WorldWideScience

Sample records for shear zones located

  1. Fifty years of shear zones

    Science.gov (United States)

    Graham, Rodney

    2017-04-01

    We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear zones with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear zone cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation zone, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear zone forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the Alps are exposed remnants of this ductile shear zone. Associated ophicalcite breccias tell of sea floor exposure, while high

  2. Friction of Shear-Fracture Zones

    Science.gov (United States)

    Riikilä, T. I.; Pylväinen, J. I.; Åström, J.

    2017-12-01

    A shear fracture of brittle solids under compression undergoes a substantial evolution from the initial microcracking to a fully formed powder-filled shear zone. Experiments covering the entire process are relatively easy to conduct, but they are very difficult to investigate in detail. Numerically, the large strain limit has remained a challenge. An efficient simulation model and a custom-made experimental device are employed to test to what extent a shear fracture alone is sufficient to drive material to spontaneous self-lubrication. A "weak shear zone" is an important concept in geology, and a large number of explanations, specific for tectonic conditions, have been proposed. We demonstrate here that weak shear zones are far more general, and that their emergence only demands that a microscopic, i.e., fragment-scale, stress relaxation mechanism develops during the fracture process.

  3. Shear zones between rock units with no relative movement

    DEFF Research Database (Denmark)

    Koyi, Hemin; Schmeling, Harro; Burchardt, Steffi

    2013-01-01

    Shear zones are normally viewed as relatively narrow deformation zones that accommodate relative displacement between two "blocks" that have moved past each other in opposite directions. This study reports localized zones of shear between adjacent blocks that have not moved past each other. Such ...... given credit for and may be responsible for some reverse kinematics reported in shear zones....... or wakes, elongated bodies (vertical plates or horizontal rod-like bodies) produce tabular shear zones or wakes. Unlike conventional shear zones across which shear indicators usually display consistent symmetries, shear indicators on either side of the shear zone or wake reported here show reverse...... kinematics. Thus profiles exhibit shear zones with opposed senses of movement across their center-lines or -planes.We have used field observations and results from analytical and numerical models to suggest that examples of wakes are the transit paths that develop where denser blocks sink within salt...

  4. Shear zones between rock units with no relative movement

    DEFF Research Database (Denmark)

    Koyi, H.; Schmeling, H.; Burchardt, S.

    2012-01-01

    , elongated bodies (vertical plates or horizontal rod-like bodies) produce tabular shear zones. Unlike conventional shear zones across which shear indicators ideally display consistent symmetries, shear indicators on either sides of the shear zone reported here show reverse kinematics. Thus profiles exhibit...... by progressive extension and (perhaps) where slabs of subducted oceanic lithosphere delaminate from the continental crust and sink into the asthenosphere. We also argue that such shear zones may be more common than they have been given the credit for and may be responsible for some of the kinematic reversals...

  5. Measuring Local Strain Rates In Ductile Shear Zones: A New Approach From Deformed Syntectonic Dykes

    Science.gov (United States)

    Sassier, C.; Leloup, P.; Rubatto, D.; Galland, O.; Yue, Y.; Ding, L.

    2006-12-01

    At the Earth surface, deformation is mostly localized in fault zones in between tectonic plates. In the upper crust, the deformation is brittle and the faults are narrow and produce earthquakes. In contrast, deformation in the lower ductile crust results in larger shear zones. While it is relatively easy to measure in situ deformation rates at the surface using for example GPS data, it is more difficult to determinate in situ values of strain rate in the ductile crust. Such strain rates can only be estimated in paleo-shear zones. Various methods have been used to assess paleo-strain rates in paleo-shear zones. For instance, cooling and/or decompression rates associated with assumptions on geothermic gradients and shear zone geometry can lead to such estimates. Another way to estimate strain rates is the integration of paleo-stress measurements in a power flow law. But these methods are indirect and imply strong assumptions. Dating of helicitic garnets or syntectonic fibres are more direct estimates. However these last techniques have been only applied in zones of low deformation and not in major shear zones. We propose a new direct method to measure local strain rates in major ductile shear zones from syntectonic dykes by coupling quantification of deformation and geochronology. We test our method in a major shear zone in a well constrained tectonic setting: the Ailao-Shan - Red River Shear Zone (ASRRsz) located in SE Asia. For this 10 km wide shear zone, large-scale fault rates, determined in three independent ways, imply strain rates between 1.17×10^{-13 s-1 and 1.52×10^{-13 s-1 between 35 and 16 Ma. Our study focused on one outcrop where different generations of syntectonic dykes are observed. First, we quantified the minimum shear strain γ for each dyke using several methods: (1) by measuring the stretching of dykes with a surface restoration method (2) by measuring the final angle of the dykes with respect to the shear direction and (3) by combining the two

  6. Seismic cycle feedbacks in a mid-crustal shear zone

    Science.gov (United States)

    Melosh, Benjamin L.; Rowe, Christie D.; Gerbi, Christopher; Smit, Louis; Macey, Paul

    2018-07-01

    Mid-crustal fault rheology is controlled by alternating brittle and plastic deformation mechanisms, which cause feedback cycles that influence earthquake behavior. Detailed mapping and microstructural observations in the Pofadder Shear Zone (Namibia and South Africa) reveal a lithologically heterogeneous shear zone core with quartz-rich mylonites and ultramylonites, plastically overprinted pseudotachylyte and active shear folds. We present evidence for a positive feedback cycle in which coseismic grain size reduction facilitates active shear folding by enhancing competency contrasts and promoting crystal plastic flow. Shear folding strengthens a portion of a shear zone by limb rotation, focusing deformation and promoting plastic flow or brittle slip in resulting areas of localized high stress. Using quartz paleopiezometry, we estimate strain and slip rates consistent with other studies of exhumed shear zones and modern plate boundary faults, helping establish the Pofadder Shear Zone as an ancient analogue to modern, continental-scale, strike-slip faults. This feedback cycle influences seismicity patterns at the scale of study (10s of meters) and possibly larger scales as well, and contributes to bulk strengthening of the brittle-plastic transition on modern plate boundary faults.

  7. An integrated study of aerospace data for uranium exploration in the Magajhi-Kotapali shear zone, Surguja district, Madhya Pradesh, India

    International Nuclear Information System (INIS)

    Chaturvedi, A.K.; Kak, S.N.

    1993-01-01

    Lower Proterozoic granite gneiss and associated cataclastic rocks of Surguja crystalline complex record uranium mineralisation along the WNW-ESE trending Magajhi-Kotapali shear zone. Extension of the shear zone and cross faults trending NE-SW were established using enhanced satellite data. On integrating it with aeroradiometric data, it has been found that uranium mineralisation is shear controlled and occur around the zone of intersection between the WNW-ESE trending shear and the NE-SW faults. The study has narrowed down the target area for detailed ground investigations and finally resulted in locating promising areas such as Chathila Pahar, Haskepi, Jarhakhar-Semarkhar, and Tilti forest with good extensions along the shear zone. (author). 18 refs., 5 figs

  8. Intra-Continental Deformation by Mid-Crustal Shearing and Doming in a Cenozoic Compressive Setting Along the Ailao Shan-Red River Shear Zone

    Science.gov (United States)

    Zhang, B.

    2016-12-01

    Large-scale lateral strike-slip shear zones have been a key point in the debate about the deformation mechanisms of Asia in response to the India-Asia collision. The exhumed gneiss has been attributed to lateral strike-slip shear zone. This hypothesis has been challenged by recent discoveries indicating that a contractional doming deformation prior to the initiation of lateral strike-slip shearing. The Cenozoic Xuelong Shan antiformal dome is located at the northern segment of the Ailao Shan-Red River shear zone. Subhorizontal foliation in the gneiss core are recognized, representing a broad top-to-NE shear initiated under amphibolite facies conditions and propagated into greenschist facies in the mantling schist and strike-slip shear zone. Quartz CPOs and opening angles of crossed girdle fabrics in quartz suggest that the deformation temperatures increased with increasing structural depth from 300-500 °C in the mantling schist to ≥650 °C in the gneissic core. This trend is mirrored by variations in the metamorphic grade of the syn-kinematic mineral assemblages and microstructures, which ranges from garnet + amphibole + biotite + sillimanite + rutite + feldspar in the core to garnet + staurolite + biotite + epidote + muscovite within the limb units. Five-stage deformation is identified: (1) a broad top-to-NE shear in the subhorizontal level (D1); (2) opposing reverse-sense shear along the two schist limbs of the dome during contraction-related doming (D2-D3); (3) sinistral strike-slip shearing within the eastern limb (D4); and (4) extensional deformation (D5). The antiformal dome formation had been roughly coeval with top-to-NE ductile shearing in the mid-crust at 32 Ma or earlier. The geometries of the antiformal dome in the Xuelong Shan dome are similar to those associated with the antiform in the Dai Nui Con Voi, Diancang Shan and Ailao Shan zones. It is likely that the complex massifs, which define a regional linear gneiss dome zone in Cenozoic intra

  9. A viscoplastic shear-zone model for episodic slow slip events in oceanic subduction zones

    Science.gov (United States)

    Yin, A.; Meng, L.

    2016-12-01

    Episodic slow slip events occur widely along oceanic subduction zones at the brittle-ductile transition depths ( 20-50 km). Although efforts have been devoted to unravel their mechanical origins, it remains unclear about the physical controls on the wide range of their recurrence intervals and slip durations. In this study we present a simple mechanical model that attempts to account for the observed temporal evolution of slow slip events. In our model we assume that slow slip events occur in a viscoplastic shear zone (i.e., Bingham material), which has an upper static and a lower dynamic plastic yield strength. We further assume that the hanging wall deformation is approximated as an elastic spring. We envision the shear zone to be initially locked during forward/landward motion but is subsequently unlocked when the elastic and gravity-induced stress exceeds the static yield strength of the shear zone. This leads to backward/trenchward motion damped by viscous shear-zone deformation. As the elastic spring progressively loosens, the hanging wall velocity evolves with time and the viscous shear stress eventually reaches the dynamic yield strength. This is followed by the termination of the trenchward motion when the elastic stress is balanced by the dynamic yield strength of the shear zone and the gravity. In order to account for the zig-saw slip-history pattern of typical repeated slow slip events, we assume that the shear zone progressively strengthens after each slow slip cycle, possibly caused by dilatancy as commonly assumed or by progressive fault healing through solution-transport mechanisms. We quantify our conceptual model by obtaining simple analytical solutions. Our model results suggest that the duration of the landward motion increases with the down-dip length and the static yield strength of the shear zone, but decreases with the ambient loading velocity and the elastic modulus of the hanging wall. The duration of the backward/trenchward motion depends

  10. Quantifying the Variation in Shear Zone Character with Depth: a Case Study from the Simplon Shear Zone, Central Alps

    Science.gov (United States)

    Cawood, T. K.; Platt, J. P.

    2017-12-01

    A widely-accepted model for the rheology of crustal-scale shear zones states that they comprise distributed strain at depth, in wide, high-temperature shear zones, which narrow to more localized, high-strain zones at lower temperature and shallower crustal levels. We test and quantify this model by investigating how the width, stress, temperature and deformation mechanisms change with depth in the Simplon Shear Zone (SSZ). The SSZ marks a major tectonic boundary in the central Alps, where normal-sense motion and rapid exhumation of the footwall have preserved evidence of older, deeper deformation in rocks progressively further into the currently-exposed footwall. As such, microstructures further from the brittle fault (which represents the most localized, most recently-active part of the SSZ) represent earlier, higher- temperature deformation from deeper crustal levels, while rocks closer to the fault have been overprinted by successively later, cooler deformation at shallower depths. This study uses field mapping and microstructural studies to identify zones representing deformation at various crustal levels, and characterize each in terms of zone width (representing width of the shear zone at that time and depth) and dominant deformation mechanism. In addition, quartz- (by Electron Backscatter Diffraction, EBSD) and feldspar grain size (measured optically) piezometry are used to calculate the flow stress for each zone, while the Ti-in-quartz thermometer (TitaniQ) is used to calculate the corresponding temperature of deformation. We document the presence of a broad zone in which quartz is recrystallized by the Grain Boundary Migration (GBM) mechanism and feldspar by Subgrain Rotation (SGR), which represents the broad, deep zone of deformation occurring at relatively high temperatures and low stresses. In map view, this transitions to successively narrower zones, respectively characterized by quartz SGR and feldspar Bulge Nucleation (BLG); quartz BLG and brittle

  11. The brittle-viscous-plastic evolution of shear bands in the South Armorican Shear Zone

    Science.gov (United States)

    Bukovská, Zita; Jeřábek, Petr; Morales, Luiz F. G.; Lexa, Ondrej; Milke, Ralf

    2014-05-01

    Shear bands are microscale shear zones that obliquely crosscut an existing anisotropy such as a foliation. The resulting S-C fabrics are characterized by angles lower than 45° and the C plane parallel to shear zone boundaries. The S-C fabrics typically occur in granitoids deformed at greenschist facies conditions in the vicinity of major shear zones. Despite their long recognition, mechanical reasons for localization of deformation into shear bands and their evolution is still poorly understood. In this work we focus on microscale characterization of the shear bands in the South Armorican Shear Zone, where the S-C fabrics were first recognized by Berthé et al. (1979). The initiation of shear bands in the right-lateral South Armorican Shear Zone is associated with the occurrence of microcracks crosscutting the recrystallized quartz aggregates that define the S fabric. In more advanced stages of shear band evolution, newly formed dominant K-feldspar, together with plagioclase, muscovite and chlorite occur in the microcracks, and the shear bands start to widen. K-feldspar replaces quartz by progressively bulging into the grain boundaries of recrystallized quartz grains, leading to disintegration of quartz aggregates and formation of fine-grained multiphase matrix mixture. The late stages of shear band development are marked by interconnection of fine-grained white mica into a band that crosscuts the original shear band matrix. In its extremity, the shear band widening may lead to the formation of ultramylonites. With the increasing proportion of shear band matrix from ~1% to ~12%, the angular relationship between S and C fabrics increases from ~30° to ~40°. The matrix phases within shear bands show differences in chemical composition related to distinct evolutionary stages of shear band formation. The chemical evolution is well documented in K-feldspar, where the albite component is highest in porphyroclasts within S fabric, lower in the newly formed grains within

  12. Geological and structural characterization and microtectonic study of shear zones Colonia

    International Nuclear Information System (INIS)

    Gianotti, V.; Oyhantcabal, P.; Spoturno, J.; Wemmer, K.

    2010-01-01

    The “Colonia Shear Zone System”, characterized by a transcurrent system of predominant sinistral shear sense, is defined by two approximately parallel shear zones, denominated Isla San Gabriel-Juan Lacaze Shear Zone (ISG-JL S.Z.) and Islas de Hornos-Arroyo Riachuelo Shear Zone (IH-AºR S. Z.). Represented by rocks with ductile and brittle deformation, are defined as a strike slip fault system, with dominant subvertical foliation orientations: 090-100º (dip-direction 190º) and 090-100º (dip-direction 005º). The K/Ar geochronology realized, considering the estimates temperatures conditions for shear zones (450-550º), indicate that 1780-1812 Ma should be considered a cooling age and therefore a minimum deformation age. The observed microstructures suggest deformation conditions with temperatures between 450-550º overprinted by cataclastic flow structures (reactivation at lower temperature)

  13. Periodic Viscous Shear Heating Instability in Fine-Grained Shear Zones: Possible Mechanism for Intermediate Depth Earthquakes and Slow Earthquakes?

    Science.gov (United States)

    Kelemen, P. B.; Hirth, G.

    2004-12-01

    Localized ductile shear zones with widths of cm to m are observed in exposures of Earth's shallow mantle (e.g., Kelemen & Dick JGR 95; Vissers et al. Tectonophys 95) and dredged from oceanic fracture zones (e.g., Jaroslow et al. Tectonophys 96). These are mylonitic (grain size 10 to 100 microns) and record mineral cooling temperatures from 1100 to 600 C. Pseudotachylites in a mantle shear zone show that shear heating temperatures can exceed the mantle solidus (e.g., Obata & Karato Tectonophys 95). Simple shear, recrystallization, and grain boundary sliding all decrease the spacing between pyroxenes, so olivine grain growth at lower stress is inhibited; thus, once formed, these shear zones do not "heal" on geological time scales. Reasoning that grain-size sensitive creep will be localized within these shear zones, rather than host rocks (grain size 1 to 10 mm), and inspired by the work of Whitehead & Gans (GJRAS 74), we thought these might undergo repeated shear heating instabilities. In this view, as elastic stress increases, the shear zone weakens via shear heating; rapid deformation of the weak shear zone releases most stored elastic stress; lower stress and strain rate coupled with diffusion of heat into host rocks leads to cooling and strengthening, after which the cycle repeats. We constructed a simple numerical model incorporating olivine flow laws for dislocation creep, diffusion creep, grain boundary sliding, and low T plasticity. We assumed that viscous deformation remains localized in shear zones, surrounded by host rocks undergoing elastic deformation. We fixed the velocity along one side of an elastic half space, and calculated stress due to elastic strain. This stress drives viscous deformation in a shear zone of specified width. Shear heating and thermal diffusion control temperature evolution in the shear zone and host rocks. A maximum of 1400 C (where substantial melting of peridotite would occur) is imposed. Grain size evolves during dislocation

  14. Deformation of footwall rock of Phulad Shear Zone, Rajasthan ...

    Indian Academy of Sciences (India)

    Phulad Shear Zone (PSZ) of Delhi Fold Belt in Rajasthan is a northeasterly striking ductile shear zone with a well developed mylonitic foliation (035/70E) and a downdip stretching lineation. The deformation in the PSZ has developed in a transpressional regime with thrusting sense of movement. The northeastern unit, i.e. ...

  15. Coexistence and transition between shear zones in slow granular flows.

    Science.gov (United States)

    Moosavi, Robabeh; Shaebani, M Reza; Maleki, Maniya; Török, János; Wolf, Dietrich E; Losert, Wolfgang

    2013-10-04

    We report experiments on slow granular flows in a split-bottom Couette cell that show novel strain localization features. Nontrivial flow profiles have been observed which are shown to be the consequence of simultaneous formation of shear zones in the bulk and at the boundaries. The fluctuating band model based on a minimization principle can be fitted to the experiments over a large variation of morphology and filling height with one single fit parameter, the relative friction coefficient μ(rel) between wall and bulk. The possibility of multiple shear zone formation is controlled by μ(rel). Moreover, we observe that the symmetry of an initial state, with coexisting shear zones at both side walls, breaks spontaneously below a threshold value of the shear velocity. A dynamical transition between two asymmetric flow states happens over a characteristic time scale which depends on the shear strength.

  16. Tibet- Himalayan Analogs of Pan-African Shear Zones : Implications for Neoproterozoic Tectonics

    Science.gov (United States)

    Attoh, K.; Brown, L. D.

    2009-12-01

    Large-scale shear zones are distinct features of Tibet-Himalayan orogen and the Pan-African Trans-Saharan belt. Prominent examples in the Pan-African-belt extend for ~2500 km from the Sahara to the Gulf of Guinea and are characterized by right-slip movements. The NS shear zones, such as 4°50’-Kandi shear zone (KSZ) are complemented by NE-SW shear zones that preserve a record of sinistral movements and are represented by the Central Cameroon shear zone (CCSZ) in the eastern part of the Pan-African domain. The West African shear zones project into similar structures in the Borborema Province of northeast Brazil. In addition, the Pan-African belt preserves structures and rock assemblages that indicate subduction-collision tectonics We propose that structures of Tibet-Himalayan collisional orogen are instructive analogs of the Pan-African structures where: (i) the Pan-African front corresponds to the Main Himalayan thrust and it’s splays; (ii) the main Pan-African suture zone is analogous to the Indus-Tsangpo suture in the Tibet-Himalayan belt; (iii) the 4°50’-KSZ corresponds to Karakoram and it’s linkages with Jiali fault system and (iv) left-slip CCSZ and related shear zones are analogs of Altyn Tagh and Kumlun faults and their splays. This suggests the operation of escape-type tectonics in the Neoproterozoic belt of West-Africa and predicts the nature of the deep structures in the Cenozoic Tibet-Himalayan orogen.

  17. Relating rheology to geometry in large-scale natural shear zones

    Science.gov (United States)

    Platt, John

    2016-04-01

    The geometry and width of the ductile roots of plate boundary scale faults are very poorly understood. Some field and geophysical data suggests widths of tens of km in the lower crust, possibly more in the upper mantle. Other observations suggest they are much narrower. Dip slip shear zones may flatten out and merge into zones of subhorizontal lower crustal or asthenospheric flow. The width of a ductile shear zone is simply related to relative velocity and strain rate. Strain rate is related to stress through the constitutive relationship. Can we constrain the stress, and do we understand the rheology of materials in ductile shear zones? A lot depends on how shear zones are initiated. If they are localized by pre-existing structures, width and/or rheology may be inherited, and we have too many variables. If shear zones are localized primarily by shear heating, initial shear stress has to be very high (> 1 GPa) to overcome conductive heat loss, and very large feedbacks (both positive and negative) make the system highly unstable. Microstructural weakening requires a minimum level of stress to cause deformation and damage in surrounding rock, thereby buffering the stress. Microstructural weakening leads to grain-size sensitive creep, for which we have constitutive laws, but these are complicated by phase mixing in polyphase materials, by viscous anisotropy, by hydration, and by changes in mineral assemblage. Here are some questions that need to be addressed. (1) If grain-size reduction by dynamic recrystallization results in a switch to grain-size sensitive creep (GSSC) in a stress-buffered shear zone, does dynamic recrystallization stop? Does grain growth set in? If grain-size is still controlled by dislocation processes, then the effective stress exponent for GSSC is 4-5, even though the dominant mechanism may be diffusion and/or grain-boundary sliding (GBS). (2) Is phase mixing in ultramylonites primarily a result of GBS + neighbour switching, creep cavitation and

  18. Sense of shear and displacement estimates in the Abeibara-Rarhous late Pan-African shear zone, Adrar des Iforas, Mali

    Science.gov (United States)

    Boullier, Anne-Marie

    The late Pan-African Abeibara-Rarhous shear zone in the Adrar des Iforas (Mali) is described and studied with the aim of defining the direction, sense of movement and amount of displacement along the zone. It is a strike-slip shear zone, the dextral sense of which is demonstrated at the scale of the map by the rotation of the related mylonitic foliation and at the scale of the thin section with characteristic microstructures. Preferred orientation of quartz c-axes is tentatively used; three quartz-rich samples of 35% or more quartz indicate dextral strike-slip movement, but other samples do not show preferred orientation of quartz c-axes. Strain measurements have been performed on one half of the shear zone using established techniques and a new technique using the thickness of mylonitic layering. The results vary along the length of the shear zone when using the same method and for the same cross-section when using the three methods together. A mean value of 4 km is obtained for total displacement which is low when considering the apparent width of the shear zone. This result is discussed in view of the assumptions involved in the strain estimation. The tectonic history of the Abeibara-Rarhous shear zone and its significance in the Trans-Saharan Pan-African collisional belt are discussed.

  19. The Cora Lake Shear Zone: Strain Localization in an Ultramylonitic, Deep Crustal Shear Zone, Athabasca Granulite Terrain, Western Churchill Province, Canada

    Science.gov (United States)

    Regan, S.; Williams, M. L.; Mahan, K. H.; Orlandini, O. F.; Jercinovic, M. J.; Leslie, S. R.; Holland, M.

    2012-12-01

    Ultramylonitic shear zones typically involve intense strain localization, and when developed over large regions can introduce considerable heterogeneity into the crust. The Cora Lake shear zone (CLsz) displays several 10's to 100's of meters-wide zones of ultramylonite distributed throughout its full 3-5 km mylonitized width. Detailed mapping, petrography, thermobarometry, and in-situ monazite geochronology suggest that it formed during the waning phases of granulite grade metamorphism and deformation, within one of North America's largest exposures of polydeformed lower continental crust. Anastomosing zones of ultramylonite contain recrystallized grain-sizes approaching the micron scale and might appear to suggest lower temperature mylonitization. However, feldspar and even clinopyroxene are dynamically recrystallized, and quantitative thermobarometry of syn-deformational assemblages indicate high P and T conditions ranging from 0.9 -10.6 GPa and 775-850 °C. Even at these high T's, dynamic recovery and recrystallization were extremely limited. Rocks with low modal quartz have extremely small equilibrium volumes. This is likely the result of inefficient diffusion, which is further supported by the unannealed nature of the crystals. Local carbonate veins suggests that H2O poor, CO2 rich conditions may have aided in the preservation of fine grain sizes, and may have inhibited dynamic recovery and recrystallization. The Cora Lake shear zone is interpreted to have been relatively strong and to have hardened during progressive deformation. Garnet is commonly fractured perpendicular to host rock fabric, and statically replaced by both biotite and muscovite. Pseudotachylite, with the same sense of shear, occurs in several ultramylonitized mafic granulites. Thus, cataclasis and frictional melt are interpreted to have been produced in the lower continental crust, not during later reactivation. We suggest that strengthening of rheologically stiffer lithologies led to

  20. FLUID EVOLUTION AND MINERAL REACTIONS DURING SHEAR ZONE FORMATION AT NUSFJORD, LOFOTEN, NORWAY (Invited)

    Science.gov (United States)

    Kullerud, K.

    2009-12-01

    At Nusfjord in Lofoten, Norway, three 0.3 - 3 m thick shear zones occur in a gabbro-anorthosite. During deformation, the shear zones were infiltrated by a hydrous fluid enriched in Cl. In the central parts of the shear zones, fluid-rock interaction resulted in complete break-down of the primary mafic silicates. Complete hydration of these minerals to Cl-free amphibole and biotite suggests that the hydrous fluid was present in excess during deformation in these parts of the shear zones. Along the margins of the shear zones, however, the igneous mafic silicates (Cpx, Bt, Opx) were only partly overgrown by hydrous minerals. Here, Cl-enriched minerals (Amph, Bt, Scp, Ap) can be observed. Amphibole shows compositions covering the range 0.1 - 4.0 wt % Cl within single thin sections. Mineral textures and extreme compositional variations of the Cl-bearing minerals indicate large chemical gradients of the fluid phase. Relics of primary mafic silicates and compositionally zoned reaction coronas around primary mafic silicates suggest that the free fluid was totally consumed before the alteration of the primary phases were completed. The extreme variations in the Cl-content of amphibole are inferred to monitor a gradual desiccation of the Cl-bearing grain-boundary fluid during fluid-mineral reactions accordingly: 1) The first amphibole that formed during the reactions principally extracted water from the fluid, resulting in a slight increase in the Cl content of the fluid. 2) Continued amphibole-forming reactions resulted in gradual consumption of the free fluid phase, principally by extracting water from the fluid, resulting in an increase in its Cl-content. Higher Cl-content of the fluid resulted in higher Cl-content of the equilibrium amphibole. 3) The most Cl-enriched amphibole (4 wt % Cl) formed in equilibrium with the last volumes of the grain-boundary fluid, which had evolved to a highly saline solution. Mineral reactions within a 1-2 thick zone of the host rock along

  1. Geophysical characterization of an active hydrothermal shear zone in granitic rocks

    Science.gov (United States)

    Zahner, Tobias; Baron, Ludovic; Holliger, Klaus; Egli, Daniel

    2016-04-01

    Hydrothermally active faults and shear zones in the crystalline massifs of the central Alps are currently of particular interest because of their potential similarities and analogies with planned deep petrothermal reservoirs in the Alpine foreland. In order to better understand such hydrothermal systems, a near-vertical, hydrothermally active shear zone embedded in low-permeability granitic rocks has been drilled. This borehole is located on the Grimsel Pass in the central Swiss Alps, has an inclination of 24 degrees with regard to the vertical, and crosses the targeted shear zone between about 82 and 86 meters depth. The borehole has been fully cored and a comprehensive suite of geophysical logging data has been acquired. The latter comprises multi-frequency sonic, ground-penetrating radar, resistivity, self-potential, gamma-gamma, neutron-neutron, optical televiewer, and caliper log data. In addition to this, we have also performed a surface-to-borehole vertical seismic profiling experiment. The televiewer data and the retrieved core samples show a marked increase of the fracture density in the target region, which also finds its expression in rather pronounced and distinct signatures in all other log data. Preliminary results point towards a close correspondence between the ground-penetrating radar and the neutron-neutron log data, which opens the perspective of constraining the effective fracture porosity at vastly differing scales. There is also remarkably good agreement between the sonic log and the vertical seismic profiling data, which may allow for assessing the permeability of the probed fracture network by interpreting these data in a poroelastic context.

  2. Inelastic deformations of fault and shear zones in granitic rock

    International Nuclear Information System (INIS)

    Wilder, D.G.

    1986-02-01

    Deformations during heating and cooling of three drifts in granitic rock were influenced by the presence of faults and shear zones. Thermal deformations were significantly larger in sheared and faulted zones than where the rock was jointed, but neither sheared nor faulted. Furthermore, thermal deformations in faulted or sheared rock were not significantly recovered during subsequent cooling, thus a permanent deformation remained. This inelastic response is in contrast with elastic behavior identified in unfaulted and unsheared rock segments. A companion paper indicates that deformations in unsheared or unfaulted rock were effectively modeled as an elastic response. We conclude that permanent deformations occurred in fractures with crushed minerals and fracture filling or gouge materials. Potential mechanisms for this permanent deformation are asperity readjustments during thermal deformations, micro-shearing, asperity crushing and crushing of the secondary fracture filling minerals. Additionally, modulus differences in sheared or faulted rock as compared to more intact rock would result in greater deformations in response to the same thermal loads

  3. Interfacial stresses in strengthened beam with shear cohesive zone ...

    Indian Academy of Sciences (India)

    The results of parametric study are compared with those of Smith and Teng. They confirm the accuracy of the proposed approach in predicting both interfacial shear and normal stresses. Keywords. Strengthened beam; interfacial stresses; cohesive zone; shear deformation. 1. Introduction. The FRP plates can be either ...

  4. A new perspective on the significance of the Ranotsara shear zone in Madagascar

    Science.gov (United States)

    Schreurs, Guido; Giese, Jörg; Berger, Alfons; Gnos, Edwin

    2010-12-01

    The Ranotsara shear zone in Madagascar has been considered in previous studies to be a >350-km-long, intracrustal strike-slip shear zone of Precambrian/Cambrian age. Because of its oblique strike to the east and west coast of Madagascar, the Ranotsara shear zone has been correlated with shear zones in southern India and eastern Africa in Gondwana reconstructions. Our assessment using remote sensing data and field-based investigations, however, reveals that what previously has been interpreted as the Ranotsara shear zone is in fact a composite structure with a ductile deflection zone confined to its central segment and prominent NW-SE trending brittle faulting along most of its length. We therefore prefer the more neutral term “Ranotsara Zone”. Lithologies, tectonic foliations, and axial trace trajectories of major folds can be followed from south to north across most of the Ranotsara Zone and show only a marked deflection along its central segment. The ductile deflection zone is interpreted as a result of E-W indentation of the Antananarivo Block into the less rigid, predominantly metasedimentary rocks of the Southwestern Madagascar Block during a late phase of the Neoproterozoic/Cambrian East African Orogeny (c. 550-520 Ma). The Ranotsara Zone shows significant NW-SE striking brittle faulting that reactivates part of the NW-SE striking ductile structures in the flexure zone, but also extends along strike toward the NW and toward the SE. Brittle reactivation of ductile structures along the central segment of the Ranotsara Zone, confirmed by apatite-fission track results, may have led to the formation of a shallow Neogene basin underlying the Ranotsara plain. The present-day drainage pattern suggests on-going normal fault activity along the central segment. The Ranotsara Zone is not a megascale intracrustal strike-slip shear zone that crosscuts the entire basement of southern Madagascar. It can therefore not be used as a piercing point in Gondwana

  5. Domino structures evolution in strike-slip shear zones; the importance of the cataclastic flow

    Science.gov (United States)

    Moreira, N.; Dias, R.

    2018-05-01

    The Porto-Tomar-Ferreira do Alentejo dextral Shear Zone is one of the most important structures of the Iberian Variscides. In its vicinity, close to Abrantes (Central Portugal), a localized heterogeneous strain pattern developed in a decimetric metamorphic siliceous multilayer. This complex pattern was induced by the D2 dextral shearing of the early S0//S1 foliation in brittle-ductile conditions, giving rise to three main shear zone families. One of these families, with antithetic kinematics, delimits blocks with rigid clockwise rotation surrounded by coeval cataclasites, generating a local domino structure. The proposed geometrical and kinematic analysis, coupled with statistical studies, highlights the relation between subsidiary shear zones and the main shear zone. Despite the heterogeneous strain pattern, a quantitative approach of finite strain was applied based on the restoration of the initial fracture pattern. This approach shows the importance of the cataclastic flow coupled with the translational displacement of the domino domain in solving space problems related to the rigid block rotation. Such processes are key in allowing the rigid block rotation inside shear zones whenever the simple shear component is a fundamental mechanism.

  6. Integrated geophysical investigations for the delineation of source and subsurface structure associated with hydro-uranium anomaly: A case study from South Purulia Shear Zone (SPSZ), India

    Science.gov (United States)

    Sharma, S. P.; Biswas, A.

    2012-12-01

    South Purulia Shear Zone (SPSZ) is an important region for prospecting of uranium mineralization. Geological studies and hydro-uranium anomaly suggest the presence of Uranium deposit around Raghunathpur village which lies about 8 km north of SPSZ. However, detailed geophysical investigations have not been carried out in this region for investigation of uranium mineralization. Since surface signature of uranium mineralization is not depicted near the location, a deeper subsurface source is expected for hydro uranium anomaly. To delineate the subsurface structure and to investigate the origin of hydro-uranium anomaly present in the area, Vertical Electrical Sounding (VES) using Schlumberger array and Gradient Resistivity Profiling (GRP) were performed at different locations along a profile perpendicular to the South Purulia Shear Zone. Apparent resistivity computed from the measured sounding data at various locations shows a continuously increasing trend. As a result, conventional apparent resistivity data is not able to detect the possible source of hydro uranium anomaly. An innovative approach is applied which depicts the apparent conductivity in the subsurface revealed a possible connection from SPSZ to Raghunathpur. On the other hand resistivity profiling data suggests a low resistive zone which is also characterized by low Self-Potential (SP) anomaly zone. Since SPSZ is characterized by the source of uranium mineralization; hydro-uranium anomaly at Raghunathpur is connected with the SPSZ. The conducting zone has been delineated from SPSZ to Raghunathpur at deeper depths which could be uranium bearing. Since the location is also characterized by a low gravity and high magnetic anomaly zone, this conducting zone is likely to be mineralized zone. Keywords: Apparent resistivity; apparent conductivity; Self Potential; Uranium mineralization; shear zone; hydro-uranium anomaly.

  7. Incipient Evolution of the Eastern California Shear Zone through a Transpressional Zone along the San Andreas Fault in the San Bernardino Mountains, California

    Science.gov (United States)

    Cochran, W. J.; Spotila, J. A.

    2017-12-01

    Measuring long-term accumulation of strike-slip displacements and transpressional uplift is difficult where strain is accommodated across wide shear zones, as opposed to a single major fault. The Eastern California Shear Zone (ECSZ) in southern California accommodates dextral shear across several strike-slip faults, and is potentially migrating and cutting through a formerly convergent zone of the San Bernardino Mountains (SBM). The advection of crust along the San Andreas fault to the SE has forced these two tectonic regimes into creating a nexus of interacting strike-slip faults north of San Gorgonio Pass. These elements make this region ideal for studying complex fault interactions, evolving fault geometries, and deformational overprinting within a wide shear zone. Using high-resolution topography and field mapping, this study aims to test whether diffuse, poorly formed strike-slip faults within the uplifted SBM block are nascent elements of the ECSZ. Topographic resolution of ≤ 1m was achieved using both lidar and UAV surveys along two Quaternary strike-slip faults, namely the Lake Peak fault and Lone Valley faults. Although the Lone Valley fault cuts across Quaternary alluvium, the geomorphic expression is obscured, and may be the result of slow slip rates. In contrast, the Lake Peak fault is located high elevations north of San Gorgonio Peak in the SBM, and displaces Quaternary glacial deposits. The deposition of large boulders along the escarpment also obscures the apparent magnitude of slip along the fault. Although determining fault offset is difficult, the Lake Peak fault does display evidence for minor right-lateral displacement, where the magnitude of slip would be consistent with individual faults within the ECSZ (i.e. ≤ 1 mm/yr). Compared to the preservation of displacement along strike-slip faults located within the Mojave Desert, the upland region of the SBM adds complexity for measuring fault offset. The distribution of strain across the entire

  8. Th-Pb ion probe dating of zoned hydrothermal monazite and its implications for repeated shear zone activity: An example from the Central Alps, Switzerland

    Science.gov (United States)

    Bergemann, C.; Gnos, E.; Berger, A.; Whitehouse, M.; Mullis, J.; Wehrens, P.; Pettke, T.; Janots, E.

