 refs., 2 figs., 3 tabs

  19. Mock-up experiment and analysis for the primary shield of the N.S. MUTSU

    International Nuclear Information System (INIS)

    Miyasaka, S.; Asaoka, T.; Taji, Y.; Ise, T.; Koyama, K.; Tsutsui, T.; Takeuchi, M.; Fuse, T.; Miura, T.; Yamaji, Y.

    1977-01-01

    A series of shielding mock-up experiments was performed at JRR-4, a swimming pool type reactor, of Japan Atomic Energy Research Institute (JAERI) to obtain the necessary experimental data and the sufficiently accurate method of calculation adopted for the modification of the MUTSU primary shield. Analyses for the experiments were carried out by using of the Ssub(n) codes, ANISN and TWOTRAN. The two dimensional calculations were performed with the P 1 -S 8 approximation. The neutron streaming through the annular gap between the pressure vessel and the primary shield has been confirmed to be estimated from the present method of calculation. The agreement between the calculated and the measured values is generally in about a factor of 2 to 4. (orig.) [de

  20. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1990-03-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing, These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale of neutron shield from the cask. The test article was heated in an environmental prescribed by NRC regulations. Results of this second testing phase showed that all three materials are thermally acceptable

  1. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.N.

    1990-01-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing. These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale section of neutron shield from the cask. The test article was heated in an environment prescribed by NRC regulations. Results of this second testing phase show that all three materials are thermally acceptable

  2. Radiation shielding analysis

    International Nuclear Information System (INIS)

    Moon, S.H.; Ha, C.W.; Kwon, S.K.; Lee, J.K.; Choi, H.S.

    1982-01-01

    The theoretical bases of radiation streaming analysis in power reactors, such as ducts or reactor cavity, have been investigated. Discrete ordinates-Monte Carlo or Monte Carlo-Monte Carlo coupling techniques are suggested for the streaming analysis of ducts or reactor cavity. Single albedo scattering approximation code (SINALB) has been developed for simple and quick estimation of gamma-ray ceiling scattering, where the ceiling is assumed to be semi-infinite medium. This code has been employed to calculate the gamma-ray ceiling scattering effects in the laboratory containing a Co-60 source. The SINALB is applicable to gamma-ray scattering, only where the ceiling is thicker than Σsup(-1) and the height is at least twice higher than the shield wall. This code can be used for the purpose of preliminary radiation shield design. The MORSE code has been improved to analyze the gamma-ray scattering problem with on approximation method in respect to the random walk and estimation processes. This improved MORSE code has been employed to the gamma-ray ceiling scattering problem. The results of the improved MORSE calculation are in good agreement with the SINALB and standard MORSE. (Author)

  3. TIBER (Tokamak Ignition/Burn Experimental Reactor) II as a precursor to an international thermonuclear experimental reactor

    International Nuclear Information System (INIS)

    Henning, C.D.; Gilleland, J.R.

    1988-01-01

    The Tokamak Ignition/Burn Experimental Reactor (TIBER) was pursued in the US as one option for an International Thermonuclear Experimental Reactor (ITER). This concept evolved from earlier work on the Tokamak Fusion Core Experiment (TFCX) to develop a small, ignited tokamak. While the copper-coil versions of TFCX became the short-pulsed, 1.23-m radius, Compact Ignition Tokamak (CIT), the superconducting TIBER with long pulse or steady state and a 2.6-m radius was considered for international collaboration. Recently the design was updated to TIBER II, to accommodate more conservative confinement scaling, double-poloidal divertors for impurity control, steady-state current drive, and nuclear testing. 18 refs., 1 fig

  4. Experimental studies of U-Pu-Zr fast reactor fuel pins in EBR-II [Experimental Breeder Reactor

    International Nuclear Information System (INIS)

    Pahl, R.G.; Porter, D.L.; Lahm, C.E.; Hofman, G.L.

    1988-01-01

    The Integral Fast Reactor (IFR) is a generic reactor concept under development by Argonne National Laboratory. Much of the technology for the IFR is being demonstrated at the Experimental Breeder Reactor II (EBR-II) on the Department of Energy site near Idaho Falls, Idaho. The IFR concept relies on four technical features to achieve breakthroughs in nuclear power economics and safety: (1) a pool-type reactor configuration, (2) liquid sodium cooling, (3) metallic fuel, and (4) an integral fuel cycle with on-site reprocessing. The purpose of this paper will be to summarize our latest results of irradiation testing uranium-plutonium-zirconium (U-Pu-Zr) fuel in the EBR-II. 10 refs., 13 figs., 2 tabs

  5. Neutronics and thermohydraulics of the reactor C.E.N.E. Part II; Analisis neutronico y termohidraulico del reactor C.E.N.E. Parte II

    Energy Technology Data Exchange (ETDEWEB)

    Caro, R

    1976-07-01

    In this report the analysis of neutronics thermohydraulics and shielding of the 10 HWt swimming pool reactor C.E.N.E is included. In each of these chapters is given a short description of the theoretical model used, along with the theoretical versus experimental checking carried out, whenever possible, with the reactors JEN-I and JEN-II of Junta de Energia Nuclear. (Author) 11 refs.

  6. Investigation of steel--sodium--iron shields

    International Nuclear Information System (INIS)

    Oblow, E.M.; Maerker, R.E.

    1978-01-01

    An analysis of experimental data from 21 fast reactor shield configurations containing steel, sodium, and iron were made as part of a study of the upper axial shielding needs of the Clinch River Breeder Reactor. The measured data were analyzed using both one- and two-dimensional discrete ordinates transport codes and several cross section libraries based on ENDF/B-IV data with group structures of 51 and 171 neutron groups. One-dimensional sensitivity studies using the 171 group library and ENDF/B-IV covariance files for sodium and iron data were used to determine the sensitivities of the measured data to multigroup cross sections and to estimate uncertainties in the calculated results. Results indicate that the standard 51-group design cross section library could be expected to predict the measurements to within 30% over 12 decades of attenuation although a few of the deepest penetration configurations showed disagreements as large as a factor of three. The sensitivity results revealed very high sensitivity of the measurements to total cross section minima and cross sections from 5 to 10 MeV in sodium and iron in the deep penetration configurations. As a result, large uncertainties in the calculated results arose from small uncertainties in the cross section data. These results indicate the need for better measurements of the total cross section minima in sodium, especially around 300 keV

  7. Preliminary evaluation of FY98 KALIMER shielding design

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Woon; Kang, Chang Mu; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-01-01

    This report describes a preliminary evaluation of the shielding design of FY98 KALIMER. The KALIMER shielding design includes the Inner Fixed Shield of a stainless cylinder located inside the support barrel; the Radial PSDRS Shields which are three B{sub 4}C cylinders located outside the support barrel at core level; the Lower IHX shield of a cylindrical B{sub 4}C plate located above the flow guide; and Inner and Outer IHX shields of B{sub 4}C cylinders located inside and outside of the support barrel, respectively. The DORT3.1 two-dimensional transport code was used to evaluate the KALIMER shielding design. The reactor system was represented by four axial zones, each of which was modeled in the R-Z geometry. The KAFAX-F22 library was used in the analyses, which was generated from the JEF-2.2 of OECD/NEA files for LMR applications by KAERI. The performance of the KALIMER shielding design is compared against the shielding design criteria. The results indicate that the support barrel, upper grid plate, and other reactor structures meet the maximum neutron fluence and DPA limits established in the shielding design criteria. Activities of the air effluent in the PSDRS were also evaluated and are shown to satisfy the maximum permissible concentration (MPC) limits in 10 CFR Part 20. In the future, the validation of the DORT model by a detailed three dimensional calculation such as MCNP and the justification of the current shielding design limits are needed. (author). 13 refs., 23 figs., 31 tabs.

  8. Temperature distribution due to the heat generation in nuclear reactor shielding

    International Nuclear Information System (INIS)

    Torres, L.M.R.

    1985-01-01

    A study is performed for calculating nuclear heating due to the interaction of neutrons and gamma-rays with matter. Modifications were implemented in the ANISN and DOT 3.5 codes, that solve the transport equation using the discrete ordinate method, in one two-dimensions respectively, to include nuclear heating calculations in these codes. In order to determine the temperature distribution, using the finite difference method, a numerical model was developed for solving the heat conduction equation in one-dimension, in plane, cylindrical and spherical geometries, and in two-dimensions, X-Y and R-Z geometries. Based on these models, computer programs were developed for calculating the temperature distribution. Tests and applications of the implemented modifications were performed in problems of nuclear heating and temperature distribution due to radiation energy deposition in fission and fusion reactor shields. (Author) [pt

  9. Structural characteristics of proposed ITER [International Thermonuclear Experimental Reactor] TF [toroidal field] coil conductor

    International Nuclear Information System (INIS)

    Gibson, C.R.; Miller, J.R.

    1988-01-01

    This paper analyzes the effect of transverse loading on a cable-in-conduit conductor which has been proposed for the toroidal field coils of the International Thermonuclear Experimental Reactor. The primary components of this conductor are a loose cable of superconducting wires, a thin-wall tube for helium containment, and a U-shaped structural channel. A method is given where the geometry of this conductor can be optimized for a given set of operating conditions. It is shown, using finite-element modeling, that the structural channel is effective in supporting loads due to transverse forces and internal pressure. In addition, it is shown that the superconducting cable is effectively shielded from external transverse loads that might otherwise degrade its current carrying capacity. 10 refs., 10 figs., 3 tabs

  10. ASOP, Shield Calculation, 1-D, Discrete Ordinates Transport

    International Nuclear Information System (INIS)

    1993-01-01

    1 - Nature of physical problem solved: ASOP is a shield optimization calculational system based on the one-dimensional discrete ordinates transport program ANISN. It has been used to design optimum shields for space applications of SNAP zirconium-hydride-uranium- fueled reactors and uranium-oxide fueled thermionic reactors and to design beam stops for the ORELA facility. 2 - Method of solution: ASOP generates coefficients of linear equations describing the logarithm of the dose and dose-weight derivatives as functions of position from data obtained in an automated sequence of ANISN calculations. With the dose constrained to a design value and all dose-weight derivatives required to be equal, the linear equations may be solved for a new set of shield dimensions. Since changes in the shield dimensions may cause the linear functions to change, the entire procedure is repeated until convergence is obtained. The detailed calculations of the radiation transport through shield configurations for every step in the procedure distinguish ASOP from other shield optimization computer code systems which rely on multiple component sources and attenuation coefficients to describe the transport. 3 - Restrictions on the complexity of the problem: Problem size is limited only by machine size

  11. Tests of Neutron Spectrum Calculations with the Help of Foil Measurements in a D{sub 2}O and in an H{sub 2}O-Moderated Reactor and in Reactor Shields of Concrete an Iron

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, R; Aalto, E

    1964-09-15

    Foil measurements covering the fast, epithermal and thermal neutron energy regions have been made in the centre of the Swedish D{sub 2}O-moderated reactor R1, in the pool reactor R2-0, and in different positions in reactor shields of iron, magnetite concrete and ordinary concrete. Neutron spectra have also been calculated for most of these positions, often with the help of a numerical integration of the Boltzmann equation. The measurements and the calculated spectra are presented.

  12. Conception of thermonuclear reactor with a shielding layer of the first wall

    International Nuclear Information System (INIS)

    Marin, S.V.

    1979-01-01

    Considered is the way of the shielding of the first wall of a thermonuclear reactor by the layer of ISSEC (Internal spectral shifter and Energy Converter). It is a constructive non-power element placed between a plasma and the first wall, and intended for the softening of the spectrum and intensity reduction of particle fluxes falling on the first wall. Results of neutron-physical calculations of the UWMAK-type reactor blanket (in the S 4 -P 3 approximation) are presented. While comparing five materials (C, Mo, Nb, V,W) by the rate of radiation damage formation, gas production, radioactivity level and energy output in the blanket with the 316 stainless steel first wall, it is obvious that the conception of ISSEC permits to prolong the service period of the first wall. Construction elements should be then in the same irradiation conditions as those in fast reactors. Molybdenum has been taken as the best ISSEC material. It reduces the number of displaced atoms of the first wall by 20% and decreases helium production by about 100%, increases energy output in the blanket by 15-18%. However, graphite is advantageous, while comparing it to molybdenum in values of residual energy output, radioactivity level, costs and manufacture simplicity. One problem stays unsolved, which is connected with chemical sputtering of graphite at the formation of C 2 H 2 in the high temperature range. So it is hard to prefer any material now

  13. The effect of cadmium shielding on the spatial neutron flux distribution inside one of the outer irradiation sites

    International Nuclear Information System (INIS)

    Shaaban, I.

    2009-06-01

    A permanent epithermal neutron irradiation facility was designed in the Syrian Miniature Neutron Source Reactor (MNSR) by using the cadmium (cylindrical vial 1.0 mm in thickness, 38.50 mm in diameter and 180 mm in length) as thermal neutron shielding material, for a permanent epithermal neutron activation analysis (ENAA). This site was designed by shielding the internal surface of the aluminum tube of the first outer irradiation site in the MNSR reactor. I was used the activation detectors 0.1143% Au-Al alloy foils with 0.1 mm thickness and 2.0 mm diameter for measurement the thermal neutron flux, epithermal and R c d=A b are/A c over ratio in the outer irradiation site. Distribution of the thermal neutron flux in the outer irradiation capsule has been found numerically using MCNP-4C code with and without cadmium shield, and experimentally by irradiating five copper wires using the outer irradiation capsule. Good agreements were obtained between the calculated and the measured results. (author)

  14. Tokamak experimental power reactor conceptual design. Volume I

    International Nuclear Information System (INIS)

    1976-08-01

    A conceptual design has been developed for a tokamak Experimental Power Reactor to operate at net electrical power conditions with a plant capacity factor of 50 percent for 10 years. The EPR operates in a pulsed mode at a frequency of approximately 1/min., with an approximate 75 percent duty cycle, is capable of producing approximately 72 MWe and requires 42 MWe. The annual tritium consumption is 16 kg. The EPR vacuum chamber is 6.25 m in major radius and 2.4 m in minor radius, is constructed of 2-cm thick stainless steel, and has 2-cm thick detachable, beryllium-coated coolant panels mounted on the interior. An 0.28 m stainless steel blanket and a shield ranging from 0.6 to 1.0 m surround the vacuum vessel. The coolant is H 2 O. Sixteen niobium-titanium superconducting toroidal-field coils provide a field of 10 T at the coil and 4.47 T at the plasma. Superconducting ohmic-heating and equilibrium-field coils provide 135 V-s to drive the plasma current. Plasma heating is accomplished by 12 neutral beam-injectors, which provide 60 MW. The energy transfer and storage system consists of a central superconducting storage ring, a homopolar energy storage unit, and a variety of inductor-converters

  15. Shield nuclear design for the 5-kWe TE system

    International Nuclear Information System (INIS)

    Keshishian, V.

    1972-01-01

    The nuclear analysis of the 5-kW(e) reactor shield is presented. Calculation methods and optimization techniques used are presented. Borated stainless steel was selected for the gamma ray shield with tungsten alloy as an alternate. The total shield weight was calculated to be 355 lb. (U.S.)

  16. Data base of reactor physics experimental results in Kyoto University critical assembly experimental facilities

    International Nuclear Information System (INIS)

    Ichihara, Chihiro; Fujine, Shigenori; Hayashi, Masatoshi

    1986-01-01

    The Kyoto University critical assembly experimental facilities belong to the Kyoto University Research Reactor Institute, and are the versatile critical assembly constructed for experimentally studying reactor physics and reactor engineering. The facilities are those for common utilization by universities in whole Japan. During more than ten years since the initial criticality in 1974, various experiments on reactor physics and reactor engineering have been carried out using many experimental facilities such as two solidmoderated cores, a light water-moderated core and a neutron generator. The kinds of the experiment carried out were diverse, and to find out the required data from them is very troublesome, accordingly it has become necessary to make a data base which can be processed by a computer with the data accumulated during the past more than ten years. The outline of the data base, the data base CAEX using personal computers, the data base supported by a large computer and so on are reported. (Kako, I.)

  17. Comparison of neutron fluxes obtained by 2-D and 3-D geometry with different shielding libraries in biological shield of the TRIGA MARK II reactor

    International Nuclear Information System (INIS)

    Bozic, M.; Zagar, T.; Ravnik, M.

    2003-01-01

    Neutron fluxes in different spatial locations in biological shield are obtained with TORT code (TORT-Three Dimensional Oak Ridge Discrete Ordinates Neutron/Photon Transport Code). Libraries used with TORT code were BUGLE-96 library (coupled library with 47 neutron groups and 20 gamma groups) and VITAMIN-B6 library (coupled library with 199 neutron groups and 42 gamma groups). BUGLE-96 library is derived from VITAMIN-B6 library. 2-D and 3-D models for homogeneous type of problem (without inserted beam port 4) and problem with asymmetry (non-homogeneous problem; inserted beam port 4, filled with different materials) were of interest for neutron flux calculation. The main purpose is to verify the possibility for using 2-D approximation model instead of large 3-D model in some calculations. Another purpose of this paper was to compare neutron spectral constants obtained from neutron fluxes (3-D model) determined with smaller BUGLE-96 library with new constants obtained from fluxes calculated with bigger VITAMIN-B6 library. These neutron spectral constants are used in isotopic calculation with SCALE code package (ORIGEN-S). In past only neutron spectral constants determined by neutron fluxes from BUGLE-96 library were used. Experimental results used for isotopic composition comparison are available from irradiation experiment with selected type of concrete and other materials in beam port 4 (irradiation channel 4) in TRIGA Mark II reactor. These experimental results were used as a benchmark in this paper. (author)

  18. Discrete nodal integral transport-theory method for multidimensional reactor physics and shielding calculations

    International Nuclear Information System (INIS)

    Lawrence, R.D.; Dorning, J.J.

    1980-01-01

    A coarse-mesh discrete nodal integral transport theory method has been developed for the efficient numerical solution of multidimensional transport problems of interest in reactor physics and shielding applications. The method, which is the discrete transport theory analogue and logical extension of the nodal Green's function method previously developed for multidimensional neutron diffusion problems, utilizes the same transverse integration procedure to reduce the multidimensional equations to coupled one-dimensional equations. This is followed by the conversion of the differential equations to local, one-dimensional, in-node integral equations by integrating back along neutron flight paths. One-dimensional and two-dimensional transport theory test problems have been systematically studied to verify the superior computational efficiency of the new method

  19. Thermal design of top shield

    International Nuclear Information System (INIS)

    Raghupathy, S.; Velusamy, K.; Parthasarathy, U.; Ghosh, D.; Selvaraj, P.; Chellapandi, P.; Chetal, S.C.

    2005-01-01

    insulation to achieve a temperature of 423 K at the MV-RS junction and an average heat flux of 200 W/m 2 to the reactor vault. The heat transfer through cover gas has been verified experimentally in a test rig. The heat transfer coefficient for jet cooling has also been verified experimentally. Experimental verification of the flow distribution within TS is planned. In this paper, the detailed thermal design and analysis carried out for top shield covering all the aspects indicated above is discussed. (authors)

  20. Evaluation on activation activity of reactor in JRR-2 applied 3 dimensional model to neutron flux calculation

    International Nuclear Information System (INIS)

    Kishimoto, Katsumi; Arigane, Kenji

    2005-03-01

    Revaluation to activation activity of reactor evaluated at the notification of dismantling submitted in 1997 was carried out in JRR-2 where decommissioning was advanced now. In the revaluation, estimation accuracy on neutron streaming at various horizontal experimental tubes was improved by applying 3 dimensional model to neutron transport calculation that had been carried out by 2 dimensional model, and calculating with TORT. As the result, excessive overestimations on horizontal experimental tubes and biological shield that had greatly contributed to total activation activity in evaluation at the notification of dismantling was revised, sum of their activation activities in the revaluation decreased to 1/18 (case after 1 year from the permanent shutdown of reactor) of evaluation at the notification of dismantling, and the structural materials that had large activation activity were changed. By the above, it was shown that introducing 3 dimensional model was effective in evaluation on activation activity of the research reactor that had a lot of various experimental tubes. Total activation activity of reactor by the revaluation depended on control rods, thermal shield plates and horizontal experimental tubes, and the value after 1 year from the permanent shutdown of reactor was 1.9x10 14 Bq. (author)

  1. Neutron activation of building materials used in the reactor shield

    International Nuclear Information System (INIS)

    Hernandez, A.T.; Perez, G.; D'Alessandro, K.

    1993-01-01

    Cuban concretes and their main components (mineral aggregates and cement) were investigated through long-lived activation products induced by neutrons from a reactor. The multielemental content in the materials studied was obtained by neutron activation analysis in an IBR-2 reactor and gamma activation analysis in an MT-25 microtron from Join Institute of Nuclear Research of Dubna. After irradiation of building materials for 30 years by a neutron flow of unitary density, induced radioactivity was calculated according to experimental data. The comparative evaluation of different concretes aggregates and two types of cement related to the activation properties is discussed

  2. Experimental analysis of an MIM capacitor with a concave shield

    International Nuclear Information System (INIS)

    Liu Lintao; Yu Mingyan; Wang Jinxiang

    2009-01-01

    A novel shielding scheme is developed by inserting a concave shield between a metal-insulator-metal (MIM) capacitor and the silicon substrate. Chip measurements reveal that the concave shield improves the quality factor by 11% at 11.8 GHz and 14% at 18.8 GHz compared with an unshielded MIM capacitor. It also alleviates the effect on shunt capacitance between the bottom plate of the MIM capacitor and the shield layer. Moreover, because the concave shields simplify substrate modeling, a simple circuit model of the MIM capacitor with concave shield is presented for radio frequency applications.

  3. The analysis for inventory of experimental reactor high temperature gas reactor type

    International Nuclear Information System (INIS)

    Sri Kuntjoro; Pande Made Udiyani

    2016-01-01

    Relating to the plan of the National Nuclear Energy Agency (BATAN) to operate an experimental reactor of High Temperature Gas Reactors type (RGTT), it is necessary to reactor safety analysis, especially with regard to environmental issues. Analysis of the distribution of radionuclides from the reactor into the environment in normal or abnormal operating conditions starting with the estimated reactor inventory based on the type, power, and operation of the reactor. The purpose of research is to analyze inventory terrace for Experimental Power Reactor design (RDE) high temperature gas reactor type power 10 MWt, 20 MWt and 30 MWt. Analyses were performed using ORIGEN2 computer code with high temperatures cross-section library. Calculation begins with making modifications to some parameter of cross-section library based on the core average temperature of 570 °C and continued with calculations of reactor inventory due to RDE 10 MWt reactor power. The main parameters of the reactor 10 MWt RDE used in the calculation of the main parameters of the reactor similar to the HTR-10 reactor. After the reactor inventory 10 MWt RDE obtained, a comparison with the results of previous researchers. Based upon the suitability of the results, it make the design for the reactor RDE 20MWEt and 30 MWt to obtain the main parameters of the reactor in the form of the amount of fuel in the pebble bed reactor core, height and diameter of the terrace. Based on the main parameter or reactor obtained perform of calculation to get reactor inventory for RDE 20 MWT and 30 MWT with the same methods as the method of the RDE 10 MWt calculation. The results obtained are the largest inventory of reactor RDE 10 MWt, 20 MWt and 30 MWt sequentially are to Kr group are about 1,00E+15 Bq, 1,20E+16 Bq, 1,70E+16 Bq, for group I are 6,50E+16 Bq, 1,20E+17 Bq, 1,60E+17 Bq and for groups Cs are 2,20E+16 Bq, 2,40E+16 Bq, 2,60E+16 Bq. Reactor inventory will then be used to calculate the reactor source term and it

  4. Reactor physical experimental program EROS in the frame of the molten salt applying reactor concepts development

    International Nuclear Information System (INIS)

    Hron, Miloslav; Kyncl, Jan; Mikisek, Miroslav

    2009-01-01

    After the relatively broad program of experimental activities, which have been involved in the complex R and D program for the Molten Salt Reactor (MSR) - SPHINX (SPent Hot fuel Incinerator by Neutron fluX) concept development in the Czech Republic, there has been a next stage (namely large-scale experimental verification of design inputs by use of MSR-type inserted zones into the existing light water moderated experimental reactor LR-0 called EROS project) started, which will be focused to the experimental verification of the rector physical or neutronic properties of other types of reactor concepts applying molten salts in the role of liquid fuel and/or coolant. This tendency is based on the recently accepted decision of the MSR SSC of GIF to consider for further period of its activity two baseline concepts- fast neutron molten salt reactor non-moderated (FMSR-NM) as a long-term alternative to solid fuelled fast neutron reactors and simultaneously, advanced high temperature reactor (AHTR) with pebble bed type solid fuel cooled by liquid salts. There will be a brief description of the prepared and performed experimental programs in these directions (as well as the preliminary results obtained so far) introduced in the paper. (author)

  5. Calculation of self-shielding coefficients, flux depression and cadmium factor for thermal neutron flux measurement of the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Marques, Andre Luis Ferreira; Ting, Daniel Kao Sun; Mendonca, Arlindo Gilson

    1996-01-01

    A calculation methodology of Flux Depression, Self-Shielding and Cadmium Factors is presented, using the ANISN code, for experiments conducted at the IPEN/MB-01 Research Reactor. The correction factors were determined considering thermal neutron flux and 0.125 e 0.250 mm diameter of 197 Au wires. (author)

  6. Emergency reactor cooling systems for the experimental VHTR

    International Nuclear Information System (INIS)

    Mitake, Susumu; Suzuki, Katsuo; Miyamoto, Yoshiaki; Tamura, Kazuo; Ezaki, Masahiro.

