Ground state energy fluctuations in the nuclear shell model
International Nuclear Information System (INIS)
Velazquez, Victor; Hirsch, Jorge G.; Frank, Alejandro; Barea, Jose; Zuker, Andres P.
2005-01-01
Statistical fluctuations of the nuclear ground state energies are estimated using shell model calculations in which particles in the valence shells interact through well-defined forces, and are coupled to an upper shell governed by random 2-body interactions. Induced ground-state energy fluctuations are found to be one order of magnitude smaller than those previously associated with chaotic components, in close agreement with independent perturbative estimates based on the spreading widths of excited states
Equivalence of the spherical and deformed shell-model approach to intruder states
International Nuclear Information System (INIS)
Heyde, K.; Coster, C. de; Ryckebusch, J.; Waroquier, M.
1989-01-01
We point out that the description of intruder states, incorporating particle-hole (p-h) excitation across a closed shell in the spherical shell model or a description starting from the Nilsson model are equivalent. We furthermore indicate that the major part of the nucleon-nucleon interaction, responsible for the low excitation energy of intruder states comes as a two-body proton-neutron quadrupole interaction in the spherical shell model. In the deformed shell model, quadrupole binding energy is gained mainly through the one-body part of the potential. (orig.)
Towards a shell-model description of intruder states and the onset of deformation
International Nuclear Information System (INIS)
Heyde, K.; Van Isacker, P.; Casten, R.F.; Wood, J.L.
1985-01-01
Basing on the nuclear shell-model and concentrating on the monopole, pairing and quadrupole corrections originating from the nucleon-nucleon force, both the appearance of low-lying 0 + intruder states near major closed shells (Z = 50, 82) and sub-shell regions (Z = 40, 64) can be described. Moreover, a number of new facets related to the study of intruder states are presented. 19 refs., 3 figs
Steady state model for the thermal regimes of shells of airships and hot air balloons
Luchev, Oleg A.
1992-10-01
A steady state model of the temperature regime of airships and hot air balloons shells is developed. The model includes three governing equations: the equation of the temperature field of airships or balloons shell, the integral equation for the radiative fluxes on the internal surface of the shell, and the integral equation for the natural convective heat exchange between the shell and the internal gas. In the model the following radiative fluxes on the shell external surface are considered: the direct and the earth reflected solar radiation, the diffuse solar radiation, the infrared radiation of the earth surface and that of the atmosphere. For the calculations of the infrared external radiation the model of the plane layer of the atmosphere is used. The convective heat transfer on the external surface of the shell is considered for the cases of the forced and the natural convection. To solve the mentioned set of the equations the numerical iterative procedure is developed. The model and the numerical procedure are used for the simulation study of the temperature fields of an airship shell under the forced and the natural convective heat transfer.
Directory of Open Access Journals (Sweden)
V. S. Zarubin
2015-01-01
Full Text Available Liquid hydrogen and oxygen are used as the oxidizer and fuel for liquid rocket engines. Liquefied natural gas, which is based on methane, is seen as a promising motor fuel for internal combustion engines. One of the technical problems arising from the use of said cryogenic liquid is to provide containers for storage, transport and use in the propulsion system. In the design and operation of such vessels it is necessary to have reliable information about their temperature condition, on which depend the loss of cryogenic fluids due to evaporation and the stress-strain state of the structural elements of the containers.Uneven temperature distribution along the generatrix of the cylindrical thin-walled shell of rocket cryogenic tanks, in a localized zone of cryogenic liquid level leads to a curvature of the shell and reduce the permissible axle load in a hazard shell buckling in the preparation for the start of the missile in flight with an increasing acceleration. Moving the level of the cryogenic liquid during filling or emptying the tank at a certain combination of parameters results in an increase of the local temperature distribution nonuniformity.Along with experimental study of the shell temperature state of the cryogenic container, methods of mathematical modeling allow to have information needed for designing and testing the construction of cryogenic tanks. In this study a mathematical model is built taking into account features of heat transfer in a cryogenic container, including the boiling cryogenic liquid in the inner surface of the container. This mathematical model describes the temperature state of the thin-walled shell of cylindrical cryogenic tank during filling and emptying. The work also presents a quantitative analysis of this model in case of fixed liquid level, its movement at a constant speed, and harmonic oscillations relative to a middle position. The quantitative analysis of this model has allowed to find the limit options
Constrained-path quantum Monte Carlo approach for non-yrast states within the shell model
Energy Technology Data Exchange (ETDEWEB)
Bonnard, J. [INFN, Sezione di Padova, Padova (Italy); LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France); Juillet, O. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France)
2016-04-15
The present paper intends to present an extension of the constrained-path quantum Monte Carlo approach allowing to reconstruct non-yrast states in order to reach the complete spectroscopy of nuclei within the interacting shell model. As in the yrast case studied in a previous work, the formalism involves a variational symmetry-restored wave function assuming two central roles. First, it guides the underlying Brownian motion to improve the efficiency of the sampling. Second, it constrains the stochastic paths according to the phaseless approximation to control sign or phase problems that usually plague fermionic QMC simulations. Proof-of-principle results in the sd valence space are reported. They prove the ability of the scheme to offer remarkably accurate binding energies for both even- and odd-mass nuclei irrespective of the considered interaction. (orig.)
Identification of shell-model states in $^{135}$Sb populated via $\\beta^{-}$ decay of $^{135}$Sn
Shergur, J; Brown, B A; Cederkäll, J; Dillmann, I; Fraile-Prieto, L M; Hoff, P; Joinet, A; Köster, U; Kratz, K L; Pfeiffer, B; Walters, W B; Wöhr, A
2005-01-01
The $\\beta$- decay of $^{135}$Sn was studied at CERN/ISOLDE using a resonance ionization laser ion source and mass separator to achieve elemental and mass selectivity, respectively. $\\gamma$-ray singles and $\\gamma\\gamma$ coincidence spectra were collected as a function of time with the laser on and with the laser off. These data were used to establish the positions of new levels in $^{135}$Sb, including new low-spin states at 440 and 798 keV, which are given tentative spin and parity assignments of 3/2$^{+}$ and 9/2$^{+}$, respectively. The observed levels of $^{135}$Sb are compared with shell-model calculations using different single-particle energies and different interactions.
Shell model study of high spin states in the N=50 nucleus 93Tc
International Nuclear Information System (INIS)
Ghugre, S.S.; Patel, S.B.; Bhowmik, R.K.
1994-01-01
High spin states in the N=50 nucleus 93 Tc were reinvestigated by using the reaction 64 Zn ( 35 Cl, 4p 2n) at a beam energy of 140 MeV. This was done particularly with a view to observe any γ rays upto 2.7 MeV which may have been missed in our earlier study where the experimental conditions were set to observe γ rays upto 2 MeV. We found four new γ rays of energy: 2484, 2164, 2130 and 69 keV. We have placed these γ rays in the level scheme and it now gets extended to 49/2 - . Though there is no substantial change in the level scheme, placing the γ rays in the level scheme has resulted into two important conclusions: (1) We have performed shell model calculations for 93 Tc nucleus within a model space which encompasses an enlarged proton configuration and allows for the excitation of the neutron across the N=50 core. The excitation of a single neutron across the N=50 core satisfactorily explains the new level scheme. (2) The energy of the 17/2 - isomeric state is now unambiguously placed at 2185 keV. (orig.)
International Nuclear Information System (INIS)
Caurier, E.; Nowacki, F.; Menendez, J.; Poves, A.
2007-02-01
Large scale shell model calculations, with dimensions reaching 10 9 , are carried out to describe the recently observed deformed (ND) and superdeformed (SD) bands based on the first and second excited 0 + states of 40 Ca at 3.35 MeV and 5.21 MeV respectively. A valence space comprising two major oscillator shells, sd and pf, can accommodate most of the relevant degrees of freedom of this problem. The ND band is dominated by configurations with four particles promoted to the pf-shell (4p-4h in short). The SD band by 8p-8h configurations. The ground state of 40 Ca is strongly correlated, but the closed shell still amounts to 65%. The energies of the bands are very well reproduced by the calculations. The out-band transitions connecting the SD band with other states are very small and depend on the details of the mixing among the different np-nh configurations, in spite of that, the calculation describes them reasonably. For the in-band transition probabilities along the SD band, we predict a fairly constant transition quadrupole moment Q 0 (t) ∼ 70 e fm 2 up to J=10, that decreases toward the higher spins. We submit also that the J=8 states of the deformed and superdeformed band are maximally mixed. (authors)
International Nuclear Information System (INIS)
Caurier, E.; Nowacki, F.; Menendez, J.; Poves, A.
2007-01-01
Large-scale shell-model calculations, with dimensions reaching 10 9 , are carried out to describe the recently observed deformed (ND) and superdeformed (SD) bands based on the first and second excited 0 + states of 40 Ca at 3.35 and 5.21 MeV, respectively. A valence space comprising two major oscillator shells, sd and pf, can accommodate most of the relevant degrees of freedom of this problem. The ND band is dominated by configurations with four particles promoted to the pf shell (4p-4h in short). The SD band by 8p-8h configurations. The ground state of 40 Ca is strongly correlated, but the closed shell still amounts to 65%. The energies of the bands are very well reproduced by the calculations. The out-band transitions connecting the SD band with other states are very small and depend on the details of the mixing among the different np-nh configurations; in spite of that, the calculation describes them reasonably. For the in-band transition probabilities along the SD band, we predict a fairly constant transition quadrupole moment Q 0 (t)∼170 e fm 2 up to J=10 that decreases toward the higher spins. We submit also that the J=8 states of the deformed and superdeformed bands are maximally mixed
Shell model Monte Carlo methods
International Nuclear Information System (INIS)
Koonin, S.E.; Dean, D.J.; Langanke, K.
1997-01-01
We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; the resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo (SMMC) methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, the thermal and rotational behavior of rare-earth and γ-soft nuclei, and the calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. (orig.)
Shell model Monte Carlo methods
International Nuclear Information System (INIS)
Koonin, S.E.
1996-01-01
We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of γ-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs
Projected shell model study of yrast states of neutron-deficient odd-mass Pr nuclei
International Nuclear Information System (INIS)
Ibanez-Sandoval, A.; Ortiz, M. E.; Velazquez, V.; Galindo-Uribarri, A.; Hess, P. O.; Sun, Y.
2011-01-01
A wide variety of modern instruments allow us to study neutron-deficient nuclei in the A=130 mass region. Highly deformed nuclei have been found in this region, providing opportunities to study the deformed rotational bands. The description of the 125,127,129,131,133 Pr isotopes with the projected shell model is presented in this paper. Good agreement between theory and experiment is obtained and some characteristics are discussed, including the dynamic moment of inertia J (2) , kinetic moment of inertia J (1) , the crossing of rotational bands, and backbending effects.
Shell Models of Superfluid Turbulence
International Nuclear Information System (INIS)
Wacks, Daniel H; Barenghi, Carlo F
2011-01-01
Superfluid helium consists of two inter-penetrating fluids, a viscous normal fluid and an inviscid superfluid, coupled by a mutual friction. We develop a two-fluid shell model to study superfluid turbulence and investigate the energy spectra and the balance of fluxes between the two fluids in a steady state. At sufficiently low temperatures a 'bottle-neck' develops at high wavenumbers suggesting the need for a further dissipative effect, such as the Kelvin wave cascade.
Temporal structures in shell models
DEFF Research Database (Denmark)
Okkels, F.
2001-01-01
The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...
International Nuclear Information System (INIS)
Kuhnert, A.; Alber, D.; Grawe, H.; Kluge, H.; Maier, K.H.; Reviol, W.; Sun, X.; Beck, E.M.; Byrne, A.P.; Huebel, H.; Bacelar, J.C.; Deleplanque, M.A.; Diamond, R.M.; Stephens, F.S.
1992-01-01
High-spin states in 152 Er have been populated through the 116 Sn( 40 Ar,4n) 152 Er reaction. Prompt and delayed γ-γ-γ-t and γ-e-t coincidences have been measured. Levels and transitions are assigned up to an excitation energy of 15 MeV and spin and parities up to 28 + at 9.7 MeV. A new isomer [t 1/2 =11(1) ns] has been observed at 13.4 MeV. The results are discussed in comparison with neighboring nuclei and with shell-model calculations
Shell model and spectroscopic factors
International Nuclear Information System (INIS)
Poves, P.
2007-01-01
In these lectures, I introduce the notion of spectroscopic factor in the shell model context. A brief review is given of the present status of the large scale applications of the Interacting Shell Model. The spectroscopic factors and the spectroscopic strength are discussed for nuclei in the vicinity of magic closures and for deformed nuclei. (author)
Conventional shell model: some issues
International Nuclear Information System (INIS)
Vallieres, M.; Pan, X.W.; Feng, D.H.; Novoselsky, A.
1997-01-01
We discuss some important issues in shell-model calculations related to the effective interactions used in different regions of the periodic table; in particular the quality of different interactions is discussed, as well as the mass dependence of the interactions. Mention is made of the recently developed Drexel University shell-model (DUSM). (orig.)
Soniat, Thomas M.; Klinck, John M.; Powell, Eric N.; Cooper, Nathan; Abdelguerfi, Mahdi; Hofmann, Eileen E.; Dahal, Janak; Tu, Shengru; Finigan, John; Eberline, Benjamin S.; La Peyre, Jerome F.; LaPeyre, Megan K.; Qaddoura, Fareed
2012-01-01
A numerical model is presented that defines a sustainability criterion as no net loss of shell, and calculates a sustainable harvest of seed (<75 mm) and sack or market oysters (≥75 mm). Stock assessments of the Primary State Seed Grounds conducted east of the Mississippi from 2009 to 2011 show a general trend toward decreasing abundance of sack and seed oysters. Retrospective simulations provide estimates of annual sustainable harvests. Comparisons of simulated sustainable harvests with actual harvests show a trend toward unsustainable harvests toward the end of the time series. Stock assessments combined with shell-neutral models can be used to estimate sustainable harvest and manage cultch through shell planting when actual harvest exceeds sustainable harvest. For exclusive restoration efforts (no fishing allowed), the model provides a metric for restoration success-namely, shell accretion. Oyster fisheries that remove shell versus reef restorations that promote shell accretion, although divergent in their goals, are convergent in their management; both require vigilant attention to shell budgets.
International Nuclear Information System (INIS)
Chen, F. Q.; Sun, Y.
2013-01-01
Description of the interplay between different nuclear shapes is an interesting but challenging problem. The original projected shell model (PSM) is applicable to nuclei with fixed shapes. We extend the PSM by superimposing (angular-momentum- and particle-number-) projected product wave functions in the spirit of the generate coordinate method. With this development, the Gd isotopes across the N = 90 region are studied, and the results indicate spectroscopic features of shape phase transition with varying neutron number. In order to illustrate the shape distribution in microscopic wave functions, we introduce a deformation representation and show that the collectively excited K π = 0 + states in the Gd isotopes have characters of shape vibration. (authors)
Importance-truncated shell model for multi-shell valence spaces
Energy Technology Data Exchange (ETDEWEB)
Stumpf, Christina; Vobig, Klaus; Roth, Robert [Institut fuer Kernphysik, TU Darmstadt (Germany)
2016-07-01
The valence-space shell model is one of the work horses in nuclear structure theory. In traditional applications, shell-model calculations are carried out using effective interactions constructed in a phenomenological framework for rather small valence spaces, typically spanned by one major shell. We improve on this traditional approach addressing two main aspects. First, we use new effective interactions derived in an ab initio approach and, thus, establish a connection to the underlying nuclear interaction providing access to single- and multi-shell valence spaces. Second, we extend the shell model to larger valence spaces by applying an importance-truncation scheme based on a perturbative importance measure. In this way, we reduce the model space to the relevant basis states for the description of a few target eigenstates and solve the eigenvalue problem in this physics-driven truncated model space. In particular multi-shell valence spaces are not tractable otherwise. We combine the importance-truncated shell model with refined extrapolation schemes to approximately recover the exact result. We present first results obtained in the importance-truncated shell model with the newly derived ab initio effective interactions for multi-shell valence spaces, e.g., the sdpf shell.
On the shell model connection of the cluster model
International Nuclear Information System (INIS)
Cseh, J.; Levai, G.; Kato, K.
2000-01-01
Complete text of publication follows. The interrelation of basic nuclear structure models is a longstanding problem. The connection between the spherical shell model and the quadrupole collective model has been studied extensively, and symmetry considerations proved to be especially useful in this respect. A collective band was interpreted in the shell model language long ago as a set of states (of the valence nucleons) with a specific SU(3) symmetry. Furthermore, the energies of these rotational states are obtained to a good approximation as eigenvalues of an SU(3) dynamically symmetric shell model Hamiltonian. On the other hand the relation of the shell model and cluster model is less well explored. The connection of the harmonic oscillator (i.e. SU(3)) bases of the two approaches is known, but it was established only for the unrealistic harmonic oscillator interactions. Here we investigate the question: Can an SU(3) dynamically symmetric interaction provide a similar connection between the spherical shell model and the cluster model, like the one between the shell and collective models? In other words: whether or not the energy of the states of the cluster bands, defined by a specific SU(3) symmetries, can be obtained from a shell model Hamiltonian (with SU(3) dynamical symmetry). We carried out calculations within the framework of the semimicroscopic algebraic cluster model, in which not only the cluster model space is obtained from the full shell model space by an SU(3) symmetry-dictated truncation, but SU(3) dynamically symmetric interactions are also applied. Actually, Hamiltonians of this kind proved to be successful in describing the gross features of cluster states in a wide energy range. The novel feature of the present work is that we apply exclusively shell model interactions. The energies obtained from such a Hamiltonian for several bands of the ( 12 C, 14 C, 16 O, 20 Ne, 40 Ca) + α systems turn out to be in good agreement with the experimental
Quadrupole moment of the 7/21- isomer state in 43S. Shell model study of sulfur isotopes around N=28
International Nuclear Information System (INIS)
Chevrier, Raphael
2013-01-01
The goal of this work consists in providing new insights in the shape coexistence expected in neutron-rich nuclei around the N=28 shell closure. In 43 S, recent experimental data as well as their interpretation in the shell model framework were used to predict the coexistence between a J π =3/2 1 - prolate deformed ground state and a 7/2 1 - rather spherical isomer state. We report on the quadrupole moment measurement Q s of the 7/2 1 - isomer state [E*=320.5(5) keV, T 1/2 =415(3) ns] in 43 S. The TDPAD method was applied on 43 S nuclei produced by the fragmentation of a 48 Ca primary beam at 345 A.MeV, and selected in-flight through the BigRIPS spectrometer at RIKEN (Japan). The measured value, |Q s |=23(3) efm 2 , is in remarkable agreement with that calculated in the shell model framework, although it is significantly larger than that expected for a single-particle state. In order to understand the nature of the correlations responsible for the departure of the isomer state from a pure spherical shape, we report on the results of a shell model study using the modern SDPF-U interaction of the neighbors sulfur isotopes 42,44,46 S. Those calculations allowed to identify a slight triaxial degree of freedom in the structure of these nuclei, although the latter happens to be highly hindered at N=28 in 44 S. Spectroscopic factor calculations show that this slight triaxial degree of freedom also impacts the low-lying structure in 43 S. It allows to better understand the deviation of the spectroscopic quadrupole moment value of the isomer state from the limit case of a pure spherical state. (author) [fr
On the shell-model-connection of the cluster model
International Nuclear Information System (INIS)
Cseh, J.
2000-01-01
Complete text of publication follows. The interrelation of basic nuclear structure models is a longstanding problem. The connection between the spherical shell model and the quadrupole collective model has been studied extensively, and symmetry considerations proved to be especially useful in this respect. A collective band was interpreted in the shell model language long ago [1] as a set of states (of the valence nucleons) with a specific SU(3) symmetry. Furthermore, the energies of these rotational states are obtained to a good approximation as eigenvalues of an SU(3) dynamically symmetric shell model Hamiltonian. On the other hand the relation of the shell model and cluster model is less well explored. The connection of the harmonic oscillator (i.e. SU(3)) bases of the two approaches is known [2] but it was established only for the unrealistic harmonic oscillator interactions. Here we investigate the question: Can an SU(3) dynamically symmetric interaction provide a similar connection between the spherical shell model and the cluster model, like the one between the shell and collective models? In other words: whether or not the energy of the states of the cluster bands, defined by a specific SU(3) symmetries, can be obtained from a shell model Hamiltonian (with SU(3) dynamical symmetry). We carried out calculations within the framework of the semimicroscopic algebraic cluster model [3,4] in order to find an answer to this question, which seems to be affirmative. In particular, the energies obtained from such a Hamiltonian for several bands of the ( 12 C, 14 C, 16 O, 20 Ne, 40 Ca) + α systems turn out to be in good agreement with the experimental values. The present results show that the simple and transparent SU(3) connection between the spherical shell model and the cluster model is valid not only for the harmonic oscillator interactions, but for much more general (SU(3) dynamically symmetric) Hamiltonians as well, which result in realistic energy spectra. Via
Type I Shell Galaxies as a Test of Gravity Models
Energy Technology Data Exchange (ETDEWEB)
Vakili, Hajar; Rahvar, Sohrab [Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of); Kroupa, Pavel, E-mail: vakili@physics.sharif.edu [Helmholtz-Institut für Strahlen-und Kernphysik, Universität Bonn, Nussallee 14-16, D-53115 Bonn (Germany)
2017-10-10
Shell galaxies are understood to form through the collision of a dwarf galaxy with an elliptical galaxy. Shell structures and kinematics have been noted to be independent tools to measure the gravitational potential of the shell galaxies. We compare theoretically the formation of shells in Type I shell galaxies in different gravity theories in this work because this is so far missing in the literature. We include Newtonian plus dark halo gravity, and two non-Newtonian gravity models, MOG and MOND, in identical initial systems. We investigate the effect of dynamical friction, which by slowing down the dwarf galaxy in the dark halo models limits the range of shell radii to low values. Under the same initial conditions, shells appear on a shorter timescale and over a smaller range of distances in the presence of dark matter than in the corresponding non-Newtonian gravity models. If galaxies are embedded in a dark matter halo, then the merging time may be too rapid to allow multi-generation shell formation as required by observed systems because of the large dynamical friction effect. Starting from the same initial state, the observation of small bright shells in the dark halo model should be accompanied by large faint ones, while for the case of MOG, the next shell generation patterns iterate with a specific time delay. The first shell generation pattern shows a degeneracy with the age of the shells and in different theories, but the relative distance of the shells and the shell expansion velocity can break this degeneracy.
Admixtures of shell and cluster states in 18F
International Nuclear Information System (INIS)
Sakuda, Toshimi; Nemoto, Fumiki; Nagata, Sinobu.
1976-01-01
The properties of the low-lying T=0 positive-parity levels in 18 F are shown to be well understood by considering admixtures of 2p shell-model states and ''4p-2h'' states with alpha-cluster structures. In order to represent the ''4p-2h'' states, α- 14 N cluster model is introduced. By this model, weak coupling features and coupling between shell and cluster states are well described. The binding energies of the ground 1 + and the lowest 3 + levels are reproduced by the couplings with the ''4p-2h'' cluster states. On the other hand, weak coupling features of ''4p-2h'' cluster states are disturbed to some extent. As a result, the energy spectrum, E2-transition rates and reduced α-widths of all T=0 positive-parity levels below 7 MeV excitation energy are systematically reproduced. (auth.)
Liu Zhong; Guo Ying Xiang; Zhou Xiao Hong; Lei Xiang Guo; LiuMinLiang; Luo Wan Ju; He Jian Jun; Zheng Yong; Pan Qiang Yan; Gan Zai Guo; Luo Yi Xiao; Hayakawa, T; Oshima, M; Toh, Y; Shizima, T; Hatsukawa, Y; Osa, A; Ishii, T; Sugawara, M
2002-01-01
Excited states of sup 1 sup 4 sup 2 Ce, populated in deep inelastic reactions of sup 8 sup 2 Se projectiles bombarding sup 1 sup 3 sup 9 La target, have been studied to medium spins using in-beam gamma spectroscopy techniques. Three new levels have been identified at 2625, 2995 and 3834 keV, and assigned as 8 sup + , 9 sup ( sup - sup ) and 11 sup ( sup - sup ) , respectively, based on the analysis of the properties of gamma transitions. These new yrast states follow well the level systematics of N 84 isotones. Their structures have been discussed with the help of empirical shell-model calculations
Isogeometric shell formulation based on a classical shell model
Niemi, Antti
2012-09-04
This paper constitutes the first steps in our work concerning isogeometric shell analysis. An isogeometric shell model of the Reissner-Mindlin type is introduced and a study of its accuracy in the classical pinched cylinder benchmark problem presented. In contrast to earlier works [1,2,3,4], the formulation is based on a shell model where the displacement, strain and stress fields are defined in terms of a curvilinear coordinate system arising from the NURBS description of the shell middle surface. The isogeometric shell formulation is implemented using the PetIGA and igakit software packages developed by the authors. The igakit package is a Python package used to generate NURBS representations of geometries that can be utilised by the PetIGA finite element framework. The latter utilises data structures and routines of the portable, extensible toolkit for scientific computation (PETSc), [5,6]. The current shell implementation is valid for static, linear problems only, but the software package is well suited for future extensions to geometrically and materially nonlinear regime as well as to dynamic problems. The accuracy of the approach in the pinched cylinder benchmark problem and present comparisons against the h-version of the finite element method with bilinear elements. Quadratic, cubic and quartic NURBS discretizations are compared against the isoparametric bilinear discretization introduced in [7]. The results show that the quadratic and cubic NURBS approximations exhibit notably slower convergence under uniform mesh refinement as the thickness decreases but the quartic approximation converges relatively quickly within the standard variational framework. The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.
Statistics and the shell model
International Nuclear Information System (INIS)
Weidenmueller, H.A.
1985-01-01
Starting with N. Bohr's paper on compound-nucleus reactions, we confront regular dynamical features and chaotic motion in nuclei. The shell-model and, more generally, mean-field theories describe average nuclear properties which are thus identified as regular features. The fluctuations about the average show chaotic behaviour of the same type as found in classical chaotic systems upon quantisation. These features are therefore generic and quite independent of the specific dynamics of the nucleus. A novel method to calculate fluctuations is discussed, and the results of this method are described. (orig.)
Shell model description of band structure in 48Cr
International Nuclear Information System (INIS)
Vargas, Carlos E.; Velazquez, Victor M.
2007-01-01
The band structure for normal and abnormal parity bands in 48Cr are described using the m-scheme shell model. In addition to full fp-shell, two particles in the 1d3/2 orbital are allowed in order to describe intruder states. The interaction includes fp-, sd- and mixed matrix elements
Isogeometric shell formulation based on a classical shell model
Niemi, Antti; Collier, Nathan; Dalcí n, Lisandro D.; Ghommem, Mehdi; Calo, Victor M.
2012-01-01
The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.
Determination of Hamiltonian matrix for IBM4 and compare it is self value with shells model
International Nuclear Information System (INIS)
Slyman, S.; Hadad, S.; Souman, H.
2004-01-01
The Hamiltonian is determined using the procedure OAI and the mapping of (IBM4) states into the shell model, which is based on the seniority classification scheme. A boson sub-matrix of the shell model Hamiltonian for the (sd) 4 configuration is constructed, and is proved to produce the same eigenvalues as the shell model Hamiltonian for the corresponding fermion states. (authors)
Continuum shell-model with complicated configurations
International Nuclear Information System (INIS)
Barz, H.W.; Hoehn, J.
1977-05-01
The traditional shell model has been combined with the coupled channels method in order to describe resonance reactions. For that purpose the configuration space is divided into two subspaces (Feshbach projection method). Complicated shell-model configurations can be included into the subspace of discrete states which contains the single particle resonance states too. In the subspace of scattering states the equation of motion is solved by using the coupled channels method. Thereby the orthogonality between scattering states and discrete states is ensured. Resonance states are defined with outgoing waves in all channels. By means of simple model calculations the special role of the continuum is investigated. In this connection the energy dependence of the resonance parameters, the isospin mixture via the continuum, threshold effect, as well as the influence of the number of channels taken into account on the widths, positions and dipole strengths of the resonance are discussed. The model is mainly applied to the description of giant resonances excited by the scattering of nucleons and photo-nucleus processes (source term method) found in reactions on light nuclei. The giant resonance observed in the 15 N(p,n) reaction is explained by the inclusion of 2p-2h states. The same is true for the giant resonance in 13 C(J = 1/2, 3/2) as well as for the giant resonance built on the first 3 - state in 16 O. By means of a correlation analysis for the reduced widths amplitudes an access to the doorway conception is found. (author)
Wang, Long-Jun; Sun, Yang; Mizusaki, Takahiro; Oi, Makito; Ghorui, Surja K.
2016-03-01
Background: The recently started physics campaign with the new generation of γ -ray spectrometers, "GRETINA" and "AGATA," will possibly produce many high-quality γ rays from very fast-rotating nuclei. Microscopic models are needed to understand these states. Purpose: It is a theoretical challenge to describe high-spin states in a shell-model framework by the concept of configuration mixing. To meet the current needs, one should overcome the present limitations and vigorously extend the quasiparticle (qp) basis of the projected shell model (PSM). Method: With the help of the recently proposed Pfaffian formulas, we apply the new algorithm and develop a new PSM code that extends the configuration space to include up to 10-qp states. The much-enlarged multi-qp space enables us to investigate the evolutional properties at very high spins in fast-rotating nuclei. Results: We take 134Nd as an example to demonstrate that the known experimental yrast and the several negative-parity side bands in this nucleus could be well described by the calculation. The variations in moment of inertia with spin are reproduced and explained in terms of successive band crossings among the 2-qp, 4-qp, 6-qp, 8-qp, and 10-qp states. Moreover, the electric quadrupole transitions in these bands are studied. Conclusions: A pronounced decrease in the high-spin B (E 2 ) of 134Nd is predicted, which suggests reduction of collectivity at very high spins because of increased level density and complex band mixing. The possibility for a potential application of the present development in the study of highly excited states in warm nuclei is mentioned.
Transition sum rules in the shell model
Lu, Yi; Johnson, Calvin W.
2018-03-01
An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy-weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, which in the case of the EWSR is a double commutator. While most prior applications of the double commutator have been to special cases, we derive general formulas for matrix elements of both operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We apply this simple tool to a number of nuclides and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E 1 ) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground-state electric quadrupole (E 2 ) centroids in the s d shell.
Clustering of 1p-shell nuclei in the framework of the shell model
International Nuclear Information System (INIS)
Kwasniewicz, E.
1991-01-01
The two- and three-fragment clustering of the 1p-shell nuclei has been studied in the framework of the shell model. The absolute probabilities of the required types of clustering in a given nucleus have been obtained by projecting its realistic shell-model wavefunction onto the suitable subspace of the orthonormal, completely antisymmetric two- or three-cluster states. With the aid of these data the selectivity in population of final states produced in multinucleon transfer reactions has been discussed. This problem has also been considered in the approach where the exchange of nucleons between clusters has been neglected. This has enabled to demonstrate the role of the complete antisymmetrization in predicting the intensities of states populated in multinucleon transfer reactions. The compact theory of the multinucleon one- and two-cluster spectroscopic amplitudes has been formulated. The examples of studying the nuclear structure and reactions with the aid of these spectroscopic amplitudes have been presented. (author)
Quark shell model using projection operators
International Nuclear Information System (INIS)
Ullah, N.
1988-01-01
Using the projection operators in the quark shell model, the wave functions for proton are calculated and expressions for calculating the wave function of neutron and also magnetic moment of proton and neutron are derived. (M.G.B.)
Extensions to a nonlinear finite-element axisymmetric shell model based on Reissner's shell theory
International Nuclear Information System (INIS)
Cook, W.A.
1981-01-01
Extensions to shell analysis not usually associated with shell theory are described in this paper. These extensions involve thick shells, nonlinear materials, a linear normal stress approximation, and a changing shell thickness. A finite element shell-of-revolution model has been developed to analyze nuclear material shipping containers under severe impact conditions. To establish the limits for this shell model, the basic assumptions used in its development were studied; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress
Open source integrated modeling environment Delta Shell
Donchyts, G.; Baart, F.; Jagers, B.; van Putten, H.
2012-04-01
In the last decade, integrated modelling has become a very popular topic in environmental modelling since it helps solving problems, which is difficult to model using a single model. However, managing complexity of integrated models and minimizing time required for their setup remains a challenging task. The integrated modelling environment Delta Shell simplifies this task. The software components of Delta Shell are easy to reuse separately from each other as well as a part of integrated environment that can run in a command-line or a graphical user interface mode. The most components of the Delta Shell are developed using C# programming language and include libraries used to define, save and visualize various scientific data structures as well as coupled model configurations. Here we present two examples showing how Delta Shell simplifies process of setting up integrated models from the end user and developer perspectives. The first example shows coupling of a rainfall-runoff, a river flow and a run-time control models. The second example shows how coastal morphological database integrates with the coastal morphological model (XBeach) and a custom nourishment designer. Delta Shell is also available as open-source software released under LGPL license and accessible via http://oss.deltares.nl.
Shell model calculations for exotic nuclei
International Nuclear Information System (INIS)
Brown, B.A.; Wildenthal, B.H.
1991-01-01
A review of the shell-model approach to understanding the properties of light exotic nuclei is given. Binding energies including p and p-sd model spaces and sd and sd-pf model spaces; cross-shell excitations around 32 Mg, including weak-coupling aspects and mechanisms for lowering the ntw excitations; beta decay properties of neutron-rich sd model, of p-sd and sd-pf model spaces, of proton-rich sd model space; coulomb break-up cross sections are discussed. (G.P.) 76 refs.; 12 figs
Modeling the carbon isotope composition of bivalve shells (Invited)
Romanek, C.
2010-12-01
The stable carbon isotope composition of bivalve shells is a valuable archive of paleobiological and paleoenvironmental information. Previous work has shown that the carbon isotope composition of the shell is related to the carbon isotope composition of dissolved inorganic carbon (DIC) in the ambient water in which a bivalve lives, as well as metabolic carbon derived from bivalve respiration. The contribution of metabolic carbon varies among organisms, but it is generally thought to be relatively low (e.g., 90%) in the shells from terrestrial organisms. Because metabolic carbon contains significantly more C-12 than DIC, negative excursions from the expected environmental (DIC) signal are interpreted to reflect an increased contribution of metabolic carbon in the shell. This observation contrasts sharply with modeled carbon isotope compositions for shell layers deposited from the inner extrapallial fluid (EPF). Previous studies have shown that growth lines within the inner shell layer of bivalves are produced during periods of anaerobiosis when acidic metabolic byproducts (e.g., succinic acid) are neutralized (or buffered) by shell dissolution. This requires the pH of EPF to decrease below ambient levels (~7.5) until a state of undersaturation is achieved that promotes shell dissolution. This condition may occur when aquatic bivalves are subjected to external stressors originating from ecological (predation) or environmental (exposure to atm; low dissolved oxygen; contaminant release) pressures; normal physiological processes will restore the pH of EPF when the pressure is removed. As a consequence of this process, a temporal window should also exist in EPF at relatively low pH where shell carbonate is deposited at a reduced saturation state and precipitation rate. For example, EPF chemistry should remain slightly supersaturated with respect to aragonite given a drop of one pH unit (6.5), but under closed conditions, equilibrium carbon isotope fractionation
The alpha-particle and shell models of the nucleus
International Nuclear Information System (INIS)
Perring, J.K.; Skyrme, T.H.R.
1994-01-01
It is shown that it is possible to write down α-particle wave functions for the ground states of 8 Be, 12 C and 16 O, which become, when antisymmetrized, identical with shell-model wave functions. The α-particle functions are used to obtain potentials which can then be used to derive wave functions and energies of excited states. Most of the low-lying states of 16 O are obtained in this way, qualitative agreement with experiment being found. The shell structure of the 0 + level at 6·06 MeV is analyzed, and is found to consist largely of single-particle excitations. The lifetime for pair-production is calculated, and found to be comparable with the experimental value. The validity of the method is discussed, and comparison made with shell-model calculations. (author). 5 refs, 1 tab
Modeling of microencapsulated polymer shell solidification
International Nuclear Information System (INIS)
Boone, T.; Cheung, L.; Nelson, D.; Soane, D.; Wilemski, G.; Cook, R.
1995-01-01
A finite element transport model has been developed and implemented to complement experimental efforts to improve the quality of ICF target shells produced via controlled-mass microencapsulation. The model provides an efficient means to explore the effect of processing variables on the dynamics of shell dimensions, concentricity, and phase behavior. Comparisons with experiments showed that the model successfully predicts the evolution of wall thinning and core/wall density differences. The model was used to efficiently explore and identify initial wall compositions and processing temperatures which resulted in concentricity improvements from 65 to 99%. The evolution of trace amounts of water entering into the shell wall was also tracked in the simulations. Comparisons with phase envelope estimations from modified UNIFAP calculations suggest that the water content trajectory approaches the two-phase region where vacuole formation via microphase separation may occur
Unified description of pf-shell nuclei by the Monte Carlo shell model calculations
Energy Technology Data Exchange (ETDEWEB)
Mizusaki, Takahiro; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Honma, Michio
1998-03-01
The attempts to solve shell model by new methods are briefed. The shell model calculation by quantum Monte Carlo diagonalization which was proposed by the authors is a more practical method, and it became to be known that it can solve the problem with sufficiently good accuracy. As to the treatment of angular momentum, in the method of the authors, deformed Slater determinant is used as the basis, therefore, for making angular momentum into the peculiar state, projected operator is used. The space determined dynamically is treated mainly stochastically, and the energy of the multibody by the basis formed as the result is evaluated and selectively adopted. The symmetry is discussed, and the method of decomposing shell model space into dynamically determined space and the product of spin and isospin spaces was devised. The calculation processes are shown with the example of {sup 50}Mn nuclei. The calculation of the level structure of {sup 48}Cr with known exact energy can be done with the accuracy of peculiar absolute energy value within 200 keV. {sup 56}Ni nuclei are the self-conjugate nuclei of Z=N=28. The results of the shell model calculation of {sup 56}Ni nucleus structure by using the interactions of nuclear models are reported. (K.I.)
Shell model description of Ge isotopes
International Nuclear Information System (INIS)
Hirsch, J G; Srivastava, P C
2012-01-01
A shell model study of the low energy region of the spectra in Ge isotopes for 38 ≤ N ≤ 50 is presented, analyzing the excitation energies, quadrupole moments, B(E2) values and occupation numbers. The theoretical results have been compared with the available experimental data. The shell model calculations have been performed employing three different effective interactions and valence spaces. We have used two effective shell model interactions, JUN45 and jj44b, for the valence space f 5/2 pg 9/2 without truncation. To include the proton subshell f 7/2 in valence space we have employed the fpg effective interaction due to Sorlin et al., with 48 Ca as a core and a truncation in the number of excited particles.
Symmetry-guided large-scale shell-model theory
Czech Academy of Sciences Publication Activity Database
Launey, K. D.; Dytrych, Tomáš; Draayer, J. P.
2016-01-01
Roč. 89, JUL (2016), s. 101-136 ISSN 0146-6410 R&D Projects: GA ČR GA16-16772S Institutional support: RVO:61389005 Keywords : Ab intio shell -model theory * Symplectic symmetry * Collectivity * Clusters * Hoyle state * Orderly patterns in nuclei from first principles Subject RIV: BE - Theoretical Physics Impact factor: 11.229, year: 2016
Pair shell model description of collective motions
International Nuclear Information System (INIS)
Chen Hsitseng; Feng Dahsuan
1996-01-01
The shell model in the pair basis has been reviewed with a case study of four particles in a spherical single-j shell. By analyzing the wave functions according to their pair components, the novel concept of the optimum pairs was developed which led to the proposal of a generalized pair mean-field method to solve the many-body problem. The salient feature of the method is its ability to handle within the framework of the spherical shell model a rotational system where the usual strong configuration mixing complexity is so simplified that it is now possible to obtain analytically the band head energies and the moments of inertia. We have also examined the effects of pair truncation on rotation and found the slow convergence of adding higher spin pairs. Finally, we found that when the SDI and Q .Q interactions are of equal strengths, the optimum pair approximation is still valid. (orig.)
Alpha particle cluster states in (fp)-shell nuclei
International Nuclear Information System (INIS)
Merchant, A.C.
1987-07-01
Alpha particle cluster structure is known experimentally to persist throughout the mass range 16 ≤ A ≤ 20, and has been very successfully described in this region in terms of the Buck-Dover-Vary local potential cluster model. It is argued that an analogous cluster structure should be present in nuclei at the beginning of the (fp) - shell, and the available experimental data are examined to determine likely alpha particle cluster state candidates in the mass range 40 ≤ A ≤ 44. Calculations of the cluster state spectra and mean square cluster-core separation distances (which may be readily used to evaluate E2 electromagnetic transition rates) for sup(40)Ca, sup(42)Ca, sup(42)Sc, sup(43)Sc, sup(43)Ti and sup(44)Ti using the above mentioned model are presented, and compared with experimental measurements where possible. The agreement between theory and experiment is generally good (although inferior to that obtained in the (sd)-shell) and points to the desirability of an extension and improvement of the measurements of the properties of the excited states in these nuclei. (author)
Wellposedness of a cylindrical shell model
International Nuclear Information System (INIS)
McMillan, C.
1994-01-01
We consider a well-known model of a thin cylindrical shell with dissipative feedback controls on the boundary in the form of forces, shears, and moments. We show that the resulting closed loop feedback problem generates a s.c. semigroup of contractions in the energy space
Shell model test of the Porter-Thomas distribution
International Nuclear Information System (INIS)
Grimes, S.M.; Bloom, S.D.
1981-01-01
Eigenvectors have been calculated for the A=18, 19, 20, 21, and 26 nuclei in an sd shell basis. The decomposition of these states into their shell model components shows, in agreement with other recent work, that this distribution is not a single Gaussian. We find that the largest amplitudes are distributed approximately in a Gaussian fashion. Thus, many experimental measurements should be consistent with the Porter-Thomas predictions. We argue that the non-Gaussian form of the complete distribution can be simply related to the structure of the Hamiltonian
Majorana states in prismatic core-shell nanowires
Manolescu, Andrei; Sitek, Anna; Osca, Javier; Serra, Llorenç; Gudmundsson, Vidar; Stanescu, Tudor Dan
2017-09-01
We consider core-shell nanowires with conductive shell and insulating core and with polygonal cross section. We investigate the implications of this geometry on Majorana states expected in the presence of proximity-induced superconductivity and an external magnetic field. A typical prismatic nanowire has a hexagonal profile, but square and triangular shapes can also be obtained. The low-energy states are localized at the corners of the cross section, i.e., along the prism edges, and are separated by a gap from higher energy states localized on the sides. The corner localization depends on the details of the shell geometry, i.e., thickness, diameter, and sharpness of the corners. We study systematically the low-energy spectrum of prismatic shells using numerical methods and derive the topological phase diagram as a function of magnetic field and chemical potential for triangular, square, and hexagonal geometries. A strong corner localization enhances the stability of Majorana modes to various perturbations, including the orbital effect of the magnetic field, whereas a weaker localization favorizes orbital effects and reduces the critical magnetic field. The prismatic geometry allows the Majorana zero-energy modes to be accompanied by low-energy states, which we call pseudo Majorana, and which converge to real Majoranas in the limit of small shell thickness. We include the Rashba spin-orbit coupling in a phenomenological manner, assuming a radial electric field across the shell.
Shell Model Far From Stability: Island of Inversion Mergers
Nowacki, F.; Poves, A.
2018-02-01
In this study we propose a common mechanism for the disappearance of shell closures far from stabilty. With the use of Large Scale Shell Model calculations (SM-CI), we predict that the region of deformation which comprises the heaviest Chromium and Iron isotopes at and beyond N=40 will merge with a new one at N=50 in an astonishing parallel to the N=20 and N=28 case in the Neon and Magnesium isotopes. We propose a valence space including the full pf-shell for the protons and the full sdg shell for the neutrons, which represents a come-back of the the harmonic oscillator shells in the very neutron rich regime. Our calculations preserve the doubly magic nature of the ground state of 78Ni, which, however, exhibits a well deformed prolate band at low excitation energy, providing a striking example of shape coexistence far from stability. This new Island of Inversion (IoI) adds to the four well documented ones at N=8, 20, 28 and 40.
Extensions to a nonlinear finite element axisymmetric shell model based on Reissner's shell theory
International Nuclear Information System (INIS)
Cook, W.A.
1981-01-01
A finite element shell-of-revolution model has been developed to analyze shipping containers under severe impact conditions. To establish the limits for this shell model, I studied the basic assumptions used in its development; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress. (orig./HP)
Neutrino nucleosynthesis in supernovae: Shell model predictions
International Nuclear Information System (INIS)
Haxton, W.C.
1989-01-01
Almost all of the 3 · 10 53 ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. I will argue that these neutrinos interact with nuclei in the ejected shells of the supernovae to produce new elements. It appears that this nucleosynthesis mechanism is responsible for the galactic abundances of 7 Li, 11 B, 19 F, 138 La, and 180 Ta, and contributes significantly to the abundances of about 15 other light nuclei. I discuss shell model predictions for the charged and neutral current allowed and first-forbidden responses of the parent nuclei, as well as the spallation processes that produce the new elements. 18 refs., 1 fig., 1 tab
Shell model for warm rotating nuclei
Energy Technology Data Exchange (ETDEWEB)
Matsuo, M.; Yoshida, K. [Kyoto Univ. (Japan); Dossing, T. [Univ. of Copenhagen (Denmark)] [and others
1996-12-31
Utilizing a shell model which combines the cranked Nilsson mean-field and the residual surface and volume delta two-body forces, the authors discuss the onset of rotational damping in normal- and super-deformed nuclei. Calculation for a typical normal deformed nucleus {sup 168}Yb indicates that the rotational damping sets in at around 0.8 MeV above the yrast line, and about 30 rotational bands of various length exists at a given rotational frequency, in overall agreement with experimental findings. It is predicted that the onset of rotational damping changes significantly in different superdeformed nuclei due to the variety of the shell gaps and single-particle orbits associated with the superdeformed mean-field.
No-Core Shell Model and Reactions
International Nuclear Information System (INIS)
Navratil, P; Ormand, W E; Caurier, E; Bertulani, C
2005-01-01
There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) can predict low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. In this contribution, we present a brief overview of the NCSM with examples of recent applications as well as the first steps taken toward nuclear reaction applications. In particular, we discuss cross section calculations of p+ 6 Li and 6 He+p scattering as well as a calculation of the astrophysically important 7 Be(p, γ) 8 B S-factor
Phases and phase transitions in the algebraic microscopic shell model
Directory of Open Access Journals (Sweden)
Georgieva A. I.
2016-01-01
Full Text Available We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott’s SU(3 basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3 basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.
Connections between the dynamical symmetries in the microscopic shell model
Energy Technology Data Exchange (ETDEWEB)
Georgieva, A. I., E-mail: anageorg@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Drumev, K. P. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria)
2016-03-25
The dynamical symmetries of the microscopic shell model appear as the limiting cases of a symmetry adapted Pairing-Plus-Quadrupole Model /PQM/, with a Hamiltonian containing isoscalar and isovector pairing and quadrupole interactions. We establish a correspondence between each of the three types of pairing bases and Elliott’s SU(3) basis, that describes collective rotation of nuclear systems with quadrupole deformation. It is derived from their complementarity to the same LS coupling chain of the shell model number conserving algebra. The probability distribution of the S U(3) basis states within the pairing eigenstates is also obtained through a numerical diagonalization of the PQM Hamiltonian in each limit. We introduce control parameters, which define the phase diagram of the model and determine the role of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.
Dynamical symmetries of the shell model
International Nuclear Information System (INIS)
Van Isacker, P.
2000-01-01
The applications of spectrum generating algebras and of dynamical symmetries in the nuclear shell model are many and varied. They stretch back to Wigner's early work on the supermultiplet model and encompass important landmarks in our understanding of the structure of the atomic nucleus such as Racah's SU(2) pairing model and Elliot's SU(3) rotational model. One of the aims of this contribution has been to show the historical importance of the idea of dynamical symmetry in nuclear physics. Another has been to indicate that, in spite of being old, this idea continues to inspire developments that are at the forefront of today's research in nuclear physics. It has been argued in this contribution that the main driving features of nuclear structure can be represented algebraically but at the same time the limitations of the symmetry approach must be recognised. It should be clear that such approach can only account for gross properties and that any detailed description requires more involved numerical calculations of which we have seen many fine examples during this symposium. In this way symmetry techniques can be used as an appropriate starting point for detailed calculations. A noteworthy example of this approach is the pseudo-SU(3) model which starting from its initial symmetry Ansatz has grown into an adequate and powerful description of the nucleus in terms of a truncated shell model. (author)
Windows PowerShell desired state configuration revealed
Chaganti, Ravikanth
2014-01-01
Desired State Configuration (DSC) is a powerful new configuration management platform that makes it easier than ever to perform cross-platform configuration management of your infrastructure, whether on-premise or in the cloud. DSC provides the management platform and Application Programming Interface (API) that can be used with any programming language. Windows PowerShell Desired State Configuration Revealed will take you through this new technology from start to finish and demonstrates the DSC interfaces through Windows PowerShell. DSC allows you to manage target devices by simply declarin
Shell model truncation schemes for rotational nuclei
International Nuclear Information System (INIS)
Halse, P.; Jaqua, L.; Barrett, B.R.
1990-01-01
The suitability of the pair condensate approach for rotational states is studied in a single j = 17/2 shell of identical nucleons interacting through a quadrupole-quadrupole hamiltonian. The ground band and a K = 2 excited band are both studied in detail. A direct comparison of the exact states with those constituting the SD and SDG subspaces is used to identify the important degrees of freedom for these levels. The range of pairs necessary for a good description is found to be highly state dependent; S and D pairs are the major constituents of the low-spin ground band levels, while G pairs are needed for those in the γ-band. Energy spectra are obtained for each truncated subspace. SDG pairs allow accurate reproduction of the binding energy and K = 2 excitation energy, but still give a moment of inertia which is about 30% too small even for the lowest levels
Testing refined shell-model interactions in the sd shell: Coulomb excitation of Na26
Siebeck, B; Blazhev, A; Reiter, P; Altenkirch, R; Bauer, C; Butler, P A; De Witte, H; Elseviers, J; Gaffney, L P; Hess, H; Huyse, M; Kröll, T; Lutter, R; Pakarinen, J; Pietralla, N; Radeck, F; Scheck, M; Schneiders, D; Sotty, C; Van Duppen, P; Vermeulen, M; Voulot, D; Warr, N; Wenander, F
2015-01-01
Background: Shell-model calculations crucially depend on the residual interaction used to approximate the nucleon-nucleon interaction. Recent improvements to the empirical universal sd interaction (USD) describing nuclei within the sd shell yielded two new interactions—USDA and USDB—causing changes in the theoretical description of these nuclei. Purpose: Transition matrix elements between excited states provide an excellent probe to examine the underlying shell structure. These observables provide a stringent test for the newly derived interactions. The nucleus Na26 with 7 valence neutrons and 3 valence protons outside the doubly-magic 16O core is used as a test case. Method: A radioactive beam experiment with Na26 (T1/2=1,07s) was performed at the REX-ISOLDE facility (CERN) using Coulomb excitation at safe energies below the Coulomb barrier. Scattered particles were detected with an annular Si detector in coincidence with γ rays observed by the segmented MINIBALL array. Coulomb excitation cross sections...
Potentials for calculating both parity states in p-shell nuclei
International Nuclear Information System (INIS)
Resler, D.A.
1989-01-01
A Hamiltonian employing a ''physical'' central two-body potential has been used for simultaneous calculation of both normal and non-normal parity states of p-shell nuclei. Normal parity states have been calculated in a full 0/h bar/ω space and non-normal parity states in a full 1/h bar/ω space with the effects of spurious center-of-mass states completely removed. No explicit core is used in any of the shell model calculations. Results are compared with experimental data and previous shell model calculations for the following nuclei: 4 He, /sup 5,6,7,8/Li, 8 Be, /sup 13,14/C, and 13 N. 34 refs., 9 figs., 3 tabs
Magnetic monopole interactions: shell structure of meson and baryon states
International Nuclear Information System (INIS)
Akers, D.
1986-01-01
It is suggested that a low-mass magnetic monopole of Dirac charge g = (137/2)e may be interacting with a c-quark's magnetic dipole moment to produce Zeeman splitting of meson states. The mass M 0 = 2397 MeV of the monopole is in contrast to the 10 16 -GeV monopoles of grand unification theories (GUT). It is shown that shell structure of energy E/sub n/ = M 0 + 1/4nM 0 ... exists for meson states. The presence of symmetric meson states leads to the identification of the shell structure. The possible existence of the 2397-MeV magnetic monopole is shown to quantize quark masses in agreement with calculations of quantum chromodynamics (QCD). From the shell structure of meson states, the existence of two new mesons is predicted: eta(1814 +/- 50 MeV) with I/sup G/(J/sup PC/) = 0 + (0 -+ ) and eta/sub c/ (3907 +/- 100 MeV) with J/sup PC/ = 0 -+ . The presence of shell structure for baryon states is shown
Note on off-shell relations in nonlinear sigma model
International Nuclear Information System (INIS)
Chen, Gang; Du, Yi-Jian; Li, Shuyi; Liu, Hanqing
2015-01-01
In this note, we investigate relations between tree-level off-shell currents in nonlinear sigma model. Under Cayley parametrization, all odd-point currents vanish. We propose and prove a generalized U(1) identity for even-point currents. The off-shell U(1) identity given in http://dx.doi.org/10.1007/JHEP01(2014)061 is a special case of the generalized identity studied in this note. The on-shell limit of this identity is equivalent with the on-shell KK relation. Thus this relation provides the full off-shell correspondence of tree-level KK relation in nonlinear sigma model.
Quasi-molecular states in sd-shell nuclei
International Nuclear Information System (INIS)
Kubono, S.; Ikeda, N.; Nomura, T.
1988-08-01
Quasi-molecular states near and below the threshold of the molecular configuration in sd-shell nuclei are discussed using recent experimental data with particle-gamma coincidence method and particle-particle coincidence method. Possible quasi-molecular states have been identified in 24 Mg as well as in 28 Si and 32 S. The important role of quasi-molecular states are discussed, specifically for the shape evolution of nuclei as a function of excitation energy and angular momentum. (author)
Finite element model for nonlinear shells of revolution
International Nuclear Information System (INIS)
Cook, W.A.
1979-01-01
Nuclear material shipping containers have shells of revolution as basic structural components. Analytically modeling the response of these containers to severe accident impact conditions requires a nonlinear shell-of-revolution model that accounts for both geometric and material nonlinearities. Existing models are limited to large displacements, small rotations, and nonlinear materials. The paper presents a finite element model for a nonlinear shell of revolution that will account for large displacements, large strains, large rotations, and nonlinear materials
Recent evolution of theoretical models in inner shell photoionization
International Nuclear Information System (INIS)
Combet Farnoux, F.