    2017-04-01

    Th-Pb age dating of zoned hydrothermal monazite from alpine-type fissures/clefts is a powerful tool for constraining polyphase deformation at temperatures below 350°C and presents an alternative to K/Ar and 40Ar/39Ar dating techniques for dating brittle tectonics. This study considers the relationship between cleft orientations in ductile shear zones and cleft mineral crystallization during subsequent brittle overprinting. In the Grimsel area, located in the Aar Massif of the Central Alps, horizontal clefts formed during a primary thrust dominated deformation, while younger and vertically oriented clefts developed during secondary strike-slip movements. The change is due to a switch in orientation between the principal stress axes σ2 and σ3. The transition is associated with monazite crystallization and chloritization of biotite at around 11.5 Ma. Quartz fluid inclusion data allow a link between deformation stages and temperatures to be established and indicate that primary monazite crystallization occurred in both cleft systems at 300-350°C. While cleft monazite crystallization ceases at 11 Ma in inactive shear zones, monazite growth, and/or dissolution-reprecipitation continues under brittle deformation conditions in vertical clefts during later deformation until 7 Ma. This younger shear zone activity occurs in association with dextral strike-slip movement of the Rhone-Simplon fault system. With the exception of varying Th/U values correlated with the degree of oxidation, there is only limited compositional variation in the studied cleft monazites.

  9. Shear Zone-Hosted Base Metal Mineralization near Abraha ...

    African Journals Online (AJOL)

    Tadesse

    of Arabia; B) Plan view of northern Ethiopia showing the roads and position ... within NE trending shear zone in the basement rocks with well developed alterations ...... country rocks and transported to the sites of deposition i.e. structural weak.

  10. Shear zone nucleation and deformation transient: effect of heterogeneities and loading conditions in experimentally deformed calcite

    Science.gov (United States)

    Morales, L. F. G.; Rybacki, E.; Dresen, G. H.; Kilian, R.

    2015-12-01

    In the Earth's middle to lower crust, strain is frequently localized along ductile shear zones, which commonly nucleate at structural and material heterogeneities. To investigate shear zone nucleation and development due to heterogeneities, we performed constant strain-rate (CSR) and constant stress (CS) simple shear (torsion) deformation experiments on Carrara marble samples containing weak (limestone) inclusions. The experiments were conducted in a Paterson-type gas deformation apparatus at 900 °C temperature and 400 MPa confining pressure and maximum bulk shear strains of 3. Peak shear stress was about 20 MPa for all the samples, followed by smooth weakening and steady state behavior. The strain is predominantly localized in the host marble within the process zone in front of the inclusion, defined by a zone of intense grain size reduction due to dynamic recrystallization. In CS tests a narrow shear zone developed in front of the inclusion, whereas in CSR experiments the deformation is more heterogeneously distributed, up to g=3.. In the later, secondary foliations oblique to the process zone and alternating thin, high-strain layers are common. In samples deformed at the same shear strain (g=1), the average recrystallized grain size in the process zone is similar for CS and CSR conditions. Crystallographic preferred orientation (CPO) measurements shows that different grain sizes have slightly different CPO patterns. CPO strength varies for different grain sizes, with a CPO strength peak between 40-50 μm, decreasing progressively within smaller grain size, but with secondary peaks for different coarse-grained sizes. Our observations suggest that the initial formation and transient deformation of shear zones is strongly affected by loading conditions.

  11. Early lineations in a later shear zone: case study from the Eastern Ghats Belt, India

    Science.gov (United States)

    Bose, S.; Gupta, S.

    2016-12-01

    In polydeformed gneissic terranes, ductile shear zones may cut across rocks with older penetrative fabrics. Earlier lineations in later ductile shear zones need to be identified to avoid incorrect kinematic interpretation. To investigate the fate of early lineations during later ductile shearing, the Mahanadi Shear Zone (MSZ) from the Eastern Ghats Belt (EGB) in India is taken as a case study. The EGB is a Proterozoic granulite terrane correlated with Indo-Antarctica collision. The MSZ lies within the EGB, but is oriented almost perpendicular to the trend of the belt. The penetrative structural fabric in the EGB is NE-SW trending and dipping SE. However, a broad swing in structural trend from NE-SW to WNW-ESE can be detected near the MSZ from satellite imagery. In mylonitised rocks of the shear zone, a discrepancy between the shear zone lineation and inferred shear sense leads to uncertainty in kinematic interpretation of the shear zone. The EGB rock types include charnockites, quartzofeldspathic gneisses and garnet-sillimanite-bearing metapelitic gneisses (khondalites). Outside the MSZ, gneisses preserve an earlier, dominantly down-dip intersection lineation. Sillimanite needles in khondalites are aligned parallel to this lineation, while quartz and garnet are also annealed into the granulite facies fabric. In the vicinity of the shear zone, evidence of dextral non-coaxial shearing progressively increases but the lineation distribution is scattered. Quartz grains show strong undulose extinction caused by strain at lower temperatures, and crystallographic c-axis fabric analyses using EBSD indicate deformation by basal c-slip mechanism. Preferred alignment of the sillimanite needles is disrupted in khondalites within the MSZ because of partial rotation of the needles towards the sub-horizontal movement direction, with the extent of rotation of the needles being apparently controlled by grain size. Some sillimanite needles also appear to have undergone

  12. Structural analysis and magmatism characterization of the Major Gercino shear zone, Santa Catarina State, Brazil

    International Nuclear Information System (INIS)

    Passarelli, Claudia Regina

    1996-01-01

    This work describes the geometric and kinematic characteristics of the Major Gercino Shear Zone (MGSZ) in the Canelinha-Garcia area. This shear zone is one of the major lineaments that affect all southern Brazilian precambrian terrains. In Santa Catarina State, it separates, along its whole extension, the supracrustal rocks of the Brusque belt (northern part) from the Granitoid belt (southern). This zone is characterized by a regional NE trend and a dextral sense of movement where ductile-brittle structures predominate. The MGSZ is composed of two mylonitic belts separated by granitoid rocks probably associated to the development of the shear zone. Both shear zones show cataclastic to ultra mylonitic rocks, but mylonites and protomylonites conditions at high strain rate. The calc-alkaline granitoids present in the area can be grouped in two granitoid associations with meta to peraluminous affinities. The Rolador Granitoid Association is characterized by grayish porphyritic biotite-monzogranites and the Fernandes Granitoid Association by coarsed-grained to porphyritic pinkish amphibole-syenogranites. The U-Pb and Rb-Sr ages range from 670 to 590 Ma with the Sr 87 / Sr 86 initial ratios suggesting a crustal contribution in the generation of these rocks. The importance of the pure shear component is also emphasized by the results of the Fry method. Many z axes of the strain ellipses are at high angle to the shear foliation. Symmetric porphyroclasts also corroborate this hypothesis. The micaceous minerals formed during the shear development indicate K-Ar ages around 555 ± 15 Ma. Brittle reactivations of the shear zone have been placed by K-Ar in fine-fraction materials at Triassic time (215 ± 15 Ma.)

  13. Petrologic and chemical changes in ductile shear zones as a function of depth in the continental crust

    Science.gov (United States)

    Yang, Xin-Yue

    Petrologic and geochemical changes in ductile shear zones are important for understanding deformational and geochemical processes of the continental crust. This study examines three shear zones that formed under conditions varying from lower greenschist facies to upper amphibolite facies in order to document the petrologic and geochemical changes of deformed rocks at various metamorphic grades. The studied shear zones include two greenschist facies shear zones in the southern Appalachians and an upper amphibolite facies shear zone in southern Ontario. The mylonitic gneisses and mylonites in the Roses Mill shear zone of central Virginia are derived from a ferrodiorite protolith and characterized by a lower greenschist facies mineral assemblage. Both pressure solution and recrystallization were operative deformation mechanisms during mylonitization in this shear zone. Strain-driven dissolution and solution transfer played an important role in the mobilization of felsic components (Si, Al, K, Na, and Ca). During mylonitization, 17% to 32% bulk rock volume losses of mylonites are mainly attributed to removal of these mobile felsic components by a fluid phase. Mafic components (Fe, Mg, Ti, Mn and P) and trace elements, REE, Y, V and Sc, were immobile. At Rosman, North Carolina, the Brevard shear zone (BSZ) shows a deformational transition from the coarse-grained Henderson augen gneiss (HAG) to proto-mylonite, mylonite and ultra-mylonite. The mylonites contain a retrograde mineral assemblage as a product of fluid-assisted chemical breakdown of K-feldspar and biotite at higher greenschist facies conditions. Recrystallization and intra-crystalline plastic deformation are major deformation mechanisms in the BSZ. Fluid-assisted mylonitization in the BSZ led to 6% to 23% bulk volume losses in mylonites. During mylonitization, both major felsic and mafic elements and trace elements, Rb, Sr, Zr, V, Sc, and LREE were mobile; however, the HREEs were likely immobile. A shear zone

  14. Geophysical anomalies associated with uranium mineralization from Beldih mine, South Purulia Shear Zone, India

    International Nuclear Information System (INIS)

    Mandal, Animesh; Biswas, Arkoprovo; Mittal, Saurabh; Mohanty, William K.; Sharma, Shashi Prakash; Sengupta, Debashish; Sen, Joydip; Bhatt, A.K.

    2013-01-01

    Beldih mine at the central part of the South Purulia Shear Zone (SPSZ) has been reported with low grade uranium-bearing formation within quartz-magnetite-apatite host in kaolinized formation. Therefore, the present integrated geophysical study with gravity, magnetic, radiometric, very low frequency electromagnetic (VLF) and gradient resistivity profiling methods around the known mineralized zones aimed at identifying the exact geophysical signatures and lateral extent of these uranium mineralization bands. The closely spaced gravity-magnetic contours over the low to high anomaly transition zones of Bouguer, reduced-to-pole magnetic, and trend surface separated residual gravity-magnetic anomaly maps indicate the possibility of high altered zone(s) along NW-SE direction at the central part of the study area. High current density plots of VLF method and the low resistive zones in gradient resistivity study depict the coincidence with low gravity, moderately high magnetic and low resistivity anomalies at the same locations. Moderate high radioactive zones have also been observed over these locations. This also suggests the existence of radioactive mineralization over this region. Along profile P2, drilled borehole data revealed the presence of uranium mineralization at a depth of ∼100 m. The vertical projection of this mineralization band also identified as low gravity, low resistivity and high magnetic anomaly zone. Thus, the application of integrated geophysical techniques supported by geological information successfully recognized the nature of geophysical signatures associated with the uranium mineralization of this region. This enhances the scope of further integrated geophysical investigations in the unexplored regions of SPSZ. (author)

  15. Neoproterozoic structural evolution of the NE-trending Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia

    Science.gov (United States)

    Hamimi, Zakaria; El-Sawy, El-Sawy K.; El-Fakharani, Abdelhamid; Matsah, Mohamed; Shujoon, Abdulrahman; El-Shafei, Mohamed K.

    2014-11-01

    The Ad-Damm Shear Zone (AdSZ) is a major NE- (to NNE-) trending fault zone separating Jiddah and Asir tectonic terranes in the Neoproterozoic Juvenile Arabian Shield (AS). AdSZ is characterized by the development of dextral transcurrent shear-sense indicators and moderately to steeply NW plunging stretching lineations. It is mainly developed under high amphibolite-to greenschist-facies conditions and extends ∼380 km, with an average width ∼2-4 km, from the conspicuous Ruwah Fault Zone in the eastern shield to the Red Sea Coastal plain. It was believed to be one of the conjugate shears of the NW- to NNW-trending sinistral Najd Shear System. This assumption is, based on the noteworthy dextral shear criteria recorded within the 620 Ma mylonitic granite of No'man Complex. A total shear-zone strike length exceeding 117 km is carefully investigated during this study to reconstruct its structural evolution. Shear-sense indicators and other field observations including overprinting relations clearly demonstrate a complicated Neoproterozoic history of AdSZ, involving at least three phases of deformations (D1-D3). Both D1 and D2 phases were of contractional regime. During D1 phase a NW-SE compression led to the formation of NE-oriented low-angle thrusts and tight-overturned folds. D2 is represented by a NE-SW stress oriented that led to the development of an open folding. D3 is expressed by the NE-SW intensive dextral transcurrent brittle-ductile shearing. It is overprinting the early formed fabrics and played a significant role in the creation of AdSZ and the mega-scale related folds. Such deformation history reflects the same Neoproterozoic deformation regime recognized in the NE-trending shear zones in the Arabian-Nubian Shield (ANS).

  16. Late extensional shear zones and associated recumbent folds in the Alpujarride subduction complex, Betic Cordillera, southern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Orozco, M.; Alonso-Chaves, F.; Platt, J.

    2017-11-01

    The existence in the Alpujarride Complex (Betic Cordillera, southern Spain) of a relatively continuous extensional event (following crustal thickening) is based on detailed structural studies and is consistent with the P-T paths and geochronological data established for the Alpujarride rocks. According to our research, the Alpujarride Complex contains two large-scale shear zones accommodating early Miocene extension. The shear zones contain km-scale recumbent folds, some with sheath fold geometry, and megaboudinage structures, and are closely associated with detachment faults. Large-scale folds and boudins cause dome-like undulations in the detachments, which are inferred to overlap in time with the deformation in the shear zones. One shear zone in the eastern part of the orogen is top-N; the other, in the western part, is top-E. The change in the shear direction may represent a temporal evolution in the direction of shear, possibly related to a change in the subduction direction in space and time.

  17. Late extensional shear zones and associated recumbent folds in the Alpujarride subduction complex, Betic Cordillera, southern Spain

    International Nuclear Information System (INIS)

    Orozco, M.; Alonso-Chaves, F.; Platt, J.

    2017-01-01

    The existence in the Alpujarride Complex (Betic Cordillera, southern Spain) of a relatively continuous extensional event (following crustal thickening) is based on detailed structural studies and is consistent with the P-T paths and geochronological data established for the Alpujarride rocks. According to our research, the Alpujarride Complex contains two large-scale shear zones accommodating early Miocene extension. The shear zones contain km-scale recumbent folds, some with sheath fold geometry, and megaboudinage structures, and are closely associated with detachment faults. Large-scale folds and boudins cause dome-like undulations in the detachments, which are inferred to overlap in time with the deformation in the shear zones. One shear zone in the eastern part of the orogen is top-N; the other, in the western part, is top-E. The change in the shear direction may represent a temporal evolution in the direction of shear, possibly related to a change in the subduction direction in space and time.

  18. Shear heating and metamorphism in subduction zones, 1. Thermal models

    Science.gov (United States)

    Kohn, M. J.; Castro, A. E.; Spear, F. S.

    2017-12-01

    Popular thermal-mechanical models of modern subduction systems are 100-500 °C colder at c. 50 km depth than pressure-temperature (P-T) conditions determined from exhumed metamorphic rocks. This discrepancy has been ascribed by some to profound bias in the rock record, i.e. metamorphic rocks reflect only anomalously warm subduction, not normal subduction. Accurately inferring subduction zone thermal structure, whether from models or rocks, is crucial for predicting depths of seismicity, fluid release, and sub-arc melting conditions. Here, we show that adding realistic shear stresses to thermal models implies P-T conditions quantitatively consistent with those recorded by exhumed metamorphic rocks, suggesting that metamorphic rock P-T conditions are not anomalously warm. Heat flow measurements from subduction zone fore-arcs typically indicate effective coefficients of friction (µ) ranging from 0.025 to 0.1. We included these coefficients of friction in analytical models of subduction zone interface temperatures. Using global averages of subducting plate age (50 Ma), subduction velocity (6 cm/yr), and subducting plate geometry (central Chile), temperatures at 50 km depth (1.5 GPa) increase by c. 200 °C for µ=0.025 to 700 °C for µ=0.1. However, at high temperatures, thermal softening will reduce frictional heating, and temperatures will not increase as much with depth. Including initial weakening of materials ranging from wet quartz (c. 300 °C) to diabase (c. 600 °C) in the analytical models produces concave-upward P-T distributions on P-T diagrams, with temperatures c. 100 to 500 °C higher than models with no shear heating. The absolute P-T conditions and concave-upward shape of the shear-heating + thermal softening models almost perfectly matches the distribution of P-T conditions derived from a compilation of exhumed metamorphic rocks. Numerical models of modern subduction zones that include shear heating also overlap metamorphic data. Thus, excepting the

  19. Brittle-ductile gliding shear zone and its dynamic metallization in uranium deposit No. 3110

    International Nuclear Information System (INIS)

    Fang Shiyi.

    1990-01-01

    A preliminary study on the macroscopic geological structure, microstructures of plastic deformation rotary strain, structural geochemistry and zoning regularity of a brittle-ductile gliding shear zone in uranium deposit No. 3110 is made. Structural dynamic metallization of uranium caused by the strong shearing stress is discussed. It is pointed out that great attention must be paid to in further exploration

  20. Thermodynamic modeling of phase relations and metasomatism in shear zones

    Science.gov (United States)

    Goncalves, P.; Oliot, E.; Marquer, D.

    2009-04-01

    Ductile shear zones have been recognized for a long time as privileged sites of intense fluid-rock interactions in the crust. In most cases they induce focused changes in mineralogy and bulk chemical composition (metasomatism) which in turn may control the deformation and fluid-migration processes. Therefore understanding these processes requires in a first step to be able to model phase relations in such open system. In this contribution, emphasizes in placed on metasomatic aspects of the problem. Indeed , in many ductile shear zones reported in metagranites, deformation and fluid-rock interactions are associated with gain in MgO and losses of CaO and Na2O (K2O is also a mobile component but it can be either gained or lost). Although the mineralogical consequences of this so-called Mg-metasomatism are well-documented (replacement of K-feldspar into phengite, breakdown of plagioclase into ab + ep, crystallization of chlorite), the origin of this coupled mass-transfer is still unknown. We have performed a forward modeling of phase relationships using petrogenetic grids and pseudosections that consider variations in chemical potential (μ) of the mobile elements (MgO, CaO, Na2O). Chemical potential gradients being the driving force of mass transfer, μ-μ diagrams are the most appropriate diagrams to model open systems where fluid-rock interactions are prominent. Chemical potential diagrams are equivalent to activity diagrams but our approach differs from previous work because (1) solid solutions are taken into account (2) phase relations are modeled in a more realistic chemical system (Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O) and (3) the use of pseudosections allows to predict changes of the mineralogy (modes, composition) for the specific bulk composition studied. A particular attention is paid to the relationships between component concentrations and chemical potentials, which is not obvious in multi-component system. The studied shear zone is located in the Grimsel

  1. A low-temperature ductile shear zone: The gypsum-dominated western extension of the brittle Fella-Sava Fault, Southern Alps.

    Science.gov (United States)

    Bartel, Esther Maria; Neubauer, Franz; Heberer, Bianca; Genser, Johann

    2014-12-01

    Based on structural and fabric analyses at variable scales we investigate the evaporitic gypsum-dominated Comeglians-Paularo shear zone in the Southern Alps (Friuli). It represents the lateral western termination of the brittle Fella-Sava Fault. Missing dehydration products of gypsum and the lack of annealing indicate temperatures below 100 °C during development of the shear zone. Despite of such low temperatures the shear zone clearly exhibits mylonitic flow, thus evidencing laterally coeval activity of brittle and viscous deformation. The dominant structures within the gypsum rocks of the Lower Bellerophon Formation are a steeply to gently S-dipping foliation, a subhorizontal stretching lineation and pure shear-dominated porphyroclast systems. A subordinate simple shear component with dextral displacement is indicated by scattered σ-clasts. Both meso- and microscale structures are characteristic of a subsimple shear type of deformation with components of both coaxial and non-coaxial strain. Shortening in a transpressive regime was accommodated by right-lateral displacement and internal pure shear deformation within the Comeglians-Paularo shear zone. The shear zone shows evidence for a combination of two stretching faults, where stretching occurred in the rheologically weaker gypsum member and brittle behavior in enveloping lithologies.

  2. C-O-H-N fluids circulations and graphite precipitation in reactivated Hudsonian shear zones during basement uplift of the Wollaston-Mudjatik Transition Zone: Example of the Cigar Lake U deposit

    Science.gov (United States)

    Martz, Pierre; Cathelineau, Michel; Mercadier, Julien; Boiron, Marie-Christine; Jaguin, Justine; Tarantola, Alexandre; Demacon, Mickael; Gerbeaud, Olivier; Quirt, David; Doney, Amber; Ledru, Patrick

    2017-12-01

    Graphitic shear zones are spatially associated with unconformity-related uranium deposits that are located around the unconformity between the strata of the Paleo- to Mesoproterozoic Athabasca Basin (Saskatchewan, Canada) and its underlying Archean to Paleoproterozoic basement. The present study focuses on basement-hosted ductile-brittle graphitic shear zones near the Cigar Lake U deposit, one of the largest unconformity-related U deposits. The goal of the study is to decipher the pre-Athabasca Basin fluid migration history recorded within such structures and its potential role on the formation of such exceptional deposit. Dominantly C-O-H(-N) metamorphic fluids have been trapped in Fluid Inclusion Planes (FIPs) in magmatic quartz within ductile-brittle graphitic shear zones active during retrograde metamorphism associated with the formation of the Wollaston-Mudjatik Transition Zone (WMTZ) between ca. 1805 and 1720 Ma. Such fluids show a compositional evolution along the retrograde path, from a dense and pure CO2 fluid during the earliest stages, through a lower density CO2 ± CH4-N2 (± H2O) fluid and, finally, to a very low density CH4-N2 fluid. Statistical study of the orientation, distribution, proportion, and chemical characterization of the FIPs shows that: i) CO2 (δ13CCO2 around - 9‰ PDB) from decarbonation reactions and/or partial water-metamorphic graphite equilibrium initially migrated regionally and pervasively under lithostatic conditions at about 500 to 800 °C and 150 to 300 MPa. Such P-T conditions attest to a high geothermal gradient of around 60 to 90 °C/km, probably related to rapid exhumation of the basement or a large-scale heat source. ii) Later brittle reactivation of the shear zone at around 450 °C and 25-50 MPa favored circulation of CO2-CH4-N2(± H2O) fluids in equilibrium with metamorphic graphite (δ13CCO2 around - 14‰) under hydrostatic conditions and only within the shear zones. Cooling of these fluids and the water uptake linked

  3. Neoproterozoic Structural Evolution of the NE-trending 620-540 Ma Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia

    Science.gov (United States)

    Hamimi, Z.; El-Sawy, E. K.; El-Fakharan, A. S.; Shujoon, A.; Matsah, M.; El-Shafei, M.

    2012-04-01

    Ad-Damm Shear Zone (ASZ) is a NE-trending fault zone separating Jeddah and Asir tectonostratigraphic terranes in the Neoproterozoic juvenile Arabian Shield. ASZ extends ~380 km, with an average width ~2-3 km, from the eye-catching Ruwah Fault Zone in the eastern shield to the Red Sea Coastal plain. It was believed to be one of the conjugate shears of the NW- to NNW- trending sinistral Najd Shear System based on noteworthy dextral shear criteria recorded within the 620 Ma sheared granites of Numan Complex, as well as right-lateral offsets within quartz veins and dikes transected by the shear zone. The present study is an integrated field-based structural analysis and remote sensing. We utilized the ASTER data for lithologic discrimination and automatic structural lineament extraction and analysis of the Neoproterozoic basement lithologies encountered along and within the vicinity of ASZ. Various false color composite images were generated and evaluated for lithological mapping and structural lineaments. The obtained map was analyzed using GIS techniques to interpret the behavior of the existing lineaments and their spatial distribution. Based on the results of the ASTER data, two significant areas; around Bir Ad-Damm and to the south of Wadi Numan, are selected for detailed field investigation. Shear-sense indicators and overprinting relations clearly show a complicated Neoproterozoic history of ASZ, involving at least three deformations: (1) an early attenuated NE-SW sinistral shearing; followed by (2) a SE-directed thrusting phase resulted in the formation SE-verging thrusts and associated thrust-related folds; and (3) late NE-SW intensive dextral transcurrent shearing played a significant role in the creation of mesoscopic shear-zone related folds, particularly in the area near Bir Ad-Damm. Such deformation history demonstrates the same episode of Neoproterozoic deformation exhibited in the NE-trending shear zones in the Arabian-Nubian Shield (ANS).

  4. Zone-based RSS Reporting for Location Fingerprinting

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Treu, Georg; Linnhoff–Popien, Claudia

    2007-01-01

    In typical location fingerprinting systems a tracked terminal reports sampled Received Signal Strength (RSS) values to a location server, which estimates its position based on a database of pre-recorded RSS fingerprints. So far, poll-based and periodic RSS reporting has been proposed. However......, for supporting proactive Location-based Services (LBSs), triggered by pre-defined spatial events, the periodic protocol is inefficient. Hence, this paper introduces zone-based RSS reporting: the location server translates geographical zones defined by the LBS into RSS-based representations, which are dynamically...

  5. Petrology, chronology and sequence of vein systems: Systematic magmatic and hydrothermal history of a major intracontinental shear zone, Canadian Appalachians

    Science.gov (United States)

    Pe-Piper, Georgia; Piper, David J. W.; McFarlane, Chris R. M.; Sangster, Chris; Zhang, Yuanyuan; Boucher, Brandon

    2018-04-01

    Intra-continental shear zones developed during continental collision may experience prolonged magmatism and mineralization. The Cobequid Shear Zone formed part of a NE-SW-trending, orogen-parallel shear system in the late Devonian-early Carboniferous, where syn-tectonic granite-gabbro plutons and volcanic rocks 4 km thick were progressively deformed. In late Carboniferous to Permian, Alleghanian collision of Africa with Laurentia formed the E-W trending Minas Fault Zone, reactivating parts of the Cobequid Shear Zone. The 50 Ma history of hydrothermal mineralization following pluton emplacement is difficult to resolve from field relationships of veins, but SEM study of thin sections provides clear detail on the sequence of mineralization. The general paragenesis is: albite ± quartz ± chlorite ± monazite → biotite → calcite, allanite, pyrite → Fe-carbonates, Fe-oxides, minor sulfides, calcite and synchysite. Chronology was determined from literature reports and new U-Pb LA-ICPMS dating of monazite and allanite in veins. Vein mineralization was closely linked to magmatic events. Vein emplacement occurred preferentially during fault movement recognised from basin-margin inversion, as a result of fractures opening in the damage zone of master faults. The sequence of mineralization, from ca. 355 Ma riebeckite and albite veins to ca. 327 (-305?) Ma siderite-magnetite and sulfide mineralization, resembles Precambrian iron-oxide-copper-gold (IOCG) systems in the literature. The abundant magmatic Na, halogens and CO2 in veins and some magmatic bodies, characteristic of IOCG systems, were derived from the deeply subducted Rheic Ocean slab with little terrigenous sediment. Regional extension of the Magdalen Basin caused asthenospheric upwelling and melting of the previously metasomatized sub-continental lithospheric mantle. Crustal scale strike-slip faulting facilitated the rise of magmas, resulting in high heat flow driving an active hydrothermal system. Table S2

  6. Finite Strain Analysis of the Wadi Fatima Shear Zone in Western Arabia, Saudi Arabia

    Science.gov (United States)

    Kassem, O. M. K.; Hamimi, Z.

    2018-03-01

    Neoproterozoic rocks, Oligocene to Neogene sediments and Tertiary Red Sea rift-related volcanics (Harrat) are three dominant major groups exposed in the Jeddah tectonic terrane in Western Arabia. The basement complex comprises amphibolites, schists, and older and younger granites unconformably overlain by a post-amalgamation volcanosedimentary sequence (Fatima Group) exhibiting post-accretionary thrusting and thrust-related structures. The older granites and/or the amphibolites and schists display mylonitization and shearing in some outcrops, and the observed kinematic indicators indicate dextral monoclinic symmetry along the impressive Wadi Fatima Shear Zone. Finite strain analysis of the mylonitized lithologies is used to interpret the deformation history of the Wadi Fatima Shear Zone. The measured finite strain data demonstrate that the amphibolites, schists, and older granites are mildly to moderately deformed, where XZ (axial ratios in XZ direction) vary from 2.76 to 4.22 and from 2.04 to 3.90 for the Rf/φ and Fry method respectively. The shortening axes ( Z) have subvertical attitude and are associated with subhorizontal foliation. The data show oblate strain ellipsoids in the different rocks in the studied area and indication bulk flattening strain. We assume that the different rock types have similar deformation behavior. In the deformed granite, the strain data are identical in magnitude with those obtained in the Fatima Group volcanosedimentary sequence. Finite strain accumulated without any significant volume change contemporaneously with syn-accretionary transpressive structures. It is concluded that a simple-shear deformation with constant-volume plane strain exists, where displacement is strictly parallel to the shear plane. Furthermore, the contacts between various lithological units in the Wadi Fatima Shear Zone were formed under brittle to semi-ductile deformation conditions.

  7. Effect of Different Loading Conditions on the Nucleation and Development of Shear Zones Around Material Heterogeneities

    Science.gov (United States)

    Rybacki, E.; Nardini, L.; Morales, L. F.; Dresen, G.

    2017-12-01

    Rock deformation at depths in the Earth's crust is often localized in high temperature shear zones, which occur in the field at different scales and in a variety of lithologies. The presence of material heterogeneities has long been recognized to be an important cause for shear zones evolution, but the mechanisms controlling initiation and development of localization are not fully understood, and the question of which loading conditions (constant stress or constant deformation rate) are most favourable is still open. To better understand the effect of boundary conditions on shear zone nucleation around heterogeneities, we performed a series of torsion experiments under constant twist rate (CTR) and constant torque (CT) conditions in a Paterson-type deformation apparatus. The sample assemblage consisted of copper-jacketed Carrara marble hollow cylinders with one weak inclusion of Solnhofen limestone. The CTR experiments were performed at maximum bulk strain rates of 1.8-1.9*10-4 s-1, yielding shear stresses of 19-20 MPa. CT tests were conducted at shear stresses between 18.4 and 19.8 MPa resulting in shear strain rates of 1-2*10-4 s-1. All experiments were run at 900 °C temperature and 400 MPa confining pressure. Maximum bulk shear strains (γ) were ca. 0.3 and 1. Strain localized within the host marble in front of the inclusion in an area termed process zone. Here grain size reduction is intense and local shear strain (estimated from markers on the jackets) is up to 8 times higher than the applied bulk strain, rapidly dropping to 2 times higher at larger distance from the inclusion. The evolution of key microstructural parameters such as average grain size and average grain orientation spread (GOS, a measure of lattice distortion) within the process zone, determined by electron backscatter diffraction analysis, differs significantly as a function of loading conditions. Both parameters indicate that, independent of bulk strain and distance from the inclusion, the

  8. Three-dimensional shear transformation zone dynamics model for amorphous metals

    International Nuclear Information System (INIS)

    Homer, Eric R; Schuh, Christopher A

    2010-01-01

    A fully three-dimensional (3D) mesoscale modeling framework for the mechanical behavior of amorphous metals is proposed. The model considers the coarse-grained action of shear transformation zones (STZs) as the fundamental deformation event. The simulations are controlled through the kinetic Monte Carlo algorithm and the mechanical response of the system is captured through finite-element analysis, where STZs are mapped onto a 3D finite-element mesh and are allowed to shear in any direction in three dimensions. Implementation of the technique in uniaxial creep tests over a wide range of conditions validates the model's ability to capture the expected behaviors of an amorphous metal, including high temperature flow conforming to the expected constitutive law and low temperature localization in the form of a nascent shear band. The simulation results are combined to construct a deformation map that is comparable to experimental deformation maps. The flexibility of the modeling framework is illustrated by performing a contact test (simulated nanoindentation) in which the model deforms through STZ activity in the region experiencing the highest shear stress

  9. The Santa Rita Shear Zone: Major Mesozoic deformation along the western flank of the White-Inyo Range, CA

    Energy Technology Data Exchange (ETDEWEB)

    Brudos, T.C.; Paterson, S.R. (Univ. of Southern California, Los Angeles, CA (United States). Dept. of Geological Sciences)

    1993-04-01

    The Santa Rita Shear Zone (SRSZ), briefly described by Ross (1967), deforms the western part of the 164 Ma Santa Rita Flat pluton (SRFP), located SSE of Big Pine, CA. The SRSZ comprises a subvertical zone of solid-state deformation (strike N15E) over an area at least 13 km long by 2--3 km wide. Exposure of the shear zone is limited to the north and west by overlying Quaternary volcanics and basin fill within the Late Cenozoic Owens Valley graben. The SRSZ is larger than its present outcrop extent: strain magnitudes are highest within the westernmost exposures. The SRSZ along this western margin is a continuous zone of deformation comprising a mm-scale solid-state foliation containing igneous feldspars flattened into ovals with > 10:1 aspect ratios. The authors have identified three dike phases within the SRFP: (1) minor NE-striking Phase 1 dikes, comprising cm-scale aplites; (2) widespread m-scale Phase 2 dikes, which strike N10E; and (3) m-scale NW-striking Phase 3 mafic dikes. The Phase 1 and Phase 3 dikes are pre- and post-tectonic respectively; observations described below indicate the Phase 2 dikes are syn- to post-deformation. Deformation becomes localized along the Phase 2 dikes -- which are parallel to the orientation of the main body of the shear zone. Solid-state fabrics imposed on the Phase 2 dikes formed at higher temperatures than those within the SRFP, and in the east the SRFP is deformed only within a few cm of the dikes. They surmise syntectonic emplacement of the dikes into dislocational surfaces within the SRSZ, followed by solid-state deformation of the cooling dikes. Several workers have suggested the dikes within the SRFP are part of the 148 Ma independence dike swarm (referring to the Phase 2 or 3 dikes). If correct, this correlation indicates a Jurassic age for the SRSZ. Radiometric analyses of the dikes are in progress.

  10. Magnetic fabrics in characterization of magma emplacement and tectonic evolution of the Moyar Shear Zone, South India

    Directory of Open Access Journals (Sweden)

    P. Pratheesh

    2013-01-01

    Full Text Available The Moyar Shear Zone (MSZ of the South Indian granulite terrain hosts a prominent syenite pluton (∼560 Ma and associated NW-SE to NE-SW trending mafic dyke swarm (∼65 Ma and 95 Ma. Preliminary magnetic fabric studies in the mafic dykes, using Anisotropy of Magnetic Susceptibly (AMS studies at low-field, indicate successive emplacement and variable magma flow direction. Magnetic lineation and foliation in these dykes are identical to the mesoscopic fabrics in MSZ mylonites, indicating shear zone guided emplacement. Spatial distribution of magnetic lineation in the dykes suggests a common conduit from which the source magma has been migrated. The magnetic foliation trajectories have a sigmoidal shape to the north of the pluton and curve into the MSZ suggesting dextral sense of shear. Identical fabric conditions for magnetic fabrics in the syenite pluton and measured field fabrics in mylonite indicate syntectonic emplacement along the Proterozoic crustal scale dextral shear zone with repeated reactivation history.

  11. Active Deformation of Malawi Rift's North Basin Hinge Zone Modulated by Reactivation of Preexisting Precambrian Shear Zone Fabric

    Science.gov (United States)

    Kolawole, F.; Atekwana, E. A.; Laó-Dávila, D. A.; Abdelsalam, M. G.; Chindandali, P. R.; Salima, J.; Kalindekafe, L.

    2018-03-01

    We integrated temporal aeromagnetic data and recent earthquake data to address the long-standing question on the role of preexisting Precambrian structures in modulating strain accommodation and subsequent ruptures leading to seismic events within the East African Rift System. We used aeromagnetic data to elucidate the relationship between the locations of the 2009 Mw 6.0 Karonga, Malawi, earthquake surface ruptures and buried basement faults along the hinge zone of the half-graben comprising the North Basin of the Malawi Rift. Through the application of derivative filters and depth-to-magnetic-source modeling, we identified and constrained the trend of the Precambrian metamorphic fabrics and correlated them to the three-dimensional structure of buried basement faults. Our results reveal an unprecedented detail of the basement fabric dominated by high-frequency WNW to NW trending magnetic lineaments associated with the Precambrian Mughese Shear Zone fabric. The high-frequency magnetic lineaments are superimposed by lower frequency NNW trending magnetic lineaments associated with possible Cenozoic faults. Surface ruptures associated with the 2009 Mw 6.0 Karonga earthquake swarm aligned with one of the NNW-trending magnetic lineaments defining a normal fault that is characterized by right-stepping segments along its northern half and coalesced segments on its southern half. Fault geometries, regional kinematics, and spatial distribution of seismicity suggest that seismogenic faults reactivated the basement fabric found along the half-graben hinge zone. We suggest that focusing of strain accommodation and seismicity along the half-graben hinge zone is facilitated and modulated by the presence of the basement fabric.

  12. Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil

    Science.gov (United States)

    Tommasi, AndréA.; Vauchez, Alain; Femandes, Luis A. D.; Porcher, Carla C.

