WorldWideScience

Sample records for shell copper plate

  1. Plate shell structures of glass

    Bagger, Anne

    to their curved shape. A plate shell structure maintains a high stiffness-to-weight ratio, while facilitating the use of plane structural elements. The study focuses on using laminated glass panes for the load bearing facets. Various methods of generating a plate shell geometry are suggested. Together with Ghent......, such as facet size, imperfections, and connection characteristics. The critical load is compared to that of a similar, but smoothly curved, shell structure. Based on the investigations throughout the study, a set of guidelines for the structural design of plate shells of glass is proposed....

  2. Antwerp Copper Plates

    Wadum, Jørgen

    1999-01-01

    In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes.......In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes....

  3. A finite element for plates and shells

    Muller, A.; Feijoo, R.A.; Bevilacqua, L.

    1981-08-01

    A simple triangular finite element for plates and shells, is presented. Since the rotation fields are assumed independent of the displacement fields, the element allows one to solve thick shells problems. In the limit for thin shell, the Kirchoff-Love hypothesis is automatically satisfied, thus enlarging its range of application. (Author) [pt

  4. Design of reinforced concrete plates and shells

    Schulz, M.

    1984-01-01

    Nowadays, the internal forces of reinforced concrete laminar structures can be easily evaluated by the finite element procedures. The longitudinal design in each direction is not adequate, since the whole set of internal forces in each point must be concomitantly considered. The classic formulation for the design and new design charts which bring reduction of the amount of necessary reinforcement are presented. A rational reinforced concrete mathematical theory which makes possible the limit state design of plates and shells is discussed. This model can also be applied to define the constitutive relationships of laminar finite elements of reinforced concrete. (Author) [pt

  5. Modeling plate shell structures using pyFormex

    Bagger, Anne; Verhegghe, Benedict; Hertz, Kristian Dahl

    2009-01-01

    A shell structure made of glass combines a light-weight structural concept with glass’ high permeability to light. If the geometry of the structure is plane-based facetted (plate shell structure), the glass elements will be plane panes, and these glass panes will comprise the primary load...... (plate shells and triangulated lattice shells) may not differ in complexity regarding the topology, but when it comes to the practical generation of the geometry, e.g. in CAD, the plate shell is far more troublesome to handle than the triangulated geometry. The free software tool “pyFormex”, developed...

  6. Rectangular Shell Plating Under Uniformly Distributed Hydrostatic Pressure

    Neubert, M; Sommer, A

    1940-01-01

    A check of the calculation methods used by Foppl and Henky for investigating the reliability of shell plating under hydrostatic pressure has proved that the formulas yield practical results within the elastic range of the material. Foppl's approximate calculation leaves one on the safe side. It further was found on the basis of the marked ductility of the shell plating under tensile stress that the strength is from 50 to 100 percent higher in the elastic range than expected by either method.

  7. Adsorption of copper to different biogenic oyster shell structures

    Wu, Qiong; Chen, Jie [College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108 (China); Clark, Malcolm [Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Lismore, NSW 2480 (Australia); Yu, Yan, E-mail: yuyan_1972@126.com [College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Adsorption of copper to waste oyster shell occurs rapidly at pH 5.5. • Copper adsorbs to the different structures of oyster shell at different rates. • The prismatic layer dominates copper sorption rather than the nacreous layer. • SEM analysis shows a porous open network structure to the prismatic layer. • Surface ζ-potentials establish electrostatic attraction to drive copper sorption. - Abstract: The removal of copper from solution by oyster shell powder was investigated for potential wastewater treatment uses. In particular, adsorption behavior differences between the prismatic (PP) and nacreous (NP) shell layers, and how this affects copper removal, were investigated. Experimental results indicated that copper adsorption was highly pH-dependent with optimal copper removal at pH 5.5, where the powdered whole raw shell (RP) removed up to 99.9% of the copper within 24 h at a 10 mg/L initial copper concentration. Langmuir and Freundlich models were used to analyze the isotherm PP, NP and RP data. These results showed a strong homogeneous Langmuir model for low initial copper concentrations (5–30 mg/L) to both RP and PP layer, while strong agreement with a heterogeneous Freundlich model for high initial copper concentrations (30–200 mg/L); nevertheless, a homogeneous Langmuir model provided the best fit for the more dense NP layer across the initial concentration range (5–200 mg/L). The distribution coefficient (K{sub d}) value of PP layer for each initial concentration investigated was substantially higher than the NP layer and it was also found that the PP layer dominated the adsorption process with an adsorption capacity of 8.9 mg/g, while the adsorption capacity of the NP layer was 2.6 mg/g. These differences are believed to be because of the more porous structure of the PP layer, which was confirmed by scanning electron microscopy, infrared spectroscopy, energy-dispersive X-ray spectroscopy, and

  8. Adsorption of copper to different biogenic oyster shell structures

    Wu, Qiong; Chen, Jie; Clark, Malcolm; Yu, Yan

    2014-01-01

    Graphical abstract: - Highlights: • Adsorption of copper to waste oyster shell occurs rapidly at pH 5.5. • Copper adsorbs to the different structures of oyster shell at different rates. • The prismatic layer dominates copper sorption rather than the nacreous layer. • SEM analysis shows a porous open network structure to the prismatic layer. • Surface ζ-potentials establish electrostatic attraction to drive copper sorption. - Abstract: The removal of copper from solution by oyster shell powder was investigated for potential wastewater treatment uses. In particular, adsorption behavior differences between the prismatic (PP) and nacreous (NP) shell layers, and how this affects copper removal, were investigated. Experimental results indicated that copper adsorption was highly pH-dependent with optimal copper removal at pH 5.5, where the powdered whole raw shell (RP) removed up to 99.9% of the copper within 24 h at a 10 mg/L initial copper concentration. Langmuir and Freundlich models were used to analyze the isotherm PP, NP and RP data. These results showed a strong homogeneous Langmuir model for low initial copper concentrations (5–30 mg/L) to both RP and PP layer, while strong agreement with a heterogeneous Freundlich model for high initial copper concentrations (30–200 mg/L); nevertheless, a homogeneous Langmuir model provided the best fit for the more dense NP layer across the initial concentration range (5–200 mg/L). The distribution coefficient (K d ) value of PP layer for each initial concentration investigated was substantially higher than the NP layer and it was also found that the PP layer dominated the adsorption process with an adsorption capacity of 8.9 mg/g, while the adsorption capacity of the NP layer was 2.6 mg/g. These differences are believed to be because of the more porous structure of the PP layer, which was confirmed by scanning electron microscopy, infrared spectroscopy, energy-dispersive X-ray spectroscopy, and

  9. Preparation of graphite dispersed copper composite on copper plate with CO2 laser

    Yokoyama, S.; Ishikawa, Y.; Muizz, M. N. A.; Hisyamudin, M. N. N.; Nishiyama, K.; Sasano, J.; Izaki, M.

    2018-01-01

    It was tried in this work to prepare the graphite dispersed copper composite locally on a copper plate with a CO2 laser. The objectives of this study were to clear whether copper graphite composite was prepared on a copper plate and how the composite was prepared. The carbon content at the laser spot decreased with the laser irradiation time. This mainly resulted from the elimination by the laser trapping. The carbon content at the outside of the laser spot increased with time. Both the laser ablation and the laser trapping did not act on the graphite particles at the outside of the laser spot. Because the copper at the outside of the laser spot melted by the heat conduction from the laser spot, the particles were fixed by the wetting. However, the graphite particles were half-floated on the copper plate. The Vickers hardness decreased with an increase with laser irradiation time because of annealing.

  10. A concept of PWR using plate and shell heat exchangers

    Freire, Luciano Ondir; Andrade, Delvonei Alves de

    2015-01-01

    In previous work it was verified the physical possibility of using plate and shell heat exchangers for steam generation in a PWR for merchant ships. This work studies the possibility of using GESMEX commercial of the shelf plate and shell heat exchanger of series XPS. It was found it is feasible for this type of heat exchanger to meet operational and accidental requirements for steam generation in PWR. Additionally, it is proposed an arrangement of such heat exchangers inside the reactor pressure vessel. Such arrangement may avoid ANSI/ANS51.1 nuclear class I requirements on those heat exchangers because they are contained in the reactor coolant pressure barrier and play no role in accidental scenarios. Additionally, those plates work under compression, preventing the risk of rupture. Being considered non-nuclear safety, having a modular architecture and working under compression may turn such architectural choice a must to meet safety objectives with improved economics. (author)

  11. A concept of PWR using plate and shell heat exchangers

    Freire, Luciano Ondir; Andrade, Delvonei Alves de, E-mail: luciano.ondir@gmail.com, E-mail: delvonei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    In previous work it was verified the physical possibility of using plate and shell heat exchangers for steam generation in a PWR for merchant ships. This work studies the possibility of using GESMEX commercial of the shelf plate and shell heat exchanger of series XPS. It was found it is feasible for this type of heat exchanger to meet operational and accidental requirements for steam generation in PWR. Additionally, it is proposed an arrangement of such heat exchangers inside the reactor pressure vessel. Such arrangement may avoid ANSI/ANS51.1 nuclear class I requirements on those heat exchangers because they are contained in the reactor coolant pressure barrier and play no role in accidental scenarios. Additionally, those plates work under compression, preventing the risk of rupture. Being considered non-nuclear safety, having a modular architecture and working under compression may turn such architectural choice a must to meet safety objectives with improved economics. (author)

  12. Catalysts characteristics of Ni/YSZ core-shell according to plating conditions using electroless plating

    Park, Hyun-Wook; Jang, Jae-Won; Lee, Young-Jin; Kim, Jin-Ho; Jeon, Dae-Woo; Lee, Jong-Heun; Hwang, Hae-jin; Lee, Mi-Jai

    2017-11-01

    This study aims to develop an anode catalyst for a solid oxide fuel cell (SOFC) using electroless nickel plating. We have proposed a new method for electroless plating of Ni metal on yttria-stabilized zirconia (YSZ) particles. We examine the uniformity of the Ni layer on the plated core-shell powder, in addition to the content of Ni and the reproducibility of the plating. We have also evaluated the carbon deposition rate and characteristics of the SOFC anode catalyst. To synthesize Ni-plated YSZ particles, the plated powder is heat-treated at 1200 °C. The resultant particles, which have an average size of 50 μm, were subsequently used in the experiment. The size of the Ni particles and the Ni content both increase with increasing plating temperature and plating time. The X-ray diffraction pattern reveals the growth of Ni particles. After heat-treatment, Ni is oxidized to NiO, leading to the co-existence of Ni and NiO; Ni3P is also observed due to the presence of phosphorous in the plating solution. Following heat treatment for 1 h at 1200 °C, Ni is mostly oxidized to NiO. The carbon deposition rate of the reference YSZ powder is 135%, while that of the Ni-plated YSZ is 1%-6%.

  13. Sulfidation treatment of copper-containing plating sludge towards copper resource recovery.

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2006-11-02

    The present study is concerned with the sulfidation treatment of copper-containing plating sludge towards copper resource recovery by flotation of copper sulfide from treated sludge. The sulfidation treatment was carried out by contacting simulated or real copper plating sludge with Na(2)S solution for a period of 5 min to 24 h. The initial molar ratio of S(2-) to Cu(2+) (S(2-) to Me(2+) in the case of real sludge) was adjusted to 1.00, 1.25 or 1.50, while the solid to liquid ratio was set at 1:50. As a result, it was found that copper compounds were converted to various copper sulfides within the first 5 min. In the case of simulated copper sludge, CuS was identified as the main sulfidation product at the molar ratio of S(2-) to Cu(2+) of 1.00, while Cu(7)S(4) (Roxbyite) was mainly found at the molar ratios of S(2-) to Cu(2+) of 1.50 and 1.25. Based on the measurements of oxidation-reduction potential, the formation of either CuS or Cu(7)S(4) at different S(2-) to Cu(2+) molar ratios was attributed to the changes in the oxidation-reduction potential. By contrast, in the case of sulfidation treatment of real copper sludge, CuS was predominantly formed, irrespective of S(2-) to Me(2+) molar ratio.

  14. Electron beam hardening type copper plate printing ink

    Kawamura, Eiji; Inoue, Mitsuo; Kusaki, Satoichiro

    1989-01-01

    Copper plate printing is the printing method of filling ink in the parts of concave printing elements on a type area, and transferring the ink to a base, and it is the feature that the ink in the printing element parts of a print rises. Copper plate prints show profound feeling, in addition, its effect of preventing forgery is high. This method is generally called engraving printing, and is used frequently for printing various bills and artistic prints. The electron beam irradiation apparatus installed in the laboratory of the Printing Bureau, Ministry of Finance, is an experimental machine of area beam type, and is so constructed as to do batch conveyance and web conveyance. As the ink in printing element parts rises, the offset at the delivery part of a printing machine becomes a problem. Electron beam is superior in its transparency, and can dry instantaneously to the inside of opaque ink. At 200 kV of acceleration voltage, the ink of copper plate prints can be hardened by electron beam irradiation. The dilution monomers as the vehicle for ink were tested for their dilution capability and the effect of electron beam hardening. The problem in the utilization of electron beam is the deterioration of papers, and the counter-measures were tested. (K.I.)

  15. Seeding of silicon by copper ion implantation for selective electroless copper plating

    Bhansali, S; Sood, D K; Zmood, R B [Microelectronic and Materials Technology Centre, Royal Melbourne Institute of Technolgy, Melbourne, VIC (Australia)

    1994-12-31

    We report on the successful use of copper(self) ion implantation into silicon to seed the electroless plating of copper on silicon (100) surfaces. Copper ions have been implanted to doses of 5E14-6.4E16 ions/cm{sup 2} using a MEEVA ion implanter at extraction voltage of 40kV. Dose was varied in fine steps to determine the threshold dose of 2E15 Cu ions/cm{sup 2} for `seed` formation of copper films on silicon using a commercial electroless plating solution. Plated films were studied with Rutherford backscattering spectrometry, scanning electron microscopy, EDX and profilometry . The adhesion of films was measured by `scotch tape test`. The adhesion was found to improve with increasing dose. However thicker films exhibited rather poor adhesion and high internal stress. SEM results show that the films grow first as isolated islands which become larger and eventually impinge into a continuous film as the plating time is increased. (authors). 5 refs., 1 tab., 3 figs.

  16. Seeding of silicon by copper ion implantation for selective electroless copper plating

    Bhansali, S.; Sood, D.K.; Zmood, R.B. [Microelectronic and Materials Technology Centre, Royal Melbourne Institute of Technolgy, Melbourne, VIC (Australia)

    1993-12-31

    We report on the successful use of copper(self) ion implantation into silicon to seed the electroless plating of copper on silicon (100) surfaces. Copper ions have been implanted to doses of 5E14-6.4E16 ions/cm{sup 2} using a MEEVA ion implanter at extraction voltage of 40kV. Dose was varied in fine steps to determine the threshold dose of 2E15 Cu ions/cm{sup 2} for `seed` formation of copper films on silicon using a commercial electroless plating solution. Plated films were studied with Rutherford backscattering spectrometry, scanning electron microscopy, EDX and profilometry . The adhesion of films was measured by `scotch tape test`. The adhesion was found to improve with increasing dose. However thicker films exhibited rather poor adhesion and high internal stress. SEM results show that the films grow first as isolated islands which become larger and eventually impinge into a continuous film as the plating time is increased. (authors). 5 refs., 1 tab., 3 figs.

  17. Seeding of silicon by copper ion implantation for selective electroless copper plating

    Bhansali, S.; Sood, D.K.; Zmood, R.B.

    1993-01-01

    We report on the successful use of copper(self) ion implantation into silicon to seed the electroless plating of copper on silicon (100) surfaces. Copper ions have been implanted to doses of 5E14-6.4E16 ions/cm 2 using a MEEVA ion implanter at extraction voltage of 40kV. Dose was varied in fine steps to determine the threshold dose of 2E15 Cu ions/cm 2 for 'seed' formation of copper films on silicon using a commercial electroless plating solution. Plated films were studied with Rutherford backscattering spectrometry, scanning electron microscopy, EDX and profilometry . The adhesion of films was measured by 'scotch tape test'. The adhesion was found to improve with increasing dose. However thicker films exhibited rather poor adhesion and high internal stress. SEM results show that the films grow first as isolated islands which become larger and eventually impinge into a continuous film as the plating time is increased. (authors). 5 refs., 1 tab., 3 figs

  18. Control of Compact-Toroid Characteristics by External Copper Shell

    Matsumoto, T.; Sekiguchi, J.; Asai, T.; Gota, H.; Roche, T.; Allfrey, I.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; the TAE Team

    2015-11-01

    A collaborative research project by Tri Alpha Energy and Nihon University has been conducted for several years, which led to the development of a new compact toroid (CT) injector for efficient FRC particle refueling in the C-2U experiment. The CT is formed by a magnetized coaxial plasma gun (MCPG), consisting of coaxial cylindrical electrodes. In CT formation via MCPG, the magnetic helicity content of the generated CT is one of the critical parameters. A bias coil is inserted into the inner electrode to generate a poloidal flux. The resultant bias magnetic field is spread out of MCPG with time due to its low-frequency bias current. To obtain a more effectively distributed bias magnetic field as well as to improve the voltage breakdown between electrodes, the MCPG incorporates a novel ~ 1 mm thick copper shell mounted outside of the outer electrode. This allows for reliable and controlled operation and more robust CT generation. A detailed discussion of the copper shell and experimental test results will be presented.

  19. Laser-induced selective copper plating of polypropylene surface

    Ratautas, K.; Gedvilas, M.; Stankevičiene, I.; JagminienÄ--, A.; Norkus, E.; Li Pira, N.; Sinopoli, S.; Emanuele, U.; Račiukaitis, G.

    2016-03-01

    Laser writing for selective plating of electro-conductive lines for electronics has several significant advantages, compared to conventional printed circuit board technology. Firstly, this method is faster and cheaper at the prototyping stage. Secondly, material consumption is reduced, because it works selectively. However, the biggest merit of this method is potentiality to produce moulded interconnect device, enabling to create electronics on complex 3D surfaces, thus saving space, materials and cost of production. There are two basic techniques of laser writing for selective plating on plastics: the laser-induced selective activation (LISA) and laser direct structuring (LDS). In the LISA method, pure plastics without any dopant (filler) can be used. In the LDS method, special fillers are mixed in the polymer matrix. These fillers are activated during laser writing process, and, in the next processing step, the laser modified area can be selectively plated with metals. In this work, both methods of the laser writing for the selective plating of polymers were investigated and compared. For LDS approach, new material: polypropylene with carbon-based additives was tested using picosecond and nanosecond laser pulses. Different laser processing parameters (laser pulse energy, scanning speed, the number of scans, pulse durations, wavelength and overlapping of scanned lines) were applied in order to find out the optimal regime of activation. Areal selectivity tests showed a high plating resolution. The narrowest width of a copper-plated line was less than 23 μm. Finally, our material was applied to the prototype of the electronic circuit board on a 2D surface.

  20. Modeling pore corrosion in normally open gold- plated copper connectors.

    Battaile, Corbett Chandler; Moffat, Harry K.; Sun, Amy Cha-Tien; Enos, David George; Serna, Lysle M.; Sorensen, Neil Robert

    2008-09-01

    The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H{sub 2}S at 30 C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle Class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict both the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to complete the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily.

  1. Fabrication of conductive copper patterns using reactive inkjet printing followed by two-step electroless plating

    Chen, Jin-Ju; Lin, Guo-Qiang; Wang, Yan [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 (China); Sowade, Enrico; Baumann, Reinhard R. [Digital Printing and Imaging Technology, Technische Universität Chemnitz, Chemnitz, 09126 (Germany); Feng, Zhe-Sheng, E-mail: fzs@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 (China)

    2017-02-28

    Highlights: • Copper patterns were fabricated by reactive inkjet printing and two-step electroless plating. • Cu particles produced via reactive inkjet printing act as catalyst for copper electroless plating. • High conductivity can be obtained without many printing passes and high temperature sintering. • This approach can largely avoid nozzle-clogging problems. • This approach presents a potential way in the flexible printed electronics with simple process. - Abstract: A simple and low-cost process for fabricating conductive copper patterns on flexible polyimide substrates was demonstrated. Copper catalyst patterns were first produced on polyimide substrates using reactive inkjet printing of Cu (II)-bearing ink and reducing ink, and then the conductive copper patterns were generated after a two-step electroless plating procedure. The copper layers were characterized by optical microscope, SEM, XRD and EDS. Homogeneously distributed copper nanoclusters were found in the catalyst patterns. A thin copper layer with uniform particle size was formed after first-step electroless plating, and a thick copper layer of about 14.3 μm with closely packed structure and fine crystallinity was produced after second-step electroless plating. This resulting copper layer had good solderability, reliable adhesion strength and a low resistivity of 5.68 μΩ cm without any sintering process.

  2. Fabrication of conductive copper patterns using reactive inkjet printing followed by two-step electroless plating

    Chen, Jin-Ju; Lin, Guo-Qiang; Wang, Yan; Sowade, Enrico; Baumann, Reinhard R.; Feng, Zhe-Sheng

    2017-01-01

    Highlights: • Copper patterns were fabricated by reactive inkjet printing and two-step electroless plating. • Cu particles produced via reactive inkjet printing act as catalyst for copper electroless plating. • High conductivity can be obtained without many printing passes and high temperature sintering. • This approach can largely avoid nozzle-clogging problems. • This approach presents a potential way in the flexible printed electronics with simple process. - Abstract: A simple and low-cost process for fabricating conductive copper patterns on flexible polyimide substrates was demonstrated. Copper catalyst patterns were first produced on polyimide substrates using reactive inkjet printing of Cu (II)-bearing ink and reducing ink, and then the conductive copper patterns were generated after a two-step electroless plating procedure. The copper layers were characterized by optical microscope, SEM, XRD and EDS. Homogeneously distributed copper nanoclusters were found in the catalyst patterns. A thin copper layer with uniform particle size was formed after first-step electroless plating, and a thick copper layer of about 14.3 μm with closely packed structure and fine crystallinity was produced after second-step electroless plating. This resulting copper layer had good solderability, reliable adhesion strength and a low resistivity of 5.68 μΩ cm without any sintering process.

  3. A New Type of Inscribed Copper Plate from Indus Valley (Harappan Civilisation

    Vasant Shinde

    2014-10-01

    Full Text Available A group of nine Indus Valley copper plates (c. 2600–2000 BC, discovered from private collections in Pakistan, appear to be of an important type not previously described. The plates are significantly larger and more robust than those comprising the corpus of known copper plates or tablets, and most significantly differ in being inscribed with mirrored characters. One of the plates bears 34 characters, which is the longest known single Indus script inscription. Examination of the plates with x-ray fluorescence (XRF spectrophotometry indicates metal compositions, including arsenical copper, consistent with Indus Valley technology. Microscopy of the metal surface and internal structure reveals detail such as pitting, microcrystalline structure, and corrosion, consistent with ancient cast copper artifacts. Given the relative fineness of the engraving, it is hypothesised that the copper plates were not used as seals, but have characteristics consistent with use in copper plate printing. As such, it is possible that these copper plates are by far the earliest known printing devices, being at least 4000 years old.

  4. Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives

    Pasquale, M.A.; Gassa, L.M.; Arvia, A.J.

    2008-01-01

    Copper electrodeposition on copper from still plating solutions of different compositions was investigated utilising electrochemical impedance spectroscopy (EIS), cyclic voltammetry, and scanning electron microscopy (SEM). An acid copper sulphate plating base solution was employed either with or without sodium chloride in the presence of a single additive, either polyethylene glycol (PEG) or 3-mercapto-2-propanesulphonic acid (MPSA), and their mixture. Thallium underpotential deposition/anodic stripping was employed to determine the adsorption capability of additives on copper. In the absence of chloride ions, MPSA shows a moderate adsorption on copper, whereas PEG is slightly adsorbed. At low cathodic overpotentials, the simultaneous presence of MPSA and chloride ions accelerates copper electrodeposition through the formation of an MPSA-chloride ion complex in the solution, particularly for about 220 μM sodium chloride. The reverse effect occurs in PEG-sodium chloride plating solutions. In this case, from EIS data the formation of a film that interferes with copper electrodeposition can be inferred. At higher cathodic overpotentials, when copper electrodeposition is under mass transport control, the cathode coverage by a PEG-copper chloride-mediated film becomes either partially or completely detached as the concentration of chloride ions at the negatively charged copper surface diminishes. The copper cathode grain topography at the μm scale depends on the cathodic overpotential, plating solution composition and average current density. Available data about the solution constituents and their adsorption on copper make it possible to propose a likely complex mechanism to understand copper electrodeposition from these media, including the accelerating effect of MPSA and the dynamics of PEG-copper chloride complex adsorbate interfering with the surface mobility of depositing copper ad-ions/ad-atoms

  5. Quasi-estatic and dynamic elasto/viscoplastic analysis of plates and shells

    Dinis, L.M.S.

    1981-01-01

    The non-linear quasi-static and dynamic analysis of plates and shells is presented using the finite - element method for spatial discretization and the Central Finite Differences for the integration of the transient dynamic equation. The behaviour of the material is represented by the elasto/viscoplastic model of Perzyna together with approximations of the Von Mises yield surfaces for plates and shells. (Author) [pt

  6. FEATURES APPLICATION CIRCUIT MOMENT FINITE ELEMENT (MSSE) NONLINEAR CALCULATIONS OF PLATES AND SHELLS

    Bazhenov V.A.; Sacharov A.S.; Guliar A. I.; Pyskunov S.O.; Maksymiuk Y.V.

    2014-01-01

    Based MSSE created shell CE general type, which allows you to analyze the stress-strain state of axisymmetrical shells and plates in problems of physical and geometric nonlinearity. The principal nonlinear elasticity theory, algorithms for solving systems of nonlinear equations for determining the temperature and plastic deformation.

  7. FEATURES APPLICATION CIRCUIT MOMENT FINITE ELEMENT (MSSE NONLINEAR CALCULATIONS OF PLATES AND SHELLS

    Bazhenov V.A.

    2014-06-01

    Full Text Available Based MSSE created shell CE general type, which allows you to analyze the stress-strain state of axisymmetrical shells and plates in problems of physical and geometric nonlinearity. The principal nonlinear elasticity theory, algorithms for solving systems of nonlinear equations for determining the temperature and plastic deformation.

  8. Calculations of concrete plates and shells under impact load

    Kappler, H.; Krings, W.

    1982-01-01

    The dynamic behaviour of concrete slabs and shells is determined for a given load time function using axisymmetric computational models with an exact formulation for the midpoint. On the basis of a finite difference method, rotational inertia, shear deformation, elasticity and cracking are taken into account. For shells the coupling of bending moment and normal force is considered. Comparisons with two-dimensional models show good agreement connected with a considerable reduction of computational time. (orig.) [de

  9. Plated copper front side metallization on printed seed-layers for silicon solar cells

    Kraft, Achim

    2015-01-01

    A novel copper front side metallization architecture for silicon solar cells based on a fine printed silver seed-layer, plated with nickel, copper and silver, is investigated. The work focuses on the printing of fine seed-layers with low silver consumption, the corrosion of the printed seed-layers by the interaction with electrolyte solutions and the encapsulation material on module level and on the long term stability of the cells due to copper migration. The investigation of the correlation...

  10. Controllable synthesis and characterization of novel copper-carbon core-shell structured nanoparticles

    Zhai, Jing; Tao, Xia; Pu, Yuan; Zeng, Xiao-Fei; Chen, Jian-Feng

    2011-01-01

    Highlights: → We reported a facile, green and cheap hydrothermal method to obtain novel copper-carbon core-shell nanoparticles. → The as-formed particles with controllable size and morphology are antioxidant. → The particles with organic-group-loaded surfaces and protective shells are expected to be applied in fields of medicine, electronics, sensors and lubricant. -- Abstract: A facile hydrothermal method was developed for preparing copper-carbon core-shell structured particles through a reaction at 160 o C in which glucose, copper sulfate pentahydrate and cetyltrimethylammonium bromide were used as starting materials. The original copper-carbon core-shell structured particles obtained were sized of 100-250 nm. The thickness of carbonaceous shells was controlled ranging from 25 to 100 nm by adjusting the hydrothermal duration time and the concentrations of glucose in the process. Products were characterized with transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, Fourier transform infrared spectroscopy. Since no toxic materials were involved in the preparation, particles with stable carbonaceous framework and reactive surface also showed promising applications in medicine, electronics, sensors, lubricant, etc.

  11. Controllable synthesis and characterization of novel copper-carbon core-shell structured nanoparticles

    Zhai, Jing [Sin-China Nano Technology Center, Key Lab for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan Dong Lu, Beijing 100029 (China); Tao, Xia; Pu, Yuan; Zeng, Xiao-Fei [Sin-China Nano Technology Center, Key Lab for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Chen, Jian-Feng, E-mail: chenjf@mail.buct.edu.cn [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan Dong Lu, Beijing 100029 (China)

    2011-06-15

    Highlights: {yields} We reported a facile, green and cheap hydrothermal method to obtain novel copper-carbon core-shell nanoparticles. {yields} The as-formed particles with controllable size and morphology are antioxidant. {yields} The particles with organic-group-loaded surfaces and protective shells are expected to be applied in fields of medicine, electronics, sensors and lubricant. -- Abstract: A facile hydrothermal method was developed for preparing copper-carbon core-shell structured particles through a reaction at 160 {sup o}C in which glucose, copper sulfate pentahydrate and cetyltrimethylammonium bromide were used as starting materials. The original copper-carbon core-shell structured particles obtained were sized of 100-250 nm. The thickness of carbonaceous shells was controlled ranging from 25 to 100 nm by adjusting the hydrothermal duration time and the concentrations of glucose in the process. Products were characterized with transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, Fourier transform infrared spectroscopy. Since no toxic materials were involved in the preparation, particles with stable carbonaceous framework and reactive surface also showed promising applications in medicine, electronics, sensors, lubricant, etc.

  12. Expeditious low-temperature sintering of copper nanoparticles with thin defective carbon shells

    Kim, Changkyu; Lee, Gyoungja; Rhee, Changkyu; Lee, Minku

    2015-04-01

    The realization of air-stable nanoparticles, well-formulated nanoinks, and conductive patterns based on copper is a great challenge in low-cost and large-area flexible printed electronics. This work reports the synthesis of a conductively interconnected copper structure via thermal sintering of copper inks at a low temperature for a short period of time, with the help of thin defective carbon shells coated onto the copper nanoparticles. Air-stable copper/carbon core/shell nanoparticles (typical size ~23 nm, shell thickness ~1.0 nm) are prepared by means of an electric explosion of wires. Gaseous oxidation of the carbon shells with a defective structure occurs at 180 °C, impacting the choice of organic solvents as well as the sintering conditions to create a crucial neck formation. Isothermal oxidation and reduction treatment at 200 °C for only about 10 min yields an oxide-free copper network structure with an electrical resistivity of 25.1 μΩ cm (14.0 μΩ cm at 250 °C). Finally, conductive copper line patterns are achieved down to a 50 μm width with an excellent printing resolution (standard deviation ~4.0%) onto a polyimide substrate using screen printing of the optimized inks.The realization of air-stable nanoparticles, well-formulated nanoinks, and conductive patterns based on copper is a great challenge in low-cost and large-area flexible printed electronics. This work reports the synthesis of a conductively interconnected copper structure via thermal sintering of copper inks at a low temperature for a short period of time, with the help of thin defective carbon shells coated onto the copper nanoparticles. Air-stable copper/carbon core/shell nanoparticles (typical size ~23 nm, shell thickness ~1.0 nm) are prepared by means of an electric explosion of wires. Gaseous oxidation of the carbon shells with a defective structure occurs at 180 °C, impacting the choice of organic solvents as well as the sintering conditions to create a crucial neck formation

  13. Extensive Characterisation of Copper-clad Plates, Bonded by the Explosive Technique, for ITER Electrical Joints

    Langeslag, S A E; Libeyre, P; Gung, C Y

    2015-01-01

    Cable-in-conduit conductors will be extensively implemented in the large superconducting magnet coils foreseen to confine the plasma in the ITER experiment. The design of the various magnet systems imposes the use of electrical joints to connect unit lengths of superconducting coils by inter-pancake coupling. These twin-box lap type joints, produced by compacting each cable end in into a copper - stainless steel bimetallic box, are required to be highly performing in terms of electrical and mechanical prop- erties. To ascertain the suitability of the first copper-clad plates, recently produced, the performance of several plates is studied. Validation of the bonded interface is carried out by determining microstructural, tensile and shear characteristics. These measure- ments confirm the suitability of explosion bonded copper-clad plates for an overall joint application. Additionally, an extensive study is conducted on the suitability of certain copper purity grades for the various joint types.

  14. Annealing effects in plated-wire memory elements. I - Interdiffusion of copper and Permalloy.

    Knudson, C. I.; Kench, J. R.

    1971-01-01

    Results of investigations using X-ray diffraction and electron-beam microprobe techniques have shown that copper and Permalloy platings interdiffuse at low temperatures when plated-wire memory elements are annealed for times as short as 50 hr. Measurable interdiffusion between Permalloy platings and gold substrates does not occur in similar conditions. Both magnetic and compositional changes during aging are found to occur by a thermally activated process with activation energies around 38 kcal/mol. It is shown, however, that copper-diffusion and magnetic-dispersion changes during aging are merely concurrent processes, neither being the other's cause.

  15. Preparation of 103Pd seeds. Part 2. 'Molecular Plating' of 103Pd onto copper rod

    Chunfu Zhang; Yongxian Wang; Haibin Tian; Duanzhi Yin

    2002-01-01

    A method for 103 Pd 'molecular plating' onto the surface of the copper rod is reported. The optimal composition of the plating bath was: palladium chloride 2 g/l, ammonium hydroxide (28%) 150 ml/l, sodium hypophosphite 12 g/l, and ammonium chloride 37 g/l. The whole procedure of 103 Pd 'molecular plating' will last 50 minutes at 40 deg C. Valuable experience for the preparation of 103 Pd seeds is provided. (author)

  16. Transcriptome response to copper heavy metal stress in hard-shelled mussel (Mytilus coruscus

    Meiying Xu

    2016-03-01

    Full Text Available The hard-shelled mussel (Mytilus coruscus has considerably one of the most economically important marine shellfish worldwide and considered as a good invertebrate model for ecotoxicity study for a long time. In the present study, we used Illumina sequencing technology (HiSeq2000 to sequence, assemble and annotate the transcriptome of the hard-shelled mussel which challenged with copper pollution. A total of 21,723,913 paired-end clean reads (NCBI SRA database SRX1411195 were generated from HiSeq2000 sequencer and 96,403 contigs (with N50 = 1118 bp were obtained after de novo assembling with Trinity software. Digital gene expression analysis reveals 1156 unigenes are upregulated and 1681 unigenes are downregulated when challenged with copper. By KEGG pathway enrichment analysis, we found that unigenes in four KEGG pathways (aminoacyl-tRNA biosynthesis, apoptosis, DNA replication and mismatch repair show significant differential expressed between control and copper treated groups. We hope that the gill transcriptome in copper treated hard-shelled mussel can give useful information to understand how mussel handles with heavy metal stress at molecular level. Keywords: Hard-shelled mussel, Heavy metal, Transcriptome, Ecotoxicity

  17. Microstructure & Other Properties of Pulse-Plated Copper for Electroforming Applications

    Tang, Peter Torben; Jensen, Jens Dahl; Dam, H.C.

    2002-01-01

    Microstructure, hardness, material distribution and current efficiency were studied for various pulse patterns (both direct current, on/off and pulse reverse plating) and different bath compositions of copper sulfate and sulfuric acid, with additions of chloride. The objective was to develop a re...... a reliable copper electroforming process to provide a fine-grained and hard (above HV 125) deposit with good micro- and macrothrowing power. Potential applications include solar cell panels, tools for micro injection molding and various microelectromechanical systems (MEMS)....

  18. Plated copper substrates for the LASL Antares CO2 laser system

    Blevins, D.J.; Munroe, J.L.

    1979-01-01

    Antares is a large carbon-dioxide laser system presently under construction at the Los Alamos Scientific Laboratory (LASL). Antares will be part of the LASL High Energy Gas Laser Facility (HEGLF). Its purpose will be to investigate inertial confinement fusion with light of 10.6-μm wavelength. Most of the optics comprising Antares will be reflectors and, for many reasons, copper is the material of choice. The mirrors range in size from 2.5 cm in diameter to 45 cm in diameter. The copper must be very pure to help maximize damage threshold, making plated copper an attractive solution. The final mirror should be very stable, i.e., characterized by very low microcreep. This makes an alloy a more suitable substrate candidate than pure copper. For Antares, all of the smaller mirrors will be made of copper plated onto an aluminum-bronze substrate, and all of the larger mirrors will be made of copper plated onto aluminum alloy 2124. This paper discusses how this design was arrived at and the methods used to assure a satisfactory mirror

  19. Quality assurance of brazed copper plates through advanced ultrasonic NDE

    Segreto, T.; Caggiano, A.; Teti, R.

    2016-01-01

    Ultrasonic non-destructive methods have demonstrated great potential for the detection of flaws in a material under examination. In particular, discontinuities produced by welding, brazing, and soldering are regularly inspected through ultrasonic techniques. In this paper, an advanced ultrasonic non-destructive evaluation technique is applied for the quality control of brazed copper cells in order to realize an accelerometer prototype for cancer proton therapy. The cells are composed of two h...

  20. Influence of copper volume fraction on tensile strain/stress tolerances of critical current in a copper-plated DyBCO-coated conductor

    Ochiai, Shojiro; Okuda, Hiroshi; Arai, Takahiro; Sugano, Michinaka; Osamura, Kozo; Prusseit, Werner

    2013-01-01

    The influence of the volume fraction (V f ) of copper, plated at room temperature over a DyBa 2 Cu 3 O 7-δ -coated conductor, on the tensile strain tolerance and stress tolerance of critical current at 77 K was studied over a wide range of copper V f values. The copper plating exerts a tensile stress during cooling because copper has a higher coefficient of thermal expansion than the substrate conductor. Before application of tensile strain, the copper plated at room temperature yielded at 77 K when the copper V f was lower than a critical value, and was in an elastic state at 77 K when the copper V f was higher than the critical value. The strain tolerance of critical current increased with increasing copper V f due to an increase in thermally induced compressive strain in the substrate tape. The stress tolerance of critical current decreased with increasing copper V f because copper is softer than the substrate tape. These results, together with the trade-off between strain tolerance and stress tolerance (i.e., stress tolerance decreases with increasing strain tolerance), were analyzed by modeling. The results show that the restriction imposed by the trade-off, which limits the ability to simultaneously obtain a high strain tolerance and a high stress tolerance, can be relaxed by strengthening the copper. (author)

  1. Assessment of Real Heat Transfer Coefficients through Shell and Tube and Plate Heat Exchangers

    Dan CONSTANTINESCU

    2011-07-01

    Full Text Available The purpose of this paper is to present a procedure used in the assessment of the real heat transfer characteristic of shell and tube and plate heat exchangers. The theoretical fundamentals of the procedure are introduced as well as the measured data collection and processing. The theoretical analysis is focused on the adoption of criterial equations which, subjected to certain verification criteria presented in the paper, provide the most credible value of the convection heat transfer coefficients inside the circular and flat tubes. In the end two case studies are presented, one concerning a shell and tube heat exchanger operational at INCERC Thermal Substation and the other concerning a plate heat exchanger tested on the Laboratory Stand of the Department of Building Services and Efficient Use of Energy in Buildings of INCERC Bucharest.

  2. Electroless copper plating on 3-mercaptopropyltriethoxysilane modified PET fabric challenged by ultrasonic washing

    Lu Yinxiang

    2009-01-01

    Electroless deposition of Cu on poly(ethylene terephthalate) (PET) fabric modified with 3-mercaptopropyltriethoxysilane was investigated. Morphology, composition, structure, thermal decomposing behavior of copper coating PET fabric after ultrasonic washing in water for 1 h were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS), Raman spectrometer, X-ray diffraction (XRD), and thermogravimetric analysis (TG), respectively. Copper plating on modified fabric has good adherence stability and high electric conductivity before and after ultrasonic washing, while copper coating fabric without modification is easily destroyed during the washing process, which leads to the textile changing from conductor to dielectric. As the copper weight on the treated fabric is 28 g/m 2 , the shielding effectiveness (SE) is more than 54 dB at frequency ranging from 0.01 MHz to 18 GHz.

  3. Quenching characteristics of bathocuproinedisulfonic acid, disodium salt in aqueous solution and copper sulfate plating solution

    Koga, Toshiaki; Hirakawa, Chieko; Takeshita, Michinori; Terasaki, Nao

    2018-04-01

    Bathocuproinedisulfonic acid, disodium salt (BCS) is generally used to detect Cu(I) through a color reaction. We newly found BCS fluorescence in the visible blue region in an aqueous solution. However, the fluorescence mechanism of BCS is not well known, so we should investigate its fundamental information. We confirmed that the characteristics of fluorescence are highly dependent on the molecular concentration and solvent properties. In particular, owing to the presence of the copper compound, the fluorescence intensity extremely decreases. By fluorescence quenching, we observed that a copper compound concentration of 10-6 mol/L or less could easily be measured in an aqueous solution. We also observed BCS fluorescence in copper sulfate plating solution and the possibility of detecting monovalent copper by fluorescence reabsorption.

  4. Control of biofouling on titanium condenser tubes with the use of electroless copper plating

    Anandkumar, B.; George, R.P.; Kamachi Mudali, U.; Ramachandran, D.

    2015-01-01

    In sea water environments titanium condenser tubes face serious issues of biofouling and biomineralization. Electroless plating of nanocopper film is attempted inside the tubes for the control of biofilm formation. Using advanced techniques like AFM, SEM, and XPS, electroless copper plated flat Ti specimens were characterized. Examination of Cu coated Ti surfaces using AFM and SEM showed more reduction in the microroughness compared to anodized Ti surface. Cu 2p 3/2 peak in XPS spectral analysis showed the shift in binding energy inferring the reduction of the hydroxide to metallic copper. Tubular specimens were exposed to sea water up to three months and withdrawn at monthly intervals to evaluate antibacterial activity and long term stability of the coating. Total viable counts and epifluorescence microscopy analyses showed two orders decrease in bacterial counts on copper coated Ti specimens when compared to as polished control Ti specimens. Molecular biology techniques like DGGE and protein expression analysis system were done to get insight into the community diversity and copper tolerance of microorganisms. DGGE gel bands clearly showed the difference in the bacterial diversity inferring from the 16S rRNA gene fragments (V3 regions). Protein analysis showed distinct protein spots appearing in electroless copper coated Ti biofilm protein samples in addition to protein spots common to both the biofilms of Cu coated and as polished Ti. The results indicated copper accumulating proteins in copper resistant bacterial species of biofilm. Reduced microroughness of the surface and toxic copper ions resulted in good biofouling control even after three months exposure to sea water. (author)

  5. Review of supercontainer copper shell-bentonite interactions and possible effects on buffer performance for the KBS-3H design

    King, F.; Wersin, P.

    2014-03-01

    A review is presented of the possible impact of the corrosion of a copper supercontainer shell on the performance of the bentonite buffer. The review is presented in two parts; first an assessment of the likely corrosion behaviour of the copper shell, including an assessment of the amount and speciation of copper corrosion products, and, second an assessment of the possible interactions of these copper corrosion products with the bentonite and the consequences for the buffer performance. The corrosion behaviour of oxygen-free copper in compacted bentonite is reviewed, including the effects of a possible lower-density region at the buffer-rock interface initially. Corrosion occurs under both aerobic conditions, due to the initial O 2 trapped in the bentonite and O 2 in the air or water-filled gap at the buffer/rock interface, and anaerobic conditions, due to sulphide present in the groundwater and that possibly produced by microbial activity in the bentonite. The reaction mechanism, the nature of the dissolved and precipitated corrosion products, and the evolution of the corrosion behaviour with time are discussed with reference to groundwater conditions at both Olkiluoto and Forsmark. Various interactions between the copper corrosion products (Cu(II) and Cu(I) species) and bentonite are considered, including diffusion and sorption and the incorporation of Cu into the bentonite. The available literature information on these processes is first reviewed and then this knowledge is used to predict the likely behaviour in a KBS-3H-style repository. Based on the information currently available, it is concluded that the corrosion of a copper supercontainer shell will only affect the bentonite within a distance of a few cm of the original location of the shell. Eventually, the copper shell will corrode to form an insoluble precipitate layer of Cu 2 S approximately 2-3 times the volume of the original shell. Bentonite within a few cm of this layer of precipitate may also

  6. Double coating protection of Nd–Fe–B magnets: Intergranular phosphating treatment and copper plating

    Zheng, Jingwu; Chen, Haibo; Qiao, Liang; Lin, Min; Jiang, Liqiang; Che, Shenglei; Hu, Yangwu

    2014-01-01

    In this work, a double coating protection technique of phosphating treatment and copper plating was made to improve the corrosion resistance of sintered Nd–Fe–B magnets. In other words, the intergranular region of sintered Nd–Fe–B is allowed to generate passive phosphate conversion coating through phosphating treatment, followed by the copper coating on the surface of sintered Nd–Fe–B. The morphology and corrosion resistance of the phosphated sintered Nd–Fe–B were observed using SEM and electrochemical method respectively. The phosphate conversion coating was formed more preferably on the intergranular region of sintered Nd–Fe–B than on the main crystal region; just after a short time of phosphating treatment, the intergranular region of sintered Nd–Fe–B has been covered by the phosphate conversion coating and the corrosion resistance is significantly improved. With the synergistic protection of the intergranular phosphorization and the followed copper electrodeposition, the corrosion resistance of the sintered Nd–Fe–B is significantly better than that with a single phosphate film or single plating protection. - Highlights: • We combined intergranular phosphating and copper plating to protect Nd–Fe–B. • The phosphate conversion coating was formed preferably on the intergranular region. • The phosphating coating can obviously improve the corrosion resistance of Nd–Fe–B. • The corrosion resistance of Nd–Fe–B was improved by double coating protection

  7. Double coating protection of Nd–Fe–B magnets: Intergranular phosphating treatment and copper plating

    Zheng, Jingwu; Chen, Haibo; Qiao, Liang [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Lin, Min [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, Ningbo 315201 (China); Jiang, Liqiang; Che, Shenglei [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Hu, Yangwu, E-mail: 346648086@qq.com [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Wenzhou Institute of Industry and Science, Wenzhou 325000 (China)

    2014-12-15

    In this work, a double coating protection technique of phosphating treatment and copper plating was made to improve the corrosion resistance of sintered Nd–Fe–B magnets. In other words, the intergranular region of sintered Nd–Fe–B is allowed to generate passive phosphate conversion coating through phosphating treatment, followed by the copper coating on the surface of sintered Nd–Fe–B. The morphology and corrosion resistance of the phosphated sintered Nd–Fe–B were observed using SEM and electrochemical method respectively. The phosphate conversion coating was formed more preferably on the intergranular region of sintered Nd–Fe–B than on the main crystal region; just after a short time of phosphating treatment, the intergranular region of sintered Nd–Fe–B has been covered by the phosphate conversion coating and the corrosion resistance is significantly improved. With the synergistic protection of the intergranular phosphorization and the followed copper electrodeposition, the corrosion resistance of the sintered Nd–Fe–B is significantly better than that with a single phosphate film or single plating protection. - Highlights: • We combined intergranular phosphating and copper plating to protect Nd–Fe–B. • The phosphate conversion coating was formed preferably on the intergranular region. • The phosphating coating can obviously improve the corrosion resistance of Nd–Fe–B. • The corrosion resistance of Nd–Fe–B was improved by double coating protection.

  8. Group-invariant solutions of nonlinear elastodynamic problems of plates and shells

    Dzhupanov, V.A.; Vassilev, V.M.; Dzhondzhorov, P.A.

    1993-01-01

    Plates and shells are basic structural components in nuclear reactors and their equipment. The prediction of the dynamic response of these components to fast transient loadings (e.g., loadings caused by earthquakes, missile impacts, etc.) is a quite important problem in the general context of the design, reliability and safety of nuclear power stations. Due to the extreme loading conditions a more adequate treatment of the foregoing problem should rest on a suitable nonlinear shell model, which would allow large deflections of the structures regarded to be taken into account. Such a model is provided in the nonlinear Donnell-Mushtari-Vlasov (DMV) theory. The governing system of equations of the DMV theory consists of two coupled nonlinear fourth order partial differential equations in three independent and two dependent variables. It is clear, as the case stands, that the obtaining solutions to this system directly, by using any of the general analytical or numerical techniques, would involve considerable difficulties. In the present paper, the invariance of the governing equations of DMV theory for plates and cylindrical shells relative to local Lie groups of local point transformations will be employed to get some advantages in connection with the aforementioned problem. First, the symmetry of a functional, corresponding to the governing equations of DMV theory for plates and cylindrical shells is studied. Next, the densities in the corresponding conservation laws are determined on the basis of Noether theorem. Finally, we study a class of invariant solutions of the governing equations. As is well known, group-invariant solutions are often intermediate asymptotics for a wider class of solutions of the corresponding equations. When such solutions are considered, the number of the independent variables can be reduced. For the class of invariant solutions studied here, the system of governing equations converts into a system of ordinary differential equations

  9. Copper K-shell emission cross sections for laser–solid experiments

    Davies, J. R.; Betti, R.; Nilson, P. M.; Solodov, A. A. [Fusion Science Center for Extreme States of Matter, Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2013-08-15

    Published measurements and models of the cross section for electrons causing K-shell emission from copper are reviewed to find a suitable expression to use when analyzing K{sub α}-emission measurements in laser–solid experiments at peak intensities above 10{sup 18} W/cm{sup 2}. Few measurements exist in the 0.1- to 10-MeV electron energy range currently of interest, leaving a number of possible suitable models that are summarized here with a number of typing errors corrected. Two different limiting forms for the cross section at relativistic energies are used, and existing measurements do not give a clear indication as to which is correct. Comparison with the limiting form of electron stopping power indicates an alternative relativistic form and also that the density-effect correction will be important in copper above 10 MeV. For data analysis relying on relative K{sub α} emission caused by electrons with energy much greater than the K-shell binding energy, the existing uncertainty in cross sections is unimportant, but it will be a source of uncertainty when using absolute values and for electron energies up to ∼6× the binding energy. K-shell emission caused by photons and protons is also briefly reviewed.

  10. Synthesis and characterization of silver-copper core-shell nanoparticles using polyol method for antimicrobial agent

    Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.

    2016-06-01

    Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.

