Sample records for sheets earth venus

  1. Field reversing magnetotail current sheets: earth, Venus, and Comet Giacobini-Zinner

    International Nuclear Information System (INIS)

    McComas, D.J.


    This dissertation examines the field reversing magnetotail current sheets at the earth, Venus, and Comet Giacobini-Zinner. In the near earth study a new analysis technique is developed to calculate the detailed current density distributions within the cross tail current sheet for the first time. This technique removes the effects of a variable sheet velocity by inverting intersatellite timings between the co-orbiting satellites ISEE-1 and -2. Case studies of three relatively geomagnetically quiet crossings are made; sheet thicknesses and peak current densities are ∼1-5 x 10 4 km and ∼5-50 nA/m 2 . Current density distributions reveal a high density central region, lower density shoulders, and considerable fine structure throughout. In the Venus study another new analysis technique is developed to reconstruct the average tail configuration from a correlation between field magnitude and draping angle in a large statistical data set. In the comet study, high resolution magnetic field and plasma electron data from the ICE traversal of Giacobini-Zinner are combined for the first time to determine the tail/current sheet geometry and calculate certain important but unmeasured local ion and upstream properties. Pressure balance across the tail gives ion temperatures and betas of ∼1.2 x 10 5 K and ∼40 in the center of the current sheet to ∼1 x 10 6 K and ∼3 in the outer lobes. Axial stress balance shows that the velocity shear upstream near the nucleus is >6 (∼1 at ICE), and that a region of strongly enhanced mass loading (ion source rate ∼24 times that upstream from lobes) exists upstream from the current sheet. The integrated downtail mass flux is ∼2.6 x 10 26 H 2 O+/sec, which is only ∼1% of the independently determined total cometary efflux. 79 refs., 37 figs

  2. Venus tectonics: another Earth or another Mars

    International Nuclear Information System (INIS)

    McGill, G.E.


    The presence of presumably primordial large craters has led to the suggestion that Venus may have a thick lithosphere like that of Mars despite its similarities to Earth in size and density. However, crust and upper mantle temperatures on Venus are very likely higher than on Earth so that a dry Venus could have a lithosphere with a thickness similar to that of Earth. If a trace of volatiles is present in the mantle, the lithosphere of Venus could be thinner. Due to the absence of liquid water, erosion and deposition will be much slower on Venus than on Earth, favoring retention of primordial cratered surfaces on portions of the crust that have not been destroyed or buried by tectonic and volcanic activity. Geochemical models of solar system origin and petrological considerations suggest that K is about as abundant in Venus as in Earth. The abundance of 40 Ar in the atmosphere of Venus lies somewhere between the Earth value and one-tenth of the Earth value. Because erosional liberation of 40 Ar on Venus will be relatively inefficient, this range for 40 Ar abundance at least permits an active tectonic history, and if the 40 Ar abundance is towards the high end of the range, it may well require an active tectonic history. Thus we are not constrained to a Mars-like model of Venus tectonics by craters and possible mantle dryness; an Earth-like model is equally probable

  3. Venus and the Archean Earth: Thermal considerations

    International Nuclear Information System (INIS)

    Sleep, N.H.


    The Archean Era of the Earth is not a direct analog of the present tectonics of Venus. In this regard, it is useful to review the state of the Archean Earth. Most significantly, the temperature of the adiabatic interior of the Earth was 200 to 300 C hotter than the current temperature. Preservation biases limit what can be learned from the Archean record. Archean oceanic crust, most of the planetary surface at any one time, has been nearly all subducted. More speculatively, the core of the Earth has probably cooled more slowly than the mantle. Thus the temperature contrast above the core-mantle boundary and the vigor of mantle plumes has increased with time on the Earth. The most obvious difference between Venus and the present Earth is the high surface temperature and hence a low effective viscosity of the lithosphere. In addition, the temperature contrast between the adiabatic interior and the surface, which drives convection, is less on Venus than on the Earth. It appears that the hot lithosphere enhanced tectonics on the early Venus significantly enough that its interior cooled faster than the Earth's. The best evidence for a cool interior of Venus comes from long wavelength gravity anomalies. The low interior temperatures retard seafloor spreading on Venus. The high surface temperatures on Venus enhance crustal deformation. That is, the lower crust may become ductile enough to permit significant flow between the upper crust and the mantle. There is thus some analogy to modern and ancient areas of high heat flow on the Earth. Archean crustal blocks typically remained stable for long intervals and thus overall are not good analogies to the deformation style on Venus

  4. Pioneer Venus and near-earth observations of interplanetary shocks

    International Nuclear Information System (INIS)

    Mihalov, J.D.; Russell, C.T.; Knudsen, W.C.; Scarf, F.L.


    Twenty-three transient interplanetary shocks observed near earth during 1978-1982, and mostly reported in the literature, have also been identified at the Pioneer Venus Orbiter spacecraft. There seems to be a fairly consistent trend for lower shock speeds, farther from the sun. Shock normals obtained using the Pioneer Venus data correspond well with published values from near earth. By referring to the portion of the Pioneer Venus plasma data used here from locations at longitudes within 37 degree of earth, it is found that shocks are weaker at earth, compared with closer to the sun

  5. Earth-type planets (Mercury, Venus, and Mars) (United States)

    Marov, M. Y.; Davydov, V. D.


    Spacecraft- and Earth-based studies on the physical nature of the planets Mercury, Venus, and Mars are reported. Charts and graphs are presented on planetary surface properties, rotational parameters, atmospheric compositions, and astronomical characteristics.

  6. How did Earth not End up like Venus? (United States)

    Jellinek, M.; Lenardic, A.; Weller, M. B.


    Recent geodynamic calculations show that terrestrial planets forming with a chondritic initial bulk composition at order 1 AU can evolve to be either "Earth-like" or "Venus-like": Both mobile- and stagnant-lid tectonic regimes are permitted, neither solution is an explicitly stronger attractor and effects related to differences in Sun-Earth distance are irrelevant. What factors might then cause the thermal evolutionary paths of Earth and Venus to diverge dynamically at early times? At what point in Earth's evolution did plate tectonics emerge and when and how did this tectonic mode gain sufficient resilience to persist over much of Earth's evolution? What is the role of volatile cycling and climate: To what extent have the stable climate of Earth and the greenhouse runaway climate of Venus enforced their distinct tectonic regimes over time? In this talk I will explore some of the mechanisms potentially governing the evolutionary divergence of Earth and Venus. I will first review observational constraints that suggest that Earth's entry into the current stable plate tectonic mode was far from assured by 2 Ga. Next I will discuss how models have been used to build understanding of some key dynamical controls. In particular, the probability of "Earth-like" solutions is affected by: 1) small differences in the initial concentrations of heat producing elements (i.e., planetary initial conditions); 2) long-term climate change; and 3) the character of a planet's early evolutionary path (i.e., tectonic hysteresis).

  7. Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars (United States)

    Murray, B.; Malin, M. C.; Greeley, R.


    The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.

  8. Asteroids and Meteorites from Venus? Only the Earth Goddess Knows (United States)

    Dones, Henry; Zahnle, Kevin J.; Alvarellos, José L.


    No meteorites from Venus have been found; indeed, some find theirexistence unlikely because of the perceived difficulty of launchingrocks at speeds above 10 km/s and traversing the planet's 93 baratmosphere. [1] Nonetheless, we keep hope alive, since cosmochemistssay they can identify Cytherean meteorites, should candidates be found[2]. Gladman et al. [3] modeled the exchange of impact ejecta betweenthe terrestrial planets, but did not consider meteorites launched fromVenus in any detail. At the time of Gladman's work, no asteroids thatremained entirely within Earth's orbit were known. 14 suchEarth-interior objects with good orbits have now been discovered, andare known as Atiras, for the Pawnee goddess of the Earth. The largestknown member of the class is 163693 Atira, a binary whose componentshave diameters of approximately 4.8 and 1 km. Discovery of Atiras isvery incomplete because they can only be seen at small solarelongations [4]. Greenstreet et al. [5] modeled the orbitaldistribution of Atiras from main-belt asteroidal and cometary sourceregions, while Ribeiro et al. [6] mapped the stability region ofhypothetical Atiras and integrated the orbits of clones of 12 realAtiras for 1 million years. 97% of the clones survived for 1 Myrimpact with Venus was the most common fate of those that met theirends. We have performed orbital integrations of 1000 clones of each ofthe known Atiras, and of hypothetical ejecta that escape Venus afterasteroid impacts, for 10-100 Myr. The latter calculations usetechniques like those of Alvarellos et al. [7] and Zahnle et al. [8]for transfer amongst Jupiter's galilean satellites. Our goals are toestimate the fraction of Atiras that are ejecta launched from Venus,the time spent in space by hypothetical meteorites from Venus, and therate at which such meteorites strike the Earth.[1] Gilmore M., et al (2017). Space Sci. Rev. 212, 1511. [2] JourdanF., Eroglu E. (2017). MAPS 52, 884. [3] Gladman B.J., etal. (1996). Science 271, 1387. [4

  9. Venus

    CERN Document Server

    Payment, Simone


    This straightforward but fascinating book takes a close look at Venus and shows young people just how different our neighboring planet is from our own. Known as the hottest planet, Venus is an example of the greenhouse effect to the extreme. Young readers will take a tour beneath the sulfur dioxide clouds and see the planet's surface up close with images taken by the Magellan and the Venus Express missions. This book will surely fascinate any young person interested in alien worlds.

  10. Comparison of dayside current layers in Venus' ionosphere and earth's equatorial electrojet (United States)

    Cole, Keith D.


    The major physical aspects of the equatorial electrojet of Earth and the dayside ionospheric current layers of Venus are compared, viz., the electric current intensity and total current, roles of electric field, pressure and gravity, diffusion time scales, and the Bernouille effect. The largest potential differences, of the order of 10 volts, horizontally across the dayside ionosphere of Venus, have important implications for possible dynamo action in the Venus ionosphere and the application of an electric field from the lower atmosphere or from the solar wind. An upper limit to the horizontal scale of vertical magnetic fields in the Venus ionosphere is estimated thereby for the first time. New upper limits on the velocity in, and thickness of, a possible S layer at Venus are presented. If an S layer exists, it is only for extreme conditions of the solar wind. A mechanism for formation of magnetic ropes in the Venus ionosphere is also proposed.

  11. Venus-Earth-Mars: comparative climatology and the search for life in the solar system. (United States)

    Launius, Roger D


    Both Venus and Mars have captured the human imagination during the twentieth century as possible abodes of life. Venus had long enchanted humans-all the more so after astronomers realized it was shrouded in a mysterious cloak of clouds permanently hiding the surface from view. It was also the closest planet to Earth, with nearly the same size and surface gravity. These attributes brought myriad speculations about the nature of Venus, its climate, and the possibility of life existing there in some form. Mars also harbored interest as a place where life had or might still exist. Seasonal changes on Mars were interpreted as due to the possible spread and retreat of ice caps and lichen-like vegetation. A core element of this belief rested with the climatology of these two planets, as observed by astronomers, but these ideas were significantly altered, if not dashed during the space age. Missions to Venus and Mars revealed strikingly different worlds. The high temperatures and pressures found on Venus supported a "runaway greenhouse theory," and Mars harbored an apparently lifeless landscape similar to the surface of the Moon. While hopes for Venus as an abode of life ended, the search for evidence of past life on Mars, possibly microbial, remains a central theme in space exploration. This survey explores the evolution of thinking about the climates of Venus and Mars as life-support systems, in comparison to Earth.

  12. Venus-Earth-Mars: Comparative Climatology and the Search for Life in the Solar System (United States)

    Launius, Roger D.


    Both Venus and Mars have captured the human imagination during the twentieth century as possible abodes of life. Venus had long enchanted humans—all the more so after astronomers realized it was shrouded in a mysterious cloak of clouds permanently hiding the surface from view. It was also the closest planet to Earth, with nearly the same size and surface gravity. These attributes brought myriad speculations about the nature of Venus, its climate, and the possibility of life existing there in some form. Mars also harbored interest as a place where life had or might still exist. Seasonal changes on Mars were interpreted as due to the possible spread and retreat of ice caps and lichen-like vegetation. A core element of this belief rested with the climatology of these two planets, as observed by astronomers, but these ideas were significantly altered, if not dashed during the space age. Missions to Venus and Mars revealed strikingly different worlds. The high temperatures and pressures found on Venus supported a “runaway greenhouse theory,” and Mars harbored an apparently lifeless landscape similar to the surface of the Moon. While hopes for Venus as an abode of life ended, the search for evidence of past life on Mars, possibly microbial, remains a central theme in space exploration. This survey explores the evolution of thinking about the climates of Venus and Mars as life-support systems, in comparison to Earth. PMID:25371106

  13. Venus-Earth-Mars: Comparative Climatology and the Search for Life in the Solar System

    Directory of Open Access Journals (Sweden)

    Roger D. Launius


    Full Text Available Both Venus and Mars have captured the human imagination during the twentieth century as possible abodes of life. Venus had long enchanted humans—all the more so after astronomers realized it was shrouded in a mysterious cloak of clouds permanently hiding the surface from view. It was also the closest planet to Earth, with nearly the same size and surface gravity. These attributes brought myriad speculations about the nature of Venus, its climate, and the possibility of life existing there in some form. Mars also harbored interest as a place where life had or might still exist. Seasonal changes on Mars were interpreted as due to the possible spread and retreat of ice caps and lichen-like vegetation. A core element of this belief rested with the climatology of these two planets, as observed by astronomers, but these ideas were significantly altered, if not dashed during the space age. Missions to Venus and Mars revealed strikingly different worlds. The high temperatures and pressures found on Venus supported a “runaway greenhouse theory,” and Mars harbored an apparently lifeless landscape similar to the surface of the Moon. While hopes for Venus as an abode of life ended, the search for evidence of past life on Mars, possibly microbial, remains a central theme in space exploration. This survey explores the evolution of thinking about the climates of Venus and Mars as life-support systems, in comparison to Earth.

  14. Candidate Earth Entry Trajectories to Mimic Venus Aerocapture Using a Lifting ADEPT (United States)

    Williams, Jimmy


    A Lifting ADEPT is considered for aerocapture at Venus. Analysis concerning the heating environment leads to an initial sizing estimate. In tandem, a direct entry profile at Earth is considered to act as a facsimile for the Venus aerocapture heating environment. The bounds of this direct entry profile are determined and it is found that a trajectory from a Geostationary Transfer Orbit with a Lifting ADEPT capable of fitting on a rideshare opportunity is capable of matching certain aspects of this heating environment.

  15. VenSAR on EnVision: Taking earth observation radar to Venus (United States)

    Ghail, Richard C.; Hall, David; Mason, Philippa J.; Herrick, Robert R.; Carter, Lynn M.; Williams, Ed


    Venus should be the most Earth-like of all our planetary neighbours: its size, bulk composition and distance from the Sun are very similar to those of Earth. How and why did it all go wrong for Venus? What lessons can be learned about the life story of terrestrial planets in general, in this era of discovery of Earth-like exoplanets? Were the radically different evolutionary paths of Earth and Venus driven solely by distance from the Sun, or do internal dynamics, geological activity, volcanic outgassing and weathering also play an important part? EnVision is a proposed ESA Medium class mission designed to take Earth Observation technology to Venus to measure its current rate of geological activity, determine its geological history, and the origin and maintenance of its hostile atmosphere, to understand how Venus and Earth could have evolved so differently. EnVision will carry three instruments: the Venus Emission Mapper (VEM); the Subsurface Radar Sounder (SRS); and VenSAR, a world-leading European phased array synthetic aperture radar that is the subject of this article. VenSAR will obtain images at a range of spatial resolutions from 30 m regional coverage to 1 m images of selected areas; an improvement of two orders of magnitude on Magellan images; measure topography at 15 m resolution vertical and 60 m spatially from stereo and InSAR data; detect cm-scale change through differential InSAR, to characterise volcanic and tectonic activity, and estimate rates of weathering and surface alteration; and characterise of surface mechanical properties and weathering through multi-polar radar data. These data will be directly comparable with Earth Observation radar data, giving geoscientists unique access to an Earth-sized planet that has evolved on a radically different path to our own, offering new insights on the Earth-sized exoplanets across the galaxy.

  16. The effect of recent Venus transit on Earth’s atmosphere

    Directory of Open Access Journals (Sweden)

    H. P. Sardar


    Full Text Available Some experiments on June 8, 2004, the day of transit of Venus across the Sun, were undertaken at Kolkata (latitude: 22°34lN to observe the effect, if any, of transit of Venus on FWF, ELF and VLF amplitudes. The result shows a good correlation between their temporal variations during the transit. The observation was unbelievable as the Venus subtends only 1/32th of the cone subtended by Sun on Earth. This anomaly may be explained on the assumption that the height of Venusian atmosphere with high content of CO2, and nitrogen which absorbs electromagnetic and corpuscular radiations from Sun, depleting the solar radiation reaching the Earth to a considerable extent. As a result, relevant parameters of Earth’s atmosphere are modulated and here we show how these changes are reflected in identical behaviour of fair weather field and ELF and VLF spectra.

  17. Comparison of the distribution of large magmatic centers on Earth, Venus, and Mars (United States)

    Crumpler, L. S.


    Volcanism is widely distributed over the surfaces of the major terrestrial planets: Venus, Earth, and Mars. Anomalous centers of magmatic activity occur on each planet and are characterized by evidence for unusual concentrations of volcanic centers, long-lived activity, unusual rates of effusion, extreme size of volcanic complexes, compositionally unusual magmatism, and evidence for complex geological development. The purpose of this study is to compare the characteristics and distribution of these magmatic anomalies on Earth, Venus, and Mars in order to assess these characteristics as they may relate to global characteristics and evolution of the terrestrial planets.

  18. Runaway greenhouse atmospheres: Applications to Earth and Venus (United States)

    Kasting, James F.


    Runaway greenhouse atmospheres are discussed from a theoretical standpoint and with respect to various practical situation in which they might occur. The following subject areas are covered: (1) runaway greenhouse atmospheres; (2) moist greenhouse atmospheres; (3) loss of water from Venus; (4) steam atmosphere during accretion; and (5) the continuously habitable zone.

  19. Runaway greenhouse atmospheres: Applications to Earth and Venus

    International Nuclear Information System (INIS)

    Kasting, J.F.


    Runaway greenhouse atmospheres are discussed from a theoretical standpoint and with respect to various practical situation in which they might occur. The following subject areas are covered: (1) runaway greenhouse atmospheres; (2) moist greenhouse atmospheres; (3) loss of water from Venus; (4) steam atmosphere during accretion; and (5) the continuously habitable zone

  20. Calculation of the flux density of gamma rays above the surface of Venus and the Earth

    International Nuclear Information System (INIS)

    Surkov, Yu.A.; Manvelyan, O.S.


    In this article the authors present the results of calculating the flux density of unscattered gamma rays as a function of height above the surfaces of Venus and the Earth. At each height they calculate the areas which will collect a certain fraction of the gamma rays. The authors calculate the spectra of scattered gamma rays, as well as their integrated fluxes at various heights above the surface of Venus. They consider how the atmosphere will affect the recording of gamma rays. Their results enable them to evaluate the optimal conditions for measuring the gamma-ray fields above the surfaces of Venus and the Earth and to determine the area of the planet which can be investigated in this way. These results are also necessary if they are to determine the elemental composition of the rock from the characteristic recorded spectrum of gamma radiation

  1. Response of Earth and Venus ionospheres to corotating solar wind stream of 3 July 1979

    International Nuclear Information System (INIS)

    Taylor, H.A. Jr.


    Corotating solar wind streams emanating from stable coronal structures provide an unique opportunity to compare the response of planetary ionospheres to the energy conveyed in the streams. For recurrent solar conditions the 'signal' propagating outward along spiral paths in interplanetary space can at times exhibit rather similar content at quite different downstream locations in the ecliptic plane. Using solar wind measurements from plasma detectors on ISEE-3, Pioneer Venus Orbiter (PVO) and Helios-A, as well as in-situ ion composition measurements from Bennett Ion Mass Spectrometers on the Atmosphere Explorer-E and PVO spacecraft, corotating stream interactions are examined at Earth and Venus. (Auth.)

  2. The effects of solar Reimers η on the final destinies of Venus, the Earth, and Mars (United States)

    Guo, Jianpo; Lin, Ling; Bai, Chunyan; Liu, Jinzhong


    Our Sun will lose sizable mass and expand enormously when it evolves to the red giant branch phase and the asymptotic giant branch phase. The loss of solar mass will push a planet outward. On the contrary, solar expansion will enhance tidal effects, and tidal force will drive a planet inward. Will our Sun finally engulf Venus, the Earth, and Mars? In the literature, one can find a large number of studies with different points of view. A key factor is that we do not know how much mass the Sun will lose at the late stages. The Reimers η can describe the efficiency of stellar mass-loss and greatly affect solar mass and solar radius at the late stages. In this work, we study how the final destinies of Venus, the Earth, and Mars can be depending on Reimers η chosen. In our calculation, the Reimers η varies from 0.00 to 0.75, with the minimum interval 0.0025. Our results show that Venus will be engulfed by the Sun and Mars will most probably survive finally. The fate of the Earth is uncertain. The Earth will finally be engulfed by the Sun while η <0.4600, and it will finally survive while η ≥ 0.4600. New observations indicate that the average Reimers η for solar-like stars is 0.477. This implies that Earth may survive finally.

  3. Infrasound as a Geophysical Probe Using Earth as a Venus Analog (United States)

    Komjathy, A.; Cutts, J. A.; Pauken, M.; Kedar, S.; Smrekar, S. E.; Hall, J. R.


    JPL is in a process of developing an instrument to measure seismic activity on Venus by detecting infrasonic waves in the atmosphere. The overall objective of this research is to demonstrate the feasibility of using sensitive barometers to detect infrasonic signals from seismic and explosive activity on Venus from a balloon platform. Because of Venus' dense atmosphere, seismic signatures from even small quakes (magnitude 3) are effectively coupled into the atmosphere. The seismic signals are known to couple about 60 times more efficiently into the atmosphere on Venus than on Earth. It was found that almost no attenuation below 80 km on Venus for frequency less than 1Hz. Whereas wind noise is a major source of background noise for terrestrial infrasonic arrays, it is expected that a balloon platform, which drifts with winds will be capable of very sensitive measurements with low noise. In our research we will demonstrate and apply techniques for discriminating upward propagating waves from a seismic event by making measurements with two or more infrasonic sensors using very sensitive barometers on a tether deployed from the balloon in a series of earth-based tests. We will first demonstrate and validate the technique using an artificial infrasound source in a deployment from a hot air balloon on Earth and then extend it with longer duration flights in the troposphere and stratosphere. We will report results on the first flight experiment that will focus on using the barometer instruments on a tethered helium-filled balloon. The balloon flight will be conducted in the vicinity of a known seismic source generated by a seismic hammer. Earlier tests conducted by Sandia National Laboratory demonstrated that this is a highly reproducible source of seismic and acoustic energy using infrasound sensors. The results of the experiments are intended to validate the two-barometer signal processing approach using a well-characterized point signal source.

  4. Calculation of gamma-ray flux density above the Venus and Earth surfaces

    International Nuclear Information System (INIS)

    Surkov, Yu.A.; Manvelyan, O.S.


    Calculational results of dependence of flux density of nonscattered gamma-quanta on the height above the Venus and Earth planet surfaces are presented in the paper. Areas, where a certain part of gamma quanta is accumulated, are calaculted for each height. Spectra of scattered gamma quanta and their integral fluxes at different heights above the Venera planet surface are calculated. Effect of the atmosphere on gamma radiation recorded is considered. The results obtained allow to estimate optimal conditions for measuring gamma-fields above the Venus and Earth planet surfaces, to determine the area of the planet surface investigated. They are also necessary to determine the elementary composition of the rock according to the characteristic gamma radiation spectrum recorded

  5. The twin sister planets Venus and Earth why are they so different?

    CERN Document Server

    Malcuit, Robert J


    This book explains how it came to be that Venus and Earth, while very similar in chemical composition, zonation, size and heliocentric distance from the Sun, are very different in surface environmental conditions. It is argued here that these differences can be accounted for by planetoid capture processes and the subsequent evolution of the planet-satellite system. Venus captured a one-half moon-mass planetoid early in its history in the retrograde direction and underwent its "fatal attraction scenario" with its satellite (Adonis). Earth, on the other hand, captured a moon-mass planetoid (Luna) early in its history in prograde orbit and underwent a benign estrangement scenario with its captured satellite.

  6. Explosive Volcanic Eruptions from Linear Vents on Earth, Venus and Mars: Comparisons with Circular Vent Eruptions (United States)

    Glaze, Lori S.; Baloga, Stephen M.; Wimert, Jesse


    Conditions required to support buoyant convective plumes are investigated for explosive volcanic eruptions from circular and linear vents on Earth, Venus, and Mars. Vent geometry (linear versus circular) plays a significant role in the ability of an explosive eruption to sustain a buoyant plume. On Earth, linear and circular vent eruptions are both capable of driving buoyant plumes to equivalent maximum rise heights, however, linear vent plumes are more sensitive to vent size. For analogous mass eruption rates, linear vent plumes surpass circular vent plumes in entrainment efficiency approximately when L(sub o) > 3r(sub o) owing to the larger entrainment area relative to the control volume. Relative to circular vents, linear vents on Venus favor column collapse and the formation of pyroclastic flows because the range of conditions required to establish and sustain buoyancy is narrow. When buoyancy can be sustained, however, maximum plume heights exceed those from circular vents. For current atmospheric conditions on Mars, linear vent eruptions are capable of injecting volcanic material slightly higher than analogous circular vent eruptions. However, both geometries are more likely to produce pyroclastic fountains, as opposed to convective plumes, owing to the low density atmosphere. Due to the atmospheric density profile and water content on Earth, explosive eruptions enjoy favorable conditions for producing sustained buoyant columns, while pyroclastic flows would be relatively more prevalent on Venus and Mars. These results have implications for the injection and dispersal of particulates into the planetary atmosphere and the ability to interpret the geologic record of planetary volcanism.

  7. Origin and evolution of the atmospheres of early Venus, Earth and Mars (United States)

    Lammer, Helmut; Zerkle, Aubrey L.; Gebauer, Stefanie; Tosi, Nicola; Noack, Lena; Scherf, Manuel; Pilat-Lohinger, Elke; Güdel, Manuel; Grenfell, John Lee; Godolt, Mareike; Nikolaou, Athanasia


    We review the origin and evolution of the atmospheres of Earth, Venus and Mars from the time when their accreting bodies were released from the protoplanetary disk a few million years after the origin of the Sun. If the accreting planetary cores reached masses ≥ 0.5 M_Earth before the gas in the disk disappeared, primordial atmospheres consisting mainly of H_2 form around the young planetary body, contrary to late-stage planet formation, where terrestrial planets accrete material after the nebula phase of the disk. The differences between these two scenarios are explored by investigating non-radiogenic atmospheric noble gas isotope anomalies observed on the three terrestrial planets. The role of the young Sun's more efficient EUV radiation and of the plasma environment into the escape of early atmospheres is also addressed. We discuss the catastrophic outgassing of volatiles and the formation and cooling of steam atmospheres after the solidification of magma oceans and we describe the geochemical evidence for additional delivery of volatile-rich chondritic materials during the main stages of terrestrial planet formation. The evolution scenario of early Earth is then compared with the atmospheric evolution of planets where no active plate tectonics emerged like on Venus and Mars. We look at the diversity between early Earth, Venus and Mars, which is found to be related to their differing geochemical, geodynamical and geophysical conditions, including plate tectonics, crust and mantle oxidation processes and their involvement in degassing processes of secondary N_2 atmospheres. The buildup of atmospheric N_2, O_2, and the role of greenhouse gases such as CO_2 and CH_4 to counter the Faint Young Sun Paradox (FYSP), when the earliest life forms on Earth originated until the Great Oxidation Event ≈ 2.3 Gyr ago, are addressed. This review concludes with a discussion on the implications of understanding Earth's geophysical and related atmospheric evolution in relation

  8. Existence of collisional trajectories of Mercury, Mars and Venus with the Earth. (United States)

    Laskar, J; Gastineau, M


    It has been established that, owing to the proximity of a resonance with Jupiter, Mercury's eccentricity can be pumped to values large enough to allow collision with Venus within 5 Gyr (refs 1-3). This conclusion, however, was established either with averaged equations that are not appropriate near the collisions or with non-relativistic models in which the resonance effect is greatly enhanced by a decrease of the perihelion velocity of Mercury. In these previous studies, the Earth's orbit was essentially unaffected. Here we report numerical simulations of the evolution of the Solar System over 5 Gyr, including contributions from the Moon and general relativity. In a set of 2,501 orbits with initial conditions that are in agreement with our present knowledge of the parameters of the Solar System, we found, as in previous studies, that one per cent of the solutions lead to a large increase in Mercury's eccentricity-an increase large enough to allow collisions with Venus or the Sun. More surprisingly, in one of these high-eccentricity solutions, a subsequent decrease in Mercury's eccentricity induces a transfer of angular momentum from the giant planets that destabilizes all the terrestrial planets approximately 3.34 Gyr from now, with possible collisions of Mercury, Mars or Venus with the Earth.

  9. Evolution of a Coronal Mass Ejection from the Sun to Mercury, Venus, Earth and Beyond (United States)

    Wang, Y.; Shen, C.; Liu, J.; Mengjiao, X.; Guo, J.


    A clear magnetic cloud was observed by Messenger at Mercury. By using coronagraph images from SOHO/LASCO and STEREO/COR and the in-situ data from Wind near the Earth, we estimated its propgation velocity and identified the possible CME candidate in the corona and its counterpart recorded by Venus Express near Venus. By applying the CME's DIPS (Deflection in InterPlanetary Space) model, we show that the CME's arrivals at the three different heliocentric distance can be well reproduced. By extending the trajectory of the CME to the orbitor of Mars, we predict the arrival of the CME at Mars, which is in agreement with a significant Forbush decrease observed by MSL. We use uniformly-twisted force-free flux rope model to fit the in-situ measurements at Mercury, Venus and the Earth to study the evolution of the magnetic flux rope, and find that both axial magnetic flux and twist significantly decreased, suggesting that a significant erosion process was on-going and might change the averaged twist of the magnetic flux rope.

  10. Comparative study of ion cyclotron waves at Mars, Venus and Earth (United States)

    Wei, H. Y.; Russell, C. T.; Zhang, T. L.; Blanco-Cano, X.


    Ion cyclotron waves are generated in the solar wind when it picks up freshly ionized planetary exospheric ions. These waves grow from the free energy of the highly anisotropic distribution of fresh pickup ions, and are observed in the spacecraft frame with left-handed polarization and a wave frequency near the ion's gyrofrequency. At Mars and Venus and in the Earth's polar cusp, the solar wind directly interacts with the planetary exospheres. Ion cyclotron waves with many similar properties are observed in these diverse plasma environments. The ion cyclotron waves at Mars indicate its hydrogen exosphere to be extensive and asymmetric in the direction of the interplanetary electric field. The production of fast neutrals plays an important role in forming an extended exosphere in the shape and size observed. At Venus, the region of exospheric proton cyclotron wave production may be restricted to the magnetosheath. The waves observed in the solar wind at Venus appear to be largely produced by the solar-wind-Venus interaction, with some waves at higher frequencies formed near the Sun and carried outward by the solar wind to Venus. These waves have some similarity to the expected properties of exospherically produced proton pickup waves but are characterized by magnetic connection to the bow shock or by a lack of correlation with local solar wind properties respectively. Any confusion of solar derived waves with exospherically derived ion pickup waves is not an issue at Mars because the solar-produced waves are generally at much higher frequencies than the local pickup waves and the solar waves should be mostly absorbed when convected to Mars distance as the proton cyclotron frequency in the plasma frame approaches the frequency of the solar-produced waves. In the Earth's polar cusp, the wave properties of ion cyclotron waves are quite variable. Spatial gradients in the magnetic field may cause this variation as the background field changes between the regions in which

  11. Runaway and moist greenhouse atmospheres and the evolution of earth and Venus (United States)

    Kasting, James F.


    For the case of fully moisture-saturated and cloud-free conditions, the present one-dimensional climate model for the response of an earthlike atmosphere to large solar flux increases notes the critical solar flux at which runaway greenhouse (total evaporation of oceans) occurs to be 1.4 times the present flux at the earth's orbit, almost independently of the CO2 content of the atmophere. The value is, however, sensitive to the H2O absorption coefficient in the 8-12 micron window. Venus oceans may have been lost early on due to rapid water vapor photodissociation, followed by hydrogen escape into space.

  12. Runaway and moist greenhouse atmospheres and the evolution of earth and Venus

    International Nuclear Information System (INIS)

    Kasting, J.F.


    For the case of fully moisture-saturated and cloud-free conditions, the present one-dimensional climate model for the response of an earthlike atmosphere to large solar flux increases notes the critical solar flux at which runaway greenhouse (total evaporation of oceans) occurs to be 1.4 times the present flux at the earth's orbit, almost independently of the CO2 content of the atmophere. The value is, however, sensitive to the H2O absorption coefficient in the 8-12 micron window. Venus oceans may have been lost early on due to rapid water vapor photodissociation, followed by hydrogen escape into space. 42 references

  13. Subduction on Venus and Implications for Volatile Cycling, Early Earth and Exoplanets (United States)

    Smrekar, S. E.; Davaille, A.; Mueller, N. T.; Dyar, M. D.; Helbert, J.; Barnes, H.


    Plate tectonics plays a key role in long-term climate evolution by cycling volatiles between the interior, surface and atmosphere. Subduction is a critical process. It is the first step in transitioning between a stagnant and a mobile lid, a means for conveying volatiles into the mantle, and a mechanism for creating felsic crust. Laboratory experiments using realistic rheology illuminate the deformation produced by plume-induced subduction (Davaille abstract). Characteristics include internal rifting and volcanism, external rift branches, with a partial arc of subduction creating a trench on the margins of the plume head, and an exterior flexural bulge with small strain extension perpendicular to the trench. These characteristics, along with a consistent gravity signature, occur at the two largest coronae (quasi-circular volcano-tectonic features) on Venus (Davaille et al. Nature Geos. 2017). This interpretation resolves a long-standing debate about the dual plume and subduction characteristics of these features. Numerous coronae also show signs of plume-induced subduction. At Astkhik Planum, subduction appears to have migrated beyond the margins of Selu Corona to create a 1600 km-long, linear subduction zone, along Vaidilute Rupes. The fractures that define Selu Corona merge with the trench to the north and a rift zone to the east, consistent with plume-induced subduction migrating outward from the corona. The lithosphere and crust are much thinner here than in other potential subduction zones. Subduction appears to have generated massive volcanism which could explain the 400 m elevation of the plateau. Within the plateau there are low-viscosity flow sets nearly 1000 km that may be associated with near infrared low emissivity in VIRTIS data. Unusual lava compositions might be indicative of recycling of CO2 or other volatiles into the lithosphere. Little evidence exists to illustrate how plate tectonics initiated on Earth, but Venus' high surface temperature makes

  14. Venus: The Atmosphere, Climate, Surface, Interior and Near-Space Environment of an Earth-Like Planet (United States)

    Taylor, Fredric W.; Svedhem, Håkan; Head, James W.


    This is a review of current knowledge about Earth's nearest planetary neighbour and near twin, Venus. Such knowledge has recently been extended by the European Venus Express and the Japanese Akatsuki spacecraft in orbit around the planet; these missions and their achievements are concisely described in the first part of the review, along with a summary of previous Venus observations. The scientific discussions which follow are divided into three main sections: on the surface and interior; the atmosphere and climate; and the thermosphere, exosphere and magnetosphere. These reports are intended to provide an overview for the general reader, and also an introduction to the more detailed topical surveys in the following articles in this issue, where full references to original material may be found.

  15. Active current sheets near the earth's bow shock

    International Nuclear Information System (INIS)

    Schwartz, S.J.; Kessel, R.L.; Brown, C.C.; Woolliscroft, L.J.C.; Dunlop, M.W.; Farrugia, C.J.; Hall, D.S.


    The authors present here an investigation of active current sheets observed by the AMPTE UK spacecraft near the Earth's bow shock, concentrating on their macroscopic features and geometry. Events selected primarily by flow directions which deviate substantially from the Sun-Earth line show similar characteristics, including their association with an underlying macroscopic current sheet and a hot central region whose flow direction is organized, at least in part, by location relative to the inferred initial intersection point between the current sheet and the bow shock. This region is flanked by edges which, according to a Rankine-Hugoniot analysis, are often fast shocks whose orientation is consistent with that expected if a bulge on the bow shock convected past the spacecraft. They have found the magnetosheath manifestations of these events which they study in detail. They suggest that these events are the direct result of the disruption and reformation of the bow shock by the passage of an interplanetary current sheet, most probably a tangential discontinuity

  16. Bow shock studies at Mercury, Venus, Earth, and Mars with applications to the solar-planetary interaction problem

    International Nuclear Information System (INIS)

    Slavin, J.A.


    A series of bow shock studies conducted for the purpose of investigating the interaction between the solar wind and the terrestrial planets is presented. Toward this end appropriate modeling techniques have been developed and applied to the bow wave observations at Venus, Earth, and Mars. For Mercury the measurements are so few in number that no accurate determination of shock shape was deemed possible. Flow solutions generated using the observed bow wave surface as a boundary condition in a single fluid variable obstacle shape gasdynamic model produced excellent fits to the measured width and shape of the earth's magnetosheath. This result and the observed ordering of shock shape and position by upstream sonic Mach number provide strong support for the validity of the gasdynamic approximation. At Mercury the application of earth type models to the individual Mariner 10 boundry crossings has led to the determination of an effective planetary magnetic moment of 6+-2 x 10 22 G-cm 3 . Consistent with the presence of a small terrestrial style magnetosphere, southward interplanetary magnetic fields were found to significantly reduce the solar wind stand-off distance most probably through the effects of dayside magnetic reconnection. For Venus the low altitude solar wind flow field derived from gasdynamic modeling of bow shock location and shape indicates that a fraction of the incident streamlines are absorbed by the neutral atmosphere near the ionopause; approximately 1% and 8%, respectively, in the solar maximum Pioneer Venus and solar minimum Venera measurements. Accordingly, it appears that cometary processes must be included in model calculations of the solar wind flow about Venus. At Mars the moderate height of the gasdynamic solar wind-obstacle interface and the weakness of the Martian ionosphere/atmosphere are found to be incompatible with a Venus type interaction

  17. Characterization of Earth as an exoplanet on the basis of VIRTIS-Venus Express data analysis. (United States)

    Oliva, Fabrizio; Piccioni, Giuseppe; D'Aversa, Emiliano; Bellucci, Giancarlo; Sindoni, Giuseppe; Grassi, Davide; Filacchione, Gianrico; Tosi, Federico; Capaccioni, Fabrizio


    The Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS, Piccioni et al., 2007) on board the Venus Express spacecraft observed the planet Earth several times in the course of the mission. In particular, a subset of 48 observations has been taken from a distance at which our planet is imaged at sub-pixel size, as exoplanets are observed using current technologies. We studied this full subset to understand which spectral signatures, related to different surface and cloud types, can be identified from the integrated planet spectrum. As expected, we found that the cloud coverage has a key role in the identification of surface features and that vegetation is very difficult to be detected. To validate our results we built a simple tool capable to simulate observations of an Earth-like planet as seen from a VIRTIS-like spectrometer in the 0.3 - 5.0 μm range. The illumination and viewing geometries, along with the spectrometer instantaneous field of view and spectral grid and sampling, can be defined by the user. The spectral endmembers used to generate the planet have been selected from an observation of Earth registered from the instrument VIRTIS on board the ESA mission Rosetta, with similar characteristics, during the third flyby of the spacecraft around our planet, occurred in November 2009. Hence, we simulated planets made of: vegetation, desert, ocean, water ice clouds and liquid water clouds. Using different amounts for each spectral class we inferred the percentages that are required to identify each class when all the spectral information is integrated into a single pixel. The outcome of this analysis confirms that clouds are not a negligible issue in the research for spectral signatures, in particular those related to the habitability of a planet and its climate conditions, even when the cloud coverage is not so high. Acknowledgements: This study has been performed within the WOW project financed by INAF and thanks to the support from the Italian Space

  18. Dynamics of the accumulation process of the Earth group of planets: Formation of the reverse rotation of Venus (United States)

    Koslov, N. N.; Eneyev, T. M.


    A numerical simulation of the process of formation of the terrestrial planets is carried within the framework of a new theory for the accumulation of planetary and satellite systems. The numerical simulation permitted determining the parameters of the protoplanetary disk from which Mercury, Venus and the Earth were formed as result of the evolution. The acquisition of a slow retrograde rotation for Venus was discovered during the course of the investigation, whereas Mercury and the Earth acquired direct rotation about their axes. Deviations of the semimajor axes of these three planets as well as the masses of the Earth and Venus from the true values are small as a rule (l 10%). It is shown that during the accumulation of the terrestrial planets, there existed a profound relationship between the process of formation of the orbits and masses of the planet and the process of formation of their rotation about their axes. Estimates are presented for the radii of the initial effective bodies and the time of evolution for the terrestrial accumulation zone.

  19. VESL: The Virtual Earth Sheet Laboratory for Ice Sheet Modeling and Visualization (United States)

    Cheng, D. L. C.; Larour, E. Y.; Quinn, J. D.; Halkides, D. J.


    We introduce the Virtual Earth System Laboratory (VESL), a scientific modeling and visualization tool delivered through an integrated web portal for dissemination of data, simulation of physical processes, and promotion of climate literacy. The current prototype leverages NASA's Ice Sheet System Model (ISSM), a state-of-the-art polar ice sheet dynamics model developed at the Jet Propulsion Lab and UC Irvine. We utilize the Emscripten source-to-source compiler to convert the C/C++ ISSM engine core to JavaScript, and bundled pre/post-processing JS scripts to be compatible with the existing ISSM Python/Matlab API. Researchers using VESL will be able to effectively present their work for public dissemination with little-to-no additional post-processing. This will allow for faster publication in peer-reviewed journals and adaption of results for educational applications. Through future application of this concept to multiple aspects of the Earth System, VESL has the potential to broaden data applications in the geosciences and beyond. At this stage, we seek feedback from the greater scientific and public outreach communities regarding the ease of use and feature set of VESL, as we plan its expansion, and aim to achieve more rapid communication and presentation of scientific results.

  20. VESL: The Virtual Earth Sheet Laboratory for Ice Sheet Modeling and Visualization (United States)

    Cheng, D. L. C.; Larour, E. Y.; Quinn, J. D.; Halkides, D. J.


    We present the Virtual Earth System Laboratory (VESL), a scientific modeling and visualization tool delivered through an integrated web portal. This allows for the dissemination of data, simulation of physical processes, and promotion of climate literacy. The current iteration leverages NASA's Ice Sheet System Model (ISSM), a state-of-the-art polar ice sheet dynamics model developed at the Jet Propulsion Lab and UC Irvine. We utilize the Emscripten source-to-source compiler to convert the C/C++ ISSM engine core to JavaScript, and bundled pre/post-processing JS scripts to be compatible with the existing ISSM Python/Matlab API. Researchers using VESL will be able to effectively present their work for public dissemination with little-to-no additional post-processing. Moreover, the portal allows for real time visualization and editing of models, cloud based computational simulation, and downloads of relevant data. This allows for faster publication in peer-reviewed journals and adaption of results for educational applications. Through application of this concept to multiple aspects of the Earth System, VESL is able to broaden data applications in the geosciences and beyond. At this stage, we still seek feedback from the greater scientific and public outreach communities regarding the ease of use and feature set of VESL. As we plan its expansion, we aim to achieve more rapid communication and presentation of scientific results.

  1. Reentry response of the lightweight radioisotope heater unit resulting from a Cassini Venus-Venus-Earth-Jupiter gravity assist maneuver accident

    International Nuclear Information System (INIS)


    Reentry analyses consisting of ablation response, thermal response and thermal stress response have been conducted on the Lightweight Radioisotope Heater Unit (LWRHU) for Cassini/Venus-Venus-Earth-Jupiter-Gravity-Assist (VVEJGA) reentry conditions. Sequential ablation analyses of the LWRHU aeroshell, and the fuel pellet have been conducted in reentry regimes where the aeroshell has been deemed to fail. The failure criterion for ablation is generally assumed to be recession corresponding to 75% and 100% of the wall thickness. The 75% recession failure criteria allows for uncertainties that result mainly because of the high energies involved in the VVEJGA reentries compared to orbital decay reentries. Risk evaluations should consider the fact that for shallow flight paths the unit may disassemble at high-altitude as a result of ablation or may remain intact with a clad that had been molten. Within the limitations of the methodologies and assumptions of the analyses, the results indicate that: (1) For a side-on stable LWRHU reentry, aeroshell ablation failures occur for all reentry angles. (2)For a side-on spinning LWRHU reentry, aeroshell ablation failures are minimal. (3) For the tumbling LWRHU reentry, the aeroshell survives for most angles. (4) For the thermostructural analyses, using both a 1% and 5% allowable strain, all reentry angles and orientations examined resulted in small localized failures, but aeroshell breach is not predicted for any case. The analyses included in this report concentrate on VVEJGA reentry scenarios. Analyses reported previously have demonstrated that the LWRHU has adequate design margin to survive reentry from orbital decay scenarios and most injection scenarios at speeds up to escape speeds. The exception is a narrow range of flight path angles that produce multiple skip trajectories which may have excessive ablation

  2. K-U-Th systematics of terrestrial igneous rocks for planetological comparisons: volcanic rocks of the Earth oceanic island arc and Venus surface material

    International Nuclear Information System (INIS)

    Nikolaeva, O.V.


    Principles of the formation o data base for 339 samples of oceanic island arc (OIA) igneous rocks of the Earth available in literature are described as well as of the formation of fresh rock sample, characteristics of this sample, and K-U-Th-systematics of the fresh igneous rocks of Earth OIA. Results of comparison of the Venus measured rocks and Earth OIA rocks by K, U, Th

  3. The comparison of element composition of Venus, Earth, Mars, and chondrites in the light of the Mendeleev Periodic Law

    International Nuclear Information System (INIS)

    Chuburkov, Yu.T.


    The share of free neutral atoms, N 0 , for all elements in Protoplanet nebula has been determined with the account of their abundance and physico-chemical properties. The linear dependence for the ratio of nonvolatile and volatile elements in chondrites and igneous rocks of the Earth on N 0 was obtained. The Mendeleev Periodic Law was used to obtain the proof of the existence of the hypothetical process of element magnetic separation in Protoplanet nebula. To this end the concentration ratios of element-analogous with different N 0 in the matters of Venus, Earth, Mars, and chondrites were compared. The data obtained are sufficient demonstration of the existence of the hypothetical process of element magnetic separation in Protoplanet nebula. With the account of the above said, it was shown that Shergotty and Tunguska meteorites by their relative elemental composition are close to Mars and asteroids, respectively. (author)

  4. Missions to Venus (United States)

    Titov, D. V.; Baines, K. H.; Basilevsky, A. T.; Chassefiere, E.; Chin, G.; Crisp, D.; Esposito, L. W.; Lebreton, J.-P.; Lellouch, E.; Moroz, V. I.; Nagy, A. F.; Owen, T. C.; Oyama, K.-I.; Russell, C. T.; Taylor, F. W.; Young, R. E.


    Venus has always been a fascinating objective for planetary studies. At the beginning of the space era Venus became one of the first targets for spacecraft missions. Our neighbour in the solar system and, in size, the twin sister of Earth, Venus was expected to be very similar to our planet. However, the first phase of Venus spacecraft exploration in 1962-1992 by the family of Soviet Venera and Vega spacecraft and US Mariner, Pioneer Venus, and Magellan missions discovered an entirely different, exotic world hidden behind a curtain of dense clouds. These studies gave us a basic knowledge of the conditions on the planet, but generated many more questions concerning the atmospheric composition, chemistry, structure, dynamics, surface-atmosphere interactions, atmospheric and geological evolution, and the plasma environment. Despite all of this exploration by more than 20 spacecraft, the "morning star" still remains a mysterious world. But for more than a decade Venus has been a "forgotten" planet with no new missions featuring in the plans of the world space agencies. Now we are witnessing the revival of interest in this planet: the Venus Orbiter mission is approved in Japan, Venus Express - a European orbiter mission - has successfully passed the selection procedure in ESA, and several Venus Discovery proposals are knocking at the doors of NASA. The paper presents an exciting story of Venus spacecraft exploration, summarizes open scientific problems, and builds a bridge to the future missions.

  5. Implications of /sup 36/A excess on Venus

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, M [Tokyo Univ. (Japan). Inst. of Space and Aeronautical Science


    The finding of /sup 36/A excess on Venus by the mass-spectroscopic measurement of the Venus Pioneer appears to endorse the more rapid accretion theory of Venus than the Earth and the secondary origin of the terrestrial atmosphere.

  6. Interactions between ice sheets, climate and the solid Earth

    NARCIS (Netherlands)

    Berg, J. van den


    The melting of ice sheets in response to increasing temperatures is an important contribution to present day sea level rise. To predict the amount of sea level rise and to assess its impact on populated coastal regions, an increased understanding of the physical processes governing ice sheets is

  7. Buffered and unbuffered dike emplacement on Earth and Venus - Implications for magma reservoir size, depth, and rate of magma replenishment (United States)

    Parfitt, E. A.; Head, J. W., III


    Models of the emplacement of lateral dikes from magma chambers under constant (buffered) driving pressure conditions and declining (unbuffered) driving pressure conditions indicate that the two pressure scenarios lead to distinctly different styles of dike emplacement. In the unbuffered case, the lengths and widths of laterally emplaced dikes will be severely limited and the dike lengths will be highly dependent on chamber size; this dependence suggests that average dike length can be used to infer the dimensions of the source magma reservoir. On Earth, the characteristics of many mafic-dike swarms suggest that they were emplaced in buffered conditions (e.g., the Mackenzie dike swarm in Canada and some dikes within the Scottish Tertiary). On Venus, the distinctive radial fractures and graben surrounding circular to oval features and edifices on many size scales and extending for hundreds to over a thousand km are candidates for dike emplacement in buffered conditions.

  8. Lunar and Planetary Science XXXV: Venus (United States)


    The session "Venus" included the following reports:Preliminary Study of Laser-induced Breakdown Spectroscopy (LIBS) for a Venus Mission; Venus Surface Investigation Using VIRTIS Onboard the ESA/Venus Express Mission; Use of Magellan Images for Venus Landing Safety Assessment; Volatile Element Geochemistry in the Lower Atmosphere of Venus; Resurfacing Styles and Rates on Venus: Assessment of 18 Venusian Quadrangles; Stereo Imaging of Impact Craters in the Beta-Atla-Themis (BAT) Region, Venus; Depths of Extended Crater-related Deposits on Venus ; Potential Pyroclastic Deposit in the Nemesis Tessera (V14) Quadrangle of Venus; Relationship Between Coronae, Regional Plains and Rift Zones on Venus, Preliminary Results; Coronae of Parga Chasma, Venus; The Evolution of Four Volcano/Corona Hybrids on Venus; Calderas on Venus and Earth: Comparison and Models of Formation; Venus Festoon Deposits: Analysis of Characteristics and Modes of Emplacement; Topographic and Structural Analysis of Devana Chasma, Venus: A Propagating Rift System; Anomalous Radial Structures at Irnini Mons, Venus: A Parametric Study of Stresses on a Pressurized Hole; Analysis of Gravity and Topography Signals in Atalanta-Vinmara and Lavinia Planitiae Canali are Lava, Not River, Channels; and Formation of Venusian Channels in a Shield Paint Substrate.

  9. Stability of Basalt plus Anhydrite plus Calcite at HP-HT: Implications for Venus, the Earth and Mars (United States)

    Martin, A. M.; Righter, K.; Treiman, A. H.


    "Canali" observed at Venus surface by Magellan are evidence for very long melt flows, but their composition and origin remain uncertain. The hypothesis of water-rich flow is not reasonable regarding the temperature at Venus surface. The length of these channels could not be explained by a silicate melt composition but more likely, by a carbonate-sulfate melt which has a much lower viscosity (Kargel et al 1994). One hypothesis is that calcite CaCO3 and anhydrite CaSO4 which are alteration products of basalts melted during meteorite impacts. A famous example recorded on the Earth (Chicxulub) produced melt and gas rich in carbon and sulfur. Calcite and sulfate evaporites are also present on Mars surface, associated with basalts. An impact on these materials might release C- and S-rich melt or fluid. Another type of planetary phenomenon (affecting only the Earth) might provoke a high pressure destabilization of basalt+anhydrite+calcite. Very high contents of C and S are measured in some Earth s magmas, either dissolved or in the form of crystals (Luhr 2008). As shown by the high H content and high fO2 of primary igneous anhydrite-bearing lavas, the high S content in their source may be explained by subduction of an anhydrite-bearing oceanic crust, either directly (by melting followed by eruption) or indirectly (by release of S-rich melt or fluid that metasomatize the mantle) . Calcite is a major product of oceanic sedimentation and alteration of the crust. Therefore, sulfate- and calcite-rich material may be subducted to high pressures and high temperatures (HP-HT) and release S- and C-rich melts or fluids which could influence the composition of subduction zone lavas or gases. Both phenomena - meteorite impact and subduction - imply HP-HT conditions - although the P-T-time paths are different. Some HP experimental/theoretical studies have been performed on basalt/eclogite, calcite and anhydrite separately or on a combination of two. In this study we performed piston

  10. Current disruptions in the near-earth neutral sheet region

    International Nuclear Information System (INIS)

    Liu, A.T.Y.; Anderson, B.J.; Takahashi, K.; Zanetti, L.J.; McEntire, R.W.; Potemra, T.A.; Lopez, R.E.; Klumpar, D.M.; Greene, E.M.; Strangeway, R.


    Observations from the Charge Composition Explorer in 1985 and 1986 revealed fifteen current disruption events in which the magnetic field fluctuations were large and their onsets coincided well with ground onsets of substorm expansion or intensification. Over the disruption interval, the local magnetic field can change by as much as a factor of ∼7. In general, the stronger the current buildup and the closer the neutral sheet, the larger the resultant field change. There is also a tendency for a larger subsequent enhancement in the AE index with a stronger current buildup prior to current disruption. For events with good pitch angle coverage and extended observation in the neutral sheet region the authors find that the particle pressure increases toward the disruption onset and decreases afterward. Just prior to disruption, either the total particle pressure is isotropic, or the perpendicular component (P perpendicular ) dominates the parallel component (P parallel ), the plasma beta is seen to be as high as ∼70, and the observed plasma pressure gradient at the neutral sheet is large along the tail axis. The deduced local current density associated with pressure gradient is ∼27-80 n/Am 2 and is ∼85-105 mA/m when integrated over the sheet thickness. They infer from these results that just prior to the onset of current disruption, (1) an extremely thin current sheet requiring P parallel > P perpendicular for stress balance does not develop at these distances, (2) the thermal ion orbits are in the chaotic or Speiser regime while the thermal electrons are in the adiabatic regime and, in one case, exhibit peaked fluxes perpendicular to the magnetic field, thus implying no electron orbit chaotization to possibly initiate ion tearing instability, and (3) the neutral sheet is in the unstable regime specified by the cross-field current instability

  11. Venus: Our Misunderstood Sister (United States)

    Dyar, Darby; Smrekar, Suzanne E.


    Of all known bodies in the galaxy, Venus is the most Earth-like in size, composition, surface age, and incoming energy. As we search for habitable planets around other stars, learning how Venus works is critical to understanding how Earth evolved to host life, and whether rocky exoplanets in stars’ habitable zones are faraway Earths or Venuses. What caused Venus’ path to its present hostile environment, devoid of oceans, magnetic field, and plate tectonics? This talk reviews recent mission results, presents key unresolved science questions, and describes proposed missions to answer these questions.Despite its importance in understanding habitability, Venus is the least-explored rocky planet, last visited by NASA in 1994. Fundamental, unanswered questions for Venus include: 1. How did Venus evolve differently? 2. How have volatiles shaped its evolution? 3. Did Venus catastrophically resurface? 4. What geologic processes are active today? 5. Why does Venus lack plate tectonics?On Earth, plate tectonics supports long-term climate stability and habitability by cycling volatiles in and out of the mantle. New information on planetary volatiles disputes the long-held notion that Venus’ interior is dry; several lines of evidence indicate that planets start out wet, creating long-term atmospheres by outgassing. ESA’s Venus Express mission provided evidence for recent and ongoing volcanism and for Si-rich crust like Earth’s continents. New hypotheses suggest that lithospheric temperature can explain why Venus lacks tectonics, and are consistent with present-day initiation of subduction on Venus.New data are needed to answer these key questions of rocky planet evolution. Orbital IR data can be acquired through windows in Venus’ CO2-rich atmosphere, informing surface mineralogy, rock types, cloud variations, and active volcanism. High resolution gravity, radar, and topography data along with mineralogical constraints must be obtained. Mineralogy and geochemistry

  12. Continuous Planetary Polar Observation from Hybrid Pole-Sitters at Venus, Earth, and Mars

    NARCIS (Netherlands)

    Heiligers, M.J.; van den Oever (student TUDelft), Tom; Ceriotti, M.; Mulligan, P.; McInnes, CR


    A pole-sitter is a satellite that is stationed along the polar axis of the Earth, or any other planet, to generate a continuous, hemispherical view of the planet’s polar regions. In order to maintain such a vantage point, a low-thrust propulsion system is required to counterbalance the gravitational

  13. On the importance of the albedo parameterization for the mass balance of the Greenland ice sheet in EC-Earth

    NARCIS (Netherlands)

    Helsen, Michiel M.; van de Wal, Roderik S. W.; Reerink, Thomas J.; Bintanja, Richard; Madsen, Marianne S.; Yang, Shuting; Li, Qiang; Zhang, Qiong


    The albedo of the surface of ice sheets changes as a function of time due to the effects of deposition of new snow, ageing of dry snow, bare ice exposure, melting and run-off. Currently, the calculation of the albedo of ice sheets is highly parameterized within the earth system model EC-Earth by

  14. Sea-level and solid-Earth deformation feedbacks in ice sheet modelling (United States)

    Konrad, Hannes; Sasgen, Ingo; Klemann, Volker; Thoma, Malte; Grosfeld, Klaus; Martinec, Zdeněk


    The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.

  15. A new research project on the interaction of the solid Earth and the Antarctic Ice Sheet (United States)

    Fukuda, Y.; Nishijima, J.; Kazama, T.; Nakamura, K.; Doi, K.; Suganuma, Y.; Okuno, J.; Araya, A.; Kaneda, H.; Aoyama, Y.


    A new research project of "Grant-in-Aid for Scientific Research on Innovative Areas" funded by JSPS (Japan Society for the Promotion of Science) has recently been launched. The title of the project is "Giant reservoirs of heat/water/material: Global environmental changes driven by Southern Ocean and Antarctic Ice Sheet", and as a five years project, is aiming to establish a new research area for Antarctic environmental system science. The project consists of 7 research topics, including Antarctic ice sheet and Southern ocean sciences, new observation methodology, modeling and other interdisciplinary topics, and we are involved in the topic A02-2, "Interaction of the solid Earth and the Antarctic Ice Sheet". The Antarctic ice sheet, which relates to the global climate changes through the sea level rise and ocean circulation, is an essential element of the Earth system for predicting the future environment changes. Thus many studies of the ice sheet changes have been conducted by means of geomorphological, geological, geodetic surveys, as well as satellite gravimetry and satellite altimetry. For these studies, one of the largest uncertainties is the effects of GIA. Therefore, GIA as a key to investigate the interaction between the solid Earth and the ice sheet changes, we plan to conduct geomorphological, geological and geodetic surveys in the inland mountain areas and the coastal areas including the surrounding areas of a Japanese station Syowa in East Antarctica, where the in-situ data for constraining GIA models are very few. Combining these new observations with other in-site data, various satellite data and numerical modeling, we aim to estimating a precise GIA model, constructing a reliable ice melting history after the last glacial maximum and obtaining the viscoelastic structure of the Earth's interior. In the presentation, we also show the five years research plans as well. This study was partially supported by JSPS KAKENHI Grant No. 17H06321.

  16. Ion flow ripples in the Earth's plasma sheet (United States)

    De Spiegeleer, Alexandre; Hamrin, Maria; Pitkänen, Timo; Norqvist, Patrik; Mann, Ingrid


    For a long time, magnetotail flows were considered rather smooth and laminar, and primarily dominated by a simple convection flow pattern. However, in the early 90's, high speed bursty bulk flows (BBFs) were discovered and found to commonly perturb the underlying convection flows. In addition, there are other disturbances complicating the magnetotail flow pattern. Instabilities such as the Kelvin-Helmholz instability and the kink instability can cause different types of magnetic field oscillations, such as field line resonances. It is expected that ions will follow these oscillations if the typical time and length scales are larger than the gyroperiod and gyroradius of the ions. Though low-velocity sloshing and ripple disturbances of the average magnetotail convection flows have been observed, their connection with magnetic field oscillations is not fully understood. Furthermore, when studying BFFs, these "Ion Flow Ripples" (IFRs) are often neglected, dismissed as noise or can even erroneously be identified as BBFs. It is therefore of utter importance to find out and understand the role of IFRs in magnetotail dynamics. In a statistical investigation, we use several years of Cluster plasma sheet data to study the low-speed flows in the magnetotail. We investigate different types of IFRs, study their occurrence, and discuss their possible causes.

  17. Bi-directional electrons in the near-Earth plasma sheet

    Directory of Open Access Journals (Sweden)

    K. Shiokawa


    Full Text Available We have studied the occurrence characteristics of bi-directional electron pitch angle anisotropy (enhanced flux in field-aligned directions, F^ /F|| > 1.5 at energies of 0.1–30 keV using plasma and magnetic field data from the AMPTE/IRM satellite in the near-Earth plasma sheet. The occurrence rate increases in the tailward direction from XGSM = - 9 RE to - 19 RE . The occurrence rate is also enhanced in the midnight sector, and furthermore, whenever the elevation angle of the magnetic field is large while the magnetic field intensity is small, B ~ 15 nT. From these facts, we conclude that the bi-directional electrons in the central plasma sheet are produced mainly in the vicinity of the neutral sheet and that the contribution from ionospheric electrons is minor. A high occurrence is also found after earthward high-speed ion flows, suggesting Fermi-type field-aligned electron acceleration in the neutral sheet. Occurrence characteristics of bi-directional electrons in the plasma sheet boundary layer are also discussed.Key words. Magnetospheric physics (magnetospheric configuration and dynamics; magnetotail; plasma sheet

  18. Geology of Venus

    International Nuclear Information System (INIS)

    Basilevsky, A.T.; Head, J.W. III.


    This paper summarizes the emerging picture of the surface of Venus provided by high-resolution earth-based radar telescopes and orbital radar altimetry and imaging systems. The nature and significance of the geological processes operating there are considered. The types of information needed to complete the picture are addressed. 71 references

  19. Is the Near-Earth Current Sheet Prior to Reconnection Unstable to Tearing Mode?

    International Nuclear Information System (INIS)

    Xin-Hua, Wei; Jin-Bin, Cao; Guo-Cheng, Zhou; Hui-Shan, Fu


    The tearing mode instability plays a key role in the triggering process of reconnection. The triggering collisionless tearing mode instability has been theoretically and numerically analyzed by many researchers. However, due to the difficulty in obtaining the observational wave number, it is still unknown whether the tearing mode instability can be excited in an actual plasma sheet prior to reconnection onset. Using the data from four Cluster satellites prior to a magnetospheric reconnection event on 13 September 2002, we utilized the wave telescope technique to obtain the wave number which corresponds to the peak of power spectral density. The wavelength is about 18R E and is consistent with previous theoretic and numerical results. After substituting the wave vector and other necessary parameters of the observed current sheet into the triggering condition of tearing mode instability, we find that the near-Earth current sheet prior to reconnection is unstable to tearing mode. (geophysics, astronomy, and astrophysics)

  20. Venus magnetosphere

    International Nuclear Information System (INIS)

    Podgornyj, I.M.