1978-01-01
This paper is a brief review of various atomic theoretical models recently developed to calculate photoionization cross sections in the low energy range (from the far ultraviolet to the soft X ray region). For both inner and outer shells concerned, we emphasize the necessity to go beyond the independent particle models by means of the introduction of correlation effects in both initial and final states. The basic physical ideas of as elaborated models as Random Phase Approximation with exchange, Many Body Perturbation Theory and R matrix Theory are outlined and summarized. As examples, the results of some calculations are shown and compared with experiment
High-spin states in sd-shell nuclei
International Nuclear Information System (INIS)
Poel, C.J. van der.
1982-01-01
A systematic picture of the structure of high-spin states in the mass range A = 29 - 41 is developed on the basis of experimental results for the nuclei 34 Cl, 38 K and 39 K. It is shown that for 34 Cl the difficulties induced by the relatively low cross section can be overcome. Combination of the data obtained from a γ-γ coincidence experiment with the 24 Mg + 12 C reaction, using the LACSS, and from threshold measurements in the 31 P + α reaction, establishes an unambiguous level scheme. By means of accurate angular-distribution measurements unambiguous spin and parity assignments are made to the high-spin levels. From the results a rather simple shell-model picture for the structure of the high-spin states evolves. Several authors have published experimental work on high-spin states in 39 K, with seriously conflicting conclusions, however, for the spin-parity assignments. The powerful coincidence set-up with the LACSS enables a discrimination between the conflicting results from the previous studies. In this way, unambiguous, model-independent, spin-parity assignments to the high-spin levels are established. Highly selective experimental methods are used to identify the high-spin states of 38 K. It is shown that with a pulsed beam in the reaction 24 Mg + 16 O advantage can be taken of the presence of a long-lived high-spin isomeric level in this nucleus. The gamma-decay of the isomer is extensively studied. With the pulsed beam, also some states above the isomer could be located. The subsequent use of two Compton-suppression spectrometers in a γ-γ coincidence experiment reveals a number of high-spin levels at higher excitation energies. (Auth.)
Shell model in large spaces and statistical spectroscopy
International Nuclear Information System (INIS)
Kota, V.K.B.
1996-01-01
For many nuclear structure problems of current interest it is essential to deal with shell model in large spaces. For this, three different approaches are now in use and two of them are: (i) the conventional shell model diagonalization approach but taking into account new advances in computer technology; (ii) the shell model Monte Carlo method. A brief overview of these two methods is given. Large space shell model studies raise fundamental questions regarding the information content of the shell model spectrum of complex nuclei. This led to the third approach- the statistical spectroscopy methods. The principles of statistical spectroscopy have their basis in nuclear quantum chaos and they are described (which are substantiated by large scale shell model calculations) in some detail. (author)
Structural Acoustic Physics Based Modeling of Curved Composite Shells
2017-09-19
NUWC-NPT Technical Report 12,236 19 September 2017 Structural Acoustic Physics -Based Modeling of Curved Composite Shells Rachel E. Hesse...SUBTITLE Structural Acoustic Physics -Based Modeling of Curved Composite Shells 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...study was to use physics -based modeling (PBM) to investigate wave propagations through curved shells that are subjected to acoustic excitation. An
Nuclear spectroscopy in large shell model spaces: recent advances
International Nuclear Information System (INIS)
Kota, V.K.B.
1995-01-01
Three different approaches are now available for carrying out nuclear spectroscopy studies in large shell model spaces and they are: (i) the conventional shell model diagonalization approach but taking into account new advances in computer technology; (ii) the recently introduced Monte Carlo method for the shell model; (iii) the spectral averaging theory, based on central limit theorems, in indefinitely large shell model spaces. The various principles, recent applications and possibilities of these three methods are described and the similarity between the Monte Carlo method and the spectral averaging theory is emphasized. (author). 28 refs., 1 fig., 5 tabs
Oscillating shells: A model for a variable cosmic object
Nunez, Dario
1997-01-01
A model for a possible variable cosmic object is presented. The model consists of a massive shell surrounding a compact object. The gravitational and self-gravitational forces tend to collapse the shell, but the internal tangential stresses oppose the collapse. The combined action of the two types of forces is studied and several cases are presented. In particular, we investigate the spherically symmetric case in which the shell oscillates radially around a central compact object.
Multiplicities of states od equivalent fermion shells
International Nuclear Information System (INIS)
Savukinas, A.Yu.; Glembotskij, I.I.
1980-01-01
Classification of states of three or four equivalent fermions has been studied, i.e. possible terms and their multiplicities have been determined. For this purpose either the group theory or evident expressions for the fractional-parentage coefficients have been used. In the first approach the formulas obtained by other authors for the multiplicities of terms through the characters of the transformation matrices of bond moments have been used. This approach happens to be more general as compared with the second one, as expressions for the fractional-parentage coefficients in many cases are not known. The multiplicities of separate terms have been determined. It has been shown that the number of terms of any multiplicity becomes constant when l or j is increased [ru
Shell model the Monte Carlo way
International Nuclear Information System (INIS)
Ormand, W.E.
1995-01-01
The formalism for the auxiliary-field Monte Carlo approach to the nuclear shell model is presented. The method is based on a linearization of the two-body part of the Hamiltonian in an imaginary-time propagator using the Hubbard-Stratonovich transformation. The foundation of the method, as applied to the nuclear many-body problem, is discussed. Topics presented in detail include: (1) the density-density formulation of the method, (2) computation of the overlaps, (3) the sign of the Monte Carlo weight function, (4) techniques for performing Monte Carlo sampling, and (5) the reconstruction of response functions from an imaginary-time auto-correlation function using MaxEnt techniques. Results obtained using schematic interactions, which have no sign problem, are presented to demonstrate the feasibility of the method, while an extrapolation method for realistic Hamiltonians is presented. In addition, applications at finite temperature are outlined
Shell model the Monte Carlo way
Energy Technology Data Exchange (ETDEWEB)
Ormand, W.E.
1995-03-01
The formalism for the auxiliary-field Monte Carlo approach to the nuclear shell model is presented. The method is based on a linearization of the two-body part of the Hamiltonian in an imaginary-time propagator using the Hubbard-Stratonovich transformation. The foundation of the method, as applied to the nuclear many-body problem, is discussed. Topics presented in detail include: (1) the density-density formulation of the method, (2) computation of the overlaps, (3) the sign of the Monte Carlo weight function, (4) techniques for performing Monte Carlo sampling, and (5) the reconstruction of response functions from an imaginary-time auto-correlation function using MaxEnt techniques. Results obtained using schematic interactions, which have no sign problem, are presented to demonstrate the feasibility of the method, while an extrapolation method for realistic Hamiltonians is presented. In addition, applications at finite temperature are outlined.
Decay of giant resonances states in radiative pion capture by 1p shell nuclei
International Nuclear Information System (INIS)
Dogotar, G.E.
1978-01-01
The decay of the giant resonance states excited in tthe radiative pion capture on the 9 Be, 11 B, 13 C and 14 N nuclei is considered in the shell model with intermediate coupling. It is shown that the excited states in the daughter nuclei (A-1, Z-1) are mainly populated by intermediate states with spin by two units larger than the spin of the target nuclei. Selected coincidence experiments are proposed
Intruder states at the N=20 shell closure
International Nuclear Information System (INIS)
Heyde, K.
1991-01-01
It is indicated that mp-mh (multiple) excitations across closed shells can occur at low energy throughout the nuclear mass region. Besides the 4p-4h, 8p-8h configurations, that are deformed, coexisting low-lying excitations are mainly observed for light N=Z nuclei. A new class of 2p-2h intruder O + state is shown to exist in nuclei where a neutron excess is present. In the latter cases, the proton-neutron interaction energy between the excited 2p-2h configuration and the open shell accounts for a very specific mass dependence in the intruder excitation energy. The experimental evidence that corroborates the idea of intruder states will be given. (G.P.) 28 refs.; 13 figs
Effect of solid state fermentation of peanut shell on its dye adsorption performance.
Liu, Jiayang; Wang, Zhixin; Li, Hongyan; Hu, Changwei; Raymer, Paul; Huang, Qingguo
2018-02-01
The effect of solid state fermentation of peanut shell to produce beneficial laccase and on its dye adsorption performance was evaluated. The resulting residues from solid fermentation were tested as sorbents (designated as SFs) in comparison to the raw peanut shell (RPS) for their ability to remove crystal violet from water. The fermentation process reduced the adsorption capacity (q m ) of SF by about 50%, and changed the sorptive behavior when compared to the RPS. The Langmuir model was more suitable for fitting adsorption by SFs. q m was positively correlated with the surface area of peanut shell, but negatively correlated with acid detergent lignin content. For all the sorbents tested, the process was spontaneous and endothermic, and the adsorption followed both the pseudo 1st and 2nd order kinetic model and the film diffusion model. Dye adsorption efficiency was greater when SFs dispersed solution than when placed in filter packets. Copyright © 2017 Elsevier Ltd. All rights reserved.
Perturbation theory instead of large scale shell model calculations
International Nuclear Information System (INIS)
Feldmeier, H.; Mankos, P.
1977-01-01
Results of large scale shell model calculations for (sd)-shell nuclei are compared with a perturbation theory provides an excellent approximation when the SU(3)-basis is used as a starting point. The results indicate that perturbation theory treatment in an SU(3)-basis including 2hω excitations should be preferable to a full diagonalization within the (sd)-shell. (orig.) [de
Nuclear deformation in the configuration-interaction shell model
Alhassid, Y.; Bertsch, G. F.; Gilbreth, C. N.; Mustonen, M. T.
2018-02-01
We review a method that we recently introduced to calculate the finite-temperature distribution of the axial quadrupole operator in the laboratory frame using the auxiliary-field Monte Carlo technique in the framework of the configuration-interaction shell model. We also discuss recent work to determine the probability distribution of the quadrupole shape tensor as a function of intrinsic deformation β,γ by expanding its logarithm in quadrupole invariants. We demonstrate our method for an isotope chain of samarium nuclei whose ground states describe a crossover from spherical to deformed shapes.
Intrinsic Density Matrices of the Nuclear Shell Model
International Nuclear Information System (INIS)
Deveikis, A.; Kamuntavichius, G.
1996-01-01
A new method for calculation of shell model intrinsic density matrices, defined as two-particle density matrices integrated over the centre-of-mass position vector of two last particles and complemented with isospin variables, has been developed. The intrinsic density matrices obtained are completely antisymmetric, translation-invariant, and do not employ a group-theoretical classification of antisymmetric states. They are used for exact realistic density matrix expansion within the framework of the reduced Hamiltonian method. The procedures based on precise arithmetic for calculation of the intrinsic density matrices that involve no numerical diagonalization or orthogonalization have been developed and implemented in the computer code. (author). 11 refs., 2 tabs
Realistic shell-model calculations for Sn isotopes
International Nuclear Information System (INIS)
Covello, A.; Andreozzi, F.; Coraggio, L.; Gargano, A.; Porrino, A.
1997-01-01
We report on a shell-model study of the Sn isotopes in which a realistic effective interaction derived from the Paris free nucleon-nucleon potential is employed. The calculations are performed within the framework of the seniority scheme by making use of the chain-calculation method. This provides practically exact solutions while cutting down the amount of computational work required by a standard seniority-truncated calculation. The behavior of the energy of several low-lying states in the isotopes with A ranging from 122 to 130 is presented and compared with the experimental one. (orig.)
Morphing the Shell Model into an Effective Theory
International Nuclear Information System (INIS)
Haxton, W. C.; Song, C.-L.
2000-01-01
We describe a strategy for attacking the canonical nuclear structure problem--bound-state properties of a system of point nucleons interacting via a two-body potential--which involves an expansion in the number of particles scattering at high momenta, but is otherwise exact. The required self-consistent solutions of the Bloch-Horowitz equation for effective interactions and operators are obtained by an efficient Green's function method based on the Lanczos algorithm. We carry out this program for the simplest nuclei, d and 3 He , in order to explore the consequences of reformulating the shell model as a controlled effective theory. (c) 2000 The American Physical Society
Shell-model Monte Carlo studies of nuclei
International Nuclear Information System (INIS)
Dean, D.J.
1997-01-01
The pair content and structure of nuclei near N = Z are described in the frwnework of shell-model Monte Carlo (SMMC) calculations. Results include the enhancement of J=0 T=1 proton-neutron pairing at N=Z nuclei, and the maxked difference of thermal properties between even-even and odd-odd N=Z nuclei. Additionally, a study of the rotational properties of the T=1 (ground state), and T=0 band mixing seen in 74 Rb is presented
Shell structure of the A = 6 ground states from three-body dynamics
International Nuclear Information System (INIS)
Lehman, D.R.; Parke, W.C.
1983-01-01
Three-body (αNN) models of the 6 He and 6 Li ground states are used to investigate their shell structure. Three models for each nucleus are considered: simple, full (nn), and full (np) for 6 He, and simple, full (0%), and full (4%) for 6 Li. The full models in both cases are obtained by including the S/sub 1/2/, P/sub 1/2/, and P/sub 3/2/ partial waves of the αN interaction, whereas the simple model truncates to only the strongly resonant P/sub 3/2/ wave. The 6 He full models distinguish between use of the nn or np parameters for the 1 S 0 NN interaction, while the 6 Li full models have either a pure 3 S 1 NN interaction (0%) or a 3 S 1 - 3 D 1 interaction that leads to a 4% d-wave component in the deuteron (4%). These models are used to calculate the probabilities of the orbital components of the wave functions, the configuration-space single-particle orbital densities, and the configuration-space two-particle wave function amplitudes in j-j coupling with the nucleon coordinates referred to the alpha particle as the ''core'' or ''center of force.'' The results are then compared with those from phenomenological and realistic-interaction shell models. Major findings of the comparison are the following: None of the shell models considered have a distribution of orbital probabilities across shells like that predicted by three-body models; the orbital rms radii from three-body models indicate an ordering of the orbits within shells, i.e., p/sub 1/2/ outside p/sub 3/2/, unlike oscillator shell models with a single oscillator parameter where the p-shell orbitals have the same shape; and, as expected, three-body orbital densities decay at large radial distances as exponentials rather than the too compact Gaussian falling off of oscillator shell models
Shell model studies in the N = 54 isotones 99Rh, 100Pd
International Nuclear Information System (INIS)
Ghugre, S.S.; Sarkar, S.; Chintalapudi, S.N.
1996-01-01
The shell model in reproducing the observed level is used to investigate the observed level sequences in 99 Rh and 100 Pd within the spherical shell model framework. Shell model calculations have been performed using the code OXBASH
Isospin invariant boson models for fp-shell nuclei
International Nuclear Information System (INIS)
Van Isacker, P.
1994-01-01
Isospin invariant boson models, IBM-3 and IBM-4, applicable in nuclei with neutrons and protons in the same valence shell, are reviewed. Some basic results related to these models are discussed: the mapping onto the shell model, the relation to Wigner's supermultiplet scheme, the boson-number and isospin dependence of parameters, etc. These results are examined for simple single-j shell situations (e.g. f 7/2 ) and their extension to the f p shell is investigated. Other extensions discussed here concern the treatment of odd-mass nuclei and the classification of particle-hole excitations in light nuclei. The possibility of a pseudo-SU(4) supermultiplet scheme in f p -shell nuclei is discussed. (author) 4 figs., 3 tabs., 23 refs
Statistical properties of the nuclear shell-model Hamiltonian
International Nuclear Information System (INIS)
Dias, H.; Hussein, M.S.; Oliveira, N.A. de
1986-01-01
The statistical properties of realistic nuclear shell-model Hamiltonian are investigated in sd-shell nuclei. The probability distribution of the basic-vector amplitude is calculated and compared with the Porter-Thomas distribution. Relevance of the results to the calculation of the giant resonance mixing parameter is pointed out. (Author) [pt
Comparing several boson mappings with the shell model
International Nuclear Information System (INIS)
Menezes, D.P.; Yoshinaga, Naotaka; Bonatsos, D.
1990-01-01
Boson mappings are an essential step in establishing a connection between the successful phenomenological interacting boson model and the shell model. The boson mapping developed by Bonatsos, Klein and Li is applied to a single j-shell and the resulting energy levels and E2 transitions are shown for a pairing plus quadrupole-quadrupole Hamiltonian. The results are compared to the exact shell model calculation, as well as to these obtained through use of the Otsuka-Arima-Iachello mapping and the Zirnbauer-Brink mapping. In all cases good results are obtained for the spherical and near-vibrational cases
Deriving the nuclear shell model from first principles
Barrett, Bruce R.; Dikmen, Erdal; Vary, James P.; Maris, Pieter; Shirokov, Andrey M.; Lisetskiy, Alexander F.
2014-09-01
The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. Supported by the US NSF under Grant No. 0854912, the US DOE under
Ab Initio Study of 40Ca with an Importance Truncated No-Core Shell Model
Energy Technology Data Exchange (ETDEWEB)
Roth, R; Navratil, P
2007-05-22
We propose an importance truncation scheme for the no-core shell model, which enables converged calculations for nuclei well beyond the p-shell. It is based on an a priori measure for the importance of individual basis states constructed by means of many-body perturbation theory. Only the physically relevant states of the no-core model space are considered, which leads to a dramatic reduction of the basis dimension. We analyze the validity and efficiency of this truncation scheme using different realistic nucleon-nucleon interactions and compare to conventional no-core shell model calculations for {sup 4}He and {sup 16}O. Then, we present the first converged calculations for the ground state of {sup 40}Ca within no-core model spaces including up to 16{h_bar}{Omega}-excitations using realistic low-momentum interactions. The scheme is universal and can be easily applied to other quantum many-body problems.
Proceedings of a symposium on the occasion of the 40th anniversary of the nuclear shell model
International Nuclear Information System (INIS)
Lee, T.S.H.; Wiringa, R.B.
1990-03-01
This report contains papers on the following topics: excitation of 1p-1h stretched states with the (p,n) reaction as a test of shell-model calculations; on Z=64 shell closure and some high spin states of 149 Gd and 159 Ho; saturating interactions in 4 He with density dependence; are short-range correlations visible in very large-basis shell-model calculations?; recent and future applications of the shell model in the continuum; shell model truncation schemes for rotational nuclei; the particle-hole interaction and high-spin states near A-16; magnetic moment of doubly closed shell +1 nucleon nucleus 41 Sc(I π =7/2 - ); the new magic nucleus 96 Zr; comparing several boson mappings with the shell model; high spin band structures in 165 Lu; optical potential with two-nucleon correlations; generalized valley approximation applied to a schematic model of the monopole excitation; pair approximation in the nuclear shell model; and many-particle, many-hole deformed states
A finite element model for nonlinear shells of revolution
International Nuclear Information System (INIS)
Cook, W.A.
1979-01-01
A shell-of-revolution model was developed to analyze impact problems associated with the safety analysis of nuclear material shipping containers. The nonlinear shell theory presented by Eric Reissner in 1972 was used to develop our model. Reissner's approach includes transverse shear deformation and moments turning about the middle surface normal. With these features, this approach is valid for both thin and thick shells. His theory is formulated in terms of strain and stress resultants that refer to the undeformed geometry. This nonlinear shell model is developed using the virtual work principle associated with Reissner's equilibrium equations. First, the virtual work principle is modified for incremental loading; then it is linearized by assuming that the nonlinear portions of the strains are known. By iteration, equilibrium is then approximated for each increment. A benefit of this approach is that this iteration process makes it possible to use nonlinear material properties. (orig.)
Recent shell-model results for exotic nuclei
Directory of Open Access Journals (Sweden)
Utsuno Yusuke
2014-03-01
Full Text Available We report on our recent advancement in the shell model and its applications to exotic nuclei, focusing on the shell evolution and large-scale calculations with the Monte Carlo shell model (MCSM. First, we test the validity of the monopole-based universal interaction (VMU as a shell-model interaction by performing large-scale shell-model calculations in two different mass regions using effective interactions which partly comprise VMU. Those calculations are successful and provide a deeper insight into the shell evolution beyond the single-particle model, in particular showing that the evolution of the spin-orbit splitting due to the tensor force plays a decisive role in the structure of the neutron-rich N ∼ 28 region and antimony isotopes. Next, we give a brief overview of recent developments in MCSM, and show that it is applicable to exotic nuclei that involve many valence orbits. As an example of its applications to exotic nuclei, shape coexistence in 32Mg is examined.
Novel extrapolation method in the Monte Carlo shell model
International Nuclear Information System (INIS)
Shimizu, Noritaka; Abe, Takashi; Utsuno, Yutaka; Mizusaki, Takahiro; Otsuka, Takaharu; Honma, Michio
2010-01-01
We propose an extrapolation method utilizing energy variance in the Monte Carlo shell model to estimate the energy eigenvalue and observables accurately. We derive a formula for the energy variance with deformed Slater determinants, which enables us to calculate the energy variance efficiently. The feasibility of the method is demonstrated for the full pf-shell calculation of 56 Ni, and the applicability of the method to a system beyond the current limit of exact diagonalization is shown for the pf+g 9/2 -shell calculation of 64 Ge.
Fermion dynamical symmetry and the nuclear shell model
International Nuclear Information System (INIS)
Ginocchio, J.N.
1985-01-01
The interacting boson model (IBM) has been very successful in giving a unified and simple description of the spectroscopic properties of a wide range of nuclei, from vibrational through rotational nuclei. The three basic assumptions of the model are that: (1) the valence nucleons move about a doubly closed core, (2) the collective low-lying states are composed primarily of coherent pairs of neutrons and pairs of protons coupled to angular momentum zero and two, and (3) these coherent pairs are approximated as bosons. In this review we shall show how it is possible to have fermion Hamiltonians which have a class of collective eigenstates composed entirely of monopole and quadrupole pairs of fermions. Hence these models satisfy the assumptions (1) and (2) above but no boson approximation need be made. Thus the Pauli principle is kept in tact. Furthermore the fermion shell model states excluded in the IBM can be classified by the number of fermion pairs which are not coherent monopole or quadrupole pairs. Hence the mixing of these states into the low-lying spectrum can be calculated in a systematic and tractable manner. Thus we can introduce features which are outside the IBM. 11 refs
Shell-model predictions for Lambda Lambda hypernuclei
International Nuclear Information System (INIS)
Gal, A.; Millener, D.
2011-01-01
It is shown how the recent shell-model determination of ΛN spin-dependent interaction terms in Λ hypernuclei allows for a reliable deduction of ΛΛ separation energies in ΛΛ hypernuclei across the nuclear p shell. Comparison is made with the available data, highlighting # Lambda# # Lambda# 11 Be and # Lambda# # Lambda# 12 Be which have been suggested as possible candidates for the KEK-E373 HIDA event.
Ab Initio Symmetry-Adapted No-Core Shell Model
International Nuclear Information System (INIS)
Draayer, J P; Dytrych, T; Launey, K D
2011-01-01
A multi-shell extension of the Elliott SU(3) model, the SU(3) symmetry-adapted version of the no-core shell model (SA-NCSM), is described. The significance of this SA-NCSM emerges from the physical relevance of its SU(3)-coupled basis, which – while it naturally manages center-of-mass spuriosity – provides a microscopic description of nuclei in terms of mixed shape configurations. Since typically configurations of maximum spatial deformation dominate, only a small part of the model space suffices to reproduce the low-energy nuclear dynamics and hence, offers an effective symmetry-guided framework for winnowing of model space. This is based on our recent findings of low-spin and high-deformation dominance in realistic NCSM results and, in turn, holds promise to significantly enhance the reach of ab initio shell models.
Experimental Damage Identification of a Model Reticulated Shell
Directory of Open Access Journals (Sweden)
Jing Xu
2017-04-01
Full Text Available The damage identification of a reticulated shell is a challenging task, facing various difficulties, such as the large number of degrees of freedom (DOFs, the phenomenon of modal localization and transition, and low modeling accuracy. Based on structural vibration responses, the damage identification of a reticulated shell was studied. At first, the auto-regressive (AR time series model was established based on the acceleration responses of the reticulated shell. According to the changes in the coefficients of the AR model between the damaged conditions and the undamaged condition, the damage of the reticulated shell can be detected. In addition, the damage sensitive factors were determined based on the coefficients of the AR model. With the damage sensitive factors as the inputs and the damage positions as the outputs, back-propagation neural networks (BPNNs were then established and were trained using the Levenberg–Marquardt algorithm (L–M algorithm. The locations of the damages can be predicted by the back-propagation neural networks. At last, according to the experimental scheme of single-point excitation and multi-point responses, the impact experiments on a K6 shell model with a scale of 1/10 were conducted. The experimental results verified the efficiency of the proposed damage identification method based on the AR time series model and back-propagation neural networks. The proposed damage identification method can ensure the safety of the practical engineering to some extent.
Hallez, Yannick; Meireles, Martine
2016-10-11
Electrostatic interactions play a key role in hollow shell suspensions as they determine their structure, stability, thermodynamics, and rheology and also the loading capacity of small charged species for nanoreservoir applications. In this work, fast, reliable modeling strategies aimed at predicting the electrostatics of hollow shells for one, two, and many colloids are proposed and validated. The electrostatic potential inside and outside a hollow shell with a finite thickness and a specific permittivity is determined analytically in the Debye-Hückel (DH) limit. An expression for the interaction potential between two such hollow shells is then derived and validated numerically. It follows a classical Yukawa form with an effective charge depending on the shell geometry, permittivity, and inner and outer surface charge densities. The predictions of the Ornstein-Zernike (OZ) equation with this pair potential to determine equations of state are then evaluated by comparison to results obtained with a Brownian dynamics algorithm coupled to the resolution of the linearized Poisson-Boltzmann and Laplace equations (PB-BD simulations). The OZ equation based on the DLVO-like potential performs very well in the dilute regime as expected, but also quite well, and more surprisingly, in the concentrated regime in which full spheres exhibit significant many-body effects. These effects are shown to vanish for shells with small thickness and high permittivity. For highly charged hollow shells, we propose and validate a charge renormalization procedure. Finally, using PB-BD simulations, we show that the cell model predicts the ion distribution inside and outside hollow shells accurately in both electrostatically dilute and concentrated suspensions. We then determine the shell loading capacity as a function of salt concentration, volume fraction, and surface charge density for nanoreservoir applications such as drug delivery, sensing, or smart coatings.
Many-body forces in nuclear shell-model
International Nuclear Information System (INIS)
Rath, P.K.
1985-01-01
In the microscopic derivation of the effective Hamiltonian for the nuclear shell model many-body forces between the valence nucleons occur. These many-body forces can be discriminated in ''real'' many-body forces, which can be related to mesonic and internal degrees of freedom of the nucleons, and ''effective'' many-body forces, which arise by the confinement of the nucleonic Hilbert space to the finite-dimension shell-model space. In the present thesis the influences of such three-body forces on the spectra of sd-shell nuclei are studied. For this the two common techniques for shell-model calculations (Oak Ridge-Rochester and Glasgow representation) are extended in such way that a general three-body term in the Hamiltonian can be regarded. The studies show that the repulsive contributions of the considered three-nucleon forces become more important with increasing number of valence nucleons. By this the particle-number dependence of empirical two-nucleon forces can be qualitatively explained. A special kind of effective many-body force occurs in the folded diagram expansion of the energy-dependent effective Hamiltonian for the shell model. Thereby it is shown that the contributions of the folded diagrams with three nucleons are just as important as those with two nucleons. Thus it is to be suspected that the folded diagram expansion contains many-particle terms with arbitrary particle number. The present studies however show that four nucleon effects are neglegible so that the folded diagram expansion can be confined to two- and three-particle terms. In shell-model calculations which extend over several main shells the influences of the spurious center-of-mass motion must be regarded. A procedure is discussed by which these spurious degrees of freedom can be exactly separated. (orig.) [de
Solving the nuclear shell model with an algebraic method
International Nuclear Information System (INIS)
Feng, D.H.; Pan, X.W.; Guidry, M.
1997-01-01
We illustrate algebraic methods in the nuclear shell model through a concrete example, the fermion dynamical symmetry model (FDSM). We use this model to introduce important concepts such as dynamical symmetry, symmetry breaking, effective symmetry, and diagonalization within a higher-symmetry basis. (orig.)
Structure of exotic nuclei by large-scale shell model calculations
International Nuclear Information System (INIS)
Utsuno, Yutaka; Otsuka, Takaharu; Mizusaki, Takahiro; Honma, Michio
2006-01-01
An extensive large-scale shell-model study is conducted for unstable nuclei around N = 20 and N = 28, aiming to investigate how the shell structure evolves from stable to unstable nuclei and affects the nuclear structure. The structure around N = 20 including the disappearance of the magic number is reproduced systematically, exemplified in the systematics of the electromagnetic moments in the Na isotope chain. As a key ingredient dominating the structure/shell evolution in the exotic nuclei from a general viewpoint, we pay attention to the tensor force. Including a proper strength of the tensor force in the effective interaction, we successfully reproduce the proton shell evolution ranging from N = 20 to 28 without any arbitrary modifications in the interaction and predict the ground state of 42Si to contain a large deformed component
International Nuclear Information System (INIS)
Saha, S.; Palit, R.; Sethi, J.
2012-01-01
The excited states of nuclei near N=50 closed shell provide suitable laboratory for testing the interactions of shell model states, possible presence of high spin isomers and help in understanding the shape transition as the higher orbitals are occupied. In particular, the structure of N = 49 isotones (and Z =32 to 46) with one hole in N=50 shell gap have been investigated using different reactions. Interestingly, the high spin states in these isotones have contribution from particle excitations across the respective proton and neutron shell gaps and provide suitable testing ground for the prediction of shell model interactions describing theses excitations across the shell gap. In the literature, extensive study of the high spin states of heavier N = 49 isotones starting with 91 Mo up to 95 Pd are available. Limited information existed on the high spin states of lighter isotones. Therefore, the motivation of the present work is to extend the high spin structure of 89 Zr and to characterize the structure of these levels through comparison with the large scale shell model calculations based on two new residual interactions in f 5/2 pg 9/2 model space
The contribution of Skyrme Hartree-Fock calculations to the understanding of the shell model
International Nuclear Information System (INIS)
Zamick, L.
1984-01-01
The authors present a detailed comparison of Skyrme Hartree-Fock and the shell model. The H-F calculations are sensitive to the parameters that are chosen. The H-F results justify the use of effective charges in restricted model space calculations by showing that the core contribution can be large. Further, the H-F results roughly justify the use of a constant E2 effective charge, but seem to yield nucleus dependent E4 effective charges. The H-F can yield results for E6 and higher multipoles, which would be zero in s-d model space calculations. On the other side of the coin in H-F the authors can easily consider only the lowest rotational band, whereas in the shell model one can calculate the energies and properties of many more states. In the comparison some apparent problems remain, in particular E4 transitions in the upper half of the s-d shell
Mayer–Jensen Shell Model and Magic Numbers
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 12. Mayer-Jensen Shell Model and Magic Numbers - An Independent Nucleon Model with Spin-Orbit Coupling. R Velusamy. General Article Volume 12 Issue 12 December 2007 pp 12-24 ...
Decaying and kicked turbulence in a shell model
DEFF Research Database (Denmark)
Hooghoudt, Jan Otto; Lohse, Detlef; Toschi, Federico
2001-01-01
Decaying and periodically kicked turbulence are analyzed within the Gledzer–Ohkitani–Yamada shell model, to allow for sufficiently large scaling regimes. Energy is transferred towards the small scales in intermittent bursts. Nevertheless, mean field arguments are sufficient to account for the ens......Decaying and periodically kicked turbulence are analyzed within the Gledzer–Ohkitani–Yamada shell model, to allow for sufficiently large scaling regimes. Energy is transferred towards the small scales in intermittent bursts. Nevertheless, mean field arguments are sufficient to account...
The experimental and shell model approach to 100Sn
International Nuclear Information System (INIS)
Grawe, H.; Maier, K.H.; Fitzgerald, J.B.; Heese, J.; Spohr, K.; Schubart, R.; Gorska, M.; Rejmund, M.
1995-01-01
The present status of experimental approach to 100 Sn and its shell model structure is given. New developments in experimental techniques, such as low background isomer spectroscopy and charged particle detection in 4π are surveyed. Based on recent experimental data shell model calculations are used to predict the structure of the single- and two-nucleon neighbours of 100 Sn. The results are compared to the systematic of Coulomb energies and spin-orbit splitting and discussed with respect to future experiments. (author). 51 refs, 11 figs, 1 tab
Major shell centroids in the symplectic collective model
International Nuclear Information System (INIS)
Draayer, J.P.; Rosensteel, G.; Tulane Univ., New Orleans, LA
1983-01-01
Analytic expressions are given for the major shell centroids of the collective potential V(#betta#, #betta#) and the shape observable #betta# 2 in the Sp(3,R) symplectic model. The tools of statistical spectroscopy are shown to be useful, firstly, in translating a requirement that the underlying shell structure be preserved into constraints on the parameters of the collective potential and, secondly, in giving a reasonable estimate for a truncation of the infinite dimensional symplectic model space from experimental B(E2) transition strengths. Results based on the centroid information are shown to compare favorably with results from exact calculations in the case of 20 Ne. (orig.)
Cluster model of s-and p-shell ΛΛ hypernuclei
Indian Academy of Sciences (India)
The binding energy ( ) of the s- and p-shell hypernuclei are calculated variationally in the cluster model and multidimensional integrations are performed using Monte Carlo. A variety of phenomenological -core potentials consistent with the -core energies and a wide range of simulated s-state potentials are ...
Shell model Monte Carlo investigation of rare earth nuclei
International Nuclear Information System (INIS)
White, J. A.; Koonin, S. E.; Dean, D. J.
2000-01-01
We utilize the shell model Monte Carlo method to study the structure of rare earth nuclei. This work demonstrates the first systematic full oscillator shell with intruder calculations in such heavy nuclei. Exact solutions of a pairing plus quadrupole Hamiltonian are compared with the static path approximation in several dysprosium isotopes from A=152 to 162, including the odd mass A=153. Some comparisons are also made with Hartree-Fock-Bogoliubov results from Baranger and Kumar. Basic properties of these nuclei at various temperatures and spin are explored. These include energy, deformation, moments of inertia, pairing channel strengths, band crossing, and evolution of shell model occupation numbers. Exact level densities are also calculated and, in the case of 162 Dy, compared with experimental data. (c) 2000 The American Physical Society
Nucleon-pair approximation to the nuclear shell model
Energy Technology Data Exchange (ETDEWEB)
Zhao, Y.M., E-mail: ymzhao@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Arima, A. [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Musashi Gakuen, 1-26-1 Toyotamakami Nerima-ku, Tokyo 176-8533 (Japan)
2014-12-01
Atomic nuclei are complex systems of nucleons–protons and neutrons. Nucleons interact with each other via an attractive and short-range force. This feature of the interaction leads to a pattern of dominantly monopole and quadrupole correlations between like particles (i.e., proton–proton and neutron–neutron correlations) in low-lying states of atomic nuclei. As a consequence, among dozens or even hundreds of possible types of nucleon pairs, very few nucleon pairs such as proton and neutron pairs with spin zero, two (in some cases spin four), and occasionally isoscalar spin-aligned proton–neutron pairs, play important roles in low-energy nuclear structure. The nucleon-pair approximation therefore provides us with an efficient truncation scheme of the full shell model configurations which are otherwise too large to handle for medium and heavy nuclei in foreseeable future. Furthermore, the nucleon-pair approximation leads to simple pictures in physics, as the dimension of nucleon-pair subspace is always small. The present paper aims at a sound review of its history, formulation, validity, applications, as well as its link to previous approaches, with the focus on the new developments in the last two decades. The applicability of the nucleon-pair approximation and numerical calculations of low-lying states for realistic atomic nuclei are demonstrated with examples. Applications of pair approximations to other problems are also discussed.
Final Report Fermionic Symmetries and Self consistent Shell Model
International Nuclear Information System (INIS)
Zamick, Larry
2008-01-01
In this final report in the field of theoretical nuclear physics we note important accomplishments.We were confronted with 'anomoulous' magnetic moments by the experimetalists and were able to expain them. We found unexpected partial dynamical symmetries--completely unknown before, and were able to a large extent to expain them. The importance of a self consistent shell model was emphasized.
Deformed shell model studies of spectroscopic properties of Zn and ...
Indian Academy of Sciences (India)
2014-04-05
Apr 5, 2014 ... April 2014 physics pp. 757–767. Deformed shell model studies of ... experiments without isotopical enrichment thereby reducing the cost considerably. By taking a large mass of the sample because of its low cost, one can ...
Bursts and shocks in a continuum shell model
DEFF Research Database (Denmark)
Andersen, Ken Haste; Bohr, Tomas; Jensen, M.H.
1998-01-01
We study a burst event, i.e., the evolution of an initial condition having support only in a finite interval of k-space, in the continuum shell model due to Parisi. We show that the continuum equation without forcing or dissipation can be explicitly written in characteristic form and that the right...
Projected shell model study of neutron- deficient 122Ce
Indian Academy of Sciences (India)
Projected shell model; band diagram; yrast energies; electromagnetic quan- ... signed to 122Ce by detecting γ-rays in coincidence with evaporated charged particles .... 0.75 from the free nucleon values to account for the core-polarization and ...
A different interpretation of the nuclear shell model
International Nuclear Information System (INIS)
Fabre de la Ripelle, M.
1984-12-01
In the first order approximation the nucleons are moving into a collective well extracted from the two-body N-N interaction. The nuclear shell model is explained by the structure of the first order solution of the Schroedinger equation. In the next step the two-body correlations generated by the N-N potential are introduced in the wave function
A shell-model calculation in terms of correlated subsystems
International Nuclear Information System (INIS)
Boisson, J.P.; Silvestre-Brac, B.
1979-01-01
A method for solving the shell-model equations in terms of a basis which includes correlated subsystems is presented. It is shown that the method allows drastic truncations of the basis to be made. The corresponding calculations are easy to perform and can be carried out rapidly
Chaotic behaviour of the nuclear shell-model hamiltonian
International Nuclear Information System (INIS)
Dias, H.; Hussein, M.S.; Oliveira, N.A. de; Wildenthal, B.H.
1987-11-01
Large scale nuclear shell-model calculations for several nuclear systems are discussed. In particular, the statistical baheviour of the energy eigenvalues and eigenstates, are discussed. The chaotic behaviour of the NSMH is then shown to be quite useful in calculating the spreading width of the highly collective multipole giant resonances. (author) [pt
Quantum chaos in the two-center shell model
Energy Technology Data Exchange (ETDEWEB)
Milek, B; Noerenberg, W; Rozmej, P [Gesellschaft fuer Schwerionenforschung m.b.H., Darmstadt (Germany, F.R.)
1989-11-01
Within an axially symmetric two-center shell model single-particle levels with {Omega}=1/2 are analyzed with respect to their level-spacing distributions and avoided level crossings as functions of the shape parameters. Only for shapes sufficiently far from any additional symmetry, ideal Wigner distributions are found as signature for quantum chaos. (orig.).
Quantum chaos in the two-center shell model
Energy Technology Data Exchange (ETDEWEB)
Milek, B; Noerenberg, W; Rozmej, P
1989-03-01
Within an axially symmetric two-center shell model single-particle levels with ..cap omega.. = 1/2 are analyzed with respect to their level-spacing distributions and avoided level crossings as functions of the shape parameters. Only for shapes sufficiently far from any additional symmetry, ideal Wigner distributions are found as signature for quantum chaos.
Intruder level and deformation in SD-pair shell model
International Nuclear Information System (INIS)
Luo Yan'an; Ning Pingzhi; Pan Feng
2004-01-01
The influence of intruder level on nuclear deformation is studied within the framework of the nucleon-pair shell model truncated to an SD-pair subspace. The results suggest that the intruder level has a tendency to reduce the deformation and plays an important role in determining the onset of rotational behavior. (authors)
Acoustic modeling of shell-encapsulated gas bubbles
P.J.A. Frinking (Peter); N. de Jong (Nico)
1998-01-01
textabstractExisting theoretical models do not adequately describe the scatter and attenuation properties of the ultrasound contrast agents Quantison(TM) and Myomap(TM). An adapted version of the Rayleigh-Plesset equation, in which the shell is described by a viscoelastic solid, is proposed and
The shell model. Towards a unified description of nuclear structure
Energy Technology Data Exchange (ETDEWEB)
Poves, Alfredo [Departamento de Fisica Teorica, Universidad Autonoma Cantoblanco, 28049 - Madrid (Spain); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)
1998-12-31
In this series of lectures we present the foundations of the spherical shell model that we treat as an approximation to the exact solution of the full secular problem. We introduce the notions of valence space, effective interaction and effective operator. We analyse the structure of the realistic effective interactions, identifying their monopole part with the spherical mean field. The multipole Hamiltonian is shown to have a universal (simple) form that includes pairing (isovector and isoscalar), quadrupole, octupole, deca-pole, and ({sigma}{center_dot}{tau})({sigma}{center_dot}{tau}). We describe the methods of resolution of the secular problem, in particular the Lanczos method. The model is applied to the description of nuclear deformation and its relationship with the deformed mean field theories is studied. We propose a new symmetry, `quasi`-SU3, to understand deformation in the spherical basis. Finally, we discuss the domain of nuclei very far from the valley of {beta} stability, addressing the vanishing of some magic closures that can be explained in terms of intruder states. (author) 53 refs., 20 figs., 3 tabs.
Recent Developments in No-Core Shell-Model Calculations
International Nuclear Information System (INIS)
Navratil, P.; Quaglioni, S.; Stetcu, I.; Barrett, B.R.
2009-01-01
We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.
Recent Developments in No-Core Shell-Model Calculations
Energy Technology Data Exchange (ETDEWEB)
Navratil, P; Quaglioni, S; Stetcu, I; Barrett, B R
2009-03-20
We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.
The shell model. Towards a unified description of nuclear structure
International Nuclear Information System (INIS)
Poves, Alfredo
1998-01-01
In this series of lectures we present the foundations of the spherical shell model that we treat as an approximation to the exact solution of the full secular problem. We introduce the notions of valence space, effective interaction and effective operator. We analyse the structure of the realistic effective interactions, identifying their monopole part with the spherical mean field. The multipole Hamiltonian is shown to have a universal (simple) form that includes pairing (isovector and isoscalar), quadrupole, octupole, deca-pole, and (σ·τ)(σ·τ). We describe the methods of resolution of the secular problem, in particular the Lanczos method. The model is applied to the description of nuclear deformation and its relationship with the deformed mean field theories is studied. We propose a new symmetry, 'quasi'-SU3, to understand deformation in the spherical basis. Finally, we discuss the domain of nuclei very far from the valley of β stability, addressing the vanishing of some magic closures that can be explained in terms of intruder states. (author)
Super-hypernuclei in the quark-shell model, 2
International Nuclear Information System (INIS)
Terazawa, Hidezumi.
1989-07-01
By following the previous paper, where the quark-shell model of nuclei in quantum chromodynamics is briefly reviewed, a short review of the MIT bag model of nuclei is presented for comparison and a simple estimate of the Hλ ('hexalambda') mass is also made for illustration. Furthermore, an even shorter review of the 'nucleon cluster model' of nuclei is presented for further comparison. (J.P.N.)
Monte Carlo evaluation of path integral for the nuclear shell model
International Nuclear Information System (INIS)
Lang, G.H.
1993-01-01
The authors present a path-integral formulation of the nuclear shell model using auxillary fields; the path-integral is evaluated by Monte Carlo methods. The method scales favorably with valence-nucleon number and shell-model basis: full-basis calculations are demonstrated up to the rare-earth region, which cannot be treated by other methods. Observables are calculated for the ground state and in a thermal ensemble. Dynamical correlations are obtained, from which strength functions are extracted through the Maximum Entropy method. Examples in the s-d shell, where exact diagonalization can be carried out, compared well with exact results. The open-quotes sign problemclose quotes generic to quantum Monte Carlo calculations is found to be absent in the attractive pairing-plus-multipole interactions. The formulation is general for interacting fermion systems and is well suited for parallel computation. The authors have implemented it on the Intel Touchstone Delta System, achieving better than 99% parallelization
Use of shell model calculations in R-matrix studies of neutron-induced reactions
International Nuclear Information System (INIS)
Knox, H.D.
1986-01-01
R-matrix analyses of neutron-induced reactions for many of the lightest p-shell nuclei are difficult due to a lack of distinct resonance structure in the reaction cross sections. Initial values for the required R-matrix parameters, E,sub(lambda) and γsub(lambdac) for states in the compound system, can be obtained from shell model calculations. In the present work, the results of recent shell model calculations for the lithium isotopes have been used in R-matrix analyses of 6 Li+n and 7 Li+n reactions for E sub(n) 7 Li and 8 Li on the 6 Li+n and 7 Li+n reaction mechanisms and cross sections are discussed. (author)
International Nuclear Information System (INIS)
Galishin, A.Z.
1995-01-01
The nonaxisymmetric thermoelastic stress-strain state (SSS) of branched laminar orthotropic shells was considered; the axisymmetric thermoviscoelastic SSS of branched laminar orthotropic shells was considered; and the axisymmetric thermoviscoelastoplastic SSS of branched laminar isotropic shells was considered, taking into account of the transverse-shear deformation. In the present work, in contrast, the axisymmetric thermoviscoelastoplastic SSS of branched laminar isotropic shells is considered, taking account of transverse-shear and torsional deformation. Layers that are made from orthotropic materials and deform in the elastic region may be present
Li, Yuan
2012-09-12
Polycyclic aromatic hydrocarbons with an open-shell singlet biradical ground state are of fundamental interest and have potential applications in materials science. However, the inherent high reactivity makes their synthesis and characterization very challenging. In this work, a convenient synthetic route was developed to synthesize two kinetically blocked heptazethrene (HZ-TIPS) and octazethrene (OZ-TIPS) compounds with good stability. Their ground-state electronic structures were systematically investigated by a combination of different experimental methods, including steady-state and transient absorption spectroscopy, variable temperature NMR, electron spin resonance (ESR), superconducting quantum interfering device (SQUID), FT Raman, and X-ray crystallographic analysis, assisted by unrestricted symmetry-broken density functional theory (DFT) calculations. All these demonstrated that the heptazethrene derivative HZ-TIPS has a closed-shell ground state while its octazethrene analogue OZ-TIPS with a smaller energy gap exists as an open-shell singlet biradical with a large measured biradical character (y = 0.56). Large two-photon absorption (TPA) cross sections (σ(2)) were determined for HZ-TIPS (σ(2)max = 920 GM at 1250 nm) and OZ-TIPS (σ(2)max = 1200 GM at 1250 nm). In addition, HZ-TIPS and OZ-TIPS show a closely stacked 1D polymer chain in single crystals. © 2012 American Chemical Society.
Li, Zhendong; Liu, Wenjian
2016-01-12
A benchmark set of 11 small radicals is set up to assess the performance of time-dependent density functional theory (TD-DFT) for the excited states of open-shell systems. Both the unrestricted (U-TD-DFT) and spin-adapted (X-TD-DFT) formulations of TD-DFT are considered. For comparison, the well-established EOM-CCSD (equation-of-motion coupled-cluster with singles and doubles) is also used. In total, 111 low-lying singly excited doublet states are accessed by all the three approaches. Taking the MRCISD+Q (multireference configuration interaction with singles and doubles plus the Davidson correction) results as the benchmark, it is found that both U-TD-DFT and EOM-CCSD perform well for those states dominated by singlet-coupled single excitations (SCSE) from closed-shell to open-shell, open-shell to vacant-shell, or closed-shell to vacant-shell orbitals. However, for those states dominated by triplet-coupled single excitations (TCSE) from closed-shell to vacant-shell orbitals, both U-TD-DFT and EOM-CCSD fail miserably due to severe spin contaminations. In contrast, X-TD-DFT provides balanced descriptions of both SCSE and TCSE. As far as the functional dependence is concerned, it is found that, when the Hartree-Fock ground state does not suffer from the instability problem, both global hybrid (GH) and range-separated hybrid (RSH) functionals perform grossly better than pure density functionals, especially for Rydberg and charge-transfer excitations. However, if the Hartree-Fock ground state is instable or nearly instable, GH and RSH tend to underestimate severely the excitation energies. The SAOP (statistically averaging of model orbital potentials) performs more uniformly than any other density functionals, although it generally overestimates the excitation energies of valence excitations. Not surprisingly, both EOM-CCSD and adiabatic TD-DFT are incapable of describing excited states with substantial double excitation characters.
Coupled-states calculations of argon L-shell impact ionisation
International Nuclear Information System (INIS)
Martir, M.H.; Ford, A.L.; Reading, J.F.
1982-01-01
A coupled-states method is used to calculate the corrections to the first Born approximation for L-shell impact ionisation in the ion-atom collisions p+Ar and α+Ar at energies between 100 and 850 keV amu -1 . Using a classical projectile path and a pseudostate description of the ionisation continuum, the pseudostate and partial-wave convergence is considered. It is found that the absolute cross sections for these collisions are sensitive to the particular independent-particle-model (IPM) target-atom potential which is used. A modification to the long-range part of the neutral-atom Hartree-Fock (HF) potential is proposed that lowers the energy of the unbound pseudostates and that thereby brings the L-shell removal energies closer to the experimental ionisation potentials. With this modified HF potential good agreement between the present L-shell ionisation cross sections and experimental L-vacancy production cross sections is found. (author)
Numerical simulation of stress-strain state of electrophoretic shell molds
Sviridov, A. V.; Odinokov, V. I.; Dmitriev, E. A.; Evstigneev, A. I.; Bashkov, O. V.
2017-10-01
In the foundry engineering, castings obtained in one-piece non-gas-generating high-refractory electrophoretic shell molds (ShM) by investment patterns (IP) have an increased rejects percentage associated with low deformation resistance and crack resistance of the SM at different stages of their formation and manufacturing. Crack resistance of the ShM based on IP depends mainly on their stress-strain state (SSS) at various stages of mold forming. SSS decrease significantly improves their crack resistance and decreases their rejects percentage of castings occurring due to clogging and surface defects. In addition, the known methods of decreasing the SSS are still poorly understood. Thus, current research trends are to determine SSS at each stage of ShM forming and develop the ways to decrease it. Theoretical predicting of crack formation in multiple-layer axisymmetric shell molds is given in the work [1], and SSS of multiple-layer axisymmetric shell molds is given in the work [2]. Monolayer electrophoretic ShM had a lack of concern in this field, thus it became an argument for the present workMathematical Model of ShM SSS
Pion-nucleus double charge exchange and the nuclear shell model
International Nuclear Information System (INIS)
Auerbach, N.; Gibbs, W.R.; Ginocchio, J.N.; Kaufmann, W.B.
1988-01-01
The pion-nucleus double charge exchange reaction is studied with special emphasis on nuclear structure. The reaction mechanism and nuclear structure aspects of the process are separated using both the plane-wave and distorted-wave impulse approximations. Predictions are made employing both the seniority model and a full shell model (with a single active orbit). Transitions to the double analog state and to the ground state of the residual nucleus are computed. The seniority model yields particularly simple relations among double charge exchange cross sections for nuclei within the same shell. Limitations of the seniority model and of the plane-wave impulse approximation are discussed as well as extensions to the generalized seniority scheme. Applications of the foregoing ideas to single charge exchange are also presented
Shell model calculations at superdeformed shapes
International Nuclear Information System (INIS)
Nazarewicz, W.; Dobaczewski, J.; Van Isacker, P.
1991-01-01
Spectroscopy of superdeformed nuclear states opens up an exciting possibility to probe new properties of the nuclear mean field. In particular, the unusually deformed atomic nucleus can serve as a microscopic laboratory of quantum-mechanical symmetries of a three dimensional harmonic oscillator. The classifications and coupling schemes characteristic of weakly deformed systems are expected to be modified in the superdeformed world. The ''superdeformed'' symmetries lead to new quantum numbers and new effective interactions that can be employed in microscopic calculations. New classification schemes can be directly related to certain geometrical properties of the nuclear shape. 63 refs., 7 figs
A REMARK ON FORMAL MODELS FOR NONLINEARLY ELASTIC MEMBRANE SHELLS
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper gives all the two-dimensional membrane models obtained from formal asymptotic analysis of the three-dimensional geometrically exact nonlinear model of a thin elastic shell made with a Saint Venant-Kirchhoff material. Therefore, the other models can be quoted as flexural nonlinear ones. The author also gives the formal equations solved by the associated stress tensor and points out that only one of those models leads, by linearization, to the “classical” linear limiting membrane model, whose juetification has already been established by a convergence theorem.
Structures of $p$-shell double-$\\Lambda$ hypernuclei studied with microscopic cluster models
Kanada-En'yo, Yoshiko
2018-01-01
$0s$-orbit $\\Lambda$ states in $p$-shell double-$\\Lambda$ hypernuclei ($^{\\ \\,A}_{\\Lambda\\Lambda}Z$), $^{\\ \\,8}_{\\Lambda\\Lambda}\\textrm{Li}$, $^{\\ \\,9}_{\\Lambda\\Lambda}\\textrm{Li}$, $^{10,11,12}_{\\ \\ \\ \\ \\ \\Lambda\\Lambda}\\textrm{Be}$, $^{12,13}_{\\ \\ \\Lambda\\Lambda}\\textrm{B}$, and $^{\\,14}_{\\Lambda\\Lambda}\\textrm{C}$ are investigated. Microscopic cluster models are applied to core nuclear part and a potential model is adopted for $\\Lambda$ particles. The $\\Lambda$-core potential is a folding ...
Directory of Open Access Journals (Sweden)
Young K. Bae
2014-01-01
Full Text Available Metastable Innershell Molecular State (MIMS, an innershell-bound ultra-high-energy molecule, was previously proposed to explain a ∼40% efficiency of soft-X-ray generation in ∼0.05 keV/amu nanoparticle impact on solids. Here, the MIMS model has been extended and applied to interpreting the experimental K-shell X-ray satellite spectra for more than 40 years in keV-MeV/amu heavy-ion impact on solids. The binding energies of the K-shell MIMS of elements from Al to Ti were determined to be 80–200 eV. The successful extension of the model to the K-shell MIMS confirms that all elements in the periodic table and their combinations are subjected to the MIMS formation.
Dynamic model of open shell structures buried in poroelastic soils
Bordón, J. D. R.; Aznárez, J. J.; Maeso, O.
2017-08-01
This paper is concerned with a three-dimensional time harmonic model of open shell structures buried in poroelastic soils. It combines the dual boundary element method (DBEM) for treating the soil and shell finite elements for modelling the structure, leading to a simple and efficient representation of buried open shell structures. A new fully regularised hypersingular boundary integral equation (HBIE) has been developed to this aim, which is then used to build the pair of dual BIEs necessary to formulate the DBEM for Biot poroelasticity. The new regularised HBIE is validated against a problem with analytical solution. The model is used in a wave diffraction problem in order to show its effectiveness. It offers excellent agreement for length to thickness ratios greater than 10, and relatively coarse meshes. The model is also applied to the calculation of impedances of bucket foundations. It is found that all impedances except the torsional one depend considerably on hydraulic conductivity within the typical frequency range of interest of offshore wind turbines.