    1994-04-01

    In a lithospheric-scale, orogen-parallel transcurrent shear zone of the Pan-African Dom Feliciano belt of southern Brazil, two successive generations of magmas, an early calc-alkaline and a late peraluminous, have been emplaced during deformation. Microstructures show that these granitoids experienced a progressive deformation from magmatic to solid state under decreasing temperature conditions. Magmatic deformation is indicated by the coexistence of aligned K-feldspar, plagioclase, micas, and/or tourmaline with undeformed quartz. Submagmatic deformation is characterized by strain features, such as fractures, lattice bending, or replacement reactions affecting only the early crystallized phases. High-temperature solid-state deformation is characterized by extensive grain boundary migration in quartz, myrmekitic K-feldspar replacement, and dynamic recrystallization of both K-feldspar and plagioclase. Decreasing temperature during solid-state deformation is inferred from changes in quartz crystallographic fabrics, decrease in grain size of recrystallized feldspars, and lower Ti amount in recrystallized biotites. Final low-temperature deformation is characterized by feldspar replacement by micas. The geochemical evolution of the synkinematic magmatism, from calc-alkaline metaluminous granodiorites with intermediate 87Sr/86Sr initial ratio to peraluminous granites with very high 87Sr/86Sr initial ratio, suggests an early lower crustal source or a mixed mantle/crustal source, followed by a middle to upper crustal source for the melts. Shearing in lithospheric faults may induce partial melting in the lower crust by shear heating in the upper mantle, but, whatever the process initiating partial melting, lithospheric transcurrent shear zones may collect melt at different depths. Because they enhance the vertical permeability of the crust, these zones may then act as heat conductors (by advection), promoting an upward propagation of partial melting in the crust

  13. Field Observations and Modeling Results of the McMurdo Shear Zone, Antarctica: Implications on Shear Margin Dynamics and Long- Term Viability of the South Pole Traverse

    Science.gov (United States)

    Kaluzienski, L. M.; Koons, P. O.; Enderlin, E. M.; Courville, Z.; Campbell, S. W.; Arcone, S.; Jordan, M.; Ray, L.

    2017-12-01

    Antarctica's ice shelves modulate the flow of inland ice towards the ocean. Understanding the controls on ice-shelf stability are critical to predicting the future evolution of the Antarctic Ice Sheet. For the Ross Ice Shelf (RIS), an important region of lateral resistance is the McMurdo Shear Zone (MSZ), a 5-10 km wide strip of heavily crevassed ice. On a yearly basis the United States Antarctic Program (USAP) mitigates crevasse hazards along the South Pole Traverse (SPoT) route that crosses this region. However, as ice advects northward past the lateral buttress of White Island into a region of greater flow divergence, intensified crevassing has been observed which will continue to place a substantial burden on safety mitigation efforts. The route has advected down-glacier towards this complex region since 2002 so the USAP currently has plans to relocate the shear zone crossing upstream in the near future. Our work aims to assess the feasibility of moving the route to several potential locations based on results from an integrated project incorporating detailed field-based observations of crevasse distributions and orientation from ground-penetrating radar (GPR), GPS and remote sensing observations of the flow and stress field within the MSZ, and finite element numerical modeling of local and regional kinematics within the region. In addition, we assess plausible dynamic forcings both upstream and downstream of the MSZ that could influence shear zone stability. These include changes in mass flux across the grounding lines of tributary glaciers such as the observed increase in ice discharge from of Byrd Glacier (Stearns et al., 2008) as well as changes at the MIS front due to recent intensified rift propagation (Banwel et al., 2017). Results from this work will increase our understanding of ice shelf shear margin dynamics and provide a firm basis for predicting the long-term behavior of the MSZ and viability of the SPoT. Stearns, Leigh A., Benjamin E. Smith, and

  14. Shear Resistance Variations in Experimentally Sheared Mudstone Granules: A Possible Shear-Thinning and Thixotropic Mechanism

    Science.gov (United States)

    Hu, Wei; Xu, Qiang; Wang, Gonghui; Scaringi, Gianvito; Mcsaveney, Mauri; Hicher, Pierre-Yves

    2017-11-01

    We present results of ring shear frictional resistance for mudstone granules of different size obtained from a landslide shear zone. Little rate dependency of shear resistance was observed in sand-sized granules in any wet or dry test, while saturated gravel-sized granules exhibited significant and abrupt reversible rate-weakening (from μ = 0.6 to 0.05) at about 2 mm/s. Repeating resistance variations occurred also under constant shear displacement rate. Mudstone granules generate mud as they are crushed and softened. Shear-thinning and thixotropic behavior of the mud can explain the observed behavior: with the viscosity decreasing, the mud can flow through the coarser soil pores and migrate out from the shear zone. This brings new granules into contact which produces new mud. Thus, the process can start over. Similarities between experimental shear zones and those of some landslides in mudstone suggest that the observed behavior may play a role in some landslide kinematics.

  15. The Sierra de Cabral range: a restraining bend related to the Sierra Ballena shear zone in Dom Feliciano belt

    International Nuclear Information System (INIS)

    Masquelin, H.

    2010-01-01

    Restraining and releasing bends occurring in all crustal environments are common but enigmatic features of strike-slip fault systems. They can be reported in all scales of observation. Regional-scale restraining bends are sites of mountain building, transpressional deformation and basement exhumation. Releasing bends are sites of subsidence, transtensional deformation and pull-apart basins. The Dom Feliciano Belt of Southern Uruguay has two main structures observed from the outer space: (i) the Sierra Ballena Shear Zone and (ii) the Sierra de Cabral flexure located to the SW of the former. Although a transpressional regime is commonly accepted for the Dom Feliciano Belt, the available tectonic models do not provide satisfactory explanations for its building mechanism. A restraining bend is proposed at the SW termination of Sierra Ballena strike-slip ductile shear zone. In a key-area (Alvariza Range) the relationship between the Zanja del Tigre volcanic-detritic and the calcareous succession shows three en-échelon upright bends of the same quartzite hanging-wall between two sub-vertical strike-slip faults, suggesting the existence of a shortened strike-slip duplex operating in viscous-elastic rheology. The deformation partitioning includes strike-slip and dip-slip simple-shear components as well as one contractional pure-shear component. Because restraining bends were scarcely described in Neoproterozoic low-grade regional exhumation conditions, this structural framework would be a natural laboratory to study fault kinematics, fault dynamics, their associated deformation and the tectonic and erosion constraints related to the exhumation of many crystalline terrains

  16. Ring shear characteristics of clays in fractured-zone-landslide. Hasaitai chisuberichi no nenseido no ring sendan tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Yatabe, R; Yagi, N; Enoki, M [Ehime Univ., Ehime (Japan). Faculty of Engineering

    1991-09-20

    The importance of study on the residual strength, in addition to the peak strength, has been pointed out for the study of landslides. The residual strength characteristics, effects of shearing rate, and grain size of clays, as well as the residual strength characteristics of clay minerals of a fractured zone landslide were examined by ring shear tests. The residual friction angles {phi}{sub r} of the tested clays of the fractured zone landslide were from 10 to 31{degree}, and were smaller than those of shearing resistance angles {phi}{prime} obtained by triaxial tests by 5 to 15{degree}. Contrary to the pointing out made hitherto, no correlation between clay content CF and plastic index was recognized for {phi}{sub r} of clays of a fractured zone landslide. As regards CF, the relation with CF was far below the lowest limit indicated by now. Ring shear characteristics of principal structural clay minerals, vermiculite, mica, illite, chlorite, and kaolinite were investigated. {phi}{sub r} of these clay minerals were in the range from 10 to 25{degree}. 20 refs., 14 figs., 2 tabs.

  17. Middle Jurassic shear zones at Cap de Creus (eastern Pyrenees, Spain) : a record of pre-drift extension of the Piemonte–Ligurian Ocean?

    NARCIS (Netherlands)

    Vissers, Reinoud L. M.; Van Hinsbergen, Douwe J. J.; Wilkinson, Camilla M.; Ganerød, Morgan

    The Cap de Creus peninsula in NE Spain consists of greenschist- to amphibolite-facies metasediments and granitoid bodies of the Variscan Axial Zone of the Pyrenees, overprinted in the north by anastomosed greenschist-facies shear zones. Current tectonic interpretations ascribe these shear zones to

  18. The role of chemical processes and brittle deformation during shear zone formation and its potential geophysical implications

    Science.gov (United States)

    Goncalves, Philippe; Leydier, Thomas; Mahan, Kevin; Albaric, Julie; Trap, Pierre; Marquer, Didier

    2017-04-01

    Ductile shear zones in the middle and lower continental crust are the locus of interactions between mechanical and chemical processes. Chemical processes encompass metamorphic reactions, fluid-rock interactions, fluid flow and chemical mass-transfer. Studying these processes at the grain scale, and even the atom scale, on exposed inactive shear zones can give insights into large-scale geodynamics phenomena (e.g. crustal growth and mountain building through the reconstruction of P-T-t-D-Ɛ evolutionary paths. However, other major issues in earth sciences can be tackled through these studies as well. For instance, the mechanism of fluid flow and mass transfer in the deep crust where permeability should be small and transient is still largely debated. Studying exhumed inactive shear zones can also help to interpret several new geophysical observations like (1) the origin of tremor and very low frequency earthquakes observed in the ductile middle and lower crust, (2) mechanisms for generating slow slip events and (3) the physical origin of puzzling crustal anisotropy observed in major active crustal shear zones. In this contribution, we present a collection of data (deformation, petrology, geochemistry, microtexture) obtained on various shear zones from the Alps that were active within the viscous regime (T > 450°C). Our observations show that the development of a shear zone, from its nucleation to its growth and propagation, is not only governed by ductile deformation coeval with reactions but also involves brittle deformation. Although brittle deformation is a very short-lived phenomenon, our petrological and textural observations show that brittle failure is also associated with fluid flow, mass transfer, metasomatic reactions and recrystallization. We speculate that the fluids and the associated mineralogical changes involved during this brittle failure in the ductile crust might play a role in earthquake / tremor triggering below the brittle - ductile transition

  19. Locating the origin of stick slip instabilities in sheared granular layers

    Science.gov (United States)

    Korkolis, Evangelos; Niemeijer, André

    2017-04-01

    Acoustic emission (AE) monitoring is a non-invasive technique widely used to evaluate the state of materials and structures. We have developed a system that can locate the source of AE events associated with unstable sliding (stick-slip) of sheared granular layers during laboratory friction experiments. Our aim is to map the spatial distribution of energy release due to permanent microstructural changes, using AE source locations as proxies. This will allow us to determine the distribution of applied work in a granular medium, which will be useful in developing constitutive laws that describe the frictional behavior of such materials. The AE monitoring system is installed on a rotary shear apparatus. This type of apparatus is used to investigate the micromechanical processes responsible for the macroscopic frictional behavior of granular materials at large shear displacements. Two arrays of 8 piezoelectric sensors each are installed into the ring-shaped steel pistons that confine our samples. The sensors are connected to a high-speed, multichannel oscilloscope that can record full waveforms. The apparatus is also equipped with a system that continuously records normal and lateral (shear) loads and displacements, as well as pore fluid pressure. Thus, we can calculate the frictional and volumetric response of our granular aggregates, as well as the location of AE sources. Here, we report on the results of room temperature experiments on granular aggregates consisting of glass beads or segregated mixtures of glass beads and calcite, at up to 5 MPa normal stress and sliding velocities between 1 and 100 μm/s. Under these conditions, glass beads exhibit unstable sliding behavior accompanied by significant AE activity, whereas calcite exhibits stable sliding and produces no AEs. We recorded a range of unstable sliding behaviors, from fast, regular stick slip at high normal stress (> 4 MPa) and sliding velocities below 20 μm/s, to irregular stick slip at low normal

  20. The ultimate fate of a synmagmatic shear zone. Interplay between rupturing and ductile flow in a cooling granite pluton

    Science.gov (United States)

    Zibra, I.; White, J. C.; Menegon, L.; Dering, G.; Gessner, K.

    2018-05-01

    The Neoarchean Cundimurra Pluton (Yilgarn Craton, Western Australia) was emplaced incrementally along the transpressional Cundimurra Shear Zone. During syndeformational cooling, discrete networks of cataclasites and ultramylonites developed in the narrowest segment of the shear zone, showing the same kinematics as the earlier synmagmatic structures. Lithological boundaries between aplite/pegmatite veins and host granitic gneiss show more intense pre-cataclasite fabrics than homogeneous material, and these boundaries later became the preferred sites of shear rupture and cataclasite nucleation. Transient ductile instabilities established along lithological boundaries culminated in shear rupture at relatively high temperature (∼500-600 °C). Here, tensile fractures at high angles from the fault plane formed asymmetrically on one side of the fault, indicating development during seismic rupture, establishing the oldest documented earthquake on Earth. Tourmaline veins were emplaced during brittle shearing, but fluid pressure probably played a minor role in brittle failure, as cataclasites are in places tourmaline-free. Subsequent ductile deformation localized in the rheologically weak tourmaline-rich aggregates, forming ultramylonites that deformed by grain-size sensitive creep. The shape and width of the pluton/shear zone and the regime of strain partitioning, induced by melt-present deformation and established during pluton emplacement, played a key role in controlling the local distribution of brittle and then ductile subsolidus structures.

  1. A viscoplastic shear-zone model for deep (15-50 km) slow-slip events at plate convergent margins

    Science.gov (United States)

    Yin, An; Xie, Zhoumin; Meng, Lingsen

    2018-06-01

    A key issue in understanding the physics of deep (15-50 km) slow-slip events (D-SSE) at plate convergent margins is how their initially unstable motion becomes stabilized. Here we address this issue by quantifying a rate-strengthening mechanism using a viscoplastic shear-zone model inspired by recent advances in field observations and laboratory experiments. The well-established segmentation of slip modes in the downdip direction of a subduction shear zone allows discretization of an interseismic forearc system into the (1) frontal segment bounded by an interseismically locked megathrust, (2) middle segment bounded by episodically locked and unlocked viscoplastic shear zone, and (3) interior segment that slips freely. The three segments are assumed to be linked laterally by two springs that tighten with time, and the increasing elastic stress due to spring tightening eventually leads to plastic failure and initial viscous shear. This simplification leads to seven key model parameters that dictate a wide range of mechanical behaviors of an idealized convergent margin. Specifically, the viscoplastic rheology requires the initially unstable sliding to be terminated nearly instantaneously at a characteristic velocity, which is followed by stable sliding (i.e., slow-slip). The characteristic velocity, which is on the order of <10-7 m/s for the convergent margins examined in this study, depends on the (1) effective coefficient of friction, (2) thickness, (3) depth, and (4) viscosity of the viscoplastic shear zone. As viscosity decreases exponentially with temperature, our model predicts faster slow-slip rates, shorter slow-slip durations, more frequent slow-slip occurrences, and larger slow-slip magnitudes at warmer convergent margins.

  2. A micro-kinematic framework for vorticity analysis in polyphase shear zones using integrated field, microstructural and crystallographic orientation-dispersion methods

    Science.gov (United States)

    Kruckenberg, S. C.; Michels, Z. D.; Parsons, M. M.

    2017-12-01

    We present results from integrated field, microstructural and textural analysis in the Burlington mylonite zone (BMZ) of eastern Massachusetts to establish a unified micro-kinematic framework for vorticity analysis in polyphase shear zones. Specifically, we define the vorticity-normal surface based on lattice-scale rotation axes calculated from electron backscatter diffraction data using orientation statistics. In doing so, we objectively identify a suitable reference frame for rigid grain methods of vorticity analysis that can be used in concert with textural studies to constrain field- to plate-scale deformation geometries without assumptions that may bias tectonic interpretations, such as relationships between kinematic axes and fabric forming elements or the nature of the deforming zone (e.g., monoclinic vs. triclinic shear zones). Rocks within the BMZ comprise a heterogeneous mix of quartzofeldspathic ± hornblende-bearing mylonitic gneisses and quartzites. Vorticity axes inferred from lattice rotations lie within the plane of mylonitic foliation perpendicular to lineation - a pattern consistent with monoclinic deformation geometries involving simple shear and/or wrench-dominated transpression. The kinematic vorticity number (Wk) is calculated using Rigid Grain Net analysis and ranges from 0.25-0.55, indicating dominant general shear. Using the calculated Wk values and the dominant geographic fabric orientation, we constrain the angle of paleotectonic convergence between the Nashoba and Avalon terranes to 56-75º with the convergence vector trending 142-160° and plunging 3-10°. Application of the quartz recrystallized grain size piezometer suggests differential stresses in the BMZ mylonites ranging from 44 to 92 MPa; quartz CPO patterns are consistent with deformation at greenschist- to amphibolite-facies conditions. We conclude that crustal strain localization in the BMZ involved a combination of pure and simple shear in a sinistral reverse transpressional

  3. Microstructures and magnetic fabrics of the Ngaoundéré granite pluton (Cameroon): Implications to the late-Pan-African evolution of Central Cameroon Shear Zone

    Science.gov (United States)

    Dawaï, Daouda; Tchameni, Rigobert; Bascou, Jérome; Awe Wangmene, Salomon; Fosso Tchunte, Périclex Martial; Bouchez, Jean-Luc

    2017-05-01

    The Ngaoundéré granite pluton, in Central-North Cameroon, located near the Central Cameroon Shear zone (CCSZ), and previously studied for its petrography and geochemistry, is characterized by the absence of macroscopic markers of deformation. In this study, we report microstructures and magnetic fabrics (AMS) of this pluton and discuss the relationship with the Pan-African evolution of the CCSZ. The pluton consists of a porphyritic Hbl-Bt-monzogranite at its rim and a porphyritic biotite-granite at its core, a petrographic distribution denoting a normal zoning pattern, i.e. more silicic toward the centre. As expected, magnetic susceptibilities values also exhibit a zoning pattern in agreement with petrographic zonation. Thermomagnetic data indicate that this pluton is dominantly ferromagnetic in behaviour. As indicated by its microstructures, the pluton has suffered a continuum of deformation from the magmatic state to the high temperature solid-state during magma crystallization and solidification. The magnetic foliations dominantly strike NE-SW and dip moderately to steeply and the lineations mostly plunge shallowly to the NE or SW, roughly parallel to NE-to ENE-trending Central Cameroun Shear Zone (CCSZ). The foliation poles define a girdle pattern with a zone axis (52°/11°) rather close to the best line of the lineations (44°/21°). These fabrics correlate with the structures of the country rocks ascribed by several workers to a regional transpression. Toward the margins of the pluton, particularly the northern one, the lineations tend to rotate from NE to N in azimuth. This change is interpreted as due to strain partitioning, simple shearing with NE-SW extension being relayed by compression toward the northern pluton border. This new magnetic fabric study suggests that the Ngaoundéré pluton (poorly dated at c. 575 Ma) was emplaced during the late stages of the CCSZ dextral transpressive movement. It also provides some more constraints on the correlation

  4. Amphibious Shear Velocity Structure of the Cascadia Subduction Zone

    Science.gov (United States)

    Janiszewski, H. A.; Gaherty, J. B.; Abers, G. A.; Gao, H.

    2017-12-01

    The amphibious Cascadia Initiative crosses the coastline of the Cascadia subduction zone (CSZ) deploying seismometers from the Juan de Fuca ridge offshore to beyond the volcanic arc onshore. This allows unprecedented seismic imaging of the CSZ, enabling examination of both the evolution of the Juan de Fuca plate prior to and during subduction as well as the along strike variability of the subduction system. Here we present new results from an amphibious shear velocity model for the crust and upper mantle across the Cascadia subduction zone. The primary data used in this inversion are surface-wave phase velocities derived from ambient-noise Rayleigh-wave data in the 10 - 20 s period band, and teleseismic earthquake Rayleigh wave phase velocities in the 20 - 160 s period band. Phase velocity maps from these data reflect major tectonic structures including the transition from oceanic to continental lithosphere, Juan de Fuca lithosphere that is faster than observations in the Pacific for oceanic crust of its age, slow velocities associated with the accretionary prism, the front of the fast subducting slab, and the Cascades volcanic arc which is associated with slower velocities in the south than in the north. Crustal structures are constrained by receiver functions in the offshore forearc and onshore regions, and by active source constraints on the Juan de Fuca plate prior to subduction. The shear-wave velocities are interpreted in their relationships to temperature, presence of melt or hydrous alteration, and compositional variation of the CSZ.

  5. The importance of strain localisation in shear zones

    Science.gov (United States)

    Bons, Paul D.; Finch, Melanie; Gomez-Rivas, Enrique; Griera, Albert; Llorens, Maria-Gema; Steinbach, Florian; Weikusat, Ilka

    2016-04-01

    The occurrence of various types of shear bands (C, C', C'') in shear zones indicate that heterogeneity of strain is common in strongly deformed rocks. However, the importance of strain localisation is difficult to ascertain if suitable strain markers are lacking, which is usually the case. Numerical modelling with the finite-element method has so far not given much insight in the development of shear bands. We suggest that this is not only because the modelled strains are often not high enough, but also because this technique (that usually assumes isotropic material properties within elements) does not properly incorporate mineral deformation behaviour. We simulated high-strain, simple-shear deformation in single- and polyphase materials with a full-field theory (FFT) model coupled to the Elle modelling platform (www.elle.ws; Lebensohn 2001; Bons et al. 2008). The FFT-approach simulates visco-plastic deformation by dislocation glide, taking into account the different available slip systems and their critical resolved shear stresses in relations to the applied stresses. Griera et al. (2011; 2013) have shown that this approach is particularly well suited for strongly anisotropic minerals, such as mica and ice Ih (Llorens 2015). We modelled single- and polyphase composites of minerals with different anisotropies and strengths, roughly equivalent to minerals such as ice Ih, mica, quartz and feldspar. Single-phase polycrystalline aggregates show distinct heterogeneity of strain rate, especially in case of ice Ih, which is mechanically close to mica (see also Griera et al. 2015). Finite strain distributions are heterogeneous as well, but the patterns may differ from that of the strain rate distribution. Dynamic recrystallisation, however, usually masks any strain and strain rate localisation (Llorens 2015). In case of polyphase aggregates, equivalent to e.g. a granite, we observe extensive localisation in both syn- and antithetic shear bands. The antithetic shear bands

  6. Crustal-scale shear zones recording 400 m.y. of tectonic activity in the North Caribou greenstone belt, western Superior Province of Canada

    Science.gov (United States)

    Kalbfleisch, Netasha

    A series of crustal-scale shear zones demarcates the northern and eastern margins of the North Caribou greenstone belt (NCGB), proximal to a Mesoarchean terrane boundary in the core of the western Superior Province of Canada. The dominant deformation produced a pervasive steeply dipping fabric that trends broadly parallel to the doubly arcuate shape of the belt and was responsible for tight folding the banded iron formation host to Goldcorp's prolific gold deposit at Musselwhite mine. The shear zones in the North Caribou greenstone belt are of particular interest because of their ability to channel hydrothermal fluids with the potential to bear ore and cause alteration of the middle to shallow crust. Shear zones are commonly reactivated during subsequent tectonism, but exhibit a consistent and dominant dextral shear sense across the belt; fabric-forming micas and chlorite are generally Mg-rich. Although garnets samples from within the shear zones are dominantly almandine, they possess variable geochemical trends (HREEs of >2 orders of magnitude) and can be syn-, intra-, or post-tectonic in origin. In situ geochronological analysis of zircon (U-Pb) and monazite (total-Pb) in high strain rocks in and around the NCGB, interpreted in light of in situ geochemical analysis of garnet and fabric-forming micas and chlorite, reveals four relatively discrete events that span 400 million years. Metamorphism of the mid-crust was coeval with magmatism during docking of the Island Lake domain at c. 2.86 Ga and subsequent terrane accretion at the north and south margins of the North Caribou Superterrane from c. 2.75 to 2.71 Ga. Transpressive shear at c. 2.60 to 2.56 Ga and late re-activation of shear zones at c. 2.44 Ga produced a steeply-dipping pervasive fabric, and channeled fluids for late crystallization of garnet and monazite recorded in the Markop Lake deformation zone. These observations implicate a horizontal tectonic model similar to the modern eastern Pacific plate

  7. DISCRETE DEFORMATION WAVE DYNAMICS IN SHEAR ZONES: PHYSICAL MODELLING RESULTS

    Directory of Open Access Journals (Sweden)

    S. A. Bornyakov

    2016-01-01

    Full Text Available Observations of earthquake migration along active fault zones [Richter, 1958; Mogi, 1968] and related theoretical concepts [Elsasser, 1969] have laid the foundation for studying the problem of slow deformation waves in the lithosphere. Despite the fact that this problem has been under study for several decades and discussed in numerous publications, convincing evidence for the existence of deformation waves is still lacking. One of the causes is that comprehensive field studies to register such waves by special tools and equipment, which require sufficient organizational and technical resources, have not been conducted yet.The authors attempted at finding a solution to this problem by physical simulation of a major shear zone in an elastic-viscous-plastic model of the lithosphere. The experiment setup is shown in Figure 1 (A. The model material and boundary conditions were specified in accordance with the similarity criteria (described in detail in [Sherman, 1984; Sherman et al., 1991; Bornyakov et al., 2014]. The montmorillonite clay-and-water paste was placed evenly on two stamps of the installation and subject to deformation as the active stamp (1 moved relative to the passive stamp (2 at a constant speed. The upper model surface was covered with fine sand in order to get high-contrast photos. Photos of an emerging shear zone were taken every second by a Basler acA2000-50gm digital camera. Figure 1 (B shows an optical image of a fragment of the shear zone. The photos were processed by the digital image correlation method described in [Sutton et al., 2009]. This method estimates the distribution of components of displacement vectors and strain tensors on the model surface and their evolution over time [Panteleev et al., 2014, 2015].Strain fields and displacements recorded in the optical images of the model surface were estimated in a rectangular box (220.00×72.17 mm shown by a dot-and-dash line in Fig. 1, A. To ensure a sufficient level of

  8. Mesoscale modeling of amorphous metals by shear transformation zone dynamics

    International Nuclear Information System (INIS)

    Homer, Eric R.; Schuh, Christopher A.

    2009-01-01

    A new mesoscale modeling technique for the thermo-mechanical behavior of metallic glasses is proposed. The modeling framework considers the shear transformation zone (STZ) as the fundamental unit of deformation, and coarse-grains an amorphous collection of atoms into an ensemble of STZs on a mesh. By employing finite element analysis and a kinetic Monte Carlo algorithm, the modeling technique is capable of simulating glass processing and deformation on time and length scales greater than those usually attainable by atomistic modeling. A thorough explanation of the framework is presented, along with a specific two-dimensional implementation for a model metallic glass. The model is shown to capture the basic behaviors of metallic glasses, including high-temperature homogeneous flow following the expected constitutive law, and low-temperature strain localization into shear bands. Details of the effects of processing and thermal history on the glass structure and properties are also discussed.

  9. Structural evolution of the Irtysh Shear Zone: implication for the Late Paleozoic amalgamation of multiple arc systems in Central Asia

    Science.gov (United States)

    Li, Pengfei; Sun, Min; Rosenbaum, Gideon

    2015-04-01

    The NW-SE Irtysh Shear Zone represents a major tectonic boundary in the Central Asian Orogenic Belt, recording the amalgamation history between the peri-Siberian orogenic system and the Kazakhstan orogenic system. The structural evolution and geodynamics of this shear zone is still poorly documented. Here we present new structural data complemented by chronological data in an attempt to unravel the geodynamic significance of the Irtysh Shear Zone in the context of accretion history of the Central Asian Orogenic Belt. Our results show three episodes of deformation for the shear zone. D1 foliation is locally recognized in low strain area and recorded by garnet inclusions, whereas D2 is represented by a sub-horizontal fabric and related NW-SE lineation. D3 is characterized by a transpersonal deformation event, to form a series of NW-SE mylonitic belts with sinistral kinematics, and to overprint D2 fabric forming regional-scale NW-SE upright folds. A paragneiss sample from the shear zone yielded the youngest detrital zircon peaks in the late Carboniferous, placing a maximum age constraint on the deformation, which overlaps in time with the late Paleozoic collision between the Chinese Altai and the intraoceanic arc system of the East Junggar and West Junggar. We interpret three episodes of deformation to represent orogenic thickening (D1), collapse (D2) and thickening (D3) in response to this collisional event. Sinistral shearing (D3) together with the coeval dextral shearing in the Tianshan accommodate eastward extrusion of the Kazakhstan orogenic system during the late Paleozoic amalgamation of the Central Asian Orogenic Belt. Acknowledgements: This study was financially supported by the Major Basic Research Project of the Ministry of Science and Technology of China (Grant: 2014CB440801), Hong Kong Research Grant Council (HKU705311P and HKU704712P), National Science Foundation of China (41273048, 41273012) and a HKU CRCG grant. The work is a contribution of the Joint

  10. Na-metasomatism in the uranium fields of Singhbhum Shear zone, India

    International Nuclear Information System (INIS)

    Chaki, Anjan

    2013-01-01

    Singhbhum Shear Zone (SSZ) of eastern India hosts uranium, copper and apatite-magnetite mineralization, which occurs either independently or overlaps in space. SSZ is a nearly 200 km long, 1-5 km wide, intensely techtonized, northward-convex, arcuate mobile belt that separates the Archaean cratonic nucleus to its south from the Proterozoic North Singhbhum Fold Belt on the north. Except Bagjata mines in the eastern sector, majority of the known uranium deposits and mines (e.g. Jaduguda, Bhatin, Narwapahar, Banduhurang and Mohuldih) are situated in the central sector of the shear zone. All the deposits are of low grade (0.05% U 3 O 8 ) and low to medium tonnage. The common rock types of the SSZ are quartz-chlorite schists, quartzsericite schists, quartzite, metaconglomerate, soda granite, quartz-albite bearing schists/gneisses, granophyres and tourmalinite. The mineralization occur as lenticular to tabular bodies, which are (pene-) concordant with dominant planer structures, i.e. foliation parallel with the lithological layering (S 3 II S 0 ). Principal uranium mineral is uraninite with low thorium (UO 2 /ThO 2 =70-150), high lead (PbO =14-15%) and moderate REE contents with minor pitchblende and some secondary minerals near the surface. Many ore minerals, particularly the sulfide phases of Ni, Co, Mo, Cu and Fe are common

  11. Estimating the location and shape of hybrid zones

    DEFF Research Database (Denmark)

    Guedj, Benjamin; Guillot, Gilles

    2011-01-01

    We propose a new model to make use of georeferenced genetic data for inferring the location and shape of a hybrid zone. The model output includes the posterior distribution of a parameter that quantifies the width of the hybrid zone. The model proposed is implemented in the GUI and command‐line v...

  12. Structural setting and magnetic properties of pseudotachylyte in a deep crustal shear zone, western Canadian shield

    Science.gov (United States)

    Orlandini, O. F.; Mahan, K. H.; Brown, L. L.; Regan, S.; Williams, M. L.

    2012-12-01

    Seismic slip commonly produces pseudotachylytes, a glassy vein-filling substance that is typically interpreted as either a frictional melt or an ultra-triturated cataclasite. In either form, pseudotachylytes are commonly magnetite enriched, even in magnetite-free host rocks, and therefore are potentially useful as high fidelity recorders of natural magnetic fields at the time of slip in a wide array of lithologies. Pseudotachylytes generally have high magnetic susceptibility and thus should preserve the dominant field present as the material passes the Curie temperatures of magnetic minerals, primarily magnetite. Two potential sources have been proposed for the dominant magnetic field recorded: the earth's magnetic field at the time of slip or the temporary and orders of magnitude more intense field created by the presence of coseismic currents along the failure plane. Pseudotachylytes of the Cora Lake shear zone (CLsz) in the Athabasca Granulite Terrain, western Canadian shield, are consistently hosted in high strain ultramylonitic orthogneiss. Sinistral and extensional oblique-slip in the CLsz occurred at high-pressure granulite-grade conditions of ~1.0 GPa and >800°C and may have persisted to somewhat lower P-T conditions (~0.8 GPa, 700 °C) during ductile deformation. Pseudotachylyte-bearing slip surfaces have sinistral offset, matching the larger shear zone, and clasts of wall rock in the more brecciated veins display field evidence for ductile shear along the same plane prior to brittle failure. The presence of undeformed pseudotachylyte in kinematically compatible fracture arrays localized in ultramylonite indicates that brittle failure may have occurred in the waning stages of shear zone activity and at similar deep crustal conditions. Field-documented occurrences of pseudotachylyte include 2 cm-thick veins that run subparallel to mylonitic foliation and contain small flow-aligned clasts and large, heavily brecciated foliation-crosscutting zones up to

  13. Migration of the deforming zone during seismic shear and implications for field observations, dynamic weakening, and the onset of melting

    Science.gov (United States)

    Platt, J. D.; Rice, J. R.

    2013-12-01

    Prior work in our group has shown how micron-scale strain rate localization can be explained using models for thermal pressurization and thermal decomposition in fluid-saturated gouge materials. Using parameters modeling a typical centroidal depth for a crustal seismogenic zone we predicted localized zone thicknesses in line with laboratory (Brantut et al., 2008; Kitajima et al., 2010) and field (Chester and Chester, 1998; Heermance et al., 2003; De Paola et al., 2008) observations. Further work has shown that the localized zone need not remain in a single location and may migrate across the gouge layer, in agreement with laboratory observations that show a thickening of the highly localized material with slip, and a distinct banded structure within the highly localized material (T. Mitchell, priv. comm.; Kitajima et al., 2010). We have identified two mechanisms that could cause migration. The first is a combination of thermal diffusion, hydraulic diffusion and thermal pressurization, which leads to the location of maximum pore pressure moving away from its initial position [Rice, 2006]. Since the maximum strain rate coincides with the maximum pore pressure, this causes the deforming zone to move across the gouge layer. The second mechanism is reactant depletion in a material undergoing thermal decomposition. Fluid pressurization and strain rate are slaved to the reaction, so as the reactant depletes the deforming zone will migrate towards fresh reactant. An additional symmetry breaking instability exists but is not discussed here. We have also explored how spatial variations in fault gouge properties may control the distribution of seismic shear. Since at seismic slip rates localization in a fluid-saturated material is controlled largely by pore pressure generation and hydraulic diffusion, regions that generate or trap pore pressures more efficiently will attract straining. Numerical simulations show that the deforming zone moves towards regions of low hydraulic

  14. The effects of lower crustal strength and preexisting midcrustal shear zones on the formation of continental core complexes and low-angle normal faults

    KAUST Repository

    Wu, Guangliang

    2016-08-22

    To investigate the formation of core complexes and low-angle normal faults, we devise thermomechanical simulations on a simplified wedge-like orogenic hinterland that has initial topography, Moho relief, and a preexisting midcrustal shear zone that can accommodate shear at very low angles (<20°). We mainly vary the strength of the lower crust and the frictional strength of the preexisting midcrustal shear zone. We find that the strength of the lower crust and the existence and strength of a preexisting shear zone significantly affect the formation and evolution of core complexes. With increasing lower crustal strength, we recognize varying extensional features with decreasing exhumation rate: these are characterized by bivergent metamorphic massifs, classic Cordilleran metamorphic core complexes, multiple consecutive core complexes (or boudinage structures), and a flexural core complex underlined by a large subsurface low-angle detachment fault with a small convex curvature. Topographic loading and mantle buoyancy forces, together with divergent boundaries, drive a regional lower crustal flow that leads to the exhumation of the lower crust where intensive upper crustal faulting induces strong unloading. The detachment fault is a decoupling zone that accommodates large displacement and accumulates sustained shear strain at very low angle between upper and lower crust. Though the regional stress is largely Andersonian, we find non-Andersonian stress in regions adjacent to the preexisting shear zone and those with high topographic gradient. Our new models provide a view that is generally consistent with geological and geophysical observations on how core complexes form and evolve.

  15. The effects of lower crustal strength and preexisting midcrustal shear zones on the formation of continental core complexes and low-angle normal faults

    KAUST Repository

    Wu, Guangliang; Lavier, Luc L.

    2016-01-01

    To investigate the formation of core complexes and low-angle normal faults, we devise thermomechanical simulations on a simplified wedge-like orogenic hinterland that has initial topography, Moho relief, and a preexisting midcrustal shear zone that can accommodate shear at very low angles (<20°). We mainly vary the strength of the lower crust and the frictional strength of the preexisting midcrustal shear zone. We find that the strength of the lower crust and the existence and strength of a preexisting shear zone significantly affect the formation and evolution of core complexes. With increasing lower crustal strength, we recognize varying extensional features with decreasing exhumation rate: these are characterized by bivergent metamorphic massifs, classic Cordilleran metamorphic core complexes, multiple consecutive core complexes (or boudinage structures), and a flexural core complex underlined by a large subsurface low-angle detachment fault with a small convex curvature. Topographic loading and mantle buoyancy forces, together with divergent boundaries, drive a regional lower crustal flow that leads to the exhumation of the lower crust where intensive upper crustal faulting induces strong unloading. The detachment fault is a decoupling zone that accommodates large displacement and accumulates sustained shear strain at very low angle between upper and lower crust. Though the regional stress is largely Andersonian, we find non-Andersonian stress in regions adjacent to the preexisting shear zone and those with high topographic gradient. Our new models provide a view that is generally consistent with geological and geophysical observations on how core complexes form and evolve.