    Some peculiarities of the structure of the Venus magnetosphere are considered. A Swedish scientist H. Alfven supposes that nebular bodies with ionospheric shelles of the type of Venus atmosphere possess induced magnetospheres with dragged magnetic tails. In the Institute of Space Research of the USSR Academy of Sciences experiments on the modelling of such magnetosphere are performed. The possibility of formation of the shock wave in the body with plasma shell in the absence of the proper magnetic shell is proved. The cosmic ''Pioneer-Venus'' equipment is used to obtain such a distribution of the magnetic field depending on the distance to Venus as it was predicted by the laboratory model

  1. Models of the Origin of the Moon; Early History of Earth and Venus (The Role of Tidal Friction in the Formation of Structure of the Planets) (United States)

    Pechernikova, G. V.; Ruskol, E. L.


    An analytical review of the two contemporary models of the origin of the Earth-Moon system in the process of solid-body accretion is presented: socalled co-accretion model and as a result of a gigantic collision with a planetarysized body (i.e. a megaimpact model). The co-accretion model may be considered as a universal mechanism of the origin of planetary satellites, that accompanies the growth of planets. We consider the conditions of this process that secure the sufficient mass and angular momentum of the protolunar disk such as macroimpacts (collisions with the bodies of asteroidal size) into the mantle of the growing Earth, the role of an lunar embryo growing on the geocentric lunar orbit, its tidal interaction with the Earth. The most difficult remains the explanation of chemical composition of the Moon. Different scenarios of megaimpact are reviewed, in which the Earth's mantle is destroyed and the protosatellite disk is filled mainly by its fragments. There is evaluated amount of energy transferred to the Earth from the evolution of lunar orbit. It is an order of magnitude lower than three main sources of the Earth's interior heat, i.e. the heat of accretion, the energy of differentiation and the heat of radioactive sources. The tidal heating of the Venus's interiors could reach 1000K by slowing its axial initial rotation, in addition to three sources mentioned above in concern of the Earth.

  2. Incorporation of ice sheet models into an Earth system model: Focus on methodology of coupling (United States)

    Rybak, Oleg; Volodin, Evgeny; Morozova, Polina; Nevecherja, Artiom


    Elaboration of a modern Earth system model (ESM) requires incorporation of ice sheet dynamics. Coupling of an ice sheet model (ICM) to an AOGCM is complicated by essential differences in spatial and temporal scales of cryospheric, atmospheric and oceanic components. To overcome this difficulty, we apply two different approaches for the incorporation of ice sheets into an ESM. Coupling of the Antarctic ice sheet model (AISM) to the AOGCM is accomplished via using procedures of resampling, interpolation and assigning to the AISM grid points annually averaged meanings of air surface temperature and precipitation fields generated by the AOGCM. Surface melting, which takes place mainly on the margins of the Antarctic peninsula and on ice shelves fringing the continent, is currently ignored. AISM returns anomalies of surface topography back to the AOGCM. To couple the Greenland ice sheet model (GrISM) to the AOGCM, we use a simple buffer energy- and water-balance model (EWBM-G) to account for orographically-driven precipitation and other sub-grid AOGCM-generated quantities. The output of the EWBM-G consists of surface mass balance and air surface temperature to force the GrISM, and freshwater run-off to force thermohaline circulation in the oceanic block of the AOGCM. Because of a rather complex coupling procedure of GrIS compared to AIS, the paper mostly focuses on Greenland.

  3. On the importance of the albedo parameterization for the mass balance of the Greenland ice sheet in EC-Earth

    NARCIS (Netherlands)

    Helsen, Michiel M.; Van De Wal, Roderik S.W.; Reerink, Thomas J.; Bintanja, Richard; Madsen, Marianne S.; Yang, Shuting; Li, Qiang; Zhang, Qiong


    The albedo of the surface of ice sheets changes as a function of time due to the effects of deposition of new snow, ageing of dry snow, bare ice exposure, melting and run-off. Currently, the calculation of the albedo of ice sheets is highly parameterized within the earth system model ECEarth by

  4. Distribution of energetic oxygen and hydrogen in the near-Earth plasma sheet (United States)

    Kronberg, E. A.; Grigorenko, E. E.; Haaland, S. E.; Daly, P. W.; Delcourt, D. C.; Luo, H.; Kistler, L. M.; Dandouras, I.


    The spatial distributions of different ion species are useful indicators for plasma sheet dynamics. In this statistical study based on 7 years of Cluster observations, we establish the spatial distributions of oxygen ions and protons at energies from 274 to 955 keV, depending on geomagnetic and solar wind (SW) conditions. Compared with protons, the distribution of energetic oxygen has stronger dawn-dusk asymmetry in response to changes in the geomagnetic activity. When the interplanetary magnetic field (IMF) is directed southward, the oxygen ions show significant acceleration in the tail plasma sheet. Changes in the SW dynamic pressure (Pdyn) affect the oxygen and proton intensities in the same way. The energetic protons show significant intensity increases at the near-Earth duskside during disturbed geomagnetic conditions, enhanced SW Pdyn, and southward IMF, implying there location of effective inductive acceleration mechanisms and a strong duskward drift due to the increase of the magnetic field gradient in the near-Earth tail. Higher losses of energetic ions are observed in the dayside plasma sheet under disturbed geomagnetic conditions and enhanced SW Pdyn. These observations are in agreement with theoretical models.

  5. The Plasma Sheet as Natural Symmetry Plane for Dipolarization Fronts in the Earth's Magnetotail (United States)

    Frühauff, D.; Glassmeier, K.-H.


    In this work, observations of multispacecraft mission Time History of Events and Macroscale Interactions during Substorms are used for statistical investigation of dipolarization fronts in the near-Earth plasma sheet of the magnetotail. Using very stringent criteria, 460 events are detected in almost 10 years of mission data. Minimum variance analysis is used to determine the normal directions of the phase fronts, providing evidence for the existence of a natural symmetry of these phenomena, given by the neutral sheet of the magnetotail. This finding enables the definition of a local coordinate system based on the Tsyganenko model, reflecting the intrinsic orientation of the neutral sheet and, therefore, the dipolarization fronts. In this way, the comparison of events with very different background conditions is improved. Through this study, the statistical results of Liu, Angelopoulos, Runov, et al. (2013) are both confirmed and extended. In a case study, the knowledge of this plane of symmetry helps to explain the concave curvature of dipolarization fronts in the XZ plane through phase propagation speeds of magnetoacoustic waves. A second case study is presented to determine the central current system of a passing dipolarization front through a constellation of three spacecraft. With this information, a statistical analysis of spacecraft observations above and below the neutral sheet is used to provide further evidence for the neutral sheet as the symmetry plane and the central current system. Furthermore, it is shown that the signatures of dipolarization fronts are under certain conditions closely related to that of flux ropes, indicating a possible relationship between these two transient phenomena.

  6. Reconstruction of the Greenland ice sheet dynamics in a fully coupled Earth System Model (United States)

    Rybak, Oleg; Volodin, Evgeny; Huybrechts, Philippe


    Earth system models (ESMs) are undoubtedly effective tools for studying climate dynamics. Incorporation of evolving ice sheets to ESMs is a challenging task because response times of the climate system and of ice sheets differ by several orders of magnitude. Besides, AO GCMs operate on spatial and temporal resolutions substantially differing from those of ice sheet models (ICMs). Therefore elaboration of an effective coupling methodology of an AO GCM and an ICM is the key problem of an ESM construction and utilization. Several downscaling strategies of varying complexity exist now of data exchange between modeled climate system and ice sheets. Application of a particular strategy depends on the research objectives. In our view, the optimum approach for model studying of significant environmental changes (e.g. glacial/interglacial transitions) when ice sheets undergo substantial evolution of geometry and volume would be an asynchronous coupling. The latter allows simulation in the interactive way of growth and decay of ice sheets in the changing climatic conditions. In the focus of the presentation, is the overview of coupling aspects of an AO GCM INMCM32 elaborated in the Institute of Numerical Mathematics (Moscow, Russia) to the Greenland ice sheet model (GrISM, Vrije Uninersiteit Brussel, Belgium). To provide interactive coupling of INMCM32 (spatial resolution 5°×4°, 21 vertical layers and temporal resolution 6 min. in the atmospheric block) and GrISM (spatial resolution 20×20 km, 51 vertical layers and 1 yr temporal resolution), we employ a special energy- and water balance model (EWBM-G), which serves as a buffer providing effective data exchange between INMCM32 and GrISM. EWBM-G operates in a rectangle domain including Greenland. Transfer of daily meanings of simulated climatic variables (air surface temperature and specific humidity) is provided on the lateral boundarias of the domain and inside the domain (sea level air pressure, wind speed and total

  7. Near-earth Thin Current Sheets and Birkeland Currents during Substorm Growth Phase

    International Nuclear Information System (INIS)

    Sorin Zaharia; Cheng, C.Z.


    Two important phenomena observed during the magnetospheric substorm growth phase are modeled: the formation of a near-Earth (|X| ∼ 9 R E ) thin cross-tail current sheet, as well as the equatorward shift of the ionospheric Birkeland currents. Our study is performed by solving the 3-D force-balance equation with realistic boundary conditions and pressure distributions. The results show a cross-tail current sheet with large current (J φ ∼ 10 nA/m 2 ) and very high plasma β (β ∼ 40) between 7 and 10 R E . The obtained region-1 and region-2 Birkeland currents, formed on closed field lines due to pressure gradients, move equatorward and become more intense (J parallel max ∼ 3 (micro)A/m 2 ) compared to quiet times. Both results are in agreement with substorm growth phase observations. Our results also predict that the cross-tail current sheet maps into the ionosphere in the transition region between the region-1 and region-2 currents

  8. On the importance of the albedo parameterization for the mass balance of the Greenland ice sheet in EC-Earth

    Directory of Open Access Journals (Sweden)

    M. M. Helsen


    Full Text Available The albedo of the surface of ice sheets changes as a function of time due to the effects of deposition of new snow, ageing of dry snow, bare ice exposure, melting and run-off. Currently, the calculation of the albedo of ice sheets is highly parameterized within the earth system model EC-Earth by taking a constant value for areas with thick perennial snow cover. This is an important reason why the surface mass balance (SMB of the Greenland ice sheet (GrIS is poorly resolved in the model. The purpose of this study is to improve the SMB forcing of the GrIS by evaluating different parameter settings within a snow albedo scheme. By allowing ice-sheet albedo to vary as a function of wet and dry conditions, the spatial distribution of albedo and melt rate improves. Nevertheless, the spatial distribution of SMB in EC-Earth is not significantly improved. As a reason for this, we identify omissions in the current snow albedo scheme, such as separate treatment of snow and ice and the effect of refreezing. The resulting SMB is downscaled from the lower-resolution global climate model topography to the higher-resolution ice-sheet topography of the GrIS, such that the influence of these different SMB climatologies on the long-term evolution of the GrIS is tested by ice-sheet model simulations. From these ice-sheet simulations we conclude that an albedo scheme with a short response time of decaying albedo during wet conditions performs best with respect to long-term simulated ice-sheet volume. This results in an optimized albedo parameterization that can be used in future EC-Earth simulations with an interactive ice-sheet component.

  9. Gravity field of Venus - A preliminary analysis (United States)

    Phillips, R. J.; Sjogren, W. L.; Abbott, E. A.; Smith, J. C.; Wimberly, R. N.; Wagner, C. A.


    The gravitational field of Venus obtained by tracking the Pioneer Venus Orbiter is examined. For each spacecraft orbit, two hours of Doppler data centered around periapsis were used to estimate spacecraft position and velocity and the velocity residuals obtained were spline fit and differentiated to produce line of sight gravitational accelerations. Consistent variations in line of sight accelerations from orbit to orbit reveal the presence of gravitational anomalies. A simulation of isostatic compensation for an elevated region on the surface of Venus indicates that the mean depth of compensation is no greater than about 100 km. Gravitational spectra obtained from a Fourier analysis of line of sight accelerations from selected Venus orbits are compared to the earth's gravitational spectrum and spherical harmonic gravitational potential power spectra of the earth, the moon and Mars. The Venus power spectrum is found to be remarkably similar to that of the earth, however systematic variations in the harmonics suggest differences in dynamic processes or lithospheric behavior.

  10. Effect of microalloying with rare-earth on recrystallization behaviour and damping properties of Mg sheets

    International Nuclear Information System (INIS)

    Ma, Ning; Peng, Qiuming; Pan, Junling; Li, Hui; Xiao, Wenlong


    Highlights: • Rare earth additions accelerate recovery, but retard recrystallization. • Internal peak at mediate temperatures corresponds to grain boundary relaxation. • Internal peak at elevated temperature is a recrystallization peak. • Grain size, basal texture and dislocation density affect damping remarkably. - Abstract: The effect of a small amount of rare earth elements (RE: Nd and Dy, 0.5 wt.%) on recrystallization behaviour, microstructural evolution and damping properties of deformed Mg sheets have been investigated. The recrystallization behaviour was analyzed in terms of the Johnson–Mehl–Avrami–Kolmogorov model via the variation of microhardness. The Avrami exponent of pure Mg sheet ranged from 1.02 to 1.16, and it was reduced by adding REs. The acceleration of recovery and retardation of recrystallization were detected by the presence of REs. Three point bending was carried out to assess damping properties. At the temperature of ∼150 °C, the damping peak corresponds to grain boundary relaxation, which was affected by grain size, basal texture and the variation of dislocation density on basal plane. At elevated temperatures, a non-thermal activated peak was mainly dependent upon annealing condition, where its height and temperature were increased by adding REs, assigning to be a recrystallization peak

  11. Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat (United States)

    Konrad, Hannes; Sasgen, Ingo; Pollard, David; Klemann, Volker


    The West Antarctic Ice Sheet (WAIS) is assumed to be inherently unstable because it is grounded below sea level in a large part, where the bedrock deepens from today's grounding line towards the interior of the ice sheet. Idealized simulations have shown that bedrock uplift due to isostatic adjustment of the solid Earth and the associated sea-level fall may stop the retreat of such a marine-based ice sheet (Gomez et al., 2012). Here, we employ a coupled model for ice-sheet dynamics and solid-Earth dynamics, including a gravitationally consistent description of sea level, to investigate the influence of the viscoelastic Earth structure on the WAIS' future stability (Konrad et al. 2015). For this, we start from a steady-state condition for the Antarctic Ice Sheet close to present-day observations and apply atmospheric and oceanic forcing of different strength to initiate the retreat of the WAIS and investigate the effect of the viscoelastic deformation on the ice evolution for a range of solid-Earth rheologies. We find that the climate forcing is the primary control on the occurrence of the WAIS collapse. However, for moderate climate forcing and a weak solid-Earth rheology associated with the West Antarctic rift system (asthenosphere viscosities of 3x10^19 Pa s or less), we find that the combined effect of bedrock uplift and gravitational sea-level fall limits the retreat to the Amundsen Sea embayment on millennial time scales. In contrast, a stiffer Earth rheology yields a collapse under these conditions. Under a stronger climate forcing, weak Earth structures do not prevent the WAIS collapse; however, they produce a delay of up to 5000 years in comparison to a stiffer solid-Earth rheology. In an additional experiment, we test the impact of sea-level rise from an assumed fast deglaciation of the Greenland Ice Sheet. In cases when the climatic forcing is too weak to force WAIS collapse by itself, the additional rise in sea-level leads to disintegration of the WAIS

  12. Meeting Venus (United States)

    Sterken, Christiaan; Aspaas, Per Pippin


    On 2-3 June 2012, the University of Tromsoe hosted a conference about the cultural and scientific history of the transits of Venus. The conference took place in Tromsoe for two very specific reasons. First and foremost, the last transit of Venus of this century lent itself to be observed on the disc of the Midnight Sun in this part of Europe during the night of 5 to 6 June 2012. Second, several Venus transit expeditions in this region were central in the global enterprise of measuring the scale of the solar system in the eighteenth century. The site of the conference was the Nordnorsk Vitensenter (Science Centre of Northern Norway), which is located at the campus of the University of Tromsoe. After the conference, participants were invited to either stay in Tromsoe until the midnight of 5-6 June, or take part in a Venus transit voyage in Finnmark, during which the historical sites Vardoe, Hammerfest, and the North Cape were to be visited. The post-conference program culminated with the participants observing the transit of Venus in or near Tromsoe, Vardoe and even from a plane near Alta. These Proceedings contain a selection of the lectures delivered on 2-3 June 2012, and also a narrative description of the transit viewing from Tromsoe, Vardoe and Alta. The title of the book, Meeting Venus, refers the title of a play by the Hungarian film director, screenwriter and opera director Istvan Szabo (1938-). The autobiographical movie Meeting Venus (1991) directed by him is based on his experience directing Tannhauser at the Paris Opera in 1984. The movie brings the story of an imaginary international opera company that encounters a never ending series of difficulties and pitfalls that symbolise the challenges of any multicultural and international endeavour. As is evident from the many papers presented in this book, Meeting Venus not only contains the epic tales of the transits of the seventeenth, eighteenth and nineteenth centuries, it also covers the conference

  13. Response of earth's atmosphere to increases in solar flux and implications for loss of water from Venus

    International Nuclear Information System (INIS)

    Kasting, J.F.; Pollack, J.B.; Ackerman, T.P.


    A one-dimensional radiative-convective model is used to compute temperature and water vapor profiles as functions of solar flux for an earthlike atmosphere. The troposphere is assumed to be fully saturated, with a moist adiabatic lapse rate, and changes in cloudiness are neglected. Predicted surface temperatures increase monotonically from -1 to 111 C as the solar flux is increased from 0.81 to 1.45 times its present value. The results imply that the surface temperature of a primitive water-rich Venus should have been at least 80-100 C and may have been much higher. Water vapor should have been a major atmospheric constituent at all altitudes, leading to the rapid hydrodynamic escape of hydrogen. The oxygen left behind by this process was presumably consumed by reactions with reduced minerals in the crust. 43 references

  14. A practical approach to the disposal of highly toxic and long-lived spent nuclear fuel waste between Venus and Earth

    International Nuclear Information System (INIS)

    Ehricke, K.A.


    Extraterrestrial disposal, while not the only alternative, nevertheless assures definite and irreversible removal of the most toxic and long-lived waste from the biosphere. The disposal 'site' should lie at minimum safe transfer energy level. Primary candidate is the space between Venus and Earth. The number of propulsion phases should be a minimum, preferably only one. Lunar gravity assist can be helpful to achieve higher inclination of the heliocentric orbit relative to the ecliptic. Solidified spent fuel isotopes and actinides, sufficient to reduce the residual terrestrial waste to the radiation level of natural uranium deposits after 30 to 40 yr instead of 1000 to 1500 yr, is deposited into heliocentric orbits. Transportation systems, requirements, costs and the associated socio-economic benefit potentials of an environmentally more benign and a more vigorous nuclear power generation program are presented. Prior to solidification, an interim storage of 10 yr, following removal from the reactor, may be required. The Shuttle, with one Orbiter modified as Nuclear Waste Carrying Orbiter and an out of near-Earth orbit booster, provides a safe and economic transportation system at disposal mission costs from surface to disposal orbit of less than 0.5 cents/kWhe or <= 0.1 cent/kWhe depending on level of orbital operations. Details are discussed. (author)

  15. Streaming sausage, kink and tearing instabilities in a current sheet with applications to the earth's magnetotail (United States)

    Lee, L. C.; Wang, S.; Wei, C. Q.; Tsurutani, B. T.


    This paper investigates the growth rates and eigenmode structures of the streaming sausage, kink, and tearing instabilities in a current sheet with a super-Alfvenic flow. The growth rates and eigenmode structures are first considered in the ideal incompressible limit by using a four-layer model, as well as a more realistic case in which all plasma parameters and the magnetic field vary continuously along the direction perpendicular to the magnetic field and plasma flow. An initial-value method is applied to obtain the growth rate and eigenmode profiles of the fastest growing mode, which is either the sausage mode or kink mode. It is shown that, in the earth's magnetotail, where super-Alfvenic plasma flows are observed in the plasma sheet and the ratio between the plasma and magnetic pressures far away from the current layer is about 0.1-0.3 in the lobes, the streaming sausage and streaming tearing instabilities, but not kink modes, are likely to occur.

  16. Rate of volcanism on Venus

    International Nuclear Information System (INIS)

    Fegley, B. Jr.; Prinn, R.G.


    The maintenance of the global H 2 SO 4 clouds on Venus requires volcanism to replenish the atmospheric SO 2 which is continually being removed from the atmosphere by reaction with calcium minerals on the surface of Venus. The first laboratory measurements of the rate of one such reaction, between SO 2 and calcite (CaCO 3 ) to form anhydrite (CaSO 4 ), are reported. If the rate of this reaction is representative of the SO 2 reaction rate at the Venus surface, then we estimate that all SO 2 in the Venus atmosphere (and thus the H 2 SO 4 clouds) will be removed in 1.9 million years unless the lost SO 2 is replenished by volcanism. The required rate of volcanism ranges from about 0.4 to about 11 cu km of magma erupted per year, depending on the assumed sulfur content of the erupted material. If this material has the same composition as the Venus surface at the Venera 13, 14 and Vega 2 landing sites, then the required rate of volcanism is about 1 cu km per year. This independent geochemically estimated rate can be used to determine if either (or neither) of the two discordant (2 cu km/year vs. 200 to 300 cu km/year) geophysically estimated rates is correct. The geochemically estimated rate also suggests that Venus is less volcanically active than the Earth

  17. Magnetospheric Multiscale Mission Observations of Magnetic Flux Ropes in the Earth's Plasma Sheet (United States)

    Slavin, J. A.; Akhavan-Tafti, M.; Poh, G.; Le, G.; Russell, C. T.; Nakamura, R.; Baumjohann, W.; Torbert, R. B.; Gershman, D. J.; Pollock, C. J.; Giles, B. L.; Moore, T. E.; Burch, J. L.


    A major discovery by the Cluster mission and the previous generation of science missions is the presence of earthward and tailward moving magnetic flux ropes in the Earth's plasma sheet. However, the lack of high-time resolution plasma measurements severely limited progress concerning the formation and evolution of these reconnection generated structures. We use high-time resolution magnetic and electric field and plasma measurements from the Magnetospheric Multiscale mission's first tail season to investigate: 1) the distribution of flux rope diameters relative to the local ion and electron inertial lengths; 2) the internal force balance sustaining these structures; and 3) the magnetic connectivity of the flux ropes to the Earth and/or the interplanetary medium; 4) the specific entropy of earthward moving flux ropes and the possible effect of "buoyancy" on how deep they penetrate into the inner magnetosphere; and 5) evidence for coalescence of adjacent flux ropes and/or the division of existing flux ropes through the formation of secondary X-lines. The results of these initial analyses will be discussed in terms of their implications for reconnection-driven magnetospheric dynamics and substorms.

  18. Geothermal Heat Flux: Linking Deep Earth's Interior and the Dynamics of Large-Scale Ice Sheets (United States)

    Rogozhina, Irina; Vaughan, Alan


    Regions covered by continental-scale ice sheets have the highest degree of uncertainty in composition and structure of the crust and lithospheric mantle, compounded by the poorest coverage on Earth of direct heat flow measurements. In addition to challenging conditions that make direct measurements and geological survey difficult Greenland and Antarctica are known to be geologically complex. Antarctica in particular is marked by two lithospherically distinct zones. In contrast to young and thin lithosphere of West Antarctica, East Antarctica is a collage of thick Precambrian fragments of Gondwana and earlier supercontinents. However, recent observations and modeling studies have detected large systems of subglacial lakes extending beneath much of the East Antarctic ice sheet base that have been linked to anomalously elevated heat flow. Outcrop samples from the rift margin with Australia (Prydz Bay) have revealed highly radiogenic Cambrian granite intrusives that are implicated in regional increase of crustal heat flux by a factor of two to three compared to the estimated continental background. Taken together, these indicate high variability of heat flow and properties of rocks across Antarctica. Similar conclusions have been made based on direct measurements and observations of the Greenland ice sheet. Airborne ice-penetrating radar and deep ice core projects show very high rates of basal melt for parts of the ice sheet in northern and central Greenland that have been explained by abnormally high heat flux. Archaean in age, the Greenland lithosphere was significantly reworked during the Early Proterozoic. In this region, the interpretation of independent geophysical data is complicated by Proterozoic and Phanerozoic collision zones, compounded by strong thermochemical effects of rifting along the western and eastern continental margins between 80 and 25 million years ago. In addition, high variability of heat flow and thermal lithosphere structure in central

  19. Calculation of mass discharge of the Greenland ice sheet in the Earth System Model

    Directory of Open Access Journals (Sweden)

    O. O. Rybak


    Full Text Available Mass discharge calculation is a challenging task for the ice sheet modeling aimed at evaluation of their contribution to the global sea level rise during past interglacials, as well as one of the consequences of future climate change. In Greenland, ablation is the major source of fresh water runoff. It is approximately equal to the dynamical discharge (iceberg calving. Its share might have still larger during the past interglacials when the margins of the GrIS retreated inland. Refreezing of the melted water and its retention are two poorly known processes playing as a counterpart of melting and, thus, exerting influence on the run off. Interaction of ice sheets and climate is driven by energy and mass exchange processes and is complicated by numerous feed-backs. To study the complex of these processes, coupling of an ice sheet model and a climate model (i.e. models of the atmosphere and the ocean in one model is required, which is often called the Earth System Model (ESM. Formalization of processes of interaction between the ice sheets and climate within the ESM requires elaboration of special techniques to deal with dramatic differences in spatial and temporal variability scales within each of three ESM’s blocks. In this paper, we focus on the method of coupling of a Greenland ice sheet model (GrISM with the climate model INMCM having been developed in the Institute of Numerical Mathematics of Russian Academy of Sciences. Our coupling approach consists in applying of a special buffer model, which serves as an interface between GrISM and INMCM. A simple energy and water exchange model (EWBM-G allows realistic description of surface air temperature and precipitation fields adjusted to a relief of elevation of the GrIS surface. In a series of diagnostic numerical experiments with the present-day GrIS geometry and the modeled climate we studied sensitivity of the modeled surface mass balance and run off to the key EWBM-G parameters and compared

  20. A dynamic model of Venus's gravity field (United States)

    Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.


    Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.

  1. The quiet evening auroral arc and the structure of the growth phase near-Earth plasma sheet (United States)

    Coroniti, F. V.; Pritchett, P. L.


    The plasma pressure and current configuration of the near-Earth plasma sheet that creates and sustains the quiet evening auroral arc during the growth phase of magnetospheric substorms is investigated. We propose that the quiet evening arc (QEA) connects to the thin near-Earth current sheet, which forms during the development of the growth phase enhancement of convection. The current sheet's large polarization electric fields are shielded from the ionosphere by an Inverted-V parallel potential drop, thereby producing the electron precipitation responsible for the arc's luminosity. The QEA is located in the plasma sheet region of maximal radial pressure gradient and, in the east-west direction, follows the vanishing of the approximately dawn-dusk-directed gradient or fold in the plasma pressure. In the evening sector, the boundary between the Region1 and Region 2 current systems occurs where the pressure maximizes (approximately radial gradient of the pressure vanishes) and where the approximately radial gradient of the magnetic flux tube volume also vanishes in an inflection region. The proposed intricate balance of plasma sheet pressure and currents may well be very sensitive to disruption by the arrival of equatorward traveling auroral streamers and their associated earthward traveling dipolarization fronts.

  2. Rapid Ice-Sheet Changes and Mechanical Coupling to Solid-Earth/Sea-Level and Space Geodetic Observation (United States)

    Adhikari, S.; Ivins, E. R.; Larour, E. Y.


    Perturbations in gravitational and rotational potentials caused by climate driven mass redistribution on the earth's surface, such as ice sheet melting and terrestrial water storage, affect the spatiotemporal variability in global and regional sea level. Here we present a numerically accurate, computationally efficient, high-resolution model for sea level. Unlike contemporary models that are based on spherical-harmonic formulation, the model can operate efficiently in a flexible embedded finite-element mesh system, thus capturing the physics operating at km-scale yet capable of simulating geophysical quantities that are inherently of global scale with minimal computational cost. One obvious application is to compute evolution of sea level fingerprints and associated geodetic and astronomical observables (e.g., geoid height, gravity anomaly, solid-earth deformation, polar motion, and geocentric motion) as a companion to a numerical 3-D thermo-mechanical ice sheet simulation, thus capturing global signatures of climate driven mass redistribution. We evaluate some important time-varying signatures of GRACE inferred ice sheet mass balance and continental hydrological budget; for example, we identify dominant sources of ongoing sea-level change at the selected tide gauge stations, and explain the relative contribution of different sources to the observed polar drift. We also report our progress on ice-sheet/solid-earth/sea-level model coupling efforts toward realistic simulation of Pine Island Glacier over the past several hundred years.

  3. Thin current sheets observation by MMS during a near-Earth's magnetotail reconnection event (United States)

    Nakamura, R.; Varsani, A.; Nakamura, T.; Genestreti, K.; Plaschke, F.; Baumjohann, W.; Nagai, T.; Burch, J.; Cohen, I. J.; Ergun, R.; Fuselier, S. A.; Giles, B. L.; Le Contel, O.; Lindqvist, P. A.; Magnes, W.; Schwartz, S. J.; Strangeway, R. J.; Torbert, R. B.


    During summer 2017, the four spacecraft of the Magnetospheric Multiscale (MMS) mission traversed the nightside magnetotail current sheet at an apogee of 25 RE. They detected a number of flow reversal events suggestive of the passage of the reconnection current sheet. Due to the mission's unprecedented high-time resolution and spatial separation well below the ion scales, structure of thin current sheets is well resolved both with plasma and field measurements. In this study we examine the detailed structure of thin current sheets during a flow reversal event from tailward flow to Earthward flow, when MMS crossed the center of the current sheet . We investigate the changes in the structure of the thin current sheet relative to the X-point based on multi-point analysis. We determine the motion and strength of the current sheet from curlometer calculations comparing these with currents obtained from the particle data. The observed structures of these current sheets are also compared with simulations.

  4. Implications of the (H2O)n + CO ↔ trans-HCOOH + (H2O)n-1 (n = 1, 2, and 3) reactions for primordial atmospheres of Venus and Earth (United States)

    Vichietti, R. M.; Spada, R. F. K.; da Silva, A. B. F.; Machado, F. B. C.; Haiduke, R. L. A.


    The forward and backward (H2O)n + CO ↔ HCOOH + (H2O)n-1 (n = 1, 2, and 3) reactions were studied in order to furnish trustworthy thermochemical and kinetic data. Stationary point structures involved in these chemical processes were achieved at the B2PLYP/cc-pVTZ level so that the corresponding vibrational frequencies, zero-point energies, and thermal corrections were scaled to consider anharmonicity effects. A complete basis set extrapolation was also employed with the CCSD(T) method in order to improve electronic energy descriptions and providing therefore more accurate results for enthalpies, Gibbs energies, and rate constants. Forward and backward rate constants were encountered at the high-pressure limit between 200 and 4000 K. In turn, modified Arrhenius' equations were fitted from these rate constants (between 700 and 4000 K). Next, considering physical and chemical conditions that have supposedly prevailed on primitive atmospheres of Venus and Earth, our main results indicate that 85-88 per cent of all water forms on these atmospheres were monomers, whereas (H2O)2 and (H2O)3 complexes would represent 12-15 and ˜0 per cent, respectively. Besides, we estimate that Earth's and Venus' primitive atmospheres could have been composed by ˜0.001-0.003 per cent of HCOOH when their temperatures were around 1000-2000 K. Finally, the water loss process on Venus may have occurred by a mechanism that includes the formic acid as intermediate species.

  5. Return to Venus of AKATSUKI, the Japanese Venus Orbiter (United States)

    Nakamura, M.; Iwagami, N.; Satoh, T.; Taguchi, M.; Watanabe, S.; Takahashi, Y.; Imamura, T.; Suzuki, M.; Ueno, M.; Yamazaki, A.; Fukuhara, T.; Yamada, M.; Ishii, N.; Ogohara, K.


    Japanese Venus Climate Orbiter 'AKATSUKI' (PLANET-C) was proposed in 2001 with strong support by international Venus science community and approved as an ISAS mission soon after the proposal. AKATSUKI and ESA's Venus Express complement each other in Venus climate study. Various coordinated observations using the two spacecraft have been planned. Also participating scientists from US have been selected. Its science target is to understand the climate of Venus. The mission life we expected was more than 2 Earth years in Venus orbit. AKATSUKI was successfully launched at 06:58:22JST on May 21, by H-IIA F17. After the separation from H-IIA, the telemetry from AKATSUKI was normally detected by DSN Goldstone station (10:00JST) and the solar cell paddles' expansion was confirmed. AKATSUKI was put into the 3-axis stabilized mode in the initial operation from Uchinoura station and the critical operation was finished at 20:00JST on the same day. The malfunction, which happened during the Venus Orbit Insertion (VOI) on7 Dec, 2010 is as follows. We set all commands on Dec. 5. Attitude control for Venus orbit insertion (VOI) was automatically done on Dec. 6. Orbital maneuver engine (OME) was fired 08:49 JST on Dec. 7. 1min. after firing the spacecraft went into the occultation region and we had no telemetry, but we expected to continuous firing for 12min. Recording on the spacecraft told us later that, unfortunately the firing continued just 152sec. and stopped. The reason of the malfunction of the OME was the blocking of check valve of the gas pressure line to push the fuel to the engine. We failed to make the spacecraft the Venus orbiter, and it is rotating the sun with the orbital period of 203 days. As the Venus orbit the sun with the period of 225 days, AKATSUKI has a chance to meet Venus again in 5 or 6 years depending on the orbit correction plan. Let us summarize the present situation of AKATSUKI. Most of the fuel still remains. But the condition of the propulsion

  6. Spontaneous magnetic fluctuations and collisionless regulation of the Earth's plasma sheet (United States)

    Moya, P. S.; Espinoza, C.; Stepanova, M. V.; Antonova, E. E.; Valdivia, J. A.


    Even in the absence of instabilities, plasmas often exhibit inherent electromagnetic fluctuations which are present due to the thermal motion of charged particles, sometimes called thermal (quasi-thermal) noise. One of the fundamental and challenging problems of laboratory, space, and astrophysical plasma physics is the understanding of the relaxation processes of nearly collisionless plasmas, and the resultant state of electromagnetic plasma turbulence. The study of thermal fluctuations can be elegantly addressed by using the Fluctuation-Dissipation Theorem that describes the average amplitude of the fluctuations through correlations of the linear response of the media with the perturbations of the equilibrium state (the dissipation). Recently, it has been shown that solar wind plasma beta and temperature anisotropy observations are bounded by kinetic instabilities such as the ion cyclotron, mirror, and firehose instabilities. The magnetic fluctuations observed within the bounded area are consistent with the predictions of the Fluctuation-Dissipation theorem even far below the kinetic instability thresholds, with an enhancement of the fluctuation level near the thresholds. Here, for the very first time, using in-situ magnetic field and plasma data from the THEMIS spacecraft, we show that such regulation also occurs in the Earth's plasma sheet at the ion scales and that, regardless of the clear differences between the solar wind and the magnetosphere environments, spontaneous fluctuation and their collisionless regulation seem to be fundamental features of space and astrophysical plasmas, suggesting the universality of the processes.

  7. Long-term ice sheet-climate interactions under anthropogenic greenhouse forcing simulated with a complex Earth System Model

    Energy Technology Data Exchange (ETDEWEB)

    Vizcaino, Miren [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); University of California, Department of Geography, Berkeley, CA (United States); Mikolajewicz, Uwe; Maier-Reimer, Ernst [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Groeger, Matthias [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); IFM-GEOMAR, Kiel (Germany); Schurgers, Guy [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Lund University, Department of Physical Geography and Ecosystems Analysis, Lund (Sweden); Winguth, Arne M.E. [Center for Climatic Research, Department of Atmospheric and Oceanic Sciences, Madison (United States)


    Several multi-century and multi-millennia simulations have been performed with a complex Earth System Model (ESM) for different anthropogenic climate change scenarios in order to study the long-term evolution of sea level and the impact of ice sheet changes on the climate system. The core of the ESM is a coupled coarse-resolution Atmosphere-Ocean General Circulation Model (AOGCM). Ocean biogeochemistry, land vegetation and ice sheets are included as components of the ESM. The Greenland Ice Sheet (GrIS) decays in all simulations, while the Antarctic ice sheet contributes negatively to sea level rise, due to enhanced storage of water caused by larger snowfall rates. Freshwater flux increases from Greenland are one order of magnitude smaller than total freshwater flux increases into the North Atlantic basin (the sum of the contribution from changes in precipitation, evaporation, run-off and Greenland meltwater) and do not play an important role in changes in the strength of the North Atlantic Meridional Overturning Circulation (NAMOC). The regional climate change associated with weakening/collapse of the NAMOC drastically reduces the decay rate of the GrIS. The dynamical changes due to GrIS topography modification driven by mass balance changes act first as a negative feedback for the decay of the ice sheet, but accelerate the decay at a later stage. The increase of surface temperature due to reduced topographic heights causes a strong acceleration of the decay of the ice sheet in the long term. Other feedbacks between ice sheet and atmosphere are not important for the mass balance of the GrIS until it is reduced to 3/4 of the original size. From then, the reduction in the albedo of Greenland strongly accelerates the decay of the ice sheet. (orig.)

  8. Greenhouse effects on Venus (United States)

    Bell, Peter M.

    Calculations that used Pioneer-Venus measurements of atmosphere composition, temperature profiles, and radiative heating predicted Venus' surface temperature ‘very precisely,’ says the Ames Research Center. The calculations predict not only Venus' surface temperature but agree with temperatures measured at various altitudes above the surface by the four Pioneer Venus atmosphere probe craft.Using Pioneer-Venus spacecraft data, a research team has virtually proved that the searing 482° C surface temperature of Venus is due to an atmospheric greenhouse effect. Until now the Venus greenhouse effect has been largely a theory.

  9. The Plains of Venus (United States)

    Sharpton, V. L.


    extremely fluid flows (i.e., channel formers), to viscous, possibly felsic lavas of steep-sided domes. Wrinkle ridges deform many plains units and this has been taken to indicate that these ridges essentially form an early stratigraphic marker that limits subsequent volcanism to a minimum. However, subtle backscatter variations within many ridged plains units suggest (but do not prove) that some plains volcanism continued well after local ridge deformation ended. Furthermore, many of volcanic sources show little, if any, indications of tectonic modification and detailed analyses have concluded that resurfacing rates could be similar to those on Earth. Improving constraints on the rates and styles of volcanism within the plains could lend valuable insights into the evolution of Venus's internal heat budget and the transition from thin-lid to thick-lid tectonic regimes. Improved spatial and radiometric resolution of radar images would greatly improve abilities to construct the complex local stratigraphy of ridged plains. Constraining the resurfacing history of Venus is central to understanding how Earth-sized planets evolve and whether or not their evolutionary pathways lead to habitability. This goal can only be adequately addressed if broad coverage is added to the implementation strategies of any future mapping missions to Venus.

  10. The Atmosphere and Climate of Venus (United States)

    Bullock, M. A.; Grinspoon, D. H.

    Venus lies just sunward of the inner edge of the Sun's habitable zone. Liquid water is not stable. Like Earth and Mars, Venus probably accreted at least an ocean's worth of water, although there are alternative scenarios. The loss of this water led to the massive, dry CO2 atmosphere, extensive H2SO4 clouds (at least some of the time), and an intense CO2 greenhouse effect. This chapter describes the current understanding of Venus' atmosphere, established from the data of dozens of spacecraft and atmospheric probe missions since 1962, and by telescopic observations since the nineteenth century. Theoretical work to model the temperature, chemistry, and circulation of Venus' atmosphere is largely based on analogous models developed in the Earth sciences. We discuss the data and modeling used to understand the temperature structure of the atmosphere, as well as its composition, cloud structure, and general circulation. We address what is known and theorized about the origin and early evolution of Venus' atmosphere. It is widely understood that Venus' dense CO2 atmosphere is the ultimate result of the loss of an ocean to space, but the timing of major transitions in Venus' climate is very poorly constrained by the available data. At present, the bright clouds allow only 20% of the sunlight to drive the energy balance and therefore determine conditions at Venus' surface. Like Earth and Mars, differential heating between the equator and poles drives the atmospheric circulation. Condensable species in the atmosphere create clouds and hazes that drive feedbacks that alter radiative forcing. Also in common with Earth and Mars, the loss of light, volatile elements to space produces long-term changes in composition and chemistry. As on Earth, geologic processes are most likely modifying the atmosphere and clouds by injecting gases from volcanos as well as directly through chemical reactions with the surface. The sensitivity of Venus' atmospheric energy balance is quantified in

  11. Energetic particle beams in the plasma sheet boundary layer following substorm expansion - Simultaneous near-earth and distant tail observations (United States)

    Scholer, M.; Baker, D. N.; Gloeckler, G.; Ipavich, F. M.; Galvin, A. B.; Klecker, B.; Terasawa, T.; Tsurutani, B. T.


    Simultaneous observations of ions and electron beams in the near-earth and deep magnetotail following the onset of substorm are analyzed in terms of the substorm neutral line model. The observations were collected on March 20, 1983 with ISSE 1 and 3. Energy fluxes and intensity-time profiles of protons and electrons are studied. The data reveal that the reconnection at the near-earth neutral line produces ions and electrons for the plasma sheet boundary layer. The maximum electric potential along the neutral line is evaluated.

  12. Chemical Weathering on Venus (United States)

    Zolotov, Mikhail


    Chemical and phase compositions of Venus's surface could reflect history of gas- and fluid-rock interactions, recent and past climate changes, and a loss of water from the Earth's sister planet. The concept of chemical weathering on Venus through gas-solid type reactions has been established in 1960s after the discovery of hot and dense CO2-rich atmosphere inferred from Earth-based and Mariner 2 radio emission data. Initial works suggested carbonation, hydration, and oxidation of exposed igneous rocks and a control (buffering) of atmospheric gases by solid-gas type chemical equilibria in the near-surface lithosphere. Calcite, quartz, wollastonite, amphiboles, and Fe oxides were considered likely secondary minerals. Since the late 1970s, measurements of trace gases in the sub-cloud atmosphere by Pioneer Venus and Venera entry probes and Earth-based infrared spectroscopy doubted the likelihood of hydration and carbonation. The H2O gas content appeared to be low to allow a stable existence of hydrated and a majority of OH-bearing minerals. The concentration of SO2 was too high to allow the stability of calcite and Ca-rich silicates with respect to sulfatization to CaSO4. In 1980s, the supposed ongoing consumption of atmospheric SO2 to sulfates gained support by the detection of an elevated bulk S content at Venera and Vega landing sites. The induced composition of the near-surface atmosphere implied oxidation of ferrous minerals to magnetite and hematite, consistent with the infrared reflectance of surface materials. The likelihood of sulfatization and oxidation has been illustrated in modeling experiments at simulated Venus conditions. Venus's surface morphology suggests that hot surface rocks and fines of mainly mafic composition contacted atmospheric gases during several hundreds of millions years since a global volcanic resurfacing. Some exposed materials could have reacted at higher and lower temperatures in a presence of diverse gases at different altitudinal

  13. Surface and interior of Venus

    Energy Technology Data Exchange (ETDEWEB)

    Masursky, H [U.S. Geological Survey, Flagstaff, Arizona, USA; Kaula, W M [California Univ., Los Angeles (USA); McGill, G E [Massachusetts Univ., Amherst (USA); Pettengill, G H; Shapiro, I I [Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Earth and Planetary Sciences; Phillips, R J [Jet Propulsion Lab., Pasadena, Calif. (USA); Russell, C T [California Univ., Los Angeles (USA). Inst. of Geophysics and Planetary Physics; Schubert, G [California Univ., Los Angeles (USA)


    Present ideas about the surface and interior of Venus are based on data obtained from (1) Earth-based radio and radar: temperature, rotation, shape, and topography; (2) fly-by and orbiting spacecraft: gravity and magnetic fields; and (3) landers: winds, local structure, gamma radiation. Surface features, including large basins, crater-like depressions, and a linear valley, have been recognized from recent ground-based radar images. Pictures of the surface acquired by the USSR's Venera 9 and 10 show abundant boulders and apparent wind erosion. On the Pioneer Venus 1978 Orbiter mission, the radar mapper experiment will determine surface heights, dielectric constant values and small-scale slope values along the sub-orbital track between 50/sup 0/S and 75/sup 0/N. This experiment will also estimate the global shape and provide coarse radar images (40-80 km identification resolution) of part of the surface. Gravity data will be obtained by radio tracking. Maps combining radar altimetry with spacecraft and ground-based images will be made. A fluxgate magnetometer will measure the magnetic fields around Venus. The radar and gravity data will provide clues to the level of crustal differentiation and tectonic activity. The magnetometer will determine the field variations accurately. Data from the combined experiments may constrain the dynamo mechanism; if so, a deeper understanding of both Venus and Earth will be gained.

  14. Contrasting dynamics of electrons and protons in the near-Earth plasma sheet during dipolarization (United States)

    Malykhin, Andrey Y.; Grigorenko, Elena E.; Kronberg, Elena A.; Koleva, Rositza; Ganushkina, Natalia Y.; Kozak, Ludmila; Daly, Patrick W.


    The fortunate location of Cluster and the THEMIS P3 probe in the near-Earth plasma sheet (PS) (at X ˜ -7-9 RE) allowed for the multipoint analysis of properties and spectra of electron and proton injections. The injections were observed during dipolarization and substorm current wedge formation associated with braking of multiple bursty bulk flows (BBFs). In the course of dipolarization, a gradual growth of the BZ magnetic field lasted ˜ 13 min and it was comprised of several BZ pulses or dipolarization fronts (DFs) with duration ≤ 1 min. Multipoint observations have shown that the beginning of the increase in suprathermal ( > 50 keV) electron fluxes - the injection boundary - was observed in the PS simultaneously with the dipolarization onset and it propagated dawnward along with the onset-related DF. The subsequent dynamics of the energetic electron flux was similar to the dynamics of the magnetic field during the dipolarization. Namely, a gradual linear growth of the electron flux occurred simultaneously with the gradual growth of the BZ field, and it was comprised of multiple short ( ˜ few minutes) electron injections associated with the BZ pulses. This behavior can be explained by the combined action of local betatron acceleration at the BZ pulses and subsequent gradient drifts of electrons in the flux pile up region through the numerous braking and diverting DFs. The nonadiabatic features occasionally observed in the electron spectra during the injections can be due to the electron interactions with high-frequency electromagnetic or electrostatic fluctuations transiently observed in the course of dipolarization. On the contrary, proton injections were detected only in the vicinity of the strongest BZ pulses. The front thickness of these pulses was less than a gyroradius of thermal protons that ensured the nonadiabatic acceleration of protons. Indeed, during the injections in the energy spectra of protons the pronounced bulge was clearly observed in a

  15. Composition and plasma properties of the plasma sheet in the Earth's magnetotail

    International Nuclear Information System (INIS)

    Orsini, S.; Altwegg, K.; Balsiger, H.


    A statistical study of the plasma sheet properties, based on 300 h of data from the ISEE-1 Ion Composition Experiment, yiels a description of H + and He ++ densities and temperatures as functions of magnetospheric substorm activity and geocentric distance. The H + and He ++ temperatures are found to be well correlated, such that a ratio T(He ++ )/T(H + ) = 2.7±0.1 is typical. However, linear-regression analysis typically yields a nonvanishing T(He ++ ) in the limit T(H + ) #-> # 0, a limit that is approached through the addition of cold ionospheric H + to the plasma sheet during active periods. The plasma sheet proton temperature T(H + ) varies inversely with geocentric distance, and the radial gradient of T(H + ) increases with increasing activity index AE. The density ratio N (He ++ )/N(H + ) increases with geocentric distance, irrespective of AE

  16. Slow convection of a magnetized plasma and the earth plasma sheet

    International Nuclear Information System (INIS)

    Hruska, A.


    Stationary convection of an isotropic, infinitely conducting plasma in a magnetic field with non-trivial geometry is discussed under the assumption that the inertial term in the equation of motion may be ignored. The energy gained or lost by a volume element of plasma per unit time does not vary along the field-lines. Simple relations between the components of the current density, depending on the field-line geometry, exist. Similar relations hold for the components of the plasma velocity. The theoretical analysis is applied to the geomagnetically-quiet plasma sheet and a qualitative physical picture of the sheet is suggested. The observed structure of the sheet is compatible with Axford-Hines type of convection perhaps combined with a low-speed flow from a distant neutral point. The magnetic-field-aligned currents are driven by the deformations of the closed field-lines which are enforced by the solar wind. (orig.)

  17. Reassessment of planetary protection requirements for Venus missions (United States)

    Szostak, J.; Riemer, R.; Smith, D.; Rummel, J.

    In 2005 the US Space Studies Board SSB was asked by NASA to reexamine the planetary protection requirements for spacecraft missions to Venus In particular the SSB was tasked to 1 Assess the surface and atmospheric environments of Venus with respect to their ability to support the survival and growth of Earth-origin microbial contamination by future spacecraft missions and 2 Provide recommendations related to planetary protection issues associated with the return to Earth of samples from Venus The task group established by the SSB to address these issues assessed the known aspects of the present-day environment of Venus and the ability of Earth organisms to survive in the physical and chemical conditions found on the planet s surface or in the clouds in the planet s atmosphere As a result of its deliberations the task group found compelling evidence against there being significant dangers of forward or reverse biological contamination as a result of contact between a spacecraft and the surface of Venus or the clouds in the atmosphere of Venus regardless of the current unknowns The task group did however conclude that Venus is a body of interest relative to the process of chemical evolution and the origin of life As a result the task group endorses NASA s current policy of subjecting missions to Venus to the requirements imposed by planetary protection Category II rather than the less restrictive Category I recommended by COSPAR

  18. VICI (Venus In Situ Composition Investigations): The Next Step in Understanding Venus Climate Evolution (United States)

    Glaze, L. S.; Garvin, J. B.


    Venus provides a natural laboratory to explore an example of terrestrial planet evolution that may be cosmically ubiquitous. By better understanding the composition of the Venus atmosphere and surface, we can better constrain the efficiency of the Venusian greenhouse. VICI is a proposed NASA New Frontiers mission that delivers two landers to Venus on two separate Venus fly-bys. Following six orbital remote sensing missions to Venus (since 1978), VICI would be the first mission to land on the Venus surface since 1985, and the first U.S. mission to enter the Venus atmosphere in 49 years. The four major VICI science objectives are: Atmospheric origin and evolution: Understand the origin of the Venus atmosphere, how it has evolved, including how recently Venus lost its oceans, and how and why it is different from the atmospheres of Earth and Mars, through in situ measurements of key noble gases, nitrogen, and hydrogen. Atmospheric composition and structure: Reveal the unknown chemical processes and structure in Venus' deepest atmosphere that dominate the current climate through two comprehensive, in situ vertical profiles. Surface properties and geologic evolution: For the first time ever, explore the tessera from the surface, specifically to test hypotheses of ancient content-building cycles, erosion, and links to past climates using multi-point mineralogy, elemental chemistry, imaging and topography. Surface-atmosphere interactions: Characterize Venus' surface weathering environment and provide insight into the sulfur cycle at the surface-atmosphere interface by integrating rich atmospheric composition and structure datasets with imaging, surface mineralogy, and elemental rock composition. VICI is designed to study Venus' climate history through detailed atmospheric composition measurements not possible on earlier missions. In addition, VICI images the tessera surface during descent enabling detailed topography to be generated. Finally, VICI makes multiple elemental

  19. Signs of Life on Venus (United States)

    Ksanfomality, L.


    The search for "habitable zones" in extrasolar planetary systems is based on the premise of "normal" physical conditions in a habitable zone, i.e. pressure, temperature range, and atmospheric composition similar to those on the Earth. However, one should not exclude completely the possibility of the existence of life at relatively high temperatures, despite the fact that at the first glance it seems impossible. The planet Venus with its dense, hot (735 K), oxigenless CO2 - atmosphere and high 92 bar-pressure at the surface could be the natural laboratory for the studies of this type. Amid exoplanets, celestial bodies with the physical conditions similar to the Venusian can be met. The only existing data of actual close-in observations of Venus' surface are the results of a series of missions of the soviet VENERA landers which took place the 1970's and 80's in the atmosphere and on the surface of Venus. For 36 and 29 years since these missions, respectively, I repeatedly returned to the obtained images of the Venus' surface in order to reveal on them any unusual objects observed in the real conditions of Venus. The new analysis of the Venus' panoramas was based on the search of unusual elements in two ways. Since the efficiency of the VENERA landers maintained for a long time they produced a large number of primary television panoramas during the lander's work. Thus, one can try to detect: (a) any differences in successive images (appearance or disappearance of parts of the image or change of their shape), and understand what these changes are related to (e.g., wind), and whether they are related to hypothetical habitability of a planet. Another sign (b) of the wanted object is their morphological peculiarities which distinguishes them from the ordinary surface details. The results of VENERA-9 (1975) and VENERA -13 (1982) are of the main interest. A few relatively large objects ranging from a decimeter to half meter and with unusual morphology were observed in some

  20. Physical and numerical modelling of earth pressure on anchored sheet pile walls in sand

    DEFF Research Database (Denmark)

    Krogsbøll, Anette Susanne; Fuglsang, Leif D


    The influence of wall flexibility on earth pressure, bending moments and failure modes is studied. Numerical models are compared to results from model tests carried out in a geotechnical centrifuge. The back-fill is dry sand and failure is introduced by allowing the wall to rotate around the anchor...

  1. Exploration of Venus' Deep Atmosphere and Surface Environment (United States)

    Glaze, L. S.; Amato, M.; Garvin, J. B.; Johnson, N. M.


    Venus formed in the same part of our solar system as Earth, apparently from similar materials. Although both planets are about the same size, their differences are profound. Venus and Earth experienced vastly different evolutionary pathways resulting in unexplained differences in atmospheric composition and dynamics, as well as in geophysical processes of the planetary surfaces and interiors. Understanding when and why the evolutionary pathways of Venus and Earth diverged is key to understanding how terrestrial planets form and how their atmospheres and surfaces evolve. Measurements made in situ, within the near-surface or surface environment, are critical to addressing unanswered questions. We have made substantial progress modernizing and maturing pressure vessel technologies to enable science operations in the high temperature and pressure near-surface/surfaceenvironment of Venus.

  2. Venus - Ishtar gravity anomaly (United States)

    Sjogren, W. L.; Bills, B. G.; Mottinger, N. A.


    The gravity anomaly associated with Ishtar Terra on Venus is characterized, comparing line-of-sight acceleration profiles derived by differentiating Pioneer Venus Orbiter Doppler residual profiles with an Airy-compensated topographic model. The results are presented in graphs and maps, confirming the preliminary findings of Phillips et al. (1979). The isostatic compensation depth is found to be 150 + or - 30 km.

  3. Innovative measurement within the atmosphere of Venus. (United States)

    Ekonomov, Alexey; Linkin, Vyacheslav; Manukin, Anatoly; Makarov, Vladislav; Lipatov, Alexander

    The results of Vega project experiments with two balloons flew in the cloud layer of the atmosphere of Venus are analyzed as to the superrotation nature and local dynamic and thermodynamic characteristics of the atmosphere. These balloons in conjunction with measurements of temperature profiles defined by the Fourier spectrometer measurements from the spacecraft Venera 15 allow us to offer a mechanism accelerating the atmosphere to high zonal velocities and supporting these speeds, the atmosphere superrotation in general. Spectral measurements with balloons confirm the possibility of imaging the planet's surface from a height of not more than 55 km. Promising experiments with balloons in the atmosphere of Venus are considered. In particular, we discuss the possibility of measuring the geopotential height, as Venus no seas and oceans to vertical positioning of the temperature profiles. As an innovative research facilities within the atmosphere overpressure balloon with a lifetime longer than 14 Earth days and vertical profile microprobes are considered.

  4. Chandra Captures Venus In A Whole New Light (United States)


    Scientists have captured the first X-ray view of Venus using NASA's Chandra X-ray Observatory. The observations provide new information about the atmosphere of Venus and open a new window for examining Earth's sister planet. Venus in X-rays looks similar to Venus in visible light, but there are important differences. The optically visible Venus is due to the reflection of sunlight and, for the relative positions of Venus, Earth and Sun during these observations, shows a uniform half-crescent that is brightest toward the middle. The X-ray Venus is slightly less than a half-crescent and brighter on the limbs. The differences are due to the processes by which Venus shines in visible and X-ray light. The X-rays from Venus are produced by fluorescence, rather than reflection. Solar X-rays bombard the atmosphere of Venus, knock electrons out of the inner parts of the atoms, and excite the atoms to a higher energy level. The atoms almost immediately return to their lower energy state with the emission of a fluorescent X-ray. A similar process involving ultraviolet light produces the visible light from fluorescent lamps. For Venus, most of the fluorescent X-rays come from oxygen and carbon atoms between 120 and 140 kilometers (74 to 87 miles) above the planet's surface. In contrast, the optical light is reflected from clouds at a height of 50 to 70 kilometers (31 to 43 miles). As a result, Venus' Sun-lit hemisphere appears surrounded by an almost-transparent luminous shell in X-rays. Venus looks brightest at the limb since more luminous material is there. Venus X-ray/Optical Composite of Venus Credit: Xray: NASA/CXC/MPE/K.Dennerl et al., Optical: Konrad Dennerl "This opens up the exciting possibility of using X-ray observations to study regions of the atmosphere of Venus that are difficult to investigate by other means," said Konrad Dennerl of the Max Planck Institute for Extraterrestrial Physics in Garching, Germany, leader of an international team of scientists that

  5. 10. The surface and interior of venus (United States)

    Masursky, H.; Kaula, W.M.; McGill, G.E.; Pettengill, G.H.; Phillips, R.J.; Russell, C.T.; Schubert, G.; Shapiro, I.I.


    Present ideas about the surface and interior of Venus are based on data obtained from (1) Earth-based radio and radar: temperature, rotation, shape, and topography; (2) fly-by and orbiting spacecraft: gravity and magnetic fields; and (3) landers: winds, local structure, gamma radiation. Surface features, including large basins, crater-like depressions, and a linear valley, have been recognized from recent ground-based radar images. Pictures of the surface acquired by the USSR's Venera 9 and 10 show abundant boulders and apparent wind erosion. On the Pioneer Venus 1978 Orbiter mission, the radar mapper experiment will determine surface heights, dielectric constant values and small-scale slope values along the sub-orbital track between 50??S and 75??N. This experiment will also estimate the global shape and provide coarse radar images (40-80 km identification resolution) of part of the surface. Gravity data will be obtained by radio tracking. Maps combining radar altimetry with spacecraft and ground-based images will be made. A fluxgate magnetometer will measure the magnetic fields around Venus. The radar and gravity data will provide clues to the level of crustal differentiation and tectonic activity. The magnetometer will determine the field variations accurately. Data from the combined experiments may constrain the dynamo mechanism; if so, a deeper understanding of both Venus and Earth will be gained. ?? 1977 D. Reidel Publishing Company.

  6. Three-dimensional earthward fast flow in the near-Earth plasma sheet in a sheared field: comparisons between simulations and observations

    Directory of Open Access Journals (Sweden)

    K. Kondoh


    Full Text Available Three-dimensional configuration of earthward fast flow in the near-Earth plasma sheet is studied using three-dimensional magnetohydrodynamics (MHD simulations on the basis of the spontaneous fast reconnection model. In this study, the sheared magnetic field in the plasma sheet is newly considered in order to investigate the effects of it to the earthward fast flow, and the results are discussed in comparison with no-shear simulations. The virtual probes located at different positions in our simulation domain in shear/no-shear cases could explain different behavior of fast flows in the real observations.

  7. Surface age of venus: use of the terrestrial cratering record

    International Nuclear Information System (INIS)

    Schaber, G.G.; Shoemaker, E.M.; Kozak, R.C.


    The average crater age of Venus' northern hemisphere may be less than 250 m.y. assuming equivalence between the recent terrestrial cratering rate and that on Venus for craters ≥ 20 km in diameter. For craters larger than this threshold size, below which crater production is significantly affected by the Venusian atmosphere, there are fairly strong observational grounds for concluding that such an equivalence in cratering rates on Venus and Earth may exist. However, given the uncertainties in the role of both active and inactive comet nuclei in the cratering history of Earth, we conclude that the age of the observed surface in the northern hemisphere of Venus could be as great as the 450-m.y. mean age of the Earth's crust. The observed surface of Venus might be even older, but no evidence from the crater observations supports an age as great as 1 b.y. If the age of the observed Venusian surface were 1 b.y., it probably should bear the impact scars of a half dozen or more large comet nuclei that penetrated the atmosphere and formed craters well over 100 km in diameter. Venera 15/16 mapped only about 25% of Venus; the remaining 75% may tell us a completely different story

  8. Multi-instrument observations of the ionospheric counterpart of a bursty bulk flow in the near-Earth plasma sheet

    Directory of Open Access Journals (Sweden)

    A. Grocott


    Full Text Available On 07 September 2001 the Cluster spacecraft observed a "bursty bulk flow" event in the near-Earth central plasma sheet. This paper presents a detailed study of the coincident ground-based observations and attempts to place them within a simple physical framework. The event in question occurs at ~22:30 UT, some 10min after a southward turning of the IMF. IMAGE and SAMNET magnetometer measurements of the ground magnetic field reveal perturbations of a few tens of nT and small amplitude Pi2 pulsations. CUTLASS radar observations of ionospheric plasma convection show enhanced flows out of the polar cap near midnight, accompanied by an elevated transpolar voltage. Optical data from the IMAGE satellite also show that there is a transient, localised ~1 kR brightening in the UV aurora. These observations are consistent with the earthward transport of plasma in the tail, but also indicate the absence of a typical "large-scale" substorm current wedge. An analysis of the field-aligned current system implied by the radar measurements does suggest the existence of a small-scale current "wedgelet", but one which lacks the global scale and high conductivities observed during substorm expansions.

    Key words. Ionosphere (auroral ionosphere; ionospheremagnetosphere interactions; plasma convection

  9. Economics as if the earth really mattered. Putting balance back on the balance sheet. (United States)

    Sherman, D


    Some of the thinking in the economic realm which affects the relationship between the economy and the environment is discussed. The standard economic model inherently conflicts with the environment. Humans as consumers have their needs met by maximizing production and efficiency in a free market economy, where an invisible hand guides to profit. The question is raised as to what the environmental impact is for economic growth. The need for clean air, water, and preservation of other living things is not met. It is argued that pollution is a necessary byproduct of production. Economic progress as measured by gross national product (GNP) cannot account for the degradation of nature, e.g., the Alaskan oil spill actually increased GNP. Traditional economics also tell little about the maldistribution of wealth. It is pointed out that Americans spend $5 billion a year on special diets while 400 million around the world are undernourished. Limits to natural resources are also not accounted for by economic theorists, or the value of the seemingly free life-sustaining services performed by a forest in purifying air, preventing erosion and flooding, regulating climate, and supporting biological diversity. It is pointed out that restructuring must occur if the capacity of the Earth to support life is classed in economic terms as an externality. Steady state economic models consider the cycles of production and consumption in the context of the surrounding ecosystem of waste and raw materials and try to achieve a state of equilibrium. Despite the 1972 President's Commission on Population Growth and the American Future's statement that population growth is not necessary for a vital economy, the mythology exists that the economy will collapse, personal income will drop, and business will decline without an ever-growing population. A summary on positive outcomes of zero population growth is given. The economist Julian Simon promotes the view that there is no environmental

  10. Venus Landsailing Rover (United States)

    National Aeronautics and Space Administration — NASA Glenn has developed electronics and low-power photovoltaics that will continue to function even at the Venus temperature of 450°C. So the fundamental elements...