Carrier states and optical response in core-shell-like semiconductor nanostructures
Duque, C. M.; Mora-Ramos, M. E.; Duque, C. A.
2017-02-01
The charge carrier states in a GaAs/Al?Ga?As axially symmetric core-shell quantum wire are calculated in the effective mass approximation via a spectral method. The possible presence of externally applied electric and magnetic fields is taken into account, together with the variation in the characteristic in-plane dimensions of the structure. The obtained energy spectrum is used to evaluate the optical response through the coefficients of intersubband optical absorption and relative refractive index change. The particular geometry of the system also allows to use the same theoretical model in order to determine the photoluminescence peak energies associated to correlated electron-hole states in double GaAs/Al?Ga?As quantum rings, showing a good agreement when they are compared with recent experimental reports. This agreement may validate the use of both the calculation process and the approximate model of abrupt, circularly shaped cross section geometry for the system.
Static quadrupole moments of first 2+ states in the 2s1d shell: a review of experiment and theory
International Nuclear Information System (INIS)
Spear, R.H.
1981-01-01
Available experimental information on the static electric quadrupole moments Q 2 + of the 2 + first excited states of even-mass nuclei in the 2s-1d shell is tabulated and critically reviewed, and adopted values are presented. The results reveal a well defined pattern for the variation of Q 2 + through the shell. Predictions of Q 2 + made from various nuclear models are tabulated and compared with experiment. For each nucleus the quantity and quality of the existing data for Q 2 + , together with the current theoretical significance of the result, are used as criteria to determine whether new experimental work is desirable
Cluster shell model: I. Structure of 9Be, 9B
Della Rocca, V.; Iachello, F.
2018-05-01
We calculate energy spectra, electromagnetic transition rates, longitudinal and transverse electron scattering form factors and log ft values for beta decay in 9Be, 9B, within the framework of a cluster shell model. By comparing with experimental data, we find strong evidence for the structure of these nuclei to be two α-particles in a dumbbell configuration with Z2 symmetry, plus an additional nucleon.
Projected shell model description of N = 114 superdeformed isotone nuclei
International Nuclear Information System (INIS)
Guo, R S; Chen, L M; Chou, C H
2006-01-01
A systematic description of the yrast superdeformed (SD) bands in N 114, Z = 80-84 isotone nuclei using the projected shell model is presented. The calculated γ-ray energies, moment of inertia and M1 transitions are compared with the data for which spin is assigned. Excellent agreement with the available data for all isotones is obtained. The calculated electromagnetic properties provide a microscopic understanding of those measured nuclei. Some predictions in superdeformed nuclei are also discussed
International Nuclear Information System (INIS)
Lee, Hyeon-Hui; Lee, Jae-Chul; Joo, Yong-Jin; Oh, Min; Lee, Chang-Ha
2014-01-01
Highlights: • Detailed dynamic model for the Shell entrained flow gasifier was developed. • The model included sub-models of reactor, membrane wall, gas quench and slag flow. • The dynamics of each zone including membrane wall in the gasifier were analyzed. • Cold gas efficiency (81.82%), gas fraction and temperature agreed with Shell data. • The model could be used as part of the overall IGCC simulation. - Abstract: The Shell coal gasification system is a single-stage, up-flow, oxygen-blown gasifier which utilizes dry pulverized coal with an entrained flow mechanism. Moreover, it has a membrane wall structure and operates in the slagging mode. This work provides a detailed dynamic model of the 300 MW Shell gasifier developed for use as part of an overall IGCC (integrated gasification combined cycle) process simulation. The model consists of several sub-models, such as a volatilization zone, reaction zone, quench zone, slag zone, and membrane wall zone, including heat transfers between the wall layers and steam generation. The dynamic results were illustrated and the validation of the gasifier model was confirmed by comparing the results in the steady state with the reference data. The product gases (H 2 and CO) began to come out from the exit of the reaction zone within 0.5 s, and nucleate boiling heat transfer was dominant in the water zone of the membrane wall due to high heat fluxes. The steady state of the process was reached at nearly t = 500 s, and our simulation data for the steady state, such as the temperature and composition of the syngas, the cold gas efficiency (81.82%), and carbon conversion (near 1.0) were in good agreement with the reference data
An IBM-3 hamiltonian from a multi-j-shell model
International Nuclear Information System (INIS)
Evans, J.A.; Elliott, J.P.; Lac, V.S.; Long, G.L.
1995-01-01
The number and isospin dependence of the hamiltonian in the isospin invariant form (IBM-3) of the boson model is deduced from a seniority mapping onto a shell-model system of several shells. The numerical results are compared with earlier work for a single j-shell. (orig.)
Shell model calculations for stoichiometric Na β-alumina
International Nuclear Information System (INIS)
Wang, J.C.
1985-01-01
Walker and Catlow recently reported the results of their shell model calculations for the structure and transport of Na β-alumina (Naβ). The main computer programs used by Walker and Catlow for their calculations are PLUTO and HADES III. The latter, a recent version of HADES II written for cubic crystals, is believed to be applicable to defects in crystals of both cubic and hexagonal symmetry. PLUTO is usually used in calculating properties of perfect crystals before defects are introduced into the structure. Walker and Catlow claim that, in some respects, their models are superior to those of Wang et al. Yet, their results are quite different from those observed experimentally. In this work these differences are investigated by using a computer program designed to calculate lattice energies for s Naβ using the same shell model parameters adopted by Walker and Catlow. The core and shell positions of all ions, as well as the lattice parameters, were fully relaxed. The calculated energy difference between aBR and BR sites (0.33 eV) is about twice as large as that reported by Walker and Catlow. The present results also show that the relaxed oxygen ion positions next to the conduction plane in this case are displaced from their observed sites reported. When the core-shell spring constant of the oxygen ion was adjusted to minimize these displacements, the above-mentioned energy difference increased to about 0.56 eV. These results cast doubt on the fluid conduction plane structure suggested by Walker and Catlow and on the defect structure and activation energy obtained from their calculations
Projected shell model study of odd-odd f-p-g shell proton-rich nuclei
International Nuclear Information System (INIS)
Palit, R.; Sheikh, J.A.; Sun, Y.; Jain, H.C.
2003-01-01
A systematic study of two-quasiparticle bands of the proton-rich odd-odd nuclei in the mass A∼70-80 region is performed using the projected shell model approach. The study includes Br, Rb, and Y isotopes with N=Z+2 and Z+4. We describe the energy spectra and electromagnetic transition strengths in terms of the configuration mixing of the angular-momentum projected multi-quasiparticle states. Signature splitting and signature inversion in the rotational bands are discussed and are shown to be well described. A preliminary study of the odd-odd N=Z nucleus 74 Rb, using the concept of spontaneous symmetry breaking is also presented
Test of the fermion dynamical symmetry model microscopy in the sd shell
International Nuclear Information System (INIS)
Halse, P.
1987-01-01
The recently formulated fermion dynamical symmetry model treats low-lying collective levels as states classified in a pseudo-orbit pseudo-spin (k-i) basis having either k = 1 and zero i seniority, or i = (3/2) and zero k seniority. The validity of this suggestion, which has not previously been subjected to a microscopic examination, is determined for even-even nuclei in the sd shell, for which the model is phenomenologically successful, by comparing these states with the eigenfunctions of a realistic Hamiltonian. Most low-lying levels are almost orthogonal to the fermion dynamical symmetry model zero seniority subspaces
Directory of Open Access Journals (Sweden)
Andreev Vladimir Igorevich
2018-01-01
Full Text Available Subject: one of the promising trends in the development of structural mechanics is the development of methods for solving problems in the theory of elasticity for bodies with continuous inhomogeneity of any deformation characteristics: these methods make it possible to use the strength of the material most fully. In this paper, we consider the two-dimensional problem for the case when a vertical, locally distributed load acts on the hemisphere and the inhomogeneity is caused by the influence of the temperature field. Research objectives: derive governing system of equations in spherical coordinates for determination of the stress state of the radially inhomogeneous hemispherical shell under locally distributed vertical load. Materials and methods: as a mechanical model, we chose a thick-walled reinforced concrete shell (hemisphere with inner and outer radii a and b, respectively, b > a. The shell’s parameters are a = 3.3 m, b = 4.5 m, Poisson’s ratio ν = 0.16; the load parameters are f = 10MPa - vertical localized load distributed over the outer face, θ0 = 30°, temperature on the internal surface of the shell Ta = 500 °C, temperature on the external surface of the shell Tb = 0 °C. The resulting boundary-value problem (a system of differential equations with variable coefficients is solved using the Maple software package. Results: maximal compressive stresses σr with allowance for material inhomogeneity are reduced by 10 % compared with the case when the inhomogeneity is ignored. But it is not so important compared with a 3-fold decrease in the tensile stress σθ on the inner surface and a 2-fold reduction in the tensile stress σθ on the outer surface of the hemisphere as concretes generally have a tensile strength substantially smaller than the compressive strength. Conclusions: the method presented in this article makes it possible to reduce the deformation characteristics of the material, i.e. it leads to a reduction in stresses
Spectroscopy of 215Ra: the shell model and enhanced E3 transitions
International Nuclear Information System (INIS)
Stuchbery, A.E.; Dracoulis, G.D.; Kibedi, T.; Fabricius, B.; Lane, G.J.; Poletti, A.R.; Baxter, A.M.
1998-01-01
Excited states in the N=127 nucleus 215 Ra have been studied using γ-ray and electron spectroscopy following reactions of 13 C on 206 Pb targets. Levels were identified up to spins of ∝61/2 ℎ and excitation energies of ∝6 MeV. Enhanced octupole transitions are a feature of the level scheme. Lifetimes and magnetic moments were measured for several isomeric levels. The level scheme, transition rates and magnetic moments are compared with empirical shell model calculations and multiparticle octupole-coupled shell model calculations. In general, the experimental data are well described, but in comparison with its success in describing enhanced E3 transitions between related states in the radon isotopes, some limitations of the multiparticle octupole-coupling approach are revealed in 215 Ra. (orig.)
Realistic Gamow shell model for resonance and continuum in atomic nuclei
Xu, F. R.; Sun, Z. H.; Wu, Q.; Hu, B. S.; Dai, S. J.
2018-02-01
The Gamow shell model can describe resonance and continuum for atomic nuclei. The model is established in the complex-moment (complex-k) plane of the Berggren coordinates in which bound, resonant and continuum states are treated on equal footing self-consistently. In the present work, the realistic nuclear force, CD Bonn, has been used. We have developed the full \\hat{Q}-box folded-diagram method to derive the realistic effective interaction in the model space which is nondegenerate and contains resonance and continuum channels. The CD-Bonn potential is renormalized using the V low-k method. With choosing 16O as the inert core, we have applied the Gamow shell model to oxygen isotopes.
Collectivity in heavy nuclei in the shell model Monte Carlo approach
International Nuclear Information System (INIS)
Özen, C.; Alhassid, Y.; Nakada, H.
2014-01-01
The microscopic description of collectivity in heavy nuclei in the framework of the configuration-interaction shell model has been a major challenge. The size of the model space required for the description of heavy nuclei prohibits the use of conventional diagonalization methods. We have overcome this difficulty by using the shell model Monte Carlo (SMMC) method, which can treat model spaces that are many orders of magnitude larger than those that can be treated by conventional methods. We identify a thermal observable that can distinguish between vibrational and rotational collectivity and use it to describe the crossover from vibrational to rotational collectivity in families of even-even rare-earth isotopes. We calculate the state densities in these nuclei and find them to be in close agreement with experimental data. We also calculate the collective enhancement factors of the corresponding level densities and find that their decay with excitation energy is correlated with the pairing and shape phase transitions. (author)
Molluskan fauna in two shell mounds in the State of Parana coast, Brazil
Directory of Open Access Journals (Sweden)
Marcos de Vasconcellos Gernet
2011-09-01
Full Text Available The shell mounds are artificial formations consisting mostly of mollusk shells used in the feeding of the prehistoric peoples which inhabited our coast. These sites are found throughout the Brazilian coast, and hundreds of them were cataloged in the State of Paraná since the 1940s. The fragility of these sites, their importance as evidences of our prehistoric period, and its abrupt disappearance, justify the need for new researches which contribute to contextualize and draw up plans to preserve this heritage. The works related to the molluskan fauna found in the shell mounds are restricted to refer to the most common species and, sometimes, just their popular names. A greater knowledge on these prehistoric inhabitants’ diet allows a better understanding of ancient natural ecosystems. The survey of mollusks was carried out in the shell mounds Guaraguaçu and Boguaçu, in the towns of Pontal do Parana and Guaratuba, respectively, and performed through visual inspection, reading of specialized bibliography and comparison to previous works on the fauna of the shell mounds in the State of Parana coast. Altogether, 29 species were observed in the shell mound Guaraguaçu and 17 species were observed in the shell mound Boguaçu, resulting in a total of 31 species.
Radiative capture reaction {sup 7}Be(p,{gamma}){sup 8}B in the continuum shell model
Energy Technology Data Exchange (ETDEWEB)
Bennaceur, K; Ploszajczak, M [Grand Accelerateur National d` Ions Lourds (GANIL), Caen (France); Nowacki, F [Grand Accelerateur National d` Ions Lourds (GANIL), Caen (France); [Lab. de Physique Theorique Strasbourg, Strasbourg (France); Okolowicz, J [Grand Accelerateur National d` Ions Lourds (GANIL), Caen (France); [Inst. of Nuclear Physics, Krakow (Poland)
1998-06-01
We present here the first application of realistic shell model (SM) including coupling between many-particle (quasi-)bound states and the continuum of one-particle scattering states to the calculation of the total capture cross section and the astrophysical factor in the reaction {sup 7}Be(p,{gamma}){sup 8}B. (orig.)
Large-scale shell model calculations for the N=126 isotones Po-Pu
International Nuclear Information System (INIS)
Caurier, E.; Rejmund, M.; Grawe, H.
2003-04-01
Large-scale shell model calculations were performed in the full Z=82-126 proton model space π(Oh 9/2 , 1f 7/2 , Oi 13/2 , 2p 3/2 , 1f 5/2 , 2p 1/2 ) employing the code NATHAN. The modified Kuo-Herling interaction was used, no truncation was applied up to protactinium (Z=91) and seniority truncation beyond. The results are compared to experimental data including binding energies, level schemes and electromagnetic transition rates. An overall excellent agreement is obtained for states that can be described in this model space. Limitations of the approach with respect to excitations across the Z=82 and N=126 shells and deficiencies of the interaction are discussed. (orig.)
Recent developments of the projected shell model based on many-body techniques
Directory of Open Access Journals (Sweden)
Sun Yang
2015-01-01
Full Text Available Recent developments of the projected shell model (PSM are summarized. Firstly, by using the Pfaffian algorithm, the multi-quasiparticle configuration space is expanded to include 6-quasiparticle states. The yrast band of 166Hf at very high spins is studied as an example, where the observed third back-bending in the moment of inertia is well reproduced and explained. Secondly, an angular-momentum projected generate coordinate method is developed based on PSM. The evolution of the low-lying states, including the second 0+ state, of the soft Gd, Dy, and Er isotopes to the well-deformed ones is calculated, and compared with experimental data.
The creep analysis of shell structures using generalised models
International Nuclear Information System (INIS)
Boyle, J.T.; Spence, J.
1981-01-01
In this paper a new, more complete estimate of the accuracy of the stationary creep model is given for the general case through the evaluation of exact and approximate energy surfaces. In addition, the stationary model is extended to include more general non-stationary (combined elastic-creep) behaviour and to include the possibility of material deterioration through damage. The resulting models are then compared to existing exact solutions for several shell structures - e.g. a thin pressurised cylinder, a curved pipe in bending and an S-bellows under axial extension with large deflections. In each case very good agreement is obtained. Although requiring similar computing effort, so that the same solution techniques can be utilised, the calculation times are shown to be significantly reduced using the generalised approach. In conclusion, it has been demonstrated that a new simple mechanical model of a thin shell in creep, with or without material deterioration can be constructed; the model is assessed in detail and successfully compared to existing solutions. (orig./HP)
Rotational and fine structure of open-shell molecules in nearly degenerate electronic states
Liu, Jinjun
2018-03-01
An effective Hamiltonian without symmetry restriction has been developed to model the rotational and fine structure of two nearly degenerate electronic states of an open-shell molecule. In addition to the rotational Hamiltonian for an asymmetric top, this spectroscopic model includes the energy separation between the two states due to difference potential and zero-point energy difference, as well as the spin-orbit (SO), Coriolis, and electron spin-molecular rotation (SR) interactions. Hamiltonian matrices are computed using orbitally and fully symmetrized case (a) and case (b) basis sets. Intensity formulae and selection rules for rotational transitions between a pair of nearly degenerate states and a nondegenerate state have also been derived using all four basis sets. It is demonstrated using real examples of free radicals that the fine structure of a single electronic state can be simulated with either a SR tensor or a combination of SO and Coriolis constants. The related molecular constants can be determined precisely only when all interacting levels are simulated simultaneously. The present study suggests that analysis of rotational and fine structure can provide quantitative insights into vibronic interactions and related effects.
A Shell Model for Free Vibration Analysis of Carbon Nanoscroll
Directory of Open Access Journals (Sweden)
Amin Taraghi Osguei
2017-04-01
Full Text Available Carbon nanoscroll (CNS is a graphene sheet rolled into a spiral structure with great potential for different applications in nanotechnology. In this paper, an equivalent open shell model is presented to study the vibration behavior of a CNS with arbitrary boundary conditions. The equivalent parameters used for modeling the carbon nanotubes are implemented to simulate the CNS. The interactions between the layers of CNS due to van der Waals forces are included in the model. The uniformly distributed translational and torsional springs along the boundaries are considered to achieve a unified solution for different boundary conditions. To study the vibration characteristics of CNS, total energy including strain energy, kinetic energy, and van der Waals energy are minimized using the Rayleigh-Ritz technique. The first-order shear deformation theory has been utilized to model the shell. Chebyshev polynomials of first kind are used to obtain the eigenvalue matrices. The natural frequencies and corresponding mode shapes of CNS in different boundary conditions are evaluated. The effect of electric field in axial direction on the natural frequencies and mode shapes of CNS is investigated. The results indicate that, as the electric field increases, the natural frequencies decrease.
Holographic shell model: Stack data structure inside black holes?
Davidson, Aharon
2014-03-01
Rather than tiling the black hole horizon by Planck area patches, we suggest that bits of information inhabit, universally and holographically, the entire black core interior, a bit per a light sheet unit interval of order Planck area difference. The number of distinguishable (tagged by a binary code) configurations, counted within the context of a discrete holographic shell model, is given by the Catalan series. The area entropy formula is recovered, including Cardy's universal logarithmic correction, and the equipartition of mass per degree of freedom is proven. The black hole information storage resembles, in the count procedure, the so-called stack data structure.
Moments Method for Shell-Model Level Density
International Nuclear Information System (INIS)
Zelevinsky, V; Horoi, M; Sen'kov, R A
2016-01-01
The modern form of the Moments Method applied to the calculation of the nuclear shell-model level density is explained and examples of the method at work are given. The calculated level density practically exactly coincides with the result of full diagonalization when the latter is feasible. The method provides the pure level density for given spin and parity with spurious center-of-mass excitations subtracted. The presence and interplay of all correlations leads to the results different from those obtained by the mean-field combinatorics. (paper)
No-Core Shell Model for A = 47 and A = 49
Energy Technology Data Exchange (ETDEWEB)
Vary, J P; Negoita, A G; Stoica, S
2006-11-13
We apply the no-core shell model to the nuclear structure of odd-mass nuclei straddling {sup 48}Ca. Starting with the NN interaction, that fits two-body scattering and bound state data, we evaluate the nuclear properties of A = 47 and A = 49 nuclei while preserving all the underlying symmetries. Due to model space limitations and the absence of three-body interactions, we incorporate phenomenological interaction terms determined by fits to A = 48 nuclei in a previous effort. Our modified Hamiltonian produces reasonable spectra for these odd-mass nuclei. In addition to the differences in single-particle basis states, the absence of a single-particle Hamiltonian in our no-core approach complicates comparisons with valence effective NN interactions. We focus on purely off-diagonal two-body matrix elements since they are not affected by ambiguities in the different roles for one-body potentials and we compare selected sets of fp-shell matrix elements of our initial and modified Hamiltonians in the harmonic oscillator basis with those of a recent model fp-shell interaction, the GXPF1 interaction of Honma et al. While some significant differences emerge from these comparisons, there is an overall reasonably good correlation between our off-diagonal matrix elements and those of GXPF1.
Study of nickel nuclei by (p,d) and (p,t) reactions. Shell model interpretation
International Nuclear Information System (INIS)
Kong-A-Siou, D.-H.
1975-01-01
The experimental techniques employed at the Nuclear Science Institute (Grenoble) and at Michigan State University are described. The development of the transition amplitude calculation of the one-or two-nucleon transfer reactions is described first, after which the principle of shell model calculations is outlined. The choices of configuration space and two-body interactions are discussed. The DWBA method of analysis is studied in more detail. The effects of different approximations and the influence of the parameters are examined. Special attention is paid to the j-dependence of the form of the angular distributions, on effect not explained in the standard DWBA framework. The results are analysed and a large section is devoted to a comparative study of the experimental results obtained and those from other nuclear reactions. The spectroscopic data obtained are compared with the results of shell model calculations [fr
Use of a finite range nucleon-nucleon interaction in the continuum shell model
International Nuclear Information System (INIS)
Faes, Jean-Baptiste
2007-01-01
The unification of nuclear structure and nuclear reactions was always a great challenge of nuclear physics. The extreme complexity of finite quantum systems lead in the past to a separate development of the nuclear structure and the nuclear reactions. A unified description of structure and reactions is possible within the continuum shell model. All previous applications of this model used the zero-range residual interaction and the finite depth local potential to generate the single-particle basis. In the thesis, we have presented an extension of the continuum shell model for finite-range nucleon-nucleon interaction and an arbitrary number of nucleons in the scattering continuum. The great advantage of the present formulation is the same two-body interaction used both to generate the single-particle basis and to describe couplings to the continuum states. This formulation opens a possibility for an ab initio continuum shell model studies with the same nucleon-nucleon interaction generating the nuclear mean field, the configuration mixing and the coupling to the scattering continuum. First realistic applications of the above model has been shown for spectra of "1"7F and "1"7O, and elastic phase-shifts in the reaction "1"6O(p, p)"1"6O. (author)
Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Maurice; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Childers, John Taylor; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dwuznik, Michal; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khoriauli, Gia; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saimpert, Matthias; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simoniello, Rosa; Sinervo, Pekka; Sinev, Nikolai; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spalla, Margherita; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz
2015-07-17
Measurements of the $ZZ$ and $WW$ final states in the mass range above the $2m_Z$ and $2m_W$ thresholds provide a unique opportunity to measure the off-shell coupling strength of the Higgs boson. This paper presents a determination of the off-shell Higgs boson event yields normalised to the Standard Model prediction (signal strength) in the $ZZ \\rightarrow 4\\ell$, $ZZ\\rightarrow 2\\ell2\
Angular momentum dependence of the distribution of shell model eigenenergies
International Nuclear Information System (INIS)
Yen, M.K.
1974-01-01
In the conventional shell model calculation the many-particle energy matrices are constructed and diagonalized for definite angular momentum and parity. However the resulting set of eigenvalues possess a near normal behavior and hence a simple statistical description is possible. Usually one needs only about four parameters to capture the average level densities if the size of the set is not too small. The parameters are essentially moments of the distribution. But the difficulty lies in the yet unsolved problem of calculating moments in the fixed angular momentum subspace. We have derived a formula to approximate the angular momentum projection dependence of any operator averaged in a shell model basis. This approximate formula which is a truncated series in Hermite polynomials has been proved very good numerically and justified analytically for large systems. Applying this formula to seven physical cases we have found that the fixed angular momentum projection energy centroid, width and higher central moments can be obtained accurately provided for even-even nuclei the even and odd angular momentum projections are treated separately. Using this information one can construct the energy distribution for fixed angular momentum projection assuming normal behavior. Then the fixed angular momentum level densities are deduced and spectra are extracted. Results are in reasonably good agreement with the exact values although not as good as those obtained using exact fixed angular momentum moments. (Diss. Abstr. Int., B)
Spectroscopic information on light halo - nuclei within the framework of multiparticle shell model
International Nuclear Information System (INIS)
Khaydarov, R.R.
2004-09-01
Aim of the inquiry: to develop the potential approach within the framework of multiparticle shell model; to obtain analytical expressions for a wave function and equations for widths off sub-barrier resonance states; to apply the theoretical approach for obtaining properties of 5 He, 5 Li, 8 B and 11 N nuclei; to estimate values of root-mean-square radiuses, radial density of nucleons, magnetic dipole and electrical quadrupole moments and spectroscopic information for 8 B and 8 Li with use of a method of expansion on functions of Storm - Liouville; to estimate the contribution of 2p - shell of 13 C and process of exchange replacement to the astrophysical S-factor of 13 C (α, n) 16 O reaction. Method of the research: theoretical approaches within the framework of multiparticle shell model. Achieved results and their novelty: new theoretical approach allowing to describe correctly the experimental static characteristics of sub-barrier one-particle resonance states in of 5 He, 5 Li, 8 B and 11 N light nuclei has been developed. Structure of 8 B and 8 Li light mirror nuclei with use of the approach for the description of one-particle resonance states based on the method of expansion on functions of Storm - Liouville has been investigated; The spectroscopic information for proton halo in 8 B and values of the magnetic dipole and electric quadrupole moments of 8 B and 8 Li with use of technique of genealogical coefficients have been obtained. The contribution of 2p - shell of 13 C (α, n) 16 O reaction has been estimated. (author)
Shell model in-water frequencies of the core barrel
International Nuclear Information System (INIS)
Takeuchi, K.; De Santo, D.F.
1980-01-01
Natural frequencies of a 1/24th-scale core barrel/vessel model in air and in water are measured by determining frequency responses to applied forces. The measured data are analyzed by the use of the one-dimensional fluid-structure computer code, MULTIFLEX, developed to calculate the hydraulic force. The fluid-structure interaction in the downcomer annulus is computed with a one-dimensional network model formed to be equivalent to two-dimensional fluid-structure interaction. The structural model incorporated in MULTIFLEX is substantially simpler than that necessary for structural analyses. Proposed for computation of structural dynamics is the projector method than can deal with the beam mode by modal analysis and the other shell modes by a direct integration method. Computed in-air and in-water frequencies agree fairly well with the experimental data, verifying the above MULTIFLEX technique
Shell-model-based deformation analysis of light cadmium isotopes
Schmidt, T.; Heyde, K. L. G.; Blazhev, A.; Jolie, J.
2017-07-01
Large-scale shell-model calculations for the even-even cadmium isotopes 98Cd-108Cd have been performed with the antoine code in the π (2 p1 /2;1 g9 /2) ν (2 d5 /2;3 s1 /2;2 d3 /2;1 g7 /2;1 h11 /2) model space without further truncation. Known experimental energy levels and B (E 2 ) values could be well reproduced. Taking these calculations as a starting ground we analyze the deformation parameters predicted for the Cd isotopes as a function of neutron number N and spin J using the methods of model independent invariants introduced by Kumar [Phys. Rev. Lett. 28, 249 (1972), 10.1103/PhysRevLett.28.249] and Cline [Annu. Rev. Nucl. Part. Sci. 36, 683 (1986), 10.1146/annurev.ns.36.120186.003343].
Modeling plate shell structures using pyFormex
DEFF Research Database (Denmark)
Bagger, Anne; Verhegghe, Benedict; Hertz, Kristian Dahl
2009-01-01
A shell structure made of glass combines a light-weight structural concept with glass’ high permeability to light. If the geometry of the structure is plane-based facetted (plate shell structure), the glass elements will be plane panes, and these glass panes will comprise the primary load...... (plate shells and triangulated lattice shells) may not differ in complexity regarding the topology, but when it comes to the practical generation of the geometry, e.g. in CAD, the plate shell is far more troublesome to handle than the triangulated geometry. The free software tool “pyFormex”, developed...
Approximate symmetries in atomic nuclei from a large-scale shell-model perspective
Launey, K. D.; Draayer, J. P.; Dytrych, T.; Sun, G.-H.; Dong, S.-H.
2015-05-01
In this paper, we review recent developments that aim to achieve further understanding of the structure of atomic nuclei, by capitalizing on exact symmetries as well as approximate symmetries found to dominate low-lying nuclear states. The findings confirm the essential role played by the Sp(3, ℝ) symplectic symmetry to inform the interaction and the relevant model spaces in nuclear modeling. The significance of the Sp(3, ℝ) symmetry for a description of a quantum system of strongly interacting particles naturally emerges from the physical relevance of its generators, which directly relate to particle momentum and position coordinates, and represent important observables, such as, the many-particle kinetic energy, the monopole operator, the quadrupole moment and the angular momentum. We show that it is imperative that shell-model spaces be expanded well beyond the current limits to accommodate particle excitations that appear critical to enhanced collectivity in heavier systems and to highly-deformed spatial structures, exemplified by the second 0+ state in 12C (the challenging Hoyle state) and 8Be. While such states are presently inaccessible by large-scale no-core shell models, symmetry-based considerations are found to be essential.
The collective bands of positive parity states in odd-A (fp) shell nuclei
International Nuclear Information System (INIS)
Ahalpara, D.P.
1979-01-01
The low-lying collective bands of positive parity states in (fp) shell nuclei are described in the deformed Hartree-Fock method by projecting states of definite angular momenta from 'the lowest energy intrinsic states in (sd)sup(-1)(fp)sup(n+1) configurations. The modified Kuo-Brown effective interaction for (fp) shell and modified surface delta interaction (MSDI) for a hole in (sd) shell with a particle in (fp) shell have been used. The collective bands of states are in general well reproduced by the effective interactions. The excitation energies of the band head states are however off by about one MeV. The calculated magnetic moments of the band head j = 3/2 + states are in reasonable agreement with experiment. Using effective charges esub(p) = 1.33 e and esub(n) = 0.64 e fairly good agreement is obtained for E(2) transitions. The hindered M(1) transition strengths are reproduced to the correct order, however they are slightly higher compared to the experiment. (author)
Exotic muon-to-positron conversion in nuclei: partial transition sum evaluation by using shell model
International Nuclear Information System (INIS)
Divari, P.C.; Vergados, J.D.; Kosmas, T.S.; Skouras, L.D.
2001-01-01
A comprehensive study of the exotic (μ - ,e + ) conversion in 27 Al, 27 Al(μ - ,e + ) 27 Na is presented. The relevant operators are deduced assuming one-pion and two-pion modes in the framework of intermediate neutrino mixing models, paying special attention to the light neutrino case. The total rate is calculated by summing over partial transition strengths for all kinematically accessible final states derived with s-d shell model calculations employing the well-known Wildenthal realistic interaction
Shell model estimate of electric dipole moments in medium and heavy nuclei
Directory of Open Access Journals (Sweden)
Teruya E.
2014-03-01
Full Text Available It is evidence for an extension of the Standard Model in particle physics, if static electric dipole moments (EDMs are measured for any elementary particle. The nuclear EDM arises mainly from two sources: one comes from asymmetric charge distribution in a nucleus and the other is due to the nucleon intrinsic EDM. We estimate the nuclear EDMs from two sources for the 1/21+ states in Xe isotopes by a shell model approach using full orbitals between magic numbers 50 and 82.
Directory of Open Access Journals (Sweden)
Xiulan BAO
2017-04-01
Full Text Available Nuts are the important economic forest tree species of China. De-shell is the key operation of nut deep processing. There are some problems in the current nut cracking devices such as the low decorticating rate, the high nuts losses rate and nutmeat integrity problems, etc.. The foundation of force analysis is to establish contact model for nut and mechanical. The nut surface is rough and irregular, so the contact area cannot be modeled as regular shape. How to set up contact constraint model is the key problem to accomplish non-loss shelling. In order to study the shell-breaking mechanism and structural design of the nut shelling manipulation, a multi-fingered metamorphic manipulator is presented. An overview of the nut shelling technology and the contact manipulator modeling are proposed. The origin and application of metamorphic mechanisms are introduced. Then the research contents and development prospects of nut shelling manipulator are described.
Tensor-optimized shell model for the Li isotopes with a bare nucleon-nucleon interaction
Myo, Takayuki; Umeya, Atsushi; Toki, Hiroshi; Ikeda, Kiyomi
2012-08-01
We study the Li isotopes systematically in terms of the tensor-optimized shell model (TOSM) by using a bare nucleon-nucleon interaction as the AV8' interaction. The short-range correlation is treated in the unitary correlation operator method (UCOM). Using the TOSM + UCOM approach, we investigate the role of the tensor force on each spectrum of the Li isotopes. It is found that the tensor force produces quite a characteristic effect on various states in each spectrum and those spectra are affected considerably by the tensor force. The energy difference between the spin-orbit partner, the p1/2 and p3/2 orbits of the last neutron, in 5Li is caused by opposite roles of the tensor correlation. In 6Li, the spin-triplet state in the LS coupling configuration is favored energetically by the tensor force in comparison with jj coupling shell-model states. In 7,8,9Li, the low-lying states containing extra neutrons in the p3/2 orbit are favored energetically due to the large tensor contribution to allow the excitation from the 0s, orbit to the p1/2 orbit by the tensor force. Those three nuclei show the jj coupling character in their ground states which is different from 6Li.
International Nuclear Information System (INIS)
Baptista Filho, Benedito Dias
1979-01-01
A numerical model has been developed to calculate the flow, pressure and temperature distribution of steady-state |for the tube and shell-side fluids in a shell-and-U-tubes heat exchanger with segmental baffles. It was based on the Subchannel Analysis Method- The model, checked with experimental results from one heat exchanger, predicted with good accuracy outlet temperatures for both fluids. The method, implemented ' in a computer program of low cost and easy application, can be used in the design and performance evaluation of commercial units.(author)
Li, Qian; Matula, Thomas J; Tu, Juan; Guo, Xiasheng; Zhang, Dong
2013-02-21
It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear 'Cross law' to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius-time curves and the numerical simulations demonstrate that the 'compression-only' behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., 'shear-thinning' and 'strain-softening') in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity.
International Nuclear Information System (INIS)
Li Qian; Tu Juan; Guo Xiasheng; Zhang Dong; Matula, Thomas J
2013-01-01
It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear ‘Cross law’ to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius–time curves and the numerical simulations demonstrate that the ‘compression-only’ behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., ‘shear-thinning’ and ‘strain-softening’) in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity. (paper)
New excited states in sd-shell nucleus {sup 33}P
Energy Technology Data Exchange (ETDEWEB)
Fu, B.; Reiter, P.; Arnswald, K.; Hess, H.; Hirsch, R.; Lewandowski, L.; Schneiders, D.; Seidlitz, M.; Siebeck, B.; Steinbach, T.; Vogt, A.; Wendt, A.; Wolf, K. [Institut fuer Kernphysik, Universitaet zu Koeln (Germany)
2015-07-01
Isospin-symmetry breaking in nuclear physics is mainly described by Mirror-Energy Differences (MED) for mirror nuclei or Triplet-Energy Differences (TED) for isobaric triplets. Modified USD-calculations successfully reproduce MED for T=1,3/2,2 sd-shell nuclei. Refined tests of theory are given by lifetime measurements in order to deduce transition-strength values. In order to study the mirror pair {sup 33}Ar and {sup 33}P, the fusion-evaporation reaction {sup 13}C+{sup 26}Mg at 46 MeV was measured at the Cologne tandem accelerator and the HORUS spectrometer employing the Doppler-Shift-Attenuation-Method (DSAM). First results yielded new γ-ray transitions in {sup 33}P and {sup 33}S. The level scheme of {sup 33}P was extended up to excitation energies of 10 MeV. Spins and parities of the new levels were determined exploiting γγ-angular correlations. Together with values from the proton-rich T{sub z} = - 3/2 partner, the levels are compared to shell model calculations, describing excitation energies of sd -shell mirror pairs. The understanding of isospin symmetry and isospin-symmetry breaking is a fundamental question in nuclear physics. Isospin-symmetry breaking is mainly described by Mirror-Energy Differences (MED) for mirror nuclei or Triplet-Energy Differences (TED) for isobaric triplets. Modified USD{sup m}{sub 1,2,3}-calculations successfully reproduced MED for the mirror nuclei {sup 33}Ar and {sup 33}P. Both {sup 33}P and {sup 33}S were produced at the Cologne FN tandem accelerator employing the fusion-evaporation reaction {sup 13}C+{sup 26}Mg at 46 MeV and spectroscopically investigated using 14 HPGe detectors. Several new energy states (in {sup 33}P) and γ-ray transitions (in {sup 33}P and {sup 33}S) were detected. Spins and parities of the new levels in {sup 33}P were determined exploiting γγ-angular correlations. The level scheme of {sup 33}P was extended up to excitation energies of 10 MeV.
Pade approximants for the ground-state energy of closed-shell quantum dots
International Nuclear Information System (INIS)
Gonzalez, A.; Partoens, B.; Peeters, F.M.
1997-08-01
Analytic approximations to the ground-state energy of closed-shell quantum dots (number of electrons from 2 to 210) are presented in the form of two-point Pade approximants. These Pade approximants are constructed from the small- and large-density limits of the energy. We estimated that the maximum error, reached for intermediate densities, is less than ≤ 3%. Within that present approximation the ground-state is found to be unpolarized. (author). 21 refs, 3 figs, 2 tabs
Extrapolation method in the Monte Carlo Shell Model and its applications
International Nuclear Information System (INIS)
Shimizu, Noritaka; Abe, Takashi; Utsuno, Yutaka; Mizusaki, Takahiro; Otsuka, Takaharu; Honma, Michio
2011-01-01
We demonstrate how the energy-variance extrapolation method works using the sequence of the approximated wave functions obtained by the Monte Carlo Shell Model (MCSM), taking 56 Ni with pf-shell as an example. The extrapolation method is shown to work well even in the case that the MCSM shows slow convergence, such as 72 Ge with f5pg9-shell. The structure of 72 Se is also studied including the discussion of the shape-coexistence phenomenon.
Elementary isovector spin and orbital magnetic dipole modes revisited in the shell model
International Nuclear Information System (INIS)
Richter, A.
1988-08-01
A review is given on the status of mainly spin magnetic dipole modes in some sd- and fp-shell nuclei studied with inelastic electron and proton scattering, and by β + -decay. Particular emphasis is also placed on a fairly new, mainly orbital magnetic dipole mode investigated by high-resolution (e,e') and (p,p') scattering experiments on a series of fp-shell nuclei. Both modes are discussed in terms of the shell model with various effective interactions. (orig.)
Application of the Kishimoto-Tamura boson expansion theory to a single-j shell model
International Nuclear Information System (INIS)
Li, C.T.; Pedrocchi, V.G.; Tamura, T.
1985-01-01
The boson expansion theory of Kishimoto and Tamura is applied to a single-j shell model. It is shown that this theory is quite accurate, giving results that agree very closely with those of the exact fermion calculations. The fast convergence of the boson expansion is also demonstrated. A critical discussion is then made of an earlier paper by Arima, in which he stated that the Kishimoto-Tamura theory gives rise to very poor numerical results. The source of the trouble encountered by Arima is unmasked
Accounting of inter-electron correlations in the model of mobile electron shells
International Nuclear Information System (INIS)
Panov, Yu.D.; Moskvin, A.S.
2000-01-01
One studied the basic peculiar features of the model for mobile electron shells for multielectron atom or cluster. One offered a variation technique to take account of the electron correlations where the coordinates of the centre of single-particle atomic orbital served as variation parameters. It enables to interpret dramatically variation of electron density distribution under anisotropic external effect in terms of the limited initial basis. One studied specific correlated states that might make correlation contribution into the orbital current. Paper presents generalization of the typical MO-LCAO pattern with the limited set of single particle functions enabling to take account of additional multipole-multipole interactions in the cluster [ru
Shell-model calculations of beta-decay rates for s- and r-process nucleosyntheses
International Nuclear Information System (INIS)
Takahashi, K.; Mathews, G.J.; Bloom, S.D.
1985-01-01
Examples of large-basis shell-model calculations of Gamow-Teller β-decay properties of specific interest in the astrophysical s- and r- processes are presented. Numerical results are given for: (1) the GT-matrix elements for the excited state decays of the unstable s-process nucleus 99 Tc; and (2) the GT-strength function for the neutron-rich nucleus 130 Cd, which lies on the r-process path. The results are discussed in conjunction with the astrophysics problems. 23 refs., 3 figs
Fixed J spectral distributions in large shell model spaces. Pt. 3
International Nuclear Information System (INIS)
Jacquemin, C.; Auger, G.; Quesne, C.
1982-01-01
A method is developed to exactly calculate the fixed J quasiparticle centroid energies and partial widths. Some results obtained in the even-mass lead isotopes with various interactions are analysed. Fixed J quasiparticle distributions are used to predict an upper limit for the deviations between the quasiparticle approximation and the shell model results for the low-energy levels. The influence of the states with a high quasiparticle number in the low-energy region is seen to strongly depend upon the interaction. The importance of the dimensionalities and the internal widths is explaining the admixtures is stressed. (orig.)
New-generation Monte Carlo shell model for the K computer era
International Nuclear Information System (INIS)
Shimizu, Noritaka; Abe, Takashi; Yoshida, Tooru; Otsuka, Takaharu; Tsunoda, Yusuke; Utsuno, Yutaka; Mizusaki, Takahiro; Honma, Michio
2012-01-01
We present a newly enhanced version of the Monte Carlo shell-model (MCSM) method by incorporating the conjugate gradient method and energy-variance extrapolation. This new method enables us to perform large-scale shell-model calculations that the direct diagonalization method cannot reach. This new-generation framework of the MCSM provides us with a powerful tool to perform very advanced large-scale shell-model calculations on current massively parallel computers such as the K computer. We discuss the validity of this method in ab initio calculations of light nuclei, and propose a new method to describe the intrinsic wave function in terms of the shell-model picture. We also apply this new MCSM to the study of neutron-rich Cr and Ni isotopes using conventional shell-model calculations with an inert 40 Ca core and discuss how the magicity of N = 28, 40, 50 remains or is broken. (author)
International Nuclear Information System (INIS)
Gottschalk, P.A.; Ledergerber, T.
Starting from the Hartree-Fock approximation to the grand-canonical partition function we formulate a consistent renormalization of the ground state energy and the intrinsic state density as a function of deformation. The relationship to recent selfconsistent temperature dependent calculations is discussed. The competition between fission and neutron emission, GAMMA sub(f)/GAMMA sub(n)(E), of 210 Po is studied within the framework of the statistical theory as an example. Calculations using renormalized state densities are compared with usual shell model calculations and experimental data. It is found that the usual calculations reflect the incorrect uniform deformation dependence of the shell model spectral function. Important changes due to renormalization are found: a rapid change of the shape of the transition state at approximately 45 MeV excitation energy, GAMMA sub(f)/GAMMA sub(n)(E) remains smaller than unity for all excitation energies and the deformation of the transition state increases after the 'shape transition' at 45 MeV monotonically towards the liquid drop saddle point deformation with a tendency towards slightly larger deformations. (author)
High spin states in the f-p shell
International Nuclear Information System (INIS)
Delaunay, J.
1975-01-01
The high spin states (HSS) in Fe, Co, Ni (Z=26,27,28) isotopes exhibit features characteristics of soft or transition nuclei, 56 Fe being as well deformed prolate nucleus and the Ni isotopes often throught of as spherical. The methodology used to identify these HSS is the so called DCO (directional correlation of oriented nuclei) or ratio method which, by combining the angular distribution data plus one point of a triple γ-γ correlation in an asymmetric geometry, gives result that is found equivalent to a complete angular correlation to assign spin and mixing ratios. Some results collected with this methodology are presented [fr
Titanium dioxide@polypyrrole core-shell nanowires for all solid-state flexible supercapacitors
Yu, Minghao; Zeng, Yinxiang; Zhang, Chong; Lu, Xihong; Zeng, Chenghui; Yao, Chenzhong; Yang, Yangyi; Tong, Yexiang
2013-10-01
Herein, we developed a facile two-step process to synthesize TiO2@PPy core-shell nanowires (NWs) on carbon cloth and reported their improved electrochemical performance for flexible supercapacitors (SCs). The fabricated solid-state SC device based on TiO2@PPy core-shell NWs not only has excellent flexibility, but also exhibits remarkable electrochemical performance.Herein, we developed a facile two-step process to synthesize TiO2@PPy core-shell nanowires (NWs) on carbon cloth and reported their improved electrochemical performance for flexible supercapacitors (SCs). The fabricated solid-state SC device based on TiO2@PPy core-shell NWs not only has excellent flexibility, but also exhibits remarkable electrochemical performance. Electronic supplementary information (ESI) available: Experimental details, XRD pattern, FT-IR absorption spectrum and CV curves of TiO2@PPy NWs, and SEM images of the PPy. See DOI: 10.1039/c3nr03578f
Van der Waals coefficients beyond the classical shell model
Energy Technology Data Exchange (ETDEWEB)
Tao, Jianmin, E-mail: jianmint@sas.upenn.edu [Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 (United States); Fang, Yuan; Hao, Pan [Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118 (United States); Scuseria, G. E. [Department of Chemistry and Department of Physics and Astronomy, Rice University, Houston, Texas 77251-1892, USA and Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ruzsinszky, Adrienn; Perdew, John P. [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States)
2015-01-14
Van der Waals (vdW) coefficients can be accurately generated and understood by modelling the dynamic multipole polarizability of each interacting object. Accurate static polarizabilities are the key to accurate dynamic polarizabilities and vdW coefficients. In this work, we present and study in detail a hollow-sphere model for the dynamic multipole polarizability proposed recently by two of the present authors (JT and JPP) to simulate the vdW coefficients for inhomogeneous systems that allow for a cavity. The inputs to this model are the accurate static multipole polarizabilities and the electron density. A simplification of the full hollow-sphere model, the single-frequency approximation (SFA), circumvents the need for a detailed electron density and for a double numerical integration over space. We find that the hollow-sphere model in SFA is not only accurate for nanoclusters and cage molecules (e.g., fullerenes) but also yields vdW coefficients among atoms, fullerenes, and small clusters in good agreement with expensive time-dependent density functional calculations. However, the classical shell model (CSM), which inputs the static dipole polarizabilities and estimates the static higher-order multipole polarizabilities therefrom, is accurate for the higher-order vdW coefficients only when the interacting objects are large. For the lowest-order vdW coefficient C{sub 6}, SFA and CSM are exactly the same. The higher-order (C{sub 8} and C{sub 10}) terms of the vdW expansion can be almost as important as the C{sub 6} term in molecular crystals. Application to a variety of clusters shows that there is strong non-additivity of the long-range vdW interactions between nanoclusters.
Core-shell particles as model compound for studying fouling
DEFF Research Database (Denmark)
Christensen, Morten Lykkegaard; Nielsen, Troels Bach; Andersen, Morten Boel Overgaard
2008-01-01
Synthetic colloidal particles with hard cores and soft, water-swollen shells were used to study cake formation during ultrafiltration. The total cake resistance was lowest for particles with thick shells, which indicates that interparticular forces between particles (steric hindrance...... and electrostatic repulsion) influenced cake formation. At low pressure the specific cake resistance could be predicted from the Kozeny-Carman equation. At higher pressures, the resistance increased due to cake compression. Both cake formation and compression were reversible. For particles with thick shells...
Bifurcation theory applied to buckling states of a cylindrical shell
Chaskalovic, J.; Naili, S.
1995-01-01
Veins, bronchii, and many other vessels in the human body are flexible enough to be capable of collapse if submitted to suitable applied external and internal loads. One way to describe this phenomenon is to consider an inextensible elastic and infinite tube, with a circular cross section in the reference configuration, subjected to a uniform external pressure. In this paper, we establish that the nonlinear equilibrium equation for this model has nontrivial solutions which appear for critical values of the pressure. To this end, the tools we use are the Liapunov-Schmidt decomposition and the bifurcation theorem for simple multiplicity. We conclude with the bifurcation diagram, showing the dependence between the cross-sectional area and the pressure.
On two-dimensionalization of three-dimensional turbulence in shell models
DEFF Research Database (Denmark)
Chakraborty, Sagar; Jensen, Mogens Høgh; Sarkar, A.
2010-01-01
Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell m......-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case....
Preparation of hollow shell ICF targets using a depolymerizing model
International Nuclear Information System (INIS)
Letts, S.A.; Fearon, E.M.; Buckley, S.R.
1994-11-01
A new technique for producing hollow shell laser fusion capsules was developed that starts with a depolymerizable mandrel. In this technique we use poly(alpha-methylstyrene) (PAMS) beads or shells as mandrels which are overcoated with plasma polymer. The PAMS mandrel is thermally depolymerized to gas phase monomer, which diffuses through the permeable and thermally more stable plasma polymer coating, leaving a hollow shell. We have developed methods for controlling the size of the PAMS mandrel by either grinding to make smaller sizes or melt sintering to form larger mandrels. Sphericity and surface finish are improved by heating the PAMS mandrels in hot water using a surfactant to prevent aggregation. Using this technique we have made shells from 200 μm to 5 mm diameter with 15 to 100 μm wall thickness having sphericity better than 2 μm and surface finish better than 10 nm RMS
Continuum shell-model study of 16O and 40Ca
International Nuclear Information System (INIS)
Heil, V.; Stock, W.
1976-06-01
Continuum shell-model calculations of the E1 and E2 strengths in 16 O and 40 Ca are presented. A consistent microscopic description of both the giant resonances and isospin forbidden E1- transitions between bound states can be achieved through 1) a careful choice of the single-particle potential, 2) the use of a finite-range residual interaction (including the Coulomb particle-hole force), and 3) the removal of spurious states. The results obtained within the separation expansion approximation of Birkholz are in reasonable agreement with measured photonucleon angular distributions and formfactors for electroexcitation. The influence of the continuum on the isospin mixing in bound states is found to be very strong. (orig.) [de
2013-05-02
.... APHIS-2012-0042] RIN 0579-AD69 Importation of Fresh Beans, Shelled or in Pods, From Jordan Into the... commercial shipments of fresh beans, shelled or in pods (French, green, snap, and string), from Jordan into the continental United States. As a condition of entry, the beans would have to be produced in...
2013-11-19
.... APHIS-2012-0042] RIN 0579-AD69 Importation of Fresh Beans, Shelled or in Pods, From Jordan Into the... shipments of fresh beans, shelled or in pods (French, green, snap, and string), from Jordan into the continental United States. As a condition of entry, the beans must be produced in accordance with a systems...
Zeng, Zebing
2012-09-05
Stable open-shell polycyclic aromatic hydrocarbons (PAHs) are of fundamental interest due to their unique electronic, optical, and magnetic properties and promising applications in materials sciences. Chichibabin\\'s hydrocarbon as a classical open-shell PAH has been investigated for a long time. However, most of the studies are complicated by their inherent high reactivity. In this work, two new stable benzannulated Chichibabin\\'s hydrocarbons 1-CS and 2-OS were prepared, and their electronic structure and geometry in the ground state were studied by various experiments (steady-state and transient absorption spectra, NMR, electron spin resonance (ESR), superconducting quantum interference device (SQUID), FT Raman, X-ray crystallographic etc.) and density function theory (DFT) calculations. 1-CS and 2-OS exhibited tunable ground states, with a closed-shell quinoidal structure for 1-CS and an open-shell biradical form for 2-OS. Their corresponding excited-state forms 1-OS and 2-CS were also chemically approached and showed different decay processes. The biradical 1-OS displayed an unusually slow decay to the ground state (1-CS) due to a large energy barrier (95 ± 2.5 kJ/mol) arising from severe steric hindrance during the transition from an orthogonal biradical form to a butterfly-like quinoidal form. The quick transition from the quinoidal 2-CS (excited state) to the orthogonal biradicaloid 2-OS (ground state) happened during the attempted synthesis of 2-CS. Compounds 1-CS and 2-OS can be oxidized into stable dications by FeCl 3 and/or concentrated H 2SO 4. The open-shell 2-OS also exhibited a large two-photon absorption (TPA) cross section (760 GM at 1200 nm). © 2012 American Chemical Society.
Projected Shell Model Description of Positive Parity Band of 130Pr Nucleus
Singh, Suram; Kumar, Amit; Singh, Dhanvir; Sharma, Chetan; Bharti, Arun; Bhat, G. H.; Sheikh, J. A.
2018-02-01
Theoretical investigation of positive parity yrast band of odd-odd 130Pr nucleus is performed by applying the projected shell model. The present study is undertaken to investigate and verify the very recently observed side band in 130Pr theoretically in terms of quasi-particle (qp) configuration. From the analysis of band diagram, the yrast as well as side band are found to arise from two-qp configuration πh 11/2 ⊗ νh 11/2. The present calculations are viewed to have qualitatively reproduced the known experimental data for yrast states, transition energies, and B( M1) / B( E2) ratios of this nucleus. The recently observed positive parity side band is also reproduced by the present calculations. The energy states of the side band are predicted up to spin 25+, which is far above the known experimental spin of 18+ and this could serve as a motivational factor for future experiments. In addition, the reduced transition probability B( E2) for interband transitions has also been calculated for the first time in projected shell model, which would serve as an encouragement for other research groups in the future.
In-medium no-core shell model for ab initio nuclear structure calculations
International Nuclear Information System (INIS)
Gebrerufael, Eskendr
2017-01-01
In this work, we merge two successful ab initio nuclear-structure methods, the no-core shell model (NCSM) and the multi-reference in-medium similarity renormalization group (IM-SRG), to define a novel many-body approach for the comprehensive description of ground and excited states of closed- and open-shell medium-mass nuclei. Building on the key advantages of the two methods - the decoupling of excitations at the many-body level in the IM-SRG, and the exact diagonalization in the NCSM applicable up to medium-light nuclei - their combination enables fully converged no-core calculations for an unprecedented range of nuclei and observables at moderate computational cost. The efficiency and rapid model-space convergence of the new approach make it ideally suited for ab initio studies of ground and low-lying excited states of nuclei up to the medium-mass regime. Interactions constructed within the framework of chiral effective field theory provide an excellent opportunity to describe properties of nuclei from first principles, i.e., rooted in quantum chromodynamics, they overcome the lack of predictive power of phenomenological potentials. The hard core of these interactions causes strong short-range correlations, which we soften by using the similarity-renormalization-group transformation that accelerates the model-space convergence of many-body calculations. Three-nucleon effects, which are mandatory for the correct description of bulk properties of nuclei, are included in our calculations by using the normal-ordered two-body approximation, which has been shown to be sufficient to capture the main effects of the three-nucleon interaction. Using these interactions, we analyze energies of ground and excited states in the carbon and oxygen isotopic chains, where conventional NCSM calculations are still feasible and provide an important benchmark. Furthermore, we study the Hoyle state in 12 C - a three-alpha cluster state that cannot be converged in standard NCSM
Lai, Changliang; Wang, Junbiao; Liu, Chuang
2014-10-01
Six typical composite grid cylindrical shells are constructed by superimposing three basic types of ribs. Then buckling behavior and structural efficiency of these shells are analyzed under axial compression, pure bending, torsion and transverse bending by finite element (FE) models. The FE models are created by a parametrical FE modeling approach that defines FE models with original natural twisted geometry and orients cross-sections of beam elements exactly. And the approach is parameterized and coded by Patran Command Language (PCL). The demonstrations of FE modeling indicate the program enables efficient generation of FE models and facilitates parametric studies and design of grid shells. Using the program, the effects of helical angles on the buckling behavior of six typical grid cylindrical shells are determined. The results of these studies indicate that the triangle grid and rotated triangle grid cylindrical shell are more efficient than others under axial compression and pure bending, whereas under torsion and transverse bending, the hexagon grid cylindrical shell is most efficient. Additionally, buckling mode shapes are compared and provide an understanding of composite grid cylindrical shells that is useful in preliminary design of such structures.