  16. In-situ 40Ar/39Ar Laser Probe Dating of Micas from Mae Ping Shear Zone, Northern Thailand

    Science.gov (United States)

    Lin, Y. L.; Yeh, M. W.; Lo, C. H.; Lee, T. Y.; Charusiri, P.

    2012-04-01

    The Mae Ping Shear Zone (MPSZ, also known as Wang Chao Fault Zone), which trends NW-SE from Myanmar to central Thailand, was considered as the southern boundary of the SE extrusion of Indochina and Sibumasu block during the Cenozoic escape tectonic event of SE asia. Many analyses of 40Ar/39Ar dating on biotite and K-feldspar, K/Ar dating on biotite and illite, zircon fission-track and apatite fission-track dating had been accomplished to constrain the shearing period. Nevertheless, it is hard to convince that the ages could represent the end of the shearing since none of the dated minerals have been proved to be crystallized syn-tectonically. Meta-granitoid and gneiss from the MPSZ were analyzed in this study by applying in-situ 40Ar/39Ar laser probe dating with combination of petrology and micro-structural analysis in the purpose to decipher the geological significance of the dates. Plagioclase was replacing K-feldspar for K-feldspar was cut and embayed by plagioclase observed by SEM + EDS. Muscovite in the granitoid own fish shapes of sinistral sense of shearing, and are always in contact with plagioclase and quartz, which suggests that the muscovite crystallized from the dissolving K-feldspar under amphibolite facies condition. 117 spots on 12 muscovite fishes yield ages from 44 Ma to 35 Ma and have a mean age of 40 Ma. Since the growth condition of the muscovite is higher than the closure temperature, thus we can interpret these muscovite ages as cooling ages. Hence left-lateral shearing of the MPSZ can be deduced as syn- to post-muscovite growth and uplifted the crystalline rocks within the shear zone. The ages of matrix biotite in gneiss has a mean age of 35 Ma, which is consistent with the cooling path reconstructed from previous studies. While the ages of inclusion biotite in the K-feldspar phenocryst scatter from 40 to 50 Ma due to the isotopes were not totally re-equilibrated during the shearing. Consequently, the left-lateral shearing of the MPSZ was

  17. Metamorphic history of garnet-rich gneiss at Ktiš in the Lhenice shear zone, Moldanubian Zone of the southern Bohemian Massif, inferred from inclusions and compositional zoning of garnet

    Czech Academy of Sciences Publication Activity Database

    Kobayashi, T.; Hirajima, T.; Kawakami, T.; Svojtka, Martin

    2011-01-01

    Roč. 124, 1/2 (2011), s. 46-65 ISSN 0024-4937 Institutional research plan: CEZ:AV0Z30130516 Keywords : Bohemian Massif * Lhenice shear zone * garnet * P-T path * partial melting Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.246, year: 2011

  18. Three-Dimensional Geostatistical Analysis of Rock Fracture Roughness and Its Degradation with Shearing

    Directory of Open Access Journals (Sweden)

    Nima Babanouri

    2013-12-01

    Full Text Available Three-dimensional surface geometry of rock discontinuities and its evolution with shearing are of great importance in understanding the deformability and hydro-mechanical behavior of rock masses. In the present research, surfaces of three natural rock fractures were digitized and studied before and after the direct shear test. The variography analysis of the surfaces indicated a strong non-linear trend in the data. Therefore, the spatial variability of rock fracture surfaces was decomposed to one deterministic component characterized by a base polynomial function, and one stochastic component described by the variogram of residuals. By using an image-processing technique, 343 damaged zones with different sizes, shapes, initial roughness characteristics, local stress fields, and asperity strength values were spatially located and clustered. In order to characterize the overall spatial structure of the degraded zones, the concept of ‘pseudo-zonal variogram’ was introduced. The results showed that the spatial continuity at the damage locations increased due to asperity degradation. The increase in the variogram range was anisotropic and tended to be higher in the shear direction; thus, the direction of maximum continuity rotated towards the shear direction. Finally, the regression-kriging method was used to reconstruct the morphology of the intact surfaces and degraded areas. The cross-validation error of interpolation for the damaged zones was found smaller than that obtained for the intact surface.

  19. Shear wave splitting and crustal anisotropy in the Eastern Ladakh-Karakoram zone, northwest Himalaya

    Science.gov (United States)

    Paul, Arpita; Hazarika, Devajit; Wadhawan, Monika

    2017-06-01

    Seismic anisotropy of the crust beneath the eastern Ladakh-Karakoram zone has been studied by shear wave splitting analysis of S-waves of local earthquakes and P-to-S or Ps converted phases originated at the crust-mantle boundary. The splitting parameters (Φ and δt), derived from S-wave of local earthquakes with shallow focal depths, reveal complex nature of anisotropy with NW-SE and NE oriented Fast Polarization directions (FPD) in the upper ∼22 km of the crust. The observed anisotropy in the upper crust may be attributed to combined effects of existing tectonic features as well as regional tectonic stress. The maximum delay time of fast and slow waves in the upper crust is ∼0.3 s. The Ps splitting analysis shows more consistent FPDs compared to S-wave splitting. The FPDs are parallel or sub parallel to the Karakoram fault (KF) and other NW-SE trending tectonic features existing in the region. The strength of anisotropy estimated for the whole crust is higher (maximum delay time δt: 0.75 s) in comparison to the upper crust. This indicates that the dominant source of anisotropy in the trans-Himalayan crust is confined within the middle and lower crustal depths. The predominant NW-SE trending FPDs consistently observed in the upper crust as well as in the middle and lower crust near the KF zone support the fact that the KF is a crustal-scale fault which extends at least up to the lower crust. Dextral shearing of the KF creates shear fabric and preferential alignment of mineral grains along the strike of the fault, resulting in the observed FPDs. A Similar observation in the Indus Suture Zone (ISZ) also suggests crustal scale deformation owing to the India-Asia collision.

  20. Characterizing fractures and shear zones in crystalline rock using seismic and GPR methods

    Science.gov (United States)

    Doetsch, Joseph; Jordi, Claudio; Laaksonlaita, Niko; Gischig, Valentin; Schmelzbach, Cedric; Maurer, Hansruedi

    2016-04-01

    Understanding the natural or artificially created hydraulic conductivity of a rock mass is critical for the successful exploitation of enhanced geothermal systems (EGS). The hydraulic response of fractured crystalline rock is largely governed by the spatial organization of permeable fractures. Defining the 3D geometry of these fractures and their connectivity is extremely challenging, because fractures can only be observed directly at their intersections with tunnels or boreholes. Borehole-based and tunnel-based ground-penetrating radar (GPR) and seismic measurements have the potential to image fractures and other heterogeneities between and around boreholes and tunnels, and to monitor subtle time-lapse changes in great detail. We present the analysis of data acquired in the Grimsel rock laboratory as part of the In-situ Stimulation and Circulation (ISC) experiment, in which a series of stimulation experiments have been and will be performed. The experiments in the granitic rock range from hydraulic fracturing to controlled fault-slip experiments. The aim is to obtain a better understanding of coupled seismo-hydro-mechanical processes associated with high-pressure fluid injections in crystalline rocks and their impact on permeability creation and enhancement. GPR and seismic data have been recorded to improve the geological model and characterize permeable fractures and shear zones. The acquired and processed data include reflection GPR profiles measured from tunnel walls, single-borehole GPR images, and borehole-to-borehole and tunnel-to-tunnel seismic and GPR tomograms. The reflection GPR data reveal the geometry of shear zones up to a distance of 30 m from the tunnels and boreholes, but the interpretation is complicated by the geometrical ambiguity around tunnels and boreholes and by spurious reflections from man-made structures such as boreholes. The GPR and seismic traveltime tomography results reveal brittle fractured rock between two ductile shear zones. The

  1. The Main Shear Zone in Sør Rondane: A key feature for reconstructing the geodynamic evolution of East Antarctica

    Science.gov (United States)

    Ruppel, Antonia; Läufer, Andreas; Lisker, Frank; Jacobs, Joachim; Elburg, Marlina; Damaske, Detlef; Lucka, Nicole

    2013-04-01

    systems. The latter point to a WNW-ESE respectively NW-SE oriented maximum paleostress direction and indicate the latest deformation event; they are possibly related to the break-up and fragmentation of Gondwana. Two contrasting models describe the configuration of East Gondwana during the Neoproterozoic and the final amalgamation of Gondwana. The first model proposes the existence of a Pan-African Orogen (East African/ Antarctic Orogen). The Main Shear Zone could represent the eastern extension of this orogen and may be related to a NE-directed lateral-escape tectonic model. Both published structural data from Sør Rondane and adjacent regions and the outcome of this study agree with this model and propose a suture of East- and West Gondwana located between Mühlig-Hofmann-Gebirge and Sør Rondane. The second model of an overlap of two orogens with different formation ages cannot be proved by structural data from the MSZ. Instead, tight test constraints of the second model may be provided by new magnetic anomaly maps based on a 2012/13 aerogeophysical survey. Shiraishi, K.; Dunkley, D.J.; Hokada, T.; Fanning, C.M.; Kagami, H.; and Hamamoto, T. (2008): Geochronological constraints on the Late Proterozoic to Cambrian crustal evolution of eastern Dronning Maud Land, East Antarctica: a synthesis of SHRIMP U-Pb age and Nd model age data. Geological Society, 308(1):21-67. Shiraishi, K.; Osanai, Y.; Ishizuka, H.; and Asami, M. (1997): Geological map of the Sør Rondane Mountains, Antarctica. Antarctica Geological Map Series, sheet 35, scale 1 : 25 0000. National Institute of PolarResearch, Tokyo.

  2. Anomalous uranium concentration in Archaean basement Shear at Dhani Basri and its significance on Southern Margin of Alwar sub-basin, Rajasthan

    International Nuclear Information System (INIS)

    Panigrahi, B.; Shaji, T.S.; Sharma, G.S.; Yadav, O.P.; Nanda, L.K.

    2008-01-01

    Prominent shear zones cutting through the basement and cover rocks of Delhi Supergroup have been recognized in Dhani Basri - Ramewala sector of Dausa district, Rajasthan. One such shear zone traversing the granite gneiss (Archaean basement) has been observed at Dhani Basri. The sheared rock is exposed in the form of a small hump and gives appearance of quartzite due to intense silicification. Grab samples collected from the shear zone rock analysed upto 93 ppm U 3 O 8 and <10 ppm ThO 2 , which is anomalous in comparison to unsheared rock which analysed 51 ppm eU 3 O 8 , upto 5 ppm U 3 O 8 and 80 ppm ThO 2 . Gamma-ray logging of boreholes drilled by GSI across this shear zone indicated uranium mineralization of the order of 0.030% eU 3 O 8 x 5.40 m and the primary radioactive mineral has been identified as uraninite. The extension of Dhani Basri shear zone inside the cover rocks of Meso-Proterozoic Delhi Supergroup of rocks of Alwar sub-basin is of paramount importance in locating unconformity related as well as hydrothermal vein type uranium mineralization. (author)

  3. Structural analysis and magmatism characterization of the Major Gercino shear zone, Santa Catarina State, Brazil; Analise estrutural e caracterizacao do magmatismo da zona de cisalhamento Major Gercino, SC

    Energy Technology Data Exchange (ETDEWEB)

    Passarelli, Claudia Regina

    1996-12-31

    This work describes the geometric and kinematic characteristics of the Major Gercino Shear Zone (MGSZ) in the Canelinha-Garcia area. This shear zone is one of the major lineaments that affect all southern Brazilian precambrian terrains. In Santa Catarina State, it separates, along its whole extension, the supracrustal rocks of the Brusque belt (northern part) from the Granitoid belt (southern). This zone is characterized by a regional NE trend and a dextral sense of movement where ductile-brittle structures predominate. The MGSZ is composed of two mylonitic belts separated by granitoid rocks probably associated to the development of the shear zone. Both shear zones show cataclastic to ultra mylonitic rocks, but mylonites and protomylonites conditions at high strain rate. The calc-alkaline granitoids present in the area can be grouped in two granitoid associations with meta to peraluminous affinities. The Rolador Granitoid Association is characterized by grayish porphyritic biotite-monzogranites and the Fernandes Granitoid Association by coarsed-grained to porphyritic pinkish amphibole-syenogranites. The U-Pb and Rb-Sr ages range from 670 to 590 Ma with the Sr{sup 87} / Sr{sup 86} initial ratios suggesting a crustal contribution in the generation of these rocks. The importance of the pure shear component is also emphasized by the results of the Fry method. Many z axes of the strain ellipses are at high angle to the shear foliation. Symmetric porphyroclasts also corroborate this hypothesis. The micaceous minerals formed during the shear development indicate K-Ar ages around 555 {+-} 15 Ma. Brittle reactivations of the shear zone have been placed by K-Ar in fine-fraction materials at Triassic time (215 {+-} 15 Ma.) 220 refs., 107 figs., 18 tabs., 4 maps

  4. Seismic anisotropy in localized shear zones versus distributed tectonic fabrics: examples from geologic and seismic observations in western North America and the European Alps

    Science.gov (United States)

    Mahan, Kevin H.; Schulte-Pelkum, Vera; Condit, Cailey; Leydier, Thomas; Goncalves, Philippe; Raju, Anissha; Brownlee, Sarah; Orlandini, Omero F.

    2017-04-01

    Modern methods for detecting seismic anisotropy offer an array of promising tools for imaging deep crustal deformation but also present challenges, especially with respect to potential biases in both the detection methods themselves as well as in competing processes for localized versus distributed deformation. We address some of these issues from the geophysical perspective by employing azimuthally dependent amplitude and polarity variations in teleseismic receiver functions combined with a compilation of published rock elasticity tensors from middle and deep crustal rocks, and from the geological perspective through studies of shear zone deformation processes. Examples are highlighted at regional and outcrop scales from western North America and the European Alps. First, in regional patterns, strikes of seismically detected fabric from receiver functions in California show a strong alignment with current strike-slip motion between the Pacific and North American plates, with high signal strength near faults and from depths below the brittle-ductile transition suggesting these faults have deep ductile roots. In contrast, despite NE-striking shear zones being the most prominent features portrayed on Proterozoic tectonic maps of the southwestern USA, receiver function anisotropy from the central Rocky Mountain region appears to more prominently reflect broadly distributed Proterozoic fabric domains that preceded late-stage localized shear zones. Possible causes for the discrepancy fall into two categories: those that involve a) bias in seismic sampling and/or b) deformation processes that lead to either weaker anisotropy in the shear zones compared to adjacent domains or to a symmetry that is different from that conventionally assumed. Most of these explanations imply that the seismically sampled domains contain important structural information that is distinct from the shear zones. The second set of examples stem from studies of outcrop-scale shear zones in upper

  5. Rb-Sr dating of strain-induced mineral growth in two ductile shear zones in the western gneiss region of Nord-Troendelag, Central Norway

    International Nuclear Information System (INIS)

    Piasecki, M.A.; Cliff, R.A.

    1988-01-01

    In the Bjugn district of the northern part of the Western Gneiss Region, Nord-Troendelag, a basement gneiss-cover nappe boundary is marked by a thick zone of ductile shearing. In this zone a layer-parallel mylonitic fabric with related new mineral growth overprints and retrogresses a previous fabric associated with a granulite facies mineral assemblage. Related minor shear belts contain abundant new minerals and vein systems, including pegmatites, believed to represent strain-induced products formed at the time of the shearing movements. Central parts of two large muscovite books from such a pegmatite yielded Rb-Sr, Early to Middle Devonian ages of 389±6 Ma and 386±6 Ma, interpreted as indicating the approximate time of pegmatite formation and of the shearing. Small, matrix-size muscovite and biotite grains from the host mylonite gave ages of 378±6 Ma and 365±5 Ma, respectively, supposed to relate to post-shearing uplift and cooling

  6. Global shear speed structure of the upper mantle and transition zone

    Science.gov (United States)

    Schaeffer, A. J.; Lebedev, S.

    2013-07-01

    resolution of the imaging. Our new shear speed model is parametrized on a triangular grid with a ˜280 km spacing. In well-sampled continental domains, lateral resolution approaches or exceeds that of regional-scale studies. The close match of known surface expressions of deep structure with the distribution of anomalies in the model provides a useful benchmark. In oceanic regions, spreading ridges are very well resolved, with narrow anomalies in the shallow mantle closely confined near the ridge axis, and those deeper, down to 100-120 km, showing variability in their width and location with respect to the ridge. Major subduction zones worldwide are well captured, extending from shallow depths down to the transition zone. The large size of our waveform fit data set also provides a strong statistical foundation to re-examine the validity field of the JWKB approximation and surface wave ray theory. Our analysis shows that the approximations are likely to be valid within certain time-frequency portions of most seismograms with high signal-to-noise ratios, and these portions can be identified using a set of consistent criteria that we apply in the course of waveform fitting.

  7. U-Pb SHRIMP data and geochemical characterization of granitoids intruded along the Coxixola shear zone, Provincia Borborema, NE Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Ignez de Pinho; Silva Filho, Adejardo Francisco da; Silva, Francis M.J.V. da, E-mail: ignez@ufpe.br [Universidade Federal de Pernanmbuco (UFPE), Recife, PE (Brazil). Dept. de Geologia; Armstrong, Richard [Australian National University (Australia)

    2011-07-01

    A large volume of granitic magmatism associated with large scale shear zone and metamorphism under high-T amphibolite facies conditions characterize the Brasiliano Orogeny in the Borborema Province, NE Brazil. Granitoids from two plutons and later dykes intruded along the Coxixola shear zone show distinct crystallization ages and geochemical signature. The oldest granitoids (618 ± 5 Ma), Serra de Inacio Pereira Pluton are coeval with the peak of regional metamorphism and they were probably originated by melting of a paleoproterozoic source. The granitoids from the Serra do Marinho Pluton show crystallization age of 563 ± 4 Ma and geochemical signature of post-collisional A-type granites. The later dykes have crystallization age of 526 ± 7 Ma, geochemical signature of A-type granitoids. (author)

  8. Experimental Investigation of the Peak Shear Strength Criterion Based on Three-Dimensional Surface Description

    Science.gov (United States)

    Liu, Quansheng; Tian, Yongchao; Ji, Peiqi; Ma, Hao

    2018-04-01

    The three-dimensional (3D) morphology of joints is enormously important for the shear mechanical properties of rock. In this study, three-dimensional morphology scanning tests and direct shear tests are conducted to establish a new peak shear strength criterion. The test results show that (1) surface morphology and normal stress exert significant effects on peak shear strength and distribution of the damage area. (2) The damage area is located at the steepest zone facing the shear direction; as the normal stress increases, it extends from the steepest zone toward a less steep zone. Via mechanical analysis, a new formula for the apparent dip angle is developed. The influence of the apparent dip angle and the average joint height on the potential contact area is discussed, respectively. A new peak shear strength criterion, mainly applicable to specimens under compression, is established by using new roughness parameters and taking the effects of normal stress and the rock mechanical properties into account. A comparison of this newly established model with the JRC-JCS model and the Grasselli's model shows that the new one could apparently improve the fitting effect. Compared with earlier models, the new model is simpler and more precise. All the parameters in the new model have clear physical meanings and can be directly determined from the scanned data. In addition, the indexes used in the new model are more rational.

  9. Integrating Apparent Conductance in Resistivity Sounding to Constrain 2D Gravity Modeling for Subsurface Structure Associated with Uranium Mineralization across South Purulia Shear Zone, West Bengal, India

    Directory of Open Access Journals (Sweden)

    Arkoprovo Biswas

    2014-01-01

    Full Text Available South Purulia Shear Zone (SPSZ is an important area for the prospect of uranium mineralization and no detailed geophysical investigations have been carried out in this region. To delineate the subsurface structure in the present area, vertical electrical soundings using Schlumberger array and gravity survey were carried out along a profile perpendicular to the SPSZ. Apparent conductance in the subsurface revealed a possible connection from SPSZ to Raghunathpur. The gravity model reveals the presence of a northerly dipping low density zone (most likely the shear zone extending up to Raghunathpur under a thin cover of granitic schist of Chotanagpur Granite Gneissic Complex (CGGC. The gravity model also depicts the depth of the zone of density low within this shear zone at ~400 m near Raghunathpur village and this zone truncates with a steep slope. Integration of resistivity and gravity study revealed two possible contact zones within this low density zone in the subsurface at depth of 40 m and 200 m. Our study reveals a good correlation with previous studies in Raghunathpur area characterized by medium to high hydro-uranium anomaly. Thus the conducting zone coinciding with the low gravity anomaly is inferred to be a possible uranium mineralized zone.

  10. Quaternary layer anomalies around the Carlsberg Fault zone mapped with high-resolution shear-wave seismics south of Copenhagen

    DEFF Research Database (Denmark)

    Kammann, Janina; Hübscher, Christian; Nielsen, Lars

    Fault zone. The portable compact vibrator source ElViS III S8 was used to acquire a 1150 m long seismic section on the island Amager, south of Copenhagen. The shallow subsurface in the investigation area is dominated by Quaternary glacial till deposits in the upper 5-11 m and Danian limestone below....... In the shear-wave profile, we imaged the 30 m of the upward continuation of the Carlsberg Fault zone. In our area of investigation, the fault zone appears to comprise normal block faults and one reverse block fault showing the complexity of the fault zone. The observed faults appear to affect both the Danian...

  11. Indirect dating of deformation: a geochronological study from the Pan African Ajaj shear zone, Saudi Arabia.

    Science.gov (United States)

    Hassan, Mahmoud; Abu-Alam, Tamer; Stüwe, Kurt; Klötzli, Urs

    2013-04-01

    The metamorphic complexes of the Arabian-Nubian Shield were exhumed by different exhumation mechanisms (i.e. in extension or oblique transpression regime) during the Pan African activity of Najd Fault System - the largest pre-Mesozoic shear zone on Earth. The different exhumation mechanisms could be the consequence of (i) orientation of the complexes at slightly different angles with respect to the overall orientation of the principal stresses of the Najd Fault System, (ii) exhumation from different depths, or (iii) change of the stress regime through time. In order to test the third hypothesis, geochronological work will be applied on a representative suite of complexes across the Najd Fault System. In particular we focus on three complexes in the Arabian part of the shield named Qazaz, Hamadat and Wajh. In general, the metamorphic complexes of the Arabian part of the shield exhibit left-lateral transcurrent tectonism along the NW-SE Najd faults and right-lateral movement along conjugate NE-SW striking structures. The whole unit forms an anastomosing network of planar structures that demarcate large fish-shaped bodies of high grade metamorphics. The Hamadat complex is surrounded by a left-lateral greenshist facies WNW-ESE Ajaj shear zone. The complex consists of folds that are strongly pinched to the north and more open to the south marked by a well-developed parallel stretching sub-horizontal lineation. Granite intrusions along and across the Ajaj shear zone may allow testing the timing of the deformation. Deformed and non-deformed samples of these granites will be examined by age dating to determine the absolute timing of the metamorphism and the deformation for the complex. Some 20 samples are currently being prepared for zircon dating. Whilst no results are available at the time of writing of this abstract, they will be presented at EGU 2013.

  12. Integrating GIS-based geologic mapping, LiDAR-based lineament analysis and site specific rock slope data to delineate a zone of existing and potential rock slope instability located along the grandfather mountain window-Linville Falls shear zone contact, Southern Appalachian Mountains, Watauga County, North Carolina

    Science.gov (United States)

    Gillon, K.A.; Wooten, R.M.; Latham, R.L.; Witt, A.W.; Douglas, T.J.; Bauer, J.B.; Fuemmeler, S.J.

    2009-01-01

    Landslide hazard maps of Watauga County identify >2200 landslides, model debris flow susceptibility, and evaluate a 14km x 0.5km zone of existing and potential rock slope instability (ZEPRSI) near the Town of Boone. The ZEPRSI encompasses west-northwest trending (WNWT) topographic ridges where 14 active/past-active rock/weathered rock slides occur mainly in rocks of the Grandfather Mountain Window (GMW). The north side of this ridgeline is the GMW / Linville Falls Fault (LFF) contact. Sheared rocks of the Linville Falls Shear Zone (LFSZ) occur along the ridge and locally in the valley north of the contact. The valley is underlain principally by layered granitic gneiss comprising the Linville Falls/Beech Mountain/Stone Mountain Thrust Sheet. The integration of ArcGIS??? - format digital geologic and lineament mapping on a 6m LiDAR (Light Detecting and Ranging) digital elevation model (DEM) base, and kinematic analyses of site specific rock slope data (e.g., presence and degree of ductile and brittle deformation fabrics, rock type, rock weathering state) indicate: WNWT lineaments are expressions of a regionally extensive zone of fractures and faults; and ZEPRSI rock slope failures concentrate along excavated, north-facing LFF/LFSZ slopes where brittle fabrics overprint older metamorphic foliations, and other fractures create side and back release surfaces. Copyright 2009 ARMA, American Rock Mechanics Association.

  13. Dynamo action and magnetic buoyancy in convection simulations with vertical shear

    Science.gov (United States)

    Guerrero, G.; Käpylä, P.

    2011-10-01

    A hypothesis for sunspot formation is the buoyant emergence of magnetic flux tubes created by the strong radial shear at the tachocline. In this scenario, the magnetic field has to exceed a threshold value before it becomes buoyant and emerges through the whole convection zone. In this work we present the results of direct numerical simulations of compressible turbulent convection that include a vertical shear layer. Like the solar tachocline, the shear is located at the interface between convective and stable layers. We follow the evolution of a random seed magnetic field with the aim of study under what conditions it is possible to excite the dynamo instability and whether the dynamo generated magnetic field becomes buoyantly unstable and emerges to the surface as expected in the flux-tube context. We find that shear and convection are able to amplify the initial magnetic field and form large-scale elongated magnetic structures. The magnetic field strength depends on several parameters such as the shear amplitude, the thickness and location of the shear layer, and the magnetic Reynolds number (Rm). Models with deeper and thicker shear layers allow longer storage and are more favorable for generating a mean magnetic field. Models with higher Rm grow faster but saturate at slightly lower levels. Whenever the toroidal magnetic field reaches amplitudes greater a threshold value which is close to the equipartition value, it becomes buoyant and rises into the convection zone where it expands and forms mushroom shape structures. Some events of emergence, i.e., those with the largest amplitudes of the amplified field, are able to reach the very uppermost layers of the domain. These episodes are able to modify the convective pattern forming either broader convection cells or convective eddies elongated in the direction of the field. However, in none of these events the field preserves its initial structure. The back-reaction of the magnetic field on the fluid is also

  14. Continuous shear - a method for studying material elements passing a stationary shear plane

    DEFF Research Database (Denmark)

    Lindegren, Maria; Wiwe, Birgitte; Wanheim, Tarras

    2003-01-01

    circumferential groove. Normally shear in metal forming processes is of another nature, namely where the material elements move through a stationary shear zone, often of small width. In this paper a method enabling the simulation of this situation is presented. A tool for continuous shear has beeen manufactured...... and tested with AlMgSil and copper. The sheared material has thereafter been tested n plane strain compression with different orientation concerning the angle between the shear plane and the compression direction....

  15. Structure of pseudotachylyte vein systems as a key to co-seismic rupture dynamics: the case of Gavilgarh-Tan Shear Zone, central India

    Science.gov (United States)

    Chattopadhyay, A.; Bhattacharjee, D.; Mukherjee, S.

    2014-04-01

    The secondary fractures associated with a major pseudotachylyte-bearing fault vein in the sheared aplitic granitoid of the Proterozoic Gavilgarh-Tan Shear Zone in central India are mapped at the outcrop scale. The fracture maps help to identify at least three different types of co-seismic ruptures, e.g., X-X', T1 and T2, which characterize sinistral-sense shearing of rocks, confined between two sinistral strike-slip faults slipping at seismic rate. From the asymmetric distribution of tensile fractures around the sinistral-sense fault vein, the direction of seismic rupture propagation is predicted to have occurred from west-southwest to east-northeast, during an ancient (Ordovician?) earthquake. Calculations of approximate co-seismic displacement on the faults and seismic moment ( M 0) of the earthquake are attempted, following the methods proposed by earlier workers. These estimates broadly agree to the findings from other studied fault zones (e.g., Gole Larghe Fault zone, Italian Alps). This study supports the proposition by some researchers that important seismological information can be extracted from tectonic pseudotachylytes of all ages, provided they are not reworked by subsequent tectonic activity.

  16. A hidden variable in shear transformation zone volume versus Poisson's ratio relation in metallic glasses

    Science.gov (United States)

    Kim, S. Y.; Oh, H. S.; Park, E. S.

    2017-10-01

    Herein, we elucidate a hidden variable in a shear transformation zone (STZ) volume (Ω) versus Poisson's ratio (ν) relation and clarify the correlation between STZ characteristics and the plasticity of metallic glasses (MGs). On the basis of cooperative shear model and atomic stress theories, we carefully formulate Ω as a function of molar volume (Vm) and ν. The twofold trend in Ω and ν is attributed to a relatively large variation of Vm as compared to that of ν as well as an inverse relation between Vm and ν. Indeed, the derived equation reveals that the number of atoms in an STZ instead of Ω is a microstructural characteristic which has a close relationship with plasticity since it reflects the preference of atomistic behaviors between cooperative shearing and the generation of volume strain fluctuation under stress. The results would deepen our understanding of the correlation between microscopic behaviors (STZ activation) and macroscopic properties (plasticity) in MGs and enable a quantitative approach in associating various STZ-related macroscopic behaviors with intrinsic properties of MGs.

  17. Shear Strains, Strain Rates and Temperature Changes in Adiabatic Shear Bands

    Science.gov (United States)

    1980-05-01

    X14A. It has been found that when bainitic and martensitic steels are sheared adiabatically, a layer of material within ths shear zone is altezed and...Sooiety for Metals, Metals Park, Ohio, 1978, pp. 148-0. 21 TABLE II SOLID-STATE TRANSFORMATIONS IN BAINITIC STEEL TRANSFORMATION TRANSFORMATION...shear, thermoplastic, plasticity, plastic deformation, armor, steel IL AnSRACT ( -=nba asoa.tm a naeoesM iN faity by bleak n bet/2972 Experiments

  18. A review of porosity-generating mechanisms in crustal shear zones

    Science.gov (United States)

    Fusseis, F.; Regenauer-Lieb, K.; Revets, S.

    2009-04-01

    Knowledge of the spatiotemporal characteristics of permeability is critical for the understanding of fluid migration in rocks. In diagenetic and metamorphic rocks different porosity-generating mechanisms contribute to permeability and so influence fluid migration and fluid/rock interaction. However, little is known about their relative contributions to the porosity architecture of a rock in a tectono-metamorphic environment. This presentation reviews porosity-generating mechanisms that affect fluid migration in shear zones, the most important crustal fluid conduits, in the context of the tectonometamorphic evolution of rocks. Mechanisms that generate porosity can be classified in a) those that involve the direct action of a fluid, b) processes in which a fluid partakes or that are supported by a fluid or c) mechanism that do not involve a fluid. a) Hydraulic fracturing, where it happens through the formation of tensile fractures, occurs where pore fluid pressures equalize the combined lithostatic pressure and strength of the rock (Etheridge et al., 1984, Cox & Etheridge, 1989, Oliver, 1996). Here an internally released (devolatilisation reactions, e.g., Rumble, 1994, Hacker, 1997, Yardley, 1997 and references therein) or externally derived (infiltrating from metamorphic, magmatic or meteoric sources, Baumgartner et al., 1997, Jamtveit et al., 1997, Thompson, 1997, Gleeson et al., 2003) fluid directly causes the mechanical failure of a rock. Where a fluid is in chemical disequilibrium with a rock (undersaturated with regard to a chemical species) minerals will be dissolved, generating dissolution porosity. Rocks ‘leached' by the removal of chemical components by vast amounts of fluid are reported to lose up to 60% of their original volume (e.g., Kerrich et al., 1984, McCaig 1988). Dissolution porosity is probably an underrated porosity-generating mechanism. It can be expected along the entire metamorphic evolution, including diagenesis (Higgs et al., 2007) and

  19. Efforts to reduce mortality to hydroelectric turbine-passed fish: locating and quantifying damaging shear stresses.

    Science.gov (United States)

    Cada, Glenn; Loar, James; Garrison, Laura; Fisher, Richard; Neitzel, Duane

    2006-06-01

    Severe fluid forces are believed to be a source of injury and mortality to fish that pass through hydroelectric turbines. A process is described by which laboratory bioassays, computational fluid dynamics models, and field studies can be integrated to evaluate the significance of fluid shear stresses that occur in a turbine. Areas containing potentially lethal shear stresses were identified near the stay vanes and wicket gates, runner, and in the draft tube of a large Kaplan turbine. However, under typical operating conditions, computational models estimated that these dangerous areas comprise less than 2% of the flow path through the modeled turbine. The predicted volumes of the damaging shear stress zones did not correlate well with observed fish mortality at a field installation of this turbine, which ranged from less than 1% to nearly 12%. Possible reasons for the poor correlation are discussed. Computational modeling is necessary to develop an understanding of the role of particular fish injury mechanisms, to compare their effects with those of other sources of injury, and to minimize the trial and error previously needed to mitigate those effects. The process we describe is being used to modify the design of hydroelectric turbines to improve fish passage survival.

  20. Geochemical and isotopic characterization of the granitic magmatism along the Remígio - Pocinhos shear zone, Borborema Province, NE Brazil

    Science.gov (United States)

    de Lima, Jefferson V.; Guimarães, Ignez de P.; Santos, Lucilene; Amorim, José Victor A.; Farias, Douglas José S.

    2017-04-01

    Two granitoid plutons (Pilõezinhos and Curral de Cima) intruded along the Remígio - Pocinhos shear zone, eastern part of the Borborema Province. The Pilõezinhos and Curral de Cima granites were dated at 566 ± 3 Ma and 618 ± 5 Ma respectively. The granitoids from both plutons have distinct initial 143Nd/144Nd ratios, expressed by εNd(t) values, i.e. the granitoids of Pilõezinhos pluton have lower εNd(t) values (-15.47 to -15.81) and negative εHf (t = 570 Ma) values (-16.0 to -18.6), while the granitoids of the Curral de Cima pluton have εNd(t) values between -1.12 and -5.23. The granitoids of the Curral de Cima pluton are epidote bearing, magnesian calcalkaline I-type granitoids, crystallized under high fO2 conditions. The granitoids of the Pilõezinhos pluton are alkaline, low-fO2, ferroan, ilmenite-series, A2-type granite intrusions. The geochemical and isotopic signatures suggest that the origin of magma of the Curral de Cima granitoids involved mixing/mingling at depth between crustal and mantle magmas, associated to decompression (lateral escape) during the convergent stage of Brasiliano/Pan/African orogeny, which lead the asthenosphere melts to rise into the lower crust. The source of magma of the granitoids of the Pilõezinhos pluton involved a strong crustal component with geochemical and isotopic signatures similar to the orthogneisses of the Serrinha-Pedro Velho Complex, and small mantle component. The emplacement of the Pilõezinhos pluton is associated to an extensional space formed during high-T strike-slip shearing developed by the synchronic movement of the Matinhas sinistral shear zone and Remígio - Pocinhos dextral shear zone.

  1. Fault Slip Partitioning in the Eastern California Shear Zone-Walker Lane Belt: Pliocene to Late Pleistocene Contraction Across the Mina Deflection

    Science.gov (United States)

    Lee, J.; Stockli, D.; Gosse, J.

    2007-12-01

    Two different mechanisms have been proposed for fault slip transfer between the subparallel NW-striking dextral- slip faults that dominant the Eastern California Shear Zone (ECSZ)-Walker Lane Belt (WLB). In the northern WLB, domains of sinistral-slip along NE-striking faults and clockwise block rotation within a zone of distributed deformation accommodated NW-dextral shear. A somewhat modified version of this mechanism was also proposed for the Mina deflection, southern WLB, whereby NE-striking sinistral faults formed as conjugate faults to the primary zone of NW-dextral shear; clockwise rotation of the blocks bounding the sinistral faults accommodated dextral slip. In contrast, in the northern ECSZ and Mina deflection, domains of NE-striking pure dip-slip normal faults, bounded by NW-striking dextral-slip faults, exhibited no rotation; the proposed mechanism of slip transfer was one of right-stepping, high angle normal faults in which the magnitude of extension was proportional to the amount of strike-slip motion transferred. New geologic mapping, tectonic geomorphologic, and geochronologic data from the Queen Valley area, southern Mina deflection constrain Pliocene to late Quaternary fault geometries, slip orientations, slip magnitudes, and slip rates that bear on the mechanism of fault slip transfer from the relatively narrow northern ECSZ to the broad deformation zone that defines the Mina deflection. Four different fault types and orientations cut across the Queen Valley area: (1) The NE-striking normal-slip Queen Valley fault; (2) NE-striking sinistral faults; (3) the NW-striking dextral Coyote Springs fault, which merges into (4) a set of EW-striking thrust faults. (U-Th)/He apatite and cosmogenic radionuclide data, combined with magnitude of fault offset measurements, indicate a Pliocene to late Pleistocene horizontal extension rate of 0.2-0.3 mm/yr across the Queen Valley fault. Our results, combined with published slip rates for the dextral White Mountain

  2. 2D shear-wave ultrasound elastography (SWE) evaluation of ablation zone following radiofrequency ablation of liver lesions: is it more accurate?