  11. Venus Express set for launch to the cryptic planet (United States)


    On Wednesday, 26 October 2005, the sky over the Baikonur Cosmodrome, Kazakhstan, will be illuminated by the blast from a Soyuz-Fregat rocket carrying this precious spacecraft aloft. The celestial motion of the planets in our Solar System has given Venus Express the window to travel to Venus on the best route. In fact, every nineteen months Venus reaches the point where a voyage from Earth is the most fuel-efficient. To take advantage of this opportunity, ESA has opted to launch Venus Express within the next ‘launch window’, opening on 26 October this year and closing about one month later, on 24 November. Again, due to the relative motion of Earth and Venus, plus Earth’s daily rotation, there is only one short period per day when it is possible to launch, lasting only a few seconds. The first launch opportunity is on 26 October at 06:43 Central European Summer Time (CEST) (10:43 in Baikonur). Venus Express will take only 163 days, a little more than five months, to reach Venus. Then, in April 2006, the adventure of exploration will begin with Venus finally welcoming a spacecraft, a fully European one, more than ten years after humankind paid the last visit. The journey starts at launch One of the most reliable launchers in the world, the Soyuz-Fregat rocket, will set Venus Express on course for its target. Soyuz, procured by the European/Russian Starsem company, consists of three main stages with an additional upper stage, Fregat, atop. Venus Express is attached to this upper stage. The injection of Venus Express into the interplanetary trajectory which will bring it to Venus consists of three phases. In the first nine minutes after launch, Soyuz will perform the first phase, that is an almost vertical ascent trajectory, in which it is boosted to about 190 kilometres altitude by its three stages, separating in sequence. In the second phase, the Fregat-Venus Express ‘block’, now free from the Soyuz, is injected into a circular parking orbit around Earth

  12. Venus Elongation Measurements for the Transit of Venus, using the ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 11. Venus Elongation Measurements for the Transit of Venus, using the Historical Jantar Mantar Observatory. N Rathnasree. Classroom Volume 9 Issue 11 November 2004 pp 46-55 ...

  13. A Prototype Flux-Plate Heat-Flow Sensor for Venus Surface Heat-Flow Determinations (United States)

    Morgan, Paul; Reyes, Celso; Smrekar, Suzanne E.


    Venus is the most Earth-like planet in the Solar System in terms of size, and the densities of the two planets are almost identical when selfcompression of the two planets is taken into account. Venus is the closest planet to Earth, and the simplest interpretation of their similar densities is that their bulk compositions are almost identical. Models of the thermal evolution of Venus predict interior temperatures very similar to those indicated for the regions of Earth subject to solid-state convection, but even global analyses of the coarse Pioneer Venus elevation data suggest Venus does not lose heat by the same primary heat loss mechanism as Earth, i.e., seafloor spreading. The comparative paucity of impact craters on Venus has been interpreted as evidence for relatively recent resurfacing of the planet associated with widespread volcanic and tectonic activity. The difference in the gross tectonic styles of Venus and Earth, and the origins of some of the enigmatic volcano-tectonic features on Venus, such as the coronae, appear to be intrinsically related to Venus heat loss mechanism(s). An important parameter in understanding Venus geological evolution, therefore, is its present surface heat flow. Before the complications of survival in the hostile Venus surface environment were tackled, a prototype fluxplate heat-flow sensor was built and tested for use under synthetic stable terrestrial surface conditions. The design parameters for this prototype were that it should operate on a conforming (sand) surface, with a small, self-contained power and recording system, capable of operating without servicing for at least several days. The precision and accuracy of the system should be < 5 mW/sq m. Additional information is included in the original extended abstract.

  14. Transit of Venus Culture: A Celestial Phenomenon Intrigues the Public (United States)

    Bueter, Chuck


    When Jeremiah Horrocks first observed it in 1639, the transit of Venus was a desirable telescopic target because of its scientific value. By the next transit of Venus in 1761, though, the enlightened public also embraced it as a popular celestial phenomenon. Its stature elevated over the centuries, the transit of Venus has been featured in music, poetry, stamps, plays, books, and art. The June 2004 transit emerged as a surprising global sensation, as suggested by the search queries it generated. Google's Zeitgeist deemed Venus Transit to be the #1 Most Popular Event in the world for that month. New priorities, technologies, and media have brought new audiences to the rare alignment. As the 2012 transit of Venus approaches, the trend continues with publicly accessible capabilities that did not exist only eight years prior. For example, sites from which historic observations have been made are plotted and readily available on Google Earth. A transit of Venus phone app in development will, if fully funded, facilitate a global effort to recreate historic expeditions by allowing smartphone users to submit their observed transit timings to a database for quantifying the Astronomical Unit. While maintaining relevance in modern scientific applications, the transit of Venus has emerged as a cultural attraction that briefly intrigues the mainstream public and inspires their active participation in the spectacle.

  15. Relative location of a powerful flare, the heliospheric current sheet and the Earth favourable for the onset of a strong geomagnetic storm

    International Nuclear Information System (INIS)

    Ivanov, K.G.; Kharshiladze, A.F.; Romashets, E.P.


    Problem of magnetic clouds propagation in regular-nonuniform internal heliosphere is discussed. High dependence of their retardation and consequently intensity of interplanetary and geomagnetic disturbances on mutual location of flares, heliospheric current sheet and the Earth is identified. Eight solar flares, four of which caused strong storms, and another four led to weak disturbances, all of them being in fair agreement with theoretical conclusions, are presented as examples

  16. Solar Airplane Concept Developed for Venus Exploration (United States)

    Landis, Geoffrey A.


    An airplane is the ideal vehicle for gathering atmospheric data over a wide range of locations and altitudes, while having the freedom to maneuver to regions of scientific interest. Solar energy is available in abundance on Venus. Venus has an exoatmospheric solar flux of 2600 W/m2, compared with Earth's 1370 W/m2. The solar intensity is 20 to 50 percent of the exoatmospheric intensity at the bottom of the cloud layer, and it increases to nearly 95 percent of the exoatmospheric intensity at 65 km. At these altitudes, the temperature of the atmosphere is moderate, in the range of 0 to 100 degrees Celsius, depending on the altitude. A Venus exploration aircraft, sized to fit in a small aeroshell for a "Discovery" class scientific mission, has been designed and analyzed at the NASA Glenn Research Center. For an exploratory aircraft to remain continually illuminated by sunlight, it would have to be capable of sustained flight at or above the wind speed, about 95 m/sec at the cloud-top level. The analysis concluded that, at typical flight altitudes above the cloud layer (65 to 75 km above the surface), a small aircraft powered by solar energy could fly continuously in the atmosphere of Venus. At this altitude, the atmospheric pressure is similar to pressure at terrestrial flight altitudes.

  17. Characterizing Volcanic Eruptions on Venus: Some Realistic (?) Scenarios (United States)

    Stofan, E. R.; Glaze, L. S.; Grinspoon, D. H.


    When Pioneer Venus arrived at Venus in 1978, it detected anomalously high concentrations of SO2 at the top of the troposphere, which subsequently declined over the next five years. This decline in SO2 was linked to some sort of dynamic process, possibly a volcanic eruption. Observations of SO2 variability have persisted since Pioneer Venus. More recently, scientists from the Venus Express mission announced that the SPICAV (Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus) instrument had measured varying amounts of SO2 in the upper atmosphere; VIRTIS (Visible and Infrared Thermal Imaging Spectrometer) measured no similar variations in the lower atmosphere (ESA, 4 April, 2008). In addition, Fegley and Prinn stated that venusian volcanoes must replenish SO2 to the atmosphere, or it would react with calcite and disappear within 1.9 my. Fegley and Tremain suggested an eruption rate on the order of approx 1 cubic km/year to maintain atmospheric SO2; Bullock and Grinspoon posit that volcanism must have occurred within the last 20-50 my to maintain the sulfuric acid/water clouds on Venus. The abundance of volcanic deposits on Venus and the likely thermal history of the planet suggest that it is still geologically active, although at rates lower than Earth. Current estimates of resurfacing rates range from approx 0.01 cubic km/yr to approx 2 cubic km/yr. Demonstrating definitively that Venus is still volcanically active, and at what rate, would help to constrain models of evolution of the surface and interior, and help to focus future exploration of Venus.

  18. The various contributions in Venus rotation rate and LOD (United States)

    Cottereau, L.; Rambaux, N.; Lebonnois, S.; Souchay, J.


    Context. Thanks to the Venus Express Mission, new data on the properties of Venus could be obtained, in particular concerning its rotation. Aims: In view of these upcoming results, the purpose of this paper is to determine and compare the major physical processes influencing the rotation of Venus and, more particularly, the angular rotation rate. Methods: Applying models already used for Earth, the effect of the triaxiality of a rigid Venus on its period of rotation are computed. Then the variations of Venus rotation caused by the elasticity, the atmosphere, and the core of the planet are evaluated. Results: Although the largest irregularities in the rotation rate of the Earth on short time scales are caused by its atmosphere and elastic deformations, we show that the irregularities for Venus are dominated by the tidal torque exerted by the Sun on its solid body. Indeed, as Venus has a slow rotation, these effects have a large amplitude of two minutes of time (mn). These variations in the rotation rate are greater than the one induced by atmospheric wind variations that can reach 25-50 s of time (s), depending on the simulation used. The variations due to the core effects that vary with its size between 3 and 20 s are smaller. Compared to these effects, the influence of the elastic deformation caused by the zonal tidal potential is negligible. Conclusions: As the variations in the rotation of Venus reported here are close to 3 mn peak to peak, they should influence past, present, and future observations, thereby providing further constraints on the planet's internal structure and atmosphere.

  19. Geology of Maxwell Montes, Venus (United States)

    Head, J. W.; Campbell, D. B.; Peterfreund, A. R.; Zisk, S. A.


    Maxwell Montes represent the most distinctive topography on the surface of Venus, rising some 11 km above mean planetary radius. The multiple data sets of the Pioneer missing and Earth based radar observations to characterize Maxwell Montes are analyzed. Maxwell Montes is a porkchop shaped feature located at the eastern end of Lakshmi Planum. The main massif trends about North 20 deg West for approximately 1000 km and the narrow handle extends several hundred km West South-West WSW from the north end of the main massif, descending down toward Lakshmi Planum. The main massif is rectilinear and approximately 500 km wide. The southern and northern edges of Maxwell Montes coincide with major topographic boundaries defining the edge of Ishtar Terra.

  20. Solar Wind Interaction and Impact on the Venus Atmosphere (United States)

    Futaana, Yoshifumi; Stenberg Wieser, Gabriella; Barabash, Stas; Luhmann, Janet G.


    Venus has intrigued planetary scientists for decades because of its huge contrasts to Earth, in spite of its nickname of "Earth's Twin". Its invisible upper atmosphere and space environment are also part of the larger story of Venus and its evolution. In 60s to 70s, several missions (Venera and Mariner series) explored Venus-solar wind interaction regions. They identified the basic structure of the near-Venus space environment, for example, existence of the bow shock, magnetotail, ionosphere, as well as the lack of the intrinsic magnetic field. A huge leap in knowledge about the solar wind interaction with Venus was made possible by the 14-year long mission, Pioneer Venus Orbiter (PVO), launched in 1978. More recently, ESA's probe, Venus Express (VEX), was inserted into orbit in 2006, operated for 8 years. Owing to its different orbit from that of PVO, VEX made unique measurements in the polar and terminator regions, and probed the near-Venus tail for the first time. The near-tail hosts dynamic processes that lead to plasma energization. These processes in turn lead to the loss of ionospheric ions to space, slowly eroding the Venusian atmosphere. VEX carried an ion spectrometer with a moderate mass-separation capability and the observed ratio of the escaping hydrogen and oxygen ions in the wake indicates the stoichiometric loss of water from Venus. The structure and dynamics of the induced magnetosphere depends on the prevailing solar wind conditions. VEX studied the response of the magnetospheric system on different time scales. A plethora of waves was identified by the magnetometer on VEX; some of them were not previously observed by PVO. Proton cyclotron waves were seen far upstream of the bow shock, mirror mode waves were observed in magnetosheath and whistler mode waves, possibly generated by lightning discharges were frequently seen. VEX also encouraged renewed numerical modeling efforts, including fluid-type of models and particle-fluid hybrid type of models

  1. Clouds of Venus

    Energy Technology Data Exchange (ETDEWEB)

    Knollenberg, R G [Particle Measuring Systems, Inc., 1855 South 57th Court, Boulder, Colorado 80301, U.S.A.; Hansen, J [National Aeronautics and Space Administration, New York (USA). Goddard Inst. for Space Studies; Ragent, B [National Aeronautics and Space Administration, Moffett Field, Calif. (USA). Ames Research Center; Martonchik, J [Jet Propulsion Lab., Pasadena, Calif. (USA); Tomasko, M [Arizona Univ., Tucson (USA)


    The current state of knowledge of the Venusian clouds is reviewed. The visible clouds of Venus are shown to be quite similar to low level terrestrial hazes of strong anthropogenic influence. Possible nucleation and particle growth mechanisms are presented. The Pioneer Venus experiments that emphasize cloud measurements are described and their expected findings are discussed in detail. The results of these experiments should define the cloud particle composition, microphysics, thermal and radiative heat budget, rough dynamical features and horizontal and vertical variations in these and other parameters. This information should be sufficient to initialize cloud models which can be used to explain the cloud formation, decay, and particle life cycle.

  2. Where should one look for traces of life on Venus? (United States)

    Vidmachenko, A. P.


    Now Venus is not very similar to a suitable place for living. It surface temperature exceeds 730 K, the pressure is 90 atmospheres, the cloud layer consists of sulfur dioxide, and the fog above cloud is a solution of sulfuric acid. But about 3 billion years ago, this planet among the Earth-type planets within the Solar System was perhaps the most suitable place for the existence of some form of life there. Measurements of the ratio of hydrogen isotopes in the atmosphere also showed that the planet once had much more water, and perhaps it was enough even for the oceans. In early years on Venus was similar to the earth's climate, have a satisfactory temperature and oceans of liquid water. That is, under the above conditions with moderate temperature, sufficient heat and liquid water, Venus would be quite suitable for the emergence of certain microorganisms and for the existence of primitive life there, especially in the oceans. One way to check whether the ancient Venus was once covered by the oceans is the study of the tremolite found on Earth. It is necessary to hope to find the tremolite at some depth below the surface of Venus. Also necessary to search for some biosignals in the form of petrified remains, of possibly simple thermophilic microorganisms. We believe that such an experiment can be prepared and technically carried out during the next decades.

  3. Sampling the Cloudtop Region on Venus (United States)

    Limaye, Sanjay; Ashish, Kumar; Alam, Mofeez; Landis, Geoffrey; Widemann, Thomas; Kremic, Tibor


    The details of the cloud structure on Venus continue to be elusive. One of the main questions is the nature and identity of the ultraviolet absorber(s). Remote sensing observations from Venus Express have provided much more information about the ubiquitous cloud cover on Venus from both reflected and emitted radiation from Venus Monitoring Camera (VMC) and Visible InfraRed Imaging Spectrometer (VIRTIS) observations. Previously, only the Pioneer Venus Large Probe has measured the size distribution of the cloud particles, and other probes have measured the bulk optical properties of the cloud cover. However, the direct sampling of the clouds has been possible only below about 62 km, whereas the recent Venus Express observations indicate that the cloud tops extend from about 75 km in equatorial region to about 67 km in polar regions. To sample the cloud top region of Venus, other platforms are required. An unmanned aerial vehicle (UAV) has been proposed previously (Landis et al., 2002). Another that is being looked into, is a semi-buoyant aerial vehicle that can be powered using solar cells and equipped with instruments to not only sample the cloud particles, but also to make key atmospheric measurements - e.g. atmospheric composition including isotopic abundances of noble and other gases, winds and turbulence, deposition of solar and infrared radiation, electrical activity. The conceptual design of such a vehicle can carry a much more massive payload than any other platform, and can be controlled to sample different altitudes and day and night hemispheres. Thus, detailed observations of the surface using a miniature Synthetic Aperture Radar are possible. Data relay to Earth will need an orbiter, preferably in a low inclination orbit, depending on the latitude region selected for emphasis. Since the vehicle has a large surface area, thermal loads on entry are low, enabling deployment without the use of an aeroshell. Flight characteristics of such a vehicle have been

  4. Future Drag Measurements from Venus Express (United States)

    Keating, Gerald; Mueller-Wodarg, Ingo; Forbes, Jeffrey M.; Yelle, Roger; Bruinsma, Sean; Withers, Paul; Lopez-Valverde, Miguel Angel; Theriot, Res. Assoc. Michael; Bougher, Stephen

    thermospheric drag effects over the last 30 years. The Venus Express drag experiments will allow a global empirical model of the thermosphere to emerge. This new model will be a substantial improvement over the Venus International Reference Atmosphere, which was based principally on near equatorial measurements. General Circulation Models (GCM's) and other models will be generated that are in fair accord with the empirical models. The experiment may help us understand, on a global scale, tides, winds, gravity waves, planetary waves and the damping of waves. Comparisons will be made between low and high latitude results; between the middle and upper atmosphere; and with other instruments that provide information from current and previous measurements. The character of the sharp temperature gradient near the day/night terminator needs to be studied at all latitudes. The cryosphere we discovered on the nightside needs to be studied at high latitudes. The vortex dipole over the North Pole surrounded by a colder "collar" needs to be analyzed to identify how wave activity extends into the polar thermosphere. We have already discovered super-rotation in the equatorial thermosphere, but we need to study 4-day super-rotation at higher latitudes to obtain a global picture of the thermosphere. The observed global cooling from radiative effects of 15 micron excitation of CO2 by atomic oxygen should improve our understanding of global thermospheric cooling on Earth and Mars as well.

  5. Astrobiology: The Case for Venus (United States)

    Landis, Geoffrey A.


    The scientific discipline of astrobiology addresses one of the most fundamental unanswered questions of science: are we alone? Is there life elsewhere in the universe, or is life unique to Earth? The field of astrobiology includes the study of the chemical precursors for life in the solar system; it also includes the search for both presently existing life and fossil signs of previously existing life elsewhere in our own solar system, as well as the search for life outside the solar system. Two of the promising environments within the solar system being currently considered are the surface of the planet Mars, and the hypothesized oceans underneath the ice covering the moon Europa. Both of these environments differ in several key ways from the environments where life is found on Earth; the Mars environment in most places too cold and at too low pressure for liquid water to be stable, and the sub-ice environment of Europa lacking an abundance of free energy in the form of sunlight. The only place in the solar system where we know that life exists today is the Earth. To look for life elsewhere in the solar system, one promising search strategy would be to find and study the environment in the solar system with conditions that are most similar to the environmental conditions where life thrives on the Earth. Specifically, we would like to study a location in the solar system with atmospheric pressure near one bar; temperature in the range where water is liquid, 0 to 100 C; abundant solar energy; and with the primary materials required for life, carbon, oxygen, nitrogen, and hydrogen, present. Other than the surface of the Earth, the only other place where these conditions exist is the atmosphere of Venus, at an altitude of about fifty kilometers above the surface.

  6. Large-Ensemble modeling of past and future variations of the Antarctic Ice Sheet with a coupled ice-Earth-sea level model (United States)

    Pollard, David; DeConto, Robert; Gomez, Natalya


    To date, most modeling of the Antarctic Ice Sheet's response to future warming has been calibrated using recent and modern observations. As an alternate approach, we apply a hybrid 3-D ice sheet-shelf model to the last deglacial retreat of Antarctica, making use of geologic data of the last ~20,000 years to test the model against the large-scale variations during this period. The ice model is coupled to a global Earth-sea level model to improve modeling of the bedrock response and to capture ocean-ice gravitational interactions. Following several recent ice-sheet studies, we use Large Ensemble (LE) statistical methods, performing sets of 625 runs from 30,000 years to present with systematically varying model parameters. Objective scores for each run are calculated using modern data and past reconstructed grounding lines, relative sea level records, cosmogenic elevation-age data and uplift rates. The LE results are analyzed to calibrate 4 particularly uncertain model parameters that concern marginal ice processes and interaction with the ocean. LE's are extended into the future with climates following RCP scenarios. An additional scoring criterion tests the model's ability to reproduce estimated sea-level high stands in the warm mid-Pliocene, for which drastic retreat mechanisms of hydrofracturing and ice-cliff failure are needed in the model. The LE analysis provides future sea-level-rise envelopes with well-defined parametric uncertainty bounds. Sensitivities of future LE results to Pliocene sea-level estimates, coupling to the Earth-sea level model, and vertical profiles of Earth properties, will be presented.

  7. Venus: The First Habitable World of Our Solar System? (United States)

    Way, Michael Joseph; Del Genio, Anthony; Kiang, Nancy; Sohl, Linda; Clune, Tom; Aleinov, Igor; Kelley, Maxwell


    A great deal of effort in the search for life off-Earth in the past 20+ years has focused on Mars via a plethora of space and ground based missions. While there is good evidence that surface liquid water existed on Mars in substantial quantities, it is not clear how long such water existed. Most studies point to this water existing billions of years ago. However,those familiar with the Faint Young Sun hypothesis for Earth will quickly realize that this problem is even more pronounced for Mars. In this context recent simulations have been completed with the GISS 3-D GCM (1) of paleo Venus (approx. 3 billion years ago) when the sun was approx. 25 less luminous than today. A combination of a less luminous Sun and a slow rotation rate reveal that Venus could have had conditions on its surface amenable to surface liquid water. Previous work has also provided bounds on how much water Venus could have had using measured DH ratios. It is possible that less assumptions have to be made to make Venus an early habitable world than have to be made for Mars, even thoughVenus is a much tougher world on which to confirm this hypothesis.

  8. The transit of Venus enterprise in Victorian Britain

    CERN Document Server

    Ratcliff, Jessica


    In nineteenth century, the British Government spent money measuring the distance between the earth and the sun using observations of the transit of Venus. This book presents a narrative of the two Victorian transit programmes. It draws out their cultural significance and explores the nature of 'big science' in late-Victorian Britain.

  9. Global Geological Map of Venus (United States)

    Ivanov, M. A.


    Introduction: The Magellan SAR images provide sufficient data to compile a geological map of nearly the entire surface of Venus. Such a global and selfconsistent map serves as the base to address the key questions of the geologic history of Venus. 1) What is the spectrum of units and structures that makes up the surface of Venus [1-3]? 2) What volcanic/tectonic processes do they characterize [4-7]? 3) Did these processes operated locally, regionally, or globally [8- 11]? 4) What are the relationships of relative time among the units [8]? 5) At which length-scale these relationships appear to be consistent [8-10]? 6) What is the absolute timing of formation of the units [12-14]? 7) What are the histories of volcanism, tectonics and the long-wavelength topography on Venus? 7) What model(s) of heat loss and lithospheric evolution [15-21] do these histories correspond to? The ongoing USGS program of Venus mapping has already resulted in a series of published maps at the scale 1:5M [e.g. 22-30]. These maps have a patch-like distribution, however, and are compiled by authors with different mapping philosophy. This situation not always results in perfect agreement between the neighboring areas and, thus, does not permit testing geological hypotheses that could be addressed with a self-consistent map. Here the results of global geological mapping of Venus at the scale 1:10M is presented. The map represents a contiguous area extending from 82.5oN to 82.5oS and comprises ~99% of the planet. Mapping procedure: The map was compiled on C2- MIDR sheets, the resolution of which permits identifying the basic characteristics of previously defined units. The higher resolution images were used during the mapping to clarify geologic relationships. When the map was completed, its quality was checked using published USGS maps [e.g., 22-30] and the catalogue of impact craters [31]. The results suggest that the mapping on the C2-base provided a highquality map product. Units and

  10. VLF imaging of the Venus foreshock (United States)

    Crawford, G. K.; Strangeway, R. J.; Russell, C. T.


    VLF plasma wave measurements obtained from the Pioneer Venus Orbiter Electric Field Detector (OEFD) have been used to construct statistical images of the Venus foreshock. Our data set contains all upstream measurements from an entire Venus year (approximately 200 orbits). Since the foreshock VLF characteristics vary with Interplanetary Magnetic Field (IMF) orientation we restrict the study to IMF orientations near the nominal Parker spiral angle (25 to 45). Our results show a strong decrease in 30 kHz wave intensity with both foreshock depth and distance. There is also an asymmetry in the 30 kHz emissions from the upstream and downstream foreshocks. The ion foreshock is characterized by strong emissions in the 5.4 kHz OEFD channel which are positioned much deeper in the foreshock than expected from terrestrial observations. No activity is observed in the region where field aligned ion distributions are expected. ULF wave activity, while weaker than at Earth, shows similar behavior and may indicate the presence of similar ion distributions.

  11. ULF hydromagnetic oscillations with the discrete spectrum as eigenmodes of MHD-resonator in the near-Earth part of the plasma sheet

    Directory of Open Access Journals (Sweden)

    V. A. Mazur


    Full Text Available A new concept is proposed for the emergence of ULF geomagnetic oscillations with a discrete spectrum of frequencies (0.8, 1.3, 1.9, 2.6 ...mHz registered in the magnetosphere's midnight-morning sector. The concept relies on the assumption that these oscillations are MHD-resonator eigenmodes in the near-Earth plasma sheet. This magnetospheric area is where conditions are met for fast magnetosonic waves to be confined. The confinement is a result of the velocity values of fast magnetosonic waves in the near-Earth plasma sheet which differ greatly from those in the magnetotail lobes, leading to turning points forming in the tailward direction for the waves under study. To compute the eigenfrequency spectrum of such a resonator, we used a model magnetosphere with parabolic geometry. The fundamental harmonics of this resonator's eigenfrequencies are shown to be capable of being clustered into groups with average frequencies matching, with good accuracy, the frequencies of the observed oscillations. A possible explanation for the stability of the observed oscillation frequencies is that such a resonator might only form when the magnetosphere is in a certain unperturbed state.

  12. ULF hydromagnetic oscillations with the discrete spectrum as eigenmodes of MHD-resonator in the near-Earth part of the plasma sheet

    Directory of Open Access Journals (Sweden)

    V. A. Mazur


    Full Text Available A new concept is proposed for the emergence of ULF geomagnetic oscillations with a discrete spectrum of frequencies (0.8, 1.3, 1.9, 2.6 ...mHz registered in the magnetosphere's midnight-morning sector. The concept relies on the assumption that these oscillations are MHD-resonator eigenmodes in the near-Earth plasma sheet. This magnetospheric area is where conditions are met for fast magnetosonic waves to be confined. The confinement is a result of the velocity values of fast magnetosonic waves in the near-Earth plasma sheet which differ greatly from those in the magnetotail lobes, leading to turning points forming in the tailward direction for the waves under study. To compute the eigenfrequency spectrum of such a resonator, we used a model magnetosphere with parabolic geometry. The fundamental harmonics of this resonator's eigenfrequencies are shown to be capable of being clustered into groups with average frequencies matching, with good accuracy, the frequencies of the observed oscillations. A possible explanation for the stability of the observed oscillation frequencies is that such a resonator might only form when the magnetosphere is in a certain unperturbed state.

  13. Lightning on Venus (United States)

    Scarf, F. L.


    On the night side of Venus, the plasma wave instrument on the Pioneer-Venus Orbiter frequently detects strong and impulsive low-frequency noise bursts when the local magnetic field is strong and steady and when the field is oriented to point down to the ionosphere. The signals have characteristics of lightning whistlers, and an attempt was made to identify the sources by tracing rays along the B-field from the Orbiter down toward the surface. An extensive data set strongly indicates a clustering of lightning sources near the Beta and Phoebe Regios, with additional significant clustering near the Atla Regio at the eastern edge of Aphrodite Terra. These results suggest that there are localized lightning sources at or near the planetary surface.

  14. Venus gravity fields (United States)

    Sjogren, W. L.; Ananda, M.; Williams, B. G.; Birkeland, P. W.; Esposito, P. S.; Wimberly, R. N.; Ritke, S. J.


    Results of Pioneer Venus Orbiter observations concerning the gravity field of Venus are presented. The gravitational data was obtained from reductions of Doppler radio tracking data for the Orbiter, which is in a highly eccentric orbit with periapsis altitude varying from 145 to 180 km and nearly fixed periapsis latitude of 15 deg N. The global gravity field was obtained through the simultaneous estimation of the orbit state parameters and gravity coefficients from long-period variations in orbital element rates. The global field has been described with sixth degree and order spherical harmonic coefficients, which are capable of resolving the three major topographical features on Venus. Local anomalies have been mapped using line-of-sight accelerations derived from the Doppler residuals between 40 deg N and 10 deg S latitude at approximately 300 km spatial resolution. Gravitational data is observed to correspond to topographical data obtained by radar altimeter, with most of the gravitational anomalies about 20-30 milligals. Simulations evaluating the isostatic states of two topographic features indicate that at least partial isostasy prevails, with the possibility of complete compensation.

  15. Short Large-Amplitude Magnetic Structures (SLAMS) at Venus (United States)

    Collinson, G. A.; Wilson, L. B.; Sibeck, D. G.; Shane, N.; Zhang, T. L.; Moore, T. E.; Coates, A. J.; Barabash, S.


    We present the first observation of magnetic fluctuations consistent with Short Large-Amplitude Magnetic Structures (SLAMS) in the foreshock of the planet Venus. Three monolithic magnetic field spikes were observed by the Venus Express on the 11th of April 2009. The structures were approx.1.5->11s in duration, had magnetic compression ratios between approx.3->6, and exhibited elliptical polarization. These characteristics are consistent with the SLAMS observed at Earth, Jupiter, and Comet Giacobini-Zinner, and thus we hypothesize that it is possible SLAMS may be found at any celestial body with a foreshock.

  16. The VENUS detector at TRISTAN

    International Nuclear Information System (INIS)

    Sugimoto, Shojiro


    The design of the VENUS detector is described. In this paper, emphasis is placed on the central tracking chamber and the electromagnetic shower calorimeters. Referring to computer simulations and test measurements with prototypes, the expected performance of our detector system is discussed. The contents are, for the most part, taken from the VENUS proposal /2/. (author)

  17. Advancing Venus Geophysics with the NF4 VOX Gravity Investigation. (United States)

    Iess, L.; Mazarico, E.; Andrews-Hanna, J. C.; De Marchi, F.; Di Achille, G.; Di Benedetto, M.; Smrekar, S. E.


    The Venus Origins Explorer is a JPL-led New Frontiers 4 mission proposal to Venus to answer critical questions about the origin and evolution of Venus. Venus stands out among other planets as Earth's twin planet, and is a natural target to better understand our own planet's place, in our own Solar System but also among the ever-increasing number of exoplanetary systems. The VOX radio science investigation will make use of an innovative Ka-band transponder provided by the Italian Space Agency (ASI) to map the global gravity field of Venus to much finer resolution and accuracy than the current knowledge, based on the NASA Magellan mission. We will present the results of comprehensive simulations performed with the NASA GSFC orbit determination and geodetic parameter estimation software `GEODYN', based on a realistic mission scenario, tracking schedule, and high-fidelity Doppler tracking noise model. We will show how the achieved resolution and accuracy help fulfill the geophysical goals of the VOX mission, in particular through the mapping of subsurface crustal density or thickness variations that will inform the composition and origin of the tesserae and help ascertain the heat loss and importance of tectonism and subduction.

  18. Ice sheet in peril

    DEFF Research Database (Denmark)

    Hvidberg, Christine Schøtt


    Earth's large ice sheets in Greenland and Antarctica are major contributors to sea level change. At present, the Greenland Ice Sheet (see the photo) is losing mass in response to climate warming in Greenland (1), but the present changes also include a long-term response to past climate transitions...

  19. VENUS Ranging Study (United States)


    Majesté la Reine (en droit du Canada), telle que réprésentée par le ministre de la Défense nationale, 2014 Abstract The underwater acoustic propagation...50 km des capteurs sous-marins situés aux nœuds du réseau VENUS dont les données acoustiques et sismiques sont accessibles au public sur Internet...Southwest British Columbia, Geophysical Journal International , 170(2), 800–812. [15] Hamilton, E. L. (1979), Vp/Vs and Poisson’s ratios in marine

  20. A primary exploration to quasi-two-dimensional rare-earth ferromagnetic particles: holmium-doped MoS2 sheet as room-temperature magnetic semiconductor (United States)

    Chen, Xi; Lin, Zheng-Zhe


    Recently, two-dimensional materials and nanoparticles with robust ferromagnetism are even of great interest to explore basic physics in nanoscale spintronics. More importantly, room-temperature magnetic semiconducting materials with high Curie temperature is essential for developing next-generation spintronic and quantum computing devices. Here, we develop a theoretical model on the basis of density functional theory calculations and the Ruderman-Kittel-Kasuya-Yoshida theory to predict the thermal stability of two-dimensional magnetic materials. Compared with other rare-earth (dysprosium (Dy) and erbium (Er)) and 3 d (copper (Cu)) impurities, holmium-doped (Ho-doped) single-layer 1H-MoS2 is proposed as promising semiconductor with robust magnetism. The calculations at the level of hybrid HSE06 functional predict a Curie temperature much higher than room temperature. Ho-doped MoS2 sheet possesses fully spin-polarized valence and conduction bands, which is a prerequisite for flexible spintronic applications.

  1. Large Volcanic Rises on Venus (United States)

    Smrekar, Suzanne E.; Kiefer, Walter S.; Stofan, Ellen R.


    Large volcanic rises on Venus have been interpreted as hotspots, or the surface manifestation of mantle upwelling, on the basis of their broad topographic rises, abundant volcanism, and large positive gravity anomalies. Hotspots offer an important opportunity to study the behavior of the lithosphere in response to mantle forces. In addition to the four previously known hotspots, Atla, Bell, Beta, and western Eistla Regiones, five new probable hotspots, Dione, central Eistla, eastern Eistla, Imdr, and Themis, have been identified in the Magellan radar, gravity and topography data. These nine regions exhibit a wider range of volcano-tectonic characteristics than previously recognized for venusian hotspots, and have been classified as rift-dominated (Atla, Beta), coronae-dominated (central and eastern Eistla, Themis), or volcano-dominated (Bell, Dione, western Eistla, Imdr). The apparent depths of compensation for these regions ranges from 65 to 260 km. New estimates of the elastic thickness, using the 90 deg and order spherical harmonic field, are 15-40 km at Bell Regio, and 25 km at western Eistla Regio. Phillips et al. find a value of 30 km at Atla Regio. Numerous models of lithospheric and mantle behavior have been proposed to interpret the gravity and topography signature of the hotspots, with most studies focusing on Atla or Beta Regiones. Convective models with Earth-like parameters result in estimates of the thickness of the thermal lithosphere of approximately 100 km. Models of stagnant lid convection or thermal thinning infer the thickness of the thermal lithosphere to be 300 km or more. Without additional constraints, any of the model fits are equally valid. The thinner thermal lithosphere estimates are most consistent with the volcanic and tectonic characteristics of the hotspots. Estimates of the thermal gradient based on estimates of the elastic thickness also support a relatively thin lithosphere (Phillips et al.). The advantage of larger estimates of

  2. Venus Interior Probe Using In-Situ Power and Propulsion (VIP-INSPR) (United States)

    Bugga, Ratnakumar V.


    Venus, despite being our closest neighboring planet, is under-explored due to its hostile and extreme environment, with a 92 bar pressure and 467 C temperature at the surface. The temperature decreases at higher altitudes, almost at the rate of 7.9 C/km, reaching the Earth surface conditions at 65 km. Due to the less extreme conditions, balloon missions could survive as long as 46 h at an altitude of 54 km. However, because of the opacity of the Venus atmosphere filled with clouds of sulfuric acid and CO2, orbiter or balloon missions are not as revealing and informative in characterizing the surface, as similar missions on Moon and Mars. To understand the evolutionary paths of Venus in relation to Earth, it is imperative to gather basic information on the crust, mantle, core, atmosphere/exosphere and bulk composition of Venus, through in-situ investigations using landers, probes and variable altitude areal platforms.

  3. Muon Excess at Sea Level during the Progress of a Geomagnetic Storm and High-Speed Stream Impact Near the Time of Earth's Heliospheric Sheet Crossing (United States)

    Augusto, C. R. A.; Navia, C. E.; de Oliveira, M. N.; Nepomuceno, A. A.; Kopenkin, V.; Sinzi, T.


    In this article we present results of studying the association between the muon flux variation at ground level, registered by the New-Tupi muon telescopes (22° 53'00'' S, 43° 06'13' W; 3 m above sea level), and the geomagnetic storm on 25 - 29 August 2015 that has raged for several days as a result of a coronal mass ejection (CME) impact on Earth's magnetosphere. A sequence of events started with an M3.5 X-ray class flare on 22 August 2015 at 21:19 UTC. The New-Tupi muon telescopes observed a Forbush decrease (FD) triggered by this geomagnetic storm, which began on 26 August 2015. After Earth crossed the heliospheric current sheet (HCS), an increase in particle flux was observed on 28 August 2015 by spacecraft and ground-level detectors. The observed peak was in temporal coincidence with the impact of a high-speed stream (HSS). We study this increase, which has been observed with a significance above 1.5% by ground-level detectors in different rigidity regimes. We also estimate the lower limit of the energy fluence injected on Earth. In addition, we consider the origin of this increase, such as acceleration of particles by shock waves at the front of the HSS and the focusing effect of the HCS crossing. Our results show possible evidence of a prolonged energetic (up to GeV energies) particle injection within the Earth atmosphere system, driven by the HSS. In most cases, these injected particles are directed to the polar regions. However, the particles from the high-energy tail of the spectrum can reach mid-latitudes, and this could have consequences for the atmospheric chemistry. For instance, the creation of NOx species may be enhanced, and this can lead to increased ozone depletion. This topic requires further study.

  4. A heat pipe mechanism for volcanism and tectonics on Venus

    International Nuclear Information System (INIS)

    Turcotte, D.L.


    A heat pipe mechanism is proposed for the transport of heat through the lithosphere on Venus. This mechanism allows the crust and lithosphere on Venus to be greater than 150 km thick. A thick crust and thick lithosphere can explain the high observed topography and large associated gravity anomalies. For a 150-km-thick lithosphere the required volcanic flux on Venus is 200 km 3 /yr; this is compared with a flux of 17 km 3 /yr associated with the formation of the oceanic crust on Earth. A thick basaltic crust on Venus is expected to transform to eclogite at a depth of 60 to 80 km; the dense eclogite would contribute the lithospheric delamination that returns the crust to the interior of the planet completing the heat pipe cycle. Topography and the associated gravity anomalies can be explained by Airy compensation of the thick crust. The principal observation that is contrary to this hypothesis is the mean age of the surface that is inferred from crater statistics; the minimum mean age is about 130 Ma, and this implies an upper limit of 2 km 3 /yr for the surface volcanic flux. If the heat pipe mechanism was applicable on Earth in the Archean, it would provide the thick lithosphere implied by isotopic data from diamonds

  5. A mantle plume model for the Equatorial Highlands of Venus (United States)

    Kiefer, Walter S.; Hager, Bradford H.


    The possibility that the Equatorial Highlands are the surface expressions of hot upwelling mantle plumes is considered via a series of mantle plume models developed using a cylindrical axisymmetric finite element code and depth-dependent Newtonian rheology. The results are scaled by assuming whole mantle convection and that Venus and the earth have similar mantle heat flows. The best model fits are for Beta and Atla. The common feature of the allowed viscosity models is that they lack a pronounced low-viscosity zone in the upper mantle. The shape of Venus's long-wavelength admittance spectrum and the slope of its geoid spectrum are also consistent with the lack of a low-viscosity zone. It is argued that the lack of an asthenosphere on Venus is due to the mantle of Venus being drier than the earth's mantle. Mantle plumes may also have contributed to the formation of some smaller highland swells, such as the Bell and Eistla regions and the Hathor/Innini/Ushas region.

  6. VERITAS: a Discovery-Class Venus Surface Geology and Geophysics Mission (United States)

    Freeman, Anthony; Smrekar, Suzanne E.; Hensley, Scott; Wallace, Mark; Sotin, Christophe; Darrach, Murray; Xaypraseuth, Peter; Helbert, Joern; Mazarico, Erwan


    Our understanding of solar system evolution is limited by a great unanswered question: How Earthlike is Venus? We know that these "twin" planets formed with similar bulk composition and size. Yet the evolutionary path Venus followed has diverged from Earth's, in losing its surface water and becoming hotter than Mercury. What led to this? The answer has profound implications for how terrestrial planets become habitable and the potential for life in the universe.

  7. Venus Express en route to probe the planet's hidden mysteries (United States)


    Venus Express will eventually manoeuvre itself into orbit around Venus in order to perform a detailed study of the structure, chemistry and dynamics of the planet's atmosphere, which is characterised by extremely high temperatures, very high atmospheric pressure, a huge greenhouse effect and as-yet inexplicable "super-rotation" which means that it speeds around the planet in just four days. The European spacecraft will also be the first orbiter to probe the planet's surface while exploiting the "visibility windows" recently discovered in the infrared waveband. The 1240 kg mass spacecraft was developed for ESA by a European industrial team led by EADS Astrium with 25 main contractors spread across 14 countries. It lifted off onboard a Soyuz-Fregat rocket, the launch service being provided by Starsem. The lift-off from the Baikonur Cosmodrome in Kazakstan this morning took place at 09:33 hours local time (04:33 Central European Time). Initial Fregat upper-stage ignition took place 9 minutes into the flight, manoeuvring the spacecraft into a low-earth parking orbit. A second firing, 1 hour 22 minutes later, boosted the spacecraft to pursue its interplanetary trajectory. Contact with Venus Express was established by ESA's European Space Operations Centre (ESOC) at Darmstadt, Germany approximately two hours after lift-off. The spacecraft has correctly oriented itself in relation to the sun and has deployed its solar arrays. All onboard systems are operating perfectly and the orbiter is communicating with the Earth via its low-gain antenna. In three days' time, it will establish communications using its high-gain antenna. Full speed ahead for Venus Venus Express is currently distancing itself from the Earth full speed, heading on its five-month 350 million kilometre journey inside our solar system. After check-outs to ensure that its onboard equipment and instrument payload are in proper working order, the spacecraft will be mothballed, with contact with the Earth being

  8. Earth

    CERN Document Server

    Carter, Jason


    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  9. Venus' Spectral Signatures and the Potential for Life in the Clouds. (United States)

    Limaye, Sanjay S; Mogul, Rakesh; Smith, David J; Ansari, Arif H; Słowik, Grzegorz P; Vaishampayan, Parag


    The lower cloud layer of Venus (47.5-50.5 km) is an exceptional target for exploration due to the favorable conditions for microbial life, including moderate temperatures and pressures (∼60°C and 1 atm), and the presence of micron-sized sulfuric acid aerosols. Nearly a century after the ultraviolet (UV) contrasts of Venus' cloud layer were discovered with Earth-based photographs, the substances and mechanisms responsible for the changes in Venus' contrasts and albedo are still unknown. While current models include sulfur dioxide and iron chloride as the UV absorbers, the temporal and spatial changes in contrasts, and albedo, between 330 and 500 nm, remain to be fully explained. Within this context, we present a discussion regarding the potential for microorganisms to survive in Venus' lower clouds and contribute to the observed bulk spectra. In this article, we provide an overview of relevant Venus observations, compare the spectral and physical properties of Venus' clouds to terrestrial biological materials, review the potential for an iron- and sulfur-centered metabolism in the clouds, discuss conceivable mechanisms of transport from the surface toward a more habitable zone in the clouds, and identify spectral and biological experiments that could measure the habitability of Venus' clouds and terrestrial analogues. Together, our lines of reasoning suggest that particles in Venus' lower clouds contain sufficient mass balance to harbor microorganisms, water, and solutes, and potentially sufficient biomass to be detected by optical methods. As such, the comparisons presented in this article warrant further investigations into the prospect of biosignatures in Venus' clouds. Key Words: Venus-Clouds-Life-Habitability-Microorganism-Albedo-Spectroscopy-Biosignatures-Aerosol-Sulfuric Acid. Astrobiology 18, xxx-xxx.

  10. Quasi-adiabatic particle acceleration in a magnetic field reversals and the formation of the plasma sheet boundary layer in the earth's magnetotail

    International Nuclear Information System (INIS)

    Zelenyi, L.M.; Vogin, D.V.; Buechner, J.


    Two types of regularity exist for the particle motion in the two-dimensional magnetic field reversals (MFR) with the strongly curves magnetic field lines - the usual adiabatic and another one which we called 'quasiadiabatic'. Here we consider the acceleration of MFR particles in stationary and homogeneous electric field induced by the motion of MFR through the ambient plasma (i.e. solar wind). Assuming that the time scale of acceleration is slow in comparison with the period of orbital motion we introduce the new longitudinal invariant I κ . This enables to describe the process of acceleration in a closed form and to obtain for the first time the laws governing the quasiadiabatic ion acceleration in the Earth's mangetotail. The similarities and differences in adiabatic and quasiadiabatic acceleration mechanisms are discussed. The obtained results give and important insights to the problem of the particle heating in hte Earth's magnetotail and to the formation of accelerated plasma streams along the edges of the plasma sheet. (author). 17 refs.; 7 figs

  11. Aeolian sand transport and aeolian deposits on Venus: A review (United States)

    Kreslavsly, Mikhail A.; Bondarenko, Nataliya V.


    We review the current state of knowledge about aeolian sand transport and aeolian bedforms on planet Venus. This knowledge is limited by lack of observational data. Among the four planetary bodies of the Solar System with sufficient atmospheres in contact with solid surfaces, Venus has the densest atmosphere; the conditions there are transitional between those for terrestrial subaerial and subaqueous transport. The dense atmosphere causes low saltation threshold and short characteristic saltation length, and short scale length of the incipient dunes. A few lines of evidence indicate that the typical wind speeds exceed the saltation threshold; therefore, sand transport would be pervasive, if sand capable of saltation is available. Sand production on Venus is probably much slower than on the Earth; the major terrestrial sand sinks are also absent, however, lithification of sand through sintering is expected to be effective under Venus' conditions. Active transport is not detectable with the data available. Aeolian bedforms (transverse dunes) resolved in the currently available radar images occupy a tiny area on the planet; however, indirect observations suggest that small-scale unresolved aeolian bedforms are ubiquitous. Aeolian transport is probably limited by sand lithification causing shortage of saltation-capable material. Large impact events likely cause regional short-term spikes in aeolian transport by supplying a large amount of sand-size particles, as well as disintegration and activation of older indurated sand deposits. The data available are insufficient to understand whether the global aeolian sand transport occurs or not. More robust knowledge about aeolian transport on Venus is essential for future scientific exploration of the planet, in particular, for implementation and interpretation of geochemical studies of surface materials. High-resolution orbital radar imaging with local to regional coverage and desirable interferometric capabilities is the

  12. Venus - Phoebe Region (United States)


    This Magellan radar image is of part of the Phoebe region of Venus. It is a mosaic of parts of revolutions 146 and 147 acquired in the first radar test on Aug. 16, 1990. The area in the image is located at 291 degrees east longitude, 19 degrees south latitude. The image shows an area 30 kilometers (19.6 miles) wide and 76 km (47 miles) long. On the basis of Pioneer Venus and Arecibo data, it is known that two major rift zones occur in southern Phoebe Regio and that they terminate at about 20 to 25 degrees south latitude, about 2,000 km (1,240 miles) apart. This image is of an area just north of the southern end of the western rift zone. The region is characterized by a complex geologic history involving both volcanism and faulting. Several of the geologic units show distinctive overlapping or cross cutting relationships that permit identification and separation of geologic events and construction of the geologic history of the region. The oldest rocks in this image form the complexly deformed and faulted, radar bright, hilly terrain in the northern half. Faults of a variety of orientations are observed. A narrow fault trough (about one-half to one km (three tenths to six tenths of a mile) wide is seen crossing the bright hills near the lower part in the middle of the image. This is one of the youngest faults in the faulted, hilly unit as it is seen to cut across many other structures. The fault trough in turn appears to be embayed and flooded by the darker plains that appear in the south half of the image. These plains are interpreted to be of volcanic origin. The dark plains may be formed of a complex of overlapping volcanic flows. For example, the somewhat darker region of plains in the lower left (southwest) corner of the image may be a different age series of plains forming volcanic lava flows. Finally, the narrow bright line crossing the image in its lower part is interpreted to be a fault which cross cuts both plains units and is thus the youngest event in

  13. Laying bare Venus' dark secrets

    International Nuclear Information System (INIS)

    Allen, D.A.


    Ground-based IR observations of the dark side of Venus obtained in 1983 and 1985 with the Anglo-Australian Telescope are studied. An IR spectrum of Venus' dark side is analyzed. It is observed that the Venus atmosphere is composed of CO and radiation escapes only at 1.74 microns and 2.2 to 2.4 microns. The possible origin of the radiation, either due to absorbed sunlight or escaping thermal radiation, was investigated. These two hypotheses were eliminated, and it is proposed that the clouds of Venus are transparent and the radiation originates from the same stratum as the brighter portions but is weakened by the passage through the upper layer. The significance of the observed dark side markings is discussed

  14. Venus Suface Sampling and Analysis (United States)

    National Aeronautics and Space Administration — This effort is developing the technology to transfer particulate samples from a Venus drill (being developed by Honeybee Robotics in a Phase 2 Small Business...

  15. Venusians: the Planet Venus in the 18th-Century Extraterrestrial Life Debate (United States)

    Duner, David


    In the seventeenth and eighteenth centuries it became possible to believe in the existence of life on other planets on scientific grounds. Once the Earth was no longer the center of the universe according to Copernicus, once Galileo had aimed his telescope at the Moon and found it a rough globe with mountains and seas, the assumption of life on other planets became much less far-fetched. In general there were no actual differences between Earth and Venus, since both planets orbited the Sun, were of similar size, and possessed mountains and an atmosphere. If there is life on Earth, one may ponder why it could not also exist on Venus. In the extraterrestrial life debate of the seventeenth and eighteenth centuries, the Moon, our closest celestial body, was the prime candidate for life on other worlds, although a number of scientists and scholars also speculated about life on Venus and on other planets, both within our solar system and beyond its frontiers. This chapter discusses the arguments for life on Venus and those scientific findings that were used to support them, which were based in particular on assumptions and claims that both mountains and an atmosphere had been found on Venus. The transits of Venus in the 1760s became especially important for the notion that life could thrive on Venus. Here, I detect two significant cognitive processes that were at work in the search for life on Venus, i.e., analogical reasoning and epistemic perception, while analogies and interpretations of sensory impressions based on prior knowledge played an important role in astrobiological theories.

  16. New perspectives on the accretion and internal evolution of Venus (United States)

    O'Rourke, J. G.


    Dichotomous conditions on Earth and Venus present one of the most compelling mysteries in our Solar System. Ongoing debate centers on how the internal dynamics of Venus have shaped its atmospheric composition, surface features, and even habitability over geologic time. In particular, Venus may have resembled Earth for billions of years before suffering catastrophic transformation, or perhaps some accretionary process set these twin planets on divergent paths from the beginning. Unfortunately, the limited quality of decades-old data—particularly the low resolution of radar imagery and global topography from NASA's Magellan mission—harms our ability to draw definite conclusions. But some progress is possible given recent advances in modeling techniques and improved topography derived from stereo images that are available for roughly twenty percent of the surface. Here I present simulations of the interior evolution of Venus consistent with all available constraints and, more importantly, identify future measurements that would dramatically narrow the range of acceptable scenarios. Obtaining high-resolution imagery and topography, along with any information about the temporal history of a magnetic field, is extremely important. Deformation of geologic features constrains the surface heat flow and lithospheric rheology during their formation. Determining whether craters with radar-dark floors (which comprise 80% of the population) are actually embayed by lava flows would finally settle the controversy over catastrophic versus equilibrium resurfacing. If the core of Venus has completely solidified, then the lack of an internally generated magnetic field today is unsurprising. We might expect dynamo action in the past since relatively high mantle temperatures may increase the rate of core cooling—unless a lack of giant impacts during accretion permitted chemical stratification that resists convection. In any case, uncertainty about our celestial cousin reveals a

  17. Corona Associations and Their Implications for Venus (United States)

    Chapman, M.G.; Zimbelman, J.R.


    Geologic mapping principles were applied to determine genetic relations between coronae and surrounding geomorphologic features within two study areas in order to better understand venusian coronae. The study areas contain coronae in a cluster versus a contrasting chain and are (1) directly west of Phoebe Regio (quadrangle V-40; centered at latitude 15??S, longitude 250??) and (2) west of Asteria and Beta Regiones (between latitude 23??N, longitude 239?? and latitude 43??N, longitude 275??). Results of this research indicate two groups of coronae on Venus: (1) those that are older and nearly coeval with regional plains, and occur globally; and (2) those that are younger and occur between Beta, Atla, and Themis Regiones or along extensional rifts elsewhere, sometimes showing systematic age progressions. Mapping relations and Earth analogs suggest that older plains coronae may be related to a near-global resurfacing event perhaps initiated by a mantle superplume or plumes. Younger coronae of this study that show age progression may be related to (1) a tectonic junction of connecting rifts resulting from local mantle upwelling and spread of a quasi-stationary hotspot plume, and (2) localized spread of post-plains volcanism. We postulate that on Venus most of the young, post-resurfacing coronal plumes may be concentrated within an area defined by the bounds of Beta, Atla, and Themis Regiones. ?? 1998 Academic Press.

  18. The Venus flybys opportunity with BEPICOLOMBO (United States)

    Mangano, Valeria; de la Fuente, Sara; Montagnon, Elsa; Benkhoff, Johannes; Zender, Joe; Orsini, Stefano


    BepiColombo is a dual spacecraft mission to Mercury to be launched in October 2018 and carried out jointly between the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA). The Mercury Planetary Orbiter (MPO) payload comprises eleven experiments and instrument suites. It will focus on a global characterization of Mercury through the investigation of its interior, surface, exosphere and magnetosphere. In addition, it will test Einstein's theory of general relativity. The second spacecraft, the Mercury Magnetosphere Orbiter (MMO), will carry five experiments or instrument suites to study the environment around the planet including the planet's exosphere and magnetosphere, and their interaction processes with the solar wind. The composite spacecraft made of MPO, MMO, a transfer module (MTM) and a sunshield (MOSIF) will be launched on an escape trajectory that will bring it into heliocentric orbit on its way to Mercury. During the cruise of 7.2 years toward the inner part of the Solar System, BepiColombo will make 1 flyby to the Earth, 2 to Venus, and 6 to Mercury. Only part of its payload will be obstructed by the sunshield and the cruise spacecraft configuration, so that the two flybys to Venus will allow operations of many instruments, like: spectrometers at many wavelengths, accelerometer, radiometer, ion and electron detectors. A scientific working group has recently formed from the BepiColombo community to identify potentially interesting scientific cases and to analyse operation timelines. Preliminary outputs will be presented and discussed.

  19. Results from VENUS

    International Nuclear Information System (INIS)

    Ogawa, K.


    Recent results from VENUS experiments on e + e - reactions at energies between 52 and 60.8 GeV are presented. The R-values, the ratio of the total hadronic cross section to that of μ pair production, look slightly high within the present energy region. To understand this observation, a detailed study was carried out on the production of a heavy quark with |Q|=e/3. By using a next-to-leading log. approximation, the QCD cut-off parameter, Λ MS , was obtained as being Λ MS =208 MeV(+80MeV, -62MeV). The differential cross sections for e + e - → e + e - , γγ, μ + μ - , and τ + τ - were found to be consistent with predictions of the standard model. The average charge asymmetry for e + e - → qq-bar was also measured and found to be consistent with the prediction of the standard model. No evidence was observed indicating new particle production. No single photon production was observed and the upper limit of the number of light neutrino types was set to be N ν < 17.8 (90 % CL). (author)

  20. Magma Reservoirs Feeding Giant Radiating Dike Swarms: Insights from Venus (United States)

    Grosfils, E. B.; Ernst, R. E.


    Evidence of lateral dike propagation from shallow magma reservoirs is quite common on the terrestrial planets, and examination of the giant radiating dike swarm population on Venus continues to provide new insight into the way these complex magmatic systems form and evolve. For example, it is becoming clear that many swarms are an amalgamation of multiple discrete phases of dike intrusion. This is not surprising in and of itself, as on Earth there is clear evidence that formation of both magma reservoirs and individual giant radiating dikes often involves periodic magma injection. Similarly, giant radiating swarms on Earth can contain temporally discrete subswarms defined on the basis of geometry, crosscutting relationships, and geochemical or paleomagnetic signatures. The Venus data are important, however, because erosion, sedimentation, plate tectonic disruption, etc. on Earth have destroyed most giant radiating dike swarm's source regions, and thus we remain uncertain about the geometry and temporal evolution of the magma sources from which the dikes are fed. Are the reservoirs which feed the dikes large or small, and what are the implications for how the dikes themselves form? Does each subswarm originate from a single, periodically reactivated reservoir, or do subswarms emerge from multiple discrete geographic foci? If the latter, are these discrete foci located at the margins of a single large magma body, or do multiple smaller reservoirs define the character of the magmatic center as a whole? Similarly, does the locus of magmatic activity change with time, or are all the foci active simultaneously? Careful study of giant radiating dike swarms on Venus is yielding the data necessary to address these questions and constrain future modeling efforts. Here, using giant radiating dike swarms from the Nemesis Tessera (V14) and Carson (V43) quadrangles as examples, we illustrate some of the dike swarm focal region diversity observed on Venus and briefly explore some

  1. Venus project : experimentation at ENEA's pilot site

    International Nuclear Information System (INIS)

    Bargellini, M.L.; Fontana, F.; Niccolai, L.; Scavino, G.; Mancini, R.; Levialdi, S.


    The document describes the ENEA's (Italian Agency for New Technologies, Energy and the Environment) experience in the Venus Project (Esprit III 6398). Venus is an advanced visual interface based on icon representation that permits to end-user to inquiry databases. VENUS interfaces to ENEA's databases: cometa materials Module, Cometa Laboratories Module and European Programs. This report contents the results of the experimentation and of the validation carried out in ENEA's related to the Venus generations. Moreover, the description of the architecture, the user requirements syntesis and the validation methodology of the VENUS systems have been included

  2. Combustion-based power source for Venus surface missions (United States)

    Miller, Timothy F.; Paul, Michael V.; Oleson, Steven R.


    The National Research Council has identified in situ exploration of Venus as an important mission for the coming decade of NASA's exploration of our solar system (Squyers, 2013 [1]). Heavy cloud cover makes the use of solar photovoltaics extremely problematic for power generation for Venus surface missions. In this paper, we propose a class of planetary exploration missions (for use on Venus and elsewhere) in solar-deprived situations where photovoltaics cannot be used, batteries do not provide sufficient specific energy and mission duration, and nuclear systems may be too costly or complex to justify or simply unavailable. Metal-fueled, combustion-based powerplants have been demonstrated for application in the terrestrial undersea environment. Modified or extended versions of the undersea-based systems may be appropriate for these sunless missions. We describe systems carrying lithium fuel and sulfur-hexafluoride oxidizer that have the potential for many days of operation in the sunless craters of the moon. On Venus a system level specific energy of 240 to 370 We-hr/kg should be possible if the oxidizer is brought from earth. By using either lithium or a magnesium-based alloy fuel, it may be possible to operate a similar system with CO2 derived directly from the Venus atmosphere, thus providing an estimated system specific energy of 1100 We+PV-hr/kg (the subscript refers to both electrical and mechanical power), thereby providing mission durations that enable useful scientific investigation. The results of an analysis performed by the NASA Glenn COMPASS team describe a mission operating at 2.3 kWe+PV for 5 days (120 h), with less than 260 kg power/energy system mass total. This lander would be of a size and cost suitable for a New Frontiers class of mission.

  3. Transits of Venus in Public Education and Contemporary Research (United States)

    Pasachoff, J. M.


    Transits of Venus are among the rarest predictable astronomical event that humans can enjoy, and the 2012 transit will be visible by almost all the people on Earth. It is our job as educators to bring out the thrill of being able to see the tiny dot of Venus silhouetted against the solar disk even with just a simple eye-protection filter. My Website at brings together not only historical information about the five previous transits of Venus that were observed through the 20th century--1639, 1761, 1769, 1874, and 1882--but also the scientific work carried out at the 2004 transit and at recent transits of Mercury. Based on space observations of the 1999 transit of Mercury with NASA's Transition Region and Coronal Explorer (TRACE), Glenn Schneider and I provided proof of the contemporary explanation of the black-drop effect as an amalgam of instrumental point-spread and solar limb-darkening [1]. Based on observations of the changes in the total solar irradiance during the transit, we provided an analysis of this solar-system analogue to exoplanet transits [2]. High-resolution (0.5 arcsec pixels) observations of ingress and egress with TRACE during the 2004 transit provided information about the visibility of Venus's atmosphere through its refraction of sunlight, interpreted with Venus Express observations [3]. We anticipate observing the 2012 transit with groundbased facilities of the University of Hawaii at Haleakala, and of the National Solar Observatory at Sacramento Peak, and Kitt Peak, as well as with NASA and JAXA spacecraft, including Solar Dynamics Observatory, ACRIMsat, and Hinode. The Program Group on Public Education on the Occasions of Eclipses and Transits of Commission 46 on Education and Development of the International Astronomical Union, which I chair, looks forward to participating in Education and Public Outreach efforts related to the 2012 transit.

  4. Investigating the Origin and Evolution of Venus with in Situ Mass Spectrometry (United States)

    Trainer, M. G.; Mahaffy, P. R.; Brinckerhoff, W. B.; Johnson, N. M.; Glaze, L. S.


    The exploration of Venus continues to be a top priority of planetary science. The Planetary Decadal Survey goals for inner-planet exploration seek to discern the origin and diversity of terrestrial planets, understand how the evolution of terrestrial planets relates to the evolution of life, and explore the processes that control climate on Earth-like planets. These goals can only be realized through continued and extensive exploration of Venus, the most mysterious of the terrestrial planets, remarkably different from the Earth despite the gross similarities between these "twin planets". It is unknown if this apparent divergence was intrinsic, programmed during accretion from distinct nebular reservoirs, or a consequence of either measured or catastrophic processes during planetary evolution. Even if the atmosphere of Venus is a more "recent" development, its relationship to the resurfacing of the planet's enigmatic surface is not well understood. Resolving such uncertainties directly addresses the hypothesis of a more clement, possibly water-rich era in Venus' past as well as whether Earth could become more Venus-like in the future.

  5. Venus Express Contributions to the Study of Planetary Lightning (United States)

    Russell, C. T.; Hart, R. A.; Zhang, T. L.


    Jupiter, and Saturn are expected to generate the electrical potential differences in their clouds sufficient to cause a breakdown in the atmosphere,creating a conducting path for the electric potential to discharge. This high-energy phenomenon creates a hot, high-pressure channel that enables chemical reactions not possible under usual local thermodynamic conditions. Thus it is of some interest to determine if lightning occurs in an atmosphere. While Venus is not usually considered one of the wet planets, lightning has been an object of interest since the Venera landers. It was observed with electromagnetic coils on Venera 11, 12, 13, 14 landers [2]. It was observed with a visible spectrometer on the Venera 9 orbits [1]. It was mapped during solar occultations by the electric antenna on the Pioneer Venus Orbiter [4]. These measurements revealed extensive lightning activity with an electromagnetic energy flux similar to that on Earth. However, the observations were limited in number in the atmosphere and to the nightside from orbit. In order to improve the understanding of Venus lightning, the Venus Express magnetometer was given a 128-Hz sampling rate that could cover much of the ELF frequencies at which lightning could be observed in the weak magnetic fields of the Venus ionosphere [5]. This investigation was immediately successful [3], but mastering the cleaning of the broadband data took several years to accomplish. Furthermore, the high polar latitudes of VEX periapsis were not the ideal locations to conduct the more global survey that was desired. Fortunately, after precessing poleward over the first few years the latitude of periapsis has returned to lower latitudes(Figures 1 and 2) and active electrical storms are now being studied. The charged constituent of the Venus atmosphere need not be water. In fact, we believe it is H2SO4 which polarizes much as water does and which freezes and melts at similar temperatures. If it is H2SO4, we would expect the

  6. Venus's winds and temperatures during the MESSENGER's flyby: towards a three-dimensional instantaneous state of the atmosphere (United States)

    Peralta, J.; Lee, Y. J.; Hueso, R.; Clancy, R. T.; Sandor, B. J.; Sánchez-Lavega, A.; Lellouch, E.; Rengel, M.; Machado, P.; Omino, M.; Piccialli, A.; Imamura, T.; Horinouchi, T.; Murakami, S.; Ogohara, K.; Luz, D.; Peach, D.


    The atmosphere of the Earth or Mars globally rotates with a speed similar to the rotation of the planet (approximately 24 h). The rotation of Venus is of about 243 days, much slower than the Earth, but when scientists measured the winds by tracking the clouds of Venus, they discovered that the atmosphere rotates 60 times faster! No one has explained yet what originates this "superrotation", and we do not know well what happens either above or below the clouds. The technique of "Doppler shift" has been used to measure winds above the clouds, but results are "chaotic" and different to interpret. Thanks to a worldwide collaboration in June 2007 between NASA (MESSENGER), ESA (Venus Express), and many observatories (VLT in Chile, JCMT in Hawaii, HHSMT in Arizona, or IRAM in Spain), the authors combined the different data to obtain, for the first time, the instantaneous 3-D structure of the winds on Venus at the clouds and also above, very important for new Venus models to start "forecasts" of the Venus weather with "data assimilation". We also discovered that the superrotation seems unexpectedly different on the night of Venus and that it varies its altitude depending on the day.