    1983-03-01

    Performances and design of the panel cooling system which has been proposed to be equipped as an emergency reactor cooling system for the experimental multi purpose very high temperature gas-cooled reactor are explained. Effects of natural circulation flow which would develop in the core and temperature transients of the panel in starting have been precisely investigated. Conditions and procedures for settling accidents with the proposed panel cooling system have been also studied. Based on these studies, it has been shown that the panel cooling system is effective and useful for the emergency reactor cooling of the experimental VHTR. (author)

  7. Report of the AGS Experimental Area Shielding Upgrade Committee

    International Nuclear Information System (INIS)

    Beavis, D.; Brown, H.N.; Bunce, G.; Carroll, A.S.; Chiang, I.H.; Glenn, J.W.; Lazarus, D.M.; Lessard, E.; Pendzick, A.; Sims, W.; Woodle, K.

    1990-08-01

    The proton intensity delivered to the AGS experimental areas is expected to increase fourfold when the full potential of the Booster is realized. It is therefore necessary to anticipate the modifications to the shielding and radiation monitoring that will be required in order to insure safe operation within the appropriate guidelines for radiation exposure. This report examines the consequences of site boundary requirements and soil and air activation as well as the protection of radiation workers, i.e., AGS personnel and experimenters, from unnecessary radiation exposure in the experimental areas. Where possible, Health Physics surveys and fault studies carried out in the Spring of 1990 have been used to estimate levels in and around the experimental areas with 5 x 10 13 protons per pulse or 75% of the total anticipated intensity delivered to each of the target stations under ''normal'' as well as fault conditions. Where fault studies were not possible due to construction, the new beams and facilities were designed for the higher intensities that will be available and radiation patterns were calculated. Weak spots were identified and improvements recommended. Capital and manpower estimates were developed for the upgrades. 7 refs

  8. Research reactor RB, technical characteristics and experimental possibilities; Zbornik radova, Konferencija o koriscenju nuklearnih reaktora u Jugoslaviji

    Energy Technology Data Exchange (ETDEWEB)

    Sotic, O; Vranic, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1978-05-15

    Nuclear research reactor RB tn the Nuclear Engineering Laboratory at the Institute of Nuclear Sciences 'Boris Kidric' in Vinca is the first reactor system built in Yugoslavia in 1958. In this report, the basic technical characteristics of this reactor are described, as well as the experimental possibilities it offers to the users. Its relatively simple construction and flexibility enables direct measurements of a series of physical parameters, and the absence of the biological protection shield makes it very useful for Various biological and other irradiations and dosimetric measurements Where strong neutron source is required. (author) Istrazivacki nuklearni reaktor RB u Laboratoriji za nuklearnu energetiku i tehnicku fiziku Instituta za nuklearne nauke 'Boris Kidric' u Vinci je prvi reaktorski sistem izgradjen u Jugooslaviji 1958. godine. U ovom radu opisane su osnovne tehnicke karakteristike tog reaktora, kao i mogucnosti za izvodjenje eksperimenata koje on pruza korisnicima. Njegova relativno jednostavna konstrukcija i fleksibilnost omogucavaju da se na njemu izvrse direktna merenja niza fizickih parametara, a s druge strane odsustvo bioloskog zastitnog omotaca cini ga veoma pogodnim za razna bioloska i druga ozracivanja, a takodje i dozimetrijska merenja gde se zahteva snazan izvor neutrona. (author)

  9. Concrete shielding for nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Nagase, Tetsuo; Nakajima, Tadao; Okumura, Tadahiko; Saito, Tetsuo

    1983-01-01

    The nuclear ship ''Mutsu'' was constructed in 1970 as the fourth in the world. On September 1, 1974, during the power raising test in the Pacific Ocean, radiation leak was detected. As the result of investigation, it was found that the cause was the fast neutrons streaming through the gap between the reactor pressure vessel and the primary shield. In order to repair the shielding facility, the Japan Nuclear Ship Research Development Agency carried out research and development and shielding design. It was decided to adopt serpentine concrete for the primary shield, which is the excellent moderator of fast neutrons even at high temperature, and heavy concrete for the secondary shield, which is effective for shielding both gamma ray and neutron beam. The repair of shielding was carried out in the Sasebo Shipyard, and completed in August, 1982. The outline of the repair work is reported. The weight increase was about 300 t. The conditions of the shielding design, the method of shielding analysis, the performance required for the shielding concrete, the preliminary experiment on heavy concrete and the construction works of serpentine concrete and heavy concrete are described. (Kako, I.)

  10. Design and characterization of a novel neutron shield for BNCT in an experimental model of oral cancer in the hamster cheek pouch at RA-3

    International Nuclear Information System (INIS)

    Pozzi, E.C.C.; Curotto, P.; Monti Hughes, A.; Nigg, D.W.; Schwint, A.E.; Trivillin, V.A.; Thorp, S.I.

    2013-01-01

    Our research group at the Radiation Pathology Division of the Department of Radiobiology (National Atomic Energy Commission) has previously demonstrated the therapeutic efficacy of different BNCT protocols to treat oral cancer in an experimental hamster cheek pouch model. In particular, to perform studies in this experimental model at the thermal facility constructed at RA-3, we designed and constructed a shielding device for thermal neutrons, to be able to expose the cheek pouch while minimizing the dose to the rest of the body. This device allowed for the irradiation of one animal at a time. Given the usage rate of the device, the aim of the present study was to design and construct an optimized version of the existing shielding device that would allow for the simultaneous irradiation of 2 animals at the thermal facility of RA-3. Taking into account the characteristics of the neutron source and preliminary biological assays, we designed the shielding device for the body of the animal, i.e. a rectangular shaped box with double acrylic walls. The space between the walls contains a continuous filling of 6Li 2 CO 3 (95% enriched in 6Li), approximately 6 mm thick. Two small windows interrupt the shield at one end of the box through which the right pouch of each hamster is everted out onto an external acrylic shelf for exposure to the neutron flux. The characterization of the shielding device showed that the neutron flux was equivalent at both irradiation positions confirming that we were able to design and construct a new shielding device that allows for the irradiation of 2 animals at the same time at the thermal facility of RA-3. This new version of the shielding device will reduce the number of interventions of the reactor operators, reducing occupational exposure to radiation and will make the procedure more efficient for researchers. In addition, we addressed the generation of tritium as a product of the capture reaction in lithium. It was considered as a

  11. Radiation shield analysis for a manned Mars rover

    International Nuclear Information System (INIS)

    Morley, N.J.; ElGenk, M.S.

    1991-01-01

    Radiation shielding for unmanned space missions has been extensively studied; however, designs of man-rated shields are minimal. Engle et al.'s analysis of a man-rated, multilayered shield composed of two and three cycles (a cycle consists of a tungsten and a lithium hydride layer) is the basis for the work reported in this paper. The authors present the results of a recent study of shield designs for a manned Mars rover powered by a 500-kW(thermal) nuclear reactor. A train-type rover vehicle was developed, which consists of four cars and is powered by an SP-100-type nuclear reactor heat source. The maximum permissible dose rate (MPD) from all sources is given by the National Council on Radiation Protection and Measurements as 500 mSv/yr (50 rem/yr) A 3-yr Mars mission (2-yr round trip and 1-yr stay) will deliver a 1-Sv natural radiation dose without a solar particle event, 450 mSv/yr in flight, and an additional 100 mSv on the planet surface. An anomalously large solar particle event could increase the natural radiation dose for unshielded astronauts on the Martian surface to 200 mSv. This limits the MPD to crew members from the nuclear reactor to 300 mSv

  12. Evaluation of the shielding integrity of end-shields in PHWR type NPPs

    International Nuclear Information System (INIS)

    Sah, B.M.L.; Ramamirtham, B.; Kutty, B.S.

    1996-01-01

    In the new plants (Narora Atomic Power Plants (NAPP) onwards) relatively higher radiation fields exist on the north and south fuelling machine (FM) vault walls of the E1 100m accessible area passages. These fields were first noticed at NAPS-1 and subsequently at NAPS-2 and KAPS-1. Such surveys done at RAPS have indicated that the fields on these walls would come out to be quite low (only 1-2 mR/h) from sources other than that arising from 41 Ar contamination. RAPS/MAPS experience pointed to adequacy of shielding of the FM vault walls and sufficient overall shielding thickness of the end-shields. Further, radiometry tests of end-shields carried out at Kaiga and RAPP 3 and 4 indicated fairly satisfactory and uniform filling of balls. Hence, incomplete filling of water column of the end-shields due to any venting problem was suspected to be one possible reason for the observed high fields in NAPS and Kakrapar Atomic Power Station (KAPS). Since the presence of high radiation fields, both neutron and gamma, is of long-term concern, a special study/measurement of radiation levels on reactor face during high power operation was undertaken. In order to compare the shielding integrity of the older (RAPS/MAPS solid plate type shielding) and newer (NAPS/KAPS steel ball-filled type) end shields, these experiments were done at MAPS-2 and NAPS-2. (author). 2 refs., 2 tabs

  13. Experimental facility of innovative types as the laboratory analog of research reactor experimental device

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Zabud'ko, A.N.; Kremenetskij, A.K.; Nikolaev, A.N.; Trykov, L.A.

    1991-01-01

    The paper analyses capability of creating laboratory analogs of complex experimental facilities at research reactors utilizing power radionuclide neutron sources fabricated in industrial conditions. Some experimental and calculational investigations of neutron-physical characteristics are presented, which have been attained at the RIZ research reactor laboratory analog. Experimental results are supplemented by calculational investigations, fulfilled by means of the BRAND three-dimensional computational complex and the ROZ-6 one-dimensional program. 4 refs.; 3 figs

  14. Two-dimensional shielding benchmarks for iron at YAYOI, (1)

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; An, Shigehiro; Kasai, Shigeru; Miyasaka, Shun-ichi; Koyama, Kinji.

    The aim of this work is to assess the collapsed neutron and gamma multigroup cross sections for two dimensional discrete ordinate transport code. Two dimensional distributions of neutron flux and gamma ray dose through a 70cm thick and 94cm square iron shield were measured at the fast neutron source reactor ''YAYOI''. The iron shield was placed over the lead reflector in the vertical experimental column surrounded by heavy concrete wall. The detectors used in this experiment were threshold detectors In, Ni, Al, Mg, Fe and Zn, sandwitch resonance detectors Au, W and Co, activation foils Au for neutrons and thermoluminescence detectors for gamma ray dose. The experimental results were compared with the calculated ones by the discrete ordinate transport code ANISN and TWOTRAN. The region-wise, coupled neutron-gamma multigroup cross-sections (100n+20gamma, EURLIB structure) were generated from ENDF/B-IV library for neutrons and POPOP4 library for gamma-ray production cross-sections by using the code system RADHEAT. The effective microscopic neutron cross sections were obtained from the infinite dilution values applying ABBN type self-shielding factors. The gamma ray production multigroup cross-sections were calculated from these effective microscopic neutron cross-sections. For two-dimensional calculations the group constants were collapsed into 10 neutron groups and 3 gamma groups by using ANISN. (auth.)

  15. Simplified simulation of an experimental fast reactor plant

    International Nuclear Information System (INIS)

    Fujii, Masaaki; Fujita, Minoru.

    1978-01-01

    Purposes of the simulation are to study the dynamic behavior of a liquid metal-cooled experimental fast breeder reactor plant and to design the control system of the reactor plant by modified-RAPID (Reactor and Plant Integrated Dynamics) computer program. As for the plant model, the Japan Experimental Fast Reactor ''Joyo'' was referred to approximately. This computer program is designed for the calculation of steady-state and transient temperatures in a FBR plant; which is described by a model consisting of the core, upper and lower plenums, an intermediate heat exchanger, an air dump heat exchanger, primary-secondary and tertiary coolant systems and connecting pipes. The basic equations are solved numerically by finite difference approximation. The mathematical model for an experimental FBR plant is useful for the design of the control system of FBR plants. The results of numerical simulation showed that the proportional change in the flow rates of the primary and secondary coolant loops provides good performance in relation to the stepped change in the power level. (J.P.N.)

  16. Experimental shielding evaluation of the radiation protection provided by the structurally significant components of residential structures.

    Science.gov (United States)

    Dickson, E D; Hamby, D M

    2014-03-01

    The human health and environmental effects following a postulated accidental release of radioactive material to the environment have been a public and regulatory concern since the early development of nuclear technology. These postulated releases have been researched extensively to better understand the potential risks for accident mitigation and emergency planning purposes. The objective of this investigation is to provide an updated technical basis for contemporary building shielding factors for the US housing stock. Building shielding factors quantify the protection from ionising radiation provided by a certain building type. Much of the current data used to determine the quality of shielding around nuclear facilities and urban environments is based on simplistic point-kernel calculations for 1950s era suburbia and is no longer applicable to the densely populated urban environments realised today. To analyse a building's radiation shielding properties, the ideal approach would be to subject a variety of building types to various radioactive sources and measure the radiation levels in and around the building. While this is not entirely practicable, this research analyses the shielding effectiveness of ten structurally significant US housing-stock models (walls and roofs) important for shielding against ionising radiation. The experimental data are used to benchmark computational models to calculate the shielding effectiveness of various building configurations under investigation from two types of realistic environmental source terms. Various combinations of these ten shielding models can be used to develop full-scale computational housing-unit models for building shielding factor calculations representing 69.6 million housing units (61.3%) in the United States. Results produced in this investigation provide a comparison between theory and experiment behind building shielding factor methodology.

  17. Experimental shielding evaluation of the radiation protection provided by the structurally significant components of residential structures

    International Nuclear Information System (INIS)

    Dickson, E D; Hamby, D M

    2014-01-01

    The human health and environmental effects following a postulated accidental release of radioactive material to the environment have been a public and regulatory concern since the early development of nuclear technology. These postulated releases have been researched extensively to better understand the potential risks for accident mitigation and emergency planning purposes. The objective of this investigation is to provide an updated technical basis for contemporary building shielding factors for the US housing stock. Building shielding factors quantify the protection from ionising radiation provided by a certain building type. Much of the current data used to determine the quality of shielding around nuclear facilities and urban environments is based on simplistic point-kernel calculations for 1950s era suburbia and is no longer applicable to the densely populated urban environments realised today. To analyse a building’s radiation shielding properties, the ideal approach would be to subject a variety of building types to various radioactive sources and measure the radiation levels in and around the building. While this is not entirely practicable, this research analyses the shielding effectiveness of ten structurally significant US housing-stock models (walls and roofs) important for shielding against ionising radiation. The experimental data are used to benchmark computational models to calculate the shielding effectiveness of various building configurations under investigation from two types of realistic environmental source terms. Various combinations of these ten shielding models can be used to develop full-scale computational housing-unit models for building shielding factor calculations representing 69.6 million housing units (61.3%) in the United States. Results produced in this investigation provide a comparison between theory and experiment behind building shielding factor methodology. (paper)

  18. Waste management for JAERI fusion reactors

    International Nuclear Information System (INIS)

    Tobita, K.; Nishio, S.; Konishi, S.; Jitsukawa, S.

    2004-01-01

    In the fusion reactor design study at Japan Atomic Energy Institute (JAERI), several waste management strategies were assessed. The assessed strategies are: (1) reinforced neutron shield to clear the massive ex-shielding components from regulatory control; (2) low aspect ratio tokamak to reduce the total waste; (3) reuse of liquid metal breeding material and neutron shield. Combining these strategies, the weight of disposal waste from a low aspect ratio reactor VECTOR is expected to be comparable with the metal radwaste from a light water reactor (∼4000 t)

  19. Performance of advanced self-shielding models in DRAGON Version4 on analysis of a high conversion light water reactor lattice

    International Nuclear Information System (INIS)

    Karthikeyan, Ramamoorthy; Hebert, Alain

    2008-01-01

    A high conversion light water reactor lattice has been analysed using the code DRAGON Version4. This analysis was performed to test the performance of the advanced self-shielding models incorporated in DRAGON Version4. The self-shielding models are broadly classified into two groups - 'equivalence in dilution' and 'subgroup approach'. Under the 'equivalence in dilution' approach we have analysed the generalized Stamm'ler model with and without Nordheim model and Riemann integration. These models have been analysed also using the Livolant-Jeanpierre normalization. Under the 'subgroup approach', we have analysed Statistical self-shielding model based on physical probability tables and Ribon extended self-shielding model based on mathematical probability tables. This analysis will help in understanding the performance of advanced self-shielding models for a lattice that is tight and has a large fraction of fissions happening in the resonance region. The nuclear data for the analysis was generated in-house. NJOY99.90 was used for generating libraries in DRAGLIB format for analysis using DRAGON and A Compact ENDF libraries for analysis using MCNP5. The evaluated datafiles were chosen based on the recommendations of the IAEA Co-ordinated Research Project on the WIMS Library Update Project. The reference solution for the problem was obtained using Monte Carlo code MCNP5. It was found that the Ribon extended self-shielding model based on mathematical probability tables using correlation model performed better than all other models

  20. Experimental Investigation of the Hot Water Layer Effect on Upward Flow Open Pool Reactor Operability

    International Nuclear Information System (INIS)

    Abou Elmaaty, T.

    2014-01-01

    The open pool reactor offers a high degree of reliability in the handling and manoeuvring, the replacement of reactor internal components and the suing of vertical irradiation channels. The protection of both the operators and the reactor hall environment against radiation hazards is considered a matter of interest. So, a hot water layer is implemented above many of the research reactors main pool, especially those whose flow direction is upward flow. An experimental work was carried out to ensure the operability of the upward flow open pool research reactor with / without the hot water layer. The performed experiment showed that, the hot water layer is produced an inverse buoyant force make the water to diffuse downward against the ordinary natural circulation from the reactor core. An upward flow - open pool research reactor (with a power greater than 20 M watt) could not wok without a hot water layer. The high temperature of the hot water layer surface could release a considerable amount of water vapour into the reactor hall, so a heat and mass transfer model is built based on the measured hot water layer surface temperature to calculate the amount of released water vapour during the reactor operating period. The effects of many parameters like the ambient air temperature, the reactor hall relative humidity and the speed of the pushed air layer above the top pool end on the evaporation rate is studied. The current study showed that, the hot water layer system is considered an efficient shielding system against Gamma radiation for open pool upward flow reactor and that system should be operated before the reactor start up by a suitable period of time. While, the heat and mass transfer model results showed that, the amount of the released water vapour is increased as a result of both the increase in hot water layer surface temperature and the increase in air layer speed. As the increase in hot water layer surface temperature could produce a good operability

  1. Experimental Investigation of the Hot Water Layer Effect on Upward Flow Open Pool Reactor Operability

    International Nuclear Information System (INIS)

    Abou Elmaaty, T.

    2015-01-01

    The open pool reactor offers a high degree of reliability in the handling and manoeuvring, the replacement of reactor internal components and the swing of vertical irradiation channels. The protection of both the operators and the reactor hall environment against radiation hazards is considered a matter of interest. So, a hot water layer implemented above many of the research reactors main pool, especially those whose flow direction is upward flow. An experimental work was carried out to ensure the operability of the upward flow open pool research reactor with / without the hot water layer. The performed experiment showed that, the hot water layer produced an inverse buoyant force making the water to diffuse downward against the ordinary natural circulation from the reactor core. An upward flow-open pool research reactor (with a power greater than 20 Mw) could not wok without a hot water layer. The high temperature of the hot water layer surface could release a considerable amount of water vapour into the reactor hall, so a heat and mass transfer model is built based on the measured hot water layer surface temperature to calculate the amount of released water vapour during the reactor operating period. The effects of many parameters like the ambient air temperature, the reactor hall relative humidity and the speed of the pushed air layer above the top pool end on the evaporation rate is studied. The current study showed that, the hot water layer system is considered an efficient shielding system against gamma radiation for open pool upward flow reactor and that system should be operated before the reactor start up by a suitable period of time. While, the heat and mass transfer model results showed that, the amount of the released water vapour is increased as a result of both the increase in hot water layer surface temperature and the increase in air layer speed. As the increase in hot water layer surface temperature could produce a good operability conditions from

  2. Tasks related to increase of RA reactor exploitation and experimental potential, 01. Designing the protection chamber in the RA reactor hall for handling the radioactive experimental equipment (I-II) Part II, Vol. II

    International Nuclear Information System (INIS)

    Pavicevic, M.

    1963-07-01

    This second volume of the project for construction of the protection chamber in the RA reactor hall for handling the radioactive devices includes the technical description of the chamber, calculation of the shielding wall thickness, bottom lead plate, horizontal stability of the chamber, cost estimation, and the engineering drawings

  3. Development and trial manufacturing of 1/2-scale partial mock-up of blanket box structure for fusion experimental reactor

    International Nuclear Information System (INIS)

    Hashimoto, Toshiyuki; Takatsu, Hideyuki; Sato, Satoshi

    1994-07-01

    Conceptual design of breeding blanket has been discussed during the CDA (Conceptual Design Activities) of ITER (International Thermonuclear Experimental Reactor). Structural concept of breeding blanket is based on box structure integrated with first wall and shield, which consists of three coolant manifolds for first wall, breeding and shield regions. The first wall must have cooling channels to remove surface heat flux and nuclear heating. The box structure includes plates to form the manifolds and stiffening ribs to withstand enormous electromagnetic load, coolant pressure and blanket internal (purge gas) pressure. A 1/2-scale partial model of the blanket box structure for the outboard side module near midplane is manufactured to estimate the fabrication technology, i.e. diffusion bonding by HIP (Hot Isostatic Pressing) and EBW (Electron Beam Welding) procedure. Fabrication accuracy is a key issue to manufacture first wall panel because bending deformation during HIP may not be small for a large size structure. Data on bending deformation during HIP was obtained by preliminary manufacturing of HIP elements. For the shield structure, it is necessary to reduce the welding strain and residual stress of the weldment to establish the fabrication procedure. Optimal shape of the parts forming the manifolds, welding locations and welding sequence have been investigated. In addition, preliminary EBW tests have been performed in order to select the EBW conditions, and fundamental data on built-up shield have been obtained. Especially, welding deformation by joining the first wall panel to the shield has been measured, and total deformation to build-up shield by EBW has been found to be smaller than 2 mm. Consequently, the feasibility of fabrication technologies has been successfully demonstrated for a 1m-scaled box structure including the first wall with cooling channels by means of HIP, EBW and TIG (Tungsten Inert Gas arc)-welding. (author)

  4. Neutronics and thermohydraulics of the reactor C.E.N.E. Part II

    International Nuclear Information System (INIS)

    Caro, R.

    1976-01-01

    In this report the analysis of neutronics thermohydraulics and shielding of the 10 HWt swimming pool reactor C.E.N.E is included. In each of these chapters is given a short description of the theoretical model used, along with the theoretical versus experimental checking carried out, whenever possible, with the reactors JEN-I and JEN-II of Junta de Energia Nuclear. (Author) 11 refs

  5. Technology development for radiation shielding analysis

    International Nuclear Information System (INIS)

    Ha, Jung Woo; Lee, Jae Kee; Kim, Jong Kyung

    1986-12-01

    Radiation shielding analysis in nuclear engineering fields is an important technology which is needed for the calculation of reactor shielding as well as radiation related safety problems in nuclear facilities. Moreover, the design technology required in high level radioactive waste management and disposal facilities is faced on serious problems with rapidly glowing nuclear industry development, and more advanced technology has to be developed for tomorrow. The main purpose of this study is therefore to build up the self supporting ability of technology development for the radiation shielding analysis in order to achieve successive development of nuclear industry. It is concluded that basic shielding calculations are possible to handle and analyze by using our current technology, but more advanced technology is still needed and has to be learned for the degree of accuracy in two-dimensional shielding calculation. (Author)

  6. MCNP simulation to optimise in-pile and shielding parts of the Portuguese SANS instrument.

    Science.gov (United States)

    Gonçalves, I F; Salgado, J; Falcão, A; Margaça, F M A; Carvalho, F G

    2005-01-01

    A Small Angle Neutron Scattering instrument is being installed at one end of the tangential beam tube of the Portuguese Research Reactor. The instrument is fed using a neutron scatterer positioned in the middle of the beam tube. The scatterer consists of circulating H2O contained in a hollow disc of Al. The in-pile shielding components and the shielding installed around the neutron selector have been the object of an MCNP simulation study. The quantities calculated were the neutron and gamma-ray fluxes in different positions, the energy deposited in the material by the neutron and gamma-ray fields, the material activation resulting from the neutron field and radiation doses at the exit wall of the shutter and around the shielding. The MCNP results are presented and compared with results of an analytical approach and with experimental data collected after installation.

  7. Analysis of radiation shields of BNPP spent fuel pool

    International Nuclear Information System (INIS)

    Ayoobian, N.; Hadad, K.; Nematollahi, M. R.

    2007-01-01

    Radioactive protection is one of the most important subjects in nuclear power plants safety. Analysis of BNPP spent fuel pool shielding , as a main source of energetic γ-rays was the main goal of this project. Firstly, we simulated the reactor core using WIMSD-4 neutronic code and the amount of fission product in the fuel assembly (FA) was calculated during the reactor operation. Then, by obtaining the results from the previous calculation and by using MCNP4C nuclear code , the intensity of γ-rays was obtained in layers of spent fuel pool shields. The results have shown that no significant γ-rays passed through these shields. Finally, an accident and resulting exposure dose above the pool was analyzed

  8. The 'Reacteur Jules Horowitz': a new experimental reactor project

    International Nuclear Information System (INIS)

    Frachet, S.; Ballagny, A.