    Science.gov (United States)

    Bo, Xiao W; Li, Xiao L; Guo, Le H; Li, Dan D; Liu, Bo J; Wang, Dan; He, Ya P; Xu, Xiao H

    2016-01-01

    Objective: To evaluate the usefulness of two-dimensional quantitative ultrasound shear-wave elastography (2D-SWE) [i.e. virtual touch imaging quantification (VTIQ)] in assessing the ablation zone after radiofrequency ablation (RFA) for ex vivo swine livers. Methods: RFA was performed in 10 pieces of fresh ex vivo swine livers with a T20 electrode needle and 20-W output power. Conventional ultrasound, conventional strain elastography (SE) and VTIQ were performed to depict the ablation zone 0 min, 10 min, 30 min and 60 min after ablation. On VTIQ, the ablation zones were evaluated qualitatively by evaluating the shear-wave velocity (SWV) map and quantitatively by measuring the SWV. The ultrasound, SE and VTIQ results were compared against gross pathological and histopathological specimens. Results: VTIQ SWV maps gave more details about the ablation zone, the central necrotic zone appeared as red, lateral necrotic zone as green and transitional zone as light green, from inner to exterior, while the peripheral unablated liver appeared as blue. Conventional ultrasound and SE, however, only marginally depicted the whole ablation zone. The volumes of the whole ablation zone (central necrotic zone + lateral necrotic zone + transitional zone) and necrotic zone (central necrotic zone + lateral necrotic zone) measured by VTIQ showed excellent correlation (r = 0.915, p  0.05). Conclusion: The quantitative 2D-SWE of VTIQ is useful for the depiction of the ablation zone after RFA and it facilitates discrimination of different areas in the ablation zone qualitatively and quantitatively. This elastography technique might be useful for the therapeutic response evaluation instantly after RFA. Advances in knowledge: A new quantitative 2D-SWE (i.e. VTIQ) for evaluation treatment response after RFA is demonstrated. It facilitates discrimination of the different areas in the ablation zone qualitatively and quantitatively and may be useful for the therapeutic

  3. Neoproterozoic Evolution and Najd‒Related Transpressive Shear Deformations Along Nugrus Shear Zone, South Eastern Desert, Egypt (Implications from Field‒Structural Data and AMS‒Technique)

    Science.gov (United States)

    Hagag, W.; Moustafa, R.; Hamimi, Z.

    2018-01-01

    The tectonometamorphic evolution of Nugrus Shear Zone (NSZ) in the south Eastern Desert of Egypt was reevaluated through an integrated study including field-structural work and magnetofabric analysis using Anisotropy of Magnetic Susceptibility (AMS) technique, complemented by detailed microstructural investigation. Several lines of evidence indicate that the Neoproterozoic juvenile crust within this high strain zone suffered an impressive tectonic event of left-lateral transpressional regime, transposed the majority of the earlier formed structures into a NNW to NW-directed wrench corridor depicts the northwestern extension of the Najd Shear System (NSS) along the Eastern Desert of Egypt. The core of the southern Hafafit dome underwent a high metamorphic event ( M 1) developed during the end of the main collisional orogeny in the Arabian-Nubian Shield (ANS). The subsequent M 2 metamorphic event was retrogressive and depicts the tectonic evolution and exhumation of the Nugrus-Hafafit area including the Hafafit gneissic domes, during the origination of the left-lateral transpressive wrench corridor of the NSS. The early tectonic fabric within the NSZ and associated highly deformed rocks was successfully detected by the integration of AMS-technique and microstructural observations. Such fabric grain was checked through a field-structural work. The outcomes of the present contribution advocate a complex tectonic evolution with successive and overlapped deformation events for the NSZ.

  4. Shear transformation zone activation during deformation in bulk metallic glasses characterized using a new indentation creep technique

    Science.gov (United States)

    J.B. Puthoff; H.B. Cao; Joseph E. Jakes; P.M. Voyles; D.S. Stone

    2009-01-01

    We have developed a novel type of nanoindentation creep experiment, called broadband nanoindentation creep (BNC), and used it to characterize the thermal activation of shear transformation zones (STZs) in three BMGs in the Zr-Cu-Al system. Using BNC, material hardness can be determined across a wide range of strain rates (10–4 to 10 s–...

  5. Systematic deficiency of aftershocks in areas of high coseismic slip for large subduction zone earthquakes

    Science.gov (United States)

    Wetzler, Nadav; Lay, Thorne; Brodsky, Emily E.; Kanamori, Hiroo

    2018-01-01

    Fault slip during plate boundary earthquakes releases a portion of the shear stress accumulated due to frictional resistance to relative plate motions. Investigation of 101 large [moment magnitude (Mw) ≥ 7] subduction zone plate boundary mainshocks with consistently determined coseismic slip distributions establishes that 15 to 55% of all master event–relocated aftershocks with Mw ≥ 5.2 are located within the slip regions of the mainshock ruptures and few are located in peak slip regions, allowing for uncertainty in the slip models. For the preferred models, cumulative deficiency of aftershocks within the central three-quarters of the scaled slip regions ranges from 15 to 45%, increasing with the total number of observed aftershocks. The spatial gradients of the mainshock coseismic slip concentrate residual shear stress near the slip zone margins and increase stress outside the slip zone, driving both interplate and intraplate aftershock occurrence near the periphery of the mainshock slip. The shear stress reduction in large-slip regions during the mainshock is generally sufficient to preclude further significant rupture during the aftershock sequence, consistent with large-slip areas relocking and not rupturing again for a substantial time. PMID:29487902

  6. Structures, microfabrics, fractal analysis and temperature-pressure estimation of the Mesozoic Xingcheng-Taili ductile shear zone in the North China craton

    Science.gov (United States)

    Liang, Chenyue; Neubauer, Franz; Liu, Yongjiang; Jin, Wei; Zeng, Zuoxun; Bernroider, Manfred; Li, Weimin; Wen, Quanbo; Han, Guoqing; Zhao, Yingli

    2014-05-01

    The ductile shear zone in Xingcheng-Taili area (western Liaoning Province in China) is tectonically located in the eastern section of the northern margin of the North China craton, and dominantly comprises deformed granitic rocks of Neoarchean and Triassic to Late Jurassic age, which were affected by shearing within middle- to low-grade metamorphic conditions. Because a high-temperature metamorphic overprint is lacking, microstructures attesting to low-temperature ductile deformation are well preserved. However, the rocks and its structures have not been previously analyzed in detail except by U-Pb zircon dating and some geochemistry. Here, we describe the deformation characteristics and tectonic evolution of the Xingcheng-Taili ductile shear zone, in order to understand the mode of lithosphericscale reactivation, extension and thinning of the North China craton. The ductile deformation history comprises four successive deformation phases: (1) In the Neoarchean granitic rocks, a steep gneissosity and banded structures trend nearly E-W (D1). (2) A NE-striking sinistral structure of Upper Triassic rocks may indicate a deformation event (D2) in Late Triassic times, which ductile deformation structures superimposed on Neoarchean granitic rocks. (3) A gneissose structure with S-C fabrics as well as an ENE-trending sinistral strike-slip characteristic (D3) developed in Upper Jurassic biotite adamellite and show the deformation characteristics of a shallow crustal level and generated mylonitic fabrics superimposed on previous structures. (4) Late granitic dykes show different deformational behavior, and shortening with D4 folds. The attitude of the foliation S and mineral stretching lineation of three main types of rocks shows remarkable differences in orientation. The shapes of recrystallized quartz grains from three main types of granitic rocks with their jagged and indented boundaries were natural records of deformation conditions (D1to D3). Crystal preferred

  7. Continentward-Dipping Normal Faults, Boudinage and Ductile Shear at Rifted Passive Margins

    Science.gov (United States)

    Clerc, C. N.; Ringenbach, J. C.; Jolivet, L.; Ballard, J. F.

    2017-12-01

    Deep structures resulting from the rifting of the continental crust are now well imaged by seismic profiles. We present a series of recent industrial profiles that allow the identification of various rift-related geological processes such as crustal boudinage, ductile shear of the base of the crust and low-angle detachment faulting. Along both magma-rich and magma-poor rifted margins, we observe clear indications of ductile deformation of the deep continental crust. Large-scale shallow dipping shear zones are identified with a top-to-the-continent sense of shear. This sense of shear is consistent with the activity of the Continentward-Dipping Normal Faults (CDNF) that accommodate the extension in the upper crust. This pattern is responsible for an oceanward migration of the deformation and of the associated syn-tectonic deposits (sediments and/or volcanics). We discuss the origin of the Continentward-Dipping Normal Faults (CDNF) and investigate their implications and the effect of sediment thermal blanketing on crustal rheology. In some cases, low-angle shear zones define an anastomosed pattern that delineates boudin-like structures that seem to control the position and dip of upper crustal normal faults. We present some of the most striking examples from several locations (Uruguay, West Africa, South China Sea…), and discuss their rifting histories that differ from the classical models of oceanward-dipping normal faults.

  8. Two-stage structural development of a Paleozoic auriferous shear zone at the Globe-Progress deposit, Reefton, New Zealand

    International Nuclear Information System (INIS)

    Milham, L.; Craw, D.

    2009-01-01

    The Globe-Progress gold deposit at Reefton is hosted in a curvilinear mineralised zone that cuts Paleozoic Greenland Group basement metagreywackes. Two discrete phases of mineralisation have resulted in the formation of five different ore types along the shear. An initial phase of mineralisation formed hydrothermal quartz veins and associated Au, As, and S enrichment, with low-grade mineralised host rock. These quartz veins and mineralised host rocks form the outer regions of the mineralised zone. A second hydrothermal phase introduced Sb, Au, As, and S during brittle shear deformation focused on the pre-existing mineralised rocks. This deformation and mineralisation resulted in the formation of metre-scale cataclasite ore and quartz breccia from mineralised host rock and hydrothermal quartz veins, respectively. Cataclasite was derived from argillite layers in the host rock, from which Na, Fe, and Mg have been leached during mineralisation; Al, Ti, and Cr have been conserved; and there has been minor enrichment in Sr, Pb, Zn, and Cu. No quartz was added to the cataclasite or quartz breccia during mineralisation, but some quartz recrystallisation occurred locally, and quartz clasts were physically incorporated into the cataclasite during deformation. The presence of euhedral sulfides in the cataclasite (40% of total sulfides), late-stage undeformed stibnite veins infilling breccia (1-5 cm 3 scale), and undeformed free gold in quartz breccia, imply that the second phase of mineralisation persisted both during and after cataclasis and brecciation. Antimony deposition is greatest in the central cataclasite, up to 6 wt%, and locally in the quartz breccia where stibnite veins are present. Concentrations of Sb decrease with distance from the shear zone. The second, Sb-rich phase of mineralisation in the Globe-Progress deposit resembles similar Sb-rich overprints in the correlative Victorian goldfield of Australia. (author). 38 refs., 10 figs., 1 tab.

  9. From an ocean floor wrench zone origin to transpressional tectonic emplacement of the Sithonia ophiolite, eastern Vardar Suture Zone, northern Greece

    Science.gov (United States)

    Bonev, Nikolay; Filipov, Petyo

    2017-12-01

    In the Hellenides of northern Greece, the Sithonia back-arc ophiolite constitute an element of the Vardar suture zone against the Chortiatis island arc magmatic suite, the Melissochori Formation and the Serbo-Macedonian Massif further north at the Mesozoic continental margin of Eurasia. A granodiorite from the Chortiatis island arc magmatic suite crystallized at 160 Ma as derived from new U-Pb zircon geochronology and confirms the end of arc magmatic activity that started at around 173 Ma. Located southerly of the Chortiatis island arc magmatic suite, the Sithonia ophiolite had igneous life from 159 to 149 Ma, and the ophiolite interfinger with clastic-carbonate Kimmeridgian sediments. Magmatic structures (i.e., sheeted dykes) in the ophiolite witness for NE-trending rift axis, while the transform faults and fracture zones sketch NW-SE transcurrent transtension-like propagation of the rift-spreading center at Sithonia that is consistent with a dextral wrench corridor already proposed for the ophiolite origin in the eastern Vardar zone. The tectonic emplacement of the Sithonia ophiolite involved dextral ENE to SE strike-slip sense of shear and SW and NE reverse thrust sense of shear on mostly steep foliation S1, subhorizontal lineation L1 and associated variably inclined F1 fold axes. This structural grain and kinematics are shared by adjacent Chortiatis island arc magmatic suite and the Melissochori Formation. The coexistence of strike-parallel and thrust components of displacement along discrete dextral strike-slip shear zones and internal deformation of the mentioned units is interpreted to result from a bulk dextral transpressive deformation regime developed in greenschist-facies metamorphic conditions. The back-arc ocean floor previous structural architecture with faults and fracture zones where Kimmeridgian sediments deposited in troughs was used by discrete strike-slip shear zones in which these sediments involved, and the shear zones become the sites for

  10. The variation of crustal structure along the Song Ma Shear Zone, Northern Vietnam

    Science.gov (United States)

    Su, Chien-Min; Wen, Strong; Tang, Chi-Chia; Yeh, Yu-Lien; Chen, Chau-Huei

    2018-06-01

    Northern Vietnam is divided into two regions by suture zone. The southwestern region belongs to the Indochina block, and the northeastern region is a portion of the South China block with distinct geological characteristics. From previous studies, the closing the Paleotethys led the collision between the Indochina and South China blocks, and this collision form the suture zone in the Middle Triassic. In the Tertiary, Indian and Eurasian plates started to collide, and this collision caused the extrusion of the Indochina block along the suture zone and a clockwise rotation. Metamorphic rocks associated with the subduction process have been found at the Song Ma Shear Zone (SMSZ) from geological surveys, which indicated that the SMSZ is a possible boundary between the South China and Indochina block. However, according to previous study, there is an argument of whether the SMSZ is a subduction zone of the South China and Indochina plates or not. In this study, we applied the H-κ and the common conversion point (CCP) stacking method using teleseismic converted waves recorded by a seismic broadband array to obtain the Moho depth, VP/VS ratio and the crustal structure along the SMSZ. The CCP results are further used to identify whether the fault extends through the entire crust or not. We have selected two profiles along the SMSZ and a profile across the SMSZ for imaging lateral variations of impedance from stacking. According to H-κ stacking results, crustal thickness vary from 26.0 to 29.3 km, and the average of VP/VS ratio is about 1.77. Finally, the CCP results also show the heterogeneity of crust among the SMSZ. These evidences might support that SMSZ is the suture zone between the South China and Indochina plates.

  11. Capture zone simulation for boreholes located in fractured dykes ...

    African Journals Online (AJOL)

    drinie

    2002-04-02

    Apr 2, 2002 ... models do not account for the capture zone of a draining fracture. In South Africa ... uniform, the pathline distribution under certain hydrogeological settings is ... defined as a mathematical sink line with a finite length. If a pumping ... the impermeable dyke is located at x = - d and the centre of the fracture with ...

  12. Application of kinematic vorticity and gold mineralization for the wall rock alterations of shear zone at Dungash gold mining, Central Eastern Desert, Egypt

    Science.gov (United States)

    Kassem, Osama M. K.; Abd El Rahim, Said H.; El Nashar, EL Said R.; AL Kahtany, Kaled M.

    2016-11-01

    The use of porphyroclasts rotating in a flowing matrix to estimate mean kinematic vorticity number (Wm) is important for quantifying the relative contributions of pure and simple shear in wall rocks alterations of shear zone at Dungash gold mine. Furthermore, it shows the relationship between the gold mineralization and deformation and also detects the orientation of rigid objects during progressive deformation. The Dungash gold mine area is situated in an EW-trending quartz vein along a shear zone in metavolcanic and metasedimentary host rocks in the Eastern Desert of Egypt. These rocks are associated with the major geologic structures which are attributed to various deformational stages of the Neoproterozoic basement rocks. We conclude that finite strain in the deformed rocks is of the same order of magnitude for all units of metavolcano-sedimentary rocks. The kinematic vorticity number for the metavolcanic and metasedimentary samples in the Dungash area range from 0.80 to 0.92, and together with the strain data suggest deviations from simple shear. It is concluded that nappe stacking occurred early during the underthrusting event probably by brittle imbrication and that ductile strain was superimposed on the nappe structure during thrusting. Furthermore, we conclude that disseminated mineralization, chloritization, carbonatization and silicification of the wall rocks are associated with fluids migrating along shearing, fracturing and foliation of the metamorphosed wall rocks.

  13. Stratigraphy, palynology and organic geochemistry of the Devonian-Mississippian metasedimentary Albergaria-a-Velha Unit (Porto-Tomar shear zone, W Portugal)

    Czech Academy of Sciences Publication Activity Database

    Machado, G.; Franců, E.; Vavrdová, Milada; Flores, D.; Fonseca, P. E.; Rocha, F.; Gama Pereira, L. C.; Gomes, A.; Fonseca, M.; Chaminé, H. I.

    2011-01-01

    Roč. 55, č. 2 (2011), s. 139-164 ISSN 1641-7291. [International Palynological Conference of the International Commission of the Paleozoic Microflora ( CIMP ). Warsaw-Kielce, 13.09.2010-19.09.2010] Institutional research plan: CEZ:AV0Z30130516 Keywords : Mississippian * Late Devonian * Ossa-Morena Zone * Porto-Tomar shear zone * palynology * organic geochemistry * turbidite systems * provenance * phytoplankton Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.844, year: 2011 http://gq.pgi.gov.pl/gq/article/viewFile/7606/pdf_4

  14. In-situ tracer tests and models developed to understand flow paths in a shear zone at the Grimsel Test Site, Switzerland

    Science.gov (United States)

    Blechschmidt, I.; Martin, A. J.

    2012-12-01

    The Grimsel Test Site (www.grimsel.com) is an international underground research laboratory excavated at a depth of 450m below the surface in the crystalline Aare Massif of southern Switzerland in 1984. It is operated and owned by the National Cooperative for the Disposal of Radioactive Waste of Switzerland (NAGRA) which is the organization responsible for managing and researching the geological disposal of all types of radioactive wastes originating in Switzerland. One experiment, the Colloid Formation and Migration test (CFM*), is an ongoing in-situ migration test started in 2004 to study colloid facilitated transport behavior of radionuclides through a shear zone. The importance of colloid transport in the context of a radioactive waste repository is that it provides a mechanism for potentially enhancing the advective transport of radionuclides. The montmorillonite clays that are planned to be used as an engineered barrier around the radioactive waste in many repository concepts may be a source of such colloids under specific hydraulic and/or chemical boundary conditions. The CFM project includes an integrated programme of field testing, laboratory studies and modelling/interpretation. The field tests are performed in a shear zone where the natural outflow has been controlled by a tunnel packer system and flow is monitored with an array of boreholes drilled for CFM and previous experiments at the site. The flow field is controlled by a low-rate extraction from a surface packer. The controlled low-rate extraction creates a region of low hydraulic gradients and fluid velocity within the shear zone, suitable for study under repository-relevant or other geo-resource relevant conditions. Here we present a summary of the migration tracer tests carried out so far to understand the hydraulic properties and transport characteristics of the shear zone using both stable and radioactive (Na-22, Cs-137, Ba-133, Th-232, Np-237, Am-243, Pu-242) tracers as well as colloids, and

  15. Radon exhalation and radiometric prospecting on rocks associated with Cu-U mineralizations in the Singhbhum shear zone, Bihar

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, D.; Kumar, Rajeev; Singh, A.K.; Prasad, Rajendra E-mail: aptolrp@amu.up.nic.in

    2001-11-01

    The Singhbhum thrust belt is a 200 km long arcuate orogenic belt in Bihar, eastern India. The huge mineral resources, viz. copper, uranium, magnetite, apatite and molybdenite, etc., make it significant from an economic as well as a geological point of view. The belt hosts three types of mineralization: sulphides of copper and other metals, uranium oxides and apatite-magnetite. Several distinct geological episodes are responsible for the evolution of mineralization and the thrust zone itself. Extensive and reliable radiometric prospecting and assaying have been carried out by us for the past 5 years from Dhobani in the east to Turamdih in the west of the Singhbhum shear zone. The present work indicates uranium mineralization in the Pathargora-Rakha area presently being mined for copper and also within areas in the vicinity of Bhatin. Studies on radon emanation have also been undertaken in some parts of the shear zone which indicate reasonably high radon emanation of the soils and rocks studied. This suggests the need for regular monitoring and suitable controls on the mine environment (air quality) and its vicinity. Radon emanation studies coupled with gamma-ray spectrometry and the subsequent modelling of the radiometric and radon measurements will help in the application of radon as a geophysical tracer in exploration of radioactive ore bodies and in radon risk assessment as well as in delineating active and passive faults and even in petroleum exploration.

  16. Metal contamination of agricultural soils in the copper mining areas of Singhbhum shear zone in India

    Science.gov (United States)

    Giri, Soma; Singh, Abhay Kumar; Mahato, Mukesh Kumar

    2017-06-01

    The study was intended to investigate the heavy metal contamination in the agricultural soils of the copper mining areas in Singhbhum shear zone, India. The total concentrations of the metals were determined by inductively coupled plasma-mass spectrometer (ICPMS). Pollution levels were assessed by calculating enrichment factor (EF), geo-accumulation index (I_geo), contamination factors (CF), pollution load index ( PLI), Nemerow index and ecological risk index (RI). The metal concentrations in the soil samples exceeded the average shale values for almost all the metals. Principal component analysis resulted in extraction of three factors explaining 82.6% of the data variability and indicated anthropogenic contribution of Cu, Ni, Co, Cr, Mn and Pb. The EF and I_geo values indicated very high contamination with respect to Cu followed by As and Zn in the agricultural soils. The values of PLI, RI and Nemerow index, which considered the overall effect of all the studied metals on the soils, revealed that 50% of the locations were highly polluted with respect to metals. The pollution levels varied with the proximity to the copper mining and processing units. Consequently, the results advocate the necessity of periodic monitoring of the agricultural soils of the area and development of proper management strategies to reduce the metal pollution.

  17. The impact of an efficient collection sites location on the zoning phase in municipal solid waste management

    Energy Technology Data Exchange (ETDEWEB)

    Ghiani, Gianpaolo, E-mail: gianpaolo.ghiani@unisalento.it; Manni, Andrea, E-mail: andrea.manni@unisalento.it; Manni, Emanuele, E-mail: emanuele.manni@unisalento.it; Toraldo, Massimiliano, E-mail: massimiliano.toraldo@unisalento.it

    2014-11-15

    Highlights: • We study the problems of locating collection areas and zoning the service territory in a municipal waste management system. • We investigate the impact that an efficient collection sites location has on the subsequent zoning phase. • On a real-world test case, we show that the proposed approach could allow achieving significant monetary savings. - Abstract: In this paper, we study two decisional problems arising when planning the collection of solid waste, namely the location of collection sites (together with bin allocation) and the zoning of the service territory, and we assess the potential impact that an efficient location has on the subsequent zoning phase. We first propose both an exact and a heuristic approach to locate the unsorted waste collection bins in a residential town, and to decide the capacities and characteristics of the bins to be located at each collection site. A peculiar aspect we consider is that of taking into account the compatibility between the different types of bins when allocating them to collection areas. Moreover, we propose a fast and effective heuristic approach to identify homogeneous zones that can be served by a single collection vehicle. Computational results on data related to a real-life instance show that an efficient location is fundamental in achieving consistent monetary savings, as well as a reduced environmental impact. These reductions are the result of one vehicle less needed to perform the waste collection operations, and an overall traveled distance reduced by about 25% on the average.

  18. Ocean zoning for conservation, fisheries and marine renewable energy: assessing trade-offs and co-location opportunities.

    Science.gov (United States)

    Yates, Katherine L; Schoeman, David S; Klein, Carissa J

    2015-04-01

    Oceans, particularly coastal areas, are getting busier and within this increasingly human-dominated seascape, marine biodiversity continues to decline. Attempts to maintain and restore marine biodiversity are becoming more spatial, principally through the designation of marine protected areas (MPAs). MPAs compete for space with other uses, and the emergence of new industries, such as marine renewable energy generation, will increase competition for space. Decision makers require guidance on how to zone the ocean to conserve biodiversity, mitigate conflict and accommodate multiple uses. Here we used empirical data and freely available planning software to identified priority areas for multiple ocean zones, which incorporate goals for biodiversity conservation, two types of renewable energy, and three types of fishing. We developed an approached to evaluate trade-offs between industries and we investigated the impacts of co-locating some fishing activities within renewable energy sites. We observed non-linear trade-offs between industries. We also found that different subsectors within those industries experienced very different trade-off curves. Incorporating co-location resulted in significant reductions in cost to the fishing industry, including fisheries that were not co-located. Co-location also altered the optimal location of renewable energy zones with planning solutions. Our findings have broad implications for ocean zoning and marine spatial planning. In particular, they highlight the need to include industry subsectors when assessing trade-offs and they stress the importance of considering co-location opportunities from the outset. Our research reinforces the need for multi-industry ocean-zoning and demonstrates how it can be undertaken within the framework of strategic conservation planning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Earthquake induced rock shear through a deposition hole. Influence of shear plane inclination and location as well as buffer properties on the damage caused to the canister

    International Nuclear Information System (INIS)

    Boergesson, Lennart; Hernelind, Jan

    2006-10-01

    The effect on the canister of an earthquake induced 20 cm rock shear with the shear rate 1 m/s along a fracture intersecting a deposition hole in a KBS-V repository has been investigated for a number of different shear cases and for different properties of the buffer material. The scenarios have been modelled with the finite element method and calculations have been done using the code ABAQUS. D-element models of the rock, the buffer and the canister have been used. Contact elements that can model separation have been used for the interfaces between the buffer and the rock and the interfaces between the buffer and the canister. The influence of mainly the following factors has been investigated: 1. Inclination of the intersecting fracture. 2. Shear direction when the fracture is not horizontal (inclination deviates from 90 deg). 3. Location of the shear plane when the inclination is 90 deg. 4. Magnitude of the shear displacement. 5. Bentonite type. 6. Bentonite density. 7. Transformation of the buffer to illite or cemented bentonite. The results from the calculations show that all these factors have important influence on the damage of the canister but the influence is for most factors not easily described since there are mutual interferences between the different factors. Plastic strain larger than 1% was reached in the copper already at 10 cm shear in all cases with Na- and Ca- bentonite. However, for several cases of Na-bentonite and one case of Ca-bentonite such plastic strain was only reached in the lid. The plastic strain in the steel was generally smaller than in the copper mainly due to the higher yield stress in the steel. For all cases of Na-bentonite except one and for about half of the Ca-bentonite cases the plastic strain in the steel was smaller than 1% after 10 cm shear. The shear inclination 45 deg was more harmful for the copper tube than the shear inclination 90 deg when tension shear was considered. At the shear inclinations 45 deg and 22.5 deg

  20. Earthquake induced rock shear through a deposition hole. Influence of shear plane inclination and location as well as buffer properties on the damage caused to the canister

    Energy Technology Data Exchange (ETDEWEB)

    Boergesson, Lennart [Clay Technology AB, Lund (Sweden); Hernelind, Jan [5T Engineering AB, Vaesteraas (Sweden)

    2006-10-15

    The effect on the canister of an earthquake induced 20 cm rock shear with the shear rate 1 m/s along a fracture intersecting a deposition hole in a KBS-V repository has been investigated for a number of different shear cases and for different properties of the buffer material. The scenarios have been modelled with the finite element method and calculations have been done using the code ABAQUS. D-element models of the rock, the buffer and the canister have been used. Contact elements that can model separation have been used for the interfaces between the buffer and the rock and the interfaces between the buffer and the canister. The influence of mainly the following factors has been investigated: 1. Inclination of the intersecting fracture. 2. Shear direction when the fracture is not horizontal (inclination deviates from 90 deg). 3. Location of the shear plane when the inclination is 90 deg. 4. Magnitude of the shear displacement. 5. Bentonite type. 6. Bentonite density. 7. Transformation of the buffer to illite or cemented bentonite. The results from the calculations show that all these factors have important influence on the damage of the canister but the influence is for most factors not easily described since there are mutual interferences between the different factors. Plastic strain larger than 1% was reached in the copper already at 10 cm shear in all cases with Na- and Ca- bentonite. However, for several cases of Na-bentonite and one case of Ca-bentonite such plastic strain was only reached in the lid. The plastic strain in the steel was generally smaller than in the copper mainly due to the higher yield stress in the steel. For all cases of Na-bentonite except one and for about half of the Ca-bentonite cases the plastic strain in the steel was smaller than 1% after 10 cm shear. The shear inclination 45 deg was more harmful for the copper tube than the shear inclination 90 deg when tension shear was considered. At the shear inclinations 45 deg and 22.5 deg

  1. Seismic trapped modes in the oroville and san andreas fault zones.

    Science.gov (United States)

    Li, Y G; Leary, P; Aki, K; Malin, P

    1990-08-17

    Three-component borehole seismic profiling of the recently active Oroville, California, normal fault and microearthquake event recording with a near-fault three-component borehole seismometer on the San Andreas fault at Parkfield, California, have shown numerous instances of pronounced dispersive wave trains following the shear wave arrivals. These wave trains are interpreted as fault zone-trapped seismic modes. Parkfield earthquakes exciting trapped modes have been located as deep as 10 kilometers, as shallow as 4 kilometers, and extend 12 kilometers along the fault on either side of the recording station. Selected Oroville and Parkfield wave forms are modeled as the fundamental and first higher trapped SH modes of a narrow low-velocity layer at the fault. Modeling results suggest that the Oroville fault zone is 18 meters wide at depth and has a shear wave velocity of 1 kilometer per second, whereas at Parkfield, the fault gouge is 100 to 150 meters wide and has a shear wave velocity of 1.1 to 1.8 kilometers per second. These low-velocity layers are probably the rupture planes on which earthquakes occur.

  2. Shear-transformation-zone theory of linear glassy dynamics.

    Science.gov (United States)

    Bouchbinder, Eran; Langer, J S

    2011-06-01

    We present a linearized shear-transformation-zone (STZ) theory of glassy dynamics in which the internal STZ transition rates are characterized by a broad distribution of activation barriers. For slowly aging or fully aged systems, the main features of the barrier-height distribution are determined by the effective temperature and other near-equilibrium properties of the configurational degrees of freedom. Our theory accounts for the wide range of relaxation rates observed in both metallic glasses and soft glassy materials such as colloidal suspensions. We find that the frequency-dependent loss modulus is not just a superposition of Maxwell modes. Rather, it exhibits an α peak that rises near the viscous relaxation rate and, for nearly jammed, glassy systems, extends to much higher frequencies in accord with experimental observations. We also use this theory to compute strain recovery following a period of large, persistent deformation and then abrupt unloading. We find that strain recovery is determined in part by the initial barrier-height distribution, but that true structural aging also occurs during this process and determines the system's response to subsequent perturbations. In particular, we find by comparison with experimental data that the initial deformation produces a highly disordered state with a large population of low activation barriers, and that this state relaxes quickly toward one in which the distribution is dominated by the high barriers predicted by the near-equilibrium analysis. The nonequilibrium dynamics of the barrier-height distribution is the most important of the issues raised and left unresolved in this paper.

  3. Evolution of Brasiliano-age granitoid types in a shear-zone environment, Umarizal-Caraubas region, Rio Grande do Norte, northeast Brazil

    Science.gov (United States)

    Galindo, A. C.; Dall'Agnol, R.; McReath, I.; Lafon, J. M.; Teixeira, N.

    1995-01-01

    A sequence of Brasiliano-age granitoid types is exposed in a small area near the cities of Umarizal and Caraúbas in Rio Grande do Norte State, Northeast Brazil. Porphyritic K-alkali-calcic monzogranite is an important facies of the oldest Caraúbas intrusion (RbSr whole rock isochron age of ca. 630 Ma), which suffered solid-state deformation due to movements on a major NE-trending shear zone. The intrusion of the Prado and part of the Quixaba bodies was probably controlled by the shear zone. These two bodies include mafic/intermediate rocks, some of which contain two pyroxenes, and have hybrid, partly alkaline and partly shoshonitic geochemical characteristics. Rock types and ages are similar to those of some Pan-African occurrences in southwestern Nigeria. The Tourão body, intruded at ca. 590 Ma, presents preferred mineral orientations which are probably largely magmatic, since little evidence is found for widespread solid-state deformation. On the other hand, its intrusion may have been facilitated by the presence of the shear-zone faults. The rocks form a monomodal felsic K-alkali-calcic suite. With the exception of the Quixaba body, all these earlier granitoids are magmatic epidote- and magnetite-bearing porphyritic monzogranites with trace element geochemical characteristics of modern syn-collisional granites. The latest intrusion at ca. 545 Ma is mainly represented by potassic quartz syenites and related rocks, some of which contain fayalite or ferrohypersthene. These rocks possess neither well developed mineral orientations of magmatic origin nor signs of solid-state deformation. They are mineralogically similar to, but younger than some of the "bauchites" of central Nigeria. Geochemical signatures are comparable with those of modern within-plate granites. All granitoids present high ( 87Sr/ 86Sr)i ratios which range from 0.708 to 0.712, and increase with decreasing age. Such ratios are compatible with important or dominant crustal contributions. On the

  4. Kinematics of syn- and post-exhumational shear zones at Lago di Cignana (Western Alps, Italy): constraints on the exhumation of Zermatt-Saas (ultra)high-pressure rocks and deformation along the Combin Fault and Dent Blanche Basal Thrust

    Science.gov (United States)

    Kirst, Frederik; Leiss, Bernd

    2017-01-01

    Kinematic analyses of shear zones at Lago di Cignana in the Italian Western Alps were used to constrain the structural evolution of units from the Piemont-Ligurian oceanic realm (Zermatt-Saas and Combin zones) and the Adriatic continental margin (Dent Blanche nappe) during Palaeogene syn- and post-exhumational deformation. Exhumation of Zermatt-Saas (U)HP rocks to approximately lower crustal levels at ca. 39 Ma occurred during normal-sense top-(S)E shearing under epidote-amphibolite-facies conditions. Juxtaposition with the overlying Combin zone along the Combin Fault at mid-crustal levels occurred during greenschist-facies normal-sense top-SE shearing at ca. 38 Ma. The scarcity of top-SE kinematic indicators in the hanging wall of the Combin Fault probably resulted from strain localization along the uppermost Zermatt-Saas zone and obliteration by subsequent deformation. A phase of dominant pure shear deformation around 35 Ma affected units in the direct footwall and hanging wall of the Combin Fault. It is interpreted to reflect NW-SE crustal elongation during updoming of the nappe stack as a result of underthrusting of European continental margin units and the onset of continental collision. This phase was partly accompanied and followed by ductile bulk top-NW shearing, especially at higher structural levels, which transitioned into semi-ductile to brittle normal-sense top-NW deformation due to Vanzone phase folding from ca. 32 Ma onwards. Our structural observations suggest that syn-exhumational deformation is partly preserved within units and shear zones exposed at Lago di Cignana but also that the Combin Fault and Dent Blanche Basal Thrust experienced significant post-exhumational deformation reworking and overprinting earlier structures.

  5. Comparative Laboratory and Numerical Simulations of Shearing Granular Fault Gouge: Micromechanical Processes

    Science.gov (United States)

    Morgan, J. K.; Marone, C. J.; Guo, Y.; Anthony, J. L.; Knuth, M. W.

    2004-12-01

    Laboratory studies of granular shear zones have provided significant insight into fault zone processes and the mechanics of earthquakes. The micromechanisms of granular deformation are more difficult to ascertain, but have been hypothesized based on known variations in boundary conditions, particle properties and geometries, and mechanical behavior. Numerical simulations using particle dynamics methods (PDM) can offer unique views into deforming granular shear zones, revealing the precise details of granular microstructures, particle interactions, and packings, which can be correlated with macroscopic mechanical behavior. Here, we describe a collaborative program of comparative laboratory and numerical experiments of granular shear using idealized materials, i.e., glass beads, glass rods or pasta, and angular sand. Both sets of experiments are carried out under similar initial and boundary conditions in a non-fracturing stress regime. Phenomenologically, the results of the two sets of experiments are very similar. Peak friction values vary as a function of particle dimensionality (1-D vs. 2-D vs. 3-D), particle angularity, particle size and size distributions, boundary roughness, and shear zone thickness. Fluctuations in shear strength during an experiment, i.e., stick-slip events, can be correlated with distinct changes in the nature, geometries, and durability of grain bridges that support the shear zone walls. Inclined grain bridges are observed to form, and to support increasing loads, during gradual increases in assemblage strength. Collapse of an individual grain bridge leads to distinct localization of strain, generating a rapidly propagating shear surface that cuts across multiple grain bridges, accounting for the sudden drop in strength. The distribution of particle sizes within an assemblage, along with boundary roughness and its periodicity, influence the rate of formation and dissipation of grain bridges, thereby controlling friction variations during

  6. Under water possibility in the defined zone for the new Andresito town location

    International Nuclear Information System (INIS)

    Veloso, C.; Preciozzi, F.