  7. Submarine Volcanic Eruptions and Potential Analogs for Venus (United States)

    Wilson, L.; Mouginismark, P. J.; Fryer, P.; Gaddis, L. R.


    As part of an analysis program to better understand the diversity of volcanic processes on the terrestrial planets, an investigation of the volcanic landforms which exist on the Earth's ocean floor was initiated. In part, this analysis is focused toward gaining a better understanding of submarine volcanic landforms in their own right, but also it is hoped that these features may show similarities to volcanic landforms on Venus, due to the high ambient water (Earth) and atmospheric (Venus) pressures. A series of numerical modelling experiments was performed to investigate the relative importance of such attributes as water pressure and temperature on the eruption process, and to determine the rate of cooling and emplacement of lava flows in the submarine environment. Investigations to date show that the confining water pressure and the buoyancy effects of the surrounding water significantly affect the styles of volcanism on the ocean floor. In the case of Venusian volcanism, confining pressures will not be as great as that found at the ocean's abyssal plains, but nevertheless the general trend toward reducing magma vesiculation will hold true for Venus as well as the ocean floor. Furthermore, other analogs may also be found between submarine volcanism and Venusian activity.

  8. Non-Cooled Power System for Venus Lander (United States)

    Salazar, Denise; Landis, Geoffrey A.; Colozza, Anthony J.


    The Planetary Science Decadal Survey of 2013-2022 stated that the exploration of Venus is of significant interest. Studying the seismic activity of the planet is of particular importance because the findings can be compared to the seismic activity of Earth. Further, the geological and atmospheric properties of Venus will shed light into the past and future of Earth. This paper presents a radioisotope power system (RPS) design for a small low-power Venus lander. The feasibility of the new power system is then compared to that of primary batteries. A requirement for the power source system is to avoid moving parts in order to not interfere with the primary objective of the mission - to collect data about the seismic activity of Venus using a seismometer. The target mission duration of the lander is 117 days, a significant leap from Venera 13, the longest-lived lander on the surface of Venus, which survived for 2 hours. One major assumption for this mission design is that the power source system will not provide cooling to the other components of the lander. This assumption is based on high-temperature electronics technology that will enable the electronics and components of the lander to operate at Venus surface temperature. For the proposed RPS, a customized General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHSRTG) is designed and analyzed. The GPHS-RTG is chosen primarily because it has no moving parts and it is capable of operating for long duration missions on the order of years. This power system is modeled as a spherical structure for a fundamental thermal analysis. The total mass and electrical output of the system are calculated to be 24 kilograms and 26 Watts, respectively. An alternative design for a battery-based power system uses Sodium Sulfur batteries. To deliver a similar electrical output for 117 days, the battery mass is calculated to be 234 kilograms. Reducing mission duration or power required will reduce the required battery mass

  9. Parquet: Regions of areal plastic dislocations (on Venus) (United States)

    Sukhanov, A. L.


    The extensive flat elevations of the Northern Hemisphere of Venus are covered with frequently intersecting lines of dislocations, resembling the outline of a giant parquet. In the internal sections of these regions we find grabens and regions of extension, and on the periphery lobe-shaped flow structures. The parquet was formed after the beginning of the formation of the lava plains, but covered by the youngest lava. These structures apparently arose partly because of the dragging of blocks of crust by the asthenospheric flows, and partly in the gravitational sliding of such heated blocks in the partial melting of their base. It is possible that these elevations occupy on Venus the place of the Earth's rift systems.

  10. Kepler-1649b: An Exo-Venus in the Solar Neighborhood

    Energy Technology Data Exchange (ETDEWEB)

    Angelo, Isabel; Rowe, Jason F.; Huber, Daniel [SETI Institute, Mountain View, CA 94043 (United States); Howell, Steve B.; Quintana, Elisa V.; Burningham, Ben; Barclay, Thomas [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Still, Martin [Bay Area Environmental Research Institute, 625 2nd Street, Suite 209, Petaluma, CA 94952 (United States); Mann, Andrew W. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Ciardi, David R. [NASA Exoplanet Science Institute/Caltech, Pasadena, CA (United States); Kane, Stephen R., E-mail: [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States)


    The Kepler mission has revealed that Earth-sized planets are common, and dozens have been discovered to orbit in or near their host star’s habitable zone. A major focus in astronomy is to determine which of these exoplanets are likely to have Earth-like properties that are amenable to follow-up with both ground- and future space-based surveys, with an ultimate goal of probing their atmospheres to look for signs of life. Venus-like atmospheres will be of particular interest in these surveys. While Earth and Venus evolved to have similar sizes and densities, it remains unclear what factors led to the dramatic divergence of their atmospheres. Studying analogs to both Earth and Venus can thus shed light on the limits of habitability and the potential for life on known exoplanets. Here, we present the discovery and confirmation of Kepler-1649b, an Earth-sized planet orbiting a nearby M5V star that receives incident flux at a level similar to that of Venus. We present our methods for characterizing the star, using a combination of point-spread function photometry, ground-based spectroscopy, and imaging, to confirm the planetary nature of Kepler-1649b. Planets like Kepler-1649b will be prime candidates for atmospheric and habitability studies in the next generation of space missions.

  11. Kepler-1649b: An Exo-Venus in the Solar Neighborhood

    International Nuclear Information System (INIS)

    Angelo, Isabel; Rowe, Jason F.; Huber, Daniel; Howell, Steve B.; Quintana, Elisa V.; Burningham, Ben; Barclay, Thomas; Still, Martin; Mann, Andrew W.; Ciardi, David R.; Kane, Stephen R.


    The Kepler mission has revealed that Earth-sized planets are common, and dozens have been discovered to orbit in or near their host star’s habitable zone. A major focus in astronomy is to determine which of these exoplanets are likely to have Earth-like properties that are amenable to follow-up with both ground- and future space-based surveys, with an ultimate goal of probing their atmospheres to look for signs of life. Venus-like atmospheres will be of particular interest in these surveys. While Earth and Venus evolved to have similar sizes and densities, it remains unclear what factors led to the dramatic divergence of their atmospheres. Studying analogs to both Earth and Venus can thus shed light on the limits of habitability and the potential for life on known exoplanets. Here, we present the discovery and confirmation of Kepler-1649b, an Earth-sized planet orbiting a nearby M5V star that receives incident flux at a level similar to that of Venus. We present our methods for characterizing the star, using a combination of point-spread function photometry, ground-based spectroscopy, and imaging, to confirm the planetary nature of Kepler-1649b. Planets like Kepler-1649b will be prime candidates for atmospheric and habitability studies in the next generation of space missions.

  12. Venus and Mercury as Planets (United States)


    A general evolutionary history of the solar planetary system is given. The previously observed characteristics of Venus and Mercury (i.e. length of day, solar orbit, temperature) are discussed. The role of the Mariner 10 space probe in gathering scientific information on the two planets is briefly described.

  13. Venus and Mercury as planets

    International Nuclear Information System (INIS)


    A general evolutionary history of the solar planetary system is given. The previously observed characteristics of Venus and Mercury (i.e. length of day, solar orbit, temperature) are discussed. The role of the Mariner 10 space probe in gathering scientific information on the two planets is briefly described

  14. Applicability of ultralow-frequency global resonances for investigating lightning activity on Venus

    International Nuclear Information System (INIS)

    Nikolaenko, A.P.; Rabinovich, L.M.


    The application to experiments on Venus of methods of investigating global lightning activity that are used on earth in the ultralow-frequency range is discussed. Calculations of the electromagnetic fields in the range from a few Hertz to tens of Hertz are carried out in the framework of the model of the lower ionosphere of Venus, which generalizes the information about the planet's atmosphere which is presently available. The calculations showed that observations of global resonances on Venus must, as on the earth, allow one to obtain data about the global distribution of lightning in space and time, and to make the values of the parameters of the lower ionosphere model more precise

  15. Towards Understanding the Climate of Venus Applications of Terrestrial Models to Our Sister Planet

    CERN Document Server

    Bonnet, Roger-Maurice; Grinspoon, David; Koumoutsaris, Symeon; Lebonnois, Sebastien; Titov, Dmitri


    ESA’s Venus Express Mission has monitored Venus since April 2006, and scientists worldwide have used mathematical models to investigate its atmosphere and model its circulation. This book summarizes recent work to explore and understand the climate of the planet through a research program under the auspices of the International Space Science Institute (ISSI) in Bern, Switzerland. Some of the unique elements that are discussed are the anomalies with Venus’ surface temperature (the huge greenhouse effect causes the surface to rise to 460°C, without which would plummet as low as -40°C), its unusual lack of solar radiation (despite being closer to the Sun, Venus receives less solar radiation than Earth due to its dense cloud cover reflecting 76% back) and the juxtaposition of its atmosphere and planetary rotation (wind speeds can climb up to 200 m/s, much faster than Venus’ sidereal day of 243 Earth-days).

  16. Nature of the Venus thermosphere derived from satellite drag measurements (solicited paper) (United States)

    Keating, G.; Theriot, M.; Bougher, S.


    From drag measurements obtained by Pioneer Venus and Magellan, the Venus upper atmosphere was discovered to be much colder than Earth's, even though Venus is much closer to the Sun than the Earth. On the dayside, exospheric temperatures are near 300K compared to Earth's of near 1200K [1]. This is thought to result principally from 15 micron excitation of carbon dioxide by atomic oxygen resulting in very strong 15 micron emission to space, cooling off the upper atmosphere [2]. On the nightside the Venus upper atmosphere is near 100K [3], compared to Earth where temperatures are near 900K. The nightside Venus temperatures drop with altitude contrary to a thermosphere where temperatures rise with altitude. As a result, the very cold nightside is called a "cryosphere" rather than a thermosphere. This is the first cryosphere discovered in the solar system [1]. Temperatures sharply drop near the terminator. Apparently, heat is somehow blocked near the terminator from being significantly transported to the nightside [4]. Recently, drag studies were performed on a number of Earth satellites to establish whether the rise of carbon dioxide on Earth was cooling the Earth's thermosphere similar to the dayside of Venus. Keating et al. [5] discovered that a 10 percent drop in density near 350km at solar minimum occurred globally over a period of 20 years with a 10 per cent rise in carbon dioxide. This should result in about a factor of 2 decline in density from 1976 values, by the end of the 21st century brought on by thermospheric cooling. Subsequent studies have confirmed these results. Thus we are beginning to see the cooling of Earth's upper atmosphere apparently from the same process cooling the Venus thermosphere. Fig. 1 VIRA Exospheric Temperatures Atmospheric drag data from the Pioneer Venus Orbiter and Magellan were combined to generate an improved version of the Venus International Reference Atmosphere (VIRA) [6], [7]. A "fountain effect" was discovered where the

  17. Long-Lived Venus Lander Conceptual Design: How To Keep It Cool (United States)

    Dyson, Ridger W.; Schmitz, Paul C.; Penswick, L. Barry; Bruder, Geoffrey A.


    Surprisingly little is known about Venus, our neighboring sister planet in the solar system, due to the challenges of operating in its extremely hot, corrosive, and dense environment. For example, after over two dozen missions to the planet, the longest-lived lander was the Soviet Venera 13, and it only survived two hours on the surface. Several conceptual Venus mission studies have been formulated in the past two decades proposing lander architectures that potentially extend lander lifetime. Most recently, the Venus Science and Technology Definition Team (STDT) was commissioned by NASA to study a Venus Flagship Mission potentially launching in the 2020- 2025 time-frame; the reference lander of this study is designed to survive for only a few hours more than Venera 13 launched back in 1981! Since Cytherean mission planners lack a viable approach to a long-lived surface architecture, specific scientific objectives outlined in the National Science Foundation Decadal Survey and Venus Exploration Advisory Group final report cannot be completed. These include: mapping the mineralogy and composition of the surface on a planetary scale determining the age of various rock samples on Venus, searching for evidence of changes in interior dynamics (seismometry) and its impact on climate and many other key observations that benefit with time scales of at least a full Venus day (Le. daylight/night cycle). This report reviews those studies and recommends a hybrid lander architecture that can survive for at least one Venus day (243 Earth days) by incorporating selective Stirling multi-stage active cooling and hybrid thermoacoustic power.

  18. Volcano morphometry and volume scaling on Venus (United States)

    Garvin, J. B.; Williams, R. S., Jr.


    A broad variety of volcanic edifices have been observed on Venus. They ranged in size from the limits of resolution of the Magellan SAR (i.e., hundreds of meters) to landforms over 500 km in basal diameter. One of the key questions pertaining to volcanism on Venus concerns the volume eruption rate or VER, which is linked to crustal productivity over time. While less than 3 percent of the surface area of Venus is manifested as discrete edifices larger than 50 km in diameter, a substantial component of the total crustal volume of the planet over the past 0.5 Ga is related to isolated volcanoes, which are certainly more easily studied than the relatively diffusely defined plains volcanic flow units. Thus, we have focused our efforts on constraining the volume productivity of major volcanic edifices larger than 100 km in basal diameter. Our approach takes advantage of the topographic data returned by Magellan, as well as our database of morphometric statistics for the 20 best known lava shields of Iceland, plus Mauna Loa of Hawaii. As part of this investigation, we have quantified the detailed morphometry of nearly 50 intermediate to large scale edifices, with particular attention to their shape systematics. We found that a set of venusian edifices which include Maat, Sapas, Tepev, Sif, Gula, a feature at 46 deg S, 215 deg E, as well as the shield-like structure at 10 deg N, 275 deg E are broadly representative of the approx. 400 volcanic landforms larger than 50 km. The cross-sectional shapes of these 7 representative edifices range from flattened cones (i.e., Sif) similar to classic terrestrial lava shields such as Mauna Loa and Skjaldbreidur, to rather dome-like structures which include Maat and Sapas. The majority of these larger volcanoes surveyed as part of our study displayed cross-sectional topographies with paraboloidal shaped, in sharp contrast with the cone-like appearance of most simple terrestrial lava shields. In order to more fully explore the

  19. The Earth is a Planet Too! (United States)

    Cairns, Brian


    When the solar system formed, the sun was 30 dimmer than today and Venus had an ocean. As the sun brightened, a runaway greenhouse effect caused the Venus ocean to boil away. At times when Earth was younger, the sun less bright, and atmospheric CO2 less, Earth froze over (snowball Earth). Earth is in the sweet spot today. Venus is closer to sun than Earth is, but cloud-covered Venus absorbs only 25 of incident sunlight, while Earth absorbs 70. Venus is warmer because it has a thick carbon dioxide atmosphere causing a greenhouse effect of several hundred degrees. Earth is Goldilocks choice among the planets, the one that is just right for life to exist. Not too hot. Not too cold. How does the Earth manage to stay in this habitable range? Is there a Gaia phenomenon keeping the climate in bounds? A nice idea, but it doesnt work. Today, greenhouse gas levels are unprecedented compared to the last 450,000 years.

  20. Venus Lightning: What We Have Learned from the Venus Express Fluxgate Magnetometer (United States)

    Russell, C. T.; Strangeway, R. J.; Wei, H. Y.; Zhang, T. L.


    The Venus Express magnetometer sees short (tens of milliseconds) pulses of EM waves in the Venus ionosphere as predicted by the lightning model for the PVO electric pulses. These waves are stronger than similar terrestrial signals produced by lightning.

  1. Estimating lithospheric properties at Atla Regio, Venus (United States)

    Phillips, Roger J.


    Magellan spehrical harmonic gravity and topography models are used to estimate lithospheric properties at Alta Regio, Venus, a proposed hotspot with dynamic support from mantle plume(s). Global spherical harmonic and local representations of the gravity field share common properties in the Atla region interms of their spectral behavior over a wavelength band from approximately 2100 to approximately 700 km. The estimated free-air admittance spectrum displays a rather featureless long-wavelength portion followed by a sharp rise at wavelengths shorter than about 1000 km. This sharp rise requires significant flexural support of short-wavelength structures. The Bouguer coherence also displays a sharp drop in this wavelength band, indicating a finite flexural rigidity of the lithosphere. A simple model for lithospheric loading from above and below is introduced (D. W. Forsyth, 1985) with four parameters: f, the ratio of bottom loading to top loading; z(sub m), crustal thickness; z(sub l) depth to bottom loading source; and T(sub e) elastic lithosphere thickness. A dual-mode compensation model is introduced in which the shorter wavelengths (lambda approximately less than 1000 km) might be explained best by a predominance of top loading by the large shield volcanoes Maat Mons, Ozza Mons, and Sapas Mons, and the longer wavelengths (lambda approximately greater than 1500 km) might be explained best by a deep depth of compensation, possibly representing bottom loading by a dynamic source. A Monte Carlo inversion technique is introduced to thoroughly search out the four-space of the model parameters and to examine parameter correlation in the solutions. Venus either is a considerabe deficient in heat sources relative to Earth, or the thermal lithosphere is overthickened in response to an earlier episode of significant heat loss from the planet.

  2. Transits of Venus and Colonial India (United States)

    Kochhar, Rajesh


    Astronomical expeditions during the colonial period had a political and national significance also. Measuring the earth and mapping the sky were activities worthy of powerful and power- seeking nations. Such was the sanctity of global astronomical activity that many other agendas could be hidden under it. An early astronomy-related expedition turned out to be extremely beneficial, to botany. The expedition sent by the French Government in 1735 to South America under the leadership of Charles Marie de la Condamine (1701--1774) ostensibly for the measurement of an arc of the meridian at Quito in Ecuador surreptitiously collected data that enabled Linnaeus to describe the genus cinchona in 1742. When the pair of transits of Venus occurred in 1761 and 1769, France and England were engaged in a bitter rivalry for control of India. The observation of the transits became a part of the rivalry. A telescope presented by the British to a South Indian King as a decorative toy was borrowed back for actual use. Scientifically the transit observations were a wash out, but the exercise introduced Europe to details of living Indian tradition of eclipse calculations. More significantly, it led to the institutionalization of modern astronomy in India under the auspices of the English East India Company (1787). The transits of Venus of 1874 and 1882 were important not so much for the study of the events as for initiating systematic photography of the Sun. By this, Britain owned most of the world's sunshine, and was expected to help European solar physicists get data from its vast Empire on a regular basis. This and the then genuinely held belief that a study of the sun would help predict failure of monsoons led to the institutionalization of solar physics studies in India (1899). Of course, when the solar physicists learnt that solar activity did not quite determine rainfall in India, they forgot to inform the Government.

  3. A statistical study of ionopause perturbation and associated boundary wave formation at Venus. (United States)

    Chong, G. S.; Pope, S. A.; Walker, S. N.; Zhang, T.; Balikhin, M. A.


    In contrast to Earth, Venus does not possess an intrinsic magnetic field. Hence the interaction between solar wind and Venus is significantly different when compared to Earth, even though these two planets were once considered similar. Within the induced magnetosphere and ionosphere of Venus, previous studies have shown the existence of ionospheric boundary waves. These structures may play an important role in the atmospheric evolution of Venus. By using Venus Express data, the crossings of the ionopause boundary are determined based on the observations of photoelectrons during 2011. Pulses of dropouts in the electron energy spectrometer were observed in 92 events, which suggests potential perturbations of the boundary. Minimum variance analysis of the 1Hz magnetic field data for the perturbations is conducted and used to confirm the occurrence of the boundary waves. Statistical analysis shows that they were propagating mainly in the ±VSO-Y direction in the polar north terminator region. The generation mechanisms of boundary waves and their evolution into the potential nonlinear regime are discussed and analysed.

  4. Elastic Thickness Estimates for Coronae Associated with Chasmata on Venus (United States)

    Hoogenboom, T.; Martin, P.; Housean, G. A.


    Coronae are large-scale circular tectonic features surrounded by annular ridges. They are generally considered unique to Venus and may offer insights into the differences in lithospheric structure or mantle convective pattern between Venus and Earth. 68% of all coronae are associated with chasmata or fracture belts. The remaining 32% are located at volcanic rises or in the plains. Chasmata are linear to arcuate troughs, with trough parallel fractures and faults which extend for 1000 s of kilometers. Estimates of the elastic thickness of the lithosphere (T(sub e)) have been calculated in a number of gravity/topography studies of Venus and for coronae specifically. None of these studies, however, have explored the dependence of T(sub e) on the tectonic history of the region, as implied from the interpretation of relative timing relationships between coronae and surrounding features. We examine the relationship between the local T(sub e) and the relative ages of coronae and chasmata with the aim of further constraining the origin and evolution of coronae and chasmata systems.

  5. Magellan: A new view of Venus' geology and geophysics (United States)

    Bindschadler, D. L.


    Within the past fifteen years, the surface of Venus has gone from being the least well understood of all the terrestrial planets to the most thoroughly mapped surface of any terrestrial planet, including the Earth. This is primarily due to the Magellan mission, which has collected a variety of data on the surface morphology, physical properties, and interior density structure of Venus amounting to more than 1 Terabit (1012 bits) of data. Synthetic aperture radar images have been obtained for over 95% of the surface; their high resolution reveals most surface features larger than 100-200 meters across. Using its radar altimeter, Magellan has collected data on surface elevations, sub-meter scale roughness, and radar reflectivity at a resolution of approximately 10 km. Further information on the physical properties of the surface was gathered by measuring the passive microwave emissivity of the surface [Pettengill et al, 1992]. Two-way Doppler tracking of the spacecraft has yielded line-of-sight (LOS) gravity data and a spherical harmonic model of gravity and geoid out to degree 75. Collection of high-resolution gravity data has been aided by an innovative aerobraking maneuver, which used Venus' atmosphere to brake the spacecraft and lower it from a highly elliptical orbit to a near-circular orbit.

  6. Composition and Chemistry of the Neutral Atmosphere of Venus (United States)

    Marcq, Emmanuel; Mills, Franklin P.; Parkinson, Christopher D.; Vandaele, Ann Carine


    This paper deals with the composition and chemical processes occurring in the neutral atmosphere of Venus. Since the last synthesis, observers as well as modellers have emphasised the spatial and temporal variability of minor species, going beyond a static and uniform picture that may have prevailed in the past. The outline of this paper acknowledges this situation and follows closely the different dimensions along which variability in composition can be observed: vertical, latitudinal, longitudinal, temporal. The strong differences between the atmosphere below and above the cloud layers also dictate the structure of this paper. Observational constraints, obtained from both Earth and Venus Express, as well as 1D, 2D and 3D models results obtained since 1997 are also extensively referred and commented by the authors. An non-exhaustive list of topics included follows: modelled and observed latitudinal and vertical profiles of CO and OCS below the clouds of Venus; vertical profiles of CO and SO2 above the clouds as observed by solar occultation and modelled; temporal and spatial variability of sulphur oxides above the clouds. As a conclusion, open questions and topics of interest for further studies are discussed.

  7. Investigating gravity waves evidences in the Venus upper atmosphere (United States)

    Migliorini, Alessandra; Altieri, Francesca; Shakun, Alexey; Zasova, Ludmila; Piccioni, Giuseppe; Bellucci, Giancarlo; Grassi, Davide


    We present a method to investigate gravity waves properties in the upper mesosphere of Venus, through the O2 nightglow observations acquired with the imaging spectrometer VIRTIS on board Venus Express. Gravity waves are important dynamical features that transport energy and momentum. They are related to the buoyancy force, which lifts air particles. Then, the vertical displacement of air particles produces density changes that cause gravity to act as restoring force. Gravity waves can manifest through fluctuations on temperature and density fields, and hence on airglow intensities. We use the O2 nightglow profiles showing double peaked structures to study the influence of gravity waves in shaping the O2 vertical profiles and infer the waves properties. In analogy to the Earth's and Mars cases, we use a well-known theory to model the O2 nightglow emissions affected by gravity waves propagation. Here we propose a statistical discussion of the gravity waves characteristics, namely vertical wavelength and wave amplitude, with respect to local time and latitude. The method is applied to about 30 profiles showing double peaked structures, and acquired with the VIRTIS/Venus Express spectrometer, during the mission period from 2006-07-05 to 2008-08-15.

  8. Decontamination sheet

    International Nuclear Information System (INIS)

    Hirose, Emiko; Kanesaki, Ken.


    The decontamination sheet of the present invention is formed by applying an adhesive on one surface of a polymer sheet and releasably appending a plurality of curing sheets. In addition, perforated lines are formed on the sheet, and a decontaminating agent is incorporated in the adhesive. This can reduce the number of curing operation steps when a plurality steps of operations for radiation decontamination equipments are performed, and further, the amount of wastes of the cured sheets, and operator's exposure are reduced, as well as an efficiency of the curing operation can be improved, and propagation of contamination can be prevented. (T.M.)

  9. Venus transits - A French view (United States)

    Débarbat, Suzanne


    After a careful study of Mars observations obtained by Tycho Brahé (1546-1601), Kepler (1571-1630) discovered the now-called Kepler's third law. In 1627 he published his famous Tabulae Rudolphinae, a homage to his protector Rudolph II (1552-1612), tables (Kepler 1609, 1627) from which he predicted Mercury and Venus transits over the Sun. In 1629 Kepler published his Admonitio ad Astronomos Advertisement to Astronomers (Kepler 1630), Avertissement aux Astronomes in French Au sujet de phénomènes rares et étonnants de l'an 1631: l'incursion de Vénus et de Mercure sur le Soleil. This was the beginning of the interest of French astronomers, among many others, in such transits, mostly for Venus, the subject of this paper in which dates are given in the Gregorian calendar.

  10. Large-scale volcanism associated with coronae on Venus (United States)

    Roberts, K. Magee; Head, James W.


    The formation and evolution of coronae on Venus are thought to be the result of mantle upwellings against the crust and lithosphere and subsequent gravitational relaxation. A variety of other features on Venus have been linked to processes associated with mantle upwelling, including shield volcanoes on large regional rises such as Beta, Atla and Western Eistla Regiones and extensive flow fields such as Mylitta and Kaiwan Fluctus near the Lada Terra/Lavinia Planitia boundary. Of these features, coronae appear to possess the smallest amounts of associated volcanism, although volcanism associated with coronae has only been qualitatively examined. An initial survey of coronae based on recent Magellan data indicated that only 9 percent of all coronae are associated with substantial amounts of volcanism, including interior calderas or edifices greater than 50 km in diameter and extensive, exterior radial flow fields. Sixty-eight percent of all coronae were found to have lesser amounts of volcanism, including interior flooding and associated volcanic domes and small shields; the remaining coronae were considered deficient in associated volcanism. It is possible that coronae are related to mantle plumes or diapirs that are lower in volume or in partial melt than those associated with the large shields or flow fields. Regional tectonics or variations in local crustal and thermal structure may also be significant in determining the amount of volcanism produced from an upwelling. It is also possible that flow fields associated with some coronae are sheet-like in nature and may not be readily identified. If coronae are associated with volcanic flow fields, then they may be a significant contributor to plains formation on Venus, as they number over 300 and are widely distributed across the planet. As a continuation of our analysis of large-scale volcanism on Venus, we have reexamined the known population of coronae and assessed quantitatively the scale of volcanism associated

  11. Vesper - Venus Chemistry and Dynamics Orbiter - A NASA Discovery Mission Proposal: Submillimeter Investigation of Atmospheric Chemistry and Dynamics (United States)

    Chin, Gordon


    Vesper conducts a focused investigation of the chemistry and dynamics of the middle atmosphere of our sister planet- from the base of the global cloud cover to the lower thermosphere. The middle atmosphere controls the stability of the Venus climate system. Vesper determines what processes maintain the atmospheric chemical stability, cause observed variability of chemical composition, control the escape of water, and drive the extreme super-rotation. The Vesper science investigation provides a unique perspective on the Earth environment due to the similarities in the middle atmosphere processes of both Venus and the Earth. Understanding key distinctions and similarities between Venus and Earth will increase our knowledge of how terrestrial planets evolve along different paths from nearly identical initial conditions.


    Energy Technology Data Exchange (ETDEWEB)

    Kane, Stephen R.; Gelino, Dawn M. [NASA Exoplanet Science Institute, Caltech, MS 100-22, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Barclay, Thomas, E-mail: [NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States)


    Transiting planets have greatly expanded and diversified the exoplanet field. These planets provide greater access to characterization of exoplanet atmospheres and structure. The Kepler mission has been particularly successful in expanding the exoplanet inventory, even to planets smaller than the Earth. The orbital period sensitivity of the Kepler data is now extending into the habitable zones of their host stars, and several planets larger than the Earth have been found to lie therein. Here we examine one such proposed planet, Kepler-69c. We provide new orbital parameters for this planet and an in-depth analysis of the habitable zone. We find that, even under optimistic conditions, this 1.7 R{sub Circled-Plus} planet is unlikely to be within the habitable zone of Kepler-69. Furthermore, the planet receives an incident flux of 1.91 times the solar constant, which is similar to that received by Venus. We thus suggest that this planet is likely a super-Venus rather than a super-Earth in terms of atmospheric properties and habitability, and we propose follow-up observations to disentangle the ambiguity.


    International Nuclear Information System (INIS)

    Kane, Stephen R.; Gelino, Dawn M.; Barclay, Thomas


    Transiting planets have greatly expanded and diversified the exoplanet field. These planets provide greater access to characterization of exoplanet atmospheres and structure. The Kepler mission has been particularly successful in expanding the exoplanet inventory, even to planets smaller than the Earth. The orbital period sensitivity of the Kepler data is now extending into the habitable zones of their host stars, and several planets larger than the Earth have been found to lie therein. Here we examine one such proposed planet, Kepler-69c. We provide new orbital parameters for this planet and an in-depth analysis of the habitable zone. We find that, even under optimistic conditions, this 1.7 R ⊕ planet is unlikely to be within the habitable zone of Kepler-69. Furthermore, the planet receives an incident flux of 1.91 times the solar constant, which is similar to that received by Venus. We thus suggest that this planet is likely a super-Venus rather than a super-Earth in terms of atmospheric properties and habitability, and we propose follow-up observations to disentangle the ambiguity.

  14. The need for New In Situ Measurements to Understand the Climate, Geology and Evolution of Venus. (United States)

    Grinspoon, D. H.


    , characterize the divergent climate evolution of Venus and Earth and extend our knowledge of the limits of habitability on hot terrestrial planets.

  15. Sulfur dioxide in the Venus atmosphere: I. Vertical distribution and variability (United States)

    Vandaele, A. C.; Korablev, O.; Belyaev, D.; Chamberlain, S.; Evdokimova, D.; Encrenaz, Th.; Esposito, L.; Jessup, K. L.; Lefèvre, F.; Limaye, S.; Mahieux, A.; Marcq, E.; Mills, F. P.; Montmessin, F.; Parkinson, C. D.; Robert, S.; Roman, T.; Sandor, B.; Stolzenbach, A.; Wilson, C.; Wilquet, V.


    Recent observations of sulfur containing species (SO2, SO, OCS, and H2SO4) in Venus' mesosphere have generated controversy and great interest in the scientific community. These observations revealed unexpected spatial patterns and spatial/temporal variability that have not been satisfactorily explained by models. Sulfur oxide chemistry on Venus is closely linked to the global-scale cloud and haze layers, which are composed primarily of concentrated sulfuric acid. Sulfur oxide observations provide therefore important insight into the on-going chemical evolution of Venus' atmosphere, atmospheric dynamics, and possible volcanism. This paper is the first of a series of two investigating the SO2 and SO variability in the Venus atmosphere. This first part of the study will focus on the vertical distribution of SO2, considering mostly observations performed by instruments and techniques providing accurate vertical information. This comprises instruments in space (SPICAV/SOIR suite on board Venus Express) and Earth-based instruments (JCMT). The most noticeable feature of the vertical profile of the SO2 abundance in the Venus atmosphere is the presence of an inversion layer located at about 70-75 km, with VMRs increasing above. The observations presented in this compilation indicate that at least one other significant sulfur reservoir (in addition to SO2 and SO) must be present throughout the 70-100 km altitude region to explain the inversion in the SO2 vertical profile. No photochemical model has an explanation for this behaviour. GCM modelling indicates that dynamics may play an important role in generating an inflection point at 75 km altitude but does not provide a definitive explanation of the source of the inflection at all local times or latitudes The current study has been carried out within the frame of the International Space Science Institute (ISSI) International Team entitled 'SO2 variability in the Venus atmosphere'.

  16. Estimation of the rate of volcanism on Venus from reaction rate measurements (United States)

    Fegley, Bruce, Jr.; Prinn, Ronald G.


    Laboratory rate data for the reaction between SO2 and calcite to form anhydrite are presented. If this reaction rate represents the SO2 reaction rate on Venus, then all SO2 in the Venusian atmosphere will disappear in 1.9 Myr unless volcanism replenishes the lost SO2. The required volcanism rate, which depends on the sulfur content of the erupted material, is in the range 0.4-11 cu km of magma erupted per year. The Venus surface composition at the Venera 13, 14, and Vega 2 landing sites implies a volcanism rate of about 1 cu km/yr. This geochemically estimated rate can be used to determine if either (or neither) of two discordant geophysically estimated rates is correct. It also suggests that Venus may be less volcanically active than the earth.

  17. Digital amateur observations of Venus at 0.9μm (United States)

    Kardasis, E.


    Venus atmosphere is extremely dynamic, though it is very difficult to observe any features on it in the visible and even in the near-IR range. Digital observations with planetary cameras in recent years routinely produce high-quality images, especially in the near-infrared (0.7-1μm), since IR wavelengths are less influenced by Earth's atmosphere and Venus's atmosphere is partially transparent in this spectral region. Continuous observations over a few hours may track dark atmospheric features in the dayside and determine their motion. In this work we will present such observations and some dark-feature motion measurements at 0.9μm. Ground-based observations at this wavelength are rare and are complementary to in situ observations by JAXA's Akatsuki orbiter, that studies the atmospheric dynamics of Venus also in this band with the IR1 camera.

  18. Modeling Venus-like Worlds Through Time and Implications for the Habitable Zone (United States)

    Way, M.; Del Genio, A. D.; Amundsen, D. S.; Sohl, L. E.; Kiang, N. Y.; Aleinov, I. D.; Kelley, M.


    In recent work [1] we demonstrated that the climatic history of Venus may have allowed for surface liquid water to exist for several billion years using a 3D GCM [2]. Model resolution was 4x5 latitude x longitude, 20 atmospheric layers and a 13 layer fully coupled ocean. Several assumptions were made based on what data we have for early Venus: a.) Used a solar spectrum from 2.9 billion years ago, and 715 million years ago for the incident radiation. b.) Assumed Venus had the same slow modern retrograde rotation throughout the 2.9 to 0.715 Gya history explored, although one simulation at faster rotation rate was shown not to be in the HZ. c.) Used atmospheric constituents similar to modern Earth: 1 bar N2, 400ppmv CO2, 1ppmv CH4. d.) Gave the planet a shallow 310m deep ocean constrained by published D/H ratio observations. e.) Used present day Venus topography and one run with Earth topography.In all cases except the faster rotating one the planet was able to maintain surface liquid water. We have now inserted the SOCRATES [3] radiation scheme into our 3D GCM to more accurately calculate heating fluxes for different atmospheric constituents. Using SOCRATES we have explored a number of other possible early histories for Venus including: f.) An aquaplanet configuration at 2.9Gya with present day rotation period.g.) A Land planet configuration at 2.9Gya with the equivalent of 10m of water in soil and lakes. h.) A synchronously rotating version of a, f, and g (supported by recent work of [4] and older work of [5]) i.) A Venus topography with a 310m ocean, but using present day insolation (1.9 x Earth). j.) Versions of most of the worlds above but with solar insolations >1.9 to explore more Venus-like exoplanetary worlds around G-type stars. In these additional cases the planet still resides in the liquid water habitable zone. Studies such as these should help Astronomers better understand whether exoplanets found in the Venus zone [6] are capable of hosting liquid water

  19. The Devil in the Dark: A Fully Self-Consistent Seismic Model for Venus (United States)

    Unterborn, C. T.; Schmerr, N. C.; Irving, J. C. E.


    The bulk composition and structure of Venus is unknown despite accounting for 40% of the mass of all the terrestrial planets in our Solar System. As we expand the scope of planetary science to include those planets around other stars, the lack of measurements of basic planetary properties such as moment of inertia, core-size and thermal profile for Venus hinders our ability to compare the potential uniqueness of the Earth and our Solar System to other planetary systems. Here we present fully self-consistent, whole-planet density and seismic velocity profiles calculated using the ExoPlex and BurnMan software packages for various potential Venusian compositions. Using these models, we explore the seismological implications of the different thermal and compositional initial conditions, taking into account phase transitions due to changes in pressure, temperature as well as composition. Using mass-radius constraints, we examine both the centre frequencies of normal mode oscillations and the waveforms and travel times of body waves. Seismic phases which interact with the core, phase transitions in the mantle, and shallower parts of Venus are considered. We also consider the detectability and transmission of these seismic waves from within the dense atmosphere of Venus. Our work provides coupled compositional-seismological reference models for the terrestrial planet in our Solar System of which we know the least. Furthermore, these results point to the potential wealth of fundamental scientific insights into Venus and Earth, as well as exoplanets, which could be gained by including a seismometer on future planetary exploration missions to Venus, the devil in the dark.

  20. Carl Sagan and the Exploration of Mars and Venus (United States)

    Toon, Owen B.; Condon, Estelle P. (Technical Monitor)


    Inspired by childhood readings of books by Edgar Rice Burroughs, Carl Sagan's first interest in planetary science focused on Mars and Venus. Typical of much of his career he was skeptical of early views about these planets. Early in this century it was thought that the Martian wave of darkening, a seasonal albedo change on the planet, was biological in origin. He suggested instead that it was due to massive dust storms, as was later shown to be the case. He was the first to recognize that Mars has huge topography gradients across its surface. During the spacecraft era, as ancient river valleys were found on the planet, he directed studies of Mars' ancient climate. He suggested that changes in the planets orbit were involved in climate shifts on Mars, just as they are on Earth. Carl had an early interest in Venus. Contradictory observations led to a controversy about the surface temperature, and Carl was one of the first to recognize that Venus has a massive greenhouse effect at work warming its surface. His work on radiative transfer led to an algorithm that was extensively used by modelers of the Earth's climate and whose derivatives still dominate the calculation of radiative transfer in planetary atmospheres today. Carl inspired a vast number of young scientists through his enthusiasm for new ideas and discoveries, his skeptical approach, and his boundless energy. I had the privilege to work in Carl's laboratory during the peak of the era of Mars' initial exploration. It was an exciting time, and place. Carl made it a wonderful experience.

  1. Mars and Venus: unequal planets. (United States)

    Zimmerman, T S; Haddock, S A; McGeorge, C R


    Self-help books, a pervasive and influential aspect of society, can have a beneficial or detrimental effect on the therapeutic process. This article describes a thematic analysis and feminist critique of the best-selling self-help book, Men are from Mars, Women are from Venus. This analysis revealed that the author's materials are inconsistent with significant family therapy research findings and key principles of feminist theories. His descriptions of each gender and his recommendations for improving relationships serve to endorse and encourage power differentials between women and men.

  2. Distant interplanetary wake of Venus: plasma observations from pioneer Venus

    International Nuclear Information System (INIS)

    Mihalov, J.D.; Barnes, A.


    In June 1979 the Pioneer Venus orbiter made its first series of passes through the distant solar wind wake of Venus at distances of 8--12 R/sub V/ behind the planet. During this period the plasma analyzer aboard the spacecraft detected disturbed magnetosheath plasma that intermittently disappeared and reappeared, suggesting a tattered, filamentary cavity trailing behind the planet. The magnetosheath dropouts almost always occurred inside the region of 'magnetotail' observed by Russell et al. Sporadic bursts of energetic ions (E/q> or approx. =4kV) are detected inside and, occasionally, outside the magnetotail; all such bursts are consistent with identification of the ion as O + of planetary origin moving at the local magnetosheath flow speed. The morphology of the plasma dropouts and of the O + bursts is analyzed in detail. The cavity appears to contract at times of high solar wind dynamic pressure. The intensity of the O + component is highly variable, and appears not to be strongly correlated with solar wind dynamic pressure. The most intense bursts correspond to a flux 7 ions cm - 2 s - 1 . This maximum flux, if steady and filling a cylinder 1 R/sub V/ in radius would correspond to a mass loss rate of 25 ions s - 1 ; the intermittency and variability of the flux suggest that the true mean loss rate is very much lower. The kinetic temperature of the O + component is estimated as 10 5 --10 6 K in order of magnitude

  3. Venus: The case for a wet origin and a runaway greenhouse (United States)

    Kasting, J. F.


    To one interested in atmospheric evolution, the most intriguing aspect of our neighboring planet Venus is its lack of water. Measurements made by Pioneer Venus and by Several Venera spacecraft indicate that the present water abundance in Venus' lower atmosphere is of the order of 20 to 200 ppmv, or 3 x 10( exp -6) to 3 x 10 (exp -5) of the amount of water in Earth's oceans. The exact depletion factor is uncertain, in part because of an unexplained vertical gradient in H2O concentration in the lowest 10 km of the venusian atmosphere, but the general scarcity of water is well established. The interesting question, then, is: Was venus deficient in water when it formed and, if not, where did its water go? The conclusion that Venus was originally wet is consistent with its large endowment of other volatiles and with the enhanced D/H ratio in the present atmosphere. The most likely mechanism by which Venus could have lost its water is by the development of a runaway or moist greenhouse atmosphere followed by photodissociation of water vapor and escape of hydrogen to space. Climate model calculations that neglect cloud albedo feedback predict the existence of two critical transitions in atmospheric behavior at high solar fluxes: (1) at a solar flux of approximately 1.1 times the value at Earth's orbit, S(o), the abundance of stratospheric water vapor increases dramatically, permitting rapid escape of hydrogen to space (termed a moist greenhouse) and (2) at a solar flux of approximately 1.4 S(o), the oceans vaporize entirely, creating a true runaway greenhouse. If cloudiness increases at high surface temperatures, as seems likely, and if the dominant effect of clouds is to cool the planet by reflecting incident solar radiation, the actual solar flux required to create moist or runaway conditions would be higher than the values quoted above. Early in solar system history, solar luminosity was about 25 percent to 30 percent less than today, putting the flux at Venus' orbit

  4. Preliminary results of the determination of the Venus rock comsposition by ''Venera 13'' and ''Venera 14'' space probes

    International Nuclear Information System (INIS)

    Surkov, Yu.A.; Moskaleva, L.P.; Shcheglov, O.P.; Kharyukova, V.P.; Manvelyan, O.S.; Smirnov, G.G.


    Composition of the rocks on Venus was determined for the first time. The determination of rock composition was carried out at the landing sites of Venera 13 and Venera 14. The rock samples analyzed by the X-ray radiometri.c method. The study of rocks was carried out in most typical of the surface of Venus provinces: rolling upland (Venera 13) and flat lowland (Venera 14). The rock composition at the Venera 13 landing site proved to be close to potassium alkaline basalt, that at the Venera 14 landing site close to tholeitic basalt of the Earth's crust. The comparison of the typical composition of Venus rocks with the composition of rocks of the same structural-morphological provinces of the Earth sws some differences in formation of the surface and the crust of those planets

  5. Space weather at planet Venus during the forthcoming BepiColombo flybys (United States)

    McKenna-Lawlor, S.; Jackson, B.; Odstrcil, D.


    The BepiColombo (BC) Mission which will be launched in 2018, will include during its Cruise Phase two flybys of Venus and five Mercury flybys. It will then enter a one Earth year orbit about Mercury (with a possible one-year extension) during which two spacecraft, one provided by ESA (MPO) and one provided by JAXA (MMO), will perform both autonomous and coordinated observations of the Hermean environment at various separations. The measurements will take place during the minimum of solar cycle 24 and the rise of solar cycle 25. At the start of the minimum of solar cycle 23, four major flares, each associated with the production of MeV particle radiation and CME activity occurred. Predictions of the HAFv.2 model of the arrival of particle radiation and a travelling shock at Venus on 6 December 2006 were verified by in-situ measurements made aboard Venus Express (VEX) by the ASPERA 4 instrument. Interplanetary scintillation observations, as well as the ENLIL 3-D MHD model when employed separately or in combination, enable the making of predictions of the solar wind density and speed at various locations in the inner heliosphere. Both methods, which outdate HAFv.2, are utilized in the present paper to predict (retrospectively) the arrival of the flare related, interplanetary propagating shock recorded at Venus on 6 December 2006 aboard VEX with a view to putting in place the facility to make very reliable space weather predictions for BC during both its Cruise Phase and when in the Hermean environment itself. The successful matching of the December 2006 predictions with in-situ signatures recorded aboard Venus Express provide confidence that the predictive methodology to be adopted will be appropriate to provide space weather predictions for BepiColombo during its Venus flybys and throughout the mission.

  6. New Frontiers Science at Venus from Orbit plus Atmospheric Gas Sampling (United States)

    Smrekar, Suzanne; Dyar, Melinda; Hensley, Scott; Helbert, Joern; VOX Science and Engineering Teams


    Venus remains the most Earth-like body in terms of size, composition, surface age, and insulation. Venus Origins Explorer (VOX) determines how Earth’s twin diverged, and enables breakthroughs in our understanding of rocky planet evolution and habitability. At the time of the Decadal Survey the ability to map mineralogy from orbit (Helbert et al.) and present-day radar techniques to detect active deformation were not fully appreciated. VOX leverages these methods and in-situ noble gases to answer New Frontiers science objectives:1. Atmospheric physics/chemistry: noble gases and isotopes to constrain atmospheric sources, escape processes, and integrated volcanic outgassing; global search for current volcanically outgassed water.2. Past hydrological cycles: global tessera composition to determine the role of volatiles in crustal formation.3. Crustal physics/chemistry: global crustal mineralogy/chemistry, tectonic processes, heat flow, resolve the catastrophic vs. equilibrium resurfacing debate, active geologic processes and possible crustal recycling.4. Crustal weathering: surface-atmosphere weathering reactions from redox state and the chemical equilibrium of the near-surface atmosphere.5. Atmospheric properties/winds: map cloud particle modes and their temporal variations, and track cloud-level winds in the polar vortices.6. Surface-atmosphere interactions: chemical reactions from mineralogy; weathering state between new, recent and older flows; possible volcanically outgassed water.VOX’s Atmosphere Sampling Vehicle (ASV) dips into and samples the well-mixed atmosphere, using Venus Original Constituents Experiment (VOCE) to measure noble gases. VOX’s orbiter carries the Venus Emissivity Mapper (VEM) and the Venus Interferometric Synthetic Aperture Radar (VISAR), and maps the gravity field using Ka-band tracking.VOX is the logical next mission to Venus because it delivers: 1) top priority atmosphere, surface, and interior science; 2) key global data for

  7. High Temperature, Wireless Seismometer Sensor for Venus (United States)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.


    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  8. Geologic map of the Artemis Chasma quadrangle (V-48), Venus (United States)

    Bannister, Roger A.; Hansen, Vicki L.


    . So although it seems clear what Artemis is not, there is little consensus about what Artemis is, much less how Artemis formed. Debate during the past decade has resulted in the proposal of at least four hypotheses for Artemis' formation. The first (herein referred to as H1) is that Artemis Chasma represents a zone of northwest-directed convergence and subduction. The second hypothesis (herein referred to as H2) is that Artemis consists of a composite structure with a part of its interior region marking the exposure of deformed ductile deep-crustal rocks analogous to a terrestrial metamorphic core complex. The third (herein referred to as H3) is that Artemis reflects the surface expression of an ancient (>3.5 Ga) huge bolide impact event on cold strong lithosphere. The fourth hypothesis (herein referred to as H4) is that Artemis marks the surface expression of a deep mantle plume. Each of these hypotheses holds different implications for Venus geodynamics and evolution processes, and for terrestrial planet processes in general. Viability of H1 would provide support that terrestrial-like plate-tectonic processes once occurred on Earth's sister planet. The feasibility of H2 would require high values of crustal extension and therefore imply that significant horizontal displacements occurred on Venus-displacement that may or may not be related to terrestrial-like plate-tectonic processes. The possibility of H3 would suggest that Venus' surface is extremely old, and that Venus has experienced very little dynamic activity for the last 3.5 billion years or more; this would further imply that Venus is essentially tectonically dead, and has been for most of its history. This view contrasts strongly with studies that highlight a rich history of Venus including activity at least as young as 750 million years ago, and quite likely up to the present. If H4 has credibility, then Artemis could provide clues to cooling mechanisms of Earth's sister planet. Each of these hypotheses

  9. Announcing the Venus Transit 2004 (VT-2004) Programme (United States)


    Rare Celestial Event to be Observed by Millions Summary On June 8, 2004, Venus - the Earth's sister planet - will pass in front of the Sun. This event, a 'transit', is extremely rare - the last one occurred in 1882, 122 years ago. Easily observable in Europe, Asia, Africa and Australia, it is likely to attract the attention of millions of people on these continents and, indeed, all over the world. On this important occasion, the European Southern Observatory (ESO) has joined forces with the European Association for Astronomy Education (EAAE), the Institut de Mécanique Céleste et de Calcul des Éphémérides (IMCCE) and the Observatoire de Paris in France, as well as the Astronomical Institute of the Academy of Sciences of the Czech Republic to establish the Venus Transit 2004 (VT-2004) public education programme. It is supported by the European Commission in the framework of the European Science and Technology Week and takes advantage of this extraordinary celestial event to expose the public - in a well-considered, interactive and exciting way - to a number of fundamental issues at the crucial interface between society and basic science. VT-2004 has several components, including an instructive and comprehensive website ( It is directed towards the wide public in general and the media, school students and their teachers, as well as amateur astronomers in particular. It invites all interested persons to participate actively in the intercontinental VT-2004 Observing Campaign (that reenacts historical Venus Transit observations) and the VT-2004 Video Contest. During the VT-2004 Final Event in November, the winners of the Video Contest will be chosen by an international jury. This meeting will also serve to discuss the project and its impact. The outcome of this rare celestial event and the overall experience from this unique public education project will clearly be of very wide interest, not just in the field of astronomy.

  10. Estimates of elastic plate thicknesses beneath large volcanos on Venus (United States)

    Mcgovern, Patrick J.; Solomon, Sean C.


    Megellan radar imaging and topography data are now available for a number of volcanos on Venus greater than 100 km in radius. These data can be examined to reveal evidence of the flexural response of the lithosphere to the volcanic load. On Earth, flexure beneath large hotspot volcanos results in an annual topographic moat that is partially to completely filled in by sedimentation and mass wasting from the volcano's flanks. On Venus, erosion and sediment deposition are considered to be negligible at the resolution of Magellan images. Thus, it may be possible to observe evidence of flexure by the ponding of recent volcanic flows in the moat. We also might expect to find topographic signals from unfilled moats surrounding large volcanos on Venus, although these signals may be partially obscured by regional topography. Also, in the absence of sedimentation, tectonic evidence of deformation around large volcanos should be evident except where buried by very young flows. We use analytic solutions in axisymmetric geometry for deflections and stresses resulting from loading of a plate overlying an inviscid fluid. Solutions for a set of disk loads are superimposed to obtain a solution for a conical volcano. The deflection of the lithosphere produces an annular depression or moat, the extent of which can be estimated by measuring the distance from the volcano's edge to the first zero crossing or to the peak of the flexural arch. Magellan altimetry data records (ARCDRs) from data cycle 1 are processed using the GMT mapping and graphics software to produce topographic contour maps of the volcanos. We then take topographic profiles that cut across the annular and ponded flows seen on the radar images. By comparing the locations of these flows to the predicted moat locations from a range of models, we estimate the elastic plate thickness that best fits the observations, together with the uncertainty in that estimate.

  11. Several features of the earthward and tailward streaming of energetic protons (0.29--0.5 MeV) in the earth's plasma sheet

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; Krimigis, S.M.


    The characteristics of earthward and tailward streaming of energetic protons (0.29--0.50 MeV) in the magnetotial at downstream distances of 20 to 40 R/sub E/ are examined with approx.5.5-min averaged data from the APL/JHU Charged Particle Measurements Experiment on board the IMP 7 and IMP 8 spacecraft. On the basis of observations from September 1972 to May 1978 it is found that the occurrence frequency of energetic magnetospheric protons streaming either tailward or earthward with a front-to-back flux ratio of >2 is at least 23%. Tailward streaming is found to be prevalent in the postmidnight plasma sheet, while earthward streaming is more frequent in the premidnight sector. The particle spectrum is progressively harder from the dawn flank to the dusk flank of the plasma sheet and is generally harder for tailward streaming than for earthward streaming. It is suggested that the dawn-dusk reversal in the dominant streaming direction results from an underlying circulation pattern of energetic protons in the magnetotail, tailward in the postmidnight region and earthward in the premidnight region

  12. The 2004 Transit of Venus as a Space Science Education Opportunity (United States)

    Odenwald, S.; Mayo, L.; Vondrak, R.; Thieman, J.; Hawkins, I.; Schultz, G.


    We will present some of the programs and activities that NASA and its missions are preparing in order to support public and K12 education in space science and astronomy using the 2004 transit of Venus as a focal event. The upcoming transit of Venus on June 8 offers a unique opportunity to educate students and the general public about the scale of the solar system and the universe, as well as basic issues in comparative planetology. NASA's Sun-Earth Connection Education Forum is offering a number of programs to take advantage of this rare event. Among these are a live web cast from Spain of the entire transit, a series of radio and TV programs directed at students and the general public, a web cast describing extra-solar planet searches using the transit geometry, and archived observations produced by public observatories and student-operated solar viewers. The NASA/OSS Education Forums will also partner with science museums, planetaria and teachers across the country to bring the transit of Venus 'down to Earth'. In addition to offering enrichment activities in mathematics and space science, we also describe collaborations that have yielded unique historical resources including online archives of newspaper articles from the 1874 and 1882 transits. In addition, in collaboration with the Library of Congress Music Division, we have supported a modern re-orchestration of John Philip Sousa's Transit of Venus March which has not been performed since 1883. We anticipate that the transit of Venus will be a significant event of considerable public interest and curiosity, if the newspaper headlines from the transit seen in 1882 are any indication.

  13. Discharge current measurements on Venera 13 & 14 - Evidence for charged aerosols in the Venus lower atmosphere? (United States)

    Lorenz, Ralph D.


    Measurements of discharge currents on the Venera 13 and 14 landers during their descent in the lowest 35 km of the Venus atmosphere are interpreted as driven either by an ambient electric field, or by deposition of charge from aerosols. The latter hypothesis is favored (`triboelectric charging' in aeronautical parlance), and would entail an aerosol opacity and charge density somewhat higher than that observed in Saharan dust transported over long distances on Earth.

  14. Venus - Limited extension and volcanism along zones of lithospheric weakness (United States)

    Schaber, G. G.


    Three global-scale zones of possible tectonic origin are described as occurring along broad, low rises within the Equatorial Highlands on Venus (lat 50 deg N to 50 deg S, long 60 deg to 310 deg). The two longest of these tectonic zones, the Aphrodite-Beta and Themis-Atla zones, extend for 21,000 and 14,000 km, respectively. Several lines of evidence indicate that Beta and Atla Regiones, located at the only two intersections of the three major tectonic zones, are dynamically supported volcanic terranes associated with currently active volcanism. Rift valleys south of Aphrodite Terra and between Beta and Phoebe Regiones are characterized by 75- to 100-km widths, raised rims, and extensions of only a few tens of kilometers, about the same magnitudes as in continental rifts on the earth. Horizontal extension on Venus was probably restricted by an early choking-off of plate motion by high crustal and upper-mantle temperatures, and the subsequent loss of water and an asthenosphere.


    National Aeronautics and Space Administration — Galileo Orbiter 60 second sampled trajectory data from the Venus flyby in Venus Solar Orbital (VSO) coordinates. These data cover the interval 1990-02-09 00:00 to...

  16. A novel orbiter mission concept for venus with the EnVision proposal (United States)

    de Oliveira, Marta R. R.; Gil, Paulo J. S.; Ghail, Richard


    In space exploration, planetary orbiter missions are essential to gain insight into planets as a whole, and to help uncover unanswered scientific questions. In particular, the planets closest to the Earth have been a privileged target of the world's leading space agencies. EnVision is a mission proposal designed for Venus and competing for ESA's next launch opportunity with the objective of studying Earth's closest neighbor. The main goal is to study geological and atmospheric processes, namely surface processes, interior dynamics and atmosphere, to determine the reasons behind Venus and Earth's radically different evolution despite the planets' similarities. To achieve these goals, the operational orbit selection is a fundamental element of the mission design process. The design of an orbit around Venus faces specific challenges, such as the impossibility of choosing Sun-synchronous orbits. In this paper, an innovative genetic algorithm optimization was applied to select the optimal orbit based on the parameters with more influence in the mission planning, in particular the mission duration and the coverage of sites of interest on the Venusian surface. The solution obtained is a near-polar circular orbit with an altitude of 259 km that enables the coverage of all priority targets almost two times faster than with the parameters considered before this study.

  17. Mantle plumes on Venus revisited (United States)

    Kiefer, Walter S.


    The Equatorial Highlands of Venus consist of a series of quasicircular regions of high topography, rising up to about 5 km above the mean planetary radius. These highlands are strongly correlated with positive geoid anomalies, with a peak amplitude of 120 m at Atla Regio. Shield volcanism is observed at Beta, Eistla, Bell, and Atla Regiones and in the Hathor Mons-Innini Mons-Ushas Mons region of the southern hemisphere. Volcanos have also been mapped in Phoebe Regio and flood volcanism is observed in Ovda and Thetis Regiones. Extensional tectonism is also observed in Ovda and Thetis Regiones. Extensional tectonism is also observed in many of these regions. It is now widely accepted that at least Beta, Atla, Eistla, and Bell Regiones are the surface expressions of hot, rising mantel plumes. Upwelling plumes are consistent with both the volcanism and the extensional tectonism observed in these regions. The geoid anomalies and topography of these four regions show considerable variation. Peak geoid anomalies exceed 90 m at Beta and Atla, but are only 40 m at Eistla and 24 m at Bell. Similarly, the peak topography is greater at Beta and Atla than at Eistla and Bell. Such a range of values is not surprising because terrestrial hotspot swells also have a side range of geoid anomalies and topographic uplifts. Kiefer and Hager used cylindrical axisymmetric, steady-state convection calculations to show that mantle plumes can quantitatively account for both the amplitude and the shape of the long-wavelength geoid and topography at Beta and Atla. In these models, most of the topography of these highlands is due to uplift by the vertical normal stress associated with the rising plume. Additional topography may also be present due to crustal thickening by volcanism and crustal thinning by rifting. Smrekar and Phillips have also considered the geoid and topography of plumes on Venus, but they restricted themselves to considering only the geoid-topography ratio and did not

  18. Clementine Observes the Moon, Solar Corona, and Venus (United States)


    In 1994, during its flight, the Clementine spacecraft returned images of the Moon. In addition to the geologic mapping cameras, the Clementine spacecraft also carried two Star Tracker cameras for navigation. These lightweight (0.3 kg) cameras kept the spacecraft on track by constantly observing the positions of stars, reminiscent of the age-old seafaring tradition of sextant/star navigation. These navigation cameras were also to take some spectacular wide angle images of the Moon.In this picture the Moon is seen illuminated solely by light reflected from the Earth--Earthshine! The bright glow on the lunar horizon is caused by light from the solar corona; the sun is just behind the lunar limb. Caught in this image is the planet Venus at the top of the frame.

  19. Investigating the Geophysics of Venus: Result of the post-Alpbach Summer School 2014 (United States)

    Koopmans, Robert-Jan; Łosiak, Anna; Białek, Agata; Donohoe, Anthony; Fernández Jiménez, María; Frasl, Barbara; Gurciullo, Antonio; Kleinschneider, Andreas; Mannel, Thurid; Muñoz Elorza, Iñigo; Nilsson, Daniel; Oliveira, Marta; Sørensen-Clark, Paul; Timoney, Ryan; van Zelst, Iris


    Venus has been investigated by only five dedicated mission programs since the beginning of space flight. This relatively low level of interest is remarkable when considering that mass and radius of Venus are very similar to Earth's, while at the same time characteristics such as spin rate, atmospheric composition, pressure and temperature, make Venus a very different, inhabitable world. The underlying causes of these differences are not well understood. Apprehending Venus' tectonics and internal structure would not only shed light on the question why those two planets evolved so differently, but also help refining current models of planetary systems formation. In order to answer the question about reasons for differences in evolution of those two planets a group of 15 young scientists and engineers designed a mission to Venus during a follow-up of the Alpbach Summer School 2014. The primary objective of this mission is to learn whether Venus is tectonically active and on what time scale. In order to accomplish this goal the mission will determine the crustal structure of Venus, the current activity and distribution of active volcanoes and the movement of continental plates. The secondary objective is to further constrain the models of Venus' internal structure and composition. To achieve this, the mission will investigate the size, state and composition of the core as well as the state and composition of the mantle. The proposed mission consists of an orbiter in a near-polar circular orbit around Venus and a balloon for in-situ measurements operating during the initial phase of the mission. The balloon carries a nephelometer, a magnetometer, a mass spectrometer and stereo microphones and meteorological package. The orbiter carries a gradiometer for determining the gravity field, a synthetic aperture radar for investigating small changes in surface topography and mapping microwave signals from the surface and an IR and UV spectrometer and IR camera for monitoring

  20. High-resolution gravity model of Venus (United States)

    Reasenberg, R. D.; Goldberg, Z. M.


    The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

  1. Transits of Venus and Mercury as muses (United States)

    Tobin, William


    Transits of Venus and Mercury have inspired artistic creation of all kinds. After having been the first to witness a Venusian transit, in 1639, Jeremiah Horrocks expressed his feelings in poetry. Production has subsequently widened to include songs, short stories, novels, novellas, sermons, theatre, film, engravings, paintings, photography, medals, sculpture, stained glass, cartoons, stamps, music, opera, flower arrangements, and food and drink. Transit creations are reviewed, with emphasis on the English- and French-speaking worlds. It is found that transits of Mercury inspire much less creation than those of Venus, despite being much more frequent, and arguably of no less astronomical significance. It is suggested that this is primarily due to the mythological associations of Venus with sex and love, which are more powerful and gripping than Mercury's mythological role as a messenger and protector of traders and thieves. The lesson for those presenting the night sky to the public is that sex sells.

  2. Venus: radar determination of gravity potential. (United States)

    Shapiro, I I; Pettengill, G H; Sherman, G N; Rogers, A E; Ingalls, R P


    We describe a method for the determination of the gravity potential of Venus from multiple-frequency radar measurements. The method is based on the strong frequency dependence of the absorption of radio waves in Venus' atmosphere. Comparison of the differing radar reflection intensities at several frequencies yields the height of the surface relative to a reference pressure contour; combination with measurements of round-trip echo delays allows the pressure, and hence the gravity potential contour, to be mapped relative to the mean planet radius. Since calibration data from other frequencies are unavailable, the absorption-sensitive Haystack Observatory data have been analyzed under the assumption of uniform surface reflectivity to yield a gravity equipotential contour for the equatorial region and a tentative upper bound of 6 x 10(-4) on the fractional difference of Venus' principal equatorial moments of inertia. The minima in the equipotential contours appear to be associated with topographic minima.

  3. Venus project : experimentation at ENEA`s pilot site

    Energy Technology Data Exchange (ETDEWEB)

    Bargellini, M L; Fontana, F [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Innovazione; Bucci, C; Ferrara, F; Sottile, P A [GESI s.r.l., Rome (Italy); Niccolai, L; Scavino, G [Rome Univ. Sacro Cuore (Italy); Mancini, R; Levialdi, S [Rome Univ. La Sapienza (Italy). Dip. di Scienze dell` Informazione


    The document describes the ENEA`s (Italian Agency for New Technologies, Energy and the Environment) experience in the Venus Project (Esprit III ). Venus is an advanced visual interface based on icon representation that permits to end-user to inquiry databases. VENUS interfaces to ENEA`s databases: cometa materials Module, Cometa Laboratories Module and European Programs. This report contents the results of the experimentation and of the validation carried out in ENEA`s related to the Venus generations. Moreover, the description of the architecture, the user requirements syntesis and the validation methodology of the VENUS systems have been included.