    1999-01-01

    The Jules Horowitz Reactor (RJH) is a new research reactor project dedicated to materials and nuclear fuel testing, the location of which is foreseen at the CEA-CADARACHE site, and the start-up in 2006. The launching of this project originated from a double finding: The development of nuclear power plants aimed at satisfying the energy needs of the next century, cannot be envisaged without experimental reactors which are unrivaled for the validation of new concepts of nuclear fuels, materials, and components as well as for their qualification under irradiation. The existing experimental reactors are 30 to 40 years old and it is advisable to examine henceforth the necessity for and the nature of a new reactor to take over and replace, at the beginning of next century, the reactors shut-down in the mean time or at the very end of their lives. Within this framework, the CEA has undertaken, in the last years, a study on the mid and long term irradiation needs, to determine the main features and performances of this new reactor. The concept of the reactor will have to fulfill the thermal neutron irradiation requirements as well as the fast neutron experimental needs, with a great potential versatility for any new irradiation programs. The reactor project selected among several different concepts, is finally a light water pool concept, with 100 MW thermal power. It could reach neutronic fluxes twice those of present French reactors, and allows for many irradiations in and around the core, under high neutron fluxes. The reactor will satisfy the highest level of safety in full accordance with international safety recommendations and the French safety approach for this kind of nuclear facility, thus giving an added safety margin keeping in mind the versatility of research reactors. The feasibility studies have been focused on the following most important items: neutronic and thermalhydraulic studies on alternative core designs, with or without added pressurization

  9. Use of a radio frequency shield during 1.5 and 3.0 Tesla magnetic resonance imaging: experimental evaluation.

    Science.gov (United States)

    Favazza, Christopher P; King, Deirdre M; Edmonson, Heidi A; Felmlee, Joel P; Rossman, Phillip J; Hangiandreou, Nicholas J; Watson, Robert E; Gorny, Krzysztof R

    2014-01-01

    Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient's body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (∼1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices.

  10. Experimental and numerical study of the pressure drop for ITER blanket shield block

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Min-Su; Kim, Sawoong; Jung, Hun-Chea; Shim, Hee-Jin; Ahn, Hee-Jae

    2016-11-01

    Highlights: • The results of the experiment and the numerical analysis are compared. • The numerical analysis results are lower than the experimental results. • The margin of the pressure drop is suggested. - Abstract: The blanket shield block (SB) is located inside the ITER vacuum chamber, and the main function is to provide the thermal and nuclear shielding to the vacuum vessel and external components. The SB is foreseen to undergo a significant heat load which is a body load throughout the whole thickness of the SB under normal operation conditions. Therefore, the cooling configuration in SB should be designed very carefully based on the various experiences. The pressure drop in the cooling design is one of the most important factors to balance a water distribution of overall blanket cooling system. In order to verify the pressure drop characteristic and validate the design methodology of SB, experiment and numerical analysis are performed and compared their results. These results would be a benchmarking of the numerical results with experimental results to assess the gap between calculations and experiments.

  11. Design considerations for ITER [International Thermonuclear Experimental Reactor] magnet systems

    International Nuclear Information System (INIS)

    Henning, C.D.; Miller, J.R.

    1988-01-01

    The International Thermonuclear Experimental Reactor (ITER) is now completing a definition phase as a beginning of a three-year design effort. Preliminary parameters for the superconducting magnet system have been established to guide further and more detailed design work. Radiation tolerance of the superconductors and insulators has been of prime importance, since it sets requirements for the neutron-shield dimension and sensitively influences reactor size. The major levels of mechanical stress in the structure appear in the cases of the inboard legs of the toroidal-field (TF) coils. The cases of the poloidal-field (PF) coils must be made thin or segmented to minimize eddy current heating during inductive plasma operation. As a result, the winding packs of both the TF and PF coils includes significant fractions of steel. The TF winding pack provides support against in-plane separating loads but offers little support against out-of-plane loads, unless shear-bonding of the conductors can be maintained. The removal of heat due to nuclear and ac loads has not been a fundamental limit to design, but certainly has non-negligible economic consequences. We present here preliminary ITER magnetic systems design parameters taken from trade studies, designs, and analyses performed by the Home Teams of the four ITER participants, by the ITER Magnet Design Unit in Garching, and by other participants at workshops organized by the Magnet Design Unit. The work presented here reflects the efforts of many, but the responsibility for the opinions expressed is the authors'. 4 refs., 3 figs., 4 tabs

  12. Shielding concerns at a spallation source

    International Nuclear Information System (INIS)

    Russell, G.J.; Robinson, H.; Legate, G.L.; Woods, R.

    1989-01-01

    Neutrons produced by 800-MeV proton reactions at the Los Alamos Neutron Scattering Center spallation neutron source cause a variety of challenging shielding problems. We identify several characteristics distinctly different from reactor shielding and compute the dose attenuation through an infinite slab/shield composed of iron (100 cm) and borated polyethylene (15 cm). Our calculations show that (for an incident spallation spectrum characteristic of neutrons leaking from a tungsten target at 90/degree/) the dose through the shield is a complex mixture of neutrons and gamma rays. High-energy (> 20 MeV) neutron production from the target is ≅5% of the total, yet causes ≅68% of the dose at the shield surface. Primary low-energy (< 20 MeV) neutrons from the target contribute negligibly (≅0.5%) to the dose at the shield surface yet cause gamma rays, which contribute ≅31% to the total dose at the shield surface. Low-energy neutrons from spallation reactions behave similarly to neutrons with a fission spectrum distribution. 6 refs., 8 figs., 1 tab

  13. Dosimetry and radiation shielding at the RA reactor, Annual report 1975, Annex 5

    International Nuclear Information System (INIS)

    Ninkovic, M.

    1976-01-01

    In the working environment at the RA reactor, the level of gamma radiation is measured continuously by the built-in stationary system. According to the needs, measurement are done in the reactor hall every day. The level of gamma radiation is measured separately in typical points when the reactor is operated at nominal power and during intervals between two operating campaigns. The level of neutron radiation is measured according to the needs by means of a mobile spherical neutron detector. These measurements are done in the reactor hall around the horizontal experimental channels. Measured values of neutron radiation are three times lower than the relevant levels of gamma radiation [sr

  14. Water chemistry management of research reactor in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Yoshijima, Tetsuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    The JRR-3M cooling system consists of four systems, namely; (1) primary cooling system, (2) heavy water cooling system, (3) helium system and (4) secondary cooling system. The heavy water is used for reflector and pressurized with helium gas. Water chemistry management of the JRR-3M cooling systems is one of the important subject for the safety operation. The main objects are to prevent the corrosion of cooling system and fuel elements, to suppress the plant radiation build-up and to minimize the generation of radioactive waste. All measured values were within the limits of specifications and JRR-3M reactor was operated with safety in 1996. Spent fuels of JRR-3M reactor are stored in the spent fuel pool. This pool water has been analyzed to prevent corrosion of aluminum cladding of spent fuels. Water chemistry of spent fuel pool water is applied to the prevention of corrosion of aluminum alloys including fuel cladding. The JRR-2 reactor was eternally stopped in December 1996 and is now under decommissioning. The JRR-2 reactor is composed of heavy water tank, fuel guide tube and horizontal experimental hole. These are constructed of aluminum alloy and biological shield and upper shield are constructed of concrete. Three types of corrosion of aluminum alloy were observed in the JRR-2. The Alkaline corrosion of aluminum tube occurred in 1972 because of the mechanical damage of the aluminum fuel guide tube which is used for fuel handling. Modification of the reactor top shield was started in 1974 and completed in 1975. (author)

  15. Shielding repair of N.S. Mutsu and related safety features

    International Nuclear Information System (INIS)

    Kishimoto, K.; Miyakoshi, J.

    1978-01-01

    The abnormal radiation level observed on the upper deck of N.S. Mutsu was caused by neutrons streaming through an annular air gap between the reactor pressure vessel and the primary shield. In order to lower this level, a modification of shielding has been planned, for which a shielding mock-up experiment was carried. The foregoing modifications brought some change to the expected behavior of the reactor plant under ship accident situations, and studies were performed to verify plant safety, such as calculations to determine containment vessel integrity and decay heat removal after sinking, and calculations supported by experiment to ascertain the structural strength of the double bottom upon stranding of the ship

  16. Measurement of TFTR D-T radiation shielding efficiency

    International Nuclear Information System (INIS)

    Kugel, H.W.; Ascione G.; Elwood, S.

    1994-01-01

    High power D-T fusion reactor designs presently exhibit complex geometric and material density configurations. Simulations of the radiation shielding required for safe operation and full compliance with all regulatory requirements must include sufficient margin to accommodate uncertainties in material properties and distributions, uncertainties in the final configurations, and uncertainties in approximations employing the homogenization of complex geometries. Measurements of radiation shielding efficiency performed in a realistic D-T tokamak environment can provide empirical guidance for simulating safe, efficient, and cost effective shielding systems for future high power fusion reactors. In this work, the authors present the results of initial measurements of the TFTR radiation shielding efficiency during high power D-T operations with record neutron yields. The TFTR design objective is to limit the total dose-equivalent at the nearest PPPL property lines from all radiation pathways to 10 mrem per calendar year. Compliance with this design objective over a calendar year requires measurements in the presence of typical site backgrounds of about 80 mrem per year

  17. Comparison of experimental and calculated shielding factors for modular buildings in a radioactive fallout scenario

    DEFF Research Database (Denmark)

    Hinrichsen, Yvonne; Finck, Robert; Östlund, Karl

    2018-01-01

    building used was a standard prefabricated structure obtained from a commercial manufacturer. Four reference positions for the gamma radiation detectors were used inside the building. Theoretical dose rate calculations were performed using the Monte Carlo code MCNP6, and additional calculations were......Experimentally and theoretically determined shielding factors for a common light construction dwelling type were obtained and compared. Sources of the gamma-emitting radionuclides 60Co and 137Cs were positioned around and on top of a modular building to represent homogeneous fallout. The modular...... performed that compared the shielding factor for 137Cs and 134Cs. This work demonstrated the applicability of using MCNP6 for theoretical calculations of radioactive fallout scenarios. Furthermore, the work showed that the shielding effect for modular buildings is almost the same for 134Cs as for 137Cs....

  18. Mechanical shielded hot cell

    International Nuclear Information System (INIS)

    Higgy, H.R.; Abdel-Rassoul, A.A.

    1983-01-01

    A plan to erect a mechanical shielded hot cell in the process hall of the Radiochemical Laboratory at Inchas is described. The hot cell is designed for safe handling of spent fuel bundles, from the Inchas reactor, and for dismantling and cutting the fuel rods in preparation for subsequent treatment. The biological shielding allows for the safe handling of a total radioactivity level up to 10,000 MeV-Ci. The hot cell consists of an α-tight stainless-steel box, connected to a γ-shielded SAS, through an air-lock containing a movable carriage. The α-box is tightly connected with six dry-storage cavities for adequate storage of the spent fuel bundles. Both the α-box, with the dry-storage cavities, and the SAS are surrounded by 200-mm thick biological lead shielding. The α-box is equipped with two master-slave manipulators, a lead-glass window, a monorail crane and Padirac and Minirag systems. The SAS is equipped with a lead-glass window, tong manipulator, a shielded pit and a mechanism for the entry of the spent fuel bundle. The hot cell is served by adequate ventilation and monitoring systems. (author)

  19. ANALISIS KESELAMATAN TERMOHIDROLIK BULK SHIELDING REAKTOR KARTINI

    Directory of Open Access Journals (Sweden)

    Azizul Khakim

    2015-10-01

    Full Text Available ABSTRAK ANALISIS KESELAMATAN TERMOHIDROLIK BULK SHIELDING REAKTOR KARTINI. Bulk shielding merupakan fasilitas yang terintegrasi dengan reaktor Kartini yang berfungsi sebagai penyimpanan sementara bahan bakar bekas. Fasilitas ini merupakan fasilitas yang termasuk dalam struktur, sistem dan komponen (SSK yang penting bagi keselamatan. Salah satu fungsi keselamatan dari sistem penanganan dan penyimpanan bahan bakar adalah mencegah kecelakaan kekritisan yang tak terkendali dan membatasi naiknya temperatur bahan bakar. Analisis keselamatan paling kurang harus mencakup analisis keselamatan dari sisi neutronik dan termo hidrolik Bulk shielding. Analisis termo hidrolik ditujukan untuk memastikan perpindahan panas dan proses pendinginan bahan bakar bekas berjalan baik dan tidak terjadi akumulasi panas yang mengancam integritas bahan bakar. Code tervalidasi PARET/ANL digunakan untuk analisis pendinginan dengan mode konveksi alam. Hasil perhitungan menunjukkan bahwa mode pendinginan konvekasi alam cukup memadai dalam mendinginkan panas sisa tanpa mengakibatkan kenaikan temperatur bahan bakar yang signifikan. Kata kunci: Bulk shielding, bahan bakar bekas, konveksi alam, PARET.   ABSTRACT THERMAL HYDRAULIC SAFETY ANALYSIS OF BULK SHIELDING KARTINI REACTOR. Bulk shielding is an integrated facility to Kartini reactor which is used for temporary spent fuels storage. The facility is one of the structures, systems and components (SSCs important to safety. Among the safety functions of fuel handling and storage are to prevent any uncontrolable criticality accidents and to limit the fuel temperature increase. Safety analyses should, at least, cover neutronic and thermal hydraulic calculations of the bulk shielding. Thermal hydraulic analyses were intended to ensure that heat removal and the process of the spent fuels cooling takes place adequately and no heat accumulation that challenges the fuel integrity. Validated code, PARET/ANL was used for analysing the

  20. Experimental development of power reactor intelligent control

    International Nuclear Information System (INIS)

    Edwards, R.M.; Garcia, H.E.; Lee, K.Y.

    1992-01-01

    The US nuclear utility industry initiated an ambitious program to modernize the control systems at a minimum of ten existing nuclear power plants by the year 2000. That program addresses urgent needs to replace obsolete instrumentation and analog controls with highly reliable state-of-the-art computer-based digital systems. Large increases in functionality that could theoretically be achieved in a distributed digital control system are not an initial priority in the industry program but could be logically considered in later phases. This paper discusses the initial development of an experimental sequence for developing, testing, and verifying intelligent fault-accommodating control for commercial nuclear power plant application. The sequence includes an ultra-safe university research reactor (TRIGA) and a passively safe experimental power plant (Experimental Breeder Reactor 2)

  1. Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron

    Energy Technology Data Exchange (ETDEWEB)

    Zorla, Eyüp; Ipbüker, Cagatay [University of Tartu, Institute of Physics (Estonia); Biland, Alex [US Basalt Corp., Houston (United States); Kiisk, Madis [University of Tartu, Institute of Physics (Estonia); Kovaljov, Sergei [OÜ Basaltest, Tartu (Estonia); Tkaczyk, Alan H. [University of Tartu, Institute of Physics (Estonia); Gulik, Volodymyr, E-mail: volodymyr.gulik@gmail.com [Institute for Safety Problems of Nuclear Power Plants, Lysogirska 12, of. 201, 03028 Kyiv (Ukraine)

    2017-03-15

    Highlights: • Basalt fiber infused with natural and enriched boron in varying proportions. • Gamma-ray attenuation remains stable with addition of basalt-boron fiber. • Improvement in neutron shielding for nuclear facilities producing fast fission spectrum. • Basalt-boron fiber could decrease the shielding thickness in thermal spectrum reactors. - Abstract: The importance of radiation shielding is increasing in parallel with the expansion of the application areas of nuclear technologies. This study investigates the radiation shielding properties of two types of high strength concrete reinforced with basalt fibers infused with 12–20% boron oxide, containing varying fractions of natural and enriched boron. The gamma-ray shielding characteristics are analyzed with the help of the WinXCom, whereas the neutron shielding characteristics are modeled and computed by Monte Carlo Serpent code. For gamma-ray shielding, the attenuation coefficients of the studied samples do not display any significant variation due to the addition of basalt-boron fibers at any mixing proportion. For neutron shielding, the addition of basalt-boron fiber has negligible effects in the case of very fast neutrons (14 MeV), but it could considerably improve the neutron shielding of concrete for nuclear facilities producing a fast fission spectrum (e.g. with reactors as BN-800, FBTR) and thermal neutron spectrum (Light Water Reactors (LWR)). It was also found that basalt-boron fiber could decrease the thickness of radiation shielding material in thermal spectrum reactors.

  2. Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron

    International Nuclear Information System (INIS)

    Zorla, Eyüp; Ipbüker, Cagatay; Biland, Alex; Kiisk, Madis; Kovaljov, Sergei; Tkaczyk, Alan H.; Gulik, Volodymyr

    2017-01-01

    Highlights: • Basalt fiber infused with natural and enriched boron in varying proportions. • Gamma-ray attenuation remains stable with addition of basalt-boron fiber. • Improvement in neutron shielding for nuclear facilities producing fast fission spectrum. • Basalt-boron fiber could decrease the shielding thickness in thermal spectrum reactors. - Abstract: The importance of radiation shielding is increasing in parallel with the expansion of the application areas of nuclear technologies. This study investigates the radiation shielding properties of two types of high strength concrete reinforced with basalt fibers infused with 12–20% boron oxide, containing varying fractions of natural and enriched boron. The gamma-ray shielding characteristics are analyzed with the help of the WinXCom, whereas the neutron shielding characteristics are modeled and computed by Monte Carlo Serpent code. For gamma-ray shielding, the attenuation coefficients of the studied samples do not display any significant variation due to the addition of basalt-boron fibers at any mixing proportion. For neutron shielding, the addition of basalt-boron fiber has negligible effects in the case of very fast neutrons (14 MeV), but it could considerably improve the neutron shielding of concrete for nuclear facilities producing a fast fission spectrum (e.g. with reactors as BN-800, FBTR) and thermal neutron spectrum (Light Water Reactors (LWR)). It was also found that basalt-boron fiber could decrease the thickness of radiation shielding material in thermal spectrum reactors.

  3. The experimental nuclear reactor: AQUILON; Le reacteur nucleaire experimental: AQUILON

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Y; Koechlin, J C; Moreau, J M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    'Aquilon' is an experimental reactor specially designed for the neutronic study of heterogeneous multiplying media with solid fuel and liquid moderator. Since this study is in general incompatible with energy production, the power of the reactor has been limited to a minimum so as to be able to obtain a simple and compact structure, easy access, good handling and great flexibility of operation and utilisation. (author) [French] 'Aquilon' est un reacteur experimental specialement concu pour l'etude neutronique de milieux multiplicateurs heterogenes a combustible solide et ralentisseur liquide. Cette etude etant en general incompatible avec la production d'energie, on a limite au minimum la puissance du reacteur pour pouvoir obtenir une structure simple et peu encombrante, un acces facile, une bonne maniabilite et une grande souplesse de fonctionnement et d'utilisation. (auteur)

  4. Development of neutron shielding material using metathesis-polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Yoshinori E-mail: ysakurai@rri.kyoto-u.ac.jp; Sasaki, Akira; Kobayashi, Tooru

    2004-04-21

    A neutron shielding material using a metathesis-polymer matrix, which is a thermosetting resin, was developed. This shielding material has characteristics that can be controlled for different mixing ratios of neutron absorbers and for formation in the laboratory. Additionally, the elastic modulus can be changed at the hardening process, from a flexible elastoma to a mechanically tough solid. Experiments were performed at the Kyoto University Research Reactor in order to determine the important characteristics of this metathesis-polymer shielding material, such as neutron shielding performance, secondary gamma-ray generation and activation. The metathesis-polymer shielding material was shown to be practical and as effective as the other available shielding materials, which mainly consist of thermoplastic resin.

  5. Optimization of a partially non-magnetic primary radiation shielding for the triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II

    CERN Document Server

    Pyka, N M; Rogov, A

    2002-01-01

    Monte Carlo simulations have been used to optimize the monochromator shielding of the polarized cold-neutron triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II. By using the Monte Carlo program MCNP-4B, the density of the total spectrum of incoming neutrons and gamma radiation from the beam tube SR-2 has been determined during the three-dimensional diffusion process in different types of heavy concrete and other absorbing material. Special attention has been paid to build a compact and highly efficient shielding, partially non-magnetic, with a total biological radiation dose of less than 10 mu Sv/h at its outsides. Especially considered was the construction of an albedo reducer, which serves to reduce the background in the experiment outside the shielding. (orig.)

  6. The experimental program of neutronphysics for advanced water reactors

    International Nuclear Information System (INIS)

    Martin-Deider, L.; Cathalu, S.; Santamarina, A.; Gomit, M.

    1985-11-01

    The C.E.A. and E.D.F. has jointly undertaken a program of experimental studies on under-moderated water lattices, with mixed oxide fuel UO 2 -PuO 2 . Undermoderated lattices offer high conversion ratios. This type of lattice could limit in the future the natural uranium consumption of pressurized water reactors. This experimental program is aimed at qualifying neutron transport calculations in a large range of moderating ratio (between 0.5 and 1.5). It includes three experiments: ERASME, a critical experiment of large size in the EOLE reactor at Cadarache; ICARE, an irradiation experiment in the MELUSINE reactor at Grenoble; and an experiment to measure the reactivity effects by oscillations in the MINERVE reactor at Cadarache [fr

  7. Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study. Phase I

    Science.gov (United States)

    Thibeault, Sheila A.; Fay, Catharine C.; Lowther, Sharon E.; Earle, Kevin D.; Sauti, Godfrey; Kang, Jin Ho; Park, Cheol; McMullen, Amelia M.

    2012-01-01

    The key objectives of this study are to investigate, both computationally and experimentally, which forms, compositions, and layerings of hydrogen, boron, and nitrogen containing materials will offer the greatest shielding in the most structurally robust combination against galactic cosmic radiation (GCR), secondary neutrons, and solar energetic particles (SEP). The objectives and expected significance of this research are to develop a space radiation shielding materials system that has high efficacy for shielding radiation and that also has high strength for load bearing primary structures. Such a materials system does not yet exist. The boron nitride nanotube (BNNT) can theoretically be processed into structural BNNT and used for load bearing structures. Furthermore, the BNNT can be incorporated into high hydrogen polymers and the combination used as matrix reinforcement for structural composites. BNNT's molecular structure is attractive for hydrogen storage and hydrogenation. There are two methods or techniques for introducing hydrogen into BNNT: (1) hydrogen storage in BNNT, and (2) hydrogenation of BNNT (hydrogenated BNNT). In the hydrogen storage method, nanotubes are favored to store hydrogen over particles and sheets because they have much larger surface areas and higher hydrogen binding energy. The carbon nanotube (CNT) and BNNT have been studied as potentially outstanding hydrogen storage materials since 1997. Our study of hydrogen storage in BNNT - as a function of temperature, pressure, and hydrogen gas concentration - will be performed with a hydrogen storage chamber equipped with a hydrogen generator. The second method of introducing hydrogen into BNNT is hydrogenation of BNNT, where hydrogen is covalently bonded onto boron, nitrogen, or both. Hydrogenation of BN and BNNT has been studied theoretically. Hyper-hydrogenated BNNT has been theoretically predicted with hydrogen coverage up to 100% of the individual atoms. This is a higher hydrogen content

  8. Shield design development of nuclear propulsion merchant ship

    International Nuclear Information System (INIS)

    Tanaka, Yoshihisa

    1975-01-01

    Shielding design both in Japan and abroad for nuclear propulsion merchant ships is explained, with emphasis on the various technological problems having occurred in the shield design for one-body type and separate type LWRs as conceptual design. The following matters are described: the peculiarities of the design as compared with the case of land-based nuclear reactors, problems in the design standards of shielding, the present status and development of the design methods, and the instances of the design; thereby, the trends of shielding design are disclosed. The following matters are pointed out: Importance of the optimum design, of shielding, significance of radiation streaming through large voids, activation of the secondary water in built-in type steam generators, and the need of the guides for shield design. (Mori, K.)

  9. The Orphee reactor current status and proposed enhancement of experimental capabilities

    International Nuclear Information System (INIS)

    Breant, P.

    1990-01-01

    This report provides a description of the Orphee reactor, together with a rapid assessment of its experimental and research capabilities. The plans for enhancing the reactor's experimental capabilities are also presented. (author)

  10. Discussion on variance reduction technique for shielding

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    As the task of the engineering design activity of the international thermonuclear fusion experimental reactor (ITER), on 316 type stainless steel (SS316) and the compound system of SS316 and water, the shielding experiment using the D-T neutron source of FNS in Japan Atomic Energy Research Institute has been carried out. However, in these analyses, enormous working time and computing time were required for determining the Weight Window parameter. Limitation or complication was felt when the variance reduction by Weight Window method of MCNP code was carried out. For the purpose of avoiding this difficulty, investigation was performed on the effectiveness of the variance reduction by cell importance method. The conditions of calculation in all cases are shown. As the results, the distribution of fractional standard deviation (FSD) related to neutrons and gamma-ray flux in the direction of shield depth is reported. There is the optimal importance change, and when importance was increased at the same rate as that of the attenuation of neutron or gamma-ray flux, the optimal variance reduction can be done. (K.I.)