    2010-01-01

    This work is about the study of new under water zones for the Andresito town location in Flores district. This searching is carried out by preliminary photo interpretation Esc. 1.20.000. for the prospect ion.

  7. Possible Different Rifting Mechanisms Between South and North Part of the Fenhe-Weihe Rift Zone Revealed by Shear Velocity Structures

    Science.gov (United States)

    Ai, S.; Zheng, Y.

    2017-12-01

    location varies as depth changes. Associated with previous geochemistry studies, we propose an on-going asthenosphere upwelling near Datong volcanic field. Overall, the shear wave velocity structures between north and south part of the FWR is different,and imply the different rifting mechanisms between the two sides of FWR.

  8. Shear-Rate-Dependent Behavior of Clayey Bimaterial Interfaces at Landslide Stress Levels

    Science.gov (United States)

    Scaringi, Gianvito; Hu, Wei; Xu, Qiang; Huang, Runqiu

    2018-01-01

    The behavior of reactivated and first-failure landslides after large displacements is controlled by the available shear resistance in a shear zone and/or along slip surfaces, such as a soil-bedrock interface. Among the factors influencing the resistance parameter, the dependence on the shear rate can trigger catastrophic evolution (rate-weakening) or exert a slow-down feedback (rate-strengthening) upon stress perturbation. We present ring-shear test results, performed under various normal stresses and shear rates, on clayey soils from a landslide shear zone, on its parent lithology and other lithologies, and on clay-rock interface samples. We find that depending on the materials in contact, the normal stress, and the stress history, the shear-rate-dependent behaviors differ. We discuss possible models and underlying mechanisms for the time-dependent behavior of landslides in clay soils.

  9. The Sorong Fault Zone, Indonesia: Mapping a Fault Zone Offshore

    Science.gov (United States)

    Melia, S.; Hall, R.

    2017-12-01

    The Sorong Fault Zone is a left-lateral strike-slip fault zone in eastern Indonesia, extending westwards from the Bird's Head peninsula of West Papua towards Sulawesi. It is the result of interactions between the Pacific, Caroline, Philippine Sea, and Australian Plates and much of it is offshore. Previous research on the fault zone has been limited by the low resolution of available data offshore, leading to debates over the extent, location, and timing of movements, and the tectonic evolution of eastern Indonesia. Different studies have shown it north of the Sula Islands, truncated south of Halmahera, continuing to Sulawesi, or splaying into a horsetail fan of smaller faults. Recently acquired high resolution multibeam bathymetry of the seafloor (with a resolution of 15-25 meters), and 2D seismic lines, provide the opportunity to trace the fault offshore. The position of different strands can be identified. On land, SRTM topography shows that in the northern Bird's Head the fault zone is characterised by closely spaced E-W trending faults. NW of the Bird's Head offshore there is a fold and thrust belt which terminates some strands. To the west of the Bird's Head offshore the fault zone diverges into multiple strands trending ENE-WSW. Regions of Riedel shearing are evident west of the Bird's Head, indicating sinistral strike-slip motion. Further west, the ENE-WSW trending faults turn to an E-W trend and there are at least three fault zones situated immediately south of Halmahera, north of the Sula Islands, and between the islands of Sanana and Mangole where the fault system terminates in horsetail strands. South of the Sula islands some former normal faults at the continent-ocean boundary with the North Banda Sea are being reactivated as strike-slip faults. The fault zone does not currently reach Sulawesi. The new fault map differs from previous interpretations concerning the location, age and significance of different parts of the Sorong Fault Zone. Kinematic

  10. Spontaneous formation of densely packed shear bands of rotating fragments.

    Science.gov (United States)

    Åström, J A; Timonen, J

    2012-05-01

    Appearance of self-similar space-filling ball bearings has been suggested to provide the explanation for seismic gaps, shear weakness, and lack of detectable frictional heat formation in mature tectonic faults (shear zones). As the material in a shear zone fractures and grinds, it could be thought to eventually form a conformation that allows fragments to largely roll against each other without much sliding. This type of space-filling "ball bearing" can be constructed artificially, but so far how such delicate structures may appear spontaneously has remained unexplained. It is demonstrated here that first-principles simulations of granular packing with fragmenting grains indeed display spontaneous formation of shear bands with fragment conformations very similar to those of densely packed ball bearings.

  11. CAT LIDAR wind shear studies

    Science.gov (United States)

    Goff, R. W.

    1978-01-01

    The studies considered the major meteorological factors producing wind shear, methods to define and classify wind shear in terms significant from an aircraft perturbation standpoint, the significance of sensor location and scan geometry on the detection and measurement of wind shear, and the tradeoffs involved in sensor performance such as range/velocity resolution, update frequency and data averaging interval.

  12. Seismic Measurement of the Locations of the Base of Convection Zone and Helium Ionization Zone for Stars in the Kepler Seismic LEGACY Sample

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Kuldeep; Lund, Mikkel N.; Aguirre, Víctor Silva [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Raodeo, Keyuri; Mazumdar, Anwesh [Homi Bhabha Centre for Science Education, TIFR, V. N. Purav Marg, Mankhurd, Mumbai 400088 (India); Antia, H. M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Basu, Sarbani, E-mail: kuldeep@phys.au.dk [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 065208101 (United States)

    2017-03-01

    Acoustic glitches are regions inside a star where the sound speed or its derivatives change abruptly. These leave a small characteristic oscillatory signature in the stellar oscillation frequencies. With the precision achieved by Kepler seismic data, it is now possible to extract these small amplitude oscillatory signatures, and infer the locations of the glitches. We perform glitch analysis for all the 66 stars in the Kepler seismic LEGACY sample to derive the locations of the base of the envelope convection zone (CZ) and the helium ionization zone. The signature from helium ionization zone is found to be robust for all stars in the sample, whereas the CZ signature is found to be weak and problematic, particularly for relatively massive stars with large errorbars on the oscillation frequencies. We demonstrate that the helium glitch signature can be used to constrain the properties of the helium ionization layers and the helium abundance.

  13. Laser-assisted shearing: new application for high-power diode lasers

    Science.gov (United States)

    Emonts, Michael; Brecher, Christian

    2010-02-01

    Due to the growing ranges of applications for stamped parts in the electrical and electronics industry (e.g. switch cabinet cladding and transformer plates) as well as in the automotive industry (e.g. stamp, bent and drawn components), flexible sheet metal forming has become a more important process. The inner and outer contours as well as the forming operations needed to reinforce metal sheets can be carried out by punching machines without re-clamping the metal sheet. In contrast, the potential of conventional punching machines is now exhausted in terms of the material spectrum that can be processed, the tool life and the quality of the machined product. Particularly in view of the machining quality of the sheared edges, the achievable clear-cut surface rates are limited due to the limited plasticity of the sheet materials. When cracks form between the grain boundaries of the sheet material during the conventional shearing process, the cutting edge is divided into a clear-cut surface zone (approx. 30% of the plate thickness when shearing stainless steel plates: 1.4301) and a shearing zone with crack formation. This shearing zone can not be used as a functional surface. The shearing process is divided into the four phases (DIN 8588) "warping", "clear-cutting", "fracture" and "ejection of the piece punched out".

  14. The nature of a deformation zone and fault rock related to a recent rockburst at Western Deep Levels Gold Mine, Witwatersrand Basin, South Africa

    Science.gov (United States)

    Stewart, R. A.; Reimold, W. U.; Charlesworth, E. G.; Ortlepp, W. D.

    2001-07-01

    In August 1998, a major deformation zone was exposed over several metres during mining operations on 87 Level (2463 m below surface) at Western Deep Levels Gold Mine, southwest of Johannesburg, providing a unique opportunity to study the products of a recent rockburst. This zone consists of three shear zones, with dip-slip displacements of up to 15 cm, that are oriented near-parallel to the advancing stope face. Jogs and a highly pulverised, cataclastic 'rock-flour' are developed on the displacement surfaces, and several sets of secondary extensional fractures occur on either side of the shear zones. A set of pinnate (feather) joints intersects the fault surfaces perpendicular to the slip vector. Microscopically, the shear zones consist of two pinnate joint sets that exhibit cataclastic joint fillings; quartz grains display intense intragranular fracturing. Secondary, intergranular extension fractures are associated with the pinnate joints. Extensional deformation is also the cause of the breccia fill of the pinnate joints. The initial deformation experienced by this zone is brittle and tensile, and is related to stresses induced by mining. This deformation has been masked by later changes in the stress field, which resulted in shearing. This deformation zone does not appear to be controlled by pre-existing geological features and, thus, represents a 'burst fracture', which is believed to be related to a seismic event of magnitude ML=2.1 recorded in July 1998, the epicentre of which was located to within 50 m of the study locality.

  15. Shear localization in a mature mylonitic rock analog during fast slip

    Science.gov (United States)

    Takahashi, M.; van den Ende, M. P. A.; Niemeijer, A. R.; Spiers, C. J.

    2017-02-01

    Highly localized slip zones developed within ductile shear zones, such as pseudotachylyte bands occurring within mylonitic fabric rocks, are frequently interpreted as evidence for earthquake nucleation and/or propagation within the ductile regime. To understand brittle/frictional shear localization processes in ductile shear zones and to relate these to earthquake nucleation and propagation, we performed tests with large changes in velocity on a brine-saturated, 80:20 (wt %) mixture of halite and muscovite gouge after forming a mature mylonitic structure through frictional-viscous flow. The direct effect a on shear strength that occurs in response to an instantaneous upward velocity-step is an important parameter in determining the nature of seismic rupture nucleation and propagation. We obtained reproducible results regarding low-velocity mechanical behavior compared with previous work, but also obtained new insights into effects of sudden increases in slip velocity on localization and strength evolution, at velocities above a critical velocity Vc (˜20 μm/s). We found that once a ductile, mylonitic structure has developed in a shear zone, subsequent cataclastic deformation is consistently localized in a narrow zone. This switch to localized deformation is controlled by the imposed velocity and becomes most apparent at velocities above Vc. In addition, the direct effect drops rapidly when the velocity exceeds Vc. This implies that slip can accelerate toward seismic velocities almost instantly and without much loss of fracture energy, once Vc is exceeded. Obtaining a measure for Vc in natural faults is therefore of key importance for understanding earthquake nucleation and propagation in the brittle-ductile transitional regime.

  16. Characterizing the structural maturity of fault zones using high-resolution earthquake locations.

    Science.gov (United States)

    Perrin, C.; Waldhauser, F.; Scholz, C. H.

    2017-12-01

    We use high-resolution earthquake locations to characterize the three-dimensional structure of active faults in California and how it evolves with fault structural maturity. We investigate the distribution of aftershocks of several recent large earthquakes that occurred on immature faults (i.e., slow moving and small cumulative displacement), such as the 1992 (Mw7.3) Landers and 1999 (Mw7.1) Hector Mine events, and earthquakes that occurred on mature faults, such as the 1984 (Mw6.2) Morgan Hill and 2004 (Mw6.0) Parkfield events. Unlike previous studies which typically estimated the width of fault zones from the distribution of earthquakes perpendicular to the surface fault trace, we resolve fault zone widths with respect to the 3D fault surface estimated from principal component analysis of local seismicity. We find that the zone of brittle deformation around the fault core is narrower along mature faults compared to immature faults. We observe a rapid fall off of the number of events at a distance range of 70 - 100 m from the main fault surface of mature faults (140-200 m fault zone width), and 200-300 m from the fault surface of immature faults (400-600 m fault zone width). These observations are in good agreement with fault zone widths estimated from guided waves trapped in low velocity damage zones. The total width of the active zone of deformation surrounding the main fault plane reach 1.2 km and 2-4 km for mature and immature faults, respectively. The wider zone of deformation presumably reflects the increased heterogeneity in the stress field along complex and discontinuous faults strands that make up immature faults. In contrast, narrower deformation zones tend to align with well-defined fault planes of mature faults where most of the deformation is concentrated. Our results are in line with previous studies suggesting that surface fault traces become smoother, and thus fault zones simpler, as cumulative fault slip increases.

  17. The TIPA shear zone (NW-Argentina): Evidence for early devonian movement verified by Sm-Nd dating of garnet and whole rock systems

    International Nuclear Information System (INIS)

    Hockenreiner, M.; Sollner, F.; Miller, H

    2001-01-01

    The Sierra de Copacabana (Catamarca province, NW Argentina) hosts in its northernmost part a large shear zone, which can be traced back to the north into the Sa. de Fiambala and to the south at least into the Sa. de Velasco. Timing of mylonitization is an important puzzle-piece in order to understand Paleozoic geotectonic processes on the western border of Gondwana (au)

  18. Field Observations of Swash-Zone Dynamics on a Sea-Breeze Dominated Beach at the Yucatán Peninsula, México

    Science.gov (United States)

    Chardon-Maldonado, P.; Puleo, J. A.; Torres-Freyermuth, A.

    2016-02-01

    Sea breezes can modify the nearshore processes and alter beach morphology depending on the geographical location. Prior studies have shown that surf zone wave energy intensifies during strong sea-breeze conditions (wind speeds > 10 ms-1) and the impact on the coast can be similar to a small storm. However, few research efforts have investigated the coastal dynamics on sea-breeze dominated beaches (e.g., Masselink and Pattiaratchi, 1998, Mar. Geol.; Pattiaratchi et al., 1997, Cont. Shelf Res.) and, to the authors' knowledge, only one study has focused on swash-zone processes (Sonu et al., 1973, EOS). A field study was performed on a microtidal, low wave energy, sea-breeze dominated sandy beach in order to investigate the effects of local (sea breeze) and synoptic (storm) scale meteorological events on swash-zone dynamics. In-situ measurements of swash-zone hydrodynamics and sediment transport processes were collected from March 31st to April 12th, 2014 in Sisal, Yucatán located on the northern coast of the Yucatán Peninsula. Flow velocities and suspended sediment concentrations were measured concurrently, at multiple cross-shore and alongshore locations, using Vectrino-II profiling velocimeters and optical backscatter sensors, respectively. The high resolution data allowed the quantification of bed shear stress, turbulent dissipation rate, sediment loads and sediment flux during a mesoscale frontal system (cold-front passage referred to as an El Norte) and local sea-breeze cycles. Field observations showed that strong swash-zone bed shear stresses, turbulence intensity and sediment suspension occur during energetic conditions (i.e., El Norte event). On the other hand, despite milder energy conditions during the sea-breeze events, the alongshore component of bed-shear stresses and velocities can be significant owing to the high incidence wave angle associated with the sea-breeze system in the study area. The increased forcing in the swash zone induced sediment

  19. Combination of spaceborne radar interferometry (DEM) and Landsat TM imageries contributing to recent tectonic and geology studies in the Aswa lineament shear zone (Sudan)

    NARCIS (Netherlands)

    Kervyn, V.C.; Slob, S.; Derauw, D.; Cecchi, Giovanna; Zilioli, Eugenio

    1998-01-01

    Until recently, the Aswa lineament shear zone in Uganda and Sudan was considered to be tectonically at rest but the 1990- 1991 seismic events triggered a renewal of interest in this area. Using ERS1 - ERS2 tandem covering the area where earthquakes were observed, we have generated a high resolution

  20. Texture, microstructure and geochemistry of magnetite from the Banduhurang uranium mine, Singhbhum shear zone, India - implications for physico-chemical evolution of magnetite mineralization

    International Nuclear Information System (INIS)

    Ghosh, Dibakar; Dutta, Tusar; Samanta, Susanta K.; Pal, Dipak C.

    2013-01-01

    The Singhbhum Shear zone in eastern India is one of the largest repositories of uranium and copper in India. Besides uranium and copper, apatite-magnetite mineralization is widespread in this shear zone. This study aims at deciphering the physico-chemical evolution of magnetite mineralization in relation to progressive shearing integrating field relations, micro-textures, structures and compositions of magnetite in the Banduhurang uranium mine. Apatite-magnetite ores occur as discrete patches, tongues, and veins in the strongly deformed, fine grained quartz-chlorite schist. Textures and microstructures of magnetite indicate at least three stages of magnetite formation. Coarse-grained magnetite (magnetite-1) with long, rotational, and complex strain fringes, defined by fibrous and elongate quartz, is assigned to a stage of pre-/early-shearing magnetite formation. Medium grained magnetite (magnetite-2), characterized by single non-rotational strain fringe equivalent to the youngest fringe of magnetite-1, grew likely at the mid-/late-stage of shearing. Fine grained magnetite (magnetite-3) is generally devoid of any pressure shadow. This indicates even a much later stage of formation of this magnetite, presumably towards the closing stage of shearing. Some of the magnetite-1 grains are optically heterogeneous with a dark, pitted Cr-Ti-bearing core overgrown by lighter, fresh rim locally containing pyrite, chalcopyrite, and chlorite inclusions. The cores are also locally characterized by high AI and Si content. Homogeneous magnetite-1 is optically and compositionally similar to the overgrowth of heterogeneous magnetite-1. This homogeneous magnetite-1 that grew as separate phase is contemporaneous with the overgrowth on pitted core of heterogeneous magnetite-1. Magnetite-2 is compositionally very similar to homogeneous magnetite-1, but is devoid of sulfide inclusion. Magnetite-3 is generally devoid of any silicate or sulfide inclusion and is most pure with least

  1. Magma shearing and friction in the volcanic conduit: A crystal constraint

    Science.gov (United States)

    Wallace, P. A.; Kendrick, J. E.; Henton De Angelis, S.; Ashworth, J. D.; Coats, R.; Miwa, T.; Mariani, E.; Lavallée, Y.

    2017-12-01

    Magma shearing and friction processes in the shallow volcanic conduit are typical manifestations of strain localisation, which in turn can have an influential role on magma ascent dynamics. The thermal consequences of such events could drive the destabilisation of magma and thus dictate the style of activity at the surface. Shear heating and fault friction are prime candidates for the generation of significant quantities of heat. Here we use a combination of field and experimental evidence to investigate how crystals can act as sensitive recorders of both physical and chemical processes occurring in the shallow volcanic conduit. Spine extrusion during the closing of the 1991-95 eruption at Unzen volcano, Japan, provided the unique opportunity to investigate marginal shear zone formation, which preserves a relic of the deformation during magma ascent. Our results show that crystals can effectively act as a deformation marker during magma ascent through the viscous-brittle transition by accommodating strain in the form of crystal plasticity before fracturing (comminution). Electron backscatter diffraction (EBSD) reveals up to 40° lattice distortion of biotite phenocrysts in zones of high shear, with negligible plasticity further away. Plagioclase microlites display a systematic plastic response to an increase in shear intensity, as recorded by an increase in lattice distortion towards the spine margin of up to 9°. This localisation of strain within the shear zone is also accompanied by the destabilisation of hydrous mineral phases (i.e. amphibole), compaction of pores (23-13% Φ), glass devitrification and magnetic anomalies. The narrow zone of disequilibrium textures suggests the likely effect of a thermal input due to strain localisation being the contributing factor. These observations are complimented by high-temperature high-velocity rotary shear experiments which simulate the deformation evolution during shear. Hence, understanding these shallow volcanic

  2. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors.

    Directory of Open Access Journals (Sweden)

    Farzad Tahmasbi

    Full Text Available This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed.

  3. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors

    Science.gov (United States)

    Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.; Tahir, M. M.

    2016-01-01

    This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed. PMID:27478894

  4. Hydrothermal alteration in the Matok Igneous Complex, Southern Marginal Zone of the Limpopo Belt, South Africa

    International Nuclear Information System (INIS)

    Sieber, T.; Van Reenen, D.D.; Barton, J.M.

    1991-01-01

    Ductile shear zones associated with the 2700 to 2650 Ma Limpopo Orogeny locally contained gold mineralization. Some of these shear zones were reactivated under brittle conditions and contain zones of hydrothermal alteration that are of potential economic significance. Within the approximately 2670 Ma Matok Complex, two examples of this shear zone controlled alteration are exposed, the Dwars River and Sand River alteration zones. The granitic rocks of this Complex experienced early selective sericitization of plagioclase and the subsequent development of perthitic porphyroblasts. This early regional alteration was overprinted along brittle shear zones by pervasive propylitization and vein controlled quartz-albite alteration. The setting, composition, and the age of the Matok Complex make it a possible source for Archaean gold mineralization. The Dwars River and Sand River alteration zones are characterized by the absence of significant gold mineralization. The pattern of wall-rock alteration indicates that the hydrothermal processes were different from typical Archaean lode gold deposits. P-T conditions during the shear-zone controlled alteration were less than 400 degrees C and 1,9 - 2,8 kb. The shear zone hosted alteration could have taken place anytime between emplacement of the Matok Complex and about 1315 Ma ago. 35 refs., 10 figs., 4 tabs

  5. Micro tectonic milonitas analysis in the extreme south of the Sarandi del Yi shear zone: Kinematics and deformation conditions

    International Nuclear Information System (INIS)

    Oyhantçabal, P; Suarez, I; Seluchi, N; Martinez, X.

    2010-01-01

    The Shear Zone divides Sarandi del Yi Craton River Plate in Piedra Alta and Nico Perez land . The southern end of this zone extends to north - south from the vicinity of the town of Minas to Punta Solis. The predominant lithology of the study area consists of a granitic mylonite with abundant muscovite and biotite. Structural data of foliation , stretching lineation and kinematic indicators were surveyed .Petrographic analysis shows that quartz is presented as ribbons polycrystalline product subgrain rotation recrystallization and grain boundary migration . Feldspar porphyroclasts are partially recrystallized in developing type structures c ore and mantle . Kinematic indicators such as sigma porphyroclasts , mica fish and oblique foliation defined consistently sinistral sense . The presence of stable and mirmequitas in the plane of biotite foliation along the microstructures described in quartz and feldspar , can be inferred temperature conditions between 450 ° C and 550° C during deformation

  6. Ultrasonic backscatter imaging by shear-wave-induced echo phase encoding of target locations.

    Science.gov (United States)

    McAleavey, Stephen

    2011-01-01

    We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus.

  7. An analytic interface dynamo over a shear layer of finite depth

    OpenAIRE

    Petrovay, K.; Kerekes, A.; Erdélyi, R.

    2010-01-01

    Parker's analytic Cartesian interface dynamo is generalized to the case of a shear layer of finite thickness and low resistivity ("tachocline"), bounded by a perfect conductor ("radiative zone") on the one side, and by a highly diffusive medium ("convective zone") supporting an $\\alpha$-effect on the other side. In the limit of high diffusivity contrast between the shear layer and the diffusive medium, thought to be relevant for the Sun, a pair of exact dispersion relations for the growth rat...

  8. Secure Mix-Zones for Privacy Protection of Road Network Location Based Services Users

    Directory of Open Access Journals (Sweden)

    Rubina S. Zuberi

    2016-01-01

    Full Text Available Privacy has been found to be the major impediment and hence the area to be worked out for the provision of Location Based Services in the wide sense. With the emergence of smart, easily portable, communicating devices, information acquisition is achieving new domains. The work presented here is an extension of the ongoing work towards achieving privacy for the present day emerging communication techniques. This work emphasizes one of the most effective real-time privacy enhancement techniques called Mix-Zones. In this paper, we have presented a model of a secure road network with Mix-Zones getting activated on the basis of spatial as well as temporal factors. The temporal factors are ascertained by the amount of traffic and its flow. The paper also discusses the importance of the number of Mix-Zones a user traverses and their mixing effectiveness. We have also shown here using our simulations which are required for the real-time treatment of the problem that the proposed transient Mix-Zones are part of a viable and robust solution towards the road network privacy protection of the communicating moving objects of the present scenario.

  9. Rheological structure of the lithosphere in plate boundary strike-slip fault zones

    Science.gov (United States)

    Chatzaras, Vasileios; Tikoff, Basil; Kruckenberg, Seth C.; Newman, Julie; Titus, Sarah J.; Withers, Anthony C.; Drury, Martyn R.

    2016-04-01

    How well constrained is the rheological structure of the lithosphere in plate boundary strike-slip fault systems? Further, how do lithospheric layers, with rheologically distinct behaviors, interact within the strike-slip fault zones? To address these questions, we present rheological observations from the mantle sections of two lithospheric-scale, strike-slip fault zones. Xenoliths from ˜40 km depth (970-1100 ° C) beneath the San Andreas fault system (SAF) provide critical constraints on the mechanical stratification of the lithosphere in this continental transform fault. Samples from the Bogota Peninsula shear zone (BPSZ, New Caledonia), which is an exhumed oceanic transform fault, provide insights on lateral variations in mantle strength and viscosity across the fault zone at a depth corresponding to deformation temperatures of ˜900 ° C. Olivine recrystallized grain size piezometry suggests that the shear stress in the SAF upper mantle is 5-9 MPa and in the BPSZ is 4-10 MPa. Thus, the mantle strength in both fault zones is comparable to the crustal strength (˜10 MPa) of seismogenic strike-slip faults in the SAF system. Across the BPSZ, shear stress increases from 4 MPa in the surrounding rocks to 10 MPa in the mylonites, which comprise the core of the shear zone. Further, the BPSZ is characterized by at least one order of magnitude difference in the viscosity between the mylonites (1018 Paṡs) and the surrounding rocks (1019 Paṡs). Mantle viscosity in both the BPSZ mylonites and the SAF (7.0ṡ1018-3.1ṡ1020 Paṡs) is relatively low. To explain our observations from these two strike-slip fault zones, we propose the "lithospheric feedback" model in which the upper crust and lithospheric mantle act together as an integrated system. Mantle flow controls displacement and the upper crust controls the stress magnitude in the system. Our stress data combined with data that are now available for the middle and lower crustal sections of other transcurrent fault

  10. The dynamics of a shear band

    Science.gov (United States)

    Giarola, Diana; Capuani, Domenico; Bigoni, Davide

    2018-03-01

    A shear band of finite length, formed inside a ductile material at a certain stage of a continued homogeneous strain, provides a dynamic perturbation to an incident wave field, which strongly influences the dynamics of the material and affects its path to failure. The investigation of this perturbation is presented for a ductile metal, with reference to the incremental mechanics of a material obeying the J2-deformation theory of plasticity (a special form of prestressed, elastic, anisotropic, and incompressible solid). The treatment originates from the derivation of integral representations relating the incremental mechanical fields at every point of the medium to the incremental displacement jump across the shear band faces, generated by an impinging wave. The boundary integral equations (under the plane strain assumption) are numerically approached through a collocation technique, which keeps into account the singularity at the shear band tips and permits the analysis of an incident wave impinging a shear band. It is shown that the presence of the shear band induces a resonance, visible in the incremental displacement field and in the stress intensity factor at the shear band tips, which promotes shear band growth. Moreover, the waves scattered by the shear band are shown to generate a fine texture of vibrations, parallel to the shear band line and propagating at a long distance from it, but leaving a sort of conical shadow zone, which emanates from the tips of the shear band.

  11. N-S crustal shear system in the Bundelkhand massif: a unique ...

    Indian Academy of Sciences (India)

    56

    In the light of our detailed geological studies of the massif (Singh and Bhattacharya,. 2010 .... relations with, and displace, the earlier shear systems, i.e. BS1, BS2 and BS3 (Fig. 3D), (3) ..... and shear zone patterns: The South Indian case. Jour.

  12. Linenament analysis on LANDSAT imagery in the central Badajoz-Córdoba Shear Zone. Arguments for brittle stain partitioning and block rotation under transpression

    Directory of Open Access Journals (Sweden)

    Martínez-Torres, L. M.

    1989-12-01

    Full Text Available In the present work we deal with the statistical study oC the lineaments drawn by three different analysts on the same LANDSAT image on a geologically well-known portion oC the southem lberian Massif: the Badajoz-Córdoba Shear Zone. The results obtained let us establish the presence of two structural domains separated by a central band coinciding with the outcrop of the most metamorphic rocks of the central Badajoz-Córdoba Shear Zone. Each of these domains hold a distinctive lineament distribution arrangement, the whole being ascribable to a scheme of transpressive sinistral shearing within a band which rather fits a Bouguer gravity anomaly and a set of late-hercynian wrench faults.Se realiza un estudio estadístico de los tecto-lineamientos observados por tres analistas diferentes sobre una fotografía de satélite de la porción central de la Zona de Cizalla de Badajoz-Córdoba (Macizo Ibérico Meridional. Los resultados alcanzados permiten establecer la presencia de dos dominios estructurales separados entre sí por una banda central que coincide con el afloramiento de las rocas más metamórficas de la Zona de Cizalla. Cada uno de estos tres dominios tiene una distribución particular de lineamientos estructurales, explicándose el conjunto en el marco de un cizallamiento sinistroso en régimen transpresivo en una banda que se ajusta bastante a la distribución conocida para ese área de fallas y accidentes tardi-hercínicos de desgarre y a la posición de una anomalía gravimétrica de Bouguer.

  13. Reflection seismic methods applied to locating fracture zones in crystalline rock

    International Nuclear Information System (INIS)

    Juhlin, C.

    1998-01-01

    where surface mapped fracture zones exist. The South dipping reflector correlates with the top of a heavily fractured interval observed in a borehole at about 400 m. 3D effects are clearly apparent in the data and only where the profiles cross can the true orientation of the reflecting events be determined. To properly orient and locate all events observed on the lines requires acquisition of 3D data

  14. Field characterization of elastic properties across a fault zone reactivated by fluid injection

    Science.gov (United States)

    Jeanne, Pierre; Guglielmi, Yves; Rutqvist, Jonny; Nussbaum, Christophe; Birkholzer, Jens

    2017-08-01

    We studied the elastic properties of a fault zone intersecting the Opalinus Clay formation at 300 m depth in the Mont Terri Underground Research Laboratory (Switzerland). Four controlled water injection experiments were performed in borehole straddle intervals set at successive locations across the fault zone. A three-component displacement sensor, which allowed capturing the borehole wall movements during injection, was used to estimate the elastic properties of representative locations across the fault zone, from the host rock to the damage zone to the fault core. Young's moduli were estimated by both an analytical approach and numerical finite difference modeling. Results show a decrease in Young's modulus from the host rock to the damage zone by a factor of 5 and from the damage zone to the fault core by a factor of 2. In the host rock, our results are in reasonable agreement with laboratory data showing a strong elastic anisotropy characterized by the direction of the plane of isotropy parallel to the laminar structure of the shale formation. In the fault zone, strong rotations of the direction of anisotropy can be observed. The plane of isotropy can be oriented either parallel to bedding (when few discontinuities are present), parallel to the direction of the main fracture family intersecting the zone, and possibly oriented parallel or perpendicular to the fractures critically oriented for shear reactivation (when repeated past rupture along this plane has created a zone).

  15. Effect of Boundary Condition on the Shear Behaviour of Rock Joints in the Direct Shear Test

    Science.gov (United States)

    Bahaaddini, M.

    2017-05-01

    The common method for determination of the mechanical properties of the rock joints is the direct shear test. This paper aims to study the effect of boundary condition on the results of direct shear tests. Experimental studies undertaken in this research showed that the peak shear strength is mostly overestimated. This problem is more pronounced for steep asperities and under high normal stresses. Investigation of the failure mode of these samples showed that tensile cracks are generated at the boundary of sample close to the specimen holders and propagated inside the intact materials. In order to discover the reason of observed failure mechanism in experiments, the direct shear test was simulated using PFC2D. Results of numerical models showed that the gap zone size between the upper and lower specimen holders has a significant effect on the shear mechanism. For the high gap size, stresses concentrate at the vicinity of the tips of specimen holders and result in generation and propagation of tensile cracks inside the intact material. However, by reducing the gap size, stresses are concentrated on asperities, and damage of specimen at its boundary is not observed. Results of this paper show that understanding the shear mechanism of rock joints is an essential step prior to interpreting the results of direct shear tests.

  16. Shear-wave dynamic behavior using two different orientations

    International Nuclear Information System (INIS)

    Ghassem Alaskari, M. K.; Hashemi, S. J.

    2007-01-01

    For laterally complex media, it may be more suitable to take a different orientation of the displacement vector of Shear-waves. This may change the sign of several imaginary reflections and conversion coefficients to be used in reservoir characterization and Amplitude Versus Offset analysis or modeling. In this new convention the positive direction of the displacement vector of reflected Shear-waves is chosen to the left of ray tangent (in the direction of wave propagation). Therefore, the definition of the displacement vector of shear-waves can be used properly even for very complicated media. Finally the shear-wave dynamic behavior of a reservoir zone can be illustrated for laterally varying structures in terms of the amplitude variation and phase behavior using this new orientation

  17. Dynamic behavior of transport in normal and reversed shear plasmas with internal barriers in JT-60U

    International Nuclear Information System (INIS)

    Neudatchin, Sergi V.; Takizuka, Tomonori; Shirai, Hiroshi; Fujita, Takaaki; Isayama, Akihiko; Kamada, Yutaka; Koide, Yoshihiko

    2001-12-01

    Transport evolution in normal shear (NrS) and reversed shear (RS) JT-60U tokamak plasmas with internal transport barrier (ITB) is described as a combination of various fast and slow time scale processes. Abrupt in time (ms time scale) and wide in space (∼0.3 of minor radius) variations of electron and ion heat diffusivities χ e,i (δχ e,i ), which are called ITB-events and seen as simultaneous rise and decay of electron and ion temperatures in two spatial zones, are found for weak ITBs in both NrS and RS plasmas. Profiles of δχ e in RS plasmas with strong ITBs are usually localized near ITB foot inside smaller space region. The maximum of the heat flux variation is located near position of the minimum of safety factor in various RS plasmas, and variation is extended in positive shear region. Inward and outward heat pulse propagations created by the jump of χ e and the sawtooth-like crash are analyzed. Small values of χ e and the absence of heat pinch are found inside strong ITBs. Another non-local abrupt variations of χ e inside most of the plasma volume, including significant part of weak ITB inside RS zone of RS plasmas, are seen at the ELM-induced H-L transition and the L-H recovery. (author)

  18. Simultaneous Multiple-Location Separation Control

    Science.gov (United States)

    Greenblatt, David (Inventor)

    2009-01-01

    A method of controlling a shear layer for a fluid dynamic body introduces first periodic disturbances into the fluid medium at a first flow separation location. Simultaneously, second periodic disturbances are introduced into the fluid medium at a second flow separation location. A phase difference between the first and second periodic disturbances is adjusted to control flow separation of the shear layer as the fluid medium moves over the fluid dynamic body.

  19. Microscopic Characterization of Tensile and Shear Fracturing in Progressive Failure in Marble

    Science.gov (United States)

    Cheng, Yi; Wong, Louis Ngai Yuen

    2018-01-01

    Compression-induced tensile and shear fractures were reported to be the two fundamental fracture types in rock fracturing tests. This study investigates such tensile and shear fracturing process in marble specimens containing two different flaw configurations. Observations first reveal that the development of a tensile fracture is distinct from shear fracture with respect to their nucleation, propagation, and eventual formation in macroscale. Second, transgranular cracks and grain-scale spallings become increasingly abundant in shear fractures as loading increases, which is almost not observed in tensile fractures. Third, one or some dominant extensional microcracks are commonly observed in the center of tensile fractures, while such development of microcracks is almost absent in shear fractures. Microcracks are generally of a length comparable to grain size and distribute uniformly within the damage zone of the shear fracture. Fourth, the width of densely damaged zone in the shear fracture is nearly 10 times of that in the tensile fracture. Quantitative measurement on microcrack density suggests that (1) microcrack density in tensile and shear fractures display distinct characteristics with increasing loading, (2) transgranular crack density in the shear fracture decreases logarithmically with the distance away from the shear fracture center, and (3) whatever the fracture type, the anisotropy can only be observed for transgranular cracks with a large density, which partially explains why microcrack anisotropy usually tends to be unobvious until approaching peak stress in specimens undergoing brittle failure. Microcracking characteristics observed in this work likely shed light to some phenomena and conclusions generalized in seismological studies.

  20. A Novel Geometry for Shear Test Using Axial Tensile Setup

    Directory of Open Access Journals (Sweden)

    Sibo Yuan

    2018-05-01

    Full Text Available This paper studies a novel geometry for the in-plane shear test performed with an axial electromechanical testing machine. In order to investigate the influence of the triaxiality rate on the mechanical behavior, different tests will be performed on the studied material: simple tensile tests, large tensile tests and shear tests. For the whole campaign, a common equipment should be employed to minimize the impact of the testing device. As a consequence, for the shear tests, the geometry of the specimen must be carefully designed in order to adapt the force value and make it comparable to the one obtained for the tensile tests. Like most of the existing shear-included tensile test specimens, the axial loading is converted to shear loading at a particular region through the effect of geometry. A symmetric shape is generally preferred, since it can restrict the in-plane rotation of the shear section, keep shear increasing in a more monotonic path and double the force level thanks to the two shear zones. Due to the specific experimental conditions, such as dimensions of the furnace and the clamping system, the position of the extensometer or the restriction of sheet thickness (related to the further studies of size effect at mesoscale and hot temperature, several geometries were brought up and evaluated in an iterative procedure via finite element simulations. Both the numerical and experimental results reveal that the final geometry ensures some advantages. For instance, a relatively low triaxiality in the shear zone, limited in-plane rotation and no necking are observed. Moreover, it also prevents any out-of-plane displacement of the specimen which seems to be highly sensitive to the geometry, and presents a very limited influence of the material and the thickness.