  4. Galileo infrared imaging spectroscopy measurements at venus (United States)

    Carlson, R.W.; Baines, K.H.; Encrenaz, Th.; Taylor, F.W.; Drossart, P.; Kamp, L.W.; Pollack, James B.; Lellouch, E.; Collard, A.D.; Calcutt, S.B.; Grinspoon, D.; Weissman, P.R.; Smythe, W.D.; Ocampo, A.C.; Danielson, G.E.; Fanale, F.P.; Johnson, T.V.; Kieffer, H.H.; Matson, D.L.; McCord, T.B.; Soderblom, L.A.


    During the 1990 Galileo Venus flyby, the Near Infrared Mapping Spectrometer investigated the night-side atmosphere of Venus in the spectral range 0.7 to 5.2 micrometers. Multispectral images at high spatial resolution indicate substantial cloud opacity variations in the lower cloud levels, centered at 50 kilometers altitude. Zonal and meridional winds were derived for this level and are consistent with motion of the upper branch of a Hadley cell. Northern and southern hemisphere clouds appear to be markedly different. Spectral profiles were used to derive lower atmosphere abundances of water vapor and other species.

  5. Pressure balance between lobe and plasma sheet

    International Nuclear Information System (INIS)

    Baumjohann, W.; Paschmann, G.; Luehr, H.


    Using eight months of AMPTE/IRM plasma and magnetic field data, the authors have done a statistical survey on the balance of total (thermal and magnetic) pressure in the Earth's plasma sheet and tail lobe. About 300,000 measurements obtained in the plasma sheet and the lobe were compared for different levels of magnetic activity as well as different distances from the Earth. The data show that lobe and plasma sheet pressure balance very well. Even in the worst case they do not deviate by more than half of the variance in the data itself. Approximately constant total pressure was also seen during a quiet time pass when IRM traversed nearly the whole magnetotail in the vertical direction, from the southern hemisphere lobe through the neutral sheet and into the northern plasma sheet boundary layer

  6. The global distribution of giant radiating dike swarms on Venus: Implications for the global stress state (United States)

    Grosfils, Eric B.; Head, James W.


    Magellan radar data of Venus reveal 163 large radial lineament systems composed of graben, fissure, and fracture elements. On the basis of their structure, plan view geometry, and volcanic associations, at least 72% are interpreted to have formed primarily through subsurface dike swarm emplacement, the remainder through uplift or a combination of these two mechanisms. The population of swarms is used to determine regional and global stress orientation. The stress configuration recorded from 330-210 deg E (Aphrodite Terra) is best explained by isostatic compensation of existing long wavelength topography or coupling between mantle flow and the lithosphere. The rest are correlated with concentrations of rifting and volcanism in the Beta-Atla-Themis region. The global stress field on Venus is different than that of Earth, where plate boundary forces dominate.

  7. How Many Convective Zones Are There in the Atmosphere of Venus? (United States)

    Moroz, V. I.; Rodin, A. V.


    The qualitative characteristics of the vertical structure of the atmospheres of Venus and the Earth essentially differ. For instance, there are at least two, instead of one, zones with normal (thermal) convection on Venus. The first one is near the surface (a boundary layer); the second is at the altitudes of the lower part of the main cloud layer between 49 and 55 km. Contrary to the hypotheses proposed by Izakov (2001, 2002), the upper convective zone prevents energy transfer from the upper clouds to the subcloud atmosphere by ``anomalous turbulent heat conductivity.'' It is possible, however, that the anomalous turbulent heat conductivity takes part in the redistribution of the heat fluxes within the lower (subcloud) atmosphere.

  8. A Google Earth Grand Tour of the Terrestrial Planets (United States)

    De Paor, Declan; Coba, Filis; Burgin, Stephen


    Google Earth is a powerful instructional resource for geoscience education. We have extended the virtual globe to include all terrestrial planets. Downloadable Keyhole Markup Language (KML) files (Google Earth's scripting language) associated with this paper include lessons about Mercury, Venus, the Moon, and Mars. We created "grand…

  9. Modelling the Antarctic Ice Sheet

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Holm, A.


    to sea level high stands during past interglacial periods. A number of AIS models have been developed and applied to try to understand the workings of the AIS and to form a robust basis for future projections of the AIS contribution to sea level change. The recent DCESS (Danish Center for Earth System......The Antarctic ice sheet is a major player in the Earth’s climate system and is by far the largest depository of fresh water on the planet. Ice stored in the Antarctic ice sheet (AIS) contains enough water to raise sea level by about 58 m, and ice loss from Antarctica contributed significantly...

  10. Practical Observations of the Transit of Venus

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 5. Practical Observations of the Transit of Venus. B S Shyalaja. Classroom Volume 9 Issue 5 May 2004 pp 79-83. Fulltext. Click here to view fulltext PDF. Permanent link: ...

  11. Tidal constraints on the interior of Venus (United States)

    Dumoulin, C.; Tobie, G.; Verhoeven, O.; Rosenblatt, P.; Rambaux, N.


    As a prospective study for a future exploration of Venus, we compute the tidal response of Venus' interior assuming various mantle compositions and temperature profiles representative of different scenarios of Venus' formation and evolution. The mantle density and seismic velocities are modeled from thermodynamical equilibria of mantle minerals and used to predict the moment of inertia, Love numbers, and tide-induced phase lag characterizing the signature of the internal structure in the gravity field. The viscoelasticity of the mantle is parameterized using an Andrade rheology. From the models considered here, the moment of inertia lies in the range of 0.327 to 0.342, corresponding to a core radius of 2900 to 3450 km. Viscoelasticity of the mantle strongly increases the potential Love number relative to previously published elastic models. Due to the anelasticity effects, we show that the possibility of a completely solid metal core inside Venus cannot be ruled out based on the available estimate of k2 from the Magellan mission (Konopliv and Yoder, 1996). A Love number k2 lower than 0.27 would indicate the presence of a fully solid iron core, while for larger values, solutions with an entirely or partially liquid core are possible. Precise determination of the Love numbers, k2 and h2, together with an estimate of the tidal phase lag, are required to determine the state and size of the core, as well as the composition and viscosity of the mantle.

  12. Abrir una Venus: Hablar con ella

    Directory of Open Access Journals (Sweden)

    Ginnette Barrantes Sáenz


    Se propone a Alicia como la Venus abierta que  incita, mediante  la  cita cinematográfica del cine mudo en el cine de Almodóvar, la no tan conocida figura de  amar a una  dormida( Allouch, 2005

  13. Social Media Planning for the June 5, 2012 transit of Venus (United States)

    Young, C.; Wawro, M.; Cline, T. D.; Schenk, L. C.; Durscher, R.


    On June 5, 2012 at sunset on the East Coast of North America and earlier for other parts of the U.S., the planet Venus made its final trek across the face of the sun as seen from Earth until the year 2117! The NASA Goddard Sun-Earth Day and Solar Dynamics Observatory EPO teams developed a social media strategy to support NASAs Transit of Venus event and webcast from Mauna Kea, Hawaii, on June 5, 2012. Our goal was to connect our contacts with a growing and vibrant social media community during all phases of this celestial event! We also wanted to help spread the word about the Transit of Venus by sharing content, facts, videos, images and links about the transit with our networks. Although social media events occurred throughout the world, our strategy was to provide an additional focus on NASA related events in key locations including those events happening in Hawaii, Alaska, and NASA Ames thereby amplifying our outreach efforts while ensuring that a strong connection existed across geographical and cultural borders. We also wanted to provide the public with information that would help them understand the importance of staying connected via social media even if viewing the transit was possible from their own locations. The social media strategy and the transit of Venus events were a great success and well as a learning experience for future social media events. We present the results of our plan as well as ways to improve and expand for future events. In addition, we present our social media template developed for the transit and now used by other heliophysics EPO teams.

  14. Pioneer-Venus press clip (United States)


    This video shows, with high quality animation, the formation of the Solar System: comets, Jupiter, Europa, Saturn, Titan, Mars, the Sun, and early Earth. The focus is on life elsewhere in the Solar System. The recording was prepared for a news conference.

  15. Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission

    International Nuclear Information System (INIS)

    Arp, Zane A.; Cremers, David A.; Harris, Ronny D.; Oschwald, David M.; Parker, Gary R.; Wayne, David M.


    Laser-induced breakdown spectroscopy (LIBS) is being developed for future use on landers and rovers to Mars. The method also has potential for use on probes to other planets, the Moon, asteroids and comets. Like Mars, Venus is of strong interest because of its proximity to earth, but unlike Mars, conditions at the surface are far more hostile with temperatures in excess of 700 K and pressures on the order of 9.1 MPa (90 atm). These conditions present a significant challenge to spacecraft design and demand that rapid methods of chemical data gathering be implemented. The advantages of LIBS (e.g. stand-off and very rapid analysis) make the method particularly attractive for Venus exploration because of the expected short operational lifetimes (∼2 h) of surface instrumentation. Although the high temperature of Venus should pose no problem to the analytical capabilities of the LIBS spark, the demonstrated strong dependence of laser plasma characteristics on ambient gas pressures below earth atmospheric pressure requires that LIBS measurements be evaluated at the high Venus surface pressures. Here, we present a preliminary investigation of LIBS at 9.1 MPa for application to the analysis of a basalt rock sample. The results suggest the feasibility of the method for a Venus surface probe and that further study is justified

  16. Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission

    Energy Technology Data Exchange (ETDEWEB)

    Arp, Zane A.; Cremers, David A. E-mail:; Harris, Ronny D.; Oschwald, David M.; Parker, Gary R.; Wayne, David M


    Laser-induced breakdown spectroscopy (LIBS) is being developed for future use on landers and rovers to Mars. The method also has potential for use on probes to other planets, the Moon, asteroids and comets. Like Mars, Venus is of strong interest because of its proximity to earth, but unlike Mars, conditions at the surface are far more hostile with temperatures in excess of 700 K and pressures on the order of 9.1 MPa (90 atm). These conditions present a significant challenge to spacecraft design and demand that rapid methods of chemical data gathering be implemented. The advantages of LIBS (e.g. stand-off and very rapid analysis) make the method particularly attractive for Venus exploration because of the expected short operational lifetimes ({approx}2 h) of surface instrumentation. Although the high temperature of Venus should pose no problem to the analytical capabilities of the LIBS spark, the demonstrated strong dependence of laser plasma characteristics on ambient gas pressures below earth atmospheric pressure requires that LIBS measurements be evaluated at the high Venus surface pressures. Here, we present a preliminary investigation of LIBS at 9.1 MPa for application to the analysis of a basalt rock sample. The results suggest the feasibility of the method for a Venus surface probe and that further study is justified.

  17. The Venus Emissivity Mapper - gaining a global perspective on the surface composition of Venus (United States)

    Helbert, Joern; Dyar, Melinda; Widemann, Thomas; Marcq, Emmanuel; Maturilli, Alessandro; Mueller, Nils; Kappel, David; Ferrari, Sabrina; D'Amore, Mario; Tsang, Constantine; Arnold, Gabriele; Smrekar, Suzanne; VEM Team


    The permanent cloud cover of Venus prohibits observations of the surface with traditional imaging techniques over much of the EM spectral range, leading to the false notion that information about the composition of Venus’ surface could only be derived from lander missions. However, harsh environmental conditions on the surface cause landed missions to be sole site, highly complex, and riskier than orbiting missions.It is now known that 5 transparency windows occur in the Venus atmosphere, ranging from 0.86 µm to 1.18 µm. Recent advances in high temperature laboratory spectroscopy at the PSL at DLR these windows are highly diagnostic for surface mineralogy. Mapping of the southern hemisphere of Venus with VIRTIS on VEX in the 1.02 µm band was a proof-of-concept for an orbital remote sensing approach to surface composition and weathering studies[1-3]. The Venus Emissivity Mapper [4] proposed for the NASA’s Venus Origins Explorer (VOX) and the ESA EnVision proposal builds on these recent advances. It is the first flight instrument specially designed with a sole focus on mapping the surface of Venus using the narrow atmospheric windows around 1 µm. Operating in situ from Venus orbit, VEM will provide a global map of surface composition as well as redox state of the surface, providing a comprehensive picture of surface-atmosphere interaction and support for landing site selection. Continuous observation of the thermal emission of the Venus will provide tight constraints on the current day volcanic activity[5]. This is complemented by measurements of atmospheric water vapor abundance as well as cloud microphysics and dynamics. These data will allow for accurate correction of atmospheric interference on the surface measurements, which provide highly valuable science on their own. A mission combining VEM with a high-resolution radar mapper such as VOX or EnVision in a low circular orbit will provide key insights into the divergent evolution of Venus.1. Smrekar, S

  18. MEETING VENUS. A Collection of Papers presented at the Venus Transit Conference Tromsoe 2012 (United States)

    Sterken, Christiaan; Aspaas, Per Pippin


    On 2-3 June 2012, the University of Tromsoe hosted a conference about the cultural and scientific history of the transits of Venus. The conference took place in Tromsoe for two very specific reasons. First and foremost, the last transit of Venus of this century lent itself to be observed on the disc of the Midnight Sun in this part of Europe during the night of 5 to 6 June 2012. Second, several Venus transit expeditions in this region were central in the global enterprise of measuring the scale of the solar system in the eighteenth century. The site of the conference was the Nordnorsk Vitensenter (Science Centre of Northern Norway), which is located at the campus of the University of Tromsoe. After the conference, participants were invited to either stay in Tromsoe until the midnight of 5-6 June, or take part in a Venus transit voyage in Finnmark, during which the historical sites Vardoe, Hammerfest, and the North Cape were to be visited. The post-conference program culminated with the participants observing the transit of Venus in or near Tromsoe, Vardoe and even from a plane near Alta. These Proceedings contain a selection of the lectures delivered on 2-3 June 2012, and also a narrative description of the transit viewing from Tromsoe, Vardoe and Alta. The title of the book, Meeting Venus, refers the title of a play by the Hungarian film director, screenwriter and opera director Istvan Szabo (1938-). The autobiographical movie Meeting Venus (1991) directed by him is based on his experience directing Tannhauser at the Paris Opera in 1984. The movie brings the story of an imaginary international opera company that encounters a never ending series of difficulties and pitfalls that symbolise the challenges of any multicultural and international endeavour. As is evident from the many papers presented in this book, Meeting Venus not only contains the epic tales of the transits of the seventeenth, eighteenth and nineteenth centuries, it also covers the conference

  19. The escape of natural satellites from Mercury and Venus

    International Nuclear Information System (INIS)

    Kumar, S.S.


    It is suggested that the slow rotations of Mercury and Venus may be connected with the absence of natural satellites around them. If Mercury or Venus possessed a satellite at the time of formation, the tidal evolution would have caused the satellite to recede. At a sufficiently large distance from the planet, the Sun's gravitational influence makes the satellite orbit unstable. The natural satellites of Mercury and Venus might have escaped as a consequence of this instability. (Auth.)

  20. Escape of natural satellites from Mercury and Venus

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S S [Virginia Univ., Charlottesville (USA)


    It is suggested that the slow rotations of Mercury and Venus may be connected with the absence of natural satellites around them. If Mercury or Venus possessed a satellite at the time of formation, the tidal evolution would have caused the satellite to recede. At a sufficiently large distance from the planet, the Sun's gravitational influence makes the satellite orbit unstable. The natural satellites of Mercury and Venus might have escaped as a consequence of this instability.

  1. Chlamydia - CDC Fact Sheet (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... sheet Pelvic Inflammatory Disease (PID) – CDC fact sheet Gonorrhea – CDC fact sheet STDs Home Page Bacterial Vaginosis ( ...

  2. First stage of cosmic expedition Vega: Venus investigations

    International Nuclear Information System (INIS)

    Balebanov, V.M.; Moroz, V.I.; Mukhin, L.M.


    Main results of the first (Venus) stage of the international complex program ''Venus - Halley'' (''Vega'' for short) are presented. The program is aimed at transporting descent space vehicles to the Venus to explore its atmosphere and surface. Then automatic interplanetary stations (AIS) will be directed to the Halley's comet. In June 1985 the descent space vehicles AIS ''Vega-1'' and ''Vega-2'' have landed softly on the Venus surface, aerostat probes have been launched to the planet atmosphere. The design of the descent space vehicle, structure and chemical composition of the atmosphere, ground composition are briefly outlined

  3. The composition of the atmosphere of Venus below 100 km altitude: An overview (United States)

    de Bergh, C.; Moroz, V. I.; Taylor, F. W.; Crisp, D.; Bézard, B.; Zasova, L. V.


    We review the progress in our understanding of the composition of the Venus atmosphere since the publication of the COSPAR Venus International Reference Atmosphere volume in 1985. Results presented there were derived from data compiled in 1982-1983. More recent progress has resulted in large part from Earth-based studies of the near-infrared radiation from the nightside of the planet. These observations allow us to probe the atmosphere between the cloud tops and the surface. Additional insight has been gained through: (i) the analysis of ultraviolet radiation by satellites and rockets; (ii) data collected by the Vega 1 and 2 landers; (iii) complementary analyses of Venera 15 and 16 data; (iv) ground-based and Magellan radio occultation measurements, and (v) re-analyses of some spacecraft measurements made before 1983, in particular the Pioneer Venus and Venera 11, 13 and 14 data. These new data, and re-interpretations of older data, provide a much better knowledge of the vertical profile of water vapor, and more information on sulfur species above and below the clouds, including firm detections of OCS and SO. In addition, some spatial and/or temporal variations have been observed for CO, H 2O, H 2SO 4, SO 2, and OCS. New values of the D/H ratio have also been obtained.

  4. Energetic particles at venus: galileo results. (United States)

    Williams, D J; McEntire, R W; Krimigis, S M; Roelof, E C; Jaskulek, S; Tossman, B; Wilken, B; Stüdemann, W; Armstrong, T P; Fritz, T A; Lanzerotti, L J; Roederer, J G


    At Venus the Energetic Particles Detector (EPD) on the Galileo spacecraft measured the differential energy spectra and angular distributions of ions >22 kiloelectron volts (keV) and electrons > 15 keV in energy. The only time particles were observed by EPD was in a series of episodic events [0546 to 0638 universal time (UT)] near closest approach (0559:03 UT). Angular distributions were highly anisotropic, ordered by the magnetic field, and showed ions arriving from the hemisphere containing Venus and its bow shock. The spectra showed a power law form with intensities observed into the 120- to 280-keV range. Comparisons with model bow shock calculations show that these energetic ions are associated with the venusian foreshock-bow shock region. Shock-drift acceleration in the venusian bow shock seems the most likely process responsible for the observed ions.

  5. Electron plasma oscillations in the Venus foreshock (United States)

    Crawford, G. K.; Strangeway, R. J.; Russell, C. T.


    Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. The electron foreshock boundary is clearly evident in the data as a sharp onset in wave activity and a peak in intensity. Wave intensity is seen to drop rapidly with increasing penetration into the foreshock. The peak wave electric field strength at the electron foreshock boundary is found to be similar to terrestrial observations. A normalized wave spectrum was constructed using measurements of the electron plasma frequency and the spectrum was found to be centered about this value. These results, along with polarization studies showing the wave electric field to be field aligned, are consistent with the interpretation of the waves as electron plasma oscillations.

  6. Electron plasma oscillations in the Venus foreshock

    International Nuclear Information System (INIS)

    Crawford, G.K.; Strangeway, R.J.; Russell, C.T.


    Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. The electron foreshock boundary is clearly evident in the data as a sharp onset in wave activity and a peak in intensity. Wave intensity is seen to drop rapidly with increasing penetration into the foreshock. The peak wave electric field strength at the electron foreshock boundary is found to be similar to terrestrial observations. A normalized wave spectrum was constructed using measurements of the electron plasma frequency and the spectrum was found to be centered about this value. These results, along with polarization studies showing the wave electric field to be field aligned, are consistent with the interpretation of the waves as electron plasma oscillations

  7. Venus y el fin del mundo

    Directory of Open Access Journals (Sweden)

    Gonzalo Munévar


    Full Text Available Este artículo busca demostrar que los argumentos generales acerca de la exploración científica valen también para las ciencias espaciales. El trabajo se basa en el ejemplo de la exploración de Venus y lo que esta nos dice acerca de nuestro propio planeta. Argumenta que el concepto de la probabilidad de Leslie es incorrecto, como también lo son las dudas sobre la evidencia Venusiana. Así mismo, concluye que no se puede rechazar la importancia que tienen los descubrimientos inesperados que han resultado de la exploración de Venus para ayudarnos a comprender nuestro propio planeta. Y que si van a ser rechazados estos descubrimientos debe ser por razones científicas, no por intuiciones acerca de la probabilidad.

  8. Deuterium content of the Venus atmosphere

    International Nuclear Information System (INIS)

    Bertaux, -J.-L.; Clarke, J.T.


    The abundance of deuterium in the atmosphere of Venus is an important clue to the planet's history, because ordinary and deuterated water escape at different rates. Using the high-resolution mode of the International Ultraviolet Explorer (IUE), we measured hydrogen Lyman-α-emission but found only an upper limit on deuterium Lyman-α-emission, from which we inferred a D/H ratio of less than 2-5 x 10 -3 . This is smaller by a factor of 3-8 than the D/H ratio derived from measurements by the Pioneer Venus Large Probe, and may indicate either a stratification of D/H ratio with altitude or a smaller overall ratio than previously thought. (author)

  9. GASN sheets

    International Nuclear Information System (INIS)


    This document gathers around 50 detailed sheets which describe and present various aspects, data and information related to the nuclear sector or, more generally to energy. The following items are addressed: natural and artificial radioactive environment, evolution of energy needs in the world, radioactive wastes, which energy for France tomorrow, the consequences in France of the Chernobyl accident, ammunitions containing depleted uranium, processing and recycling of used nuclear fuel, transport of radioactive materials, seismic risk for the basic nuclear installations, radon, the precautionary principle, the issue of low doses, the EPR, the greenhouse effect, the Oklo nuclear reactors, ITER on the way towards fusion reactors, simulation and nuclear deterrence, crisis management in the nuclear field, does nuclear research put a break on the development of renewable energies by monopolizing funding, nuclear safety and security, the plutonium, generation IV reactors, comparison of different modes of electricity production, medical exposure to ionizing radiations, the control of nuclear activities, food preservation by ionization, photovoltaic solar collectors, the Polonium 210, the dismantling of nuclear installations, wind energy, desalination and nuclear reactors, from non-communication to transparency about nuclear safety, the Jules Horowitz reactor, CO 2 capture and storage, hydrogen, solar energy, the radium, the subcontractors of maintenance of the nuclear fleet, biomass, internal radio-contamination, epidemiological studies, submarine nuclear propulsion, sea energy, the Three Mile Island accident, the Chernobyl accident, the Fukushima accident, the nuclear after Fukushima

  10. Magma reservoirs and neutral buoyancy zones on Venus - Implications for the formation and evolution of volcanic landforms (United States)

    Head, James W.; Wilson, Lionel


    The production of magma reservoirs and neutral buoyancy zones (NBZs) on Venus and the implications of their development for the formation and evolution of volcanic landforms are examined. The high atmospheric pressure on Venus reduces volatile exsolution and generally serves to inhibit the formation of NBZs and shallow magma reservoirs. For a range of common terrestrial magma-volatile contents, magma ascending and erupting near or below mean planetary radius (MPR) should not stall at shallow magma reservoirs; such eruptions are characterized by relatively high total volumes and effusion rates. For the same range of volatile contents at 2 km above MPR, about half of the cases result in the direct ascent of magma to the surface and half in the production of neutral buoyancy zones. NBZs and shallow magma reservoirs begin to appear as gas content increases and are nominally shallower on Venus than on earth. For a fixed volatile content, NBZs become deeper with increasing elevation: over the range of elevations treated in this study (-1 km to +4.4 km) depths differ by a factor of 2-4. Factors that may account for the low height of volcanoes on Venus are discussed.


    International Nuclear Information System (INIS)

    Pasachoff, Jay M.; Schneider, Glenn; Widemann, Thomas


    This paper presents the only space-borne optical-imaging observations of the 2004 June 8 transit of Venus, the first such transit visible from Earth since AD 1882. The high-resolution, high-cadence satellite images we arranged from NASA's Transition Region and Coronal Explorer (TRACE) reveal the onset of visibility of Venus's atmosphere and give further information about the black-drop effect, whose causes we previously demonstrated from TRACE observations of a transit of Mercury. The atmosphere is gradually revealed before second contact and after third contact, resulting from the changing depth of atmospheric layers refracting the photospheric surface into the observer's direction. We use Venus Express observations to relate the atmospheric arcs seen during the transit to the atmospheric structure of Venus. Finally, we relate the transit images to current and future exoplanet observations, providing a sort of ground truth showing an analog in our solar system to effects observable only with light curves in other solar systems with the Kepler and CoRoT missions and ground-based exoplanet-transit observations.

  12. Relation of major volcanic center concentration on Venus to global tectonic patterns (United States)

    Crumpler, L. S.; Head, James W.; Aubele, Jayne C.


    Global analysis of Magellan image data indicates that a major concentration of volcanic centers covering about 40 percent of the surface of Venus occurs between the Beta, Atla, and Themis regions. Associated with this enhanced concentration are geological characteristics commonly interpreted as rifting and mantle upwelling. Interconnected low plains in an annulus around this concentration are characterized by crustal shortening and infrequent volcanic centers that may represent sites of mantle return flow and net downwelling. Together, these observations suggest the existence of relatively simple, large-scale patterns of mantle circulation similar to those associated with concentrations of intraplate volcanism on earth.

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Keywords. Earth system model; Greenland; Antarctica; ice sheet; climate dynamics; surface mass balance. Abstract. Elaboration of a modern Earth system model (ESM) requires incorporation of ice sheet dynamics. Coupling of an ice sheet model (ICM) to an AOGCM is complicated by essential differences in spatial and ...

  14. Venus Express uurib Maa kurja kaksikut / ref. Triin Thalheim

    Index Scriptorium Estoniae


    9. novembril startis Baikonuri kosmodroomilt Veenusele Euroopa Kosmoseagentuuri sond Venus Express, mis peaks planeedi atmosfääri sisenema aprillis. Teadlaste sõnul peab sondi saadetav info aitama mõista naaberplaneedi kliimat ja atmosfääri ning tooma selgust, kas Maa võib kunagi Veenuse sarnaseks muutuda. Lisaks joonis: Venus Express

  15. Structure of the middle atmosphere of Venus and future observation with PFS on Venus Express. (United States)

    Zasova, L. V.; Formisano, V.; Moroz, V. I.; Ignatiev, N. I.; Khatountsev, I. A.

    Investigation of the middle atmosphere of Venus (55 -- 100 km) will allow to advance our knowledge about the most puzzling phenomena of the Venus dynamics -- its superrotation. More than 70% of all absorbed by Venus Solar energy is deposited there, results in the thermal tides generation and giving energy to support the superrotation. The importance of the tides in the middle atmosphere is manifested by the tidal character of the local time variation of the structure of the thermal field, zonal wind field (especially, behavior of the wind speed in the mid latitude jet), upper clouds, with amplitudes depending on the altitude and latitude. Investigation of the middle atmosphere is a scientific goal of the long wavelength channel of PFS on Venus Express, as well as of its short wavelength channel (the latter on the day side). The 3D temperature, aerosol, thermal wind and SO2 abundance fields, spatial distribution of abundance of H2O (possibly vertical profile), CO, HCl, HF will be obtained.

  16. Low-frequency magnetic field fluctuations in Venus' solar wind interaction region: Venus Express observations

    Directory of Open Access Journals (Sweden)

    L. Guicking


    Full Text Available We investigate wave properties of low-frequency magnetic field fluctuations in Venus' solar wind interaction region based on the measurements made on board the Venus Express spacecraft. The orbit geometry is very suitable to investigate the fluctuations in Venus' low-altitude magnetosheath and mid-magnetotail and provides an opportunity for a comparative study of low-frequency waves at Venus and Mars. The spatial distributions of the wave properties, in particular in the dayside and nightside magnetosheath as well as in the tail and mantle region, are similar to observations at Mars. As both planets do not have a global magnetic field, the interaction process of the solar wind with both planets is similar and leads to similar instabilities and wave structures. We focus on the spatial distribution of the wave intensity of the fluctuating magnetic field and detect an enhancement of the intensity in the dayside magnetosheath and a strong decrease towards the terminator. For a detailed investigation of the intensity distribution we adopt an analytical streamline model to describe the plasma flow around Venus. This allows displaying the evolution of the intensity along different streamlines. It is assumed that the waves are generated in the vicinity of the bow shock and are convected downstream with the turbulent magnetosheath flow. However, neither the different Mach numbers upstream and downstream of the bow shock, nor the variation of the cross sectional area and the flow velocity along the streamlines play probably an important role in order to explain the observed concentration of wave intensity in the dayside magnetosheath and the decay towards the nightside magnetosheath. But, the concept of freely evolving or decaying turbulence is in good qualitative agreement with the observations, as we observe a power law decay of the intensity along the streamlines. The observations support the assumption of wave convection through the magnetosheath, but

  17. Venus 2004: east and west elongations and solar transit (United States)

    McKim, R. J.; Blaxall, K.; Heath, A.


    The year 2004 was exceptional in producing the first solar transit of Venus since the late Victorian era. The bright aureole and atmospheric ring were re-observed, and the entire phenomenon was witnessed for the first time ever in hydrogen alpha light. Although routine observations throughout 2004 were unexceptional, patterns of visibility of bright and dark markings, cusp extensions and cusp-caps were recorded. No correlation was found between the latitude of the sub-Earth point and the visibility of either cusp-cap, with the S. cap predominating for most of the year. It was possible to accurately follow individual ultraviolet dark markings over many consecutive rotations, extending from the E. to W. elongations, and thereby to make a current measurement of the synodic atmospheric rotation period for the near-equatorial features: 3.996 ± 0.001 days. The true Ashen Light was reported visually on only a few occasions, but these correspond closely to times when infrared emission from the surface of the dark side was recorded in 1-micron waveband images. Some of the stable dark side albedo features were also visible upon the 1-micron images, and have been tentatively identified with known surface features. Infrared imaging at the same waveband showed little detail on the sunlit disk, but a few bright spots were sufficiently well observed to suggest a synodic rotation period close to 5.0 days, not atypical for the lower cloud decks.

  18. Chinese records of the 1874 transit of Venus (United States)

    Lu, Lingfeng; Li, Huifang


    Before the advent of radar, transits of Venus were very important for measuring the distance between the Earth and the Sun. A transit occurred in 1874, and was visible from China, other parts of east and southeast Asia and from India, Australia and New Zealand and certain islands in the Indian and Pacific Oceans. As a result, many astronomers from Western countries came to China to observe it. According to traditional Chinese astrology, the Sun represented the Emperor, and if the Sun was invaded by other astronomical bodies it meant that the Emperor and the country faced some ominous disaster. In the late nineteenth century, Western astronomical knowledge was widely translated into Chinese and spread among Chinese intellectuals, so the 1874 transit supposedly was easily understood by Chinese intellectuals. Before the transit took place, various Chinese publications introduced this kind of celestial event as science news, but at the same time other influential newspapers and journals discussed the astrological connection between the transit and the fortunes of the nation. In this paper we review these interesting Chinese records and discuss the different attitudes towards the transit exhibited by Chinese intellectuals and officials, during a period when Western learning was being widely disseminated throughout China.

  19. Bilateral topographic symmetry patterns across Aphrodite Terra, Venus

    International Nuclear Information System (INIS)

    Crumpler, L.S.; Head, J.W.


    Western Aphrodite Terra, Venus, is characterized by a series of parallel linear structural discontinuities 2000--4000 km in length and 100--200 km wide, which strike at high angles to the general topographic trend of the Aphrodite Terra highlands. The broad chracteristics of the cross-strike discontinuities (CSDs) are similar to both strike-slip fault zones and terrestrial oceanic fracture zones. In an effort to distinguish between these two hypotheses, topographic profiles were taken across Aphrodite Terra to test for bilateral symmetry of the type associated with thermal boundary layer topography at divergent plate boundaries on Earth. In addition to a broad bilateral symmetry at a range of angles across Aphrodite Terra, detailed bilateral symmetry is observed within domains between linear discontinuities in directions generally parallel to the strike of the discontinuities. In addition, within a domain the centers of symmetry of several profiles define a linear rise crest that is oriented normal to the bounding CSDs and terminates against them

  20. Effects of electron pressure anisotropy on current sheet configuration

    International Nuclear Information System (INIS)

    Artemyev, A. V.; Angelopoulos, V.; Runov, A.; Vasko, I. Y.


    Recent spacecraft observations in the Earth's magnetosphere have demonstrated that the magnetotail current sheet can be supported by currents of anisotropic electron population. Strong electron currents are responsible for the formation of very thin (intense) current sheets playing the crucial role in stability of the Earth's magnetotail. We explore the properties of such thin current sheets with hot isotropic ions and cold anisotropic electrons. Decoupling of the motions of ions and electrons results in the generation of a polarization electric field. The distribution of the corresponding scalar potential is derived from the electron pressure balance and the quasi-neutrality condition. We find that electron pressure anisotropy is partially balanced by a field-aligned component of this polarization electric field. We propose a 2D model that describes a thin current sheet supported by currents of anisotropic electrons embedded in an ion-dominated current sheet. Current density profiles in our model agree well with THEMIS observations in the Earth's magnetotail.

  1. Venus gravity - Analysis of Beta Regio (United States)

    Esposito, P. B.; Sjogren, W. L.; Mottinger, N. A.; Bills, B. G.; Abbott, E.


    Radio tracking data acquired over Beta Regio were analyzed to obtain a surface mass distribution from which a detailed vertical gravity field was derived. In addition, a corresponding vertical gravity field was evaluated solely from the topography of the Beta region. A comparison of these two maps confirms the strong correlation between gravity and topography which was previously seen in line-of-sight gravity maps. It also demonstrates that the observed gravity is a significant fraction of that predicted from the topography alone. The effective depth of complete isostatic compensation for the Beta region is estimated to be 330 km, which is somewhat deeper than that found for other areas of Venus.

  2. Uvmas: Venus Ultraviolet-visual Mapping Spectrometer (United States)

    Bellucci, G.; Zasova, L.; Altieri, F.; Formisano, V.; Ignatiev, N.; Moroz, V.

    We present the concept of an instrument for remote sensing of Venus from a planetary orbiter. The main characteristics of the instrument are the following: A~é· Spectral range: 0.190 A~é­ 0.490 A~éµm A~é· Spectral resolution: 0.4 nm (/= 500 at 0.2 A~éµ m) A~é· Angular resolution: 0.4 mrad at max A~é· Spatial resolution: 200 meters at 500 Km A~é· Field of view = 5.7A~é° A~é· S/N: 70 at 0.2 A~éµ m at 1 sec exp time given albedo = 0.03. The scientific objectives are the following: Dynamic investigation (0.2 5 µm). Mapping facility will allow the tracking of the UV features and will define the velocities in the atmosphere near the cloud top level. Detailed mapping of velocities of UV features at high spatial resolution, their variation with latitude, altitude and local time will advance our knowledge in understanding the puzzles of Venus dynamics like how and what mechanism drives the Venus atmospheric mass from equator to pole against temperature gradient and what is the mechanism supporting the zonal superrotation. What is the polar vortex organization, at what latitudes there is the descending branch of the Hadley cell. SO2 and SO in the range 0.232 µm. In this spectral range the SO2 and SO bands are observed. They present unresolved features with 10 Å width. Vertical profiles of these components may be obtained above the cloud and below the upper cloud boundary. Vertical, horizontal, local time and temporal variation will be obtained. This allows to create a photochemical model of the atmosphere above the clouds, and to understand a mechanism of cloud aerosol formation. "Unknown" UV- absorber, in the range 0.3 5 µm. It absorbs 50 % of the solar energy deposited on Venus. It exists only in the upper clouds. It is not known if it is in gaseous phase or included in the aerosol particles. This absorber is not homogeneously distributed and is responsible for the UV atmospheric contrast from 0.32­0.5 µm; it correlates

  3. Venus surface peeking through the atmosphere - gaining a global perspective on the surface composition through near infrared observations (United States)

    Helbert, J.; Dyar, M. D.; Maturilli, A.; D'Amore, M.; Ferrari, S.; Mueller, N. T.; Smrekar, S. E.


    Venus is the most Earth-like of the terrestrial planets, though very little is known about its surface composition. Thanks to recent advances in laboratory spectroscopy and spectral analysis techniques, this is about to change. Although the atmosphere prohibits observations of the surface with traditional imaging techniques over much of the EM spectral range, five transparent windows between 0.86 µm and 1.18 µm occur in the atmosphere's CO2 spectrum. New high temperature laboratory spectra from the Planetary Spectroscopy Laboratory at DLR show that spectra in these windows are highly diagnostic for surface mineralogy [1]. The Venus Emissivity Mapper (VEM) [2] builds on these recent advances. It is proposed for NASA's Venus Origins Explorer where a radar will provided the needed high-resolution altimetry and ESA's EnVision would provide stereo topography instead. VEM is the first flight instrument specially designed to focus solely on mapping Venus' surface using the windows around 1 µm. Operating in situ from Venus orbit, VEM will provide a global map of composition as well as redox state of the surface, enabling a comprehensive picture of surface-atmosphere interaction on Venus. VEM will return a complex data set containing surface, atmospheric, cloud, and scattering information. Total planned data volume for a typical mission scenario exceeds 1TB. Classical analysis techniques have been successfully used for VIRTIS on Venus Express [3-5] and could be employed with the VEM data. However, application of machine learning approaches to this rich dataset is vastly more efficient, as has already been confirmed with laboratory data. Binary classifiers [6] demonstrate that at current best estimate errors, basalt spectra are confidently discriminated from basaltic andesites, andesites, and rhyolite/granite. Applying the approach of self-organizing maps to the increasingly large set of laboratory measurements allows searching for additional mineralogical indicators

  4. Venus Surface Composition Constrained by Observation and Experiment (United States)

    Gilmore, Martha; Treiman, Allan; Helbert, Jörn; Smrekar, Suzanne


    New observations from the Venus Express spacecraft as well as theoretical and experimental investigation of Venus analogue materials have advanced our understanding of the petrology of Venus melts and the mineralogy of rocks on the surface. The VIRTIS instrument aboard Venus Express provided a map of the southern hemisphere of Venus at ˜1 μm allowing, for the first time, the definition of surface units in terms of their 1 μm emissivity and derived mineralogy. Tessera terrain has lower emissivity than the presumably basaltic plains, consistent with a more silica-rich or felsic mineralogy. Thermodynamic modeling and experimental production of melts with Venera and Vega starting compositions predict derivative melts that range from mafic to felsic. Large volumes of felsic melts require water and may link the formation of tesserae to the presence of a Venus ocean. Low emissivity rocks may also be produced by atmosphere-surface weathering reactions unlike those seen presently. High 1 μm emissivity values correlate to stratigraphically recent flows and have been used with theoretical and experimental predictions of basalt weathering to identify regions of recent volcanism. The timescale of this volcanism is currently constrained by the weathering of magnetite (higher emissivity) in fresh basalts to hematite (lower emissivity) in Venus' oxidizing environment. Recent volcanism is corroborated by transient thermal anomalies identified by the VMC instrument aboard Venus Express. The interpretation of all emissivity data depends critically on understanding the composition of surface materials, kinetics of rock weathering and their measurement under Venus conditions. Extended theoretical studies, continued analysis of earlier spacecraft results, new atmospheric data, and measurements of mineral stability under Venus conditions have improved our understanding atmosphere-surface interactions. The calcite-wollastonite CO2 buffer has been discounted due, among other things, to

  5. The Morphological Characteristics and Mechanical Formation of Giant Radial Dike Swarms on Venus: An Overview Emphasizing Recent Numerical Modeling Insights (United States)

    McGovern, P. J., Jr.; Grosfils, E. B.; Le Corvec, N.; Ernst, R. E.; Galgana, G. A.


    Over 200 giant radial dike swarms have been identified on Venus using Magellan data, yielding insight into morphological characteristics long since erased by erosion and other processes on Earth. Since such radial dike systems are typically associated with magma reservoirs, large volcanoes and/or larger-scale plume activity—and because dike geometry reflects stress conditions at the time of intrusion—assessing giant radial dike formation in the context of swarm morphology can place important constraints upon this fundamental volcanotectonic process. Recent numerical models reveal that, contrary to what is reported in much of the published literature, it is not easy, mechanically, to produce either large or small radial dike systems. After extensive numerical examination of reservoir inflation, however, under conditions ranging from a simple halfspace to complex flexural loading, we have thus far identified four scenarios that produce radial dike systems. Two of these scenarios yield dike systems akin to those often associated with shield and stratocone volcanoes on Earth, while the other two, our focus here, are more consistent with the giant radial dike system geometries catalogued on Venus. In this presentation we will (a) review key morphological characteristics of the giant radial systems identified on Venus, (b) briefly illustrate why it is not easy, mechanically, to produce a radial dike system, (c) present the two volcanological circumstances we have identified that do allow a giant radial dike system to form, and (d) discuss current model limitations and potentially fruitful directions for future research.

  6. Geologic Map of the Lavinia Planitia Quadrangle (V-55), Venus (United States)

    Ivanov, Mikhail A.; Head, James W.


    Introduction The Lavinia Planitia quadrangle (V-55) is in the southern hemisphere of Venus and extends from 25 to 50 south latitude and from 330 to 360 longitude. It covers the central and northern part of Lavinia Planitia and parts of its margins. Lavinia Planitia consists of a centralized, deformed lowland flooded by volcanic deposits and surrounded by Dione Regio to the west (Keddie and Head, 1995), Alpha Regio tessera (Bindschadler and others, 1992a) and Eve Corona (Stofan and others, 1992) to the northeast, itself an extensive rift zone and coronae belt to the east and south (Baer and others, 1994; Magee and Head, 1995), Mylitta Fluctus to the south (Magee Roberts and others, 1992), and Helen Planitia to the southwest (Senske and others, 1991). In contrast to other areas on Venus, the Lavinia Planitia area is one of several large, relatively equidimensional lowlands (basins) and as such is an important region for the analysis of processes of basin formation and volcanic flooding. Before the Magellan mission, Lavinia Planitia was known on the basis of Pioneer-Venus altimetry to be a lowland area (Pettengill and others, 1980);. Arecibo radar images showed that Lavinia Plaitia was surrounded by several corona-like features and rift-like fractures parallel to the basin margin to the east and south (Senske and others, 1991; Campbell and others, 1990). Arecibo data further revealed that the interior contained complex patterns of deformational features in the form of belts and volcanic plains, and several regions along the margins were seen to be the sources of extensive outpourings of digitate lava flows into the interior (Senske and others, 1991; Campbell and others, 1990). Early Magellan results showed that the ridge belts are composed of complex structures of both extensional and contractional origin (Squyres and others, 1992; Solomon and others, 1992) and that the complex lava flows (fluctus) along the margins (Magee Roberts and others, 1992) emanated from a

  7. Spatial distribution of electron plasma oscillations in the Earth`s foreshock at ISEE 3

    Energy Technology Data Exchange (ETDEWEB)

    Greenstadt, E.W.; Moses, S.L.; Coroniti, F.V. [TRW, Redondo Beach, CA (United States)] [and others


    Electric field oscillations recorded by the 10-56 kHz channels of TRW`s plasma wave detector during parts of two of the ISEE 3 circumterrestrial orbits in 1983 have been used to make the first mapping of Earth`s electron plasma wave foreshock. By combining data from the two trajectory segments, each of which provided relatively meager spatial sampling outside the bow shock, but high variation of interplanetary magnetic field (IMF) direction, a first-order pattern of occurrence of electron plasma waves, hence also backstreaming electrons, has been determined. The authors depict the pattern with an adaptation of the mapping program previously used for the Venus electron foreshock. As at Venus, plasma wave activity was concentrated most densely along the IMF line tangent to the bow shock. Their mappings with three additional ISEE 3 channels surrounding the local electron plasma frequency indicate a richer distribution of waves in the foreshock than the single electron frequency channel of Pioneer Venus Orbiter could detect around Venus. 14 refs., 4 figs.

  8. Greenland ice sheet mass balance: a review

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Aschwanden, Andy; Bjørk, Anders A.


    Over the past quarter of a century the Arctic has warmed more than any other region on Earth, causing a profound impact on the Greenland ice sheet (GrIS) and its contribution to the rise in global sea level. The loss of ice can be partitioned into processes related to surface mass balance...

  9. VLF emissions in the Venus foreshock - Comparison with terrestrial observations (United States)

    Crawford, G. K.; Strangeway, R. J.; Russell, C. T.


    An examination is conducted of ELF/VLF emissions observed in the solar wind upstream of the Venus shock, for the 100 Hz-30 kHz range, using data from the Pioneer Venus Orbiter's electric field detector and magnetometer instruments. Detailed comparisons are made with terrestrial measurements for both the electron and ion foreshocks. The results obtained support the Crawford et al. (1990) identification of the Venus electron foreshock emissions as electron plasma oscillations, whose waves are generated in situ and act to isotropize the electron distributions.

  10. Plasma sheet behavior during substorms

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.


    Auroral or magnetic substorms are periods of enhanced auroral and geomagnetic activity lasting one to a few hours that signify increased dissipation of energy from the magnetosphere to the earth. Data acquired during the past decade from satellites in the near-earth sector of the magnetotail have suggested that during a substorm part of the plasma sheet is severed from earth by magnetic reconnection, forming a plasmoid, i.e., a body of plasma and closed magnetic loops, that flows out of the tail into the solar wind, thus returning plasma and energy that have earlier been accumulated from the solar wind. Very recently this picture has been dramatically confirmed by observations, with the ISEE 3 spacecraft in the magnetotail 220 R/sub E/ from earth, of plasmoids passing that location in clear delayed response to substorms. It now appears that plasmoid release is a fundamental process whereby the magnetosphere gives up excess stored energy and plasma, much like comets are seen to do, and that the phenomena of the substorm seen at earth are a by-product of that fundamental process

  11. Geology of the Venus equatorial region from Pioneer Venus radar imaging

    International Nuclear Information System (INIS)

    Senske, D.A.; Head, J.W.


    The surface characteristics and morphology of the equatorial region of Venus were first described by Masursky et al. who showed this part of the planet to be characterized by two topographic provinces, rolling plains and highlands, and more recently by Schaber who described and interpreted tectonic zones in the highlands. Using Pioneer Venus (PV) radar image data (15 deg S to 45 deg N), Senske and Head examined the distribution, characteristics, and deposits of individual volcanic features in the equatorial region, and in addition classified major equatorial physiographic and tectonic units on the basis of morphology, topographic signature, and radar properties derived from the PV data. Included in this classification are: plains (undivided), inter-highland tectonic zones, tectonically segmented linear highlands, upland rises, tectonic junctions, dark halo plains, and upland plateaus. In addition to the physiographic units, features interpreted as coronae and volcanic mountains have also been mapped. The latter four of the physiographic units along with features interpreted to be coronae

  12. Engineers are from Mars and educators are from Venus: Research ...

    African Journals Online (AJOL)

    ... are from Venus: Research supervision in engineering and educational collaboration. ... The projects usually entailed an interdisciplinary thesis that addressed an ... in chemical engineering, the work-readiness of civil engineering students, ...

  13. Earth's radiation belts

    International Nuclear Information System (INIS)

    Moslehi Fard, M.


    The theory of trapped particles in a magnetic field of approximated dipole is described completely in the first part. Second part contains experimental results. The mechanism of radiation belt source ''albedo neutrons'' and also types of dissipation mechanism about radiation belt is explained. The trapped protons and electrons by radiation belt is discussed and the life-time of trapped particles are presented. Finally the magnetic fields of Moon, Venus, Mars, and Saturn, measured by passengers Mariner 4,10 and pioneer 10,11 are indicated. The experimental and theoretical results for the explanation of trapped plasma around the earth which is looked like two internal and external belt have almost good correspondence

  14. The multistring model VENUS for ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Werner, K.


    The event generator VENUS is based on a multistring model for heavy ion collisions at ultrarelativistic energies. The model is a straightforward extension of a successful model for soft proton-proton scattering, the latter one being consistent with e/sup /plus//e/sup /minus// annihilation and deep inelastic lepton scattering. Comparisons of VENUS results with pA and recent AA data alow some statements about intranuclear cascading. 18 refs., 7 figs

  15. The Venus Emissivity Mapper - Investigating the Atmospheric Structure and Dynamics of Venus' Polar Region (United States)

    Widemann, T.; Marcq, E.; Tsang, C.; Mueller, N. T.; Kappel, D.; Helbert, J.; Dyar, M. D.; Smrekar, S. E.


    Venus' climate evolution is driven by the energy balance of its global cloud layers. Venus displays the best-known case of polar vortices evolving in a fast-rotating atmosphere. Polar vortices are pervasive in the Solar System and may also be present in atmosphere-bearing exoplanets. While much progress has been made since the early suggestion that the Venus clouds are H2O-H2SO4 liquid droplets (Young 1973), several cloud parameters are still poorly constrained, particularly in the lower cloud layer and optically thicker polar regions. The average particle size is constant over most of the planet but increases toward the poles. This indicates that cloud formation processes are different at latitudes greater than 60°, possibly as a result of the different dynamical regimes that exist in the polar vortices (Carlson et al. 1993, Wilson et al. 2008, Barstow et al. 2012). Few wind measurements exist in the polar region due to unfavorable viewing geometry of currently available observations. Cloud-tracking data indicate circumpolar circulation close to solid-body rotation. E-W winds decrease to zero velocity close to the pole. N-S circulation is marginal, with extremely variable morphology and complex vorticity patterns (Sanchez-Lavega et al. 2008, Luz et al. 2011, Garate-Lopez et al. 2013). The Venus Emissivity Mapper (VEM; Helbert et al., 2016) proposed for NASA's Venus Origins Explorer (VOX) and the ESA M5/EnVision orbiters has the capability to better constrain the microphysics (vertical, horizontal, time dependence of particle size distribution, or/and composition) of the lower cloud particles in three spectral bands at 1.195, 1.310 and 1.510 μm at a spatial resolution of 10 km. Circular polar orbit geometry would provide an unprecedented study of both polar regions within the same mission. In addition, VEM's pushbroom method will allow short timescale cloud dynamics to be assessed, as well as local wind speeds, using repeated imagery at 90 minute intervals

  16. Analysis of the VENUS-3 experiments

    International Nuclear Information System (INIS)

    Maerker, R.E.; D'hondt, P.; Leenders, L.; Fabry, A.


    The results of applying a hybrid superposition-synthesis calculational method to a mockup of a three-dimensional geometry involving a partial length shield assembly at the VENUS-3 facility in Mol, Belgium, are described. Comparisons of transport calculations using the method and many measurements involving nickel, indium, and aluminum dosimeters indicate agreement usually to within measurement uncertainties estimated at around 5%, if effects of inaccuracies in the dosimeter cross sections are minimized and proper orientation of the coordinate system used in the synthesis procedure is observed. These conclusions suggest a solution to the problem of predicting pressure vessel fluence in reactors modified by these partial-length shield assemblies may already exist. 7 refs., 2 figs., 1 tab

  17. Nuclear instrumentation in VENUS-F (United States)

    Wagemans, J.; Borms, L.; Kochetkov, A.; Krása, A.; Van Grieken, C.; Vittiglio, G.


    VENUS-F is a fast zero power reactor with 30 wt% U fuel and Pb/Bi as a coolant simulator. Depending on the experimental configuration, various neutron spectra (fast, epithermal, and thermal islands) are present. This paper gives a review of the nuclear instrumentation that is applied for reactor control and in a large variety of physics experiments. Activation foils and fission chambers are used to measure spatial neutron flux profiles, spectrum indices, reactivity effects (with positive period and compensation method or the MSM method) and kinetic parameters (with the Rossi-alpha method). Fission chamber calibrations are performed in the standard irradiation fields of the BR1 reactor (prompt fission neutron spectrum and Maxwellian thermal neutron spectrum).

  18. Lightning measurements from the Pioneer Venus Orbiter (United States)

    Scarf, F. L.; Russell, C. T.


    The plasma wave instrument on the Pioneer Venus Orbiter frequently detects strong and impulsive low-frequency signals when the spacecraft traverses the nightside ionosphere near periapsis. These particular noise bursts appear only when the local magnetic field is strong and steady and when the field is oriented to point down to the ionosphere thus; the signals have all characteristics of lightning whistlers. We have tried to identify lightning sources between the cloud layers and the planet itself by tracing rays along the B-field from the Orbiter down toward the surface. An extensive data set, consisting of measurements through Orbit 1185, strongly indicates a clustering of lightning sources near the Beta and Phoebe Regios, with an additional significant cluster near the Atla Regio at the eastern edge of Aphrodite Terra. These results suggest that there are localized lightning sources at or near the planetary surface.

  19. Venus - Volcanic features in Atla Region (United States)


    This Magellan image from the Atla region of Venus shows several types of volcanic features and superimposed surface fractures. The area in the image is approximately 350 kilometers (217 miles) across, centered at 9 degrees south latitude, 199 degrees east longitude. Lava flows emanating from circular pits or linear fissures form flower-shaped patterns in several areas. A collapse depression approximately 20 kilometers by 10 kilometers (12 by 6 miles) near the center of the image is drained by a lava channel approximately 40 kilometers (25 miles) long. Numerous surface fractures and graben (linear valleys) criss-cross the volcanic deposits in north to northeast trends. The fractures are not buried by the lavas, indicating that the tectonic activity post-dates most of the volcanic activity.

  20. Venus radar mapper attitude reference quaternion (United States)

    Lyons, D. T.


    Polynomial functions of time are used to specify the components of the quaternion which represents the nominal attitude of the Venus Radar mapper spacecraft during mapping. The following constraints must be satisfied in order to obtain acceptable synthetic array radar data: the nominal attitude function must have a large dynamic range, the sensor orientation must be known very accurately, the attitude reference function must use as little memory as possible, and the spacecraft must operate autonomously. Fitting polynomials to the components of the desired quaternion function is a straightforward method for providing a very dynamic nominal attitude using a minimum amount of on-board computer resources. Although the attitude from the polynomials may not be exactly the one requested by the radar designers, the polynomial coefficients are known, so they do not contribute to the attitude uncertainty. Frequent coefficient updates are not required, so the spacecraft can operate autonomously.

  1. An Encounter between the Sun and Venus

    CERN Multimedia


    The astronomical event of the year will take place on Tuesday, 8 June, when Venus transits across the disk of the sun. In the framework of CERN's 50th anniversary celebrations, the CERN Astronomy Club and the Orion Club invite you to attend their observation of the event on the car park of the Val-Thoiry shopping centre (France) between 7.15 a.m. and 1.30 p.m. Various instruments will be set up in a special tent so that the event can be observed without any risk of damage to the eyes. As the observation of this astronomical event will depend on the weather forecast, confirmation of the above arrangements will be given on the 50th anniversary website the day before.

  2. The Reappearance of Venus Observed 8 October 2015 (United States)

    Dunham, David W.; Dunham, Joan B.


    The reappearance of Venus on October 8, 2015 offered a unique opportunity to attempt observation of the ashen light of Venus as the unlit side of Venus emerged from behind the dark side of the Moon. The dark side of Venus would be offered to observers without interference from the bright side of Venus or of the Moon. Observations were made from Alice Springs, Australia visually with a 20-cm Schmidt-Cassegrain and with a low-light level surveillance camera on a 25-cm reflector. No evidence of the dark side was noted by the visual observer, the video shows little indication of Venus prior to the bright side reappearance. The conclusion reached is that the ashen light, as it was classically defined, is not observable visually or with small telescopes in the visual regime.The presentation describes the prediction, observation technique, and various analyses by the authors and others to draw conclusions from the data.To date, the authors have been unable to locate any reports of others attempting to observe this unique event. That is a pity since, not only was it interesting for an attempt to verify past observations of the ashen light, it was also a visually stunning event.

  3. Thermomechanical processing of plasma sprayed intermetallic sheets (United States)

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.


    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  4. Sun-Earth Day Connects History, Culture and Science (United States)

    Cline, T.; Thieman, J.


    The NASA Sun-Earth Connection Education forum annually promotes and event called Sun-Earth Day: a national celebration of the Sun, the space around the Earth (geospace), and how all of it affects life on our planet. For the past 3 years this event has provided a venue by which classrooms, museums, planetaria, and at NASA centers have had a sensational time sharing stories, images, and activities related to the Sun-Earth connections and the views o fthe Sun from Earth. Each year we select a different theme by which NASA Space Science can be further related to cross-curricular activities. Sun-Earth Day 2002, "Celebrate the Equinox", drew parallels between Native American Cultures and NASA's Sun-Earth Connection research via cultural stories, interviews, web links, activities and Native American participation. Sun-Earth Day 2003, "Live From the Aurora", shared the beauty of the Aurora through a variety of activities and stories related to perspectives of Northern Peoples. Sun-Earth Day 2004 will share the excitement of the transit of Venus through comparisons of Venus with Earth and Mars, calculations of the distances to nearby stars, and the use of transits to identify extra-solar planets. Finally, Sun-Earth Day 2005 will bring several of these themes together by turning our focus to the history and culture surrounding ancient observatories such as Chaco Canyon, Machu Picchu, and Chichen Itza.

  5. Aerosol properties in the upper clouds of Venus from glory observations by the Venus Monitoring Camera (Venus Express mission) (United States)

    Markiewicz, Wojciech J.; Petrova, Elena V.; Shalygina, Oksana S.


    From the angular positions of the glory features observed on the upper cloud deck of Venus in three VMC channels (at 0.365, 0.513, and 0.965 μm), the dominating sizes of cloud particles and their refractive indices have been retrieved, and their spatial and temporal variations have been analyzed. For this, the phase profiles of brightness were compared to the single-scattering phase functions of particles of different sizes, since diffuse multiple scattering in the clouds does not move the angular positions of the glory, which is produced by the single scattering by cloud particles, but only makes them less pronounced. We presented the measured phase profiles in two ways: they were built for individual images and for individual small regions observed in series of successive images. The analysis of the data of both types has yielded consistent results. The presently retrieved radii of cloud particle average approximately 1.0-1.2 μm (though some values reach 1.4 μm) and demonstrate a variable pattern versus latitude and local solar time (LST). The decrease of particle sizes at high latitudes (down to 0.6 μm at 60°S) earlier found from the 0.965-μm and partly 0.365-μm data has been definitely confirmed in the analysis of the data of all three channels considered. To obtain the consistent estimates of particle sizes from the UV glory maximum and minimum positions, we have to vary the effective variance of the particle sizes, while it was fixed constant in our previous studies. The twofold increase of this parameter (from 0.07 to 0.14) diminishes the estimates of particle sizes by 10-15%, while the effect on the retrieved refractive index is negligible. The obtained estimates of the refractive index are more or less uniformly distributed over the covered latitude and LST ranges, and most of them are higher than those of concentrated sulfuric acid solution. This confirms our previous result obtained only at 0.965 μm, and now we may state that the cases of a

  6. Physics of the magnetotail current sheet

    International Nuclear Information System (INIS)

    Chen, J.


    The Earth's magnetotail plays an important role in the solar-wind--magnetosphere coupling. At the midplane of the magnetotail is a current sheet where the dominant magnetic field component reverses sign. The charged particle motion in and near the current sheet is collisionless and nonintegrable, exhibiting chaotic scattering. The current understanding of the dynamical properties of the charged particle motion is discussed. In particular, the relationships between particle dynamics and global attributes of the system are elucidated. Geometrical properties of the phase space determine important physical observables on both micro- and macroscales

  7. Venus - 3D Perspective View of Latona Corona and Dali Chasma (United States)


    This computer-generated perspective view of Latona Corona and Dali Chasma on Venus shows Magellan radar data superimposed on topography. The view is from the northeast and vertical exaggeration is 10 times. Exaggeration of relief is a common tool scientists use to detect relationships between structure (i.e. faults and fractures) and topography. Latona Corona, a circular feature approximately 1,000 kilometers (620 miles) in diameter whose eastern half is shown at the left of the image, has a relatively smooth, radar-bright raised rim. Bright lines or fractures within the corona appear to radiate away from its center toward the rim. The rest of the bright fractures in the area are associated with the relatively deep (approximately 3 kilometers or 1.9 miles) troughs of Dali Chasma. The Dali and Diana Chasma system consist of deep troughs that extend for 7,400 kilometers (4,588 miles) and are very distinct features on Venus. Those chasma connect the Ovda and Thetis highlands with the large volcanoes at Atla Regio and thus are considered to be the 'Scorpion Tail' of Aphrodite Terra. The broad, curving scarp resembles some of Earth's subduction zones where crustal plates are pushed over each other. The radar-bright surface at the highest elevation along the scarp is similar to surfaces in other elevated regions where some metallic mineral such as pyrite (fool's gold) may occur on the surface.

  8. Evidence for triple-junction rifting focussed on local magmatic centres along Parga Chasma, Venus (United States)

    Graff, J. R.; Ernst, R. E.; Samson, C.


    Parga Chasma is a discontinuous rift system marking the southern boundary of the Beta-Atla-Themis (BAT) region on Venus. Along a 1500 km section of Parga Chasma, detailed mapping of Magellan Synthetic Aperture Radar images has revealed 5 coronae, 11 local rift zones distinct from a regional extension pattern, and 47 graben-fissure systems with radiating (28), linear (12) and circumferential (7) geometries. The magmatic centres of these graben-fissure systems typically coincide with coronae or large volcanoes, although a few lack any central magmatic or tectonic feature (i.e. are cryptic). Some of the magmatic centres are interpreted as the foci of triple-junction rifting that form the 11 local rift zones. Cross-cutting relationships between graben-fissure systems and local rift faults reveal synchronous formation, implying a genetic association. Additionally, cross-cutting relationships show that local rifting events postdate the regional extension along Parga Chasma, further indicating multiple stages of rifting. Evidence for multiple centres of younger magmatism and local rifting against a background of regional extension provides an explanation for the discontinuous morphology of Parga Chasma. Examination of the Atlantic Rift System (prior to ocean opening) on Earth provides an analogue to the rift morphologies observed on Venus.

  9. On the reality of the Venus winds. [Venera satellite and Mariner space probe data (United States)

    Ainsworth, J. E.; Herman, J. R.


    The Venera measurements of wind speed along with the Mariner measurements of lower-region of strong turbulence are evidence for a wide band of variable high speed retrograde horizontal winds which girdle Venus at the equator. In one interpretation of the Mariner 10 UV photographs, the 20km region above the top of the visible cloud is characterized by variable high-speed retrograde horizontal winds which orbit Venus with an average period of 4 earth days, and by many features indicating vertical convection. This suggests that the Venera-Mariner band of winds at 45km extends to the top of the UV cloud and beyond, and that the upper-region of strong turbulence detected by the Mariners may result from vertical convection currents carried along by high speed horizontal winds. In another interpretation, the predominate motions are attributed to wavelike disturbances with a 4-day period. For this case the upper-region of strong turbulence may be due in large part to vertical wind-shear resulting from a rapid decrease in wind speed within a relatively short distance about the Venera-Mariner band of high speed winds.

  10. Short-term cyclic variations and diurnal variations of the Venus upper atmosphere (United States)

    Keating, G. M.; Taylor, F. W.; Nicholson, J. Y.; Hinson, E. W.


    The vertical structure of the nighttime thermosphere and exosphere of Venus was discussed. A comparison of the day and nighttime profiles indicates, contrary to the model of Dickinson and Riley (1977), that densities (principally atomic oxygen) dropped sharply from day to night. It was suggested either that the lower estimates were related to cooler exospheric temperatures at night or that the atomic bulge was flatter than expected at lower altitudes. Large periodic oscillations, in both density and inferred exospheric temperatures, were detected with periods of 5 to 6 days. The possibility that cyclic variations in the thermosphere and stratosphere were caused by planetary-scale waves, propagated upward from the lower atmosphere, was investigated using simultaneous temperature measurements obtained by the Venus radiometric temperature experiment (VORTEX). Inferred exospheric temperatures in the morning were found to be lower than in the evening as if the atmosphere rotated in the direction of the planet's rotation, similar to that of earth. Superrotation of the thermosphere and exosphere was discussed as a possible extension of the 4-day cyclic atmospheric rotation near the cloud tops.