  11. Synergetic effect of copper-plating wastewater as a catalyst for the destruction of acrylonitrile wastewater in supercritical water oxidation

    Shin, Young Ho; Lee, Hong-shik; Lee, Young-Ho [School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Kim, Jaehoon; Kim, Jae-Duck [Supercritical Fluid Research Laboratory, Energy and Environment Research Division, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Youn-Woo, E-mail: ywlee@snu.ac.kr [School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2009-08-15

    A new supercritical water oxidation process for the simultaneous treatment of mixed wastewater containing wastewater from acrylonitrile manufacturing processes and copper-plating processes was investigated using a continuous tubular reactor system. Experiments were carried out at temperatures ranging from 400 to 600 deg. C and a pressure of 25 MPa. The residence time was fixed at 2 s by changing the flow rates of feeds, depending on reaction temperature. The initial total organic carbon (TOC) concentration of the wastewaters and the O{sub 2} concentration at the reactor inlet were kept constant at 0.49 and 0.74 mol/L. It was confirmed that the copper-plating wastewater accelerated the TOC conversion of acrylonitrile wastewater from 17.6% to 67.3% at a temperature of 450 deg. C. Moreover, copper and copper oxide nanoparticles were generated in the process of supercritical water oxidation (SCWO) of mixed wastewater. 99.8% of copper in mixed wastewater was recovered as solid copper and copper oxides at a temperature of 600 deg. C, with their average sizes ranging from 150 to 160 nm. Our study showed that SCWO provides a synergetic effect for simultaneous treatment of acrylonitrile and copper-plating wastewater. During the reaction, the oxidation rate of acrylonitrile wastewater was enhanced due to the in situ formation of nano-catalysts of copper and/or copper oxides, while the exothermic decomposition of acrylonitrile wastewater supplied enough heat for the recovery of solid copper and copper oxides from copper-plating wastewater. The synergetic effect of wastewater treatment by the newly proposed SCWO process leads to full TOC conversion, color removal, detoxification, and odor elimination, as well as full recovery of copper.

  12. Simulation of through via bottom—up copper plating with accelerator for the filling of TSVs

    Wu Heng; Tang Zhen'an; Wang Zhu; Cheng Wan; Yu Daquan

    2013-01-01

    Filling high aspect ratio through silicon vias (TSVs) without voids and seams by copper plating is one of the technical challenges for 3D integration. Bottom—up copper plating is an effective solution for TSV filling. In this paper, a new numerical model was developed to simulate the electrochemical deposition (ECD) process, and the influence of an accelerator in the electrolyte was investigated. The arbitrary Lagrange—Eulerian (ALE) method for solving moving boundaries in the finite element method (FEM) was used to simulate the electrochemical process. In the model, diffusion coefficient and adsorption coefficient were considered, and then the time-resolved evolution of electroplating profiles was simulated with ion concentration distribution and the electric current density. (semiconductor technology)

  13. Radon daughter plate-out measurements at SNOLAB for polyethylene and copper

    Stein, Matthew; Bauer, Dan; Bunker, Ray; Calkins, Rob; Cooley, Jodi; Loer, Ben; Scorza, Silvia

    2018-02-01

    Polyethylene and copper samples were exposed to the underground air at SNOLAB for approximately three months while several environmental factors were monitored. Predictions of the radon-daughter plate-out rate are compared to the resulting surface activities, obtained from high-sensitivity measurements of alpha emissivity using the XIA UltraLo-1800 spectrometer at SMU. From these measurements, we determine an average $^{210}$Pb plate-out rate of 249 and 423~atoms/day/cm$^{2}$ for polyethylene and copper, respectively, when exposed to radon activity of 135 Bq/m$^{3}$ at SNOLAB. A time-dependent model of alpha activity is discussed for these materials placed in similar environmental conditions.

  14. Monoliths of activated carbon from coconut shell and impregnation with nickel and copper

    Giraldo, Liliana; Moreno, Juan

    2008-01-01

    A series of different monoliths of activated carbon were prepared from coconut shell By means of chemical activation with phosphoric acid at different concentrations Without using binders or plastics. The monolith that developed the biggest surface area was impregnated by humidic route with solutions of Ni and Cu at different molar relations. The structures were characterized by N2 adsorption at 77 K, and the morphology was explored by means of scanning electron microscopy. The carbonaceous materials obtained, Nickel-Copper-Monolith, were analyzed by Thermal Programmed Reduction (TPR). The experimental results indicated that the activation with the acid generated a micro porosity, with micropores volume between 0.40 and 0.81 cm 3 g-1 and surface areas between 703 and 1450 m 2 g-1, and a good mechanical properties. It shows that, both the copper and the nickel, are fixed to the monolith and TPR's results are interpreted when these molar relation are modified.

  15. Improvement of copper plating adhesion on silane modified PET film by ultrasonic-assisted electroless deposition

    Lu Yinxiang

    2010-01-01

    Copper thin film on silane modified poly(ethylene terephthalate) (PET) substrate was fabricated by ultrasonic-assisted electroless deposition. The composition and topography of copper plating PET films were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. Peel adhesion strength, as high as 16.7 N/cm, was achieved for the planting copper layer to the modified PET substrate with ultrasonic-assisted deposition; however, a relative low value as 11.9 N/cm was obtained for the sample without ultrasonic vibration by the same measurement. The electrical conductivity of Cu film was changed from 7.9 x 10 4 to 2.1 x 10 5 S/cm by using ultrasonic technique. Ultrasonic operation has the significant merits of fast deposition and formation of good membranes for electroless deposition of Cu on PET film.

  16. Improvement of the adhesion strength between copper plated layer and resin substrate using a chemically adsorbed monolayer

    Tsuchiya K.

    2013-08-01

    Full Text Available With reducing the size and weight of electric devices, high-tensile, light and fine copper wire is demanded. So the production technique of a copper wire plated on a super fiber resin (Vectran film was researched for improving the adhesion strength between the copper and the resin. In this study, we used the Cu2+ or Pd2+ complex prepared with a chemically adsorbed monolayer (CAM to improve the adhesion strength between the copper plated layer and the Vectran film. As the result of scotch tape test, it was observed that the adhesion strength between the copper plated layer and Vectran film was improved by the Cu2+ or Pd2+ complex CAM.

  17. Contribution of apparently non-operating loadings to the buckling of thin shells and plates

    Delaigue, Didier.

    1980-02-01

    This work includes four parts: in the first part, the Kirchhoff-Love theory of thin shells is described, a theory taken up and developed by Koiter and whose modelling seems to meet the problems of engineers. The second part deals with the buckling of a thin plate subjected to a load along a part of its edge, of which a part or all is seemingly inoperative. In the third part the study is extended to shells of any shape subjected to a conservative loading of the ''dead-loading'' type along part of their edges. On the basis of the results of the previous study, a study is then made on the taking into account of any load applied to the edge of a thin shell. In the fourth part the previous results are applied to the study of the buckling of a thin shell with a circular base subjected along a part of its edge to a normal prestress and to twisting moments linear density [fr

  18. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    Howard, Stanley R [Windsor, SC; Korinko, Paul S [Aiken, SC

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  19. Operation and experience of a 2 km coated conductor REEL – to – REEL copper pulse plating facility

    Floegel-Delor, U; Riedel, T; Wippich, D; Rothfeld, R; Schirrmeister, P; Koenig, R; Werfel, F N; Usoskin, A; Rutt, A

    2014-01-01

    Bruker HTS manufactures YBCO based superconducting wires of the second generation on low- cost Stainless Steel substrate (100 μm thick). With 250 – 500 A/cm@77 K, SF, 650 MPa tensile strength and 6 mm bending radius excellent electrical and mechanical properties are achieved. As complementation of the 2G fabrication technology an automated 2 km copper pulse plating facility has been installed in 2012. We report here the operation requirements and the experiences of the copper plating technique.

  20. Stabilized copper plating method by programmed electroplated current: Accumulation of densely packed copper grains in the interconnect

    Kao, Li-Chi; Hsu, Li-Hsuan; Brahma, Sanjaya; Huang, Bo-Chia; Liu, Chun-Chu; Lo, Kuang-Yao, E-mail: kuanglo@mail.ncku.edu.tw

    2016-12-01

    Highlights: • Actual Cu interconnect experiences many times of annealing and then cause the stress. • Stack Cu grains with varying grain size successively to enhance packed density. • XRD and PBR analyze the residual stress of local and average area of plated Cu film. • High packed Cu grain with stable stress proved by texture of Cu(1 1 1) and Cu(2 0 0). - Abstract: In this work, we programmed the plating current to stack the different size of copper (Cu) grain and analyzed the relation between the sequence of different Cu grain size and the stability of the residual stress. The residual stress was measured with varying times of annealing process in order to reach the purpose of simulating the actual Cu interconnect process. We found that varied plating strategy will make different stabilization condition of residual stress through the proof of X-ray diffraction (XRD) and optical parallel beams reflection (PBR) method. The accumulation of Cu grains, formed by Cu grain with successive variation in grain size, would enhance the packing density better than only single grain size in the finite space. The high density of the grain boundary in the electroplated Cu film will be eliminated through annealing process and it will help to suppress the void formation in further interconnect process. The electroplated Cu film with the plating current of saw tooth wave can soon reach a stable tensile stress through annealing since the Cu grains with high packing density will be quickly eliminated to approach the minimum of the strain energy which reflects to variation in the texture of Cu (2 0 0). The result of this work illustrates the importance of how to stack different size of Cu grain, for achieving a densely packed Cu film which close to the Cu bulk.

  1. Residual stress investigation of copper plate and canister EB-Welds Complementary Results

    Gripenberg, H.

    2009-03-01

    The residual stresses in copper as induced by EB-welding were studied by specimens where the weld had two configurations: either a linear or a circumferential weld. This report contains the residual stress measurements of two plates, containing linear welds, and the full-scale copper lid specimen to which a hollow cylinder section had been joined by a circumferential EB-weld. The residual stress state of the EB-welded copper specimens was investigated by X-ray diffraction (XRD), hole drilling (HD) ring core (RC) and contour method (CM). Three specimens, canister XK010 and plates X251 and X252, were subjected to a thorough study aiming at quantitative determination of the residual stress state in and around the EB-welds using XRD for surface and HD and RC for spatial stress analysis. The CM maps one stress component over a whole cross section. The surface residual stresses measured by XRD represent the machined condition of the copper material. The XRD study showed that the stress changes towards compression close to the weld in the hollow cylinder, which indicates shrinkage in the hoop direction. According to the same analogy, the shrinkage in the axial direction is much smaller. The HD measurements showed that the stress state in the base material is bi-axial and, in terms of von Mises stress, 50 MPa for the plates and 20 MPa for the cylinder part of the canister. The stress state in the EB-welds of all specimens differs clearly from the stress state in the base material being more tensile, with higher magnitudes of von Mises stress in the plate than in the canister welds. The HD and RC results were obtained using linear elastic theory. The RC measurements showed that the maximum principal stress in the BM is close to zero near the surface and it becomes slightly tensile, 10 MPa, deeper under the surface. Welding pushed the general stress state towards tension with the maximum principal stress reaching 50 MPa, deeper than 5 mm below the surface in the weld. The

  2. Micro-Welding of Copper Plate by Frequency Doubled Diode Pumped Pulsed Nd:YAG Laser

    Nakashiba, Shin-Ichi; Okamoto, Yasuhiro; Sakagawa, Tomokazu; Takai, Sunao; Okada, Akira

    A pulsed laser of 532 nm wavelength with ms range pulse duration was newly developed by second harmonic generation of diode pumped pulsed Nd:YAG laser. High electro-optical conversion efficiency more than 13% could be achieved, and 1.5 kW peak power green laser pulse was put in optical fiber of 100 μm in diameter. In micro- welding of 1.0 mm thickness copper plate, a keyhole welding was successfully performed by 1.0 kW peak power at spot diameter less than 200 μm. The frequency doubled pulsed laser improved the processing efficiency of copper welding, and narrow and deep weld bead was stably obtained.

  3. The effective removal method of copper and cyanide in waste water of metal plating factories

    Jae, Won Mok; Hong, Zong Doo; Kim, Myun Sup

    1988-01-01

    To investigate the effective removal method of cooper and cyanide compounds in metal plating waste water, removal ratio of cooper and cyanide compounds in solution are measured with varying pH, concentration and contact time. As results of the present experiment, cyanide compounds in the solution are removed to 0.03mg/l or less with 5% NaOCl solution. The present result is satisfied to environmental disposal standards. The removal ratio against pH values show 99% over pH8. As results of neutral precipitation method, copper including solution are removed to 99% at pH8 in short time. The removal ratios of cyanide mixed copper solution against pH values show high efficiency(over 95%) at pH8 and 11 and removal ratios are decreased at pH10.(Author)

  4. Numerical investigation on a novel shell-and-tube heat exchanger with plate baffles and experimental validation

    Yang, Jie; Liu, Wei

    2015-01-01

    Highlights: • A novel shell-and-tube heat exchanger with plate baffles is proposed. • Heat transfer and pressure drop of computational calculations are studied. • Experimental method is carried out to verify the modeling approach. • Path lines, temperature field and pressure field are analyzed. - Abstract: A novel shell-and-tube heat exchanger with new plate baffles is proposed. It is numerically investigated in comparison with a shell-and-tube heat exchanger with rod baffles. Commercial softwares FLUENT 6.3 and GAMBIT 2.3 are adopted for modeling and computational calculations. The modeling approach is verified with experimental approach. The shell-side results of heat transfer, flow performance, and comprehensive performance are analyzed. The Nusselt number for the plate baffles heat exchanger is around 128–139% of that for the rod baffles heat exchanger. The pressure drop for the novel one is about 139–147% of that for the rod baffles heat exchanger. Overall, the novel plate baffles heat exchanger illustrates evidently higher comprehensive performance (115–122%) than the rod baffles one. The temperature field, pressure field, and path lines are analyzed to demonstrate the advantage of the novel shell-and-tube heat exchanger

  5. Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts Within Dynamic Fluid Plumes

    Weis, P.; Driesner, T.; Heinrich, C. A.

    2012-12-01

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  6. Copper circuit patterning on polymer using selective surface modification and electroless plating

    Park, Sang Jin [Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Ko, Tae-Jun [Institute for Multidisciplinary Convergence of Materials, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Yoon, Juil [Department of Mechanical Systems Engineering, Hansung University, Seoul 136-792 (Korea, Republic of); Moon, Myoung-Woon [Institute for Multidisciplinary Convergence of Materials, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Oh, Kyu Hwan [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Han, Jun Hyun, E-mail: jhhan@cnu.ac.kr [Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2017-02-28

    Highlights: • A new simple two step method for the pattering of Cu circuits on PET substrate was proposed. • The simple patterning of the high adhesive Cu circuits was achieved by plasma treatment using a patterned mask coated with a catalyst material. • The high adhesive strength of Cu circuits was due to the nanostructure formed by oxygen plasma treatment. - Abstract: We have examined a potential new and simple method for patterning a copper circuit on PET substrate by copper electroless plating, without the pretreatment steps (i.e., sensitization and activation) for electroless plating as well as the etching processes of conventional circuit patterning. A patterned mask coated with a catalyst material, Ag, for the reduction of Cu ions, is placed on a PET substrate. Subsequent oxygen plasma treatment of the PET substrate covered with the mask promotes the selective generation of anisotropic pillar- or hair-like nanostructures coated with co-deposited nanoparticles of the catalyst material on PET. After oxygen plasma treatment, a Cu circuit is well formed just by dipping the plasma-treated PET into a Cu electroless plating solution. By increasing the oxygen gas pressure in the chamber, the height of the nanostructures increases and the Ag catalyst particles are coated on not only the top but also the side surfaces of the nanostructures. Strong mechanical interlocking between the Cu circuit and PET substrate is produced by the large surface area of the nanostructures, and enhances peel strength. Results indicate this new simple two step (plasma surface modification and pretreatment-free electroless plating) method can be used to produce a flexible Cu circuit with good adhesion.

  7. Production of Copper-Plated Beamline Bellows and Spools for LCLS-II

    Wilson, Katherine M. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Carpenter, Brian C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Daly, Ed [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Huque, Naeem A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Peshehonoff, Ted [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Arkan, Tug [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lunin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Premo, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-05-01

    The SLAC National Accelerator Laboratory is currently constructing a major upgrade to its accelerator, the Linac Coherent Light Source II (LCLS-II). Several Department of Energy national laboratories, including the Thomas Jefferson National Accelerator Facility (JLab) and Fermi National Accelerator Laboratory (FNAL), are participating in this project. The 1.3-GHz cryomodules for this project consist of eight cavities separated by bellows (expansion joints) and spools (tube sections), which are copper plated for RF conduction. JLab is responsible for procurement of these bellows and spools, which are delivered to JLab and FNAL for assembly into cryomodules. Achieving accelerator-grade copper plating is always a challenge and requires careful specification of requirements and application of quality control processes. Due to the demanding technical requirements of this part, JLab implemented procurement strategies to make the process more efficient as well as provide process redundancy. This paper discusses the manufacturing challenges that were encountered and resolved, as well as the strategies that were employed to minimize the impact of any technical issues.

  8. Outgassing rate of the copper-plated beam tube for ISABELLE

    Hseuh, H.C.; Gaudet, E.F.

    1981-01-01

    The ultrahigh vacuum system of the intersecting storage accelerator, ISABELLE, will consist of two interlaced rings of stainless steel beam tubes with a circumference 2-1/2 miles each. To obtain a good heat conduction during bakeout and to reduce the resistive wall instability during beam operation, a lmm thick copper coating will be electroplated to the outer surface of this 1.5 mm thick beam tube. To minimize the beam loss due to beam-gas collision, the pressure inside the beam tube is required to be 1 x 10 -11 Torr (N 2 equivalent) or less. To achieve this ultrahigh vacuum, the outgassing rate of the 304 LN stainless steel tubes has been reduced to approx. 1 x 10 -13 Torr. l/cm 2 . sec by vacuum firing at 950 0 C for one hour. However, during acid-bath electroplating of copper, significant amount of hydrogen will be reintroduced and trapped in stainless steel which will substantially increase the outgassing rate (to approx. 2 x 10 -12 Torr . l/cm 2 sec). The outgassing characteristics of these copper-plated beam tubes are studied and discussed within the scope of diffusion and energy of activation. Methods to reduce the outgassing rate to an acceptable level (approx. 1 x 10 -13 Torr . l/cm 2 . sec) are also given

  9. Comparison of shell-and-tube with plate heat exchangers for the use in low-temperature organic Rankine cycles

    Walraven, Daniël; Laenen, Ben; D’haeseleer, William

    2014-01-01

    Highlights: • Binary cycles for low-temperature heat sources are investigated. • Shell-and-tube and plate heat exchangers are modeled. • System optimization of the cycle variables and heat exchanger geometry. • ORCs with plate heat exchangers obtain in most cases higher efficiencies. - Abstract: Organic Rankine cycles (ORCs) can be used for electricity production from low-temperature heat sources. These ORCs are often designed based on experience, but this experience will not always lead to the most optimal configuration. The ultimate goal is to design ORCs by performing a system optimization. In such an optimization, the configuration of the components and the cycle parameters (temperatures, pressures, mass flow rate) are optimized together to obtain the optimal configuration of power plant and components. In this paper, the configuration of plate heat exchangers or shell-and-tube heat exchangers is optimized together with the cycle configuration. In this way every heat exchanger has the optimum allocation of heat exchanger surface, pressure drop and pinch-point-temperature difference for the given boundary conditions. ORCs with plate heat exchangers perform mostly better than ORCs with shell-and-tube heat exchangers, but one disadvantage of plate heat exchangers is that the geometry of both sides is the same, which can result in an inefficient heat exchanger. It is also shown that especially the cooling-fluid inlet temperature and mass flow have a strong influence on the performance of the power plant

  10. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu; Gong, Lijun; He, Wei

    2017-01-01

    Highlights: • Air atmosphere plasmacould generatehydrophilic groups of photo-resistive film. • Better wettability of photo-resistive filmled tohigher plating uniformity of copper pillars. • New flow isreduced cost, simplified process and elevated productivity. - Abstract: The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O_2−CF_4 low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of C−O, O−C=O, C=O and −NO_2 by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  11. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Gong, Lijun [Research and Development Department, Guangzhou Fastprint Circuit Tech Co., Ltd., Guangzhou 510663 (China); He, Wei, E-mail: heweiz@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research and Development Department, Guangdong Guanghua Sci-Tech Co., Ltd., Shantou 515000 (China)

    2017-07-31

    Highlights: • Air atmosphere plasmacould generatehydrophilic groups of photo-resistive film. • Better wettability of photo-resistive filmled tohigher plating uniformity of copper pillars. • New flow isreduced cost, simplified process and elevated productivity. - Abstract: The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O{sub 2}−CF{sub 4} low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of C−O, O−C=O, C=O and −NO{sub 2} by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  12. Experimental investigations of tungsten inert gas assisted friction stir welding of pure copper plates

    Constantin, M. A.; Boșneag, A.; Nitu, E.; Iordache, M.

    2017-10-01

    Welding copper and its alloys is usually difficult to join by conventional fusion welding processes because of high thermal diffusivity of the copper, alloying elements, necessity of using a shielding gas and a clean surface. To overcome this inconvenience, Friction Stir Welding (FSW), a solid state joining process that relies on frictional heating and plastic deformation, is used as a feasible welding process. In order to achieve an increased welding speed and a reduction in tool wear, this process is assisted by another one (WIG) which generates and adds heat to the process. The aim of this paper is to identify the influence of the additional heat on the process parameters and on the welding joint properties (distribution of the temperature, hardness and roughness). The research includes two experiments for the FSW process and one experiment for tungsten inert gas assisted FSW process. The outcomes of the investigation are compared and analysed for both welding variants. Adding a supplementary heat source, the plates are preheated and are obtain some advantages such as reduced forces used in process and FSW tool wear, faster and better plasticization of the material, increased welding speed and a proper weld quality.

  13. Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon

    Onundi, Y. B.; Mamun, A. A.; Al Khatib, M. F.; Ahmad, Y. M.

    2010-01-01

    Granular activated carbon produced from palm kernel shell was used as adsorbent to remove copper, nickel and lead ions from a synthesized industrial wastewater. Laboratory experimental investigation was carried out to identify the effect of p H and contact time on adsorption of lead, copper and nickel from the mixed metals solution. Equilibrium adsorption experiments at ambient room temperature were carried out and fitted to Langmuir and Freundlich models. Results showed that p H 5 was the most suitable, while the maximum adsorbent capacity was at a dosage of 1 g/L, recording a sorption capacity of 1.337 mg/g for lead, 1.581 mg/g for copper and 0.130 mg/g for nickel. The percentage metal removal approached equilibrium within 30 minutes for lead, 75 minutes for copper and nickel, with lead recording 100 p ercent , copper 97 p ercent a nd nickel 55 p ercent r emoval, having a trend of Pb 2+ > Cu 2+ > Ni 2+ . Langmuir model had higher R 2 values of 0.977, 0.817 and 0.978 for copper, nickel and lead respectively, which fitted the equilibrium adsorption process more than Freundlich model for the three metals.

  14. Microstructure and Mechanical Properties of High Copper HSLA-100 Steel in 2-inch Plate Form

    1992-06-01

    CCT diagram . Increasing copper in HSLA-100 steel also increases the toughness as well as the strength, though the dynamics of this process are not clear. Steel, High Copper HSLA-100 Steel, mechanical property, microstructure.

  15. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu; Gong, Lijun; He, Wei

    2017-07-01

    The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O2sbnd CF4 low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of Csbnd O, Osbnd Cdbnd O, Cdbnd O and sbnd NO2 by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  16. Residual stress measurement of electron beam welded copper plates using prism hole drilling method

    Laakkonen, M.

    2013-12-01

    Eleven electron beam (EB) welded copper plates were measured in this investigation with Prism hole drilling equipment made by Stresstech Oy. All samples contained a linear weld in their center. Two different sets of plates were measured in this investigation. The first set included five samples (X436, X437, X438, X439 and X440) which were welded using four different welding speeds. Samples X439 and X440 were welded with the same speed but X440 is the only sample of the set that received a cosmetic pass. The second set received heat treatments at four different temperatures. Samples X456 and X458 were annealed at the same temperature but sample X456 received a cosmetic pass while X458 did not. Samples X455 and X457 were both annealed at a different temperature, with (X455) or without (X457) the cosmetic pass. Two areas were machined from the samples. About five millimeters was machined from the surfaces on the both of areas. Machined surfaces located on the top surfaces. The measurement points on the top surface are located on the weld and 20 mm and 120 mm from the weld on machined areas. Lower surface measurements are located -20 mm, 20 mm and 120 mm from the weld. All measurements were about 122 mm from the edges perpendicular to the weld. The top surfaces of all samples were machined in two areas across the weld. About 5 mm were removed. Stress measurements on the top surfaces were performed in these two areas, on the weld and 20 mm and 120 mm away from the weld. Stresses were also measured on the back sides, at -20 mm, 20 mm and 120 mm distance from the weld. All measurement locations were about 122mm from the sample edges. Most of the measurements give tensile strengths from 0 MPa to 30 MPa. Stresses parallel to the weld were slightly higher than weld stresses in transverse direction. The machined surfaces have residual stress values above 30 MPa near the surface. (orig.)

  17. Residual stress measurement of electron beam welded copper plates using prism hole drilling method

    Laakkonen, M. [Stresstech Oy, Jyvaeskylae (Finland)

    2013-12-15

    Eleven electron beam (EB) welded copper plates were measured in this investigation with Prism hole drilling equipment made by Stresstech Oy. All samples contained a linear weld in their center. Two different sets of plates were measured in this investigation. The first set included five samples (X436, X437, X438, X439 and X440) which were welded using four different welding speeds. Samples X439 and X440 were welded with the same speed but X440 is the only sample of the set that received a cosmetic pass. The second set received heat treatments at four different temperatures. Samples X456 and X458 were annealed at the same temperature but sample X456 received a cosmetic pass while X458 did not. Samples X455 and X457 were both annealed at a different temperature, with (X455) or without (X457) the cosmetic pass. Two areas were machined from the samples. About five millimeters was machined from the surfaces on the both of areas. Machined surfaces located on the top surfaces. The measurement points on the top surface are located on the weld and 20 mm and 120 mm from the weld on machined areas. Lower surface measurements are located -20 mm, 20 mm and 120 mm from the weld. All measurements were about 122 mm from the edges perpendicular to the weld. The top surfaces of all samples were machined in two areas across the weld. About 5 mm were removed. Stress measurements on the top surfaces were performed in these two areas, on the weld and 20 mm and 120 mm away from the weld. Stresses were also measured on the back sides, at -20 mm, 20 mm and 120 mm distance from the weld. All measurement locations were about 122mm from the sample edges. Most of the measurements give tensile strengths from 0 MPa to 30 MPa. Stresses parallel to the weld were slightly higher than weld stresses in transverse direction. The machined surfaces have residual stress values above 30 MPa near the surface. (orig.)

  18. Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate

    Eslami, Abbas, E-mail: eslami@umz.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Juibari, Nafise Modanlou [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Hosseini, Seyed Ghorban [Department of Chemistry, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran (Iran, Islamic Republic of)

    2016-09-15

    The ammonium perchlorate/Cu(II)-Cr(III)-oxides(AP/Cu-Cr-O) core-shell nanocomposites were in-situ prepared by deposition of copper and chromium oxides on suspended ammonium perchlorate particles in ethyl acetate as solvent. The results of differential scanning calorimetery (DSC) and thermal gravimetric analysis (TGA) experiments showed that the nanocomposites have excellent catalytic effect on the thermal decomposition of AP, so that the released heat increases up to about 3-fold over initial values, changing from 450 J/g for pure AP to 1510 J/g for most appropriate mixture. For better comparison, single metal oxide/AP core-shell nanocomposite have also been prepared and the results showed that they have less catalytic effect respect to mixed metal oxides system. Scanning electron microscopy (SEM) results revealed homogenous deposition of nanoparticles on the surface of AP and fabrication of core-shell structures. The kinetic parameters of thermal decomposition of both pure AP and AP/Cu-Cr-O samples have been calculated by Kissinger method and the results showed that the values of pre-exponential factor and activation energy are higher for AP/Cu-Cr-O nanocomposite. The better catalytic effect of Cu-Cr-O nanocomposites is probably attributed to the synergistic effect between Cu{sup 2+} and Cr{sup 3+} in the nanocomposites, smaller particle size and more crystal defect. - Highlights: • The Cu-Cr-O nanoparticles were synthesized by chemical liquid deposition method. • Then, the AP/Cu-Cr-O core-shell nanocomposites were prepared. • The core-shell samples showed high catalytic activity for AP decomposition. • Thermal decomposition of samples occurs at lower temperature range.

  19. On the material properties of shell plate formed by line heating

    Hyung Kyun Lim

    2017-01-01

    Full Text Available This paper is concerned with investigating the plastic material properties of steel plate formed by line heating method, and is aimed at implementing more rational design considering the accidental limit states such as collision or grounding. For the present study, line heating test for marine grade steel plate has been carried out with varying plate thickness and heating speed, and then microscopic examination and tensile test have been carried out. From the microscopic, it is found that the grain refined zones like ferrite and pearlite are formed all around the heat affected zone. From the tensile test results, it is seen that yield strength, tensile strength, fracture strain, hardening exponent and strength coefficient vary with plate thickness and heat input quantity. The formulae relating the material properties and heat input parameter should be, therefore, derived for the design purpose considering the accidental impact loading. This paper ends with describing the extension of the present study.

  20. Laser Induced Forced Motion and Stress Waves in Plates and Shells.

    1981-08-01

    the plate at the center, normal to the plate surface. The Laser used was a Holobeam model 630-QNd glass system. This Laser produces an output power (in...V o 0 0 I lue ceill I Ii 1)r1 i 11im and hot nchary\\ cond i t i ons S or tile i n it i aI I St ate toget her with ji(. 38c ) iiav he u ISed to

  1. Composition profiles of several contaminated and cleaned surfaces of gold thick films on copper plates by Auger electron and secondary ion mass spectroscopies

    Komiya, S.; Mizuno, M.; Narusawa, T.; Maeda, H.; Yoshikawa, M.

    1974-01-01

    Preparation and evaluation of a clean Au film are investigated. Development of a preparation method for obtaining clean surface on a copper shell in the JFT-2a (DIVA) TOKAMAK toroidal vacuum chamber is the aim of the present work. Au films prepared by ion plating and vacuum evaporation have been analysed by a cylindrical mirror Auger electron analyser in combination with a quadrupole mass spectrometer during 2 keV Xe ion bombardment from a sputter ion gun over the whole range of thickness of several microns. Contaminants are found to segregate on the top surface and at the interface. To expose a clean Au surface by the ion bombardment, surface layers within 1000 A had to be removed from the surfaces contaminated by touching with either a naked hand or a nylon glove or covered by a small amount of Ti. Mutual diffusions across the interfaces are also analyzed as a function of the substrate temperature. A Nb sandwich layer inhibites effectively the mutual diffusion. (auth.)

  2. The role of the native oxide shell on the microwave sintering of copper metal powder compacts

    Mahmoud, Morsi M.; Link, Guido; Thumm, Manfred

    2015-01-01

    Highlights: • Thin oxide native layer had a critical role on microwave sintering of copper. • Explain why microwaves interact with copper powder differently than its bulk. • Abnormal expansion in copper is due to the plastic deformation and crack formation. • In-situ setup gives important insight about the microwave sintering of metals. • Microwave sintering is a promising candidate technology in powder metallurgy. - Abstract: Successful microwave sintering of several metal powders had been reported by many researchers with remarkable improvements in the materials properties and/or in the overall process. However, the concept behind microwave heating of metal powders has not been fully understood till now, as it is well known that bulk metals reflect microwaves. The progress of microwave sintering of copper metal powder compacts was investigated via combining both in-situ electrical resistivity and dilatometry measurements that give important information about microstructural changes with respect to the inter-particle electrical contacts during sintering. The sintering behavior of copper metal powders was depending on the type of the gas used, particle size, the initial green density, the soaking sintering time and the thin oxide layer on the particles surfaces. The thin copper oxide native layer (ceramics) that thermodynamically formed on the particles surfaces under normal handling and ambient environmental conditions had a very critical and important role in the microwave absorption and interaction, the sintering behavior and the microstructural changes. This finding could help to have a fundamental understanding of why MW’s interact with copper metal powder in a different way than its bulk at room temperature, i.e. why a given metal powder could be heated using microwaves while its bulk reflects it

  3. An investigation on mechanical property of commercial copper tube to aluminium 2025 tube plate by FWTPET process

    Kannan, S., E-mail: kannan.dgl201127@gmail.com [Department of Mechanical Engineering and Mining Machinery Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004 (India); Senthil Kumaran, S., E-mail: sskumaran@ymail.com [Research and Development Center, Department of Mechanical Engineering, RVS Educational Trust' s Group of Institutions, RVS School of Engineering and Technology, Dindigul, Tamilnadu 624005 (India); Kumaraswamidhas, L.A., E-mail: lakdhas1978@gmail.com [Department of Mechanical Engineering and Mining Machinery Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004 (India)

    2016-07-05

    Frictional welding of tube to tube plate by external tool (FWTPET) posses wide spread industrial in mass production process for joint similar and dissimilar materials. Frictional welding process allows welding of some materials that are exceptionally hard to fusion weld. The good quality joint between the tube and tube plate is achieved by selecting the proper process parameter. In this present research, the frictional welding is done between the Aluminium 2025 tube plate and commercial copper tube possessing a clearance fit of 0.1 mm between tube and hole. In this study, two conditions were considered while handing out this experiment. The condiction1 is tube without holes [WOH] and condition 2 is tube with holes [WH] on the tube circumference. In total, twenty seven work pieces have been considered separately for both conditions and the mechanical property such as compression strength and hardness value has been measured for the both set of work piece in two conditions to analysis the joint strength of the welding process. Taguchi L{sub 27} orthogonal array has been used in this process to identify the process parameter which influences the joint strength of the welded samples. ANOVA method is used to calculate the percentage of contribution by each process parameter which influences the better joint strength. Genetic algorithm is used to authenticate the outcome obtained from the both experimental value and optimization value. Scanning Electron Microscope (SEM) and Energy-dispersive X-ray analysis (EDX) has been performed to probe microstructures and chemical compositions for work piece without holes which has higher mechanical property. - Highlights: • FWTPET for dissimilar metals commercial copper tube and Al 2025 tube plate. • The hardness value for tube without holes are 180.988 Hv. • The compression strength for tube without holes are 376.05 MPa. • SEM confirm heat production is done to melt parent metal by diffusion process. • EDX prove no trace

  4. Effects of finite element formulation on optimal plate and shell structural topologies

    Long, CS

    2009-09-01

    Full Text Available , and the other is a 4-node element accounting for in-plane (drilling) rotations. Plate elements selected for evaluation include the discrete Kirchhoff quadrilateral (DKQ) element and two Mindlin–Reissner-based elements, one employing selective reduced integration...

  5. The development and use of a piece-wise continuous finite element for plate and shell analysis

    Jobson, D.A.; Knowles, J.A.

    1975-01-01

    The implementation of general purpose programs for the numerical analysis of plate and shell structures calls for the adoption of finite element stiffness expressions which take into account of both lateral distortion and membrane action. It is important that design-oriented programs of the above kind be perfectly general. In particular the element behaviour must be independent of the choice of base axes, and not prone either to singularities or to doubts over convergence with successive mesh refinement. The basic elements should also be mathematically isotropic and the imposition of rigid body displacements should not cause self-straining. Ideally the program should allow the assembly of a wide variety of elements, oriented in any conceivable way and of a freely chosen shape. The present paper documents a procedure for synthesising the latter from a three node primary element which satisfies the above requirements. (Auth.)

  6. A comparison study on the performance of lower order solid finite element for elastic analysis of plate and shell structures

    Lee, Young Jung; Lee, Sang Jin; Choun, Young Sun; Seo, Jeong Moon

    2003-05-01

    The objective of this research is to assess the performance of lower order solid finite elements which will be ultimately applied into the safety analysis of nuclear containment building. For the safety analysis of large structures such as nuclear containment building, efficient lower order finite element is necessarily required to calculate the structural response of containment building with low computational cost. In this study, the state of the art formulations of lower order solid finite element are throughly reviewed and the best possible solid finite element is adopted into the development of nuclear containment analysis system. Three 8-node solid finite elements based on standard strain-displacement relationship, B-bar method and EAS method are implemented as computer modules and completely tested with various plate and shell structures. The present results can be directly applied into the analysis code development for general reinforced concrete structures

  7. Selective colors reflection from stratified aragonite calcium carbonate plates of mollusk shells.

    Lertvachirapaiboon, Chutiparn; Parnklang, Tewarak; Pienpinijtham, Prompong; Wongravee, Kanet; Thammacharoen, Chuchaat; Ekgasit, Sanong

    2015-08-01

    An interaction between the incident light and the structural architecture within the shell of Asian green mussel (Perna viridis) induces observable pearlescent colors. In this paper, we investigate the influence of the structural architecture on the expressed colors. After a removal of the organic binder, small flakes from crushed shells show vivid rainbow reflection under an optical microscope. An individual flake expresses vivid color under a bright-field illumination while become transparent under a dark-field illumination. The expressed colors of the aragonite flakes are directly associated with its structural architecture. The flakes with aragonite thickness of 256, 310, and 353 nm, respectively, appear blue, green, and red under an optical microscope. The spectral simulation corroborates the experimentally observed optical effects as the flakes with thicker aragonite layers selectively reflected color with longer wavelengths. Flakes with multiple aragonite thicknesses expressed multi-color as the upper aragonite layers allow reflected colors from the lower layers to be observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Plasmonic Photovoltaic Cells with Dual-Functional Gold, Silver, and Copper Half-Shell Arrays.

    Wu, Ling; Kim, Gyu Min; Nishi, Hiroyasu; Tatsuma, Tetsu

    2017-09-12

    Solid-state photovoltaic cells based on plasmon-induced charge separation (PICS) have attracted growing attention during the past decade. However, the power conversion efficiency (PCE) of the previously reported devices, which are generally loaded with dispersed metal nanoparticles as light absorbers, has not been sufficiently high. Here we report simpler plasmonic photovoltaic cells with interconnected Au, Ag, and Cu half-shell arrays deposited on SiO 2 @TiO 2 colloidal crystals, which serve both as a plasmonic light absorber and as a current collector. The well-controlled and easily prepared plasmonic structure allows precise comparison of the PICS efficiency between different plasmonic metal species. The cell with the Ag half-shell array has higher photovoltaic performance than the cells with Au and Cu half-shell arrays because of the high population of photogenerated energetic electrons, which gives a high electron injection efficiency and suppressed charge recombination probability, achieving the highest PCE among the solid-state PICS devices even without a hole transport layer.

  9. Stabilization of lead and copper contaminated firing range soil using calcined oyster shells and fly ash.

    Moon, Deok Hyun; Park, Jae-Woo; Cheong, Kyung Hoon; Hyun, Seunghun; Koutsospyros, Agamemnon; Park, Jeong-Hun; Ok, Yong Sik

    2013-12-01

    A stabilization/solidification treatment scheme was devised to stabilize Pb and Cu contaminated soil from a firing range using renewable waste resources as additives, namely waste oyster shells (WOS) and fly ash (FA). The WOS, serving as the primary stabilizing agent, was pre-treated at a high temperature to activate quicklime from calcite. Class C FA was used as a secondary additive along with the calcined oyster shells (COS). The effectiveness of the treatment was evaluated by means of the toxicity characteristic leaching procedure (TCLP) and the 0.1 M HCl extraction tests following a curing period of 28 days. The combined treatment with 10 wt% COS and 5 wt% FA cause a significant reduction in Pb (>98 %) and Cu (>96 %) leachability which was indicated by the results from both extraction tests (TCLP and 0.1 M HCl). Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) analyses are used to investigate the mechanism responsible for Pb and Cu stabilization. SEM-EDX results indicate that effective Pb and Cu immobilization using the combined COS-FA treatment is most probably associated with ettringite and pozzolanic reaction products. The treatment results suggest that the combined COS-FA treatment is a cost effective method for the stabilization of firing range soil.

  10. Non-linear analysis of wave progagation using transform methods and plates and shells using integral equations

    Pipkins, Daniel Scott

    Two diverse topics of relevance in modern computational mechanics are treated. The first involves the modeling of linear and non-linear wave propagation in flexible, lattice structures. The technique used combines the Laplace Transform with the Finite Element Method (FEM). The procedure is to transform the governing differential equations and boundary conditions into the transform domain where the FEM formulation is carried out. For linear problems, the transformed differential equations can be solved exactly, hence the method is exact. As a result, each member of the lattice structure is modeled using only one element. In the non-linear problem, the method is no longer exact. The approximation introduced is a spatial discretization of the transformed non-linear terms. The non-linear terms are represented in the transform domain by making use of the complex convolution theorem. A weak formulation of the resulting transformed non-linear equations yields a set of element level matrix equations. The trial and test functions used in the weak formulation correspond to the exact solution of the linear part of the transformed governing differential equation. Numerical results are presented for both linear and non-linear systems. The linear systems modeled are longitudinal and torsional rods and Bernoulli-Euler and Timoshenko beams. For non-linear systems, a viscoelastic rod and Von Karman type beam are modeled. The second topic is the analysis of plates and shallow shells under-going finite deflections by the Field/Boundary Element Method. Numerical results are presented for two plate problems. The first is the bifurcation problem associated with a square plate having free boundaries which is loaded by four, self equilibrating corner forces. The results are compared to two existing numerical solutions of the problem which differ substantially. plate. &The bending moments in the non-linear model are compared to those

  11. Nitrogen-doped graphene network supported copper nanoparticles encapsulated with graphene shells for surface-enhanced Raman scattering

    Zhang, Xiang; Shi, Chunsheng; Liu, Enzuo; Li, Jiajun; Zhao, Naiqin; He, Chunnian

    2015-10-01

    In this study, we demonstrated nitrogen-doped graphene network supported few-layered graphene shell encapsulated Cu nanoparticles (NPs) (Cu@G-NGNs) as a sensing platform, which were constructed by a simple and scalable in situ chemical vapor deposition (CVD) technique with the assistance of a self-assembled three-dimensional (3D) NaCl template. Compared with pure Cu NPs and graphene decorated Cu NPs, the graphene shells can strengthen the plasmonic coupling between graphene and Cu, thereby contributing to an obvious improvement in the local electromagnetic field that was validated by finite element numerical simulations, while the 3D nitrogen-doped graphene walls with a large surface area facilitated molecule adsorption and the doped nitrogen atoms embedded in the graphene lattice can reduce the surface energy of the system. With these merits, a good surface enhanced Raman spectroscopy (SERS) activity of the 3D Cu@G-NGN painting film on glass was demonstrated using rhodamine 6G and crystal violet as model analytes, exhibiting a satisfactory sensitivity, reproducibility and stability. As far as we know, this is the first report on the in situ synthesis of nitrogen-doped graphene/copper nanocomposites and this facile and low-cost Cu-based strategy tends to be a good supplement to Ag and Au based substrates for SERS applications.In this study, we demonstrated nitrogen-doped graphene network supported few-layered graphene shell encapsulated Cu nanoparticles (NPs) (Cu@G-NGNs) as a sensing platform, which were constructed by a simple and scalable in situ chemical vapor deposition (CVD) technique with the assistance of a self-assembled three-dimensional (3D) NaCl template. Compared with pure Cu NPs and graphene decorated Cu NPs, the graphene shells can strengthen the plasmonic coupling between graphene and Cu, thereby contributing to an obvious improvement in the local electromagnetic field that was validated by finite element numerical simulations, while the 3D nitrogen

  12. Microstructure Evolution During Stainless Steel-Copper Vacuum Brazing with a Ag/Cu/Pd Filler Alloy: Effect of Nickel Plating

    Choudhary, R. K.; Laik, A.; Mishra, P.

    2017-03-01

    Vacuum brazing of stainless steel and copper plates was done using a silver-based filler alloy. In one set of experiments, around 30-µm-thick nickel coatings were electrochemically applied on stainless steel plates before carrying out the brazing runs and its effect in making changes in the braze-zone microstructure was studied. For brazing temperature of 830 °C, scanning electron microscopy examination of the braze-zone revealed that relatively sound joints were obtained when brazing was done with nickel-coated stainless steel than with uncoated one. However, when brazing of nickel-coated stainless steel and copper plates was done at 860 °C, a wide crack appeared in the braze-zone adjacent to copper side. Energy-dispersive x-ray analysis and electron microprobe analysis confirmed that at higher temperature, the diffusion of Cu atoms from copper plate towards the braze-zone was faster than that of Ni atoms from nickel coating. Helium leak rate of the order 10-11 Pa m3/s was obtained for the crack-free joint, whereas this value was higher than 10-4 Pa m3/s for the joint having crack. The shear strength of the joint was found to decrease considerably due to the presence of crack.

  13. The target preparation of "2"3"2Th plated on the nickel with copper as substrate and "2"3"0Pa generation

    Shen Hua; Geng Junxia; Gao Size; Zhang Guoxin; Zhang Lan; Li Wenxin; Li Qingnuan; Wu Guozhong

    2014-01-01

    The electrochemical parameters on nickel plating on the copper have been studied using aqueous electroplating technique. And thorium is plated on the nickel flake using molecular plating technique. The better experimental parameters are obtained. According to these optimized parameters, the "2"3"2Th target which is suitable for Cyclone-30 accelerator is prepared. The proton beam with energy of 21 MeV bombed the "2"3"2Th target (total beam time 20 μAh). The results showed that the better range of plating current density of nickel plated on copper is l.30∼1.68 A/dm"2. The thickness of nickel plating layer can reach more than 10 μm. The current density is 3∼5 mA/cm"2, and the thickness of plated thorium layer is up to micrometer scale. The binding force of as-prepared "2"3"2Th target is very well. There is "2"3"0Pa appeared after the target is bombed by the proton beam. (authors)

  14. Copper Ferrocyanide Functionalized Core-Shell Magnetic Silica Composites for the Selective Removal of Cesium Ions from Radioactive Liquid Waste.

    Lee, Hyun Kyu; Yang, Da Som; Oh, Wonzin; Choi, Sang-June

    2016-06-01

    The copper ferrocyanide functionalized core-shell magnetic silica composite (mag@silica-CuFC) was prepared and was found to be easily separated from aqueous solutions by using magnetic field. The synthesized mag@silica-CuFC composite has a high sorption ability of Cs owing to its strong affinity for Cs as well as the high surface area of the supports. Cs sorption on the mag@silica-CuFC composite quickly reached the sorption equilibrium after 2 h of contact time. The effect of the presence of salts with a high concentration of up to 3.5 wt% on the efficiency of Cs sorption onto the composites was also studied. The maximum sorption ability was found to be maintained in the presence of up to 3.5 wt% of NaCl in the solution. Considering these results, the mag@silica-CuFC composite has great potential for use as an effective sorbent for the selective removal of radioactive Cs ions.

  15. Characterization of laser doped silicon and overcoming adhesion challenges of solar cells with nickel-copper plated contacts

    Geisler, Christian

    2015-07-01

    The combination of localized laser patterning and metal plating allows to replace conventional silver screen printing with nickel-copper plating to form inexpensive front contacts for crystalline silicon solar cells. In this work, a focus is put on effects that could cause inhomogeneous metal deposition and low metal contact adhesion. A descriptive model of the silicon nitride ablation mechanism is derived from SEM imaging and a precise recombination analysis using QSSPC measurements. Surface sensitive XPS measurements are conducted to prove the existence of a parasitic surface layer, identified as SiO{sub x}N{sub y}. The dense SiO{sub x}N{sub y} layer is an effective diffusion barrier, hindering the formation of a nickel silicide interlayer. After removal of the SiO{sub x}N{sub y} layer, cells show severe degradation caused by metal-induced shunting. These shunts are imaged using reverse biased electroluminescence imaging. A shunting mechanism is proposed and experimentally verified. New laser process sequences are devised and proven to produce cells with adhering Ni-Cu contacts. Conclusively the developed processes are assessed based on their industrial feasibility as well as on their efficiency potential.

  16. On-demand oil-water separation via low-voltage wettability switching of core-shell structures on copper substrates

    Kung, Chun Haow; Zahiri, Beniamin; Sow, Pradeep Kumar; Mérida, Walter

    2018-06-01

    A copper mesh with dendritic copper-oxide core-shell structure is prepared using an additive-free electrochemical deposition strategy for on-demand oil-water separation. Electrochemical manipulation of the oxidation state of the copper oxide shell phase results in opposite affinities towards water and oil. The copper mesh can be tuned to manifest both superhydrophobic and superoleophilic properties to enable oil-removal. Conversely, switching to superhydrophilic and underwater superoleophobic allows water-removal. These changes correspond to the application of small reduction voltages (air drying. In the oil-removal mode, heavy oil selectively passes through the mesh while water is retained; in water-removal mode, the mesh allows water to permeate but blocks light oil. The smart membrane achieved separation efficiencies higher than 98% for a series of oil-water mixtures. The separation efficiency remains high with less than 5% variation after 30 cycles of oil-water separation in both modes. The switchable wetting mechanism is demonstrated with the aid of microstructural and electrochemical analysis and based on the well-known Cassie-Baxter and Wenzel theories. The selective removal of water or oil from the oil-water mixtures is driven solely by gravity and yields high efficiency and recyclability. The potential applications for the relevant technologies include oil spills cleanup, fuel purification, and wastewater treatment.

  17. Microwave electromagnetic and absorption properties of SiO2/C core/shell composites plated with metal cobalt

    Shen, Guozhu; Fang, Xumin; Wu, Hongyan; Wei, Hongyu; Li, Jingfa; Li, Kaipeng; Mei, Buqing; Xu, Yewen

    2017-04-01

    A facile method has been developed to fabricate magnetic core/shell SiO2/C/Co sub-microspheres via the pyrolysis of SiO2/PANI (polyaniline) and electroless plating method. The electromagnetic parameters of these SiO2/C and SiO2/C/Co composites were measured and the microwave reflection loss properties were evaluated in the frequency range of 2-18 GHz. The results show that the dielectric loss of SiO2/C composite increases with the increase of carbonization temperature and the magnetic loss enhances due to the deposition of cobalt on the SiO2/C sub-microspheres. The reflection loss results exhibit that the microwave absorption properties of the SiO2/C/Co composites are more excellent than those of SiO2/C composites for each thickness. The maximum effective absorption bandwidth (reflection loss ≤ -10 dB) arrives at 5.0 GHz (13.0-18 GHz) for SiO2/C/Co composite with 1.5 mm of thickness and the minimum reflection loss value is -24.0 dB at 5.0 GHz with 4.0 mm of thickness. The microwave loss mechanism of the SiO2/C/Co composites was also discussed in this paper.

  18. Copper, gold, and silver decorated magnetic core-polymeric shell nanostructures for destruction of pathogenic bacteria

    Padervand, Mohsen; Karanji, Ahmad Kiani; Elahifard, Mohammad Reza

    2017-05-01

    Fe3O4 magnetic nanoparticles (MNPs) were prepared by co-precipitation method. The nanoparticles were silica coated using TEOS, and then modified by the polymeric layers of polypropylene glycol (PPG) and polyethylene glycol (PEG). Finally, the core-shell samples were decorated with Ag, Au, and Cu nanoparticles. The products were characterized by vibrating sample magnetometry (VSM), TGA, SEM, XRD, and FTIR methods. The antibacterial activity of the prepared samples was evaluated in inactivation of E. coli and S. aureus microorganisms, representing the Gram-negative and Gram-positive species, respectively. The effect of solid dosage, bacteria concentration and type of polymeric modifier on the antibacterial activity was investigated. TEM images of the bacteria were recorded after the treatment time and according to the observed changes in the cell wall, the mechanism of antibacterial action was discussed. The prepared nanostructures showed high antibacterial activity against both Gram-negative and Gram-positive bacteria. This was due to the leaching of metal ions which subsequently led to the lysis of bacteria. A theoretical investigation was also done by studying the interaction of loaded metals with the nucleotide components of the microorganism DNA, and the obtained results were used to explain the experimental data. Finally, based on the observed inactivation curves, we explain the antibacterial behavior of the prepared nanostructures mathematically.