  1. The MMS Dayside Magnetic Reconnection Locations During Phase 1 and Their Relation to the Predictions of the Maximum Magnetic Shear Model

    Science.gov (United States)

    Trattner, K. J.; Burch, J. L.; Ergun, R.; Eriksson, S.; Fuselier, S. A.; Giles, B. L.; Gomez, R. G.; Grimes, E. W.; Lewis, W. S.; Mauk, B.; Petrinec, S. M.; Russell, C. T.; Strangeway, R. J.; Trenchi, L.; Wilder, F. D.

    2017-12-01

    Several studies have validated the accuracy of the maximum magnetic shear model to predict the location of the reconnection site at the dayside magnetopause. These studies found agreement between model and observations for 74% to 88% of events examined. It should be noted that, of the anomalous events that failed the prediction of the model, 72% shared a very specific parameter range. These events occurred around equinox for an interplanetary magnetic field (IMF) clock angle of about 240°. This study investigates if this remarkable grouping of events is also present in data from the recently launched MMS. The MMS magnetopause encounter database from the first dayside phase of the mission includes about 4,500 full and partial magnetopause crossings and flux transfer events. We use the known reconnection line signature of switching accelerated ion beams in the magnetopause boundary layer to identify encounters with the reconnection region and identify 302 events during phase 1a when the spacecraft are at reconnection sites. These confirmed reconnection locations are compared with the predicted location from the maximum magnetic shear model and revealed an 80% agreement. The study also revealed the existence of anomalous cases as mentioned in an earlier study. The anomalies are concentrated for times around the equinoxes together with IMF clock angles around 140° and 240°. Another group of anomalies for the same clock angle ranges was found during December events.

  2. Assessment of shear stress related parameters in the carotid bifurcation using mouse-specific FSI simulations.

    Science.gov (United States)

    De Wilde, David; Trachet, Bram; Debusschere, Nic; Iannaccone, Francesco; Swillens, Abigail; Degroote, Joris; Vierendeels, Jan; De Meyer, Guido R Y; Segers, Patrick

    2016-07-26

    The ApoE(-)(/)(-) mouse is a common small animal model to study atherosclerosis, an inflammatory disease of the large and medium sized arteries such as the carotid artery. It is generally accepted that the wall shear stress, induced by the blood flow, plays a key role in the onset of this disease. Wall shear stress, however, is difficult to derive from direct in vivo measurements, particularly in mice. In this study, we integrated in vivo imaging (micro-Computed Tomography-µCT and ultrasound) and fluid-structure interaction (FSI) modeling for the mouse-specific assessment of carotid hemodynamics and wall shear stress. Results were provided for 8 carotid bifurcations of 4 ApoE(-)(/)(-) mice. We demonstrated that accounting for the carotid elasticity leads to more realistic flow waveforms over the complete domain of the model due to volume buffering capacity in systole. The 8 simulated cases showed fairly consistent spatial distribution maps of time-averaged wall shear stress (TAWSS) and relative residence time (RRT). Zones with reduced TAWSS and elevated RRT, potential indicators of atherosclerosis-prone regions, were located mainly at the outer sinus of the external carotid artery. In contrast to human carotid hemodynamics, no flow recirculation could be observed in the carotid bifurcation region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Finite strain analysis of metavolcanics and metapyroclastics in gold-bearing shear zone of the Dungash area, Central Eastern Desert, Egypt

    Science.gov (United States)

    Kassem, Osama M. K.; Abd El Rahim, Said H.

    2014-11-01

    The Dungash gold mine area is situated in an EW-trending quartz vein along a shear zone in metavolcanic and metasedimentary host rocks in the Eastern Desert of Egypt. These rocks are associated with the major geologic structures, which are attributed to various deformational stages of the Neoproterozoic basement rocks. Field geology, finite strain and microstructural analyses were carried out and the relation-ships between the lithological contacts and major/minor structures have been studied. The R f/ϕ and Fry methods were applied on the metavolcano-sedimentary and metapyroclastic samples from 5 quartz veins samples, 7 metavolcanics samples, 3 metasedimentary samples and 4 metapyroclastic samples in Dungash area. Finite-strain data show that a low to moderate range of deformation of the metavolcano-sedimentary samples and axial ratios in the XZ section range from 1.70 to 4.80 for the R f/ϕ method and from 1.65 to 4.50 for the Fry method. We conclude that finite strain in the deformed rocks is of the same order of magnitude for all units of metavolcano-sedimentary rocks. Furthermore, the contact between principal rock units is sheared in the Dungash area under brittle to semi-ductile deformation conditions. In this case, the accumulated finite strain is associated with the deformation during thrusting to assemble nappe structure. It indicates that the sheared contacts have been formed during the accumulation of finite strain.

  4. Shear-Wave Splitting Within the Southeastern Carpathian Arc, Transylvanian Basin, Romania

    Science.gov (United States)

    Stanciu, A. C.; Russo, R. M.; Mocanu, V. I.; Munteanu, L.

    2012-12-01

    We present 75 new measurements of shear wave splitting at 4 temporary broadband seismic stations that we deployed in the Transylvanian Basin within the Carpathian Arc, Romania. The Tisza-Dacia terranes, which form the basement of this basin, were accommodated in the space between the thick, old, rigid and cold East European Platform and the Moesian Platform during the Miocene. This movement was driven by the subduction of a part of the Tethys Ocean, which led to the formation of Carpathian orogen system. In Romania, the mountains are divided into the Eastern Carpathians, at the limit of Transylvanian Basin and the East European Platform along the Tornquist-Teisseyre Suture Zone, and the Southern Carpathians, at the limit with Moesian Platform. They connect to the West of the Carpathian Bend Zone where a very active high velocity seismic body generates intermediate depth earthquakes between 70 and 200 km beneath the Vrancea seismogenic zone. We analyzed splitting of SKS and SKKS phases recorded at epicentral distances between 87 and 150 degrees using the method of Silver and Chan (1991). We estimated splitting parameters, fast shear polarization azimuth and delay time, using both weighted averages of individual splitting measurements (Helffrich et al., 1994) and simultaneous linearization of all clearly recorded SK(K)S waves (Wolfe and Silver, 1998). For COMD, located at the contact of the Carpathian Bend Zone and Transylvanian Basin, we obtained a fast shear polarization azimuth trending NE-SW, parallel to the contact and to the strike of the Vrancea seismic body. For 10 suitable events recorded at IACB, at the contact of the Neogene Volcanic zone with the Eastern Carpathians, we did not observe any splitting; we consider the station splitting to be null. The fast shear polarization azimuth for PMAR, at the limit between Tisza-Dacia block and Southern Carpathians thrust belt, and at CHDM, within the Transylvanian Basin, is NW-SE similar to a regional splitting

  5. The integrated analyses of digital field mapping techniques and traditional field methods: implications from the Burdur-Fethiye Shear Zone, SW Turkey as a case-study

    Science.gov (United States)

    Elitez, İrem; Yaltırak, Cenk; Zabcı, Cengiz; Şahin, Murat

    2015-04-01

    The precise geological mapping is one of the most important issues in geological studies. Documenting the spatial distribution of geological bodies and their contacts play a crucial role on interpreting the tectonic evolution of any region. Although the traditional field techniques are still accepted to be the most fundamental tools in construction of geological maps, we suggest that the integration of digital technologies to the classical methods significantly increases the resolution and the quality of such products. We simply follow the following steps in integration of the digital data with the traditional field observations. First, we create the digital elevation model (DEM) of the region of interest by interpolating the digital contours of 1:25000 scale topographic maps to 10 m of ground pixel resolution. The non-commercial Google Earth satellite imagery and geological maps of previous studies are draped over the interpolated DEMs in the second stage. The integration of all spatial data is done by using the market leading GIS software, ESRI ArcGIS. We make the preliminary interpretation of major structures as tectonic lineaments and stratigraphic contacts. These preliminary maps are controlled and precisely coordinated during the field studies by using mobile tablets and/or phablets with GPS receivers. The same devices are also used in measuring and recording the geologic structures of the study region. Finally, all digitally collected measurements and observations are added to the GIS database and we finalise our geological map with all available information. We applied this integrated method to map the Burdur-Fethiye Shear Zone (BFSZ) in the southwest Turkey. The BFSZ is an active sinistral 60-to-90 km-wide shear zone, which prolongs about 300 km-long between Suhut-Cay in the northeast and Köyceğiz Lake-Kalkan in the southwest on land. The numerous studies suggest contradictory models not only about the evolution but also about the fault geometry of this

  6. Metamorphism and Shear Localization in the Oceanic and Continental Lithosphere: A Local or Lithospheric-Scale Effect?

    Science.gov (United States)

    Montesi, L.

    2017-12-01

    Ductile rheologies are characterized by strain rate hardening, which favors deformation zones that are as wide as possible, thus minimizing strain rate and stress. By contrast, plate tectonics and the observation of ductile shear zones in the exposed middle to lower crust show that deformation is often localized, that is, strain (and likely strain rate) is locally very high. This behavior is most easily explained if the material in the shear zone is intrinsically weaker than the reference material forming the wall rocks. Many origins for that weakness have been proposed. They include higher temperature (shear heating), reduced grain size, and fabric. The latter two were shown to be the most effective in the middle crust and upper mantle (given observational limits restricting heating to 50K or less) but they were not very important in the lower crust. They are not sufficient to explain the generation of narrow plate boundaries in the oceans. We evaluate here the importance of metamorphism, especially related to hydration, in weakening the lithosphere. Serpentine is a major player in the dynamics of the oceanic lithosphere. Although its ductile behavior is poorly constrained, serpentine is likely to behave in a brittle or quasi-plastic manner with a reduced coefficient of friction, replacing stronger peridotite. Serpentinization sufficiently weakens the oceanic lithosphere to explain the generation of diffuse plate boundaries and, combined with grain size reduction, the development of narrow plate boundaries. Lower crust outcrops, especially in the Bergen Arc (Norway), display eclogite shear zones hosted in metastable granulites. The introduction of water triggered locally a metamorphic reaction that reduces rock strength and resulted in a ductile shear zone. The presence of these shear zones has been used to explain the weakness of the lower crust perceived from geodesy and seismic activity. We evaluate here how much strain rate may increase as a result of

  7. Strain localisation in mechanically layered rocks beneath detachment zones: insights from numerical modelling

    Directory of Open Access Journals (Sweden)

    L. Le Pourhiet

    2013-04-01

    Full Text Available We have designed a series of fully dynamic numerical simulations aimed at assessing how the orientation of mechanical layering in rocks controls the orientation of shear bands and the depth of penetration of strain in the footwall of detachment zones. Two parametric studies are presented. In the first one, the influence of stratification orientation on the occurrence and mode of strain localisation is tested by varying initial dip of inherited layering in the footwall with regard to the orientation of simple shear applied at the rigid boundary simulating a rigid hanging wall, all scaling and rheological parameter kept constant. It appears that when Mohr–Coulomb plasticity is being used, shear bands are found to localise only when the layering is being stretched. This corresponds to early deformational stages for inital layering dipping in the same direction as the shear is applied, and to later stages for intial layering dipping towards the opposite direction of shear. In all the cases, localisation of the strain after only γ=1 requires plastic yielding to be activated in the strong layer. The second parametric study shows that results are length-scale independent and that orientation of shear bands is not sensitive to the viscosity contrast or the strain rate. However, decreasing or increasing strain rate is shown to reduce the capacity of the shear zone to localise strain. In the later case, the strain pattern resembles a mylonitic band but the rheology is shown to be effectively linear. Based on the results, a conceptual model for strain localisation under detachment faults is presented. In the early stages, strain localisation occurs at slow rates by viscous shear instabilities but as the layered media is exhumed, the temperature drops and the strong layers start yielding plastically, forming shear bands and localising strain at the top of the shear zone. Once strain localisation has occured, the deformation in the shear band becomes

  8. GAM - Gas Migration Experiments in a Heterogeneous Shear Zone of the Grimsel Test of the Grimsel Test Site

    International Nuclear Information System (INIS)

    Marschall, P.; Lunati, I.

    2006-12-01

    This report documents the scientific investigations carried out as part of the GAM project between June 1997 and April 2001 at the Grimsel Test Site within the framework of Investigation Phase V (1997 - 2001). Four radioactive waste management organisations participated in the GAM experiment, namely ANDRA, ENRESA, NAGRA and Sandia National Laboratories for the US Department of Energy. The experiment team consisted of the delegates of the participating organisations, research groups from the Swiss Federal Institute of Technology, Zurich and from the Technical University of Catalonia, Barcelona and, last but not least, several contractor teams. Essential aims of the GAM investigation programme were the development and testing of laboratory and field equipment for tracer experiments. Innovative laboratory technologies were applied, such as Laser Scanning Confocal Microscopy and X-ray tomography, flow visualisation in artificial fractures, nuclear magnetic resonance measurements and neutron radiography. Furthermore, a new technique was tested for the recovery of well preserved core samples from the GAM shear zone. Novelties in field testing comprised the use of an on-line counter for the particle tracer tests and a georadar survey of gas and brine injection tests with a high frequency borehole antenna. The development of upscaling methodologies and the derivation of effective parameters for single- and two-phase flow models was another issue of interest. The investigations comprised theoretical studies on solute transport in non-uniform flow fields and assessment of the impact of the microstructure on solute and gas transport. Closely related to these theoretical studies was the numerical interpretation of the combined solute and gas tracer tests, which revealed the great potential of such data sets with regard to model discrimination. As a final step in the synthesis task of the GAM project, a model abstraction process was established, aimed at integrating the

  9. Shear-induced Bubble Coalescence in Rhyolitic Melts with Low Vesicularity

    Science.gov (United States)

    Okumura, S.; Nakamura, M.; Tsuchiyama, A.

    2006-12-01

    Development of bubble structure during magma ascent controls the dynamics of volcanic eruption, because the bubble structure influences the magma rheology and permeability, and hence magma degassing. In the flowing magmas, the bubble structure is expected to be changed by shear, as pointed out by some previous studies based on geological observations. However, the development of bubble structure has been experimentally studied only in the isostatic magmas. We have experimentally demonstrated for the first time, the shear-induced development of number density, size and shape of bubbles in a rhyolitic melt. The deformation experiments were performed by using an externally heated, piston-cylinder type apparatus with a rotational piston. At 975°C, natural obsidian (initial water content of 0.5 wt%) having cylindrical shape (ca. 4.7 mm in diameter and 5 mm in length) was vesiculated in the graphite container (ca. 5 and 9 mm in the inner and the outer diameters, respectively, and 5 mm in length), and the vesiculated samples were twisted at various rotational speeds up to 1 rpm. The number density, size and shape of bubbles in the quenched samples were then measured by using the X-ray computed tomography. The size distribution of bubbles shows that the number of larger bubbles increases with the rotational speed and at the outer zone of the samples at which the shear rate is high. In the high shear rate zone, the magnitude of bubble deformation is large. The 3D images of large bubbles clearly indicate that they were formed by coalescence. These results indicate that the degree of bubble coalescence is enhanced with the shear rate. The experimental results also demonstrated that the coalescence of bubbles occur even at low vesicularity (ca. 20 vol.%). Because the shear rate induced in this study (in the order of 0.01 1/s) seems to be produced for magmas ascending in a volcanic conduit, we propose the possibility that the vesiculated magmas undergo bubble coalescence at a

  10. IMAGE ANALYSIS FOR MODELLING SHEAR BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    Philippe Lopez

    2011-05-01

    Full Text Available Through laboratory research performed over the past ten years, many of the critical links between fracture characteristics and hydromechanical and mechanical behaviour have been made for individual fractures. One of the remaining challenges at the laboratory scale is to directly link fracture morphology of shear behaviour with changes in stress and shear direction. A series of laboratory experiments were performed on cement mortar replicas of a granite sample with a natural fracture perpendicular to the axis of the core. Results show that there is a strong relationship between the fracture's geometry and its mechanical behaviour under shear stress and the resulting damage. Image analysis, geostatistical, stereological and directional data techniques are applied in combination to experimental data. The results highlight the role of geometric characteristics of the fracture surfaces (surface roughness, size, shape, locations and orientations of asperities to be damaged in shear behaviour. A notable improvement in shear understanding is that shear behaviour is controlled by the apparent dip in the shear direction of elementary facets forming the fracture.

  11. Pan-African tectonic evolution in central and southern Cameroon: transpression and transtension during sinistral shear movements

    Science.gov (United States)

    Ngako, V.; Affaton, P.; Nnange, J. M.; Njanko, Th.

    2003-04-01

    Kinematic analysis of the central Cameroon shear zone (CCSZ) and its Sanaga fault relay, indicate early sinistral shear movement (phase D 2) that was later followed by a dextral shear movement (phase D 3) during the Pan-African orogeny. The correlation of tectonic events among the CCSZs, thrusting of the Yaounde Group and the deformation in the Lom Group indicate a diachronous deposition history of these groups, where the Yaounde Group is pre-kinematic while the sedimentary and magmatic rocks of the Lom basin are syn-kinematic. Sinistral shear movements along the CCSZ and Sanaga faults are correlated with metamorphism and thrusting of the Yaounde granulites onto the Congo craton, on one hand, and to the opening of the Lom pull-apart basin, oblique to the shear zone, on the other. Kinematic interactions between shear and thrust movements characterize transpression, whereas interactions between shear and oblique normal fault movements characterize transtension. Resulting kinematic indicators show that the Lom basin represents a sinistral transtensional relay of the Sanaga fault. Greenschist-facies metamorphism in the Lom Group rocks dominantly affected by a monophase tectonic evolution were achieved during the late dextral shear movements along the Sanaga fault.

  12. Subsurface structure of the Nojima fault from dipole shear velocity/anisotropy and borehole Stoneley wave

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H [Geological Survey of Japan, Tsukuba (Japan); Yamamoto, H; Brie, A

    1996-10-01

    Fracture and permeability in the fault zone of the active fault drilling at the Nojima fault were evaluated from acoustic waveforms. There were several permeable intervals in the fault zone. There was strong Stoneley wave attenuation, very large S-Se below the fault and in the interval above the fault. In the fault zone, there were also several short intervals where S-Se was very large; 667 m-674 m and 706 m-710 m. In these intervals, the Stoneley attenuation was large, but there was no Stoneley reflection from within the interval. Reflections were observed at the upper and lower boundaries, going away from the bed up above, and down below. In this well, the shear wave was very strongly attenuated at and below the fault zone. The fast shear azimuth changed at the fault. The slowness anisotropy was fairly strong above the fault from 602 m to 612 m, but smaller below the fault. The changes in fast shear azimuth were much more pronounced near the fault, which suggested a strong influence of the fault. 6 refs., 5 figs.

  13. How weak is the subduction zone interface?

    NARCIS (Netherlands)

    Duarte, João C.; Schellart, Wouter P.; Cruden, Alexander R.

    2015-01-01

    Several lines of evidence suggest that subduction zones are weak and that the unique availability of water on Earth is a critical factor in the weakening process. We have evaluated the strength of subduction zone interfaces using two approaches: (i) from empirical relationships between shear stress

  14. Simulations of a stretching bar using a plasticity model from the shear transformation zone theory

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, Chris H.; Gibou, Frederic

    2010-06-05

    An Eulerian simulation is developed to study an elastoplastic model of amorphous materials that is based upon the shear transformation zone theory developed by Langer and coworkers. In this theory, plastic deformation is controlled by an effective temperature that measures the amount of configurational disorder in the material. The simulation is used to model ductile fracture in a stretching bar that initially contains a small notch, and the effects of many of the model parameters are examined. The simulation tracks the shape of the bar using the level set method. Within the bar, a finite difference discretization is employed that makes use of the essentially non-oscillatory (ENO) scheme. The system of equations is moderately stiff due to the presence of large elastic constants, and one of the key numerical challenges is to accurately track the level set and construct extrapolated field values for use in boundary conditions. A new approach to field extrapolation is discussed that is second order accurate and requires a constant amount of work per gridpoint.

  15. Preservation of Permian allanite within an Alpine eclogite facies shear zone at Mt Mucrone, Italy: Mechanical and chemical behaviour of allanite during mylonitization

    DEFF Research Database (Denmark)

    Cenki-Tok, Benedicte; Oliot, E.; Berger, Alfons

    2011-01-01

    This study addresses the mechanical and cehmical behavior of allanite during shear zone formation under high-pressure metamorphism. Understanding physico-chemical processes related to the retention or resetting of Pb isotopes in allanite during geological processes is essential for robust......, and they were thus chemically and mechanically shielded during Alpine mylonitization. In undeformed samples (8a and 8b), two populations of epidote group minerals were found. Allanite forms either coronas around Permianmonazite or individual grains with patchy zoning. Both types yield Permian ages (208Pb/232Th...... age: 291±5 Ma). On the other hand, grains of REE-rich clinozoisite of Cretaceous age are found in undeformed rocks. These grains appear as small fragments with embayed surface outlines and minute satellites or rims around Permian allanite. These (re)crystallized grains are Sr-rich and show mosaic...

  16. Post-Grampian top-to-WNW Caledonian ductile shear in the Grampian Highlands [abstract only

    OpenAIRE

    Leslie, Graham; Campbell, Seumas

    2008-01-01

    The Glendoe Hydro Scheme involves construction of an 4.6 m diameter bored tunnel, extending 8.6 km SSE-ward from Fort Augustus and the Great Glen, through mainly Grampian Group Dalradian rocks deformed in the Grampian orogeny. The great prize though is access to an 8 km long borehole driven perpendicular to regional strike through the footwall and hanging wall of the Eilrig Shear Zone. The Eilrig Shear Zone is unique in the geology of the Grampian Highland ‘terrane’ and is reve...

  17. The Processes of Location Study for Developing Economic Zones under Public Private Partnership Model: Country Study on Bangladesh

    Directory of Open Access Journals (Sweden)

    Mahmudul Alam

    2011-02-01

    Full Text Available In spite of the complexity in defining the boundary, the concept of Economic Zones (EZ has been evolved as a way forward for the government of the developing countries for enhancing the national trade. Similarly the recent phenomenon of widespread Public Private Partnership (PPP practices especially in infrastructure sector is also providing a window to develop many of such economic zones through PPP model as EZ typically is capital intensive. Bangladesh has discrete success both under PPP and EZ regime. However, developing EZ under PPP model has few commercial complexities as both the public and private sector need to bear some roles and obligations one of which is selection of appropriate location for EZ development. The location study for PPP EZ development therefore receives paramount attention both from developer and lenders perspective. Such location study generally is not typical project site study by nature; rather it is more economic concentrated. This paper will try to identify the factors that are essential to consider for conducting these location studies based on the examples of Bangladesh. The paper will also identify the appropriate methods and approaches required for successful EZ development through PPP.

  18. Imaging Shear Strength Along Subduction Faults

    Science.gov (United States)

    Bletery, Quentin; Thomas, Amanda M.; Rempel, Alan W.; Hardebeck, Jeanne L.

    2017-11-01

    Subduction faults accumulate stress during long periods of time and release this stress suddenly, during earthquakes, when it reaches a threshold. This threshold, the shear strength, controls the occurrence and magnitude of earthquakes. We consider a 3-D model to derive an analytical expression for how the shear strength depends on the fault geometry, the convergence obliquity, frictional properties, and the stress field orientation. We then use estimates of these different parameters in Japan to infer the distribution of shear strength along a subduction fault. We show that the 2011 Mw9.0 Tohoku earthquake ruptured a fault portion characterized by unusually small variations in static shear strength. This observation is consistent with the hypothesis that large earthquakes preferentially rupture regions with relatively homogeneous shear strength. With increasing constraints on the different parameters at play, our approach could, in the future, help identify favorable locations for large earthquakes.

  19. Imaging shear strength along subduction faults

    Science.gov (United States)

    Bletery, Quentin; Thomas, Amanda M.; Rempel, Alan W.; Hardebeck, Jeanne L.

    2017-01-01

    Subduction faults accumulate stress during long periods of time and release this stress suddenly, during earthquakes, when it reaches a threshold. This threshold, the shear strength, controls the occurrence and magnitude of earthquakes. We consider a 3-D model to derive an analytical expression for how the shear strength depends on the fault geometry, the convergence obliquity, frictional properties, and the stress field orientation. We then use estimates of these different parameters in Japan to infer the distribution of shear strength along a subduction fault. We show that the 2011 Mw9.0 Tohoku earthquake ruptured a fault portion characterized by unusually small variations in static shear strength. This observation is consistent with the hypothesis that large earthquakes preferentially rupture regions with relatively homogeneous shear strength. With increasing constraints on the different parameters at play, our approach could, in the future, help identify favorable locations for large earthquakes.

  20. Integration of remote sensing, geochemical and field data in the Qena-Safaga shear zone: Implications for structural evolution of the Eastern Desert, Egypt

    Science.gov (United States)

    El-Din, Gamal Kamal; Abdelkareem, Mohamed

    2018-05-01

    The Qena-Safaga shear zone (QSSZ) represents a significant structural characteristic in the Eastern Desert of Egypt. Remote Sensing, field and geochemical data were utilized in the present study. The results revealed that the QSSZ dominated by metamorphic complex (MC) that intruded by syn-tectonic granitoids. The low angle thrust fault brings calc-alkaline metavolcanics to overlie MC and its association. Subsequently, the area is dissected by strike-slip faults and the small elongated basins of Hammamat sediments of Precambrian were accumulated. The MC intruded by late-to post-tectonic granites (LPG) and Dokhan Volcanics which comprise felsic varieties forming distinctive columnar joints. Remote sensing analysis and field data revealed that major sub-vertical conspicuous strike-slip faults (SSF) including sinistral NW-SE and dextral ca. E-W shaped the study area. Various shear zones that accompanying the SSF are running NW-SE, NE-SW, E-W, N-S and ENE-WSW. The obtained shear sense presented a multiphase of deformation on each trend. i.e., the predominant NW-SE strike-slip fault trend started with sinistral displacement and is reactivated during later events to be right (dextral) strike slip cutting with dextral displacement the E-W trending faults; while NE-SW movements are cut by both the N-S and NNW - SSE trends. Remote sensing data revealed that the NW-SE direction that dominated the area is associated with hydrothermal alteration processes. This allowed modifying the major and trace elements of the highly deformed rocks that showed depletion in SiO2 and enrichments in Fe2O3, MnO, Al2O3, TiO2, Na2O, K2O, Cu, Zn and Pb contents. The geochemical signatures of major and trace elements revealed two types of granites including I-type calc-alkaline granites (late-to post-tectonic) that formed during an extensional regime. However, syn-tectonic granitoids are related to subduction-related environment.

  1. To determine the slow shearing rate for consolidation drained shear box tests

    Science.gov (United States)

    Jamalludin, Damanhuri; Ahmad, Azura; Nordin, Mohd Mustaqim Mohd; Hashim, Mohamad Zain; Ibrahim, Anas; Ahmad, Fauziah

    2017-08-01

    Slope failures always occur in Malaysia especially during the rainy seasons. They cause damage to properties and fatalities. In this study, a total of 24 one dimensional consolidation tests were carried out on soil samples taken from 16 slope failures in Penang Island and in Baling, Kedah. The slope failures in Penang Island are within the granitic residual soil while in Baling, Kedah they are situated within the sedimentary residual soil. Most of the disturbed soil samples were taken at 100mm depth from the existing soil surface while some soil samples were also taken at 400, 700 and 1000mm depths from the existing soil surface. They were immediately placed in 2 layers of plastic bag to prevent moisture loss. Field bulk density tests were also carried out at all the locations where soil samples were taken. The field bulk density results were later used to re-compact the soil samples for the consolidation tests. The objective of the research is to determine the slow shearing rate to be used in consolidated drained shear box for residual soils taken from slope failures so that the effective shear strength parameters can be determined. One dimensional consolidation tests were used to determine the slow shearing rate. The slow shearing rate found in this study to be used in the consolidated drained shear box tests especially for Northern Malaysian residual soils was 0.286mm/minute.

  2. Locating Very-Low-Frequency Earthquakes in the San Andreas Fault.

    Science.gov (United States)

    Peña-Castro, A. F.; Harrington, R. M.; Cochran, E. S.

    2016-12-01

    The portion of tectonic fault where rheological properties transtition from brittle to ductile hosts a variety of seismic signals suggesting a range of slip velocities. In subduction zones, the two dominantly observed seismic signals include very-low frequency earthquakes ( VLFEs), and low-frequency earthquakes (LFEs) or tectonic tremor. Tremor and LFE are also commonly observed in transform faults, however, VLFEs have been reported dominantly in subduction zone environments. Here we show some of the first known observations of VLFEs occurring on a plate boundary transform fault, the San Andreas Fault (SAF) between the Cholame-Parkfield segment in California. We detect VLFEs using both permanent and temporary stations in 2010-2011 within approximately 70 km of Cholame, California. We search continous waveforms filtered from 0.02-0.05 Hz, and remove time windows containing teleseismic events and local earthquakes, as identified in the global Centroid Moment Tensor (CMT) and the Northern California Seismic Network (NCSN) catalog. We estimate the VLFE locations by converting the signal into envelopes, and cross-correlating them for phase-picking, similar to procedures used for locating tectonic tremor. We first perform epicentral location using a grid search method and estimate a hypocenter location using Hypoinverse and a shear-wave velocity model when the epicenter is located close to the SAF trace. We account for the velocity contrast across the fault using separate 1D velocity models for stations on each side. Estimated hypocentral VLFE depths are similar to tremor catalog depths ( 15-30 km). Only a few VLFEs produced robust hypocentral locations, presumably due to the difficulty in picking accurate phase arrivals with such a low-frequency signal. However, for events for which no location could be obtained, the moveout of phase arrivals across the stations were similar in character, suggesting that other observed VLFEs occurred in close proximity.

  3. Predicting Shear Transformation Events in Metallic Glasses

    Science.gov (United States)

    Xu, Bin; Falk, Michael L.; Li, J. F.; Kong, L. T.

    2018-03-01

    Shear transformation is the elementary process for plastic deformation of metallic glasses, the prediction of the occurrence of the shear transformation events is therefore of vital importance to understand the mechanical behavior of metallic glasses. In this Letter, from the view of the potential energy landscape, we find that the protocol-dependent behavior of shear transformation is governed by the stress gradient along its minimum energy path and we propose a framework as well as an atomistic approach to predict the triggering strains, locations, and structural transformations of the shear transformation events under different shear protocols in metallic glasses. Verification with a model Cu64 Zr36 metallic glass reveals that the prediction agrees well with athermal quasistatic shear simulations. The proposed framework is believed to provide an important tool for developing a quantitative understanding of the deformation processes that control mechanical behavior of metallic glasses.

  4. Strain gradient drives shear banding in metallic glasses

    Science.gov (United States)

    Tian, Zhi-Li; Wang, Yun-Jiang; Chen, Yan; Dai, Lan-Hong

    2017-09-01

    Shear banding is a nucleation-controlled process in metallic glasses (MGs) involving multiple temporal-spatial scales, which hinders a concrete understanding of its structural origin down to the atomic scale. Here, inspired by the morphology of composite materials, we propose a different perspective of MGs as a hard particle-reinforced material based on atomic-scale structural heterogeneity. The local stable structures indicated by a high level of local fivefold symmetry (L5FS) act as hard "particles" which are embedded in the relatively soft matrix. We demonstrate this concept by performing atomistic simulations of shear banding in CuZr MG. A shear band is prone to form in a sample with a high degree of L5FS which is slowly quenched from the liquid. An atomic-scale analysis on strain and the structural evolution reveals that it is the strain gradient effect that has originated from structural heterogeneity that facilitates shear transformation zones (STZs) to mature shear bands. An artificial composite model with a high degree of strain gradient, generated by inserting hard MG strips into a soft MG matrix, demonstrates a great propensity for shear banding. It therefore confirms the critical role strain gradient plays in shear banding. The strain gradient effect on shear banding is further quantified with a continuum model and a mechanical instability analysis. These physical insights might highlight the strain gradient as the hidden driving force in transforming STZs into shear bands in MGs.

  5. The discovery of a conjugate system of faults in the Wharton Basin intraplate deformation zone.

    Science.gov (United States)

    Singh, Satish C; Hananto, Nugroho; Qin, Yanfang; Leclerc, Frederique; Avianto, Praditya; Tapponnier, Paul E; Carton, Helene; Wei, Shengji; Nugroho, Adam B; Gemilang, Wishnu A; Sieh, Kerry; Barbot, Sylvain

    2017-01-01

    The deformation at well-defined, narrow plate boundaries depends on the relative plate motion, but how the deformation takes place within a distributed plate boundary zone remains a conundrum. This was confirmed by the seismological analyses of the 2012 great Wharton Basin earthquakes [moment magnitude ( M w ) 8.6], which suggested the rupture of several faults at high angles to one another. Using high-resolution bathymetry and seismic reflection data, we report the discovery of new N294°E-striking shear zones, oblique to the plate fabric. These shear zones are expressed by sets of normal faults striking at N335°E, defining the direction of the principal compressional stress in the region. Also, we have imaged left-lateral strike-slip faults along reactivated N7°E-oriented oceanic fracture zones. The shear zones and the reactivated fracture zones form a conjugate system of faults, which accommodate present-day intraplate deformation in the Wharton Basin.

  6. Structure of the Cascadia Subduction Zone Imaged Using Surface Wave Tomography

    Science.gov (United States)

    Schaeffer, A. J.; Audet, P.

    2017-12-01

    Studies of the complete structure of the Cascadia subduction zone from the ridge to the arc have historically been limited by the lack of offshore ocean bottom seismograph (OBS) infrastructure. On land, numerous dense seismic deployments have illuminated detailed structures and dynamics associated with the interaction between the subducting oceanic plate and the overriding continental plate, including cycling of fluids, serpentinization of the overlying forearc mantle wedge, and the location of the upper surface of the Juan de Fuca plate as it subducts beneath the Pacific Northwest. In the last half-decade, the Cascadia Initiative (CI), along with Neptune (ONC) and several other OBS initiatives, have instrumented both the continental shelf and abyssal plains off shore of the Cascadia subduction zone, facilitating the construction of a complete picture of the subduction zone from ridge to trench and volcanic arc. In this study, we present a preliminary azimuthally anisotropic surface-wave phase-velocity based model of the complete system, capturing both the young, unaltered Juan de Fuca plate from the ridge, to its alteration as it enters the subduction zone, in addition to the overlying continent. This model is constructed from a combination of ambient noise cross-correlations and teleseismic two station interferometry, and combines together concurrently running offshore OBS and onshore stations. We furthermore perform a number of representative 1D depth inversions for shear velocity to categorize the pristine oceanic, subducted oceanic, and continental crust and lithospheric structure. In the future the dispersion dataset will be jointly inverted with receiver functions to constrain a 3D shear-velocity model of the complete region.

  7. Cohesive Zone Model Based Numerical Analysis of Steel-Concrete Composite Structure Push-Out Tests

    Directory of Open Access Journals (Sweden)

    J. P. Lin

    2014-01-01

    Full Text Available Push-out tests were widely used to determine the shear bearing capacity and shear stiffness of shear connectors in steel-concrete composite structures. The finite element method was one efficient alternative to push-out testing. This paper focused on a simulation analysis of the interface between concrete slabs and steel girder flanges as well as the interface of the shear connectors and the surrounding concrete. A cohesive zone model was used to simulate the tangential sliding and normal separation of the interfaces. Then, a zero-thickness cohesive element was implemented via the user-defined element subroutine UEL in the software ABAQUS, and a multiple broken line mode was used to define the constitutive relations of the cohesive zone. A three-dimensional numerical analysis model was established for push-out testing to analyze the load-displacement curves of the push-out test process, interface relative displacement, and interface stress distribution. This method was found to accurately calculate the shear capacity and shear stiffness of shear connectors. The numerical results showed that the multiple broken lines mode cohesive zone model could describe the nonlinear mechanical behavior of the interface between steel and concrete and that a discontinuous deformation numerical simulation could be implemented.

  8. Nanoindentation study on the characteristic of shear transformation zone in a Pd-based bulk metallic glass during serrated flow

    Science.gov (United States)

    Liao, G. K.; Long, Z. L.; Zhao, M. S. Z.; Peng, L.; Chai, W.; Ping, Z. H.

    2018-04-01

    This paper presents the research on the evolution of shear transformation zone (STZ) in a Pd-based bulk metallic glass (BMG) during serrated flow under nanoindentation. A novel method of estimating the STZ volume through statistical analysis of the serrated flow behavior was proposed for the first time. Based on the proposed method, the STZ volume of the studied BMG at various peak loads have been systematically investigated. The results indicate that the measured STZ volumes are in good agreement with that documented in literature, and the STZ size exhibits an increasing trend during indentation. Moreover, the correlation between the serrated flow dynamics and the STZ activation has also been evaluated. It is found that the STZ activation can promote the formation of self-organized critical (SOC) state during serrated flow.