  11. Use of a radio frequency shield during 1.5 and 3.0 Tesla magnetic resonance imaging: experimental evaluation

    Directory of Open Access Journals (Sweden)

    Favazza CP

    2014-10-01

    Full Text Available Christopher P Favazza, Deirdre M King, Heidi A Edmonson, Joel P Felmlee, Phillip J Rossman, Nicholas J Hangiandreou, Robert E Watson, Krzysztof R Gorny Department of Radiology, Mayo Clinic, Rochester, MN, USA Abstract: Radiofrequency (RF shields have been recently developed for the purpose of shielding portions of the patient's body during magnetic resonance imaging (MRI examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (~1 dB of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices. Keywords: radiofrequency shield, magnetic resonance imaging, radiofrequency attenuation

  12. Determination of the neutron energy and spatial distributions of the neutron beam from the TSR-II in the large beam shield

    International Nuclear Information System (INIS)

    Clifford, C.E.; Muckenthaler, F.J.

    1976-01-01

    The TSR-II reactor of the ORNL Tower Shielding Facility has recently been relocated within a new, fixed shield. A principal feature of the new shield is a beam port of considerably larger area than that of its predecessor. The usable neutron flux has thereby been increased by a factor of approximately 200. The bare beam neutron spectrum behind the new shield has been experimentally determined over the energy range from 0.8 to 16 MeV. A high level of fission product gamma ray background prevented measurement of bare beam spectra below 0.8 MeV, however neutron spectra in the energy range from 8 keV to 1.4 MeV were obtained for two simple, calculable shielding configurations. Also measured in the present work were weighted integral flux distributions and fast neutron dose rates

  13. Development and experimental qualification of a calculation scheme for the evaluation of gamma heating in experimental reactors. Application to MARIA and Jules Horowitz (JHR) MTR Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tarchalski, M.; Pytel, K.; Wroblewska, M.; Marcinkowska, Z.; Boettcher, A.; Prokopowicz, R. [NCBJ Institute, MARIA Reactor, ul.Andrzeja Soltana 7, 05-400 Swierk (Poland); Sireta, P.; Gonnier, C.; Bignan, G. [CEA, DEN, Reactor Studies Department, Cadarache, F-13108 St-Paul-Lez-Durance (France); Lyoussi, A.; Fourmentel, D.; Barbot, L.; Villard, J.F.; Destouches, C. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Reynard-Carette, C.; Brun, J. [Aix Marseille Universite, CNRS, Universite de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Jagielski, J. [NCBJ Institute, MARIA Reactor, ul.Andrzeja Soltana 7, 05-400 Swierk (Poland); Institute of Electronic Materials Technolgy, Wolczynska 133, 01-919 Warszawa (Poland); Luks, A. [Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw (Poland)

    2015-07-01

    Precise computational determination of nuclear heating which consists predominantly of gamma heating (more than 80 %) is one of the challenges in material testing reactor exploitation. Due to sophisticated construction and conditions of experimental programs planned in JHR it became essential to use most accurate and precise gamma heating model. Before the JHR starts to operate, gamma heating evaluation methods need to be developed and qualified in other experimental reactor facilities. This is done inter alia using OSIRIS, MINERVE or EOLE research reactors in France. Furthermore, MARIA - Polish material testing reactor - has been chosen to contribute to the qualification of gamma heating calculation schemes/tools. This reactor has some characteristics close to those of JHR (beryllium usage, fuel element geometry). To evaluate gamma heating in JHR and MARIA reactors, both simulation tools and experimental program have been developed and performed. For gamma heating simulation, new calculation scheme and gamma heating model of MARIA have been carried out using TRIPOLI4 and APOLLO2 codes. Calculation outcome has been verified by comparison to experimental measurements in MARIA reactor. To have more precise calculation results, model of MARIA in TRIPOLI4 has been made using the whole geometry of the core. This has been done for the first time in the history of MARIA reactor and was complex due to cut cone shape of all its elements. Material composition of burnt fuel elements has been implemented from APOLLO2 calculations. An experiment for nuclear heating measurements and calculation verification has been done in September 2014. This involved neutron, photon and nuclear heating measurements at selected locations in MARIA reactor using in particular Rh SPND, Ag SPND, Ionization Chamber (all three from CEA), KAROLINA calorimeter (NCBJ) and Gamma Thermometer (CEA/SCK CEN). Measurements were done in forty points using four channels. Maximal nuclear heating evaluated from

  14. Technical Requirements for Fabrication and Installation of Removable Shield for CNRF in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Cho, Yeong Garp; Lee, Jung Hee; Shin, Jin Won

    2008-04-15

    This report details the technical requirements for the fabrication and installation of the removable shield for the Cold Neutron Research Facility (CNRF) in HANARO reactor hall. The removable shield is classified as non-nuclear safety (NNS), seismic category II, and quality class T. The main function of the removable shield is to do the biological shielding of neutrons and gamma from the CN port and the guides. The removable shield consists of block type walls and roofs that can be necessarily assembled, disassembled and moveable. These will be installed between the reactor pool wall and the CNS guide bunker in. This report describes technical requirements for the removable shield such as quality assurance, seismic analysis requirements, configuration, concrete compositions, fabrication and installation requirements, test and inspection, shipping, delivery, etc. Appendix is the technical specification of structural design and analysis. Attachments are composed of the technical specification for the fabrication of the removable shield, shielding design drawings and procurement quality requirements. These technical requirements will be provided to a contract for the manufacturing and installation.

  15. Analysis of the JASPER Program Radial Shield Attenuation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.

    1993-01-01

    The results of the analysis of the JASPER Program Radial Shield Attenuation Experiment are presented. The experiment was performed in 1986 at the ORNL Tower Shielding Facility. It is the first of six experiments in this cooperative Japanese and American program in support of shielding designs for advanced sodium-cooled reactors. Six different shielding configurations and subconfigurations thereof were studied. The configurations were calculated with the DOT-IV two-dimensional discrete ordinates radiation transport computer code using the R-Z geometry option, a symmetric S{sub 12} quadrature (96 directions), and cross sections from ENDF/B versions IV and V in either a 51- or 61-group structure. Auxiliary codes were used to compute detector responses and prepare cross sections and source input for the DOT-IV calculations. Calculated detector responses were compared with measured responses and the agreement was good to excellent in many cases. However, the agreement for configurations having thick steel or B{sub 4}C regions or for some very large configurations was fair to poor. The disagreement was attributed to cross-section data, broad-group structure, or high background in the measurements. In particular, it is shown that two cross-section sets for ``B give very different results for neutron transmission through the thick B{sub 4}C regions used in one set of experimental configurations. Implications for design calculations are given.

  16. Effect of neutrons scattered from boundary of neutron field on shielding experiment

    International Nuclear Information System (INIS)

    Ogawa, Tatsuhiko; Abe, Takuya; Kosako, Toshiso; Iimoto, Takeshi

    2009-01-01

    Neutron shielding experiment with 49 cm-thick ordinary concrete was carried out at the reactor 'Yayoi' The University of Tokyo. System of this experiment is enclosed by heavy concrete where neutrons backscattered from heavy concrete likely affected neutron flux on the back surface of shielding concrete. Reaction rate of 197 Au(n, γ), cadmium covered 197 Au(n, γ) and 115 In(n, n') in the shielding concrete was measured using foil activation method. Neutron transport calculation was carried out in order to simulate reaction rate by calculating neutron spectra and convoluting with neutron capture cross-section in neutron shielding concrete. Comparison was made between calculated reaction rate and experimental one, and almost satisfactory agreement was found except for the back surface of shielding. To compose adequate simulation model, description of heavy concrete behind the shielding was thought to be of importance. For example, disregarding neutrons backscattered from heavy concrete, calculation underestimated reaction rate by the factor of 10. In another example, assuming that chemical composition of heavy concrete is equal to the composition adopted from a literature, the reaction rate was overestimated by factor of 5. By making the composition of heavy concrete equal to that based on facility design, overestimation was found to be the factor of 2. Therefore, adequate description of chemical composition of heavy concrete is found to be of importance in order to simulate neutron induced reaction rate on the back surface of neutron shielding concrete in shielding experiment performed in a system enclosed by heavy concrete. (author)

  17. Real-time numerical simulation with high efficiency for an experimental reactor system

    International Nuclear Information System (INIS)

    Ding Shuling; Li Fu; Li Sifeng; Chu Xinyuan

    2006-01-01

    The paper presents a systematic and efficient method for numerical real-time simulation of an experimental reactor. The reactor models were built based on the physical characteristics of the experimental reactor, and several real-time simulation approaches were discussed and compared in the paper. How to implement the real-time reactor simulation system in Windows platform for the sake of hardware-in-loop experiment for the reactor power control system was discussed. (authors)

  18. A practical neutron shielding design based on data-base interpolation

    International Nuclear Information System (INIS)

    Jiang, S.H.; Sheu, R.J.

    1993-01-01

    Neutron shielding design is an important part of the construction of nuclear reactors and high-energy accelerators. Neutron shielding design is also indispensable in the packaging and storage of isotopic neutron sources. Most efforts in the development of neutron shielding design have been concentrated on nuclear reactor shielding because of its huge mass and strict requirement of accuracy. Sophisticated computational tools, such as transport and Monte Carlo codes and detailed data libraries have been developed. In principle, now, neutron shielding, in spite of its complexity, can be designed in any detail and with fine accuracy. However, in most practical cases, neutron shielding design is accomplished with simplified methods. Unlike practical gamma-ray shielding design, where exponential attenuation coupled with buildup factors has been applied effectively and accurately, simplified neutron shielding design, either by using removal cross sections or by applying charts or tables of transmission factors such as the National Council on Radiation Protection and Measurements (NCRP) 38 (Ref. 1) for general neutron protection or to NCRP 51 (Ref. 2) for accelerator neutron shielding, is still very primitive and not well established. The available data are limited in energy range, materials, and thicknesses, and the estimated results are only roughly accurate. It is the purpose of this work to establish a simple, convenient, and user-friendly general-purpose computational tool for practical preliminary neutron shielding design that is reasonably accurate. A wide-range (energy, material, and thickness) data base of dose transmission factors has been generated by applying one-dimensional transport calculations in slab geometry

  19. The SWAN/NPSOL code system for multivariable multiconstraint shield optimization

    International Nuclear Information System (INIS)

    Watkins, E.F.; Greenspan, E.

    1995-01-01

    SWAN is a useful code for optimization of source-driven systems, i.e., systems for which the neutron and photon distribution is the solution of the inhomogeneous transport equation. Over the years, SWAN has been applied to the optimization of a variety of nuclear systems, such as minimizing the thickness of fusion reactor blankets and shields, the weight of space reactor shields, the cost for an ICF target chamber shield, and the background radiation for explosive detection systems and maximizing the beam quality for boron neutron capture therapy applications. However, SWAN's optimization module can handle up to a single constraint and was inefficient in handling problems with many variables. The purpose of this work is to upgrade SWAN's optimization capability

  20. Advanced reactor experimental facilities

    International Nuclear Information System (INIS)

    Amri, A.; Papin, J.; Uhle, J.; Vitanza, C.

    2010-01-01

    For many years, the NEA has been examining advanced reactor issues and disseminating information of use to regulators, designers and researchers on safety issues and research needed. Following the recommendation of participants at an NEA workshop, a Task Group on Advanced Reactor Experimental Facilities (TAREF) was initiated with the aim of providing an overview of facilities suitable for carrying out the safety research considered necessary for gas-cooled reactors (GCRs) and sodium fast reactors (SFRs), with other reactor systems possibly being considered in a subsequent phase. The TAREF was thus created in 2008 with the following participating countries: Canada, the Czech Republic, Finland, France, Germany, Hungary, Italy, Japan, Korea and the United States. In a second stage, India provided valuable information on its experimental facilities related to SFR safety research. The study method adopted entailed first identifying high-priority safety issues that require research and then categorizing the available facilities in terms of their ability to address the safety issues. For each of the technical areas, the task members agreed on a set of safety issues requiring research and established a ranking with regard to safety relevance (high, medium, low) and the status of knowledge based on the following scale relative to full knowledge: high (100%-75%), medium (75 - 25%) and low (25-0%). Only the issues identified as being of high safety relevance and for which the state of knowledge is low or medium were included in the discussion, as these issues would likely warrant further study. For each of the safety issues, the TAREF members identified appropriate facilities, providing relevant information such as operating conditions (in- or out-of reactor), operating range, description of the test section, type of testing, instrumentation, current status and availability, and uniqueness. Based on the information collected, the task members assessed prospects and priorities

  1. Manufacture and testing of the CTB&SBB thermal shield for the ITER magnet feeder system

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Kun; Liu, Chen; Song, Yuntao; Feng, Hansheng; Ding, Kaizhong, E-mail: kzding@ipp.ac.cn; Wang, Tanbin; Ji, Hui

    2015-10-15

    The system of International Thermonuclear Experimental Reactor (ITER) feeders is responsible for the power, helium cooling, and instrumentation of the magnets of the coil terminal box and S-bend box (CTB&SBB) thermal shield outside the cryostat. An 80-K rectangular Al thermal shield is hung inside the CTB&SBB to reduce the thermal radiation heat loads of 4.5-K helium. The American Society of Interventional Pain Physicians (ASIPP) will supply all the 31 sets of feeders for ITER. A manufactured prototype of CTB&SBB thermal shield is first quality-tested before the commencement of the series production. First, a detailed configuration of the rectangular Al thermal shield is presented in this article. The paper also presents more information on the manufacturing process of the thermal shield, especially the welding process, the procedure for ensuring good weld quality, and the use of a specially designed tool to ensure <5-mm deformation on such a 7.3-m-long thermal shield during welding. In addition, the cold test and results, including the cooling process with 13-bar and 17.5-g/s 80-K He gas, and the temperature distribution on different panels of the thermal shield are presented. The whole process of manufacture and testing lays a good foundation for the series production of the thermal shield.

  2. Dose rate evaluation of body phantom behind ITER bio-shield wall using Monte Carlo method

    International Nuclear Information System (INIS)

    Beheshti, A.; Jabbari, I.; Karimian, A.; Abdi, M.

    2012-01-01

    One of the most critical risks to humans in reactors environment is radiation exposure. Around the tokamak hall personnel are exposed to a wide range of particles, including neutrons and photons. International Thermonuclear Experimental Reactor (ITER) is a nuclear fusion research and engineering project, which is the most advanced experimental tokamak nuclear fusion reactor. Dose rates assessment and photon radiation due to the neutron activation of the solid structures in ITER is important from the radiological point of view. Therefore, the dosimetry considered in this case is based on the Deuterium-Tritium (DT) plasma burning with neutrons production rate at 14.1 MeV. The aim of this study is assessment the amount of radiation behind bio-shield wall that a human received during normal operation of ITER by considering neutron activation and delay gammas. To achieve the aim, the ITER system and its components were simulated by Monte Carlo method. Also to increase the accuracy and precision of the absorbed dose assessment a body phantom were considered in the simulation. The results of this research showed that total dose rates level near the outside of bio-shield wall of the tokamak hall is less than ten percent of the annual occupational dose limits during normal operation of ITER and It is possible to learn how long human beings can remain in that environment before the body absorbs dangerous levels of radiation. (authors)

  3. Experimental simulation and numerical modeling of vapor shield formation and divertor material erosion for ITER typical plasma disruptions

    International Nuclear Information System (INIS)

    Wuerz, H.; Arkhipov, N.I.; Bakhtin, V.P.; Konkashbaev, I.; Landman, I.; Safronov, V.M.; Toporkov, D.A.; Zhitlukhin, A.M.

    1995-01-01

    The high divertor heat load during a tokamak plasma disruption results in sudden evaporation of a thin layer of divertor plate material, which acts as vapor shield and protects the target from further excessive evaporation. Formation and effectiveness of the vapor shield are theoretically modeled and are experimentally analyzed at the 2MK-200 facility under conditions simulating the thermal quench phase of ITER tokamak plasma disruptions. ((orig.))

  4. Radiation field studies at the training and research reactor AKR of the Dresden Technical University

    International Nuclear Information System (INIS)

    Leuschner, A.; Reiss, U.; Pretzsch, G.

    1983-01-01

    Results of radiation field studies in the experimental channels of the training and research reactor of the Technical University of Dresden are presented. The flux densities of thermal, intermediate and fast neutrons were determined by means of activation detectors., Gamma dose rates have been measured by thermoluminescent dosimeters. The measured results show symmetry with respect to the vertical axis of the reactor and allow to draw conclusions with regard to the efficiency of the individual layers of the shield. They are an essential basis of performing irradiation experiments in the experimental channels. The results of measurements were compared with those of shielding and design calculations. Taking into account the measuring errors and the approximations used in the computational models, no unexpected deviations have been observed. Hence, the measured and calculated results can be assessed to be in good agreement. (author)

  5. Remote maintenance for fusion experimental reactor

    International Nuclear Information System (INIS)

    Koizumi, Koichi; Takeda, Nobukazu

    2000-01-01

    Here was introduced on maintenance of reactor core portion operated by remote control among maintenance of the International Thermonuclear Experimental Reactor (ITER) begun on its design since 1988 under international cooperation of U.S.A., Europe, Russia and Japan. Every appliances constructing the reactor core portion is necessary to carry out all of their inspection and maintenance by using remote controlled apparatus because of their radiation due to neutron generated by DT combustion of plasma. For engineering design activity (EDA) in ITER, not only design and development of the remote control appliances but also design under consideration of remote maintenance for from structural design of maintained objective appliances to access method to appliances, transportation and preservation method of radiated matters, and out-reactor maintenance in a hot cell, is now under progress. Here were also reported on basic concept on maintenance and conservation of ITER, maintenance design of diverter and blanket with high maintenance frequency and present state on development of maintenance appliances. (G.K.)

  6. Recent Improvements in the SHIELD-HIT Code

    DEFF Research Database (Denmark)

    Hansen, David Christoffer; Lühr, Armin Christian; Herrmann, Rochus

    2012-01-01

    Purpose: The SHIELD-HIT Monte Carlo particle transport code has previously been used to study a wide range of problems for heavy-ion treatment and has been benchmarked extensively against other Monte Carlo codes and experimental data. Here, an improved version of SHIELD-HIT is developed concentra......Purpose: The SHIELD-HIT Monte Carlo particle transport code has previously been used to study a wide range of problems for heavy-ion treatment and has been benchmarked extensively against other Monte Carlo codes and experimental data. Here, an improved version of SHIELD-HIT is developed...

  7. Shielding design method for LMFBR validation on the Phenix factor

    International Nuclear Information System (INIS)

    Cabrillat, J.C.; Crouzet, J.; Misrakis, J.; Salvatores, M.; Rado, V.; Palmiotti, G.

    1983-05-01

    Shielding design methods, developed at CEA for shielding calculations find a global validation by the means of Phenix power reactor (250 MWe) measurements. Particularly, the secondary sodium activation of pool type LMFBR such as Super Phenix (1200 MWe) which is subject to strict safety limitation is well calculated by the adapted scheme, i.e. a two dimension transport calculation of shielding coupled to a Monte-Carlo calculation of secondary sodium activation

  8. Shielding design for PWR in France

    International Nuclear Information System (INIS)

    Champion, G.; Charransol; Le Dieu de Ville, A.; Nimal, J.C.; Vergnaud, T.

    1983-05-01

    Shielding calculation scheme used in France for PWR is presented here for 900 MWe and 1300 MWe plants built by EDF the French utility giving electricity. Neutron dose rate at areas accessible by personnel during the reactor operation is calculated and compared with the measurements which were carried out in 900 MWe units up to now. Measurements on the first French 1300 MWe reactor are foreseen at the end of 1983

  9. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1993-01-01

    In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-A19897, R.H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280degF. Table 1 lists the neutron shield materials tested. The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found. The Bisco modified NS-4 and Reactor Experiments HMPP are both acceptable materials from a thermal accident standpoint for use in the shipping cask. Tests of the Kobe PP-R01 and Envirotech HDPE were stopped for safety reasons, due to inability to deal with the heavy smoke, before completion of the 30-minute heating phase. However these materials may prove satisfactory if they could undergo the complete heating. (J.P.N.)

  10. Shielding benchmark test

    International Nuclear Information System (INIS)

    Kawai, Masayoshi

    1984-01-01

    Iron data in JENDL-2 have been tested by analyzing shielding benchmark experiments for neutron transmission through iron block performed at KFK using CF-252 neutron source and at ORNL using collimated neutron beam from reactor. The analyses are made by a shielding analysis code system RADHEAT-V4 developed at JAERI. The calculated results are compared with the measured data. As for the KFK experiments, the C/E values are about 1.1. For the ORNL experiments, the calculated values agree with the measured data within an accuracy of 33% for the off-center geometry. The d-t neutron transmission measurements through carbon sphere made at LLNL are also analyzed preliminarily by using the revised JENDL data for fusion neutronics calculation. (author)

  11. Production of an economic high-density concrete for shielding megavoltage radiotherapy rooms and nuclear reactors

    International Nuclear Information System (INIS)

    Mortazavi, S. M. J.; Mosleh-Shirazi, M. A.; Maheri, M. R.; Haji-pour, A.; Yousefnia, H.; Zolghadri, S.

    2007-01-01

    In megavoltage radiotherapy rooms, ordinary concrete is usually used due to its low construction costs, although higher density concrete are sometimes used, as well. The use of high-density concrete decreases the required thickness of the concrete barrier; hence, its disadvantage is its high cost. In a nuclear reactor, neutron radiation is the most difficult to shield. A method for production of economic high-density concrete witt, appropriate engineering properties would be very useful. Materials and Methods: Galena (Pb S) mineral was used to produce of a high-density concrete. Galena can be found in many parts of Iran. Two types of concrete mixes were produced. The water-to-concrete (w/c) ratios of the reference and galena concrete mixes were 0.53 and 0.25, respectively. To measure the gamma radiation attenuation of Galena concrete samples, they were exposed to a narrow beam of gamma rays emitted from a cobalt-60 therapy unit. Results: The Galena mineral used in this study had a density of 7400 kg/m 3 . The concrete samples had a density of 4800 kg/m 3 . The measured half value layer thickness of the Galena concrete samples for cobalt 60 gamma rays was much less than that of ordinary concrete (2.6 cm compared to 6.0 cm). Furthermore, the galena concrete samples had significantly higher compressive strength (500 kg/cm 2 compared to 300 kg/cm 2 ). Conclusion: The Galena concrete samples made in our laboratories had showed good shielding/engineering properties in comparison with all samples made by using high-density materials other than depleted uranium. Based on the preliminary results, Galena concrete is maybe a suitable option where high-density concrete is required in megavoltage radiotherapy rooms as well as nuclear reactors

  12. Nuclear characteristics of D-D fusion reactor blankets

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Ohta, Masao

    1978-01-01

    Fusion reactors operating on deuterium (D-D) cycle are considered to be of long range interest for their freedom from tritium breeding in the blanket. The present paper discusses the various possibilities of D-D fusion reactor blanket designs mainly from the standpoint of the nuclear characteristics. Neutronic and photonic calculations are based on presently available data to provide a basis of the optimal blanket design in D-D fusion reactors. It is found that it appears desirable to design a blanket with blanket/shield (BS) concept in D-D fusion reactors. The BS concept is designed to obtain reasonable shielding characteristics for superconducting magnet (SCM) by using shielding materials in the compact blanket. This concept will open the possibility of compact radiation shield design based on assured technology, and offer the advantage from the system economics point of view. (auth.)

  13. Investigation of the use of Galena concrete in electromagnetic radiation shielding

    International Nuclear Information System (INIS)

    Egwuonwu, G. N.; Bukar, P. H.; Avaa, A.

    2011-01-01

    Galena samples, collected from Ishiagu, south-eastern Nigeria, were used to make high density concretes for experimental radiation shielding. The concretes were molded into cylindrical tablets of various densities and volumes in order to ascertain their attenuation capability to some electromagnetic radiations. Blue visible light and gamma-ray sourced from cobalt-60, were transmitted through the concretes and detected with the aid of Op-Amp and digital Geiger-Muller Counter respectively. The absorption coefficients of the samples of thicknesses in the range of 1.00 - 5.00 cm were determined. Results show that for a typical galena concrete of average density 2.33gcm -3 , the absorption coefficient is about 1.186 cm -1 for the blue light and 0.495cm -1 for gamma-ray. For this density, 4.45cm of the galena concrete reduces the gamma-ray intensity by 90% and its half value layer thickness is 1.40cm. The investigation however, suggests the shielding properties of the galena sourced from Ishiagu. A database of shielding strength for the in situ galena was established hence, can serve as suitable platform for quality and quantity control in radiation shielding technology in radiotherapy treatment rooms and nuclear reactors.

  14. Tasks related to increase of RA reactor exploitation and experimental potential, 03. Crane for handling the vertical experimental channels of the RA reactor - design project

    International Nuclear Information System (INIS)

    Pavicevic, M.

    1963-07-01

    Within the work related to improvement of experimental potential of the RA reactor, this document describes the design project of the new crane for handling the vertical experimental channels of the RA reactor, engineering drawings of the crane main elements, mechanical part, design project of the electrical part of the crane and cost estimation

  15. Nuclear design of a very-low-activation fusion reactor

    International Nuclear Information System (INIS)

    Cheng, E.T.; Hopkins, G.R.