  19. Neural fuzzy modelization of copper removal from water by biosorption in fixed-bed columns using olive stone and pinion shell.

    Calero, M; Iáñez-Rodríguez, I; Pérez, A; Martín-Lara, M A; Blázquez, G

    2018-03-01

    Continuous copper biosorption in fixed-bed column by olive stone and pinion shell was studied. The effect of three operational parameters was analyzed: feed flow rate (2-6 ml/min), inlet copper concentration (40-100 mg/L) and bed-height (4.4-13.4 cm). Artificial Neural-Fuzzy Inference System (ANFIS) was used in order to optimize the percentage of copper removal and the retention capacity in the column. The highest percentage of copper retained was achieved at 2 ml/min, 40 mg/L and 4.4 cm. However, the optimum biosorption capacity was obtained at 6 ml/min, 100 mg/L and 13.4 cm. Finally, breakthrough curves were simulated with mathematical traditional models and ANFIS model. The calculated results obtained with each model were compared with experimental data. The best results were given by ANFIS modelling that predicted copper biosorption with high accuracy. Breakthrough curves surfaces, which enable the visualization of the behavior of the system in different process conditions, were represented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Dislocation density and mechanical threshold stress in OFHC copper subjected to SHPB loading and plate impact

    Hu, Qiushi [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China); Zhao, Feng, E-mail: ifpzfeng@163.com [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China); Fu, Hua; Li, Kewu [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China); Liu, Fusheng [Key Laboratory of Advanced Technologies of Materials, Southwest Jiaotong University, Chengdu, Sichuan, 610031 (China)

    2017-05-17

    The dislocation density and mechanical threshold stress (MTS) of oxygen-free high-thermal-conductivity (OFHC) copper loaded at strain rates in the range of 10{sup 2} to 10{sup 6} s{sup −1} were measured. Moderate-strain-rate (10{sup 2} to 10{sup 4} s{sup −1}) experiments were performed using a Split Hopkinson Pressure Bar (SHPB). A steel collar was placed around each specimen to control the maximum loading strain. High-strain-rate (10{sup 5} to 10{sup 6} s{sup −1}) experiments were carried out using a 57-mm-bore single-stage gas gun. The radial release effect was eliminated using the momentum trapping technique. The loaded samples were recovered, and the dislocation characteristics and dislocation density were determined by X-ray diffraction profile analysis. The fraction of the screw dislocation was found to decrease with increasing loading strain and strain rate. The dislocation density was found to lie between 1.8×10{sup 14} and 2.2×10{sup 15} m{sup −2}. Quasi-static reload compression tests were performed on the recovered samples at room temperature. The mechanical threshold stress (or the flow stress at 0 K) was obtained by fitting the reload stress–strain data to the MTS model. The results of analysis of the equivalent strain, mechanical threshold stress, and dislocation density measurements suggest that the relation between the mechanical threshold stress and the dislocation density can be described well by the Taylor relationship.

  1. Plate and shell theory

    Sørensen, Herman

    1997-01-01

    Fundamental analytical methods for the calculation of the bending strength and stability of isotrop and stiffened panels typically used in ship structures.Practical working examples with references to the rules of ship classification societies....

  2. Poly(glycidyl methacrylate)-A soft template for the facile preparation of poly(glycidyl methacrylate) core-copper nanoparticle shell nanocomposite

    Mohammed Safiullah, S.; Abdul Wasi, K.; Anver Basha, K.

    2015-12-01

    Poly(glycidyl methacrylate) core/copper nanoparticle shell nanocomposite (PGMA/Cu nanohybrid) was prepared by simple two step method (i) The synthesis of poly(glycidyl methacrylate) (PGMA) beads by free radical suspension polymerization followed by (ii) direct deposition of copper nanoparticles (CuNPs) on activated PGMA beads. The PGMA beads were used as a soft template to host the CuNPs without surface modification of it. In this method the CuNPs were formed by chemical reduction of copper salts using sodium borohydride in water medium and deposited directly on the activated PGMA. Two different concentrations of copper salts were employed to know the effect of concentration on the shape and size of nanoparticles. The results showed that, the different sizes and shapes of CuNPs were deposited on the PGMA matrix. The X-ray Diffraction study results showed that the CuNPs were embedded on the surface of the PGMA matrix. The scanning electron microscopic images revealed that the fabrication of CuNPs on the PGMA matrix possess different shapes and changes the morphology and nature of PGMA beads significantly. The fluorescent micrograph also confirmed that the CuNPs were doped on the PGMA surface. The thermal studies have demonstrated that the CuNPs deposition on the surface of PGMA beads had a significant effect.

  3. Piezo-phototronic effect enhanced UV photodetector based on CuI/ZnO double-shell grown on flexible copper microwire.

    Liu, Jingyu; Zhang, Yang; Liu, Caihong; Peng, Mingzeng; Yu, Aifang; Kou, Jinzong; Liu, Wei; Zhai, Junyi; Liu, Juan

    2016-12-01

    In this work, we present a facile, low-cost, and effective approach to fabricate the UV photodetector with a CuI/ZnO double-shell nanostructure which was grown on common copper microwire. The enhanced performances of Cu/CuI/ZnO core/double-shell microwire photodetector resulted from the formation of heterojunction. Benefiting from the piezo-phototronic effect, the presentation of piezocharges can lower the barrier height and facilitate the charge transport across heterojunction. The photosensing abilities of the Cu/CuI/ZnO core/double-shell microwire detector are investigated under different UV light densities and strain conditions. We demonstrate the I-V characteristic of the as-prepared core/double-shell device; it is quite sensitive to applied strain, which indicates that the piezo-phototronic effect plays an essential role in facilitating charge carrier transport across the CuI/ZnO heterojunction, then the performance of the device is further boosted under external strain.

  4. High-precision mass measurements of nickel, copper, and gallium isotopes and the purported shell closure at N=40

    Guenaut, C.; Audi, G.; Beck, D.

    2007-01-01

    High-precision mass measurement of more than thirty neutron-rich nuclides around the Z=28 closed proton shell were performed with the triple-trap mass spectrometer ISOLTRAP at ISOLDE/CERN to address the question of a possible neutron shell closure at N=40. The results for 57,60,64-69 Ni, 65-74,76 Cu (Z=29), and 63-65,68-78 Ga (Z=31), have a relative uncertainty of the order of 10 -8 . In particular, the masses of 72-74,76 Cu have been measured for the first time. We analyse the resulting mass surface for signs of magicity, comparing the behavior of N=40 to that of known magic numbers and to mid-shell behavior. Contrary to nuclear spectroscopy studies, no indications of a shell or sub-shell closure are found for N=40. (authors)

  5. Core-shell Fe3O4 polydopamine nanoparticles as sorbent for magnetic dispersive solid-phase extraction of copper from food samples.

    Yavuz, Emre; Tokalıoğlu, Şerife; Patat, Şaban

    2018-10-15

    In the present study, core-shell Fe 3 O 4 polydopamine nanoparticles were synthesized and used for the first time as an adsorbent for the vortex assisted magnetic dispersive solid phase extraction of copper from food samples. After elution, copper in the solutions was determined by FAAS. The adsorbent was characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller surface area, and zeta potential measurements. Various parameters affecting the magnetic dispersive solid-phase extraction were evaluated. The optimum pH and magnetic adsorbent amount were found to be 5 and 40 mg, respectively. Elution was made by 3 mL of 2 mol L -1 HNO 3 .The major advantage of the method is the fast equilibration during adsorption without the need for vortexing or shaking. The preconcentration factor and detection limit of the method were found to be 150 and 0.22 mg L -1 , respectively. The precision (as RSD%) and adsorption capacity of the method were 3.7% and 28 mg g -1 , respectively. The method was successfully verified by analyzing four certified reference materials (SPS-WW1 Batch 114 Wastewater, TMDA-53.3 Lake water, BCR-482 Lichen and 1573a Tomato Leaves) and by addition/recovery tests of copper standard solution in organic baby food, muesli, macaroni, honey, and milk samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Conductivity of laser printed copper structures limited by nano-crystal grain size and amorphous metal droplet shell

    Winter, Shoshana; Zenou, Michael; Kotler, Zvi

    2016-01-01

    We present a study of the morphology and electrical properties of copper structures which are printed by laser induced forward transfer from bulk copper. The percentage of voids and the oxidation levels are too low to account for the high resistivities (∼4 to 14 times the resistivity of bulk monocrystalline copper) of these structures. Transmission electron microscope (TEM) images of slices cut from the printed areas using a focused ion beam (FIB) show nano-sized crystal structures with grain sizes that are smaller than the electron free path length. Scattering from such grain boundaries causes a significant increase in the resistivity and can explain the measured resistivities of the structures. The TEM images also show a nano-amorphous layer (∼5 nm) at the droplet boundaries which also contributes to the overall resistivity. Such morphological characteristics are best explained by the ultrafast cooling rate of the molten copper droplets during printing. (paper)

  7. Stationary levitation and vibration transmission characteristic in a superconducting seismic isolation device with a permanent magnet system and a copper plate

    Sasaki, S., E-mail: s.sasaki@ecei.tohoku.ac.j [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Shimada, K.; Yagai, T.; Tsuda, M.; Hamajima, T. [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Kawai, N.; Yasui, K. [Okumura Corporation, 5-6-1 Shiba, Minato-ku, Tokyo 180-8381 (Japan)

    2010-11-01

    We have devised a magnetic levitation type superconducting seismic isolation device taking advantage of the specific characteristic of HTS bulk that the HTS bulk returns to its original position by restoring force against a horizontal displacement. The superconducting seismic isolation device is composed of HTS bulks and permanent magnets (PM rails). The PMs are fixed on an iron plate to realize the same polarities in the longitudinal direction and the different polarities in the transverse direction. The superconducting seismic isolation device can theoretically remove any horizontal vibrations completely. Therefore, the vibration transmissibility in the longitudinal direction of the PM rail becomes zero in theory. The zero vibration transmissibility and the stationary levitation, however, cannot be achieved in the real device because a uniform magnetic field distribution in the longitudinal direction of PM rail cannot be realized due to the individual difference of the PMs. Therefore, to achieve stationary levitation in the real device we adopted a PM-PM system that the different polarities are faced each other. The stationary levitation could be achieved by the magnetic interaction between the PMs in the PM-PM system, while the vibration transmitted to the seismic isolation object due to the magnetic interaction. We adopted a copper plate between the PMs to reduce the vibration transmissibility. The PM-PM system with the copper plate is very useful for realizing the stationary levitation and reducing the vibration transmissibility.

  8. Stationary levitation and vibration transmission characteristic in a superconducting seismic isolation device with a permanent magnet system and a copper plate

    Sasaki, S.; Shimada, K.; Yagai, T.; Tsuda, M.; Hamajima, T.; Kawai, N.; Yasui, K.

    2010-01-01

    We have devised a magnetic levitation type superconducting seismic isolation device taking advantage of the specific characteristic of HTS bulk that the HTS bulk returns to its original position by restoring force against a horizontal displacement. The superconducting seismic isolation device is composed of HTS bulks and permanent magnets (PM rails). The PMs are fixed on an iron plate to realize the same polarities in the longitudinal direction and the different polarities in the transverse direction. The superconducting seismic isolation device can theoretically remove any horizontal vibrations completely. Therefore, the vibration transmissibility in the longitudinal direction of the PM rail becomes zero in theory. The zero vibration transmissibility and the stationary levitation, however, cannot be achieved in the real device because a uniform magnetic field distribution in the longitudinal direction of PM rail cannot be realized due to the individual difference of the PMs. Therefore, to achieve stationary levitation in the real device we adopted a PM-PM system that the different polarities are faced each other. The stationary levitation could be achieved by the magnetic interaction between the PMs in the PM-PM system, while the vibration transmitted to the seismic isolation object due to the magnetic interaction. We adopted a copper plate between the PMs to reduce the vibration transmissibility. The PM-PM system with the copper plate is very useful for realizing the stationary levitation and reducing the vibration transmissibility.

  9. Poly(glycidyl methacrylate)—A soft template for the facile preparation of poly(glycidyl methacrylate) core-copper nanoparticle shell nanocomposite

    Mohammed Safiullah, S.; Abdul Wasi, K.; Anver Basha, K.

    2015-01-01

    Graphical abstract: - Highlights: • PGMA/Cu nanohybrids have been synthesized by Surface deposition method. • The CuNPs were deposited on the PGMA surface without surface modification. • CuNP deposition on PGMA has a significant effect on morphology and thermal stability. - Abstract: Poly(glycidyl methacrylate) core/copper nanoparticle shell nanocomposite (PGMA/Cu nanohybrid) was prepared by simple two step method (i) The synthesis of poly(glycidyl methacrylate) (PGMA) beads by free radical suspension polymerization followed by (ii) direct deposition of copper nanoparticles (CuNPs) on activated PGMA beads. The PGMA beads were used as a soft template to host the CuNPs without surface modification of it. In this method the CuNPs were formed by chemical reduction of copper salts using sodium borohydride in water medium and deposited directly on the activated PGMA. Two different concentrations of copper salts were employed to know the effect of concentration on the shape and size of nanoparticles. The results showed that, the different sizes and shapes of CuNPs were deposited on the PGMA matrix. The X-ray Diffraction study results showed that the CuNPs were embedded on the surface of the PGMA matrix. The scanning electron microscopic images revealed that the fabrication of CuNPs on the PGMA matrix possess different shapes and changes the morphology and nature of PGMA beads significantly. The fluorescent micrograph also confirmed that the CuNPs were doped on the PGMA surface. The thermal studies have demonstrated that the CuNPs deposition on the surface of PGMA beads had a significant effect.

  10. Poly(glycidyl methacrylate)—A soft template for the facile preparation of poly(glycidyl methacrylate) core-copper nanoparticle shell nanocomposite

    Mohammed Safiullah, S., E-mail: safichem@gmail.com [Department of Chemistry, C. Abdul Hakeem College of Engineering & Technology, Melvisharam, Vellore District, Tamil Nadu 632509 (India); P.G. & Research Department of Chemistry, C. Abdul Hakeem College, Melvisharam, Vellore District, Tamil Nadu 632509 (India); Abdul Wasi, K. [P.G. & Research Department of Chemistry, C. Abdul Hakeem College, Melvisharam, Vellore District, Tamil Nadu 632509 (India); Anver Basha, K., E-mail: kanverbasha@gmail.com [P.G. & Research Department of Chemistry, C. Abdul Hakeem College, Melvisharam, Vellore District, Tamil Nadu 632509 (India)

    2015-12-01

    Graphical abstract: - Highlights: • PGMA/Cu nanohybrids have been synthesized by Surface deposition method. • The CuNPs were deposited on the PGMA surface without surface modification. • CuNP deposition on PGMA has a significant effect on morphology and thermal stability. - Abstract: Poly(glycidyl methacrylate) core/copper nanoparticle shell nanocomposite (PGMA/Cu nanohybrid) was prepared by simple two step method (i) The synthesis of poly(glycidyl methacrylate) (PGMA) beads by free radical suspension polymerization followed by (ii) direct deposition of copper nanoparticles (CuNPs) on activated PGMA beads. The PGMA beads were used as a soft template to host the CuNPs without surface modification of it. In this method the CuNPs were formed by chemical reduction of copper salts using sodium borohydride in water medium and deposited directly on the activated PGMA. Two different concentrations of copper salts were employed to know the effect of concentration on the shape and size of nanoparticles. The results showed that, the different sizes and shapes of CuNPs were deposited on the PGMA matrix. The X-ray Diffraction study results showed that the CuNPs were embedded on the surface of the PGMA matrix. The scanning electron microscopic images revealed that the fabrication of CuNPs on the PGMA matrix possess different shapes and changes the morphology and nature of PGMA beads significantly. The fluorescent micrograph also confirmed that the CuNPs were doped on the PGMA surface. The thermal studies have demonstrated that the CuNPs deposition on the surface of PGMA beads had a significant effect.

  11. Colorimetric determination of copper ions based on the catalytic leaching of silver from the shell of silver-coated gold nanorods

    Wang, Xiaokun; Chen, Lingxin; Chen, Ling

    2014-01-01

    We have developed a method for the colorimetric determination of copper ions (Cu 2+ ) that is based on the use of silver-coated gold nanorods (Au–Ag NRs). Its outstanding selectivity and sensitivity result from the catalytic leaching process that occurs between Cu 2+ , thiosulfate (S 2 O 3 2− ), and the surface of the Au–Ag NRs. The intrinsic color of the Au–Ag NRs changes from bright red to bluish green with decreasing thickness of the silver coating. The addition of Cu 2+ accelerates the leaching of silver from the shell caused in the presence of S 2 O 3 2− . This result in a decrease in the thickness of the silver shell which is accompanied a change in color and absorption spectra of the colloidal solution. The shifts in the absorption maxima are linearly related to the concentrations of Cu 2+ over the 3–1,000 nM concentration range (R = 0.996). The method is cost effective and was applied to the determination of Cu 2+ in real water samples. (author)

  12. A spectroscopic study for understanding the speciation of Cr on palm shell based adsorbents and their application for the remediation of chrome plating effluents.

    Kushwaha, Shilpi; Sreedhar, B; Sudhakar, Padmaja P

    2012-07-01

    Palm shell based adsorbents prepared under five different thermochemical conditions have been shown to be quite effective for removal of chromium (III and VI) from aqueous solutions. X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FT-IR) have been used to determine information about the speciation and binding of chromium on the adsorbents under study. X-ray photoelectron spectroscopy (XPS) studies indicate that oxidation of lignin moieties takes place concurrently to Cr(VI) reduction and leads to the formation of hydroxyl and carboxyl functions. The maximum adsorption capacity for hexavalent chromium was found to be about 313 mg/g in an acidic medium using PAPSP. This is comparable to other natural substrates and ordinary adsorbents. The efficacy of the adsorbents under study to remove chromium from plating waste water has been demonstrated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Electrochemical behavior of copper metal core/oxide shell ultra-fine particles on mercury electrodes in aqueous dispersions

    Korshunov, A.; Heyrovský, Michael

    2009-01-01

    Roč. 629, 1-2 (2009), s. 23-29 ISSN 0022-0728 R&D Projects: GA ČR GA203/07/1195; GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503 Keywords : ultrafine copper powders * surface oxide layers * aqueous dispersions * voltammetry * Hg electrodes Subject RIV: CG - Electrochemistry Impact factor: 2.580, year: 2007

  14. A new bimetallic plasmonic photocatalyst consisting of gold(core)-copper(shell) nanoparticle and titanium(IV) oxide support

    Sato, Yuichi [Department of Applied Chemistry, School of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502 (Japan); Naya, Shin-ichi [Environmental Research Laboratory, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502 (Japan); Tada, Hiroaki, E-mail: h-tada@apch.kindai.ac.jp [Department of Applied Chemistry, School of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502 (Japan); Environmental Research Laboratory, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502 (Japan)

    2015-10-01

    Ultrathin Cu layers (∼2 atomic layers) have been selectively formed on the Au surfaces of Au nanoparticle-loaded rutile TiO{sub 2} (Au@Cu/TiO{sub 2}) by a deposition precipitation-photodeposition technique. Cyclic voltammetry and photochronopotentiometry measurements indicate that the reaction proceeds via the underpotential deposition. The ultrathin Cu shell drastically increases the activity of Au/TiO{sub 2} for the selective oxidation of amines to the corresponding aldehydes under visible-light irradiation (λ > 430 nm). Photochronoamperometry measurements strongly suggest that the striking Cu shell effect stems from the enhancement of the charge separation in the localized surface plasmon resonance-excited Au/TiO{sub 2}.

  15. A new bimetallic plasmonic photocatalyst consisting of gold(core-copper(shell nanoparticle and titanium(IV oxide support

    Yuichi Sato

    2015-10-01

    Full Text Available Ultrathin Cu layers (∼2 atomic layers have been selectively formed on the Au surfaces of Au nanoparticle-loaded rutile TiO2 (Au@Cu/TiO2 by a deposition precipitation-photodeposition technique. Cyclic voltammetry and photochronopotentiometry measurements indicate that the reaction proceeds via the underpotential deposition. The ultrathin Cu shell drastically increases the activity of Au/TiO2 for the selective oxidation of amines to the corresponding aldehydes under visible-light irradiation (λ > 430 nm. Photochronoamperometry measurements strongly suggest that the striking Cu shell effect stems from the enhancement of the charge separation in the localized surface plasmon resonance-excited Au/TiO2.

  16. Electromagnetic properties of core–shell particles by way of electroless Ni–Fe–P alloy plating on flake-shaped diatomite

    Zhang, Deyuan [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Yuan, Liming, E-mail: lming_y@163.com [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Lan, Mingming; Hu, Yanyan; Cai, Jun [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Zhang, Wenqiang [College of Engineering, China Agricultural University, Beijing 100083 (China); Li, Haiyang [China Aerospace Science and Technology Corporation, Beijing 100854 (China)

    2013-11-15

    Flake-shaped diatomite particles coated by Ni–Fe–P alloy were prepared by electroless plating technique and processed by heat treatment. The samples were characterized by SEM, EDS and XRD. The results indicated that the magnetic diatomite particles had continuous and homogeneous Ni–Fe–P coating, and the phase constitution of the Ni–Fe–P coating was transformed from an amorphous structure to a crystalline structure during heat treatment. The measured electromagnetic parameters and the calculated reflection loss suggested that heat treatment was able to enhance the microwave absorption performance of the paraffin wax based composites. In a word, the Ni–Fe–P coated diatomite particle obtained in this paper is a promising candidate for lightweight microwave absorbing inclusions. - Highlights: • We used the flake-shaped diatomite particles as forming template to fabricate the core–shell ferromagnetic particles. • The diatomite particles were deposited Ni–Fe–P alloy by way of electroless plating methods. • The coated diatomite particles were lightweight ferromagnetic fillers. • The composites containing coated diatomite particles with heat treatment exhibited great potential in the field of electromagnetic absorbing.

  17. Electromagnetic properties of core–shell particles by way of electroless Ni–Fe–P alloy plating on flake-shaped diatomite

    Zhang, Deyuan; Yuan, Liming; Lan, Mingming; Hu, Yanyan; Cai, Jun; Zhang, Wenqiang; Li, Haiyang

    2013-01-01

    Flake-shaped diatomite particles coated by Ni–Fe–P alloy were prepared by electroless plating technique and processed by heat treatment. The samples were characterized by SEM, EDS and XRD. The results indicated that the magnetic diatomite particles had continuous and homogeneous Ni–Fe–P coating, and the phase constitution of the Ni–Fe–P coating was transformed from an amorphous structure to a crystalline structure during heat treatment. The measured electromagnetic parameters and the calculated reflection loss suggested that heat treatment was able to enhance the microwave absorption performance of the paraffin wax based composites. In a word, the Ni–Fe–P coated diatomite particle obtained in this paper is a promising candidate for lightweight microwave absorbing inclusions. - Highlights: • We used the flake-shaped diatomite particles as forming template to fabricate the core–shell ferromagnetic particles. • The diatomite particles were deposited Ni–Fe–P alloy by way of electroless plating methods. • The coated diatomite particles were lightweight ferromagnetic fillers. • The composites containing coated diatomite particles with heat treatment exhibited great potential in the field of electromagnetic absorbing

  18. Study of low energy thermal constraints for a copper-plated niobium structure carried out by thermal projection

    Gassot, H.; Durante, M.; Thiebault, A.; Vernay, E.

    1999-06-01

    In the framework of T.T.F. (Tesla Test Facility), the international collaboration on research and development of superconducting cavities, a study of a new method of manufacturing cavities was launched, which consists in deposing a metal (copper) or an alloy by thermal projection on niobium cavities in order to stiffen them. Analytical and numerical calculations showed that when cooled this bi-material cavities behave very differently in comparison with classical pure niobium cavities and strong thermal constraints do occur in niobium as well as in copper. These strong constraints may have important consequences upon the functioning of superconducting cavities. In addition these constraints may induce in time cracks in materials and interfaces. In this paper an experiment for measuring constraints at the temperature of cavity operation, i.e., at the liquid helium temperature, is proposed in order to compare the measured constraints with the calculated constraints. The sample studied has a cylindrical shape, rather representative for the geometrical shape of cavities, but easier to handle than a prototype cavity. The experimental approach consists in carrying out two deformation measurements. The first one, is done on single material sample (niobium and copper) to establish the laws of compensation of the constraint gauges as a function of temperature. The other measurement establishes the global deformations of a bi-metallic tube (Nb-Cu) when the interior surface (niobium) and the external surface (porous copper) of the tube are cooled. From these deformation data the thermal constraints of the bi-metallic tube at low temperature have been derived. The implementation of the entire setup of the methods of measuring the constraints at low temperature constitutes a new development in the field of superconducting cavities. The experiments have also indicated certain further developments which should be achieved if the plastic deformations induced by the freezing regime

  19. Standardized performance tests of collectors of solar thermal energy - A flat-plate copper collector with parallel mylar striping

    Johnson, S. M.

    1976-01-01

    Basic test results are reported for a flat plate solar collector whose performance was determined in a solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  20. Multilayer core-shell structured composite paper electrode consisting of copper, cuprous oxide and graphite assembled on cellulose fibers for asymmetric supercapacitors

    Wan, Caichao; Jiao, Yue; Li, Jian

    2017-09-01

    An easily-operated and inexpensive strategy (pencil-drawing-electrodeposition-electro-oxidation) is proposed to synthesize a novel class of multilayer core-shell structured composite paper electrode, which consists of copper, cuprous oxide and graphite assembled on cellulose fibers. This interesting electrode structure plays a pivotal role in providing more active sites for electrochemical reactions, facilitating ion and electron transport and shorting their diffusion pathways. This electrode demonstrates excellent electrochemical properties with a high specific capacitance of 601 F g-1 at 2 A g-1 and retains 83% of this capacitance when operated at an ultrahigh current density of 100 A g-1. In addition, a high energy density of 13.4 W h kg-1 at the power density of 0.40 kW kg-1 and a favorable cycling stability (95.3%, 8000 cycles) were achieved for this electrode. When this electrode was assembled into an asymmetric supercapacitor with carbon paper as negative electrode, the device displays remarkable electrochemical performances with a large areal capacitances (122 mF cm-2 at 1 mA cm-2), high areal energy density (10.8 μW h cm-2 at 402.5 μW cm-2) and outstanding cycling stability (91.5%, 5000 cycles). These results unveil the potential of this composite electrode as a high-performance electrode material for supercapacitors.

  1. Manufacturing of the canister shells T54 and T55

    Raiko, H.

    2008-10-01

    This report constitutes a summary of the manufacturing test of the disposal canister copper shells T54 and T55. The copper billets were manufactured at Luvata Pori Oy, Finland. The hot-forming and machining of the copper shells were made at Vallourec and Mannesmann Tubes, Reisholz mill, Germany. The shells were manufactured with the pierce and draw method. Both of the pipes were manufactured separately in two phases. The first phase consisted of following steps: preheating of the billet, upsetting, piercing and the first draw with mandrel through drawing ring. After cooling down the block is measured and machined in case of excessive eccentricity or surface defects. In the second phase the block is heated up again and expanded and drawn in 6 sequences. In this process the pipe inside dimension is expanded and the length is increased in each step. Before the last, the 6th step, the bottom of the pipe is deformed in a sequence of special processes. During the manufacture of the first pipe, T54, some difficulties were detected with the centralization of the billet before upsetting. For the second manufacture of the T55, an additional steering ring was made and the result was remarkably more coaxial. After the manufacture and non-destructive inspections the shells were cut in pieces and three parts of each shell were taken for destructive testing. The three inspected parts were the bottom plate, a ring from the middle of the cylinder and a ring from the top of the cylinder. The destructive testing was made by Luvata Pori Oy. In spite of some practical difficulties and accidents during the manufacturing process, the results of the examinations showed that both of the test produced copper shells fulfilled all the specified requirements as for soundness (integrity), mechanical properties, chemical composition, dimensions, hardness and grain size. (orig.)

  2. Antiviral Activity of Gold/Copper Sulfide Core/Shell Nanoparticles against Human Norovirus Virus-Like Particles.

    Jessica Jenkins Broglie

    Full Text Available Human norovirus is a leading cause of acute gastroenteritis worldwide in a plethora of residential and commercial settings, including restaurants, schools, and hospitals. Methods for easily detecting the virus and for treating and preventing infection are critical to stopping norovirus outbreaks, and inactivation via nanoparticles (NPs is a more universal and attractive alternative to other physical and chemical approaches. Using norovirus GI.1 (Norwalk virus-like particles (VLPs as a model viral system, this study characterized the antiviral activity of Au/CuS core/shell nanoparticles (NPs against GI.1 VLPs for the rapid inactivation of HuNoV. Inactivation of VLPs (GI.1 by Au/CuS NPs evaluated using an absorbance-based ELISA indicated that treatment with 0.083 μM NPs for 10 min inactivated ~50% VLPs in a 0.37 μg/ml VLP solution and 0.83 μM NPs for 10 min completely inactivated the VLPs. Increasing nanoparticle concentration and/or VLP-NP contact time significantly increased the virucidal efficacy of Au/CuS NPs. Changes to the VLP particle morphology, size, and capsid protein were characterized using dynamic light scattering, transmission electron microscopy, and Western blot analysis. The strategy reported here provides the first reported proof-of-concept Au/CuS NPs-based virucide for rapidly inactivating human norovirus.

  3. Electrical conduction in composites containing copper core-copper

    Composites of nanometre-sized copper core-copper oxide shell with diameters in the range 6.1 to 7.3 nm dispersed in a silica gel were synthesised by a technique comprising reduction followed by oxidation of a suitably chosen precursor gel. The hot pressed gel powders mixed with nanometre-sized copper particles ...

  4. Shell Venster

    De Wit, P.; Looijesteijn, B.; Regeer, B.; Stip, B.

    1995-03-01

    In the bi-monthly issues of 'Shell Venster' (window on Shell) attention is paid to the activities of the multinational petroleum company Shell Nederland and the Koninklijke/Shell Groep by means of non-specialist articles

  5. Tuning the synthesis of platinum-copper nanoparticles with a hollow core and porous shell for the selective hydrogenation of furfural to furfuryl alcohol

    Huang, Shuangshuang; Yang, Nating; Wang, Shibin; Sun, Yuhan; Zhu, Yan

    2016-07-01

    Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol.Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03894h

  6. Tuning the synthesis of platinum-copper nanoparticles with a hollow core and porous shell for the selective hydrogenation of furfural to furfuryl alcohol.

    Huang, Shuangshuang; Yang, Nating; Wang, Shibin; Sun, Yuhan; Zhu, Yan

    2016-08-07

    Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol.

  7. Simple and efficient synthesis of copper(II)-modified uniform magnetic Fe3O4@SiO2 core/shell microspheres for immobilization of cellulase

    Li, Shi-Kuo; Hou, Xiao-Cheng; Huang, Fang-Zhi; Li, Chuan-Hao; Kang, Wen-Juan; Xie, An-Jian; Shen, Yu-Hua

    2013-11-01

    In this paper, we reported a simple and efficient protocol for preparation of Cu2+-modified magnetic Fe3O4@SiO2 core/shell microspheres for immobilization of cellulase. The uniform magnetic Fe3O4@SiO2 core/shell microspheres with a thin shell of 20 nm were synthesized through a solvothermal method followed by a sol-gel process. An amino-terminated silane coupling agent of (3-aminopropyl)triethoxysilane (APTS) was then grafted on them for capturing Cu2+ ions. The reaction process is very simple, efficient, and economical. Noticeably, the content of Cu2+ ions on the magnetic core/shell microspheres can reach 4.6 Wt%, endowing them possess as high immobilization capacity as 225.5 mg/g for cellulase. And the immobilized cellulase can be retained over 90 % on the magnetic microspheres after six cycles. Meanwhile, the magnetic microspheres decorated with Cu2+ ions show a superparamagnetic character with a high magnetic saturation of 58.5 emu/g at room temperature, suggesting conveniently and rapidly recycle the enzyme from solution. This facile, recyclable, high immobilization capacity and activity strategy may find potential applications in enzyme catalytic reactions with low cost.

  8. Simple and efficient synthesis of copper(II)-modified uniform magnetic Fe3O4@SiO2 core/shell microspheres for immobilization of cellulase

    Li, Shi-Kuo; Hou, Xiao-Cheng; Huang, Fang-Zhi; Li, Chuan-Hao; Kang, Wen-Juan; Xie, An-Jian; Shen, Yu-Hua

    2013-01-01

    In this paper, we reported a simple and efficient protocol for preparation of Cu 2+ -modified magnetic Fe 3 O 4 @SiO 2 core/shell microspheres for immobilization of cellulase. The uniform magnetic Fe 3 O 4 @SiO 2 core/shell microspheres with a thin shell of 20 nm were synthesized through a solvothermal method followed by a sol–gel process. An amino-terminated silane coupling agent of (3-aminopropyl)triethoxysilane (APTS) was then grafted on them for capturing Cu 2+ ions. The reaction process is very simple, efficient, and economical. Noticeably, the content of Cu 2+ ions on the magnetic core/shell microspheres can reach 4.6 Wt%, endowing them possess as high immobilization capacity as 225.5 mg/g for cellulase. And the immobilized cellulase can be retained over 90 % on the magnetic microspheres after six cycles. Meanwhile, the magnetic microspheres decorated with Cu 2+ ions show a superparamagnetic character with a high magnetic saturation of 58.5 emu/g at room temperature, suggesting conveniently and rapidly recycle the enzyme from solution. This facile, recyclable, high immobilization capacity and activity strategy may find potential applications in enzyme catalytic reactions with low cost

  9. Influence of plating parameters on mechanical and microstructural properties of electroplated micro-spheres

    Brun, Etienne

    2012-01-01

    The aim of this PhD Thesis is to study the gold-copper cyanide electrochemical system and finally to realize gold-copper microspheres with a diameter of 800 μm and a thickness between 20 and 40 μm. The composition, the microstructure and the roughness of these shells must be perfectly controlled. To synthesise such a material, electrodeposition from a gold-copper alkaline cyanide bath has been chosen. Initially, the influence of the principal electrochemical parameters (temperature of the plating bath, stirring, etc.) was studied. This study showed that it is possible to realize 5 μm thick gold-copper alloys with various compositions. Actually, it was shown that the copper content of deposits varies with the applied potential. When increasing the copper content of coatings, the nucleation and growth mechanisms change. As a result, the grain size and the microhardness of the coatings are modified. An increase in the copper content reduces the grain size which increases the microhardness until a critical grain size of 6 nm. This increase of copper content also affects the microstructure: columnar, nodular even dendritic structures were observed. Then, 20 μm thick gold-copper coatings were realized using the same electrochemical parameters. As expected, these coatings were very difficult to plate because of the instability of the electro crystallization process resulting in the development of columnar and nodular structures. Moreover, for thicknesses above 10 μm, all deposits are free from copper. The microstructure change of deposits can be explained by inhibition phenomena generated by free cyanide. Actually, the reduction of gold-copper generates free cyanide at the cathode surface which inhibits the electro crystallization and promotes instantaneous nucleation. This production of free cyanide also modifies the electrolyte chemistry promoting the formation of Cu(CN)_4"3"- instead of Cu(CN)_3"2"-. Cu(CN)_4"3"- complexes have lower diffusion coefficients and

  10. Advanced Copper Composites Against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot.

    Strayer-Scherer, A; Liao, Y Y; Young, M; Ritchie, L; Vallad, G E; Santra, S; Freeman, J H; Clark, D; Jones, J B; Paret, M L

    2018-02-01

    Bacterial spot, caused by Xanthomonas spp., is a widespread and damaging bacterial disease of tomato (Solanum lycopersicum). For disease management, growers rely on copper bactericides, which are often ineffective due to the presence of copper-tolerant Xanthomonas strains. This study evaluated the antibacterial activity of the new copper composites core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu) as potential alternatives to commercially available micron-sized copper bactericides for controlling copper-tolerant Xanthomonas perforans. In vitro, metallic copper from CS-Cu and FQ-Cu at 100 μg/ml killed the copper-tolerant X. perforans strain within 1 h of exposure. In contrast, none of the micron-sized copper rates (100 to 1,000 μg/ml) from Kocide 3000 significantly reduced copper-tolerant X. perforans populations after 48 h of exposure compared with the water control (P copper-based treatments killed the copper-sensitive X. perforans strain within 1 h. Greenhouse studies demonstrated that all copper composites significantly reduced bacterial spot disease severity when compared with copper-mancozeb and water controls (P copper composites significantly reduced disease severity when compared with water controls, using 80% less metallic copper in comparison with copper-mancozeb in field studies (P copper composites have the potential to manage copper-tolerant X. perforans and tomato bacterial spot.

  11. Homogeneous weldings of copper

    Campurri, C.; Lopez, M.; Fernandez, R.; Osorio, V.

    1995-01-01

    This research explored the metallurgical and mechanical properties of arc welding of copper related with influence of Argon, Helium and mixtures of them. Copper plates of 6 mm thickness were welded with different mixtures of the mentioned gases. The radiography of welded specimens with 100% He and 100% Ar does not show show any porosity. On the other hand, the copper plates welded different gas mixtures presented uniform porosity in the welded zone. The metallographies show recrystallized grain in the heat affected zone, while the welding zone showed a dendritic structure. The results of the tensile strength vary between a maximum of 227 MPa for 100% He and a minimum of 174 MOa for the mixture of 60% He and 40% Ar. For the elongation after fracture the best values, about 36%, were obtained for pure gases. As a main conclusion, we can say that arc welding of copper is possible without loosing the mechanical and metallurgical properties of base metal. 6 refs

  12. Penning-trap mass spectrometry of neutron-rich copper isotopes for probing the Z = 28 and N = 50 shell closures

    Manea, V

    We propose to perform a Penning-trap mass measurement of $^{79}$Cu. This exotic N = 50 isotone is the last frontier before the doubly-magic $^{78}$Ni and will greatly improve our knowledge of shell evolution. In the same run, we propose $^{77-78}$Cu mass measurements, as well as the search for a possible isomer in $^{76m}$Cu. The data will help to clarify the structure of the odd proton in the Cu isotopes, the influence on the Z = 28 proton core of the νg$_{9/2}$ orbital filling and the impact of the proton-neutron residual interaction on the strength of the N = 50 shell closure.

  13. 雷达T/R组件壳体镀银自动生产线设计%Study on Automatic Silver-Plating Production Line for Radar T/R Module Shells

    宋夏; 胡江华; 叶敏; 何川金

    2011-01-01

    Design an automatic silver-plating production line to stabilize processing parameter, increase productivity effect,insure product quality and upgrade working condition, based on the silver-plating problem of active phased array radar T/R module shells. Then, the general planning, structural design, control system and programming of this automatic production line were specified, and at last, the deficiency and improvement of the line was proposed.%针对有源相控阵雷达T/R组件壳体的镀银要求,设计直线挂镀式镀银自动生产线来稳定工艺参数,提高生产效率,保证产品质量和改善劳动条件,并对自动生产线的总体方案、结构设计、控制系统以及程序设计进行了详细介绍,最后对生产线的不足和改进方案进行了说明.

  14. Investigation of the structure of core-coupled odd-proton copper nuclei in fpg valence space using the projected shell model

    Gupta, Anuradha; Singh, Suram; Bharti, Arun [University of Jammu, Department of Physics and Electronics, Jammu (India); Khosa, S.K. [Central University of Jammu, Department of Physics and Astronomical Sciences, Jammu (India); Bhat, G.H.; Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India)

    2017-01-15

    By employing a systematically parametrized Hamiltonian and the best fit of the various input parameters, high-spin yrast energy states for an isotopic chain of odd mass {sup 59-69}Cu nuclei have been investigated by using a novel computational quantum mechanical framework-projected shell model. Comparison of calculations and experiments yields good agreement. The present study of various intriguing nuclear structure properties along the yrast lines in these odd proton isotopes reflects some interesting informative nuclear physics results. The calculations successfully describe the formation of the yrast level structures from multi-quasi-particle configurations based on πf x νg bands for {sup 59-69}Cu isotopes. The present calculations indicate the evolution of the nuclear structure near the magic nuclei, Ni, and also provide an indication of coexistence of both, collective as well as single-particle, levels for {sup 69}Cu nucleus at N=40. (orig.)

  15. Feasibility study for an engineering concept of a stainless steel/copper divertor plate protected by W-5 Re alloy or graphite armor

    Renda, V.; Federici, G.; Papa, L.

    1988-01-01

    The latest Joint Research Centre (JRC)-Ispra proposal is presented to support the design of a divertor concept that has long been considered the most crucial component of the plasma impurity control system for the Next Europen Torus (NET) tokamak fusion reactor. Because of the harsh tokamak environment, the divertor panel is the plasma facing component that suffers the most severe loading conditions, such as high thermal stresses, thermal fatigue, severe erosion rates and neutron damage. An analysis of a new divertor panel concept has evolved from the previous studies carried out at JRC-Ispra. The materials considered in this study are AISI 316 stainless steel for the cooling tubes, pure copper for the heat sink, and W-5 Re alloy or graphite for the protective armor. The panel is cooled by pressurized water circulation in U-tubes. A preliminary thermo-hydraulic analysis has been carried out to evaluate a set of reference parameters, such as optimum coolant velocity, maximum outlet water temperature, convective heat exchange coefficient, and the expected pressure drops in the channels. Thermal and mechanical calculations, performed by using the finite element technique, showed encouraging results about the engineering feasibility of the pressure boundary of the divertor for loading conditions similar to those of NET double null, assumed as the reference mainframe

  16. Comparison of BR3 Surveillance and Vessel Plates to the Surrogate Plates Representative of the Yankee Rowe PWR Vessel

    Fabry, A.; Chaouadi, R.; Puzzolante, J.L.; Van de Velde, J.; Biemiller, E.C.; Rosinski, S.T.; Carter, R.G

    1998-07-01

    The sister pressure vessels at the BR3 and Yankee Rowe PWR plants were operated at lower-than-usual temperature ( 260 degrees Celsius) and their plates were austenitized a higher-than-usual temperature (970 degrees Celsius) - a heat treatment leading to a coarser microstructure than is typical for the fine grain plates considered in development of USNRC Regulatory Guide 1.99. The surveillance programs provided by Westinghouse for the two plants were limited to the same A302-B plate representative of the Rowe vessel upper shell plate; this material displayed outlier behaviour characterized by a 41 J Charpy-V Notch shift significantly larger than predicted by Regulatory Guide 1.99. Because lower irradiation temperature and nickel alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rate plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements embodied in the PTS screening criterion. This paper compares free complementary studies undertaken to clarify these uncertainties: (1) The accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63 % (A533-B) and YA9, 0.19 (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively; (2) The BR3 surveillance and vessel testing program: this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, and was trepanned in early 1995; (3) The accelerated irradiations in the Belgian test reactor BR2 of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is contended that the PTS screening criterion was never attained by the BR3 and Rowe plates, and

  17. Comparison of BR3 Surveillance and Vessel Plates to the Surrogate Plates Representative of the Yankee Rowe PWR Vessel

    Fabry, A.; Chaouadi, R.; Puzzolante, J.L.; Van de Velde, J.; Biemiller, E.C.; Rosinski, S.T.; Carter, R.G.

    1998-07-01

    The sister pressure vessels at the BR3 and Yankee Rowe PWR plants were operated at lower-than-usual temperature ( 260 degrees Celsius) and their plates were austenitized a higher-than-usual temperature (970 degrees Celsius) - a heat treatment leading to a coarser microstructure than is typical for the fine grain plates considered in development of USNRC Regulatory Guide 1.99. The surveillance programs provided by Westinghouse for the two plants were limited to the same A302-B plate representative of the Rowe vessel upper shell plate; this material displayed outlier behaviour characterized by a 41 J Charpy-V Notch shift significantly larger than predicted by Regulatory Guide 1.99. Because lower irradiation temperature and nickel alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rate plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements embodied in the PTS screening criterion. This paper compares free complementary studies undertaken to clarify these uncertainties: (1) The accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63 % (A533-B) and YA9, 0.19 (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively; (2) The BR3 surveillance and vessel testing program: this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, and was trepanned in early 1995; (3) The accelerated irradiations in the Belgian test reactor BR2 of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is contended that the PTS screening criterion was never attained by the BR3 and Rowe plates, and

  18. Comparison of BR3 surveillance and vessel plates to the surrogate plates representative of the Yankee Rowe PWR vessel

    Fabry, A.; Chaouadi, R.; Puzzolante, J.L.; Van de Velde, J.; Biemiller, E.C.; Rosinski, S.T.; Carter, R.G.

    1999-01-01

    The sister pressure vessels at the BR3 and Yankee Rowe PWR plants were operated at lower-than-usual temperature (∼260 C) and their plates were austenitized at higher-than-usual temperature (∼970 C) -- a heat treatment leading to a coarser microstructure than is typical for the fine grain plates considered in development of USNRC Regulatory Guide 1.99. The surveillance programs provided by Westinghouse for the two plants were limited to the same A302-B plate representative of the Rowe vessel upper shell plate; this material displayed outlier behavior characterized by a 41J. Charpy-V Notch shift significantly larger than predicted by Regulatory Guide 1.99. Because lower irradiation temperature and nickel alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rowe plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements embodied in the PTS screening criterion. This paper compares three complementary studies undertaken to clarify these uncertainties: (1) The accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63% (A533-B) and YA9, 0.19% (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively; (2) The BR3 surveillance and vessel testing program; this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, and was trepanned in early 1995; (3) The accelerated irradiations in the Belgian test reactor BR2 of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is contended that the PTS screening criterion was never attained by the BR3 and Rowe plates, and that the BR3 vessel

  19. Plate Tectonics and Europa's Icy Shell

    defence of his theory with the 1915 publication of The Origin of Continents and Oceans. Wegener .... is one of the most promising places in our solar system to search .... Universe, Paperback Edition, Copernicus Books, pp.191–216, 2003.

  20. Copper hypersensitivity

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-01-01

    hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common...

  1. Electrochemical behaviour of alkaline copper complexes

    Abstract. A search for non-cyanide plating baths for copper resulted in the development of alkaline copper complex baths containing trisodium citrate [TSC] and triethanolamine [TEA]. Voltammetric studies were carried out on platinum to understand the electrochemical behaviour of these complexes. In TSC solutions, the.

  2. High performance fuel electrodes fabricated by electroless plating of copper on BaZr0.8Ce0.1Y0.1O3-δ proton-conducting ceramic

    Patki, Neil S.; Way, J. Douglas; Ricote, Sandrine

    2017-10-01

    The stability of copper at high temperatures in reducing and hydrocarbon-containing atmospheres makes it a good candidate for fabricating fuel electrodes on proton-conducting ceramics, such as BaZr0.9-xCexY0.1O3-δ (BZCY). In this work, the electrochemical performance of Cu-based electrodes fabricated by electroless plating (ELP) on BaZr0.8Ce0.1Y0.1O3-δ is studied with impedance spectroscopy. Three activation catalysts (Pd, Ru, and Cu) are investigated and ELP is compared to a commercial Cu paste (ESL 2312-G) for electrode fabrication. The area specific resistances (ASR) for Pd, Ru, and Cu activations at 700 °C in moist 5% H2 in Ar are 2.1, 3.2, and 13.4 Ω cm2, respectively. That is a 1-2 orders of magnitude improvement over the commercial Cu paste (192 Ω cm2). Furthermore, the ASR has contributions from electrode processes and charge transfer at the electrode/electrolyte interface. Additionally, the morphology of the as-fabricated electrode is unaffected by the activation catalyst. However, heat treatment at 750 °C in H2 for 24 h leads to sintering and large reorganization of the electrode fabricated with Cu activation (micron sized pores seen in the tested sample), while Pd and Ru activations are immune to such reorganization. Thus, Pd and Ru are identified as candidates for future work with improvements to charge transfer required for the former, and better electrode processes required for the latter.

  3. Shell supports

    Almegaard, Henrik

    2004-01-01

    A new statical and conceptual model for membrane shell structures - the stringer system - has been found. The principle was first published at the IASS conference in Copenhagen (OHL91), and later the theory has been further developed (ALMO3)(ALMO4). From the analysis of the stringer model it can...... be concluded that all membrane shells can be described by a limited number of basic configurations of which quite a few have free edges....

  4. Cold plate

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  5. Plating laboratory

    Seamster, A.G.; Weitkamp, W.G.

    1984-01-01

    The lead plating of the prototype resonator has been conducted entirely in the plating laboratory at SUNY Stony Brook. Because of the considerable cost and inconvenience in transporting personnel and materials to and from Stony Brook, it is clearly impractical to plate all the resonators there. Furthermore, the high-beta resonator cannot be accommodated at Stony Brook without modifying the set up there. Consequently the authors are constructing a plating lab in-house

  6. Friction Stir Processing of Copper-Coated SiC Particulate-Reinforced Aluminum Matrix Composite

    Chih-Wei Huang

    2018-04-01

    Full Text Available In the present work, we proposed a novel friction stir processing (FSP to produce a locally reinforced aluminum matrix composite (AMC by stirring copper-coated SiC particulate reinforcement into Al6061 alloy matrix. Electroless-plating process was applied to deposit the copper surface coating on the SiC particulate reinforcement for the purpose of improving the interfacial adhesion between SiC particles and Al matrix. The core-shell SiC structure provides a layer for the atomic diffusion between aluminum and copper to enhance the cohesion between reinforcing particles and matrix on one hand, the dispersion of fine copper in the Al matrix during FSP provides further dispersive strengthening and solid solution strengthening, on the other hand. Hardness distribution and tensile results across the stir zone validated the novel concept in improving the mechanical properties of AMC that was realized via FSP. Optical microscope (OM and Transmission Electron Microscopy (TEM investigations were conducted to investigate the microstructure. Energy dispersive spectrometer (EDS, electron probe micro-analyzer (EPMA, and X-ray diffraction (XRD were explored to analyze the atomic inter-diffusion and the formation of intermetallic at interface. The possible strengthening mechanisms of the AMC containing Cu-coated SiC particulate reinforcement were interpreted. The concept of strengthening developed in this work may open a new way of fabricating of particulate reinforced metal matrix composites.

  7. Tribological properties of copper-based composites with copper coated NbSe2 and CNT

    Chen, Beibei; Yang, Jin; Zhang, Qing; Huang, Hong; Li, Hongping; Tang, Hua; Li, Changsheng

    2015-01-01

    Graphical abstract: Morphology of copper coated NbSe 2 and CNT; friction coefficient and wear rate of copper-based composites. - Highlights: • NbSe 2 and CNT were coated with copper layers by the means of electroless plating. • The mechanical and tribological properties of copper composites were studied. • The enhancement mechanisms of copper coated NbSe 2 and CNT were proposed. • Copper–copper coated (12 wt.%NbSe 2 –3 wt.%CNT) composite had the best wear resistance. - Abstract: Copper-based composites with copper coated NbSe 2 and/or CNT were fabricated by the powder metallurgy technique. The morphology and phase composition of copper coated NbSe 2 and carbon nanotube (CNT) were observed using high solution transmission electronic microscope (HRTEM), scanning electronic microscope (SEM equipped with EDS) and X-ray diffraction (XRD). The density, hardness, and bending strength of as-prepared copper-based composites were measured, and their tribological properties were investigated using UMT-2 tester. Results indicated that all copper-based composites showed decreased density and bending strength, but increased hardness in comparison with copper matrix. Besides, the incorporation of copper coated NbSe 2 improved the friction-reducing and anti-wear properties of copper matrix. Addition of copper coated CNT greatly enhanced the mechanical and tribological properties. In particular, when the content of copper coated CNT was 3 wt.%, the corresponding composite exhibited the best tribological properties. This was because NbSe 2 was distributed chaotically in matrix, which greatly improved the friction-reducing property of copper, while CNT with superior mechanical strength enhanced the wear resistance by increasing the load-carrying capacity. More importantly, copper layers coated on NbSe 2 and CNT favored the good interfacial combination between fillers and copper matrix showing beneficial effect for the stresses transferring from matrix to fillers

  8. Encapsulation of electroless copper patterns into diamond films

    Pimenov, S.M.; Shafeev, G.A.; Lavrischev, S.V. [General Physics Institute, Moscow (Russian Federation)] [and others

    1995-12-31

    The results are reported on encapsulating copper lines into diamond films grown by a DC plasma CVD. The process includes the steps of (i) laser activation of diamond for electroless metal plating, (ii) electroless copper deposition selectively onto the activated surface regions, and (iii) diamond regrowth on the Cu-patterned diamond films. The composition and electrical properties of the encapsulated copper lines were examined, revealing high purity and low electrical resistivity of the encapsulated electroless copper.