  11. Patterns of deformation and volcanic flows associated with lithospheric loading by large volcanoes on Venus (United States)

    Mcgovern, Patrick J.; Solomon, Sean C.


    models of a volcanic load detached from the underlying lithosphere predict overthrusting and radial normal faulting at the volcano's edge. Such a mechanism for the formation of radial rift zones on Venus volcanoes would make such features analogous to structures on the flanks of volcanoes on Earth.

  12. Venus Interior Probe Using In-situ Power and Propulsion (VIP-INSPR), Phase I (United States)

    National Aeronautics and Space Administration — We envision a novel architecture for Venus Interior Probes based on in-situ resources for power generation (VIP-INSPR). Proposed Venus probe is based on the...

  13. The Creation of a Beneficial Bioshpere from Co2 in the Clouds of Venus (United States)

    Linaraki, D. L.; Oungrinis, K. A.


    This research resulted in an architectural design for a Venus colony based on multiple factors combination, such as psychology of space, predicted near-future technology, and the identified environmental conditions on Venus.

  14. The Venera-D Mission Concept: Evaluation by a Joint Science Definition Team of a Means for the Comprehensive Scientific Exploration of Venus (United States)

    Senske, D.; Zasova, L. V.; Economou, T.; Eismont, N.; Esposito, L. W.; Gerasimov, M.; Ignatiev, N. I.; Ivanov, M.; Jessup, K. L.; Korablev, O.; Tibor, K.; Limaye, S. S.; Martynov, A.; Ocampo, A.


    Located in the same part of the solar system and formed out of the same protoplanetary material, Venus is Earth's twin. Although these siblings have nearly the same size, mass, and density, the climate of Venus, fueled by a massive CO2 atmosphere has an enormous greenhouse effect with a surface pressure of 90 atm. and a temperature of 470°C. Shrouded in clouds of sulfuric acid, the surface lacks water and has been sculpted by volcanism and deformed by faulting and folding forming rifts and belts of mountains. The lack of an intrinsic magnetic field suggests the planet's interior structure may be different than that of the earth. The study of Venus will aid in better understanding our own world and the possible future evolution of our climate. In particular, the instability of our climate and the increase in amount of greenhouse gases-can our climate be slowly going in Venus' direction? Despite the advancement in understanding achieved from previous and ongoing missions, the key questions concerning the origin and evolution of Venus and its climate cannot be solved by observations from orbit alone. Direct measurements in the atmosphere and on the surface are required. In this regard, a Joint Science Definition Team (JSDT) chartered by NASA and IKI/Roscosmos has been studying a concept for the comprehensive investigation of Venus that would consist of an orbiter (>3 yr. of operation) and a lander (2 hrs. on the surface). The scientific goals of the concept are tied closely to the key objectives established by VEXAG and the NASA Planetary Decadal Survey and include: investigation of the thermal structure and chemical composition of the atmosphere and clouds, abundances and isotopic ratios of the light and noble gases; study of the thermal balance, dynamics, and super-rotation of the atmosphere; determination of the surface mineralogy and elemental composition including key radioactive isotopes; study of potential current volcanic and electrical activity; and study of

  15. Photoelectron reflection and scattering at Venus: an upper limit on the "polar wind" ambipolar electric field, and a new source of top-side ionospheric heating (United States)

    Collinson, Glyn; Glocer, Alex; Grebowsky, Joe; Peterson, William; Frahm, Rudy; Moore, Thomas; Gilbert, Lin; Coates, Andrew


    An important mechanism in the generation of Earth's polar wind is the ambipolar potential generated by the outflow along open field lines of superthermal electrons. This ≈20V electric potential assists ions in overcoming the gravitational potential, and is a key mechanism for Terrestrial ionospheric escape. At Venus, except in rare circumstances, every field line is open, and a similar outflow of ionospheric electrons is observed. It is thus hypothesized that a similar electric potential may be present at Venus, contributing to global ionospheric loss. However, a very sensitive electric field instrument would be required to directly measure this potential, and no such instrument has yet been flown to Venus. In this pilot study, we examine photoelectron spectra measured by the ASPERA-ELS instrument on the Venus Express to put an initial upper bound on the total potential drop above 350km of Φ current understanding, a "polar wind" like ambipolar electric field may not be as important a mechanism for atmospheric escape as previously suspected. Additionally, we find our spectra are consistent with the scattering of photoelectrons, the heating from which which we hypothesize may act as a source of top-side ionospheric heating, and may play a role in influencing the scale height of the ionosphere.

  16. Venus winds at cloud level from VIRTIS during the Venus Express mission (United States)

    Hueso, Ricardo; Peralta, Javier; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Piccioni, Giuseppe; Drossart, Pierre


    The Venus Express (VEX) mission has been in orbit to Venus for almost four years now. The VIRTIS instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet. Images in the ultraviolet range are used to study the upper cloud at 66 km while images in the infrared (1.74 μm) map the opacity of the lower cloud deck at 48 km. Here we present our latest results on the analysis of the global atmospheric dynamics at these cloud levels using a large selection over the full VIRTIS dataset. We will show the atmospheric zonal superrotation at these levels and the mean meridional motions. The zonal winds are very stable in the lower cloud at mid-latitudes to the tropics while it shows different signatures of variability in the upper cloud where solar tide effects are manifest in the data. While the upper clouds present a net meridional motion consistent with the upper branch of a Hadley cell the lower cloud present almost null global meridional motions at all latitudes but with particular features traveling both northwards and southwards in a turbulent manner depending on the cloud morphology on the observations. A particular important atmospheric feature is the South Polar vortex which might be influencing the structure of the zonal winds in the lower cloud at latitudes from the vortex location up to 55°S. Acknowledgements This work has been funded by the Spanish MICIIN AYA2009-10701 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  17. Late Veneer consequences on Venus' long term evolution (United States)

    Gillmann, C.; Golabek, G.; Tackley, P. J.; Raymond, S. N.


    Modelling of Venus' evolution is able to produce scenarios consistent with present-day observation. These results are however heavily dependent on atmosphere escape and initial volatile inventory. This primordial history (the first 500 Myr) is heavily influenced by collisions. We investigate how Late Veneer impacts change the initial state of Venus and their consequences on its coupled mantle/atmosphere evolution. We focus on volatile fluxes: atmospheric escape and mantle degassing. Mantle dynamics is simulated using the StagYY code. Atmosphere escape covers both thermal and non-thermal processes. Surface conditions are calculated with a radiative-convective model. Feedback of the atmosphere on the mantle through surface temperature is included. Large impacts are capable of contributing to atmospheric escape, volatile replenishment and energy transfer. We use the SOVA hydrocode to take into account volatile loss and deposition during a collision. Large impacts are not numerous enough to substantially erode Venus' atmosphere. Single impacts don't have enough eroding power. Swarms of small bodies (history of the planet and leads to lower present-day surface temperatures. Total depletion of the mantle seems unlikely, meaning either few large impacts (1 to 4) or low energy (slow, grazing…) collisions. Combined with the lack of plate tectonics and volatile recycling in the interior of Venus, Late Veneer collisions could help explain why Venus seems dry today.

  18. Benchmark calculations for VENUS-2 MOX -fueled reactor dosimetry

    International Nuclear Information System (INIS)

    Kim, Jong Kung; Kim, Hong Chul; Shin, Chang Ho; Han, Chi Young; Na, Byung Chan


    As a part of a Nuclear Energy Agency (NEA) Project, it was pursued the benchmark for dosimetry calculation of the VENUS-2 MOX-fueled reactor. In this benchmark, the goal is to test the current state-of-the-art computational methods of calculating neutron flux to reactor components against the measured data of the VENUS-2 MOX-fuelled critical experiments. The measured data to be used for this benchmark are the equivalent fission fluxes which are the reaction rates divided by the U 235 fission spectrum averaged cross-section of the corresponding dosimeter. The present benchmark is, therefore, defined to calculate reaction rates and corresponding equivalent fission fluxes measured on the core-mid plane at specific positions outside the core of the VENUS-2 MOX-fuelled reactor. This is a follow-up exercise to the previously completed UO 2 -fuelled VENUS-1 two-dimensional and VENUS-3 three-dimensional exercises. The use of MOX fuel in LWRs presents different neutron characteristics and this is the main interest of the current benchmark compared to the previous ones

  19. 3D modeling of lightning-induced electromagnetic pulses on Venus, Jupiter and Saturn (United States)

    Pérez-Invernón, Francisco J.; Luque, Alejandro; Gordillo-Vázquez, Francisco J.


    Atmospheric electricity is a common phenomenon in some planets of The Solar System. We know that atmospheric discharges exist on Earth and gaseous planets; however, some characteristics of lightning on Saturn and Jupiter as well as their relevance on the effects of lightning in the atmospheres of these planets are still unknown. In the case of Venus, there exist some radio evidences of lightning, but the lack of optical observations suggests exploring indirect methods of detection, such as searching for lightning-induced transient optical emissions from the upper atmosphere. The Akatsuki probe, currently orbiting Venus, is equipped with a camera whose temporal resolution is high enough to detect optical emissions from lightning discharges and to measure nightglow enhancements. In this work, we extend previous models [1,2] to investigate the chemical impact and transient optical emissions produced by possible lightning-emitted electromagnetic pulses (EMP) in Venus, Saturn and Jupiter. Using a 3D FDTD ("Finite Differences Time Domain") model we solve the Maxwell equations coupled with the Langevin equation for electrons [3] and with a kinetic scheme, different for each planetary atmosphere. This method is useful to investigate the temporal and spatial impact of lightning-induced electromagnetic fields in the atmosphere of each planet for different lightning characteristics (e.g. energy released, orientation). This 3D FDTD model allows us to include the saturnian and jovian background magnetic field inclination and magnitude at different latitudes, and to determine the effects of different lightning channel inclinations. Results provide useful information to interpret lightning observations on giant gaseous planets and in the search for indirect optical signals from atmospheric discharge on Venus such as fast nightglow transient enhancements related to lightning as seen on Earth. Furthermore, we underline the observation of electrical discharges characteristics as a

  20. Mobility Balance Sheet 2009

    International Nuclear Information System (INIS)

    Jorritsma, P.; Derriks, H.; Francke, J.; Gordijn, H.; Groot, W.; Harms, L.; Van der Loop, H.; Peer, S.; Savelberg, F.; Wouters, P.


    The Mobility Balance Sheet provides an overview of the state of the art of mobility in the Netherlands. In addition to describing the development of mobility this report also provides explanations for the growth of passenger and freight transport. Moreover, the Mobility Balance Sheet also focuses on a topical theme: the effects of economic crises on mobility. [nl

  1. Tectonic evolution of Lavinia Planitia, Venus (United States)

    Squyres, Steven W.; Frank, Sharon L.; Mcgill, George E.; Solomon, Sean C.


    High resolution radar images from the Magellan spacecraft have revealed the first details of the morphology of the Lavinia Planitia region of Venus. Lavinia is a broad lowland over 2000 km across, centered at about 45 deg S latitude, 345 deg E longitude. Herein, the tectonic evolution of Lavinia is discussed, and its possible relationship to processes operating in the planet's interior. The discussion is restricted to the region from 37.3 to 52.6 deg S latitude and from about 340 to 0 deg E longitude. One of the most interesting characteristics of Lavinia is that the entire region possesses a regional tectonic framework of striking regularity. Lavinia is also transected by a complex pattern of belts of intense tectonic deformation known as ridge belts. Despite the gross topographic similarity of all of the ridge belts in Lavinia, they exhibit two rather distinct styles of near surface deformation. One is composed of sets of broad, arch-like ridges rising above the surrounding plains. In the other type, obvious fold-like ridges are rare to absent in the radar images. Both type show evidence for small amounts of shear distributed across the belts.

  2. The upper atmosphere of Venus: A tentative explanation of its rotation (United States)

    Boyer, C.


    The upper atmosphere of Venus seems to revolve every 4 days, while the planet rotates in 243 days. Mariner 10 UV data on the changing positions of dark spots in the upper Venusian clouds have supported estimations of speeds ranging from 120-240 m/s. High rates of acceleration and deceleration occur on the night side, the former between -110 to -90 deg and the latter continuing to -50 deg. Arch and Y formations have been seen repeatedly between -110 to -70 deg. The highest are seen at about -90 deg and the lowest at about -30 deg. The temperature of the cloud layer at 60 km altitude is about 20 C, the pressure is nearly one earth atmosphere, and complex molecules, including O, C, H, N and S and combinations of these are present in abundance.

  3. Tectonics of the southern escarpment of Ishtar Terra on Venus from observations of morphology and gravity

    International Nuclear Information System (INIS)

    Janle, P.; Jannsen, D.


    Maxima of calculated topographical line-of-sight (LOS) gravity attractions caused by Ishtar Terra are shifted to the north with respect to the measured LOS free air gravity maxima south of the highland. This implies a tendency to isostatic compensation of central Ishtar and mass surpluses at the continental border and the southern forelands. The authors present a scenario compatible with the interpretation of the gravity anomalies and morphological features. The existence of global plate tectonics on Venus like on Earth is not necessarily implied, but at least limited horizontal movements of the Venusian lithosphere seem to be likely. This result shows that plate recycling must be considered for heat transfer through the lithosphere beside conduction and hot spot volcanism. (Auth.)

  4. Columbus State University Global Observation and Outreach for the 2012 Transit of Venus (United States)

    Perry, Matthew; McCarty, C.; Bartow, M.; Hood, J. C.; Lodder, K.; Johnson, M.; Cruzen, S. T.; Williams, R. N.


    Faculty, staff and students from Columbus State University’s (CSU’s) Coca-Cola Space Science Center presented a webcast of the 2012 Transit of Venus from three continents to a global audience of 1.4 million unique viewers. Team members imaged the transit with telescopes using white-light, hydrogen-alpha, and calcium filters, from Alice Springs, Australia; the Gobi Desert, Mongolia; Bryce Canyon, UT; and Columbus, GA. Images were webcast live during the transit in partnership with NASA’s Sun-Earth Day program, and Science Center staff members were featured on NASA TV. Local members of the public were brought in for a series of outreach initiatives, in both Georgia and Australia, before and during the transit. The data recorded from the various locations have been archived for use in demonstrating principles such as the historical measurement of the astronomical unit.

  5. Pre-Venus-Transit Dark Lunar Eclipse Reveals a Very Large Volcanic Eruption in 1761 (United States)

    Pang, Kevin


    Kepler's third law states Sun-planet distances in AU. International observations of the solar parallax during the 1761/1769 Venus transits gave us the first AU in miles. Benjamin Franklin promoted American participation in the project. While serving as Ambassador to France he observed that a "dry fog” from the 1783 Laki eruption in Iceland had obscured the Sun, and led to a cold summer and winter. Using Benjamin Franklin's method I analyzed photometric observations of the dark lunar eclipse made just before the 1761 Venus transit, ice core, tree ring, and Chinese weather data, and conclude that a very large previously unknown volcanic eruption in early 1761 had cooled the world climate. Observers worldwide found the 18 May 1761 totally eclipsed Moon very dark or invisible, e.g., Wargentin could not see the Moon for 38 minutes even with a 2-ft telescope (Phil. Trans. 52, 208, 1761-1762). Since the totally eclipsed Moon is illuminated only by sunlight refracted by the Earth's atmosphere, the obscuration must have been very severe. Ice cores from Greenland and Antarctica have large sulfuric acid contents in 1761-1762, precipitated from the global volcanic acid cloud (Zeilinski, J. Geophys. Res. 102, 26625, 1997). Frost-damaged rings in American bristlecone pines confirm that 1761 was very cold (LaMarche, Nature 307, 121, 1984). Contemporary Chinese chronicles report that heavy sustained snow fell from the Tropic of Cancer to the Yellow River. Wells and rivers froze, e.g., Taihu "Great Lake” and nearby Yangtze tributaries were not navigable. Innumerable trees, birds and livestock perished, etc. All observations are consistent with the above conclusion. Finally Benjamin Franklin's criteria for a climate-altering volcanic eruption are still universally used. Moreover his legacy continues to inspire climate researchers. See Pang, Eos 74, no. 43, 106, 1993; and as cited in "Earth in Balance,” Al Gore, p. 379, 1993.

  6. Spectroscopic characterization of Venus at the single molecule level. (United States)

    David, Charlotte C; Dedecker, Peter; De Cremer, Gert; Verstraeten, Natalie; Kint, Cyrielle; Michiels, Jan; Hofkens, Johan


    Venus is a recently developed, fast maturating, yellow fluorescent protein that has been used as a probe for in vivo applications. In the present work the photophysical characteristics of Venus were analyzed spectroscopically at the bulk and single molecule level. Through time-resolved single molecule measurements we found that single molecules of Venus display pronounced fluctuations in fluorescence emission, with clear fluorescence on- and off-times. These fluorescence intermittencies were found to occupy a broad range of time scales, ranging from milliseconds to several seconds. Such long off-times can complicate the analysis of single molecule counting experiments or single-molecule FRET experiments. This journal is © The Royal Society of Chemistry and Owner Societies 2012

  7. Day and night models of the Venus thermosphere (United States)

    Massie, S. T.; Hunten, D. M.; Sowell, D. R.


    A model atmosphere of Venus for altitudes between 100 and 178 km is presented for the dayside and nightside. Densities of CO2, CO, O, N2, He, and O2 on the dayside, for 0800 and 1600 hours local time, are obtained by simultaneous solution of continuity equations. These equations couple ionospheric and neutral chemistry and the transport processes of molecular and eddy diffusion. Photodissociation and photoionization J coefficients are presented to facilitate the incorporation of chemistry into circulation models of the Venus atmosphere. Midnight densities of CO2 CO, O, N2, He, and N are derived from integration of the continuity equations, subject to specified fluxes. The nightside densities and fluxes are consistent with the observed airglow of NO and O2(1 Delta). The homopause of Venus is located near 133 km on both the dayside and nightside.

  8. Mars ionopause during solar minimum: A lesson from Venus

    International Nuclear Information System (INIS)

    Mahajan, K.K.; Mayr, H.G.


    The ion densities measured by the Viking landers (Hanson et al., 1977) do not show an abrupt falloff with height, giving the false impression that Mars has no ionopause. On the basis of knowledge gained from the solar wind interaction at Venus during solar minimum, they demonstrate that the observed O 2 + profile above about 160 km on Mars is a distributed photodynamical ionosphere and can produce an ionopause at around 325 km, similar to that observed on Venus during solar minimum. They conclude that the solar wind interacts directly with the Mars ionosphere, suggesting that the planet does not have an intrinsic magnetic field of any consequence

  9. High Altitude Venus Operations Concept Trajectory Design, Modeling and Simulation (United States)

    Lugo, Rafael A.; Ozoroski, Thomas A.; Van Norman, John W.; Arney, Dale C.; Dec, John A.; Jones, Christopher A.; Zumwalt, Carlie H.


    A trajectory design and analysis that describes aerocapture, entry, descent, and inflation of manned and unmanned High Altitude Venus Operation Concept (HAVOC) lighter-than-air missions is presented. Mission motivation, concept of operations, and notional entry vehicle designs are presented. The initial trajectory design space is analyzed and discussed before investigating specific trajectories that are deemed representative of a feasible Venus mission. Under the project assumptions, while the high-mass crewed mission will require further research into aerodynamic decelerator technology, it was determined that the unmanned robotic mission is feasible using current technology.

  10. Magnetic field overshoots in the Venus blow shock

    International Nuclear Information System (INIS)

    Tatrallyay, M.; Luhmann, J.G.; Russell, C.T.


    An examination of Pioneer Venus Orbiter fluxgate magnetometer data has shown that magnetic field overshoots occur not only behind quasi-perpendicular bow shocks but also behind quasi-parallel shocks. Overshoots are assocciated only with supercritical shocks. Their amplitudes increase with increasing fast Mach number. Solar wind beta has a lesser effect. The thickness of the overshoot increases with decreasing Theta-BN. The thickness of apparent overshoots detected behind 4 strong fast interplanetary shocks (M greater than M/crit) is about 3 orders of magnitude larger. Multiple crossings of the Venus bow shock were observed mainly at turbulent shocks. Their occurence is not influenced by Theta-BN. 15 references

  11. Stratigraphy and Observations of Nepthys Mons Quadrangle (V54), Venus (United States)

    Bridges, N. T.


    Initial mapping has begun in Venus' Nepthys Mons Quadrangle (V54, 300-330 deg. E, 25-50 deg. S). Major research areas addressed are how the styles of volcanism and tectonism have changed with time, the evolution of shield volcanoes, the evolution of coronae, the characteristics of plains volcanism, and what these observations tell us about the general geologic history of Venus. Reported here is a preliminary general stratigraphy and several intriguing findings. Additional information is contained in the original extended abstract.

  12. Propagation of the trip behavior in the VENUS vertex chamber

    International Nuclear Information System (INIS)

    Ohama, Taro; Yamada, Yoshikazu.


    The high voltage system of the VENUS vertex chamber occasionally trips by a discharge somewhere among cathode electrodes during data taking. This trip behavior induces often additional trips at other electrodes such as the skin and the grid electrodes in the vertex chamber. This propagation mechanism of trips is so complicated in this system related with multi-electrodes. Although the vertex chamber is already installed inside the VENUS detector and consequently the discharge is not able to observe directly, a trial to estimate the propagation has been done using only the information which appears around the trip circuits and the power supply of the vertex chamber. (author)

  13. Krypton and xenon in the atmosphere of Venus (United States)

    Donahue, T. M.; Hoffman, J. H.; Hodges, R. R., Jr.


    The paper reports a determination by the Pioneer Venus large probe neutral mass spectrometer of upper limits to the concentration of krypton and xenon along with most of their isotopes in the atmosphere of Venus. The upper limit to the krypton mixing ratio is estimated at 47 ppb, with a very conservative estimate at 69 ppb. The probable upper limit to the sum of the mixing ratios of the isotopes Xe-128, Xe-129, Xe-130, Xe-131, and Xe-132 is 40 ppb by volume, with a very conservative upper limit three times this large.

  14. Carbon sheet pumping

    International Nuclear Information System (INIS)

    Ohyabu, N.; Sagara, A.; Kawamura, T.; Motojima, O.; Ono, T.


    A new hydrogen pumping scheme has been proposed which controls recycling of the particles for significant improvement of the energy confinement in toroidal magnetic fusion devices. In this scheme, a part of the vacuum vessel surface near the divertor is covered with carbon sheets of a large surface area. Before discharge initiation, the sheets are baked up to 700 ∼ 1000degC to remove the previously trapped hydrogen atoms. After being cooled down to below ∼ 200degC, the unsaturated carbon sheets trap high energy charge exchange hydrogen atoms effectively during a discharge and overall pumping efficiency can be as high as ∼ 50 %. (author)

  15. Can Venus magnetosheath plasma evolve into turbulence? (United States)

    Dwivedi, Navin; Schmid, Daniel; Narita, Yasuhito; Volwerk, Martin; Delva, Magda; Voros, Zoltan; Zhang, Tielong


    The present work aims to understand turbulence properties in planetary magnetosheath regions to obtain physical insight on the energy transfer from the larger to smaller scales, in spirit of searching for power-law behaviors in the spectra which is an indication of the energy cascade and wave-wave interaction. We perform a statistical analysis of energy spectra using the Venus Express spacecraft data in the Venusian magnetosheath. The fluxgate magnetometer data (VEXMAG) calibrated down to 1 Hz as well as plasma data from the ion mass analyzer (ASPERA) aboard the spacecraft are used in the years 2006-2009. Ten-minute intervals in the magnetosheath are selected, which is typical time length of observations of quasi-stationary fluctuations avoiding multiple boundaries crossings. The magnetic field data are transformed into the mean-field-aligned (MFA) coordinate system with respect to the large-scale magnetic field direction and the energy spectra are evaluated using a Welch algorithm in the frequency range between 0.008 Hz and 0.5 Hz for 105 time intervals. The averaged energy spectra show a power law upto 0.3 Hz with the approximate slope of -1, which is flatter than the Kolmogorov slope, -5/3. A slight hump in the spectra is found in the compressive component near 0.3 Hz, which could possibly be realization of mirror mode in the magnetosheath. A spectral break (sudden change in slope) accompanies the spectral hump at 0.4 Hz, above which the spectral curve becomes steeper. The overall spectral shape is reminiscent of turbulence. The low-frequency part with the slope -1 is interpreted as realization of the energy containing range, while the high-frequency part with the steepening is interpreted either as the beginning of energy cascade mediated by mirror mode or as the dissipation range due to wave-particle resonance processes. The present research work is fully supported by FP7/STORM (313038).

  16. Aerobraking at Venus: A science and technology enabler (United States)

    Hibbard, Kenneth; Glaze, Lori; Prince, Jill


    Venus remains one of the great unexplored planets in our solar system, with key questions remaining on the evolution of its atmosphere and climate, its volatile cycles, and the thermal and magmatic evolution of its surface. One potential approach toward answering these questions is to fly a reconnaissance mission that uses a multi-mode radar in a near-circular, low-altitude orbit of ∼400 km and 60-70° inclination. This type of mission profile results in a total mission delta-V of ∼4.4 km/s. Aerobraking could provide a significant portion, potentially up to half, of this energy transfer, thereby permitting more mass to be allocated to the spacecraft and science payload or facilitating the use of smaller, cheaper launch vehicles.Aerobraking at Venus also provides additional science benefits through the measurement of upper atmospheric density (recovered from accelerometer data) and temperature values, especially near the terminator where temperature changes are abrupt and constant pressure levels drop dramatically in altitude from day to night.Scientifically rich, Venus is also an ideal location for implementing aerobraking techniques. Its thick lower atmosphere and slow planet rotation result in relatively more predictable atmospheric densities than Mars. The upper atmosphere (aerobraking altitudes) of Venus has a density variation of 8% compared to Mars' 30% variability. In general, most aerobraking missions try to minimize the duration of the aerobraking phase to keep costs down. These short phases have limited margin to account for contingencies. It is the stable and predictive nature of Venus' atmosphere that provides safer aerobraking opportunities.The nature of aerobraking at Venus provides ideal opportunities to demonstrate aerobraking enhancements and techniques yet to be used at Mars, such as flying a temperature corridor (versus a heat-rate corridor) and using a thermal-response surface algorithm and autonomous aerobraking, shifting many daily ground

  17. Anesthesia Fact Sheet (United States)

    ... Education About NIGMS NIGMS Home > Science Education > Anesthesia Anesthesia Tagline (Optional) Middle/Main Content Area En español ... Version (464 KB) Other Fact Sheets What is anesthesia? Anesthesia is a medical treatment that prevents patients ...

  18. Structural Biology Fact Sheet (United States)

    ... NIGMS NIGMS Home > Science Education > Structural Biology Structural Biology Tagline (Optional) Middle/Main Content Area PDF Version (688 KB) Other Fact Sheets What is structural biology? Structural biology is the study of how biological ...

  19. Radiation protecting sheet

    International Nuclear Information System (INIS)

    Makiguchi, Hiroshi.


    As protection sheets used in radioactivity administration areas, a thermoplastic polyurethane composition sheet with a thickness of less 0.5 mm, solid content (ash) of less than 5% and a shore D hardness of less than 60 is used. A composite sheet with thickness of less than 0.5 mm laminated or coated with such a thermoplastic polyurethane composition as a surface layer and the thermoplastic polyurethane composition sheet applied with secondary fabrication are used. This can satisfy all of the required properties, such as draping property, abrasion resistance, high breaking strength, necking resistance, endurance strength, as well as chemical resistance and easy burnability in burning furnace. Further, by forming uneveness on the surface by means of embossing, etc. safety problems such as slippage during operation and walking can be overcome. (T.M.)

  20. Global ice sheet modeling

    International Nuclear Information System (INIS)

    Hughes, T.J.; Fastook, J.L.


    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed

  1. Optimal Design of Sheet Pile Wall Embedded in Clay (United States)

    Das, Manas Ranjan; Das, Sarat Kumar


    Sheet pile wall is a type of flexible earth retaining structure used in waterfront offshore structures, river protection work and temporary supports in foundations and excavations. Economy is an essential part of a good engineering design and needs to be considered explicitly in obtaining an optimum section. By considering appropriate embedment depth and sheet pile section it may be possible to achieve better economy. This paper describes optimum design of both cantilever and anchored sheet pile wall penetrating clay using a simple optimization tool Microsoft Excel ® Solver. The detail methodology and its application with examples are presented for cantilever and anchored sheet piles. The effects of soil properties, depth of penetration and variation of ground water table on the optimum design are also discussed. Such a study will help professional while designing the sheet pile wall penetrating clay.

  2. Energy information sheets

    Energy Technology Data Exchange (ETDEWEB)



    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  3. The Electric Wind of Venus: A Global and Persistent Polar Wind -Like Ambipolar Electric Field Sufficient for the Direct Escape of Heavy Ionospheric Ions (United States)

    Collinson, Glyn A.; Frahm, Rudy A.; Glocer, Alex; Coates, Andrew J.; Grebowsky, Joseph M.; Barabash, Stas; Domagal-Goldman, Shawn D.; Federov, Andrei; Futaana, Yoshifumi; Gilbert, Lin K.; hide


    Understanding what processes govern atmospheric escape and the loss of planetary water is of paramount importance for understanding how life in the universe can exist. One mechanism thought to be important at all planets is an ambipolar electric field that helps ions overcome gravity. We report the discovery and first quantitative extraterrestrial measurements of such a field at the planet Venus. Unexpectedly, despite comparable gravity, we show the field to be five times stronger than in Earths similar ionosphere. Contrary to our understanding, Venus would still lose heavy ions (including oxygen and all water-group species) to space, even if there were no stripping by the solar wind. We therefore find that it is possible for planets to lose heavy ions to space entirely through electric forces in their ionospheres and such an electric wind must be considered when studying the evolution and potential habitability of any planet in any star system.

  4. On the structure of the magnetotail current sheet

    International Nuclear Information System (INIS)

    Ashour-Abdalla, M.; Peroomian, V.; Richard, R.L.; Zelenyi, L.M.


    Results from modeling ion distribution functions in a two-dimensional reduction of the Tsyganenko magnetic field model have enabled the authors to calculate the full ion pressure tensor inside the model magnetotail. A thin current sheet is formed in the distant tail and the pressure tensor within this sheet has significant off-diagonal terms. These terms resulting from quasiadiabatic ion trajectories create azimuthally asymmetric distribution functions which are capable of maintaining stress-balance. Outside the current sheet the off-diagonal terms disappear and moderate anisotropy builds up with P perpendicular/P parallel ∼ 0.8. Closer to the Earth rapid isotropization of the distribution occurs

  5. Astronomers, Transits of Venus, and the Birth of Experimental Psychology (United States)

    Sheehan, William; Thurber, S.


    The eighteenth century transits of Venus were regarded as the most important astronomical events of their era. Halley's expectation was that by observing the contact points between the limbs of Venus and the Sun, this distance could be determined to an accuracy of one part in 500. But in the event, it proved otherwise. But, as the British historian Agnes Clerke wrote in 1902: "A transit of Venus seems, at first sight, full of promise for solving the problem of the sun's distance. For nothing would appear easier than to determine exactly either the duration of the passage of a small, dark orb across a large brilliant disc, or the instant of its entry upon or exit from it". But in that word `exactly' what snares and pitfalls lie hid!” In the post-mortem analysis of the disappointing results, astronomers devoted a great deal of effort to understand the sources of errors. They rehearsed their observational techniques by observing, under strictly controlled conditions, transits of artificial planets across artificial Suns, and studied such parameters as attention and reflex reaction. In the process, the transits of Venus provided an important impetus to the early development of experimental psychology.

  6. The 1761 discovery of Venus' atmosphere: Lomonosov and others (United States)

    Shiltsev, Vladimir


    Russian polymath Mikhail Vasil'evich Lomonosov claimed to have discovered the atmosphere of Venus during the planet's transit over the Sun's disc in 1761. Although several other astronomers observed similar effects during the 1761 and 1769 transits, Lomonosov's claim for priority is the strongest as he was the first to publish a comprehensive scientific report, and the first to offer a detailed explanation of the aureole around Venus at ingress and egress, which was caused by refraction of the sunlight through Venus' atmosphere. His observations, moreover, were successfully reconstructed experimentally using antique telescopes during the 2012 transit. In this paper we review details of Lomonosov's observations (which usually are poorly covered by commentators and often misunderstood); compare other reports of the eighteenth century transit observations, and summarize their findings in a comprehensive table; and address recent calls to reconsider Lomonosov's priority. After reviewing the available documentation we conclude that everything we learned before, during and after the twenty-first century transits only supports further the widely-accepted attribution of the discovery of Venus' atmosphere to Lomonosov.

  7. Investigating circular patterns in linear polarization observations of Venus

    NARCIS (Netherlands)

    Mahapatra, G.; Stam, D.M.; Rossi, L.C.G.; Rodenhuis, M.; Snik, Frans; Keller, C.U.


    In this work, we analyse linear polarization data of the planet at a distance, obtained with the Extreme Polarimeter (ExPo) on the William Herschel Telescope
    on La Palma. These spatially resolved, high-accuracy polarization observations of Venus show faint circular patterns centered on the

  8. Distribution of tessera terrain on Venus: Prediction for Magellan

    International Nuclear Information System (INIS)

    Bindschadler, D.L.; Head, J.W.; Kreslavsky, M.A.; Shkuratov, Yu.G.; Ivanov, M.A.; Basilevsky, A.T.


    Tessera terrain is the dominant tectonic unit in the northern hemisphere of Venus and is characterized by complex sets of intersecting structural trends and distinctive radar properties due to a high degree of meter and sub-meter scale (5 cm to 10 m) roughness. Based on these distinctive radar properties, a prediction of the global distribution of tessera can be made using Pioneer Venus (PV) reflectivity and roughness data. Where available, Venera 15/16 and Arecibo images and PV diffuse scattering data were used to evaluate the prediction. From this assessment, the authors conclude that most of the regions with prediction values greater than 0.6 (out of 1) are likely to be tessera, and are almost certain to be tectonically deformed. Lada Terra and Phoebe Regio are very likely to contain tessera terrain, while much of Aphrodite Terra is most likely to be either tessera or a landform which has not yet been recognized on Venus. This prediction map will assist in targeting Magellan investigations of Venus tectonics

  9. Geologic Map of the Helen Planitia Quadrangle (V-52), Venus (United States)

    Lopez, Ivan; Hansen, Vicki L.


    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Helen Planitia quadrangle (V-52), located in the southern hemisphere of Venus between lat 25 deg S. and 50 deg S. and between long 240 deg E. and 270 deg E., covers approximately 8,000,000 km2. Regionally, the map area is located at the southern limit of an area of enhanced tectonomagmatic activity and extensional deformation, marked by a triangle that has highland apexes at Beta, Atla, and Themis Regiones (BAT anomaly) and is connected by the large extensional belts of Devana, Hecate, and Parga Chasmata. The BAT anomaly covers approximately 20 percent of the Venusian surface.

  10. Plant Physiology: The Venus Flytrap Counts on Secretion. (United States)

    Brownlee, Colin


    The Venus flytrap effectively detects, traps, digests and absorbs insect prey. A recent study links the mechanical stimulation of sensory hair cells with short- and long-term signalling giving rise to different downstream secretion events that bring about conditions for prey digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Commissioning of the superconducting ECR ion source VENUS

    International Nuclear Information System (INIS)

    Leitner, Daniela; Abbott, Steve R.; Dwinell, Roger D.; Leitner, Matthaeus; Taylor, Clyde; Lyneis, Claude M.


    VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The magnetic confinement configuration consists of three superconducting axial coils and six superconducting radial coils in a sextupole configuration. The nominal design fields of the axial magnets are 4T at injection and 3T at extraction; the nominal radial design field strength at the plasma chamber wall is 2T, making VENUS the world most powerful ECR plasma confinement structure. The magnetic field strength has been designed for optimum operation at 28 GHz. The four-year VENUS project has recently achieved two major milestones: The first plasma was ignited in June, the first mass-analyzed high charge state ion beam was extracted in September of 2002. The pa per describes the ongoing commissioning. Initial results including first emittance measurements are presented

  12. Venus näitas lillekleite / Regina Hansen

    Index Scriptorium Estoniae

    Hansen, Regina


    Sunflower Beauty Contest esitles ööklubis Venus eluslilledest valmistatud kleite. Parimaks tunnistati kaupluse Annilill floristid tööga "My Bunny", teiseks tunnistati Katrin Pedaru ja Ninell Soosaare "C'est la vie", kolmanda koha pälvis Karina Saberi töö "Unistus"

  13. Glory on Venus and selection among the unknown UV absorbers (United States)

    Petrova, Elena V.


    The comparison of the phase profiles of glories observed on the cloud top of Venus by the Venus Monitoring Camera (Venus Express) and the light-scattering characteristics of sulfuric acid droplets, containing admixtures with a high refractive index, makes it easier to choose between some candidates for the so-called unknown UV absorber in the Venus clouds. Since among the candidates there are materials wetted and not wetted by sulfuric acid, we analyze whether small submicron particles adhered to or embedded into the 1-μm H2SO4 droplets may actually change the glory pattern normally produced by homogeneous spherical particles and what the conditions are, under which the composite particles formed in heterogeneous nucleation may still produce a glory feature. We have found that one of the most frequently considered candidates, sulfur, can hardly be responsible for the contrasts observed at 0.365 μm on the upper clouds, since it is not wetted by sulfuric acid and submicron sulfur particles, serving as condensation nuclei for sulfuric acid, can only adhere to the H2SO4 droplets rather than be enveloped by them. Such droplets decorated by sulfur blobs substantially distort the glory feature characteristic of the scattering by spherical particles or even smooth it at all, while a glory pattern is practically always seen in the images of Venus taken at small phase angles. At the same time, the grains of the other UV absorbers that can be embedded in H2SO4 droplets, e.g., the widely discussed ferric chloride, pose no problem in terms of interpretation of the observations of glory.

  14. Coupled Photochemical and Condensation Model for the Venus Atmosphere (United States)

    Bierson, Carver; Zhang, Xi; Mendonca, Joao; Liang, Mao-Chang


    Ground based and Venus Express observations have provided a wealth of information on the vertical and latitudinal distribution of many chemical species in the Venus atmosphere [1,2]. Previous 1D models have focused on the chemistry of either the lower [3] or middle atmosphere [4,5]. Photochemical models focusing on the sulfur gas chemistry have also been independent from models of the sulfuric acid haze and cloud formation [6,7]. In recent years sulfur-bearing particles have become important candidates for the observed SO2 inversion above 80 km [5]. To test this hypothesis it is import to create a self-consistent model that includes photochemistry, transport, and cloud condensation.In this work we extend the domain of the 1D chemistry model of Zhang et al. (2012) [5] to encompass the region between the surface to 110 km. This model includes a simple sulfuric acid condensation scheme with gravitational settling. It simultaneously solves for the chemistry and condensation allowing for self-consistent cloud formation. We compare the resulting chemical distributions to observations at all altitudes. We have also validated our model cloud mass against pioneer Venus observations [8]. This updated full atmosphere chemistry model is also being applied in our 2D solver (altitude and altitude). With this 2D model we can model how the latitudinal distribution of chemical species depends on the meridional circulation. This allows us to use the existing chemical observations to place constraints on Venus GCMs [9-11].References: [1] Arney et al., JGR:Planets, 2014 [2] Vandaele et al., Icarus 2017 (pt. 1 & 2) [3] Krasnopolsky, Icarus, 2007 [4] Krasnopolsky, Icarus, 2012 [5] Zhang et al., Icarus 2012 [6] Gao et al., Icarus, 2014 [7] Krasnopolsky, Icarus, 2015 [8] Knollenberg and Hunten, JGR:Space Physics, 1980 [9] Lee et al., JGR:Planets, 2007 [10] Lebonnois et al., Towards Understanding the Climate of Venus, 2013 [11] Mendoncca and Read, Planetary and Space Science, 2016

  15. Lithospheric flexure beneath the Freyja Montes Foredeep, Venus: Constraints on lithospheric thermal gradient and heat flow

    International Nuclear Information System (INIS)

    Solomon, S.C.; Head, J.W.


    Analysis of Venera 15 and 16 radar images and topographic data from the Freyja Montes region on Venus suggest that this mountain belt formed as a result of a sequence of underthrusts of the lithosphere of the North Polar Plains beneath the highlands of Ishtar Terra. The Freyja Montes deformation zone consists, south to north, of a linear orogenic belt, an adjacent plateau, a steep scarp separating the plateau from the North Polar Plains, a linear depression at the base of the scarp, and an outer rise. The topographic profile of the depression and outer rise are remarkably similar to that of a foreland deep and rise formed by the flexure of the underthrusting plate beneath a terrestrial mountain range. The authors test the lithospheric flexure hypothesis and they estimate the effective thickness T e of the elastic lithosphere of the underthrusting portion of the North Polar Plains by fitting individual topographic profiles to deflection curves for a broken elastic plate. The theoretical curves fit the observed topographic profiles to within measurement error for values of flexural rigidity D in the range (0.8-3) x 10 22 N m, equivalent to T e in the range 11-18 km. Under the assumption that the base of the mechanical lithosphere is limited by the creep strength of olivine, the mean lithospheric thermal gradient is 14-23 K/km. That the inferred thermal gradient is similar to the value expected for the global mean gradient on the basis of scaling from Earth provides support for the hypothesis that simple conduction dominates lithospheric heat transport on Venus relative to lithospheric recycling and volcanism

  16. Magnetic configurations of the tilted current sheets in magnetotail

    Directory of Open Access Journals (Sweden)

    C. Shen


    Full Text Available In this research, the geometrical structures of tilted current sheet and tail flapping waves have been analysed based on multiple spacecraft measurements and some features of the tilted current sheets have been made clear for the first time. The geometrical features of the tilted current sheet revealed in this investigation are as follows: (1 The magnetic field lines (MFLs in the tilted current sheet are generally plane curves and the osculating planes in which the MFLs lie are about vertical to the equatorial plane, while the normal of the tilted current sheet leans severely to the dawn or dusk side. (2 The tilted current sheet may become very thin, the half thickness of its neutral sheet is generally much less than the minimum radius of the curvature of the MFLs. (3 In the neutral sheet, the field-aligned current density becomes very large and has a maximum value at the center of the current sheet. (4 In some cases, the current density is a bifurcated one, and the two humps of the current density often superpose two peaks in the gradient of magnetic strength, indicating that the magnetic gradient drift current is possibly responsible for the formation of the two humps of the current density in some tilted current sheets. Tilted current sheets often appear along with tail current sheet flapping waves. It is found that, in the tail flapping current sheets, the minimum curvature radius of the MFLs in the current sheet is rather large with values around 1 RE, while the neutral sheet may be very thin, with its half thickness being several tenths of RE. During the flapping waves, the current sheet is tilted substantially, and the maximum tilt angle is generally larger than 45°. The phase velocities of these flapping waves are several tens km/s, while their periods and wavelengths are several tens of minutes, and several earth radii, respectively. These tail flapping events generally last several hours and occur during quiet periods or periods of

  17. Magnetic Storms at Mars and Earth

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Falkenberg, Thea Vilstrup

    In analogy with magnetic storms at the Earth, periods of significantly enhanced global magnetic activity also exist at Mars. The extensive database of magnetic measurements from Mars Global Surveyor (MGS), covering almost an entire solar cycle, is used in combination with geomagnetic activity...... indices at Earth to compare the occurrence of magnetic storms at Mars and Earth. Based on superposed epochs analysis the time-development of typical magnetic storms at Mars and Earth is described. In contradiction to storms at Earth, most magnetic storms at Mars are found to be associated...... with heliospheric current sheet crossings, where the IMF changes polarity. While most storms at the Earth occur due to significant southward excursions of the IMF associated with CMEs, at Mars most storms seem to be associated with the density enhancement of the heliospheric current sheet. Density enhancements...

  18. Global ice sheet/RSL simulations using the higher-order Ice Sheet System Model. (United States)

    Larour, E. Y.; Ivins, E. R.; Adhikari, S.; Schlegel, N.; Seroussi, H. L.; Morlighem, M.


    Relative sea-level rise is driven by processes that are intimately linked to the evolution ofglacial areas and ice sheets in particular. So far, most Earth System models capable of projecting theevolution of RSL on decadal to centennial time scales have relied on offline interactions between RSL andice sheets. In particular, grounding line and calving front dynamics have not been modeled in a way that istightly coupled with Elasto-Static Adjustment (ESA) and/or Glacial-Isostatic Adjustment (GIA). Here, we presenta new simulation of the entire Earth System in which both Greenland and Antarctica ice sheets are tightly coupledto an RSL model that includes both ESA and GIA at resolutions and time scales compatible with processes suchas grounding line dynamics for Antarctica ice shelves and calving front dynamics for Greenland marine-terminatingglaciers. The simulations rely on the Ice Sheet System Model (ISSM) and show the impact of higher-orderice flow dynamics and coupling feedbacks between ice flow and RSL. We quantify the exact impact of ESA andGIA inclusion on grounding line evolution for large ice shelves such as the Ronne and Ross ice shelves, as well asthe Agasea Embayment ice streams, and demonstate how offline vs online RSL simulations diverge in the long run,and the consequences for predictions of sea-level rise.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory undera contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  19. Electron energization in the geomagnetic tail current sheet

    International Nuclear Information System (INIS)

    Lyons, L.R.


    Electron motion in the distant tail current sheet is evaluated and found to violate the guiding center approximation at energies > or approx. =100 eV. Most electrons within the energy range approx.10 -1 -10 2 keV that enter the current sheet become trapped within the magnetic field reversal region. These electrons then convect earthward and gain energy from the cross-tail electric field. If the energy spectrum of electrons entering the current sheet is similar to that of electrons from the boundary layer surrounding the magnetotail, the energy gain from the electric field produces electron energy spectra comparable to those observed in the earth's plasma sheet. Thus current sheet interactions can be a significant source of particles and energy for plasma sheet electrons as well as for plasma sheet ions. A small fraction of electrons within the current sheet has its pitch angles scattered so as to be ejected from the current sheet within the atmospheric loss cone. These electrons can account for the electron precipitation near the high-latitude boundary of energetic electrons, which is approximately isotropic in pitch angle up to at least several hundred keV. Current sheet interaction should cause approximately isotropic auroral precipitation up to several hundred keV energies, which extends to significantly lower latitudes for ions than for electrons in agreement with low-altitude satellite observations. Electron precipitation associated with diffuse aurora generally has a transition at 1-10 keV to anisotropic pitch angle distributions. Such electron precipitation cannot be explained by current sheet interactions, but it can be explained by pitch angle diffusion driven by plasma turbulence

  20. Disintegration of liquid sheets (United States)

    Mansour, Adel; Chigier, Norman


    The development, stability, and disintegration of liquid sheets issuing from a two-dimensional air-assisted nozzle is studied. Detailed measurements of mean drop size and velocity are made using a phase Doppler particle analyzer. Without air flow the liquid sheet converges toward the axis as a result of surface tension forces. With airflow a quasi-two-dimensional expanding spray is formed. The air flow causes small variations in sheet thickness to develop into major disturbances with the result that disruption starts before the formation of the main break-up region. In the two-dimensional variable geometry air-blast atomizer, it is shown that the air flow is responsible for the formation of large, ordered, and small chaotic 'cell' structures.

  1. Safety advice sheets

    CERN Multimedia

    HSE Unit


    You never know when you might be faced with questions such as: when/how should I dispose of a gas canister? Where can I find an inspection report? How should I handle/store/dispose of a chemical substance…?   The SI section of the DGS/SEE Group is primarily responsible for safety inspections, evaluating the safety conditions of equipment items, premises and facilities. On top of this core task, it also regularly issues “Safety Advice Sheets” on various topics, designed to be of assistance to users but also to recall and reinforce safety rules and procedures. These clear and concise sheets, complete with illustrations, are easy to display in the appropriate areas. The following safety advice sheets have been issued so far: Other sheets will be published shortly. Suggestions are welcome and should be sent to the SI section of the DGS/SEE Group. Please send enquiries to

  2. The storm time central plasma sheet

    Directory of Open Access Journals (Sweden)

    R. Schödel


    Full Text Available The plasma sheet plays a key role during magnetic storms because it is the bottleneck through which large amounts of magnetic flux that have been eroded from the dayside magnetopause have to be returned to the dayside magnetosphere. Using about five years of Geotail data we studied the average properties of the near- and midtail central plasma sheet (CPS in the 10–30 RE range during magnetic storms. The earthward flux transport rate is greatly enhanced during the storm main phase, but shows a significant earthward decrease. Hence, since the magnetic flux cannot be circulated at a sufficient rate, this leads to an average dipolarization of the central plasma sheet. An increase of the specific entropy of the CPS ion population by a factor of about two during the storm main phase provides evidence for nonadiabatic heating processes. The direction of flux transport during the main phase is consistent with the possible formation of a near-Earth neutral line beyond ~20 RE.Key words. Magnetospheric physics (plasma convection; plasma sheet; storms and substorms

  3. MHD Ballooning Instability in the Plasma Sheet

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Zaharia, S.


    Based on the ideal-MHD model the stability of ballooning modes is investigated by employing realistic 3D magnetospheric equilibria, in particular for the substorm growth phase. Previous MHD ballooning stability calculations making use of approximations on the plasma compressibility can give rise to erroneous conclusions. Our results show that without making approximations on the plasma compressibility the MHD ballooning modes are unstable for the entire plasma sheet where beta (sub)eq is greater than or equal to 1, and the most unstable modes are located in the strong cross-tail current sheet region in the near-Earth plasma sheet, which maps to the initial brightening location of the breakup arc in the ionosphere. However, the MHD beq threshold is too low in comparison with observations by AMPTE/CCE at X = -(8 - 9)R(sub)E, which show that a low-frequency instability is excited only when beq increases over 50. The difficulty is mitigated by considering the kinetic effects of ion gyrorad ii and trapped electron dynamics, which can greatly increase the stabilizing effects of field line tension and thus enhance the beta(sub)eq threshold [Cheng and Lui, 1998]. The consequence is to reduce the equatorial region of the unstable ballooning modes to the strong cross-tail current sheet region where the free energy associated with the plasma pressure gradient and magnetic field curvature is maximum

  4. Ice Sheets & Ice Cores

    DEFF Research Database (Denmark)

    Mikkelsen, Troels Bøgeholm

    Since the discovery of the Ice Ages it has been evident that Earth’s climate is liable to undergo dramatic changes. The previous climatic period known as the Last Glacial saw large oscillations in the extent of ice sheets covering the Northern hemisphere. Understanding these oscillations known....... The first part concerns time series analysis of ice core data obtained from the Greenland Ice Sheet. We analyze parts of the time series where DO-events occur using the so-called transfer operator and compare the results with time series from a simple model capable of switching by either undergoing...

  5. Energy information sheets

    Energy Technology Data Exchange (ETDEWEB)


    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the general public. Written for the general public, the EIA publication Energy Information Sheets was developed to provide information on various aspects of fuel production, prices, consumption and capability. The information contained herein pertains to energy data as of December 1991. Additional information on related subject matter can be found in other EIA publications as referenced at the end of each sheet.

  6. Using REE tracers to measure sheet erosion changing to rill erosion

    International Nuclear Information System (INIS)

    Liu Puling; Xue Yazhou; Song Wei; Wang Mingyi; Ju Tongjun


    Rare Earth Elements (REE) tracer method was used to study sheet erosion changing to rill erosion on slope land. By placing different rare earth elements of different soil depth across a slope in an indoor plot, two simulated rainfalls were applied to study the change of erosion type and the rill erosion process. The results indicate that the main erosion type is sheet erosion at the beginning of the rainfalls, and serious erosion happens after rill erosion appears. Accumulated sheet and rill erosion amounts increase with the rainfalls time. The percentage of sheet erosion amount decreases and rill erosion percentage increases with time. At the end of the rainfalls, the total rill erosion amounts are 4-5 times more than sheet erosion. In this paper, a new REE tracer method was used to quantitatively distinguish sheet and rill erosion amounts. The new REE tracer method should be useful to future studying of erosion processes on slope lands. (authors)

  7. Present status of the Japanese Venus climate orbiter (United States)

    Nakamura, M.; Imamura, T.; Abe, T.; Ishii, N.

    The code name of 24th science spacecraft of ISAS/JAXA is Planet-C. It is the first Venus Climate Orbiter (VCO) of Japan. The ministry of finance of Japan finally agreed to start phase B study of VCO from this April, 2004. We plan 1-2 years phase B study followed by 2 years of flight model integration. The spacecraft will be launched between 2009 and 2010. After arriving Venus, 2 years of operation is expected. VCO will complemet the ESA's Venus Express mission which have several spectrometers and will reveal the composition of the Venusian atmosphere. On the other hand, VCO is designed to reveal the details of the atmospheric motion on Venus and approach the dynamics of the Venusian climate. Cooperation between Japanese VCO and ESA's Venus Express, in the colaboration framework of U.S., Europian, and Japanese scienctist is very important. To elucidate the driving mechanism of the 4-days super-rotation is one of our main targets. We have 4 cameras to take snap shots of the planets in different wave lengths. They are the IR1 camera (1 micron-meter), the IR2 camera (2.4 micron-meter), the LIR camera (10-12 micron-meter), and the UVI camera (340nm). They are attached to the side panel of the 3-axis stabilized spacecraft, and are directed to Venus with the spacecraft's attitude control. Snap shots are expected to be taken every 2 hours. The spacecraft has an orbit of 300km x 13Rv (Venusian radii) with 172 degrees inclination. Orbital period is 30 hours. The angular position of the spacecraft on this orbit is synchronized for 20 hours at its apoapsis with the global atmospheric circulation at the altitude of 50km, thus the snap shots of every 2 hours will be the images of the same side of the atmosphere. In addition to these 4 cameras, we have a Lightning and Airglow camera (LAC) in visible range. This will be operated when the orbiter is close to the planet.

  8. Neutral sheet crossings in the distant magnetotail

    International Nuclear Information System (INIS)

    Heikkila, W.J.; Slavin, J.A.; Smith, E.J.; Baker, D.N.; Zwickl, R.D.


    We have analyzed the magnetic field data from ISEE-3 in the distant magnetotail for 18 crossings of the cross-tail current sheet (or so-called natural sheet) to determine the direction of the normal component B/sub z/. The crossings occurred near the middle of the aberrated magnetotail (0 0.4 nT), consistent with closed field lines connected to the earth. In 3 cases B/sub z/ was very close to zero; in several instances there was structure in B/sub y/, suggesting localized currents with x or z directions. One may have been a magnetopause crossing. The strong preponderance of northward B/sub z/ favors a model of the magnetotail which is dominated by boundary layer plasma, flowing tailward on closed magnetic field lines, which requires the existence of an electric field in the sense from dusk to dawn. 37 refs., 15 figs., 1 tab

  9. Effects of electron pressure anisotropy on current sheet configuration

    Energy Technology Data Exchange (ETDEWEB)

    Artemyev, A. V., E-mail:; Angelopoulos, V.; Runov, A. [Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90095 (United States); Vasko, I. Y. [Space Research Institute, RAS, Moscow (Russian Federation)


    Recent spacecraft observations in the Earth's magnetosphere have demonstrated that the magnetotail current sheet can be supported by currents of anisotropic electron population. Strong electron currents are responsible for the formation of very thin (intense) current sheets playing the crucial role in stability of the Earth's magnetotail. We explore the properties of such thin current sheets with hot isotropic ions and cold anisotropic electrons. Decoupling of the motions of ions and electrons results in the generation of a polarization electric field. The distribution of the corresponding scalar potential is derived from the electron pressure balance and the quasi-neutrality condition. We find that electron pressure anisotropy is partially balanced by a field-aligned component of this polarization electric field. We propose a 2D model that describes a thin current sheet supported by currents of anisotropic electrons embedded in an ion-dominated current sheet. Current density profiles in our model agree well with THEMIS observations in the Earth's magnetotail.

  10. VENUS+δf - A bootstrap current calculation module for 3D configurations

    International Nuclear Information System (INIS)

    Isaev, M.Yu.; Brunner, S.; Cooper, W.A.; Tran, T.M.; Bergmann, A.; Beidler, C.D.; Geiger, J.; Maassberg, H.; Nuehrenberg, J.; Schmidt, M.


    We present a new 3D code VENUS+δf for neoclassical transport calculations in nonaxisymmetric toroidal systems. Numerical drift orbits from the original VENUS code and the δf method for tokamak transport calculations are combined. The first results obtained with VENUS+δf are compared with neoclassical theory for different collisional regimes in a JT-60 tokamak test case with monoenergetic particles and with a Maxwellian distribution. Benchmarks with DKES code results for the bootstrap current in the W7X configuration as well as further VENUS+δf developments are discussed. (author)

  11. Collisionless current sheet equilibria (United States)

    Neukirch, T.; Wilson, F.; Allanson, O.


    Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.

  12. Cholera Fact Sheet (United States)

    ... news-room/fact-sheets/detail/cholera","@context":"","@type":"Article"}; العربية 中文 français русский español ... that includes feedback at the local level and information-sharing at the global level. Cholera cases are ...

  13. Pseudomonas - Fact Sheet


    Public Health Agency


    Fact sheet on Pseudomonas, including:What is Pseudomonas?What infections does it cause?Who is susceptible to pseudomonas infection?How will I know if I have pseudomonas infection?How can Pseudomonas be prevented from spreading?How can I protect myself from Pseudomonas?How is Pseudomonas infection treated?

  14. NTPR Fact Sheets (United States)

    History Documents US Underground Nuclear Test History Reports NTPR Radiation Exposure Reports Enewetak Atoll Cleanup Documents TRAC About Who We Are Our Values History Locations Our Leadership Director Support Center Contact Us FAQ Sheet Links Success Stories Contracts Business Opportunities Current

  15. Production (information sheets)

    NARCIS (Netherlands)


    Documentation sheets: Geo energy 2 Integrated System Approach Petroleum Production (ISAPP) The value of smartness 4 Reservoir permeability estimation from production data 6 Coupled modeling for reservoir application 8 Toward an integrated near-wellbore model 10 TNO conceptual framework for "E&P

  16. Hibernia fact sheet

    International Nuclear Information System (INIS)



    This fact sheet gives details of the Hibernia oil field including its location, discovery date, oil company's interests in the project, the recoverable reserves of the two reservoirs, the production system used, capital costs of the project, and overall targets for Canadian benefit. Significant dates for the Hibernia project are listed. (UK)

  17. Ethanol Basics (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)


    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  18. Mantle differentiation and thermal evolution of Mars, Mercury, and Venus

    International Nuclear Information System (INIS)

    Spohn, T.


    In the present models for the thermal evolution of Mercury, Venus, and Mars encompass core and mantle chemical differentiation, lithospheric growth, and volcanic heat-transfer processes. Calculation results indicate that crust and lithosphere thicknesses are primarily dependent on planet size as well as the bulk concentration of planetary radiogenic elements and the lithosphere's thermal conductivity. The evidence for Martian volcanism for at least 3.5 Gyr, and in Mercury for up to 1 Gyr, in conjunction with the presence of a magnetic field on Mercury and its absence on Mars, suggest the dominance of a lithospheric conduction heat-transfer mechanism in these planets for most of their thermal history; by contrast, volcanic heat piping may have been an important heat-transfer mechanism on Venus. 50 refs

  19. Venus spherical harmonic gravity model to degree and order 60 (United States)

    Konopliv, Alex S.; Sjogren, William L.


    The Magellan and Pioneer Venus Orbiter radiometric tracking data sets have been combined to produce a 60th degree and order spherical harmonic gravity field. The Magellan data include the high-precision X-band gravity tracking from September 1992 to May 1993 and post-aerobraking data up to January 5, 1994. Gravity models are presented from the application of Kaula's power rule for Venus and an alternative a priori method using surface accelerations. Results are given as vertical gravity acceleration at the reference surface, geoid, vertical Bouguer, and vertical isostatic maps with errors for the vertical gravity and geoid maps included. Correlation of the gravity with topography for the different models is also discussed.

  20. Nuclear Electric Propulsion Application: RASC Mission Robotic Exploration of Venus (United States)

    McGuire, Melissa L.; Borowski, Stanley K.; Packard, Thomas W.


    The following paper documents the mission and systems analysis portion of a study in which Nuclear Electric Propulsion (NEP) is used as the in-space transportation system to send a series of robotic rovers and atmospheric science airplanes to Venus in the 2020 to 2030 timeframe. As part of the NASA RASC (Revolutionary Aerospace Systems Concepts) program, this mission analysis is meant to identify future technologies and their application to far reaching NASA missions. The NEP systems and mission analysis is based largely on current technology state of the art assumptions. This study looks specifically at the performance of the NEP transfer stage when sending a series of different payload package point design options to Venus orbit.

  1. Pioneer Venus Star Sensor. [active despin control application (United States)

    Gutshall, R. L.; Thomas, G.


    The design predictions and orbital performance verification of the solid state star scanner used in the Onboard Attitude Control of the Pioneer Venus Orbiter and Multiprobe are presented. The star sensor extended the scanner use to active despin control, and it differs from previous sensors in solid state detection, redundant electronics for reliability, larger field of view, and large dynamic spin range. The star scanner hardware and design performance based on the ability to predict all noise sources, signal magnitudes, and expected detection probability are discussed. In-flight data collected to verify sensor ground calibration are tabulated and plotted in predicted accuracy curves. It is concluded that the Pioneer Venus Star Sensor has demonstrated predictable star calibration in the range of .1 magnitude uncertainties and usable star catalogs of 100 stars with very high probabilities of detection, which were much better than expected and well within the mission requirements.

  2. Oxides of nitrogen and the clouds of Venus

    International Nuclear Information System (INIS)

    Watson, A.J.; Donahue, T.M.; Stedman, D.H.; Knollenberg, R.G.; Ragent, B.; Blamont, J.


    Nitric Oxide may be produced in the atmosphere of Venus by lightning storms in the clouds. Here we suggest that the odd nitrogen thus formed may play an important part in the chemistry of the clouds. Specifically, we estimate production rates for NO 2 in the limiting case of high NO concentrations. If the NO density is high we suggest that NO 2 may catalyse the production of sulfuric acid aerosol from sulfur dioxide and water vapor, and may also form nitrogen--sulfur compounds such as nitrosyl sulfuric acid, NOHSO 4 . The ''large particles'' seen by the Pioneer Venus sounder probe may contain considerable quantities of NOHSO 4 . If this is the case odd nitrogen must be present in the atmosphere in at least a parts-per-million mixing ratio

  3. Preliminary radar systems analysis for Venus orbiter missions (United States)

    Brandenburg, R. K.; Spadoni, D. J.


    A short, preliminary analysis is presented of the problems involved in mapping the surface of Venus with radar from an orbiting spacecraft. Two types of radar, the noncoherent sidelooking and the focused synthetic aperture systems, are sized to fulfill two assumed levels of Venus exploration. The two exploration levels, regional and local, assumed for this study are based on previous Astro Sciences work (Klopp 1969). The regional level is defined as 1 to 3 kilometer spatial and 0.5 to 1 km vertical resolution of 100 percent 0 of the planet's surface. The local level is defined as 100 to 200 meter spatial and 50-10 m vertical resolution of about 100 percent of the surfAce (based on the regional survey). A 10cm operating frequency was chosen for both radar systems in order to minimize the antenna size and maximize the apparent radar cross section of the surface.

  4. Emplacement of Antarctic ice sheet mass affects circumpolar ocean flow

    NARCIS (Netherlands)

    Rugenstein, Maria; Stocchi, Paolo; von der Heydt, Anna; Dijkstra, Hendrik; Brinkhuis, Henk


    During the Cenozoic the Antarctic continent experienced large fluctuations in ice-sheet volume. We investigate the effects of Glacial Isostatic Adjustment (GIA) on Southern Ocean circulation for the first continental scale glaciation of Antarctica (~34 Myr) by combining solid Earth and ocean dynamic

  5. A reconciled estimate of ice-sheet mass balance

    DEFF Research Database (Denmark)

    Shepherd, Andrew; Ivins, Erik R; A, Geruo


    We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agre...

  6. Emplacement of Antarctic ice sheet mass affects circumpolar ocean flow

    NARCIS (Netherlands)

    Rugenstein, M.; Stocchi, P.; van der Heydt, A.; Brinkhuis, H.


    During the Cenozoic the Antarctic continent experienced large fluctuations in ice-sheet volume. We investigate the effects of Glacial Isostatic Adjustment (GIA) on Southern Ocean circulation for the first continental scale glaciation of Antarctica (~ 34 Myr) by combining solid Earth and ocean

  7. The role of ice sheets in the pleistocene climate

    NARCIS (Netherlands)

    Oerlemans, J.