    1983-06-01

    An investigation was conducted to study the nuclear design aspects of using very-low-activation materials, such as SiC, MgO, and aluminum for fusion-reactor first wall, blanket, and shield applications. In addition to the advantage of very-low radioactive inventory, it was found that the very-low-activation fusion reactor can also offer an adequate tritium-breeding ratio and substantial amount of blanket nuclear heating as a conventional-material-structured reactor does. The most-stringent design constraint found in a very-low-activation fusion reactor is the limited space available in the inboard region of a tokamak concept for shielding to protect the superconducting toroidal field coil. A reference design was developed which mitigates the constraint by adopting a removable tungsten shield design that retains the inboard dimensions and gives the same shield performance as the reference STARFIRE tokamak reactor design

  16. The review of the reactor physics experiments carried out on the LR-0 research reactor NRI Rez plc for reactors of the VVER type

    International Nuclear Information System (INIS)

    Hudec, Frantisek; Jansky, Bohumil; Juricek, Vlastimil; Mikus, Jan; Novak, Evzen; Osmera, Bohumil; Posta, Severin; Rypar, Vojtech; Svadlenkova, Marie

    2010-01-01

    LR-0 is an experimental zero power reactor mainly used for the determination of the neutron-physical characteristics of WWER and PWR type reactor lattices and shielding with UO2 or MOX fuel. Its major assets include capability to design and operate multizone cores, i.e. substituted cores, with an inner inserted part in hexagonal or square geometry (driven by LR-0 standard assemblies); Standard and special supporting plates for mock-up experiments; special supporting plates, which enables the triangular symmetrical assembly arrangement with an arbitrary pitch; Modeling neutron field parameters of power reactors; Wide range benchmarking possibilities, with high reproducibility of the benchmark design parameters; Wide range of measurement techniques including equipment and experienced personal; Flexible rearrangements of the core. The main experiments included: Pin wise flux distribution measurements; VVER-440 and VVER-1000 mock-ups; compact spent fuel storage; space kinetics experiment; core parameters experimental determination; experiment with new design fuel assembly; WWER-440 control assembly influence; and burnable absorber study. International research projects are also described. (P.A.)

  17. Stresses imposed by coolant channel end shield interaction in 200 MWe PHWR

    International Nuclear Information System (INIS)

    Mehra, V.K.; Singh, R.K.; Soni, R.S.; Kushwaha, H.S.; Kakodkar, A.

    1983-01-01

    End shield of 200 MWe Pressurised Heavy Water Reactor (PHWR) is a composite tube sheet structure consisting of two circular tube sheets joined together by lattice tubes. Each lattice tube houses a coolant channel assembly which is connected to the end shield through shock absorber device. End shield assembly is suspended in the vault by hanger rods and its horizontal position is controlled by a set of pre-compressed springs. Coolant channel assemblies elongate due to their exposure to fast neutron flux in the reactor. This permanent elongation is monitored periodically. When growth of the channel exceeds a present value, it is prevented from further elongation by the shock absorbing device. Resultant force exerted on the end shield makes it move. This paper describes a numerical method used for evaluating these forces and movement of the end shield. Stresses produced by these forces are calculated by using finite element method. Typical stress values are verified by strain gauge measurements. (orig.)

  18. An assessment of fuel freezing and drainage phenomena in a reactor shield plug following a core disruptive accident

    International Nuclear Information System (INIS)

    El-Genk, M.; Cronenberg, A.W.

    1978-01-01

    An important problem related to the assessment of the recriticality potential for an LMFBR following a core disruptive accident is an understanding of the freezing phenomena of molten fuel on a cold structure which may prevent fuel dispersal and sunsequent shutdown. Transient analytical freezing and drainage calculations have been applied to molten UO 2 travel through the rather cold lower shield plug of the Clinch River Breeder Reactor (CRBR). The successive approximation technique is used to obtain a solution of the non-linear freezing problem, where such effects as heat generation, viscous heat dissipation, temperature dependent thermophysical properties and a convective boundary condition at the solidification front have been incorporated into the present analytical formulation. Results indicate that previous steady-state analysis overestimate the rate of frozen layer build-up by about a factor of two. However, of primary importance is the driving force for drainage and the diameter of the shield plug flow channel. (Auth.)

  19. Experimental Equipment for Physics Studies in the Aagesta Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bernander, G; Blomberg, P E; Dubois, P O

    1967-03-15

    Comprehensive physics measurements were carried out in connection with the start up of the Agesta reactor. For this purpose special experimental equipment was constructed and installed in the reactor. Parts of this were indispensable and/or time-saving for the reactivity control during the core build-up period and during the first criticality studies. This report gives mainly a detailed description of the experimental equipment used, but also the relevant physics background and the experience gained during the performance.

  20. Induced radioactivity in the forward shielding and semiconductor tracker of the ATLAS detector.

    Science.gov (United States)

    Bĕdajánek, I; Linhart, V; Stekl, I; Pospísil, S; Kolros, A; Kovalenko, V

    2005-01-01

    The radioactivity induced in the forward shielding, copper collimator and semiconductor tracker modules of the ATLAS detector has been studied. The ATLAS detector is a long-term experiment which, during operation, will require to have service and access to all of its parts and components. The radioactivity induced in the forward shielding was calculated by Monte Carlo methods based on GEANT3 software tool. The results show that the equivalent dose rates on the outer surface of the forward shielding are very low (at most 0.038 microSv h(-1)). On the other hand, the equivalent dose rates are significantly higher on the inner surface of the forward shielding (up to 661 microSv h(-1)) and, especially, at the copper collimator close to the beampipe (up to 60 mSv h(-1)). The radioactivity induced in the semiconductor tracker modules was studied experimentally. The module was activated by neutrons in a training nuclear reactor and the delayed gamma ray spectra were measured. From these measurements, the equivalent dose rate on the surface of the semiconductor tracker module was estimated to be LHC) operation and 10 d of cooling.

  1. Core disruptive accident analysis in prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Chellapandi, P.; Velusamy, K.; Kannan, S.E.; Singh, Om Pal; Chetal, S.C.; Bhoje, S.B.

    2002-01-01

    Liquid metal cooled fast breeder reactors, in particular, pool type have many inherent and engineered safety features and hence a core disruptive accident (CDA) involving melt down of the whole core is a very low probable event ( -6 /ry). The important mechanical consequences such as straining of the main vessel including top shield, structural integrity of safety grade decay heat exchangers (DHX) and intermediate heat exchangers (IHX) sodium release to reactor containment building (RCB) through the penetrations in the top shield, sodium fire and consequent temperature and pressure rise in RCB are theoretically analysed using computer codes. Through the analyses with these codes, it is demonstrated that an energetic CDA capability to the maximum 100 MJ mechanical energy in PFBR can be well contained in the primary containment. The sodium release to RCB is 350 kg and pressure rise in RCB is ∼10 kPa. In order to raise the confidence on the theoretical predictions, very systematic experimental program has been carried out. Totally 67 tests were conducted. This experimental study indicated that the primary containment is integral. The main vessel can withstand the energy release of ∼1200 MJ. The structural integrity of IHX and DHX is assured up to 200 MJ. The transient force transmitted to reactor vault is negligible. The average water leak measured under simulated tests for 122 MJ work potential is about 1.8 kg and the maximum leak is 2.41 kg. Extrapolation of the measured maximum leak based on simulation principles yields ∼ 233 kg of sodium leak in the reactor. Based on the above-mentioned theoretical and experimental investigations, the design pressure of 20 kPa is used for PFBR

  2. MSR - SPHINX concept program Eros (Experimental zero power Salt reactor SR-0) - The proposed experimental program as a basis for validation of reactor physics methods

    Energy Technology Data Exchange (ETDEWEB)

    Hron, M.; Juricek, V.; Kyncl, J.; Mikisek, M.; Rypar, V. [Nuclear Research Institute Rez plc, Rez (Czech Republic)

    2007-07-01

    The Molten Salt Reactor (MSR) - SPHINX (SPent Hot fuel Incinerator by Neutron fluX) concept solves this principal problem of spent fuel treatment by means of so-called nuclear incineration. It means the burning of fissionable part of its inventory and transmutation of other problematic radionuclides by use of nuclear reactions with neutrons in a MSR-SPHINX system. This reactor system is an actinide burner (most in resonance neutron spectrum) and a radionuclide transmuter in a well-thermalized neutron spectrum. In the frame of the physical part, there are computational analyses and experimental activities. The experimental program has been focused, in its first stage, on a short-term irradiation of small size samples of molten-salt systems as well as structural materials proposed for the MSR blanket in the field of high neutron flux of research reactors. The proposed next stage of the program will focus on a large-scale experimental verification of design inputs by use of MSR-type inserting zones into the existing light water moderated experimental reactor LR-0, which may allow us to modify it into the experimental zero power salt reactor SR-0. There will be a detail description of the proposed program given in the paper together with the so far performed experiments and their first results. These realized experiments help us also to verify computational codes used, and to recognize some anomalies related to molten fluorides utilization. (authors)

  3. Stress analysis of blanket vessel for JAERI experimental fusion reactor

    International Nuclear Information System (INIS)

    Sako, K.; Minato, A.

    1979-01-01

    A blanket structure of JAERI Experimental Fusion Reactor (JXFR) consists of about 2,300 blanket cells with round cornered rectangular cross sections (twelve slightly different shapes) and is placed in a vacuum vessel. Each blanket vessel is a double-walled thin-shell structure made of Type 316 stainless steel with a spherical domed surface at the plasma side. Ribs for coolant channel are provided between inner and outer walls. The blanket cell contains Li 2 O pebbles and blocks for tritium breeding and stainless steel blocks for neutron reflection. A coolant is helium gas at 10 kgf/cm 2 (0.98 MPa) and its inlet and outlet temperatures are 300 0 C and 500 0 C. The maxima of heat flux and nuclear heating rate at the first wall are 12 W/cm 2 and 2 W/cc. A design philosophy of the blanket structure is based on high tritium breeding ratio and more effective shielding performance. The thin-shell vessel with a rectangular cross section satisfies the design philosophy. We have designed the blanket structure so that the adjacent vessels are mutually supporting in order to decrease the large deformation and stress due to internal pressure in case of the thin-shell vessel. (orig.)

  4. Bulk shielding facility semi-annual report, January--June 1990

    International Nuclear Information System (INIS)

    Laughlin, D.L.; Coleman, G.H.

    1990-11-01

    The Bulk Shielding Reactor (BSR) remained shut down during January, February, March, April, May, and June. Water-quality control in both the reactor primary and secondary cooling systems was satisfactory. Maintenance and changes are described. The Pool Critical Assembly (PCA) remains shut down, but surveillance tests are described

  5. Micro-Reactor Physics of MOX-Fueled Core

    International Nuclear Information System (INIS)

    Takeda, T.

    2001-01-01

    Recently, fuel assemblies of light water reactors have become complicated because of the extension of fuel burnup and the use of high-enriched Gd and mixed-oxide (MOX) fuel, etc. In conventional assembly calculations, the detailed flux distribution, spectrum distribution, and space dependence of self-shielding within a fuel pellet are not directly taken into account. The experimental and theoretical study of investigating these microscopic properties is named micro-reactor physics. The purpose of this work is to show the importance of micro-reactor physics in the analysis of MOX fuel assemblies. Several authors have done related studies; however, their studies are limited to fuel pin cells, and they are never mentioned with regard to burnup effect, which is important for actual core design

  6. Experimental and simulation optimization analysis of the Whipple shields against shaped charge

    Science.gov (United States)

    Hussain, G.; Hameed, A.; Horsfall, I.; Barton, P.; Malik, A. Q.

    2012-06-01

    Occasionally, the Whipple shields are used for the protection of a space station and a satellite against the meteoroids and orbital debris. In the Whipple shields each layer of the shield depletes part of high speed projectile energy either by breaking the projectile or absorbing its energy. Similarly, this investigation uses the Whipple shields against the shaped charge to protect the light armour such as infantry fighting vehicles with a little modification in their design. The unsteady multiple interactions of shaped charge jet with the Whipple shield package against the steady homogeneous target is scrutinized to optimize the shield thickness. Simulations indicate that the shield thickness of 0.75 mm offers an optimum configuration against the shaped charge. Experiments also support this evidence.

  7. Determination of shielding parameters for different types of concretes by Monte Carlo methods

    International Nuclear Information System (INIS)

    Aminian, A.; Nematollahi, M. R.

    2007-01-01

    The chose of a suitable concrete composition for a biological reactor shield remain as a research target up to now. In the present study the attempts has been made to estimate the influence of the concrete aggregates on the shielding parameters for three type of ordinary, serpentine and steel magnetite concrete by Monte Carlo N-Particle (MCNP ) transport code. MCNP calculations have been performed in order to obtain the leakage of neutrons, photons and electrons from dry shield. Also the mass attenuation coefficients and the liner attenuation coefficient are estimated for neutron and photon in those energies in range of actual energy which exist out of pressure vessel of power reactor in the cavity for the investigated concretes. The concrete densities ranged from 2.3 to 5.11 g/cm 3 . These calculations were done in the condition of a typical commercial Pressurized Water Reactor (PWR). The results show that Steel-magnetite concrete, with high density (5.11 g/cm 3 ) and constituents of relatively high atomic number, is an effective shield for both photons and neutrons

  8. Fusion reactor blanket-main design aspects

    International Nuclear Information System (INIS)

    Strebkov, Yu.; Sidorov, A.; Danilov, I.

    1994-01-01

    The main function of the fusion reactor blanket is ensuring tritium breeding and radiation shield. The blanket version depends on the reactor type (experimental, DEMO, commercial) and its parameters. Blanket operation conditions are defined with the heat flux, neutron load/fluence, cyclic operation, dynamic heating/force loading, MHD effects etc. DEMO/commercial blanket design is distinguished e.g. by rather high heat load and neutron fluence - up to 100 W/cm 2 and 7 MWa/m 2 accordingly. This conditions impose specific requirements for the materials, structure, maintenance of the blanket and its most loaded components - FW and limiter. The liquid Li-Pb eutectic is one of the possible breeder for different kinds of blanket in view of its advantages one of which is the blanket convertibility that allow to have shielding blanket (borated water) or breeding one (Li-Pb eutectic). Using Li-Pb eutectic for both ITER and DEMO blankets have been considered. In the conceptual ITER design the solid eutectic blanket was carried out. The liquid eutectic breeder/coolant is suggested also for the advanced (high parameter) blanket

  9. TRIPOLI calculation of the neutron field in the hall of the SILENE reactor

    International Nuclear Information System (INIS)

    Bourdet, L.

    1986-05-01

    This study concerns the utilization of the experimental reactor SILENE as radiation source. Its aim is to get a theoretical estimation of the neutron field characteristics in different points of the irradiation hall (spectra, fluences, equivalents of biological doses and reaction yields). These estimations are compared to results obtained by several experimental techniques; they allow to know better this neutron field with or without lead shield [fr

  10. Neutron shielding material

    International Nuclear Information System (INIS)

    Nodaka, M.; Iida, T.; Taniuchi, H.; Yosimura, K.; Nagahama, H.

    1993-01-01

    From among the neutron shielding materials of the 'kobesh' series developed by Kobe Steel, Ltd. for transport and storage packagings, silicon rubber base type material has been tested for several items with a view to practical application and official authorization, and in order to determine its adaptability to actual vessels. Silicon rubber base type 'kobesh SR-T01' is a material in which, from among the silicone rubber based neutron shielding materials, the hydrogen content is highest and the boron content is most optimized. Its neutron shielding capability has been already described in the previous report (Taniuchi, 1986). The following tests were carried out to determine suitability for practical application; 1) Long-term thermal stability test 2) Pouring test on an actual-scale model 3) Fire test The experimental results showed that the silicone rubber based neutron shielding material has good neutron shielding capability and high long-term fire resistance, and that it can be applied to the advanced transport packaging. (author)

  11. Shielding Factor Method for producing effective cross sections: MINX/SPHINX and the CCCC interface system

    International Nuclear Information System (INIS)

    MacFarlane, R.E.; Weisbin, C.R.; Paik, N.C.

    1978-01-01

    The Shielding Factor Method (SFM) is an economical designer-oriented method for producing the coarse-group space and energy self-shielded cross sections needed for reactor-core analysis. Extensive experience with the ETOX/1DX and ENDRUN/TDOWN systems has made the SFM the method of choice for most US fast-reactor design activities. The MINX/SPHINX system was designed to expand upon the capabilities of the older SFM codes and to incorporate the new standard interfaces for fast-reactor cross sections specified by the Committee for Computer Code Coordination (CCCC). MINX is the cross-section processor. It generates multigroup cross sections, shielding factors, and group-to-group transfer matriccs from ENDF/B-IV and writes them out as CCCC ISOTXS and BRKOXS files. It features detailed pointwise resonance reconstruction, accurate Doppler broadening, and an efficient treatment of anisotropic scattering. SPHINX is the space-and-energy shielding code. It uses specific mixture and geometry information together with equivalence principles to construct shielded macroscopic multigroup cross sections in as many as 240 groups. It then makes a flux calculation by diffusion or transport methods and collapses to an appropriate set of cell-averaged coarse-group effective cross sections. The integration of MINX and SPHINX with the CCCC interface system provides an efficient, accurate, and convenient system for producing effective cross sections for use in fast-reactor problems. The system has also proved useful in shielding and CTR applications. 3 figures, 4 tables

  12. Canada-India Reactor (CIR)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1960-12-15

    Design information on the Canada-India Reactor is presented. Data are given on reactor physics, the core, fuel elements, core heat transfer, control, reactor vessel, fluid flow, reflector and shielding, containment, cost estimates, and research facilities. Drawings of vertical and horizontal sections of the reactor and fluid flow are included. (M.C.G.)

  13. Experimental utilization of the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Bitelli, U. d'Utra; Santos, A. dos; Jerez, R.; Diniz, R.; Fanaro, L.C.C.B.; Abe, A.Y.; Moreira, J.M.L.; Fer, N.; Giada, M.R.; Fuga, R.

    2003-01-01

    This paper aims to show the experimental utilization of the IPEN/MB-01 nuclear reactor during the last fourteen years. The IPEN/MB-01 is a zero-power critical assembly specially designed to measure integral and differential reactor physics parameters to validate calculational methodologies and related nuclear data libraries. Experiments involving determination of spectral indices, critical mass, relative abundance of delayed neutrons, the inversion point of the isothermal reactivity coefficient and burnable poison are considered the most important experiments. Current experiments at IPEN/MB-01 reactor are also commented. (author)

  14. Reactor core for FBR type reactor

    International Nuclear Information System (INIS)

    Fujita, Tomoko; Watanabe, Hisao; Kasai, Shigeo; Yokoyama, Tsugio; Matsumoto, Hiroshi.

    1996-01-01

    In a gas-sealed assembly for a FBR type reactor, two or more kinds of assemblies having different eigen frequency and a structure for suppressing oscillation of liquid surface are disposed in a reactor core. Coolant introduction channels for introducing coolants from inside and outside are disposed in the inside of structural members of an upper shielding member to form a shielding member-cooling structure in the reactor core. A structure for promoting heat conduction between a sealed gas in the assembly and coolants at the inner side or the outside of the assembly is disposed in the reactor core. A material which generates heat by neutron irradiation is disposed in the assembly to heat the sealed gases positively by radiation heat from the heat generation member also upon occurrence of power elevation-type event to cause temperature expansion. Namely, the coolants flown out from or into the gas sealed-assemblies cause differential fluctuation on the liquid surface, and the change of the capacity of a gas region is also different on every gas-sealed assemblies thereby enabling to suppress fluctuation of the reactor power. Pressure loss is increased by a baffle plate or the like to lower the liquid surface of the sodium coolants or decrease the elevating speed thereof thereby suppressing fluctuation of the reactor power. (N.H.)

  15. Adjustment equipment for reactor radioactivity meter

    International Nuclear Information System (INIS)

    Denisov, V.P.; Malishev, A.N.; Shebanova, L.E.; Kirilyuk, N.A.; Maksimov, Yu.N.; Bessalov, G.G.; Vikhorev, Yu.V.; Lukyanov, M.A.

    1978-01-01

    An activity meter is described movably located in a channel placed in the peripheral biological shielding of a nuclear reactor. It is connected to a weight moving in a second channel by means of a pulley. This arrangement allows locating the radioactivity meter drive on the outer side of the biological shield and vacating space above the reactor body. (Ha)

  16. A study of reactor neutrino monitoring at the experimental fast reactor JOYO

    International Nuclear Information System (INIS)

    Furuta, H.; Fukuda, Y.; Hara, T.; Haruna, T.; Ishihara, N.; Ishitsuka, M.; Ito, C.; Katsumata, M.; Kawasaki, T.; Konno, T.; Kuze, M.; Maeda, J.; Matsubara, T.; Miyata, H.; Nagasaka, Y.; Nitta, K.; Sakamoto, Y.; Suekane, F.; Sumiyoshi, T.; Tabata, H.

    2012-01-01

    We carried out a study of neutrino detection at the experimental fast reactor JOYO using a 0.76 tons gadolinium loaded liquid scintillator detector. The detector was set up on the ground level at 24.3 m from the JOYO reactor core of 140 MW thermal power. The measured neutrino event rate from reactor on-off comparison was 1.11±1.24(stat.)±0.46(syst.) events/day. Although the statistical significance of the measurement was not enough, backgrounds in such a compact detector at the ground level were studied in detail and MC simulations were found to describe the data well. A study for improvement of the detector for future such experiments is also shown.

  17. Summary report of the experimental fast reactor JOYO MK-III performance test

    International Nuclear Information System (INIS)

    Maeda, Yukimoto; Aoyama, Takafumi; Yoshida, Akihiro

    2004-03-01

    An upgrading project (MK-III project) was started to improve the irradiation capability of the experimental fast reactor JOYO. In this project, core replacement and increase of the reactor thermal power by the factor 1.4 were necessary for increasing the maximum fast neutron flux by the factor 1.3 and doubling the capacity for irradiation rigs. The modification of the cooling system that included the replacement of the main intermediate heat exchangers and the dump heat exchangers was completed in September 2000. After a series of system function tests, the performance test, of which objective is to fully characterize the upgraded core and heat transfer system, was started in June 2003. Twenty eight tests were selected and carried out as performance test, in order to confirm that the whole plant satisfy the design criteria and have sufficient characteristics (data necessary for safe and steady operation, core management, reactor control and monitoring) as an irradiation bed. After attaining the initial criticality of the core on 2nd July 2003, core characteristics (the excess reactivity, the isotherm temperature reactivity coefficient, the power reactivity coefficient and so on), plant characteristics (the plant heat balance, the adjustment of the temperature control system, the plant behavior at transient), shielding characteristics (dose rate distribution). As the result, it was confirmed that all the criteria regulated was satisfied and the core and plant have sufficient margins for full power operation, which was increased by the factor 1.4. Especially, nuclear analysis accuracy was verified by comparing the calculation with measured core characteristics of the initial core which consists of fifty five fresh fuel subassemblies. The operational data which is supposed to be useful for developing in-core anomaly detection system were also obtained. The operation manual and training simulator and design of next reactor development were revised based on the results

  18. Development and investigation of the prestressed reinforced concrete vessels for the water cooled reactors in the FRG

    International Nuclear Information System (INIS)

    Medovikov, A.I.; Bogopol'skij, V.G.; Nikolaev, Yu.B.; Konevskij, V.N.

    1980-01-01

    An analysis of calculation results for characteristics of stress-strained state of reactor vessel made of prestressed reinforced concrete is presented. Experimental data obtained during the investigation into a model of reactor vessel top cover are given. Thermal shielding system both for boiling water and pressurized-water reactors has been considered and its working capacity has been evaluated. An analysis of experimental data show correctness of the method assumed for calculation of the reactor top cover which permits to exactly determine its stressed-strained state as well as the nature of crack propagation in the vessel and the structure supporting power. Ceramics is suggested to be used as a heat-insulating material

  19. Experimental measurement of zero power reactor transfer function

    International Nuclear Information System (INIS)

    Liang Shuhong

    2011-01-01

    In order to study the zero power reactor (ZPR) transfer function, the ZPR transfer function expression was deduced with the point reactor kinetics equation, which was disturbed by reactivity input response. Based on the Fourier analysis for the input of triangular wave, the relation between the transfer function and reactivity was got. Validating research experiment was made on the DF-VI fast ZPR. After the disturbed reactivity was measured, the experimental value of the transfer function was got. According to the experimental value and the calculated value, the expression of the ZPR transfer function is proved, whereas the disturbed reactivity is got from the transfer function. (authors)

  20. Experimental studies of U-Pu-Zr fast reactor fuel pins in the Experimental Breeder Reactor 2

    International Nuclear Information System (INIS)

    Pahl, R.G.; Porter, D.L.; Lahm, C.E.; Hofman, G.L.

    1990-01-01

    Argonne National Laboratory's Integral Fast Reactor (IFR) concept has been under demonstration in the Experimental Breeder Reactor II (EBR-II) since February 1985. Irradiation tests of U-Zr and U-Pu-Zr fuel pins to >15 at. pct burnup have demonstrated their viability as driver fuel prototypes in innovative design liquid metal reactors. A number of technically challenging irradiation effects have been observed and are now under study. Microstructural changes in the fuel are dominated early in exposure by grain boundary cavitation and fission gas bubble growth, producing large amounts of swelling. Irradiation creep and swelling of the austenitic (D9) and martensitic (HT-9) candidate cladding alloys have been measured and correlate well with property modeling efforts. Chemical interaction between the fuel and cladding alloys has been characterized to assess the magnitude of cladding wastage during steady-state irradiation. Significant interdiffusion of the uranium and zirconium occurs producing metallurgically distinct zones in the fuel

  1. Heating profiles on ICRF antenna Faraday shields

    International Nuclear Information System (INIS)

    Taylor, D.J.; Baity, F.W.; Hahs, C.L. Riemer, B.W.; Ryan, D.M.; Williamson, D.E.