  9. Electroforming copper targets for RTNS-II

    Kelley, W.K.; Dini, J.W.; Logan, C.M.

    1981-01-01

    Copper targets used in RTNS II, which is the world's most intense 14-MeV neutron source, contain water cooling channels for temperature control. There are two methods for fabricating these targets: (1) diffusion bonding a copper panel containing photoetched channels to another copper panel, and (2) an electroforming technique which involves filling the photoetched channels with wax, plating thick copper to seal over the channels and then removing the wax. Development of this latter process and results obtained with it are described

  10. Pre-Stressing Timber-Based Plate Tensegrity Structures

    Falk, Andreas; Kirkegaard, Poul Henning

    2012-01-01

    Tensile structures occur in numerous varieties utilising combinations of tension and compression. Introducing structural plates in the basic tensegrity unit and tensegric assemblies varies the range of feasible topologies and provides the structural system with an integrated surface. The present...... paper considers the concept of plate tensegrity based on CLT plates (cross-laminated timber). It combines the principles of tensegrity with the principles of plate shells and is characterised by a plate shell stabilised by struts and cables. The paper deals with material aspects and robustness of timber...

  11. Investigation of copper nuclei

    Delfini, M.G.

    1983-01-01

    An extensive study has been performed on copper isotopes in the mass region A=63-66. The results of a precise measurement are presented on the properties of levels of 64 Cu and 66 Cu. They were obtained by bombarding the 63 Cu and 65 Cu nuclei with neutrons. The gamma spectra collected after capture of thermal, 2-keV, 24-keV neutrons have been analysed and combined to give a rather extensive set of precise level energies and gamma transition strengths. From the angular distribution of the gamma rays it is possible to obtain information concerning the angular momentum J of several low-lying states. The level schemes derived from such measurements have been used as a test for calculations in the framework of the shell model. The spectral distributions of eigenstates in 64 Cu for different configuration spaces are presented and discussed. In this study the relative importance of configurations with n holes in the 1f7/2 shell with n up to 16, are investigated. It is found that the results strongly depend on the values of the single-particle energies. The results of the spectral-distribution method were utilized for shell-model calculations. From the information obtained from the spectral analysis it was decided to adopt a configuration space which includes up to one hole in the 1f7/2 shell and up to two particles in the 1g9/2 shell. Further, restrictions on seniority and on the coupling of the two particles in the 1g9/2 orbit have been applied and their effects have been studied. It is found that the calculated excitation energies reproduce the measured values in a satisfactory way, but that some of the electromagnetic properties are less well in agreement with experimental data. (Auth.)

  12. Nested shell superconducting magnet designs

    Bromberg, L.; Williams, J.E.C.; Titus, P.

    1992-01-01

    A new concept for manufacturing the toroidal field coil is described in this paper. Instead of structural plates, the magnet is wound in interlocking shells. The magnet configuration is described and the advantages explored. Structural analysis of the concept is performed using the ARIES tokamak reactor parameters. The effectiveness of a structural cap, placed above and below the toroidal field coils and used only to balance opposing torques generated in different places of the coil, is quantified

  13. an investigation into the use of groundnut shell as fine aggregate

    2013-03-01

    Mar 1, 2013 ... Groundnut Shell Use as Fine Aggregate Replacement. 55. (a) Plate A. (b) Plate B ... as a waste from a household which uses groundnut for oil making. ..... Analysis of Cement and Aggregate Replacement Ma- terials. Nigerian ...

  14. Plating on some difficult-to-plate metals and alloys

    Dini, J.W.; Johnson, H.R.

    1980-02-01

    Electrodeposition of coatings on metals such as beryllium, beryllium-copper, Kovar, lead, magnesium, thorium, titanium, tungsten, uranium, zirconium, and their alloys can be problematic. This is due in most cases to a natural oxide surface film that readily reforms after being removed. The procedures we recommend for plating on these metals rely on replacing the oxide film with a displacement coating, or etching to allow mechanical keying between the substrate and plated deposit. The effectiveness of the procedures is demonstrated by interface bond strengths found in ring-shear and conical-head tensile tests

  15. Research on metal-plated cellulose nitrate flakes and their infrared / millimeter wave characteristics

    Ye, Shu-qin; Zhu, Chen-guang; Wang, Li-hong; Ou'yang, De-hua; Pan, Gong-pei

    2016-10-01

    Copper-plated and silver-plated cellulose nitrate flakes, which were prepared by using chemical plating technology, were used to jam infrared detector and millimeter-wave radar. It was tested for the conductivity and infrared jamming performance of plating and also the RCS (Radar Cross Section) performance of millimeter-wave radar. Test results showed that the prepared metal-plated cellulose nitrate flakes have obvious conductivity, and infrared total radiation energy of silver plating and copper plating had approximately increased 32% and 21% respectively. Through determination, the millimeter-wave reflecting property and RCS of silver-plated cellulose nitrate flakes were higher than that of copper-plated cellulose nitrate flakes. Therefore, silver-plated cellulose nitrate flakes can be used as an effective infrared / millimeter wave composite jamming material.

  16. Structural shell analysis understanding and application

    Blaauwendraad, Johan

    2014-01-01

    The mathematical description of the properties of a shell is much more elaborate than those of beam and plate structures. Therefore many engineers and architects are unacquainted with aspects of shell behaviour and design, and are not familiar with sufficiently reliable shell theories for the different shell types as derived in the middle of the 20th century. Rather than contributing to theory development, this university textbook focuses on architectural and civil engineering schools. Of course, practising professionals will profit from it as well. The book deals with thin elastic shells, in particular with cylindrical, conical and spherical types, and with elliptic and hyperbolic paraboloids. The focus is on roofs, chimneys, pressure vessels and storage tanks. Special attention is paid to edge bending disturbance zones, which is indispensable knowledge in FE meshing. A substantial part of the book results from research efforts in the mid 20th century at Delft University of Technology. As such, it is a valua...

  17. A refined element-based Lagrangian shell element for geometrically nonlinear analysis of shell structures

    Woo-Young Jung

    2015-04-01

    Full Text Available For the solution of geometrically nonlinear analysis of plates and shells, the formulation of a nonlinear nine-node refined first-order shear deformable element-based Lagrangian shell element is presented. Natural co-ordinate-based higher order transverse shear strains are used in present shell element. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Furthermore, a refined first-order shear deformation theory for thin and thick shells, which results in parabolic through-thickness distribution of the transverse shear strains from the formulation based on the third-order shear deformation theory, is proposed. This formulation eliminates the need for shear correction factors in the first-order theory. To avoid difficulties resulting from large increments of the rotations, a scheme of attached reference system is used for the expression of rotations of shell normal. Numerical examples demonstrate that the present element behaves reasonably satisfactorily either for the linear or for geometrically nonlinear analysis of thin and thick plates and shells with large displacement but small strain. Especially, the nonlinear results of slit annular plates with various loads provided the benchmark to test the accuracy of related numerical solutions.

  18. Shell-like structures advanced theories and applications

    Eremeyev, Victor

    2017-01-01

    The book presents mathematical and mechanical aspects of the theory of plates and shells, applications in civil, aero-space and mechanical engineering, as well in other areas. The focus relates to the following problems: • comprehensive review of the most popular theories of plates and shells, • relations between three-dimensional theories and two-dimensional ones, • presentation of recently developed new refined plates and shells theories (for example, the micropolar theory or gradient-type theories), • modeling of coupled effects in shells and plates related to electromagnetic and temperature fields, phase transitions, diffusion, etc., • applications in modeling of non-classical objects like, for example, nanostructures, • presentation of actual numerical tools based on the finite element approach.

  19. Copper Test

    ... in the arm and/or a 24-hour urine sample is collected. Sometimes a health practitioner performs a liver ... disease , a rare inherited disorder that can lead to excess storage of copper in the liver, brain, and other ...

  20. Finite element analysis of inclined nozzle-plate junctions

    Dixit, K.B.; Seth, V.K.; Krishnan, A.; Ramamurthy, T.S.; Dattaguru, B.; Rao, A.K.

    1979-01-01

    Estimation of stress concentration at nozzle to plate or shell junctions is a significant problem in the stress analysis of nuclear reactors. The topic is a subject matter of extensive investigations and earlier considerable success has been reported on analysis for the cases when the nozzle is perpendicular to the plate or is radial to the shell. Analytical methods for the estimation of stress concentrations for the practical situations when the intersecting nozzle is inclined to the plate or is non-radial to the shell is rather scanty. Specific complications arise in dealing with the junction region when the nozzle with circular cross-section meets the non-circular cut-out on the plate or shell. In this paper a finite element analysis is developed for inclined nozzles and results are presented for nozzle-plate junctions. A method of analysis is developed with a view to achieving simultaneously accuracy of results and simplicity in the choice of elements and their connectivity. The circular nozzle is treated by axisymmetric conical shell elements. The nozzle portion in the region around the junction and the flat plate is dealt with by triangular flat shell elements. Special transition elements are developed for joining the flat shell elements with the axisymmetric elements under non-axisymmetric loading. A substructure method of analysis is adopted which achieves considerable economy in handling the structure and also conveniently combines the different types of elements in the structure. (orig.)

  1. Preparation and structure of carbon encapsulated copper nanoparticles

    Hao Chuncheng; Xiao Feng; Cui Zuolin

    2008-01-01

    Carbon-encapsulated copper nanoparticles were synthesized by a modified arc plasma method using methane as carbon source. The particles were characterized in detail by transmission electron microscope, high-resolution transmission electron microscopy, selected-area electron diffraction, X-ray diffraction, thermogravimetric and differential scanning calorimetry. The encapsulated copper nanoparticles were about 30 nm in diameter with 3-5 nm graphitic carbon shells. The outside graphitic carbon layers effectively prevented unwanted oxidation of the copper inside. The effect of the ratio of He/CH 4 on the morphologies and the formation of the carbon shell were investigated

  2. A Galerkin approximation for linear elastic shallow shells

    Figueiredo, I. N.; Trabucho, L.

    1992-03-01

    This work is a generalization to shallow shell models of previous results for plates by B. Miara (1989). Using the same basis functions as in the plate case, we construct a Galerkin approximation of the three-dimensional linearized elasticity problem, and establish some error estimates as a function of the thickness, the curvature, the geometry of the shell, the forces and the Lamé costants.

  3. Analysis of hydraulic instability of ANS involute fuel plates

    Sartory, W.K.

    1991-11-01

    Curved shell equations for the involute Advanced Neutron Source (ANS) fuel plates are coupled to two-dimensional hydraulic channel flow equations that include fluid friction. A complete set of fluid and plate boundary conditions is applied at the entrance and exit and along the sides of the plate and the channel. The coupled system is linearized and solved to assess the hydraulic instability of the plates

  4. Development of stress correction formulae for heat formed steel plates

    Hyung Kyun Lim

    2018-03-01

    Full Text Available The heating process such as line heating, triangular heating and so on is widely used in plate forming of shell plates found in bow and stern area of outer shell in a ship. Local shrinkage during heating process is main physical phenomenon used in plate forming process. As it is well appreciated, the heated plate undergoes the change in material and mechanical properties around heated area due to the harsh thermal process. It is, therefore, important to investigate the changes of physical and mechanical properties due to heating process in order to use them plate the design stage of shell plates. This study is concerned with the development of formula of plastic hardening constitutive equation for steel plate on which line heating is applied. In this study the stress correction formula for the heated plate has been developed based on the numerical simulation of tension test with varying plate thickness and heating speed through the regression analysis of multiple variable case. It has been seen the developed formula shows very good agreement with results of numerical simulation. This paper ends with usefulness of the present formula in examining the structural characteristic of ship's hull. Keywords: Heat input, Heat transfer analysis, Line heating, Shell plate, Stress correction, Thermo-elasto-plastic analysis

  5. Selenium plating of aluminium and nickel surfaces

    Qureshi, N.; Shams, N.; Kamal, A.; Ashraf, A.

    1993-01-01

    Selenium exhibits photovoltaic and photoconductive properties. This makes selenium useful in the production of photocells, exposure meters for photographic use, in solar cells, etc. In commerce, selenium coated surfaces are extensively used as photo receptive drums in the xerography machines for reproducing documents. Laboratory experiments were designed to obtain selenium plating on different materials. Of the various electrodes tested for cathodic deposition, anodized aluminum and nickel plated copper were found to give good results. (author)

  6. Buckling analysis of partially corroded steel plates with irregular ...

    Department of Ocean Engineering, AmirKabir University of Technology, ... could yield some acceptance criteria to assist surveyors or designers in repair and .... Finite element model of a partially both-sided corroded plate (shell elements).

  7. Electroplating and stripping copper on molybdenum and niobium

    Power, J. L.

    1978-01-01

    Molybdenum and niobium are often electroplated and subsequently stripped of copper. Since general standard plating techniques produce poor quality coatings, general procedures have been optimized and specified to give good results.

  8. Bonding and structure of copper nitrenes.

    Cundari, Thomas R; Dinescu, Adriana; Kazi, Abul B

    2008-11-03

    Copper nitrenes are of interest as intermediates in the catalytic aziridination of olefins and the amination of C-H bonds. However, despite advances in the isolation and study of late-transition-metal multiply bonded complexes, a bona fide structurally characterized example of a terminal copper nitrene has, to our knowledge, not been reported. In anticipation of such a report, terminal copper nitrenes are studied from a computational perspective. The nitrene complexes studied here are of the form (beta-diketiminate)Cu(NPh). Density functional theory (DFT), complete active space self-consistent-field (CASSCF) electronic structure techniques, and hybrid quantum mechanical/molecular mechanical (QM/MM) methods are employed to study such species. While DFT methods indicate that a triplet (S = 1) is the ground state, CASSCF calculations indicate that a singlet (S = 0) is the ground state, with only a small energy gap between the singlet and triplet. Moreover, the ground-state (open-shell) singlet copper nitrene is found to be highly multiconfigurational (i.e., biradical) and to possess a bent geometry about the nitrene nitrogen, contrasting with the linear nitrene geometry of the triplet copper nitrenes. CASSCF calculations also reveal the existence of a closed-shell singlet state with some degree of multiple bonding character for the copper-nitrene bond.

  9. Etching of Copper Coated Mylar Tubes With CF-4 Gas

    Ecklund, Karl M.; Hartman, Keith W.; Hebert, Michael J.; Wojcicki, Stanley G.

    1996-01-01

    Using 5 mm diameter copper coated mylar straw tubes at a potential of 2.30 KV relative to a concentric 20 (mu)m diameter gold-plated tungsten anode, it has been observed that with very low flow rates of CF4-based gases the conductive copper cathode material may be removed entirely from the mylar surface

  10. Pretinning Nickel-Plated Wire Shields

    Igawa, J. A.

    1985-01-01

    Nickel-plated copper shielding for wires pretinned for subsequent soldering with help of activated rosin flux. Shield cut at point 0.25 to 0.375 in. (6 to 10 mm) from cut end of outer jacket. Loosened end of shield straightened and pulled toward cut end. Insulation of inner wires kept intact during pretinning.

  11. NDE of explosion welded copper stainless steel first wall mock-up

    Taehtinen, S.; Kauppinen, P.; Jeskanen, H.; Lahdenperae, K.; Ehrnsten, U.

    1997-04-01

    The study showed that reflection type C-mode scanning acoustic microscope (C-SAM) and internal ultrasonic inspection (IRIS) equipment can be applied for ultrasonic examination of copper stainless steel compound structures of ITER first wall mock-ups. Explosive welding can be applied to manufacture fully bonded copper stainless steel compound plates. However, explosives can be applied only for mechanical tightening of stainless steel cooling tubes within copper plate. If metallurgical bonding between stainless steel tubes and copper plate is required Hot Isostatic Pressing (HIP) method can be applied. (orig.)

  12. Reducing risk where tectonic plates collide

    Gomberg, Joan S.; Ludwig, Kristin A.

    2017-06-19

    Most of the world’s earthquakes, tsunamis, landslides, and volcanic eruptions are caused by the continuous motions of the many tectonic plates that make up the Earth’s outer shell. The most powerful of these natural hazards occur in subduction zones, where two plates collide and one is thrust beneath another. The U.S. Geological Survey’s (USGS) “Reducing Risk Where Tectonic Plates Collide—A USGS Plan to Advance Subduction Zone Science” is a blueprint for building the crucial scientific foundation needed to inform the policies and practices that can make our Nation more resilient to subduction zone-related hazards.

  13. Standardized performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 5 5/8 inches

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  14. Standard performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 3-7/8 inches

    1976-01-01

    Basic test results are given of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes, and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  15. Tube-in-shell heat exchangers

    Richardson, J.

    1976-01-01

    Tube-in-shell heat exchangers normally comprise a bundle of parallel tubes within a shell container, with a fluid arranged to flow through the tubes in heat exchange with a second fluid flowing through the shell. The tubes are usually end supported by the tube plates that separate the two fluids, and in use the tube attachments to the tube plates and the tube plates can be subject to severe stress by thermal shock and frequent inspection and servicing are required. Where the heat exchangers are immersed in a coolant such as liquid Na such inspection is difficult. In the arrangement described a longitudinally extending central tube is provided incorporating axially spaced cylindrical tube plates to which the opposite ends of the tubes are attached. Within this tube there is a tubular baffle that slidably seals against the wall of the tube between the cylindrical tube plates to define two co-axial flow ducts. These ducts are interconnected at the closed end of the tube by the heat exchange tubes and the baffle comprises inner and outer spaced walls with the interspace containing Ar. The baffle is easily removable and can be withdrawn to enable insertion of equipment for inspecting the wall of the tube and tube attachments and to facilitate plugging of defective tubes. Cylindrical tube plates are believed to be superior for carrying pressure loads and resisting the effects of thermal shock. Some protection against thermal shock can be effected by arranging that the secondary heat exchange fluid is on the tube side, and by providing a thermal baffle to prevent direct impingement of hot primary fluid on to the cylindrical tube plates. The inner wall of the tubular baffle may have flexible expansible region. Some nuclear reactor constructions incorporating such an arrangement are described, including liquid metal reactors. (U.K.)

  16. Discontinuous precipitation in copper base alloys

    Discontinuous precipitation (DP) is associated with grain boundary migration in the wake of which alternate plates of the precipitate and the depleted matrix form. Some copper base alloys show DP while others do not. In this paper the misfit strain parameter, , has been calculated and predicted that if 100 > ± 0.1, DP is ...

  17. Morphology of micro- and nanoparticles emitted by copper plants in Western Poland

    Konarski, P.; Cwil, M.; Iwanejko, I.; Mierzejewska, A.; Diduszko, R.

    2004-01-01

    Aerosol particles were collected in the vicinity of copper plants in Western Poland and analysed by mass spectrometry methods like secondary ion mass spectrometry (SIMS), spark source mass spectrometry (SSMS) and X-ray diffraction to characterise the possible dangers for the environment and health. The motivation of the work was to approach the toxicological mechanisms that are triggered when aerosol nanoparticles enter the human body. Different analytical techniques were used in order to compare bulk and surface properties of particles. The particle collection was performed with nine-stage cascade impactor with rotating plates and also with micro-fibre quartz filter collector. SSMS bulk analysis of copper plant emitted particles shows the presence of over 30 elements, the concentration in wt.% of Cu, Pb, Zn and Cl is 30, 5, 2 and 1, respectively. XRD analysis of these particles shows crystalline phases of quartz and probable phases containing copper CuS 2 , lead Pb 2 SiO 4 , PbO - massicot, Pb 5 [OH][PO 4 ] 3 , Pb 3 SiO 5 , iron and calcium Ca[Mg 0.67 Fe 0.33 ][CO 3 ] - dolomite, ferroan, Ca[FeMg][CO 3 ] 2 - ankerite, Ca[MgFe]Si 2 O 6 - augite. Surface sensitive SIMS depth profile analysis revealed the core-shell structure of copper plant emitted particles. The obtained structure of these particles shows that surfaces of the particles are enriched in elements like chlorine, fluorine, lead and chromium with respect to the core concentrations of these elements. The cores are composed mainly of copper, oxygen and carbon containing compounds. Lead concentration is nearly two times greater at the surface layers of particles than in the cores. SIMS analysis of urban aerosol particles collected in Legnica shows compositional dependence with size. Surface shell layer concentration of lead is three times greater for coarse 6-15 μm particles than for tiny 300 nm-1 μm particles. Such non-uniform particle morphology may enhance the toxic properties of particles suspended in

  18. Morphology of micro- and nanoparticles emitted by copper plants in Western Poland

    Konarski, P.; Cwil, M.; Iwanejko, I.; Mierzejewska, A.; Diduszko, R

    2004-07-01

    Aerosol particles were collected in the vicinity of copper plants in Western Poland and analysed by mass spectrometry methods like secondary ion mass spectrometry (SIMS), spark source mass spectrometry (SSMS) and X-ray diffraction to characterise the possible dangers for the environment and health. The motivation of the work was to approach the toxicological mechanisms that are triggered when aerosol nanoparticles enter the human body. Different analytical techniques were used in order to compare bulk and surface properties of particles. The particle collection was performed with nine-stage cascade impactor with rotating plates and also with micro-fibre quartz filter collector. SSMS bulk analysis of copper plant emitted particles shows the presence of over 30 elements, the concentration in wt.% of Cu, Pb, Zn and Cl is 30, 5, 2 and 1, respectively. XRD analysis of these particles shows crystalline phases of quartz and probable phases containing copper CuS{sub 2}, lead Pb{sub 2}SiO{sub 4}, PbO - massicot, Pb{sub 5}[OH][PO{sub 4}]{sub 3}, Pb{sub 3}SiO{sub 5}, iron and calcium Ca[Mg{sub 0.67}Fe{sub 0.33}][CO{sub 3}] - dolomite, ferroan, Ca[FeMg][CO{sub 3}]{sub 2} - ankerite, Ca[MgFe]Si{sub 2}O{sub 6} - augite. Surface sensitive SIMS depth profile analysis revealed the core-shell structure of copper plant emitted particles. The obtained structure of these particles shows that surfaces of the particles are enriched in elements like chlorine, fluorine, lead and chromium with respect to the core concentrations of these elements. The cores are composed mainly of copper, oxygen and carbon containing compounds. Lead concentration is nearly two times greater at the surface layers of particles than in the cores. SIMS analysis of urban aerosol particles collected in Legnica shows compositional dependence with size. Surface shell layer concentration of lead is three times greater for coarse 6-15 {mu}m particles than for tiny 300 nm-1 {mu}m particles. Such non-uniform particle

  19. Plate tectonics

    Chaubey, A.K.

    's continental drift theory was later disproved, it was one of the first times that the idea of crustal movement had been introduced to the scientific community; and it has laid the groundwork for the development of modern plate tectonics. In the early... of the structure of the atom was to physical sciences and the theory of evolution was to the life sciences. Tectonics is the study of the forces within the Earth that give rise to continents, ocean basins, mountain ranges, earthquake belts and other large-scale...

  20. Create Your Plate

    Full Text Available ... Plate Share Create Your Plate ! Share: Seven Simple Steps to Create Your Plate It's simple and effective ... foods within each food category. Try these seven steps to get started: Using your dinner plate, put ...

  1. Coprecipitation of cadmium with copper 8-hydroxyquinolate from homogeneous solution

    Takiyama, Kazuyoshi; Kozen, Terumi; Ueki, Yasuyo; Ishida, Hiromi

    1976-01-01

    The coprecipitation of copper and cadmium 8-hydroxyquinolates from homogeneous solution was conducted from the viewpoint of crystal and analytical chemistry. To the mixed solution containing copper and cadmium ions an 8-acetoxyquinoline solution was added by keeping the pH of the solution at 9 and the resulted solution was stirred at 25 0 C. The precipitate formed at each stage of the reaction was analyzed. The precipitates in an initial stage were composed of needle crystals which characterizes copper 8-hydroxyquinolate, and were associated with a slight amount of cadmium. The first half of the coprecipitation curve for the needle crystal formation resembles the logarithmic distribution curve of lambda equal to about 0.01. The precipitation of most of the copper ions was followed by the precipitation of cadmium 8-hydroxyquinolate crystal in the plate form. The needle crystals of copper 8-hydroxyquinolate started to dissolve and transformed to plate crystals. In the second half of the coprecipitation, both crystals, owing to the identical crystal structure, precipitated simultaneously and form a solid solution. When cadmium 8-hydroxyquinolate was precipitated by the PFHS method (precipitation from homogeneous solution) in the presence of the needle crystals of copper 8-hydroxyquinolate, the above mentioned phenomenon was observed. The precipitation of cadmium 8-hydroxyquinolate in the plate form is due to the seeding effect of the plate crystals of copper 8-hydroxyquinolate, which were scantily transformed from the needle crystals. The plate crystals of cadmium compound acts as a seed to transform the needle crystals of copper compound to plate crystals. (auth.)

  2. Role of copper oxides in contact killing of bacteria.

    Hans, Michael; Erbe, Andreas; Mathews, Salima; Chen, Ying; Solioz, Marc; Mücklich, Frank

    2013-12-31

    The potential of metallic copper as an intrinsically antibacterial material is gaining increasing attention in the face of growing antibiotics resistance of bacteria. However, the mechanism of the so-called "contact killing" of bacteria by copper surfaces is poorly understood and requires further investigation. In particular, the influences of bacteria-metal interaction, media composition, and copper surface chemistry on contact killing are not fully understood. In this study, copper oxide formation on copper during standard antimicrobial testing was measured in situ by spectroscopic ellipsometry. In parallel, contact killing under these conditions was assessed with bacteria in phosphate buffered saline (PBS) or Tris-Cl. For comparison, defined Cu2O and CuO layers were thermally generated and characterized by grazing incidence X-ray diffraction. The antibacterial properties of these copper oxides were tested under the conditions used above. Finally, copper ion release was recorded for both buffer systems by inductively coupled plasma atomic absorption spectroscopy, and exposed copper samples were analyzed for topographical surface alterations. It was found that there was a fairly even growth of CuO under wet plating conditions, reaching 4-10 nm in 300 min, but no measurable Cu2O was formed during this time. CuO was found to significantly inhibit contact killing, compared to pure copper. In contrast, thermally generated Cu2O was essentially as effective in contact killing as pure copper. Copper ion release from the different surfaces roughly correlated with their antibacterial efficacy and was highest for pure copper, followed by Cu2O and CuO. Tris-Cl induced a 10-50-fold faster copper ion release compared to PBS. Since the Cu2O that primarily forms on copper under ambient conditions is as active in contact killing as pure copper, antimicrobial objects will retain their antimicrobial properties even after oxide formation.

  3. Study on synthesis of ultrafine Cu–Ag core–shell powders with high electrical conductivity

    Peng Yuhsien; Yang Chihhao; Chen Kuanting; Popuri, Srinivasa R.; Lee, Ching-Hwa; Tang, Bo-Shin

    2012-01-01

    Highlights: ► This synthesis method is relatively facile, novel and eco-friendly. ► Toxic agents were not used for chelating agent, reductant or dispersant in our method. ► The reaction can under room temperature for energy saving purpose. ► Cu–Ag core–shell powders with homogeneous cover-silver layer. ► The resistivity of Cu–Ag core–shell powders has the same value as the pure silver. - Abstract: Cu–Ag composite powders with high electrical conductivity were synthesized by electroless plating of silver sulfate, copper powders with eco-friendly sodium citrate as reducing agent, dispersant and chelating agent in an aqueous system. The influences of sodium citrate/Ag ratio on Ag coatings of Cu powders were investigated. Ag was formed a dense coating on the surface of Cu powders at a molar ratio of sodium citrate/Ag = 0.07/1. SEM showed an uniformity of Ag coatings on Cu powders. SEM-EDX also revealed that Cu cores were covered by Ag shells on the whole. The surface composition analysis by XPS indicated that without Cu or Ag atoms in the surface were oxidized. The resistivity measurements of Cu–Ag paste shows that they have closer resistivity as the pure silver paste's after 250 °C for 30 min heat-treatment (2.55 × 10 −4 Ω cm) and 350 °C for 30 min heat-treatment (1.425 × 10 −4 Ω cm).

  4. Controlled Synthesis of Carbon-Encapsulated Copper Nanostructures by Using Smectite Clays as Nanotemplates

    Tsoufis, Theodoros; Colomer, Jean-Francois; Maccallini, Enrico; Jankovic, Lubos; Rudolf, Petra; Gournis, Dimitrios; Jankovič, Lubos

    Rhomboidal and spherical metallic-copper nanostructures were encapsulated within well-formed graphitic shells by using a simple chemical method that involved the catalytic decomposition of acetylene over a copper catalyst that was supported on different smectite clays surfaces by ion-exchange. These

  5. Copper and Copper Proteins in Parkinson's Disease

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  6. Separation of copper-64 from copper phthalocyanine

    Battaglin, R.I.M.

    1979-01-01

    The separation of copper-64 from irradiated copper phthalocyanine by Szilard-Chalmers effect is studied. Two methods of separation are used: one of them is based on the dissolution of the irradiated dry compound in concentrated sulfuric acid following its precipitation in water. In the other one the compound is irradiated with water in paste form following treatment with water and hydrochloric acid. The influence of the crystal form of the copper phthalocyanine on the separation yield of copper-64 is shown. Preliminary tests using the ionic exchange technique for purification and changing of copper-64 sulfate to chloride form are carried out. The specific activity using the spectrophotometric technique, after the determination of the copper concentration in solution of copper-64, is calculated. (Author) [pt

  7. Equivalent Young's Modulus of Perforated Shell with Square Penetration Pattern

    Jhung, Myung Jo; Ryu, Yong Ho [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2011-05-15

    The analysis of a plate or shell perforated with a large number of holes, by finite element method for instance, was a very costly and time-consuming technique which solves only one particular problem. But it is possible to model the perforated plate or shell and to analyze it and it is no more time-consuming theses days due to the rapid development of the computer and software. However, if a perforated plate or shell is submerged in fluid it is almost impossible to model and analyze it as is and the fluid at the same time, which is needed to investigate the effect of the fluid structure interaction. The simplest way to avoid time consuming and costly analysis of perforated plate or shell submerged in fluid is to replace the perforated plate or shell by an equivalent solid one considering weakening effect of holes. Many authors have proposed experimental or theoretical method to solve this problem for the plate. Slot and O'Donnell determined the effective elastic constants for the thick perforated plates by equating strains in the equivalent solid material to the average strains in the perforated material. O'Donnell also presented those of thin perforated plates. These results are implemented in Article A-8000 of Appendix A to the ASME code Section III, which contains a method of analysis for flat perforated plates when subjected to directly applied loads or loadings resulting from structural interaction with adjacent members. Unfortunately the effective elastic constants for the perforated shell are not found in any references. Therefore in this study the modal characteristics of the perforated shell are investigated and the equivalent material properties of perforated shell are suggested by performing several finite element analyses with respect to the ligament efficiencies

  8. Three-dimensional flat shell-to-shell coupling: numerical challenges

    Guo, Kuo; Haikal, Ghadir

    2017-11-01

    The node-to-surface formulation is widely used in contact simulations with finite elements because it is relatively easy to implement using different types of element discretizations. This approach, however, has a number of well-known drawbacks, including locking due to over-constraint when this formulation is used as a twopass method. Most studies on the node-to-surface contact formulation, however, have been conducted using solid elements and little has been done to investigate the effectiveness of this approach for beam or shell elements. In this paper we show that locking can also be observed with the node-to-surface contact formulation when applied to plate and flat shell elements even with a singlepass implementation with distinct master/slave designations, which is the standard solution to locking with solid elements. In our study, we use the quadrilateral four node flat shell element for thin (Kirchhoff-Love) plate and thick (Reissner-Mindlin) plate theory, both in their standard forms and with improved formulations such as the linked interpolation [1] and the Discrete Kirchhoff [2] elements for thick and thin plates, respectively. The Lagrange multiplier method is used to enforce the node-to-surface constraints for all elements. The results show clear locking when compared to those obtained using a conforming mesh configuration.

  9. Three-dimensional flat shell-to-shell coupling: numerical challenges

    Guo Kuo

    2017-11-01

    Full Text Available The node-to-surface formulation is widely used in contact simulations with finite elements because it is relatively easy to implement using different types of element discretizations. This approach, however, has a number of well-known drawbacks, including locking due to over-constraint when this formulation is used as a twopass method. Most studies on the node-to-surface contact formulation, however, have been conducted using solid elements and little has been done to investigate the effectiveness of this approach for beam or shell elements. In this paper we show that locking can also be observed with the node-to-surface contact formulation when applied to plate and flat shell elements even with a singlepass implementation with distinct master/slave designations, which is the standard solution to locking with solid elements. In our study, we use the quadrilateral four node flat shell element for thin (Kirchhoff-Love plate and thick (Reissner-Mindlin plate theory, both in their standard forms and with improved formulations such as the linked interpolation [1] and the Discrete Kirchhoff [2] elements for thick and thin plates, respectively. The Lagrange multiplier method is used to enforce the node-to-surface constraints for all elements. The results show clear locking when compared to those obtained using a conforming mesh configuration.

  10. Asymptotic Solution of the Theory of Shells Boundary Value Problem

    I. V. Andrianov

    2007-01-01

    Full Text Available This paper provides a state-of-the-art review of asymptotic methods in the theory of plates and shells. Asymptotic methods of solving problems related to theory of plates and shells have been developed by many authors. The main features of our paper are: (i it is devoted to the fundamental principles of asymptotic approaches, and (ii it deals with both traditional approaches, and less widely used, new approaches. The authors have paid special attention to examples and discussion of results rather than to burying the ideas in formalism, notation, and technical details.

  11. A flat triangular shell element with Loof nodes

    Poulsen, Peter Noe; Damkilde, Lars

    1996-01-01

    In the formulation of flat shell elements it is difficult to achieve inter-element compatibility between membrane and transverse displacements for non-coplanar elements. Many elements lack proper nodal degrees of freedom to model intersections making the assembly of elements troublesome. A flat...... triangular shell element is established by a combination of a new plate bending element DKTL and the well-known linear membrane strain element LST, and for this element the above-mentioned deficiences are avoided. The plate bending element DKTL is based on Discrete Kirchhoff Theory and Loof nodes. The nodal...

  12. A generic double-curvature piezoelectric shell energy harvester: Linear/nonlinear theory and applications

    Zhang, X. F.; Hu, S. D.; Tzou, H. S.

    2014-12-01

    Converting vibration energy to useful electric energy has attracted much attention in recent years. Based on the electromechanical coupling of piezoelectricity, distributed piezoelectric zero-curvature type (e.g., beams and plates) energy harvesters have been proposed and evaluated. The objective of this study is to develop a generic linear and nonlinear piezoelectric shell energy harvesting theory based on a double-curvature shell. The generic piezoelectric shell energy harvester consists of an elastic double-curvature shell and piezoelectric patches laminated on its surface(s). With a current model in the closed-circuit condition, output voltages and energies across a resistive load are evaluated when the shell is subjected to harmonic excitations. Steady-state voltage and power outputs across the resistive load are calculated at resonance for each shell mode. The piezoelectric shell energy harvesting mechanism can be simplified to shell (e.g., cylindrical, conical, spherical, paraboloidal, etc.) and non-shell (beam, plate, ring, arch, etc.) distributed harvesters using two Lamé parameters and two curvature radii of the selected harvester geometry. To demonstrate the utility and simplification procedures, the generic linear/nonlinear shell energy harvester mechanism is simplified to three specific structures, i.e., a cantilever beam case, a circular ring case and a conical shell case. Results show the versatility of the generic linear/nonlinear shell energy harvesting mechanism and the validity of the simplification procedures.

  13. Nonlinear Finite Element Analysis of Shells with Large Aspect Ratio

    Chang, T. Y.; Sawamiphakdi, K.

    1984-01-01

    A higher order degenerated shell element with nine nodes was selected for large deformation and post-buckling analysis of thick or thin shells. Elastic-plastic material properties are also included. The post-buckling analysis algorithm is given. Using a square plate, it was demonstrated that the none-node element does not have shear locking effect even if its aspect ratio was increased to the order 10 to the 8th power. Two sample problems are given to illustrate the analysis capability of the shell element.

  14. Reversible patterning of spherical shells through constrained buckling

    Marthelot, J.; Brun, P.-T.; Jiménez, F. López; Reis, P. M.

    2017-07-01

    Recent advances in active soft structures envision the large deformations resulting from mechanical instabilities as routes for functional shape morphing. Numerous such examples exist for filamentary and plate systems. However, examples with double-curved shells are rarer, with progress hampered by challenges in fabrication and the complexities involved in analyzing their underlying geometrical nonlinearities. We show that on-demand patterning of hemispherical shells can be achieved through constrained buckling. Their postbuckling response is stabilized by an inner rigid mandrel. Through a combination of experiments, simulations, and scaling analyses, our investigation focuses on the nucleation and evolution of the buckling patterns into a reticulated network of sharp ridges. The geometry of the system, namely, the shell radius and the gap between the shell and the mandrel, is found to be the primary ingredient to set the surface morphology. This prominence of geometry suggests a robust, scalable, and tunable mechanism for reversible shape morphing of elastic shells.

  15. Colloidal and electrochemical aspects of copper-CMP

    Sun, Yuxia

    Copper based interconnects with low dielectric constant layers are currently used to increase interconnect densities and reduce interconnect time delays in integrated circuits. The technology used to develop copper interconnects involves Chemical Mechanical Planarization (CMP) of copper films deposited on low-k layers (silica or silica based films), which is carried out using slurries containing abrasive particles. One issue using such a structure is copper contamination over dielectric layers (SiO2 film), if not reduced, this contamination will cause current leakage. In this study, the conditions conducive to copper contamination onto SiO2 films during Cu-CMP process were studied, and a post-CMP cleaning technique was discussed based on experimental results. It was found that the adsorption of copper onto a silica surface is kinetically fast (electrocoagulation was investigated to remove both copper and abrasive slurry particles simultaneously. For effluent containing ˜40 ppm dissolved copper, it was found that ˜90% dissolved copper was removed from the waste streams through electroplating and in-situ chemical precipitation. The amount of copper removed through plating is impacted by membrane surface charge, type/amount of complexing agents, and solid content in the slurry suspension. The slurry particles can be removed ˜90% within 2 hours of EC through multiple mechanisms.

  16. Development of highly faceted reduced graphene oxide-coated copper oxide and copper nanoparticles on a copper foil surface

    Rebeca Ortega-Amaya

    2016-07-01

    Full Text Available This work describes the formation of reduced graphene oxide-coated copper oxide and copper nanoparticles (rGO-Cu2ONPs, rGO-CuNPs on the surface of a copper foil supporting graphene oxide (GO at annealing temperatures of 200–1000 °C, under an Ar atmosphere. These hybrid nanostructures were developed from bare copper oxide nanoparticles which grew at an annealing temperature of 80 °C under nitrogen flux. The predominant phase as well as the particle size and shape strongly depend on the process temperature. Characterization with transmission electron microscopy and scanning electron microscopy indicates that Cu or Cu2O nanoparticles take rGO sheets from the rGO network to form core–shell Cu–rGO or Cu2O–rGO nanostructures. It is noted that such ones increase in size from 5 to 800 nm as the annealing temperature increases in the 200–1000 °C range. At 1000 °C, Cu nanoparticles develop a highly faceted morphology, displaying arm-like carbon nanorods that originate from different facets of the copper crystal structure.

  17. Comparative Study of Electroless Copper Film on Different Self-Assembled Monolayers Modified ABS Substrate

    Jiushuai Xu

    2014-04-01

    Full Text Available Copper films were grown on (3-Mercaptopropyltrimethoxysilane (MPTMS, (3-Aminopropyltriethoxysilane (APTES and 6-(3-(triethoxysilylpropylamino-1,3,5- triazine-2,4-dithiol monosodium (TES self-assembled monolayers (SAMs modified acrylonitrile-butadiene-styrene (ABS substrate via electroless copper plating. The copper films were examined using scanning electron microscopy (SEM and X-ray diffraction (XRD. Their individual deposition rate and contact angle were also investigated to compare the properties of SAMs and electroless copper films. The results indicated that the formation of copper nuclei on the TES-SAMs modified ABS substrate was faster than those on the MPTMS-SAMs and APTES-SAMs modified ABS substrate. SEM images revealed that the copper film on TES-SAM modified ABS substrate was smooth and uniform, and the density of copper nuclei was much higher. Compared with that of TES-SAMs modified resin, the coverage of copper nuclei on MPTMS and APTES modified ABS substrate was very limited and the copper particle size was too big. The adhesion property test demonstrated that all the SAMs enhanced the interfacial interaction between copper plating and ABS substrate. XRD analysis showed that the copper film deposited on SAM-modified ABS substrate had a structure with Cu(111 preferred orientation, and the copper film deposited on TES-SAMs modified ABS substrate is better than that deposited on MPTMS-SAMs or APTES-SAMs modified ABS resins in electromigrtion resistance.

  18. Coal option. [Shell Co

    1978-01-01

    This paper notes the necessity of developing an international coal trade on a very large scale. The role of Shell in the coal industry is examined; the regions in which Shell companies are most active are Australia, Southern Africa, Indonesia; Europe and North America. Research is being carried out on marketing and transportation, especially via slurry pipelines; coal-oil emulsions; briquets; fluidized-bed combustion; recovery of coal from potential waste material; upgrading of low-rank coals; unconventional forms of mining; coal conversion (the Shell/Koppers high-pressure coal gasification process). Techniques for cleaning flue gas (the Shell Flue Gas Desulfurization process) are being examined.

  19. Shell-like structures

    Altenbach, Holm

    2011-01-01

    In this volume, scientists and researchers from industry discuss the new trends in simulation and computing shell-like structures. The focus is put on the following problems: new theories (based on two-dimensional field equations but describing non-classical effects), new constitutive equations (for materials like sandwiches, foams, etc. and which can be combined with the two-dimensional shell equations), complex structures (folded, branching and/or self intersecting shell structures, etc.) and shell-like structures on different scales (for example: nano-tubes) or very thin structures (similar

  20. Stress analysis for shells with double curvature by finite element method

    Mueller, A.

    1981-08-01

    A simple triangular finite element for plates and shells, is presented. Since the rotation fields are assumed independent of the displacement fields, simple shape functions of second and third degree were used. An implicit penalty method allows one to solve thin shell problems since the Kirchoff-Love hypothesis are automatically satisfied. (Author) [pt

  1. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating

    Liu, Qian; He, Xin-Bo; Ren, Shu-Bin; Zhang, Chen; Ting-Ting, Liu; Qu, Xuan-Hui, E-mail: quxh@ustb.edu.cn

    2014-02-25

    Highlights: • GF–copper composites were fabricated using a sparking plasma sintering, which involves coating GF with copper, using electroless plating technique. • The oriented graphite flake distributed homogeneously in matrix. • With the increase of flake graphite from 44 to 71 vol.%, the basal plane thermal conductivity of composites increases from 445 to 565 W m{sup −1} K{sup −1} and the thermal expansion of composites decreases from 8.1 to 5.0. • The obtained composites are suitable for electronic packaging materials. -- Abstract: This study focuses on the fabrication of thermal management material for power electronics applications using graphite flake reinforced copper composites. The manufacturing route involved electroless plating of copper on the graphite flake and further spark plasma sintering of composite powders. The relative density of the composites with 44–71 vol.% flakes achieved up to 98%. Measured thermal conductivities and coefficients of thermal expansion of composites ranged from 455–565 W m{sup −1} K{sup −1} and 8 to 5 ppm K{sup −1}, respectively. Obtained graphite flake–copper composites exhibit excellent thermophysical properties to meet the heat dispersion and matching requirements of power electronic devices to the packaging materials.

  2. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating

    Liu, Qian; He, Xin-Bo; Ren, Shu-Bin; Zhang, Chen; Ting-Ting, Liu; Qu, Xuan-Hui

    2014-01-01

    Highlights: • GF–copper composites were fabricated using a sparking plasma sintering, which involves coating GF with copper, using electroless plating technique. • The oriented graphite flake distributed homogeneously in matrix. • With the increase of flake graphite from 44 to 71 vol.%, the basal plane thermal conductivity of composites increases from 445 to 565 W m −1 K −1 and the thermal expansion of composites decreases from 8.1 to 5.0. • The obtained composites are suitable for electronic packaging materials. -- Abstract: This study focuses on the fabrication of thermal management material for power electronics applications using graphite flake reinforced copper composites. The manufacturing route involved electroless plating of copper on the graphite flake and further spark plasma sintering of composite powders. The relative density of the composites with 44–71 vol.% flakes achieved up to 98%. Measured thermal conductivities and coefficients of thermal expansion of composites ranged from 455–565 W m −1 K −1 and 8 to 5 ppm K −1 , respectively. Obtained graphite flake–copper composites exhibit excellent thermophysical properties to meet the heat dispersion and matching requirements of power electronic devices to the packaging materials

  3. Aquatic Life Criteria - Copper

    Documents pertain to Aquatic Life Ambient Water Quality criteria for Copper (2007 Freshwater, 2016 Estuarine/marine). These documents contain the safe levels of Copper in water that should protect to the majority of species.

  4. Shell coal gasification process

    Hennekes, B. [Shell Global Solutions (US) Inc. (United States). Technology Marketing

    2002-07-01

    The presentation, on which 17 slides/overheads are included in the papers, explained the principles of the Shell coal gasification process and the methods incorporated for control of sulfur dioxide, nitrogen oxides, particulates and mercury. The economics of the process were discussed. The differences between gasification and burning, and the differences between the Shell process and other processes were discussed.

  5. Wrinkling of Pressurized Elastic Shells

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2011-01-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells

  6. Copper Bioleaching in Chile

    Juan Carlos Gentina; Fernando Acevedo

    2016-01-01

    Chile has a great tradition of producing and exporting copper. Over the last several decades, it has become the first producer on an international level. Its copper reserves are also the most important on the planet. However, after years of mineral exploitation, the ease of extracting copper oxides and ore copper content has diminished. To keep the production level high, the introduction of new technologies has become necessary. One that has been successful is bioleaching. Chile had the first...

  7. Demystifying Controlling Copper Corrosion

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  8. Dynamic Stiffness Modeling of Composite Plate and Shell Assemblies

    2013-12-09

    matrix is formulated as follows: K = RA−1 (32) or more explicitly K =             sqq sqm sqt sqh fqq fqm fqt fqh smm smt smh −fqm fmm fmt fmh...stt sth fqt −fmt ftt fth shh −fqh fmh −fth fhh Sym sqq −sqm sqt −sqh smm −smt smh stt −sth shh             (33) 13 Distribution A...sqq sqm sqt sqh fqq fqm fqt fqh smm smt smh −fqm fmm fmt fmh stt sth fqt −fmt ftt fth shh −fqh fmh −fth fhh Sym

  9. Free material optimization for laminated plates and shells

    Weldeyesus, Alemseged Gebrehiwot; Stolpe, Mathias

    2016-01-01

    Free Material Optimization (FMO) is a powerful approach for conceptual optimal design of composite structures. The design variable in FMO is the entire elastic material tensor which is allowed to vary almost freely over the design domain. The imposed requirements on the tensor are that it is symm......Free Material Optimization (FMO) is a powerful approach for conceptual optimal design of composite structures. The design variable in FMO is the entire elastic material tensor which is allowed to vary almost freely over the design domain. The imposed requirements on the tensor...

  10. Fast synthesis, formation mechanism, and control of shell thickness of CuS–polystyrene core–shell microspheres

    Zhao, Li-min; Shao, Xin; Yin, Yi-bin; Li, Wen-zhi

    2012-01-01

    Graphical abstract: Core–shell structure PSt/CuS were prepared using polystyrene which were modified by 3-methacryloxypropyltrimethoxysilane as template. The coating thickness of CuS can be controlled by the amount of 3-methacryloxypropyltrimethoxysilane and the UV–vis absorption intensity of PSt/CuS composite also changed with the coating thickness of CuS. Highlights: ► Core–shell structure PSt/CuS were prepared using silanol-modified polystyrene microspheres as template. ► The coating thickness of core–shell structure PSt/CuS can be controlled by a simple method. ► The UV–vis absorption intensity of PSt/CuS composite also changed with the coating thickness of CuS. -- Abstract: The silanol-modified polystyrene microspheres were prepared through dispersion polymerization. Then copper sulfide particles were grown on silanol-modified polystyrene through sonochemical deposition in an aqueous bath containing copper acetate and sulfide, released through the hydrolysis of thioacetamide. The resulting particles were continuous and uniform as characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared, thermogravimetric analysis and UV–vis absorption spectroscopy were used to characterize the structure and properties of core–shell particles. The results showed the coating thickness of CuS shell can be controlled by the amount of silanol and the UV–vis absorption intensity of PSt/CuS composite also changed with the coating thickness of CuS.

  11. Effects of Volar Tilt, Wrist Extension, and Plate Position on Contact Between Flexor Pollicis Longus Tendon and Volar Plate.

    Wurtzel, Caroline N Wolfe; Burns, Geoffrey T; Zhu, Andy F; Ozer, Kagan

    2017-12-01

    Volar plates positioned at, or distal to, the watershed line have been shown to have a higher incidence of attritional rupture of the flexor pollicis longus (FPL). In this study, we aimed to evaluate the effect of wrist extension and volar tilt on the contact between the plate and the FPL tendon in a cadaver model. We hypothesized that, following volar plate application, loss of native volar tilt increases the contact between the FPL and the plate at lower degrees of wrist extension. A volar locking plate was applied on 6 fresh-frozen cadavers. To determine the contact between the plate and the FPL tendon, both structures were wrapped with copper wire and circuit conductivity was monitored throughout wrist motion. A lateral wrist radiograph was obtained at each circuit closure, indicating tendon-plate contact. Baseline measurements were obtained with plate positioned at Soong grades 0, 1, and 2. An extra-articular osteotomy was made and contact was recorded at various volar tilt angles (+5°, 0°, -5°, -10°, -15°, and -20°) in 3 different plate positions. A blinded observer measured the degree of wrist extension on all lateral radiographs. Data were analyzed using linear mixed-effects regression model. Plates placed distal to the watershed line had the most contact throughout wrist range of motion. Significantly, less wrist extension was required for contact in wrists with neutral or dorsal tilt and in distally placed volar plates. Volar tilt, wrist extension, and plate position were 3 independent risk factors determining contact between plate and tendon. Loss of volar tilt, increased wrist extension, and higher Soong grade plate position result in greater contact between wire-wrapped FPL tendon and plate. The FPL/plate contact chart generated in this study may be used to assess the risk of rupture in the clinical setting. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  12. Curvature-driven morphing of non-Euclidean shells

    Pezzulla, Matteo; Stoop, Norbert; Jiang, Xin; Holmes, D. P.