Symmetry-dictated trucation: Solutions of the spherical shell model for heavy nuclei
International Nuclear Information System (INIS)
Guidry, M.W.
1992-01-01
Principles of dynamical symmetry are used to simplify the spherical shell model. The resulting symmetry-dictated truncation leads to dynamical symmetry solutions that are often in quantitative agreement with a variety of observables. Numerical calculations, including terms that break the dynamical symmetries, are shown that correspond to shell model calculations for heavy deformed nuclei. The effective residual interaction is simple, well-behaved, and can be determined from basic observables. With this approach, we intend to apply the shell model in systematic fashion to all nuclei. The implications for nuclear structure far from stability and for nuclear masses and other quantities of interest in astrophysics are discussed
Symplectic no-core shell-model approach to intermediate-mass nuclei
Tobin, G. K.; Ferriss, M. C.; Launey, K. D.; Dytrych, T.; Draayer, J. P.; Dreyfuss, A. C.; Bahri, C.
2014-03-01
We present a microscopic description of nuclei in the intermediate-mass region, including the proximity to the proton drip line, based on a no-core shell model with a schematic many-nucleon long-range interaction with no parameter adjustments. The outcome confirms the essential role played by the symplectic symmetry to inform the interaction and the winnowing of shell-model spaces. We show that it is imperative that model spaces be expanded well beyond the current limits up through 15 major shells to accommodate particle excitations, which appear critical to highly deformed spatial structures and the convergence of associated observables.
Calculation of Ion Charge State Distributions After Inner-Shell Ionization in Xe Atom
International Nuclear Information System (INIS)
Mohammedein, A.M.; Ghoneim, A.A.; Kandil, M.K.; Kadad, I.M.
2009-01-01
The vacancy cascades following initial inner-shell vacancies in single and multi-ionized atoms often lead to highly charged residual ions. The inner-shell vacancy produced by ionization processes may decay by either a radiative or non-radiative transition. In addition to the vacancy filling processes, there is an electron shake off process due to the change of core potential of the atom. In the calculation of vacancy cascades, the radiative (x-ray) and non-radiative (Auger and Coster-Kronig) branching ratios give valuable information on the de-excitation dynamics of an atom with inner-shell vacancy. The production of multi-charged ions yield by the Auger cascades following inner shell ionization of an atom has been studied both experimentally and theoretically. Multi-charged Xe ions following de-excitation of K, L 1 , L 2,3 , M 1 , M 2,3 and M 4,5 subshell vacancies are calculated using Monte-Carlo algorithm to simulate the vacancy cascade development. Fluorescence yield (radiative) and Auger, Coster- Kronig yield (non- radiative) are evaluated. The decay of K hole state through radiative transitions is found to be more probable than non-radiative transitions in the first step of de-excitation. On the other hand, the decay of L, M vacancies through non-radiative transitions are more probable. The K shell ionization in Xe atom mainly yields Xe 7+ , Xe 8+ , Xe 9+ and Xe 1 0 + ions, and the charged X 8+ ions are the highest. The main product from the L 1 shell ionization is found to be Xe 8+ , Xe 9+ ions, while the charged Xe 8+ ions predominate at L 2,3 hole states. The charged Xe 6+ , Xe 7+ and Xe 8+ ions mainly yield from 3s 1/2 and 3p 1/2 , 3/2 ionization, while Xe in 3d 3/2 , 5/2 hole states mainly turns into Xe 4+ and Xe 5+ ions. The present results are found to agree well with the experimental data. (author)
International Nuclear Information System (INIS)
Fossez, Kevin
2014-01-01
Small open quantum systems, whose properties are profoundly affected by the environment of continuum states, are intensely studied in various fields of Physics: nuclear physics, atomic and molecular physics, quantum optics, etc. These different many-body systems, in spite of their specific features, have generic properties which are common to all weakly bound or unbound systems close to the threshold. Coupling to the continuum is essential to describe the low-energy nuclear reactions of astrophysical interest, the formation of halo states in nuclei, atomic clusters and dipolar anions, or the near-threshold two neutron and alpha particle correlations (clustering). Recently, the open quantum system extension of the nuclear shell model, the Gamow shell model (GSM), based on the Berggren ensemble, has been applied successfully for the description of resonant states spectra in atomic nuclei. The coupled-channel formulation of the GSM (GSM-CC) allows to describe various low-energy nuclear reactions. In this work, the GSM-CC is formulated and applied for the description of proton/neutron radiative capture reactions of astrophysical interest, such as: 17 F(p, γ) 18 Ne, 7 Be(p, γ) 8 B and 7 Li(n, γ) 8 Li. Moreover, for the first time, the GSM has been applied in atomic physics for the description of spectra of dipolar anions. Systematic investigation of the hydrogen cyanide dipolar anion (HCN - ) allowed to identify the collective bands of states both in the strong coupling regime, for weakly bound halo states, and in the weak coupling regime above the dissociation threshold. In the strong coupling regime, K J = 0 anion a rotational band has been found. Above the threshold, K J quantum number is not conserved. Resonances in this regime form rotational bands according to the angular momentum of the rotating molecule, whereas the band head energies and the lifetimes depend predominantly on the external electron wave function. (author) [fr
International Nuclear Information System (INIS)
Gruber, B.; Thomas, M.S.
1980-01-01
In this article the symmetry chains for the atomic shell model are classified in such a way that they lead from the group SU(4l+2) to its subgroup SOsub(J)(3). The atomic configurations (nl)sup(N) transform like irreducible representations of the group SU(4l+2), while SOsub(J)(3) corresponds to total angular momentum in SU(4l+2). The defining matrices for the various embeddings are given for each symmetry chain that is obtained. These matrices also define the projection onto the weight subspaces for the corresponding subsymmetries and thus relate the various quantum numbers and determine the branching of representations. It is shown in this article that three (interrelated) symmetry chains are obtained which correspond to L-S coupling, j-j coupling, and a seniority dependent coupling. Moreover, for l<=6 these chains are complete, i.e., there are no other chains but these. In articles to follow, the symmetry chains that lead from the group SO(8l+5) to SOsub(J)(3) will be discussed, with the entire atomic shell transforming like an irreducible representation of SO(8l+5). The transformation properties of the states of the atomic shell will be determined according to the various symmetry chains obtained. The symmetry lattice discussed in this article forms a sublattice of the larger symmetry lattice with SO(8l+5) as supergroup. Thus the transformation properties of the states of the atomic configurations, according to the various symmetry chains discussed in this article, will be obtained too. (author)
Seniority structure of the cranked shell model wave function and the pairing phase transition
International Nuclear Information System (INIS)
Wu, C.S.; Zeng, J.Y.; Center of Theoretical Physics, China Center of Advanced Science and Technology
1989-01-01
The accurate solutions to the low-lying eigenstates of the cranked shell model Hamiltonian are obtained by the particle-number-conserving treatment, in which a many-particle configuration truncation is adopted instead of the conventional single-particle level truncation. The variation of the seniority structures of low-lying eigenstates with rotational frequency ω is analyzed. The gap parameter of the yrast band decreases with ω very slowly, though the seniority structure has undergone a great change. It is suggested to use the seniority structure to indicate the possible pairing phase transition from a superconducting state to a normal state. The important blocking effects on the low-lying eigenstates are discussed
Seniority truncation in an equations-of-motion approach to the shell model
International Nuclear Information System (INIS)
Covello, A.; Andreozzi, F.; Gargano, A.; Porrino, A.
1989-01-01
This paper presents an equations-of-motion method for treating shell-model problems within the framework of the seniority scheme. This method can be applied at many levels of approximation and represents therefore a valuable tool to further reduce seniority truncated shell-model spaces. To show its practical value the authors report some results of an extensive study of the N = 82 isotones which is currently under way
A study of the Gaussian overlap approach in the two-center shell model
International Nuclear Information System (INIS)
Reinhard, P.-G.
1976-01-01
The Gaussian overlap approach (GOA) to the generator coordinate method (GCM) is carried through up to fourth order in the derivatives. By diagonalizing the norm overlap, a collective Schroedinger equation is obtained. The potential therein contains the usual potential energy surface (PES) plus correction terms, which subtract the zero-point energies (ZPE) is the PES. The formalism is applied to BCS states obtained from a two-center shell model (TCSM). To understand the crucial role of the pairing contributions in the GOA a schematic picture, the multi-level model, is constructed. An explicit numerical study of the convergence of the GOA is given for the TCSM, with the result that the GOA seems to be justified for medium and heavy nuclei but critical for light nuclei. (Auth.)
Sinusoidal velaroidal shell – numerical modelling of the nonlinear ...
African Journals Online (AJOL)
The nonlinearity, applied to a sinusoidal velaroidal shell with the inner radius r0, the outer variables radii from 10m to 20m and the number of waves n=8, will give rise to the investigation of its nonlinear buckling resistance. The building material is a high-performant concrete. The investigation emphasizes more on the ...
The Nuclear Shell Model and its Relation with Other Nuclear Models
Energy Technology Data Exchange (ETDEWEB)
Elliott, J. P. [University of Sussex, Brighton (United Kingdom)
1963-01-15
The starting point of all versions of the shell model is the physical idea that the interaction between a given nucleon and all the others resembles that between a nucleon and a fixed field. From this starting point one might attempt to construct a field which is self-consistent but this approach is not followed in most shell-model calculations because of the complications that arise. The more usual approach has been to use the idea of an average field to provide a complete set of sin gle-particle wave functions. Then, if the parameters of the field (e.g. its size) are correctly chosen, we would expect to reach a good approximation to the nuclear-wave function by taking that configuration of single-particle wave functions which has lowest energy in this field. The wave functions could clearly be improved by allowing the mixing of excited configurations but this is rarely done because of the resulting complexity of the problem. Even in the lowest configuration there are in general many independent wave functions for a many-particle system which would all be degenerate in the average field. To find the nuclear energy levels and wave functions we must therefore build up the energy matrix in this degenerate set, using the inter-nucleon two-body forces, and then diagonalize this matrix. If the detailed form of the nuclear forces was known we might regard such calculations as the first step towards an exact calculation in which higher configurations were included but every indication is that the convergence would be extremely slow. It is more usual to treat an energy calculation in the lowest configuration unashamedly as a model calculation and to attempt to deduce, by comparisons with experimental data in the many-particle nuclei, the nature of the effective nuclear forces required in that configuration. If the model is realistic then we should not expect these effective forces to change very much in going from one nucleus to its neighbour and since there are many more
Shell model description of 16O(p,γ)17F and 16O(p,p)16O reactions
International Nuclear Information System (INIS)
Bennaceur, K.; Michel, N.; Okolowicz, J.; Ploszajczak, M.; Bennaceur, K.; Nowacki, F.; Okolowicz, J.
2000-01-01
We present shell model calculations of both the structure of 17 F and the reactions 16 O(p,γ) 17 F, 16 O(p,p) 16 O. We use the ZBM interaction which provides a fair description of the properties of 16 O and neighbouring nuclei and, in particular it takes account for the complicated correlations in coexisting low-lying states of 16 O. (authors)
Fulde-Ferrell state in superconducting core/shell nanowires: role of the orbital effect
Mika, Marek; Wójcik, Paweł
2017-11-01
The orbital effect on the Fulde-Ferrell (FF) phase is investigated in superconducting core/shell nanowires subjected to the axial magnetic field. Confinement in the radial direction results in quantization of the electron motion with energies determined by the radial j and orbital m quantum numbers. In the external magnetic field, the twofold degeneracy with respect to the orbital magnetic quantum number m is lifted which leads to the Fermi wave vector mismatch between the paired electrons, (k, j, m, \\uparrow) ≤ftrightarrow (-k, j, -m, \\downarrow) . This mismatch is transferred to the nonzero total momentum of the Cooper pairs, which results in a formation of the FF phase occurring sequentially with increasing magnetic field. By changing the nanowire radius R and the superconducting shell thickness d, we discuss the role of the orbital effect in the FF phase formation in both the nanowire-like (R/d \\ll 1 ) and nanofilm-like (R/d \\gg 1 ) regime. We have found that the irregular pattern of the FF phase which appears for the case of the nanowire-like regime, for the nanofilm-like geometry evolves towards the regular distribution in which the FF phase stability regions emerge periodically between the BCS states. The transition between these two different phase diagrams is explained as resulting from the orbital effect and the multigap character of superconductivity in the core/shell nanowires.
Energy Technology Data Exchange (ETDEWEB)
Booth, Corwin H.; Walter, Marc D.; Kazhdan, Daniel; Hu, Yung-Jin; Lukens, Wayne W.; Bauer, Eric D.; Maron, Laurent; Eisenstein, Odile; Andersen, Richard A.
2009-04-22
Partial ytterbium f-orbital occupancy (i.e., intermediate valence) and open-shell singlet formation are established for a variety of bipyridine and diazabutadiene adducts with decamethylytterbocene, (C5Me5)2Yb, abbreviated as Cp*2Yb. Data used to support this claim include ytterbium valence measurements using Yb LIII-edge X-ray absorption near-edge structure spectroscopy, magnetic susceptibility, and complete active space self-consistent field (CASSCF) multiconfigurational calculations, as well as structural measurements compared to density functional theory calculations. The CASSCF calculations indicate that the intermediate valence is the result of a multiconfigurational ground-state wave function that has both an open-shell singlet f13(?*)1, where pi* is the lowest unoccupied molecular orbital of the bipyridine or dpiazabutadiene ligands, and a closed-shell singlet f14 component. A number of other competing theories for the unusual magnetism in these materials are ruled out by the lack of temperature dependence of the measured intermediate valence. These results have implications for understanding chemical bonding not only in organolanthanide complexes but also for f-element chemistry in general, as well as understanding magnetic interactions in nanoparticles and devices.
Energy Technology Data Exchange (ETDEWEB)
Bauer, Eric D [Los Alamos National Laboratory; Booth, C H [LBNL; Walter, M D [LBNL; Kazhdan, D [LBNL; Hu, Y - J [LBNL; Lukens, Wayne [LBNL; Maron, Laurent [INSA TOULOUSE; Eisentein, Odile [UNIV MONTPELLIER 2; Anderson, Richard [LBNL
2009-01-01
Partial ytterbium f-orbital occupancy (i.e. intermediate valence) and open-shell singlet Draft 12/formation are established for a variety of bipyridine and diazabutadiene adducts to decamethylytterbocene, (C{sub 5}Me{sub 5}){sub 2}Yb or Cp*{sub 2}Yb. Data used to support this claim includes ytterbium valence measurements using Yb Lm-edge x-ray absorption near-edge structure (XANES) spectroscopy, magnetic susceptibility and Complete Active Space Self-Consistent Field (CASSCF) multi configurational calculations, as well as structural measurements compared to density-functional theory (DFT) calculations. The CASSCF calculations indicate that the intermediate valence is the result of a multiconfigurational ground state wave function that has both an open-shell singlet f{sup 13} and a closed-shell singlet f{sup 14} component. A number of other competing theories for the unusual magnetism in these materials are ruled out by the presence of intermediate valence and its lack of any significant temperature dependence. These results have implications for understanding chemical bonding not only in organolanthanide complexes, but also for organometallic chemistry in general, as well as understanding magnetic interactions in nanopartic1es and devices.
Shell-model results in fp and fpg9/2 spaces for 61,63,65Co isotopes
International Nuclear Information System (INIS)
Srivastava, P. C.; Kota, V. K. B.
2011-01-01
Low-lying spectra and several high-spin states of odd-even 61,63,65 Co isotopes are calculated in two different shell-model spaces. First set of calculations have been carried out in fp-shell valence space (full fp space for 63,65 Co and a truncated one for 61 Co) using two recently derived fp-shell interactions, namely GXPF1A and KB3G, with 40 Ca as core. Similarly, the second set of calculations have been performed in fpg 9/2 valence space using an fpg effective interaction due to Sorlin et al., with 48 Ca as core and imposing a truncation. It is seen that the results of GXPF1A and KB3G are reasonable for 61,63 Co. For 65 Co, shell-model results show that the fpg interaction adopted in the study is inadequate and also points out that it is necessary to include orbitals higher than 1g 9/2 for neutron-rich Co isotopes.
Study of neutron shell structure of even-even 40-56Ca isotopes by the dispersive optical model
International Nuclear Information System (INIS)
Bespalova, O.V.; Boboshin, I.N.; Varlamov, V.V.; Ermakova, T.A.; Ishkhanov, B.S.; Romanovskij, E.A.; Spasskaya, T.I.; Timokhina, T.P.
2005-01-01
The single-particle energies and occupation probabilities of the bound neutron states in 40,42,44,46,48 Ca isotopes were obtained by the joint evaluation of the stripping and pick-up reaction data. The results were analyzed by the dispersive optical model and a good agreement was achieved. The dispersive optical potential was extrapolated to unstable 50,52,54,56 Ca nuclei. The calculated single-particle energies of the bound neutron states in unstable Ca isotopes were compared with the nuclear shell-model calculations, which predicted new magic number N = 34 for nuclei with Z = 20 [ru
Stability of core–shell nanowires in selected model solutions
International Nuclear Information System (INIS)
Kalska-Szostko, B.; Wykowska, U.; Basa, A.; Zambrzycka, E.
2015-01-01
Highlights: • Stability of the core–shell nanowires in environmental solutions were tested. • The most and the least aggressive solutions were determined. • The influence of different solutions on magnetic nanowires core was found out. - Abstract: This paper presents the studies of stability of magnetic core–shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods
Stability of core–shell nanowires in selected model solutions
Energy Technology Data Exchange (ETDEWEB)
Kalska-Szostko, B., E-mail: kalska@uwb.edu.pl; Wykowska, U.; Basa, A.; Zambrzycka, E.
2015-03-30
Highlights: • Stability of the core–shell nanowires in environmental solutions were tested. • The most and the least aggressive solutions were determined. • The influence of different solutions on magnetic nanowires core was found out. - Abstract: This paper presents the studies of stability of magnetic core–shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods.
Two-photon decay of K-shell vacancy states in heavy atoms
International Nuclear Information System (INIS)
Ilakovac, K.; Uroic, M.; Majer, M.; Pasic, S.; Vukovic, B.
2006-01-01
Two-photon decay has been extensively studied in atomic, nuclear and particle physics since the 1930s when the problem of stability of the 2s state of the hydrogen atom emerged. Since then, many theoretical and experimental investigations have been made on hydrogen and one-electron (H-like) ions and on helium and two-electron (He-like) ions. The work on two-photon decay in many-electron systems involving inner shells started about 30 years ago and, in the meantime, two-photon decay of the K-shell vacancy state has been the subject of many theoretical and experimental studies. Experimental results have been obtained for 2s->1s and higher-state electron ->1s two-photon transitions in molybdenum, and for 2s -> 1s, 3s -> 1s, 3d -> 1s and 4sd -> 1s two-photon transitions in silver, xenon, hafnium and mercury. Nonrelativistic and relativistic calculations of the processes have been made. The relativistic calculations for transitions in molybdenum, silver and xenon atoms are in a reasonable agreement with the experimental results, but some problems remain to be solved. A review of investigations of two-photon transitions in atomic systems is presented
Inner shell Coulomb ionization by heavy charged particles studied by the SCA model
International Nuclear Information System (INIS)
Hansteen, J.M.
1976-12-01
The seven papers, introduced by the most recent, subtitled 'A condensed status review', form a survey of the work by the author and his colleagues on K-, L-, and M-shell ionisation by impinging protons, deuterons and α-particles in the period 1971-1976. The SCA model is discussed and compared with other approximations for inner shell Coulomb ionisation. The future aspects in this field are also discussed. (JIW)
All (4,1): Sigma models with (4,q) off-shell supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Hull, Chris [The Blackett Laboratory, Imperial College London,Prince Consort Road London SW7 @AZ (United Kingdom); Lindström, Ulf [The Blackett Laboratory, Imperial College London,Prince Consort Road London SW7 @AZ (United Kingdom); Department of Physics and Astronomy, Division of Theoretical Physics,Uppsala University, Box 516, SE-751 20 Uppsala (Sweden)
2017-03-08
Off-shell (4,q) supermultiplets in 2-dimensions are constructed for q=1,2,4. These are used to construct sigma models whose target spaces are hyperkähler with torsion. The off-shell supersymmetry implies the three complex structures are simultaneously integrable and allows us to construct actions using extended superspace and projective superspace, giving an explicit construction of the target space geometries.
Jiao, C. F.; Engel, J.; Holt, J. D.
2017-11-01
We use the generator-coordinate method (GCM) with realistic shell-model interactions to closely approximate full shell-model calculations of the matrix elements for the neutrinoless double-β decay of 48Ca, 76Ge, and 82Se. We work in one major shell for the first isotope, in the f5 /2p g9 /2 space for the second and third, and finally in two major shells for all three. Our coordinates include not only the usual axial deformation parameter β , but also the triaxiality angle γ and neutron-proton pairing amplitudes. In the smaller model spaces our matrix elements agree well with those of full shell-model diagonalization, suggesting that our Hamiltonian-based GCM captures most of the important valence-space correlations. In two major shells, where exact diagonalization is not currently possible, our matrix elements are only slightly different from those in a single shell.
Time-dependent shell-model theory of dissipative heavy-ion collisions
International Nuclear Information System (INIS)
Ayik, S.; Noerenberg, W.
1982-01-01
A transport theory is formulated within a time-dependent shell-model approach. Time averaging of the equations for macroscopic quantities lead to irreversibility and justifies weak-coupling limit and Markov approximation for the (energy-conserving) one- and two-body collision terms. Two coupled equations for the occupation probabilities of dynamical single-particle states and for the collective variable are derived and explicit formulas for transition rates, dynamical forces, mass parameters and friction coefficients are given. The applicability of the formulation in terms of characteristic quantities of nuclear systems is considered in detail and some peculiarities due to memory effects in the initial equilibration process of heavy-ion collisions are discussed. (orig.)
Core polarization and 3/2 states of some f-p shell nuclei
International Nuclear Information System (INIS)
Shelly, S.
1976-01-01
The energies, wavefunctions, spectroscopic factors and M1 transition strengths have been calculated for the 3/2 - states excited via single proton transfer to 2p3/2 orbit of the target nuclei 50 Ti, 52 Cr, 54 Fe and 56 Fe. The calculations have been done by using the Kuo and Brown interaction in the entire four shell space as well as the shrunk Kuo and Brown interaction calculated in (1f7/2-2p3/2) space. The salient feature of the calculation is that whereas the systematics of single particle strength distribution are well reproduced, the energy splitting between the calculated T> centroid and the centroid of T> states is always much smaller than that observed experimentally. It has been found, however, that the modified KB interaction widens the energy gap between the T> centroid and the centroid of T> states without appreciably affecting the final wave-functions. (author)
International Nuclear Information System (INIS)
Flocard, H.
1975-04-01
Hartree-Fock results concerning the ground state properties of some S-D shell nuclei are discussed. Two different Skyrme interactions have been used. They both lead to good agreement with the experimental total binding energies, charge radii and multipole moments. In particular the observed prolate-oblate transitions occuring in the S-D shell are reproduced. The calculated spectroscopic factors are also shown to be consistent with experimental data [fr
International Nuclear Information System (INIS)
Brown, B.A.; Wildenthal, B.H.
1983-01-01
The magnetic dipole moments of states in mirror pairs of the sd-shell nuclei and the strengths of the Gamow-Teller beta decays which connect them are compared with predictions based on mixed-configuration shell-model wave functions. From this analysis we extract the average effective values of the single-particle matrix elements of the l, s, and [Y/sup( 2 )xs]/sup( 1 ) components of the M1 and Gamow-Teller operators acting on nucleons in the 0d/sub 5/2/, 1s/sub 1/2/, and 0d/sub 3/2/ orbits. These results are compared with the recent calculations by Towner and Khanna of the corrections to the free-nucleon values of these matrix elements which arise from the effects of isobar currents, mesonic-exchange currents, and mixing with configurations outside the sd shell
Mean field theory of nuclei and shell model. Present status and future outlook
International Nuclear Information System (INIS)
Nakada, Hitoshi
2003-01-01
Many of the recent topics of the nuclear structure are concerned on the problems of unstable nuclei. It has been revealed experimentally that the nuclear halos and the neutron skins as well as the cluster structures or the molecule-like structures can be present in the unstable nuclei, and the magic numbers well established in the stable nuclei disappear occasionally while new ones appear. The shell model based on the mean field approximation has been successfully applied to stable nuclei to explain the nuclear structure as the finite many body system quantitatively and it is considered as the standard model at present. If the unstable nuclei will be understood on the same model basis or not is a matter related to fundamental principle of nuclear structure theories. In this lecture, the fundamental concept and the framework of the theory of nuclear structure based on the mean field theory and the shell model are presented to make clear the problems and to suggest directions for future researches. At first fundamental properties of nuclei are described under the subtitles: saturation and magic numbers, nuclear force and effective interactions, nuclear matter, and LS splitting. Then the mean field theory is presented under subtitles: the potential model, the mean field theory, Hartree-Fock approximation for nuclear matter, density dependent force, semiclassical mean field theory, mean field theory and symmetry, Skyrme interaction and density functional, density matrix expansion, finite range interactions, effective masses, and motion of center of mass. The subsequent section is devoted to the shell model with the subtitles: beyond the mean field approximation, core polarization, effective interaction of shell model, one-particle wave function, nuclear deformation and shell model, and shell model of cross shell. Finally structure of unstable nuclei is discussed with the subtitles: general remark on the study of unstable nuclear structure, asymptotic behavior of wave
Recent developments in anisotropic heterogeneous shell theory
Grigorenko, Alexander Ya; Grigorenko, Yaroslav M; Vlaikov, Georgii G
2016-01-01
This volume focuses on the relevant general theory and presents some first applications, namely those based on classical shell theory. After a brief introduction, during which the history and state-of-the-art are discussed, the first chapter presents the mechanics of anisotropic heterogeneous shells, covering all relevant assumptions and the basic relations of 3D elasticity, classical and refined shell models. The second chapter examines the numerical techniques that are used, namely discrete orthogonalization, spline-collocation and Fourier series, while the third highlights applications based on classical theory, in particular, the stress-strain state of shallow shells, non-circular shells, shells of revolution, and free vibrations of conical shells. The book concludes with a summary and an outlook bridging the gap to the second volume.
International Nuclear Information System (INIS)
Losano, L.; Dias, H.; Krmpotic, F.; Wildenthal, B.H.
1988-01-01
A detailed study of the results of correcting BCS approximation for the effects of particle-number projection and blocking has been carried out. A low-seniority shell-model approximation was used as the frame of reference for investigating the mixing of one- and three-quasiparticle states in odd-mass Ni isotopes and in odd-mass N = 82 isotones. We discuss the results obtained for the energy spectra and electromagnetic decay properties. Effects of seniority-five configurations on the low-lying states have also been studied through the comparison of the low-seniority shell-model results with those which arose from the corresponding full shell-model calculations
A non-local shell model of hydrodynamic and magnetohydrodynamic turbulence
Energy Technology Data Exchange (ETDEWEB)
Plunian, F [Laboratoire de Geophysique Interne et Tectonophysique, CNRS, Universite Joseph Fourier, Maison des Geosciences, BP 53, 38041 Grenoble Cedex 9 (France); Stepanov, R [Institute of Continuous Media Mechanics, Korolyov 1, 614013 Perm (Russian Federation)
2007-08-15
We derive a new shell model of magnetohydrodynamic (MHD) turbulence in which the energy transfers are not necessarily local. Like the original MHD equations, the model conserves the total energy, magnetic helicity, cross-helicity and volume in phase space (Liouville's theorem) apart from the effects of external forcing, viscous dissipation and magnetic diffusion. The model of hydrodynamic (HD) turbulence is derived from the MHD model setting the magnetic field to zero. In that case the conserved quantities are the kinetic energy and the kinetic helicity. In addition to a statistically stationary state with a Kolmogorov spectrum, the HD model exhibits multiscaling. The anomalous scaling exponents are found to depend on a free parameter {alpha} that measures the non-locality degree of the model. In freely decaying turbulence, the infra-red spectrum also depends on {alpha}. Comparison with theory suggests using {alpha} = -5/2. In MHD turbulence, we investigate the fully developed turbulent dynamo for a wide range of magnetic Prandtl numbers in both kinematic and dynamic cases. Both local and non-local energy transfers are clearly identified.
Exact boson mappings for nuclear neutron (proton) shell-model algebras having SU(3) subalgebras
International Nuclear Information System (INIS)
Bonatsos, D.; Klein, A.
1986-01-01
In this paper the commutation relations of the fermion pair operators of identical nucleons coupled to spin zero are given for the general nuclear major shell in LST coupling. The associated Lie algebras are the unitary symplectic algebras Sp(2M). The corresponding multipole subalgebras are the unitary algebras U(M), which possess SU(3) subalgebras. Number conserving exact boson mappings of both the Dyson and hermitian form are given for the nuclear neutron (proton) s--d, p--f, s--d--g, and p--f--h shells, and their group theoretical structure is emphasized. The results are directly applicable in the case of the s--d shell, while in higher shells the experimentally plausible pseudo-SU(3) symmetry makes them applicable. The final purpose of this work is to provide a link between the shell model and the Interacting Boson Model (IBM) in the deformed limit. As already implied in the work of Draayer and Hecht, it is difficult to associate the boson model developed here with the conventional IBM model. The differences between the two approaches (due mainly to the effects of the Pauli principle) as well as their physical implications are extensively discussed
Surface states in the photoionization of high-quality CdSe core/shell nanocrystals.
Li, Shu; Steigerwald, Michael L; Brus, Louis E
2009-05-26
We use electric force microscopy (EFM) to study single nanocrystal photoionization in two classes of high-quality nanocrystals whose exciton luminescence quantum yields approach unity in solution. The CdSe/CdS/ZnS core/shell nanocrystals do not photoionize, while the CdSe/CdS nanocrystals do show substantial photoionization. This verifies the theoretical prediction that the ZnS shell confines the excited electron within the nanocrystal. Despite the high luminescence quantum yield, photoionization varies substantially among the CdSe/CdS nanocrystals. We have studied the nanocrystal photoionization with both UV (396 nm) and green (532 nm) light, and we have found that the magnitude of the charge due to photoionization per absorbed photon is greater for UV excitation than for green excitation. A fraction of the photoionization occurs directly via a "hot electron" process, using trap states that are either on the particle surface, within the ligand sphere, or within the silicon oxide layer. This must occur without relaxation to the thermalized, lowest-energy, emitting exciton. We discuss the occurrence of hot carrier processes that are common to photoionization, luminescence blinking, and the fast transient optical absorption that is associated with multiple exciton generation MEG studies.
The off-shell nucleon-nucleon interaction in the singlet s-state
International Nuclear Information System (INIS)
Groot, H. de
1975-01-01
This thesis studies the off-shell behaviour of the neutron-proton interaction in the singlet state. To generate phase-shift-equivalent potentials a particular type of inversion problem is solved. It requires the potential to contain a non-local, separable part which is supposed to describe part of the short-range interaction. A special solution of the general inversion problem that produces potentials consisting of two separable terms is studied. Criteria to accept or reject particular inversion solutions are discussed. Neutron-proton potentials in the 1 S 0 partial wave which form part of the input for the general inversion procedure are defined. Different local potential tails are chosen, as well as varying short-range interactions, both local and non-local. The input phase shifts are discussed including three extrapolations of the phase shifts at high energy. The half-shell transition matrix for the potentials defined is studied. Some problems introduced by the additional electromagnetic interaction in the proton-proton system is investigated. (Auth.)
International Nuclear Information System (INIS)
Savchenko, V.G.
1995-01-01
In this investigation, we will use a cylindrical coordinate system to study the stress state of laminated shells of revolution made of inelastically deforming isotropic materials and elastic materials with linear orthotropy. One of the principal directions of anisotropy coincides with the axis of revolution of the body. The shells will be subjected to nonaxisymmetric loading by body bar K (K Z , K r , K var-phi ) and surface bar t n (t nz , t nr , t nvar-phi ) forces and heating. The level of loading is such that the rheological properties of the materials of the layers are not a factor, although their thermomechanical characteristics depend on temperature. In addition, the loading and heating of the body occur in such a way that simple (or close to simple) deformation processes take place in its isotropic elements. These processes are accompanied by inelastic strains and the formation of unloading regions in which plastic strains having the sign opposite the initial strains develop. It is assumed that the layers of the body are secured to one another without interference and that conditions corresponding to ideal contact prevail at their interfaces
DEFF Research Database (Denmark)
Almegaard, Henrik
2004-01-01
A new statical and conceptual model for membrane shell structures - the stringer system - has been found. The principle was first published at the IASS conference in Copenhagen (OHL91), and later the theory has been further developed (ALMO3)(ALMO4). From the analysis of the stringer model it can...... be concluded that all membrane shells can be described by a limited number of basic configurations of which quite a few have free edges....
Energy Technology Data Exchange (ETDEWEB)
Jacobs, A. M.; Zingale, M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Nonaka, A.; Almgren, A. S.; Bell, J. B. [Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)
2016-08-10
The dynamics of helium shell convection driven by nuclear burning establish the conditions for runaway in the sub-Chandrasekhar-mass, double-detonation model for SNe Ia, as well as for a variety of other explosive phenomena. We explore these convection dynamics for a range of white dwarf core and helium shell masses in three dimensions using the low Mach number hydrodynamics code MAESTRO. We present calculations of the bulk properties of this evolution, including time-series evolution of global diagnostics, lateral averages of the 3D state, and the global 3D state. We find a variety of outcomes, including quasi-equilibrium, localized runaway, and convective runaway. Our results suggest that the double-detonation progenitor model is promising and that 3D dynamic convection plays a key role.
Thompson, Timothy F.; Clancey, William J.
This report describes the application of a shell expert system from the medical diagnostic system, Neomycin, to Caster, a diagnostic system for malfunctions in industrial sandcasting. This system was developed to test the hypothesis that starting with a well-developed classification procedure and a relational language for stating the…
OWL: A code for the two-center shell model with spherical Woods-Saxon potentials
Diaz-Torres, Alexis
2018-03-01
A Fortran-90 code for solving the two-center nuclear shell model problem is presented. The model is based on two spherical Woods-Saxon potentials and the potential separable expansion method. It describes the single-particle motion in low-energy nuclear collisions, and is useful for characterizing a broad range of phenomena from fusion to nuclear molecular structures.
Collapse of the random-phase approximation: Examples and counter-examples from the shell model
International Nuclear Information System (INIS)
Johnson, Calvin W.; Stetcu, Ionel
2009-01-01
The Hartree-Fock approximation to the many-fermion problem can break exact symmetries, and in some cases by changing a parameter in the interaction one can drive the Hartree-Fock minimum from a symmetry-breaking state to a symmetry-conserving state (also referred to as a 'phase transition' in the literature). The order of the transition is important when one applies the random-phase approximation (RPA) to the of the Hartree-Fock wave function: if first order, RPA is stable through the transition, but if second-order, then the RPA amplitudes become large and lead to unphysical results. The latter is known as 'collapse' of the RPA. While the difference between first- and second-order transitions in the RPA was first pointed out by Thouless, we present for the first time nontrivial examples of both first- and second-order transitions in a uniform model, the interacting shell-model, where we can compare to exact numerical results.
Light neutron-rich hypernuclei from the importance-truncated no-core shell model
Directory of Open Access Journals (Sweden)
Roland Wirth
2018-04-01
Full Text Available We explore the systematics of ground-state and excitation energies in singly-strange hypernuclei throughout the helium and lithium isotopic chains — from HeΛ5 to HeΛ11 and from LiΛ7 to LiΛ12 — in the ab initio no-core shell model with importance truncation. All calculations are based on two- and three-baryon interaction from chiral effective field theory and we employ a similarity renormalization group transformation consistently up to the three-baryon level to improve the model-space convergence. While the absolute energies of hypernuclear states show a systematic variation with the regulator cutoff of the hyperon–nucleon interaction, the resulting neutron separation energies are very stable and in good agreement with available data for both nucleonic parents and their daughter hypernuclei. We provide predictions for the neutron separation energies and the spectra of neutron-rich hypernuclei that have not yet been observed experimentally. Furthermore, we find that the neutron drip lines in the helium and lithium isotopic chains are not changed by the addition of a hyperon. Keywords: Hypernuclei, Ab-initio methods, Neutron-rich nuclei, Neutron separation energies, Neutron drip line
Light neutron-rich hypernuclei from the importance-truncated no-core shell model
Wirth, Roland; Roth, Robert
2018-04-01
We explore the systematics of ground-state and excitation energies in singly-strange hypernuclei throughout the helium and lithium isotopic chains - from He5Λ to He11Λ and from Li7Λ to Li12Λ - in the ab initio no-core shell model with importance truncation. All calculations are based on two- and three-baryon interaction from chiral effective field theory and we employ a similarity renormalization group transformation consistently up to the three-baryon level to improve the model-space convergence. While the absolute energies of hypernuclear states show a systematic variation with the regulator cutoff of the hyperon-nucleon interaction, the resulting neutron separation energies are very stable and in good agreement with available data for both nucleonic parents and their daughter hypernuclei. We provide predictions for the neutron separation energies and the spectra of neutron-rich hypernuclei that have not yet been observed experimentally. Furthermore, we find that the neutron drip lines in the helium and lithium isotopic chains are not changed by the addition of a hyperon.
Microscopic calculation of level densities: the shell model Monte Carlo approach
International Nuclear Information System (INIS)
Alhassid, Yoram
2012-01-01
The shell model Monte Carlo (SMMC) approach provides a powerful technique for the microscopic calculation of level densities in model spaces that are many orders of magnitude larger than those that can be treated by conventional methods. We discuss a number of developments: (i) Spin distribution. We used a spin projection method to calculate the exact spin distribution of energy levels as a function of excitation energy. In even-even nuclei we find an odd-even staggering effect (in spin). Our results were confirmed in recent analysis of experimental data. (ii) Heavy nuclei. The SMMC approach was extended to heavy nuclei. We have studied the crossover between vibrational and rotational collectivity in families of samarium and neodymium isotopes in model spaces of dimension approx. 10 29 . We find good agreement with experimental results for both state densities and 2 > (where J is the total spin). (iii) Collective enhancement factors. We have calculated microscopically the vibrational and rotational enhancement factors of level densities versus excitation energy. We find that the decay of these enhancement factors in heavy nuclei is correlated with the pairing and shape phase transitions. (iv) Odd-even and odd-odd nuclei. The projection on an odd number of particles leads to a sign problem in SMMC. We discuss a novel method to calculate state densities in odd-even and odd-odd nuclei despite the sign problem. (v) State densities versus level densities. The SMMC approach has been used extensively to calculate state densities. However, experiments often measure level densities (where levels are counted without including their spin degeneracies.) A spin projection method enables us to also calculate level densities in SMMC. We have calculated the SMMC level density of 162 Dy and found it to agree well with experiments
History and future perspectives of the Monte Carlo shell model -from Alphleet to K computer-
International Nuclear Information System (INIS)
Shimizu, Noritaka; Otsuka, Takaharu; Utsuno, Yutaka; Mizusaki, Takahiro; Honma, Michio; Abe, Takashi
2013-01-01
We report a history of the developments of the Monte Carlo shell model (MCSM). The MCSM was proposed in order to perform large-scale shell-model calculations which direct diagonalization method cannot reach. Since 1999 PC clusters were introduced for parallel computation of the MCSM. Since 2011 we participated the High Performance Computing Infrastructure Strategic Program and developed a new MCSM code for current massively parallel computers such as K computer. We discuss future perspectives concerning a new framework and parallel computation of the MCSM by incorporating conjugate gradient method and energy-variance extrapolation
Shell Tectonics: A Mechanical Model for Strike-slip Displacement on Europa
Rhoden, Alyssa Rose; Wurman, Gilead; Huff, Eric M.; Manga, Michael; Hurford, Terry A.
2012-01-01
We introduce a new mechanical model for producing tidally-driven strike-slip displacement along preexisting faults on Europa, which we call shell tectonics. This model differs from previous models of strike-slip on icy satellites by incorporating a Coulomb failure criterion, approximating a viscoelastic rheology, determining the slip direction based on the gradient of the tidal shear stress rather than its sign, and quantitatively determining the net offset over many orbits. This model allows us to predict the direction of net displacement along faults and determine relative accumulation rate of displacement. To test the shell tectonics model, we generate global predictions of slip direction and compare them with the observed global pattern of strike-slip displacement on Europa in which left-lateral faults dominate far north of the equator, right-lateral faults dominate in the far south, and near-equatorial regions display a mixture of both types of faults. The shell tectonics model reproduces this global pattern. Incorporating a small obliquity into calculations of tidal stresses, which are used as inputs to the shell tectonics model, can also explain regional differences in strike-slip fault populations. We also discuss implications for fault azimuths, fault depth, and Europa's tectonic history.
Multi-shell model of ion-induced nucleic acid condensation
Energy Technology Data Exchange (ETDEWEB)
Tolokh, Igor S. [Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061 (United States); Drozdetski, Aleksander V. [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States); Pollack, Lois [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853-3501 (United States); Baker, Nathan A. [Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912 (United States); Onufriev, Alexey V. [Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061 (United States); Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States)
2016-04-21
We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(III) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into “external” and “internal” ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the “external” shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the “internal” shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent
Intruder states in sd-shell nuclei: from 1p-1t to np-nt in Si isotopes
International Nuclear Information System (INIS)
Goasduff, A.
2012-01-01
New large-scale shell-model calculations with full 1ℎω valence space for the sd-nuclei has been used for the first time to predict lifetimes of positive and negative parity states in neutron rich Si isotopes. The predicted lifetimes (1 - 100 ps) fall in the range of the differential Doppler shift method. Using the demonstrator of the European next generation γ-ray array, AGATA, in coincidence with the large acceptance PRISMA magnetic spectrometer from LNL (Legnaro) and the differential plunger of the University of Cologne, lifetimes of excited states in 32;33 Si and 35;36 S nuclei were measured. In a second step, the nℎω structure in the stable 28 Si nucleus was also studied. 28 Si is an important nucleus in order to understand the competition between mean-field and cluster structures. It displays a wealth of structures in terms of deformation and clustering. Light heavy-ion resonant radiative capture 12 C+ 16 O has been performed at energies below the Coulomb barrier. The measure γ-spectra indicate for the first time at these energies that the strongest part of the resonance decay proceeds though intermediate states around 10 MeV. Comparisons with previous radiative capture studies above the Coulomb barrier have been performed and the results have been interpreted in terms of a favoured feeding of T=1 states in the 28 Si self-conjugate nucleus. (author)
Analysis of two colliding fractionally damped spherical shells in modelling blunt human head impacts
Rossikhin, Yury A.; Shitikova, Marina V.
2013-06-01
The collision of two elastic or viscoelastic spherical shells is investigated as a model for the dynamic response of a human head impacted by another head or by some spherical object. Determination of the impact force that is actually being transmitted to bone will require the model for the shock interaction of the impactor and human head. This model is indended to be used in simulating crash scenarios in frontal impacts, and provide an effective tool to estimate the severity of effect on the human head and to estimate brain injury risks. The model developed here suggests that after the moment of impact quasi-longitudinal and quasi-transverse shock waves are generated, which then propagate along the spherical shells. The solution behind the wave fronts is constructed with the help of the theory of discontinuities. It is assumed that the viscoelastic features of the shells are exhibited only in the contact domain, while the remaining parts retain their elastic properties. In this case, the contact spot is assumed to be a plane disk with constant radius, and the viscoelastic features of the shells are described by the fractional derivative standard linear solid model. In the case under consideration, the governing differential equations are solved analytically by the Laplace transform technique. It is shown that the fractional parameter of the fractional derivative model plays very important role, since its variation allows one to take into account the age-related changes in the mechanical properties of bone.
Li, Zhendong; Liu, Wenjian
2016-06-14
Compared with closed-shell systems, open-shell systems place three additional challenges to time-dependent density functional theory (TD-DFT) for electronically excited states: (a) the spin-contamination problem is a serious issue; (b) the exchange-correlation (XC) kernel may be numerically instable; and (c) the single-determinant description of open-shell ground states readily becomes energetically instable. Confined to flip-up single excitations, the spin-contamination problem can largely be avoided by using the spin-flip TD-DFT (SF-TD-DFT) formalism, provided that a noncollinear XC kernel is employed. As for the numerical instabilities associated with such a kernel, only an ad hoc scheme has been proposed so far, viz., the ALDA0 kernel, which amounts to setting the divergent components (arising from density gradients and kinetic energy density) simply to zero. The ground-state instability problem can effectively be avoided by introducing the Tamm-Dancoff approximation (TDA) to TD-DFT. Therefore, on a general basis, the SF-TDA/ALDA0 Ansatz is so far the only promising means within the TD-DFT framework for flip-up single excitations of open-shell systems. To assess systematically the performance of SF-TDA/ALDA0, in total 61 low-lying quartet excited states of the benchmark set of 11 small radicals [J. Chem. Theory Comput. 2016, 12, 238] are investigated with various XC functionals. Taking the MRCISD+Q (multireference configuration interaction with singles and doubles plus the Davidson correction) results as benchmark, it is found that the mean absolute errors of SF-TDA/ALDA0 with the SAOP (statistical averaging of model orbital potentials), global hybrid, and range-separated hybrid functionals are in the range of 0.2-0.4 eV. This is in line not only with the typical accuracy of TD-DFT for singlet and triplet excited states of closed-shell systems but also with the gross accuracy of spin-adapted TD-DFT for spin-conserving excited states of open-shell systems.
International Nuclear Information System (INIS)
Lipkin, H.J.
1986-01-01
The success of simple constituent quark models in single-hardon physics and their failure in multiquark physics is discussed, emphasizing the relation between meson and baryon spectra, hidden color and the color matrix, breakup decay modes, coupled channels, and hadron-hadron interactions via flipping and tunneling of flux tubes. Model-independent predictions for possible multiquark bound states are considered and the most promising candidates suggested. A quark approach to baryon-baryon interactions is discussed
Model uncertainties of local-thermodynamic-equilibrium K-shell spectroscopy
Nagayama, T.; Bailey, J. E.; Mancini, R. C.; Iglesias, C. A.; Hansen, S. B.; Blancard, C.; Chung, H. K.; Colgan, J.; Cosse, Ph.; Faussurier, G.; Florido, R.; Fontes, C. J.; Gilleron, F.; Golovkin, I. E.; Kilcrease, D. P.; Loisel, G.; MacFarlane, J. J.; Pain, J.-C.; Rochau, G. A.; Sherrill, M. E.; Lee, R. W.
2016-09-01
Local-thermodynamic-equilibrium (LTE) K-shell spectroscopy is a common tool to diagnose electron density, ne, and electron temperature, Te, of high-energy-density (HED) plasmas. Knowing the accuracy of such diagnostics is important to provide quantitative conclusions of many HED-plasma research efforts. For example, Fe opacities were recently measured at multiple conditions at the Sandia National Laboratories Z machine (Bailey et al., 2015), showing significant disagreement with modeled opacities. Since the plasma conditions were measured using K-shell spectroscopy of tracer Mg (Nagayama et al., 2014), one concern is the accuracy of the inferred Fe conditions. In this article, we investigate the K-shell spectroscopy model uncertainties by analyzing the Mg spectra computed with 11 different models at the same conditions. We find that the inferred conditions differ by ±20-30% in ne and ±2-4% in Te depending on the choice of spectral model. Also, we find that half of the Te uncertainty comes from ne uncertainty. To refine the accuracy of the K-shell spectroscopy, it is important to scrutinize and experimentally validate line-shape theory. We investigate the impact of the inferred ne and Te model uncertainty on the Fe opacity measurements. Its impact is small and does not explain the reported discrepancies.
International Nuclear Information System (INIS)
Dupuis, M.; Karataglidis, S.; Bauge, E.; Delaroche, J.P.; Gogny, D.
2006-01-01
The random phase approximation (RPA) long-range correlations are known to play a significant role in understanding the depletion of single particle-hole states observed in (e,e ' ) and (e,e ' p) measurements. Here the RPA theory, implemented using the D1S force is considered for the specific purpose of building correlated ground states and related one-body density matrix elements. These may be implemented and tested in a fully microscopic optical model for NA scattering off doubly closed-shell nuclei. A method is presented to correct for the correlations overcounting inherent to the RPA formalism. One-body density matrix elements in the uncorrelated (i.e., Hartree-Fock) and correlated (i.e., RPA) ground states are then challenged in proton scattering studies based on the Melbourne microscopic optical model to highlight the role played by the RPA correlations. Agreement between the parameter free scattering predictions and measurements is good for incident proton energies ranging from 200 MeV down to approximately 60 MeV and becomes gradually worse in the lower energy range. Those features point unambiguously to the relevance of the g-matrix method to build microscopic optical model potentials at medium energies, and emphasize the need to include nucleon-phonon coupling, that is, a second-order component of the Feshbach type in the potential at lower energies. Illustrations are given for proton scattering observables measured up to 201 MeV for the 16 O, 40 Ca, 48 Ca, and 208 Pb target nuclei
Microscopic theory of light exotic nuclei. Shell Models Embedded in the Continuum
International Nuclear Information System (INIS)
Bennaceur, K.
1999-01-01
The recent advances in experimental nuclear physics make it possible to study nuclear systems far from the beta stability line. The discovery of new phenomena, like halos or neutron skins, requires the development of new theoretical models which enable to study these systems. The first part of this work is devoted to the development and the applications of the Shell Model Embedded in the Continuum (SMEC). This new formalism allows to take into account the correlations between the bound and scattering states of loosely bound nuclei. SMEC is applied here to the study of the spectroscopy of the Mirror nuclei 8 B- 8 Li and 17 F- 17 O. It can also be used to calculate the cross sections of the elastic scattering, the Coulomb breakup processes and the radiative n,p capture processes. The results concerning the reactions of astrophysical interest: 18 O(p, γ) 17 F and 7 Be(p, γ) 8 B, are discussed in details. This last reaction is very important because the disintegration of 8 B is the main source of High energy neutrinos in the sun. The second part of this work is related to the analysis of pairing interaction for weakly bound nuclei. We have developed a new approach, based on the Hartree-Fock-Bogolyubov (HFB) theory, that allows to study the pairing correlations between bound and scattering states, both resonant and not resonant ones. The 'particle-hole' potential is replaced by a model potential for which the solutions are analytically known. This method allows to analyse the effect of pairing on bound and resonant states, independently of their energy position. We have clearly demonstrated that the non-resonant continuum plays a crucial role in the loosely bound nuclei and that solving the HFB equations in the coordinate space is the only method that permits to treat this problem correctly. (author)
Importance-truncated no-core shell model for fermionic many-body systems
Energy Technology Data Exchange (ETDEWEB)
Spies, Helena
2017-03-15
The exact solution of quantum mechanical many-body problems is only possible for few particles. Therefore, numerical methods were developed in the fields of quantum physics and quantum chemistry for larger particle numbers. Configuration Interaction (CI) methods or the No-Core Shell Model (NCSM) allow ab initio calculations for light and intermediate-mass nuclei, without resorting to phenomenology. An extension of the NCSM is the Importance-Truncated No-Core Shell Model, which uses an a priori selection of the most important basis states. The importance truncation was first developed and applied in quantum chemistry in the 1970s and latter successfully applied to models of light and intermediate mass nuclei. Other numerical methods for calculations for ultra-cold fermionic many-body systems are the Fixed-Node Diffusion Monte Carlo method (FN-DMC) and the stochastic variational approach with Correlated Gaussian basis functions (CG). There are also such method as the Coupled-Cluster method, Green's Function Monte Carlo (GFMC) method, et cetera, used for calculation of many-body systems. In this thesis, we adopt the IT-NCSM for the calculation of ultra-cold Fermi gases at unitarity. Ultracold gases are dilute, strongly correlated systems, in which the average interparticle distance is much larger than the range of the interaction. Therefore, the detailed radial dependence of the potential is not resolved, and the potential can be replaced by an effective contact interaction. At low energy, s-wave scattering dominates and the interaction can be described by the s-wave scattering length. If the scattering length is small and negative, Cooper-pairs are formed in the Bardeen-Cooper-Schrieffer (BCS) regime. If the scattering length is small and positive, these Cooper-pairs become strongly bound molecules in a Bose-Einstein-Condensate (BEC). In between (for large scattering lengths) is the unitary limit with universal properties. Calculations of the energy spectra
IBM parameters derived from realistic shell-model Hamiltonian via Hn-cooling method
International Nuclear Information System (INIS)
Nakada, Hitoshi
1997-01-01
There is a certain influence of non-collective degrees-of-freedom even in lowest-lying states of medium-heavy nuclei. This influence seems to be significant for some of the IBM parameters. In order to take it into account, several renormalization approaches have been applied. It has been shown in the previous studies that the influence of the G-pairs is important, but does not fully account for the fitted values. The influence of the non-collective components may be more serious when we take a realistic effective nucleonic interaction. To incorporate this influence into the IBM parameters, we employ the recently developed H n -cooling method. This method is applied to renormalize the wave functions of the states consisting of the SD-pairs, for the Cr-Fe nuclei. On this ground, the IBM Hamiltonian and transition operators are derived from corresponding realistic shell-model operators, for the Cr-Fe nuclei. Together with some features of the realistic interaction, the effects of the non-SD degrees-of-freedom are presented. (author)
Shell model with several particles in the continuum: application to the two-proton decay
International Nuclear Information System (INIS)
Rotureau, J.