    1992-01-01

    Poor definition of the heating profiles that occur during normal operation of Faraday shields for ion cyclotron resonant frequency (ICRF) antennas has complicated the mechanical design of ICRF system components. This paper reports that at Oak Ridge National Laboratory (ORNL), Faraday shield analysis is being used in defining rf heating profiles. In recent numerical analyses of proposed hardware for the Burning Plasma Experiment (BPX) and DIII-D, rf magnetic fields at Faraday shield surfaces were calculated, providing realistic predictions of the induced skin currents flowing on the shield elements and the resulting dissipated power profile. Detailed measurements on mock-ups of the Faraday shields for DIII-D and the Tokamak Fusion Test Reactor (TFTR) confirmed the predicted magnetic field distributions. A conceptual design for an uncooled Faraday shield for the BPX ion cyclotron resonance heating (ICRH) antenna, which should withstand the proposed long-pulse operation, has been completed. The analytical effort is described in detail, with emphasis on the design work for the BPX ICRH antenna conceptual design and for the replacement Faraday shield for the DIII-D FWCD antenna. Results of analyses are shown, and configuration issues involved in component modeling are discussed

  2. Self-shielding models of MICROX-2 code: Review and updates

    International Nuclear Information System (INIS)

    Hou, J.; Choi, H.; Ivanov, K.N.

    2014-01-01

    Highlights: • The MICROX-2 code has been improved to expand its application to advanced reactors. • New fine-group cross section libraries based on ENDF/B-VII have been generated. • Resonance self-shielding and spatial self-shielding models have been improved. • The improvements were assessed by a series of benchmark calculations against MCNPX. - Abstract: The MICROX-2 is a transport theory code that solves for the neutron slowing-down and thermalization equations of a two-region lattice cell. The MICROX-2 code has been updated to expand its application to advanced reactor concepts and fuel cycle simulations, including generation of new fine-group cross section libraries based on ENDF/B-VII. In continuation of previous work, the MICROX-2 methods are reviewed and updated in this study, focusing on its resonance self-shielding and spatial self-shielding models for neutron spectrum calculations. The improvement of self-shielding method was assessed by a series of benchmark calculations against the Monte Carlo code, using homogeneous and heterogeneous pin cell models. The results have shown that the implementation of the updated self-shielding models is correct and the accuracy of physics calculation is improved. Compared to the existing models, the updates reduced the prediction error of the infinite multiplication factor by ∼0.1% and ∼0.2% for the homogeneous and heterogeneous pin cell models, respectively, considered in this study

  3. Laboratory-scale shielded cell for 252Cf

    International Nuclear Information System (INIS)

    Anderl, R.A.; Cargo, C.H.

    1979-01-01

    A shielded-cell facility for storing and handling remotely up to 2 milligram quantities of unencapsulated 252 Cf has been built in a radiochemistry laboratory at the Test Reactor Area of the Idaho National Engineering Laboratory. Unique features of this facility are its compact bulk radiation shield of borated gypsum and transfer lines which permit the transport of fission product activity from 252 Cf fission sources within the cell to a mass separator and to a fast radiochemistry system in nearby rooms

  4. Neutronics analysis of the TRIGA Mark II reactor core and its experimental facilities

    International Nuclear Information System (INIS)

    Khan, R.

    2010-01-01

    core into a complete mixed core. To analyze the current core, a good knowledge of burned fuel material composition is essential. Because of the complications of experimental methods for measuring each FE, the ORIGEN2 computer code is selected for burn up and relevant material composition calculation. These calculations are verified by measuring the Cesium isotope (Cs-137) for six spent FE(s). Modifying the confirmed ORIGEN2 model for 104 and 110 (FLIP) FE(s), the burn up calculations of all 83 FE(s) of the current core are completed and applied to the already developed MCNP model. The detailed MCNP model of the burned core is verified by three local consistent experiments performed in June 2009. The criticality experiment confirms the model that the current core achieves its criticality on addition of 78th FE. The five FE(s) from different ring positions are measured to confirm the theoretical results. The percent deviation between MCNP predictions and experimental observations ranges from 3 to 19 %. The radial and axial neutron flux density distribution experiment verifies the MCNP theoretical results in the core. The theoretical and experimental perturbation study in the Central Irradiation Channel (CIR) of the core is performed. The reactivity effect of three small cylindrical samples (void, Cadmium and heavy water) are measured and compared with the MCNP predictions for verification. Applying the current core MCNP model, the void coefficient of reactivity is calculated as 11 cents per %-void. To perform the calculation in the experimental facilities outside the reactor core, the MCNP model is extended to the thermal column, radiographic collimator, four beam tubes and biological shielding. The MCNP results are verified in the thermal column and the beam tube A region. The percent difference between the simulated and experimental neutron diffusion length is 13 %. (author) [de

  5. Superconducting magnetic shields for neutral beam injectors. Final report

    International Nuclear Information System (INIS)

    1985-04-01

    Large high energy deuterium neutral beams which must be made from negative ions require extensive magnetic shielding against the intense fringe fields surrounding a magnetic fusion power plant. The feasibility of shielding by multilayer sheets of copper-superconducting laminated material was investigated. It was found that, if necessary fabrication techniques are developed, intrinsically stable type II superconductors will be able to shield against the magnetic fields of the fusion reactors. Among the immediate benefits of this research is better magnetic shields for neutral beam injectors in support of DOE's fusion program. Another application may be in the space vehicles, where difficulties in transporting heavy μ-metal sections may make a comparatively light superconducting shield attractive. Also, as high-field superconducting magnets find widespread applications, the need for high-intensity magnetic shielding will increase. As a result, the commercial market for the magnetic shields should expand along with the market for superconducting magnets

  6. Shielding benchmark tests of JENDL-3

    International Nuclear Information System (INIS)

    Kawai, Masayoshi; Hasegawa, Akira; Ueki, Kohtaro; Yamano, Naoki; Sasaki, Kenji; Matsumoto, Yoshihiro; Takemura, Morio; Ohtani, Nobuo; Sakurai, Kiyoshi.

    1994-03-01

    The integral test of neutron cross sections for major shielding materials in JENDL-3 has been performed by analyzing various shielding benchmark experiments. For the fission-like neutron source problem, the following experiments are analyzed: (1) ORNL Broomstick experiments for oxygen, iron and sodium, (2) ASPIS deep penetration experiments for iron, (3) ORNL neutron transmission experiments for iron, stainless steel, sodium and graphite, (4) KfK leakage spectrum measurements from iron spheres, (5) RPI angular neutron spectrum measurements in a graphite block. For D-T neutron source problem, the following two experiments are analyzed: (6) LLNL leakage spectrum measurements from spheres of iron and graphite, and (7) JAERI-FNS angular neutron spectrum measurements on beryllium and graphite slabs. Analyses have been performed using the radiation transport codes: ANISN(1D Sn), DIAC(1D Sn), DOT3.5(2D Sn) and MCNP(3D point Monte Carlo). The group cross sections for Sn transport calculations are generated with the code systems PROF-GROUCH-G/B and RADHEAT-V4. The point-wise cross sections for MCNP are produced with NJOY. For comparison, the analyses with JENDL-2 and ENDF/B-IV have been also carried out. The calculations using JENDL-3 show overall agreement with the experimental data as well as those with ENDF/B-IV. Particularly, JENDL-3 gives better results than JENDL-2 and ENDF/B-IV for sodium. It has been concluded that JENDL-3 is very applicable for fission and fusion reactor shielding analyses. (author)

  7. Diagnosis of electric equipment at the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Truong Sinh

    1999-01-01

    The Dalat Nuclear Research Reactor (DNRR) is a pool type of its kind in the world: Soviet-designed core and control system harmoniously integrated into the left-over infrastructure of the former American-made TRIGA MARK II reactor, which includes the reactor tank and shielding, graphite reflector, beam tubes and thermal column. The reactor is mainly used for radioisotope and radiopharmaceutical production, elemental analysis using neutron activation techniques, neutron beam exploitation, silicon doping, and reactor physics experimentation. For safe operation of the reactor maintenance work has been carried out for the reactor control and instrumentation, reactor cooling, ventilation, radiomonitoring, mechanical, normal electric supply systems as well as emergency electric diesel generators and the water treatment station. Technical management of the reactor includes periodical maintenance as required by technical specifications, training, re-training and control of knowledge for reactor staff. During recent years, periodic preventive maintenance (PPM) has been carried out for the electric machines of the technological systems. (author)

  8. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield

  9. Flow and pressure profiles for the primary heat transport system of Rajasthan Atomic Power Station for the operation with few isolated reactor channels near the end shield cracks

    Energy Technology Data Exchange (ETDEWEB)

    Gaikwad, A J; Chaki, S K; Sehgal, R L; Venkat Raj, V [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    The RAPS (Rajasthan Atomic Power Station) unit-1 is now operating at reduced power due to the removal of fifteen fuel channels for repair of south end shield cracks. The power level is restricted to 50% of the full power capacity as a precautionary measure. The relative difference that operation at 50% power and higher power would make to the end shield structure is being currently analysed with a view to operate this reactor at higher power levels. As a prerequisite, a detailed thermal hydraulic analysis is essential to assess the effect of reactor operation with isolated channels on the primary heat transport (PHT) system pressure, flow, temperature. The adequacy of the existing trip set points for the plant operation under this mode is also required to be assessed. In the present study, analysis of the PHT system has been carried out to determine the flow and pressure profiles for the RAPS heat transport system for operation of the reactor with isolated channels. (author). 5 refs., 1 fig., 1 tab.

  10. Design considerations for ITER [International Thermonuclear Experimental Reactor] magnet systems: Revision 1

    International Nuclear Information System (INIS)

    Henning, C.D.; Miller, J.R.

    1988-01-01

    The International Thermonuclear Experimental Reactor (ITER) is now completing a definition phase as a beginning of a three-year design effort. Preliminary parameters for the superconducting magnet system have been established to guide further and more detailed design work. Radiation tolerance of the superconductors and insulators has been of prime importance, since it sets requirements for the neutron-shield dimension and sensitively influences reactor size. The major levels of mechanical stress in the structure appear in the cases of the inboard legs of the toroidal-field (TF) coils. The cases of the poloidal-field (PF) coils must be made thin or segmented to minimize eddy current heating during inductive plasma operation. As a result, the winding packs of both the TF and PF coils includes significant fractions of steel. The TF winding pack provides support against in-plane separating loads but offers little support against out-of-plane loads, unless shear-bonding of the conductors can be maintained. The removal of heat due to nuclear and ac loads has not been a fundamental limit to design, but certainly has non-negligible economic consequences. We present here preliminary ITER magnet systems design parameters taken from trade studies, designs, and analyses performed by the Home Teams of the four ITER participants, by the ITER Magnet Design Unit in Garching, and by other participants at workshops organized by the Magnet Design Unit. The work presented here reflects the efforts of many, but the responsibility for the opinions expressed is the authors'. 4 refs., 3 figs., 4 tabs

  11. Heavy metal oxide glasses as gamma rays shielding material

    International Nuclear Information System (INIS)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir

    2016-01-01

    The gamma rays shielding parameters for heavy metal oxide glasses and concrete samples are comparable. However, the transparent nature of glasses provides additional feature to visualize inside the shielding material. Hence, different researchers had contributed in computing/measuring different shielding parameters for different configurations of heavy metal oxide glass systems. In the present work, a detailed study on different heavy metal (_5_6Ba, _6_4Gd, _8_2Pb, _8_3Bi) oxide glasses has been presented on the basis of different gamma rays shielding parameters as reported by different researchers in the recent years. It has been observed that among the selected heavy metal oxide glass systems, Bismuth based glasses provide better gamma rays shielding. Hence, Bismuth based glasses can be better substitute to concrete walls at nuclear reactor sites and nuclear labs.

  12. Heavy metal oxide glasses as gamma rays shielding material

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir, E-mail: dr.tejbir@gmail.com

    2016-10-15

    The gamma rays shielding parameters for heavy metal oxide glasses and concrete samples are comparable. However, the transparent nature of glasses provides additional feature to visualize inside the shielding material. Hence, different researchers had contributed in computing/measuring different shielding parameters for different configurations of heavy metal oxide glass systems. In the present work, a detailed study on different heavy metal ({sub 56}Ba, {sub 64}Gd, {sub 82}Pb, {sub 83}Bi) oxide glasses has been presented on the basis of different gamma rays shielding parameters as reported by different researchers in the recent years. It has been observed that among the selected heavy metal oxide glass systems, Bismuth based glasses provide better gamma rays shielding. Hence, Bismuth based glasses can be better substitute to concrete walls at nuclear reactor sites and nuclear labs.

  13. Experimental assessment of computer codes used for safety analysis of integral reactors

    Energy Technology Data Exchange (ETDEWEB)

    Falkov, A.A.; Kuul, V.S.; Samoilov, O.B. [OKB Mechanical Engineering, Nizhny Novgorod (Russian Federation)

    1995-09-01

    Peculiarities of integral reactor thermohydraulics in accidents are associated with presence of noncondensable gas in built-in pressurizer, absence of pumped ECCS, use of guard vessel for LOCAs localisation and passive RHRS through in-reactor HX`s. These features defined the main trends in experimental investigations and verification efforts for computer codes applied. The paper reviews briefly the performed experimental investigation of thermohydraulics of AST-500, VPBER600-type integral reactors. The characteristic of UROVEN/MB-3 code for LOCAs analysis in integral reactors and results of its verification are given. The assessment of RELAP5/mod3 applicability for accident analysis in integral reactor is presented.

  14. Under Water Thermal Cutting of the Moderator Vessel and Thermal Shield

    International Nuclear Information System (INIS)

    Loeb, A.; Sokcic-Kostic, M.; Eisenmann, B.; Prechtl, E.

    2007-01-01

    This paper presents the segmentation of the in 8 meter depth of water and for cutting through super alloyed moderator vessel and of the thermal shield of the MZFR stainless steel up to 130 mm wall thickness. Depending on the research reactor by means of under water plasma and contact arc metal cutting. The moderator vessel and the thermal shield are the most essential parts of the MZFR reactor vessel internals. These components have been segmented in 2005 by means of remotely controlled under water cutting utilizing a special manipulator system, a plasma torch and CAMC (Contact Arc Metal Cutting) as cutting tools. The engineered equipment used is a highly advanced design developed in a two years R and D program. It was qualified to cut through steel walls of more than 100 mm thickness in 8 meters water depth. Both the moderator vessel and the thermal shield had to be cut into such size that the segments could afterwards be packed into shielded waste containers each with a volume of roughly 1 m 3 . Segmentation of the moderator vessel and of the thermal shield was performed within 15 months. (author)

  15. Construction schedule management of China Experimental Fast Reactor

    International Nuclear Information System (INIS)

    Wang Yue

    2012-01-01

    China Experimental Fast Reactor (CEFR) in the first Fast Reactor in China, which is one of large project of the National High Technology Research and Development Program ('863' Program). On 21 st July 2011, CEFR had succeeded to connect to power grid, the target of construction had come true. To a large item, schedule management is one of the most important management, this paper a overall discussion about CEFR item. It has proved that the management of CEFR project is scientific, normative and high-efficiency, it will be valuable for lager Fast Reactor item and designers in interrelated field. (author)

  16. Upgrading program of the experimental fast reactor Joyo

    International Nuclear Information System (INIS)

    Yoshida, A.; Yogo, S.

    2001-01-01

    The experimental fast reactor Joyo finished its operation as an irradiation core in June, 2000. Throughout the operation of MK-I (breeder core) and MK-II (irradiation core), the net operation time has exceeded 60,000 hours. During these operations there were no fuel failures or serious plant problems. The MK-III modification program will improve irradiation capability to demonstrate advanced technologies for commercial Fast Breeder Reactor (FBR). When the MK-III core is started, it will support irradiation tests in feasibility studies for fast reactor and related fuel cycle research and development in Japan. (authors)

  17. Concept and basic performance of an in-pile experimental reactor for fast breeder reactors using fast driver core

    International Nuclear Information System (INIS)

    Obara, Toru; Sekimoto, Hiroshi

    1997-01-01

    The possibility of an in-pile experimental reactor for fast breeder reactors using a fast driver core is investigated. The driver core is composed of a particle bed with diluted fuel. The results of various basic analyses show that this reactor could perform as follows: (1) power peaking at the outer boundary of test core does not take place for large test core; (2) the radial power distribution in test fuel pin is expected to be the same as a real reactor; (3) the experiments with short half width pulse is possible; (4) for the ordinary MOX core, enough heating-up is possible for core damage experiments; (5) the positive effects after power burst can be seen directly. These are difficult for conventional thermal in-pile experimental reactors in large power excursion experiments. They are very attractive advantages in the in-pile experiments for fast breeder reactors. (author)

  18. Containment atmosphere cooling system for experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Sasaki, Mikio; Hoshi, Akio; Sato, Morihiko; Takeuchi, Kaoru

    1979-01-01

    The experimental fast reactor ''JOYO'', the first sodium-cooled fast reactor in Japan, achieved the initially licensed full power operation (50 MW) in July 1978 and is now under steady operation. Toshiba has participated in the construction of this reactor as a leading manufacturer and supplied various systems. This article outlines the design philosophy, system concepts and the operating experience of the containment atmosphere cooling system which has many design interfaces throughout the whole plant and requires especially high reliability. The successful performance of this system during the reactor full-power operation owes to the spot cooling design philosophy and to the preoperational adjustment of heat load during the preheating period of reactor cooling system peculiar to FBR. (author)

  19. Early test facilities and analytic methods for radiation shielding: Proceedings

    International Nuclear Information System (INIS)

    Ingersoll, D.T.; Ingersoll, J.K.

    1992-11-01

    This report represents a compilation of eight papers presented at the 1992 American Nuclear Society/European Nuclear Society International Meeting. The meeting is of special significance since it commemorates the fiftieth anniversary of the first controlled nuclear chain reaction. The papers contained in this report were presented in a special session organized by the Radiation Protection and Shielding Division in keeping with the historical theme of the meeting. The paper titles are good indicators of their content and are: (1) The origin of radiation shielding research: The Oak Ridge experience, (2) Shielding research at the hanford site, (3) Aircraft shielding experiments at General Dynamics Fort Worth, 1950-1962, (4) Where have the neutrons gone?, a history of the tower shielding facility, (5) History and evolution of buildup factors, (6) Early shielding research at Bettis atomic power laboratory, (7) UK reactor shielding: then and now, (8) A very personal view of the development of radiation shielding theory

  20. Systems for neutronic, thermohydraulic and shielding calculation in personal computers

    International Nuclear Information System (INIS)

    Villarino, E.A.; Abbate, P.; Lovotti, O.; Santini, M.

    1990-01-01

    The MTR-PC (Materials Testing Reactors-Personal Computers) system has been developed by the Nuclear Engineering Division of INVAP S.E. with the aim of providing working conditions integrated with personal computers for design and neutronic, thermohydraulic and shielding analysis for reactors employing plate type fuel. (Author) [es

  1. Modeling a nuclear reactor for experimental purposes

    International Nuclear Information System (INIS)

    Berta, V.T.

    1980-01-01

    The Loss-of-Fluid Test (LOFT) Facility is a scale model of a commercial PWR and is as fully functional and operational as the generic commercial counterpart. LOFT was designed and built for experimental purposes as part of the overall NRC reactor safety research program. The purpose of LOFT is to assess the capability of reactor safety systems to perform their intended functions during occurrences of off-normal conditions in a commercial nuclear reactor. Off-normal conditions arising from large and small break loss-of-coolant accidents (LOCA), operational transients, and anticipated transients without scram (ATWS) were to be investigated. This paper describes the LOFT model of the generic PWR and summarizes the experiments that have been conducted in the context of the significant findings involving the complex transient thermal-hydraulics and the consequent effects on the commercial reactor analytical licensing techniques. Through these techniques the validity of the LOFT model as a scaled counterpart of the generic PWR is shown

  2. Liquid metal cooled experimental fast reactor simulator

    International Nuclear Information System (INIS)

    Guimaraes, Lamartine; Braz Filho, Francisco; Borges, Eduardo M.; Rosa, Mauricio A.P.; Rocamora, Francisco; Hirdes, Viviane R.

    1997-01-01

    This paper is a continuation of the work that has been done in the area of fast reactor component dynamic analysis, as part of the REARA project at the IEAv/CTA-Brazil. A couple of preceding papers, presented in other meetings, introduced major concept design components of the REARA reactor. The components are set together in order to represent a full model of the power plant. Full model transient results will be presented, together with several parameters to help us to better establish the REARA experimental plant concept. (author). 8 refs., 6 figs., 3 tabs

  3. EL-3 dismantling of an experimental reactor

    International Nuclear Information System (INIS)

    1989-01-01

    The EL3 experimental reactor has been definitively stopped in march 1979. Its decommissioning has been pronounced in the end of 1982. This article is consecrated at decontamination and dismantling works necessited by its passage at the dismantling level 2 [fr

  4. Heat-pipe thermionic reactor concept

    DEFF Research Database (Denmark)

    Storm Pedersen, E.

    1967-01-01

    Main components are reactor core, heat pipe, thermionic converter, secondary cooling system, and waste heat radiator; thermal power generated in reactor core is transported by heat pipes to thermionic converters located outside reactor core behind radiation shield; thermionic emitters are in direct...

  5. Guide to verification and validation of the SCALE-4 radiation shielding software

    Energy Technology Data Exchange (ETDEWEB)

    Broadhead, B.L.; Emmett, M.B.; Tang, J.S.

    1996-12-01

    Whenever a decision is made to newly install the SCALE radiation shielding software on a computer system, the user should run a set of verification and validation (V&V) test cases to demonstrate that the software is properly installed and functioning correctly. This report is intended to serve as a guide for this V&V in that it specifies test cases to run and gives expected results. The report describes the V&V that has been performed for the radiation shielding software in a version of SCALE-4. This report provides documentation of sample problems which are recommended for use in the V&V of the SCALE-4 system for all releases. The results reported in this document are from the SCALE-4.2P version which was run on an IBM RS/6000 work-station. These results verify that the SCALE-4 radiation shielding software has been correctly installed and is functioning properly. A set of problems for use by other shielding codes (e.g., MCNP, TWOTRAN, MORSE) performing similar V&V are discussed. A validation has been performed for XSDRNPM and MORSE-SGC6 utilizing SASI and SAS4 shielding sequences and the SCALE 27-18 group (27N-18COUPLE) cross-section library for typical nuclear reactor spent fuel sources and a variety of transport package geometries. The experimental models used for the validation were taken from two previous applications of the SASI and SAS4 methods.

  6. Guide to verification and validation of the SCALE-4 radiation shielding software

    International Nuclear Information System (INIS)

    Broadhead, B.L.; Emmett, M.B.; Tang, J.S.

    1996-12-01

    Whenever a decision is made to newly install the SCALE radiation shielding software on a computer system, the user should run a set of verification and validation (V ampersand V) test cases to demonstrate that the software is properly installed and functioning correctly. This report is intended to serve as a guide for this V ampersand V in that it specifies test cases to run and gives expected results. The report describes the V ampersand V that has been performed for the radiation shielding software in a version of SCALE-4. This report provides documentation of sample problems which are recommended for use in the V ampersand V of the SCALE-4 system for all releases. The results reported in this document are from the SCALE-4.2P version which was run on an IBM RS/6000 work-station. These results verify that the SCALE-4 radiation shielding software has been correctly installed and is functioning properly. A set of problems for use by other shielding codes (e.g., MCNP, TWOTRAN, MORSE) performing similar V ampersand V are discussed. A validation has been performed for XSDRNPM and MORSE-SGC6 utilizing SASI and SAS4 shielding sequences and the SCALE 27-18 group (27N-18COUPLE) cross-section library for typical nuclear reactor spent fuel sources and a variety of transport package geometries. The experimental models used for the validation were taken from two previous applications of the SASI and SAS4 methods

  7. Calculation of neutron spectra in the reactor cell of the RA experimental reactor in Vinca

    International Nuclear Information System (INIS)

    Bosevski, T.; Altiparmakov, D.; Marinkovic, N.

    1974-01-01

    In the frame of neutron properties of RA experimental reactor the study of energy neutron spectra in the reactor cell are planned. Complex reactor cell geometry, nine cylindrical regions causes high space-energy variations of neutron flux with a significant gradient both in energy and space variables. Treatment of such a complex problem needs adequate methodology which ensures reliable results and control of accuracy. This paper describes in detail the method for calculating group constants based on lattice cell calculation for the need of calculation of reactor core parameters. In 26 group approximation for the energy region from 0 - 10.5 MeV, values of neutron spectra are obtained in 18 space points chosen to describe, with high accuracy, integral reactor cell parameters of primary importance for the reactor core calculation. Obtained space-energy distribution of neutron flux in the reactor cell is up to now unique in the study of neutron properties of Ra reactor [sr

  8. TA-2 Water Boiler Reactor Decommissioning Project

    International Nuclear Information System (INIS)

    Durbin, M.E.; Montoya, G.M.