    2017-05-01

    We investigate how thin structures change their shape in response to non-mechanical stimuli that can be interpreted as variations in the structure's natural curvature. Starting from the theory of non-Euclidean plates and shells, we derive an effective model that reduces a three-dimensional stimulus to the natural fundamental forms of the mid-surface of the structure, incorporating expansion, or growth, in the thickness. Then, we apply the model to a variety of thin bodies, from flat plates to spherical shells, obtaining excellent agreement between theory and numerics. We show how cylinders and cones can either bend more or unroll, and eventually snap and rotate. We also study the nearly isometric deformations of a spherical shell and describe how this shape change is ruled by the geometry of a spindle. As the derived results stem from a purely geometrical model, they are general and scalable.

  13. Radiation shielding plate

    Kobayashi, Torakichi; Sugawara, Takeo.

    1983-01-01

    Purpose: To reduce the weight and stabilize the configuration of a radiation shielding plate which is used in close contact with an object to be irradiated with radiation rays. Constitution: The radiation shielding plate comprises a substrate made of lead glass and a metallic lead coating on the surface of the substrate by means of plating, vapor deposition or the like. Apertures for permeating radiation rays are formed to the radiation shielding plate. Since the shielding plate is based on a lead glass plate, a sufficient mechanical strength can be obtained with a thinner structure as compared with the conventional plate made of metallic lead. Accordingly, if the shielding plate is disposed on a soft object to be irradiated with radiation rays, the object and the plate itself less deform to obtain a radiation irradiation pattern with distinct edges. (Moriyama, K.)

  14. Comparative study on thermal performance of natural draft cooling towers with finned shells

    Goodarzi, Mohsen [Bu-Ali Sina Univ., Hamedan (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2016-10-15

    The cooling efficiency of natural draft cooling towers under crosswind condition should be improved. In the present research work three different externally finned shells were considered for a typical natural draft cooling tower to investigate the cooling improvement. They were numerically simulated under normal and crosswind conditions. Numerical results show that twisting four fin plates over the tower shell along the 45 peripheral angle, could improve the cooling efficiency up to 6.5 %. Because of the periodic shape of the fin plates, the cooling efficiency of the cooling tower with finned shell is less sensitive to the change of wind.

  15. Comparative study on thermal performance of natural draft cooling towers with finned shells

    Goodarzi, Mohsen

    2016-01-01

    The cooling efficiency of natural draft cooling towers under crosswind condition should be improved. In the present research work three different externally finned shells were considered for a typical natural draft cooling tower to investigate the cooling improvement. They were numerically simulated under normal and crosswind conditions. Numerical results show that twisting four fin plates over the tower shell along the 45 peripheral angle, could improve the cooling efficiency up to 6.5 %. Because of the periodic shape of the fin plates, the cooling efficiency of the cooling tower with finned shell is less sensitive to the change of wind.

  16. Molluscan shell colour.

    Williams, Suzanne T

    2017-05-01

    The phylum Mollusca is highly speciose, and is the largest phylum in the marine realm. The great majority of molluscs are shelled, including nearly all bivalves, most gastropods and some cephalopods. The fabulous and diverse colours and patterns of molluscan shells are widely recognised and have been appreciated for hundreds of years by collectors and scientists alike. They serve taxonomists as characters that can be used to recognise and distinguish species, however their function for the animal is sometimes less clear and has been the focus of many ecological and evolutionary studies. Despite these studies, almost nothing is known about the evolution of colour in molluscan shells. This review summarises for the first time major findings of disparate studies relevant to the evolution of shell colour in Mollusca and discusses the importance of colour, including the effects of visual and non-visual selection, diet and abiotic factors. I also summarise the evidence for the heritability of shell colour in some taxa and recent efforts to understand the molecular mechanisms underpinning synthesis of shell colours. I describe some of the main shell pigments found in Mollusca (carotenoids, melanin and tetrapyrroles, including porphyrins and bile pigments), and their durability in the fossil record. Finally I suggest that pigments appear to be distributed in a phylogenetically relevant manner and that the synthesis of colour is likely to be energetically costly. © 2016 Cambridge Philosophical Society.

  17. Nuclear shell theory

    de-Shalit, Amos; Massey, H S W

    1963-01-01

    Nuclear Shell Theory is a comprehensive textbook dealing with modern methods of the nuclear shell model. This book deals with the mathematical theory of a system of Fermions in a central field. It is divided into three parts. Part I discusses the single particle shell model. The second part focuses on the tensor algebra, two-particle systems. The last part covers three or more particle systems. Chapters on wave functions in a central field, tensor fields, and the m-Scheme are also presented. Physicists, graduate students, and teachers of nuclear physics will find the book invaluable.

  18. Action of Antimicrobial Copper on Bacteria and Fungi Isolated from Commercial Poultry Hatcheries

    RFR Depner

    Full Text Available ABSTRACT Since 2008, when the US Environmental Protection Agency (EPA registered copper and its alloys as an antimicrobial agent for contact surfaces, research has demonstrated their antimicrobial activity. The aim of this study was to evaluate the efficacy of antimicrobial copper against bacteria and fungi isolated from commercial poultry hatcheries in order to develop a microbiological control alternative in these environments. Samples were collected from the surfaces of hatcher baskets from two hatcheries. Mesophilic microorganisms and fungi/yeasts were isolated and standardized in concentration of 105 cells/mL. Four copper plates and four stainless steel plates were completely immersed for one minute in bacteria and fungi/yeasts solutions and left to dry for a day at room temperature. Subsequently, samples were collected from the metal plates with the aid of sterile swab and delimiter. These samples were planted onto Plate Count Agar (for mesophilic culture and Sabouraud Dextrose Agar (for fungi and yeast culture and incubated at 36°C for 48 hours and at 25°C for 5-7 days, respectively. After incubation, the colonies recovered from the plates were counted according to IN 62 of the Brazilian Ministry of Agriculture. Almost all contamination was eliminated from the surface of copper plates in a single day, while the stainless steel plates proved to be innocuous to the screened microorganisms. Copper, as a contact surface, proved to have important antimicrobial action on bacteria, fungi and yeasts common to hatcheries.

  19. A shell approach for fibrous reinforcement forming simulations

    Liang, B.; Colmars, J.; Boisse, P.

    2018-05-01

    Because of the slippage between fibers, the basic assumptions of classical plate and shell theories are not verified by fiber reinforcement during a forming. However, simulations of reinforcement forming use shell finite elements when wrinkles development is important. A shell formulation is proposed for the forming simulations of continuous fiber reinforcements. The large tensile stiffness leads to the quasi inextensibility in the fiber directions. The fiber bending stiffness determines the curvature of the reinforcement. The calculation of tensile and bending virtual works are based on the precise geometry of the single fiber. Simulations and experiments are compared for different reinforcements. It is shown that the proposed fibrous shell approach not only correctly simulates the deflections but also the rotations of the through thickness material normals.

  20. Create Your Plate

    Full Text Available ... foods you want, but changes the portion sizes so you are getting larger portions of non-starchy ... plate. Then on one side, cut it again so you will have three sections on your plate. ...

  1. Create Your Plate

    Full Text Available ... of the differences in types of vegetables. When creating your plate at home, remember that half of ... effective for both managing diabetes and losing weight. Creating your plate lets you still choose the foods ...

  2. Create Your Plate

    Full Text Available ... Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get Started Safely Get And ... Plate Create Your Plate is a simple and effective way to manage your blood glucose levels and ...

  3. Create Your Plate

    Full Text Available ... Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with ... Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy ...

  4. Create Your Plate

    Full Text Available ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal ... Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook ...

  5. Perforated plates for cryogenic regenerators and method of fabrication

    Hendricks, J.B.

    1994-01-01

    Perforated plates having very small holes with a uniform diameter throughout the plate thickness are prepared by a open-quotes wire drawingclose quotes process in which a billet of sacrificial metal is disposed in an extrusion can of the plate metal, and the can is extruded and restacked repeatedly, converting the billet to a wire of the desired hole diameter. At final size, the rod is then sliced into wafers, and the wires are removed by selective etching. This process is useful for plate metals of interest for high performance regenerator applications, in particular, copper, niobium, molybdenum, erbium, and other rare earth metals. Er 3 Ni, which has uniquely favorable thermophysical properties for such applications, may be incorporated in regions of the plates by providing extrusion cans containing erbium and nickel metals in a stacked array with extrusion cans of the plate metal, which may be copper. The array is heated to convert the erbium and nickel metals to Er 3 Ni. Perforated plates having two sizes of perforations, one of which is small enough for storage of helium, are also disclosed. 10 figures

  6. Shell Buckling Knockdown Factors

    National Aeronautics and Space Administration — The Shell Buckling Knockdown Factor (SBKF) Project, NASA Engineering and Safety Center (NESC) Assessment #: 07-010-E, was established in March of 2007 by the NESC in...

  7. Irradiation creep and growth behavior of Zircaloy-4 inner shell of HANARO

    Chung, Jong-Ha; Cho, Yeong-Garp; Kim, Jong-In [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2012-03-15

    The inner shell of the reflector vessel of HANARO was made of Zircaloy-4 rolled plate. Zircaloy-4 rolled plate shows highly anisotropic behavior by fast neutron irradiation. This paper describes the analysis method for the irradiation induced creep and growth of the inner shell of HANARO. The anisotropic irradiation creep behavior was modeled as uniaxial strain-hardening power law modified by Hill's stress potential and the anisotropic irradiation growth was modeled by using volumetric swelling with anisotropic strain rate. In this study, the irradiation induced creep and growth behavior of the inner shell of the HANARO reflector vessel was re-evaluated. The rolling direction, the fast neutron flux, and the boundary conditions were applied with the same conditions as the actual inner shell. Analysis results show that deformation of the inner shell due to irradiation does not raise any problem for the lifetime of HANARO. (author)

  8. Shells and Patterns

    Sutley, Jane

    2009-01-01

    "Shells and Patterns" was a project the author felt would easily put smiles on the faces of her fifth-graders, and teach them about unity and the use of watercolor pencils as well. It was thrilling to see the excitement in her students as they made their line drawings of shells come to life. For the most part, they quickly got the hang of…

  9. Design and analysis of reactor containment of steel-concrete composite laminated shell

    Ichikawa, K.; Isobata, O.; Kawamata, S.

    1977-01-01

    A new scheme of containment consisting of steel-concrete laminated shell is being developed. In the main part of a cylindrical vessel, the shell consists of two layers of thin steel plates located at the inner and outer surfaces, and a layer of concrete core into which both the steel plates are anchored. Because of the compressive and shearing resistance of the concrete core, the layers behave as a composite solid shell. Membrane forces are shared by steel plates and partly by concrete core. Bending moment is effectively resisted by the section with extreme layers of steel. Therefore, both surfaces can be designed as extremely thin plates: the inner plate, which is a load carrying members as well as a liner, can be welded without the laborious process of stress-relieving, and various jointing methods can be applied to the outer plate which is free from the need for leak tightness. The capability of the composite layers of behaving as a unified solid shell section depends largely on the shearing rigidity of the concrete core. However, as its resisting capacity to transverse shearing force is comparatively low, a device for reducing the shearing stress at the junction to the base mat is needed. In the new scheme, this part of the cylindrical shell is divided into multiple layers of the same kind of composite shell. This device makes the stiffness of the bottom of the cylindrical shell to lateral movement minimum while maintaining the proper resistance to membrane forces. The analysis shows that the transverse shearing stress can be reduced to less than 1√n of the ordinary case by dividing the thickness of the shell into n layers which are able to slip against each other at the contact surface. In order to validate the feasibility and safety of this new design, the results of analysis on the basis of up-to-date design loads are presented

  10. Off-shell CHY amplitudes

    Lam, C.S., E-mail: Lam@physics.mcgill.ca [Department of Physics, McGill University, Montreal, Q.C., H3A 2T8 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Yao, York-Peng, E-mail: yyao@umich.edu [Department of Physics, The University of Michigan Ann Arbor, MI 48109 (United States)

    2016-06-15

    The Cachazo–He–Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-shell amplitudes (amputated Green's functions) are Möbius invariant, and have the same momentum poles as the on-shell amplitudes. The working principles which drive the modifications to the scattering equations are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge formula which is Möbius invariant is proposed, but its true nature awaits further study.

  11. Copper corrosion in pure oxygen-free water

    Moeller, K.

    1995-12-01

    The study was initiated following reports on corrosion of Copper in water in absence of Oxygen. Quartz glass tubes containing pure water and Copper plates were sealed in two different ways, using Palladium or Platinum foils, respectively. Tests were also performed with Copper wires. The insulated systems contained Oxygen initially. The Oxygen was dissolved in the water, and in the air column between the water surface and the Palladium/Platinum foils. The tubes were kept in a hot cabinet at 50 C for a total of two years. The exposed plates were analyzed in different ways, e g using reflectance FTIR. The amounts of oxide formed were also weighed. The following conclusions could be drawn: No difference in color was observed for the Pd and Pt seals except in one case for the Copper wire, where only a slight difference was noticed. No significant difference in oxidation between the plates with Pd or Pt seals in quartz glass tubes. No oxide growth was observed during the last year. The corrosion rate at 50 C is below 2.3 micrograms Copper/cm 2 /year. A certain imbalance was noted between the amounts of oxides formed, and expected amount estimated from the original amount of oxygen in the system. A significant amount of water has 'disappeared' from the tubes. 17 refs, 10 figs, 3 tabs

  12. Preparation of ultrafine grained copper nanoparticles via immersion deposit method

    Abbasi-Kesbi, Fatemeh; Rashidi, Ali Mohammad; Astinchap, Bandar

    2018-03-01

    Today, the exploration about synthesis of nanoparticles is much of interest to materials scientists. In this work, copper nanoparticles have been successfully synthesized by immersion deposit method in the absence of any stabilizing and reducing agents. Copper (II) sulfate pentahydrate as precursor salt and distilled water and Ethylene glycol as solvents were used. The copper nanoparticles were deposited on plates of low carbon steel. The effects of copper sulfate concentrations and solvent type were investigated. X-ray diffraction, scanning electron microscopy and UV-Visible spectroscopy were taken to investigate the crystallite size, crystal structure, and morphology and size distribution and the growth process of the nanoparticles of obtained Cu particles. The results indicated that the immersion deposit method is a particularly suitable method for synthesis of semispherical copper nanoparticles with the crystallites size in the range of 22 to 37 nm. By increasing the molar concentration of copper sulfate in distilled water solvent from 0.04 to 0.2 M, the average particles size is increased from 57 to 81 nm. The better size distribution of Cu nanoparticles was achieved using a lower concentration of copper sulfate. By increasing the molar concentration of copper sulfate in water solvent from 0.04 to 0.2, the location of the SPR peak has shifted from 600 to 630 nm. The finer Cu nanoparticles were formed using ethylene glycol instead water as a solvent. Also, the agglomeration and overlapping of nanoparticles in ethylene glycol were less than that of water solvent.

  13. Synthesis of Copper Pigments, Malachite and Verdigris: Making Tempera Paint

    Solomon, Sally D.; Rutkowsky, Susan A.; Mahon, Megan L.; Halpern, Erica M.

    2011-01-01

    Malachite and verdigris, two copper-based pigments, are synthesized in this experiment intended for use in a general chemistry laboratory. The preparation of egg tempera paint from malachite is also described. All procedures can be done with a magnetic stir plate, standard glassware present in any first-year laboratory, and household chemicals.…

  14. Wavefront reversal in a copper vapor active medium

    Bunkin, F.V.; Savranskii, V.V.; Shafeev, G.A.

    1981-09-01

    Wavefront reversal in the resonator of a copper vapor laser was observed. The frequencies of the signal and reversed waves were the same. The dependence of the reversed signal power on the input signal power had a threshold. Photographs were obtained of the reconstructed image of an object when a distorting phase plate was inserted in the resonator.

  15. Influence of branched quaternary ammonium surfactant molecules as levelers for copper electroplating from acidic sulfate bath

    Wang, An-yin; Chen, Biao; Fang, Lei; Yu, Jian-jun; Wang, Li-min

    2013-01-01

    A family of branched quaternary ammonium surfactants (compounds 1a–1c) with different carbon chains were synthesized for levelers applied in copper electroplating. Their inhibitory actions on copper electroplating were characterized by cyclic voltammetry (CV). Compound 1b, as representative structure type, was tested by means of different electrochemical methods including CV, polarization curve and electrochemical impedance spectroscopy (EIS) with different concentrations. The interaction between compound 1b and copper surface was investigated using atomic force microscope (AFM) and X-ray photoelectron spectra (XPS). The results indicated that our newly synthesized compounds, particular 1b, were effective levelers used for copper electroplating. Compound 1b could adsorb on copper surface to form an adsorption layer. The adsorption behavior of compound 1b on copper surface indicated that compound 1b could inhibit the copper electrodeposition, which provided favorable conditions used as a leveler. Moreover, the addition of compound 1b could increase the cathodic polarization, which was attributed to the adsorption of compound 1b during copper electroplating process. In addition, various surface morphologies and crystalline orientation of the plated copper films caused by different concentrations of compound 1b were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) respectively. Effects of compound 1b on refining the grain size and changing the preferential orientation of the plated copper films were exhibited

  16. Solution-processed copper-nickel nanowire anodes for organic solar cells

    Stewart, Ian E.; Rathmell, Aaron R.; Yan, Liang; Ye, Shengrong; Flowers, Patrick F.; You, Wei; Wiley, Benjamin J.

    2014-05-01

    This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%.This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01024h

  17. Beryllium-copper reactivity in an ITER joining environment

    Odegard, B.C.; Cadden, C.H.; Yang, N.Y.C.

    1998-01-01

    Beryllium-copper reactivity was studied using test parameters being considered for use in the ITER reactor. In this application, beryllium-copper tiles are produced using a low-temperature copper-copper diffusion bonding technique. Beryllium is joined to copper by first plating the beryllium with copper followed by diffusion bonding the electrodeposited (ED) copper to a wrought copper alloy (CuNiBe) at 450 C, 1-3 h using a hot isostatic press (HIP). In this bonded assembly, beryllium is the armor material and the CuNiBe alloy is the heat sink material. Interface temperatures in service are not expected to exceed 350 C. For this study, an ED copper-beryllium interface was subjected to diffusion bonding temperatures and times to study the reaction products. Beryllium-copper assemblies were subjected to 350, 450 and 550 C for times up to 200 h. Both BeCu and Be 2 Cu intermetallic phases were detected using scanning electron microscopy and quantitative microprobe analysis. Growth rates were determined experimentally for each phase and activation energies for formation were calculated. The activation energies were 66 mol and 62 kJ mol -1 for the BeCu and Be 2 Cu, respectively. Tensile bars were produced from assemblies consisting of coated beryllium (both sides) sandwiched between two blocks of Hycon-3. Tensile tests were conducted to evaluate the influence of these intermetallics on the bond strength. Failure occurred at the beryllium-copper interface at fracture strengths greater than 300 MPa for the room-temperature tests. (orig.)

  18. Paper microzone plates.

    Carrilho, Emanuel; Phillips, Scott T; Vella, Sarah J; Martinez, Andres W; Whitesides, George M

    2009-08-01

    This paper describes 96- and 384-microzone plates fabricated in paper as alternatives to conventional multiwell plates fabricated in molded polymers. Paper-based plates are functionally related to plastic well plates, but they offer new capabilities. For example, paper-microzone plates are thin (approximately 180 microm), require small volumes of sample (5 microL per zone), and can be manufactured from inexpensive materials ($0.05 per plate). The paper-based plates are fabricated by patterning sheets of paper, using photolithography, into hydrophilic zones surrounded by hydrophobic polymeric barriers. This photolithography used an inexpensive formulation photoresist that allows rapid (approximately 15 min) prototyping of paper-based plates. These plates are compatible with conventional microplate readers for quantitative absorbance and fluorescence measurements. The limit of detection per zone loaded for fluorescence was 125 fmol for fluorescein isothiocyanate-labeled bovine serum albumin, and this level corresponds to 0.02 the quantity of analyte per well used to achieve comparable signal-to-noise in a 96-well plastic plate (using a solution of 25 nM labeled protein). The limits of detection for absorbance on paper was approximately 50 pmol per zone for both Coomassie Brilliant Blue and Amaranth dyes; these values were 0.4 that required for the plastic plate. Demonstration of quantitative colorimetric correlations using a scanner or camera to image the zones and to measure the intensity of color, makes it possible to conduct assays without a microplate reader.

  19. The contact heat conductance at diamond-OFHC copper interface with GaIn eutectic as a heat transfer medium

    Assoufid, L.; Khounsary, A.M.

    1996-01-01

    Results of an experimental study of the contact heat conductance across a single diamond crystal interface with OFHC copper (Cu) are reported. Gallium-indium (GaIn) eutectic was used as an interstitial material. Contact conductance data are important in the design and the prediction of the performance of x-ray diamond monochromators under high-heat-load conditions. Two sets of experiments were carried out. In one, the copper surface in contact with diamond was polished and then electroless plated with 1 μm of nickel, while in the other, the copper contact surface was left as machined. Measured average interface heat conductances are 44.7 ±8 W/cm 2 -K for nonplated copper and 23.0 ±3 W/cm 2 -K for nickel-plated copper. For reference, the thermal contact conductances at a copper-copper interface (without diamond) were also measured, and the results are reported. A typical diamond monochromator, 0.2 mm thick, will absorb about 44 W under a standard undulator beam at the Advanced Photon Source. The measured conductance for nickel-plated copper suggests that the temperature drop across the interface of diamond and nickel-plated copper, with a 20 mm 2 contact area, will be about 10 degree C. Therefore temperature rises are rather modest, and the accuracy of the measured contact conductances presented here are sufficient for design purposes

  20. Study of the effect of varying core diameter, shell thickness and strain velocity on the tensile properties of single crystals of Cu-Ag core-shell nanowire using molecular dynamics simulations

    Sarkar, Jit; Das, D. K.

    2018-01-01

    Core-shell type nanostructures show exceptional properties due to their unique structure having a central solid core of one type and an outer thin shell of another type which draw immense attention among researchers. In this study, molecular dynamics simulations are carried out on single crystals of copper-silver core-shell nanowires having wire diameter ranging from 9 to 30 nm with varying core diameter, shell thickness, and strain velocity. The tensile properties like yield strength, ultimate tensile strength, and Young's modulus are studied and correlated by varying one parameter at a time and keeping the other two parameters constant. The results obtained for a fixed wire size and different strain velocities were extrapolated to calculate the tensile properties like yield strength and Young's modulus at standard strain rate of 1 mm/min. The results show ultra-high tensile properties of copper-silver core-shell nanowires, several times than that of bulk copper and silver. These copper-silver core-shell nanowires can be used as a reinforcing agent in bulk metal matrix for developing ultra-high strength nanocomposites.

  1. Dyson shells: a retrospective

    Bradbury, Robert J.

    2001-08-01

    More than 40 years have passed since Freeman Dyson suggested that advanced technological civilizations are likely to dismantle planets in their solar systems to harvest all of the energy their stars wastefully radiate into space. Clearly this was an idea that was ahead of its time. Since that time, dozens of SETI searches have been conducted and almost all of them have focused their attention on stars which by definition cannot be the advanced civilizations that Dyson envisioned. I will review the data that created the confusion between Dyson spheres and Dyson shells. The sources that disprove Dyson spheres while still allowing Dyson shells will be discussed. The use of outmoded ideas that have biased the few searches for Dyson Shells that have occurred will be pointed out. An update of the concept of Dyson shells to include our current knowledge of biotechnology, nanotechnology and computer science will be explored. Finally, an approach to setting limits on the abundance of Dyson shells in our galaxy using existing optical astronomical data and future optical satellites will be proposed.

  2. Aqueous-phase synthesis and color-tuning of core/shell/shell inorganic nanocrystals consisting of ZnSe, (Cu, Mn)-doped ZnS, and ZnS

    Choi, Jongwan; Yoon, Sujin [Department of Chemistry and Research Institute for Natural Science, Hanyang University, Seoul, 133-791 (Korea, Republic of); Kim, Felix Sunjoo, E-mail: fskim@cau.ac.kr [School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul, 156-756 (Korea, Republic of); Kim, Nakjoong, E-mail: kimnj@hanyang.ac.kr [Department of Chemistry and Research Institute for Natural Science, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2016-06-25

    We report synthesis of colloidal nanocrystals based on ZnSe core, (Cu,Mn)-doped ZnS inner-shell, and ZnS outer-shell by using an eco-friendly method and their optical properties. Synthesis of core/shell/shell nanocrystals was performed by using a one-pot/three-step colloidal method with 3-mercaptopropionic acid as a stabilizer in aqueous phase at low temperature. A double-shell structure was employed with inner-shell as a host for doping and outer-shell as a passivation layer for covering surface defects. Copper and manganese were introduced as single- or co-dopants during inner-shell formation, providing an effective means to control the emission color of the nanocrystals. The synthesized nanocrystals showed fluorescent emission ranging from blue to green, to white, and to orange, adjusted by doping components, amounts, and ratios. The photoluminescence quantum yields of the core/doped-shell/shell nanocrystals approached 36%. - Highlights: • ZnSe/ZnS:(Cu,Ms)/ZnS core/(doped)shell/shell nanocrystals were synthesized in an aqueous phase. • Emission color of nanocrystals was controlled from blue to white to orange by adjusting the atomic ratio of Cu and Mn co-dopants. • Photoluminescence quantum yields of the colloidal nanocrystals approached 36%.

  3. A New Triangular Flat Shell Element With Drilling Rotations

    Damkilde, Lars

    2008-01-01

    A new flat triangular shell element has been developed based on a newly developed triangular plate bending element by the author and a new triangular membrane element with drilling degrees of freedom. The advantage of the drilling degree of freedom is that no special precautions have to be made...... in connecting with assembly of elements. Due to the drilling rotations all nodal degrees of freedom have stiffness, and therefore no artificial suppression of degrees of freedom are needed for flat or almost flat parts of the shell structure....

  4. Interaction at interface between superconducting yttrium ceramics and copper or niobium

    Karpov, M.I.; Korzhov, V.P.; Medved', N.V.; Myshlyaeva, M.M.

    1992-01-01

    Light metallography, scanning electron microscopy and local energy dispersion analysis have been used to study the interaction of Y-ceramics with copper and niobium. Samples in the form of wire of two types were employed, that is, consisting of ceramic core YBaCuO and Cu shell or a ceramic core YBaCuO and bimetallic Cu/Nb shell. The interaction of the ceramics with the shell metal began already at 500 deg with the formation at the interafaces Cu-YBaCuO of oxide layers containing ceramic elements, and in the ceramic core - nonsuperconducting phases. A thin Al-layer placed between the ceramics and the shell appreciably decreased the reactability of the ceramics with respect to copper and niobium

  5. Study on modal characteristics of perforated shell using effective Young's modulus

    Jhung, Myung Jo; Yu, Seon Oh

    2011-01-01

    Research highlights: → The effective Young's modulus of perforated shell is proposed for modal analysis. → The penetration pattern is almost negligible for effective elastic constants. → The frequency of perforated shell decreases significantly due to the hole effect. - Abstract: For the perforated cylindrical shell submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the shell and the fluid at the same time. This necessitates the use of solid shell with effective material properties. Unfortunately the effective elastic constants are not found in any references even though the ASME code is suggesting those for perforated plate. Therefore in this study the effective material properties of perforated shell are suggested by performing several finite element analyses with respect to the ligament efficiencies.

  6. Study on modal characteristics of perforated shell using effective Young's modulus

    Jhung, Myung Jo, E-mail: mjj@kins.re.kr [Korea Institute of Nuclear Safety, 19 Guseong-dong, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Yu, Seon Oh [Korea Institute of Nuclear Safety, 19 Guseong-dong, Yuseong-gu, Daejeon 305-338 (Korea, Republic of)

    2011-06-15

    Research highlights: > The effective Young's modulus of perforated shell is proposed for modal analysis. > The penetration pattern is almost negligible for effective elastic constants. > The frequency of perforated shell decreases significantly due to the hole effect. - Abstract: For the perforated cylindrical shell submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the shell and the fluid at the same time. This necessitates the use of solid shell with effective material properties. Unfortunately the effective elastic constants are not found in any references even though the ASME code is suggesting those for perforated plate. Therefore in this study the effective material properties of perforated shell are suggested by performing several finite element analyses with respect to the ligament efficiencies.

  7. Copper and silver halates

    Woolley, EM; Salomon, M

    2013-01-01

    Copper and Silver Halates is the third in a series of four volumes on inorganic metal halates. This volume presents critical evaluations and compilations for halate solubilities of the Group II metals. The solubility data included in this volume are those for the five compounds, copper chlorate and iodate, and silver chlorate, bromate and iodate.

  8. Create Your Plate

    Full Text Available ... Type 2 Diabetes Know Your Rights Employment Discrimination Health Care Professionals Law ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart- ...

  9. Create Your Plate

    Full Text Available ... Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday ... Carbohydrates Types of Carbohydrates Carbohydrate Counting Make Your Carbs ...

  10. NIF Double Shell outer/inner shell collision experiments

    Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.

    2017-10-01

    Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  11. International Thermonuclear Experimental Reactor (ITER) divertor plate performance and lifetime considerations

    Mattas, R.F.

    1990-03-01

    The ITER divertor plate performance during the technology phase of operation has been analyzed. High-Z materials, such as tungsten and tantalum, have been considered as plasma side materials, and refractory metal alloys, Ta-10W, TZM, Nb-1Zr, and V-15Cr-5Ti, plus copper alloys have been considered as the structural materials. The fatigue lifetime have been predicted for structural plates and for duplex plates with the plasma side material bonded to the structure. The results indicate that refractory alloys have a comparable or improved performance to copper alloys. Peak allowable heat fluxes for these analyses are in the range of 15--20 MW/m 2 for 2 mm thick structural plates and 7--11 MW/m 2 for 4 mm thick duplex plates. 4 refs., 55 figs., 6 tabs

  12. Sidewall coring shell

    Edelman, Ya A; Konstantinov, L P; Martyshin, A N

    1966-12-12

    A sidewall coring shell consists of a housing and a detachable core catcher. The core lifter is provided with projections, the ends of which are situated in another plane, along the longitudinal axis of the lifter. The chamber has corresponding projections.

  13. The corrosion of copper in pure oxygen-free water; Korrosion av koppar i ren syrefritt vatten

    Moeller, Kenneth [SP Sveriges Tekniska Forskningsinstitut, Boraas (Sweden)

    2012-02-15

    The overall objective of this study was to investigate whether further growth of copper oxides occurred during the 19 years the test tube with copper wires was stored at SP. Further more detailed analyzes have been added during the investigation. These assays have not only been focused on the copper wires but also the palladium closure plate, the test tube and the water in the test tube have come to be analyzed by a variety of techniques.

  14. Copper-gold nanoparticles: Fabrication, characteristic and application as drug carriers

    Woźniak-Budych, Marta J., E-mail: marta.budych@amu.edu.pl; Langer, Krzysztof; Peplińska, Barbara; Przysiecka, Łucja; Jarek, Marcin; Jarzębski, Maciej; Jurga, Stefan

    2016-08-15

    In this investigation, the fabrication of porous core/shell nanostructures consisting of copper (core) and copper-gold nanoalloy (shell) for medical applications is presented. As a core triangular-shaped copper nanoparticles were used. The porous bimetallic nanoshell was prepared via galvanic reaction in the presence of oil-in water emulsion. It was proved that porous nanoalloy layer can be prepared at pH 7 and in the presence 0.1% and 0.5% oil-in water emulsion. The porous structure fabrication was mainly determined by volume fraction of hexadecane to acetone in the oil-in water emulsion and Zeta-potential of emulsion droplets (pH of emulsion). The influence of emulsion droplets size before galvanic reaction on porous structure preparation was negligible. It was found that doxorubicin could be easily introduced and released from porous core/shell nanostructures, due to spontaneous adsorption on the copper-gold nanoporous surface. The in vitro test showed that cytotoxic effect was more prominent once the doxorubicin was adsorbed on the porous copper-gold nanocarriers. It was demonstrated, that doxorubicin-loaded copper-gold nanostructures caused inhibition cell proliferation and viability of cancer cells, in a concentration-dependent manner. The results indicates that presented coper-gold nanocarrier have potential to be used in targeted cancer therapy, due to its porous structure and cytotoxic effect in cancer cells. - Highlights: • Porous copper-gold nanostructure as a cytostatic drug carrier was prepared. • Kinetics and thermodynamics of drug adsorption were studied. • DOX-loaded copper-gold nanoparticles showed a pH-controlled release rate. • DOX-loaded copper-gold NPs caused inhibition cell proliferation of cancer cells. • The Cu-Au NPs could serve as a theranostic platform for biomedical applications.

  15. Stability of charged thin shells

    Eiroa, Ernesto F.; Simeone, Claudio

    2011-01-01

    In this article we study the mechanical stability of spherically symmetric thin shells with charge, in Einstein-Maxwell and Einstein-Born-Infeld theories. We analyze linearized perturbations preserving the symmetry, for shells around vacuum and shells surrounding noncharged black holes.

  16. Temporal structures in shell models

    Okkels, F.

    2001-01-01

    The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...

  17. Active constrained layer damping treatments for shell structures: a deep-shell theory, some intuitive results, and an energy analysis

    Shen, I. Y.

    1997-02-01

    This paper studies vibration control of a shell structure through use of an active constrained layer (ACL) damping treatment. A deep-shell theory that assumes arbitrary Lamé parameters 0964-1726/6/1/011/img1 and 0964-1726/6/1/011/img2 is first developed. Application of Hamilton's principle leads to the governing Love equations, the charge equation of electrostatics, and the associated boundary conditions. The Love equations and boundary conditions imply that the control action of the ACL for shell treatments consists of two components: free-end boundary actuation and membrane actuation. The free-end boundary actuation is identical to that of beam and plate ACL treatments, while the membrane actuation is unique to shell treatments as a result of the curvatures of the shells. In particular, the membrane actuation may reinforce or counteract the boundary actuation, depending on the location of the ACL treatment. Finally, an energy analysis is developed to determine the proper control law that guarantees the stability of ACL shell treatments. Moreover, the energy analysis results in a simple rule predicting whether or not the membrane actuation reinforces the boundary actuation.

  18. Synthesis of Zn-Cu-Cd sulfide nanospheres with controlled copper locations and their effects on photocatalytic activities for H{sub 2} production

    Wang, Yabo; Xu, Rong [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore); Wang, Yongsheng [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2010-06-15

    In this work, a two-step solvothermal method was used to synthesize Zn-Cu-Cd sulfide nanospheres with controlled copper locations. The structural and other physical properties of the nanospheres were investigated by XRD, FESEM, TEM, energy-filtered TEM, XPS, ICP and UV-vis DRS methods. By varying the addition of the copper precursor during the two synthesis steps, Zn-Cu-Cd sulfide nanospheres with three distinctive copper distribution patterns can be obtained with copper (i) only in the core, (ii) only on the surface shell, and (iii) both in the core and on the surface shell. The influence of the location and concentration of copper on the photocatalytic activity for hydrogen production from water under visible light was investigated. It was found that the activity of the sample with copper only on the surface shell is about two times of that with copper only in the core. The highest hydrogen production rate was obtained on the nanosphere sample with copper both in the core and on the surface shell. The possible mechanism was discussed. The findings from this study are important for the development of efficient photocatalysts based on ternary or multinary systems. (author)

  19. Create Your Plate

    Full Text Available ... In Memory In Honor Become a Member En Español Type 1 Type 2 About Us Online Community ... Page Text Size: A A A Listen En Español Create Your Plate Create Your Plate is a ...

  20. Create Your Plate

    Full Text Available ... Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal Planning ... Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets ...

  1. Create Your Plate

    Full Text Available ... Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart- ... Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods ...

  2. Create Your Plate

    Full Text Available ... ready, you can try new foods within each food category. Try these seven steps to get started: Using your dinner plate, put a line down the middle of the plate. Then on one side, cut it ... and starchy foods. See this list of grains and starchy foods . ...

  3. Long-Term Effects of Soldering By-Products on Nickel-Coated Copper Wire

    Rolin, T. D.; Hodge, R. E.

    2008-01-01

    An analysis of thirty-year-old, down graded flight cables was conducted to determine the makeup of a green material on the surface of the shielded wire near soldered areas and to ascertain if the green material had corroded the nickel-coated copper wire. Two likely candidates were possible due to the handling and environments to which these cables were exposed. The flux used to solder the cables is known to contain abietic acid, a carboxylic acid found in many pine rosins used for the soldering process. The resulting material copper abietate is green in color and is formed during the application of heat during soldering operations. Copper (II) chloride, which is also green in color is known to contaminate flight parts and is corrosive. Data is presented that shows the material is copper abietate, not copper (II) chloride, and more importantly that the abietate does not aggressively attack nickel-plated copper wire.

  4. Direct write of copper-graphene composite using micro-cold spray

    Sameh Dardona

    2016-08-01

    Full Text Available Direct write of a new class of composite materials containing copper and graphene in the powder phase is described. The composite was synthesized using batch electroless plating of copper for various times onto Nano Graphene Platelets (NGP to control the amount of copper deposited within the loosely aggregated graphene powder. Copper deposition was confirmed by both Focused Ion Beam (FIB and Auger electron spectroscopic analysis. A micro-cold spray technique was used to deposit traces that are ∼230 μm wide and ∼5 μm thick of the formulated copper/graphene powder onto a glass substrate. The deposited traces were found to have good adhesion to the substrate with ∼65x the copper bulk resistivity.

  5. Copper carrier protein in copper toxic sheep liver

    Harris, A L; Dean, P D.G.

    1973-01-01

    The livers of copper-toxic sheep have been analyzed by gel electrophoresis followed by staining the gels for copper with diethyldithiocarbamate and for protein with amido schwartz. These gels were compared with similar gels obtained from the livers of normal and copper-deficient animals. The copper-toxic livers contained an extra protein band which possessed relatively weakly bound copper. Possible origins of this protein are discussed. 8 references, 1 figure, 2 tables.

  6. Towards stacked zone plates

    Werner, S; Rehbein, S; Guttman, P; Heim, S; Schneider, G

    2009-01-01

    Fresnel zone plates are the key optical elements for soft and hard x-ray microscopy. For short exposure times and minimum radiation load of the specimen the diffraction efficiency of the zone plate objectives has to be maximized. As the efficiency strongly depends on the height of the diffracting zone structures the achievable aspect ratio of the nanostructures determines these limits. To reach aspect ratios ≥ 20:1 for high efficient optics we propose to superimpose zone plates on top of each other. With this multiplication approach the final aspect ratio is only limited by the number of stacked zone plate layers. For the stack process several nanostructuring process steps have to be developed and/or improved. Our results show for the first time two layers of zone plates stacked on top of each other.

  7. COPPER CABLE RECYCLING TECHNOLOGY

    Chelsea Hubbard

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D and D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D and D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness

  8. Canine Copper-Associated Hepatitis

    Dirksen, Karen; Fieten, Hille

    2017-01-01

    Copper-associated hepatitis is recognized with increasing frequency in dogs. The disease is characterized by centrolobular hepatic copper accumulation, leading to hepatitis and eventually cirrhosis. The only way to establish the diagnosis is by histologic assessment of copper distribution and copper

  9. Posttranslational regulation of copper transporters

    van den Berghe, P.V.E.

    2009-01-01

    The transition metal copper is an essential cofactor for many redox-active enzymes, but excessive copper can generate toxic reactive oxygen species. Copper homeostasis is maintained by highly conserved proteins, to balance copper uptake, distribution and export on the systemic and cellular level.

  10. Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures

    Fang, Xue-Qian; Zhu, Chang-Song; Liu, Jin-Xi; Liu, Xiang-Lin

    2018-01-01

    Combining Goldenveizer-Novozhilov shell theory, thin plate theory and electro-elastic surface theory, the size-dependent vibration of nano-sized piezoelectric double-shell structures under simply supported boundary condition is presented, and the surface energy effect on the natural frequencies is discussed. The displacement components of the cylindrical nano-shells and annular nano-plates are expanded as the superposition of standard Fourier series based on Hamilton's principle. The total stresses with consideration of surface energy effect are derived, and the total energy function is obtained by using Rayleigh-Ritz energy method. The free vibration equation is solved, and the natural frequency is analyzed. In numerical examples, it is found that the surface elastic constant, piezoelectric constant and surface residual stress show different effects on the natural frequencies. The effect of surface piezoelectric constant is the maximum. The effect of dimensions of the double-shell under different surface material properties is also examined.

  11. Nonlinear problems of the theory of heterogeneous slightly curved shells

    Kantor, B. Y.

    1973-01-01

    An account if given of the variational method of the solution of physically and geometrically nonlinear problems of the theory of heterogeneous slightly curved shells. Examined are the bending and supercritical behavior of plates and conical and spherical cupolas of variable thickness in a temperature field, taking into account the dependence of the elastic parameters on temperature. The bending, stability in general and load-bearing capacity of flexible isotropic elastic-plastic shells with different criteria of plasticity, taking into account compressibility and hardening. The effect of the plastic heterogeneity caused by heat treatment, surface work hardening and irradiation by fast neutron flux is investigated. Some problems of the dynamic behavior of flexible shells are solved. Calculations are performed in high approximations. Considerable attention is given to the construction of a machine algorithm and to the checking of the convergence of iterative processes.

  12. Compatibility of copper-electroplated cells with Metal Wrap Through module materials

    Bennett, I.J.; Geerligs, L.J.; Olson, C.L.; Goris, M.J.A.A. [ECN Solar Energy, Petten (Netherlands)

    2013-10-16

    As part of the European FP7 RandD project 'Cu-PV', the compatibility of copper-electroplated metal wrapthrough (MWT) cells with conductive adhesives has been investigated. The objectives of this project include to reduce, by the use of copper plating, the amount of silver utilized in cell manufacturing, and to demonstrate the compatibility of high-power n-type back-contact module technology with copper-plated cells. The overall goal is to reduce the impact on the environment of cell and module manufacture. MWT module technology as developed by ECN uses conductive adhesive to make the interconnection between cells and a conductive backsheet foil. These adhesives have been proved to result in very reliable modules in the case of cells with fired silver metallization. To determine the compatibility of conductive adhesive with copper-plated cells, component tests were performed, followed by the manufacture of modules with copperplated cells and conductive adhesive interconnections. Climate chamber testing of these modules showed that the adhesive is compatible with the copper-plated cells. The next steps include further optimization of the plating process and additional testing at the module level.

  13. Fabricating Copper Nanotubes by Electrodeposition

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  14. Higher-resolution selective metallization on alumina substrate by laser direct writing and electroless plating

    Lv, Ming; Liu, Jianguo; Wang, Suhuan; Ai, Jun; Zeng, Xiaoyan

    2016-03-01

    How to fabricate conductive patterns on ceramic boards with higher resolution is a challenge in the past years. The fabrication of copper patterns on alumina substrate by laser direct writing and electroless copper plating is a low cost and high efficiency method. Nevertheless, the lower resolution limits its further industrial applications in many fields. In this report, the mechanisms of laser direct writing and electroless copper plating were studied. The results indicated that as the decomposed products of precursor PdCl2 have different chemical states respectively in laser-irradiated zone (LIZ) and laser-affected zone (LAZ). This phenomenon was utilized and a special chemical cleaning method with aqua regia solution was taken to selectively remove the metallic Pd in LAZ, while kept the PdO in LIZ as the only active seeds. As a result, the resolution of subsequent copper patterns was improved significantly. This technique has a great significance to develop the microelectronics devices.

  15. Micromachining with copper lasers

    Knowles, Martyn R. H.; Bell, Andy; Foster-Turner, Gideon; Rutterford, Graham; Chudzicki, J.; Kearsley, Andrew J.

    1997-04-01

    In recent years the copper laser has undergone extensive development and has emerged as a leading and unique laser for micromachining. The copper laser is a high average power (10 - 250 W), high pulse repetition rate (2 - 32 kHz), visible laser (511 nm and 578 nm) that produces high peak power (typically 200 kW), short pulses (30 ns) and very good beam quality (diffraction limited). This unique set of laser parameters results in exceptional micro-machining in a wide variety of materials. Typical examples of the capabilities of the copper laser include the drilling of small holes (10 - 200 micrometer diameter) in materials as diverse as steel, ceramic, diamond and polyimide with micron precision and low taper (less than 1 degree) cutting and profiling of diamond. Application of the copper laser covers the electronic, aerospace, automotive, nuclear, medical and precision engineering industries.

  16. copper(II)

    Unknown

    bis(2,2,6,6-tetramethyl-3,5-heptadionato)copper(II) ... Abstract. Equilibrium concentrations of various condensed and gaseous phases have been thermodyna- ... phere, over a wide range of substrate temperatures and total reactor pressures.

  17. Shells on elastic foundations

    Das, Y.C.; Kedia, K.K.

    1977-01-01

    No realistic analytical work in the area of Shells on Elastic Foundations has been reported in the literature. Various foundation models have been proposed by several authors. These models involve one or more than one parameters to characterise the foundation medium. Some of these models cannot be used to derive the basic equations governing the behaviour of shells on elastic foundations. In the present work, starting from an elastic continuum hypothesis, a mathematical model for foundation has been derived in curvilinear orthogonal coordinates by the help of principle of virtual displacements, treating one of the virtual displacements as known to satisfy certain given conditions at its edge surfaces. In this model, several foundation parameters can be considered and it can also be used for layered medium of both finite and infinite thickness. (Auth.)

  18. Bacterial Killing by Dry Metallic Copper Surfaces▿

    Santo, Christophe Espírito; Lam, Ee Wen; Elowsky, Christian G.; Quaranta, Davide; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2010-01-01

    Metallic copper surfaces rapidly and efficiently kill bacteria. Cells exposed to copper surfaces accumulated large amounts of copper ions, and this copper uptake was faster from dry copper than from moist copper. Cells suffered extensive membrane damage within minutes of exposure to dry copper. Further, cells removed from copper showed loss of cell integrity. Acute contact with metallic copper surfaces did not result in increased mutation rates or DNA lesions. These findings are important fir...

  19. Residual stress measurement of EB-welded plates with contour method. Part 2: FEM analysis of contour profiles

    Romppanen, A.-J.; Immonen, E.

    2013-12-01

    The residual stresses formed as a result of Electronic Beam welding (EB-welding) in copper are investigated by Posiva. In the present study, residual stresses of EB-welded copper plates were studied with contour method. In the method eleven copper plates (X436 - X440 and X453 - X458) were cut in half with wire electric discharge machining (EDM) after which the deformation due to stress relaxation was measured with coordinate measurement system. The measured data was then used as boundary displacement data for the FEM analyses, in which the corresponding residual stresses were calculated. Before giving the corresponding displacement boundary conditions to the FE models, the deformation data was processed and smoothed appropriately. The residual stress levels of the copper plates were found to be around 40 - 55 MPa at maximum. This corresponds to other reported residual stress measurements and current state of knowledge with this material in Posiva. (orig.)

  20. LEP copper accelerating cavities

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  1. Copper intoxication in sheep

    Gazaryan, V.S.; Sogoyan, I.S.; Agabalov, G.A.; Mesropyan, V.V.

    1966-01-01

    Of 950 sheep fed hay from a vineyard sprayed regularly with copper sulfate, 143 developed clinical copper poisoning and 103 died. The Cu content of the hay was 10.23 mg%, of the liver of dead sheep 17-52 mg%, and of the blood serum of affected sheep 0.86 mg%. The symptoms and the histological findings in kidneys and liver are described.

  2. Anisotropic elastic plates

    Hwu, Chyanbin

    2010-01-01

    As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a

  3. High loading uranium plate

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pari of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat hiving a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process

  4. Copper wire bonding

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  5. Optimizing friction stir weld parameters of aluminum and copper using conventional milling machine

    Manisegaran, Lohappriya V.; Ahmad, Nurainaa Ayuni; Nazri, Nurnadhirah; Noor, Amirul Syafiq Mohd; Ramachandran, Vignesh; Ismail, Muhammad Tarmizizulfika; Ahmad, Ku Zarina Ku; Daruis, Dian Darina Indah

    2018-05-01

    The joining of two of any particular materials through friction stir welding (FSW) are done by a rotating tool and the work piece material that generates heat which causes the region near the FSW tool to soften. This in return will mechanically intermix the work pieces. The first objective of this study is to join aluminum plates and copper plates by means of friction stir welding process using self-fabricated tools and conventional milling machine. This study also aims to investigate the optimum process parameters to produce the optimum mechanical properties of the welding joints for Aluminum plates and Copper plates. A suitable tool bit and a fixture is to be fabricated for the welding process. A conventional milling machine will be used to weld the aluminum and copper. The most important parameters to enable the process are speed and pressure of the tool (or tool design and alignment of the tool onto the work piece). The study showed that the best surface finish was produced from speed of 1150 rpm and tool bit tilted to 3°. For a 200mm × 100mm Aluminum 6061 with plate thickness of 2 mm at a speed of 1 mm/s, the time taken to complete the welding is only 200 seconds or equivalent to 3 minutes and 20 seconds. The Copper plates was successfully welded using FSW with tool rotation speed of 500 rpm, 700 rpm, 900 rpm, 1150 rpm and 1440 rpm and with welding traverse rate of 30 mm/min, 60 mm/min and 90 mm/min. As the conclusion, FSW using milling machine can be done on both Aluminum and Copper plates, however the weld parameters are different for the two types of plates.

  6. Design basis for the copper/steel canister

    Bowyer, W.H.

    1996-02-01

    The development of the copper/iron canister which has been proposed by SKB for the containment of high level nuclear waste has been studied from the point of view of choice of materials, manufacturing technology and quality assurance. This report describes the observations on progress which have been made between March 1995 and Feb 1996 and the result of further literature studies. A first trial canister has been produced using a fabricated steel liner and an extruded copper tubular, a second one using a fabricated tubular is at an advanced stage. A change from a fabricated steel inner canister to a proposed cast canister has been justified by a criticality argument but the technology for producing a cast canister is at present untried. The microstructure achieved in the extruded copper tubular for the first canister is unacceptable. Similar problems exist with plate used for the fabricated tubular, but some more favourable structures have been achieved already by this route. Seam welding of the first tubular failed through a suspected material problem. The second fabricated tubular welded without difficulty. Welding of lids and bottoms to the copper canister is problematical.There is as yet no satisfactory non destructive test procedures for the parent metal or the welds in the copper canister material, partly due to the coarse grain size which arise in the proposed material processed by the proposed routes. Further studies are also required on crevice corrosion, galvanic attack and stress corrosion cracking in the copper 50 ppm phosphorus alloy. 28 refs

  7. Heat insulating plates

    Allan, J.A.F.

    1976-10-28

    Micro-porous insulation plates are dealt with, for example, how they are used in the insulation of heat storage devices. Since one side of such plates is exposed to a temperature of over 700/sup 0/C, a shrinkage of the glass texture of the covering can occur, which can exceed the shrinkage of the inner micro-porous material, so that cracks and splits in the high temperature side of the covering can come about. The task of the invention is to design the plate in such a way as to prevent this from happening. For this purpose the plate is provided, according to invention specifications, with flutes, waves, ribs, waffle or grid patterns and the covering is set into the recesses originating from this.