    Northern hemisphere ice sheets have played an important role in the climatic evolution of the Pleistocene. The characteristic time-scale of icesheet growth has the same order-of-magnitude as that for the orbital insolation variations. The interaction with the solid earth, the importance of the

  8. Parabolic features and the erosion rate on Venus (United States)

    Strom, Robert G.


    The impact cratering record on Venus consists of 919 craters covering 98 percent of the surface. These craters are remarkably well preserved, and most show pristine structures including fresh ejecta blankets. Only 35 craters (3.8 percent) have had their ejecta blankets embayed by lava and most of these occur in the Atla-Beta Regio region; an area thought to be recently active. parabolic features are associated with 66 of the 919 craters. These craters range in size from 6 to 105 km diameter. The parabolic features are thought to be the result of the deposition of fine-grained ejecta by winds in the dense venusian atmosphere. The deposits cover about 9 percent of the surface and none appear to be embayed by younger volcanic materials. However, there appears to be a paucity of these deposits in the Atla-Beta Regio region, and this may be due to the more recent volcanism in this area of Venus. Since parabolic features are probably fine-grain, wind-deposited ejecta, then all impact craters on Venus probably had these deposits at some time in the past. The older deposits have probably been either eroded or buried by eolian processes. Therefore, the present population of these features is probably associated with the most recent impact craters on the planet. Furthermore, the size/frequency distribution of craters with parabolic features is virtually identical to that of the total crater population. This suggests that there has been little loss of small parabolic features compared to large ones, otherwise there should be a significant and systematic paucity of craters with parabolic features with decreasing size compared to the total crater population. Whatever is erasing the parabolic features apparently does so uniformly regardless of the areal extent of the deposit. The lifetime of parabolic features and the eolian erosion rate on Venus can be estimated from the average age of the surface and the present population of parabolic features.

  9. Geological map of the Kaiwan Fluctus Quadrangle (V-44), Venus (United States)

    Bridges, Nathan T.; McGill, George E.


    Introduction The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphereon October 12, 1994. Magellan had the objectives of: (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis of Venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three datasets: synthetic aperture radar (SAR) images of the surface, passive microwave thermal emission observations, and measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging and altimetric and radiometric mapping of the Venusian surface were done in mission cycles 1, 2, and 3, from September 1990 until September of 1992. Ninety-eight percent of the surface was mapped with radar resolution of approximately 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution; these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied from about 20? to 45?. High-resolution Doppler tracking of the spacecraft was done from September 1992 through October 1994 (mission cycles 4, 5, 6). High-resolution gravity observations from about 950 orbits were obtained between September 1992 and May 1993, while Magellan was in an elliptical orbit with a periapsis near 175 kilometers and an apoapsis near 8,000 kilometers. Observations from an additional 1,500 orbits were obtained following orbit-circularization in mid-1993. These data exist as a 75? by 75? harmonic field.

  10. Geologic Map of the Mylitta Fluctus Quadrangle (V-61), Venus (United States)

    Ivanov, Mikhail A.; Head, James W.


    INTRODUCTION The Magellan Mission The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included: (1) improving knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology, and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three data sets: (1) synthetic aperture radar (SAR) images of the surface, (2) passive microwave thermal emission observations, and (3) measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging, altimetric, and radiometric mapping of the Venusian surface was done in mission cycles 1, 2, and 3 from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar resolution on the order of 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution, and these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal-receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied between about 20? and 45?. High resolution Doppler tracking of the spacecraft took place from September 1992 through October 1994 (mission cycles 4, 5, 6). Approximately 950 orbits of high-resolution gravity observations were obtained between September 1992 and May 1993 while Magellan was in an elliptical orbit with a periapsis near 175 km and an apoapsis near 8,000 km. An additional 1,500 orbits were obtained following orbit-circularization in mid-1993. These data exist as a 75? by 75? harmonic field.

  11. Geologic map of the Pandrosos Dorsa Quadrangle (V-5), Venus (United States)

    Rosenberg, Elizabeth; McGill, George E.


    Introduction The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan had the objectives of (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis of Venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three datasets: synthetic aperture radar (SAR) images of the surface, passive microwave thermal emission observations, and measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging and altimetric and radiometric mapping of the Venusian surface were done in mission cycles 1, 2, and 3, from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar resolution of approximately 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution; these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal-receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied from about 20? to 45?. High-resolution Doppler tracking of the spacecraft was done from September 1992 through October 1994 (mission cycles 4, 5, 6). High-resolution gravity observations from about 950 orbits were obtained between September 1992 and May 1993, while Magellan was in an elliptical orbit with a periapsis near 175 kilometers and an apoapsis near 8,000 kilometers. Observations from an additional 1,500 orbits were obtained following orbitcircularization in mid-1993. These data exist as a 75? by 75? harmonic field.

  12. Constraints on a potential aerial biosphere on Venus: I. Cosmic rays (United States)

    Dartnell, Lewis R.; Nordheim, Tom Andre; Patel, Manish R.; Mason, Jonathon P.; Coates, Andrew J.; Jones, Geraint H.


    While the present-day surface of Venus is certainly incompatible with terrestrial biology, the planet may have possessed oceans in the past and provided conditions suitable for the origin of life. Venusian life may persist today high in the atmosphere where the temperature and pH regime is tolerable to terrestrial extremophile microbes: an aerial habitable zone. Here we argue that on the basis of the combined biological hazard of high temperature and high acidity this habitable zone lies between 51 km (65 °C) and 62 km (-20 °C) altitude. Compared to Earth, this potential venusian biosphere may be exposed to substantially more comic ionising radiation: Venus has no protective magnetic field, orbits closer to the Sun, and the entire habitable region lies high in the atmosphere - if this narrow band is sterilised there is no reservoir of deeper life that can recolonise afterwards. Here we model the propagation of particle radiation through the venusian atmosphere, considering both the background flux of high-energy galactic cosmic rays and the transient but exceptionally high-fluence bursts of extreme solar particle events (SPE), such as the Carrington Event of 1859 and that inferred for AD 775. We calculate the altitude profiles of both energy deposition into the atmosphere and the absorbed radiation dose to assess this astrophysical threat to the potential high-altitude venusian biosphere. We find that at the top of the habitable zone (62 km altitude; 190 g/cm2 shielding depth) the radiation dose from the modelled Carrington Event with a hard spectrum (matched to the February 1956 SPE) is over 18,000 times higher than the background from GCR, and 50,000 times higher for the modelled 775 AD event. However, even though the flux of ionising radiation can be sterilizing high in the atmosphere, the total dose delivered at the top of the habitable zone by a worst-case SPE like the 775 AD event is 0.09 Gy, which is not likely to present a significant survival challenge

  13. The relative influence of H2O and CO2 on the primitive surface conditions of Venus (United States)

    Salvador, A.; Massol, H.; Davaille, A.; Marcq, E.; Sarda, P.; Chassefiere, E.


    How the volatile content influences the primordial surface conditions of terrestrial planets and, thus, their future geodynamic evolution is an important question to answer. We simulate the secular convective cooling of a 1-D magma ocean (MO) in interaction with its outgassed atmosphere. A first rapid cooling stage, where efficient MO cooling and degassing take place, producing the atmosphere, is followed by a second quasi steady state where the heat flux balance is dominated by the solar flux. The end ofthe rapid cooling stage (ERCS) is reached when the mantle heat flux becomes negligible compared tothe absorbed solar flux. Varying the initial CO2 and H2O contents and the solar distance, we showed that the resulting surface conditions at ERCS strongly depend on these parameters and that water ocean's formation obeys simple scaling laws.Although today's Venus is located beyond the inner edge of the habitable zone due to its high albedo, its high CO2/H2O ratio prevents any water ocean formation.We already showed that depending on the formation time of its cloudcover and resulting albedo, only 0.3 Earth ocean mass might be sufficient to form a water ocean onearly Venus. Here we investigate more precisely these results by taking into account the effect of shortwave radiation on the radiative budget by computing the feedbacks between atmospheric composition and incident stellar flux instead of using a prescribed albedo value.

  14. Rubella - Fact Sheet for Parents (United States)

    ... and 4 through 6 years Fact Sheet for Parents Color [2 pages] Español: Rubéola The best way ... according to the recommended schedule. Fact Sheets for Parents Diseases and the Vaccines that Prevent Them Chickenpox ...

  15. Correlations between Venus nightside near infrared emissions measured by VIRTIS/Venus Express and Magellan radar data (United States)

    Mueller, N.; Helbert, J.; Hashimoto, G. L.; Tsang, C. C. C.; Erard, S.; Piccioni, G.; Drossart, P.


    Background The Venus Express Spacecraft images the nightside thermal emissions using the VIRTIS imaging spectrometer. At 1.02 micron thermal emission from the surface is penetrates the atmosphere but the signal is attenuated by scattering and absorption [1, 2]. Although the measured flux at top of the atmosphere is nonlinearly related to the original emission of the surface, it is still positively correlated with the product of surface temperature and surface emissivity [3]. The surface temperature of Venus is relatively well constrained as a monotonous function of altitude. Emissivity at 1 micron depends strongly on surface composition, in particular abundance of mafic minerals [3]. Mapping the thermal emission of the surface of Venus therefore supplements radar data as it allows to infer relative variation of surface composition. Data Processing This study examines the correlation of VIRTIS images showing a signal of the surface with all known parameters that govern radiance and applies semi empirical relations to remove the respective influences. 1. Stray sunlight is removed by subtraction of a spectrum template scaled to fit radiance at 1.4 ¹m [2] 2. Limb darkening is accounted for using a linear phase function consistent with results of radiative transfer modeling [4]. 3. Cloud opacity is determined from 1.31 ¹m and applied to 1.02 ¹m while accounting for multiple reflections between lower atmosphere and clouds [3]. Result is brightness temperature of thermal emission below the cloud deck but above the lowest 20 km of the atmosphere. 4. Influence of surface temperature and lower atmosphere absorption is determined by correlation of VIRTIS declouded brightness temperature and Magellan Topography data [5]. To further reduce the influence of cloud contrast and increase the signal of the surface, all suitable VIRTIS observations are map projected and stacked to create a map of the southern hemisphere of Venus. Observations and Interpretation As expected from

  16. Clouds enhance Greenland ice sheet mass loss (United States)

    Van Tricht, Kristof; Gorodetskaya, Irina V.; L'Ecuyer, Tristan; Lenaerts, Jan T. M.; Lhermitte, Stef; Noel, Brice; Turner, David D.; van den Broeke, Michiel R.; van Lipzig, Nicole P. M.


    Clouds have a profound influence on both the Arctic and global climate, while they still represent one of the key uncertainties in climate models, limiting the fidelity of future climate projections. The potentially important role of thin liquid-containing clouds over Greenland in enhancing ice sheet melt has recently gained interest, yet current research is spatially and temporally limited, focusing on particular events, and their large scale impact on the surface mass balance remains unknown. We used a combination of satellite remote sensing (CloudSat - CALIPSO), ground-based observations and climate model (RACMO) data to show that liquid-containing clouds warm the Greenland ice sheet 94% of the time. High surface reflectivity (albedo) for shortwave radiation reduces the cloud shortwave cooling effect on the absorbed fluxes, while not influencing the absorption of longwave radiation. Cloud warming over the ice sheet therefore dominates year-round. Only when albedo values drop below ~0.6 in the coastal areas during summer, the cooling effect starts to overcome the warming effect. The year-round excess of energy due to the presence of liquid-containing clouds has an extensive influence on the mass balance of the ice sheet. Simulations using the SNOWPACK snow model showed not only a strong influence of these liquid-containing clouds on melt increase, but also on the increased sublimation mass loss. Simulations with the Community Earth System Climate Model for the end of the 21st century (2080-2099) show that Greenland clouds contain more liquid water path and less ice water path. This implies that cloud radiative forcing will be further enhanced in the future. Our results therefore urge the need for improving cloud microphysics in climate models, to improve future projections of ice sheet mass balance and global sea level rise.

  17. Nonlinear dynamics of thin current sheets

    International Nuclear Information System (INIS)

    Daughton, William


    Observations indicate that the current sheet in the Earth's geomagnetic tail may compress to a thickness comparable to an ion gyro-radius prior to substorm onset. In recent years, there has been considerable controversy regarding the kinetic stability of these thin structures. In particular, the growth rate of the kink instability and its relevance to magnetotail dynamics is still being debated. In this work, a series of fully kinetic particle-in-cell simulations are performed for a thin Harris sheet. The ion to electron mass ratio is varied between m i /m e =4→400 and careful comparisons are made with a formally exact approach to the linear Vlasov theory. At low mass ratio m i /m e <64, the simulations are in excellent agreement with the linear theory, but at high mass ratio the kink instability is observed to grow more rapidly in the kinetic simulations than predicted by theory. The resolution to this apparent discrepancy involves the lower hybrid instability which is active on the edge of the sheet and rapidly produces nonlinear modifications to the initial equilibrium. The nature of this nonlinear deformation is characterized and a simple model is proposed to explain the physics. After the growth and saturation of the lower hybrid fluctuations, the deformed current sheet is similar in structure to a Harris equilibrium with an additional background population. This may explain the large growth rate of the kink instability at later times, since this type of modification to the Harris sheet has been shown to greatly enhance the growth rate of the kink mode

  18. A high resolution gravity model for Venus - GVM-1 (United States)

    Nerem, R. S.; Bills, B. G.; Mcnamee, J. B.


    A spherical harmonic model of the gravitational field of Venus complete to degree and order 50 has been developed using the S-band Doppler tracking data of the Pioneer Venus Orbiter (PVO) collected between 1979 and 1982. The short wavelengths of this model could only be resolved near the PVO periapse location (about 14 deg N latitude), therefore a priori constraints were applied to the model to bias poorly observed coefficients towards zero. The resulting model has a half-wavelength resolution of 400 km near the PVO periapse location, but the resolution degrades to greater than 1000 km near the poles. This gravity model correlates well with a degree 50 spherical harmonic expansion of the Venus topography derived from a combination of Magellan and PVO data. New tracking data from Magellan's gravity mission should provide some improvement to this model, although a complete model of the Venusian gravity field will depend on tracking of Magellan after the circularization of its orbit using aerobraking.

  19. Near-infrared oxygen airglow from the Venus nightside (United States)

    Crisp, D.; Meadows, V. S.; Allen, D. A.; Bezard, B.; Debergh, C.; Maillard, J.-P.


    Groundbased imaging and spectroscopic observations of Venus reveal intense near-infrared oxygen airglow emission from the upper atmosphere and provide new constraints on the oxygen photochemistry and dynamics near the mesopause (approximately 100 km). Atomic oxygen is produced by the Photolysis of CO2 on the dayside of Venus. These atoms are transported by the general circulation, and eventually recombine to form molecular oxygen. Because this recombination reaction is exothermic, many of these molecules are created in an excited state known as O2(delta-1). The airglow is produced as these molecules emit a photon and return to their ground state. New imaging and spectroscopic observations acquired during the summer and fall of 1991 show unexpected spatial and temporal variations in the O2(delta-1) airglow. The implications of these observations for the composition and general circulation of the upper venusian atmosphere are not yet understood but they provide important new constraints on comprehensive dynamical and chemical models of the upper mesosphere and lower thermosphere of Venus.

  20. Magma transport in sheet intrusions of the Alnö carbonatite complex, central Sweden. (United States)

    Andersson, Magnus; Almqvist, Bjarne S G; Burchardt, Steffi; Troll, Valentin R; Malehmir, Alireza; Snowball, Ian; Kübler, Lutz


    Magma transport through the Earth's crust occurs dominantly via sheet intrusions, such as dykes and cone-sheets, and is fundamental to crustal evolution, volcanic eruptions and geochemical element cycling. However, reliable methods to reconstruct flow direction in solidified sheet intrusions have proved elusive. Anisotropy of magnetic susceptibility (AMS) in magmatic sheets is often interpreted as primary magma flow, but magnetic fabrics can be modified by post-emplacement processes, making interpretation of AMS data ambiguous. Here we present AMS data from cone-sheets in the Alnö carbonatite complex, central Sweden. We discuss six scenarios of syn- and post-emplacement processes that can modify AMS fabrics and offer a conceptual framework for systematic interpretation of magma movements in sheet intrusions. The AMS fabrics in the Alnö cone-sheets are dominantly oblate with magnetic foliations parallel to sheet orientations. These fabrics may result from primary lateral flow or from sheet closure at the terminal stage of magma transport. As the cone-sheets are discontinuous along their strike direction, sheet closure is the most probable process to explain the observed AMS fabrics. We argue that these fabrics may be common to cone-sheets and an integrated geology, petrology and AMS approach can be used to distinguish them from primary flow fabrics.

  1. Terrain Classification on Venus from Maximum-Likelihood Inversion of Parameterized Models of Topography, Gravity, and their Relation (United States)

    Eggers, G. L.; Lewis, K. W.; Simons, F. J.; Olhede, S.


    Venus does not possess a plate-tectonic system like that observed on Earth, and many surface features--such as tesserae and coronae--lack terrestrial equivalents. To understand Venus' tectonics is to understand its lithosphere, requiring a study of topography and gravity, and how they relate. Past studies of topography dealt with mapping and classification of visually observed features, and studies of gravity dealt with inverting the relation between topography and gravity anomalies to recover surface density and elastic thickness in either the space (correlation) or the spectral (admittance, coherence) domain. In the former case, geological features could be delineated but not classified quantitatively. In the latter case, rectangular or circular data windows were used, lacking geological definition. While the estimates of lithospheric strength on this basis were quantitative, they lacked robust error estimates. Here, we remapped the surface into 77 regions visually and qualitatively defined from a combination of Magellan topography, gravity, and radar images. We parameterize the spectral covariance of the observed topography, treating it as a Gaussian process assumed to be stationary over the mapped regions, using a three-parameter isotropic Matern model, and perform maximum-likelihood based inversions for the parameters. We discuss the parameter distribution across the Venusian surface and across terrain types such as coronoae, dorsae, tesserae, and their relation with mean elevation and latitudinal position. We find that the three-parameter model, while mathematically established and applicable to Venus topography, is overparameterized, and thus reduce the results to a two-parameter description of the peak spectral variance and the range-to-half-peak variance (in function of the wavenumber). With the reduction the clustering of geological region types in two-parameter space becomes promising. Finally, we perform inversions for the JOINT spectral variance of

  2. Annual review of earth and planetary sciences. Volume 16

    International Nuclear Information System (INIS)

    Wetherill, G.W.; Albee, A.L.; Stehli, F.G.


    Various papers on earth and planetary science topics are presented. The subjects addressed include: role and status of earth science field work; phase relations of prealuminous granitic rocks and their petrogenetic implications; chondritic meteorites and the solar nebula; volcanic winters; mass wasting on continental margins; earthquake ground motions; ore deposits as guides to geologic history of the earth; geology of high-level nuclear waste disposal; and tectonic evolution of the Caribbean. Also discussed are: the earth's rotation; the geophysics of a restless caldera (Long Valley, California); observations of cometary nuclei; geology of Venus; seismic stratigraphy; in situ-produced cosmogenic isotopes in terrestrial rocks; time variations of the earth's magnetic field; deep slabs, geochemical heterogeneity, and the large-scale structure of mantle convection; early proterozoic assembly and growth of Laurentia; concepts and methods of high-resolution event stratigraphy

  3. Novel Architecture for a Long-Life, Lightweight Venus Lander

    International Nuclear Information System (INIS)

    Bugby, D.; Seghi, S.; Kroliczek, E.; Pauken, M.


    This paper describes a novel concept for an extended lifetime, lightweight Venus lander. Historically, to operate in the 480 deg. C, 90 atm, corrosive, mostly CO 2 Venus surface environment, previous landers have relied on thick Ti spherical outer shells and thick layers of internal insulation. But even the most resilient of these landers operated for only about 2 hours before succumbing to the environment. The goal on this project is to develop an architecture that extends lander lifetime to 20-25 hours and also reduces mass compared to the Pioneer Venus mission architecture. The idea for reducing mass is to: (a) contain the science instruments within a spherical high strength lightweight polymer matrix composite (PMC) tank; (b) surround the PMC tank with an annular shell of high performance insulation pre-pressurized to a level that (after landing) will exceed the external Venus surface pressure; and (c) surround the insulation with a thin Ti outer shell that contains only a net internal pressure, eliminating buckling overdesign mass. The combination of the PMC inner tank and thin Ti outer shell is lighter than a single thick Ti outer shell. The idea for extending lifetime is to add the following three features: (i) an expendable water supply that is placed within the insulation or is contained in an additional vessel within the PMC tank; (ii) a thin spherical evaporator shell placed within the insulation a short radial distance from the outer shell; and (iii) a thin heat-intercepting liquid cooled shield placed inboard of the evaporator shell. These features lower the temperature of the insulation below what it would have been with the insulation alone, reducing the internal heat leak and lengthening lifetime. The use of phase change materials (PCMs) inside the PMC tank is also analyzed as a lifetime-extending design option. The paper describes: (1) analytical modeling to demonstrate reduced mass and extended life; (2) thermal conductivity testing of high

  4. Exploration of Venus with the Venera-15 IR Fourier spectrometer and the Venus Express planetary Fourier spectrometer (United States)

    Zasova, L. V.; Moroz, V. I.; Formisano, V.; Ignatiev, N. I.; Khatuntsev, I. V.


    The infrared spectrometry of Venus in the range 6-45 μm allows one to sound the middle atmosphere of Venus in the altitude range 55-100 km and its cloud layer. This experiment was carried out onboard the Soviet automatic interplanetary Venera-15 station, where the Fourier spectrometer for this spectral range was installed. The measurements have shown that the main component of the cloud layer at all measured latitudes in the northern hemisphere is concentrated sulfuric acid (75-85%). The vertical profiles of temperature and aerosol were reconstructed in a self-consistent manner: the three-dimensional fields of temperature and zonal wind in the altitude range 55-100 km and aerosol at altitudes 55-70 km have been obtained, as well as vertical SO2 profiles and H2O concentration in the upper cloud layer. The solar-related waves at isobaric levels in the fields of temperature, zonal wind, and aerosol were investigated. This experiment has shown the efficiency of the method for investigation of the Venusian atmosphere. The Planetary Fourier Spectrometer has the spectral interval 0.9-45 μm and a spectral resolution of 1.8 cm-1. It will allow one to sound the middle atmosphere (55-100 km) of Venus and its cloud layer on the dayside, as well as the lower atmosphere and the planetary surface on the night side.

  5. Film sheet cassette

    International Nuclear Information System (INIS)


    A novel film sheet cassette is described for handling CAT photographic films under daylight conditions and facilitating their imaging. A detailed description of the design and operation of the cassette is given together with appropriate illustrations. The resulting cassette is a low-cost unit which is easily constructed and yet provides a sure light-tight seal for the interior contents of the cassette. The individual resilient fingers on the light-trap permit the ready removal of the slide plate for taking pictures. The stippled, non-electrostatic surface of the pressure plate ensures an air layer and free slidability of the film for removal and withdrawal of the film sheet. The advantage of the daylight system is that a darkroom need not be used for inserting and removing the film in and out of the cassette resulting in a considerable time saving. (U.K.)

  6. Clean Cities Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)


    This fact sheet explains the Clean Cities Program and provides contact information for all coalitions and regional offices. It answers key questions such as: What is the Clean Cities Program? What are alternative fuels? How does the Clean Cities Program work? What sort of assistance does Clean Cities offer? What has Clean Cities accomplished? What is Clean Cities International? and Where can I find more information?

  7. Information sheets on energy

    International Nuclear Information System (INIS)


    These sheets, presented by the Cea, bring some information, in the energy domain, on the following topics: the world energy demand and the energy policy in France and in Europe, the part of the nuclear power in the energy of the future, the greenhouse gases emissions and the fight against the greenhouse effect, the carbon dioxide storage cost and the hydrogen economy. (A.L.B.)

  8. Biomolecular Science (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)


    A brief fact sheet about NREL Photobiology and Biomolecular Science. The research goal of NREL's Biomolecular Science is to enable cost-competitive advanced lignocellulosic biofuels production by understanding the science critical for overcoming biomass recalcitrance and developing new product and product intermediate pathways. NREL's Photobiology focuses on understanding the capture of solar energy in photosynthetic systems and its use in converting carbon dioxide and water directly into hydrogen and advanced biofuels.

  9. Geologic map of the Lakshmi Planum quadrangle (V-7), Venus (United States)

    Ivanov, Mikhail A.; Head, James W.


    The Lakshmi Planum quadrangle is in the northern hemisphere of Venus and extends from lat 50 degrees to 75 degrees N., and from long 300 degrees to 360 degrees E. The elevated volcanic plateau of Lakshmi Planum, which represents a very specific and unique class of highlands on Venus, dominates the northern half of the quadrangle. The surface of the planum stands 3-4 km above mean planetary radius and the plateau is surrounded by the highest Venusian mountain ranges, 7-10 km high. Before the Magellan mission, the geology of the Lakshmi Planum quadrangle was known on the basis of topographic data acquired by the Pioneer-Venus and Venera-15/16 altimeter and radar images received by the Arecibo telescope and Venera-15/16 spacecraft. These data showed unique topographic and morphologic structures of the mountain belts, which have no counterparts elsewhere on Venus, and the interior volcanic plateau with two large and low volcanic centers and large blocks of tessera-like terrain. From the outside, Lakshmi Planum is outlined by a zone of complexly deformed terrains that occur on the regional outer slope of Lakshmi. Vast low-lying plains surround this zone. After acquisition of the Venera-15/16 data, two classes of hypotheses were formulated to explain the unique structure of Lakshmi Planum and its surrounding. The first proposed that the western portion of Ishtar Terra, dominated by Lakshmi Planum, was a site of large-scale upwelling while the alternative hypothesis considered this region as a site of large-scale downwelling and underthrusting. Early Magellan results showed important details of the general geology of this area displayed in the Venera-15/16 images. Swarms of extensional structures and massifs of tesserae populate the southern slope of Lakshmi. The zone of fractures and grabens form a giant arc thousands of kilometers long and hundreds of kilometers wide around the southern flank of Lakshmi Planum. From the north, the deformational zones consist mostly of

  10. Sheet pinch devices

    International Nuclear Information System (INIS)

    Anderson, O.A.; Baker, W.R.; Ise, J. Jr.; Kunkel, W.B.; Pyle, R.V.; Stone, J.M.


    Three types of sheet-like discharges are being studied at Berkeley. The first of these, which has been given the name 'Triax', consists of a cylindrical plasma sleeve contained between two coaxial conducting cylinders A theoretical analysis of the stability of the cylindrical sheet plasma predicts the existence of a 'sausage-mode' instability which is, however, expected to grow more slowly than in the case of the unstabilized linear pinch (by the ratio of the radial dimensions). The second pinch device employs a disk shaped discharge with radial current guided between flat metal plates, this configuration being identical to that of the flat hydromagnetic capacitor without external magnetic field. A significant feature of these configurations is the absence of a plasma edge, i.e., there are no regions of sharply curved magnetic field lines anywhere in these discharges. The importance of this fact for stability is not yet fully investigated theoretically. As a third configuration a rectangular, flat pinch tube has been constructed, and the behaviour of a flat plasma sheet with edges is being studied experimentally

  11. Dense sheet Z-pinches

    International Nuclear Information System (INIS)

    Tetsu, Miyamoto


    The steady state and quasi-steady processes of infinite- and finite-width sheet z-pinches are studied. The relations corresponding to the Bennett relation and Pease-Braginskii current of cylindrical fiber z-pinches depend on a geometrical factor in the sheet z-pinches. The finite-width sheet z-pinch is approximated by a segment of infinite-width sheet z-pinch, if it is wide enough, and corresponds to a number of (width/thickness) times fiber z-pinch plasmas of the diameter that equals the sheet thickness. If the sheet current equals this number times the fiber current, the plasma created in the sheet z-pinches is as dense as in the fiber z-pinches. The total energy of plasma and magnetic field per unit mass is approximately equal in both pinches. Quasi-static transient processes are different in several aspects from the fiber z-pinch. No radiation collapse occurs in the sheet z-pinch. The stability is improved in the sheet z-pinches. The fusion criterions and the experimental arrangements to produce the sheet z-pinches are also discussed. (author)

  12. Perforation of metal sheets

    DEFF Research Database (Denmark)

    Steenstrup, Jens Erik

    simulation is focused on the sheet deformation. However, the effect on the tool and press is included. The process model is based on the upper bound analysis in order to predict the force progress and hole characteristics etc. Parameter analyses are divided into two groups, simulation and experimental tests......The main purposes of this project are:1. Development of a dynamic model for the piercing and performation process2. Analyses of the main parameters3. Establishing demands for process improvements4. Expansion of the existing parameter limitsThe literature survey describes the process influence...

  13. A tale of two telescopes: North Queensland and the 1882 transit of Venus (United States)

    Orchiston, Wayne; Darlington, Vicki


    The 1882 transit of Venus offered the final opportunity for astronomers to use these rare events to pin down the distance from the Earth to the Sun. A British party based itself in southern Queensland, but total cloud cover prevented any observations being made on the critical day. In this paper we trace the preparations of the British party, and then show how they laid the foundations for the development of astronomy in Queensland by selling their two 6-in Cooke refractors before returning to Britain. Both instruments were purchased by a Townsville amateur astronomer, Edwin Norris, and although he installed one in an observatory, he made little use of it. However, he subsequently sold the other telescope to J. Ewen Davidson of Mackay, who also erected an obser-vatory for it. Davidson then used his instrument for cometary astronomy, in the process discovering two new comets, one of which now bears his name. Unfortunately, recent attempts to track down the present whereabouts of the two telescopes have failed.

  14. Substorms in the Inner Plasma Sheet (United States)

    Le Contel, O.; Perraut, S.; Roux, A.; Pellat, R.; Korth, A.

    Thin Current Sheets (TCS) are regularly formed prior to substorm breakup, even in the near-Earth plasma sheet, as close as the geostationary orbit. A self-consistent kinetic theory describing the response of the plasma sheet to an electromagnetic perturbation is given. This perturbation corresponds to an external forcing, for instance caused by the solar wind (not an internal instability). The equilibrium of the configuration of this TCS in the presence of a time varying perturbation is shown to produce a strong parallel thermal anisotropy (T∥ > T⊺) of energetic electrons and ions (E>50keV) as well as an enhanced diamagnetic current carried by low energy ions (Ecurrents tend to enhance the confinement of this current sheet near the magnetic equator. These results are compared with data gathered by GEOS-2 at the geostationary orbit, where the magnetic signatures of TCS, and parallel anisotropies are regularly observed prior to breakup. By ensuring quasi-neutrality everywhere we find, when low frequency electromagnetic perturbations are applied, that although the magnetic field line remains an equipotential to the lowest order in Te/Ti, a field-aligned potential drop exists to the next order in (Te/Ti). Thus the development of a TCS implies the formation of a field-aligned potential drop (~= few hundred volts) to ensure the quasi-neutrality everywhere. For an earthward directed pressure gradient, a field-aligned electric field, directed towards the ionosphere, is obtained, on the western edge of the perturbation (i.e. western edge of the current sheet). Thus field aligned beams of electrons are expected to flow towards the equatorial region on the western edge of the current sheet. We study the stability of these electron beams and show that they are unstable to ``High Frequency'' (HF) waves. These ``HF'' waves are regularly observed at frequencies of the order of the proton gyrofrequency (fH+) just before, or at breakup. The amplitude of these HF waves is so

  15. On the Thermal Protection Systems of Landers for Venus Exploration (United States)

    Ekonomov, A. P.; Ksanfomality, L. V.


    The landers of the Soviet Venera series—from Venera-9 to Venera-14—designed at the Lavochkin Association are a man-made monument to spectacular achievements of Soviet space research. For more than 40 years, they have remained the uneclipsed Soviet results in space studies of the Solar System. Within the last almost half a century, the experiments carried out by the Venera-9 to Venera-14 probes for studying the surface of the planet have not been repeated by any space agency in the world, mainly due to quite substantial technical problems. Since that time, no Russian missions with landers have been sent to Venus either. On Venus, there is an anoxic carbon dioxide atmosphere, where the pressure is 9.2 MPa and the temperature is 735 K near the surface. A long-lived lander should experience these conditions for an appreciable length of time. What technical solutions could provide a longer operation time for a new probe investigating the surface of Venus, if its thermal scheme is constructed similar to that of the Venera series? Onboard new landers, there should be a sealed module, where the physical conditions required for operating scientific instruments are maintained for a long period. At the same time, new high-temperature electronic equipment that remains functional under the above-mentioned conditions have appeared. In this paper, we consider and discuss different variants of the system for a long-lived sealed lander, in particular, the absorption of the penetrating heat due to water evaporation and the thermal protection construction for the instruments with intermediate characteristics.

  16. ADS experimental benchmarks of VENUS-1 in China

    International Nuclear Information System (INIS)

    Xia Haihong; Xia Pu; Han Yinlu


    The present report describes here are the calculation of four nuclear data libraries on China ADS Venus-1 sub critical facility, using same calculation code: the Monte Carlo code MCNP-5. The libraries are ENDF/B-VI.6, ENDF/B-7, CENDL 3.1 and Library ADS 2.0. The results of k eff , K p , Λ, l p and β eff for four thermal fuel configurations and the total neutron flux, the neutron flux distributions, neutron spectra in experimental channel for two thermal fuel configurations which driven by external neutron source (D-D and D-T source) are evaluated. (J.P.N.)

  17. Images from Galileo of the Venus cloud deck (United States)

    Belton, M.J.S.; Gierasch, P.J.; Smith, M.D.; Helfenstein, P.; Schinder, P.J.; Pollack, James B.; Rages, K.A.; Ingersoll, A.P.; Klaasen, K.P.; Veverka, J.; Anger, C.D.; Carr, M.H.; Chapman, C.R.; Davies, M.E.; Fanale, F.P.; Greeley, R.; Greenberg, R.; Head, J. W.; Morrison, D.; Neukum, G.; Pilcher, C.B.


    Images of Venus taken at 418 (violet) and 986 [near-infrared (NIR)] nanometers show that the morphology and motions of large-scale features change with depth in the cloud deck. Poleward meridional velocities, seen in both spectral regions, are much reduced in the NIR. In the south polar region the markings in the two wavelength bands are strongly anticorrelated. The images follow the changing state of the upper cloud layer downwind of the subsolar point, and the zonal flow field shows a longitudinal periodicity that may be coupled to the formation of large-scale planetary waves. No optical lightning was detected.

  18. Venus gravity and topography: 60th degree and order model (United States)

    Konopliv, A. S.; Borderies, N. J.; Chodas, P. W.; Christensen, E. J.; Sjogren, W. L.; Williams, B. G.; Balmino, G.; Barriot, J. P.


    We have combined the most recent Pioneer Venus Orbiter (PVO) and Magellan (MGN) data with the earlier 1978-1982 PVO data set to obtain a new 60th degree and order spherical harmonic gravity model and a 120th degree and order spherical harmonic topography model. Free-air gravity maps are shown over regions where the most marked improvement has been obtained (Ishtar-Terra, Alpha, Bell and Artemis). Gravity versus topography relationships are presented as correlations per degree and axes orientation.

  19. Venus gravity anomalies and their correlations with topography (United States)

    Sjogren, W. L.; Bills, B. G.; Birkeland, P. W.; Esposito, P. B.; Konopliv, A. R.; Mottinger, N. A.; Ritke, S. J.; Phillips, R. J.


    This report provides a summary of the high-resolution gravity data obtained from the Pioneer Venus Orbiter radio tracking data. Gravity maps, covering a 70 deg latitude band through 360 deg of longitude, are displayed as line-of-sight and vertical gravity. Topography converted to gravity and Bouguer gravity maps are also shown in both systems. Topography to gravity ratios are made over several regions of the planet. There are markedly different ratios for the Aphrodite area as compared to the Beta and Atla areas.

  20. Coldspots and hotspots - Global tectonics and mantle dynamics of Venus (United States)

    Bindschadler, Duane L.; Schubert, Gerald; Kaula, William M.


    Based on geologic observations provided by Magellan's first cycle of data collection and recent models of mantle convection in spherical shells and crustal deformation, the major topographic and geologic features of Venus are incorporated into a model of global mantle dynamics. Consideration is given to volcanic rises, such as Beta Regio and Atla Regio, plateau-shaped highlands dominated by complex ridged terrain (e.g., Ovda Regio and Alpha Regio), and circular lowland regions, such as Atalanta Planitia. Each of these features is related to either mantle plumes (hotspots) or mantle downwellings (coldspots).

  1. Experiments on sheet metal shearing


    Gustafsson, Emil


    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  2. ICESat's First Year of Measurements Over the Polar Ice Sheets (United States)

    Shuman, C. A.


    NASA's Ice, Cloud and Land Elevation Satellite (ICESat) mission was developed to measure changes in elevation of the Greenland and Antarctic ice sheets. Its primary mission goal is to significantly refine estimates of polar ice sheet mass balance. Obtaining precise, spatially dense, ice sheet elevations through time is the first step towards this goal. ICESat data will then enable study of associations between observed ice changes and dynamic or climatic forcing factors, and thus enable improved estimation of the present and future contributions of the ice sheets to global sea level rise. ICESat was launched on January 12, 2003 and acquired science data from February 20th to March 29th with the first of the three lasers of the Geoscience Laser Altimeter System (GLAS). Data acquisition with the second laser began on September 25th and continued until November 18th, 2003. For one-year change detection, the second laser is scheduled for operation from approximately February 17th to March 20th, 2004. Additional operational periods will be selected to 1) enable periodic measurements through the year, and 2) to support of other NASA Earth Science Enterprise missions and activities. To obtain these precise ice sheet elevations, GLAS has a 1064 nm wavelength laser operating at 40 Hz with a designed range precision of about 10 cm. The laser footprints are about 70 m in diameter on the Earth's surface and are spaced every 172 m along-track. The on-board GPS receiver enables radial orbit determinations to an accuracy better than 5 cm. The star-tracking attitude-determination system will enable laser footprints to be located to 6 m horizontally when attitude calibration is completed. The orbital altitude averages 600 km at an inclination of 94 degrees with coverage extending from 86 degrees N and S latitude. The spacecraft attitude can be controlled to point the laser beam to within 50 m of surface reference tracks over the ice sheets and to point off-nadir up to 5 degrees to

  3. Infrared spectrometry of Venus: IR Fourier spectrometer on Venera 15 as a precursor of PFS for Venus express (United States)

    Zasova, L. V.; Moroz, V. I.; Formisano, V.; Ignatiev, N. I.; Khatuntsev, I. V.


    Thermal infrared spectrometry in the range 6-40 μm with spectral resolution of 4.5-6.5 cm -1 was realized onboard of Venera 15 for the middle atmosphere of Venus investigations. The 3-D temperature and zonal wind fields ( h, ϕ, LT) in the range 55-100 km and the 3-D aerosol field ( h, ϕ, LT) in the range 55-70 km were retrieved and analyzed. The solar related waves at isobaric levels, generated by the absorbed solar energy, were investigated. In the thermal IR spectral range the, ν1, ν2 and ν3 SO 2 and the H 2O rotational (40 μm) and vibro-rotational (6.3 μm) absorption bands are observed and used for minor compounds retrieval. An advantage of the thermal infrared spectrometry method is that both the temperature and aerosol profiles, which need for retrieval of the vertical profiles of minor compounds, are evaluated from the same spectrum. The Fourier spectrometer on Venera-15 may be considered as a precursor of the Planetary Fourier Spectrometer (PI Prof. V. Formisano), which is included in the payload of the planned Venus Express mission. It has a spectral range 0.9-45 μm, separated into two channels: a short wavelength channel (SWC) in the range 0.9-5 μm and a long wavelength channel (LWC) from 6 to 45 μm, and spectral resolution of 1-2 cm -1. In the history of planetary Fourier spectrometry the PFS is a unique instrument, which possesses a short wavelength channel. A functioning of this instrument on the polar orbit with a good spatial and local time coverage will advance our knowledge in the fundamental problems of the Venus atmosphere.

  4. Rare earths

    Energy Technology Data Exchange (ETDEWEB)

    Cranstone, D A


    Rare earth elements are commonly extracted from the minerals monazite, bastnaesite, and xenotine. New uses for these elements are constantly developing; they have found applications in glass polishing, television tube phosphors, high-strength low-alloy steels, magnets, catalysts, refractory ceramics, and hydrogen sponge alloys. In Canada, rare earths have been produced as byproducts of the uranium mining industry, but there was no production of rare earths in 1978 or 1979. The world sources of and markets for the rare earth elements are discussed.

  5. Two activities with a simple model of the solar system: discovering Kepler’s 3rd law and investigating apparent motion of Venus (United States)

    Rovšek, Barbara; Guštin, Andrej


    An astronomy ‘experiment’ composed of three parts is described in the article. Being given necessary data a simple model of inner planets of the solar system is made in the first part with planets’ circular orbits using appropriate scale. In the second part revolution of the figurines used as model representations of the planets along their orbits is observed. In the third part of activity apparent motion of Venus with respect to the observer on the Earth is studied. In the second part of the paper problems are given, which relate to experimental activities and are designed to test if learning outcomes of the experiment have been achieved: if correlation between orbital radius and orbital velocity has been perceived, concepts related to motion of Venus as observed from the Earth have been acquired and periodicity recognized. Described astronomy ‘experiment’ was one of the three science experiments given to 11 and 12 years old students prior to Slovene science competition in 2017 (the call for competition is at, guidelines for the experiment (in Slovene) can be found at At the end of the paper the results obtained at competition are presented.

  6. In-situ exploration of Venus on a global scale : direct measurements of origins and evolution, meterology, dynamics, and chemistry by a long-duration aerial science station (United States)

    Baines, Kevin H.; Atreya, Sushi; Carlson, Robert W.; Chutjian, Ara; Crisp, David; Hall, Jeffrey L.; Jones, Dayton L.; Kerzhanovich, Victor V.; Limaye, Sanjay S.


    Drifting in the strong winds of Venus under benign Earth-like temperature and pressure conditions, an instrumented balloon-borne science station presents a viable means to explore, in-situ, the Venusian atmosphere on a global scale. Flying over the ground at speeds exceeding 240 km/hour while floating in the Venusian skies near 55 km altitude for several weeks, such an aerostat can conduct a 'world tour' of our neighboring planet, as it circumnavigates the globe multiple times during its flight from equatorial to polar latitudes. Onboard science sensors can repeatedly and directly sample gas compositions, atmospheric pressures and temperatures and cloud particle properties, giving unprecedented insight into the chemical processes occurring within the sulfuric clouds. Additionally, interferometric tracking via Earth-based radio observatories can yield positions and windspeeds to better than 10 cm/sec over one-hour periods, providing important information for understanding the planet's meridional circulation and enigmatic zonal super-rotation, as well as local dynamics associated with meteorological processes. As well, hundreds of GCMS spectra collected during the flight can provide measurements of noble gas compositions and their isotopes with unprecedented accuracy, thereby enabling fundamental new insights into Venus's origin and evolution.

  7. Mesoscale circulation at the upper cloud level at middle latitudes from the imaging by Venus Monitoring Camera onboard Venus Express (United States)

    Patsaeva, Marina; Ignatiev, Nikolay; Markiewicz, Wojciech; Khatuntsev, Igor; Titov, Dmitrij; Patsaev, Dmitry

    The Venus Monitoring Camera onboard ESA Venus Express spacecraft acquired a great number of UV images (365 nm) allowing us to track the motion of cloud features at the upper cloud layer of Venus. A digital method developed to analyze correlation functions between two UV images provided wind vector fields on the Venus day side (9-16 hours local time) from the equator to high latitudes. Sizes and regions for the correlation were chosen empirically, as a trade-off of sensitivity against noise immunity and vary from 10(°) x7.5(°) to 20(°) x10(°) depending on the grid step, making this method suitable to investigate the mesoscale circulation. Previously, the digital method was used for investigation of the circulation at low latitudes and provided good agreement with manual tracking of the motion of cloud patterns. Here we present first results obtained by this method for middle latitudes (25(°) S-75(°) S) on the basis of 270 orbits. Comparing obtained vector fields with images for certain orbits, we found a relationship between morphological patterns of the cloud cover at middle latitudes and parameters of the circulation. Elongated cloud features, so-called streaks, are typical for middle latitudes, and their orientation varies over wide range. The behavior of the vector field of velocities depends on the angle between the streak and latitude circles. In the middle latitudes the average angle of the flow deviation from the zonal direction is equal to -5.6(°) ± 1(°) (the sign “-“ means the poleward flow, the standard error is given). For certain orbits, this angle varies from -15.6(°) ± 1(°) to 1.4(°) ± 1(°) . In some regions at latitudes above 60(°) S the meridional wind is equatorward in the morning. The relationship between the cloud cover morphology and circulation peculiarity can be attributed to the motion of the Y-feature in the upper cloud layer due to the super-rotation of the atmosphere.

  8. Venus Mobile Explorer with RPS for Active Cooling: A Feasibility Study (United States)

    Leifer, Stephanie D.; Green, Jacklyn R.; Balint, Tibor S.; Manvi, Ram


    We present our findings from a study to evaluate the feasibility of a radioisotope power system (RPS) combined with active cooling to enable a long-duration Venus surface mission. On-board power with active cooling technology featured prominently in both the National Research Council's Decadal Survey and in the 2006 NASA Solar System Exploration Roadmap as mission-enabling for the exploration of Venus. Power and cooling system options were reviewed and the most promising concepts modeled to develop an assessment tool for Venus mission planners considering a variety of future potential missions to Venus, including a Venus Mobile Explorer (either a balloon or rover concept), a long-lived Venus static lander, or a Venus Geophysical Network. The concepts modeled were based on the integration of General Purpose Heat Source (GPHS) modules with different types of Stirling cycle heat engines for power and cooling. Unlike prior investigations which reported on single point design concepts, this assessment tool allows the user to generate either a point design or parametric curves of approximate power and cooling system mass, power level, and number of GPHS modules needed for a "black box" payload housed in a spherical pressure vessel.

  9. A simple holistic hypothesis for the self-destruction of ice sheets (United States)

    Hughes, T.


    Ice sheets are the only components of Earth's climate system that can self-destruct. This paper presents the quantitative force balance for bottom-up modeling of ice sheets, as first presented qualitatively in this journal as a way to quantify ice-bed uncoupling leading to self-destruction of ice sheets ( Hughes, 2009a). Rapid changes in sea level and climate can result if a large ice-sheet self-destructs quickly, as did the former Laurentide Ice Sheet of North America between 8100 and 7900 BP, thereby terminating the last cycle of Quaternary glaciation. Ice streams discharge up to 90 percent of ice from past and present ice sheets. A hypothesis is presented in which self-destruction of an ice sheet begins when ubiquitous ice-bed decoupling, quantified as a floating fraction of ice, proceeds along ice streams. This causes ice streams to surge and reduce thickness by some 90 percent, and height above sea level by up to 99 percent for floating ice, so the ice sheet undergoes gravitational collapse. Ice collapsing over marine embayments becomes floating ice shelves that may then disintegrate rapidly. This floods the world ocean with icebergs that reduce the ocean-to-atmosphere heat exchange, thereby triggering climate change. Calving bays migrate up low stagnating ice streams and carve out the accumulation zone of the collapsed ice sheet, which prevents its recovery, decreases Earth's albedo, and terminates the glaciation cycle. This sequence of events may coincide with a proposed life cycle of ice streams that drain the ice sheet. A first-order treatment of these life cycles is presented that depends on the longitudinal force balance along the flowbands of ice streams and gives a first approximation to ice-bed uncoupling at snapshots during gravitational collapse into ice shelves that disintegrate, thereby removing the ice sheet. The stability of the Antarctic Ice Sheet is assessed using this bottom-up approach.

  10. Statistical study of plasma sheet dynamics using ISEE 1 and 2 energetic particle flux data

    International Nuclear Information System (INIS)

    Dandouras, J.; Reme, H.; Saint-Marc, A.; Sauvaud, J.A.; Parks, G.K.; Anderson, K.A.; Lin, R.P.


    During magnetospheric substorms, satellites embedded in the plasma sheet often detect transient dropouts of plasma and energetic particle fluxes, a phenomemon generally interpreted as indicating the exit of the satellite into the magnetospheric lobe due to a plasma sheet thinning. In order to determine the large-scale dynamics of the near-earth plasma sheet during substorms, three satellite years of ISEE 1 and 2 energetic particle flux data (1.5 and 6 keV), corresponding to 461 particle flux dropouts, have been analyzed. The principal results show that flux dropouts can be observed anywhere in the nightside plasma sheet, independent of the satellite's geocentric distance (for R>12R/sub E/), magnetic local time (except near the magnetospheric flanks) and estimated distance to the neutral sheet. Furthermore, flux dropouts can be observed for any combination of the AE index value and the satellite's distance to the neutral sheet, which shows that the plasma sheet is dynamic even during weak magnetospheric disturbances. Substorms during which the satellites, though situated in the plasma sheet, did not detect any flux dropout, have also been examined, and it is found that the plasma sheet thickness can locally remain unaffected by substorm development for AE index values up to at least 1000 nT. The predictions of the two major plasma sheet thinning models, i.e., the near-tail X-type magnetic neutral line formation model and the MHD rarefaction wave propagation model, are compared to the experimental results, and it is concluded that neither model can account for all of the observations; plasma sheet dynamics are more complex. Phenomenologically, this study suggests that multiple pinching of the plasma sheet and/or large-amplitude three-dimensional plasma sheet oscillations are important in plasma sheet dynamics

  11. Radiative heat transfer and water content in atmosphere of Venus

    International Nuclear Information System (INIS)

    Yarov, M.Y.; Gal'stev, A.P.; Shari, V.P.


    The authors present the procedure for calculating optical characteristics of the main components and the effective fluxes in the atmosphere of Venus, and concrete results of the calculations. They are compared to the results of other authors and to the experimantal data. Integration was carried out by the Simpson method with automatic selection of the step or interval for a given relative integrating accuracy delta. The calculations were done with a BESM-6 computer. Using this procedure and data on absorbtion coefficients, calculations of the spectrum of effective flux were carried out for a pure carbon dioxide atmosphere and for an atmosphere containing water vapor at various relative admixtures, for different altitude profiles of temperature and cloudiness albedo. Thus, the comparisons made, enable the authors to judge about the degree of agreement of the F(z) altitude profile, in some regions of the planet where measurements have been made, rather than about the absolute values of the heat fluxes. In conclusion, the authors point out that the task of calculating in detail the radiation balance in Venus' lower atmosphere, as also the problem of a more reliable interpretation of the experimantal data, is coupled with the necessity of elaborating reliable models of the atmospheric components' optical characteristics, which determine the radiative transfer of heat

  12. VENUS-2 Benchmark Problem Analysis with HELIOS-1.9

    International Nuclear Information System (INIS)

    Jeong, Hyeon-Jun; Choe, Jiwon; Lee, Deokjung


    Since there are reliable results of benchmark data from the OECD/NEA report of the VENUS-2 MOX benchmark problem, by comparing benchmark results users can identify the credibility of code. In this paper, the solution of the VENUS-2 benchmark problem from HELIOS 1.9 using the ENDF/B-VI library(NJOY91.13) is compared with the result from HELIOS 1.7 with consideration of the MCNP-4B result as reference data. The comparison contains the results of pin cell calculation, assembly calculation, and core calculation. The eigenvalues from those are considered by comparing the results from other codes. In the case of UOX and MOX assemblies, the differences from the MCNP-4B results are about 10 pcm. However, there is some inaccuracy in baffle-reflector condition, and relatively large differences were found in the MOX-reflector assembly and core calculation. Although HELIOS 1.9 utilizes an inflow transport correction, it seems that it has a limited effect on the error in baffle-reflector condition

  13. Stress distribution and topography of Tellus Regio, Venus (United States)

    Williams, David R.; Greeley, Ronald


    The Tellus Regio area of Venus represents a subset of a narrow latitude band where Pioneer Venus Orbiter (PVO) altimetry data, line-of-sight (LOS) gravity data, and Venera 15/16 radar images have all been obtained with good resolution. Tellus Regio also has a wide variety of surface morphologic features, elevations ranging up to 2.5 km, and a relatively low LOS gravity anomaly. This area was therefore chosen in order to examine the theoretical stress distributions resulting from various models of compensation of the observed topography. These surface stress distributions are then compared with the surface morphology revealed in the Venera 15/16 radar images. Conclusions drawn from these comparisons will enable constraints to be put on various tectonic parameters relevant to Tellus Regio. The stress distribution is calculated as a function of the topography, the equipotential anomaly, and the assumed model parameters. The topography data is obtained from the PVO altimetry. The equipotential anomaly is estimated from the PVO LOS gravity data. The PVO LOS gravity represents the spacecraft accelerations due to mass anomalies within the planet. These accelerations are measured at various altitudes and angles to the local vertical and therefore do not lend themselves to a straightforward conversion. A minimum variance estimator of the LOS gravity data is calculated, taking into account the various spacecraft altitudes and LOS angles and using the measured PVO topography as an a priori constraint. This results in an estimated equivalent surface mass distribution, from which the equipotential anomaly is determined.

  14. Stress distribution and topography of Tellus Regio, Venus

    International Nuclear Information System (INIS)

    Williams, D.R.; Greeley, R.


    The Tellus Regio area of Venus represents a subset of a narrow latitude band where Pioneer Venus Orbiter (PVO) altimetry data, line-of-sight (LOS) gravity data, and Venera 15/16 radar images have all been obtained with good resolution. Tellus Regio also has a wide variety of surface morphologic features, elevations ranging up to 2.5 km, and a relatively low LOS gravity anomaly. This area was therefore chosen in order to examine the theoretical stress distributions resulting from various models of compensation of the observed topography. These surface stress distributions are then compared with the surface morphology revealed in the Venera 15/16 radar images. Conclusions drawn from these comparisons will enable constraints to be put on various tectonic parameters relevant to Tellus Regio. The stress distribution is calculated as a function of the topography, the equipotential anomaly, and the assumed model parameters. The topography data is obtained from the PVO altimetry. The equipotential anomaly is estimated from the PVO LOS gravity data. The PVO LOS gravity represents the spacecraft accelerations due to mass anomalies within the planet. These accelerations are measured at various altitudes and angles to the local vertical and therefore do not lend themselves to a straightforward conversion. A minimum variance estimator of the LOS gravity data is calculated, taking into account the various spacecraft altitudes and LOS angles and using the measured PVO topography as an a priori constraint. This results in an estimated equivalent surface mass distribution, from which the equipotential anomaly is determined

  15. Fluid outflows from Venus impact craters - Analysis from Magellan data (United States)

    Asimow, Paul D.; Wood, John A.


    Many impact craters on Venus have unusual outflow features originating in or under the continuous ejecta blankets and continuing downhill into the surrounding terrain. These features clearly resulted from flow of low-viscosity fluids, but the identity of those fluids is not clear. In particular, it should not be assumed a priori that the fluid is an impact melt. A number of candidate processes by which impact events might generate the observed features are considered, and predictions are made concerning the rheological character of flows produce by each mechanism. A sample of outflows was analyzed using Magellan images and a model of unconstrained Bingham plastic flow on inclined planes, leading to estimates of viscosity and yield strength for the flow materials. It is argued that at least two different mechanisms have produced outflows on Venus: an erosive, channel-forming process and a depositional process. The erosive fluid is probably an impact melt, but the depositional fluid may consist of fluidized solid debris, vaporized material, and/or melt.

  16. Geologic map of the Rusalka Planitia Quadrangle (V-25), Venus (United States)

    Young, Duncan A.; Hansen, Vicki L.


    The Rusalka Planitia quadrangle (herein referred to as V-25) occupies an 8.1 million square kilometer swath of lowlands nestled within the eastern highlands of Aphrodite Terra on Venus. The region (25?-0? N., 150?-180? E.) is framed by the crustal plateau Thetis Regio to the southwest, the coronae of the Diana-Dali chasmata complex to the south, and volcanic rise Atla Regio to the west. Regions to the north, and the quadrangle itself, are part of the vast lowlands, which cover four-fifths of the surface of Venus. The often-unspectacular lowlands of Venus are typically lumped together as ridged or regional plains. However, detailed mapping reveals the mode of resurfacing in V-25's lowlands: a mix of corona-related flow fields and local edifice clusters within planitia superimposed on a background of less clearly interpretable extended flow fields, large volcanoes, probable corona fragments, and edifice-flow complexes. The history detailed within the Rusalka Planitia quadrangle is that of the extended evolution of long-wavelength topographic basins in the presence of episodes of extensive corona-related volcanism, pervasive low-intensity small-scale eruptions, and an early phase of regional circumferential shortening centered on central Aphrodite Terra. Structural reactivation both obscures and illuminates the tectonic development of the region. The data are consistent with progressive lithospheric thickening, although the critical lack of an independent temporal marker on Venus severely hampers our ability to test this claim and correlate between localities. Two broad circular basins dominate V-25 geology: northern Rusalka Planitia lies in the southern half of the quadrangle, whereas the smaller Llorona Planitia sits along the northwestern corner of V-25. Similar large topographic basins occur throughout the lowlands of Venus, and gravity data suggest that some basins may represent dynamic topography over mantle downwellings. Both planitiae include coronae and

  17. Soft Costs Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)



    This fact sheet is an overview of the systems integration subprogram at the U.S. Department of Energy SunShot Initiative. Soft costs can vary significantly as a result of a fragmented energy marketplace. In the U.S., there are 18,000 jurisdictions and 3,000 utilities with different rules and regulations for how to go solar. The same solar equipment may vary widely in its final installation price due to process and market variations across jurisdictions, creating barriers to rapid industry growth. SunShot supports the development of innovative solutions that enable communities to build their local economies and establish clean energy initiatives that meet their needs, while at the same time creating sustainable solar market conditions.

  18. Photovoltaics Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)



    This fact sheet is an overview of the Photovoltaics (PV) subprogram at the U.S. Department of Energy SunShot Initiative. The U.S. Department of Energy (DOE)’s Solar Energy Technologies Office works with industry, academia, national laboratories, and other government agencies to advance solar PV, which is the direct conversion of sunlight into electricity by a semiconductor, in support of the goals of the SunShot Initiative. SunShot supports research and development to aggressively advance PV technology by improving efficiency and reliability and lowering manufacturing costs. SunShot’s PV portfolio spans work from early-stage solar cell research through technology commercialization, including work on materials, processes, and device structure and characterization techniques.

  19. Systems Integration Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)



    This fact sheet is an overview of the Systems Integration subprogram at the U.S. Department of Energy SunShot Initiative. The Systems Integration subprogram enables the widespread deployment of safe, reliable, and cost-effective solar energy technologies by addressing the associated technical and non-technical challenges. These include timely and cost-effective interconnection procedures, optimal system planning, accurate prediction of solar resources, monitoring and control of solar power, maintaining grid reliability and stability, and many more. To address the challenges associated with interconnecting and integrating hundreds of gigawatts of solar power onto the electricity grid, the Systems Integration program funds research, development, and demonstration projects in four broad, interrelated focus areas: grid performance and reliability, dispatchability, power electronics, and communications.

  20. Hyperspectral light sheet microscopy (United States)

    Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O.; Huisken, Jan


    To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos.

  1. Terrestrial spreading centers under Venus conditions - Evaluation of a crustal spreading model for Western Aphrodite Terra (United States)

    Sotin, C.; Senske, D. A.; Head, J. W.; Parmentier, E. M.


    The model of Reid and Jackson (1981) for terrestrial spreading centers is applied to Venus conditions. On the basis of spreading rate, mantle temperature, and surface temperature, the model predicts both isostatic topography and crustal thickness. The model and Pioneer Venus altimetry and gravity data are used to test the hypothesis of Head and Crumpler (1987) that Western Aphrodite Terra is the location of crustal spreading on Venus. It is concluded that a spreading center model for Ovda Regio in Western Aphrodite Terra could account for the observed topography and line-of-sight gravity anomalies found in the Pioneer data.

  2. A Reconciled Estimate of Ice-Sheet Mass Balance (United States)

    Shepherd, Andrew; Ivins, Erik R.; Geruo, A.; Barletta, Valentia R.; Bentley, Mike J.; Bettadpur, Srinivas; Briggs, Kate H.; Bromwich, David H.; Forsberg, Rene; Galin, Natalia; hide


    We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods-especially in Greenland and West Antarctica-and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by -142 plus or minus 49, +14 plus or minus 43, -65 plus or minus 26, and -20 plus or minus 14 gigatonnes year(sup -1), respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 plus or minus 0.20 millimeter year(sup -1) to the rate of global sea-level rise.

  3. Settlement during vibratory sheet piling

    NARCIS (Netherlands)

    Meijers, P.


    During vibratory sheet piling quite often the soil near the sheet pile wall will settle. In many cases this is not a problem. For situations with houses, pipelines, roads or railroads at relative short distance these settlements may not be acceptable. The purpose of the research described in this

  4. Plasma dynamics in current sheets

    International Nuclear Information System (INIS)

    Bogdanov, S.Yu.; Drejden, G.V.; Kirij, N.P.; AN SSSR, Leningrad


    Plasma dynamics in successive stages of current sheet evolution is investigated on the base of analysis of time-spatial variations of electron density and electrodynamic force fields. Current sheet formation is realized in a two-dimensional magnetic field with zero line under the action of relatively small initial disturbances (linear regimes). It is established that in the limits of the formed sheet is concentrated dense (N e ∼= 10 16 cm -3 ) (T i ≥ 100 eV, bar-Z i ≥ 2) hot pressure of which is balanced by the magnetic action of electrodynamic forces is carried out both plasma compression in the sheet limits and the acceleration along the sheet surface from a middle to narrow side edges

  5. Venus and Mars or Down to Earth: Stereotypes and Realities of Gender Differences. (United States)

    Fiske, Susan T


    Psychological scientists, like lay people, often think in categorical dichotomies that contrast men and women and exaggerate the differences between groups. These value-laden divides tend to privilege one side over the other, often to the advantage of the scientists' own identity group. Besides balancing perspectives in the academic marketplace of ideas, scientists can recognize the complexity of stigma. Gender, like many categories, entails two fundamental dimensions that characterize intergroup stigma (and all interpersonal perception): perceived warmth and competence. These dimensions identify groups viewed with ambivalence (e.g., traditional women are stereotypically warm but incompetent, whereas professional women are allegedly competent but cold). In gender and in other areas, psychological scientists can go beyond value-laden dichotomies and consider the fundamental, continuous dimensions along which we think about stigma. © The Author(s) 2010.


    Fiske, Susan T.


    Psychological scientists, like lay people, often think in categorical dichotomies that contrast men and women and exaggerate the differences between groups. These value-laden divides tend to privilege one side over the other, often to the advantage of the scientists’ own identity group. Besides balancing perspectives in the academic marketplace of ideas, scientists can recognize the complexity of stigma. Gender, like many categories, entails two fundamental dimensions that characterize intergroup stigma (and all interpersonal perception): perceived warmth and competence. These dimensions identify groups viewed with ambivalence (e.g., traditional women are stereotypically warm but incompetent, whereas professional women are allegedly competent but cold). In gender and in other areas, psychological scientists can go beyond value-laden dichotomies and consider the fundamental, continuous dimensions along which we think about stigma. PMID:23678365

  7. A comparison of volcanic eruption processes on Earth, Moon, Mars, Io and Venus

    International Nuclear Information System (INIS)

    Wilson, L.; Lancaster Univ.; Head, J.W. III


    The silicate planets and satellites display a wide range of physical, chemical and atmospheric characteristics which may influence the nature of volcanism, a major geological process common to the evolution of the surfaces of these bodies. Consideration of the process of magma ascent and eruption from first principles allows predictions to be made concerning volcanic eruption styles and expected landforms and deposits on each planetary body. Examination of actual landforms and deposits in light of these predictions leads to a better understanding of the nature of volcanic eruption processes and outlines outstanding problems. (author)

  8. Vitamin and Mineral Supplement Fact Sheets (United States)

    ... website Submit Search NIH Office of Dietary Supplements Vitamin and Mineral Supplement Fact Sheets Search the list ... Supplements: Background Information Botanical Dietary Supplements: Background Information Vitamin and Mineral Fact Sheets Botanical Supplement Fact Sheets ...