    1991-06-01

    This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m 3 of low-level solid radioactive waste and 35 m 3 of mixed waste. 15 refs., 25 figs., 3 tabs

  9. Radiation Attenuation and Stability of ClearView Radiation Shielding TM-A Transparent Liquid High Radiation Shield.

    Science.gov (United States)

    Bakshi, Jayeesh

    2018-04-01

    Radiation exposure is a limiting factor to work in sensitive environments seen in nuclear power and test reactors, medical isotope production facilities, spent fuel handling, etc. The established choice for high radiation shielding is lead (Pb), which is toxic, heavy, and abidance by RoHS. Concrete, leaded (Pb) bricks are used as construction materials in nuclear facilities, vaults, and hot cells for radioisotope production. Existing transparent shielding such as leaded glass provides minimal shielding attenuation in radiotherapy procedures, which in some cases is not sufficient. To make working in radioactive environments more practicable while resolving the lead (Pb) issue, a transparent, lightweight, liquid, and lead-free high radiation shield-ClearView Radiation Shielding-(Radium Incorporated, 463 Dinwiddie Ave, Waynesboro, VA). was developed. This paper presents the motivation for developing ClearView, characterization of certain aspects of its use and performance, and its specific attenuation testing. Gamma attenuation testing was done using a 1.11 × 10 Bq Co source and ANSI/HPS-N 13.11 standard. Transparency with increasing thickness, time stability of liquid state, measurements of physical properties, and performance in freezing temperatures are reported. This paper also presents a comparison of ClearView with existing radiation shields. Excerpts from LaSalle nuclear power plant are included, giving additional validation. Results demonstrated and strengthened the expected performance of ClearView as a radiation shield. Due to the proprietary nature of the work, some information is withheld.

  10. Research on Primary Shielding Calculation Source Generation Codes

    Science.gov (United States)

    Zheng, Zheng; Mei, Qiliang; Li, Hui; Shangguan, Danhua; Zhang, Guangchun

    2017-09-01

    Primary Shielding Calculation (PSC) plays an important role in reactor shielding design and analysis. In order to facilitate PSC, a source generation code is developed to generate cumulative distribution functions (CDF) for the source particle sample code of the J Monte Carlo Transport (JMCT) code, and a source particle sample code is deveoped to sample source particle directions, types, coordinates, energy and weights from the CDFs. A source generation code is developed to transform three dimensional (3D) power distributions in xyz geometry to source distributions in r θ z geometry for the J Discrete Ordinate Transport (JSNT) code. Validation on PSC model of Qinshan No.1 nuclear power plant (NPP), CAP1400 and CAP1700 reactors are performed. Numerical results show that the theoretical model and the codes are both correct.

  11. Experimental determination of neutron temperature distribution in reactor cell

    International Nuclear Information System (INIS)

    Bosevski, T.

    1965-12-01

    This paper describes theoretical preparation of the experiment for measuring neutron temperature distribution at the RB reactor by activation foils. Due to rather low neutron flux Cu and Lu foil were irradiated for 4 days. Special natural uranium fuel element was prepared to enable easy removal of foils after irradiation. Experimental device was placed in the reactor core at half height in order to measure directly the mean neutron density. Experimental data of neutron temperature distribution for square lattice pitch 16 cm are presented with mean values of neutron temperature in the moderator, in the fuel and on the fuel element surface

  12. A theoretical study of the fast-neutron attenuation in Ghanaian serpentine shields

    International Nuclear Information System (INIS)

    Akaho, E.H.K.; Anim-Sampong, S.

    1994-01-01

    Theoretical calculations were done to determine the suitability of local serpentine rocks for shielding fast neutrons. A coupled neutron-gamma library of 25 energy groups, IRAN3.LIB developed for ANISN/PC was used to generate nuclear data for the tested shields. Calculations were carried out assuming a P 3 scattering order for spherical geometry with S 6 angular quadrature. From the trends of attenuation and computer factors such as relaxation length and transmission there is the indication that the shielding properties of the local shields are better than the foreign serpentine shields used in this study. They are slightly inferior to ordinary concrete employed in shielding power reactors. (author). 9 refs.; 5 tabs.; 5 figs

  13. SP-100 reactor cell activation

    International Nuclear Information System (INIS)

    Wilcox, A.D.

    1991-09-01

    There are plans to test the SP-100 space reactor for 2 yr in the test facility shown in Figure 1. The vacuum vessel will be in the reactor experiment (RX) cell surrounded by an inert gas atmosphere. It is proposed that the reactor test cell could contain removable-water- shielding tanks to reduce the residual activation dose rates in the test cell after the tests are completed. This reduction will allow the facility to be considered for other uses after the SP-100 tests are completed. The radiation dose rates in the test cell were calculated for several configurations of water-shielding tanks to help evaluate this concept

  14. Instrumentation and control improvements at Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    Christensen, L.J.; Planchon, H.P.

    1993-01-01

    The purpose of this paper is to describe instrumentation and control (I ampersand C) system improvements at Experimental Breeder Reactor 11 (EBR-11). The improvements are focused on three objectives; to keep the reactor and balance of plant (BOP) I ampersand C systems at a high level of reliability, to provide diagnostic systems that can provide accurate information needed for analysis of fuel performance, and to provide systems that will be prototypic of I ampersand C systems of the next generation of liquid metal reactor (LMR) plants

  15. Design of auxiliary shield for remote controlled metallographic microscope

    International Nuclear Information System (INIS)

    Matsui, Hiroki; Okamoto, Hisato

    2014-06-01

    The remote controlled optical microscope installed in the lead cell at the Reactor Fuel Examination Facility (RFEF) in Japan Atomic Energy Agency (JAEA) has been upgraded to a higher performance unit to study the effect of the microstructural evolution in clad material on the high burn-up fuel behavior under the accident condition. The optical pass of the new microscope requires a new through hole in the shielding lead wall of the cell. To meet safety regulations, auxiliary lead shieldings were designed to cover the lost shielding function of the cell wall. Particle and Heavy Ion Transport Code System (PHITS) was used to calculate and determine the shape and setting positions of the shielding unit. Seismic assessments of the unit were also performed. (author)

  16. Nuclear data needs for fusion reactors

    International Nuclear Information System (INIS)

    Gohar, Y.

    1986-01-01

    The nuclear design of fusion components (e.g., first wall, blanket, shield, magnet, limiter, divertor, etc.) requires an accurate prediction of the radiation field, the radiation damage parameters, and the activation analysis. The fusion nucleonics for these tasks are reviewed with special attention to point out nuclear data needs and deficiencies which effect the design process. The main areas included in this review are tritium breeding analyses, nuclear heating calculations, radiation damage in reactor components, shield designs, and results of uncertainty analyses as applied to fusion reactor studies. Design choices and reactor parameters that impact the neutronics performance of the blanket are discussed with emphasis on the tritium breeding ratio. Nuclear data required for kerma factors, shielding analysis, and radiation damage are discussed. Improvements in the evaluated data libraries are described to overcome the existing problems. 84 refs., 11 figs., 9 tabs

  17. Shielding Characteristics Using an Ultrasonic Configurable Fan Artificial Noise Source to Generate Modes - Experimental Measurements and Analytical Predictions

    Science.gov (United States)

    Sutliff, Daniel L.; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the program was to provide an estimate of the acoustic shielding benefits possible from mounting an engine on the upper surface of a wing; a flat plate model was used as the shielding surface. Simple analytical simulations were used to preview the radiation patterns - Fresnel knife-edge diffraction was coupled with a dense phased array of point sources to compute shielded and unshielded sound pressure distributions for potential test geometries and excitation modes. Contour plots of sound pressure levels, and integrated power levels, from nacelle alone and shielded configurations for both the experimental measurements and the analytical predictions are presented in this paper.

  18. Monte Carlo analysis of the effects of penetrations on the performance of a tokamak fusion reactor

    International Nuclear Information System (INIS)

    Santoro, R.T.; Tang, J.S.; Alsmiller, R.G. Jr.; Barnes, J.M.

    1977-01-01

    Adjoint Monte Carlo calculations have been carried out to estimate the nuclear heating and radiation damage in the toroidal field (TF) coils adjacent to a 28 x 68 cm 2 rectangular neutral beam injector duct that passes through the blanket and shield of a D-T burning Tokamak reactor. The plasma region, blanket, shield, and TF coils were represented in cylindrical geometry using the same dimensions and compositions as those of the Experimental Power Reactor. The radiation transport was accomplished using coupled 35-group neutron, 21-group gamma-ray cross sections and the nuclear heating and radiation damage were obtained using the latest available response functions. The presence of the neutral beam injector duct leads to increases in the nuclear heating rates in the TF coils ranging from a factor of 3 to a factor of 196 greater than in the fully shielded coils depending on the location. Substantial increases in the radation damage were also noted

  19. Radiation physics and shielding codes and analyses applied to design-assist and safety analyses of CANDUR and ACRTM reactors

    International Nuclear Information System (INIS)

    Aydogdu, K.; Boss, C. R.

    2006-01-01

    This paper discusses the radiation physics and shielding codes and analyses applied in the design of CANDU and ACR reactors. The focus is on the types of analyses undertaken rather than the inputs supplied to the engineering disciplines. Nevertheless, the discussion does show how these analyses contribute to the engineering design. Analyses in radiation physics and shielding can be categorized as either design-assist or safety and licensing (accident) analyses. Many of the analyses undertaken are designated 'design-assist' where the analyses are used to generate recommendations that directly influence plant design. These recommendations are directed at mitigating or reducing the radiation hazard of the nuclear power plant with engineered systems and components. Thus the analyses serve a primary safety function by ensuring the plant can be operated with acceptable radiation hazards to the workers and public. In addition to this role of design assist, radiation physics and shielding codes are also deployed in safety and licensing assessments of the consequences of radioactive releases of gaseous and liquid effluents during normal operation and gaseous effluents following accidents. In the latter category, the final consequences of accident sequences, expressed in terms of radiation dose to members of the public, and inputs to accident analysis, e.g., decay heat in fuel following a loss-of-coolant accident, are also calculated. Another role of the analyses is to demonstrate that the design of the plant satisfies the principle of ALARA (as low as reasonably achievable) radiation doses. This principle is applied throughout the design process to minimize worker and public doses. The principle of ALARA is an inherent part of all design-assist recommendations and safety and licensing assessments. The main focus of an ALARA exercise at the design stage is to minimize the radiation hazards at the source. This exploits material selection and impurity specifications and relies

  20. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, S.L. [Design and Accelerator Operations Consulting, 568 Wintergreen Ct Ridge, NY 11961 (United States); Ghosh, V.J.; Breitfeller, M. [NSLS-II, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-08-11

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. This shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  1. Fusion reactor design studies

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Santarius, J.F.

    1990-01-01

    This report discusses the following topics on the ARIES tokamak: systems; plasma power balance; impurity control and fusion ash removal; fusion product ripple loss; energy conversion; reactor fueling; first wall design; shield design; reactor safety; and fuel cost and resources

  2. Radiation shielding lead shield

    International Nuclear Information System (INIS)

    Dei, Shoichi.

    1991-01-01

    The present invention concerns lead shields for radiation shielding. Shield boxes are disposed so as to surround a pipeline through which radioactive liquids, mists or like other objects are passed. Flanges are formed to each of the end edges of the shield boxes and the shield boxes are connected to each other by the flanges. Upon installation, empty shield boxes not charged with lead particles and iron plate shields are secured at first at the periphery of the pipeline. Then, lead particles are charged into the shield boxes. This attains a state as if lead plate corresponding to the depth of the box is disposed. Accordingly, operations for installation, dismantling and restoration can be conducted in an empty state with reduced weight to facilitate the operations. (I.S.)

  3. The reactor safety study of experimental multi-purpose VHTR design

    International Nuclear Information System (INIS)

    Yasuno, T.; Mitake, S.; Ezaki, M.; Suzuki, K.

    1981-01-01

    Over the past years, the design works of the Experimental Very High Temperature Reactor (VHTR) plant have been conducted at Japan Atomic Energy Research Institute. The conceptual design has been completed and the more detailed design works and the safety analysis of the experimental VHTR plant are continued. The purposes of design studies are to show the feasibility of the experimental VHTR program, to specify the characteristics and functions of the plant components, to point out the R and D items necessary for the experimental VHTR plant construction, and to analyze the feature of the plant safety. In this paper the summary of system design and safety features of the experimental reactor are indicated. Main issues are the safety philosophy for the design basis accident, the accidents assumed and the engineered safety systems adopted in the design works

  4. Calculation and experimental measurements in the Argonauta reactor subcritical and exponential facility

    International Nuclear Information System (INIS)

    Voi, Dante L.; Furieri, Rosane C.A.A.; Renke, Carlos A.C.; Bastos, Wilma S.; Ferreira, Francisco J.O.

    1997-01-01

    Initial measurements were performed on the exponential and subcritical facility installed on the internal thermal column of the Argonauta reactor at IEN-CNEN-Rio de Janeiro, Brazil. The measurements are include in the reactor physics experimental program for integral parameters determination, for both valid and confirmed theoretical models for reactor calculation. Gamma doses and neutron fluxes were measured with telescopic, proportional counters, wire and foil detectors. Experimental data were compared with results obtained by application of CITATION code. (author). 4 refs., 8 figs

  5. Magnetic Materials Characterization and Modeling for the Enhanced Design of Magnetic Shielding of Cryomodules in Particle Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Sah, Sanjay [Virginia Commonwealth Univ., Richmond, VA (United States)

    2016-05-31

    Particle accelerators produce beams of high-energy particles, which are used for both fundamental and applied scientific research and are critical to the development of accelerator driven sub-critical reactor systems. An effective magnetic shield is very important to achieve higher quality factor (Qo) of the cryomodule of a particle accelerator. The allowed value of field inside the cavity due to all external fields (particularly the Earth’s magnetic field) is ~15 mG or less. The goal of this PhD dissertation is to comprehensively study the magnetic properties of commonly used magnetic shielding materials at both cryogenic and room temperatures. This knowledge can be used for the enhanced design of magnetic shields of cryomodes (CM) in particle accelerators. To this end, we first studied the temperature dependent magnetization behavior (M-H curves) of Amumetal and A4K under different annealing and deformation conditions. This characterized the effect of stress or deformation induced during the manufacturing processes and subsequent restoration of high permeability with appropriate heat treatment. Next, an energy based stochastic model for temperature dependent anhysteretic magnetization behavior of ferromagnetic materials was proposed and benchmarked against experimental data. We show that this model is able to simulate and explain the magnetic behavior of as rolled, deformed and annealed amumetal and A4K over a large range of temperatures. The experimental results for permeability are then used in a finite element model (FEM) in COMSOL to evaluate the shielding effectiveness of multiple shield designs at room temperature as well as cryogenic temperature. This work could serve as a guideline for future design, development and fabrication of magnetic shields of CMs.

  6. Compilation of reactor-physical data of the AVR experimental reactor for 1982

    International Nuclear Information System (INIS)

    Werner, H.; Wawrzik, U.; Grotkamp, T.; Buettgen, I.

    1983-12-01

    Since the end of 1981 the calculation model AVR-80 has been taken as a basis for compiling reactor-physical data of the AVR experimental reactor. A brief outline of the operation history of 1982 is given, including the beginning of a large-scale experiment dealing with change-over from high enriched uranium to low enriched uranium. Calculations relative to spectral shift, diffusion, temperature, burnup, and recirculation of the fuel elements are described in brief. The essential results of neutron-physical and thermodynamic calculations and the characteristical data of the various types of fuel used are shown in tables and illustrations. (RF) [de

  7. A conceptual gamma shield design using the DRP model computation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, E E [Reactor Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt); Rahman, F A [National Center of Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    The purpose of this investigation is to assess basic areas of concern in the development of reactor shielding conceptual design calculations. A spherical shield model composed of low carbon steel and lead have been constructed to surround a Co-60 gamma point source. two alternative configurations have been considered in the model computation. The numerical calculations have been performed using both the ANISN code and DRP model computation together with the DLC 75-Bugle 80 data library. A resume of results for deep penetration in different shield materials with different packing densities is presented and analysed. The results showed that the gamma fluxes attenuation is increased with increasing distribution the packing density of the shield material which reflects its importance of considering it as a safety parameter in shielding design. 3 figs.

  8. Bruce unit 1 moderator to end shield cooling leak repairs

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, P; Ashton, A [Ontario Hydro, Tiverton, ON (Canada). Bruce Nuclear Generating Station-A

    1996-12-31

    In October 1994, a leak developed between the heavy water Moderator System and the light water End Shield Cooling System at Ontario Hydro`s Bruce A Generating Station Unit 1. The interface between these two systems consists of numerous reactor components all within the reactor vessel. This paper describes the initial discovery and determination of the leak source. The techniques used to pinpoint the leak location are described. The repair strategies and details are outlined. Flushing and refilling of the Moderator system are discussed. The current status of the Unit 1 End Shield Cooling System is given with possible remedial measures for clean-up. Recommendations and observations are provided for future references. (author). 7 figs.

  9. The SCARABEE experimental fast reactor safety programme already completed

    International Nuclear Information System (INIS)

    Schmitt, A.P.; Teague, H.; Heusener, G.

    1979-08-01

    The SCARABEE in-pile experimental programme comprised a series of tests on unirradiated fuel pins, either single or in seven-pin clusters. The main objective was to obtain information on the mode and consequences of fast reactor fuel pin failure in conditions representative of loss of cooling in a LMFBR. The application of such programmes in full scale reactors leads to the great importance of the interpretation of experimental observations. The interpretation of that programme was carried out jointly by CEA, KFK and UKAEA; this international collaboration led to a sharper focusing on essential features to be modelled in experiments and computer codes and to a valuable convergence of views

  10. Reactor building indoor wireless network channel quality estimation using RSSI measurement of wireless sensor network

    International Nuclear Information System (INIS)

    Merat, S.

    2008-01-01

    Expanding wireless communication network reception inside reactor buildings (RB) and service wings (SW) has always been a technical challenge for operations service team. This is driven by the volume of metal equipment inside the Reactor Buildings (RB) that blocks and somehow shields the signal throughout the link. In this study, to improve wireless reception inside the Reactor Building (RB), an experimental model using indoor localization mesh based on IEEE 802.15 is developed to implement a wireless sensor network. This experimental model estimates the distance between different nodes by measuring the RSSI (Received Signal Strength Indicator). Then by using triangulation and RSSI measurement, the validity of the estimation techniques is verified to simulate the physical environmental obstacles, which block the signal transmission. (author)

  11. Reactor building indoor wireless network channel quality estimation using RSSI measurement of wireless sensor network

    Energy Technology Data Exchange (ETDEWEB)

    Merat, S. [Wardrop Engineering Inc., Toronto, Ontario (Canada)

    2008-07-01

    Expanding wireless communication network reception inside reactor buildings (RB) and service wings (SW) has always been a technical challenge for operations service team. This is driven by the volume of metal equipment inside the Reactor Buildings (RB) that blocks and somehow shields the signal throughout the link. In this study, to improve wireless reception inside the Reactor Building (RB), an experimental model using indoor localization mesh based on IEEE 802.15 is developed to implement a wireless sensor network. This experimental model estimates the distance between different nodes by measuring the RSSI (Received Signal Strength Indicator). Then by using triangulation and RSSI measurement, the validity of the estimation techniques is verified to simulate the physical environmental obstacles, which block the signal transmission. (author)

  12. Tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Abdou, M.A.; Brooks, J.N.

    1978-01-01

    A tokamak experimental power reactor has been designed that is capable of producing net electric power over a wide range of possible operating conditions. A net production of 81 MW of electricity is expected from the design reference conditions that assume a value of 0.07 for beta-toroidal, a maximum toroidal magnetic field of 9 T and a thermal conversion efficiency of 30%. Impurity control is achieved through the use of a low-Z first wall coating. This approach allows a burn time of 60 seconds without the incorporation of a divertor. The system is cooled by a dual pressurized water/steam system that could potentially provide thermal efficiencies as high as 39%. The first surface facing the plasma is a low-Z coated water cooled panel that is attached to a 20 cm thick blanket module. The vacuum boundary is removed a total of 22 cm from the plasma, thereby minimizing the amount of radiation damage in this vital component. Consideration is given in the design to the possible use of the EPR as a materials test reactor. It is estimated that the total system could be built for less than 550 million dollars

  13. Methods for U.S. shielding calculations: applications to FFTF and CRBR designs

    International Nuclear Information System (INIS)

    Engle, W.W. Jr.; Mynatt, F.R.; Disney, R.K.

    1978-01-01

    The primary components of the U.S. reactor shielding methodology consist of: (1) computer code systems based on discrete ordinates or Monte Carlo radiation transport calculational methods; (2) a data base of neutron and gamma-ray interaction and gamma-ray-production cross sections used as input in the codes; (3) a capability for processing the cross sections into multigroup or point energy formats as required by the codes; (4) large-scale integral shielding experiments designed to test cross-section data or techniques utilized in the calculations; and (5) a ''sensitivity'' analysis capability that can identify the most important interactions in a transport calculation and assign uncertainties to the calculated result that are based on uncertainties in all of the input data. The required accuracy for the methodology is to within 5 to 10% for responses at locations near the core to within a factor of 2 for responses at distant locations. Under these criteria, the methodology has proved to be adequate for in-vessel LMFBR calculations of neutron transport through deep sodium and thick iron and stainless steel shields, of neutron streaming through lower axial coolant channels and primary pipe chaseways, and of the effects of fuel stored within the reactor vessel. For ex-vessel LMFBR problems, the methodology requires considerable improvement, the areas of concern including neutron streaming through heating and ventilation ducts, through the cavity surrounding the reactor vessel, and through gaps around rotating plugs in the reactor heat, as well as gamma-ray streaming through plant shield penetrations

  14. Liquid metal reactor deactivation as applied to the experimental breeder reactor - II

    International Nuclear Information System (INIS)

    Earle, O. K.; Michelbacher, J. A.; Pfannenstiel, D. F.; Wells, P. B.

    1999-01-01

    The Experimental Breeder Reactor-II (EBR-II) at Argonne National Laboratory-West (ANL-W) was shutdown in September, 1994. This sodium cooled reactor had been in service since 1964, and by the US Department of Energy (DOE) mandate, was to be placed in an industrially and radiologically safe condition for ultimate decommissioning. The deactivation of a liquid metal reactor presents unique concerns. The first major task associated with the project was the removal of all fueled assemblies. In addition, sodium must be drained from systems and processed for ultimate disposal. Residual quantities of sodium remaining in systems must be deactivated or inerted to preclude future hazards associated with pyrophoricity and generation of potentially explosive hydrogen gas. A Sodium Process Facility (SPF) was designed and constructed to react the elemental sodium from the EBR-II primary and secondary systems to sodium hydroxide for disposal. This facility has a design capacity to allow the reaction of the complete inventory of sodium at ANL-W in less than two years. Additional quantities of sodium from the Fermi-1 reactor are also being treated at the SPF

  15. Summary of the progress of reactor physics in Japan reviewing the activities related to NEA Committee on Reactor Physics

    International Nuclear Information System (INIS)

    Hirota, Jitsuya

    1984-09-01

    The progress of fast and thermal reactor physics, fusion neutronics and shielding researches in these twenty years can be clearly recognized in the reviews of reactor physics activities in Japan which had been perpared by the Special Committee on Reactor Physics: the joint committee under Atomic Energy Society of Japan and JAERI. Many topics of those discussed at the NEACRP meetings concerned fast reactor physics. Information exchange on the topics such as adjustment of group cross sections by integral data, central worth discrepancy, sodium void effect and heterogeneous core stimulated the researches in Japan. And achievements in Japan including those in the JAERI Fast Critical Facility FCA were reported and contributed largely to the international co-operation. In addition, the contribution from Japan was also made concerning a study of fusion blanket. Among various specialists' meetings recommended by NEACRP, those on nuclear data and benchmarks for reactor shielding were often held since 1973 and helpful to the progress of shielding researches in Japan. The Third Specialists' Meeting on Reactor Noise (SMORN-III) was held in Tokyo in 1981, indicating the recent progress in safety-related applications of reactor noise analysis. The NEACRP benchmark tests were quite useful to the progress of reactor physics in Japan, which included the benchmark calculations of BWR lattice cell, key parameters and burn-up characteristics of a large LMFBR, FBR and PWR shielding, and so on. It may be noted that the benchmark test on reactor noise analysis methods was successfully conducted by Japan in connection with SMORN-III. In addition, the co-operation was positively made to the compilation of light water lattice data, and the preparation of reviews on actinide production and burn-up, and blanket physics. (J.P.N.)

  16. Studies of the ultrasonic testing scheme on bonding quality in shield blanket of ITER

    International Nuclear Information System (INIS)

    Shi Sichao; Shen Jingling; He Fengqi; Jin Wanping

    2007-01-01

    International Thermonuclear Experimental Reactor (ITER) is an international cooperative item. One of its components, the First Wall (FW) functioning as neutron shielding and cooling, is an important part. According to the component materials, structural features, testing requirements of the FW, and the ultrasonic propagation characteristics, it is suggested that Broad-band ultrasonic can be used to test the bonding quality of the FW. According to the case mentioned above, the Broad-band Ultrasonic Testing scheme was presented, and the ultrasonic testing feasibility was analyzed theoretically in this paper. (authors)

  17. Optimal selection for shielding materials by fuzzy linear programming

    International Nuclear Information System (INIS)

    Kanai, Y.; Miura, N.; Sugasawa, S.

    1996-01-01

    An application of fuzzy linear programming methods to optimization of a radiation shield is presented. The main purpose of the present study is the choice of materials and the search of the ratio of mixture-component as the first stage of the methodology on optimum shielding design according to individual requirements of nuclear reactor, reprocessing facility, shipping cask installing spent fuel, ect. The characteristic values for the shield optimization may be considered their cost, spatial space, weight and some shielding qualities such as activation rate and total dose rate for neutron and gamma ray (includes secondary gamma ray). This new approach can reduce huge combination calculations for conventional two-valued logic approaches to representative single shielding calculation by group-wised optimization parameters determined in advance. Using the fuzzy linear programming method, possibilities for reducing radiation effects attainable in optimal compositions hydrated, lead- and boron-contained materials are investigated

  18. Criticality and shielding calculations for containers in dry of spent fuel of TRIGA Mark III reactor of ININ

    International Nuclear Information System (INIS)

    Barranco R, F.