  8. Create Your Plate

    Full Text Available ... Plate is a simple and effective way to manage your blood glucose levels and lose weight. With ... been easier. It can be a challenge to manage portion control wherever you are. Now, our best- ...

  9. Create Your Plate

    Full Text Available ... Food Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate en -- A Future Without Diabetes - a- ...

  10. Create Your Plate

    Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart- ...

  11. Create Your Plate

    Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets ...

  12. Create Your Plate

    Full Text Available ... Children and Type 2 Diabetes Know Your Rights Employment Discrimination Health Care Professionals Law Enforcement Driver's License ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...

  13. Create Your Plate

    Full Text Available ... diabetes. Other Ways to Give Become a Member Vehicle Donation Planned Giving Options Memorial Giving Brochures & Envelopes ... to manage your blood glucose levels and lose weight. With this method, you fill your plate with ...

  14. Create Your Plate

    Full Text Available ... breast cancer and AIDS combined. Your gift today will help us get closer to curing diabetes and ... on one side, cut it again so you will have three sections on your plate. Fill the ...

  15. Create Your Plate

    Full Text Available ... Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning ... serving of dairy or both as your meal plan allows. Choose healthy fats in small amounts. For ...

  16. Create Your Plate

    Full Text Available ... Count Glycemic Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get Started Safely ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...

  17. Create Your Plate

    Full Text Available ... these seven steps to get started: Using your dinner plate, put a line down the middle of ... Fitness Food Recipes Planning Meals What Can I Eat Weight Loss Fitness In My Community Calendar of ...

  18. Create Your Plate

    Full Text Available ... Food MyFoodAdvisor Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal ...

  19. Create Your Plate

    Full Text Available ... for Association Events Messaging Tools Recruiting Advocates Local Market Planning Training Webinars News & Events Advocacy News Call ... Meals > Create Your Plate Share: Print Page Text Size: A A A Listen En Español Create Your ...

  20. Create Your Plate

    Full Text Available ... Us in the Fight for a Cure Your tax-deductible gift today can fund critical diabetes research ... Close www.diabetes.org > Food and Fitness > Food > Planning Meals > Create Your Plate Share: Print Page Text ...

  1. Create Your Plate

    Full Text Available ... critical diabetes research and support vital diabetes education services that improve the lives of those with diabetes. $50 $100 $250 $500 Other Other Ways ... Meals > Create Your Plate ...

  2. Create Your Plate

    Full Text Available ... 800-342-2383) Give by Mail Close ... your plate with more non-starchy veggies and smaller portions of starchy foods and protein—no special tools or counting required! You can ...

  3. Humvee Armor Plate Drilling

    2004-01-01

    When drilling holes in hard steel plate used in up-armor kits for Humvee light trucks, the Anniston Army Depot, Anniston, Alabama, requested the assistance of the National Center for Defense Manufacturing and Machining (NCDMM...

  4. Create Your Plate

    Full Text Available ... Easy Advocacy Checklists for Association Events Messaging Tools Recruiting Advocates Local Market Planning Training Webinars News & Events ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...

  5. Create Your Plate

    Full Text Available ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ... Complications Health Insurance For Parents & Kids Know Your Rights We Can Help Enroll in the Living WIth ...

  6. Create Your Plate

    Full Text Available ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ... today and help fund grants supporting next generation scientists. Donate Today We Can Help - we-can-help. ...

  7. BAO Plate Archive Project

    Mickaelian, A. M.; Gigoyan, K. S.; Gyulzadyan, M. V.; Paronyan, G. M.; Abrahamyan, H. V.; Andreasyan, H. R.; Azatyan, N. M.; Kostandyan, G. R.; Samsonyan, A. L.; Mikayelyan, G. A.; Farmanyan, S. V.; Harutyunyan, V. L.

    2017-12-01

    We present the Byurakan Astrophysical Observatory (BAO) Plate Archive Project that is aimed at digitization, extraction and analysis of archival data and building an electronic database and interactive sky map. BAO Plate Archive consists of 37,500 photographic plates and films, obtained with 2.6m telescope, 1m and 0.5m Schmidt telescopes and other smaller ones during 1947-1991. The famous Markarian Survey (or the First Byurakan Survey, FBS) 2000 plates were digitized in 2002-2005 and the Digitized FBS (DFBS, www.aras.am/Dfbs/dfbs.html) was created. New science projects have been conducted based on this low-dispersion spectroscopic material. Several other smaller digitization projects have been carried out as well, such as part of Second Byurakan Survey (SBS) plates, photographic chain plates in Coma, where the blazar ON 231 is located and 2.6m film spectra of FBS Blue Stellar Objects. However, most of the plates and films are not digitized. In 2015, we have started a project on the whole BAO Plate Archive digitization, creation of electronic database and its scientific usage. Armenian Virtual Observatory (ArVO, www.aras.am/Arvo/arvo.htm) database will accommodate all new data. The project runs in collaboration with the Armenian Institute of Informatics and Automation Problems (IIAP) and will continues during 4 years in 2015-2018. The final result will be an Electronic Database and online Interactive Sky map to be used for further research projects. ArVO will provide all standards and tools for efficient usage of the scientific output and its integration in international databases.

  8. Neutron imaging plates

    Niimura, Nobuo

    1995-01-01

    Imaging plates have been used in the field of medical diagnosis since long ago, but their usefulness was verified as the two-dimensional detector for analyzing the X-ray crystalline structure of high bio molecules like protein, and they have contributed to the remarkable progress in this field. The great contribution is due to the excellent features, such as the detection efficiency of about 100%, the positional resolution smaller than 0.2 mm, the dynamic range of five digits, and the area of several hundreds mm square. The neutron imaging plates have not yet obtained the sufficient results. It was planned to construct the neutron diffractometer for biological matters, and to put imaging plate neutron detectors (IP-ND) to practical use as the detector. The research on the development of IP-NDs was carried out, and the IPp-NDs having the performance comparable with that for X-ray were able to be produced. Imaging plates are the integral type two-dimensional radiation detector using photostimulated luminescence matters, and their principle is explained. As to neutron imaging plates, the converter, neutron detection efficiency and the flight of secondary particles in photo-stimulated luminescence matters are described. As for the present state of development of neutron imaging plates, the IP-NDs made for trial, the dynamic range, the positional resolution, the detection efficiency and the kinds of converters, and the application of IP-NDs are reported. (K.I.)

  9. Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba

    Perreault, François; Popovic, Radovan; Dewez, David

    2014-01-01

    In this report, we investigated how the presence of a polymer shell (poly(styrene-co-butyl acrylate) alters the toxicity of CuO NPs in Lemna gibba. Based on total Cu concentration, core–shell CuO NPs were 10 times more toxic than CuO NPs, inducing a 50% decrease of growth rate at 0.4 g l −1 after 48-h of exposure while a concentration of 4.5 g l −1 was required for CuO NPs for a similar effect. Toxicity of CuO NPs was mainly due to NPs solubilization in the media. Based on the accumulated copper content in the plants, core–shell CuO NPs induced 4 times more reactive oxygen species compared to CuO NPs and copper sulfate, indicating that the presence of the polymer shell changed the toxic effect induced in L. gibba. This effect could not be attributed to the polymer alone and reveals that surface modification may change the nature of NPs toxicity. -- Highlights: • Bare and polymer-coated CuO nanoparticles were toxic to Lemna gibba. • Toxicity of bare CuO was mainly due to solubilized soluble copper. • Coated CuO accumulated inside the plants four times more. • Formation of reactive oxygen species was increased by polymer coating. • Coating of nanomaterials modifies mechanisms of action at cellular level. -- Polymer coating increases oxidative stress effect by core–shell CuO nanoparticles

  10. Effects of supporting electrolytes on copper electroplating for filling through-hole

    Chen, Chien-Hung; Lu, Chun-Wei; Huang, Su-Mei; Dow, Wei-Ping

    2011-01-01

    Highlights: → The through-holes of a printed circuit boardare directly filled by copper electroplating using single organic additive. → The inhibiting strength of the additive on copper deposition is related to a supporting electrolyte. → H 2 SO 4 strongly enhances the inhibiting strength of the additive and results in a conformal deposition, whereas Na 2 SO 4 and K 2 SO 4 do not affect the inhibiting strength and lead to good filling capability. - Abstract: The filling of micron through-holes (THs) in a printed circuit board (PCB) by copper electroplating was investigated in this study. The role of supporting electrolytes, such as H 2 SO 4 , Na 2 SO 4 and K 2 SO 4 , was explored using practical TH filling plating and linear-sweep voltammetry (LSV) analysis of plating solutions. The copper could selectively fill THs using one organic additive, namely, tetranitroblue tetrazolium chloride (TNBT), as an inhibitor. The inhibiting strength of TNBT depended on the supporting electrolytes. Although H 2 SO 4 could enhance the inhibiting strength of TNBT, it also decreased the filling capability of the copper plating solution; Na 2 SO 4 and K 2 SO 4 did not enhance the inhibiting strength of TNBT but they increased the filling capability of the copper plating solution. Additionally, the protons could chemically interact with TNBT to form precipitate, whereas sodium and potassium ions did not easily interact with TNBT. The filling capability of the copper plating solution using Na 2 SO 4 and K 2 SO 4 as supporting electrolytes could be greatly improved by adding a small amount of bis(3-sulfopropyl)-disulfide (SPS) and poly(ethylene glycol) (PEG) with a molecular weight of 600.

  11. Wrinkling of Pressurized Elastic Shells

    Vella, Dominic

    2011-10-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells. © 2011 American Physical Society.

  12. Seismic analysis of axisymmetric shells

    Jospin, R.J.; Toledo, E.M.; Feijoo, R.A.

    1984-01-01

    Axisymmetric shells subjected to multiple support excitation are studied. The shells are spatialy discretized by the finite element method and in order to obtain estimates for the maximum values of displacements and stresses the response spectrum tecnique is used. Finally, some numerical results are presented and discussed in the case of a shell of revolution with vertical symmetry axis, subjected to seismic ground motions in the horizontal, vertical and rocking directions. (Author) [pt

  13. Creep analysis of orthotropic shells

    Mehra, V.K.; Ghosh, A.

    1975-01-01

    A method of creep analysis of orthotropic cylindrical shells subjected to axisymmetric loads has been developed. A general study of creep behaviour of cylindrical shells subjected to a uniform internal pressure has been conducted for a wide range of values of anisotropy coefficients and creep law exponent. Analysis includes determination of stress re-distribution, strain rates, stationary state stresses. Application of reference stress technique has been extended to analysis of shells. (author)

  14. The direct manipulation shell

    Allen, M.E.; Christiansen, M.

    1992-01-01

    Accelerator controls systems provide parameter display pages which allow the operator to monitor and manipulate selected control points in the system. Display pages are generally implemented as either hand-crafted, purpose-built programs; or by using a specialized display page layout tool. These two methods of display page development exhibit the classic trade-off between functionality vs. ease of implementation. In the Direct Manipulation Shell we approach the process of developing a display page in a manifestly object-oriented manner. This is done by providing a general framework for interactively instantiating and manipulating display objects. (author)

  15. Copper : recession and recovery

    Warwick-Ching, T.

    2002-01-01

    In 2002, the world output for copper will fall for the first time in nearly a decade because of financial pressure and voluntary constraints. Cutbacks at copper mines amount to 760,000 tonnes per year. These cutbacks have occurred mostly in the United States which holds the largest share of high cost mines. This paper discussed recent developments in both copper supply and demand. The United States is unique as both a large consumer and producer of copper. At 1.35 million tonnes, US mine output in 2001 was at its lowest since 1987. The cutbacks in mining in general were described in this paper with particular reference to the huge loss of mining and metallurgical activity in the United States during a prolonged period of low prices in the mid 1980s. The author noted that this period was followed by an exceptional decade when much of the industry rebounded. Only 8 mines closed outright in the United States and a handful in Canada since the recession of the 1980s, but that is partly because mines got bigger and there are fewer small mines in North America. There are only 4 electrolytic refineries and 3 smelters still active in the entire United States, of which 2 are operating at a fraction of capacity. It was noted that only the buoyancy of China prevented a much bigger decline in copper demand on a global scale

  16. Metallographic observations of AISI 304 - copper dissimular joints

    Medeiros, R.C. de; Carvalho Perdigao, S. de

    1982-01-01

    The current work informs on the SMAW dissimilar joints embrittled by molten Copper. Bead on plate of that metal were deposited on four different base metals to evaluate the phenomena. Conventional and non conventional welding methods were employed to obtain dissimilar joints of AISI 304-Cu. The latter were observed metallographically. These results are to be complemented by mechanical testing actually being performed. (Author) [pt

  17. Copper and copper-nickel alloys as zebra mussel antifoulants

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K. [Univ. of Toronto, Ontario (Canada)

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  18. Cadmium plating replacements

    Nelson, M.J.; Groshart, E.C.

    1995-03-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  19. Dossier Shell Eco-Marathon; Dossier Shell Eco-Marathon

    Matla, P.

    2012-05-15

    Three articles address subjects concerning the annual race with highly energy efficient cars: the Shell Eco-Marathon. [Dutch] In 3 artikelen wordt aandacht besteed aan de ontwerpen voor de jaarlijkse race met superzuinige auto's, de Shell Eco-Marathon.

  20. Bending and stretching of plates

    Mansfield, E H; Hemp, W S

    1964-01-01

    The Bending and Stretching of Plates deals with elastic plate theory, particularly on small- and large-deflexion theory. Small-deflexion theory concerns derivation of basic equations, rectangular plates, plates of various shapes, plates whose boundaries are amenable to conformal transformation, plates with variable rigidity, and approximate methods. Large-deflexion theory includes general equations and some exact solutions, approximate methods in large-deflexion theory, asymptotic large-deflexion theories for very thin plates. Asymptotic theories covers membrane theory, tension field theory, a

  1. Hi shells, supershells, shell-like objects, and ''worms''

    Heiles, C.

    1984-01-01

    We present photographic representations of the combination of two Hi surveys, so as to eliminate the survey boundaries at Vertical BarbVertical Bar = 10 0 . We also present high-contrast photographs for particular velocities to exhibit weak Hi features. All of these photographs were used to prepare a new list of Hi shells, supershells, and shell-like objects. We discuss the structure of three shell-like objects that are associated with high-velocity gas, and with gas at all velocities that is associated with radio continuum loops I, II, and III. We use spatial filtering to find wiggly gas filaments: ''worms'': crawling away from the galactic plane in the inner Galaxy. The ''worms'' are probably parts of shells that are open at the top; such shells should be good sources of hot gas for the galactic halo

  2. Absolute linear thermal-expansion measurements on copper and aluminum from 5 to 320 K

    Kroeger, F.R.; Swenson, C.A.

    1977-01-01

    A linear absolute dilatometer based on a three-terminal parallel-plate capacitor design has been used to obtain thermal expansion data for high-purity copper and aluminum from 5 to 320 K. These data have an absolute accuracy of +- 0.1% above 20 K for copper and above 30 K for aluminum, and agree well with published data at the higher temperatures. The disagreement which exists with other data below 5 K for copper and below 15 K for aluminum is believed to be sample dependent, but the mechanism is not known. The aluminum results in this region depend on the state of annealing of the sample

  3. Selection and application of C18200 chrome copper for the OHTE confinement test helical coil

    Puhn, F.A.; Graumann, D.W.

    1981-01-01

    The selection and qualification of copper for the OHTE confinement test helical coil (H-coil) was a crucial step in the success of this new experiment. Previous problems encountered at General Atomic Company with close tolerance machined parts made from high strength copper were identified. The design criteria included selecting a material with minimal warpage during machining, an electrical conductivity >80% IACS, and a yield strength of at least 241 Mpa (35 ksi). The investigation of candidate materials and testing samples led to selection of a material that fully met all requirements. The C18200 chrome copper forged plates were supplied by the Ampco Metal Division of Ampco-Pittsburgh Corporation

  4. Study of copper fluorination

    Gillardeau, J.

    1967-02-01

    This report deals with the action of fluorine on copper. Comprehensive descriptions are given of the particular technological methods and of the preparation of the reactants. This fluorination reaction has been studied at medium and low fluorine pressures. A nucleation and growth phenomenon is described. The influence of a pollution of the gas phase on the fluorination process is described. The solid-state reaction between cupric fluoride and cooper has also been studied. A special study has been made of the growth of copper deposits by thermal decomposition of gaseous fluorides. (author) [fr

  5. Production methods and costs of oxygen free copper canisters for nuclear waste disposal

    Aalto, H.; Rajainmaeki, H.; Laakso, L.

    1996-10-01

    The fabrication technology and costs of various manufacturing alternatives to make large copper canisters for disposal of spent nuclear fuel from reactors of Teollisuuden Voima Oy (TVO) and Imatran Voima Oy (IVO) are discussed. The canister design is based on the Posiva's concept where solid insert structure is surrounded by the copper mantle. During recent years Outokumpu Copper Products and Posiva have continued their work on development of the copper canisters. Outokumpu Copper Products has also increased capability to manufacture these canisters. In the study the most potential manufacturing methods and their costs are discussed. The cost estimates are based on the assumption that Outokumpu will supply complete copper mantles. At the moment there are at least two commercially available production methods for copper cylinder manufacturing. These routes are based on either hot extrusion of the copper tube or hot rolling, bending and EB-welding of the tube. Trial fabrications has been carried out with both methods for the full size canisters. These trials of the canisters has shown that both the forming from rolled plate and the extrusion are possible methods for fabricating copper canisters on a full scale. (orig.) (26 refs.)

  6. Electroless Cu Plating on Anodized Al Substrate for High Power LED.

    Rha, Sa-Kyun; Lee, Youn-Seoung

    2015-03-01

    Area-selective copper deposition on screen printed Ag pattern/anodized Al/Al substrate was attempted using a neutral electroless plating processes for printed circuit boards (PCBs), according to a range of variation of pH 6.5-pH 8 at 70 °C. The utilized basic electroless solution consisted of copper(II) sulfate pentahydrate, sodium phosphinate monohydrate, sodium citrate tribasic dihydrate, ammonium chloride, and nickel(II) sulfate hexahydrate. The pH of the copper plating solutions was adjusted from pH 6.5 to pH 8 using NH4OH. Using electroless plating in pH 6.5 and pH 7 baths, surface damage to the anodized Al layer hardly occurred; the structure of the plated Cu-rich films was a typical fcc-Cu, but a small Ni component was co-deposited. In electroless plating at pH 8, the surface of the anodized Al layer was damaged and the Cu film was composed of a lot of Ni and P which were co-deposited with Cu. Finally, in a pH 7 bath, we can make a selectively electroless plated Cu film on a PCB without any lithography and without surface damage to the anodized Al layer.

  7. Thermal Shock In Periodic Edge-Cracked Plate Supported By Elastic Foundation

    Abd El-Fattah A. Rizk

    2012-01-01

    The study of the transient thermal stress problem for a periodic edge cracks in an elastic plate on an elastic foundations is investigated. This study may also be applied for circumferentially periodic cracked hollow cylinder under transient thermal stresses. Based on previous studies, the cylindrical shell may be modeled by a plate on an elastic foundation. The thermal stresses are generated due to sudden convective cooling on the boundary containing the edge cracks while the other boundary ...

  8. Plating on Zircaloy-2

    Dini, J.W.; Johnson, H.R.; Jones, A.

    1979-03-01

    Zircaloy-2 is a difficult alloy to coat with an adherent electroplate because it easily forms a tenacious oxide film in air and aqueous solutions. Procedures reported in the literature and those developed at SLL for surmounting this problem were investigated. The best results were obtained when specimens were first etched in either an ammonium bifluoride/sulfuric acid or an ammonium bifluoride solution, plated, and then heated at 700 0 C for 1 hour in a constrained condition. Machining threads in the Zircaloy-2 for the purpose of providing sites for mechanical interlocking of the plating also proved satisfactory

  9. NICKEL PLATING PROCESS

    Hoover, T.B.; Zava, T.E.

    1959-05-12

    A simplified process is presented for plating nickel by the vapor decomposition of nickel carbonyl. In a preferred form of the invention a solid surface is nickel plated by subjecting the surface to contact with a mixture containing by volume approximately 20% nickel carbonyl vapor, 2% hydrogen sulfide and .l% water vapor or 1% oxygen and the remainder carbon dioxide at room temperature until the desired thickness of nickel is obtained. The advantage of this composition over others is that the normally explosive nickel carbonyl is greatly stabilized.

  10. Brazing copper to dispersion-strengthened copper

    Ryding, David G.; Allen, Douglas; Lee, Richard H.

    1996-11-01

    The advanced photon source is a state-of-the-art synchrotron light source that will produce intense x-ray beams, which will allow the study of smaller samples and faster reactions and processes at a greater level of detail than has ben possible to date. The beam is produced by using third- generation insertion devices in a 7-GeV electron/positron storage ring that is 1,104 meters in circumference. The heat load from these intense high-power devices is very high, and certain components must sustain total heat loads of 3 to 15 kW and heat fluxes of 30 W/mm$_2). Because the beams will cycle on and off many times, thermal shock and fatigue will be a problem. High heat flux impinging on a small area causes a large thermal gradient that results in high stress. GlidCop, a dispersion-strengthened copper, is the desired design material because of its high thermal conductivity and superior mechanical properties as compared to copper and its alloys. GlidCop is not amenable to joining by fusion welding, and brazing requires diligence because of high diffusivity. Brazing procedures were developed using optical and scanning electron microscopy.

  11. Hydrodynamics of a flexible plate between pitching rigid plates

    Kim, Junyoung; Kim, Daegyoum

    2017-11-01

    The dynamics of a flexible plate have been studied as a model problem in swimming and flying of animals and fluid-structure interaction of plants and flags. Motivated by fish schooling and an array of sea grasses, we investigate the dynamics of a flexible plate closely placed between two pitching rigid plates. In most studies on passive deformation of the flexible plate, the plate is immersed in a uniform flow or a wavy flow. However, in this study, the flexible plate experiences periodic deformation by the oscillatory flow generated by the prescribed pitching motion of the rigid plates. In our model, the pitching axes of the rigid plates and the clamping position of the flexible plate are aligned on the same line. The flexible plate shows various responses depending on length and pitching frequency of rigid plates, thickness of a flexible plate, and free-stream velocity. To find the effect of each variable on the response of the flexible plate, amplitude of a trailing edge and modal contribution of a flapping motion are compared, and flow structure around the flexible plate is examined.

  12. Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding

    Shen, Z.; Chen, Y. [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada); Haghshenas, M., E-mail: mhaghshe@uwaterloo.ca [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada); Nguyen, T. [Mechanical Systems Engineering, Conestoga College, Kitchener (Canada); Galloway, J. [Welding Engineering Technology, Conestoga College, Kitchener (Canada); Gerlich, A.P. [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada)

    2015-06-15

    A preliminary study compares the feasibility and microstructures of pure copper claddings produced on a pressure vessel A516 Gr. 70 steel plate, using friction stir welding versus gas metal arc welding. A combination of optical and scanning electron microscopy is used to characterize the grain structures in both the copper cladding and heat affected zone in the steel near the fusion line. The friction stir welding technique produces copper cladding with a grain size of around 25 μm, and no evidence of liquid copper penetration into the steel. The gas metal arc welding of copper cladding exhibits grain sizes over 1 mm, and with surface microcracks as well as penetration of liquid copper up to 50 μm into the steel substrate. Transmission electron microscopy reveals that metallurgical bonding is produced in both processes. Increased diffusion of Mn and Si into the copper cladding occurs when using gas metal arc welding, although some nano-pores were detected in the FSW joint interface. - Highlights: • Cladding of steel with pure copper is possible using either FSW or GMAW. • The FSW yielded a finer grain structure in the copper, with no evidence of cracking. • The FSW joint contains some evidence of nano-pores at the interface of the steel/copper. • Copper cladding by GMAW contained surface cracks attributed to high thermal stresses. • The steel adjacent to the fusion line maintained a hardness value below 248 HV.

  13. Shell Trumpets from Western Mexico

    Robert Novella

    1991-11-01

    Full Text Available Marine shells have been used as musical instruments in almost all parts of the world (Izikowitz 1935, including Mesoamerica, where large univalves, also called conch shells in the literature, had a utilitarian function as trumpets. Their use is well documented in most cultural areas of Mesoamerica, as in Western Mexico, through their various occurrences in archaeological contexts and museums collections.

  14. Cylindrical thin-shell wormholes

    Eiroa, Ernesto F.; Simeone, Claudio

    2004-01-01

    A general formalism for the dynamics of nonrotating cylindrical thin-shell wormholes is developed. The time evolution of the throat is explicitly obtained for thin-shell wormholes whose metric has the form associated with local cosmic strings. It is found that the throat collapses to zero radius, remains static, or expands forever, depending only on the sign of its initial velocity

  15. Shell model and spectroscopic factors

    Poves, P.

    2007-01-01

    In these lectures, I introduce the notion of spectroscopic factor in the shell model context. A brief review is given of the present status of the large scale applications of the Interacting Shell Model. The spectroscopic factors and the spectroscopic strength are discussed for nuclei in the vicinity of magic closures and for deformed nuclei. (author)

  16. Conventional shell model: some issues

    Vallieres, M.; Pan, X.W.; Feng, D.H.; Novoselsky, A.

    1997-01-01

    We discuss some important issues in shell-model calculations related to the effective interactions used in different regions of the periodic table; in particular the quality of different interactions is discussed, as well as the mass dependence of the interactions. Mention is made of the recently developed Drexel University shell-model (DUSM). (orig.)

  17. Expert system development (ESD) shell

    Padmini, S.; Diwakar, M.P.; Rathode, N.C.; Bairi, B.R.

    1991-01-01

    An Expert System Development (ESD) Shell design implementation is desribed in detail. The shell provides high-level generic facilities for Knowledge Representation (KR) and inferencing and tools for developing user interfaces. Powerful set of tools in the shell relieves much of the programming burden in the ES development. The shell is written in PROLOG under IBM PC/AT. KR facilities are based on two very powerful formalisms namely, frames and rules. Inference Engine (IE) draws most of its power from unification and backward reasoning strategy in PROLOG. This basic mechanism is enhanced further by incorporating both forward and backward chaining of rules and frame-based inferencing. Overall programming style integrates multiple paradigms including logic, object oriented, access-oriented and imperative programming. This permits ES designer a lot of flexibility in organizing inference control. Creation and maintainance of knowledge base is a major activity. The shell, therefore, provides number of facilities to simplify these tasks. Shell design also takes note of the fact that final success of any system depends on end-user satisfaction and hence provides features to build use-friendly interfaces. The shell also provides a set of interfacing predicates so that it can be embedded within any PROLOG program to incorporate functionalilty of the shell in the user program. (author). 10 refs., 8 figs

  18. Experiences with the ASDEX neutralizer plates and construction of water-cooled plates for long-pulse heating

    Rapp, H.; Niedermeyer, H.; Kornherr, M.

    1987-01-01

    After dismantling of the titanium neutralizer plates inspection yielded satisfactory status of flat areas whereas edges and curved shapes were heavily melted. At the inner plates of the lower divertor strongly focused melting and cutting was found which is caused by fast electrons. These electrons are continuously produced. The production mechanism is not yet clear but runaway processes can be excluded. With long-pulse additional heating of 6 MW/10s as planned for ASDEX in 1987, the total energy delivered to the plasma will increase by a factor of 30. Therefore new water-cooled neutralizer plates have been constructed which consist of a copper-steel compound. The construction principle and the topology of the cooling circuits is presented

  19. Copper and Copper Proteins in Parkinson’s Disease

    Sergio Montes

    2014-01-01

    Full Text Available Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson’s disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson’s disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson’s disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson’s disease and that a mutation in ATP7B could be associated with Parkinson’s disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  20. Dynamic centering of liquid shells

    Tsamopoulos, J.A.; Brown, R.A.

    1987-01-01

    The moderate-amplitude axisymmetric oscillations of an inviscid liquid shell surrounding an incompressible gas bubble are calculated by a multiple-time-scale expansion for initial deformations composed of two-lobed perturbations of the shell and a displacement of the bubble from the center of mass of the liquid. Two types of small-amplitude motion are identified and lead to very different nonlinear dynamic interactions, as described by the results valid up to second order in the amplitude of the initial deformation. In the ''bubble mode,'' the oscillations of the captive bubble and the liquid shell are exactly in phase and the bubble vibrates about its initial eccentric location. The bubble moves toward the center of the drop when the shell is perturbed into a ''sloshing mode'' of oscillation where both interfaces move out of phase. These results explain the centering of liquid shells observed in several experiments

  1. An experimental attenuation plate to improve the dose distribution in intraoperative electron beam radiotherapy for breast cancer.

    Oshima, T; Aoyama, Y; Shimozato, T; Sawaki, M; Imai, T; Ito, Y; Obata, Y; Tabushi, K

    2009-06-07

    Intraoperative electron beam radiotherapy (IOERT) is a technique in which a single-fraction high dose is intraoperatively delivered to subclinical tumour cells using an electron beam after breast-conserving surgery. In IOERT, an attenuation plate consisting of a pair of metal disks is commonly used to protect the normal tissues posterior to the breast. However, the dose in front of the plate is affected by backscatter, resulting in an unpredictable delivered dose to the tumour cells. In this study, an experimental attenuation plate, termed a shielding plate, was designed using Monte Carlo simulation, which significantly diminished the electron beam without introducing any backscatter radiation. The plate's performance was verified by measurements. It was made of two layers, a first layer (source side) of polymethyl methacrylate (PMMA) and a second layer of copper, which was selected from among other metals (aluminium, copper and lead) after testing for shielding capability and the range and magnitude of backscatter. The optimal thicknesses of the PMMA (0.71 cm) and copper (0.3 cm) layers were determined by changing their thicknesses during simulations. On the basis of these results, a shielding plate was prototyped and depth doses with and without the plate were measured by radiophotoluminescence glass dosimeters using a conventional stationary linear accelerator and a mobile linear accelerator dedicated for IOERT. The trial shielding plate functioned as intended, indicating its applicability in clinical practice.

  2. Dependency of the band gap of electrodeposited Copper oxide thin films on the concentration of copper sulfate (CuSO4.5H2O) and pH in bath solution for photovoltaic applications

    Islam, Md. Anisul

    2016-03-10

    In this study, Copper oxide thin films were deposited on copper plate by electrodeposition process in an electrolytic bath containing CuSO4.5H2O, 3M lactic acid and NaOH. Copper oxide films were electrodeposited at different pH and different concentration of CuSO4.5H2O and the optical band gap was determined from their absorption spectrum which was obtained from UV-Vis absorption spectroscopy. It was found that copper oxide films which were deposited at low concentration of CuSO4.5H2O have higher band gap than those deposited at higher bath concentration. The band gap of copper oxide films also significantly changes with pH of the bath solution. It was also observed that with the increase of the pH of bath solution band gap of copper oxide film decreased. © 2015 IEEE.

  3. Creative Copper Crests

    Knab, Thomas

    2011-01-01

    In this article, the author discusses how to create an art activity that would link the computer-created business cards of fourth-grade students with an upcoming school-wide medieval event. Creating family crests from copper foil would be a great connection, since they, like business cards, are an individual's way to identify themselves to others.…

  4. and copper(II)

    Unknown

    (II) and copper(II)–zinc(II) complexes. SUBODH KUMAR1, R N PATEL1*, P V KHADIKAR1 and. K B PANDEYA2. 1 Department of Chemistry, APS University, Rewa 486 003, India. 2 CSJM University, Kanpur 208 016, India e-mail: (R N Patel) ...

  5. Reagent conditions of the flotation of copper, copper - molybdenum and copper -zinc ores in foreing countries

    Nevaeva, L.M.

    1983-01-01

    Reagents-collectors and frothers, used abroad in reagent regimes of flotation of copper, copper-molybdenum and copper zinc ores, have been considered. Xanthogenates, aerofloats, xanthogenformiates, thionocarbamates are mainly used as reagents-collectors. Methylizobutylcarbinol and Daufros are used as reagents-frothers

  6. Hypoxia targeting copper complexes

    Dearling, J.L.

    1998-11-01

    The importance and incidence of tumour hypoxia, its measurement and current treatments available, including pharmacological and radiopharmacological methods of targeting hypoxia, are discussed. A variety of in vitro and in vivo methods for imposing hypoxia have been developed and are reviewed. Copper, its chemistry, biochemistry and radiochemistry, the potential for use of copper radionuclides and its use to date in this field is considered with particular reference to the thiosemicarbazones. Their biological activity, metal chelation, in vitro and in vivo studies of their radiocopper complexes and the potential for their use as hypoxia targeting radiopharmaceuticals is described. The reduction of the copper(II) complex to copper(l), its pivotal importance in their biological behaviour, and the potential for manipulation of this to effect hypoxia selectivity are described. An in vitro method for assessing the hypoxia selectivity of radiopharmaceuticals is reported. The rapid deoxygenation and high viability of a mammalian cell culture in this system is discussed and factors which may affect the cellular uptake of a radiopharmaceutical are described. The design, synthesis and complexation with copper and radiocopper of a range of bis(thiosemicarbazones) is reported. Synthesis of these compounds is simple giving high yields of pure products. The characteristics of the radiocopper complexes ( 64 Cu) including lipophilicity and redox activity are reported (reduction potentials in the range -0.314 - -0.590 V). High cellular uptakes of the radiocopper complexes of the ligands, in hypoxic and normoxic EMT6 and CHO320 cells, were observed. Extremes of selectivity are shown ranging from the hypoxia selective 64 Cu(II)ATSM to normoxic cell selective 64 Cu(II)GTS. The selectivities observed are compared with the physico chemical characteristics of the complexes. A good correlation exists between selectivity of the complex and its Cu(II)/Cu(I) reduction potential, with hypoxia

  7. Create Your Plate

    Full Text Available ... meal-planning, . In this section Food Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate en -- A Future Without Diabetes - a-future-without-diabetes-2.html A Future ...

  8. Create Your Plate

    Full Text Available ... tool is not to scale because of the differences in types of vegetables. When creating your plate ... function (data) { $('#survey-errors').remove(); $('.survey-form .form-group .survey-alert-wrap').remove(); if (data.submitSurveyResponse.success == ' ...

  9. Create Your Plate

    Full Text Available ... Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate en -- A Future Without Diabetes - a-future-without-diabetes-2.html A Future Without Diabetes Donate towards research today and your gift will be matched. Donate ...

  10. Create Your Plate

    Full Text Available ... Planning Meals > Create Your Plate Share: Print Page Text Size: A A A Listen En Español Create ... Type 2 Education Series Hear audio clips and full recordings of past Q&A events at your ...

  11. Create Your Plate

    Full Text Available ... 1 Type 2 About Us Online Community Meal Planning Sign In Search: Search More Sites Search ≡ Are ... Fitness Home Food MyFoodAdvisor Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten ...

  12. Create Your Plate

    Full Text Available ... tax-deductible gift today can fund critical diabetes research and support vital diabetes education services that improve the ... effective way to manage your blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...

  13. Microchannel plate photodetectors

    Majka, R.

    1977-01-01

    A review is given the status of development work on photodetectors using microchannel plates (MCP) as the electron gain element. Projections are made and opinions are presented on what might be available in the next few years. Several uses for these devices at ISABELLE are mentioned

  14. Parallel plate detectors

    Gardes, D.; Volkov, P.

    1981-01-01

    A 5x3cm 2 (timing only) and a 15x5cm 2 (timing and position) parallel plate avalanche counters (PPAC) are considered. The theory of operation and timing resolution is given. The measurement set-up and the curves of experimental results illustrate the possibilities of the two counters [fr

  15. Flat plate collector. Solarflachkollektor

    Raab, N

    1979-03-29

    The invention refers to a flat solar collector with an absorber plate, which is arranged on a support and is covered by a transparent window, between which and the plate there is an air space. The previously known structures of this type had the disadvantage that the thermal expansion of the enclosed air caused considerable difficulties. The purpose of the invention is therefore to create a collector, which can be used on the modular system, retains its properties and is safe in spite of the great temperature variations. According to the invention this problem is solved by providing a compensating space in the collector, which is separated by a diaphragm from the airspace between the plate and the covering window. The airspace therefore remains sealed against the atmosphere, so that no dirt, corrosion of the inside and no condensation can reduce the efficiency of the collector. A rise in pressure due to an increase in temperature is immediately reduced by expansion of the diaphragm, which enters the compensation space. In order to increase the pressure in the airspace above the plate for increases in temperature, the compensation space is connected to the atmosphere. The diaphragm can be mirrored on the side towards the absorber, which makes the diaphragm into an insulating element, as it reflects radiated heat from the absorber.

  16. Performance of an anisotropic Allman/DKT 3-node thin triangular flat shell element

    Ertas, A.; Krafcik, J. T.; Ekwaro-Osire, S.

    1992-05-01

    A simple, explicit formulation of the stiffness matrix for an anisotropic, 3-node, thin triangular flat shell element in global coordinates is presented. An Allman triangle (AT) is used for membrane stiffness. The membrane stiffness matrix is explicitly derived by applying an Allman transformation to a Felippa 6-node linear strain triangle (LST). Bending stiffness is incorporated by the use of a discrete Kirchhoff triangle (DKT) bending element. Stiffness terms resulting from anisotropic membrane-bending coupling are included by integrating, in area coordinates, the membrane and bending strain-displacement matrices. Using the aforementioned approach, the objective of this study is to develop and test the performance of a practical 3-node flat shell element that could be used in plate problems with unsymmetrically stacked composite laminates. The performance of the latter element is tested on plates of varying aspect ratios. The developed 3-node shell element should simplify the programming task and have the potential of reducing the computational time.

  17. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  18. Technical assistance to AECL: electron beam welding of thick-walled copper containers for nuclear fuel waste disposal

    Maak, P.Y.Y.

    1984-01-01

    This report describes the results of Phase Two of the copper electron beam welding project for the final closure of copper containers for nuclear fuel waste disposal. It has been demonstrated that single pass, electron beam square butt welds (depth of weld penetration > 25 mm) can be made without preheat in both electrolytic tough-pitch copper and oxygen-free copper plates. The present results show that oxygen-free copper exhibits better weldability than the electrolytic tough-pitch copper in terms of weld penetration and vulnerability to weld defects such as gas porosity, erratic metal overflow and blow holes. The results of ultrasonic inspection studies of the welds are also discussed

  19. Higher-resolution selective metallization on alumina substrate by laser direct writing and electroless plating

    Lv, Ming; Liu, Jianguo; Wang, Suhuan; Ai, Jun; Zeng, Xiaoyan

    2016-01-01

    Graphical abstract: - Highlights: • Mechanisms of laser direct writing and electroless plating were studied. • Active seeds in laser-irradiated zone and laser-affected zone were found to be different. • A special chemical cleaning method with aqua regia was taken. • Higher-resolution copper patterns on alumina ceramic were obtained conveniently. - Abstract: How to fabricate conductive patterns on ceramic boards with higher resolution is a challenge in the past years. The fabrication of copper patterns on alumina substrate by laser direct writing and electroless copper plating is a low cost and high efficiency method. Nevertheless, the lower resolution limits its further industrial applications in many fields. In this report, the mechanisms of laser direct writing and electroless copper plating were studied. The results indicated that as the decomposed products of precursor PdCl_2 have different chemical states respectively in laser-irradiated zone (LIZ) and laser-affected zone (LAZ). This phenomenon was utilized and a special chemical cleaning method with aqua regia solution was taken to selectively remove the metallic Pd in LAZ, while kept the PdO in LIZ as the only active seeds. As a result, the resolution of subsequent copper patterns was improved significantly. This technique has a great significance to develop the microelectronics devices.

  20. Geometrically nonlinear dynamic and static analysis of shallow spherical shell resting on two-parameters elastic foundations

    Civalek, Ö.

    2014-01-01

    In the present study nonlinear static and dynamic responses of shallow spherical shells resting on Winkler–Pasternak elastic foundations are carried out. The formulation of the shells is based on the Donnell theory. The nonlinear governing equations of motion of shallow shells are discretized in space and time domains using the discrete singular convolution and the differential quadrature methods, respectively. The validity of the present method is demonstrated by comparing the present results with those available in the open literature. The effects of the Winkler and Pasternak foundation parameters on nonlinear static and dynamic response of shells are investigated. Some results are also presented for circular plate as special case. Damping effect on nonlinear dynamic response of shells is studied. It is important to state that the increase in damping parameter causes decrease in the dynamic response of the shells. It is shown that the shear parameter of the foundation has a significant influence on the dynamic and static response of the shells. Also, the response of the shell is decreased with the increasing value of the shear parameter of the foundation. Parametric studies considering different geometric variables have also been investigated. -- Highlights: • Nonlinear responses of shallow spherical shells are presented. • The effects of foundation parameters are investigated. • Damping effect on nonlinear dynamic response of shells is also studied

  1. The influence of copper in dealloyed binary platinum–copper electrocatalysts on methanol electroxidation catalytic activities

    Poochai, Chatwarin [Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Veerasai, Waret, E-mail: waret.vee@mahidol.ac.th [Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Somsook, Ekasith [Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Dangtip, Somsak [Department of Physics, and NANOTEC COE at Mahidol University, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand)

    2015-08-01

    In this study, we prepared and characterized carbon paper-supported dealloyed binary Pt–Cu core–shell electrocatalysts (denoted as Pt{sub x}Cu{sub (100−x)/}CP) by cyclic co-electrodeposition and selective copper dealloying in an acidic medium, and we investigated the effect of the copper content in the samples on the catalytic activities toward methanol electroxidation reaction (MOR). X-ray photo-emission spectroscopy (XPS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) indicated that the structure of dealloyed binary Pt–Cu catalysts possessed a Pt-rich shell and a Cu rich core. X-ray absorption near edge spectroscopy (XANES) displayed that the oxidation states of Pt and Cu were zero and one, respectively, implying the formation of metallic Pt and Cu{sub 2}O, respectively. X-ray diffraction spectroscopy (XRD) confirmed that Cu was inserted into a face-centered cubic Pt structure forming Pt–Cu alloys. Scanning electron microscopy (SEM) and transmission electron microscope (TEM) displayed a cubic shape of Pt/CP and a spherical shape of Pt{sub x}Cu{sub (100−x)/}CP with several hundred nanometer sizes of agglomeration that depended on the Cu content. Cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy were performed to confirm that the sample of Pt{sub 70}Cu{sub 30}/CP exhibited the best catalytic activities in terms of the specific current, current density, catalytic poisoning tolerance, and stability. - Graphical abstract: Display Omitted - Highlights: • Binary electrocatalysts of Pt{sub x}Cu{sub (100−x)}/CP were prepared by cyclic co-electrodeposition and selective copper dealloying. • The structures of Pt{sub x}Cu{sub (100−x)}/CP were a Pt rich shell and a Cu rich core. • The Pt{sub 70}Cu{sub 30}/CP was the excellent catalytic activity towards methanol electrooxidation and CO{sub ads} tolerance.

  2. Molluscan shell evolution with review of shell calcification hypothesis

    Furuhashi, T.; Schwarzinger, C.; Mikšík, Ivan; Smrž, Miloslav; Beran, A.

    2009-01-01

    Roč. 154, č. 3 (2009), s. 351-371 ISSN 1096-4959 Institutional research plan: CEZ:AV0Z50110509 Keywords : mollusca * shell * biomineralization Subject RIV: CE - Biochemistry Impact factor: 1.607, year: 2009

  3. Experimental and numerical modelling of ductile crack propagation in large-scale shell structures

    Simonsen, Bo Cerup; Törnquist, R.

    2004-01-01

    plastic and controlled conditions. The test specimen can be deformed either in combined in-plane bending and extension or in pure extension. Experimental results are described for 5 and 10 mm thick aluminium and steel plates. By performing an inverse finite-element analysis of the experimental results......This paper presents a combined experimental-numerical procedure for development and calibration of macroscopic crack propagation criteria in large-scale shell structures. A novel experimental set-up is described in which a mode-I crack can be driven 400 mm through a 20(+) mm thick plate under fully...... for steel and aluminium plates, mainly as curves showing the critical element deformation versus the shell element size. These derived crack propagation criteria are then validated against a separate set of experiments considering centre crack specimens (CCS) which have a different crack-tip constraint...

  4. MicroShell Minimalist Shell for Xilinx Microprocessors

    Werne, Thomas A.

    2011-01-01

    MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is

  5. First-Ply-Failure Performance of Composite Clamped Spherical Shells

    Ghosh, A.; Chakravorty, D.

    2018-05-01

    The failure aspects of composites are available for plates, but studies of the literature on shells unveils that similar reports on them are very limited in number. The aim of this work was to investigate the first-ply-failure of industrially and aesthetically important spherical shells under uniform loadings. Apart from solving benchmark problems, numerical experiments were carried out with different variations of their parameters to obtain the first-ply-failure stresses by using the finite-element method. The load was increased in steps, and the lamina strains and stresses were put into well-established failure criteria to evaluate their first-ply-failure stress, the failed ply, the point of initiation of failure, and failure modes and tendencies. The results obtained are analyzed to extract the points of engineering significance.

  6. Shock absorbing properties of toroidal shells under compression, 3

    Sugita, Yuji

    1985-01-01

    The author has previously presented the static load-deflection relations of a toroidal shell subjected to axisymmetric compression between rigid plates and those of its outer half when subjected to lateral compression. In both these cases, the analytical method was based on the incremental Rayleigh-Ritz method. In this paper, the effects of compression angle and strain rate on the load-deflection relations of the toroidal shell are investigated for its use as a shock absorber for the radioactive material shipping cask which must keep its structural integrity even after accidental falls at any angle. Static compression tests have been carried out at four angles of compression, 10 0 , 20 0 , 50 0 , 90 0 and the applications of the preceding analytical method have been discussed. Dynamic compression tests have also been performed using the free-falling drop hammer. The results are compared with those in the static compression tests. (author)

  7. Kinetic formation of silver-copper nanoparticles and its characterization

    Zulkafi, Nurul Hikmah; Idrus, Nor Faeqah; Jai, Junaidah; Hadi, Abdul

    2017-12-01

    A study of the kinetic formation of silver-copper nanoparticles in aqueous medium on the basis of size distribution and its characterization has been carried out and reported in this paper. The Ag-Cu nanoparticles were synthesized through polyol method that using Ethylene Glycol (H2C6O12) as a reduction agent and solvent and Polyoxyethylene-(80)-Sorbitan Monooleate (Tween 80) as a stabilizer. The kinetic formation of Ag-Cu nanoparticles was observed using Dynamic Light Scattering (DLS) and characterized by using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscope (TEM). The XRD analysis results confirmed that size distribution was strongly dependent on molarity of precursors of silver (AgNO3) and copper (Cu(NO3)2.3H2O). The FESEM and TEM analysis indicated the existence of Ag and Cu nanoparticles in the core-shell shape. The silver-copper nanoparticles were spherical and uniform particles size with the average size of about 28 nm and 38 nm for silver and copper, respectively. DLS observation showed the growth of nanoparticles at the temperature of 140°C as the effect of reaction time at 1, 2, 3, 4 and 5 hours.

  8. ON HAMILTONIAN FORMULATIONS AND CONSERVATION LAWS FOR PLATE THEORIES OF VEKUA-AMOSOV TYPE

    Sergey I. Zhavoronok

    2017-12-01

    Full Text Available Some variants of the generalized Hamiltonian formulation of the plate theory of I. N. Vekua – A. A. Amosov type are presented. The infinite dimensional formulation with one evolution variable, or an “instantaneous” formalism, as well as the de Donder – Weyl one are considered, and their application to the numerical simulation of shell and plate dynamics is briefly discussed. The main conservation laws are formulated for the general plate theory of Nth order, and the possible motion integrals are introduced

  9. Shell Analysis Manual

    1968-04-01

    1.34-8) ax 2 X=0 2 A A 9 1 •z t/2 V2 = ii 1/ 1~ e1 +2 2 + 12 121 91 0 -t/2•1 2 e r" + e- 0 + T e aa 1 td +2 121a d•, 2 d (1.34-9) The strain and stress...Rk sin2 01 -24Rksin2 0 1 Et 2Et tD 0 1 - i To obtain N,, Ne0 Q10 Mo, M enter C 1 and C2 in the preceding general formulas. Table 2. 64-1 presents a...Formulas for the Elastic Constants of Plates with Integral Waffle-Like Stiffening. NACA RM L53 El3a (1953). 3-27 Gerard, G. "Compressive Stability of

  10. A Simple Method for Forming Hybrid Core-Shell Nanoparticles Suspended in Water

    Jean-Christophe Daigle

    2008-01-01

    addition fragmentation chain transfer (RAFT polymerization as dispersant. Then, the resulting dispersion is engaged in a radical emulsion polymerization process whereby a hydrophobic organic monomer (styrene and butyl acrylate is polymerized to form the shell of the hybrid nanoparticle. This method is extremely versatile, allowing the preparation of a variety of nanocomposites with metal oxides (alumina, rutile, anatase, barium titanate, zirconia, copper oxide, metals (Mo, Zn, and even inorganic nitrides (Si3N4.

  11. Plate Full of Color

    The Eagle Books are a series of four books that are brought to life by wise animal characters - Mr. Eagle, Miss Rabbit, and Coyote - who engage Rain That Dances and his young friends in the joy of physical activity, eating healthy foods, and learning from their elders about health and diabetes prevention. Plate Full of Color teaches the value of eating a variety of colorful and healthy foods.

  12. The use of COD and plastic instability in crack propagation and arrest in shells

    Erdogan, F.; Ratwani, M.

    1974-01-01

    The initiation, growth, and possible arrest of fracture in cylindrical shells containing initial defects are dealt with. For those defects which may be approximated by a part-through semi-elliptic surface crack which is sufficiently shallow so that part of the net ligament in the plane of the crack is still elastic, the existing flat plate solution is modified to take into account the shell curvature effect as well as the effect of the thickness and the small scale plastic deformations. The problem of large defects is then considered under the assumptions that the defect may be approximated by a relatively deep meridional part-through surface crack and the net ligament through the shell wall is fully yielded. The results given are based on an 8th order bending theory of shallow shells using a conventional plastic strip model to account for the plastic deformations around the crack border.

  13. Effect of plate shapes in orifice plate type flowmeters

    Moeller, S.V.

    1984-01-01

    The study of unusual plate shapes in orifice plate type flowmeters is presented, with a view to providing data for the substitution of the plate with one centered circular orifice in those applications where its use is not possible. For this purpose, six pairs of plates with different forms, with and without chamfered edges, were made and tested in a closed water loop. Results show that, generally, the use of chamfers improves the results and, in the case of perforated and slotlike orificed plates, the narrow-ness of the fluid passage tends to make unnecessary its use. (Author) [pt

  14. Effects of copper supplement on growth and viability of strains used as starters and adjunct cultures for Emmental cheese manufacture.