2005-02-01
The recent experimental results concerning nuclei at the limit of stability close to the drip-lines and in particular the two-proton emitters require a development of new methodologies to reliably calculate and understand properties of those exotic physical systems. In this work we have extended the Shell Model Embedded in the Continuum (SMEC) in order to describe the coupling with two particles in the scattering continuum. We have obtained a microscopic description of the two-proton emission that takes into account the antisymmetrization of the total wavefunction, the configuration mixing and the three-body asymptotics. We have studied the decay of the 1 2 - state in 18 Ne in two limiting cases: (i) a sequential emission of two protons through the correlated continuum of 17 F and (ii) emission of 2 He cluster that disintegrates because of the final state interaction (diproton emission). Independently of the choice of the effective interaction we have observed that the two-proton emission of the 1 2 - in 18 Ne is mainly a sequential process; the ratio between the widths of the diproton emission and the sequential decay does not exceed 8% in any case. (author)
Abrosimov, N. A.; Novosel'tseva, N. A.
2017-05-01
A technique for numerically analyzing the dynamic strength of two-layer metal-plastic cylindrical shells under an axisymmetric internal explosive loading is developed. The kinematic deformation model of the layered package is based on a nonclassical theory of shells. The geometric relations are constructed using relations of the simplest quadratic version of the nonlinear elasticity theory. The stress and strain tensors in the composite macrolayer are related by Hooke's law for an orthotropic body with account of degradation of the stiffness characteristics of the multilayer package due to local failure of some its elementary layers. The physical relations in the metal layer are formulated in terms of a differential theory of plasticity. An energy-correlated resolving system of dynamic equations for the metal-plastic cylindrical shells is derived by minimizing the functional of total energy of the shells as three-dimensional bodies. The numerical method for solving the initial boundary-value problem formulated is based on an explicit variational-difference scheme. The reliability of the technique considered is verified by comparing numerical results with experimental data. An analysis of the ultimate strains and strength of one-layer basalt-and glass-fiber-reinforced plastic and two-layer metalplastic cylindrical shells is carried out.
Exchange bias and asymmetric hysteresis loops from a microscopic model of core/shell nanoparticles
International Nuclear Information System (INIS)
Iglesias, Oscar; Batlle, Xavier; Labarta, Amilcar
2007-01-01
We present Monte Carlo simulations of hysteresis loops of a model of a magnetic nanoparticle with a ferromagnetic core and an antiferromagnetic shell with varying values of the core/shell interface exchange coupling which aim to clarify the microscopic origin of exchange bias observed experimentally. We have found loop shifts in the field direction as well as displacements along the magnetization axis that increase in magnitude when increasing the interfacial exchange coupling. Overlap functions computed from the spin configurations along the loops have been obtained to explain the origin and magnitude of these features microscopically
Shell-model calculations with a basis that contains correlated pairs
International Nuclear Information System (INIS)
Boisson, J.P.; Silvestre-Brac, B.A.; Liotta, R.J.
1979-01-01
A method to solve the shell-model equations within a basis that contains correlated pairs of particles is presented. The method is illustrated for the three-identical-particle system. Applications in nuclei around 208 Pb are given and comparisons with both experimental data and other calculations are carried out. (Auth.)
Study of band structure in 78,80Sr using Triaxial Projected Shell Model
International Nuclear Information System (INIS)
Behera, N.; Naik, Z.; Bhat, G.H.; Sheikh, J.A.; Palit, R.; Sun, Y.
2017-01-01
The purpose of present work is to carry out a systematic study of the yrast-band and gamma-band structure for the even-even 78-80 Sr nuclei using Triaxial Projected Shell Model (TPSM) approach. These nuclei were chosen because 78 Sr has well developed side band(unassigned configuration) and 80 Sr has well developed band observed experimentally
Large scale shell model calculations: the physics in and the physics out
International Nuclear Information System (INIS)
Zuker, A.P.
1997-01-01
After giving a few examples of recent results of the (SM) 2 collaboration, the monopole modified realistic interactions to be used in shell model calculations are described and analyzed. Rotational motion is discussed in some detail, and some introductory remarks on level densities are made. (orig.)
First-Principles Modeling of Core/Shell Quantum Dot Sensitized Solar Cells
Azpiroz, Jon Mikel; Infante, Ivan; De Angelis, Filippo
2015-01-01
We report on the density functional theory (DFT) modeling of core/shell quantum dot (QD) sensitized solar cells (QDSSCs), a device architecture that holds great potential in photovoltaics but has not been fully exploited so far. To understand the working mechanisms of this kind of solar cells, we
Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 3
International Nuclear Information System (INIS)
Gwaltney, R.C.; Bolt, S.E.; Corum, J.M.; Bryson, J.W.
1975-06-01
The third in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models are idealized thin-shell structures consisting of two circular cylindrical shells that intersect at right angles. There are no transitions, reinforcements, or fillets in the junction region. This series of model tests serves two basic purposes: the experimental data provide design information directly applicable to nozzles in cylindrical vessels; and the idealized models provide test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. The cylinder of model 3 had a 10 in. OD and the nozzle had a 1.29 in. OD, giving a d 0 /D 0 ratio of 0.129. The OD/thickness ratios for the cylinder and the nozzle were 50 and 7.68 respectively. Thirteen separate loading cases were analyzed. In each, one end of the cylinder was rigidly held. In addition to an internal pressure loading, three mutually perpendicular force components and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. The experimental stress distributions for all the loadings were obtained using 158 three-gage strain rosettes located on the inner and outer surfaces. The loading cases were also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good agreement for this model. (U.S.)
Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 4
International Nuclear Information System (INIS)
Gwaltney, R.C.; Bolt, S.E.; Bryson, J.W.
1975-06-01
The last in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models in the series are idealized thin-shell structures consisting of two circular cylindrical shells that intersect at right angles. There are no transitions, reinforcements, or fillets in the junction region. This series of model tests serves two basic purposes: (1) the experimental data provide design information directly applicable to nozzles in cylindrical vessels, and (2) the idealized models provide test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. The cylinder of model 4 had an outside diameter of 10 in., and the nozzle had an outside diameter of 1.29 in., giving a d 0 /D 0 ratio of 0.129. The OD/thickness ratios were 50 and 20.2 for the cylinder and nozzle respectively. Thirteen separate loading cases were analyzed. For each loading condition one end of the cylinder was rigidly held. In addition to an internal pressure loading, three mutually perpendicular force components and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. The experimental stress distributions for each of the 13 loadings were obtained using 157 three-gage strain rosettes located on the inner and outer surfaces. Each of the 13 loading cases was also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good agreement for this model. (U.S.)
Li, Yuan; Heng, WeeKuan; Lee, Byungsun; Aratani, Naoki; Zafra, José Luis; Bao, Nina; Lee, Richmond; Sung, Youngmo; Sun, Zhe; Huang, Kuo-Wei; Webster, Richard D.; Lõ pez Navarrete, Juan Teodomiro; Kim, Dongho; Osuka, Atsuhiro; Casado, Juan; Ding, Jun; Wu, Jishan
2012-01-01
systematically investigated by a combination of different experimental methods, including steady-state and transient absorption spectroscopy, variable temperature NMR, electron spin resonance (ESR), superconducting quantum interfering device (SQUID), FT Raman
Quantum interference vs. quantum chaos in the nuclear shell model
International Nuclear Information System (INIS)
Fernández, Gerardo; Hautefeuille, M; Velázquez, V; Hernández, Edna M; Landa, E; Morales, I O; Frank, A; Fossion, R; Vargas, C E
2015-01-01
In this paper we study the complexity of the nuclear states in terms of a two body quadupole-quadrupole interaction. Energy distributions and eigenvectors composition exhibit a visible interference pattern which is dependent on the intensity of the interaction. In analogy with optics, the visibility of the interference is related to the purity of the states, therefore, we show that the fluctuations associated with quantum chaos have as their origin the remaining quantum coherence with a visibility magnitude close to 5%
Energy Technology Data Exchange (ETDEWEB)
Ibral, Asmaa [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B.P. 20 El Jadida Principale, El Jadida 24000 (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Université Chouaïb Doukkali, B.P. 20 El Jadida Principale, El Jadida (Morocco); Zouitine, Asmae [Département de Physique, Ecole Nationale Supérieure d’Enseignement Technique, Université Mohammed V Souissi, B.P. 6207 Rabat-Instituts, Rabat (Morocco); Assaid, El Mahdi, E-mail: eassaid@yahoo.fr [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B.P. 20 El Jadida Principale, El Jadida 24000 (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Université Chouaïb Doukkali, B.P. 20 El Jadida Principale, El Jadida (Morocco); Feddi, El Mustapha [Département de Physique, Ecole Nationale Supérieure d’Enseignement Technique, Université Mohammed V Souissi, B.P. 6207 Rabat-Instituts, Rabat (Morocco); and others
2014-09-15
Ground state energy and wave function of a hydrogen-like off-centre donor impurity, confined anywhere in a ZnS/CdSe spherical core/shell nanostructure are determined in the framework of the envelope function approximation. Conduction band-edge alignment between core and shell of nanostructure is described by a finite height barrier. Dielectric constant mismatch at the surface where core and shell materials meet is taken into account. Electron effective mass mismatch at the inner surface between core and shell is considered. A trial wave function where coulomb attraction between electron and off-centre ionized donor is used to calculate ground state energy via the Ritz variational principle. The numerical approach developed enables access to the dependence of binding energy, coulomb correlation parameter, spatial extension and radial probability density with respect to core radius, shell radius and impurity position inside ZnS/CdSe core/shell nanostructure.
International Nuclear Information System (INIS)
Ibral, Asmaa; Zouitine, Asmae; Assaid, El Mahdi; Feddi, El Mustapha
2014-01-01
Ground state energy and wave function of a hydrogen-like off-centre donor impurity, confined anywhere in a ZnS/CdSe spherical core/shell nanostructure are determined in the framework of the envelope function approximation. Conduction band-edge alignment between core and shell of nanostructure is described by a finite height barrier. Dielectric constant mismatch at the surface where core and shell materials meet is taken into account. Electron effective mass mismatch at the inner surface between core and shell is considered. A trial wave function where coulomb attraction between electron and off-centre ionized donor is used to calculate ground state energy via the Ritz variational principle. The numerical approach developed enables access to the dependence of binding energy, coulomb correlation parameter, spatial extension and radial probability density with respect to core radius, shell radius and impurity position inside ZnS/CdSe core/shell nanostructure
On the absence of an α-nucleus structure in a two-centre shell model
International Nuclear Information System (INIS)
Gupta, R.K.; Sharma, M.K.; Antonenko, N.V.; Scheid, W.
1999-01-01
The two-centre shell model, used within the Strutinsky macro-microscopic method, is a valid prescription for calculating adiabatic or diabatic potential energy surfaces. It is shown, however, that this model does not contain the appropriate α-nucleus structure effects, very much required for collisions between light nuclei. A possible way to incorporate such effects is suggested. (author). Letter-to-the-editor
Four shells atomic model to computer the counting efficiency of electron-capture nuclides
International Nuclear Information System (INIS)
Grau Malonda, A.; Fernandez Martinez, A.
1985-01-01
The present paper develops a four-shells atomic model in order to obtain the efficiency of detection in liquid scintillation courting, Mathematical expressions are given to calculate the probabilities of the 229 different atomic rearrangements so as the corresponding effective energies. This new model will permit the study of the influence of the different parameters upon the counting efficiency for nuclides of high atomic number. (Author) 7 refs
Spectroscopy of 96-98Ru and neighboring nuclei: shell model calculations and lifetime measurements
International Nuclear Information System (INIS)
Kharraja, B.; Garg, U.; Ghugre, S.S.
1997-01-01
High Spin states in 94,95 Mo, 94-96 Tc, 96-98 Ru and 97,98 Rh were populated via the 65 Cu( 36 S,xpyn) reactions at 142 MeV. Level schemes of these nuclei have been extended up to a spin of J ∼ 20ℎ and an excitation energy of E x ∼12 -14 MeV. Information on the high spin structure for 96 Tc and 98 Rh has been obtained for the first time. Spherical shell model calculations have been performed and compared with the experimental excitation energies. The level structures of the N=51, 52 isotones exhibit single-particle nature even at the highest spins and excitation energies. A fragmentation of intensity into several branches after breaking of the N = 50 core has been observed. There are indications for the onset of collectivity around neutron number N = 53 in this mass region. A sequence of E2 transitions, reminiscent of vibrational degree of freedom, were observed in 98 Ru at spins just above the observed N = 50 core breaking. RDM lifetime measurements have been performed to ascertain the intrinsic structures of these level sequences. (author)
Almonacid, S; Simpson, R; Teixeira, A
2007-11-01
Egg and egg preparations are important vehicles for Salmonella enteritidis infections. The influence of time-temperature becomes important when the presence of this organism is found in commercial shell eggs. A computer-aided mathematical model was validated to estimate surface and interior temperature of shell eggs under variable ambient and refrigerated storage temperature. A risk assessment of S. enteritidis based on the use of this model, coupled with S. enteritidis kinetics, has already been reported in a companion paper published earlier in JFS. The model considered the actual geometry and composition of shell eggs and was solved by numerical techniques (finite differences and finite elements). Parameters of interest such as local (h) and global (U) heat transfer coefficient, thermal conductivity, and apparent volumetric specific heat were estimated by an inverse procedure from experimental temperature measurement. In order to assess the error in predicting microbial population growth, theoretical and experimental temperatures were applied to a S. enteritidis growth model taken from the literature. Errors between values of microbial population growth calculated from model predicted compared with experimentally measured temperatures were satisfactorily low: 1.1% and 0.8% for the finite difference and finite element model, respectively.
Elastoplastic State of an Elliptical Cylindrical Shell with a Circular Hole
Storozhuk, E. A.; Chernyshenko, I. S.; Pigol', O. V.
2017-11-01
Static problems for an elastoplastic elliptical cylindrical shell with a circular hole are formulated and a numerical method for solving it is developed. The basic equations are derived using the Kirchhoff-Love theory of deep shells and the theory of small elastoplastic strains. The method employs the method of additional stresses and the finite-element method. The influence of plastic strains and geometrical parameters of the shell subject to internal pressure on the distributions of stresses, strains, and displacements in the zone of their concentration is studied.
Design and modeling of an additive manufactured thin shell for x-ray astronomy
Feldman, Charlotte; Atkins, Carolyn; Brooks, David; Watson, Stephen; Cochrane, William; Roulet, Melanie; Willingale, Richard; Doel, Peter
2017-09-01
Future X-ray astronomy missions require light-weight thin shells to provide large collecting areas within the weight limits of launch vehicles, whilst still delivering angular resolutions close to that of Chandra (0.5 arc seconds). Additive manufacturing (AM), also known as 3D printing, is a well-established technology with the ability to construct or `print' intricate support structures, which can be both integral and light-weight, and is therefore a candidate technique for producing shells for space-based X-ray telescopes. The work described here is a feasibility study into this technology for precision X-ray optics for astronomy and has been sponsored by the UK Space Agency's National Space Technology Programme. The goal of the project is to use a series of test samples to trial different materials and processes with the aim of developing a viable path for the production of an X-ray reflecting prototype for astronomical applications. The initial design of an AM prototype X-ray shell is presented with ray-trace modelling and analysis of the X-ray performance. The polishing process may cause print-through from the light-weight support structure on to the reflecting surface. Investigations in to the effect of the print-through on the X-ray performance of the shell are also presented.
Half-life calculation of one-proton emitters with a shell model potential
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, M. M.; Duarte, S. B. [Centro Brasileiro de Pesquisas Fisicas-CBPF/MCT Rua Dr. Xavier Sigaud, 150, 22290-180, Rio de Janeiro-RJ (Brazil); Teruya, N. [Departamento de Fisica, Universidade Federal da Paraiba - UFPB Campus de Joao Pessoa, 58051-970, Joao Pessoa - PB (Brazil)
2013-03-25
The accumulated amount of data for half-lives of proton emitters still remains a challenge to the ability of nuclear models to reproduce them consistently. These nuclei are far from beta stability line in a region where the validity of current nuclear models is not guaranteed. A nuclear shell model is introduced to the calculation of the nuclear barrier of less deformed proton emitters. The predictions using the proposed model are in good agreement with the data, with the advantage of have used only a single parameter in the model.
Quantum mechanical treatment of the shell-of-influence model
Energy Technology Data Exchange (ETDEWEB)
Matta, M L [Regional Engineering Coll., Kurukshetra (India). Dept. of Physics; Sukheeja, B D [Thapa Engineering Coll., Patiala (India). Dept. of Physics; Narchal, M L [Punjabi Univ., Patiala (India). Dept. of Physics
1975-10-01
A quantum mechanical treatment ignoring nuclear exchange interactions has been used to compute steady dynamic nuclear polarization in dilute paramagnetic crystals. The calculation assumes dipolar interaction of a paramagnetic ion with a large number of nuclear spins. The results are in rough agreement with the phenomenological model proposed by T.J. Schmugge and C.D. Jeffries (1965).
77 FR 41707 - United States Standards for Grades of Almonds in the Shell
2012-07-16
... inspections, which are voluntary, on approximately 75% of all of the almonds going from the handlers to... Determination of Grade. In grading the inspection sample, the percentage of loose hulls, pieces of shell, chaff...
78 FR 14907 - United States Standards for Grades of Almonds in the Shell
2013-03-08
... inspections, which are voluntary, on approximately 75 percent of all of the almonds going from the handlers to... inspection sample, the percentage of loose hulls, pieces of shell, chaff and foreign material is determined...
Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Aben, R; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimoto, G; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Alkire, S P; Allbrooke, B M M; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Piqueras, D Álvarez; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Balek, P; Balestri, T; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansil, H S; Barak, L; Baranov, S P; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, M; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Bogaerts, J A; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Buszello, C P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, R; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapleau, B; Chapman, J D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Childers, J T; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choi, K; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Cleland, W; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; Cunha Sargedas De Sousa, M J Da; Via, C Da; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Daniells, A C; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dwuznik, M; Dyndal, M; Eckardt, C; Ecker, K M; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Martinez, P Fernandez; Fernandez Perez, S; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Fraternali, M; Freeborn, D; French, S T; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goujdami, D; Goussiou, A G; Govender, N; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hann, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R W; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneda, M; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kim, Y; Kimura, N; Kind, O M; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; König, S; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macdonald, C M; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morton, A; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Munwes, Y; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Naranjo Garcia, R F; Narayan, R; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, J; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Saez, S M Romano; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saimpert, M; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simoniello, R; Sinervo, P; Sinev, N B; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spalla, M; Spanò, F; Spearman, W R; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; Denis, R D St; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thun, R P; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yao, L; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zwalinski, L
Measurements of the ZZ and WW final states in the mass range above the [Formula: see text] and [Formula: see text] thresholds provide a unique opportunity to measure the off-shell coupling strength of the Higgs boson. This paper presents constraints on the off-shell Higgs boson event yields normalised to the Standard Model prediction (signal strength) in the [Formula: see text], [Formula: see text] and [Formula: see text] final states. The result is based on pp collision data collected by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 20.3 fb[Formula: see text] at a collision energy of [Formula: see text] TeV. Using the [Formula: see text] method, the observed 95 [Formula: see text] confidence level (CL) upper limit on the off-shell signal strength is in the range 5.1-8.6, with an expected range of 6.7-11.0. In each case the range is determined by varying the unknown [Formula: see text] and [Formula: see text] background K-factor from higher-order quantum chromodynamics corrections between half and twice the value of the known signal K-factor. Assuming the relevant Higgs boson couplings are independent of the energy scale of the Higgs boson production, a combination with the on-shell measurements yields an observed (expected) 95 [Formula: see text] CL upper limit on [Formula: see text] in the range 4.5-7.5 (6.5-11.2) using the same variations of the background K-factor. Assuming that the unknown [Formula: see text] background K-factor is equal to the signal K-factor, this translates into an observed (expected) 95 [Formula: see text] CL upper limit on the Higgs boson total width of 22.7 (33.0) MeV.
International Nuclear Information System (INIS)
Aad, G.; Abbott, B.; Abdallah, J.
2015-01-01
Measurements of the ZZ and WW final states in the mass range above the 2m Z and 2m W thresholds provide a unique opportunity to measure the off-shell coupling strength of the Higgs boson. This paper presents constraints on the off-shell Higgs boson event yields normalised to the Standard Model prediction (signal strength) in the ZZ → 4l, ZZ → 2l2ν and WW → eνμν final states. The result is based on pp collision data collected by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 20.3 fb -1 at a collision energy of √(s) = 8 TeV. Using the CLs method, the observed 95 % confidence level (CL) upper limit on the off-shell signal strength is in the range 5.1.8.6, with an expected range of 6.7-11.0. In each case the range is determined by varying the unknown gg → ZZ and gg → WW background K-factor from higher-order quantum chromodynamics corrections between half and twice the value of the known signal K-factor. Assuming the relevant Higgs boson couplings are independent of the energy scale of the Higgs boson production, a combination with the on-shell measurements yields an observed (expected) 95 %CL upper limit on Γ H / Γ H S M in the range 4.5-7.5 (6.5-11.2) using the same variations of the background K-factor. Assuming that the unknown gg → VV background K-factor is equal to the signal K-factor, this translates into an observed (expected) 95 % CL upper limit on the Higgs boson total width of 22.7 (33.0) MeV. (orig.)
Gap state related blue light emitting boron-carbon core shell structures
International Nuclear Information System (INIS)
Singh, Paviter; Kaur, Manpreet; Singh, Bikramjeet; Kaur, Gurpreet; Singh, Kulwinder; Kumar, Akshay; Kumar, Manjeet; Bala, Rajni; Thakur, Anup
2016-01-01
Boron-carbon core shell structures have been synthesized by solvo-thermal synthesis route. The synthesized material is highly pure. X-ray diffraction analysis confirms the reduction of reactants in to boron and carbon. Scanning Electron Microscopy (SEM) analysis showed that the shell is uniform with average thickness of 340 nm. Photo luminescence studies showed that the material is blue light emitting with CIE color coordinates: x=0.16085, y=0.07554.
One-dimensional σ-models with N = 5, 6, 7, 8 off-shell supersymmetries
International Nuclear Information System (INIS)
Gonzales, M.; Toppan, F.; Rojas, M.
2008-12-01
We computed the actions for the 1D N = 5 σ-models with respect to the two inequivalent (2, 8, 6) multiplets. 4 supersymmetry generators are manifest, while the constraint originated by imposing the 5-th supersymmetry automatically induces a full N = 8 off-shell invariance. The resulting action coincides in the two cases and corresponds to a conformally flat 2D target satisfying a special geometry of rigid type. To obtain these results we developed a computational method (for Maple 11) which does not require the notion of superfields and is instead based on the nowadays available list of the inequivalent representations of the 1D N-extended supersymmetry. Its application to systematically analyze the σ-models off-shell invariant actions for the remaining N = 5, 6, 7, 8 (k, 8, 8 - k) multiplets, as well as for the N > 8 representations, only requires more cumbersome computations. (author)
Structure of liposome encapsulating proteins characterized by X-ray scattering and shell-modeling
International Nuclear Information System (INIS)
Hirai, Mitsuhiro; Kimura, Ryota; Takeuchi, Kazuki; Hagiwara, Yoshihiko; Kawai-Hirai, Rika; Ohta, Noboru; Igarashi, Noriyuki; Shimuzu, Nobutaka
2013-01-01
Wide-angle X-ray scattering data using a third-generation synchrotron radiation source are presented. Lipid liposomes are promising drug delivery systems because they have superior curative effects owing to their high adaptability to a living body. Lipid liposomes encapsulating proteins were constructed and the structures examined using synchrotron radiation small- and wide-angle X-ray scattering (SR-SWAXS). The liposomes were prepared by a sequential combination of natural swelling, ultrasonic dispersion, freeze-throw, extrusion and spin-filtration. The liposomes were composed of acidic glycosphingolipid (ganglioside), cholesterol and phospholipids. By using shell-modeling methods, the asymmetric bilayer structure of the liposome and the encapsulation efficiency of proteins were determined. As well as other analytical techniques, SR-SWAXS and shell-modeling methods are shown to be a powerful tool for characterizing in situ structures of lipid liposomes as an important candidate of drug delivery systems
The continuum shell-model neutron states of Pb
Indian Academy of Sciences (India)
PRAMANA c© Indian Academy of Sciences. Vol. 61, No. 6. — journal of. December ..... The precise analysis regarding neutron strengths from quantitative point of view lacks in this theoretical approach [14]. In conclusion, we ... The financial assistance from the Department of Science and Technology (DST), Govern- ment of ...
International Nuclear Information System (INIS)
De Wit, P.; Looijesteijn, B.; Regeer, B.; Stip, B.
1995-03-01
In the bi-monthly issues of 'Shell Venster' (window on Shell) attention is paid to the activities of the multinational petroleum company Shell Nederland and the Koninklijke/Shell Groep by means of non-specialist articles
A model study of aggregates composed of spherical soot monomers with an acentric carbon shell
Luo, Jie; Zhang, Yongming; Zhang, Qixing
2018-01-01
Influences of morphology on the optical properties of soot particles have gained increasing attentions. However, studies on the effect of the way primary particles are coated on the optical properties is few. Aimed to understand how the primary particles are coated affect the optical properties of soot particles, the coated soot particle was simulated using the acentric core-shell monomers model (ACM), which was generated by randomly moving the cores of concentric core-shell monomers (CCM) model. Single scattering properties of the CCM model with identical fractal parameters were calculated 50 times at first to evaluate the optical diversities of different realizations of fractal aggregates with identical parameters. The results show that optical diversities of different realizations for fractal aggregates with identical parameters cannot be eliminated by averaging over ten random realizations. To preserve the fractal characteristics, 10 realizations of each model were generated based on the identical 10 parent fractal aggregates, and then the results were averaged over each 10 realizations, respectively. The single scattering properties of all models were calculated using the numerically exact multiple-sphere T-matrix (MSTM) method. It is found that the single scattering properties of randomly coated soot particles calculated using the ACM model are extremely close to those using CCM model and homogeneous aggregate (HA) model using Maxwell-Garnett effective medium theory. Our results are different from previous studies. The reason may be that the differences in previous studies were caused by fractal characteristics but not models. Our findings indicate that how the individual primary particles are coated has little effect on the single scattering properties of soot particles with acentric core-shell monomers. This work provides a suggestion for scattering model simplification and model selection.
Pseudo SU(3) shell model: Normal parity bands in odd-mass nuclei
International Nuclear Information System (INIS)
Vargas, C.E.; Hirsch, J.G.; Draayer, J.P.
2000-01-01
A pseudo shell SU(3) model description of normal parity bands in 159 Tb is presented. The Hamiltonian includes spherical Nilsson single-particle energies, the quadrupole-quadrupole and pairing interactions, as well as three rotor terms. A systematic parametrization is introduced, accompanied by a detailed discussion of the effect each term in the Hamiltonian has on the energy spectrum. Yrast and excited band wavefunctions are analyzed together with their B(E2) values
Shell model for time-correlated random advection of passive scalars
DEFF Research Database (Denmark)
Andersen, Ken Haste; Muratore-Ginanneschi, P.
1999-01-01
We study a minimal shell model for the advection of a passive scalar by a Gaussian time-correlated velocity field. The anomalous scaling properties of the white noise limit are studied analytically. The effect of the time correlations are investigated using perturbation theory around the white...... noise limit and nonperturbatively by numerical integration. The time correlation of the velocity field is seen to enhance the intermittency of the passive scalar. [S1063-651X(99)07711-9]....
Reexamination of shell model tests of the Porter-Thomas distribution
International Nuclear Information System (INIS)
Grimes, S.M.
1983-01-01
Recent shell model calculations have yielded width amplitude distributions which have apparently not agreed with the Porter-Thomas distribution. This result conflicts with the present experimental evidence. A reanalysis of these calculations suggests that, although correct, they do not imply that the Porter-Thomas distribution will fail to describe the width distributions observed experimentally. The conditions for validity of the Porter-Thomas distribution are discussed
Region of validity of the Thomas–Fermi model with quantum, exchange and shell corrections
International Nuclear Information System (INIS)
Dyachkov, S A; Levashov, P R; Minakov, D V
2016-01-01
A novel approach to calculate thermodynamically consistent shell corrections in wide range of parameters is used to predict the region of validity of the Thomas-Fermi approach. Calculated thermodynamic functions of electrons at high density are consistent with the more precise density functional theory. It makes it possible to work out a semi-classical model applicable both at low and high density. (paper)
3D MODELS COMPARISON OF COMPLEX SHELL IN UNDERWATER AND DRY ENVIRONMENTS
Directory of Open Access Journals (Sweden)
S. Troisi
2015-04-01
Full Text Available In marine biology the shape, morphology, texture and dimensions of the shells and organisms like sponges and gorgonians are very important parameters. For example, a particular type of gorgonian grows every year only few millimeters; this estimation was conducted without any measurement instrument but it has been provided after successive observational studies, because this organism is very fragile: the contact could compromise its structure and outliving. Non-contact measurement system has to be used to preserve such organisms: the photogrammetry is a method capable to assure high accuracy without contact. Nevertheless, the achievement of a 3D photogrammetric model of complex object (as gorgonians or particular shells is a challenge in normal environments, either with metric camera or with consumer camera. Indeed, the successful of automatic target-less image orientation and the image matching algorithms is strictly correlated to the object texture properties and of camera calibration quality as well. In the underwater scenario, the environment conditions strongly influence the results quality; in particular, water’s turbidity, the presence of suspension, flare and other optical aberrations decrease the image quality reducing the accuracy and increasing the noise on the 3D model. Furthermore, seawater density variability influences its refraction index and consequently the interior orientation camera parameters. For this reason, the camera calibration has to be performed in the same survey conditions. In this paper, a comparison between the 3D models of a Charonia Tritonis shell are carried out through surveys conducted both in dry and underwater environments.
Corrections to the neutrinoless double-β-decay operator in the shell model
Engel, Jonathan; Hagen, Gaute
2009-06-01
We use diagrammatic perturbation theory to construct an effective shell-model operator for the neutrinoless double-β decay of Se82. The starting point is the same Bonn-C nucleon-nucleon interaction that is used to generate the Hamiltonian for recent shell-model calculations of double-β decay. After first summing high-energy ladder diagrams that account for short-range correlations and then adding diagrams of low order in the G matrix to account for longer-range correlations, we fold the two-body matrix elements of the resulting effective operator with transition densities from the recent shell-model calculation to obtain the overall nuclear matrix element that governs the decay. Although the high-energy ladder diagrams suppress this matrix element at very short distances as expected, they enhance it at distances between one and two fermis, so that their overall effect is small. The corrections due to longer-range physics are large, but cancel one another so that the fully corrected matrix element is comparable to that produced by the bare operator. This cancellation between large and physically distinct low-order terms indicates the importance of a reliable nonperturbative calculation.
Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 2
International Nuclear Information System (INIS)
Gwaltney, R.C.; Bolt, S.E.; Bryson, J.W.
1975-10-01
Model 2 in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. Both the cylinder and the nozzle of model 2 had outside diameters of 10 in., giving a d 0 /D 0 ratio of 1.0, and both had outside diameter/thickness ratios of 100. Sixteen separate loading cases in which one end of the cylinder was rigidly held were analyzed. An internal pressure loading, three mutually perpendicular force components, and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. In addition to these 13 loadings, 3 additional loads were applied to the nozzle (in-plane bending moment, out-of-plane bending moment, and axial force) with the free end of the cylinder restrained. The experimental stress distributions for each of the 16 loadings were obtained using 152 three-gage strain rosettes located on the inner and outer surfaces. All the 16 loading cases were also analyzed theoretically using a finite-element shell analysis. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good general agreement, and it is felt that the analysis would be satisfactory for most engineering purposes. (auth)
Ab initio translationally invariant nonlocal one-body densities from no-core shell-model theory
Burrows, M.; Elster, Ch.; Popa, G.; Launey, K. D.; Nogga, A.; Maris, P.
2018-02-01
Background: It is well known that effective nuclear interactions are in general nonlocal. Thus if nuclear densities obtained from ab initio no-core shell-model (NCSM) calculations are to be used in reaction calculations, translationally invariant nonlocal densities must be available. Purpose: Though it is standard to extract translationally invariant one-body local densities from NCSM calculations to calculate local nuclear observables like radii and transition amplitudes, the corresponding nonlocal one-body densities have not been considered so far. A major reason for this is that the procedure for removing the center-of-mass component from NCSM wave functions up to now has only been developed for local densities. Results: A formulation for removing center-of-mass contributions from nonlocal one-body densities obtained from NCSM and symmetry-adapted NCSM (SA-NCSM) calculations is derived, and applied to the ground state densities of 4He, 6Li, 12C, and 16O. The nonlocality is studied as a function of angular momentum components in momentum as well as coordinate space. Conclusions: We find that the nonlocality for the ground state densities of the nuclei under consideration increases as a function of the angular momentum. The relative magnitude of those contributions decreases with increasing angular momentum. In general, the nonlocal structure of the one-body density matrices we studied is given by the shell structure of the nucleus, and cannot be described with simple functional forms.
Application of shell model with the modified surface delta interaction to 42Ca and 42Sc nuclei
International Nuclear Information System (INIS)
Jasielska, A.; Wiktor, S.
1975-01-01
The shell model with MSDI residual interaction is used to investigate properties of levels in the 42 Ca and 42 Sc nuclei. The 40 Ca core with two active outer nucleons is assumed. The energy matrices are diagonalized and the calculated level schemes for both 42 Ca and 42 Sc nuclei are presented. In both nuclei the density of the calculated levels is significantly less than of the observed levels. This fact leads to the conclusion, that some core excitation modes play an important role in the formation of low-lying states in the 42 Ca and 42 Sc nuclei. The calculated eigenvalues and eigenvectors of the states below 5 MeV are given. (author)
Electromagnetic and weak observables in the context of the shell model
International Nuclear Information System (INIS)
Wildenthal, B.H.
1984-01-01
Wave functions for A = 17-39 nuclei have been obtained from diagonalizations of a single Hamiltonian formulation in the complete sd-shell configuration space for each NTJ system. These wave functions are used to generate the one-body density matrices corresponding to weak and electromagnetic transitions and moments. These densities are combined with different assumptions for the single-particle matrix elements of the weak and electromagnetic operators to produce theoretical matrix elements. The predictions are compared with experiment to determine, in some ''linearly dependent'' fashion, the correctness of the wave functions themselves, the optimum values of the single-particle matrix elements, and the viability of the overall shell-model formulation. (author)
Fragmentation of single-particle strength and the validity of the shell model
International Nuclear Information System (INIS)
Brand, M.G.E.; Rijsdijk, G.A.; Muller, F.A.; Allaart, K.; Dickhoff, W.H.
1991-01-01
The problem of missing spectroscopic strength in proton knock-out reactions is addressed by calculating this strength with a realistic interaction up to about a hundred MeV missing energy. An interaction suitably modified for short-range correlations (G-matrix) is employed in the calculation of the self-energy including all orbitals up to and including three major shells above the Fermi level for protons. The spectroscopic strength is obtained by solving the Dyson equation for the Green function with a self-energy up to second order in the interaction. Results for 48 Ca and 90 Zr are compared with recent (e,e'p) data. The calculated strength overestimates the data by about 10-15% of the independent particle shell-model (IPSM) sum rule. This is in accordance with what is expected from depletions calculated in infinite nuclear matter. Inclusion of higher order terms into the self-energy, especially the correlated motion of particles and holes, is found to be necessary to reproduce the observed fragmentation of strength in the low-energy region. The widths of the strength distributions compare well with empirical formulas which have been deduced from optical potentials. The validity of the conventional shell-model picture is connected with the relevance of Landau's quasiparticle picture for strongly interacting Fermi systems. (orig.)
Directory of Open Access Journals (Sweden)
Wang Peng
2016-01-01
Full Text Available A family of prismatic and hexahedral solid‒shell (SHB elements with their linear and quadratic versions is presented in this paper to model thin 3D structures. Based on reduced integration and special treatments to eliminate locking effects and to control spurious zero-energy modes, the SHB solid‒shell elements are capable of modeling most thin 3D structural problems with only a single element layer, while describing accurately the various through-thickness phenomena. In this paper, the SHB elements are combined with fully 3D behavior models, including orthotropic elastic behavior for composite materials and anisotropic plastic behavior for metallic materials, which allows describing the strain/stress state in the thickness direction, in contrast to traditional shell elements. All SHB elements are implemented into ABAQUS using both standard/quasi-static and explicit/dynamic solvers. Several benchmark tests have been conducted, in order to first assess the performance of the SHB elements in quasi-static and dynamic analyses. Then, deep drawing of a hemispherical cup is performed to demonstrate the capabilities of the SHB elements in handling various types of nonlinearities (large displacements and rotations, anisotropic plasticity, and contact. Compared to classical ABAQUS solid and shell elements, the results given by the SHB elements show good agreement with the reference solutions.
International Nuclear Information System (INIS)
Caty, O.; Maire, E.; Youssef, S.; Bouchet, R.
2008-01-01
Closed-cell cellular materials exhibit several interesting properties. These properties are, however, very difficult to simulate and understand from the knowledge of the cellular microstructure. This problem is mostly due to the highly complex organization of the cells and to their very fine walls. X-ray tomography can produce three-dimensional (3-D) images of the structure, enabling one to visualize locally the damage of the cell walls that would result in the structure collapsing. These data could be used for meshing with continuum elements of the structure for finite element (FE) calculations. But when the density is very low, the walls are fine and the meshes based on continuum elements are not suitable to represent accurately the structure while preserving the representativeness of the model in terms of cell size. This paper presents a shell FE model obtained from tomographic 3-D images that allows bigger volumes of low-density closed-cell cellular materials to be calculated. The model is enriched by direct thickness measurement on the tomographic images. The values measured are ascribed to the shell elements. To validate and use the model, a structure composed of stainless steel hollow spheres is firstly compressed and scanned to observe local deformations. The tomographic data are also meshed with shells for a FE calculation. The convergence of the model is checked and its performance is compared with a continuum model. The global behavior is compared with the measures of the compression test. At the local scale, the model allows the local stress and strain field to be calculated. The calculated deformed shape is compared with the deformed tomographic images
International Nuclear Information System (INIS)
Moraes, Manoel; Diaz, Marcos
2009-01-01
The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in Hα, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman and O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structure seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10 -4 M sun is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.
Directory of Open Access Journals (Sweden)
Noritaka Shimizu
2016-02-01
Full Text Available We introduce a novel method to obtain level densities in large-scale shell-model calculations. Our method is a stochastic estimation of eigenvalue count based on a shifted Krylov-subspace method, which enables us to obtain level densities of huge Hamiltonian matrices. This framework leads to a successful description of both low-lying spectroscopy and the experimentally observed equilibration of Jπ=2+ and 2− states in 58Ni in a unified manner.
From Product Models to Product State Models
DEFF Research Database (Denmark)
Larsen, Michael Holm
1999-01-01
A well-known technology designed to handle product data is Product Models. Product Models are in their current form not able to handle all types of product state information. Hence, the concept of a Product State Model (PSM) is proposed. The PSM and in particular how to model a PSM is the Research...
Vibration test of spherical shell structure and replacing method into mathematical model
International Nuclear Information System (INIS)
Takayanagi, M.; Suzuki, S.; Okamura, T.; Haas, E.E.; Krutzik, N.J.
1989-01-01
To verify the beam-type and oval-type vibratory characteristics of a spherical shell structure, two test specimens were made and vibration tests were carried out. Results of these tests are compared with results of detailed analyses using 3-D FEM and 2-D axisymmetric FEM models. The analytical results of overall vibratory characteristics are in good agreement with the test results, has been found that the effect of the attached mass should be considered in evaluating local vibration. The replacing method into equivalent beam model is proposed
Onion-shell model for cosmic ray electrons and radio synchrotron emission in supernova remnants
International Nuclear Information System (INIS)
Beck, R.; Drury, L.O.; Voelk, H.J.; Bogdan, T.J.
1985-01-01
The spectrum of cosmic ray electrons, accelerated in the shock front of a supernova remnant (SNR), is calculated in the test-particle approximation using an onion-shell model. Particle diffusion within the evolving remnant is explicity taken into account. The particle spectrum becomes steeper with increasing radius as well as SNR age. Simple models of the magnetic field distribution allow a prediction of the intensity and spectrum of radio synchrotron emission and their radial variation. The agreement with existing observations is satisfactory in several SNR's but fails in other cases. Radiative cooling may be an important effect, especially in SNR's exploding in a dense interstellar medium
Modelling by the SPH method of the impact of a shell containing a fluid
International Nuclear Information System (INIS)
Maurel, B.
2008-01-01
The aim of this work was to develop a numerical simulation tool using a mesh-less approach, able to simulate the deformation and the rupture of thin structures under the impact of a fluid. A model of thick mesh-less shell (Mindlin-Reissner) based on the SPH method has then been carried out. A contact algorithm has moreover been perfected for the interactions between the structure and the fluid, it is modelled too by the SPH method. These studies have been carried out and been included in the CEA Europlexus fast dynamics software. (O.M.)
Onion-shell model for cosmic ray electrons and radio synchrotron emission in supernova remnants
Beck, R.; Drury, L. O.; Voelk, H. J.; Bogdan, T. J.
1985-01-01
The spectrum of cosmic ray electrons, accelerated in the shock front of a supernova remnant (SNR), is calculated in the test-particle approximation using an onion-shell model. Particle diffusion within the evolving remnant is explicity taken into account. The particle spectrum becomes steeper with increasing radius as well as SNR age. Simple models of the magnetic field distribution allow a prediction of the intensity and spectrum of radio synchrotron emission and their radial variation. The agreement with existing observations is satisfactory in several SNR's but fails in other cases. Radiative cooling may be an important effect, especially in SNR's exploding in a dense interstellar medium.
Energy Technology Data Exchange (ETDEWEB)
Pasechnik, M V
1978-01-01
Major results of investigations into the shell structure of deformed nuclei with the number of neutrons of approximately 100, as well as new isotopic effects in the inelastic scattering of fast neutrons with nuclei are reported. The experiments conducted at the WWR-M research reactor have shown a substantial dependence of the nuclear excited energy-level density on the mass number and the number of neutrons. The fact resulted in a conclusion that the deformed nuclei possess filled shells, that was an incentive to revise the whole nuclear shell concept. In particular it was established that the property of magicity rests not only on the sphericity of nuclei but it may be also observed in strongly deformed nuclei. The isotope-spin dependence of the nuclear potential was studied at the AG-5 pulse electrostatic generator. The parameters of the potential were determined by comparing the experimental data on inelastic scattering and polarization of fast neutrons by nuclei from /sup 48/Ti to /sup 209/Bi with the calculations in terms of the optical model. Simple correlations were established between the optical potential and the nucleus asymmetry parameter ..cap alpha..=N-Z/A in wide ranges of mass numbers and neutron energy.
International Nuclear Information System (INIS)
Wienands, U.
1983-05-01
The (α, 2 He)-reaction was studied at 56-57 MeV incident energy at the target nuclei sup(58,60,62,64)Ni. In a laboratory angular range from 15 0 -37.5 0 the angular distributions of the absolute differential cross section were taken up. The measurements were performed with the position resolving 2 He detector developed in Bonn. By means of DWBA calculations for the first time in all final nuclei states with the configurations (fsub(5/2), gsub(9/2)) 7 -(gsub(9/2)) 8 2 +, and (gsub(9/2), dsub(5/2)) 6 + could be identified; these were except the Jsup(π)=7 - states in 60 Ni hitherto not known. The two-neutron binding energies of these states were under inclusion of further states known from literature compared with shell model calculations according to the weak coupling method of Bansal and French. By a set of 4 parameters both the two-neutron binding energies of the (fsub(5/2), gsub(9/2)) 7 - and (gsub(9/2)) 2 sub(8+) states and the one-particle binding energies of the f - sub(5/2) and g + sub(5/2) one-neutron states over a large number of nuclei could very well be reproduced. For calculations on the states with the configuration (gsub(9/2), dsub(5/2)) 6 + the present data set is not yet sufficient. The found agreement of the calculations with the experimental data shows that two-neutron high spin states in the fp shell nuclei can be correctly described by this simple picture. (orig.) [de
Shell model calculation of the nuclear moments of 9Li in a 2hω space
International Nuclear Information System (INIS)
Chang, Y.; Meder, M.R.
1984-01-01
A recent measurement of the magnitude of quadrupole moment of the ground state of 9 Li, Q( 9 Li), finds that Vertical BarQ( 9 Li)/Q( 7 Li)Vertical Bar = 0.88 +- 0.18. A variety of shell-model calculations, using p-shell wave functions, predict Q( 9 Li)approx. =1.3Q( 7 Li) and yield quadrupole moments whose magnitudes are approximately half the experimental values. Agreement between theory and experiment is improved when effective charges are used, although the results are still not completely satisfactory. A calculation of the wave functions of the low-lying states of 7 Li and 9 Li using a modified version of the Sussex matrix elements in a model space, including all 0hω and 2hω excitations, has been performed. The resulting value for Q( 9 Li) was -3.46 fm 2 as ray transitions in /sup 52,53/Cr and /sup 54,55/Mn have been observed using 7 Li( 51 V,xn yp zα γ) fusion-evaporation reactions and γ-particle coincidence techniques. The experiment involved the same reaction at the same center-of-mass energy as the earlier work of Poletti et al., but with target and projectile interchanged. In the present work, eight additional transitions have been identified as occurring in 52 Cr. This provides corroboration of results obtained more recently via 50 Ti(α,2nγ) 52 Cr reaction studies. A simple, efficient approach to the spectroscopy of weakly populated nuclear states which provides for unambiguous isotopic assignments is thus demonstrated
Micromagnetic studies of three-dimensional pyramidal shell structures
International Nuclear Information System (INIS)
Knittel, A; Franchin, M; Fischbacher, T; Fangohr, H; Nasirpouri, F; Bending, S J
2010-01-01
We present a systematic numerical analysis of the magnetic properties of pyramidal-shaped core-shell structures in a size range below 400 nm. These are three-dimensional structures consisting of a ferromagnetic shell which is grown on top of a non-magnetic core. The standard micromagnetic model without the magnetocrystalline anisotropy term is used to describe the properties of the shell. We vary the thickness of the shell between the limiting cases of an ultra-thin shell and a conventional pyramid and delineate different stable magnetic configurations. We find different kinds of single-domain states, which predominantly occur at smaller system sizes. In analogy to equivalent states in thin square films we term these onion, flower, C and S states. At larger system sizes, we also observe two types of vortex states, which we refer to as symmetric and asymmetric vortex states. For a classification of the observed states, we derive a phase diagram that specifies the magnetic ground state as a function of structure size and shell thickness. The transitions between different ground states can be understood qualitatively. We address the issue of metastability by investigating the stability of all occurring configurations for different shell thicknesses. For selected geometries and directions hysteresis measurements are analysed and discussed. We observe that the magnetic behaviour changes distinctively in the limit of ultra-thin shells. The study has been motivated by the recent progress made in the growth of faceted core-shell structures.
Model-based failure detection for cylindrical shells from noisy vibration measurements.
Candy, J V; Fisher, K A; Guidry, B L; Chambers, D H
2014-12-01
Model-based processing is a theoretically sound methodology to address difficult objectives in complex physical problems involving multi-channel sensor measurement systems. It involves the incorporation of analytical models of both physical phenomenology (complex vibrating structures, noisy operating environment, etc.) and the measurement processes (sensor networks and including noise) into the processor to extract the desired information. In this paper, a model-based methodology is developed to accomplish the task of online failure monitoring of a vibrating cylindrical shell externally excited by controlled excitations. A model-based processor is formulated to monitor system performance and detect potential failure conditions. The objective of this paper is to develop a real-time, model-based monitoring scheme for online diagnostics in a representative structural vibrational system based on controlled experimental data.
Investigation of the rotational nuclei 167168Hf and 170171W and the shell-model nucleus 26Mg
International Nuclear Information System (INIS)
Arciszewski, H.F.R.
1984-01-01
Two gamma-gamma coincidence experiments on neighbouring nuclei that exhibit the backbending phenomenon are described. The first experiment performed with the cyclotron of the KVI at Groningen is an investigation of 167 Hf and 168 Hf, whereas in the second experiment, performed at the cyclotron facility of Louvain University, high spin states are studied and compared with predictions of the cranked shell model. A new method for the correction of the large background of Compton-scattered events is described. Apart from this, an investigation of the single particle (d,p) transfer reaction at 26 Mg has been performed with the van de Graaff tandem accelerator at 14 MeV. Specroscopic factors are presented for many levels up to an excitation energy of 8 MeV. Several new spin assignments could be made. (Auth.)
International Nuclear Information System (INIS)
Forssen, C.; Caurier, E.; Navratil, P.
2009-01-01
Recently, charge radii and ground-state electromagnetic moments of Li and Be isotopes were measured precisely. We have performed large-scale ab initio no-core shell model calculations for these isotopes using high-precision nucleon-nucleon potentials. The isotopic trends of our computed charge radii and quadrupole and magnetic-dipole moments are in good agreement with experimental results with the exception of the 11 Li charge radius. The magnetic moments are in particular well described, whereas the absolute magnitudes of the quadrupole moments are about 10% too small. The small magnitude of the 6 Li quadrupole moment is reproduced, and with the CD-Bonn NN potential, also its correct sign
Magnetization of the Ising model on the Sierpinski pastry-shell
Chame, Anna; Branco, N. S.
1992-02-01
Using a real-space renormalization group approach, we calculate the approximate magnetization in the Ising model on the Sierpinski Pastry-shell. We consider, as an approximation, only two regions of the fractal: the internal surfaces, or walls (sites on the border of eliminated areas), with coupling constants JS, and the bulk (all other sites), with coupling constants Jv. We obtain the mean magnetization of the two regions as a function of temperature, for different values of α= JS/ JV and different geometric parameters b and l. Curves present a step-like behavior for some values of b and l, as well as different universality classes for the bulk transition.
Zero-point energies in the two-center shell model. II
International Nuclear Information System (INIS)
Reinhard, P.-G.
1978-01-01
The zero-point energy (ZPE) contained in the potential-energy surface of a two-center shell model (TCSM) is evaluated. In extension of previous work, the author uses here the full TCSM with l.s force, smoothing and asymmetry. The results show a critical dependence on the height of the potential barrier between the centers. The ZPE turns out to be non-negligible along the fission path for 236 U, and even more so for lighter systems. It is negligible for surface quadrupole motion and it is just on the fringe of being negligible for motion along the asymmetry coordinate. (Auth.)
Zero-point energies in the two-center shell model
International Nuclear Information System (INIS)
Reinhard, P.G.
1975-01-01
The zero-point energies (ZPE) contained in the potential-energy surfaces (PES) of a two-center shell model are evaluated. For the c.m. motion of the system as a whole the kinetic ZPE was found to be negligible, whereas it varies appreciably for the rotational and oscillation modes (about 5-9MeV). For the latter two modes the ZPE also depends sensitively on the changing pairing structure, which can induce strong local fluctuations, particularly in light nuclei. The potential ZPE is very small for heavy nuclei, but might just become important in light nuclei. (Auth.)
Symmetry analysis of many-body wave functions, with applications to the nuclear shell model
International Nuclear Information System (INIS)
Novoselsky, A.; Katriel, J.
1995-01-01
The weights of the different permutational symmetry components of a nonsymmetry-adapted many-particle wave function are evaluated in terms of the expectation values of the symmetric-group class sums. This facilitates the evaluation of the weights without the construction of a complete set of symmetry adapted functions. Subspace projection operators are introduced, to be used when prior knowledge about the symmetry-species composition of a wave function is available. The permutational weight analysis of a recursively angular-momentum coupled (shell model) wave function is presented as an illustration
Shell model estimate of electric dipole moments in medium and heavy nuclei
Directory of Open Access Journals (Sweden)
Teruya Eri
2015-01-01
Full Text Available Existence of the electric dipole moment (EDM is deeply related with time-reversal invariance. The EDMof a diamagnetic atom is mainly induced by the nuclear Schiff moment. After carrying out the shell model calculations to obtain wavefunctions for Xe isotopes, we evaluate nuclear Schiff moments for Xe isotopes to estimate their atomic EDMs. We estimate the contribution from each single particle orbital for the Schiff moment. It is found that the contribution on the Schiff moment is very different from orbital to orbital.
Energy Technology Data Exchange (ETDEWEB)
Holland, D.M.P., E-mail: david.holland@stfc.ac.uk [Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Shaw, D.A. [Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Stener, M.; Decleva, P. [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L. Giorgieri, I-34127 Trieste (Italy); Consorzio Interuniversitario Nazionale per la Scienze e Tecnologia dei Materiali, INSTM, Unità di Trieste (Italy); CNR-IOM, Trieste (Italy); Coriani, S. [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L. Giorgieri, I-34127 Trieste (Italy); Consorzio Interuniversitario Nazionale per la Scienze e Tecnologia dei Materiali, INSTM, Unità di Trieste (Italy); Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus C (Denmark)
2016-09-30
Highlights: • The valence shell photoabsorption spectrum of s-triazine has been measured. • Electronic structure calculated with TDDFT and coupled cluster approaches. • Assignments proposed for Rydberg and valence states. • Mixing between Rydberg and valence states important. - Abstract: The absolute photoabsorption cross section of s-triazine has been measured between 4 and 40 eV, and is dominated by bands associated with valence states. Structure due to Rydberg excitations is both weak and irregular. Jahn-Teller interactions affect the vibronic structure observed in the Rydberg absorption bands due to excitation from the 1e″ or 6e′ orbitals. The interpretation of the experimental spectrum has been guided by transition energies and oscillator strengths, for Rydberg and valence states, calculated with the time-dependent version of density functional theory and with the coupled cluster linear response approach. The theoretical studies indicate that Rydberg/Rydberg and Rydberg/valence mixing is important.
On the description of electronic final states in the K-shell ionization by protons
International Nuclear Information System (INIS)
Aashamar, O.; Kocbach, L.
1976-06-01
The choice of free electronic wave functions in the description of K-shell ionization by protons is discussed. The previously known discrepancies between PWBA and SCA results are shown to be entirely due to two different choices of electronic wave functions. Calculations in the SCA framework with Hartree-Fock-Slater wave functions are reported. Some general features of the SCA calculations are discussed. (Auth.)
DEFF Research Database (Denmark)
Nielsen, Bo Bjerregaard; Nielsen, Martin S.; Santos, Ilmar
2017-01-01
The work gives a theoretical and experimental contribution to the problem of smart materials connected to double curved flexible shells. In the theoretical part the finite element modeling of a double curved flexible shell with a piezoelectric fiber patch with interdigitated electrodes (IDEs......) is presented. The developed element is based on a purely mechanical eight-node isoparametric layered element for a double curved shell, utilizing first-order shear deformation theory. The electromechanical coupling of piezoelectric material is added to all elements, but can also be excluded by setting...... the piezoelectric material properties to zero. The electrical field applied via the IDEs is aligned with the piezoelectric fibers, and hence the direct d33 piezoelectric constant is utilized for the electromechanical coupling. The dynamic performance of a shell with a microfiber composite (MFC) patch...