  9. Rare earths

    International Nuclear Information System (INIS)


    The conference was held from September 12 to 13, 1984 in Jetrichovice, Czechoslovakia. The participants heard 16 papers of which 4 were inputted in INIS. These papers dealt with industrial separation processes of rare earths, the use of chemical methods of separation from the concentrate of apatite and bastnesite, the effect of the relative permittivity of solvents in the elution of rare earth elements from a cation exchanger, and the determination of the content of different rare earth elements using X-ray fluorescence analysis and atomic absorption spectroscopy. (E.S.)

  10. Harsh Environment Gas Sensor Array for Venus Atmospheric Measurements, Phase II (United States)

    National Aeronautics and Space Administration — Makel Engineering and the Ohio State University propose to develop a harsh environment tolerant gas sensor array for atmospheric analysis in future Venus missions....

  11. Venus Interior Probe Using In-situ Power and Propulsion (VIP-INSPR), Phase II (United States)

    National Aeronautics and Space Administration — Venus, despite being our closest neighboring planet, is under-explored due to its hostile environment. The atmosphere is composed primarily of CO2, with a 92 bar...

  12. Studies of the atmosphere of Venus by means of spacecraft: Solved and unsolved problems (United States)

    Moroz, V. I.

    Many spacecraft were used for exploration of the atmosphere of Venus. Their list consists of 25 items, including fly-by missions, orbiters, descent and landing probes and even balloons. VENERA-4 (1967) was near the beginning of this list, providing the first time in situ experiments on other planet. It started a long sequence of successful Soviet Venera missions. However after the year 1985 there were no missions to Venus in Russia. It probably was a strategic error. Now several groups of scientists in other countries work on proposals for new missions to Venus. The goal of this paper is to present a brief review of already solved and still unsolved problems in the studies of the Venus' atmosphere and to possible future aims in this field.

  13. Modeling of plasma-sheet convection: implications for substorms

    International Nuclear Information System (INIS)

    Erickson, G.M.


    An answer is suggested to the question of why plasma and magnetic energy accumulate in the Earth's magnetotail to be released in sporadic events, namely substorms. It is shown that the idea of steady convection is inconsistent with the idea of slow, approximately lossless, plasma convection in a long, closed-field-line region that extends into a long magnetotail, such as occurs during Earthward convection in the Earth's plasma sheet. This inconsistency is argued generally and demonstrated specifically using several quantitative models of the Earth's magnetospheric magnetic field. These results suggest that plasma-sheet convection is necessarily time dependent. If flux tubes are to convect adiabatically earthward, the confining magnetic pressure in the tail lobes must increase with time, and the magnetotail must evolve into a more stretched configuration. Eventually, the magnetosphere must find some way to release plasma from inner-plasma-sheet flux tubes. This suggests an obvious role for the magnetospheric substorm in the convection process. To probe this process further, a two-dimensional, self-consistent, quasi-static convection model was developed. This model self consistently includes a dipole field and can reasonably account for the effects of inner-magnetospheric shielding

  14. Indentation of a floating elastic sheet: geometry versus applied tension. (United States)

    Box, Finn; Vella, Dominic; Style, Robert W; Neufeld, Jerome A


    The localized loading of an elastic sheet floating on a liquid bath occurs at scales from a frog sitting on a lily pad to a volcano supported by the Earth's tectonic plates. The load is supported by a combination of the stresses within the sheet (which may include applied tensions from, for example, surface tension) and the hydrostatic pressure in the liquid. At the same time, the sheet deforms, and may wrinkle, because of the load. We study this problem in terms of the (relatively weak) applied tension and the indentation depth. For small indentation depths, we find that the force-indentation curve is linear with a stiffness that we characterize in terms of the applied tension and bending stiffness of the sheet. At larger indentations, the force-indentation curve becomes nonlinear and the sheet is subject to a wrinkling instability. We study this wrinkling instability close to the buckling threshold and calculate both the number of wrinkles at onset and the indentation depth at onset, comparing our theoretical results with experiments. Finally, we contrast our results with those previously reported for very thin, highly bendable membranes.

  15. On a predominant ionization source in the main maximum of the Venus nightside ionosphere

    International Nuclear Information System (INIS)

    Gringauz, K.I.; Verigin, M.I.; Breus, T.K.; Shvachunova, L.A.


    New considerations in favour of the previously made hypothesis, made on the basis of data using ''Venera-9 and 10'' satellites, that electron fluxes are the main ionization sources, creating the upper maximum of electron concentration in the night Venus atmosphere, are presented. Analysis of arguments, made by certain american authors, suggesting that O + ion transfer from the day Venus ionosphere to the night one should be considered as the main source of night ionization is made, and inconsistency of the argument shown

  16. The SPICAV-SOIR instrument probing the atmosphere of Venus: an overview (United States)

    Trompet, Loïc; Mahieux, Arnaud; Wilquet, Valérie; Robert, Séverine; Chamberlain, Sarah; Thomas, Ian; Carine Vandaele, Ann; Bertaux, Jean-Loup


    The Solar Occultation in the Infrared (SOIR) channel mounted on top of the SPICAV instrument of the ESA's Venus Express mission has observed the atmosphere of Venus during more than eight years. This IR spectrometer (2.2-4.3 μm) with a high spectral resolution (0.12 cm-1) combined an echelle grating with an acousto-optic tunable filter for order selection. SOIR performed more than 1500 solar occultation measurements leading to about two millions spectra. The Royal Belgian Institute for Space Aeronomy (BIRA-IASB) was in charge of SOIR's development and operations as well as its data pipeline. BIRA-IASB carried out several studies on the composition of Venus mesosphere and lower thermosphere: carbon dioxide, carbon monoxide, hydrogen halide (HF, HCl, DF, DCl), sulfur dioxide, water (H2O, HDO) as well as sulphuric acid aerosols in the upper haze of Venus. Density and temperature profiles of the upper atmosphere of Venus (60 km to 170 km) at the terminator have been retrieved from SOIR's spectra using different assumptions, wherein the hydrostatic equilibrium and the local thermodynamical equilibrium in the radiative transfer calculations. These results allow us to produce an Atmospheric model of Venus called Venus Atmosphere from SOIR measurements at the Terminator (VAST). Data obtained by SOIR will also contribute to update the Venus International Reference Atmosphere (VIRA). Recently, the treatment of the raw data to transmittance has been optimized, and a new dataset of spectra has been produced. All raw spectra (PSA level 2) as well as calibrated spectra (PSA level 3) have been delivered to ESA's Planetary Science Archive (PDSPSA). Consequently the re-analysis of all spectra has been undergone. We will briefly present the improvements implemented in the data pipeline. We will also show a compilation of results obtained by the instrument considering the complete mission duration.

  17. Venus thermosphere and exosphere - First satellite drag measurements of an extraterrestrial atmosphere (United States)

    Keating, G. M.; Tolson, R. H.; Hinson, E. W.


    Atmospheric drag measurements obtained from the study of the orbital decay of Pioneer Venus I indicate that atomic oxygen predominates in the Venus atmosphere above 160 kilometers. Drag measurements give evidence that conditions characteristic of a planetary thermosphere disappear near sundown, with inferred exospheric temperatures sharply dropping from approximately 300 K to less than 150 K. Observed densities are generally lower than given by theoretical models.

  18. Selectively reflective transparent sheets (United States)

    Waché, Rémi; Florescu, Marian; Sweeney, Stephen J.; Clowes, Steven K.


    We investigate the possibility to selectively reflect certain wavelengths while maintaining the optical properties on other spectral ranges. This is of particular interest for transparent materials, which for specific applications may require high reflectivity at pre-determined frequencies. Although there exist currently techniques such as coatings to produce selective reflection, this work focuses on new approaches for mass production of polyethylene sheets which incorporate either additives or surface patterning for selective reflection between 8 to 13 μ m. Typical additives used to produce a greenhouse effect in plastics include particles such as clays, silica or hydroxide materials. However, the absorption of thermal radiation is less efficient than the decrease of emissivity as it can be compared with the inclusion of Lambertian materials. Photonic band gap engineering by the periodic structuring of metamaterials is known in nature for producing the vivid bright colors in certain organisms via strong wavelength-selective reflection. Research to artificially engineer such structures has mainly focused on wavelengths in the visible and near infrared. However few studies to date have been carried out to investigate the properties of metastructures in the mid infrared range even though the patterning of microstructure is easier to achieve. We present preliminary results on the diffuse reflectivity using FDTD simulations and analyze the technical feasibility of these approaches.

  19. Earth Rotation (United States)

    Dickey, Jean O.


    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  20. Reexamination of plasma measurements from the Mariner 5 Venus encounter

    International Nuclear Information System (INIS)

    Shefer, R.E.; Lazarus, A.J.; Bridge, H.S.


    Mariner 5 plasma data from the Venus encounter have been analyzed with twice the time resolution of the original analysis of Bridge et al. (1967). The velocity distribution function for each spectrum is used to determine more precisely the locations of boundaries and characteristic flow parameters in the interaction region around the planet. We identify a new region in the flow located between magnetosheathlike plasma inside the shock front and an interior low-flux region near the geometrical shadow of the planet. The region is characterized by a wide velocity distribution function and a decrease in ion flux. Using the highest time resolution magnetic field data made available by Smith et al., we propose that rapid magnetic field fluctuations in this region may result in an artificial broadening of the distribution function. We conclude that very high time resolution is required in future experiments in order to determine the true nature of the plasma in this region

  1. "Chiriguano" Astronomy - Venus and a Guarani New Year (United States)

    Pereira, Gonzalo

    A Supreme Decree emitted by the government of Bolivia instituted the celebration of the June solstices in view of the fact that the indigenous people, both the Andean highlands and the Amazon and Chaco, "have commemorated this event for thousands of years" (Gobierno del Estado Plurinacional de Bolivia, Decreto Supremo N° 0173, June16, 2009, La Paz). In the case of the lowlands' indigenous, particularly the Guarani people, the decree mentions the planet Venus as the argument for this celebration. In this case of study and in light of astronomical and ethnographic evidence, we analyze the relevance of this decree in the case of the Guarani people of the Bolivian Chaco region, known as "Chiriguanos".

  2. New maps of Lakshmi Planum and eastern Aphrodite, Venus (United States)

    Mcgill, G. E.


    Interest on Venus has centered on three regions; (1) Aphrodite Terra, especially east of the main uplant portion, (2) Ishtar Terra, especially Lakshmi Planum and its bounding scarp and massifs, and (3) Beta Regio-Phoebe Regio. The last region is topographically similar to the East African rift system, and has been inferred to have a similar tectonic origin. The Aphrodite region is part of a 21,000 km long tectonic zone that seems best explained as due to extension, and that may represent hot spots clustered along an incipient divergent plate boundary. The most interesting and complex portion of this tectonic zone is that part of eastern Aphrodite between Thetis Regio and Atla Regio. In contrast, the Lakshmi Planum region has many topographic characteristics suggesting that it is a true continent, and thus indicative of convergence and a thick crust. Detailed topographic contour maps of eastern Aphrodite Terra and of Lakshmi Planum are included.

  3. Venus atmosphere profile from a maximum entropy principle

    Directory of Open Access Journals (Sweden)

    L. N. Epele


    Full Text Available The variational method with constraints recently developed by Verkley and Gerkema to describe maximum-entropy atmospheric profiles is generalized to ideal gases but with temperature-dependent specific heats. In so doing, an extended and non standard potential temperature is introduced that is well suited for tackling the problem under consideration. This new formalism is successfully applied to the atmosphere of Venus. Three well defined regions emerge in this atmosphere up to a height of 100 km from the surface: the lowest one up to about 35 km is adiabatic, a transition layer located at the height of the cloud deck and finally a third region which is practically isothermal.

  4. Comparative kinematical analyses of Venus flytrap (Dionaea muscipula snap traps

    Directory of Open Access Journals (Sweden)

    Simon Poppinga


    Full Text Available Although the Venus flytrap (Dionaea muscipula can be considered as one of the most extensively investigated carnivorous plants, knowledge is still scarce about diversity of the snap-trap motion, the functionality of snap traps under varying environmental conditions, and their opening motion. By conducting simple snap-trap closure experiments in air and under water, we present striking evidence that adult Dionaea snaps similarly fast in aerial and submersed states and, hence, is potentially able to gain nutrients from fast aquatic prey during seasonal inundation. We reveal three snapping modes of adult traps, all incorporating snap buckling, and show that millimeter-sized, much slower seedling traps do not yet incorporate such elastic instabilities. Moreover, opening kinematics of young and adult Dionaea snap traps reveal that reverse snap buckling is not performed, corroborating the assumption that growth takes place on certain trap lobe regions. Our findings are discussed in an evolutionary, biomechanical, functional–morphological and biomimetic context.

  5. Tectonics of Lakshmi Planum, Venus: Tests for Magellan

    International Nuclear Information System (INIS)

    Grimm, R.E.; Phillips, R.J.


    The origin of Lakshmi Planum and its surrounding mountain belts remains an important unresolved element in the global tectonic framework of Venus. From the perspective of gravity signature and potential driving forces, the mantle upwelling model is the simplest and its principal failure, that it cannot produce radial shortening on the uplift periphery, may be resolved if the lithosphere is laterally heterogeneous. The preferred model consists of a hot mantle plume rising beneath a pre-existing block of tessera. The lithosphere is weakened at this hotter and presumably thicker crust, and the outward near-surface flow is attenuated at the peripheral discontinuity in lithospheric strength. Crustal thickening and mountain belt formation occur there. The authors propose several criteria to test this tessera-plume model together with its competitors at the higher resolution in both imaging and gravity afforded by the Magellan mission

  6. Canali-type channels on Venus - Some genetic constraints (United States)

    Komatsu, Goro; Kargel, Jeffrey S.; Baker, Victor R.


    Canali-type channels on Venus are unique because of their great lengths (up to 6800 km) and nearly constant channel cross sectional shapes along their paths. A simple model incorporating channel flow and radiative cooling suggests that common terrestrial-type tholeiite lava cannot sustain a superheated and turbulent state for the long distances required for thermal erosion of canali within allowable discharge rates. If canali formed mainly by constructional processes, laminar tholeiitic flow of relatively high, sustained discharge rates might travel the observed distances, but the absence of levees would need to be explained. An exotic low temperature, low viscosity lava like carbonatite or sulfur seems to be required for the erosional genesis of canali.

  7. Superfund fact sheet: The remedial program. Fact sheet

    International Nuclear Information System (INIS)


    The fact sheet describes what various actions the EPA can take to clean up hazardous wastes sites. Explanations of how the criteria for environmental and public health risk assessment are determined and the role of state and local governments in site remediation are given. The fact sheet is one in a series providing reference information about Superfund issues and is intended for readers with no formal scientific training

  8. Solar rotation effects on the thermospheres of Mars and Earth. (United States)

    Forbes, Jeffrey M; Bruinsma, Sean; Lemoine, Frank G


    The responses of Earth's and Mars' thermospheres to the quasi-periodic (27-day) variation of solar flux due to solar rotation were measured contemporaneously, revealing that this response is twice as large for Earth as for Mars. Per typical 20-unit change in 10.7-centimeter radio flux (used as a proxy for extreme ultraviolet flux) reaching each planet, we found temperature changes of 42.0 +/- 8.0 kelvin and 19.2 +/- 3.6 kelvin for Earth and Mars, respectively. Existing data for Venus indicate values of 3.6 +/- 0.6 kelvin. Our observational result constrains comparative planetary thermosphere simulations and may help resolve existing uncertainties in thermal balance processes, particularly CO2 cooling.

  9. Dynamics of Venus' Southern hemisphere and South Polar Vortex from VIRTIS data obtained during the Venus Expres Mission (United States)

    Hueso, R.; Garate-Lopez, I.; Sanchez-Lavega, A.


    The VIRTIS instrument onboard Venus Express observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet. The images have been used to trace the motions of the atmosphere at different layers of clouds [1-3]. We review the VIRTIS cloud image data and wind results obtained by different groups [1-3] and we present new results concerning the morphology and evolution of the South Polar Vortex at the upper and lower cloud levels with data covering the first 900 days of the mission. We present wind measurements of the South hemisphere obtained by cloud tracking individual cloud features and higher-resolution wind results of the polar region covering the evolution of the South polar vortex. The later were obtained by an image correlation algorithm run under human supervision to validate the data. We present day-side data of the upper clouds obtained at 380 and 980 nm sensitive to altitudes of 66-70 km, night-side data in the near infrared at 1.74 microns of the lower cloud (45-50 km) and day and night-side data obtained in the thermal infrared (wavelengths of 3.8 and 5.1 microns) which covers the dynamical evolution of Venus South Polar vortex at the cloud tops (66-70 km). We explore the different dynamics associated to the varying morphology of the vortex, its dynamical structure at different altitudes, the variability of the global wind data of the southern hemisphere and the interrelation of the polar vortex dynamics with the wind dynamics at subpolar and mid-latitudes. Acknowledgements: Work funded by Spanish MICIIN AYA2009-10701 with FEDER support and Grupos Gobierno Vasco IT-464-07. References [1] A. Sánchez-Lavega et al., Geophys. Res. Lett. 35, L13204, (2008). [2] D. Luz et al., Science, 332, 577-580 (2011). [3] R. Hueso, et al., Icarus doi:10.1016/j.icarus.2011.04.020 (2011)

  10. Geologic Map of the Greenaway Quadrangle (V-24), Venus (United States)

    Lang, Nicholas P.; Hansen, Vicki L.


    The Greenaway quadrangle (V-24; lat 0 degrees -25 degrees N., long 120 degrees -150 degrees E.), Venus, derives its name from the impact crater Greenaway, centered at lat 22.9 degrees N., long 145.1 degrees E., in the northeastern part of the quadrangle. Greenaway was a well-noted writer and illustrator of children`s books in Britain during the nineteenth century. In Greenaway`s honor, the Library Association of Great Britain presents the annual Kate Greenaway Medal to an illustrator living and publishing in Britain who has produced the most distinguished children`s book illustrations for that year. The Greenaway quadrangle occupies an 8,400,000 km2 equatorial swath of lowlands and highlands. The map area is bounded by the crustal plateau, Thetis Regio, to the south and Gegute Tessera to the west. The rest of the quadrangle consists of part of Llorona Planitia, which is part of the vast lowlands that cover about 80 percent of Venus` surface. The southern map area marks the north edge of Aphrodite Terra, including Thetis Regio, that includes the highest topography in the quadrangle with elevations reaching >1 km above the Mean Planetary Radius (MPR; 6,051.84 km). Northern Aphrodite Terra abruptly slopes north to Llorona Planitia. A broad northeast-trending topographic arch pocked with coronae separates two northeast-trending elongate basins, Llorona Planitia on the east, that form depositional centers for shield and coronae-sourced materials; both basins drop to elevations of history for this region, which in turn provides insights into volcanic and tectonic processes that shaped the Venusian surface. Map relations illustrate that aerially expansive shield terrain (unit st) played a primary role and coronae played a secondary role in volcanic resurfacing across the map area.

  11. An Atmospheric Variability Model for Venus Aerobraking Missions (United States)

    Tolson, Robert T.; Prince, Jill L. H.; Konopliv, Alexander A.


    Aerobraking has proven to be an enabling technology for planetary missions to Mars and has been proposed to enable low cost missions to Venus. Aerobraking saves a significant amount of propulsion fuel mass by exploiting atmospheric drag to reduce the eccentricity of the initial orbit. The solar arrays have been used as the primary drag surface and only minor modifications have been made in the vehicle design to accommodate the relatively modest aerothermal loads. However, if atmospheric density is highly variable from orbit to orbit, the mission must either accept higher aerothermal risk, a slower pace for aerobraking, or a tighter corridor likely with increased propulsive cost. Hence, knowledge of atmospheric variability is of great interest for the design of aerobraking missions. The first planetary aerobraking was at Venus during the Magellan mission. After the primary Magellan science mission was completed, aerobraking was used to provide a more circular orbit to enhance gravity field recovery. Magellan aerobraking took place between local solar times of 1100 and 1800 hrs, and it was found that the Venusian atmospheric density during the aerobraking phase had less than 10% 1 sigma orbit to orbit variability. On the other hand, at some latitudes and seasons, Martian variability can be as high as 40% 1 sigmaFrom both the MGN and PVO mission it was known that the atmosphere, above aerobraking altitudes, showed greater variability at night, but this variability was never quantified in a systematic manner. This paper proposes a model for atmospheric variability that can be used for aerobraking mission design until more complete data sets become available.

  12. The photochemical stability of the Venus atmosphere against UV radiation

    International Nuclear Information System (INIS)

    Mills, F.P.; Slanger, T.G.; Allen, M.


    Full text: One unresolved question regarding the Venus atmosphere is what chemical mechanism(s) stabilize its primary constituent (CO 2 ) against UV radiation. CO 2 photolyzes on the day side into CO and O after absorbing photons at 2 rather than recombining with CO to form CO 2 , and the intense night side O 2 airglow observed quantitatively supports this. CO and O 2 are photochemically stable in an otherwise pure CO 2 atmosphere so significant abundances of CO and O 2 could accumulate on Venus if no catalytic mechanism existed to speed the reformation of CO 2 . However, the observational upper limit on ground state O 2 is equivalent to 2 from CO and O 2 . Recent laboratory work verified the existence of the ClC(O)OO catalytic mechanism that has been used in photochemical models since the early 1980s. However, there are significant uncertainties in the rates for the component steps of this catalytic mechanism. An alternative mechanism for production of CO 2 that has not previously been modeled but which could be competitive with the ClCO(O)O mechanism is the reaction CO + O 2 (c 1 Σ - u ) → CO 2 + O( 1 D) or O( 1 S), Reaction (1). A range of values for Reaction (1) will be examined in model calculations to compare with observational (UV to IR) constraints and to assess under what conditions this mechanism is competitive with the ClC(O)OO catalytic mechanism. The sensitivity of the results to uncertainties in the CO 2 UV absorption cross section also will be examined

  13. Magellan radio occultation measurements of atmospheric waves on Venus (United States)

    Hinson, David P.; Jenkins, J. M.


    Radio occultation experiments were conducted at Venus on three consecutive orbits of the Magellan spacecraft in October 1991. Each occultation occurred over the same topography (67 deg N, 127 deg E) and at the same local time (22 hr 5 min), but the data are sensitive to zonal variations because the atmosphere rotates significantly during one orbit. Through comparisons between observations and predictions of standard wave theory, we have demonstrated that small-scale oscillations in retrieved temperature profiles as well as scintillations in received signal intensity are caused by a spectrum of vertically propagating internal gravity waves. There is a strong similarity between the intensity scintillations observed here and previous measurements, which pertain to a wide range of locations and experiment dates. This implies that the same basic phenomenon underlies all the observations and hence that gravity waves are a persistent, global feature of Venus' atmosphere. We obtained a fairly complete characterization of a gravity wave that appears above the middle cloud in temperature measurements on all three orbits. The amplitude and vertical wavelength are about 4 K and 2.5 km respectively, at 65 km. A model for radiative damping implies that the wave intrinsic frequency is approximately 2 x 10(exp 4) rad/sec, the corresponding ratio between horizontal and vertical wavelengths is approximately 100. The wave is nearly stationary relative to the surface or the Sun. Radiative attenuation limits the wave amplitude at altitudes above approximately 65 km, leading to wave drag on the mean zonal winds of about +0.4 m/sec per day (eastward). The sign, magnitude, and location of this forcing suggest a possible role in explaining the decrease with height in the zonal wind speed that is believed to occur above the cloud tops. Temperature oscillations with larger vertical wavelengths (5-10 km) were also observed on all three orbits, but we are able unable to interpret these

  14. Sausage mode instability of thin current sheets as a cause of magnetospheric substorms

    Directory of Open Access Journals (Sweden)

    J. Büchner

    Full Text Available Observations have shown that, prior to substorm explosions, thin current sheets are formed in the plasma sheet of the Earth's magnetotail. This provokes the question, to what extent current-sheet thinning and substorm onsets are physically, maybe even causally, related. To answer this question, one has to understand the plasma stability of thin current sheets. Kinetic effects must be taken into account since particle scales are reached in the course of tail current-sheet thinning. We present the results of theoretical investigations of the stability of thin current sheets and about the most unstable mode of their decay. Our conclusions are based upon a non-local linear dispersion analysis of a cross-magnetic field instability of Harris-type current sheets. We found that a sausage-mode bulk current instability starts after a sheet has thinned down to the ion inertial length. We also present the results of three-dimensional electromagnetic PIC-code simulations carried out for mass ratios up to Mi / me=64. They verify the linearly predicted properties of the sausage mode decay of thin current sheets in the parameter range of interest.

    Key words. Magnetospheric physics (plasma waves and instabilities; storms and substorms · Space plasma physics (magnetic reconnection

  15. A statistical study on the correlations between plasma sheet and solar wind based on DSP explorations

    Directory of Open Access Journals (Sweden)

    G. Q. Yan


    Full Text Available By using the data of two spacecraft, TC-1 and ACE (Advanced Composition Explorer, a statistical study on the correlations between plasma sheet and solar wind has been carried out. The results obtained show that the plasma sheet at geocentric distances of about 9~13.4 Re has an apparent driving relationship with the solar wind. It is found that (1 there is a positive correlation between the duskward component of the interplanetary magnetic field (IMF and the duskward component of the geomagnetic field in the plasma sheet, with a proportionality constant of about 1.09. It indicates that the duskward component of the IMF can effectively penetrate into the near-Earth plasma sheet, and can be amplified by sunward convection in the corresponding region at geocentric distances of about 9~13.4 Re; (2 the increase in the density or the dynamic pressure of the solar wind will generally lead to the increase in the density of the plasma sheet; (3 the ion thermal pressure in the near-Earth plasma sheet is significantly controlled by the dynamic pressure of solar wind; (4 under the northward IMF condition, the ion temperature and ion thermal pressure in the plasma sheet decrease as the solar wind speed increases. This feature indicates that plasmas in the near-Earth plasma sheet can come from the magnetosheath through the LLBL. Northward IMF is one important condition for the transport of the cold plasmas of the magnetosheath into the plasma sheet through the LLBL, and fast solar wind will enhance such a transport process.

  16. The Surface of Venus is Saturated With Ancient Impact Structures, and its Plains are Marine Sediments (United States)

    Hamilton, W. B.


    Conventional interpretations of Venus are forced to fit dubious pre-Magellan conjectures that the planet is as active internally as Earth and preserves no ancient surface features. Plate tectonics obviously does not operate, so it is commonly assumed that the surface must record other endogenic processes, mostly unique to Venus. Imaginative systems of hundreds of tiny to huge rising and sinking plumes and diapirs are invoked. That much of the surface in fact is saturated with overlapping large circular depressions with the morphology of impact structures is obscured by postulating plume origins for selected structures and disregarding the rest. Typical structures are rimmed circular depressions, often multiring, with lobate debris aprons; central peaks are common. Marine-sedimentation features are overlooked because dogma deems the plains to be basalt flows despite their lack of source volcanoes and fissures. The unearthly close correlation between geoid and topography at long to moderate wavelengths requires, in conventional terms, dynamic maintenance of topography by up and down plumes of long-sustained precise shapes and buoyancy. A venusian upper mantle much stronger than that of Earth, because it is cooler or poorer in volatiles, is not considered. (The unearthly large so-called volcanoes and tessera plateaus often are related to rimmed circular depressions and likely are products of impact fluidization and melting.) Plains-saturating impact structures (mostly more obvious in altimetry than backscatter) with diameters of hundreds of km are superimposed as cookie-cutter bites, are variably smoothed and smeared by apparent submarine impact and erosion, and are differentially buried by sediments compacted into them. Marine- sedimentation evidence includes this compaction; long sinuous channels and distributaries with turbidite- channel characteristics and turbidite-like lobate flows (Jones and Pickering, JGSL 2003); radar-smooth surfaces and laminated aspect in

  17. 2012 Swimming Season Fact Sheets (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  18. State Fact Sheets on COPD (United States)

    ... Submit Search The CDC Chronic Obstructive Pulmonary Disease (COPD) Note: Javascript is disabled or is not supported ... message, please visit this page: About . COPD Homepage Data and Statistics Fact Sheets Publications Publications ...

  19. Current sheets with inhomogeneous plasma temperature: Effects of polarization electric field and 2D solutions

    International Nuclear Information System (INIS)

    Catapano, F.; Zimbardo, G.; Artemyev, A. V.; Vasko, I. Y.


    We develop current sheet models which allow to regulate the level of plasma temperature and density inhomogeneities across the sheet. These models generalize the classical Harris model via including two current-carrying plasma populations with different temperature and the background plasma not contributing to the current density. The parameters of these plasma populations allow regulating contributions of plasma density and temperature to the pressure balance. A brief comparison with spacecraft observations demonstrates the model applicability for describing the Earth magnetotail current sheet. We also develop a two dimensional (2D) generalization of the proposed model. The interesting effect found for 2D models is the nonmonotonous profile (along the current sheet) of the magnetic field component perpendicular to the current sheet. Possible applications of the model are discussed

  20. Current sheets with inhomogeneous plasma temperature: Effects of polarization electric field and 2D solutions

    Energy Technology Data Exchange (ETDEWEB)

    Catapano, F., E-mail:; Zimbardo, G. [Dipartimento di Fisica, Università della Calabria, Rende, Cosenza (Italy); Artemyev, A. V., E-mail:; Vasko, I. Y. [Space Research Institute, RAS, Moscow (Russian Federation)


    We develop current sheet models which allow to regulate the level of plasma temperature and density inhomogeneities across the sheet. These models generalize the classical Harris model via including two current-carrying plasma populations with different temperature and the background plasma not contributing to the current density. The parameters of these plasma populations allow regulating contributions of plasma density and temperature to the pressure balance. A brief comparison with spacecraft observations demonstrates the model applicability for describing the Earth magnetotail current sheet. We also develop a two dimensional (2D) generalization of the proposed model. The interesting effect found for 2D models is the nonmonotonous profile (along the current sheet) of the magnetic field component perpendicular to the current sheet. Possible applications of the model are discussed.

  1. Australian Government Balance Sheet Management


    Wilson Au-Yeung; Jason McDonald; Amanda Sayegh


    Since almost eliminating net debt, the Australian Government%u2019s attention has turned to the financing of broader balance sheet liabilities, such as public sector superannuation. Australia will be developing a significant financial asset portfolio in the %u2018Future Fund%u2019 to smooth the financing of expenses through time. This raises the significant policy question of how best to manage the government balance sheet to reduce risk. This paper provides a framework for optimal balance sh...

  2. Energy information sheets, July 1998

    Energy Technology Data Exchange (ETDEWEB)



    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  3. Energy information sheets, September 1996

    Energy Technology Data Exchange (ETDEWEB)



    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  4. Aplikasi Dua Segitiga Sebangun pada Studi Venus Transit di Matahari Tanggal 8 Juni 2004 dari BPD LAPAN Watukosek

    Directory of Open Access Journals (Sweden)

    Nanang Widodo


    Full Text Available Transit planet Venus di cakram matahari (jari-jari = 696000 km merupakan peristiwa alam yang dapat dilihat secara berkala. Planet Venus merupakan planet kedua dalam sistem tata surya yang mempunyai orbit lebih dekat ke matahari (= 0,723 Astronomical Unit dibanding jarak bumi-matahari (= 149.600.000 km = 1 AU. Sehingga pada suatu waktu tertentu ada peluang berada tepat di depan Bumi, saat menghadap matahari atau dikenal dengan transit Venus. Proses pengamatan fenomena transit Venus di cakram matahari tersebut dapat diimplimentasikan sebagai aplikasi dua segitiga sebangun, Dimana jari-jari planet Venus (jari-jari = 6051,8 km dinyatakan sebagai tinggi benda dan jari-jari tinggi bayangan Venus sebesar 20880 km (= 3,65 mm pada cakram matahari. Dimana diameter matahari 1.392.000 km (= 240 mm pada lembar sket. Dengan pengukuran jarak tempuh Venus transit 72,4 mm (419 920 km di cakram matahari terhadap waktu kontak pertama bayangan Venus pada jam 05.28 UT (12.28 WIB di tepi timur hingga akhir transit pada 17.50 UT (14.50 WIB diperoleh kecepatan bayangan Venus sebesar 49,286 km/detik

  5. FDTD modeling of thin impedance sheets (United States)

    Luebbers, Raymond J.; Kunz, Karl S.


    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.

  6. The influence of ice sheets on temperature during the past 38 million years inferred from a one-dimensional ice sheet-climate model

    NARCIS (Netherlands)

    Stap, Lennert B.; Van De Wal, Roderik S.W.; De Boer, Bas; Bintanja, Richard; Lourens, Lucas J.


    Since the inception of the Antarctic ice sheet at the Eocene-Oligocene transition ( ~34 Myr ago), land ice has played a crucial role in Earth's climate. Through feedbacks in the climate system, land ice variability modifies atmospheric temperature changes induced by orbital, topographical, and

  7. Digital Earth - A sustainable Earth (United States)



    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  8. Methane measurement by the Pioneer Venus large probe neutral mass spectrometer (United States)

    Donahue, T. M.; Hodges, R. R., Jr.


    The Pioneer Venus Large Probe Mass Spectrometer detected a large quantity of methane as it descended below 20 km in the atmosphere of Venus. Terrestrial methane and Xe-136, both originating in the same container and flowing through the same plumbing, were deliberately released inside the mass spectrometer for instrumental reasons. However, the Xe-136 did not exhibit behavior similar to methane during Venus entry, nor did CH4 in laboratory simulations. The CH4 was deuterium poor compared to Venus water and hydrogen. While the inlet to the mass spectrometer was clogged with sulfuric acid droplets, significant deuteration of CH4 and its H2 progeny was observed. Since the only source of deuterium identifiable was water from sulfuric acid, we have concluded that we should correct the HDO/H2O ratio in Venus water from 3.2 x 10-2 to (5 plus or minus 0.7) x 10-2. When the probe was in the lower atmosphere, transfer of deuterium from Venus HDO and HD to CH4 can account quantitatively for the deficiencies recorded in HDO and HD below 10 km, and consequently, the mysterious gradients in water vapor and hydrogen mixing ratios we have reported. The revision in the D/H ratio reduces the mixing ratio of water vapor (and H2) reported previously by a factor of 3.2/5. We are not yet able to say whether the methane detected was atmospheric or an instrumental artifact. If it was atmospheric, its release must have been episodic and highly localized. Otherwise, the large D/H ratio in Venus water and hydrogen could not be maintained.

  9. On Jovian plasma sheet structure

    International Nuclear Information System (INIS)

    Khurana, K.K.; Kivelson, M.G.


    The authors evaluate several models of Jovian plasma sheet structure by determining how well they organize several aspects of the observed Voyager 2 magnetic field characteristics as a function of Jovicentric radial distance. It is shown that in the local time sector of the Voyager 2 outbound pass (near 0300 LT) the published hinged-magnetodisc models with wave (i.e., models corrected for finite wave velocity effects) are more successful than the published magnetic anomaly model in predicting locations of current sheet crossings. They also consider the boundary between the plasma sheet and the magnetotail lobe which is expected to vary slowly with radial distance. They use this boundary location as a further test of the models of the magnetotail. They show that the compressional MHD waves have much smaller amplitude in the lobes than in the plasma sheet and use this criterion to refine the identification of the plasma-sheet-lobe boundary. When the locations of crossings into and out of the lobes are examined, it becomes evident that the magnetic-anomaly model yields a flaring plasma sheet with a halfwidth of ∼ 3 R J at a radial distance of 20 R J and ∼ 12 R J at a radial distance of 100 R J . The hinged-magnetodisc models with wave, on the other hand, predict a halfwidth of ∼ 3.5 R J independent of distance beyond 20 R J . New optimized versions of the two models locate both the current sheet crossings and lobe encounters equally successfully. The optimized hinged-magnetodisc model suggests that the wave velocity decreases with increasing radial distance. The optimized magnetic anomaly model yields lower velocity contrast than the model of Vasyliunas and Dessler (1981)

  10. Extending Whole-earth Tectonics To The Terrestrial Planets (United States)

    Baker, V. R.; Maruyama, S.; Dohm, J. M.

    Based on the need to explain a great many geological and geophysical anomalies on Mars, and stimulated by the new results from the Mars Global Surveyor Mission, we propose a conceptual model of whole-EARTH (Episodic Annular Revolving Thermal Hydrologic) tectonics for the long-term evolution of terrestrial planets. The theory emphasizes (1) the importance of water in planetary evolution, and (2) the physi- cal transitions in modes of mantle convection in relation to planetary heat produc- tion. Depending on their first-order geophysical parameters and following accretion and differentiation from volatile-rich planetessimals, terrestrial planets should evolve through various stages of mantle convection, including magma ocean, plate tectonic, and stagnant lid processes. If a water ocean is able to condense from the planet's early steam atmosphere, an early regime of plate tectonics will follow the initial magma ocean. This definitely happened on earth, probably on Mars, and possibly on Venus. The Mars history led to transfer of large amounts of water to the mantle during the pe- riod of heavy bombardment. Termination of plate tectonics on Mars during the heavy bombardment period led to initiation of superplumes at Tharsis and Elysium, where long-persistent volcanism and water outbursts dominated much of later Martian his- tory. For Venus, warming of the early sun made the surface ocean unstable, eliminating its early plate-tectonic regime. Although Venus now experiences stagnant-lid convec- tion with episodic mantle overturns, the water subducted to its lower mantle during the ancient plate-tectonic regime manifests itself in the initation of volatile-rich plumes that dominate its current tectonic regime.

  11. Automobile sheet metal part production with incremental sheet forming

    Directory of Open Access Journals (Sweden)

    İsmail DURGUN


    Full Text Available Nowadays, effect of global warming is increasing drastically so it leads to increased interest on energy efficiency and sustainable production methods. As a result of adverse conditions, national and international project platforms, OEMs (Original Equipment Manufacturers, SMEs (Small and Mid-size Manufacturers perform many studies or improve existing methodologies in scope of advanced manufacturing techniques. In this study, advanced manufacturing and sustainable production method "Incremental Sheet Metal Forming (ISF" was used for sheet metal forming process. A vehicle fender was manufactured with or without die by using different toolpath strategies and die sets. At the end of the study, Results have been investigated under the influence of method and parameters used.Keywords: Template incremental sheet metal, Metal forming

  12. Uranium mining sites - Thematic sheets

    International Nuclear Information System (INIS)


    A first sheet proposes comments, data and key numbers about uranium extraction in France: general overview of uranium mining sites, status of waste rock and tailings after exploitation, site rehabilitation. The second sheet addresses the sources of exposure to ionizing radiations due to ancient uranium mining sites: discussion on the identification of these sources associated with these sites, properly due to mining activities or to tailings, or due to the transfer of radioactive substances towards water and to the contamination of sediments, description of the practice and assessment of radiological control of mining sites. A third sheet addresses the radiological exposure of public to waste rocks, and the dose assessment according to exposure scenarios: main exposure ways to be considered, studied exposure scenarios (passage on backfilled path and grounds, stay in buildings built on waste rocks, keeping mineralogical samples at home). The fourth sheet addresses research programmes of the IRSN on uranium and radon: epidemiological studies (performed on mine workers; on French and on European cohorts, French and European studies on the risk of lung cancer associated with radon in housing), study of the biological effects of chronic exposures. The last sheet addresses studies and expertises performed by the IRSN on ancient uranium mining sites in France: studies commissioned by public authorities, radioactivity control studies performed by the IRSN about mining sites, participation of the IRSN to actions to promote openness to civil society

  13. Ion and electron Kappa distribution functions in the plasma sheet. (United States)

    Moya, P. S.; Stepanova, M. V.; Espinoza, C.; Antonova, E. E.; Valdivia, J. A.


    We present a study of ion and electron flux spectra in the Earth's plasma sheet using kappa distribution functions. Satellite data from the THEMIS mission were collected for thousands of crossings through the plasma sheet, between 7 and 35 Re and during the years 2008-2009. The events were separated according to the geomagnetic activity at the time. Our results show the distribution of the kappa index and characteristic energies across the plasma sheet and its evolution with distance to Earth for quiet times and for the substorm expansion and recovery phases. For the ions, it is observed that the kappa values tend to decrease outwards and that this effect is more significant in the dusk sector, where the smallest values are found for distances beyond 15 Re. The main effect of the substorms appears as an enhancement of this behavior. The electrons show a much more homogeneous distribution in quiet times, with a mild tendency for larger kappa values at larger distances. During substorms, the kappa values tend to equalize and appear very homogenous during expansion. However, they exhibit a significant increase in the dusk sector during the recovery substorm phase. Finally, we observe that the characteristic energy of the particles during substorms increases and concentrate at distances less than 15 Re.

  14. Complete plasma dropouts at Vela satellites during thinning of the plasma sheet

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; Hones, E.W. Jr.; Venkatesan, D.; Akasofu, S.; Bame, S.J.


    Five satellite years of Vela data are examined for plasma sheet thinnings. Complete proton disappearances (plasma dropouts) are the main subject here. During such times, the Vela satellite is temporarily in the high-latitude tail lobe. The distribution of such plasma dropouts within the magnetotail suggests that the semithickness of the plasma sheet near midnight seldom reaches less than 1 R/sub E/ during substorms and that the dawn and dusk portions of the plasma sheet remain thicker than the midnight portion. But it is also shown that the plasma sheet occasionally becomes very thin near the dusk magnetopause. No such severe thinnings of the plasma sheet are found near the dawn magnetopause. Plasma dropouts can occur regardless of the sign of the Z component of the IMF, but their frequency of occurrence seems to be greater when the Z component is negative.Three plasma dropouts which occurred in the midnight sector at unusually large distances from the estimated position of the neutral sheet were observed during geomagnetic storms. It is likely that the midnight sector of the plasma sheet can become very thick (approx.18 R/sub E/) at certain times during the main phase of storms. Detailed measurements in the plasma sheet were obtained near the beginning of a geomagnetic storm whose sc triggered a substorm. A compression of the plasma sheet at X/sub SM/approx. =-15 R/sub E/ occurred about 10 min after the sc onset at the earth and about 5 min after the start of plasma sheet thinning associated with the sc-related substorm. If compression-thinning of the plasma sheet initiated this substorm, the triggering action must have occurred earthward of X/sub SM/approx. =-15 R/sub E/

  15. Automated cloud tracking system for the Akatsuki Venus Climate Orbiter data (United States)

    Ogohara, Kazunori; Kouyama, Toru; Yamamoto, Hiroki; Sato, Naoki; Takagi, Masahiro; Imamura, Takeshi


    Japanese Venus Climate Orbiter, Akatsuki, is cruising to approach to Venus again although its first Venus orbital insertion (VOI) has been failed. At present, we focus on the next opportunity of VOI and the following scientific observations.We have constructed an automated cloud tracking system for processing data obtained by Akatsuki in the present study. In this system, correction of the pointing of the satellite is essentially important for improving accuracy of the cloud motion vectors derived using the cloud tracking. Attitude errors of the satellite are reduced by fitting an ellipse to limb of an imaged Venus disk. Next, longitude-latitude distributions of brightness (cloud patterns) are calculated to make it easy to derive the cloud motion vectors. The grid points are distributed at regular intervals in the longitude-latitude coordinate. After applying the solar zenith correction and a highpass filter to the derived longitude-latitude distributions of brightness, the cloud features are tracked using pairs of images. As a result, we obtain cloud motion vectors on longitude-latitude grid points equally spaced. These entire processes are pipelined and automated, and are applied to all data obtained by combinations of cameras and filters onboard Akatsuki. It is shown by several tests that the cloud motion vectors are determined with a sufficient accuracy. We expect that longitude-latitude data sets created by the automated cloud tracking system will contribute to the Venus meteorology.

  16. Overview of the conceptual design of the future VENUS beamline at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Bilheux, Hassina Z [ORNL; Herwig, Kenneth W [ORNL; Keener, Wylie S [ORNL; Davis, Larry E [ORNL


    VENUS will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to m). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beamline 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS

  17. Prolonged silicon carbide integrated circuit operation in Venus surface atmospheric conditions

    Directory of Open Access Journals (Sweden)

    Philip G. Neudeck


    Full Text Available The prolonged operation of semiconductor integrated circuits (ICs needed for long-duration exploration of the surface of Venus has proven insurmountably challenging to date due to the ∼ 460 °C, ∼ 9.4 MPa caustic environment. Past and planned Venus landers have been limited to a few hours of surface operation, even when IC electronics needed for basic lander operation are protected with heavily cumbersome pressure vessels and cooling measures. Here we demonstrate vastly longer (weeks electrical operation of two silicon carbide (4H-SiC junction field effect transistor (JFET ring oscillator ICs tested with chips directly exposed (no cooling and no protective chip packaging to a high-fidelity physical and chemical reproduction of Venus’ surface atmosphere. This represents more than 100-fold extension of demonstrated Venus environment electronics durability. With further technology maturation, such SiC IC electronics could drastically improve Venus lander designs and mission concepts, fundamentally enabling long-duration enhanced missions to the surface of Venus.

  18. Commissioning of the superconducting ECR ion source VENUS at 18 GHz

    International Nuclear Information System (INIS)

    Leitner, Daniela; Abbott, Steven R.; Dwinell, Roger D.; Leitner, Matthaeus; Taylor, Clyde E.; Lyneis, Claude M.


    During the last year, the VENUS ECR ion source was commissioned at 18 GHz and preparations for 28 GHz operation are now underway. During the commissioning phase with 18 GHz, tests with various gases and metals have been performed with up to 2000 W RF power. The ion source performance is very promising [1,2]. VENUS (Versatile ECR ion source for Nuclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The goal of the VENUS ECR ion source project as the RIA R and D injector is the production of 240e(micro)A of U 30+ , a high current medium charge state beam. On the other hand, as an injector ion source for the 88-Inch Cyclotron the design objective is the production of 5e(micro)A of U 48+ , a low current, very high charge state beam. To meet these ambitious goals, VENUS has been designed for optimum operation at 28 GHz. This frequency choice has several design consequences. To achieve the required magnetic confinement, superconducting magnets have to be used. The size of the superconducting magnet structure implies a relatively large plasma volume. Consequently, high power microwave coupling becomes necessary to achieve sufficient plasma heating power densities. The 28 GHz power supply has been delivered in April 2004

  19. Magnetic energy density and plasma energy density in the Venus wake (United States)

    Perez De Tejada, H. A.; Durand-Manterola, H. J.; Lundin, R.; Barabash, S.; Zhang, T.; Reyes-Ruiz, M.; Sauvaud, J.


    Magnetic energy density and plasma energy density in the Venus wake H. Pérez-de-Tejada1, H. Durand-Manterola1, R. Lundin2, S. Barabash2, T. L. Zhang3, A. Sauvaud4, M. Reyes-Ruiz5. 1 - Institute of Geophysics, UNAM, México, D. F. 2 - Swedish Institute of Space Physics, Umea, Sweden 3 - Space Research Institute, Graz, Austria 4 - CESR, Toulouse, France 5 - Institute of Astronomy, UNAM, Ensenada, México Measurements conducted in the Venus wake with the magnetometer and the Aspera-4 plasma instrument of the Venus Express spacecraft show that average values of the kinetic energy density of the plasma in that region are comparable to average local values of the magnetic energy density. Observations were carried out in several orbits of the Venus Express near the midnight plane and suggest that the total energy content in the Venus wake is distributed with nearly comparable values between the plasma and the magnetic field. Processes associated with the solar wind erosion of planetary ions from the polar magnetic regions of the ionosphere are involved in the comparable distribution of both energy components.

  20. Root-growth-inhibiting sheet (United States)

    Burton, F.G.; Cataldo, D.A.; Cline, J.F.; Skiens, W.E.; Van Voris, P.


    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a geotextile'' and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  1. Optimal swimming of a sheet. (United States)

    Montenegro-Johnson, Thomas D; Lauga, Eric


    Propulsion at microscopic scales is often achieved through propagating traveling waves along hairlike organelles called flagella. Taylor's two-dimensional swimming sheet model is frequently used to provide insight into problems of flagellar propulsion. We derive numerically the large-amplitude wave form of the two-dimensional swimming sheet that yields optimum hydrodynamic efficiency: the ratio of the squared swimming speed to the rate-of-working of the sheet against the fluid. Using the boundary element method, we show that the optimal wave form is a front-back symmetric regularized cusp that is 25% more efficient than the optimal sine wave. This optimal two-dimensional shape is smooth, qualitatively different from the kinked form of Lighthill's optimal three-dimensional flagellum, not predicted by small-amplitude theory, and different from the smooth circular-arc-like shape of active elastic filaments.

  2. Root-growth-inhibiting sheet (United States)

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene; Van Voris, Peter


    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a "geotextile" and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  3. Solar Energetic Particle Transport Near a Heliospheric Current Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Battarbee, Markus; Dalla, Silvia [Jeremiah Horrocks Institute, University of Central Lancashire, PR1 2HE (United Kingdom); Marsh, Mike S., E-mail: [Met Office, Exeter, EX1 3 PB (United Kingdom)


    Solar energetic particles (SEPs), a major component of space weather, propagate through the interplanetary medium strongly guided by the interplanetary magnetic field (IMF). In this work, we analyze the implications that a flat Heliospheric Current Sheet (HCS) has on proton propagation from SEP release sites to the Earth. We simulate proton propagation by integrating fully 3D trajectories near an analytically defined flat current sheet, collecting comprehensive statistics into histograms, fluence maps, and virtual observer time profiles within an energy range of 1–800 MeV. We show that protons experience significant current sheet drift to distant longitudes, causing time profiles to exhibit multiple components, which are a potential source of confusing interpretations of observations. We find that variation of the current sheet thickness within a realistic parameter range has little effect on particle propagation. We show that the IMF configuration strongly affects the deceleration of protons. We show that in our model, the presence of a flat equatorial HCS in the inner heliosphere limits the crossing of protons into the opposite hemisphere.

  4. Development of the Brazilian national sheet scintillator converter of neutron

    International Nuclear Information System (INIS)

    Barbosa, Andre Luis Nunes


    Both the national domain of the technology for the separation of rare earth elements and the large reserves of these minerals in Brazilian territory, motivated the study of national sheets scintillators converter of neutrons, using a granular mixture Gd 2 O 3 -Zn S:Ag. Three methodologies were used for the manufacture of such sheets, namely: deposition done with a compressed-air gun on a sheet of cellulose type CG3460-3M; fusion of granular mixture with EVA in the mixing chamber and deposition of granular mixture on the substrate of EVA. It was used the flux of the order of 4,46 x 10 5 neutrons thermic/cm 2 .s, coming from the channel irradiation, J-9, of the reactor Argonauta/IEN/CNEN and the radiographic film AA-400 Kodak Industrex. The performances of national scintillator neutrons converter sheets were analyzed and the images obtained with the, demonstrated that the methodologies proposed are technically feasible and can contribute to the reduction of cost of this technique for NDA, but which lack optimization is aimed at increasing the number of photons of light to allow its use in neutrongraphies in Real Time (NRTR). (author)

  5. Earth's glacial record and its tectonic setting (United States)

    Eyles, N.


    clearly established glacial parentage. The same remarks apply to many successions of laminated and thin-bedded facies interpreted as "varvites". Despite suggestions of much lower values of solar luminosity (the weak young sun hypothesis), the stratigraphic record of Archean glaciations is not extensive and may be the result of non-preservation. However, the effects of very different Archean global tectonic regimes and much higher geothermal heat flows, combined with a Venus-like atmosphere warmed by elevated levels of CO 2, cannot be ruled out. The oldest unambiguous glacial succession in Earth history appears to be the Early Proterozoic Gowganda Formation of the Huronian Supergroup in Ontario; the age of this event is not well-constrained but glaciation coincided with regional rifting, and may be causally related to, oxygenation of Earth's atmosphere just after 2300 Ma. New evidence that oxygenation is tectonically, not biologically driven, stresses the intimate relationship between plate tectonics, evolution of the atmosphere and glaciation. Global geochemical controls, such as elevated atmospheric CO 2 levels, may be responsible for a long mid-Proterozoic non-glacial interval after 2000 Ma that was terminated by the Late Proterozoic glaciations just after 800 Ma. A persistent theme in both Late Proterozoic and Phanerozoic glaciations is the adiabatic effect of tectonic uplift, either along collisional margins or as a result of passive margin uplifts in areas of extended crust, as the trigger for glaciation; the process is reinforced by global geochemical feedback, principally the drawdown of atmospheric CO 2 and Milankovitch "astronomical" forcing but these are unlikely, by themselves, to inititiate glaciation. The same remarks apply to late Cenozoic glaciations. Late Proterozoic glacially-influenced strata occur on all seven continents and fall into two tectonostratigraphic types. In the first category are thick sucessions of turbidites and mass flows deposited along

  6. Fluvial geomorphology on Earth-like planetary surfaces: A review. (United States)

    Baker, Victor R; Hamilton, Christopher W; Burr, Devon M; Gulick, Virginia C; Komatsu, Goro; Luo, Wei; Rice, James W; Rodriguez, J A P


    Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn's moon Titan). In other cases, as on Mercury, Venus, Earth's moon, and Jupiter's moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn's moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry.

  7. Ice sheet hydrology - a review

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter; Naeslund, Jens-Ove [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden); Rodhe, Lars [Geological Survey of Sweden, Uppsala (Sweden)


    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  8. Ice sheet hydrology - a review

    International Nuclear Information System (INIS)

    Jansson, Peter; Naeslund, Jens-Ove; Rodhe, Lars


    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  9. Sheet Beam Klystron Instability Analysis

    International Nuclear Information System (INIS)

    Bane, K.


    Using the principle of energy balance we develop a 2D theory for calculating growth rates of instability in a two-cavity model of a sheet beam klystron. An important ingredient is a TE-like mode in the gap that also gives a longitudinal kick to the beam. When compared with a self-consistent particle-in-cell calculation, with sheet beam klystron-type parameters, agreement is quite good up to half the design current, 65 A; at full current, however, other, current-dependent effects come in and the results deviate significantly

  10. The social balance sheet 2004


    Ph. Delhez; P. Heuse


    Each year, in the 4th quarter’s Economic Review, the National Bank examines the provisional results of the social balance sheets. As all the social balance sheets are not yet available for 2004, the study is based on a limited population of enterprises, compiled according to the principle of a constant sample. This population is made up of 38,530 enterprises employing around 1,331,000 workers in 2004. The main results of the analysis, in terms of employment, working hours, labour cost and tra...

  11. Earth thermics

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, M


    The thermodynamics of the Earth are described, including terrestrial heat flow, internal temperatures and thermal history. The value of the geothermal gradient has been considered to be 3/sup 0/C/100 m but measured values are slightly different. The values of terrestrial heat flow are relatively constant and are calculated be about 2.3 x 10 to the minus 6 cal/cm/sup 2/ sec (2.3 HFU). The Earth's internal temperature can be calculated from the adiabatic temperature gradient of adiabatic expansion. Using Simon's equation No. 9, a value of 2100-2500/sup 0/C is obtained, this is much lower than it was previously thought to be. The value of 2.3 HFU can easily be obtained from this internal temperature figure.

  12. Geologic map of the Lada Terra quadrangle (V-56), Venus (United States)

    Kumar, P. Senthil; Head, James W.


    This publication provides a geological map of Lada Terra quadrangle (V–56), a portion of the southern hemisphere of Venus that extends from lat 50° S. to 70° S. and from long 0° E. to 60° E. V–56 is bordered by Kaiwan Fluctus (V–44) and Agnesi (V–45) quadrangles in the north and by Mylitta Fluctus (V–61), Fredegonde (V–57), and Hurston (V–62) quadrangles in the west, east, and south, respectively. The geological map of V–56 quadrangle reveals evidence for tectonic, volcanic, and impact processes in Lada Terra in the form of tesserae, regional extensional belts, coronae, and volcanic plains. In addition, the map also shows relative age relations such as overlapping or cross-cutting relations between the mapped geologic units. The geology observed within this quadrangle addresses (1) how coronae evolved in association with regional extensional belts and (2) how tesserae, regional plains, and impact craters, which are also significant geological units observed in Lada Terra quadrangle, were formed.

  13. The Transit of Venus: an Opportunity to Promote Astronomy (United States)

    Ros, R. M.

    The transit of Venus was an excellent opportunity to promote Astronomy to everybody. In particular this occasion was used to encourage interest in Astronomy in schools. In our society, which has a good quality of life, interest in science has decreased. Every year the number of students interested in studying science degrees at university is smaller than in previous years. Our new generations do not seem to be motivated to study in the field of science. Probably this situation is a consequence of the lack of understanding of the true meaning of science. Of course, it is not possible that a student would decide to study a topic that they do not know about. In the media science appears less than sports, cinema, or business! In consequence, the general public is more concerned about items other than science. On June 8th we took advantage of an opportunity to introduce science and Astronomy into the lives of everybody, but especially in schools. This paper will show two projects related to the transit in schools: ”Pilla el Tránsito de Venus” and ”VT-2004” and a short appendix to another project for schools ”ALMA-ITP”

  14. Structure and dynamics of the ionosphere. [Venus atmosphere (United States)

    Nagy, A. F.; Brace, L. H.


    The structure of the Venus ionosphere and the major processes occurring within it are summarized. The daytime ionosphere is created by solar EUV radiation incident on the thermosphere; it is in photochemical equilibrium near its peak at about 142 km, where O2(+) is the major ion, and near diffusive equilibrium in its upper regions, where the major ion is O(+). The day-to-night plasma pressure gradient across the terminator drives a nightward ion flow which, together with electron precipitation, contributes to the formation of the nighttime ionosphere. Large-scale radial holes or plasma depletions extending downwards to nearly the ionization peak in the antisolar region are also observed which are associated with regions of strong radial magnetic fields. The ionopause is a highly dynamic and complex surface, extending from an average altitude of 290 km at the subsolar point to about 1000 km at the terminator and from 200 to over 3000 km on the nightside. A variety of solar wind interaction products are observed in the mantle, a transition region between the ionospheric plasma and the flowing shocked solar wind.

  15. Outcrops of plastic material on the surface of Venus (United States)

    Ksanfomality, L. V.


    The archive data of the television experiment performed by the Venera-14 spacecraft on the surface of the planet Venus in March, 1982, were reprocessed, which significantly improved the image definition quality. An unusual geologic object located relatively near the camera was found, which allowed its details to be analyzed. The object is a low long bank in shape; it is formed by a relatively thin, jagged, almost vertical stratum. The bank contours the oval formation 1.5-2 m across that stands out against the layered surface. The location of the bank suggests that its material is extruded from under the layered plates surrounding the oval formation. A segment of the bank resembling a falling wave is inclined and partly covers the surface by forming the beddings. The object is likely formed by the rocks that remain semisoftened (plastic), when they appear on the surface at the temperature characteristic for the Venusian surface (about 740 K). It is suggested that, from the data on the physical and chemical conditions and the composition of the Venusian surface, the nature of the observed plastic medium can be hypothesized, and it can be even modeled under laboratory conditions.

  16. Volcanic rises on Venus: Geology, formation, and sequence of evolution (United States)

    Senske, D. A.; Stofan, E. R.; Bindschadler, D. L.; Smrekar, S. E.


    Large centers of volcanism on Venus are concentrated primarily in the equatorial region of the planet and are associated with regional topographic rises. Analysis of both radar images and geophysical data suggest that these uplands are sites of mantle upwelling. Magellan radar imaging provides a globally contiguous data set from which the geology of these regions is evaluated and compared. In addition, high resolution gravity data currently being collected provide a basis to assess the relationship between these uplands and processes in the planet's interior. Studies of the geology of the three largest volcanic highlands (Beta Regio, Atla Regio, Western Eistla Regio) show them to be distinct, having a range of volcanic and tectonic characteristics. In addition to these large areas, a number of smaller uplands are identified and are being analyzed (Bell Regio, Imdr Regio, Dione Regio (Ushas, Innini, and Hathor Montes), and Themis Regio). To understand better the mechanisms by which these volcanic rises form and evolve, we assess their geologic and geophysical characteristics.

  17. The Support of Long Wavelength Loads on Venus (United States)

    Benerdt, W. B.; Saunders, R. S.


    One of the great surprises of the Pioneer Venus mission was the high degree of correlation between topography and gravity found at all wavelengths. This implies a close relationship between topography and lateral subsurface density anomalies, such as those due to passive or dynamic compensation. Sleep-Phillips type compensation model with a variable crustal thickness and a variable upper mantle density was developed. The thin shell theory was used to investigate three end member cases: (1) loading by topographic construction, resulting in a downward deflection of the surface (no mantle support); (2) completely compensated support of a constructional load (no surface deflection); and (3) topography due entirely to upward deflection of the surface supported by a low density upper mantle (no surface load). In general, the models imply relatively thick crust and dense upper mantle for Ishtar Terra and Ovda Regio (western Aphrodite), thinned crust and buoyant upper mantle for Tethus Regio and regions near Sappho and Alpha Regio, and a nearly uniform crust with a buoyant upper mantle for Beta Regio and Atla Regio (eastern Aphrodite).

  18. Large Topographic Rises on Venus: Implications for Mantle Upwelling (United States)

    Stofan, Ellen R.; Smrekar, Suzanne E.; Bindschandler, Duane L.; Senske, David A.


    Topographic rises on Venus have been identified that are interpreted to be the surface manifestation of mantle upwellings. These features are classified into groups based on their dominant morphology. Atla and Beta Regiones are classified as rift-dominated, Dione, western Eistla, Bell, and Imdr Regiones as volcano-dominated, and Themis, eastern Eistla, and central Eistla Regiones as corona-dominated. At several topographic rises, geologic indicators were identified that may provide evidence of uplifted topography (e.g., volcanic flow features trending upslope). We assessed the minimum contribution of volcanic construction to the topography of each rise, which in general represents less than 5% of the volume of the rise, similar to the volumes of edifices at terrestrial hotspot swells. The total melt volume at each rise is approximated to be 10(exp 4) - 10(exp 6) cu km. The variations in morphology, topography, and gravity signatures at topographic rises are not interpreted to indicate variations in stage of evolution of a mantle upwelling. Instead, the morphologic variations between the three classes of topographic rises are interpreted to indicate the varying influences of lithospheric structure, plume characteristics, and regional tectonic environment. Within each class, variations in topography, gravity, and amount of volcanism may be indicative of differing stages of evolution. The similarity between swell and volcanic volumes for terrestrial and Venusian hotspots implies comparable time-integrated plume strengths for individual upwellings on the two planets.

  19. Geologic map of the Themis Regio quadrangle (V-53), Venus (United States)

    Stofan, Ellen R.; Brian, Antony W.


    The Themis Regio quadrangle (V-53), Venus, has been geologically mapped at 1:5,000,000 scale as part of the NASA Planetary Geologic Mapping Program. The quadrangle extends from lat 25° to 50° S. and from long 270° to 300° E. and encompasses the Themis Regio highland, the surrounding plains, and the southernmost extension of Parga Chasmata. Themis Regio is a broad regional topographic high with a diameter of about 2,000 km and a height of about 0.5 km that has been interpreted previously as a hotspot underlain by a mantle plume. The Themis rise is dominated by coronae and lies at the terminus of the Parga Chasmata corona chain. Themis Regio is the only one of the three corona-dominated rises that contains significant extensional deformation. Fractures and grabens are much less common than along the rest of Parga Chasmata and are embayed by corona-related flows in places. Rift and corona formation has overlapped in time at Themis Regio.

  20. Cloud motions on Venus - Global structure and organization (United States)

    Limaye, S. S.; Suomi, V. E.


    Results on cloud motions on Venus obtained over a period of 3.5 days from Mariner 10 television images are presented. The implied atmosphere flow is almost zonal everywhere on the visible disk, and is in the same retrograde sense as the solid planet. Objective analysis of motions suggests the presence of jet cores (-130 m/s) and organized atmospheric waves. The longitudinal mean meridional profile of the zonal component of motion of the ultraviolet features shows presence of a midlatitude jet stream (-110 m/s). The mean zonal component is -97 m/s at the equator. The mean meridional motion at most latitudes is directed toward the pole in either hemisphere and is at least an order of magnitude smaller so that the flow is nearly zonal. A tentative conclusion from the limited coverage available from Mariner 10 is that at the level of ultraviolet features mean meridional circulation is the dominant mode of poleward angular momentum transfer as opposed to the eddy circulation.