    Rodríguez, L Mato; Alatossava, T

    2008-10-01

    To determine the effects of supplemented copper (Cu2+) on growth and viability of strains used as starters and adjunct cultures for Emmental cheese manufacture. Thirteen strains belonging to Lactobacillus delbrueckii, Lactobacillus helveticus, Lactobacillus rhamnosus, Streptococcus thermophilus or Propionibacterium freudenreichii species were exposed to various copper concentrations in the proper growth medium at relevant growth temperatures, and the effects of supplemented copper on bacterial growth and cell viability were determined by optical density and pH measurements, also by platings. Among the species considered, L. delbrueckii was the most copper resistant and S. thermophilus the most sensitive to copper. Anaerobic conditions increased this sensitivity significantly. There was also a considerable amount of variation in copper resistance at strain level. Copper resistance is both a species- and strain-dependent property and may reflect variability in copper-binding capacities by cell wall components among species and strains. In addition, the chemical state of copper may be involved. This study revealed that copper resistance is a highly variable property among starter and adjunct strains, and this variability should be considered when strains are selected for Emmental cheese manufacture.

  15. Plate removal following orthognathic surgery.

    Little, Mhairi; Langford, Richard Julian; Bhanji, Adam; Farr, David

    2015-11-01

    The objectives of this study are to determine the removal rates of orthognathic plates used during orthognathic surgery at James Cook University Hospital and describe the reasons for plate removal. 202 consecutive orthognathic cases were identified between July 2004 and July 2012. Demographics and procedure details were collected for these patients. Patients from this group who returned to theatre for plate removal between July 2004 and November 2012 were identified and their notes were analysed for data including reason for plate removal, age, smoking status, sex and time to plate removal. 3.2% of plates were removed with proportionally more plates removed from the mandible than the maxilla. 10.4% of patients required removal of one or more plate. Most plates were removed within the first post-operative year. The commonest reasons for plate removal were plate exposure and infection. The plate removal rates in our study are comparable to those seen in the literature. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  16. Plate Tearing by a Cone

    Simonsen, Bo Cerup

    1997-01-01

    The present paper is concerned with steady-state plate tearing by a cone. This is a scenario where a cone is forced through a ductile metal plate with a constant lateral tip penetration in a motion in the plane of the plate. The considered process could be an idealisaton of the damage, which...... as for the out-of-plane reaction force....

  17. Normal and abnormal growth plate

    Kumar, R.; Madewell, J.E.; Swischuk, L.E.

    1987-01-01

    Skeletal growth is a dynamic process. A knowledge of the structure and function of the normal growth plate is essential in order to understand the pathophysiology of abnormal skeletal growth in various diseases. In this well-illustrated article, the authors provide a radiographic classification of abnormal growth plates and discuss mechanisms that lead to growth plate abnormalities

  18. The Effect of Copper

    environment, where fishes are found, stuns them ... of earthen ponds are springing up near cocoa ... farm, which posses toxicological risk to farmed ... Veg. oil. 1.0. 1.0. 1.0. 1.0. 1.0. Copper sulphate 0. 1.0. 2.5. 5.0. 7.5. Total ..... Cellulase Production by Wild Strains of Aspergillus Niger, ... Mangrove Area of Lagos, Nigeria.

  19. Copper Pyrimidine based MOFs

    Synthesized hydrothermally in a 23-mL Teflon lined stainless steel bomb by heating copper(II) 2-pyrazinecarboxylate (31 mg, 0.1 mmol) and tin(II) iodide (75 mg, 0.2 mmol) in 4 mL water at 150±C for 24 h. The reaction vessel was subsequently cooled to 70±C at 1±C/min and held at that temperature for 6 h before returning ...

  20. The use of waste mussel shells for the adsorption of dyes and heavy metals

    Papadimitriou, Chrysi A.; Krey, Grigorios; Stamatis, Nikolaos; Kallaniotis, Argyris

    2016-04-01

    Mussel culture is very important sector of the Greek agricultural economy. The majority of mussel culture activities take place in the area of Central Macedonia, Greece, 60% of total mussel production in Greece producing almost 12 tons of waste mussels shells on a daily basis. Currently there is no legislation concerning the disposal of mussel shells. In the present study the waste shells were used for the removal of dyes and heavy metals from aqueous solutions while powdered mussel shells were added in activated sludge processes for the removal of hexavalent chromium. Mussel shells were cleaned, dried and then crushed in order to form a powder. Powdered mussels shells were used in standard adsorption experiments for the removal of methylene blue and methyl red as well as for the removal of Cr (VI), Cd and Cu. Moreover the powdered mussel shells were added in laboratory scale activated sludge reactors treating synthetic wastewater with hexavalent chromium, in order investigate the effects in activated sludge processes and their potential attribution to the removal of hexavalent chromium. Adsorption experiments indicated almost 100% color removal, while adsorption was directly proportional to the amount of powdered mussel shells added in each case. The isotherms calculated for the case of methylene blue indicated similar adsorption capacity and properties to those of the commercially available activated carbon SAE 2, Norit. High removal efficiencies were observed for the metals, especially in the case of chromium and copper. The addition of powdered mussel shells in the activated sludge processes enhanced the removal of chromium and phosphorus, while enabled the formation of heavier activated sludge flocs and thus enhanced the settling properties of the activated sludge.

  1. Wave-front reversal in a copper-vapor active medium

    Bunkin, F.V.; Savranskii, V.V.; Shafeev, G.A.

    1981-09-01

    The implementation of wave-front reversal in a copper-vapor laser resonator is reported. The frequencies of the signal wave and the reversed wave are the same, and the dependence of reversed-signal power on input-signal power has a threshold character. Photographs of the reconstructed object image upon insertion of a distorting phase plate into the resonator are presented.

  2. Instant Windows PowerShell

    Menon, Vinith

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A practical, hands-on tutorial approach that explores the concepts of PowerShell in a friendly manner, taking an adhoc approach to each topic.If you are an administrator who is new to PowerShell or are looking to get a good grounding in these new features, this book is ideal for you. It's assumed that you will have some experience in PowerShell and Windows Server, as well being familiar with the PowerShell command-line.

  3. Patterning of the turtle shell.

    Moustakas-Verho, Jacqueline E; Cebra-Thomas, Judith; Gilbert, Scott F

    2017-08-01

    Interest in the origin and evolution of the turtle shell has resulted in a most unlikely clade becoming an important research group for investigating morphological diversity in developmental biology. Many turtles generate a two-component shell that nearly surrounds the body in a bony exoskeleton. The ectoderm covering the shell produces epidermal scutes that form a phylogenetically stable pattern. In some lineages, the bones of the shell and their ectodermal covering become reduced or lost, and this is generally associated with different ecological habits. The similarity and diversity of turtles allows research into how changes in development create evolutionary novelty, interacting modules, and adaptive physiology and anatomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Supersonic copper clusters

    Powers, D.E.; Hansen, S.G.; Geusic, M.E.; Michalopoulos, D.L.; Smalley, R.E.

    1983-01-01

    Copper clusters ranging in size from 1 to 29 atoms have been prepared in a supersonic beam by laser vaporization of a rotating copper target rod within the throat of a pulsed supersonic nozzle using helium for the carrier gas. The clusters were cooled extensively in the supersonic expansion [T(translational) 1 to 4 K, T(rotational) = 4 K, T(vibrational) = 20 to 70 K]. These clusters were detected in the supersonic beam by laser photoionization with time-of-flight mass analysis. Using a number of fixed frequency outputs of an exciplex laser, the threshold behavior of the photoionization cross section was monitored as a function of cluster size.nce two-photon ionization (R2PI) with mass selective detection allowed the detection of five new electronic band systems in the region between 2690 and 3200 A, for each of the three naturally occurring isotopic forms of Cu 2 . In the process of scanning the R2PI spectrum of these new electronic states, the ionization potential of the copper dimer was determined to be 7.894 +- 0.015 eV

  5. Native copper as a natural analogue for copper canisters

    Marcos, N.

    1989-12-01

    This paper discusses the occurrence of native copper as found in geological formations as a stability analogue of copper canisters that are planned to be used for the disposal of spent nuclear fuel in the Finnish bedrock. A summary of several publications on native copper occurrences is presented. The present geochemical and geohydrological conditions in which copper is met with in its metallic state show that metallic copper is stable in a wide range of temperatures. At low temperatures native copper is found to be stable where groundwater has moderate pH (about 7), low Eh (< +100 mV), and low total dissolved solids, especially chloride. Microscopical and microanalytical studies were carried out on a dozen of rock samples containing native copper. The results reveal that the metal shows no significant alteration. Only the surface of copper grains is locally coated. In the oldest samples there exist small corrosion cracks; the age of the oldest samples is over 1,000 million years. A review of several Finnish groundwater studies suggests that there are places in Finland where the geohydrological conditions are favourable for native copper stability. (orig.)

  6. Gold and gold-copper nanoparticles in 2-propanol: A radiation chemical study

    Dey, G.R.

    2011-01-01

    The studies on the reduction of Au 3+ to gold nanoparticles in presence and absence of Cu 2+ under deoxygenated conditions in 2-propanol by radiolytic method have been carried out. On γ-radiolysis, preliminary yellow colored solution of Au 3+ changed to purple color owing to gold nanoparticles formation, which exhibits an absorption peak at around 540 nm. In the presence of Cu 2+ , absorption of gold-copper nanoparticles, which was also produced during γ-radiolysis, was red shifted in contrast to the system containing no Cu 2+ . Under DLS studies the sizes of gold nanoparticles in the absence and the presence of Cu 2+ were found to be larger (>400 nm). However, in presence of polyethylene glycol, a stabilizer the nanoparticle sizes became smaller, sizes measured for gold and gold-copper nanoparticles are 40 and 140 nm, respectively. Moreover, the change in UV-vis spectra in the Cu 2+ and Au 3+ mixed system highlights the formation of gold-copper nanoparticles in core-shell type arrangement. - Highlights: → Present radiation chemical study highlights high reactivity of Au ·2+ with Cu 2+ . → Absorption of gold-copper nanoparticles is blue shifted as compared to copper nanoparticles. → Change in UV-vis spectra with dose emphasizes core-shell type arrangement of Au-Cu nanoparticles.

  7. 40 Years of Shell Scenarios

    NONE

    2013-02-15

    Shell has been using scenario planning for four decades. During that time these scenarios have helped the company and governments across the world to make better strategic choices. Scenarios provide lenses that help see future prospects more clearly, make richer judgments and be more sensitive to uncertainties. Discover how the Shell Scenarios team has helped guide decision makers at major moments in history and get a peek at the team future focus, including the intricate relationship between energy, water and food.

  8. Vapour galvanizing (Sherardizing) of copper with zinc

    Wortelen, Dietbert; Bracht, Hartmut [Westfaelische Wilhelms-Universitaet Muenster (Germany); Natrup, Frank; Graf, Wolfram [Bodycote Waermebehandlung GmbH, Sprockhoevel (Germany)

    2010-07-01

    Using a vapour galvanizing technique called Sherardizing we investigated the growth kinetics and coefficients of zinc copper phases. For this purpose polished (OFHC)-copper plates and zinc powder have been sealed in quartz ampoules under inert gas atmospheres and annealed at a temperature range between 300 and 410 C. In order to study the coating thickness and the phase composition, cross sections were prepared, which have been analyzed by means of optical microscopy and scanning electron microscopy. We were able to demonstrate that the coating thickness is a function of the parabolic time law and that the formed coatings are composed of two layers referring to the ordered {beta}-CuZn and {gamma}-Cu{sub 5}Zn{sub 8}-phases. To enhance the coating quality, small amounts of ZnCl{sub 2} were added to the zinc powder. It was observed that the coating thickness decreased with increasing ZnCl{sub 2}. Experiments with variable Ar-pressure demonstrated a reduced coating growth with increasing pressures. Further measurements with ZnCl{sub 2} were performed to check whether an electrochemical mechanism is involved in the coating process.

  9. Spall response of single-crystal copper

    Turley, W. D.; Fensin, S. J.; Hixson, R. S.; Jones, D. R.; La Lone, B. M.; Stevens, G. D.; Thomas, S. A.; Veeser, L. R.

    2018-02-01

    We performed a series of systematic spall experiments on single-crystal copper in an effort to determine and isolate the effects of crystal orientation, peak stress, and unloading strain rate on the tensile spall strength. Strain rates ranging from 0.62 to 2.2 × 106 s-1 and peak shock stresses in the 5-14 GPa range, with one additional experiment near 50 GPa, were explored as part of this work. Gun-driven impactors, called flyer plates, generated flat top shocks followed by spall. This work highlights the effect of crystal anisotropy on the spall strength by showing that the spall strength decreases in the following order: [100], [110], and [111]. Over the range of stresses and strain rates explored, the spall strength of [100] copper depends strongly on both the strain rate and shock stress. Except at the very highest shock stress, the results for the [100] orientation show linear relationships between the spall strength and both the applied compressive stress and the strain rate. In addition, hydrodynamic computer code simulations of the spall experiments were performed to calculate the relationship between the strain rate near the spall plane in the target and the rate of free surface velocity release during the pullback. As expected, strain rates at the spall plane are much higher than the strain rates estimated from the free surface velocity release rate. We have begun soft recovery experiments and molecular dynamics calculations to understand the unusual recompression observed in the spall signature for [100] crystals.

  10. Study of uranium plating measurement

    Lin Jufang; Wen Zhongwei; Wang Mei; Wang Dalun; Liu Rong; Jiang Li; Lu Xinxin

    2007-06-01

    In neutron physics experiments, the measurement for plate-thickness of uranium can directly affect uncertainties of experiment results. To measure the plate-thickness of transform target (enriched uranium plating and depleted uranium plating), the back to back ionization chamber, small solid angle device and Au-Si surface barrier semi-conductor, were used in the experiment study. Also, the uncertainties in the experiment were analyzed. Because the inhomo-geneous of uranium lay of plate can quantitively affect the result, the homogeneity of uranium lay is checked, the experiment result reflects the homogeneity of uranium lay is good. (authors)

  11. Isogeometric shell formulation based on a classical shell model

    Niemi, Antti

    2012-09-04

    This paper constitutes the first steps in our work concerning isogeometric shell analysis. An isogeometric shell model of the Reissner-Mindlin type is introduced and a study of its accuracy in the classical pinched cylinder benchmark problem presented. In contrast to earlier works [1,2,3,4], the formulation is based on a shell model where the displacement, strain and stress fields are defined in terms of a curvilinear coordinate system arising from the NURBS description of the shell middle surface. The isogeometric shell formulation is implemented using the PetIGA and igakit software packages developed by the authors. The igakit package is a Python package used to generate NURBS representations of geometries that can be utilised by the PetIGA finite element framework. The latter utilises data structures and routines of the portable, extensible toolkit for scientific computation (PETSc), [5,6]. The current shell implementation is valid for static, linear problems only, but the software package is well suited for future extensions to geometrically and materially nonlinear regime as well as to dynamic problems. The accuracy of the approach in the pinched cylinder benchmark problem and present comparisons against the h-version of the finite element method with bilinear elements. Quadratic, cubic and quartic NURBS discretizations are compared against the isoparametric bilinear discretization introduced in [7]. The results show that the quadratic and cubic NURBS approximations exhibit notably slower convergence under uniform mesh refinement as the thickness decreases but the quartic approximation converges relatively quickly within the standard variational framework. The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  12. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    Sanchi Nenkova; Peter Velev; Mirela Dragnevska; Diyana Nikolova; Kiril Dimitrov

    2011-01-01

    Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of co...

  13. Copper tolerance in Becium homblei

    Reilly, C; Stone, J

    1971-04-09

    Analyses show that Becium homblei has apparently no mechanism for limiting copper uptake. As growth proceeds, the concentration of metal increases in leaves and stems. Much of the copper is bound to structural material of the cells. There is a significant difference between the amount of extractable material in root and leaf tissues. These differences, in conjunction with the extrinsic factor of regular bush fires, were important factors in the evolution of this copper-resistant species of Becium. 9 references.

  14. Development of technique for AR coating and nickel and copper metallization of solar cells. FPS Project: Product development

    Taylor, W.

    1982-01-01

    Printed nickel overplated with copper and applied on top of a predeposited silicon nitride antireflective coating system for metallizing solar cells was analyzed. The ESL D and E paste formulations, and the new formulations F, G, H, and D-1 were evaluated. The nickel thick films were tested after firing for stability in the cleaning and plating solutions used in the Vanguard-Pacific brush plating process. It was found that the films are very sensitive to the leaning and alkaline copper solutions. Less sensitivity was displayed to the neutral copper solution. Microscopic and SEM observations show segregation of frit at the silicon nitride thick film interface with loose frit residues after lifting off plated grid lines.

  15. Fabrication of dendritic silver-coated copper powders by galvanic displacement reaction and their thermal stability against oxidation

    Park, Yu-Seon [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of); An, Chang Yong; Kannan, Padmanathan Karthick; Seo, Nary [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Zhuo, Kai [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of); Yoo, Tae Kyong [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Chung, Chan-Hwa, E-mail: chchung@skku.edu [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of)

    2016-12-15

    Highlights: • The dendritic silver-coated copper powders with high specific surface area have been prepared using a simple wet chemical reduction process at room temperature. • It is found that the Cu starts to be oxidized into Cu{sub 2}O followed by CuO at elevated temperatures. • The more amount of Ag-coating provides the less oxidation, which confirms that the Ag-shell prevents the Cu-core from oxidation. • The resistivity of dendritic 33.27 wt.% Ag-coated Cu powders was measured to 25.67 μΩ cm after the annealing at 150 °C for 30 min. - Abstract: Two steps of wet chemical processes have been developed for the preparation of core-shell nanostructures of copper and silver, which is a facile and low cost method for the production of large quantity of dendritic powders. First step involves a galvanic displacement reaction with hydrogen evolution which is the motive force of spontaneous electrochemical reaction. To achieve the core-shell structure, silver has been coated on the dendritic copper using the galvanic displacement reaction. The dendritic silver-coated copper powders exhibit high surface-area, excellent conductivity, and good oxidation resistance. It has been found that silver-coated copper powders maintain the electrical conductivity even after annealing at 150 °C for several to tens of minutes, thus it is a promising material and an alternative to pure silver powders in printed electronics application.

  16. Fabrication of dendritic silver-coated copper powders by galvanic displacement reaction and their thermal stability against oxidation

    Park, Yu-Seon; An, Chang Yong; Kannan, Padmanathan Karthick; Seo, Nary; Zhuo, Kai; Yoo, Tae Kyong; Chung, Chan-Hwa

    2016-01-01

    Highlights: • The dendritic silver-coated copper powders with high specific surface area have been prepared using a simple wet chemical reduction process at room temperature. • It is found that the Cu starts to be oxidized into Cu_2O followed by CuO at elevated temperatures. • The more amount of Ag-coating provides the less oxidation, which confirms that the Ag-shell prevents the Cu-core from oxidation. • The resistivity of dendritic 33.27 wt.% Ag-coated Cu powders was measured to 25.67 μΩ cm after the annealing at 150 °C for 30 min. - Abstract: Two steps of wet chemical processes have been developed for the preparation of core-shell nanostructures of copper and silver, which is a facile and low cost method for the production of large quantity of dendritic powders. First step involves a galvanic displacement reaction with hydrogen evolution which is the motive force of spontaneous electrochemical reaction. To achieve the core-shell structure, silver has been coated on the dendritic copper using the galvanic displacement reaction. The dendritic silver-coated copper powders exhibit high surface-area, excellent conductivity, and good oxidation resistance. It has been found that silver-coated copper powders maintain the electrical conductivity even after annealing at 150 °C for several to tens of minutes, thus it is a promising material and an alternative to pure silver powders in printed electronics application.

  17. Form Exploration of Folded Plate Timber Structures based on Performance Criteria

    Falk, Andreas; Buelow, Peter Von

    2011-01-01

    This paper presents an explorative study on applications of cross-laminated timber (CLT) elements in shell structures. Previous studies of plate tensegrity, folded plate roofs interacting with stabilising steel-based systems and studies inspired by origami show a widening range of possibilities...... to develop timber-based shells. Steadily rising interest in rationality during pre-fabrication, transport and on-site construction in contemporary industrialised production increases the competitiveness of CLT-based elements and systems and the architectural applications are getting more common and more...... experimental. Folded plate structures which are the focus of this paper present several issues of structural importance – potential mechanisms, subdivision of surfaces etc. – and the hereby presented study aims at exploring developed typologies, using computer tools for developed optimisation procedures...

  18. Composite superconductors with copper-aluminum stabilizing matrix

    Keilin, V.E.; Anashkin, O.P.; Krivikh, A.V.; Kiriya, I.V.; Kovalev, I.A.; Dolgosheev, P.I.; Rychagov, A.V.; Sytnikov, V.E.

    1992-01-01

    A new type of composite superconductors has been developed. They consist of one or several (cabled) multifilamentary wires with low Cu-to-Sc ratio which are embedded and soldered into grooves made in matrix of rectangular cross-section. The latter consists of aluminum core metallurgically plated with a thin copper sheath. Such conductors combine the advantages of both aluminum and copper as stabilizing materials. They have low density, exhibit almost not magnetoresistance, are relatively cheap and can be produced in very long pieces. Copper plating offers the possibility of soft soldering thus ensuring good electrical and thermal contact between superconducting wires and stabilizing matrix, and helping to join pieces to each other. the properties of two Nb-Ti conductors (3.5 x 2 mm 2 and 7x4 mm 2 ) are described in more detail. The first is used in SC coils for whole-body magnetoresonance tomography, and the second will be used in a open-quotes thinclose quotes coil for charged particles detector. The influence of aluminum purity on SC magnet behavior is also briefly discussed

  19. Creep buckling of shells

    Stone, C.M.; Nickell, R.E.

    1977-01-01

    Because of the characteristics of LMFBR primary piping components (thin-walled, low pressure, high temperature), the designer must guard against creep buckling as a potential failure mode for certain critical regions, such as elbows, where structural flexibility and inelastic response may combine to concentrate deformation and cause instability. The ASME Boiler and Pressure Vessel Code, through its elevated temperature Code Case 1592 (Section III, Division 1) provides design rules for Class 1 components aimed at preventing creep buckling during the design life. A similar set of rules is being developed for Class 2 and 3 components at this time. One of the original concepts behind the creep buckling rules was that the variability in creep properties (especially due to the effects of prior heat treatment), the uncertainty about initial imperfections, and the lack of confirmed accuracy of design analysis meant that conservatism would be difficult to assure. As a result, a factor of ten on service life was required (i.e. analysis must show that, under service conditions that extrapolate the life of the component by ten times, creep buckling does not occur). Two obvious problems with this approach are that: first, the creep behavior must also be extrapolated (since most creep experiments are terminated at a small fraction of the design life, extrapolation of creep data is already an issue, irrespective of the creep buckling question); second the nonlinear creep analysis, which is very nearly prohibitively expensive for design life histograms, becomes even more costly. Analytical results for an aluminum cylindrical shell subjected to axial loads at elevated temperatures are used to examine the supposed equivalence of two types of time-dependent buckling safety factors - a factor of ten on service life and a factor of 1.5 on loading

  20. Fuel cell end plate structure

    Guthrie, Robin J.; Katz, Murray; Schroll, Craig R.

    1991-04-23

    The end plates (16) of a fuel cell stack (12) are formed of a thin membrane. Pressure plates (20) exert compressive load through insulation layers (22, 26) to the membrane. Electrical contact between the end plates (16) and electrodes (50, 58) is maintained without deleterious making and breaking of electrical contacts during thermal transients. The thin end plate (16) under compressive load will not distort with a temperature difference across its thickness. Pressure plate (20) experiences a low thermal transient because it is insulated from the cell. The impact on the end plate of any slight deflection created in the pressure plate by temperature difference is minimized by the resilient pressure pad, in the form of insulation, therebetween.

  1. Copper toxicity in housed lambs

    Adamson, A H; Valks, D A; Appleton, M A; Shaw, W B

    1969-09-27

    Copper toxicity among 170 lambs artificially reared indoors at High Mowthorpe NAAS Experimental Husbandry Farm is reported. Although only three lambs were lost it is not unreasonable to suggest that the liver copper levels of the lambs which were slaughtered would have been high and losses could have been much heavier had there been any further copper supplementation. Even a copper level of 20 ppm in lamb concentrates given to lambs reared artificially indoors is dangerous, and intakes of much less than 38 mg per lamb per day can be fatal if given of a prolonged period. 5 references, 1 table.

  2. Copper and copper-nickel-alloys - An overview

    Klassert, Anton; Tikana, Ladji [Deutsches Kupferinstitut e.V. Am Bonneshof 5, 40474 Duesseldorf (Germany)

    2004-07-01

    With the increasing level of industrialization the demand for and the number of copper alloys rose in an uninterrupted way. Today, the copper alloys take an important position amongst metallic materials due to the large variety of their technological properties and applications. Nowadays there exist over 3.000 standardized alloys. Copper takes the third place of all metals with a worldwide consumption of over 15 millions tons per year, following only to steel and aluminum. In a modern industrial society we meet copper in all ranges of the life (electro-technology, building and construction industry, mechanical engineering, automotive, chemistry, offshore, marine engineering, medical applications and others.). Copper is the first metal customized by humanity. Its name is attributed to the island Cyprus, which supplied in the antiquity copper to Greece, Rome and the other Mediterranean countries. The Romans called it 'ore from Cyprus' (aes cyprium), later cuprum. Copper deposited occasionally also dapper and could be processed in the recent stone age simply by hammering. Already in early historical time copper alloys with 20 to 50 percent tin was used for the production of mirrors because of their high reflecting power. Although the elementary nickel is an element discovered only recently from a historical perspective, its application in alloys - without any knowledge of the alloy composition - occurred at least throughout the last 2.000 years. The oldest copper-nickel coin originates from the time around 235 B.C.. Only around 1800 AD nickel was isolated as a metallic element. In particular in the sea and offshore technology copper nickel alloys found a broad field of applications in piping systems and for valves and armatures. The excellent combination of characteristics like corrosion resistance, erosion stability and bio-fouling resistance with excellent mechanical strength are at the basis of this success. An experience of many decades supports the use

  3. [Conventional plate osteosynthesis].

    Klaue, K

    2010-02-01

    Consolidation of bone is an essential clinical problem when treating fractures, fixing osteotomies and fusing joints. In most cases, the means of fixation are plates and screws. The goal is functional postoperative therapy by moving the adjacent joints and thus avoiding the deleterious disadvantages of long-lasting articular immobilization. Pre-operative planning, surgical approach, a good understanding of the precise mechanics of the structure and the biological answer for the various tissues are prerequisites of successful osteosynthesis. The choice of implants and the application of their versatility, as well as their adaptation to individual cases are the key to good results.

  4. Plate Full of Color

    2008-08-04

    The Eagle Books are a series of four books that are brought to life by wise animal characters - Mr. Eagle, Miss Rabbit, and Coyote - who engage Rain That Dances and his young friends in the joy of physical activity, eating healthy foods, and learning from their elders about health and diabetes prevention. Plate Full of Color teaches the value of eating a variety of colorful and healthy foods.  Created: 8/4/2008 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 8/5/2008.

  5. Spectrographic determination of impurities in copper and copper oxide

    Sabato, S.F.; Lordello, A.R.

    1990-11-01

    An emission spectrographic method for the determination of Al, Bi, Ca, Cd, Cr, Fe, Ge, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn and Zn in copper and copper oxide is described. Two mixtures (Graphite and ZnO: graphite and GeO sub(2)) were used as buffers. The standard deviation lies around 10%. (author)

  6. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  7. Degradation of graphene coated copper in simulated proton exchange membrane fuel cell environment: Electrochemical impedance spectroscopy study

    Ren, Y. J.; Anisur, M. R.; Qiu, W.; He, J. J.; Al-Saadi, S.; Singh Raman, R. K.

    2017-09-01

    Metallic materials are most suitable for bipolar plates of proton exchange membrane fuel cell (PEMFC) because they possess the required mechanical strength, durability, gas impermeability, acceptable cost and are suitable for mass production. However, metallic bipolar plates are prone to corrosion or they can passivate under PEMFC environment and interrupt the fuel cell operation. Therefore, it is highly attractive to develop corrosion resistance coating that is also highly conductive. Graphene fits these criteria. Graphene coating is developed on copper by chemical vapor deposition (CVD) with an aim to improving corrosion resistance of copper under PEMFC condition. The Raman Spectroscopy shows the graphene coating to be multilayered. The electrochemical degradation of graphene coated copper is investigated by electrochemical impedance spectroscopy (EIS) in 0.5 M H2SO4 solution at room temperature. After exposure to the electrolyte for up to 720 h, the charge transfer resistance (Rt) of the graphene coated copper is ∼3 times greater than that of the bare copper, indicating graphene coatings could improve the corrosion resistance of copper bipolar plates.

  8. Copper Hugoniot measurements to 2.8 TPa on Z.

    Furnish, Michael D.; Haill, Thomas A

    2018-04-01

    We conducted three Hugoniot and release experiments on copper on the Z machine at Hugoniot stress levels of 0.34 and 2.6 TPa, using two-layer copper/aluminum impactors travelling at 8 and 27 km/s and Z-quartz windows. Velocity histories were recorded for 4 samples of different thicknesses and 5 locations on the flyer plate (3 and 4 for the first two experiments). On-sample measurements provided Hugoniot points (via transit time) and partial release states (via Z-quartz wavespeed). Fabrication of the impactor required thick plating and several diamond-machining steps. The lower-pressure test was planned as a 2.5 TPa test, but a failure on the Z machine degraded its performance; however, these results corroborated earlier Cu data in the same stress region. The second test suffered from significant flyer plate bowing, but the third did not. The Hugoniot data are compared with the APtshuler/Nellis nuclear-driven data, other data from Z and elsewhere, and representative Sesame models.

  9. Foam shell project: Progress report

    Overturf, G.; Reibold, B.; Cook, B.; Schroen-Carey, D.

    1994-01-01

    The authors report on their work to produce a foam shell target for two possible applications: (1) as liquid-layered cryogenic target on Omega Upgrade, and (2) as a back-up design for the NIF. This target consists of a roughly 1 mm diameter and 100 μm thick spherical low-density foam shell surrounding a central void. The foam will be slightly overfilled with liquid D 2 or DT, the overfilled excess being symmetrically distributed on the inside of the shell and supported by thermal gradient techniques. The outside of the foam is overcoated with full density polymer which must be topologically smooth. The technology for manufacturing this style of foam shell involves microencapsulation techniques and has been developed by the Japanese at ILE. Their goal is to determine whether this technology can be successfully adapted to meet US ICF objectives. To this end a program of foam shell development has been initiated at LLNL in collaboration with both the General Atomics DOE Target Fabrication Contract Corporation and the Target Fabrication Group at LLE

  10. The evolution of mollusc shells.

    McDougall, Carmel; Degnan, Bernard M

    2018-05-01

    Molluscan shells are externally fabricated by specialized epithelial cells on the dorsal mantle. Although a conserved set of regulatory genes appears to underlie specification of mantle progenitor cells, the genes that contribute to the formation of the mature shell are incredibly diverse. Recent comparative analyses of mantle transcriptomes and shell proteomes of gastropods and bivalves are consistent with shell diversity being underpinned by a rapidly evolving mantle secretome (suite of genes expressed in the mantle that encode secreted proteins) that is the product of (a) high rates of gene co-option into and loss from the mantle gene regulatory network, and (b) the rapid evolution of coding sequences, particular those encoding repetitive low complexity domains. Outside a few conserved genes, such as carbonic anhydrase, a so-called "biomineralization toolkit" has yet to be discovered. Despite this, a common suite of protein domains, which are often associated with the extracellular matrix and immunity, appear to have been independently and often uniquely co-opted into the mantle secretomes of different species. The evolvability of the mantle secretome provides a molecular explanation for the evolution and diversity of molluscan shells. These genomic processes are likely to underlie the evolution of other animal biominerals, including coral and echinoderm skeletons. This article is categorized under: Comparative Development and Evolution > Regulation of Organ Diversity Comparative Development and Evolution > Evolutionary Novelties. © 2018 Wiley Periodicals, Inc.

  11. Creep buckling of shell structures

    Miyazaki, Noriyuki; Hagihara, Seiya

    2015-01-01

    The present article contains a review of the literatures on the creep buckling of shell structures published from late 1950's to recent years. In this article, the creep buckling studies on circular cylindrical shells, spherical shells, partial cylindrical shells and other shells are reviewed in addition to creep buckling criteria. Creep buckling is categorized into two types. One is the creep buckling due to quasi-static instability, in which the critical time for creep buckling is determined by tracing a creep deformation versus time curve. The other is the creep buckling due to kinetic instability, in which the critical time can be determined by examining the shape of total potential energy in the vicinity of a quasi-static equilibrium state. Bifurcation buckling and snap-through buckling during creep deformation belong to this type of creep buckling. A few detailed descriptions are given to the bifurcation and snap-through type of creep buckling based on the present authors' works. (author)

  12. Plating on difficult-to-plate metals: what's new

    Wiesner, H.J.

    1980-01-01

    Some of the changes since 1970 in procedures for plating on such materials as titanium, molybdenum, silicon, aluminum, and gallium arsenide are summarized. While basic procedures for plating some of these materials were developed as many as 30 to 40 years ago, changes in the end uses of the plated products have necessitated new plating processes. In some cases, vacuum techniques - such as ion bombardment, ion implantation, and vacuum metallization - have been introduced to improve the adhesion of electrodeposits. In other cases, these techniques have been used to deposit materials upon which electrodeposits are required

  13. Core-Shell-Corona Micelles with a Responsive Shell.

    Gohy, Jean-François; Willet, Nicolas; Varshney, Sunil; Zhang, Jian-Xin; Jérôme, Robert

    2001-09-03

    A reactor for the synthesis of gold nanoparticles is one of the uses of a poly(styrene)-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) triblock copolymer (PS-b-P2VP-b-PEO) which forms core-shell-corona micelles in water. Very low polydispersity spherical micelles are observed that consist of a PS core surrounded by a pH-sensitive P2VP shell and a corona of PEO chains end-capped by a hydroxyl group. The corona can act as a site for attaching responsive or sensing molecules. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  14. Dominant thermogravimetric signatures of lignin in cashew shell as compared to cashew shell cake.

    Gangil, Sandip

    2014-03-01

    Dominant thermogravimetric signatures related to lignin were observed in cashew shell as compared to these signatures in cashew shell cake. The phenomenon of weakening of lignin from cashew shell to cashew shell cake was explained on the basis of changes in the activation energies. The pertinent temperature regimes responsible for the release of different constituents of both the bio-materials were identified and compared. The activation energies of cashew shell and cashew shell cake were compared using Kissinger-Akahira-Sunose method. Thermogravimetric profiling of cashew shell and cashew shell cake indicated that these were different kinds of bio-materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Preparation of non-spherical particles by shell-shield etching for near-field nanopatterning

    Ye, Jian; Liesbet, Lagae

    2014-01-01

    The shape of polymer particles plays an important role in determining their function. In this paper, we describe a simple and unconventional method called shell-shield etching (SSE) that allows us to prepare freestanding submicrometer- or micrometer-sized polymer particles with various shapes. By precisely varying the time of ultraviolet ozone treatment under the partial shielding effect of the silica shell, we controllably reshape polymer spheres into symmetry-reduced polymer peaches, mushrooms, bowls, and plates. Finite difference time domain simulations indicate that the non-spherical particles obtained from the SSE method might have potential for near-field nanopatterning applications. (papers)

  16. Isotope investigation of anodic slime movements in copper electrorefining baths

    Urbanski, T.; Kohman, L.; Strzelecki, M.; Chojecki, M.; Kaczynska, R.; Wieclaw, B.

    1975-01-01

    A method was developed and introduced for monitoring the movement of silver-containing anodic slimes in copper electrorefining baths. Radioactive 111 Ag was used as tracer and copper plates labelled with the tracer were inserted into the anodes. During electrorefining the slime produced was continuously marked by the tracer. The activity of 111 Ag was measured at various points inside the bath by sampling and continuously registered with the aid of integrators. It was found that more than 99 percent of the slime slipped to the bottom of the bath close to the anode surface and did not migrate even at highest electrolyte flow rates. Small quantities of suspended slime contained an insignificant concentration of silver and should not be a source of cathode contamination. (author)

  17. Microcomponents manufacturing for precise devices by copper vapor laser

    Gorny, Sergey; Nikonchuk, Michail O.; Polyakov, Igor V.

    2001-06-01

    This paper presents investigation results of drilling of metal microcomponents by copper vapor laser. The laser consists of master oscillator - spatial filter - amplifier system, electronics switching with digital control of laser pulse repetition rate and quantity of pulses, x-y stage with computer control system. Mass of metal, removed by one laser pulse, is measured and defined by means of diameter and depth of holes. Interaction of next pulses on drilled material is discussed. The difference between light absorption and metal evaporation processes is considered for drilling and cutting. Efficiency of drilling is estimated by ratio of evaporation heat and used laser energy. Maximum efficiency of steel cutting is calculated with experimental data of drilling. Applications of copper vapor laser for manufacturing is illustrated by such microcomponents as pin guide plate for printers, stents for cardio surgery, encoded disks for security systems and multiple slit masks for spectrophotometers.

  18. Shell model Monte Carlo methods

    Koonin, S.E.; Dean, D.J.; Langanke, K.

    1997-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; the resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo (SMMC) methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, the thermal and rotational behavior of rare-earth and γ-soft nuclei, and the calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. (orig.)

  19. Cask for concrete shells transportation

    Labergri, F.

    2001-01-01

    Nowadays, nuclear plant radioactive waste are conditioned in situ into concrete shells. Most of them enter in the industrial waste category defined by the regulations of radioactive material transportation. However, the content of a few ones exceeds the limits set for low specific activity substances. Thus, these shells must be transported into type B packagings. To this end, Robatel has undertaken, for EDF (Electricite de France), the development of a container, named ROBATEL TM R68, for further licensing. The particularity of this packaging is that the lid must have a wide opening to allow the usual handling operations of the concrete shells. This leads to a non-conventional conception, and makes the package more vulnerable to drop test solicitations. In order to define a minimal drop test program on a reduced scale model, we use a simple method to find the most damageable drop angle. (author)

  20. Shell model Monte Carlo methods

    Koonin, S.E.

    1996-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of γ-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs

  1. Windows PowerShell 20 Bible

    Lee, Thomas; Schill, Mark E; Tanasovski, Tome

    2011-01-01

    Here's the complete guide to Windows PowerShell 2.0 for administrators and developers Windows PowerShell is Microsoft's next-generation scripting and automation language. This comprehensive volume provides the background that IT administrators and developers need in order to start using PowerShell automation in exciting new ways. It explains what PowerShell is, how to use the language, and specific ways to apply PowerShell in various technologies. Windows PowerShell is Microsoft's standard automation tool and something that every Windows administrator will eventually have to understand; this b

  2. Electromagnetic and structural interaction analysis of curved shell structures

    Horie, T.; Niho, T.

    1993-01-01

    This paper describes a finite element formulation of the eddy current and structure coupled problem for curved shell structures. Coupling terms produced by curved geometry as well as flat plate geometry were obtained. Both matrix equations for eddy current and structure were solved simultaneously using coupling sub-matrices. TEAM Workshop bench mark problem 16 was solved to verify the formulation and the computer code. Agreement with experimental results was very good for such plate problem. A coupled problem for cylindrical shell structure was also analyzed. Influence of each coupling term was examined. The next topic is the eigenvalues of the coupled equations. Although the coupled matrix equations are not symmetric, symmetry was obtained by introducing a symmetrizing variable. The eigenvalues of the coupled matrix equations are different from those obtained from the uncoupled equations because of the influence of the coupling sub-matrix components. Some parameters obtained by the eigenvalue analysis have characteristics of parameters which indicate the intensity of electromagnetic structural coupling effect. (author)

  3. Viscoelastic Plate Analysis Based on Gâteaux Differential

    Kadıoğlu Fethi

    2016-01-01

    Full Text Available In this study, it is aimed to analyze the quasi-static response of viscoelastic Kirchhoff plates with mixed finite element formulation based on the Gâteaux differential. Although the static response of elastic plate, beam and shell structures is a widely studied topic, there are few studies that exist in the literature pertaining to the analysis of the viscoelastic structural elements especially with complex geometries, loading conditions and constitutive relations. The developed mixed finite element model in transformed Laplace-Carson space has four unknowns as displacement, bending and twisting moments in addition to the dynamic and geometric boundary condition terms. Four-parameter solid model is employed for modelling the viscoelastic behaviour. For transformation of the solutions obtained in the Laplace-Carson domain to the time domain, different numerical inverse transform techniques are employed. The developed solution technique is applied to several quasi-static example problems for the verification of the suggested numerical procedure.

  4. Development of technique for AR coating and nickel and copper metallization of solar cells: FPS project, product development

    Rominger, C. G.

    1981-01-01

    Silicon nitride and nickel pastes are investigated in conjunction with a brush copper plating process for the purpose of identifying one or more fabrication sequences which yield at least 10 percent efficient N(+)/P(+) flat plate solar cells. The adhesion of all nickel pastes is reduced significantly when subjected to acidic and alkaline brush copper plating solutions as a result of a combination of thermally induced stress and chemical attack of the frit, which occurs at the interface with the silicon solar cell. The AgF is penetrating the 800 a of Si3N4 and ohmic contact is occurring at all fire-in tempertures. During the brush plating process, fingers and buss bars tend to spread.

  5. Plate Tearing by a Cone

    Simonsen, Bo Cerup

    1998-01-01

    The present paper is concerned with steady-state plate tearing by a cone. This is a scenario where a cone is forced through a ductile metal plate with a constant lateral tip penetration in a motion in the plane of the plate. The considered process could be an idealisation of the damage, which...... as for the out-of-plane reaction force. (C) 1998 Elsevier Science Ltd. All rights reserved....

  6. Bipolar Plates for PEM Systems

    Lædre, Sigrid

    2016-01-01

    Summary of thesis: The Bipolar Plate (BPP) is an important component in both Proton Exchange Membrane Fuel Cells (PEMFCs) and Proton Exchange Membrane Water Electrolyzers (PEMWEs). Bipolar plate material and processing constitutes for a large fraction of the cost and weight of a PEM cell stack. The main tasks for the bipolar plates in both systems are to separate single cell in a stack, conduct current between single cells and remove heat from active areas. In addition, the BPPs distribu...

  7. Copper: From neurotransmission to neuroproteostasis

    Carlos M Opazo

    2014-07-01

    Full Text Available Copper is critical for the Central Nervous System (CNS development and function. In particular, different studies have shown the effect of copper at brain synapses, where it inhibits Long Term Potentation (LTP and receptor pharmacology. Paradoxically, according to recent studies copper is required for a normal LTP response. Copper is released at the synaptic cleft, where it blocks glutamate receptors, which explain its blocking effects on excitatory neurotransmission. Our results indicate that copper also enhances neurotransmission through the accumulation of PSD95 protein, which increase the levels of AMPA receptors located at the plasma membrane of the post-synaptic density. Thus, our findings represent a novel mechanism for the action of copper, which may have implications for the neurophysiology and neuropathology of the CNS. These data indicate that synaptic configuration is sensitive to transient changes in transition metal homeostasis. Our results suggest that copper increases GluA1 subunit levels of the AMPA receptor through the anchorage of AMPA receptors to the plasma membrane as a result of PSD-95 accumulation. Here, we will review the role of copper on neurotransmission of CNS neurons. In addition, we will discuss the potential mechanisms by which copper could modulate neuronal proteostasis (neuroproteostasis in the CNS with focus in the Ubiquitin Proteasome System, which is particularly relevant to neurological disorders such Alzheimer’s disease (AD where copper and protein dyshomeostasis may contribute to neurodegeneration. An understanding of these mechanisms may ultimately lead to the development of novel therapeutic approaches to control metal and synaptic alterations observed in AD patients.

  8. Carbon fibre reinforced copper matrix composites: processing routes and properties

    Le Petitcorps, Y. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Poueylaud, J.M. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Albingre, L. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Berdeu, B. [L`Electrolyse, 33 - Latresne (France); Lobstein, P. [L`Electrolyse, 33 - Latresne (France); Silvain, J.F. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB

    1997-06-01

    Copper matrix composites are of interest for applications in the electronic field which requires materials with high thermal conductivity properties. The use of carbon fibres can (1) decrease the density and the coefficient of thermal expansion of the material and (2) increase the stiffness and strength to rupture of the resulting composite. In order to produce cheap materials, chemical plating and uniaxial hot pressing processing routes were chosen. 1D-C{sub (P55Thornel)} / Cu prepregs were hot pressed in an argon atmosphere at 750 C during 30 min. The volume fraction of the fibres within the composite was in the range of 10-35%. Physical (density and thermal expansion coefficient) and thermal conductivity properties of the composite were in good agreement with the predictions. However this material exhibits very poor mechanical properties (Young`s modulus and tensile strength). Scanning electron microscopy (SEM) observations of the surfaces of ruptures have shown that (1) a very weak bonding between the graphite fibres and the copper matrix was formed and (2) the rupture of the composite was initiated in the matrix at the copper grain boundaries. In order to overcome these two difficulties, the carbon fibres were pre-coated with a thin layer (100 nm) of cobalt. The aim of the cobalt was to react with the carbon to form carbide compounds and as a consequence to increase the bonding between the metal and the fibre. The tensile properties ({sigma}{sub c}{sup R} and E{sub c}) of this composite were then increased by 50% in comparison with the former material; however the strain to rupture was still too weak ({epsilon}{sub c}{sup R} = 0.5%). In order to explain the role of each constituents, X-ray profiles and TEM analyses were done at the fibre/matrix interface and at the grain boundaries. Some modifications of the chemical plating steps were done to improve the purity of the copper. (orig.)

  9. Scintillator plate calorimetry

    Price, L.E.

    1990-01-01

    Calorimetry using scintillator plates or tiles alternated with sheets of (usually heavy) passive absorber has been proven over multiple generations of collider detectors. Recent detectors including UA1, CDF, and ZEUS have shown good results from such calorimeters. The advantages offered by scintillator calorimetry for the SSC environment, in particular, are speed (<10 nsec), excellent energy resolution, low noise, and ease of achieving compensation and hence linearity. On the negative side of the ledger can be placed the historical sensitivity of plastic scintillators to radiation damage, the possibility of nonuniform response because of light attenuation, and the presence of cracks for light collection via wavelength shifting plastic (traditionally in sheet form). This approach to calorimetry is being investigated for SSC use by a collaboration of Ames Laboratory/Iowa State University, Argonne National Laboratory, Bicron Corporation, Florida State University, Louisiana State University, University of Mississippi, Oak Ridge National Laboratory, Virginia Polytechnic Institute and State University, Westinghouse Electric Corporation, and University of Wisconsin

  10. Reviewing metallic PEMFC bipolar plates

    Wang, H.; Turner, J.A. [National Renewable Energy Laboratory, Golden, CO (United States)

    2010-08-15

    A bipolar plate is one of the most important components in a polymer exchange membrane fuel cell (PEMFC) stack and has multiple functions. Metallic bipolar plate candidates have advantages over composite rivals in excellent electrical and thermal conductivity, good mechanical strength, high chemical stability, very wide alloy choices, low cost and, most importantly, existing pathways for high-volume, high-speed mass production. The challenges with metallic bipolar plates are the higher contact resistance and possible corrosion products, which may contaminate the membrane electrode assembly. This review evaluates the candidate metallic and coating materials for bipolar plates and gives the perspective of the research trends. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. Learning Shell scripting with Zsh

    Festari, Gaston

    2014-01-01

    A step-by-step tutorial that will teach you, through real-world examples, how to configure and use Zsh and its various features. If you are a system administrator, developer, or computer professional involved with UNIX who are looking to improve on their daily tasks involving the UNIX shell, ""Learning Shell Scripting with Zsh"" will be great for you. It's assumed that you have some familiarity with an UNIX command-line interface and feel comfortable with editors such as Emacs or vi.

  12. Isogeometric shell formulation based on a classical shell model

    Niemi, Antti; Collier, Nathan; Dalcí n, Lisandro D.; Ghommem, Mehdi; Calo, Victor M.

    2012-01-01

    The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  13. Tendency of the 18-8 type corrosion-resistant steel to cracking in automatic building-up of copper and copper base alloys in argon

    Abramovich, V.R.; Andronik, V.A.

    1978-01-01

    Studied was the tendency of the 18-8 type corrosion-resistant steel to cracking during automatic building-up of copper and bronze in argon. The investigation was carried out on the 0kh18n10t steel in argon. It had been established, that the degree of copper penetration into the steel inceases with the increase in the time of the 0Kh18n10t steel contact with liquid copper. Liquid copper and copper base alloys have a detrimental effect on mechanical properties of the steel under external tensile load during intercontant. It is shown that in building-up of copper base alloys on the steel-0Kh18n10t, tendency of the steel to cracking decreases with increase in stiffness of a surfaced weld metal plate and with decrease in building-up energy per unit length. The causes of macrocracking in steel at building-up non-ferrous metals are explained. The technological procedures to avoid cracking are suggested

  14. Deformation in Micro Roll Forming of Bipolar Plate

    Zhang, P.; Pereira, M.; Rolfe, B.; Daniel, W.; Weiss, M.

    2017-09-01

    Micro roll forming is a new processing technology to produce bipolar plates for Proton Exchange Membrane Fuel Cells (PEMFC) from thin stainless steel foil. To gain a better understanding of the deformation of the material in this process, numerical studies are necessary before experimental implementation. In general, solid elements with several layers through the material thickness are required to analyse material thinning in processes where the deformation mode is that of bending combined with tension, but this results in high computational costs. This pure solid element approach is especially time-consuming when analysing roll forming processes which generally involves feeding a long strip through a number of successive roll stands. In an attempt to develop a more efficient modelling approach without sacrificing accuracy, two solutions are numerically analysed with ABAQUS/Explicit in this paper. In the first, a small patch of solid elements over the strip width and in the centre of the “pre-cut” sheet is coupled with shell elements while in the second approach pure shell elements are used to discretize the full sheet. In the first approach, the shell element enables accounting for the effect of material being held in the roll stands on material flow while solid elements can be applied to analyse material thinning in a small discrete area of the sheet. Experimental micro roll forming trials are performed to prove that the coupling of solid and shell elements can give acceptable model accuracy while using shell elements alone is shown to result in major deviations between numerical and experimental results.

  15. Activated carbons prepared from hazelnut shells, walnut shells and peanut shells for high CO2 adsorption

    Lewicka Katarzyna

    2017-06-01

    Full Text Available Research treats about producing activated carbons for CO2 capture from hazelnut shells (HN, walnut shells (WN and peanut shells (PN. Saturated solution of KOH was used as an activating agent in ratio 1:1. Samples were carbonized in the furnace in the range of temperatures 600°C–900°C. Properties of carbons were tested by N2 adsorption method, using BET equation, DFT method and volumetric CO2 adsorption method. With the increase of carbonization temperature specific surface area of studied samples increased. The largest surface area was calculated for samples carbonized at 900°C and the highest values of CO2 adsorption had samples: PN900 at 0°C (5.5 mmol/g and WN900 at 25°C (4.34 mmol/g. All of the samples had a well-developed microporous structure.