Energy Technology Data Exchange (ETDEWEB)
Vargas, Carlos E.; Bagatella-Flores, Norma [Universidad Veracruzana, Facultad de Fisica, Veracruz (Mexico); Velazquez, Victor [Universidad Nacional Autonoma de Mexico, Facultad de Ciencias, Mexico D.F. (Mexico); Lerma-Hernandez, Sergio [Universidad Veracruzana, Facultad de Fisica, Veracruz (Mexico); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico D.F. (Mexico)
2017-04-15
The large collectivity observed in the rare-earth region of the nuclear landscape is well known. The microscopic studies are difficult to perform in this region due to the enormous size of the valence spaces, a problem that can be avoided by means of the use of symmetry-based models. Here we present calculations for electromagnetic properties of {sup 160-170}Dy nuclei within the pseudo-SU(3) scheme. The model Hamiltonian includes the preserving symmetry Q.Q term and the symmetry-breaking Nilsson and pairing terms, systematically parametrized for all members of the chain. The model is used to calculate B(E2) and B(M1) inter-band transition strengths between the ground state, γ and β-bands. In addition, we present results for quadrupole moments and g factors in these rotational bands. The results show that the pseudo-SU(3) shell model is a powerful microscopic theory for a description of electromagnetic properties of states in the normal parity sector in heavy deformed nuclei. (orig.)
Spangenberger, H.; Beck, F.; Richter, A.
The usual continuum shell model is extended so as to include a statistical treatment of multi-doorway processes. The total configuration space of the nuclear reaction problem is subdivided into the primary doorway states which are coupled by the initial excitation to the nuclear ground state and the secondary doorway states which represent the complicated nature of multi-step reactions. The latter are evaluated within the exciton model which gives the coupling widths between the various finestructure subspaces. This coupling is determined by a statistical factor related to the exciton model and a dynamical factor given by the interaction matrix elements of the interacting excitons. The whole structure defines the multi-doorway continuum shell model. In this work it is applied to the highly fragmented magnetic dipole strength in 58Ni observed in high resolution electron scattering.Translated AbstractAnwendung des Multi-Doorway-Kontinuum-Schalenmodells auf die Verteilung der magnetischen Dipolstärke von 58NiDas Kontinuum-Schalenmodell wurde so erweitert, daß auch statistische Multi-Doorway-Prozesse berücksichtigt werden können. Hierzu wird der Konfigurationsraum unterteilt in den Raum der primären Doorway-Zustände, die direkt aus dem Grundzustand angeregt werden, und den der sekundären Doorway-Zustände, die die komplizierte Struktur der Multi-Step-Reaktionen repräsentieren. Während die primären Doorway-Zustände inclusive ihrer Anregungen mittels üblicher Schalenmodellmethoden beschrieben werden können, werden die sekundären Doorway-Zustände sowie ihre verschiedenen Kopplungen im Rahmen des Exciton-Modells behandelt. Diese Kopplungen sind durch einen aus dem Exciton-Modell resultierenden Faktor sowie durch einen dynamischen Faktor bestimmt, der sich aus dem Matrixelement der wechselwirkenden Excitonen berechnet. Die Struktur der Kopplungen definiert das Multi-Doorway-Kontinuum-Schalenmodell, das hier auf die Beschreibung der stark fragmentierten
Role of shell structure in the 2νββ nuclear matrix elements
International Nuclear Information System (INIS)
Nakada, H.
1998-01-01
Significance of the nuclear shell structure in the ββ nuclear matrix elements is pointed out. The 2νββ processes are mainly mediated by the low-lying 1 + states. The shell structure also gives rise to concentration or fragmentation of the 2νββ components over intermediate states, depending on nuclide. These roles of the shell structure are numerically confirmed by realistic shell model calculations. Some shell structure effects are suggested for 0νββ matrix elements; dominance of low-lying intermediate states and nucleus-dependence of their spin-parities. (orig.)
Angle-correlated cross sections in the framework of the continuum shell model
International Nuclear Information System (INIS)
Moerschel, K.P.
1984-01-01
In the present thesis in the framework of the continuum shell modell a concept for the treatment of angle-correlated cross sections was developed by which coincidence experiments on electron scattering on nuclei are described. For this the existing Darmstadt continuum-shell-model code had to be extended to the calculation of the correlation coefficients in which nuclear dynamics enter and which determine completely the angle-correlated cross sections. Under inclusion of the kinematics a method for the integration over the scattered electron was presented and used for the comparison with corresponding experiments. As application correlation coefficients for the proton channel in 12 C with 1 - and 2 + excitations were studied. By means of these coefficients finally cross sections for the reaction 12 C (e,p) 11 B could be calculated and compared with the experiment whereby the developed methods were proved as suitable to predict correctly both the slope and the quantity of the experimental cross sections. (orig.) [de
Mathematical Modeling and Kinematics Analysis of Double Spherical Shell Rotary Docking Skirt
Directory of Open Access Journals (Sweden)
Gong Haixia
2017-01-01
Full Text Available In order to solve the problem of large trim and heel angles of the wrecked submarine, the double spherical shell rotating docking skirt is studied. According to the working principle of the rotating docking skirt, and the fixed skirt, the directional skirt, the angle skirt are simplified as the connecting rod. Therefore, the posture equation and kinematics model of the docking skirt are deduced, and according to the kinematics model, the angle of rotation of the directional skirt and the angle skirt is obtained when the wrecked submarine is in different trim and heel angles. Through the directional skirt and angle skirt with the matching rotation can make docking skirt interface in the 0°~2γ range within the rotation, to complete the docking skirt and the wrecked submarine docking. The MATLAB software is used to visualize the rotation angle of fixed skirt and directional skirt, which lays a good foundation for the development of the control of the double spherical shell rotating docking skirt in future.
International Nuclear Information System (INIS)
Wloch, Marta; Gour, Jeffrey R; Piecuch, Piotr; Dean, David J; Hjorth-Jensen, Morten; Papenbrock, Thomas
2005-01-01
We discuss large-scale ab initio calculations of ground and excited states of 16 O and preliminary calculations for 15 O and 17 O using coupled-cluster methods and algorithms developed in quantum chemistry. By using realistic two-body interactions and the renormalized form of the Hamiltonian obtained with a no-core G-matrix approach, we are able to obtain the virtually converged results for 16 O and promising results for 15 O and 17 O at the level of two-body interactions. The calculated properties other than binding and excitation energies include charge radius and charge form factor. The relatively low costs of coupled-cluster calculations, which are characterized by the low-order polynomial scaling with the system size, enable us to probe large model spaces with up to seven or eight major oscillator shells, for which nontruncated shell-model calculations for nuclei with A = 15-17 active particles are presently not possible
Understanding valence-shell electron-pair repulsion (VSEPR) theory using origami molecular models
International Nuclear Information System (INIS)
Saraswati, Teguh Endah; Saputro, Sulistyo; Ramli, Murni; Praseptiangga, Danar; Khasanah, Nurul; Marwati, Sri
2017-01-01
Valence-shell electron-pair repulsion (VSEPR) theory is conventionally used to predict molecular geometry. However, it is difficult to explore the full implications of this theory by simply drawing chemical structures. Here, we introduce origami modelling as a more accessible approach for exploration of the VSEPR theory. Our technique is simple, readily accessible and inexpensive compared with other sophisticated methods such as computer simulation or commercial three-dimensional modelling kits. This method can be implemented in chemistry education at both the high school and university levels. We discuss the example of a simple molecular structure prediction for ammonia (NH 3 ). Using the origami model, both molecular shape and the scientific justification can be visualized easily. This ‘hands-on’ approach to building molecules will help promote understanding of VSEPR theory. (paper)
Understanding valence-shell electron-pair repulsion (VSEPR) theory using origami molecular models
Endah Saraswati, Teguh; Saputro, Sulistyo; Ramli, Murni; Praseptiangga, Danar; Khasanah, Nurul; Marwati, Sri
2017-01-01
Valence-shell electron-pair repulsion (VSEPR) theory is conventionally used to predict molecular geometry. However, it is difficult to explore the full implications of this theory by simply drawing chemical structures. Here, we introduce origami modelling as a more accessible approach for exploration of the VSEPR theory. Our technique is simple, readily accessible and inexpensive compared with other sophisticated methods such as computer simulation or commercial three-dimensional modelling kits. This method can be implemented in chemistry education at both the high school and university levels. We discuss the example of a simple molecular structure prediction for ammonia (NH3). Using the origami model, both molecular shape and the scientific justification can be visualized easily. This ‘hands-on’ approach to building molecules will help promote understanding of VSEPR theory.
International Nuclear Information System (INIS)
Drukarev, E.G.; Trzhaskovskaya, M.B.
1989-01-01
We have calculated the contribution of the final state interaction to the ionization of the K-shell during the β - and β + decays. The contributions to the spectra of the β particles and to the total probability of the K shell ionization are obtained. The disagreement between the calculated values and the experimental data for the latter is shown to diminish strongly. The influence of the secondary electrons on the distribution is also determined. 27 refs.; 2 figs.; 2 tabs
Wang, Jin; Mora-Seró, Iván; Pan, Zhenxiao; Zhao, Ke; Zhang, Hua; Feng, Yaoyu; Yang, Guang; Zhong, Xinhua; Bisquert, Juan
2013-10-23
Searching suitable panchromatic QD sensitizers for expanding the light-harvesting range, accelerating charge separation, and retarding charge recombination is an effective way to improve power conversion efficiency (PCE) of quantum-dot-sensitized solar cells (QDSCs). One possible way to obtain a wide absorption range is to use the exciplex state of a type-II core/shell-structured QDs. In addition, this system could also provide a fast charge separation and low charge-recombination rate. Herein, we report on using a CdTe/CdSe type-II core/shell QD sensitizer with an absorption range extending into the infrared region because of its exciplex state, which is covalently linked to TiO2 mesoporous electrodes by dropping a bifunctional linker molecule mercaptopropionic acid (MPA)-capped QD aqueous solution onto the film electrode. High loading and a uniform distribution of QD sensitizer throughout the film electrode thickness have been confirmed by energy dispersive X-ray (EDX) elemental mapping. The accelerated electron injection and retarded charge-recombination pathway in the built CdTe/CdSe QD cells in comparison with reference CdSe QD-based cells have been confirmed by impedance spectroscopy, fluorescence decay, and intensity-modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) analysis. With the combination of the high QD loading and intrinsically superior optoelectronic properties of type-II core/shell QD (wide absorption range, fast charge separation, and slow charge recombination), the resulting CdTe/CdSe QD-based regenerative sandwich solar cells exhibit a record PCE of 6.76% (J(sc) = 19.59 mA cm(-2), V(oc) = 0.606 V, and FF = 0.569) with a mask around the active film under a full 1 sun illumination (simulated AM 1.5), which is the highest reported to date for liquid-junction QDSCs.
State Space Modeling Using SAS
Directory of Open Access Journals (Sweden)
Rajesh Selukar
2011-05-01
Full Text Available This article provides a brief introduction to the state space modeling capabilities in SAS, a well-known statistical software system. SAS provides state space modeling in a few different settings. SAS/ETS, the econometric and time series analysis module of the SAS system, contains many procedures that use state space models to analyze univariate and multivariate time series data. In addition, SAS/IML, an interactive matrix language in the SAS system, provides Kalman filtering and smoothing routines for stationary and nonstationary state space models. SAS/IML also provides support for linear algebra and nonlinear function optimization, which makes it a convenient environment for general-purpose state space modeling.
Study of the tensor correlation in oxygen isotopes using mean-field-type and shell model methods
International Nuclear Information System (INIS)
Sugimoto, Satoru
2007-01-01
The tensor force plays important roles in nuclear structure. Recently, we have developed a mean-field-type model which can treat the two-particle-two-hole correlation induced by the tensor force. We applied the model to sub-closed-shell oxygen isotopes and found that an sizable attractive energy comes from the tensor force. We also studied the tensor correlation in 16O using a shell model including two-particle-two-hole configurations. In this case, quite a large attractive energy is obtained for the correlation energy from the tensor force
Nuclear level densities with pairing and self-consistent ground-state shell effects
Arnould, M
1981-01-01
Nuclear level density calculations are performed using a model of fermions interacting via the pairing force, and a realistic single particle potential. The pairing interaction is treated within the BCS approximation with different pairing strength values. The single particle potentials are derived in the framework of an energy-density formalism which describes self-consistently the ground states of spherical nuclei. These calculations are extended to statistically deformed nuclei, whose estimated level densities include rotational band contributions. The theoretical results are compared with various experimental data. In addition, the level densities for several nuclei far from stability are compared with the predictions of a back-shifted Fermi gas model. Such a comparison emphasizes the possible danger of extrapolating to unknown nuclei classical level density formulae whose parameter values are tailored for known nuclei. (41 refs).
Shell effects in the superasymmetric fission
Mirea, M
2002-01-01
A new formalism based on the Landau-Zener promotion mechanism intends to explain the fine structure of alpha and cluster decay. The analysis of this phenomenon is accomplished by following the modality in which the shells are reorganized during the decay process beginning with the initial ground state of the parent towards the final configuration of two separated nuclei. A realistic level scheme is obtained in the framework of the superasymmetric two-center shell model. (author)
DeBenedictis, Andrew; Atherton, Timothy J.; Rodarte, Andrea L.; Hirst, Linda S.
2018-03-01
A micrometer-scale elastic shell immersed in a nematic liquid crystal may be deformed by the host if the cost of deformation is comparable to the cost of elastic deformation of the nematic. Moreover, such inclusions interact and form chains due to quadrupolar distortions induced in the host. A continuum theory model using finite elements is developed for this system, using mesh regularization and dynamic refinement to ensure quality of the numerical representation even for large deformations. From this model, we determine the influence of the shell elasticity, nematic elasticity, and anchoring condition on the shape of the shell and hence extract parameter values from an experimental realization. Extending the model to multibody interactions, we predict the alignment angle of the chain with respect to the host nematic as a function of aspect ratio, which is found to be in excellent agreement with experiments.
Calculations of the energy spectra of Zn, Ga and Ge isotopes by the shell model
International Nuclear Information System (INIS)
Sakakura, M.; Shikata, Y.; Arima, A.; Sebe, T.
1979-01-01
The effective Hamiltonian which was determined empirically by Koops and Glaudemans is tested in shell model calculations for the 65-68 Zn, 67-69 Ga, and 68-70 Ge nuclei in the full (1p 3 / 2 , 0f 5 / 2 , 1p 1 / 2 )n space. The resulting energy spectra are compared with the experimental spectra and results of previous calculations. The overall agreement with experiment is as satisfactory for these nuclei as for the Ni and Cu isotopes, by which the Hamiltonian was determined. It is noticed that the spectra of 67 Zn and 67 , 69 Ga calculated in this work are similar to those provided by the Alaga model. (orig.) [de
Inner-shell corrections to the Bethe stopping-power formula evaluated from a realistic atomic model
International Nuclear Information System (INIS)
Inokuti, M.; Manson, S.T.
1985-01-01
Generalized oscillator strengths for K- and L-shell ionization have been calculated using a central potential derived from the Hartree-Slater model. In cases in which an ejected electron carries low kinetic energies, sizable differences with hydrogenic-model calculations are evident
Nouet, Julius; Chevallard, Corinne; Farre, Bastien; Nehrke, Gernot; Campmas, Emilie; Stoetzel, Emmanuelle; El Hajraoui, Mohamed Abdeljalil; Nespoulet, Roland
2015-01-01
The exploitation of mollusks by the first anatomically modern humans is a central question for archaeologists. This paper focuses on level 8 (dated around ∼ 100 ka BP) of El Harhoura 2 Cave, located along the coastline in the Rabat-Témara region (Morocco). The large quantity of Patella sp. shells found in this level highlights questions regarding their origin and preservation. This study presents an estimation of the preservation status of these shells. We focus here on the diagenetic evolution of both the microstructural patterns and organic components of crossed-foliated shell layers, in order to assess the viability of further investigations based on shell layer minor elements, isotopic or biochemical compositions. The results show that the shells seem to be well conserved, with microstructural patterns preserved down to sub-micrometric scales, and that some organic components are still present in situ. But faint taphonomic degradations affecting both mineral and organic components are nonetheless evidenced, such as the disappearance of organic envelopes surrounding crossed-foliated lamellae, combined with a partial recrystallization of the lamellae. Our results provide a solid case-study of the early stages of the diagenetic evolution of crossed-foliated shell layers. Moreover, they highlight the fact that extreme caution must be taken before using fossil shells for palaeoenvironmental or geochronological reconstructions. Without thorough investigation, the alteration patterns illustrated here would easily have gone unnoticed. However, these degradations are liable to bias any proxy based on the elemental, isotopic or biochemical composition of the shells. This study also provides significant data concerning human subsistence behavior: the presence of notches and the good preservation state of limpet shells (no dissolution/recrystallization, no bioerosion and no abrasion/fragmentation aspects) would attest that limpets were gathered alive with tools by
Directory of Open Access Journals (Sweden)
Julius Nouet
Full Text Available The exploitation of mollusks by the first anatomically modern humans is a central question for archaeologists. This paper focuses on level 8 (dated around ∼ 100 ka BP of El Harhoura 2 Cave, located along the coastline in the Rabat-Témara region (Morocco. The large quantity of Patella sp. shells found in this level highlights questions regarding their origin and preservation. This study presents an estimation of the preservation status of these shells. We focus here on the diagenetic evolution of both the microstructural patterns and organic components of crossed-foliated shell layers, in order to assess the viability of further investigations based on shell layer minor elements, isotopic or biochemical compositions. The results show that the shells seem to be well conserved, with microstructural patterns preserved down to sub-micrometric scales, and that some organic components are still present in situ. But faint taphonomic degradations affecting both mineral and organic components are nonetheless evidenced, such as the disappearance of organic envelopes surrounding crossed-foliated lamellae, combined with a partial recrystallization of the lamellae. Our results provide a solid case-study of the early stages of the diagenetic evolution of crossed-foliated shell layers. Moreover, they highlight the fact that extreme caution must be taken before using fossil shells for palaeoenvironmental or geochronological reconstructions. Without thorough investigation, the alteration patterns illustrated here would easily have gone unnoticed. However, these degradations are liable to bias any proxy based on the elemental, isotopic or biochemical composition of the shells. This study also provides significant data concerning human subsistence behavior: the presence of notches and the good preservation state of limpet shells (no dissolution/recrystallization, no bioerosion and no abrasion/fragmentation aspects would attest that limpets were gathered alive
Zeng, Zebing; Sung, Youngmo; Bao, Nina; Tan, Davin; Lee, Richmond; Zafra, José Luis; Lee, Byungsun; Ishida, Masatoshi; Ding, Jun; Lõ pez Navarrete, Juan Teodomiro; Li, Yuan; Zeng, Wangdong; Kim, Dongho; Huang, Kuo-Wei; Webster, Richard D.; Casado, Juan; Wu, Jishan
2012-01-01
-shell PAH has been investigated for a long time. However, most of the studies are complicated by their inherent high reactivity. In this work, two new stable benzannulated Chichibabin's hydrocarbons 1-CS and 2-OS were prepared, and their electronic structure
DEFF Research Database (Denmark)
Pardo, D.; Branner, K.
2005-01-01
line load. The results are compared with result from similar shell models, which typically are used for practical design. Usually, good agreement between the shell models and the detailed 2D-solid model is found for the deflections, strains and stresses in regions with loads from pure bending. However...
Directory of Open Access Journals (Sweden)
M. Venkata Ramanan
2008-09-01
Full Text Available Cashew nut shell, a waste product obtained during deshelling of cashew kernels, had in the past been deemed unfit as a fuel for gasification owing to its high occluded oil content. The oil, a source of natural phenol, oozes upon gasification, thereby clogging the gasifier throat, downstream equipment and associated utilities with oil, resulting in ineffective gasification and premature failure of utilities due to its corrosive characteristics. To overcome this drawback, the cashew shells were de-oiled by charring in closed chambers and were subsequently gasified in an autothermal downdraft gasifier. Equilibrium modeling was carried out to predict the producer gas composition under varying performance influencing parameters, viz., equivalence ratio (ER, reaction temperature (RT and moisture content (MC. The results were compared with the experimental output and are presented in this paper. The model is quite satisfactory with the experimental outcome at the ER applicable to gasification systems, i.e., 0.15 to 0.30. The results show that the mole fraction of (i H2, CO and CH4 decreases while (N2 + H2O and CO2 increases with ER, (ii H2 and CO increases while CH4, (N2 + H2O and CO2 decreases with reaction temperature, (iii H2, CH4, CO2 and (N2 + H2O increases while CO decreases with moisture content. However at an equivalence ratio less than 0.15, the model predicts an unrealistic composition and is observed to be non valid below this ER.
Core excitations across the neutron shell gap in 207Tl
Directory of Open Access Journals (Sweden)
E. Wilson
2015-07-01
Full Text Available The single closed-neutron-shell, one proton–hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations using two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states.
International Nuclear Information System (INIS)
Miao, Fujun; Shao, Changlu; Li, Xinghua; Lu, Na; Wang, Kexin; Zhang, Xin; Liu, Yichun
2015-01-01
Highlights: • Three-dimensional PAN@PANI nanofiberous networks as freestanding electrodes. • The novel architecture exhibits high specific capacitance of 577 F/g. • Influence of acid doping and mass loading of PANI on electrochemical properties. • Capacitor: an energy density of 12.6 Wh/kg at the power density of 2.3 kW/kg. • Excellent cycling stability: 98% capacitance retention after 1000 cycles - Abstract: Three-dimensional porous polyacrylonitrile/polyaniline core-shell (PAN@PANI) nanofibers are fabricated by electrospinning technique combining in situ chemical polymerization of aniline monomers. The obtained PAN@PANI nanofibers possess unique continuous and homogeneous core-shell nanostructures and high mass loading of PANI (∼60 wt%) as active materials, which have greatly improved the electrochemical performance with a specific capacitance up to 577 F/g at a scan rate of 5 mV/s. Moreover, the porous networks of randomly arrayed PAN@PANI nanofibers provide binder-free and freestanding electrodes for flexible solid-state supercapacitors. The obtained devices based on PAN@PANI networks present excellent electrochemical properties with an energy density of 12.6 Wh/kg at a power density of 2.3 kW/kg and good cycling stability with retaining more than 98% of the initial capacitance after 1000 charge/discharge cycles, showing the possibility for practical applications in flexible electronics
The contribution of the expanding shell test to the modeling of elastoplaticity at high strain rates
International Nuclear Information System (INIS)
Llorca, Fabrice; Buy, Francois
2002-01-01
The expanding shell test allows to load a material in the domain of high strain levels while strain rate is about 104s-1. This test submits an hemisphere to a radial expanding free flight, using a pyrotechnic device. The experiment (experimental apparatus, measurements...) is described with the difficulties encountered for the interpretation of the experimental data. Under some assumptions, the numerical transformation of radial velocities gives indications about the evolution of the strain, stress, strain rate and temperature rise, this last one being related to plastic work. We show how it is possible to associate both analytical and numerical approaches. Numerical simulation of the test is presented in a companion paper (see [Buy01]). Results obtained for copper, tantalum and TA6V4 are presented. The contribution of this test to the modeling of elastoplastic behavior is discussed and further works are proposed
Off-shell dynamics of the O(3) NLS model beyond Monte Carlo and perturbation theory
International Nuclear Information System (INIS)
Balog, J.; Niedermaier, M.
1997-01-01
The off-shell dynamics of the O(3) non-linear sigma model is probed in terms of spectral densities and two-point functions by means of the form factor approach. The exact form factors of the spin field, Noether current, EM tensor and the topological charge density are computed up to six particles. The corresponding n≤6 particle spectral densities are used to compute the two-point functions, and are argued to deviate at most a few per mille from the exact answer in the entire energy range below 10 3 in units of the mass gap. To cover yet higher energies we propose an extrapolation scheme to arbitrary particle numbers based on a novel scaling hypothesis for the spectral densities. It yields candidate results for the exact two-point functions at all energy scales and allows us to exactly determine the values of two, previously unknown, non-perturbative constants. (orig.)
Scission-point model of nuclear fission based on deformed-shell effects
International Nuclear Information System (INIS)
Wilkins, B.D.; Steinberg, E.P.; Chasman, R.R.
1976-01-01
A static model of nuclear fission is proposed based on the assumption of statistical equilibrium among collective degrees of freedom at the scission point. The relative probabilities of formation of complementary fission fragment pairs are determined from the relative potential energies of a system of two nearly touching, coaxial spheroids with quadrupole deformations. The total potential energy of the system at the scission point is calculated as the sum of liquid-drop and shell- and pairing-correction terms for each spheroid, and Coulomb and nuclear potential terms describing the interaction between them. The fissioning system at the scission point is characterized by three parameters: the distance between the tips of the spheroids (d), the intrinsic excitation energy of the fragments (tau/sub int/), and a collective temperature (T/sub coll/). No attempt is made to adjust these parameters to give optimum fits to experimental data, but rather, a single choice of values for d, tau/sub int/, and T/sub coll/ is used in the calculations for all fissioning systems. The general trends of the distributions of mass, nuclear charge, and kinetic energy in the fission of a wide range of nuclides from Po to Fm are well reproduced in the calculations. The major influence of the deformed-shell corrections for neutrons is indicated and provides a convenient framework for the interpretation of observed trends in the data and for the prediction of new results. The scission-point configurations derived from the model provide an interpretation of the ''saw-tooth'' neutron emission curve as well as previously unexplained observations on the variation of TKE for isotopes of U, Pu, Cm, and Cf; structure in the width of total kinetic energy release as a function of fragment mass ratio; and a difference in threshold energies for symmetric and asymmetric mass splits in the fission of Ra and Ac isotopes
Dupuy, Nicolas; Casula, Michele
2018-04-01
By means of the Jastrow correlated antisymmetrized geminal power (JAGP) wave function and quantum Monte Carlo (QMC) methods, we study the ground state properties of the oligoacene series, up to the nonacene. The JAGP is the accurate variational realization of the resonating-valence-bond (RVB) ansatz proposed by Pauling and Wheland to describe aromatic compounds. We show that the long-ranged RVB correlations built in the acenes' ground state are detrimental for the occurrence of open-shell diradical or polyradical instabilities, previously found by lower-level theories. We substantiate our outcome by a direct comparison with another wave function, tailored to be an open-shell singlet (OSS) for long-enough acenes. By comparing on the same footing the RVB and OSS wave functions, both optimized at a variational QMC level and further projected by the lattice regularized diffusion Monte Carlo method, we prove that the RVB wave function has always a lower variational energy and better nodes than the OSS, for all molecular species considered in this work. The entangled multi-reference RVB state acts against the electron edge localization implied by the OSS wave function and weakens the diradical tendency for higher oligoacenes. These properties are reflected by several descriptors, including wave function parameters, bond length alternation, aromatic indices, and spin-spin correlation functions. In this context, we propose a new aromatic index estimator suitable for geminal wave functions. For the largest acenes taken into account, the long-range decay of the charge-charge correlation functions is compatible with a quasi-metallic behavior.
Stability of bubble nuclei through Shell-Effects
Dietrich, Klaus; Pomorski, Krzysztof
1997-01-01
We investigate the shell structure of bubble nuclei in simple phenomenological shell models and study their binding energy as a function of the radii and of the number of neutron and protons using Strutinsky's method. Shell effects come about, on the one hand, by the high degeneracy of levels with large angular momentum and, on the other, by the big energy gaps between states with a different number of radial nodes. Shell energies down to -40 MeV are shown to occur for certain magic nuclei. E...
Calculated Electronic Behavior and Spectrum of Mg+@C60 Using a Simple Jellium-shell Model
Directory of Open Access Journals (Sweden)
H. A. Schuessler
2004-11-01
Full Text Available Abstract: We present a method for calculating the energy levels and wave functions of any atom or ion with a single valence electron encapsulated in a Fullerene cage using a jelluim-shell model. The valence electron-core interaction is represented by a one-body pseudo-potential obtained through density functional theory with strikingly accurate parameters for Mg+ and which reduces to a purely Coulombic interaction in the case of H. We find that most energy states are affected little by encapsulation. However, when either the electron in the non-encapsulated species has a high probability of being near the jellium cage, or when the cage induces a maximum electron probability density within it, the energy levels shift considerably. Mg+ shows behavior similar to that of H, but since its wave functions are broader, the changes in its energy levels from encapsulation are slightly more pronounced. Agreement with other computational work as well as experiment is excellent and the method presented here is generalizable to any encapsulated species where a one-body electronic pseudo-potential for the free atom (or ion is available. Results are also presented for off-center hydrogen, where a ground state energy minimum of -14.01 eV is found at a nuclear displacement of around 0.1 ÃƒÂ….
International Nuclear Information System (INIS)
Lefrancois, A.
1976-01-01
The method of dimensional analysis is applied to the evaluation of deformation, stress, and ideal buckling strength (which is independent of the values of the elastic range), of shells subject to external pressure. The relations obtained are verified in two examples: a cylindrical ring and a tube with free ends and almost circular cross-section. Further, it is shown how and to what extent the results obtained from model tests can be used to predict the behaviour of geometrically similar shells which are made of the same material, or even of a different material. (Author) [fr
Zhao, Yumin
1997-07-01
By the techniques of the Wick theorem for coupled clusters, the no-energy-weighted electromagnetic sum-rule calculations are presented in the sdg neutron-proton interacting boson model, the nuclear pair shell model and the fermion-dynamical symmetry model. The project supported by Development Project Foundation of China, National Natural Science Foundation of China, Doctoral Education Fund of National Education Committee, Fundamental Research Fund of Southeast University
In-gap corner states in core-shell polygonal quantum rings.
Sitek, Anna; Ţolea, Mugurel; Niţă, Marian; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei
2017-01-10
We study Coulomb interacting electrons confined in polygonal quantum rings. We focus on the interplay of localization at the polygon corners and Coulomb repulsion. Remarkably, the Coulomb repulsion allows the formation of in-gap states, i.e., corner-localized states of electron pairs or clusters shifted to energies that were forbidden for non-interacting electrons, but below the energies of corner-side-localized states. We specify conditions allowing optical excitation to those states.
In-gap corner states in core-shell polygonal quantum rings
Sitek, Anna; Ţolea, Mugurel; Niţă, Marian; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei
2017-01-01
We study Coulomb interacting electrons confined in polygonal quantum rings. We focus on the interplay of localization at the polygon corners and Coulomb repulsion. Remarkably, the Coulomb repulsion allows the formation of in-gap states, i.e., corner-localized states of electron pairs or clusters shifted to energies that were forbidden for non-interacting electrons, but below the energies of corner-side-localized states. We specify conditions allowing optical excitation to those states.
Lacour, Thomas; Guédra, Matthieu; Valier-Brasier, Tony; Coulouvrat, François
2018-01-01
Nanodroplets have great, promising medical applications such as contrast imaging, embolotherapy, or targeted drug delivery. Their functions can be mechanically activated by means of focused ultrasound inducing a phase change of the inner liquid known as the acoustic droplet vaporization (ADV) process. In this context, a four-phases (vapor + liquid + shell + surrounding environment) model of ADV is proposed. Attention is especially devoted to the mechanical properties of the encapsulating shell, incorporating the well-known strain-softening behavior of Mooney-Rivlin material adapted to very large deformations of soft, nearly incompressible materials. Various responses to ultrasound excitation are illustrated, depending on linear and nonlinear mechanical shell properties and acoustical excitation parameters. Different classes of ADV outcomes are exhibited, and a relevant threshold ensuring complete vaporization of the inner liquid layer is defined. The dependence of this threshold with acoustical, geometrical, and mechanical parameters is also provided.
Shell-model Monte Carlo simulations of the BCS-BEC crossover in few-fermion systems
DEFF Research Database (Denmark)
Zinner, Nikolaj Thomas; Mølmer, Klaus; Özen, C.
2009-01-01
We study a trapped system of fermions with a zero-range two-body interaction using the shell-model Monte Carlo method, providing ab initio results for the low particle number limit where mean-field theory is not applicable. We present results for the N-body energies as function of interaction...
Czech Academy of Sciences Publication Activity Database
Praus, P.; Svoboda, L.; Tokarský, J.; Hospodková, Alice; Klemm, V.
2014-01-01
Roč. 292, Feb (2014), s. 813-822 ISSN 0169-4332 Institutional support: RVO:68378271 Keywords : core/shell nanoparticles * CdS/ZnS * molecular modelling * electron tunnelling * photocatalysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.711, year: 2014
Modeling volatility using state space models.
Timmer, J; Weigend, A S
1997-08-01
In time series problems, noise can be divided into two categories: dynamic noise which drives the process, and observational noise which is added in the measurement process, but does not influence future values of the system. In this framework, we show that empirical volatilities (the squared relative returns of prices) exhibit a significant amount of observational noise. To model and predict their time evolution adequately, we estimate state space models that explicitly include observational noise. We obtain relaxation times for shocks in the logarithm of volatility ranging from three weeks (for foreign exchange) to three to five months (for stock indices). In most cases, a two-dimensional hidden state is required to yield residuals that are consistent with white noise. We compare these results with ordinary autoregressive models (without a hidden state) and find that autoregressive models underestimate the relaxation times by about two orders of magnitude since they do not distinguish between observational and dynamic noise. This new interpretation of the dynamics of volatility in terms of relaxators in a state space model carries over to stochastic volatility models and to GARCH models, and is useful for several problems in finance, including risk management and the pricing of derivative securities. Data sets used: Olsen & Associates high frequency DEM/USD foreign exchange rates (8 years). Nikkei 225 index (40 years). Dow Jones Industrial Average (25 years).
International Nuclear Information System (INIS)
Welser-Sherrill, L.; Mancini, R. C.; Haynes, D. A.; Haan, S. W.; Koch, J. A.; Izumi, N.; Tommasini, R.; Golovkin, I. E.; MacFarlane, J. J.; Radha, P. B.; Delettrez, J. A.; Regan, S. P.; Smalyuk, V. A.
2007-01-01
The presence of shell mix in inertial confinement fusion implosion cores is an important characteristic. Mixing in this experimental regime is primarily due to hydrodynamic instabilities, such as Rayleigh-Taylor and Richtmyer-Meshkov, which can affect implosion dynamics. Two independent theoretical mix models, Youngs' model and the Haan saturation model, were used to estimate the level of Rayleigh-Taylor mixing in a series of indirect drive experiments. The models were used to predict the radial width of the region containing mixed fuel and shell materials. The results for Rayleigh-Taylor mixing provided by Youngs' model are considered to be a lower bound for the mix width, while those generated by Haan's model incorporate more experimental characteristics and consequently have larger mix widths. These results are compared with an independent experimental analysis, which infers a larger mix width based on all instabilities and effects captured in the experimental data
Development of surrogate models using artificial neural network for building shell energy labelling
International Nuclear Information System (INIS)
Melo, A.P.; Cóstola, D.; Lamberts, R.; Hensen, J.L.M.
2014-01-01
Surrogate models are an important part of building energy labelling programs, but these models still present low accuracy, particularly in cooling-dominated climates. The objective of this study was to evaluate the feasibility of using an artificial neural network (ANN) to improve the accuracy of surrogate models for labelling purposes. An ANN was applied to model the building stock of a city in Brazil, based on the results of extensive simulations using the high-resolution building energy simulation program EnergyPlus. Sensitivity and uncertainty analyses were carried out to evaluate the behaviour of the ANN model, and the variations in the best and worst performance for several typologies were analysed in relation to variations in the input parameters and building characteristics. The results obtained indicate that an ANN can represent the interaction between input and output data for a vast and diverse building stock. Sensitivity analysis showed that no single input parameter can be identified as the main factor responsible for the building energy performance. The uncertainty associated with several parameters plays a major role in assessing building energy performance, together with the facade area and the shell-to-floor ratio. The results of this study may have a profound impact as ANNs could be applied in the future to define regulations in many countries, with positive effects on optimizing the energy consumption. - Highlights: • We model several typologies which have variation in input parameters. • We evaluate the accuracy of surrogate models for labelling purposes. • ANN is applied to model the building stock. • Uncertainty in building plays a major role in the building energy performance. • Results show that ANN could help to develop building energy labelling systems
International Nuclear Information System (INIS)
Ayoub, N.Y.
1980-02-01
The ground and some excited O + (J=O, T=O positive parity) energy levels of closed-shell nuclei are examined, in an oscillator basis, using matrix techniques. The effect of states outside the mixed (O+2(h/2π)ω). model space in 4 He (namely configurations at 4(h/2π)ω excitation) are taken into account by renormalization using the generalized Rayleigh-Schroedinger perturbation expressions for a mixed multi-configurational model space, where the resultant non-symmetric energy matrices are diagonalized. It is shown that the second-order renormalized O + energy spectrum is close to the corresponding energy spectrum obtained by diagonalizing the O+2+4(h/2π)ω 4 He energy matrix. The effect, on the ground state and the first few low-lying excited O + energy levels, of renormalizing certain parts of the model space energy matrix up to second order in various approximations is also studied in 4 He and 16 O. It is found that the low-lying O + energy levels in these various approximations behave similarly in both 4 He and 16 O. (author)
Rivera, Gabriel; Stayton, C Tristan
2011-10-01
Aquatic species can experience different selective pressures on morphology in different flow regimes. Species inhabiting lotic regimes often adapt to these conditions by evolving low-drag (i.e., streamlined) morphologies that reduce the likelihood of dislodgment or displacement. However, hydrodynamic factors are not the only selective pressures influencing organismal morphology and shapes well suited to flow conditions may compromise performance in other roles. We investigated the possibility of morphological trade-offs in the turtle Pseudemys concinna. Individuals living in lotic environments have flatter, more streamlined shells than those living in lentic environments; however, this flatter shape may also make the shells less capable of resisting predator-induced loads. We tested the idea that "lotic" shell shapes are weaker than "lentic" shell shapes, concomitantly examining effects of sex. Geometric morphometric data were used to transform an existing finite element shell model into a series of models corresponding to the shapes of individual turtles. Models were assigned identical material properties and loaded under identical conditions, and the stresses produced by a series of eight loads were extracted to describe the strength of the shells. "Lotic" shell shapes produced significantly higher stresses than "lentic" shell shapes, indicating that the former is weaker than the latter. Females had significantly stronger shell shapes than males, although these differences were less consistent than differences between flow regimes. We conclude that, despite the potential for many-to-one mapping of shell shape onto strength, P. concinna experiences a trade-off in shell shape between hydrodynamic and mechanical performance. This trade-off may be evident in many other turtle species or any other aquatic species that also depend on a shell for defense. However, evolution of body size may provide an avenue of escape from this trade-off in some cases, as changes in
Decay of the double--K-shell-vacancy state in silver atoms created in the decay of 109Cd
International Nuclear Information System (INIS)
Horvat, V.; Ilakovac, K.
1985-01-01
A pair of germanium detectors and a three-parameter analyzer were applied in an experimental study of the creation and of the decay of atomic states with a double K-shell vacancy, created in the decay of 109 Cd. Assuming a variable intensity ratio of the Kα 1 and Kα 2 hypersatellite lines, their shift with respect to the diagram lines, Δ/sub K/α/sup h/ = 546 +- 20 eV, and the shift of the Kα satellite lines with an initial L-shell vacancy, Δ/sub K/α/sup s/(L -1 ) = 54 +- 6 eV, were obtained. The former result is in agreement with the previous experimental result of van Eijk et al. and with the theoretical result of Chen et al., but the latter result is significantly lower than the theoretical value of 73 eV. For the I(Kα 1 /sup h/)/I(Kα/sup h/) intensity ratio, a value of 0.54 +- 0.11 was obtained. From the numbers of counts in the hypersatellite-satellite peaks the intensity ratios of the hypersatellite lines I(Kβ/sub 1prime/ /sup h/)/I(Kα/sup h/) = 0.195 +- 0.016, and I(Kβ/sub 2prime/ /sup h/)/I(Kα/sup h/) = 0.055 +- 0.008 were obtained. The former value seems to be larger than the theoretical value 0.168, while the latter value is significantly larger than the theoretical value 0.029
Three-fluid MHD-model of a current shell in Z-pinch
International Nuclear Information System (INIS)
Bazdenkov, S.V.; Vikhrev, V.V.
1975-01-01
Formation and motion of the current shell in a power pulsed discharge (Z-pinch) are discussed. One-dimmensional nonstationary problem about a discharge in deuterium is solved in the three-liquid magnetohydrodynamic approximation with regard for gas ionization and motion of neutral atoms. It is shown that after the shell removal there remains a large quantity of an ionized gas near an isolating chamber wall. The quantity is sufficient that a secondary breakdown may take place in the ionized gas. The moving current shell has a double structure, i.e. a current ''piston'' and a current layer in the shock wave front
FRACTIONAL CRYSTALLIZATION OF HANFORD SINGLE-SHELL TANK WASTES. A MODELING APPROACH
International Nuclear Information System (INIS)
HAMILTON, D.W.
2006-01-01
The Hanford site has 149 underground single-shell tanks (SST) storing mostly soluble, multi-salt, mixed wastes resulting from Cold War era weapons material production. These wastes must be retrieved and the salts immobilized before the tanks can be closed to comply with an overall site closure consent order entered into by the U.S. Department of Energy (DOE), the Environmental Protection Agency, and Washington State. Water will be used to retrieve the wastes and the resulting solution will be pumped to the proposed treatment process where a high curie (primarily 137 Cs) waste fraction will be separated from the other waste constituents. The separated waste streams will then be vitrified to allow for safe storage as an immobilized high level waste, or low level waste, borosilicate glass. Fractional crystallization, a common unit operation for production of industrial chemicals and pharmaceuticals, was proposed as the method to separate the salt wastes; it works by evaporating excess water until the solubilities of various species in the solution are exceeded (the solubility of a particular species depends on its concentration, temperature of the solution, and the presence of other ionic species in the solution). By establishing the proper conditions, selected pure salts can be crystallized and separated from the radioactive liquid phase
Wang, Xujing; Becker, Frederick F.; Gascoyne, Peter R. C.
2010-01-01
The scale-invariant property of the cytoplasmic membrane of biological cells is examined by applying the Minkowski–Bouligand method to digitized scanning electron microscopy images of the cell surface. The membrane is found to exhibit fractal behavior, and the derived fractal dimension gives a good description of its morphological complexity. Furthermore, we found that this fractal dimension correlates well with the specific membrane dielectric capacitance derived from the electrorotation measurements. Based on these findings, we propose a new fractal single-shell model to describe the dielectrics of mammalian cells, and compare it with the conventional single-shell model (SSM). We found that while both models fit with experimental data well, the new model is able to eliminate the discrepancy between the measured dielectric property of cells and that predicted by the SSM. PMID:21198103
Ding, Xiang; Huang, Xiaobing; Jin, Junling; Ming, Hai; Wang, Limin; Ming, Jun
2017-01-01
A sustainable solid-state strategy of SPEX milling is developed to coat metal oxide (e.g., Fe3O4) with tunable layers of graphene, and a new hierarchical core-shell structured Fe3O4@graphene composite is constructed. The presented green process can
Kostensalo, Joel; Suhonen, Jouni; Zuber, K.
2018-03-01
Charged-current (anti)neutrino-40Ar cross sections for astrophysical neutrinos have been calculated. The initial and final nuclear states were calculated using the nuclear shell model. The folded solar-neutrino scattering cross section was found to be 1.78 (23 ) ×10-42cm2 , which is higher than what the previous papers have reported. The contributions from the 1- and 2- multipoles were found to be significant at supernova-neutrino energies, confirming the random-phase approximation (RPA) result of a previous study. The effects of neutrino flavor conversions in dense stellar matter (matter oscillations) were found to enhance the neutrino-scattering cross sections significantly for both the normal and inverted mass hierarchies. For the antineutrino scattering, only a small difference between the nonoscillating and inverted-hierarchy cross sections was found, while the normal-hierarchy cross section was 2-3 times larger than that of the nonoscillating cross section, depending on the adopted parametrization of the Fermi-Dirac distribution. This property of the supernova-antineutrino signal could probably be used to distinguish between the two hierarchies in megaton LAr detectors.
Formation of inner-shell autoionizing CO+ states below the CO2+ threshold
International Nuclear Information System (INIS)
Osipov, T.; Weber, Th.; Rescigno, T. N.; Lee, S. Y.; Schoeffler, M.; Belkacem, A.; Orel, A. E.; Sturm, F. P.; Schoessler, S.; Lenz, U.; Havermeier, T.; Kuehnel, M.; Jahnke, T.; Doerner, R.; Williams, J. B.; Landers, A.; Ray, D.
2010-01-01
We report a kinematically complete experiment on the production of CO + autoionizing states following photoionization of carbon monoxide below its vertical double-ionization threshold. Momentum imaging spectroscopy is used to measure the energies and body-frame angular distributions of both photo- and autoionization electrons, as well as the kinetic energy release (KER) of the atomic ions. These data, in combination with ab initio theoretical calculations, provide insight into the nature of the cation states produced and their subsequent dissociation into autoionizing atomic (O * ) fragments.
Formation of inner-shell autoionizing CO+ states below the CO2+ threshold
Osipov, T.; Weber, Th.; Rescigno, T. N.; Lee, S. Y.; Orel, A. E.; Schöffler, M.; Sturm, F. P.; Schössler, S.; Lenz, U.; Havermeier, T.; Kühnel, M.; Jahnke, T.; Williams, J. B.; Ray, D.; Landers, A.; Dörner, R.; Belkacem, A.
2010-01-01
We report a kinematically complete experiment on the production of CO+ autoionizing states following photoionization of carbon monoxide below its vertical double-ionization threshold. Momentum imaging spectroscopy is used to measure the energies and body-frame angular distributions of both photo- and autoionization electrons, as well as the kinetic energy release (KER) of the atomic ions. These data, in combination with ab initio theoretical calculations, provide insight into the nature of the cation states produced and their subsequent dissociation into autoionizing atomic (O*) fragments.
Neotectonics of Asia: Thin-shell finite-element models with faults
Kong, Xianghong; Bird, Peter
1994-01-01
As India pushed into and beneath the south margin of Asia in Cenozoic time, it added a great volume of crust, which may have been (1) emplaced locally beneath Tibet, (2) distributed as regional crustal thickening of Asia, (3) converted to mantle eclogite by high-pressure metamorphism, or (4) extruded eastward to increase the area of Asia. The amount of eastward extrusion is especially controversial: plane-stress computer models of finite strain in a continuum lithosphere show minimal escape, while laboratory and theoretical plane-strain models of finite strain in a faulted lithosphere show escape as the dominant mode. We suggest computing the present (or neo)tectonics by use of the known fault network and available data on fault activity, geodesy, and stress to select the best model. We apply a new thin-shell method which can represent a faulted lithosphere of realistic rheology on a sphere, and provided predictions of present velocities, fault slip rates, and stresses for various trial rheologies and boundary conditions. To minimize artificial boundaries, the models include all of Asia east of 40 deg E and span 100 deg on the globe. The primary unknowns are the friction coefficient of faults within Asia and the amounts of shear traction applied to Asia in the Himalayan and oceanic subduction zones at its margins. Data on Quaternary fault activity prove to be most useful in rating the models. Best results are obtained with a very low fault friction of 0.085. This major heterogeneity shows that unfaulted continum models cannot be expected to give accurate simulations of the orogeny. But, even with such weak faults, only a fraction of the internal deformation is expressed as fault slip; this means that rigid microplate models cannot represent the kinematics either. A universal feature of the better models is that eastern China and southeast Asia flow rapidly eastward with respect to Siberia. The rate of escape is very sensitive to the level of shear traction in the
Soluble and stable heptazethrenebis(dicarboximide) with a singlet open-shell ground state
Sun, Zhe; Huang, Kuo-Wei; Wu, Jishan
2011-01-01
A soluble and stable heptazethrene derivative was synthesized and characterized for the first time. This molecule exhibits a singlet biradical character in the ground state, which is the first case among zethrene homologue series. Exceptional stability of this heptazethrenebis(dicarboximide) raises the likelihood of its practical applications in materials science. © 2011 American Chemical Society.
Soluble and stable heptazethrenebis(dicarboximide) with a singlet open-shell ground state
Sun, Zhe
2011-08-10
A soluble and stable heptazethrene derivative was synthesized and characterized for the first time. This molecule exhibits a singlet biradical character in the ground state, which is the first case among zethrene homologue series. Exceptional stability of this heptazethrenebis(dicarboximide) raises the likelihood of its practical applications in materials science. © 2011 American Chemical Society.
Shell model calculations for levels and transition rates in 204Pb and 206Pb
International Nuclear Information System (INIS)
Wang, D.; McEllistrem, M.T.
1990-01-01
Level energies and decay rates of both negative and positive parity levels of 206,204 Pb have been calculated through mixed-configuration shell model calculations using the modified surface delta interaction (MSDI), the Schiffer-True central interaction, and another two-body interaction. These calculations were all carried out with a full six-orbit neutron hole space. The predicted low-lying levels with the MSDI are in excellent agreement with experiments, accounting for the energies, spins, and parities of essentially all levels below 3 MeV excitation energy except known particle-hole collective excitations in both nuclei. Almost all calculated E2 and M1 transition rates are consistent with measured branching ratios for γ-ray decay of excited levels. The comparison of the observed and calculated levels demonstrates the important role played by the neutron-hole i 13/2 configuration in the levels of 204 Pb and 206 Pb, and interprets an apparent discrepancy over the character and energy spacings of 0 + levels in 204 Pb
Cluster form factor calculation in the ab initio no-core shell model
International Nuclear Information System (INIS)
Navratil, Petr
2004-01-01
We derive expressions for cluster overlap integrals or channel cluster form factors for ab initio no-core shell model (NCSM) wave functions. These are used to obtain the spectroscopic factors and can serve as a starting point for the description of low-energy nuclear reactions. We consider the composite system and the target nucleus to be described in the Slater determinant (SD) harmonic oscillator (HO) basis while the projectile eigenstate to be expanded in the Jacobi coordinate HO basis. This is the most practical case. The spurious center of mass components present in the SD bases are removed exactly. The calculated cluster overlap integrals are translationally invariant. As an illustration, we present results of cluster form factor calculations for 5 He vertical bar 4 He+n>, 5 He vertical bar 3 H+d>, 6 Li vertical bar 4 He+d>, 6 Be vertical bar 3 He+ 3 He>, 7 Li vertical bar 4 He+ 3 H>, 7 Li vertical bar 6 Li+n>, 8 Be vertical bar 6 Li+d>, 8 Be vertical bar 7 Li+p>, 9 Li vertical bar 8 Li+n>, and 13 C vertical bar 12 C+n>, with all the nuclei described by multi-(ℎ/2π)Ω NCSM wave functions
Mass loss from OH/IR stars - Models for the infrared emission of circumstellar dust shells
Justtanont, K.; Tielens, A. G. G. M.
1992-01-01
The IR emission of a sample of 24 OH/IR stars is modeled, and the properties of circumstellar dust and mass-loss rate of the central star are derived. It is shown that for some sources the observations of the far-IR emission is well fitted with a lambda exp -1 law, while some have a steeper index of 1.5. For a few sources, the presence of circumstellar ice grains is inferred from detailed studies of the observed 10-micron feature. Dust mass-loss rates are determined from detailed studies for all the stars in this sample. They range from 6.0 x 10 exp -10 solar mass/yr for an optically visible Mira to 2.2 x 10 exp -6 solar mass/yr for a heavily obscured OH/IR star. These dust mass-loss rates are compared to those calculated from IRAS photometry using 12-, 25-, and 60-micron fluxes. The dust mass-loss rates are also compared to gas mass-loss rates determined from OH and CO observations. For stars with tenuous shells, a dust-to-gas ratio of 0.001 is obtained.
The energy structure and decay channels of the 4p6-shell excited states in Sr
Kupliauskienė, A.; Kerevičius, G.; Borovik, V.; Shafranyosh, I.; Borovik, A.
2017-11-01
The ejected-electron spectra arising from the decay of the 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } autoionizing states in Sr atoms have been studied precisely at the incident-electron energies close to excitation and ionization thresholds of the 4{{{p}}}6 subshell. The excitation behaviors for 58 lines observed between 12 and 21 eV ejected-electron kinetic energy have been investigated. Also, the ab initio calculations of excitation energies, autoionization probabilities and electron-impact excitation cross sections of the states 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } (nl = 4d, 5s, 5p; {n}{\\prime }{l}{\\prime } = 4d, 5s, 5p; {n}{\\prime\\prime }{l}{\\prime\\prime } = 5s, 6s, 7s, 8s, 9s, 5p, 6p, 5d, 6d, 7d, 8d, 4f, 5g) have been performed by employing the large-scale configuration-interaction method in the basis of the solutions of Dirac-Fock-Slater equations. The obtained experimental and theoretical data have been used for the accurate identification of the 60 lines in ejected-electron spectra and the 68 lines observed earlier in photoabsorption spectra. The excitation and decay processes for 105 classified states in the 4p55s{}2{nl}, 4p54d{}2{nl} and 4p55s{{nln}}{\\prime }{l}{\\prime } configurations have been considered in detail. In particular, most of the states lying below the ionization threshold of the 4p6 subshell at 26.92 eV possess up to four decay channels with formation of Sr+ in 5s{}1/2, 4d{}3/{2,5/2} and 5p{}1/{2,3/2} states. Two-step autoionization and two-electron Auger transitions with formation of Sr2+ in the 4p6 {}1{{{S}}}0 ground state are the main decay paths for high-lying autoionizing states. The excitation threshold of the 4{{{p}}}6 subshell in Sr has been established at 20.98 ± 0.05 eV.
International Nuclear Information System (INIS)
Resler, D.A.
1987-03-01
The specific purpose of this work is to provide a better understanding of the 14 C level structure; the general purpose is to provide the details for using shell model calculations in R-matrix analyses. Using the TOF facilities of the Ohio University Accelerator Laboratory, the elastic and first 3 inelastic differential scattering cross sections for 13 C + n were measured at 69 energies for 4.5 ≤ E/sub n/ ≤ 11 MeV. A multiple scattering code was developed which provided a simulation of the experimental scattering process allowing accurate corrections to the small inelastic data. The integrated 13 C(n,α) 10 Be cross section is estimated. The sequential 2n-decay of 14 C states populated by 13 C + n was observed. A shell model code was developed. Normal and nonnormal parity calculations were made for the lithium isotopes using a new two-body interaction. The results for 5 Li predict the 2s/sub 1/2/ and 1d/sub 5/2/ single-particle states to be located below the 3/2 + state. Similar calculations were made for 13 C, 13 N, and 14 C. Results for 13 C and 13 N show for E/sub x/ 7 Li and 14 C, 2 h-barω calculations were done. Shell model calculations generated the R-matrix parameters for the elastic and first 3 inelastic channels of 13 C + n. After adjusting some energies, the predicted structure generally agrees with experiment for E/sub n/ 13 C + n data were refit to replace R 0 background terms by more realistic broad states and to get better agreement with model calculations. R-matrix fitting of the full data set produced new 14 C level information. For E/sub n/ > 4 MeV (E/sub x/ > 12 MeV), 5 states are given definite J/sup π/ assignments; 3, tentative assignments. 122 refs., 91 figs., 30 tabs
de-Shalit, Amos; Massey, H S W
1963-01-01
Nuclear Shell Theory is a comprehensive textbook dealing with modern methods of the nuclear shell model. This book deals with the mathematical theory of a system of Fermions in a central field. It is divided into three parts. Part I discusses the single particle shell model. The second part focuses on the tensor algebra, two-particle systems. The last part covers three or more particle systems. Chapters on wave functions in a central field, tensor fields, and the m-Scheme are also presented. Physicists, graduate students, and teachers of nuclear physics will find the book invaluable.