    2015-01-01

    In this thesis criticality and shielding calculations to evaluate the design of a container of dry storage of spent nuclear fuel generated in research reactors were made. The design of such container was originally proposed by Argentina and Brazil, and the Instituto Nacional de Investigaciones Nucleares (ININ) of Mexico. Additionally, it is proposed to modify the design of this container to store spent fuel 120 that are currently in the pool of TRIGA Mark III reactor, the Nuclear Center of Mexico and calculations and analyzes are made to verify that the settlement of these fuel elements is subcritical limits and dose rates to workers and the general public are not exceeded. These calculations are part of the design criteria for security protection systems in dry storage system (Dss for its acronym in English) proposed by the Nuclear Regulatory Commission (NRC) of the United States. To carry out these calculations simulation codes of Monte Carlo particle transport as MCNPX and MCNP5 were used. The initial design (design 1) 78 intended to store spent fuel with a maximum of 115. The ININ has 120 fuel elements and spent 3 control rods (currently stored in the reactor pool). This leads to the construction of two containers of the original design, but for economic reasons was decided to modify (design 2) to store in a single container. Criticality calculations are performed to 78, 115 and fresh fuel elements 124 within the container, to the two arrangements described in Chapter 4, modeling the three-dimensional geometry assuming normal operating conditions and accident. These calculations are focused to demonstrate that the container will remain subcritical, that is, that the effective multiplication factor is less than 1, in particular not greater than 0.95 (as per specified by the NRC). Spent fuel 78 and 124 within the container, both gamma radiation to neutron shielding calculations for only two cases were simulated. First actinides and fission products generated

  19. Radiation shielding issues on the FMIT

    International Nuclear Information System (INIS)

    Burke, R.J.; Davis, A.A.; Huang, S.; Morford, R.J.

    1981-05-01

    The Fusion Materials Irradiation Test Facility (FMIT) is being built to study neutron radiation effects in candidate fusion reactor materials. The FMIT will yield high fluence data in a fusion-like neutron radiation environment produced by the interaction of a 0.1A, 35 MeV deuteron beam with a flowing lithium target. The design of the facility as a whole is driven by a high availability requirement. The variety of radiation environments in the facility requires the use of diverse and extensive shielding. Shielding design throughout the FMIT must accommodate the need for maintenance and operations access while providing adequate personnel and equipment protection

  20. Simulation test of PIUS-type reactor with large scale experimental apparatus

    International Nuclear Information System (INIS)

    Tamaki, M.; Tsuji, Y.; Ito, T.; Tasaka, K.; Kukita, Yutaka

    1995-01-01

    A large scale experimental apparatus for simulating the PIUS-type reactor has been constructed keeping the volumetric scaling ratio to the realistic reactor model. Fundamental experiments such as a steady state operation and a pump trip simulation were performed. Experimental results were compared with those obtained by the small scale apparatus in JAERI. We have already reported the effectiveness of the feedback control for the primary loop pump speed (PI control) for the stable operation. In this paper this feedback system is modified and the PID control is introduced. This new system worked well for the operation of the PIUS-type reactor even in a rapid transient condition. (author)

  1. Summary of the experimental multi-purpose very high temperature gas cooled reactor design

    International Nuclear Information System (INIS)

    1984-12-01

    The report presents the design of Multi-purpose Very High Temperature Gas Cooled Reactor (the Experimental VHTR) based on the second stage of detailed design which was completed on March 1984, in the from of ''An application of reactor construction permit Appendix 8''. The Experimental VHTR is designed to satisfy with the design specification for the reactor thermal output 50 MW and reactor outlet temperature 950 0 C. The adequacy of the design is also checked by the safety analysis. The planning of plant system and safety is summarized such as safety design requirements and conformance with them, seismic design and plant arrangement. Concerning with the system of the Experimental VHTR the design basis, design data and components are described in the order. (author)

  2. Handbook of nuclear engineering: vol 1: nuclear engineering fundamentals; vol 2: reactor design; vol 3: reactor analysis; vol 4: reactors of waste disposal and safeguards

    CERN Document Server

    2013-01-01

    The Handbook of Nuclear Engineering is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all academic levels, this five volume set provides the latest findings in nuclear data and experimental techniques, reactor physics, kinetics, dynamics and control. Readers will also find a detailed description of data assimilation, model validation and calibration, sensitivity and uncertainty analysis, fuel management and cycles, nuclear reactor types and radiation shielding. A discussion of radioactive waste disposal, safeguards and non-proliferation, and fuel processing with partitioning and transmutation is also included. As nuclear technology becomes an important resource of non-polluting sustainable energy in the future, The Handbook of Nuclear Engineering is an excellent reference for practicing engineers, researchers and professionals.

  3. Shielding considerations for neutral-beam injection systems

    International Nuclear Information System (INIS)

    de Seynes, X.

    1983-03-01

    Results of a study on the geometry of an FED-A Neutral Beam Injector beamline duct shield are presented. Also included is a calculation of dose rates, as a function of time, from an activated NBI. The shielding investigations consisted of varying the parameters of the geometry and transporting particles through it using the MCNP Monte-Carlo code. The dose rates were calculated by the ACDOS3 code using realistic MCNP results. A final-to-incident flux ratio of 6.5 x 10 -7 can be achieved through the use of a 65.5 cm reentry duct. This is for a realistic source and pure water shielding material. The activated NBI produced a dose rate of 15.9 mrem/hr two and a half days after shutdown of the reactor

  4. Experience with reactor assembly of FBTR

    International Nuclear Information System (INIS)

    Srinivasan, G.; Ravishankar, K.; Babu, A.; Varadarajan, S.; Arumugam, P.; Sekhar, P.

    2006-01-01

    Reactor Assembly, also called Block Pile, is the heart of FBTR and houses the core, top and lateral shields, control rod drive mechanisms (CRDM), sodium inlet pipe and outlet pipes etc. Two major problems which arose during commissioning were reactor vessel tilt due to convection in cover gas space and failure of inflatable seals. The reactor vessel tilt was solved by Helium injection. Reactor was operated without pressurising the inflatable seals till 2005, when the seals were replaced. Other major problems in the course of twenty years of reactor operation were failure of three CRDM lower parts, Core Cover plate which houses the core thermocouples getting stuck in the fuel handling position, water leaks from the Biological Shield Cooling (BSC) coils around the reactor, failure of core wires in the trailing cables during fuel handling etc. This paper addresses the major problems faced and modifications carried out. (author)

  5. Submersion-Subcritical Safe Space (S4) reactor

    International Nuclear Information System (INIS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-01

    The Submersion-Subcritical Safe Space (S 4 ) reactor, developed for future space power applications and avoidance of single point failures, is presented. The S 4 reactor has a Mo-14% Re solid core, loaded with uranium nitride fuel, cooled by He-30% Xe and sized to provide 550 kWth for 7 years of equivalent full power operation. The beryllium oxide reflector of the S 4 reactor is designed to completely disassemble upon impact on water or soil. The potential of using Spectral Shift Absorber (SSA) materials in different forms to ensure that the reactor remains subcritical in the worst-case submersion accident is investigated. Nine potential SSAs are considered in terms of their effect on the thickness of the radial reflector and on the combined mass of the reactor and the radiation shadow shield. The SSA materials are incorporated as a thin (0.1 mm) coating on the outside surface of the reactor core and as core additions in three possible forms: 2.0 mm diameter pins in the interstices of the core block, 0.25 mm thick sleeves around the fuel stacks and/or additions to the uranium nitride fuel. Results show that with a boron carbide coating and 0.25 mm iridium sleeves around the fuel stacks the S 4 reactor has a reflector outer diameter of 43.5 cm with a combined reactor and shadow shield mass of 935.1 kg. The S 4 reactor with 12.5 at.% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide interstitial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating has a slightly smaller reflector outer diameter of 43.0 cm, resulting in a smaller total reactor and shield mass of 901.7 kg. With 8.0 at.% europium-151 added to the fuel, along with europium-151 sesquioxide for the pins and coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respectively

  6. Operating manual for the Tower Shielding Facility

    International Nuclear Information System (INIS)

    1985-12-01

    This manual provides information necessary to operate and perform maintenance on the reactor systems and all equipment or systems which can affect their operation or the safety of personnel at the Tower Shielding Facility. The first four chapters consist of introductory and descriptive material of benefit to personnel in training, the qualifications required for training, the responsibilities of the personnel in the organization, and the procedures for reviewing proposed experiments. Chapter 8, Emergency Procedures, is also a necessary part of the indoctrination of personnel. The procedures for operation of the Tower Shielding Reactor (TSR-II), its water cooling system, and the main tower hoists are outlined in Chapters 5, 6, and 7. The Technical Specification surveillance requirements for the TSR-II are summarized in Chapter 9. The maintenance and calibration schedule is spelled out in Chapter 10. The procedures for assembly and disassembly of the TSR-II are outlined in Chapter 11

  7. A code for leakage neutron spectra through thick shields

    International Nuclear Information System (INIS)

    Nagarajan, P.S.; Sethulakshmi, P.; Raghavendran, C.P.

    1975-01-01

    An exponential transform Monte Carlo code has been developed for deep penetration of neutrons and the results of leakage neutron spectra of this code have been compared with those of a basic Monte Carlo code for small thickness. The development of the code and optimisation of certain transform parameters are discussed and results are presented for a few thick shields of concrete and water in the context of neutron monitoring in the environs of accelerator and reactor shields. (author)

  8. Theoretical analysis and experimental investigation on performance of the thermal shield of accelerator cryomodules by thermo-siphon cooling of liquid nitrogen

    Science.gov (United States)

    Datta, T. S.; Kar, S.; Kumar, M.; Choudhury, A.; Chacko, J.; Antony, J.; Babu, S.; Sahu, S. K.

    2015-12-01

    Five beam line cryomodules with total 27 superconducting Radio Frequency (RF) cavities are installed and commissioned at IUAC to enhance the energy of heavy ion from 15 UD Pelletron. To reduce the heat load at 4.2 K, liquid nitrogen (LN2) cooled intermediate thermal shield is used for all these cryomodules. For three linac cryomodules, concept of forced flow LN2 cooling is used and for superbuncher and rebuncher, thermo-siphon cooling is incorporated. It is noticed that the shield temperature of superbuncher varies from 90 K to 110 K with respect to liquid nitrogen level. The temperature difference can't be explained by using the basic concept of thermo-siphon with the heat load on up flow line. A simple thermo-siphon experimental set up is developed to simulate the thermal shield temperature profile. Mass flow rate of liquid nitrogen is measured with different heat load on up flow line for different liquid levels. It is noticed that small amount of heat load on down flow line have a significant effect on mass flow rate. The present paper will be investigating the data generated from the thermosiphon experimental set up and a theoretical analysis will be presented here to validate the measured temperature profile of the cryomodule shield.

  9. Operational safety and reactor life improvements of Kyoto University Reactor

    International Nuclear Information System (INIS)

    Utsuro, M.; Fujita, Y.; Nishihara, H.

    1990-01-01

    Recent important experience in improving the operational safety and life of a reactor are described. The Kyoto University Reactor (KUR) is a 25-year-old 5 MW light water reactor provided with two thermal columns of graphite and heavy water as well as other kinds of experimental facilities. In the graphite thermal column, noticeable amounts of neutron irradiation effects had accumulated in the graphite blocks near the core. Before the possible release of the stored energy, all the graphite blocks in the column were successfully replaced with new blocks using the opportunity provided by the installation of a liquid deuterium cold neutron source in the column. At the same time, special seal mechanisms were provided for essential improvements to the problem of radioactive argon production in the column. In the heavy-water thermal column we have accomplished the successful repair of a slow leak of heavy water through a thin instrumentation tube failure. The repair work included the removal and reconstructions of the lead and graphite shielding layers and welding of the instrumentation tube under radiation fields. Several mechanical components in the reactor cooling system were also exchanged for new components with improved designs and materials. On-line data logging of almost all instrumentation signals is continuously performed with a high speed data analysis system to diagnose operational conditions of the reactor. Furthermore, through detailed investigations on critical components, operational safety during further extended reactor life will be supported by well scheduled maintenance programs

  10. Aspects of 238Pu production in the experimental fast reactor JOYO

    International Nuclear Information System (INIS)

    Osaka, Masahiko; Koyama, Shin-ichi; Tanaka, Kenya; Itoh, Masahiko; Saito, Masaki

    2005-01-01

    Experimental determination of 238 Pu in 237 Np samples irradiated in the experimental fast reactor JOYO was done as part of the demonstration of 238 Pu production from 237 Np in fast reactors within the framework of the protected Pu production project, which aims at reinforcement of proliferation resistance of Pu by increasing the 238 Pu isotopic ratio. 238 Pu production amount in the irradiated 237 Np samples was determined by a radioanalytical technique. Aspects of 238 Pu production were examined on the basis of the present radioanalysis. The 238 Pu production amount depends on the neutron spectrum which can range from that of a typical fast reactor to a nearly epi-thermal spectrum. It is concluded that the fast reactor has not only high potential for use in protected Pu production, but also as an incinerator for excess Pu

  11. Experimental investigations of heat transfer during sodium boiling in fuel assembly model in justification of advanced fast reactor safety

    International Nuclear Information System (INIS)

    Khafizov, R.R.; Poplavskij, V.M.; Rachkov, V.I.; Sorokin, A.P.; Ashurko, Yu.M.; Volkov, A.V.; Ivanov, E.F.; Privezentsev, V.V.

    2015-01-01

    The experimental facility is built up and investigation of heat exchange during sodium boiling in simulated fast reactor core assembly in conditions of natural and forced circulation with sodium plenum and upper end shield model are conducted. It is shown that in the presence of sodium plenum there is possibility to provide long-term cooling of fuel assembly when heat flux density on the surface of fuel element simulator up to 140 and 170 kW/m 2 in conditions of natural and forced circulation, respectively. The obtained data is used for improving calculational model of sodium boiling process in fuel assembly and calculational code COREMELT verification. It is pointed out that heat transfer coefficients in the case of liquid metal boiling in fuel assemblies are slightly over the ones in the case of liquid metals boiling in pipes and pool boiling [ru

  12. The shielding performance of multilayer composite shielding structures to 14.8 MeV fast neutrons

    International Nuclear Information System (INIS)

    Shen Zhiqiang; Kang Qing; Xu Jun; Wang Zhenggang; Lu Nan

    2014-01-01

    Cement-based round thin-layer samples mixed with 30% quality content of barite, and 20% quality content of carbide boron has Prepared, the same-diameter sliced samples of pure graphite and pure polyethylene has cut, then, samples combination and cross stack order has designed, formed four species Multilayer Composite shield structure, at last, neutron attenuation measurements has been done by experimental system of using 14.8 MeV neutrons from the 5SDH-2 accelerator and long counter composition, penetrating rate of samples and the shield structure to 14.8 MeV fast neutron has tested, and attenuation section has calculated. Results show that 14.8 MeV fast neutrons to higher penetration rates of thin layer samples, attenuation cross section of samples distinguish small between each other, must be increasing the thickness of the samples to reduce the experimental uncertainty; through composed of attenuation cross section and thickness parameters of composite structure, can more accurately predict the shielding ability of composite structures, error between calculation results and experimental results in 4%. (authors)

  13. Design of the ITER (International Thermonuclear Experimental Reactor) neutral beam system beamline, United States concept

    International Nuclear Information System (INIS)

    Purgalis, P.; Anderson, O.A.; Cooper, W.S.; DeVries, G.E.; Lietzke, A.F.; Kunkel, W.B.; Kwan, J.W.; Matuk, C.A.; Nakai, T.; Stearns, J.W.; Soroka, L.; Wells, R.P.; Lindquist, W.B.; Neef, W.S.; Reginato, L.L.; Sedgley, D.W.; Brook, J.W.; Luzzi, T.E.; Myers, T.J.

    1989-01-01

    Design of a neutral beamline for ITER (International Thermonuclear Experimental Reactor) is described. The design incorporates a barium surface conversion D - source feeding a linear array of accelerator channels. The system uses a dc accelerator with electrostatic quadrupoles for strong focusing. A high voltage power supply that is integrated with the accelerator is presented as an attractive option. A gas neutralizer is used and residual ions exiting the neutralizer are deflected to watercooled dumps. Cryopanels are located at the accelerator exit to pump excess gas from the source and the neutralizer, and in the ion dump cavity to pump re-neutralized ions and neutralizer gas. All the above components are packaged in compact identical, independent modules that can be removed for remote maintenance. The neutral beam system delivers 75 MW of D degree into three ports with a total of nine modules arranged in stacks of three modules per port. To increase reliability each module is designed to deliver up to 10 MW at 1.3 MeV; this allows eight modules operating at partial capacity to deliver the required power in the event one module is removed from service. Radiation protection is provided by shielding and by locating critical components in the source and accelerator 35 m from the port into the torus. Neutron shielding in the drift duct provides the added feature of limiting conductance and thus reducing gas flow to and from the torus. Alternative component choices are also discussed for the evolving design. 8 refs., 4 figs., 1 tab

  14. Radiation shielding activities at IDOM

    Energy Technology Data Exchange (ETDEWEB)

    Ordóñez, César Hueso; Gurpegui, Unai Cano; Valiente, Yelko Chento; Poveda, Imanol Zamora, E-mail: cesar.hueso@idom.com [IDOM, Consulting, Engineering and Architecture, S.A.U, Vizcaya (Spain)

    2017-07-01

    When human activities have to be performed under ionising radiation environments the safety of the workers must be guaranteed. Usually three principles are used to accomplish with ALARA (As Low As Reasonably Achievable) requirements: the more distance between the source term and the worker, the better; the less time spent to arrange any task, the better; and, once the previous principles are optimized should the exposure of the workers continues being above the regulatory limits, shielding has to be implemented. Through this paper some different examples of IDOM's shielding design activities are presented. Beginning with the gamma collimators for the Jules Horowitz Reactor, nuclear fuel's behaviour researching facility, where the beam path crosses the reactor's containment walls and is steered up to a gamma detector where the fuel spectrum is analysed and where the beam has to be attenuated several orders of magnitude in a short distance. Later it is shown IDOM’s approach for the shielding of the Emergency Control Management Center of Asociación Nuclear Ascó-Vandellòs-II NPPs, a bunker designed to withstand severe accident conditions and to support the involved staff during 30 days, considering the outside radioactive cloud and the inside source term that filtering units become as they filter the incoming air. And finally, a general approach to this kind of problems is presented, since the study of the source term considering all the possible contributions, passing through the material selection and the thicknesses calculation until the optimization of the materials. (author)

  15. Radiation shielding activities at IDOM

    International Nuclear Information System (INIS)

    Ordóñez, César Hueso; Gurpegui, Unai Cano; Valiente, Yelko Chento; Poveda, Imanol Zamora

    2017-01-01

    When human activities have to be performed under ionising radiation environments the safety of the workers must be guaranteed. Usually three principles are used to accomplish with ALARA (As Low As Reasonably Achievable) requirements: the more distance between the source term and the worker, the better; the less time spent to arrange any task, the better; and, once the previous principles are optimized should the exposure of the workers continues being above the regulatory limits, shielding has to be implemented. Through this paper some different examples of IDOM's shielding design activities are presented. Beginning with the gamma collimators for the Jules Horowitz Reactor, nuclear fuel's behaviour researching facility, where the beam path crosses the reactor's containment walls and is steered up to a gamma detector where the fuel spectrum is analysed and where the beam has to be attenuated several orders of magnitude in a short distance. Later it is shown IDOM’s approach for the shielding of the Emergency Control Management Center of Asociación Nuclear Ascó-Vandellòs-II NPPs, a bunker designed to withstand severe accident conditions and to support the involved staff during 30 days, considering the outside radioactive cloud and the inside source term that filtering units become as they filter the incoming air. And finally, a general approach to this kind of problems is presented, since the study of the source term considering all the possible contributions, passing through the material selection and the thicknesses calculation until the optimization of the materials. (author)

  16. Project requirements for reconstruction of the RA reactor ventilation system, Task 2.8. Measurement of radioactive iodine and other isotopes contents in the gas system of the RA reactor, Annex of the task

    International Nuclear Information System (INIS)

    Vujisic, Lj. et al

    1981-01-01

    This report is a supplement to the task 2.8. When planning and constructing the ventilation system, it was found that it is necessary to perform additional experiments during RA reactor operation at 2 MW power level for a longer period. In addition to the helium system, the potential source of radioactive pollutants is the space below the upper water shielding of the reactor. All the experimental and fuel channels are ending in this space. During repair and fuel exchange radioactivity can be released in this space. For that reason this space is important when planing and designing the filtration system for incidental conditions or planned dehermetisation of the reactor. The third point where radioactive isotope identification was done, was the entrance into the chimney during steady state operation and planned dehermetisation of the reactor. The following samples were measured: gas system during reactor operation at 2 MW power; entrance into the chimney during last 48 hours of reactor operation at 2 MW power; sample on the platform under the upper water shield with the opened fuel channel after the reactor shutdown; and simultaneously with the latter, measurement at the entrance to the chimney. This annex contains the list of identified radioactive isotopes, volatile and gaseous as well as concentration of volatile 131 I on the adsorbents [sr

  17. Numerical analysis and scale experiment design of the hot water layer system of the Brazilian Multipurpose Reactor (RMB reactor)

    International Nuclear Information System (INIS)

    Schweizer, Fernando Lage Araújo

    2014-01-01

    The Brazilian Multipurpose Reactor (RMB) consists in a 30 MW open pool research reactor and its design is currently in development. The RMB is intended to produce a neutron flux applied at material irradiation for radioisotope production and materials and nuclear fuel tests. The reactor is immersed in a deep water pool needed for radiation shielding and thermal protection. A heating and purifying system is applied in research reactors with high thermal power in order to create a Hot Water Layer (HWL) on the pool top preventing that contaminated water from the reactor core neighboring reaches its surface reducing the room radiation dose rate. This dissertation presents a study of the HWL behavior during the reactor operation first hours where perturbations due to the cooling system and pool heating induce a mixing flow in the HWL reducing its protection. Numerical simulations using the CFD code CFX 14.0 have been performed for theoretical dose rate estimation during reactor operation, for a 1/10 scaled down model using dimensional analysis and mesh testing as an initial verification of the commercial code application. Equipment and sensor needed for an experimental bench project were defined by the CFD numerical simulation. (author)

  18. EBR-2 [Experimental Breeder Reactor-2], IFR [Integral Fast Reactor] prototype testing programs

    International Nuclear Information System (INIS)

    Lehto, W.K.; Sackett, J.I.; Lindsay, R.W.; Planchon, H.P.; Lambert, J.D.B.

    1990-01-01

    The Experimental Breeder Reactor-2 (EBR-2) is a sodium cooled power reactor supplying about 20 MWe to the Idaho National Engineering Laboratory (INEL) grid and, in addition, is the key component in the development of the Integral Fast Reactor (IFR). EBR-2's testing capability is extensive and has seen four major phases: (1) demonstration of LMFBR power plant feasibility, (2) irradiation testing for fuel and material development. (3) testing the off-normal performance of fuel and plant systems and (4) operation as the IFR prototype, developing and demonstrating the IFR technology associated with fuel and plant design. Specific programs being carried out in support of the IFR include advanced fuels and materials development and component testing. This paper discusses EBR-2 as the IFR prototype and the associated testing programs. 29 refs

  19. Zero energy reactor RB technical characteristics and experimental possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, S; Takac, S; Raisic, N; Lolic, B; Markovic, H [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1963-04-15

    The zero energy reactor RB was constructed in 1958 in accordance with the nuclear reactor development programme of the Boris Kidric Institute of Nuclear Sciences. The reactor was in operation until the middle of 1959 when the heavy water, serving as the moderator, was transported to the high flux reactor RA, built at the same time at the Boris Kidric Institute. Owing to the fact that the purchase of new quantities of heavy water was planned for 1961 it was decided to reconstruct the RB reactor in order to improve the safety of the system and to obtain better flexibility in performing the experiments. New control, safety and radiation monitoring systems were constructed. Some changes were also made on the reactor tank, water circulation system and the water level monitoring equipment. The reconstruction was completed in 1961. and the heavy water was delivered early in 1962. The reconstructed reactor was critical for the first time in summer 1962, and from that time was in continuous operation. This report presents an outline of the design and construction characteristics of the reactor. The main intention is to inform potential users of the reactor about experimental possibilities, advantages and disadvantages of such a critical facility.

  20. Zero energy reactor RB technical characteristics and experimental possibilities

    International Nuclear Information System (INIS)

    Jovanovic, S.; Takac, S.; Raisic, N.; Lolic, B.; Markovic, H.

    1963-04-01

    The zero energy reactor RB was constructed in 1958 in accordance with the nuclear reactor development programme of the Boris Kidric Institute of Nuclear Sciences. The reactor was in operation until the middle of 1959 when the heavy water, serving as the moderator, was transported to the high flux reactor RA, built at the same time at the Boris Kidric Institute. Owing to the fact that the purchase of new quantities of heavy water was planned for 1961 it was decided to reconstruct the RB reactor in order to improve the safety of the system and to obtain better flexibility in performing the experiments. New control, safety and radiation monitoring systems were constructed. Some changes were also made on the reactor tank, water circulation system and the water level monitoring equipment. The reconstruction was completed in 1961. and the heavy water was delivered early in 1962. The reconstructed reactor was critical for the first time in summer 1962, and from that time was in continuous operation. This report presents an outline of the design and construction characteristics of the reactor. The main intention is to inform potential users of the reactor about experimental possibilities, advantages and disadvantages of such a critical facility