  16. Modeling particulate removal in plate-plate and wire-plate electrostatic precipitators

    S Ramechecandane

    2016-09-01

    Full Text Available The present study is concerned with the modeling of electrically charged particles in a model plate-plate and a single wire-plate electrostatic precipitator (ESP. The particle concentration distributions for both a plate-plate and a wire-plate ESP are calculated using a modified drift flux model. Numerical investigations are performed using the modified drift flux model for particle number concentration, in addition to the RNG k - ε model for the mean turbulent flow field and the Poisson equation for the electric field. The proposed model and the outlined methodology for coupling the flow field, electric field, charging kinetics and particle concentration is applied to two model precipitators that are truly representative of a wide class of commercialized ESPs. The present investigation is quite different from the earlier studies as it does not make assumptions like a homogeneous electric field or an infinite turbulent diffusivity. The electric field calculated is a strong function of position and controls the migration velocity of particles. Hence, the proposed model can be implemented in a flow solver to obtain a full-fledged solution for any kind of ESP with no limitations on the particle number concentration, as encountered in a Lagrangian approach. The effect of turbulent diffusivity on particle number concentration in a plate-plate ESP is investigated in detail and the results obtained are compared with available experimental data. Similarly, the effect of particle size/diameter and applied electric potential on the accumulative collection performance in the case of a wire-plate ESP is studied and the results obtained are compared with available numerical data. The numerical results obtained using the modified drift flux model for both the plate-plate and wire-plate ESP are in close agreement with available experimental and numerical data.

  17. Probing for heavy element impurities in the shell of the Pacific oyster, Crassostrea gigas, with nuclear microscopy

    Markwitz, A.; Barry, B.; Gauldie, R.W.; Roberts, R.D.

    2003-01-01

    Nuclear microscopy was performed on shells of the Pacific oyster, Crassostrea gigas, to probe for heavy element impurities. For the studies 14 shells from the Auckland and the Marlborough Sounds region were chosen. In sections, the shells appear as opaque with white and grey zones, which are related to alternating layers of calcite and aragonite. Raster scans with 2.5 MeV protons over the sections (scan area 5 x 5 mm) were used in the experiment to measure trace elements in the ppm region using proton induced X-ray spectroscopy. Two dimensional maps and line scans revealed the presence of bromine in all shells investigated. Bromine was found to be related with the pattern of calcium. Hot spots of iron proved to be a common feature in the shells as well. In some shells, copper and zinc were also measured in hot spots of a few micrometers in diameter. Spatially resolved results on the micrometer level indicate the usefulness of nuclear microscopy for the detection of heavy elements in shells of the Pacific oyster

  18. Commentary: The Feasibility of Subduction and Implications for Plate Tectonics on Jupiter's Moon Europa

    Kattenhorn, Simon A.

    2018-03-01

    A new modeling-based study by Johnson et al. (2017, https://doi.org/10.1002/2017JE005370) lends support to the hypothesis that portions of Europa's surface may have been removed by the process of subduction, as suggested by Kattenhorn and Prockter (2014, https://doi.org/10.1038/NGEO2245). Using a simple 1-D model that tracks the thermal and density structure of a descending ice plate, Johnson et al. show that ice plates with 10% porosity and overall salt contents of 5%, which differ in salt content by 2.5% from the surrounding reference ice shell, are nonbuoyant and thus likely to sink through the underlying, convecting portion of the ice shell. The feasibility of subduction in an ice shell is critical to the existence of icy plate tectonics, which is hypothesized to exist at least locally on Europa, potentially making it the only other Solar System body other than Earth with a surface modified by plate tectonics.

  19. Buckling of Flat Thin Plates under Combined Loading

    Ion DIMA

    2015-03-01

    Full Text Available This article aims to provide a quick methodology to determine the critical values of the forces applied to the central plane of a flat isotropic plate at which a change to the stable configuration of equilibrium occurs. Considering the variety of shapes, boundary conditions and loading combinations, the article does not intend to make an exhaustive presentation of the plate buckling. As an alternative, there will be presented only the most used configurations such as: rectangular flat thin plates, boundary conditions with simply supported (hinged or clamped (fixed edges, combined loadings with single compression or single shear or combination between them, compression and shear, with or without transverse loading, encountered at wings and control surfaces shell of fin and rudder or stabilizer and elevator. The reserve factor and the critical stresses will be calculated using comparatively two methods, namely the methodology proposed by the present article and ASSIST 6.6.2.0 – AIRBUS France software, a dedicated software to local calculations, for a simply supported plate under combined loading, compression on the both sides and shear.

  20. Dynamic Response of Functionally Graded Carbon Nanotube Reinforced Sandwich Plate

    Mehar, Kulmani; Panda, Subrata Kumar

    2018-03-01

    In this article, the dynamic response of the carbon nanotube-reinforced functionally graded sandwich composite plate has been studied numerically with the help of finite element method. The face sheets of the sandwich composite plate are made of carbon nanotube- reinforced composite for two different grading patterns whereas the core phase is taken as isotropic material. The final properties of the structure are calculated using the rule of mixture. The geometrical model of the sandwich plate is developed and discretized suitably with the help of available shell element in ANSYS library. Subsequently, the corresponding numerical dynamic responses computed via batch input technique (parametric design language code in ANSYS) of ANSYS including Newmark’s integration scheme. The stability of the sandwich structural numerical model is established through the proper convergence study. Further, the reliability of the sandwich model is checked by comparison study between present and available results from references. As a final point, some numerical problems have been solved to examine the effect of different design constraints (carbon nanotube distribution pattern, core to face thickness ratio, volume fractions of the nanotube, length to thickness ratio, aspect ratio and constraints at edges) on the time-responses of sandwich plate.

  1. Positioning a thin-wall round wrapper within a heavy wall out-of-round shell of a heat exchanger

    Hargrove, H.G.; Thompson, E.G.; Bayless, J.R.

    1983-01-01

    A thin-wall, generally round wrapper is installed within a heavy wall, rolled heat exchanger shell which has greater out-of-round tolerances than the wrapper and the wrapper is maintained in its round state by utilizing a plurality of jacks disposed adjacent spaced tube support plates within the wrapper. (author)

  2. Radio-resistance of some bacterial pathogens in soft-shell clams (Mya arenaria) and mussels (Mytilus edulis)

    Licciardello, J.J.; D'Entremont, D.L.; Lundstrom, R.C.

    1989-01-01

    Gamma-irradiation decimal reduction doses were determined for E. coli, Salmonella typhimurium, Shigella flexneri, Strept. faecalis, Staph, aureus, and the Total Plate Count in a soft-shell clam or mussel substrate. Factors to be considered for designing and irradiation bacterial-decontamination process for shellfish are discussed

  3. Fabrication of Fe3O4@CuO core-shell from MOF based materials and its antibacterial activity

    Rajabi, S.K.; Sohrabnezhad, Sh.; Ghafourian, S.

    2016-01-01

    Magnetic Fe 3 O 4 @CuO nanocomposite with a core/shell structure was successfully synthesized via direct calcinations of magnetic Fe 3 O 4 @HKUST-1 in air atmosphere. The morphology, structure, magnetic and porous properties of the as-synthesized nano composites were characterized by using scanning electron microscope (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and vibration sample magnetometer (VSM). The results showed that the nanocomposite material included a Fe 3 O 4 core and a CuO shell. The Fe 3 O 4 @CuO core-shell can be separated easily from the medium by a small magnet. The antibacterial activity of Fe 3 O 4 -CuO core-shell was investigated against gram-positive and gram-negative bacteria. A new mechanism was proposed for inactivation of bacteria over the prepared sample. It was demonstrated that the core-shell exhibit recyclable antibacterial activity, acting as an ideal long-acting antibacterial agent. - Graphical abstract: Fe 3 O 4 @CuO core-shell release of copper ions. These Cu 2+ ions were responsible for the exhibited antibacterial activity. - Highlights: • The Fe 3 O 4 @CuO core-shell was prepared by MOF method. • This is the first study of antibacterial activity of core-shell consist of CuO and Fe 3 O 4 . • The core-shell can be reused effectively. • Core-shell was separated from the reaction solution by external magnetic field.

  4. Copper Powder and Chemicals: edited proceedings of a seminar

    1980-12-01

    Various papers are presented covering the following topics: Status of Copper Chemical Industry in India, Copper Powder from Industrial Wastes, Manufacture of Copper Hydroxide and High Grade Cement Copper from Low Grade Copper Ore, Manufacture of Copper Sulphate as a By-Product, Hydrometallurgical Treatments of Copper Converter and Smelter Slage for Recovering Copper and other Non-Ferrous Metals, Recovery of Copper from Dilute Solutions, Use of Copper Compounds as Fungicides in India, Copper in Animal Husbandry, and Use of Copper Powder and Chemicals for Marine Applications. The keynote paper given at the Seminar was on Conservation of Copper for Better Use.

  5. The origin and loss of periodic patterning in the turtle shell.

    Moustakas-Verho, Jacqueline E; Zimm, Roland; Cebra-Thomas, Judith; Lempiäinen, Netta K; Kallonen, Aki; Mitchell, Katherine L; Hämäläinen, Keijo; Salazar-Ciudad, Isaac; Jernvall, Jukka; Gilbert, Scott F

    2014-08-01

    The origin of the turtle shell over 200 million years ago greatly modified the amniote body plan, and the morphological plasticity of the shell has promoted the adaptive radiation of turtles. The shell, comprising a dorsal carapace and a ventral plastron, is a layered structure formed by basal endochondral axial skeletal elements (ribs, vertebrae) and plates of bone, which are overlain by keratinous ectodermal scutes. Studies of turtle development have mostly focused on the bones of the shell; however, the genetic regulation of the epidermal scutes has not been investigated. Here, we show that scutes develop from an array of patterned placodes and that these placodes are absent from a soft-shelled turtle in which scutes were lost secondarily. Experimentally inhibiting Shh, Bmp or Fgf signaling results in the disruption of the placodal pattern. Finally, a computational model is used to show how two coupled reaction-diffusion systems reproduce both natural and abnormal variation in turtle scutes. Taken together, these placodal signaling centers are likely to represent developmental modules that are responsible for the evolution of scutes in turtles, and the regulation of these centers has allowed for the diversification of the turtle shell. © 2014. Published by The Company of Biologists Ltd.

  6. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2012-01-01

    Thin shells are found in nature at scales ranging from viruses to hens' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal

  7. Adaptative mixed methods to axisymmetric shells

    Malta, S.M.C.; Loula, A.F.D.; Garcia, E.L.M.

    1989-09-01

    The mixed Petrov-Galerkin method is applied to axisymmetric shells with uniform and non uniform meshes. Numerical experiments with a cylindrical shell showed a significant improvement in convergence and accuracy with adaptive meshes. (A.C.A.S.) [pt

  8. A natural analogue for copper waste canisters: The copper-uranium mineralised concretions in the Permian mudrocks of south Devon, United Kingdom

    Milodowski, A.E.; Styles, M.T.; Hards, V.L. [Natural Environment Research Council (United Kingdom). British Geological Survey

    2000-08-01

    This report presents the results of a small-scale pilot study of the mineralogy and alteration characteristics of unusual sheet-like native copper occurring together with uraniferous and vanadiferous concretions in mudstones and siltstones of the Permian Littleham Mudstone Formation, at Littleham Cove, south Devon, England. The host mudstones and siltstones are smectitic and have been compacted through deep Mesozoic burial. The occurrence of native copper within these rocks represents a natural analogue for the long-term behaviour of copper canisters, sealed in a compacted clay (bentonite) backfill, that will be used for the deep geological disposal of high-level radioactive waste by the SKB. The study was undertaken by the British Geological Survey (BGS) on behalf of SKB between November 1999 and June 2000. The study was based primarily on archived reference material collected by the BGS during regional geological and mineralogical surveys of the area in the 1970's and 1980's. However, a brief visit was made to Littleham Cove in January 2000 to try to examine the native copper in situ and to collect additional material. Unfortunately, recent landslips and mudflows obscured much of the outcrop, and only one new sample of native copper could be collected. The native copper occurs as thin plates, up to 160 mm in diameter, which occur parallel to bedding in the Permian Littleham Mudstone Formation at Littleham Cove (near Budleigh Salterton) in south Devon. Each plate is made up of composite stacks of individual thin copper sheets each 1-2 mm thick. The copper is very pure (>99.4% Cu) but is accompanied by minor amounts of native silver (also pure - >99%) which occurs as small inclusions within the native copper. Detailed mineralogical and petrological studies of the native copper sheets, using optical petrography, backscattered scanning electron microscopy, X-ray diffraction analysis and electron probe microanalytical techniques, reveal a complex history of

  9. A natural analogue for copper waste canisters: The copper-uranium mineralised concretions in the Permian mudrocks of south Devon, United Kingdom

    Milodowski, A.E.; Styles, M.T.; Hards, V.L.

    2000-08-01

    This report presents the results of a small-scale pilot study of the mineralogy and alteration characteristics of unusual sheet-like native copper occurring together with uraniferous and vanadiferous concretions in mudstones and siltstones of the Permian Littleham Mudstone Formation, at Littleham Cove, south Devon, England. The host mudstones and siltstones are smectitic and have been compacted through deep Mesozoic burial. The occurrence of native copper within these rocks represents a natural analogue for the long-term behaviour of copper canisters, sealed in a compacted clay (bentonite) backfill, that will be used for the deep geological disposal of high-level radioactive waste by the SKB. The study was undertaken by the British Geological Survey (BGS) on behalf of SKB between November 1999 and June 2000. The study was based primarily on archived reference material collected by the BGS during regional geological and mineralogical surveys of the area in the 1970's and 1980's. However, a brief visit was made to Littleham Cove in January 2000 to try to examine the native copper in situ and to collect additional material. Unfortunately, recent landslips and mudflows obscured much of the outcrop, and only one new sample of native copper could be collected. The native copper occurs as thin plates, up to 160 mm in diameter, which occur parallel to bedding in the Permian Littleham Mudstone Formation at Littleham Cove (near Budleigh Salterton) in south Devon. Each plate is made up of composite stacks of individual thin copper sheets each 1-2 mm thick. The copper is very pure (>99.4% Cu) but is accompanied by minor amounts of native silver (also pure - >99%) which occurs as small inclusions within the native copper. Detailed mineralogical and petrological studies of the native copper sheets, using optical petrography, backscattered scanning electron microscopy, X-ray diffraction analysis and electron probe microanalytical techniques, reveal a complex history of

  10. Effect of silane coupling agent on interfacial adhesion of copper/glass fabric/epoxy composites

    Langroudi, A. E.; Yousefi, A. A.; Kabiri, Kourosh

    2003-01-01

    The effect of silane coupling agent on the peel strength of copper/prep reg/copper composites was investigated. The composite consisted of one or two sheets of prepress covered by two copper plates. The prep reg was prepared by hand dry-lay-up technique using an epoxy resin and an electrical resistant glass fabric (e-glass style 2165). 4,4'-methylene dianiline. An aromatic amine, was used as curing agent. curing times for prep reg and composite at 120 d ig C and 170 d ig C were 15 min and 1 h, respectively. γ-aminopropyl trimethoxy silane was used as coupling agent. The effect of aminopropyl trimethoxy silane on the adhesion of epoxy/glass and epoxy/copper interfaces was investigated by two methods. In the first method, the surface of the glass fabric and/or the copper plates were treated by aminopropyl trimethoxy silane. In the second method, aminopropyl trimethoxy silane was directly added to epoxy resin. In addition, the effect of additional resin on the adhesion strength was also studied by the latter method

  11. Copper recovery in a bench-scale carrier facilitated tubular supported liquid membrane system

    Makaka S.

    2010-01-01

    Full Text Available The extraction of copper ions in a tubular supported liquid membrane using LIX 984NC as a mobile carrier was studied, evaluating the effect of the feed characteristics (flowrate, density, viscosity on the feedside laminar layer of the membrane. A vertical countercurrent, double pipe perspex benchscale reactor consisting of a single hydrophobic PVDF tubular membrane mounted inside was used in all test work. The membrane was impregnated with LIX 984NC and became the support for this organic transport medium. Dilute Copper solution passed through the centre pipe and sulphuric acid as strippant passed through the shell side. Copper was successfully transported from the feedside to the stripside and from the data obtained, a relationship between Schmidt, Reynolds and Sherwood number was achieved of.

  12. Controlled synthesis of carbon-encapsulated copper nanostructures by using smectite clays as nanotemplates.

    Tsoufis, Theodoros; Colomer, Jean-François; Maccallini, Enrico; Jankovič, Lubos; Rudolf, Petra; Gournis, Dimitrios

    2012-07-23

    Rhomboidal and spherical metallic-copper nanostructures were encapsulated within well-formed graphitic shells by using a simple chemical method that involved the catalytic decomposition of acetylene over a copper catalyst that was supported on different smectite clays surfaces by ion-exchange. These metallic-copper nanostructures could be separated from the inorganic support and remained stable for months. The choice of the clay support influenced both the shape and the size of the synthesized Cu nanostructures. The synthesized materials and the supported catalysts from which they were produced were studied in detail by TEM and SEM, powder X-ray diffraction, thermal analysis, as well as by Raman and X-ray photoelectron spectroscopy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Tube in shell heat exchangers

    Hayden, O.; Willby, C.R.; Sheward, G.E.; Ormrod, D.T.; Firth, G.F.

    1980-01-01

    An improved tube-in-shell heat exchanger to be used between liquid metal and water is described for use in the liquid metal coolant system of fast breeder reactors. It is stated that this design is less prone to failures which could result in sodium water reactions than previous exchangers. (UK)

  14. Shell theorem for spontaneous emission

    Kristensen, Philip Trøst; Mortensen, Jakob Egeberg; Lodahl, Peter

    2013-01-01

    and therefore is given exactly by the dipole approximation theory. This surprising result is a spontaneous emission counterpart to the shell theorems of classical mechanics and electrostatics and provides insights into the physics of mesoscopic emitters as well as great simplifications in practical calculations....

  15. Nonlinear theory of elastic shells

    Costa Junior, J.A.

    1979-08-01

    Nonlinear theory of elastic shells is developed which incorporates both geometric and physical nonlinearities and which does not make use of the well known Love-Kirchhoff hypothesis. The resulting equations are formulated in tensorial notation and are reduced to the ones of common use when simplifying assumptions encountered in the especific litterature are taken. (Author) [pt

  16. Shell energy scenarios to 2050

    2008-01-01

    Shell developed two scenarios that describe alternative ways the energy future may develop. In the first scenario (Scramble) policymakers pay little attention to more efficient energy use until supplies are tight. Likewise, greenhouse gas emissions are not seriously addressed until there are major climate shocks. In the second scenario (Blueprints) growing local actions begin to address the challenges of economic development, energy security and environmental pollution. A price is applied to a critical mass of emissions giving a huge stimulus to the development of clean energy technologies, such as carbon dioxide capture and storage, and energy efficiency measures. The result is far lower carbon dioxide emissions. Both these scenarios can help Shell to test their strategy against a range of possible developments over the long-term. However, according to Shell, the Blueprints' outcomes offer the best hope for a sustainable future, whether or not they arise exactly in the way described. However, with the right combination of policy, technology and commitment from governments, industry and society globally, Shell believes it can be realized. But achieving the targets will not be easy, and time is short. Clear thinking, huge investment, and effective leadership are required

  17. Collapse analysis of toroidal shell

    Pomares, R.J.

    1990-01-01

    This paper describes a study performed to determine the collapse characteristics of a toroidal shell using finite element method (FEM) analysis. The study also included free drop testing of a quarter scale prototype to verify the analytical results. The full sized toroidal shell has a 24-inch toroidal diameter with a 24-inch tubal diameter. The shell material is type 304 strainless steel. The toroidal shell is part of the GE Model 2000 transportation packaging, and acts as an energy absorbing device. The analyses performed were on a full sized and quarter scaled models. The finite element program used in all analyses was the LIBRA code. The analytical procedure used both the elasto-plastic and large displacement options within the code. The loading applied in the analyses corresponded to an impact of an infinite rigid plane oriented normal to the drop direction vector. The application of the loading continued incrementally until the work performed by the deforming structure equalled the kinetic energy developed in the free fall. The comparison of analysis and test results showed a good correlation

  18. 21 CFR 73.1647 - Copper powder.

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Copper powder. 73.1647 Section 73.1647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive copper powder is a very fine free-flowing metallic powder prepared from virgin electrolytic copper. It...

  19. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    Berg, van den G.J.; de Goeij, J.J.M.; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendriks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (<1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  20. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    Berg, G.J. van den; Goeij, J.J.M. de; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendruiks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (< 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  1. NID Copper Sample Analysis

    Kouzes, Richard T.; Zhu, Zihua

    2011-09-12

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0νββ). This experiment requires the use of germanium isotopically enriched in 76Ge. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology, possibly one under development at Nonlinear Ion Dynamics (NID), will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL in January 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are reported here. A second sample of isotopically separated copper was provided by NID to PNNL in August 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are also reported here.

  2. Studies of dust shells around stars

    Bedijn, P.J.

    1977-01-01

    This thesis deals with some aspects of circumstellar dust shells. This dust shell, emitting infrared radiation, is described by way of its absorptive and emissive properties as well as by the transfer of radiation through the dust shell itself. Model calculations are compared to experimental results and agree reasonably well. The author also discusses the dynamics of the extended shells of gas and dust around newly formed stars

  3. Multi-parameter actuation of a neutrally stable shell: a flexible gear-less motor.

    Hamouche, W; Maurini, C; Vidoli, S; Vincenti, A

    2017-08-01

    We have designed and tested experimentally a morphing structure consisting of a neutrally stable thin cylindrical shell driven by a multi-parameter piezoelectric actuation. The shell is obtained by plastically deforming an initially flat copper disc, so as to induce large isotropic and almost uniform inelastic curvatures. Following the plastic deformation, in a perfectly isotropic system, the shell is theoretically neutrally stable, having a continuous set of stable cylindrical shapes corresponding to the rotation of the axis of maximal curvature. Small imperfections render the actual structure bistable, giving preferred orientations. A three-parameter piezoelectric actuation, exerted through micro-fibre-composite actuators, allows us to add a small perturbation to the plastic inelastic curvature and to control the direction of maximal curvature. This actuation law is designed through a geometrical analogy based on a fully nonlinear inextensible uniform-curvature shell model. We report on the fabrication, identification and experimental testing of a prototype and demonstrate the effectiveness of the piezoelectric actuators in controlling its shape. The resulting motion is an apparent rotation of the shell, controlled by the voltages as in a 'gear-less motor', which is, in reality, a precession of the axis of principal curvature.

  4. Laterally Loaded Nail-Plates

    Nielsen, Jacob; Rathkjen, Arne

    Load-displacement curves from about 200 short-term and laterally loaded nail-plate joints are analysed. The nail-plates are from Gang-Nail Systems, type GNA 20 S. The test specimens and the measuring systems are described. The tests are divided into 32 different series. The influence of the number...

  5. MyPlate Food Guide

    ... Safe Videos for Educators Search English Español MyPlate Food Guide KidsHealth / For Teens / MyPlate Food Guide What's ... and other sugary drinks. Avoid large portions . Five Food Groups Different food groups have different nutrients and ...

  6. Scintillating plate calorimeter optical design

    McNeil, R.; Fazely, A.; Gunasingha, R.; Imlay, R.; Lim, J.

    1990-01-01

    A major technical challenge facing the builder of a general purpose detector for the SSC is to achieve an optimum design for the calorimeter. Because of its fast response and good energy resolution, scintillating plate sampling calorimeters should be considered as a possible technology option. The work of the Scintillating Plate Calorimeter Collaboration is focused on compensating plate calorimeters. Based on experimental and simulation studies, it is expected that a sampling calorimeter with alternating layers of high-Z absorber (Pb, W, DU, etc.) and plastic scintillator can be made compensating (e/h = 1.00) by suitable choice of the ratio of absorber/scintillator thickness. Two conceptual designs have been pursued by this subsystem collaboration. One is based on lead as the absorber, with read/out of the scintillator plates via wavelength shifter fibers. The other design is based on depleted uranium as the absorber with wavelength shifter (WLS) plate readout. Progress on designs for the optical readout of a compensating scintillator plate calorimeter are presented. These designs include readout of the scintillator plates via wavelength shifter plates or fiber readout. Results from radiation damage studies of the optical components are presented

  7. Gallium and copper radiopharmaceutical chemistry

    Green, M.A.

    1991-01-01

    Gallium and copper radionuclides have a long history of use in nuclear medicine. Table 1 presents the nuclear properties of several gallium and copper isotopes that either are used in the routine practice of clinical nuclear medicine or exhibit particular characteristics that might make them useful in diagnostic or therapeutic medicine. This paper will provide some historic perspective along with an overview of some current research directions in gallium and copper radiopharmaceutical chemistry. A more extensive review of gallium radiopharmaceutical chemistry has recently appeared and can be consulted for a more in-depth treatment of this topic

  8. Free Vibration Analyses of FGM Thin Plates by Isogeometric Analysis Based on Classical Plate Theory and Physical Neutral Surface

    Shuohui Yin

    2013-01-01

    Full Text Available The isogeometric analysis with nonuniform rational B-spline (NURBS based on the classical plate theory (CPT is developed for free vibration analyses of functionally graded material (FGM thin plates. The objective of this work is to provide an efficient and accurate numerical simulation approach for the nonhomogeneous thin plates and shells. Higher order basis functions can be easily obtained in IGA, thus the formulation of CPT based on the IGA can be simplified. For the FGM thin plates, material property gradient in the thickness direction is unsymmetrical about the midplane, so effects of midplane displacements cannot be ignored, whereas the CPT neglects midplane displacements. To eliminate the effects of midplane displacements without introducing new unknown variables, the physical neutral surface is introduced into the CPT. The approximation of the deflection field and the geometric description are performed by using the NURBS basis functions. Compared with the first-order shear deformation theory, the present method has lower memory consumption and higher efficiency. Several numerical results show that the present method yields highly accurate solutions.

  9. Copper complexes as 'radiation recovery' agents

    Sorenson, J.R.J.

    1989-01-01

    Copper and its compounds have been used for their remedial effects since the beginning of recorded history. As early as 3000 BC the Egyptians used copper as an antiseptic for healing wounds and to sterilise drinking water; and later, ca 1550 BC, the Ebers Papyrus reports the use of copper acetate, copper sulphate and pulverised metallic copper for the treatment of eye infections. These historical uses of copper and its compounds are particularly interesting in the light of modern evidence concerning the use of certain copper complexes for the treatment of radiation sickness and more recently as an adjunct to radiotherapy for cancer patients. (author)

  10. Fundamental processes in ion plating

    Mattox, D.M.

    1980-01-01

    Ion plating is a generic term applied to film deposition processes in which the substrate surface and/or the depositing film is subjected to a flux of high energy particles sufficient to cause changes in the interfacial region of film properties compared to a nonbombarded deposition. Ion plating is being accepted as an alternative coating technique to sputter deposition, vacuum evaporation and electroplating. In order to intelligently choose between the various deposition techniques, the fundamental mechanisms, relating to ion plating, must be understood. This paper reviews the effects of low energy ion bombardment on surfaces, interface formation and film development as they apply to ion plating and the implementation and applications of the ion plating process

  11. 7 CFR 983.29 - Shelled pistachios.

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled pistachios. 983.29 Section 983.29 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA, ARIZONA, AND NEW MEXICO Definitions § 983.29 Shelled pistachios. Shelled pistachios means pistachio...

  12. Thin-shell wormholes in dilaton gravity

    Eiroa, Ernesto F.; Simeone, Claudio

    2005-01-01

    In this work we construct charged thin-shell Lorentzian wormholes in dilaton gravity. The exotic matter required for the construction is localized in the shell and the energy conditions are satisfied outside the shell. The total amount of exotic matter is calculated and its dependence with the parameters of the model is analyzed

  13. Shell film- and video catalogue 1996

    1996-01-01

    An overview is given of films and videos that are available through 'Shell Nederland Filmcentrale' (Shell Netherlands Film Center), subdivided into the subjects (1) About Shell; (2) Health, Safety and Environment; (3) Science and Technology; (4) The History of Car(racing); and (5) Historical Overview. 5 ills

  14. Vibrations of Thin Piezoelectric Shallow Shells

    Abstract. In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.

  15. 7 CFR 981.6 - Shelled almonds.

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled almonds. 981.6 Section 981.6 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.6 Shelled almonds. Shelled almonds mean raw or roasted almonds after...

  16. Extensions to a nonlinear finite-element axisymmetric shell model based on Reissner's shell theory

    Cook, W.A.

    1981-01-01

    Extensions to shell analysis not usually associated with shell theory are described in this paper. These extensions involve thick shells, nonlinear materials, a linear normal stress approximation, and a changing shell thickness. A finite element shell-of-revolution model has been developed to analyze nuclear material shipping containers under severe impact conditions. To establish the limits for this shell model, the basic assumptions used in its development were studied; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress

  17. Optimal design of sandwich ribbed flat baffle plates of a circular cylindrical tank

    Malinowski, Marek; Magnucki, Krzysztof

    2005-01-01

    The subject of this paper is a sandwich ribbed flat baffle plate of a circular cylindrical tank. The paper deals with a problem of optimal thickness of this construction with a soft core. The construction is distinguished by a local axisymmetric pre-springing. The mathematical description is based on the theory of shells with analysis of disturbance of the stress membrane state. The sandwich ribbed flat baffle plate divides the tank into two chambers. One of them is loaded by uniform pressure, while the other is empty and unloaded. Dimensions of ribs, faces and the entire baffle plate have been determined with a view to minimize the mass under strength constraints. The effect of optimal thickness of this sandwich plate has been examined by means of the finite element method

  18. Biosorption of heavy metals and radionuclide from aqueous solutions by pre-treated arca shell biomass

    Dahiya, Sudhir; Tripathi, R.M.; Hegde, A.G.

    2008-01-01

    In this study biosorption potential of pre-treated arca shell biomass for lead, copper, nickel, cobalt and cesium was explored from the artificially prepared solution containing known amount of metals. The effects of pH, initial concentration, biosorbent dosage and contact time were studied in batch experiments. Effects of common ions like sodium, potassium, calcium and magnesium on the sorption capacity of pre-treated arca biomasses were also studied. To analyse the homogeneity of the biomaterial, experiments were performed for eight lots arca shell biomass for all the studies elements and it was observed that relative standard deviation in uptake capacity was within 10% for all elements. At equilibrium, the maximum total uptake by shell biomaterial was 18.33 ± 0.44, 17.64 ± 0.31, 9.86 ± 0.17, 3.93 ± 0.11 and 7.82 ± 0.36 mg/g for lead, copper, nickel, cesium and cobalt, respectively, under the optimised condition of pH, initial concentration, biosorbent dose and contact time. Effect of all the common ions jointly up to concentration of 50 ppm was negligible for all the elements but at higher levels the cations affects the uptake capacity. Sorption isotherms were studied to explain the removal mechanism of both elements by fitting isotherms data into Lagergren, Freundlich and Langmuir equations. Halls separation factor estimated under optimised condition also favours the sorption potential of these elements using arca shell biomass. Arca shell biomass can be effectively and efficiently employed for removal of studied elements after optimisation of parameters

  19. Storing drinking-water in copper pots kills contaminating diarrhoeagenic bacteria.

    Sudha, V B Preethi; Ganesan, Sheeba; Pazhani, G P; Ramamurthy, T; Nair, G B; Venkatasubramanian, Padma

    2012-03-01

    Microbially-unsafe water is still a major concern in most developing countries. Although many water-purification methods exist, these are expensive and beyond the reach of many people, especially in rural areas. Ayurveda recommends the use of copper for storing drinking-water. Therefore, the objective of this study was to evaluate the effect of copper pot on microbially-contaminated drinking-water. The antibacterial effect of copper pot against important diarrhoeagenic bacteria, including Vibrio cholerae O1, Shigella flexneri 2a, enterotoxigenic Escherichia coli, enteropathogenic E. coli, Salmonella enterica Typhi, and Salmonella Paratyphi is reported. When drinking-water (pH 7.83 +/- 0.4; source: ground) was contaminated with 500 CFU/mL of the above bacteria and stored in copper pots for 16 hours at room temperature, no bacteria could be recovered on the culture medium. Recovery failed even after resuscitation in enrichment broth, followed by plating on selective media, indicating loss of culturability. This is the first report on the effect of copper on S. flexneri 2a, enteropathogenic E. coli, and Salmonella Paratyphi. After 16 hours, there was a slight increase in the pH of water from 7.83 to 7.93 in the copper pots while the other physicochemical parameters remained unchanged. Copper content (177 +/- 16 ppb) in water stored in copper pots was well within the permissible limits of the World Health Organization. Copper holds promise as a point-of-use solution for microbial purification of drinking-water, especially in developing countries.

  20. Effect of Rotation Rate on Microstructure and Properties of Friction Stir Welded Joints of Al/Cu Clad Plates

    QIAO Ke

    2017-10-01

    Full Text Available Al/Cu clad plates were joined by friction stir welding (FSW, and the effect of rotation rate on microstructure and mechanical properties of joints was investigated. The results show that the laminar structure of aluminum and copper is generated in the weld. With increase the of rotation rate, the grain sizes of aluminum and copper are increased respectively. The average microhardness of the Al/Cu plates exceeds that of the as-received metal of 33.0 HV, and ultimate tensile strength is 127.21 MPa in the nugget zone when rotation rate is 1180 r/min. The microhardness of copper in the nugget zone is 99.7 HV, reached 82.05% of the microhardness of received metal, and void defect is main reason responsible for the decrease of mechanical properties of joints.

  1. Control of the Helicity Content of a Gun-Generated Spheromak by Incorporating a Conducting Shell into a Magnetized Coaxial Plasma Gun

    Matsumoto, Tadafumi; Sekiguchi, Jun'ichi; Asai, Tomohiko

    In the formation of magnetized plasmoid by a magnetized coaxial plasma gun (MCPG), the magnetic helicity content of the generated plasmoid is one of the critical parameters. Typically, the bias coil to generate a poloidal flux is mounted either on the outer electrode or inside the inner electrode. However, most of the flux generated in the conventional method spreads even radially outside of the formation region. Thus, only a fraction of the total magnetic flux is actually exploited for helicity generation in the plasmoid. In the proposed system, the plasma gun incorporates a copper shell mounted on the outer electrode. By changing the rise time of the discharge bias coil current and the geometrical structure of the shell, the magnetic field structure and its time evolution can be controlled. The effect of the copper shell has been numerically simulated for the actual gun structure, and experimentally confirmed. This may increase the magnetic helicity content results, through increased poloidal magnetic field.

  2. Diagnostic method for measuring plasma-induced voltages on the PBX-M [Princeton Beta Experiment-Modified] stabilizing shell

    Kugel, H.W.; Okabayashi, M.; Schweitzer, S.

    1990-07-01

    The Princeton Beta Experiment-Modified (PBX-M) has a close-fitting conducting, passive plate, stabilizing shell which nearly surrounds highly indented, bean-shaped plasmas. The proximity of this electrically isolated shell to a large fraction of the plasma surface allows measurements similar to previous work on other tokamaks using floating probes and limiters. Measurements were performed to characterize the plasma-induced voltages on the PBX-M passive plate stabilizing shell during high-β plasmas. Voltage differences were measured between the respective passive plate toroidal and poloidal gaps, the respective passive plates and the vessel, and an outer poloidal graphite limiter and its passive plate. The calibration and qualification testing procedures are discussed. The initial measurements found that the largest voltages were observed at plasma start-up and at the plasma current disruption and exhibited characteristics depending on operating conditions. The highest voltages observed have been at disruption and were less than 2 kV. 9 refs., 5 figs

  3. The Golosyiv plate archive digitisation

    Sergeeva, T. P.; Sergeev, A. V.; Pakuliak, L. K.; Yatsenko, A. I.

    2007-08-01

    The plate archive of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine (Golosyiv, Kyiv) includes about 85 000 plates which have been taken in various observational projects during 1950-2005. Among them are about 25 000 of direct northern sky area plates and more than 600 000 plates containing stellar, planetary and active solar formations spectra. Direct plates have a limiting magnitude of 14.0-16.0 mag. Since 2002 we have been organising the storage, safeguarding, cataloguing and digitization of the plate archive. The very initial task was to create the automated system for detection of astronomical objects and phenomena, search of optical counterparts in the directions of gamma-ray bursts, research of long period, flare and other variable stars, search and rediscovery of asteroids, comets and other Solar System bodies to improve the elements of their orbits, informational support of CCD observations and space projects, etc. To provide higher efficiency of this work we have prepared computer readable catalogues and database for 250 000 direct wide field plates. Now the catalogues have been adapted to Wide Field Plate Database (WFPDB) format and integrated into this world database. The next step will be adaptation of our catalogues, database and images to standards of the IVOA. Some magnitude and positional accuracy estimations for Golosyiv archive plates have been done. The photometric characteristics of the images of NGC 6913 cluster stars on two plates of the Golosyiv's double wide angle astrograph have been determined. Very good conformity of the photometric characteristics obtained with external accuracies of 0.13 and 0.15 mag. has been found. The investigation of positional accuracy have been made with A3± format fixed bed scanner (Microtek ScanMaker 9800XL TMA). It shows that the scanner has non-detectable systematic errors on the X-axis, and errors of ± 15 μm on the Y-axis. The final positional errors are about ± 2 μm (

  4. Indonesian Landforms and Plate Tectonics

    Herman Th. Verstappen

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v5i3.103The horizontal configuration and vertical dimension of the landforms occurring in the tectonically unstable parts of Indonesia were resulted in the first place from plate tectonics. Most of them date from the Quaternary and endogenous forces are ongoing. Three major plates – the northward moving Indo-Australian Plate, the south-eastward moving SE-Asian Plate and the westward moving Pacific Plate - meet at a plate triple-junction situated in the south of New Guinea’s Bird’s Head. The narrow North-Moluccan plate is interposed between the Asia and Pacific. It tapers out northward in the Philippine Mobile Belt and is gradually disappearing. The greatest relief amplitudes occur near the plate boundaries: deep ocean trenches are associated with subduction zones and mountain ranges with collision belts. The landforms of the more stable areas of the plates date back to a more remote past and, where emerged, have a more subdued relief that is in the first place related to the resistance of the rocks to humid tropical weathering Rising mountain ranges and emerging island arcs are subjected to rapid humid-tropical river erosions and mass movements. The erosion products accumulate in adjacent sedimentary basins where their increasing weight causes subsidence by gravity and isostatic compensations. Living and raised coral reefs, volcanoes, and fault scarps are important geomorphic indicators of active plate tectonics. Compartmental faults may strongly affect island arcs stretching perpendicular to the plate movement. This is the case on Java. Transcurrent faults and related pull-apart basins are a leading factor where plates meet at an angle, such as on Sumatra. The most complicated situation exists near the triple-junction and in the Moluccas. Modern research methods, such as GPS measurements of plate movements and absolute dating of volcanic outbursts and raised coral reefs are important tools. The mega-landforms resulting

  5. Metal deposition by electroless plating on polydopamine functionalized micro- and nanoparticles.

    Mondin, Giovanni; Wisser, Florian M; Leifert, Annika; Mohamed-Noriega, Nasser; Grothe, Julia; Dörfler, Susanne; Kaskel, Stefan

    2013-12-01

    A novel approach for the fabrication of metal coated micro- and nanoparticles by functionalization with a thin polydopamine layer followed by electroless plating is reported. The particles are initially coated with polydopamine via self-polymerization. The resulting polydopamine coated particles have a surface rich in catechols and amino groups, resulting in a high affinity toward metal ions. Thus, they provide an effective platform for selective electroless metal deposition without further activation and sensitization steps. The combination of a polydopamine-based functionalization with electroless plating ensures a simple, scalable, and cost-effective metal coating strategy. Silver-plated tungsten carbide microparticles, copper-plated tungsten carbide microparticles, and copper-plated alumina nanoparticles were successfully fabricated, showing also the high versatility of the method, since the polymerization of dopamine leads to the formation of an adherent polydopamine layer on the surface of particles of any material and size. The metal coated particles produced with this process are particularly well suited for the production of metal matrix composites, since the metal coating increases the wettability of the particles by the metal, promoting their integration within the matrix. Such composite materials are used in a variety of applications including electrical contacts, components for the automotive industries, magnets, and electromagnetic interference shielding. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Expansion connection of socket in flow distributed cabin of heavy water research reactor inner shell

    Jiang Zhiliang; Li Yanshui

    1995-01-01

    Expansion connection of aluminium alloy LT21 socket in flow distributed cabin of Heavy Water Research Reactor (HWRR) inner shell is described systematically. The expansion connection technology parameters of products are determined through tests. They are as following: bounce value of inner diameter after expansion, expansion degree, space between socket and plate hole, device for expanding pipes, selection of tools for enlarging or reaming holes, manufacture for socket inner hole and cleaning after expansion

  7. Shell and membrane theories in mechanics and biology from macro- to nanoscale structures

    Mikhasev, Gennadi

    2015-01-01

    This book presents the latest results related to shells  characterize and design shells, plates, membranes and other thin-walled structures, a multidisciplinary approach from macro- to nanoscale is required which involves the classical disciplines of mechanical/civil/materials engineering (design, analysis, and properties) and physics/biology/medicine among others. The book contains contributions of a meeting of specialists (mechanical engineers, mathematicians, physicists and others) in such areas as classical and non-classical shell theories. New trends with respect to applications in mechanical, civil and aero-space engineering, as well as in new branches like medicine and biology are presented which demand improvements of the theoretical foundations of these theories and a deeper understanding of the material behavior used in such structures.

  8. Copper tailings in stucco mortars

    Osvaldo Pavez

    Full Text Available Abstract This investigation addressed the evaluation of the use of copper tailings in the construction industry in order to reduce the impact on the environment. The evaluation was performed by a technical comparison between stucco mortars prepared with crushed conventional sand and with copper tailings sand. The best results were achieved with the stucco mortars containing tailings. The tailings presented a fine particles size distribution curve different from that suggested by the standard. The values of compressive strength, retentivity, and adherence in the stucco mortars prepared with copper tailings were much higher than those obtained with crushed sand. According to the results from this study, it can be concluded that the preparation of stucco mortars using copper tailings replacing conventional sand is a technically feasible alternative for the construction industry, presenting the benefit of mitigating the impact of disposal to the environment.

  9. Improved performance of brazed plate heat exchangers made of stainless steel type EN 1.4401 (UNS S31600) when using a iron-based braze filler

    Sjoedin, P. [Alfa Laval Materials, Lund (Sweden)

    2004-07-01

    The mechanical properties of brazed plate heat exchangers, made of stainless steel plates type EN 1.4401, brazed with a new iron-based braze filler ''AlfaNova'', have been evaluated. The results were compared with heat exchangers brazed with a copper (pure copper) and a nickel-based (MBF 51) braze filler. Their resistance against pressure- and temperature fatigue, which are important for the lifetime of a heat exchanger, and the burst pressure, which is important for pressure vessel approvals, were tested and evaluated. It was found that the pressure fatigue resistance was extraordinary good for the heat exchangers brazed the iron-based filler and its temperature fatigue resistance was better than those brazed with nickel-based braze filler and slightly lower than those brazed with copper. The highest burst pressures were achieved for the copper brazed units followed by the iron-brazed units and rearmost the nickel-brazed units. (orig.)

  10. Natural convective magneto-nanofluid flow and radiative heat transfer past a moving vertical plate

    S. Das

    2015-03-01

    Full Text Available An investigation of the hydromagnetic boundary layer flow past a moving vertical plate in nanofluids in the presence of a uniform transverse magnetic field and thermal radiation has been carried out. Three different types of water-based nanofluids containing copper, aluminum oxide and titanium dioxide are taken into consideration. The governing equations are solved using Laplace transform technique and the solutions are presented in closed form. The numerical values of nanofluid temperature, velocity, the rate of heat transfer and the shear stress at the plate are presented graphically for several values of the pertinent parameters. The present study finds applications in engineering devices.

  11. The copper deposits of Michigan

    Butler, B.S.; Burbank, W.S.

    1929-01-01

    The copper district of Keweenaw Point, in the northern peninsula of Michigan, is the second largest producer of copper in the world.  The output of the district since 1845 has been more than 7,500,000,000 pounds and showed a rather steady and consistent increase from the beginning of production to the end of the World War in 1918, since which there has been a marked decrease.

  12. Copper atomic-scale transistors.

    Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  13. Atmospheric corrosion effects on copper

    Franey, J.P.

    1985-01-01

    Studies have been performed on the naturally formed patina on various copper samples. Samples have been obtained from structures at AT and T Bell Laboratories, Murray Hill, NJ (40,2,1 and <1 yr) and the Statue of Liberty (100 yr). The samples show a distinct layering effect, that is, the copper base material shows separate oxide and basic sulfate layers on all samples, indicating that patina is not a homogeneous mixture of oxides and basic sulfates

  14. Chronic copper poisoning in lambs

    Ross, D B

    1964-08-08

    This communication presented evidence of the elevation of plasma GOT (glutamic oxaloacetic transaminase or aspartate transaminase) concentration during the development of copper toxicity in some experimental lambs, and also demonstrated that plasma GOT concentration can be used to assess the course of the disease during treatment. A group of Kerry Hill lambs were fed 1 1/2 lb per day of a proprietary concentrate containing 40 parts of copper per million on a dry-matter basis in addition to hay and water ad lib. Data was included for the plasma GOT concentrations of the lambs, bled weekly after weaning from pasture to this diet. There was some variation between the individual lambs, and in one there was no increase in plasma GOT by the 20th week when all the surviving lambs were slaughtered. The concentrations of copper found in the caudate lobe of the liver and in the kidney cortex post mortem were given. The overall findings showed that the liver gave a reliable indication of the copper status of an animal whereas the kidney cortex copper concentration was a better criterion for the diagnosis of copper poisoning and was in agreement with the results of Eden, Todd, and Grocey and Thompson. Observations demonstrated the benefits resulting from the early diagnosis of chronic copper poisoning in lambs, when treatment of affected animals may be commenced before the haemolytic crisis develops. Treatment included reducing the copper intake and dosing with ammonium molybdate and sodium sulfate, and the plasma GOT concentration may be used to assess the rate of recovery. 4 references, 3 tables.

  15. Electroless plating of Cu-Ni-P alloy on PET fabrics and effect of plating parameters on the properties of conductive fabrics

    Gan Xueping; Wu Yating; Liu Lei; Shen Bin; Hu Wenbin

    2008-01-01

    Electroless plating of Cu-Ni-P alloy on polyethylene terephthalate (PET) fabrics and effect of plating parameters on the properties of alloy-coated fabrics were investigated. The deposition rate increased with the increase of temperature, pH and nickel ion concentration. The addition of K 4 Fe(CN) 6 to the solution could reduce the deposition rate and make the deposits become more compact. The color of the deposits also had a corresponding improvement, changing from dark-brown to copper-bright with the addition of K 4 Fe(CN) 6 to the plating solution. The deposits have an intensified copper (1 1 1) plane orientation with the addition of K 4 Fe(CN) 6 to the plating bath. The surface electrical resistance of alloy-coated fabrics increased with increase of nickel ions concentration in the solution. The addition of K 4 Fe(CN) 6 to the solution reduced significantly the surface resistance of alloy-coated fabrics. The conductive fabrics with high shielding effectiveness could be prepared at the optimum condition with 0.0038 M nickel ions and 2 ppm K 4 Fe(CN) 6 . As the deposit weight on the fabric was 40 g/m 2 , the shielding effectiveness of alloy-coated fabrics was more than 85 dB at frequency ranging from 100 MHz to 20 GHz

  16. The conducting shell stellarator: A simple means for producing complicated fields

    Sheffield, G.V.

    1997-01-01

    One of the main characteristics of stellarators, both helical and modular, is that their coil sets must take difficult shapes in order to produce the complicated stellarator magnetic fields. The complex coil shapes make fabrication difficult and costly compared to say the toroidal field, TF, coil set of a tokamak. The conducting shell stellarator, CSS, configuration described in this report shows that complicated stellarator fields can be produced by inducing eddy currents in a conducting shell from a simple TF coil set (a field that varies like 1/R). This technique is applicable not only to a pulsed system at room or cryogenic temperatures, but can be implemented for a superconducting TF with a superconducting shell in a stellarator reactor. The CSS has the added benefit that within this device the metallic shell which can be made up of discrete plates can be changed out and replaced with new plates to create a different stellarator configuration within the same TF coil set. The work of creating the complicated magnetics is done by the passive conductor reshaping the simple TF field

  17. Copper sulphate poisoning in horses

    Bauer, M

    1975-01-01

    In the archives of the Clinic for Internal Diseases of Domestic Animals at the Veterinary Faculty of Zagreb University some thirty cases of horse disease diagnosed as copper sulphate poisoning were noted. The data correspond in many respects to the clinical findings of copper sulphate poisoning in other domestic animals. A series of experimental horse poisonings were undertaken in order to determine the toxicity of copper sulphate. The research results are as follows: Horses are sensitive to copper sulphate. Even a single application of 0.125 g/kg body weight in 1% concentration by means of incubation into the stomach causes stomach and gut disturbances and other poisoning symptoms. Poisoning occurs in two types: acute and chronic. The former appears after one to three applications of copper sulphate solution and is characterized by gastroenteritis, haemolysis, jaundice and haemoglobinuria with signs of consecutive damage of kidney, liver and other organs. The disease, from the first application to death lasts for two weeks. Chronic poisoning is caused by ingestion of dry copper sulphate in food (1% solution dried on hay or clover) for two or more months. There are chronic disturbances of stomach and gut and loss of weight, and consecutive (three to four) haemolytic crises similar to those of acute poisoning. From the beginning of poisoning to death six or more months can elapse.

  18. Design aids for stiffened composite shells with cutouts

    Sahoo, Sarmila

    2017-01-01

    This book focuses on the free vibrations of graphite-epoxy laminated composite stiffened shells with cutout both in terms of the natural frequencies and mode shapes. The dynamic analysis of shell structures, which may have complex geometry and arbitrary loading and boundary conditions, is solved efficiently by the finite element method, even including cutouts in shells. The results may be readily used by practicing engineers dealing with stiffened composite shells with cutouts. Several shell forms viz. cylindrical shell, hypar shell, conoidal shell, spherical shell, saddle shell, hyperbolic paraboloidal shell and elliptic paraboloidal shell are considered in the book. The dynamic characteristics of stiffened composite shells with cutout are described in terms of the natural frequency and mode shapes. The size of the cutouts and their positions with respect to the shell centre are varied for different edge constraints of cross-ply and angle-ply laminated composite shells. The effects of these parametric variat...

  19. Genome Sequences of Two Copper-Resistant Escherichia coli Strains Isolated from Copper-Fed Pigs

    Lüthje, Freja L.; Hasman, Henrik; Aarestrup, Frank Møller

    2014-01-01

    The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances.......The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances....

  20. Pressure Shell Approach to Integrated Environmental Protection

    Kennedy, Kriss J.

    2011-01-01

    The next generation of exploration mission human systems will require environmental protection such as radiation protection that is effective and efficient. In order to continue human exploration, habitat systems will require special shells to protect astronauts from hostile environments. The Pressure Shell Approach to integrated environmental (radiation) protection is a multi-layer shell that can be used for multifunctional environmental protection. Self-healing, self-repairing nano technologies and sensors are incorporated into the shell. This shell consists of multiple layers that can be tailored for specific environmental protection needs. Mainly, this innovation focuses on protecting crew from exposure to micrometeorites, thermal, solar flares, and galactic cosmic ray (GCR) radiation. The Pressure Shell Approach consists of a micrometeoroid and secondary ejecta protection layer; a thin, composite shell placed in between two layers that is non-structural; an open cavity layer that can be filled with water, regolith, or polyethylene foam; a thicker composite shell that is a structural load bearing that is placed between two layers; and a bladder coating on the interior composite shell. This multi-layer shell creates an effective radiation protection system. Most of its layers can be designed with the materials necessary for specific environments. In situ materials such as water or regolith can be added to the shell design for supplemental radiation protection.