Czech Academy of Sciences Publication Activity Database
Dreyfuss, A. C.; Launey, K. D.; Dytrych, Tomáš; Draayer, J. P.; Baker, R. B.; Deibel, C. M.; Bahri, C.
2017-01-01
Roč. 95, č. 4 (2017), č. článku 044312. ISSN 2469-9985 R&D Projects: GA ČR GA16-16772S Institutional support: RVO:61389005 Keywords : C-12 * no-core shell-model * resonance Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 3.820, year: 2016
A study of the evolution of the nuclear structure along the zinc isotopic chain close to the doubly magic nucleus $^{78}$Ni is proposed to probe recent shell-model calculations in this area of the nuclear chart. Excitation energies and connecting B(E2) values will be measured through multiple Coulomb excitation experiment with laser ionized purified beams of $^{74-80}$Zn from HIE ISOLDE. The current proposal request 30 shifts.
Two-loop O(ααs) corrections to the on-shell fermion propagator in the standard model
International Nuclear Information System (INIS)
Eiras, Dolors; Steinhauser, Matthias
2006-01-01
In this paper we consider mixed two-loop electroweak corrections to the top quark propagator in the Standard Model. In particular, we compute the on-shell renormalization constant for the mass and wave function, which constitute building blocks for many physical processes. The results are expressed in terms of master integrals. For the latter practical approximations are derived. In the case of the mass renormalization constant we find agreement with the results in the literature
Three-body forces in p-shell nuclei
International Nuclear Information System (INIS)
Hees, A.G.M. van; Booten, J.G.L.; Glaudemans, P.W.M.
1990-01-01
Within the (0 + 1)ℎω shell-model space for p-shell nuclei we found that a schematic three-body interaction in addition to a translationally invariant two-body interaction leads to a strongly improved description of energy levels. The present three-body interaction is related to the Δ-isobar intermediate-state model of the two-pion exchange three-nucleon interaction. (orig.)
Miranda, R P; Fisher, A J; Stella, L; Horsfield, A P
2011-06-28
The solution of the time-dependent Schrödinger equation for systems of interacting electrons is generally a prohibitive task, for which approximate methods are necessary. Popular approaches, such as the time-dependent Hartree-Fock (TDHF) approximation and time-dependent density functional theory (TDDFT), are essentially single-configurational schemes. TDHF is by construction incapable of fully accounting for the excited character of the electronic states involved in many physical processes of interest; TDDFT, although exact in principle, is limited by the currently available exchange-correlation functionals. On the other hand, multiconfigurational methods, such as the multiconfigurational time-dependent Hartree-Fock (MCTDHF) approach, provide an accurate description of the excited states and can be systematically improved. However, the computational cost becomes prohibitive as the number of degrees of freedom increases, and thus, at present, the MCTDHF method is only practical for few-electron systems. In this work, we propose an alternative approach which effectively establishes a compromise between efficiency and accuracy, by retaining the smallest possible number of configurations that catches the essential features of the electronic wavefunction. Based on a time-dependent variational principle, we derive the MCTDHF working equation for a multiconfigurational expansion with fixed coefficients and specialise to the case of general open-shell states, which are relevant for many physical processes of interest.
Zhang, X. F.; Hu, S. D.; Tzou, H. S.
2014-12-01
Converting vibration energy to useful electric energy has attracted much attention in recent years. Based on the electromechanical coupling of piezoelectricity, distributed piezoelectric zero-curvature type (e.g., beams and plates) energy harvesters have been proposed and evaluated. The objective of this study is to develop a generic linear and nonlinear piezoelectric shell energy harvesting theory based on a double-curvature shell. The generic piezoelectric shell energy harvester consists of an elastic double-curvature shell and piezoelectric patches laminated on its surface(s). With a current model in the closed-circuit condition, output voltages and energies across a resistive load are evaluated when the shell is subjected to harmonic excitations. Steady-state voltage and power outputs across the resistive load are calculated at resonance for each shell mode. The piezoelectric shell energy harvesting mechanism can be simplified to shell (e.g., cylindrical, conical, spherical, paraboloidal, etc.) and non-shell (beam, plate, ring, arch, etc.) distributed harvesters using two Lamé parameters and two curvature radii of the selected harvester geometry. To demonstrate the utility and simplification procedures, the generic linear/nonlinear shell energy harvester mechanism is simplified to three specific structures, i.e., a cantilever beam case, a circular ring case and a conical shell case. Results show the versatility of the generic linear/nonlinear shell energy harvesting mechanism and the validity of the simplification procedures.
Host susceptibility hypothesis for shell disease in American lobsters.
Tlusty, Michael F; Smolowitz, Roxanna M; Halvorson, Harlyn O; DeVito, Simone E
2007-12-01
Epizootic shell disease (ESD) in American lobsters Homarus americanus is the bacterial degradation of the carapace resulting in extensive irregular, deep erosions. The disease is having a major impact on the health and mortality of some American lobster populations, and its effects are being transferred to the economics of the fishery. While the onset and progression of ESD in American lobsters is undoubtedly multifactorial, there is little understanding of the direct causality of this disease. The host susceptibility hypothesis developed here states that although numerous environmental and pathological factors may vary around a lobster, it is eventually the lobster's internal state that is permissive to or shields it from the final onset of the diseased state. To support the host susceptibility hypothesis, we conceptualized a model of shell disease onset and severity to allow further research on shell disease to progress from a structured model. The model states that shell disease onset will occur when the net cuticle degradation (bacterial degradation, decrease of host immune response to bacteria, natural wear, and resorption) is greater than the net deposition (growth, maintenance, and inflammatory response) of the shell. Furthermore, lesion severity depends on the extent to which cuticle degradation exceeds deposition. This model is consistent with natural observations of shell disease in American lobster.
Hindmarsh, Mark
2018-02-01
A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k , the power spectrum decreases to k-3. At wave numbers below the inverse bubble separation, the power spectrum goes to k5. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k1 power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.
Hindmarsh, Mark
2018-02-16
A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k, the power spectrum decreases to k^{-3}. At wave numbers below the inverse bubble separation, the power spectrum goes to k^{5}. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k^{1} power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.
Functional State Modelling of Cultivation Processes: Dissolved Oxygen Limitation State
Directory of Open Access Journals (Sweden)
Olympia Roeva
2015-04-01
Full Text Available A new functional state, namely dissolved oxygen limitation state for both bacteria Escherichia coli and yeast Saccharomyces cerevisiae fed-batch cultivation processes is presented in this study. Functional state modelling approach is applied to cultivation processes in order to overcome the main disadvantages of using global process model, namely complex model structure and a big number of model parameters. Alongwith the newly introduced dissolved oxygen limitation state, second acetate production state and first acetate production state are recognized during the fed-batch cultivation of E. coli, while mixed oxidative state and first ethanol production state are recognized during the fed-batch cultivation of S. cerevisiae. For all mentioned above functional states both structural and parameter identification is here performed based on experimental data of E. coli and S. cerevisiae fed-batch cultivations.
Ries, Justin B.; Ghazaleh, Maite N.; Connolly, Brian; Westfield, Isaac; Castillo, Karl D.
2016-11-01
soluble polymorphs of CaCO3 being the most vulnerable to these stressors. The effects of saturation state and temperature on gross shell dissolution rate were modeled with an exponential asymptotic function (y =B0 -B2 ·e B1 Ω) that appeals to the general Arrhenius-derived rate equation for mineral dissolution [ r = (C ·e -Ea / RT) (1 - Ω)n]. Although the dissolution curves for the investigated biogenic CaCO3 exhibited exponential asymptotic trends similar to those of inorganic CaCO3, the observation that gross dissolution of whole-shell biogenic CaCO3 occurred (albeit at lower rates) even in treatments that were oversaturated (Ω > 1) with respect to both aragonite and calcite reveals fundamental differences between the dissolution kinetics of whole-shell biogenic CaCO3 and inorganic CaCO3. Thus, applying stoichiometric solubility products derived for inorganic CaCO3 to model gross dissolution of biogenic carbonates may substantially underestimate the impacts of ocean acidification on net calcification (gross calcification minus gross dissolution) of systems ranging in scale from individual organisms to entire ecosystems (e.g., net ecosystem calcification). Finally, these experiments permit rough estimation of the impact of CO2-induced ocean acidification on the gross calcification rates of various marine calcifiers, calculated as the difference between net calcification rates derived empirically in prior studies and gross dissolution rates derived from the present study. Organisms' gross calcification responses to acidification were generally less severe than their net calcification response patterns, with aragonite mollusks (bivalves, gastropods) exhibiting the most negative gross calcification response to acidification, and photosynthesizing organisms, including corals and coralline red algae, exhibiting relative resilience.
Many-particle and many-hole states in neutron-rich Ne isotopes related to broken N=20 shell closure
International Nuclear Information System (INIS)
Kimura, Masaaki; Horiuchi, Hisashi
2004-01-01
The low-lying level structures of 26 Ne, 28 Ne and 30 Ne which are related to the breaking of the N=20 shell closure have been studied in the framework of the deformed-basis anti-symmetrized molecular dynamics plus generator coordinate method using the Gogny D1S force. The properties of the many-particle and many-hole states are studied as well as that of the ground band. We predict that the negative-parity states, in which neutrons are promoted into the pf-orbit from the sd orbit, have a small excitation energy in the cases of 28 Ne and 30 Ne. We regard this to be a typical phenomena accompanying the breaking of the N=20 shell closure. It is also found that the neutron 4p4h structure of 30 Ne appears at low excitation energy, which contains α + 16 O correlations. (author)
2015-02-01
The 11th International Seminar on Nuclear Physics was held in Ischia from May 12 to May 16, 2014. This Seminar was dedicated to Aldo Covello, who has been the promoter of this series of meetings, which started in Sorrento in 1986 and continued with meetings held every two or three years in the Naples area. Aldo's idea was to offer to a group of researchers, actively working in selected fields of Nuclear Physics, the opportunity to confront their points of view in a lively and informal way. The choice for the period of the year, Spring, as well as the sites chosen reflected this intent. The first meeting was of a purely theoretical nature, but it was immediately clear that the scope of these conferences needed to be enlarged calling into play the experimental community. Then, starting from the second meeting, all the following ones have been characterized by fruitful discussion between theoretical and experimental researchers on current achievements and future developments of nuclear structure. This may be read, in fact, as one of the motivating factors for Aldo's election as Fellow of the American Physical Society in 2008 "... for his outstanding contributions to the international nuclear physics community by providing, for over two decades, a venue for theorists and experimentalists to share their latest ideas." The present meeting, organized by Aldo's former students and with the benefit of his suggestions, has maintained this tradition. The title "Shell model and nuclear structure: achievements of the past two decades" recalls that of the 2nd International Spring Seminar "Shell Model and Nuclear Structure: where do we stand?". The main aim of this 11th Seminar was, in fact, to discuss the changes of the past two decades on our view of nuclei in terms of shell structure as well as the perspectives of the shell model, which has been one of the key points in Aldo's research. This point is well accounted by the Opening Speech of Igal Talmi, one of the fathers of the
Бесчетников, Д. А.
2014-01-01
Experimental research of stress-strain state at the area of local volumetric surface defects of the pipeline systems is an important goal because results of the measurements are necessary for increasing of effectiveness of existing repair technologies using fiber reinforcement polymer composite materials. In this work the description of experiment carried out by the author is presented with statement of results. The experiment was devoted to strain gauging of a steel cylindrical shell with vo...
International Nuclear Information System (INIS)
Souw, Kenghok.
1975-01-01
A new high efficiency plastic scintillation pair spectrometer was used to measure the E0 branching ratio GAMMAsub(π)/GAMMA(tot) (GAMMAsub(π)=pair emission partial width, GAMMA(tot)=total width) of the transition from the first excited Jsup(π)=0 + state to the Jsup(π)=0 + ground state in some even-even nuclei of the 2s-1d shell. Experiments were performed on 18 O, 26 Mg, 30 Si, 32 S, 34 S and 38 Ar nuclei. The method consisted in detecting the electron and positron of the pair in coincidence in two telescopes. A surface barrier counter placed downstream the target, working in coincidence with the spectrometer, allowed the relevant pair-decays to be selected and the feeding yield to be determined from direct spectra. The branching ratios were such directly determined. These ratios combined with the values available for the lifetimes of these states give the monopole matrix elements Msub(π). The single particle strength of these decays passes through a minimum in the middle of the shell ( 30 Si) and reaches a maximum around the closed shells ( 18 O, and 48 Ca) [fr
International Nuclear Information System (INIS)
Jackson, V.L.
2011-01-01
The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.
Theoretical spectroscopy and the fp shell
International Nuclear Information System (INIS)
Poves, A.; Zuker, A.
1980-01-01
The recently developed quasiconfiguration method is applied to fp shell nuclei. Second order degenerate perturbation theory is shown to be sufficient to produce, for low lying states, the same results as large diagonalizations in the f(7/2)p(3/2)p(1/2)f(5/2)sup(n) full space. due to the operation of linked cluster mechanisms. Realistic interactions with minimal monopole changes are shown to be successful in reproducing spectra, binding energies, quadrupole moments and transition rates. Large shell model spaces are seen to exhibit typical many body behaviour. Quasiconfigurations allow insight into the underlying coupling schemes
LANL* V1.0: a radiation belt drift shell model suitable for real-time and reanalysis applications
Energy Technology Data Exchange (ETDEWEB)
Koller, Josep [Los Alamos National Laboratory; Reeves, Geoffrey D [Los Alamos National Laboratory; Friedel, Reiner H W [Los Alamos National Laboratory
2008-01-01
Space weather modeling, forecasts, and predictions, especially for the radiation belts in the inner magnetosphere, require detailed information about the Earth's magnetic field. Results depend on the magnetic field model and the L* (pron. L-star) values which are used to describe particle drift shells. Space wather models require integrating particle motions along trajectories that encircle the Earth. Numerical integration typically takes on the order of 10{sup 5} calls to a magnetic field model which makes the L* calculations very slow, in particular when using a dynamic and more accurate magnetic field model. Researchers currently tend to pick simplistic models over more accurate ones but also risking large inaccuracies and even wrong conclusions. For example, magnetic field models affect the calculation of electron phase space density by applying adiabatic invariants including the drift shell value L*. We present here a new method using a surrogate model based on a neural network technique to replace the time consuming L* calculations made with modern magnetic field models. The advantage of surrogate models (or meta-models) is that they can compute the same output in a fraction of the time while adding only a marginal error. Our drift shell model LANL* (Los Alamos National Lab L-star) is based on L* calculation using the TSK03 model. The surrogate model has currently been tested and validated only for geosynchronous regions but the method is generally applicable to any satellite orbit. Computations with the new model are several million times faster compared to the standard integration method while adding less than 1% error. Currently, real-time applications for forecasting and even nowcasting inner magnetospheric space weather is limited partly due to the long computing time of accurate L* values. Without them, real-time applications are limited in accuracy. Reanalysis application of past conditions in the inner magnetosphere are used to understand
LANL* V1.0: a radiation belt drift shell model suitable for real-time and reanalysis applications
International Nuclear Information System (INIS)
Koller, Josep; Reeves, Geoffrey D.; Friedel, Reiner H.W.
2008-01-01
Space weather modeling, forecasts, and predictions, especially for the radiation belts in the inner magnetosphere, require detailed information about the Earth's magnetic field. Results depend on the magnetic field model and the L* (pron. L-star) values which are used to describe particle drift shells. Space wather models require integrating particle motions along trajectories that encircle the Earth. Numerical integration typically takes on the order of 10 5 calls to a magnetic field model which makes the L* calculations very slow, in particular when using a dynamic and more accurate magnetic field model. Researchers currently tend to pick simplistic models over more accurate ones but also risking large inaccuracies and even wrong conclusions. For example, magnetic field models affect the calculation of electron phase space density by applying adiabatic invariants including the drift shell value L*. We present here a new method using a surrogate model based on a neural network technique to replace the time consuming L* calculations made with modern magnetic field models. The advantage of surrogate models (or meta-models) is that they can compute the same output in a fraction of the time while adding only a marginal error. Our drift shell model LANL* (Los Alamos National Lab L-star) is based on L* calculation using the TSK03 model. The surrogate model has currently been tested and validated only for geosynchronous regions but the method is generally applicable to any satellite orbit. Computations with the new model are several million times faster compared to the standard integration method while adding less than 1% error. Currently, real-time applications for forecasting and even nowcasting inner magnetospheric space weather is limited partly due to the long computing time of accurate L* values. Without them, real-time applications are limited in accuracy. Reanalysis application of past conditions in the inner magnetosphere are used to understand physical
Creep analysis of orthotropic shells
International Nuclear Information System (INIS)
Mehra, V.K.; Ghosh, A.
1975-01-01
A method of creep analysis of orthotropic cylindrical shells subjected to axisymmetric loads has been developed. A general study of creep behaviour of cylindrical shells subjected to a uniform internal pressure has been conducted for a wide range of values of anisotropy coefficients and creep law exponent. Analysis includes determination of stress re-distribution, strain rates, stationary state stresses. Application of reference stress technique has been extended to analysis of shells. (author)
International Nuclear Information System (INIS)
Ahmed Ghoneim, Adel Aly; Ghoneim, Adel A.; Al-Zanki, Jasem M.; El-Essawy, Ashraf H.
2009-01-01
Atomic reorganization starts by filling the initially inner-shell vacancy by a radiative transition (x-ray) or by a non-radiative transition (Auger and Coster-Kronig processes). New vacancies created during this atomic reorganization may in turn be filled by further radiative and non-radiative transitions until all vacancies reach the outermost occupied shells. The production of inner-shell vacancy in an atom and the de-excitation decays through radiative and non-radiative transitions may result in a change of the atomic potential; this change leads to the emission of an additional electron in the continuum (electron shake-off processes). In the present work, the ion charge state distributions (CSD) and mean atomic charge ions produced from inner shell vacancy de-excitation decay are calculated for neutral Ne , Ar and Kr atoms. The calculations are carried out using Monte Carlo (MC) technique to simulate the cascade development after primary vacancy production. The radiative and non-radiative transitions for each vacancy are calculated in the simulation. In addition, the change of transition energies and transition rates due to multi vacancies produced in the atomic configurations through the cascade development are considered in the present work. It is found that considering the electron shake off process and closing of non-allowed non-radiative channels improves the results of both charge state distributions (CSD) and average charge state. To check the validity of the present calculations, the results obtained are compared with available theoretical and experimental data. The present results are found to agree well with the available theoretical and experimental values. (author)
Inner shell coulomb ionization by heavy charged particles studied by the SCA model
International Nuclear Information System (INIS)
Hansteen, J.M.
1976-06-01
An outline is given of the development of and some achievements hitherto gained from the semi-classical approximation (SCA) model of atomic Coulomb excitation by heavy charged particles. A few very recent results (1975-1976) are incorporated in the discussion. The SCA model has by now reached a mature state. Hence it seems reasonable to regard the atomic Coulomb excitation phenomenon as part of the extremely complicated excitation mechanism operative in the general ion-atom collision. A clear understanding of the complicated X-ray producing mechanisms in heavy-ion-atom collisions is lacking at present. Despite these facts, the conceptually simple SCA model has furthered our understanding far beyond initial expectations. Moreover, this model has at the same time provided a well-founded starting point for continued researches in this rapidly expanding field of physics. (JIW)
Experimental and numerical modelling of ductile crack propagation in large-scale shell structures
DEFF Research Database (Denmark)
Simonsen, Bo Cerup; Törnquist, R.
2004-01-01
plastic and controlled conditions. The test specimen can be deformed either in combined in-plane bending and extension or in pure extension. Experimental results are described for 5 and 10 mm thick aluminium and steel plates. By performing an inverse finite-element analysis of the experimental results......This paper presents a combined experimental-numerical procedure for development and calibration of macroscopic crack propagation criteria in large-scale shell structures. A novel experimental set-up is described in which a mode-I crack can be driven 400 mm through a 20(+) mm thick plate under fully...... for steel and aluminium plates, mainly as curves showing the critical element deformation versus the shell element size. These derived crack propagation criteria are then validated against a separate set of experiments considering centre crack specimens (CCS) which have a different crack-tip constraint...
Compressible convection in a rotating spherical shell. II. A linear anelastic model
International Nuclear Information System (INIS)
Glatzmaier, G.A.; Gilman, P.A.
1981-01-01
We study the onset of convection for a compressible fluid in a rotating spherical shell via linear anelastic fluid equations for a depth of 40% of the radius, constant kinematic viscosity and thermometric diffusivity, Taylor numbers up to 10 5 , and density stratifications up to seven e-folds across the zone. The perturbations are expanded in spherical harmonics, and the radially dependent equations are solved with a Newton-Raphson relaxation method
International Nuclear Information System (INIS)
Geyer, H.B.
1986-01-01
The qualitative ideas put forward by Geyer and Lee are given quantitative content by constructing a similarity transformation which reexpresses the Dyson boson images of the single-j shell fermion operators in terms of seniority bosons. It is shown that the results of Otsuka, Arima, and Iachello, or generalizations thereof which include g bosons or even bosons with J>4, can be obtained in an economic and transparent way without resorting to any comparison of matrix elements
Directory of Open Access Journals (Sweden)
Kai Li
2017-01-01
Full Text Available The piezoelectric micro-jet, which can achieve the drop-on-demand requirement, is based on ink-jet technology and small droplets can be ejected out by precise control. The droplets are driven out of the nozzle by the acoustic pressure waves which are generated by the piezoelectric vibrator. The propagation processes of the acoustic pressure waves are affected by the acoustic properties of the fluid and the shell material of the micro-jet, as well as the excitations and the structure sizes. The influences of the fluid density and acoustic velocity in the fluid on the nozzle pressure and support reaction force of the vibrator are analyzed in this paper. The effects of the shell material on the ejection performance are studied as well. In order to improve the ejection performance of the micro-jet, for ejecting a given fluid, the recommended methods of selecting the shell material and adjusting excitations are provided based on the results, and the influences of the factors on working frequencies are obtained as well.
My Life with State Space Models
DEFF Research Database (Denmark)
Lundbye-Christensen, Søren
2007-01-01
. The conceptual idea behind the state space model is that the evolution over time in the object we are observing and the measurement process itself are modelled separately. My very first serious analysis of a data set was done using a state space model, and since then I seem to have been "haunted" by state space...
International Nuclear Information System (INIS)
Halse, P.
1993-01-01
Shell model calculations for the Z = 38 - 50 N > 50 region, with a space of protons in the 2p 1/2 , 1g 9/2 orbits and neutrons in the 2d 5/2 , 3s 1/2 , 2d 3/2 , 1g 7/2 orbits, are initiated by the selection of a schematic Hamiltonian and effective electromagnetic operators. An application to the Z-even N = 52 isotones gives a good description for energies of both low-spin and yrast high-spin levels, and for E2 and M1 transition strengths and moments where these have been measured, over the entire range of Z. The calculated E2 matrix elements for the lower-spin yrast states in 98 Pd and 100 Cd suggest a finite and stable prolate deformation with β ∼ 0.1, in marked contrast to previous collective interpretations. 28 refs., 4 tabs., 4 figs
Energy Technology Data Exchange (ETDEWEB)
Pandit, Rakesh K.; Devi, Rani [University of Jammu, Department of Physics and Electronics, Jammu (India); Khosa, S.K. [Central University of Jammu, Department of Physics and Astronomical Sciences, Jammu (India); Bhat, G.H.; Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India)
2017-10-15
The positive and negative parity rotational band structure of the neutron rich odd mass Eu isotopes with neutron numbers ranging from 90 to 96 are investigated up to the high angular momentum. In the theoretical analysis of energy spectra, transition energies and electromagnetic transition probabilities we employ the projected shell model. The calculations successfully describe the formation of the ground and excited band structures from the single particle and multi quasiparticle configurations. Calculated excitation energy spectra, transition energies, exact quantum mechanically calculated B(E2) and B(M1) transition probabilities are compared with experimental data wherever available and a reasonably good agreement is obtained with the observed data. The change in deformation in the ground state band with the increase in angular momentum and the increase in neutron number has also been established. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Gupta, Anuradha; Singh, Suram; Bharti, Arun [University of Jammu, Department of Physics and Electronics, Jammu (India); Khosa, S.K. [Central University of Jammu, Department of Physics and Astronomical Sciences, Jammu (India); Bhat, G.H.; Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India)
2017-01-15
By employing a systematically parametrized Hamiltonian and the best fit of the various input parameters, high-spin yrast energy states for an isotopic chain of odd mass {sup 59-69}Cu nuclei have been investigated by using a novel computational quantum mechanical framework-projected shell model. Comparison of calculations and experiments yields good agreement. The present study of various intriguing nuclear structure properties along the yrast lines in these odd proton isotopes reflects some interesting informative nuclear physics results. The calculations successfully describe the formation of the yrast level structures from multi-quasi-particle configurations based on πf x νg bands for {sup 59-69}Cu isotopes. The present calculations indicate the evolution of the nuclear structure near the magic nuclei, Ni, and also provide an indication of coexistence of both, collective as well as single-particle, levels for {sup 69}Cu nucleus at N=40. (orig.)
International Nuclear Information System (INIS)
Hill, J.G.; Simpson, B.C.
1994-08-01
The Sort on Radioactive Waste Type (SORWT) model presents a method to categorize Hanford Site single-shell tanks (SSTs) into groups of tanks expected to exhibit similar chemical and physical characteristics based on their major waste types and processing histories. This model has identified 29 different waste-type groups encompassing 135 of the 149 SSTs and 93% of the total waste volume in SSTs. The remaining 14 SSTs and associated wastes could not be grouped according to the established criteria and were placed in an ungrouped category. This letter report will detail the assumptions and methodologies used to develop the SORWT model and present the grouping results. Included with this report is a brief description and approximate compositions of the single-shell tank waste types. In the near future, the validity of the predicted groups will be statistically tested using analysis of variance of characterization data obtained from recent (post-1989) core sampling and analysis activities. In addition, the SORWT model will be used to project the nominal waste characteristics of entire waste type groups that have some recent characterization data available. These subsequent activities will be documented along with these initial results in a comprehensive, formal PNL report cleared for public release by September 1994
Energy Technology Data Exchange (ETDEWEB)
Xiao, Xu; Ding, Tianpeng; Yuan, Longyan; Shen, Yongqi; Zhong, Qize; Zhang, Xianghui; Cao, Yuanzhi; Hu, Bin; Zhou, Jun [Wuhan National Laboratory for Optoelectronics (WNLO), College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan (China); Zhai, Teng; Tong, Yexiang [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou (China); Gong, Li; Chen, Jian [Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou (China); Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA (United States)
2012-11-15
Flexible all-solid-state asymmetric supercapacitors (ASCs) are fabricated from a novel anode - WO{sub 3-x}/MoO{sub 3-x} core/shell nanowires on carbon fabric - and a polyaniline cathode (figure). In addition to the high electrochemical performance of the devices, other characteristics, such as low toxicity, flexibility, environmental compatibility, light weight, and low requirements for packaging, make the all-solid-state ASCs potential candidates for applications in energy storage, flexible electronics, and other consumer electronics. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
International Nuclear Information System (INIS)
Jhang, Hogun
2008-01-01
A study is conducted on the feedback stabilization of resistive wall modes (RWMs) in a tokamak plasma using a toroidal shell model. An analytically tractable form of the RWM dispersion relation is derived in the presence of a set of discrete feedback coil currents. A parametric study is carried out to optimize the feedback system configuration. It is shown that the total toroidal angle of a resistive wall spanned by the feedback coils and the poloidal angular extent of a feedback coil are crucial parameters to determine the efficacy of the feedback system
Coulomb ionization of inner shells by heavy charged particles
International Nuclear Information System (INIS)
Lapicki, G.
1975-01-01
The theory of inner-shell Coulomb ionization by heavy charged particles, of atomic number small compared to the target atomic number, is developed through the extension of work by Brandt and his coworkers for K shells to L shells. In slow collisions relative to the characteristic times of the inner shell electrons, the quantum-mechanical predictions in the plane-wave Born approximation (PWBA) can exceed experimental cross sections by orders of magnitude. The effects of the perturbation of the atom by and the Coulomb deflection of the particle during collisions are included in the theory. The perturbed atomic states amount to a binding of the inner-shell electrons to the moving particle in slow collisions, and to a polarization of the inner shells by the particle passing at large impact parameters during nonadiabatic collisions. These effects, not contained in the PWBA, are treated in the framework of the perturbed stationary state (PSS) theory for slow collisions and in terms of the harmonic oscillator model of Ashley, Brandt, and Ritchie for stopping powers in fast collisions. The effect of the Coulomb deflection of the particle in the field of the target nucleus on the cross sections is incorporated in the semiclassical approximation of Bang and Hansteen. Except for the lightest target atoms, the contribution of electron capture by the particles to inner-shell ionizations is shown to be negligible. The theory as developed earlier for the K shell, and here for L shells, agrees well with the vast body of experimental data on inner-shell Coulomb ionization by heavy charged particles
El-Yadri, M.; Aghoutane, N.; El Aouami, A.; Feddi, E.; Dujardin, F.; Duque, C. A.
2018-05-01
This work reports on theoretical investigation of the temperature and hydrostatic pressure effects on the confined donor impurity in a AlGaAs-GaAs hollow cylindrical core-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with approximately rigid walls. Within the framework of the effective-mass approximation and by using a variational approach, we have computed the donor binding energies as a function of the shell size in order to study the behavior of the electron-impurity attraction for a very small thickness under the influence of both temperature and hydrostatic pressure. Our results show that the temperature and hydrostatic pressure have a significant influence on the impurity binding energy for large shell quantum dots. It will be shown that the binding energy is more pronounced with increasing pressure and decreasing temperature for any impurity position and quantum dot size. The photoionization cross section is also analyzed by considering only the in-plane incident radiation polarization. Its behavior is investigated as a function of photon energy for different values of pressure and temperature. The opposite effects caused by temperature and hydrostatic pressure reveal a big practical interest and offer an alternative way to tuning of correlated electron-impurity transitions in optoelectronic devices.
Understanding nuclei in the upper sd - shell
Energy Technology Data Exchange (ETDEWEB)
Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Kshetri, Ritesh [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India and Sidho-Kanho-Birsha University, Purulia - 723101 (India); Sarkar, S. [Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103 (India)
2014-08-14
Nuclei in the upper-sd shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A ≃ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array setup. We have compared and combined our empirical observations with the large-scale shell model results to interpret the structure of these nuclei. Indication of population of states of large deformation has been found in our data. This gives us an opportunity to investigate the interplay of single particle and collective degrees of freedom in this mass region.
Functional State Modelling of Saccharomyces cerevisiae Cultivations
Directory of Open Access Journals (Sweden)
Iasen Hristozov
2004-10-01
Full Text Available The implementation of functional state approach for modelling of yeast cultivation is considered in this paper. This concept helps in monitoring and control of complex processes such as bioprocesses. Using of functional state modelling approach for fermentation processes aims to overcome the main disadvantage of using global process model, namely complex model structure and big number of model parameters. The main advantage of functional state modelling is that the parameters of each local model can be separately estimated from other local models parameters. The results achieved from batch, as well as from fed-batch, cultivations are presented.
Design of cryogenic tanks for space vehicles shell structures analytical modeling
Copper, Charles; Mccarthy, K.; Pilkey, W. D.; Haviland, J. K.
1991-01-01
The initial objective was to study the use of superplastically formed corrugated hat section stringers and frames in place of integrally machined stringers over separate frames for the tanks of large launch vehicles subjected to high buckling loads. The ALS was used as an example. The objective of the follow-on project was to study methods of designing shell structures subjected to severe combinations of structural loads and thermal gradients, with emphasis on new combinations of structural arrangements and materials. Typical applications would be to fuselage sections of high speed civil transports and to cryogenic tanks on the National Aerospace Plane.
Noor, A. K.; Andersen, C. M.; Tanner, J. A.
1984-01-01
An effective computational strategy is presented for the large-rotation, nonlinear axisymmetric analysis of shells of revolution. The three key elements of the computational strategy are: (1) use of mixed finite-element models with discontinuous stress resultants at the element interfaces; (2) substantial reduction in the total number of degrees of freedom through the use of a multiple-parameter reduction technique; and (3) reduction in the size of the analysis model through the decomposition of asymmetric loads into symmetric and antisymmetric components coupled with the use of the multiple-parameter reduction technique. The potential of the proposed computational strategy is discussed. Numerical results are presented to demonstrate the high accuracy of the mixed models developed and to show the potential of using the proposed computational strategy for the analysis of tires.
Symmetry energies for A =24 and 48 and the USD and KB3 shell model Hamiltonians
Kingan, A.; Neergârd, K.; Zamick, L.
2017-12-01
Calculations in the sd and pf shells reported some time ago by Satuła et al. [Phys. Lett. B 407, 103 (1997), 10.1016/S0370-2693(97)00711-9] are redone for an extended analysis of the results. As in the original work, we do calculations for one mass number in each shell and consider in each case the sequence of lowest energies for isospins 0, 2, and 4, briefly the symmetry spectrum. Following further the original work, we study how this spectrum changes when parts of the two-nucleon interaction are turned off. The variation of its width is explored in detail. A differential combination ɛW of the three energies was taken in the original work as a measure of the so-called Wigner term in semiempirical mass formulas, and it was found to decrease drastically when the two-nucleon interaction in the channel of zero isospin is turned off. Our analysis shows that the width of the symmetry spectrum experiences an equally drastic decrease, which can be explained qualitatively in terms of schematic approximations. We therefore suggest that the decrease of ɛW be seen mainly as a side effect of a narrowing of the symmetry spectrum rather than an independent manifestation of the two-nucleon interaction in the channel of zero isospin.
Model Checking Multivariate State Rewards
DEFF Research Database (Denmark)
Nielsen, Bo Friis; Nielson, Flemming; Nielson, Hanne Riis
2010-01-01
We consider continuous stochastic logics with state rewards that are interpreted over continuous time Markov chains. We show how results from multivariate phase type distributions can be used to obtain higher-order moments for multivariate state rewards (including covariance). We also generalise...
Effects of cluster-shell competition and BCS-like pairing in 12C
Matsuno, H.; Itagaki, N.
2017-12-01
The antisymmetrized quasi-cluster model (AQCM) was proposed to describe α-cluster and jj-coupling shell models on the same footing. In this model, the cluster-shell transition is characterized by two parameters, R representing the distance between α clusters and Λ describing the breaking of α clusters, and the contribution of the spin-orbit interaction, very important in the jj-coupling shell model, can be taken into account starting with the α-cluster model wave function. Not only the closure configurations of the major shells but also the subclosure configurations of the jj-coupling shell model can be described starting with the α-cluster model wave functions; however, the particle-hole excitations of single particles have not been fully established yet. In this study we show that the framework of AQCM can be extended even to the states with the character of single-particle excitations. For ^{12}C, two-particle-two-hole (2p2h) excitations from the subclosure configuration of 0p_{3/2} corresponding to a BCS-like pairing are described, and these shell model states are coupled with the three α-cluster model wave functions. The correlation energy from the optimal configuration can be estimated not only in the cluster part but also in the shell model part. We try to pave the way to establish a generalized description of the nuclear structure.
Modeling Per Capita State Health Expenditure Variat...
U.S. Department of Health & Human Services — Modeling Per Capita State Health Expenditure Variation State-Level Characteristics Matter, published in Volume 3, Issue 4, of the Medicare and Medicaid Research...
Das, Subhojit; Paul, Anumita; Chattopadhyay, Arun
2013-09-01
We report on the generation of core-shell nanoparticles (NPs) having an organic nanocrystal (NC) core coated with an inorganic metallic shell, being dispersed in aqueous medium. First, NCs of p-hydroxyacetanilide (pHA)--known also as paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH < 3), the Au shell could be dissolved, subsequently releasing pHA molecules. The dissolution of Au shell was marked by a gradual diminishing of its SPR band, while the release of pHA molecules in the solution was confirmed from TEM and FTIR studies. The findings suggest that the core-shell NP could be hypothesized to be a model for encapsulating drug molecules, in their crystalline forms, for slow as well as targeted release. Electronic supplementary information (ESI) available: See DOI: 10.1039/c3nr03566b
Trevizol, Fabiola; Benvegnú, Dalila M; Barcelos, Raquel C S; Pase, Camila S; Segat, Hecson J; Dias, Verônica Tironi; Dolci, Geisa S; Boufleur, Nardeli; Reckziegel, Patrícia; Bürger, Marilise E
2011-08-01
Acute reserpine and subchronic haloperidol are animal models of extrapyramidal disorders often used to study parkinsonism, akinesia and tardive dyskinesia. In humans, these usually irreversible and disabling extrapyramidal disorders are developed by typical antipsychotic treatment, whose pathophysiology has been related to oxidative damages development. So far, there is no treatment to prevent these problems of the psychiatric clinic, and therefore further studies are needed. Here we used the animal models of extrapyramidal disorders cited above, which were performed in two distinct experiments: orofacial dyskinesia (OD)/catalepsy induced by acute reserpine and subchronic haloperidol after (experiment 1) and before (experiment 2) oral treatment with pecan shell aqueous extract (AE), a natural and promissory antioxidant. When administered previously (exp.1), the AE prevented OD and catalepsy induced by both reserpine and haloperidol. When reserpine and haloperidol were administered before the extract (exp.2), the animals developed OD and catalepsy all the same. However, the orofacial parameter (but not catalepsy) in both animal models was reversed after 7 and 14 days of AE treatment. These results indicate that, acute reserpine and subchronic haloperidol administrations induced similar motor disorders, although through different mechanisms, and therefore are important animal models to study the physiopathology of extrapyramidal disorders. Comparatively, the pecan shell AE was able to both prevent and reverse OD but only to prevent catalepsy. These results reinforce the role of oxidative stress and validate the two animal models used here. Our findings also favor the idea of prevention of extrapyramidal disorders, rather than their reversal. Copyright © 2011 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Ciortea, C. E-mail: ciortea@tandem.nipne.ro; Dumitriu, Dana; Enescu, Sanda E.; Enulescu, A.; Fluerasu, Daniela; Piticu, I.; Szilagyi, Z.S
2002-06-01
The average charge states of 0.1-1.5 MeV/u Fe, Co, Ni and Cu ions in solid Au and Bi targets have been determined, by estimating the mean numbers of outer-shell spectator vacancies during the K-vacancy decay. The latter quantities were obtained from the yield and energy shifts of the K{alpha}, {beta} X-rays, by comparing with calculations in the independent electron approximation. The reported equilibrium charges, mostly characteristic for the inside of the target, are in fairly agreement with Nikolaev and Dmitriev semi-empirical formula [Phys. Lett. 28A (1968) 277].
SPH modeling of fluid-solid interaction for dynamic failure analysis of fluid-filled thin shells
Caleyron, F.; Combescure, A.; Faucher, V.; Potapov, S.
2013-05-01
This work concerns the prediction of failure of a fluid-filled tank under impact loading, including the resulting fluid leakage. A water-filled steel cylinder associated with a piston is impacted by a mass falling at a prescribed velocity. The cylinder is closed at its base by an aluminum plate whose characteristics are allowed to vary. The impact on the piston creates a pressure wave in the fluid which is responsible for the deformation of the plate and, possibly, the propagation of cracks. The structural part of the problem is modeled using Mindlin-Reissner finite elements (FE) and Smoothed Particle Hydrodynamics (SPH) shells. The modeling of the fluid is also based on an SPH formulation. The problem involves significant fluid-structure interactions (FSI) which are handled through a master-slave-based method and the pinballs method. Numerical results are compared to experimental data.
Nonlinear nonlocal vibration of embedded DWCNT conveying fluid using shell model
Energy Technology Data Exchange (ETDEWEB)
Ghorbanpour Arani, A., E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Zarei, M.Sh.; Amir, S.; Khoddami Maraghi, Z. [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of)
2013-02-01
In this work nonlinear vibration of double-walled carbon nanotube (DWCNT) embedded in an elastic medium and subjected to an axial fluid flow (incompressible and non-viscose) is investigated. The elastic medium is simulated using Pasternak foundation in which adjacent layer interactions are assumed to have been coupled by van der Waals (VdW) force. The higher-order equation of motion is derived using Hamilton's principle and nonlocal-nonlinear shell theory. Galerkin and averaging methods are adopted to solve the higher-order governing equations. Elastic medium, small scale parameter, velocity and fluid density are taken into account to calculate the effects of axial and circumferential wave numbers in this study. Results reveal that increasing circumferential wave number, leads to enhanced nonlinearity. Critical flow velocities of DWCNT are inversely related to the non-local parameter (e{sub 0}a), so that increase in the later lead to reduced critical flow velocities.
Development of an Energy Biorefinery Model for Chestnut (Castanea sativa Mill. Shells
Directory of Open Access Journals (Sweden)
Alessandra Morana
2017-09-01
Full Text Available Chestnut shells (CS are an agronomic waste generated from the peeling process of the chestnut fruit, which contain 2.7–5.2% (w/w phenolic compounds and approximately 36% (w/w polysaccharides. In contrast with current shell waste burning practices, this study proposes a CS biorefinery that integrates biomass pretreatment, recovery of bioactive molecules, and bioconversion of the lignocellulosic hydrolyzate, while optimizing materials reuse. The CS delignification and saccharification produced a crude hydrolyzate with 12.9 g/L of glucose and xylose, and 682 mg/L of gallic acid equivalents. The detoxification of the crude CS hydrolyzate with 5% (w/v activated charcoal (AC and repeated adsorption, desorption and AC reuse enabled 70.3% (w/w of phenolic compounds recovery, whilst simultaneously retaining the soluble sugars in the detoxified hydrolyzate. The phenols radical scavenging activity (RSA of the first AC eluate reached 51.8 ± 1.6%, which is significantly higher than that of the crude CS hydrolyzate (21.0 ± 1.1%. The fermentation of the detoxified hydrolyzate by C. butyricum produced 10.7 ± 0.2 mM butyrate and 63.9 mL H2/g of CS. Based on the obtained results, the CS biorefinery integrating two energy products (H2 and calorific power from spent CS, two bioproducts (phenolic compounds and butyrate and one material reuse (AC reuse constitutes a valuable upgrading approach for this yet unexploited waste biomass.
International Nuclear Information System (INIS)
Hu Yong; Liu Yan; Du An
2011-01-01
Zero-field-cooled (ZFC) and field-cooled (FC) hysteresis loops of egg- and ellipsoid-shaped nanoparticles with inverted ferromagnetic (FM)-antiferromagnetic (AFM) core-shell morphologies are simulated using a modified Monte Carlo method, which takes into account both the thermal fluctuations and energy barriers during the rotation of spin. Pronounced exchange bias (EB) fields and reduced coercivities are obtained in the FC hysteresis loops. The analysis of the microscopic spin configurations allows us to conclude that the magnetization reversal occurs by means of the nucleation process during both the ZFC and FC hysteresis branches. The nucleation takes place in the form of 'sparks' resulting from the energy competition and the morphology of the nanoparticle. The appearance of EB in the FC hysteresis loops is only dependent on that the movements of 'sparks' driven by magnetic field at both branches of hysteresis loops are not along the same axis, which is independent of the strength of AFM anisotropy. The tilt of 'spark' movement with respect to the symmetric axis implies the existence of additional unidirectional anisotropy at the AFM/FM interfaces as a consequence of the surplus magnetization in the AFM core, which is the commonly accepted origin of EB. Our simulations allow us to clarify the microscopic mechanisms of the observed EB behavior, not accessible in experiments. - Highlights: → A modified Monte Carlo method considers thermal fluctuations and energy barriers. → Egg and ellipsoid nanoparticles with inverted core-shell morphology are studied. → Pronounced exchange bias fields and reduced coercivities may be detected. → 'Sparks' representing nucleation sites due to energy competition are observed. → 'Sparks' can reflect or check directly and vividly the origin of exchange bias.
Stability analysis of whirling composite shells partially filled with two liquid phases
Energy Technology Data Exchange (ETDEWEB)
Sahebnasagh, Mohammad [Department of Mechanical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Nikkhah-Bahrami, Mansour; Firouz-Abadi, Roohollah [Department of Aerospace Engineering, Sharif University, Tehran (Iran, Islamic Republic of)
2017-05-15
In this paper, the stability of whirling composite cylindrical shells partially filled with two liquid phases is studied. Using the first-order shear shell theory, the structural dynamics of the shell is modeled and based on the Navier-Stokes equations for ideal liquid, a 2D model is developed for liquid motion at each section of the cylinder. In steady state condition, liquids are supposed to locate according to mass density. In this study, the thick shells are investigated. Using boundary conditions between liquids, the model of coupled fluid-structure system is obtained. This coupled fluid-structure model is employed to determine the critical speed of the system. The effects of the main variables on the stability of the shell are studied and the results are investigated.
Validation of a FBC model for co-firing of hazelnut shell with lignite against experimental data
Energy Technology Data Exchange (ETDEWEB)
Kulah, Gorkem [Middle East Technical University, Department of Chemical Engineering, 06531 Ankara (Turkey)
2010-07-15
Performance of a comprehensive system model extended for modelling of co-firing of lignite and biomass was assessed by applying it to METU 0.3 MW{sub t} Atmospheric Bubbling Fluidized Bed Combustor co-firing lignite with hazelnut shell and validating its predictions against on-line temperature and concentration measurements of O{sub 2}, CO{sub 2}, CO, SO{sub 2} and NO along the same test rig fired with lignite only, lignite with limestone addition and lignite with biomass and limestone addition. The system model accounts for hydrodynamics; volatiles release and combustion, char combustion, particle size distribution for lignite and biomass; entrainment; elutriation; sulfur retention and NO formation and reduction, and is based on conservation equations for energy and chemical species. Special attention was paid to different devolatilization characteristics of lignite and biomass. A volatiles release model based on a particle movement model and a devolatilization kinetic model were incorporated into the system model separately for both fuels. Kinetic parameters for devolatilization were determined via thermogravimetric analysis. Predicted and measured temperatures and concentrations of gaseous species along the combustor were found to be in good agreement. Introduction of biomass to lignite was found to decrease SO{sub 2} emissions but did not affect NO emissions significantly. The system model proposed in this study proves to be a useful tool in qualitatively and quantitatively simulating the processes taking place in a bubbling fluidized bed combustor burning lignite with biomass. (author)
Steady-State Process Modelling
DEFF Research Database (Denmark)
Cameron, Ian; Gani, Rafiqul
2011-01-01
illustrate the “equation oriented” approach as well as the “sequential modular” approach to solving complex flowsheets for steady state applications. The applications include the Williams-Otto plant, the hydrodealkylation (HDA) of toluene, conversion of ethylene to ethanol and a bio-ethanol process....
Phong, P. T.; Oanh, V. T. K.; Lam, T. D.; Phuc, N. X.; Tung, L. D.; Thanh, Nguyen T. K.; Manh, D. H.
2017-04-01
Iron oxide nanoparticles (NPs) are currently a very active research field. To date, a comprehensive study of iron oxide NPs is still lacking not only on the size dependence of structural phases but also in the use of an appropriate model. Herein, we report on a systematic study of the structural and magnetic properties of iron oxide NPs prepared by a co-precipitation method followed by hydrothermal treatment. X-ray diffraction and transmission electron microscopy reveal that the NPs have an inverse spinel structure of iron oxide phase (Fe3O4) with average crystallite sizes ( D XRD) of 6-19 nm, while grain sizes ( D TEM) are of 7-23 nm. In addition, the larger the particle size, the closer the experimental lattice constant value is to that of the magnetite structure. Magnetic field-dependent magnetization data and analysis show that the effective anisotropy constants of the Fe3O4 NPs are about five times larger than that of their bulk counterpart. Particle size ( D) dependence of the magnetization and the non-saturating behavior observed in applied fields up to 50 kOe are discussed using the core-shell structure model. We find that with decreasing D, while the calculated thickness of the shell of disordered spins ( t ˜ 0.3 nm) remains almost unchanged, the specific surface areas S a increases significantly, thus reducing the magnetization of the NPs. We also probe the coercivity of the NPs by using the mixed coercive Kneller and Luborsky model. The calculated results indicate that the coercivity rises monotonously with the particle size, and are well matched with the experimental ones.
Wigner’s phase-space function and atomic structure: II. Ground states for closed-shell atoms
DEFF Research Database (Denmark)
Springborg, Michael; Dahl, Jens Peder
1987-01-01
We present formulas for reduced Wigner phase-space functions for atoms, with an emphasis on the first-order spinless Wigner function. This function can be written as the sum of separate contributions from single orbitals (the natural orbitals). This allows a detailed study of the function. Here we...... display and analyze the function for the closed-shell atoms helium, beryllium, neon, argon, and zinc in the Hartree-Fock approximation. The quantum-mechanical exact results are compared with those obtained with the approximate Thomas-Fermi description of electron densities in phase space....
Model Checking Infinite-State Markov Chains
Remke, Anne Katharina Ingrid; Haverkort, Boudewijn R.H.M.; Cloth, L.
2004-01-01
In this paper algorithms for model checking CSL (continuous stochastic logic) against infinite-state continuous-time Markov chains of so-called quasi birth-death type are developed. In doing so we extend the applicability of CSL model checking beyond the recently proposed case for finite-state
Thernisien, A.
2011-06-01
The graduated cylindrical shell (GCS) model developed by Thernisien et al. has been used with the goal of studying the three-dimensional morphology, position, and kinematics of coronal mass ejections observed by coronagraphs. These studies focused more on the results rather than the details of the model itself. As more researchers begin to use the model, it becomes necessary to provide a deeper discussion on how it is derived, which is the purpose of this paper. The model is built using the following features and constraints: (1) the legs are conical, (2) the front is pseudo-circular, (3) the cross section is circular, and (4) it expands in a self-similar way. We derive the equation of the model from these constraints. We also show that the ice-cream cone model is a limit of the GCS when the two legs overlap completely. Finally, we provide formulae for the calculation of various geometrical dimensions, such as angular width and aspect ratio, as well as the pseudo-code that is used for its computer implementation.
International Nuclear Information System (INIS)
Thernisien, A.
2011-01-01
The graduated cylindrical shell (GCS) model developed by Thernisien et al. has been used with the goal of studying the three-dimensional morphology, position, and kinematics of coronal mass ejections observed by coronagraphs. These studies focused more on the results rather than the details of the model itself. As more researchers begin to use the model, it becomes necessary to provide a deeper discussion on how it is derived, which is the purpose of this paper. The model is built using the following features and constraints: (1) the legs are conical, (2) the front is pseudo-circular, (3) the cross section is circular, and (4) it expands in a self-similar way. We derive the equation of the model from these constraints. We also show that the ice-cream cone model is a limit of the GCS when the two legs overlap completely. Finally, we provide formulae for the calculation of various geometrical dimensions, such as angular width and aspect ratio, as well as the pseudo-code that is used for its computer implementation.
El Mel, A A; Buffière, M; Bouts, N; Gautron, E; Tessier, P Y; Henzler, K; Guttmann, P; Konstantinidis, S; Bittencourt, C; Snyders, R
2013-07-05
The growth of single-crystal CuO nanowires by thermal annealing of copper thin films in air is studied. We show that the density, length, and diameter of the nanowires can be controlled by tuning the morphology and structure of the copper thin films deposited by DC magnetron sputtering. After identifying the optimal conditions for the growth of CuO nanowires, chemical bath deposition is employed to coat the CuO nanowires with CdS in order to form p-n nanojunction arrays. As revealed by high-resolution TEM analysis, the thickness of the polycrystalline CdS shell increases when decreasing the diameter of the CuO core for a given time of CdS deposition. Near-edge x-ray absorption fine-structure spectroscopy combined with transmission x-ray microscopy allows the chemical analysis of isolated nanowires. The absence of modification in the spectra at the Cu L and O K edges after the deposition of CdS on the CuO nanowires indicates that neither Cd nor S diffuse into the CuO phase. We further demonstrate that the core-shell nanowires exhibit the I-V characteristic of a resistor instead of a diode. The electrical behavior of the device was found to be photosensitive, since increasing the incident light intensity induces an increase in the collected electrical current.
Directory of Open Access Journals (Sweden)
Ashish Ranjan
2009-12-01
Full Text Available Ashish Ranjan1, Nikorn Pothayee2,3, Mohammed N Seleem2, Ronald D Tyler Jr4, Bonnie Brenseke4, Nammalwar Sriranganathan2,4, Judy S Riffle2,3, Ramanathan Kasimanickam11Department of Large Animal Clinical Sciences, 2Institute for Critical Technology and Applied Science, 3Macromolecules and Interfaces Institute, 4Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VAAbstract: Pluronic based core-shell nanostructures encapsulating gentamicin were designed in this study. Block copolymers of (PAA–+Na-b-(PEO-b-PPO-b-PEO-b-PAA– +Na were blended with PAA– Na+ and complexed with the polycationic antibiotic gentamicin to form nanostructures. Synthesized nanostructures had a hydrodynamic diameter of 210 nm, zeta potentials of –0.7 (±0.2, and incorporated ~20% by weight of gentamicin. Nanostructures upon co-incubation with J774A.1 macrophage cells showed no adverse toxicity in vitro. Nanostructures administered in vivo either at multiple dosage of 5 µg g–1 or single dosage of 15 µg g–1 in AJ-646 mice infected with Salmonella resulted in significant reduction of viable bacteria in the liver and spleen. Histopathological evaluation for concentration-dependent toxicity at a dosage of 15 µg g–1 revealed mineralized deposits in 50% kidney tissues of free gentamicin-treated mice which in contrast was absent in nanostructure-treated mice. Thus, encapsulation of gentamicin in nanostructures may reduce toxicity and improve in vivo bacterial clearance.Keywords: gentamicin, core-shell nanostructures, Salmonella
Casali, R. A.; Lasave, J.; Caravaca, M. A.; Koval, S.; Ponce, C. A.; Migoni, R. L.
2013-04-01
The pressure dependences of the structural, thermoelastic and vibrational properties of SnO2 in its rutile phase are studied, as well as the pressure-induced transition to a CaCl2-type phase. These studies have been performed by means of ab initio (AI) density functional theory calculations using the localized basis code SIESTA. The results are employed to develop a shell model (SM) for application in future studies of nanostructured SnO2. A good agreement of the SM results for the pressure dependences of the above properties with the ones obtained from present and previous AI calculations as well as from experiments is achieved. The transition is characterized by a rotation of the Sn-centered oxygen octahedra around the tetragonal axis through the Sn. This rotation breaks the tetragonal symmetry of the lattice and an orthorhombic distortion appears above the critical pressure Pc. A zone-center phonon of B1g symmetry in the rutile phase involves such rotation and softens on approaching Pc. It becomes an Ag mode which stabilizes with increasing pressure in the CaCl2 phase. This behavior, together with the softening of the shear modulus (C11-C12)/2 related to the orthorhombic distortion, allows a precise determination of a value for Pc. An additional determination is provided by the splitting of the basal plane lattice parameters. Both the AI and the experimentally observed softening of the B1g mode are incomplete, indicating a small discontinuity at the transition. However, all results show continuous changes in volume and lattice parameters, indicating a second-order transition. All these results indicate that there should be sufficient confidence for the future employment of the shell model.
International Nuclear Information System (INIS)
Casali, R A; Ponce, C A; Lasave, J; Koval, S; Migoni, R L; Caravaca, M A
2013-01-01
The pressure dependences of the structural, thermoelastic and vibrational properties of SnO 2 in its rutile phase are studied, as well as the pressure-induced transition to a CaCl 2 -type phase. These studies have been performed by means of ab initio (AI) density functional theory calculations using the localized basis code SIESTA. The results are employed to develop a shell model (SM) for application in future studies of nanostructured SnO 2 . A good agreement of the SM results for the pressure dependences of the above properties with the ones obtained from present and previous AI calculations as well as from experiments is achieved. The transition is characterized by a rotation of the Sn-centered oxygen octahedra around the tetragonal axis through the Sn. This rotation breaks the tetragonal symmetry of the lattice and an orthorhombic distortion appears above the critical pressure P c . A zone-center phonon of B 1g symmetry in the rutile phase involves such rotation and softens on approaching P c . It becomes an A g mode which stabilizes with increasing pressure in the CaCl 2 phase. This behavior, together with the softening of the shear modulus (C 11 −C 12 )/2 related to the orthorhombic distortion, allows a precise determination of a value for P c . An additional determination is provided by the splitting of the basal plane lattice parameters. Both the AI and the experimentally observed softening of the B 1g mode are incomplete, indicating a small discontinuity at the transition. However, all results show continuous changes in volume and lattice parameters, indicating a second-order transition. All these results indicate that there should be sufficient confidence for the future employment of the shell model. (paper)
Steady state HNG combustion modeling
Energy Technology Data Exchange (ETDEWEB)
Louwers, J.; Gadiot, G.M.H.J.L. [TNO Prins Maurits Lab., Rijswijk (Netherlands); Brewster, M.Q. [Univ. of Illinois, Urbana, IL (United States); Son, S.F. [Los Alamos National Lab., NM (United States); Parr, T.; Hanson-Parr, D. [Naval Air Warfare Center, China Lake, CA (United States)
1998-04-01
Two simplified modeling approaches are used to model the combustion of Hydrazinium Nitroformate (HNF, N{sub 2}H{sub 5}-C(NO{sub 2}){sub 3}). The condensed phase is treated by high activation energy asymptotics. The gas phase is treated by two limit cases: the classical high activation energy, and the recently introduced low activation energy approach. This results in simplification of the gas phase energy equation, making an (approximate) analytical solution possible. The results of both models are compared with experimental results of HNF combustion. It is shown that the low activation energy approach yields better agreement with experimental observations (e.g. regression rate and temperature sensitivity), than the high activation energy approach.
Thin-shell wormholes in dilaton gravity
International Nuclear Information System (INIS)
Eiroa, Ernesto F.; Simeone, Claudio
2005-01-01
In this work we construct charged thin-shell Lorentzian wormholes in dilaton gravity. The exotic matter required for the construction is localized in the shell and the energy conditions are satisfied outside the shell. The total amount of exotic matter is calculated and its dependence with the parameters of the model is analyzed
Studies of dust shells around stars
International Nuclear Information System (INIS)
Bedijn, P.J.
1977-01-01
This thesis deals with some aspects of circumstellar dust shells. This dust shell, emitting infrared radiation, is described by way of its absorptive and emissive properties as well as by the transfer of radiation through the dust shell itself. Model calculations are compared to experimental results and agree reasonably well. The author also discusses the dynamics of the extended shells of gas and dust around newly formed stars
International Nuclear Information System (INIS)
Das, Y.C.; Kedia, K.K.
1977-01-01
No realistic analytical work in the area of Shells on Elastic Foundations has been reported in the literature. Various foundation models have been proposed by several authors. These models involve one or more than one parameters to characterise the foundation medium. Some of these models cannot be used to derive the basic equations governing the behaviour of shells on elastic foundations. In the present work, starting from an elastic continuum hypothesis, a mathematical model for foundation has been derived in curvilinear orthogonal coordinates by the help of principle of virtual displacements, treating one of the virtual displacements as known to satisfy certain given conditions at its edge surfaces. In this model, several foundation parameters can be considered and it can also be used for layered medium of both finite and infinite thickness. (Auth.)
Miura, Yousuke; Momotake, Atsuya; Takeuchi, Keiichirou; Arai, Tatsuo
2011-01-01
A series of stilbene-cored poly(benzyl ether) dendrimers with benzophenone peripheries were synthesized and their photophysical and photochemical properties were studied. Fluorescence studies revealed that singlet-singlet energy transfer (SSET) from the stilbene core to the benzophenone units took place efficiently in dendrimers of all generations. Similarly, phosphorescence and time-resolved spectroscopic measurements indicated efficient triplet-triplet energy transfer (TTET) from the benzophenone periphery to the stilbene core. Upon excitation at 310 nm, the stilbene core isomerizes via an energy round trip within the dendrimer shell. The quantum yields for the energy round trip (Φ(ERT)), defined as the product of the quantum yields of SSET, intersystem crossing, and TTET (Φ(ERT) = Φ(SS)Φ(isc)Φ(TT)), were extremely high for all generations--99%, 95% and 94% for G1, G2, and G3, respectively--which means that the excitation energy of the dendrimer core was transferred to the dendrimer periphery and back to the core almost quantitatively. The quantum yield for photoisomerization of G1-G3 via an energy round trip was higher than for other stilbene-cored dendrimers, which mainly isomerize from the excited singlet state. Photostability in the dendrimers was also demonstrated and discussed.
LANL* V1.0: a radiation belt drift shell model suitable for real-time and reanalysis applications
Directory of Open Access Journals (Sweden)
J. Koller
2009-07-01
Full Text Available We describe here a new method for calculating the magnetic drift invariant, L*, that is used for modeling radiation belt dynamics and for other space weather applications. L* (pronounced L-star is directly proportional to the integral of the magnetic flux contained within the surface defined by a charged particle moving in the Earth's geomagnetic field. Under adiabatic changes to the geomagnetic field L* is a conserved quantity, while under quasi-adiabatic fluctuations diffusion (with respect to a particle's L* is the primary term in equations of particle dynamics. In particular the equations of motion for the very energetic particles that populate the Earth's radiation belts are most commonly expressed by diffusion in three dimensions: L*, energy (or momentum, and pitch angle (the dot product of velocity and the magnetic field vector. Expressing dynamics in these coordinates reduces the dimensionality of the problem by referencing the particle distribution functions to values at the magnetic equatorial point of a magnetic "drift shell" (or L-shell irrespective of local time (or longitude. While the use of L* aids in simplifying the equations of motion, practical applications such as space weather forecasting using realistic geomagnetic fields require sophisticated magnetic field models that, in turn, require computationally intensive numerical integration. Typically a single L* calculation can require on the order of 10^{5} calls to a magnetic field model and each point in the simulation domain and each calculated pitch angle has a different value of L*. We describe here the development and validation of a neural network surrogate model for calculating L* in sophisticated geomagnetic field models with a high degree of fidelity at computational speeds that are millions of times faster than direct numerical field line mapping and integration. This new surrogate model has
Signatures of shell evolution in alpha decay across the N = 126 shell closure
Rui-Wang; Wang, Rui-Yao; Qian, Yi-Bin; Ren, Zhong-Zhou
2017-06-01
Within the alpha-cluster model, we particularly investigate the alpha decay of exotic nuclei in the vicinity of the N = 126 neutron shell plus the Z = 82 proton shell. The systematics of alpha-preformation probability (P α ), as an indicator of the shell effect, is deduced from the ratio of the experimental decay width to the calculated one. Through the comparative analysis of the P α trend in the N = 124-130 isotonic chain, the N = 126 and Z = 82 shell closures are believed to strongly affect the formation of the alpha particle before its penetration. Additionally, the P α variety in Po and Rn isotopes is presented as another proof for such an influence. More importantly, it may be concluded that the expected neutron (or proton) shell effect gradually fades away along with the increasing valence proton (or neutron) number. The odd-even staggering presented in the P α value is also discussed. Supported by National Natural Science Foundation of China (11375086, 11535004, 11605089, 11120101005), Natural Science Youth Fund of Jiangsu Province (BK20150762), Fundamental Research Funds for the Central Universities (30916011339), 973 National Major State Basic Research and Development Program of China (2013CB834400), and a Project Funded by the Priority Academic Programme Development of JiangSu Higher Education Institutions (PAPD)
An equations of motion approach for open shell systems
International Nuclear Information System (INIS)
Yeager, D.L.; McKoy, V.
1975-01-01
A straightforward scheme is developed for extending the equations of motion formalism to systems with simple open shell ground states. Equations for open shell random phase approximation (RPA) are given for the cases of one electron outside of a closed shell in a nondegenerate molecular orbital and for the triplet ground state with two electrons outside of a closed shell in degenerate molecular orbitals. Applications to other open shells and extension of the open shell EOM to higher orders are both straightforward. Results for the open shell RPA for lithium atom and oxygen molecule are given
Directory of Open Access Journals (Sweden)
Razin Alexander F.
2017-01-01
Full Text Available A new approach to the simulation of the heat state of the compartment of lattice polymer composite materials (PCM, not providing for the use of known commercial software packages, has been proposed. The simulation has been performed using the PCM interstage of the Proton rocket as an example with due account of aerodynamic heating, solar radiation and acting of jets of auxiliary propulsion units. At the first stage of numerical analysis, a problem of unsteady heat conduction in the system “skin-air gap-heat insulation” has been solved. An effect of changing a pressure inside a compartment on thermal conductivity of heat insulation was taken into account. The effective thermal conductivity in gaps was used. An effect of a temperature of equipment on a value of radiant heat flux was also taken into account. At the second stage, the heat state of the system “skin-rib” was analyzed. A mathematical model in the form of a system of nonlinear equations for heat balance of control elements on which a rib and a skin section were partitioned, including an information about a temperature of heat insulation received at the first stage of the simulation, was used.
Directory of Open Access Journals (Sweden)
Salvatore Brischetto
2015-12-01
Full Text Available The present paper talks about the free vibration analysis of simply supported Single- and Double-Walled Carbon Nanotubes (SWCNTs and DWCNTs. Refined 2D Generalized Differential Quadrature (GDQ shell methods and an exact 3D shell model are compared. A continuum approach (based on an elastic three-dimensional shell model is used for natural frequency investigation of SWCNTs and DWCNTs. SWCNTs are defined as isotropic cylinders with an equivalent thickness and Young modulus. DWCNTs are defined as two concentric isotropic cylinders (with an equivalent thickness and Young modulus which can be linked by means of the interlaminar continuity conditions or by means of van der Waals interactions. Layer wise approaches are mandatory for the analysis of van der Waals forces in DWCNTs. The effect of van der Waals interaction between the two cylinders is shown for different DWCNT lengths, diameters and vibration modes. The accuracy of beam models and classical 2D shell models in the free vibration analysis of SWCNTs and DWCNTs is also investigated.
International Nuclear Information System (INIS)
Hill, J.G.; Simpson, B.C.
1994-04-01
The Sort on Radioactive Waste Type (SORWT) model presents a method to categorize Hanford Site single-shell tanks (SSTs) into groups of tank expected to exhibit similar chemical and physical characteristics based on their major waste types and processing histories. This model has identified 29 different waste-type groups encompassing 135 of the 149 SSTs and 93% of the total waste volume in SSTs. The remaining 14 SSTs and associated wastes could not be grouped according to the established criteria and were placed in an ungrouped category. This letter report will detail the assumptions and methodologies used to develop the SORWT model and present the grouping results. In the near future, the validity of the predicted groups will be statistically tested using analysis of variance of characterization data obtained from recent (post-1989) core sampling and analysis activities. In addition, the SORWT model will be used to project the nominal waste characteristics of entire waste type groups that have some recent characterization data available. These subsequent activities will be documented along with these initial results in a comprehensive, formal PNL report cleared for public release by September 1994
Study of neutron-rich Mo isotopes by the projected shell model ...
Indian Academy of Sciences (India)
But because of the low statistics and contamination, it was not possible to calculate g exp .... violated in the deformed single-particle states is fully restored by the angular-momentum- projection method ...... the yrast states have composite structure. ..... [14] M Liang, H Ohm, B De Sutter and K Sistemich, Z. Phys. A 344, 357 ...
International Nuclear Information System (INIS)
Devi, Jutika; Datta, Pranayee; Saikia, Rashmi
2016-01-01
The present paper describes the study of core-shell nanoparticles for application as nanoantenna in the optical domain. To obtain the absorption and extinction efficiencies as well as the angular distribution of the far field radiation pattern and the resonance wavelengths for these metal-dielectric, dielectric-metal and metal-metal core-shell nanoparticles in optical domain, we have used Finite Element Method based COMSOL Multiphysics Software and Mie Theory. From the comparative study of the extinction efficiencies of core-shell nanoparticles of different materials, it is found that for silica - gold core - shell nanoparticles, the resonant wavelength is greater than that of the gold - silver, silver-gold and gold-silica core - shell nanoparticles and also the radiation pattern of the silica-gold core-shell nanoparticle is the most suitable one from the point of view of directivity. The dielectric functions of the core and shell material as well as of the embedded matrix are extremely important and plays a very major role to tune the directivity and resonance wavelength. Such highly controllable parameters of the dielectric - metal core - shell nanoparticles make them suitable for efficient coupling of optical radiation into nanoscale structures for a broad range of applications in the field of communications. (paper)
Devi, Jutika; Saikia, Rashmi; Datta, Pranayee
2016-10-01
The present paper describes the study of core-shell nanoparticles for application as nanoantenna in the optical domain. To obtain the absorption and extinction efficiencies as well as the angular distribution of the far field radiation pattern and the resonance wavelengths for these metal-dielectric, dielectric-metal and metal-metal core-shell nanoparticles in optical domain, we have used Finite Element Method based COMSOL Multiphysics Software and Mie Theory. From the comparative study of the extinction efficiencies of core-shell nanoparticles of different materials, it is found that for silica - gold core - shell nanoparticles, the resonant wavelength is greater than that of the gold - silver, silver-gold and gold-silica core - shell nanoparticles and also the radiation pattern of the silica-gold core-shell nanoparticle is the most suitable one from the point of view of directivity. The dielectric functions of the core and shell material as well as of the embedded matrix are extremely important and plays a very major role to tune the directivity and resonance wavelength. Such highly controllable parameters of the dielectric - metal core - shell nanoparticles make them suitable for efficient coupling of optical radiation into nanoscale structures for a broad range of applications in the field of communications.
Polotsky, A.; Charlaganov, M.; Xu, Y.P.; Leermakers, F.A.M.; Daoud, M.; Muller, A.H.E.; Dotera, T.; Borisov, O.V.
2008-01-01
We present theoretical arguments and experimental evidence for a longitudinal instability in core-shell cylindrical polymer brushes with a solvophobic inner (core) block and a solvophilic outer (shell) block in selective solvents. The two-gradient self-consistent field Scheutjens-Fleer (SCF-SF)
Updating of states in operational hydrological models
Bruland, O.; Kolberg, S.; Engeland, K.; Gragne, A. S.; Liston, G.; Sand, K.; Tøfte, L.; Alfredsen, K.
2012-04-01
Operationally the main purpose of hydrological models is to provide runoff forecasts. The quality of the model state and the accuracy of the weather forecast together with the model quality define the runoff forecast quality. Input and model errors accumulate over time and may leave the model in a poor state. Usually model states can be related to observable conditions in the catchment. Updating of these states, knowing their relation to observable catchment conditions, influence directly the forecast quality. Norway is internationally in the forefront in hydropower scheduling both on short and long terms. The inflow forecasts are fundamental to this scheduling. Their quality directly influence the producers profit as they optimize hydropower production to market demand and at the same time minimize spill of water and maximize available hydraulic head. The quality of the inflow forecasts strongly depends on the quality of the models applied and the quality of the information they use. In this project the focus has been to improve the quality of the model states which the forecast is based upon. Runoff and snow storage are two observable quantities that reflect the model state and are used in this project for updating. Generally the methods used can be divided in three groups: The first re-estimates the forcing data in the updating period; the second alters the weights in the forecast ensemble; and the third directly changes the model states. The uncertainty related to the forcing data through the updating period is due to both uncertainty in the actual observation and to how well the gauging stations represent the catchment both in respect to temperatures and precipitation. The project looks at methodologies that automatically re-estimates the forcing data and tests the result against observed response. Model uncertainty is reflected in a joint distribution of model parameters estimated using the Dream algorithm.
DOUBLE-SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION
International Nuclear Information System (INIS)
OGDEN DM; KIRCH NW
2007-01-01
This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed
Huang, Yuanyuan; Shi, Tielin; Jiang, Shulan; Cheng, Siyi; Tao, Xiangxu; Zhong, Yan; Liao, Guanglan; Tang, Zirong
2016-12-01
As a new class of pseudocapacitive material, metal sulfides possess high electrochemical performance. However, their cycling performance as conventional electrodes is rather poor for practical applications. In this article, we report an original composite electrode based on NiCo2S4@NiO core-shell nanowire arrays (NWAs) with enhanced cycling stability. This three-dimensional electrode also has a high specific capacitance of 12.2 F cm-2 at the current density of 1 mA cm-2 and excellent cycling stability (about 89% retention after 10,000 cycles). Moreover, an all-solid-state asymmetric supercapacitor (ASC) device has been assembled with NiCo2S4@NiO NWAs as the positive electrode and active carbon (AC) as the negative electrode, delivering a high energy density of 30.38 W h kg-1 at 0.288 KW kg-1 and good cycling stability (about 109% retention after 5000 cycles). The results show that NiCo2S4@NiO NWAs are promising for high-performance supercapacitors with stable cycling based on the unique core-shell structure and well-designed combinations.
Klaas, E E; Ohlendorf, H M; Cromartie, E
1980-12-01
Organochlorine residues and shell thicknesses were surveyed in eggs of the clapper rail (Rallus longirostris), purple gallinule (Porphyrula martinica), common gallinule (Gallinula chloropas), and limpkin (Aramus guarauna) from the eastern and southern United States. Clapper rail eggs were collected during 1972-73 in New Jersey, Virginia, and South Carolina. During 1973-74, gallinule eggs were collected in Florida, South Carolina, and Louisiana, and limpkin eggs were collected in Florida. Egg contents were analyzed for residues of organochlorine pesticides, including DDT, TDE, DDE, dieldrin, mirex, heptachlor epoxide, oxychlordane, cis-chlordane (and/or trans-nonachlor), cis-nonachlor, hexachlorobenzene (HCB), toxaphene, and endrin, and for polychlorinated biphenyls (PCBs). Shell thicknesses of recent eggs of these species were compared with archival eggs that had been collected before 1947. With the exception of the limpkin, the majority of eggs analyzed contained residues of p,p'-DDE and PCBs. Geometric means ranged from 0.10 ppm to 1.3 ppm. Small amounts (less than 1.0 ppm) of mirex, dieldrin, cis-chlordane (and/or trans-nonachlor), TDE, and DDT were detected in a few eggs. No evidence of eggshell thinning was found for any of the species studied. DDE residues in clapper rail eggs were higher in New Jersey and Virginia than in South Carolina.
Klaas, E.E.; Ohlendorf, H.M.; Cromartie, E.
1980-01-01
Organochlorine residues and shell thicknesses were surveyed in eggs of the clapper rail (Rallus longirostris), purple gallinule (Porphyrula martinica), common gallinule (Gallinula chloropas), and limpkin (Aramus guarauna) from the eastern and southern United States. Clapper rail eggs were collected during 1972-73 in New Jersey, Virginia, and South Carolina. During 1973-74, gallinule eggs were collected in Florida, South Carolina, and Louisiana, and limpkin eggs were collected in Florida. Egg contents were analyzed for residues of organochlorine pesticides, including DDT, TDE, DDE, dieldrin, mirex, heptachlor epoxide, oxychlordane, cis-chlordane (and/or trans-nonachlor), cis-nonachlor, hexachlorobenzene (HCB), toxaphene, and endrin, and for polychlorinated biphenyls (PCBs). Shell thicknesses of recent eggs of these species were compared with archival eggs that had been collected before 1947. With the exception of the limpkin, the majority of eggs analyzed contained residues of p,p'-DDE and PCBs. Geometric means ranged from 0.10 ppm to 1.3 ppm. Small amounts (less than 1.0 ppm) of mirex, dieldrin, cis-chlordane (and/or trans-nonachlor), TDE, and DDT were detected in a few eggs. No evidence of eggshell thinning was found for any of the species studied. DDE residues in clapper rail eggs were higher in New Jersey and Virginia than in South Carolina.
Aouami, A. El; Feddi, E.; Talbi, A.; Dujardin, F.; Duque, C. A.
2018-06-01
In this study, we have investigated the simultaneous influence of magnetic field combined to the hydrostatic pressure and the geometrical confinement on the behavior of a single dopant confined in GaN/InGaN core/shell quantum dots. Within the scheme of the effective-mass approximation, the eigenvalues equation has solved by using the variational method with one-parameter trial wavefunctions. Variation of the ground state binding energy of the single dopant is determined according to the magnetic field and hydrostatic pressure for several dimensions of the heterostructure. The results show that the binding energy is strongly dependent on the core/shell sizes, the magnetic field, and the hydrostatic pressure. The analysis of the photoionization cross section, corresponding to optical transitions associated to the first donor energy level and the conduction band, shows clearly that the reduction of the dot dimensions and/or the simultaneous influences of applied magnetic field, combined to the hydrostatic pressure strength, cause a shift in resonance peaks towards the higher energies with important variations in the magnitude of the resonant peaks.
Brunner, M.; Maercker, M.; Mecina, M.; Khouri, T.; Kerschbaum, F.
2018-06-01
Context. On the asymptotic giant branch (AGB), Sun-like stars lose a large portion of their mass in an intensive wind and enrich the surrounding interstellar medium with nuclear processed stellar material in the form of molecular gas and dust. For a number of carbon-rich AGB stars, thin detached shells of gas and dust have been observed. These shells are formed during brief periods of increased mass loss and expansion velocity during a thermal pulse, and open up the possibility to study the mass-loss history of thermally pulsing AGB stars. Aims: We study the properties of dust grains in the detached shell around the carbon AGB star R Scl and aim to quantify the influence of the dust grain properties on the shape of the spectral energy distribution (SED) and the derived dust shell mass. Methods: We modelled the SED of the circumstellar dust emission and compared the models to observations, including new observations of Herschel/PACS and SPIRE (infrared) and APEX/LABOCA (sub-millimeter). We derived present-day mass-loss rates and detached shell masses for a variation of dust grain properties (opacities, chemical composition, grain size, and grain geometry) to quantify the influence of changing dust properties to the derived shell mass. Results: The best-fitting mass-loss parameters are a present-day dust mass-loss rate of 2 × 10-10 M⊙ yr-1 and a detached shell dust mass of (2.9 ± 0.3) × 10-5 M⊙. Compared to similar studies, the uncertainty on the dust mass is reduced by a factor of 4. We find that the size of the grains dominates the shape of the SED, while the estimated dust shell mass is most strongly affected by the geometry of the dust grains. Additionally, we find a significant sub-millimeter excess that cannot be reproduced by any of the models, but is most likely not of thermal origin. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
International Nuclear Information System (INIS)
Hill, J.G.; Anderson, G.S.; Simpson, B.C.
1995-02-01
The Sort on Radioactive Waste Type (SORWT) Model is a method to categorize Hanford Site single-shell tanks (SSTS) into groups of tanks expected to exhibit similar chemical and physical characteristics based on their major waste types and processing histories. The model has identified 24 different waste-type groups encompassing 133 of the 149 SSTs and 93% of the total waste volume in SSTS. The remaining 16 SSTs and associated wastes could not be grouped. according to the established criteria and were placed in an ungrouped category. A detailed statistical verification study has been conducted that employs analysis of variance (ANOVA) and the core sample analysis data collected since 1989. These data cover eight tanks and five SORWT groups. The verification study showed that these five SORWT groups are highly statistically significant; they represent approximately 10% of the total waste volume and 26% of the total sludge volume in SSTS. Future sampling recommendations based on the SORWT Model results include 32 core samples from 16 tanks and 18 auger samples from six tanks. Combining these data with the existing body of information will form the basis for characterizing 98 SSTs (66%). These 98 SSTs represent 78% of the total waste volume, 61% of the total sludge volume, and 88 % of the salt cake volume
Study of the anharmonic effects on low-lying states of odd-mass nuclei in 1g sub(9/2)+ shell region
International Nuclear Information System (INIS)
Nakano, Masahiro
1980-01-01
Anharmonic effects on the low-lying states of the odd-mass nuclei in 1g sub(9/2)sup(+) shell region are investigated by introduction of 1, 3, 5 and 7 quasiparticle modes. Special attention is paid to the energy-lowering of anomalous coupling states in N = 41 nuclei and to the spin sequence of so-called ''one-quasiparticle-two-phonon multiplet''. It is shown that one cannot attribute the special-lowering of the energies of the anomalous coupling (j - 2) states to the dynamical effects due to the coupling between the 3-quasiparticle mode and the 5-quasiparticle mode, and is also shown that not only the kinematical effect but also the dynamical effect plays an important role in the energy-lowering of the anomalous coupling (j - 1) states in N = 41 nuclei. The second (j - 2) state is predicted to be the lowest member of one-quasiparticle-two-phonon multiplet by taking account of the kinematical effect for the 5-quasiparticle mode, which corresponds to the experimental fact. (author)
Harvey, E.; Redman, M. P.; Boumis, P.; Akras, S.
2016-10-01
Aims: The shaping mechanisms of old nova remnants are probes for several important and unexplained processes, such as dust formation and the structure of evolved star nebulae. To gain a more complete understanding of the dynamics of the GK Per (1901) remnant, an examination of symmetry of the nova shell is explored, followed by a kinematical analysis of the previously detected jet-like feature in the context of the surrounding fossil planetary nebula. Methods: Faint-object high-resolution echelle spectroscopic observations and imaging were undertaken covering the knots which comprise the nova shell and the surrounding nebulosity. New imaging from the Aristarchos telescope in Greece and long-slit spectra from the Manchester Echelle Spectrometer instrument at the San Pedro Mártir observatory in Mexico were obtained, supplemented with archival observations from several other optical telescopes. Position-velocity arrays are produced of the shell, and also individual knots, and are then used for morpho-kinematic modelling with the shape code. The overall structure of the old knotty nova shell of GK Per and the planetary nebula in which it is embedded is then analysed. Results: Evidence is found for the interaction of knots with each other and with a wind component, most likely the periodic fast wind emanating from the central binary system. We find that a cylindrical shell with a lower velocity polar structure gives the best model fit to the spectroscopy and imaging. We show in this work that the previously seen jet-like feature is of low velocity. Conclusions: The individual knots have irregular tail shapes; we propose here that they emanate from episodic winds from ongoing dwarf nova outbursts by the central system. The nova shell is cylindrical, not spherical, and the symmetry axis relates to the inclination of the central binary system. Furthermore, the cylinder axis is aligned with the long axis of the bipolar planetary nebula in which it is embedded. Thus, the
MARMOSET: The Path from LHC Data to the New Standard Model via On-Shell Effective Theories
International Nuclear Information System (INIS)
Arkani-Hamed, Nima; Schuster, Philip; Toro, Natalia; Thaler, Jesse; Wang, Lian-Tao; Mrenna, Stephen
2007-01-01
We describe a coherent strategy and set of tools for reconstructing the fundamental theory of the TeV scale from LHC data. We show that On-Shell Effective Theories (OSETs) effectively characterize hadron collider data in terms of masses, production cross sections, and decay modes of candidate new particles. An OSET description of the data strongly constrains the underlying new physics, and sharply motivates the construction of its Lagrangian. Simulating OSETs allows efficient analysis of new-physics signals, especially when they arise from complicated production and decay topologies. To this end, we present MARMOSET, a Monte Carlo tool for simulating the OSET version of essentially any new-physics model. MARMOSET enables rapid testing of theoretical hypotheses suggested by both data and model-building intuition, which together chart a path to the underlying theory. We illustrate this process by working through a number of data challenges, where the most important features of TeV-scale physics are reconstructed with as little as 5 fb -1 of simulated LHC signals
Directory of Open Access Journals (Sweden)
Boonlamp, M.
2005-03-01
Full Text Available A spherical double shell model (SDM for a single cell has been developed, using Laplace’s equation in spherical coordinates and boundary conditions. Electric field intensities and dielectric constants of each region inside and outside of the cell have been estimated. The dielectrophoretic spectrum of the real part of a complex function (Re[f ( ω] were computed using Visual Foxpro Version 6, which gave calculated values pertaining to electrical properties of the cell model as compared with experimental values. The process was repeated until the error percentile was in an acceptable range. The calculated parameters were the dielectric constants and the conductivities of the inner cytoplasm ( εic, σic, the outer cytoplasm ( εoc, σoc, the inner membrane ( εim, σim, the outer membrane ( εom, σom, the suspending solution( εs, σs and the thickness of each layer (dom, doc, dim, respectively. This computer program provides estimated values of cell electrical properties with high accuracy and required minimal computational time.
MARMOSET: The Path from LHC Data to the New Standard Model via On-Shell Effective Theories
Energy Technology Data Exchange (ETDEWEB)
Arkani-Hamed, Nima; Schuster, Philip; Toro, Natalia; /Harvard U., Phys. Dept.; Thaler, Jesse; /UC, Berkeley /LBL, Berkeley; Wang, Lian-Tao; /Princeton U.; Knuteson, Bruce; /MIT, LNS; Mrenna, Stephen; /Fermilab
2007-03-01
We describe a coherent strategy and set of tools for reconstructing the fundamental theory of the TeV scale from LHC data. We show that On-Shell Effective Theories (OSETs) effectively characterize hadron collider data in terms of masses, production cross sections, and decay modes of candidate new particles. An OSET description of the data strongly constrains the underlying new physics, and sharply motivates the construction of its Lagrangian. Simulating OSETs allows efficient analysis of new-physics signals, especially when they arise from complicated production and decay topologies. To this end, we present MARMOSET, a Monte Carlo tool for simulating the OSET version of essentially any new-physics model. MARMOSET enables rapid testing of theoretical hypotheses suggested by both data and model-building intuition, which together chart a path to the underlying theory. We illustrate this process by working through a number of data challenges, where the most important features of TeV-scale physics are reconstructed with as little as 5 fb{sup -1} of simulated LHC signals.
Ab inito large-basic no-core shell model and its application to light nuclei
Czech Academy of Sciences Publication Activity Database
Barrett, BR.; Navrátil, Petr; Ormand, W. E.; Vary, J. P.
2002-01-01
Roč. 33, č. 1 (2002), s. 297-311 ISSN 0587-4254 Institutional research plan: CEZ:AV0Z1048901 Keywords : cross-sections * alpha-particle * systems * state Subject RIV: BE - Theoretical Physics Impact factor: 0.601, year: 2002
Development of surrogate models using artificial neural network for building shell energy labelling
Melo, A.P.; Costola, D.; Lamberts, R.; Hensen, J.L.M.
2014-01-01
Surrogate models are an important part of building energy labelling programs, but these models still present low accuracy, particularly in cooling-dominated climates. The objective of this study was to evaluate the feasibility of using an artificial neural network (ANN) to improve the accuracy of
Modeling in the Common Core State Standards
Tam, Kai Chung
2011-01-01
The inclusion of modeling and applications into the mathematics curriculum has proven to be a challenging task over the last fifty years. The Common Core State Standards (CCSS) has made mathematical modeling both one of its Standards for Mathematical Practice and one of its Conceptual Categories. This article discusses the need for mathematical…
Directory of Open Access Journals (Sweden)
I. F. Frameschi
Full Text Available Abstract The pattern of shell occupation by the hermit crab Dardanus insignis (Saussure, 1858 from the subtropical region of southeastern coast of Brazil was investigated in the present study. The percentage of shell types that were occupied and the morphometric relationships between hermit crabs and occupied shells were analyzed from monthly collections conducted during two years (from January 1998 to December 1999. Individuals were categorized according to sex and gonadal maturation, weighed and measured with respect to their cephalothoracic shield length (CSL and wet weight (CWW. Shells were measured regarding their aperture width (SAW, dry weight (SDW and internal volume (SIV. A total of 1086 hermit crabs was collected, occupying shells of 11 gastropod species. Olivancillaria urceus (Roding, 1798 was most commonly used by the hermit crab D. insignis, followed by Buccinanops cochlidium (Dillwyn, 1817, and Stramonita haemastoma (Linnaeus, 1767. The highest determination coefficients (r2 > 0.50, p < 0.01 were recorded particularly in the morphometric relationships between CSL vs. CWW and SAW vs. SIV, which are important indication that in this D. insignis population the great majority the animals occupied adequate shells during the two years analysed. The high number of used shell species and relative plasticity in pattern of shell utilization by smaller individuals of D. insignis indicated that occupation is influenced by the shell availability, while larger individuals demonstrated more specialized occupation in Tonna galea (Linnaeus, 1758 shell.
Coulomb energy of uniformly charged spheroidal shell systems.
Jadhao, Vikram; Yao, Zhenwei; Thomas, Creighton K; de la Cruz, Monica Olvera
2015-03-01
We provide exact expressions for the electrostatic energy of uniformly charged prolate and oblate spheroidal shells. We find that uniformly charged prolate spheroids of eccentricity greater than 0.9 have lower Coulomb energy than a sphere of the same area. For the volume-constrained case, we find that a sphere has the highest Coulomb energy among all spheroidal shells. Further, we derive the change in the Coulomb energy of a uniformly charged shell due to small, area-conserving perturbations on the spherical shape. Our perturbation calculations show that buckling-type deformations on a sphere can lower the Coulomb energy. Finally, we consider the possibility of counterion condensation on the spheroidal shell surface. We employ a Manning-Oosawa two-state model approximation to evaluate the renormalized charge and analyze the behavior of the equilibrium free energy as a function of the shell's aspect ratio for both area-constrained and volume-constrained cases. Counterion condensation is seen to favor the formation of spheroidal structures over a sphere of equal area for high values of shell volume fractions.
Model Based Controller Design for a Shell and Tube Heat Exchanger
Directory of Open Access Journals (Sweden)
S. Nithya
2007-10-01
Full Text Available In all the process industries the process variables like flow, pressure, level and temperature are the main parameters that need to be controlled in both set point and load changes. The transfer of heat is one of the main important operation in the heat exchanger .The transfer of heat may be fluid to fluid, gas to gas i.e. in the same phase or the phase change can occur on either side of the heat exchanger. The control of heat exchanger is complex due to its nonlinear dynamics. For this nonlinear process of a heat exchanger the model is identified to be First Order plus Dead Time (FOPDT.The Internal Model Control (IMC is one of the model predictive control methods based on the predictive output of the process model. The conventional controller tuning is compared with IMC techniques and it found to be suitable for heat exchanger than the conventional PI tuning.
Large-basis shell-model technology in nucleosynthesis and cosmology
International Nuclear Information System (INIS)
Mathews, G.J.; Bloom, S.D.; Takahashi, K.; Fuller, G.M.; Hausman, R.F. Jr.
1985-05-01
We discuss various applications of the Lanczos method to describe properties of many-body microscopic systems in nucleosynthesis and cosmology. These calculations include: solar neutrino detectors; beta-decay of excited nuclear states; electron-capture rates during a core-bounce supernova; exotic quarked nuclei as a catalyst for hydrogen burning; and the quark-hadron phase transition during the early universe. 27 refs., 3 figs
International Nuclear Information System (INIS)
Wang, Ruiqi; Xia, Chuan; Wei, Nini; Alshareef, Husam N.
2016-01-01
Highlights: • NiCo_2O_4 nanostructures are prepared via a simple hydrothermal method. • Outer shell of TiN is then grown through conformal atomic layer deposition. • Electrodes exhibit significantly enhanced rate capability with TiN coating. • Solid-state polymer electrolyte is employed to improve cycling stability. • Full devices show a stack power density of 58.205 mW cm"−"3 at 0.061 mWh cm"−"3. - Abstract: Ternary transition metal oxides such as NiCo_2O_4 show great potential as supercapacitor electrode materials. However, the unsatisfactory rate performance of NiCo_2O_4 may prove to be a major hurdle to its commercial usage. Herein, we report the development of NiCo_2O_4@TiN core–shell nanostructures for all-solid-state supercapacitors with significantly enhanced rate capability. We demonstrate that a thin layer of TiN conformally grown by atomic layer deposition (ALD) on NiCo_2O_4 nanofiber arrays plays a key role in improving their electrical conductivity, mechanical stability, and rate performance. Fabricated using the hybrid NiCo_2O_4@TiN electrodes, the symmetric all-solid-state supercapacitor exhibited an impressive stack power density of 58.205 mW cm"−"3 at a stack energy density of 0.061 mWh cm"−"3. To the best of our knowledge, these values are the highest of any NiCo_2O_4-based all-solid-state supercapacitor reported. Additionally, the resulting NiCo_2O_4@TiN all-solid-state device displayed outstanding cycling stability by retaining 70% of its original capacitance after 20,000 cycles at a high current density of 10 mA cm"−"2. These results illustrate the promise of ALD-assisted hybrid NiCo_2O_4@TiN electrodes within sustainable and integrated energy storage applications.
Acoustic coupling of two parallel shells in compressible fluid
International Nuclear Information System (INIS)
Gerges, S.N.Y.
1982-01-01
Modifications are done in the acoustic impedance for a vibrating shell, due to the pressure of another similar shell. The multi-analysis method of scattering is used. The results of the impedance in function of the shell radius, the wave length, the distance between the shell axis and its vibration models are presented. (E.G.) [pt
Escolano, C.; Carciofi, A. C.; Okazaki, A. T.; Rivinius, T.; Baade, D.; Štefl, S.
2015-04-01
Context. A large number of Be stars exhibit intensity variations of their violet and red emission peaks in their H i lines observed in emission. This is the so-called V/R phenomenon, usually explained by the precession of a one-armed spiral density perturbation in the circumstellar disk. That global-disk oscillation scenario was confirmed, both observationally and theoretically, in the previous series of two papers analyzing the Be shell star ζ Tauri. The vertically averaged (2D) global-disk oscillation model used at the time was able to reproduce the V/R variations observed in Hα, as well as the spatially resolved interferometric data from AMBER/VLTI. Unfortunately, that model failed to reproduce the V/R phase of Br15 and the amplitude of the polarization variation, suggesting that the inner disk structure predicted by the model was incorrect. Aims: The first aim of the present paper is to quantify the temporal variations of the shell-line characteristics of ζ Tauri. The second aim is to better understand the physics underlying the V/R phenomenon by modeling the shell-line variations together with the V/R and polarimetric variations. The third aim is to test a new 2.5D disk oscillation model, which solves the set of equations that describe the 3D perturbed disk structure but keeps only the equatorial (i.e., 2D) component of the solution. This approximation was adopted to allow comparisons with the previous 2D model, and as a first step toward a future 3D model. Methods: We carried out an extensive analysis of ζ Tauri's spectroscopic variations by measuring various quantities characterizing its Balmer line profiles: red and violet emission peak intensities (for Hα, Hβ, and Br15), depth and asymmetry of the shell absorption (for Hβ, Hγ, and Hδ), and the respective position (i.e., radial velocity) of each component. We attempted to model the observed variations by implementing in the radiative transfer code HDUST the perturbed disk structure computed with a
Energy Technology Data Exchange (ETDEWEB)
Iben, I. Jr.; Tutukov, A.V. (Illinois Univ., Urbana (USA); Astronomicheskii Sovet, Moscow (USSR))
1989-07-01
The characteristics of model stars consisting of a degenerate dwarf core and an envelope which is burning a nuclear fuel or fuels in its interior are explored. The models are relevant to stars which are accreting matter from a companion, to single stars in late stages of evolution, to stripped noninteracting remnants of binary star evolution, and to merging and merged degenerate dwarfs. For any given mass and choice of nuclear fuels, a sequence of models is constructed which differ with respect to the mass of the degenerate core and the envelope characteristics. Each sequence has at least three distinct branches: a degenerate dwarf branch along which envelope mass increases with decreasing luminosity, a plateau branch characterized by a very small envelope mass and by a nearly constant luminosity which reaches the maximum achievable value for the sequence, and an asymptotic giant branch which is at the lowest temperatures achievable and along which envelope mass decreases with increasing luminosity. 78 refs.
International Nuclear Information System (INIS)
Iben, I. Jr.; Tutukov, A.V.
1989-01-01
The characteristics of model stars consisting of a degenerate dwarf core and an envelope which is burning a nuclear fuel or fuels in its interior are explored. The models are relevant to stars which are accreting matter from a companion, to single stars in late stages of evolution, to stripped noninteracting remnants of binary star evolution, and to merging and merged degenerate dwarfs. For any given mass and choice of nuclear fuels, a sequence of models is constructed which differ with respect to the mass of the degenerate core and the envelope characteristics. Each sequence has at least three distinct branches: a degenerate dwarf branch along which envelope mass increases with decreasing luminosity, a plateau branch characterized by a very small envelope mass and by a nearly constant luminosity which reaches the maximum achievable value for the sequence, and an asymptotic giant branch which is at the lowest temperatures achievable and along which envelope mass decreases with increasing luminosity. 78 refs
Self-consistent nonlinearly polarizable shell-model dynamics for ferroelectric materials
International Nuclear Information System (INIS)
Mkam Tchouobiap, S.E.; Kofane, T.C.; Ngabireng, C.M.
2002-11-01
We investigate the dynamical properties of the polarizable shellmodel with a symmetric double Morse-type electron-ion interaction in one ionic species. A variational calculation based on the Self-Consistent Einstein Model (SCEM) shows that a theoretical ferroelectric (FE) transition temperature can be derive which demonstrates the presence of a first-order phase transition for the potassium selenate (K 2 SeO 4 ) crystal around Tc 91.5 K. Comparison of the model calculation with the experimental critical temperature yields satisfactory agreement. (author)
International Nuclear Information System (INIS)
Nigro, G; Carbone, V
2015-01-01
Conventional surveys on the existence of singularities in fluid systems for vanishing dissipation have hitherto tried to infer some insight by searching for spatial features developing in asymptotic regimes. This approach has not yet produced a conclusive answer. One of the difficulties preventing us from getting a definitive answer is the limitations of direct numerical simulations which do not yet have a high enough resolution so far as to properly describe spatial fine structures in asymptotic regimes. In this paper, instead of searching for spatial details, we suggest seeking a principle, that would be able to discriminate between singular or not-singular behavior, among the integral and purely dynamical properties of a fluid system. We investigate the singularities developed by a hydromagnetic shell model during the magnetohydrodynamic turbulent cascade. Our results show that when the viscosity is equal to the magnetic diffusivity (unit magnetic Prandtl number) singularities appear in a finite time. A complex behavior is observed at extreme magnetic Prandtl numbers. In particular, the singularities persist in the limit of vanishing viscosity, while a complete regularization is observed in the limit of vanishing diffusivity. This dynamics is related to differences between the magnetic and the kinetic energy cascades towards small scales. Finally a comparison between the three-dimensional and the two-dimensional cases leads to conjecture that the existence of singularities may be related to the conservation of different ideal invariants. (paper)
[Modeling asthma evolution by a multi-state model].
Boudemaghe, T; Daurès, J P
2000-06-01
There are many scores for the evaluation of asthma. However, most do not take into account the evolutionary aspects of this illness. We propose a model for the clinical course of asthma by a homogeneous Markov model process based on data provided by the A.R.I.A. (Association de Recherche en Intelligence Artificielle dans le cadre de l'asthme et des maladies respiratoires). The criterion used is the activity of the illness during the month before consultation. The activity is divided into three levels: light (state 1), mild (state 2) and severe (state 3). The model allows the evaluation of the strength of transition between states. We found that strong intensities were implicated towards state 2 (lambda(12) and lambda(32)), less towards state 1 (lambda(21) and lambda(31)), and minimum towards state 3 (lambda(23)). This results in an equilibrium distribution essentially divided between state 1 and 2 (44.6% and 51.0% respectively) with a small proportion in state 3 (4.4%). In the future, the increasing amount of available data should permit the introduction of covariables, the distinction of subgroups and the implementation of clinical studies. The interest of this model falls within the domain of the quantification of the illness as well as the representation allowed thereof, while offering a formal framework for the clinical notion of time and evolution.
Modelling loading and break-up of RC structure due to internal explosion of fragmenting shells
Weerheijm, J.; Stolz, A.; Riedel, W.; Mediavilla Varas, J.
2012-01-01
The Klotz Group (KG), an international group of experts on explosion safety, investigates the debris throw hazard associated with the accidental detonation of ammunition in reinforced concrete (RC-) structures. Experiments are combined with engineering models but also with results of advanced
Modelling loading and break-up of RC structure due to internal explosion of fragmenting shells
Weerheijm, J.; Stolz, A.; Riedel, W.; Mediavilla, J.
2012-01-01
The Klotz Group (KG), an mtemational group of experts on explosion safety, investigates the debris throw hazard associated with the accidental detonation of ammunition in reinforced concrete (RC-) structures. Experiments are combined with engineering models but also with results of advanced
Cluster model of s- and p-shell ΛΛ hypernuclei
Indian Academy of Sciences (India)
simplifications the use of cluster model to S = −2 systems has given ..... constructed from Nijmegen soft-core NSC97e potential and are denoted as V e1. ΛΛ ..... This convergence of results reinforces the confidence in the methodology of all the.
State-Space Modelling in Marine Science
DEFF Research Database (Denmark)
Albertsen, Christoffer Moesgaard
State-space models provide a natural framework for analysing time series that cannot be observed without error. This is the case for fisheries stock assessments and movement data from marine animals. In fisheries stock assessments, the aim is to estimate the stock size; however, the only data...... available is the number of fish removed from the population and samples on a small fraction of the population. In marine animal movement, accurate position systems such as GPS cannot be used. Instead, inaccurate alternative must be used yielding observations with large errors. Both assessment and individual...... animal movement models are important for management and conservation of marine animals. Consequently, models should be developed to be operational in a management context while adequately evaluating uncertainties in the models. This thesis develops state-space models using the Laplace approximation...
Temperature Condition and Spherical Shell Shape Variation of Space Gauge-Alignment Spacecraft
Directory of Open Access Journals (Sweden)
V. S. Zarubin
2016-01-01
Full Text Available A high precision spherical shell is one of the geometrical shape embodiments of a gaugealignment spacecraft to determine and control a radar channel energy potential of the ground-based complex for the traffic control of space objects. Passive relays of signals and some types of smallsized instrumentation standard reflectors used for radar gauge and alignment have the same shape. Orbits of the considered spacecraft can be either circular with a height of about 1000 km, including those close to the polar, or elliptical with an apogee of up to 2200 km.In case there is no thermal control system in spacecrafts of these types the solar radiation is a major factor to define the thermal state of a spherical shell in the illuminated orbit area. With the shell in fixed position with respect to direction towards the Sun an arising uneven temperature distribution over its surface leads to variation of the spherically ideal shell shape, which may affect the functional characteristics of the spacecraft. The shell rotation about an axis perpendicular to the direction towards the Sun may reduce an unevenness degree of the temperature distribution.The uneven temperature distribution over the spherical shell surface in conditions of the lowEarth space and this unevenness impact on the shell shape variation against its spherical shape can be quantively estimated by the appropriate methods of mathematical modeling using modification of a previously developed mathematical model to describe steady temperature state of such shell on the low-Earth orbit. The paper considers the shell made from a polymeric composite material. Its original spherical shape is defined by rather low internal pressure. It is assumed that equipment in the shell, if any, is quite small-sized. This allows us to ignore its impact on the radiative transfer in the shell cavity. Along with defining the steady temperature distribution over the shell surface at its fixed orientation with respect to
International Nuclear Information System (INIS)
Ma, Zhongqing; Chen, Dengyu; Gu, Jie; Bao, Binfu; Zhang, Qisheng
2015-01-01
Highlights: • Model-free integral kinetics method and analytical TGA–FTIR were conducted on pyrolysis process of PKS. • The pyrolysis mechanism of PKS was elaborated. • Thermal stability was established: lignin > cellulose > xylan. • Detailed compositions in the volatiles of PKS pyrolysis were determinated. • The interaction of biomass three components led to the fluctuation of activation energy in PKS pyrolysis. - Abstract: Palm kernel shell (PKS) from palm oil production is a potential biomass source for bio-energy production. A fundamental understanding of PKS pyrolysis behavior and kinetics is essential to its efficient thermochemical conversion. The thermal degradation profile in derivative thermogravimetry (DTG) analysis shown two significant mass-loss peaks mainly related to the decomposition of hemicellulose and cellulose respectively. This characteristic differentiated with other biomass (e.g. wheat straw and corn stover) presented just one peak or accompanied with an extra “shoulder” peak (e.g. wheat straw). According to the Fourier transform infrared spectrometry (FTIR) analysis, the prominent volatile components generated by the pyrolysis of PKS were CO 2 (2400–2250 cm −1 and 586–726 cm −1 ), aldehydes, ketones, organic acids (1900–1650 cm −1 ), and alkanes, phenols (1475–1000 cm −1 ). The activation energy dependent on the conversion rate was estimated by two model-free integral methods: Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS) method at different heating rates. The fluctuation of activation energy can be interpreted as a result of interactive reactions related to cellulose, hemicellulose and lignin degradation, occurred in the pyrolysis process. Based on TGA–FTIR analysis and model free integral kinetics method, the pyrolysis mechanism of PKS was elaborated in this paper
High spin structure of {sup 35}Cl and the sd-fp shell gap
Energy Technology Data Exchange (ETDEWEB)
Kshetri, Ritesh [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Saha Sarkar, M. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India)]. E-mail: maitrayee.sahasarkar@saha.ac.in; Ray, Indrani [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Banerjee, P. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Sarkar, S. [Department of Physics, Bengal Engineering and Science University, Shibpur, Howrah 711103 (India); Raut, Rajarshi [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Goswami, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Chatterjee, J.M. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Chattopadhyay, S. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Datta Pramanik, U. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Mukherjee, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Dey, C.C. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Bhattacharya, S. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Dasmahapatra, B. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Bhowal, Samit [Department of Physics, Surendranath Evening College, Kolkata 700009 (India); Gangopadhyay, G. [University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009 (India); Datta, P. [Anandamohan College, 102/1, Raja Rammohan Sarani, Kolkata 700009 (India); Jain, H.C. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bhowmik, R.K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Muralithar, S.; Singh, R.P.; Kumar, R. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)
2007-01-15
The high spin states of {sup 35}Cl have been studied by in-beam {gamma}-spectroscopy following the fusion-evaporation reaction {sup 12}C({sup 28}Si,{alpha}p){sup 35}Cl at E{sub lab}=70 and 88 MeV, using the Indian National Gamma (Clover) Array (INGA). Lifetimes of six new excited states have been estimated for the first time. To understand the underlying structure of the levels and transition mechanisms, experimental results have been compared with those from the large basis cross-shell shell model calculations. Involvement of orbitals from fp shell and squeezing of the sd-fp shell gap seem to be essential for reliable reproduction of high spin states.
High spin structure of 35Cl and the sd-fp shell gap
International Nuclear Information System (INIS)
Kshetri, Ritesh; Saha Sarkar, M.; Ray, Indrani; Banerjee, P.; Sarkar, S.; Raut, Rajarshi; Goswami, A.; Chatterjee, J.M.; Chattopadhyay, S.; Datta Pramanik, U.; Mukherjee, A.; Dey, C.C.; Bhattacharya, S.; Dasmahapatra, B.; Bhowal, Samit; Gangopadhyay, G.; Datta, P.; Jain, H.C.; Bhowmik, R.K.; Muralithar, S.; Singh, R.P.; Kumar, R.
2007-01-01
The high spin states of 35 Cl have been studied by in-beam γ-spectroscopy following the fusion-evaporation reaction 12 C( 28 Si,αp) 35 Cl at E lab =70 and 88 MeV, using the Indian National Gamma (Clover) Array (INGA). Lifetimes of six new excited states have been estimated for the first time. To understand the underlying structure of the levels and transition mechanisms, experimental results have been compared with those from the large basis cross-shell shell model calculations. Involvement of orbitals from fp shell and squeezing of the sd-fp shell gap seem to be essential for reliable reproduction of high spin states
FEM Modelling of Lateral-Torsional Buckling Using Shell and Solid Elements
DEFF Research Database (Denmark)
Valeš, Jan; Stan, Tudor-Cristian
2017-01-01
The paper describes two methods of FEM modelling of I-section beams loaded by bending moments. Series of random realizations with initial imperfections following the first eigenmode of lateral-torsional buckling were created. Two independent FEM software products were used for analyses of resista...... of resistance. At the end the difference and correlation between the results as well as advantages and disadvantages of both methods are discussed....
Effects of rotation on crystal settling in a terrestrial magma ocean: Spherical shell model
Maas, C.; Hansen, U.
2015-12-01
Like Moon or Mars, Earth experienced one or several deep magma ocean periods of globalextent in a later stage of its accretion. The crystallization of these magma oceans is of keyimportance for the chemical structure of Earth, the mantle evolution and the onset of platetectonics. Due to the fast rotation of early Earth and the small magma viscosity, rotationprobably had a profound effect on differentiation processes. For example, Matyska et al.[1994] propose that the distribution of heterogeneities like the two large low shear velocityprovinces (LLSVP) at the core mantle boundary is influenced by rotational dynamicsof early Earth. Further Garnero and McNamara [2008] suggest that the LLSVPs arevery long-living anomalies, probably reaching back to the time of differentiation andsolidification of Earth. However, nearly all previous studies neglect the effects of rotation.In our previous work using a Cartesian model, a strong influence of rotation as well asof latitude on the differentiation processes in an early magma ocean was revealed. Weshowed that crystal settling in an early stage of magma ocean crystallization cruciallydepends on latitude as well as on rotational strength and crystal density.In order to overcome the restrictions as to the geometry of the Cartesian model, we arecurrently developing a spherical model to simulate crystal settling in a rotating sphericalshell. This model will allow us not only to investigate crystal settling at the poles andthe equator, but also at latitudes in-between these regions, as well as the migration ofcrystals between poles and equator. ReferencesE. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle.Science, 320(5876):626-628, 2008.C. Matyska, J. Moser, and D. A. Yuen. The potential influence of radiative heat transferon the formation of megaplumes in the lower mantle. Earth and Planetary ScienceLetters, 125(1):255-266, 1994.