  9. Investigation of shear distance in Michelson interferometer-based shearography for mechanical characterization

    International Nuclear Information System (INIS)

    Lee, Jung-Ryul; Yoon, Dong-Jin; Kim, Jung-Seok; Vautrin, Alain

    2008-01-01

    Shearography is a growing industrial field in both quantitative mechanical characterization and relatively qualitative non-destructive testing. In shearography, shear distance is the most important parameter to control measurement performances. In this paper, the role of the shear distance is systematically investigated, focusing on the application of full-field mechanical characterization. A modified Michelson interferometer is considered as the shearing device, which is most commonly adopted for mechanical characterization applications because it enables easy and precise shearing and phase shifting. This paper also includes theoretical and experimental investigations of the relationship between shear distance and performance issues such as the immeasurable zone in the target with discontinuity, signal-to-noise ratio, sensitivity and shear distortion. In addition, this study is verified with actual shearographic results and a phase-shifting grid method capable of full-field displacement evaluation in the submicrometer regime

  10. Generation of sheared poloidal flows via Reynolds stress and transport barrier physics

    International Nuclear Information System (INIS)

    Hidalgo, C.; Pedrosa, M.A.; Sanchez, E.; Balbin, R.; Lopez-Fraguas, A.; Milligen, B. van; Silva, C.; Fernandes, H.; Varandas, C.A.F.; Riccardi, C.; Carrozza, R.; Fontanesi, M.; Carreras, B.A.; Garcia, L.

    2000-01-01

    A view of the latest experimental results and progress in the understanding of the role of poloidal flows driven by fluctuations via Reynolds stress is given. Reynolds stress shows a radial gradient close to the velocity shear layer location in tokamaks and stellarators, indicating that this mechanism may drive significant poloidal flows in the plasma boundary. Observation of the generation of ExB sheared flows via Reynolds stress at the ion Bernstein resonance layer has been noticed in toroidal magnetized plasmas. The experimental evidence of sheared ExB flows linked to the location of rational surfaces in stellarator plasmas might be interpreted in terms of Reynolds stress sheared driven flows. These results show that ExB sheared flows driven by fluctuations can play an important role in the generation of transport barriers. (author)

  11. An Experimental Investigation of an Airfoil Traversing Across a Shear Flow

    Science.gov (United States)

    Hamedani, Borhan A.; Naguib, Ahmed; Koochesfahani, Manoochehr

    2017-11-01

    While the aerodynamics of an airfoil in a uniform approach flow is well understood, less attention has been paid to airfoils in non-uniform flows. An aircraft encounters such flow, for example, during landing through the air wake of an aircraft carrier. The present work is focused on investigating the fundamental aerodynamics of airfoils in such an environment using canonical flow experiments. To generate a shear approach flow, a shaped honeycomb block is employed in a wind tunnel setup. Direct force measurements are performed on a NACA 0012 airfoil, with an aspect ratio of 1.8, as the airfoil traverses steadily across the shear region. Measurements are conducted at a chord Reynolds number Rec 75k, based on the mean approach stream velocity at the center of the shear zone, for a range of airfoil traverse velocities and angles of attack (0 - 12 degree). The results are compared to those obtained for the same airfoil when placed statically at different points along the traverse path inside the shear zone. The comparison enables examination of the applicability of quasi-steady analysis in computing the forces on the moving airfoil. This work is supported by ONR Grant Number N00014-16-1-2760.

  12. Coulomb stress interactions among M≥5.9 earthquakes in the Gorda deformation zone and on the Mendocino Fracture Zone, Cascadia megathrust, and northern San Andreas fault

    Science.gov (United States)

    Rollins, John C.; Stein, Ross S.

    2010-01-01

    The Gorda deformation zone, a 50,000 km2 area of diffuse shear and rotation offshore northernmost California, has been the site of 20 M ≥ 5.9 earthquakes on four different fault orientations since 1976, including four M ≥ 7 shocks. This is the highest rate of large earthquakes in the contiguous United States. We calculate that the source faults of six recent M ≥ 5.9 earthquakes had experienced ≥0.6 bar Coulomb stress increases imparted by earthquakes that struck less than 9 months beforehand. Control tests indicate that ≥0.6 bar Coulomb stress interactions between M ≥ 5.9 earthquakes separated by Mw = 7.3 Trinidad earthquake are consistent with the locations of M ≥ 5.9 earthquakes in the Gorda zone until at least 1995, as well as earthquakes on the Mendocino Fault Zone in 1994 and 2000. Coulomb stress changes imparted by the 1980 earthquake are also consistent with its distinct elbow-shaped aftershock pattern. From these observations, we derive generalized static stress interactions among right-lateral, left-lateral and thrust faults near triple junctions.

  13. Study on reinforced lightweight coconut shell concrete beam behavior under shear

    International Nuclear Information System (INIS)

    Gunasekaran, K.; Annadurai, R.; Kumar, P.S.

    2013-01-01

    Highlights: • Coconut shell used as aggregate in concrete production. • Coconut shell concrete beam behavior studied under shear. • Coconut shell concrete beam behavior are compared with control concrete beams. - Abstract: Lightweight concrete has been produced using crushed coconut shell as coarse aggregate. The shear behavior of reinforced concrete beam made with coconut shell is analyzed and compared with the normal control concrete. Eight beams, four with coconut shell concrete and four with normal control concrete were fabricated and tested. Study includes the structural shear behavior, shear capacity, cracking behavior, deflection behavior, ductility, strains in concrete and in reinforcement. It was observed that the shear behavior of coconut shell concrete is comparable to that of other lightweight concretes. The results of concrete compression strain and steel tension strain showed that coconut shell concrete is able to achieve its full strain capacity under shear loadings. However, the failure zones of coconut shell concrete were larger than for control concrete beams

  14. The protogine zone. Geology and mobility during the last 1.5 Ga

    International Nuclear Information System (INIS)

    Andreasson, P.G.; Rodhe, A.

    1992-09-01

    This report treats the Protogine Zone (PZ) as the western boundary of the Southeastern Megablock (SEM), and summarizes scientific aspects of different geological and geophysical functions of the zone. A systematic inventory and a technical description of shear zones and faults in the type area of the 'Schistosity Zone' are presented. The report then reviews observed and infrared activity of the zone during the last 1500 million years. This calendar includes at least eight different periods of compression or extension, tilting, uplift, magmatism etc. along the zone, in harmony with the common experience that old zones of weakness in the crust seldom heal. The network of major structures of southern Sweden is described, and the function of the PZ within this network is discussed with particular attention to east-west running lineaments within the SEM, like the Noemmen-Oskarshamn and Hoernebo-Hoegsby fault and shear zones. Future work should inter alia investigate if these two zones are connected with the PZ, and if movements along the PZ can reactivate the zones. A bibliography comprising c. 100 titles is included as an appendix. (au)

  15. Lithospheric shear velocity structure of South Island, New Zealand, from amphibious Rayleigh wave tomography

    Science.gov (United States)

    Ball, Justin S.; Sheehan, Anne F.; Stachnik, Joshua C.; Lin, Fan-Chi; Yeck, William L.; Collins, John A.

    2016-05-01

    We present a crust and mantle 3-D shear velocity model extending well offshore of New Zealand's South Island, imaging the lithosphere beneath the South Island as well as the Campbell and Challenger Plateaus. Our model is constructed via linearized inversion of both teleseismic (18-70 s period) and ambient noise-based (8-25 s period) Rayleigh wave dispersion measurements. We augment an array of 4 land-based and 29 ocean bottom instruments deployed off the South Island's east and west coasts in 2009-2010 by the Marine Observations of Anisotropy Near Aotearoa experiment with 28 land-based seismometers from New Zealand's permanent GeoNet array. Major features of our shear wave velocity (Vs) model include a low-velocity (Vs 50 km) beneath the central South Island exhibits strong spatial correlation with upper mantle earthquake hypocenters beneath the Alpine Fault. The ~400 km long low-velocity zone we image beneath eastern South Island and the inner Bounty Trough underlies Cenozoic volcanics and the locations of mantle-derived helium measurements, consistent with asthenospheric upwelling in the region.

  16. Uraninite, Coffinite and Brannerite from Shear-Zone Hosted Uranium Deposits of the Bohemian Massif (Central European Variscan Belt

    Directory of Open Access Journals (Sweden)

    Miloš René

    2017-03-01

    Full Text Available New mineralogical data are presented for shear-zone hosted uranium mineralisation from selected uranium deposits that occur in the Bohemian Massif. The uranium mineralisation is in high-grade metamorphic rocks of the Moldanubian Zone and/or in granitic rocks of the Moldanubian batholith and Bor pluton as complex uraninite–coffinite and uraninite–coffinite–brannerite assemblages. For analysed coffinites and brannerites, anomalous enrichment of Y (up to 3.4 wt % Y2O3 and Zr (up to 13.8 wt % ZrO2 is significant. The microprobe data indicate that coffinites from the Rožná and Okrouhlá Radouň uranium deposits contain variable PbO (0–4.3 wt %, FeO (0–2.5 wt %, Al2O3 (0–3.5 wt %, P2O5 (0–1.8 wt %, and CaO (0.7–3.5 wt %. Brannerite is present in unaltered and altered grains with variable concentrations of U4+ (0–0.5 apfu, U6+ (0.06–0.49 apfu, Ti (0.90–2.63 apfu, Ca (0.09–0.41 apfu, and low concentrations of Al (0–0.19 apfu, Th (0–0.04 apfu, Y (0–0.08 apfu, Zr (0–0.13 apfu and REE (0–0.14 apfu.

  17. Reversed magnetic shear suppression of electron-scale turbulence on NSTX

    Science.gov (United States)

    Yuh, Howard Y.; Levinton, F. M.; Bell, R. E.; Hosea, J. C.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E.; Smith, D. R.; Domier, C. W.; Luhmann, N. C.; Park, H. K.

    2009-11-01

    Electron thermal internal transport barriers (e-ITBs) are observed in reversed (negative) magnetic shear NSTX discharges^1. These e-ITBs can be created with either neutral beam heating or High Harmonic Fast Wave (HHFW) RF heating. The e-ITB location occurs at the location of minimum magnetic shear determined by Motional Stark Effect (MSE) constrained equilibria. Statistical studies show a threshold condition in magnetic shear for e-ITB formation. High-k fluctuation measurements at electron turbulence wavenumbers^3 have been made under several different transport regimes, including a bursty regime that limits temperature gradients at intermediate magnetic shear. The growth rate of fluctuations has been calculated immediately following a change in the local magnetic shear, resulting in electron temperature gradient relaxation. Linear gyrokinetic simulation results for NSTX show that while measured electron temperature gradients exceed critical linear thresholds for ETG instability, growth rates can remain low under reversed shear conditions up to high electron temperatures gradients. ^1H. Yuh, et. al., PoP 16, 056120 ^2D.R. Smith, E. Mazzucato et al., RSI 75, 3840 ^3E. Mazzucato, D.R. Smith et al., PRL 101, 075001

  18. Critical Velocity for Shear Localization in A Mature Mylonitic Rock Analogue

    Science.gov (United States)

    Takahashi, M.; van den Ende, M.; Niemeijer, A. R.; Spiers, C. J.

    2016-12-01

    Highly localized slip zones, seen within ductile shear zones developed in nature, such as pseudotachylite bands occurring within mylonites, are widely recognized as evidence for earthquake nucleation and/or propagation within and overprinting the ductile regime. To understand brittle/frictional localization processes in ductile shear zones and to connect these to earthquake nucleation and propagation processes, we performed large velocity step-change tests on a brine-saturated, 80:20 (wt. %) halite and muscovite gouge mixture, after forming a mature mylonitic structure through pressure solution creep at low-velocity. The sharp increase in sliding strength that occurs in response to an instantaneous upward velocity-step (direct effect) is an important parameter in determining the potential for and nature of seismic rupture nucleation. We obtained reproducible results regarding low velocity mechanical behavior compared with previous work of Niemeijer and Spiers, [2006], but also obtained new insights into the effects of sudden increases in slip velocity on localization and strength evolution, at velocities above a specific critical velocity Vc ( 20 μm/sec). We found that once a ductile, mylonitic structure has developed in a shear zone, subsequent cataclastic deformation at high velocity (> Vc) is consistently localized in a narrow zone characterized by fine grains of halite aligned in arrays between foliated muscovite Due to this intense localization, structures presumably developed under low velocity conditions were still preserved in large parts of the gouge body. This switch to localized deformation is controlled by the imposed velocity, and becomes most apparent at velocities over Vc. In addition, the direct effect a decreases rapidly when the velocity exceeds Vc. This implies that slip can localize and accelerate towards seismic velocities more or less instantly once Vc is exceeded. Obtaining a measure for Vc in natural faults is therefore of key importance

  19. Density changes in shear bands of a metallic glass determined by correlative analytical transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rösner, Harald, E-mail: rosner@uni-muenster.de [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Peterlechner, Martin [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Kübel, Christian [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen (Germany); Schmidt, Vitalij [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Wilde, Gerhard [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)

    2014-07-01

    Density changes between sheared zones and their surrounding amorphous matrix as a result of plastic deformation in a cold-rolled metallic glass (melt-spun Al{sub 88}Y{sub 7}Fe{sub 5}) were determined using high-angle annular dark-field (HAADF) detector intensities supplemented by electron-energy loss spectroscopy (EELS), energy-dispersive X-ray (EDX) and nano-beam diffraction analyses. Sheared zones or shear bands were observed as regions of bright or dark contrast arising from a higher or lower density relative to the matrix. Moreover, abrupt contrast changes from bright to dark and vice versa were found within individual shear bands. We associate the decrease in density mainly with an enhanced free volume in the shear bands and the increase in density with concomitant changes of the mass. This interpretation is further supported by changes in the zero loss and Plasmon signal originating from such sites. The limits of this new approach are discussed. - Highlights: • We describe a novel approach for measuring densities in shear bands of metallic glasses. • The linear relation of the dark-field intensity I/I{sub 0} and the mass thickness ρt was used. • Individual shear bands showed abrupt contrast changes from bright to dark and vice versa. • Density changes ranging from about −10% to +6% were found for such shear bands. • Mixtures of amorphous/medium range ordered domains were found within the shear bands.

  20. Solution-mass transfer and grain boundary sliding in mafic shear zones - comparison between experiments and nature

    Science.gov (United States)

    Marti, Sina; Heilbronner, Renée; Stünitz, Holger; Plümper, Oliver; Drury, Martyn

    2017-04-01

    Grain size sensitive creep (GSSC) mechanisms are widely recognized to be the most efficient deformation mechanisms in shear zones. With or without initial fracturing and fluid infiltration, the onset of heterogeneous nucleation leading to strong grain size reduction is a frequently described process for the initiation of GSSC. Phase mixing due to reaction and heterogeneous nucleation during GSSC impedes grain growth, sustaining small grain sizes as a prerequisite for GSSC. Here we present rock deformation experiments on 'wet' plagioclase - pyroxene mixtures at T=800°C, P=1.0 and 1.5GPa and strain rates of 2e-5 - 2e-6 1/s, performed with a Griggs-type solid medium deformation apparatus. Microstructural criteria are used to show that both, grain boundary sliding (GBS) and solution-mass transfer processes are active and are interpreted to be the dominant strain accommodating processes. Displacement is localized within shear bands formed by fine-grained ( 300 - 500nm) plagioclase (Pl) and the syn-kinematic reaction products amphibole (Amph), quartz (Qz) and zoisite (Zo). We compare our experiments with a natural case - a sheared mafic pegmatite (P-T during deformation 0.7 - 0.9 GPa, 610 - 710 °C; Getsinger et al., 2013) from Northern Norway. Except for the difference in grain size of the experimental and natural samples, microstructures are strikingly alike. The experimental and natural P- and especially T-conditions are very similar. Consequently, extrapolation from experiments to nature must be made without a significant 'temperature-time' trade-off, which is normally taken advantage of when relating experimental to natural strain rates. We will discuss under which assumptions extrapolation to nature in our case is likely feasible. Syn-kinematic reactions during GBS and solution-mass transport are commonly interpreted to result in an ordered (anticlustered) phase mixture. However, phase mixing in our case is restricted: Mixing is extensive between Pl + Zo + Qz and

  1. Hydration of an active shear zone: Interactions between deformation, metasomatism and magmatism - the spinel-lherzolites from the Montferrier (southern France) Oligocene basalts

    International Nuclear Information System (INIS)

    Cabanes, N.; Briqueu, L.

    1987-01-01

    Geochemical and textural investigations have been simultaneously performed on spinel-lherzolite xenoliths from the Oligo-Miocene alkali basalts of Montferrier (southern France). All the investigated samples have undergone a deformation very particular by intense shearing under high stresses (up to 1.75 kbar), low temperatures (≤900 0 C) and strain rates of about 10 -18 to 10 -15 s -1 . Mineral chemistry reveals that the Montferrier lherzolites are fragments of an undepleted relatively shallow upper mantle level located at a depth of 50 km (15 kbar). Moreover, Na and Ti enrichment in diopside would reflect a metasomatic event, also emphasized by the common occurrence of pargasite in 50-70% of the investigated samples. Crystallization of this amphibole is attributed to a hydrous infiltration which is related in time and space to the deformation. Indeed, amphibole is preferentially concentrated in strongly deformed zones and in kink-band boundaries of orthopyroxene porphyroclasts. Moreover, the grain boundaries were used by the pervasive agent to percolate into the lherzolite: significant chemical variations (increase in MgO: 15% and decrease in Al 2 O 3 : 55%) are observed within the range of 7-5 μm adjacent to the grain boundary. Finally, Sr isotopic data ( 87 Sr/ 86 Sr) demonstrate that the amphibole, i.e. the metasomatic agent, is genetically related to the host lava of the xenoliths. Thus, the hydrous silicate liquid from which the amphibole has crystallized may be an early percolation of the ascending alkali magma. (orig.)

  2. A Geo-Aware Taxi Carrying Management System by Using Location Based Services and Zone Queuing Techniques on Internet of Things

    Directory of Open Access Journals (Sweden)

    Chyi-Ren Dow

    2016-01-01

    Full Text Available Taxi plays a crucial role in the transportation system because of the characteristic that can be hailed conveniently. Most of the taxi drivers obtain passengers by hunting on the road or waiting in a fixed taxi queuing point; however these methods have poor performance, high vacancy rate, and several critical problems such as air pollution and foul up traffic. This study proposed a taxi carrying management system by using location based services and zone queuing techniques on Internet of things. The proposed system allows drivers to both hunt on the road and wait in a queuing zone. A queuing table is used in the control center and neighbor tables are used in RSUs for zone queuing establishment. Joining and leaving mechanisms are developed for zone queuing management. To enhance service efficiency and quality, we present a scheme to prevent the ping-pong effect which is based on the location based services, a hunting rate calculation scheme, and a path planning service for taxi drivers according to the history carrying record. PRISM is used to simulate the proposed system, and the results indicated that our scheme outperforms the waiting and hunting models in terms of number of customers, vacancy rate, and profit.

  3. Examining shear processes during magma ascent

    Science.gov (United States)

    Kendrick, J. E.; Wallace, P. A.; Coats, R.; Lamur, A.; Lavallée, Y.

    2017-12-01

    Lava dome eruptions are prone to rapid shifts from effusive to explosive behaviour which reflects the rheology of magma. Magma rheology is governed by composition, porosity and crystal content, which during ascent evolves to yield a rock-like, viscous suspension in the upper conduit. Geophysical monitoring, laboratory experiments and detailed field studies offer the opportunity to explore the complexities associated with the ascent and eruption of such magmas, which rest at a pivotal position with regard to the glass transition, allowing them to either flow or fracture. Crystal interaction during flow results in strain-partitioning and shear-thinning behaviour of the suspension. In a conduit, such characteristics favour the formation of localised shear zones as strain is concentrated along conduit margins, where magma can rupture and heal in repetitive cycles. Sheared magmas often record a history of deformation in the form of: grain size reduction; anisotropic permeable fluid pathways; mineral reactions; injection features; recrystallisation; and magnetic anomalies, providing a signature of the repetitive earthquakes often observed during lava dome eruptions. The repetitive fracture of magma at ( fixed) depth in the conduit and the fault-like products exhumed at spine surfaces indicate that the last hundreds of meters of ascent may be controlled by frictional slip. Experiments on a low-to-high velocity rotary shear apparatus indicate that shear stress on a slip plane is highly velocity dependent, and here we examine how this influences magma ascent and its characteristic geophysical signals.

  4. Deformation processes and weakening mechanisms within the frictional viscous transition zone of major crustal-scale faults: insights from the Great Glen Fault Zone, Scotland

    Science.gov (United States)

    Stewart, M.; Holdsworth, R. E.; Strachan, R. A.

    2000-05-01

    The Great Glen Fault Zone (GGFZ), Scotland, is a typical example of a crustal-scale, reactivated strike-slip fault within the continental crust. Analysis of intensely strained fault rocks from the core of the GGFZ near Fort William provides a unique insight into the nature of deformation associated with the main phase of (sinistral) movements along the fault zone. In this region, an exhumed sequence of complex mid-crustal deformation textures that developed in the region of the frictional-viscous transition (ca. 8-15 km depth) is preserved. Fault rock fabrics vary from mylonitic in quartzites to cataclastic in micaceous shear zones and feldspathic psammites. Protolith mineralogy exerted a strong control on the initial textural development and distribution of the fault rocks. At lower strains, crystal-plastic deformation occurred in quartz-dominated lithologies to produce mylonites simultaneously with widespread fracturing and cataclasis in feldspar- and mica-dominated rocks. At higher strains, shearing appears to increasingly localise into interconnected networks of cataclastic shear zones, many of which are strongly foliated. Textures indicative of fluid-assisted diffusive mass transfer mechanisms are widespread in such regions and suggest that a hydrous fluid-assisted, grainsize-controlled switch in deformation behaviour followed the brittle comminution of grains. The fault zone textural evolution implies that a strain-induced, fluid-assisted shallowing and narrowing of the frictional-viscous transition occurred with increasing strain. It is proposed that this led to an overall weakening of the fault zone and that equivalent processes may occur along many other long-lived, crustal-scale dislocations.

  5. Raman spectra of carbonaceous materials in a fault zone in the Longmenshan thrust belt, China; comparisons with those of sedimentary and metamorphic rocks

    Science.gov (United States)

    Kouketsu, Yui; Shimizu, Ichiko; Wang, Yu; Yao, Lu; Ma, Shengli; Shimamoto, Toshihiko

    2017-03-01

    We analyzed micro-Raman spectra of carbonaceous materials (CM) in natural and experimentally deformed fault rocks from Longmenshan fault zone that caused the 2008 Wenchuan earthquake, to characterize degree of disordering of CM in a fault zone. Raman spectral parameters for 12 samples from a fault zone in Shenxigou, Sichuan, China, all show low-grade structures with no graphite. Low crystallinity and δ13C values (-24‰ to -25‰) suggest that CM in fault zone originated from host rocks (Late Triassic Xujiahe Formation). Full width at half maximum values of main spectral bands (D1 and D2), and relative intensities of two subbands (D3 and D4) of CM were variable with sample locations. However, Raman parameters of measured fault rocks fall on established trends of graphitization in sedimentary and metamorphic rocks. An empirical geothermometer gives temperatures of 160-230 °C for fault rocks in Shenxigou, and these temperatures were lower for highly sheared gouge than those for less deformed fault breccia at inner parts of the fault zone. The lower temperature and less crystallinity of CM in gouge might have been caused by the mechanical destruction of CM by severe shearing deformation, or may be due to mixing of host rocks on the footwall. CM in gouge deformed in high-velocity experiments exhibits slight changes towards graphitization characterized by reduction of D3 and D4 intensities. Thus low crystallinity of CM in natural gouge cannot be explained by our experimental results. Graphite formation during seismic fault motion is extremely local or did not occur in the study area, and the CM crystallinity from shallow to deep fault zones may be predicted as a first approximation from the graphitization trend in sedimentary and metamorphic rocks. If that case, graphite may lower the friction of shear zones at temperatures above 300 °C, deeper than the lower part of seismogenic zone.

  6. "Virtual shear box" experiments of stress and slip cycling within a subduction interface mélange

    Science.gov (United States)

    Webber, Sam; Ellis, Susan; Fagereng, Åke

    2018-04-01

    What role does the progressive geometric evolution of subduction-related mélange shear zones play in the development of strain transients? We use a "virtual shear box" experiment, based on outcrop-scale observations from an ancient exhumed subduction interface - the Chrystalls Beach Complex (CBC), New Zealand - to constrain numerical models of slip processes within a meters-thick shear zone. The CBC is dominated by large, competent clasts surrounded by interconnected weak matrix. Under constant slip velocity boundary conditions, models of the CBC produce stress cycling behavior, accompanied by mixed brittle-viscous deformation. This occurs as a consequence of the reorganization of competent clasts, and the progressive development and breakdown of stress bridges as clasts mutually obstruct one another. Under constant shear stress boundary conditions, the models show periods of relative inactivity punctuated by aseismic episodic slip at rapid rates (meters per year). Such a process may contribute to the development of strain transients such as slow slip.

  7. Clarification on shear transformation zone size and its correlation with plasticity for Zr-based bulk metallic glass in different structural states

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.Q.; Huang, L. [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China); Huang, P., E-mail: huangping@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China); Xu, K.W. [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, F., E-mail: wangfei@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures Xi' an Jiaotong University, Xi' an 710049 (China); Lu, T.J. [State Key Laboratory for Strength and Vibration of Mechanical Structures Xi' an Jiaotong University, Xi' an 710049 (China); MOE Key Laboratory for Multifunctional Materials and Structures Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-11-20

    To clarify the real size of shear transformation zone (STZ) and its correlation with the plasticity of metallic glass, STZ sizes of a Zr-based bulk metallic glass (BMG) in three different structural states (as-cast, annealed and confining annealed) were examined using both rate-change and statistical methods upon nanoindentation. STZ sizes (less than 24 atoms) obtained by the statistical method approached the real STZ size of very few atoms, and showed no correlation with BMG plasticity. In sharp contrast, STZ sizes (hundreds of atoms) obtained by the rate-change method not only were much larger than the real STZ size but also exhibited a positive correlation with BMG plasticity. These discrepancies were discussed in terms of the structural evolution of BMGs upon nanoindentation.

  8. Displacement-length scaling of brittle faults in ductile shear.

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-11-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.

  9. Displacement–length scaling of brittle faults in ductile shear

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  10. Determination of wall shear stress from mean velocity and Reynolds shear stress profiles

    Science.gov (United States)

    Volino, Ralph J.; Schultz, Michael P.

    2018-03-01

    An analytical method is presented for determining the Reynolds shear stress profile in steady, two-dimensional wall-bounded flows using the mean streamwise velocity. The method is then utilized with experimental data to determine the local wall shear stress. The procedure is applicable to flows on smooth and rough surfaces with arbitrary pressure gradients. It is based on the streamwise component of the boundary layer momentum equation, which is transformed into inner coordinates. The method requires velocity profiles from at least two streamwise locations, but the formulation of the momentum equation reduces the dependence on streamwise gradients. The method is verified through application to laminar flow solutions and turbulent DNS results from both zero and nonzero pressure gradient boundary layers. With strong favorable pressure gradients, the method is shown to be accurate for finding the wall shear stress in cases where the Clauser fit technique loses accuracy. The method is then applied to experimental data from the literature from zero pressure gradient studies on smooth and rough walls, and favorable and adverse pressure gradient cases on smooth walls. Data from very near the wall are not required for determination of the wall shear stress. Wall friction velocities obtained using the present method agree with those determined in the original studies, typically to within 2%.

  11. Strengthening of Reinforced Concrete Beam in Shear Zone by Compensation the Stirrups with Equivalent External Steel Plates

    Directory of Open Access Journals (Sweden)

    Khamail Abdul-Mahdi Mosheer

    2016-09-01

    Full Text Available An experimental study on reinforced concrete beams strengthened with external steel plates instead of shear stirrups has been held in this paper. Eight samples of the same dimensions and properties were used. Two of them were tested up to failure and specified as references beams; one with shear reinforcement and the other without shear reinforcement. Another samples without shear reinforcement were tested until the first shear crack occurs, then the samples strengthened on both sides with external steel plates as equivalent area of removed stirrups. The strengthened beams were divided into three groups according to the thickness of plates (1, 1.5, 2 mm, each group involved two beams; one bonded using epoxy and the other bonded using epoxy with anchored bolts. Finally, the strengthened beams tested when using anchored bolts with epoxy glue to bond plates. Where the increasing in maximum load is higher than that in reference beam with no internal stirrups reach to (75.46 –106.13% and has a good agreement with the control beam with shear reinforcement reach to (76.06 – 89.36% of ultimate load.

  12. Frictional behavior of carbonate-rich sediments in subduction zones

    Science.gov (United States)

    Rabinowitz, H. S.; Savage, H. M.; Carpenter, B. M.; Collettini, C.

    2016-12-01

    Deformation in rocks and sediments is controlled by multiple mechanisms, each governed by its own pressure- (P), temperature- (T), and slip velocity- (v) dependent kinetics. Frictional behavior depends on which of these mechanisms are dominant, and, thus, varies with P, T, and v. Carbonates are a useful material with which to interrogate the PTv controls on friction due to the fact that a wide range of mechanisms can be easily accessed in the lab at geologically relevant conditions. In addition, carbonate-rich layers make up a significant component of subducting sediments around the world and may impact the frictional behavior of shallow subduction zones. In order to investigate the effect of carbonate subduction and the evolution of friction at subduction zone conditions, we conducted deformation experiments on input sediments for two subduction zones, the Hikurangi trench, New Zealand (ODP Site 1124) and the Peru trench (DSDP Site 321), which have carbonate/clay contents of 40/60 wt% and 80/20 wt%, respectively. Samples were saturated with distilled water mixed with 35g/l sea salt and deformed at room temperature. Experiments were conducted at σeff = 1-100 MPa and T = 20-100 °C with sliding velocities of 1-300 μm/s and hold times of 1-1000 s. We test the changes in velocity dependence and healing over these PT conditions to elucidate the frictional behavior of carbonates in subduction zone settings. The mechanical results are complemented by microstructural analysis. In lower stress experiments, there is no obvious shear localization; however, by 25 MPa, pervasive boundary-parallel shears become dominant, particularly in the Peru samples. Optical observations of these shear zones under cross-polarized light show evidence of plastic deformation (CPO development) while SEM-EDS observations indicate phase segregation in the boundary shears. Degree of microstructural localization appears to correspond with the trends observed in velocity-dependence. Our

  13. Unexpected earthquake hazard revealed by Holocene rupture on the Kenchreai Fault (central Greece): Implications for weak sub-fault shear zones

    Science.gov (United States)

    Copley, Alex; Grützner, Christoph; Howell, Andy; Jackson, James; Penney, Camilla; Wimpenny, Sam

    2018-03-01

    High-resolution elevation models, palaeoseismic trenching, and Quaternary dating demonstrate that the Kenchreai Fault in the eastern Gulf of Corinth (Greece) has ruptured in the Holocene. Along with the adjacent Pisia and Heraion Faults (which ruptured in 1981), our results indicate the presence of closely-spaced and parallel normal faults that are simultaneously active, but at different rates. Such a configuration allows us to address one of the major questions in understanding the earthquake cycle, specifically what controls the distribution of interseismic strain accumulation? Our results imply that the interseismic loading and subsequent earthquakes on these faults are governed by weak shear zones in the underlying ductile crust. In addition, the identification of significant earthquake slip on a fault that does not dominate the late Quaternary geomorphology or vertical coastal motions in the region provides an important lesson in earthquake hazard assessment.

  14. Shear wave velocity structure of the Anatolian Plate and surrounding regions using Ambient Noise Tomography

    Science.gov (United States)

    Delph, J. R.; Beck, S. L.; Zandt, G.; Biryol, C. B.; Ward, K. M.

    2013-12-01

    The Anatolian Plate consists of various lithospheric terranes amalgamated during the closure of the Tethys Ocean, and is currently extruding to the west in response to a combination of the collision of the Arabian plate in the east and the roll back of the Aegean subduction zone in the west. We used Ambient Noise Tomography (ANT) at periods structure of the Anatolian Plate. We computed a total of 13,779 unique cross-correlations using one sample-per-second vertical component broadband seismic data from 215 stations from 8 different networks over a period of 7 years to compute fundamental-mode Rayleigh wave dispersion curves following the method of Benson et al. (2007). We then inverted the dispersion data to calculate phase velocity maps for 11 periods from 8 s - 40 s throughout Anatolia and the Aegean regions (Barmin et al. 2001). Using smoothed Moho values derived from Vanacore et al. (2013) in our starting models, we inverted our dispersion curves using a linear least-squares iterative inversion scheme (Herrmann & Ammon 2004) to produce a 3-D shear-wave velocity model of the crust and uppermost mantle throughout Anatolia and the Aegean. We find a good correlation between our seismic shear wave velocities and paleostructures (suture zones) and modern deformation (basin formation and fault deformation). The most prominent crustal velocity contrasts occur across intercontinental sutures zones, resulting from the juxtaposition of the compositionally different basements of the amalgamated terranes. At shallow depths, seismic velocity contrasts correspond closely with surficial features. The Thrace, Cankiri and Tuz Golu basins, and accretionary complexes related to the closure of the Neotethys are characterized by slow shear wave velocities, while the Menderes and Kirsehir Massifs, Pontides, and Istanbul Zone are characterized by fast velocities. We find that the East Anatolia Plateau has slow shear-wave velocities, as expected due to high heat flow and active

  15. Localization and Instability in Sheared Granular Materials: Role of Pore Fluids and Non-monotonic Rate Dependent Rheology

    Science.gov (United States)

    Ma, X.; Elbanna, A. E.; Kothari, K.

    2017-12-01

    Fault zone dynamics hold the key to resolving many outstanding geophysical problems including the heat flow paradox, discrepancy between fault static and dynamic strength, and energy partitioning. Most fault zones that generate tectonic events are gouge filled and fluid saturated posing the need for formulating gouge-specific constitutive models that capture spatially heterogeneous compaction and dilation, non-monotonic rate dependence, and transition between localized and distributed deformation. In this presentation, we focus primarily on elucidating microscopic underpinnings for shear banding and stick-slip instabilities in sheared saturated granular materials and explore their implications for earthquake dynamics. We use a non-equilibrium thermodynamics model, the Shear Transformation Zone theory, to investigate the dynamics of strain localization and its connection to stability of sliding in the presence and absence of pore fluids. We also consider the possible influence of self-induced mechanical vibrations as well as the role of external acoustic vibrations as analogue for triggering by a distant event. For the dry case, our results suggest that at low and intermediate strain rates, persistent shear bands develop only in the absence of vibrations. Vibrations tend to fluidize the granular network and de-localize slip at these rates. Stick-slip is only observed for rough grains and it is confined to the shear band. At high strain rates, stick-slip disappears and the different systems exhibit similar stress-slip response. Changing the vibration intensity, duration or time of application alters the system response and may cause long-lasting rheological changes. The presence of pore fluids modifies the stick slip pattern and may lead to both loss and development of slip instability depending on the value of the confining pressure, imposed strain rate and hydraulic parameters. We analyze these observations in terms of possible transitions between rate

  16. Seismic Evidence of A Widely Distributed West Napa Fault Zone, Hendry Winery, Napa, California

    Science.gov (United States)

    Goldman, M.; Catchings, R.; Chan, J. H.; Criley, C.

    2015-12-01

    Following the 24 August 2014 Mw 6.0 South Napa earthquake, surface rupture was mapped along the West Napa Fault Zone (WNFZ) for a distance of ~ 14 km and locally within zones up to ~ 2 km wide. Near the northern end of the surface rupture, however, several strands coalesced to form a narrow, ~100-m-wide zone of surface rupture. To determine the location, width, and shallow (upper few hundred meters) geometry of the fault zone, we acquired an active-source seismic survey across the northern surface rupture in February 2015. We acquired both P- and S-wave data, from which we developed reflection images and tomographic images of Vp, Vs, Vp/Vs, and Poisson's ratio of the upper 100 m. We also used small explosive charges within surface ruptures located ~600 m north of our seismic array to record fault-zone guided waves. Our data indicate that at the latitude of the Hendry Winery, the WNFZ is characterized by at least five fault traces that are spaced 60 to 200 m apart. Zones of low-Vs, low-Vp/Vs, and disrupted reflectors highlight the fault traces on the tomography and reflection images. On peak-ground-velocity (PGV) plots, the most pronounced high-amplitude guided-wave seismic energy coincides precisely with the mapped surface ruptures, and the guided waves also show discrete high PGV zones associated with unmapped fault traces east of the surface ruptures. Although the surface ruptures of the WNFZ were observed only over a 100-m-wide zone at the Hendry Winery, our data indicate that the fault zone is at least 400 m wide, which is probably a minimum width given the 400-m length of our seismic profile. Slip on the WNFZ is generally considered to be low relative to most other Bay Area faults, but we suggest that the West Napa Fault is a zone of widely distributed shear, and to fully account for the total slip on the WNFZ, slip on all traces of this wide fault zone must be considered.

  17. Shear of ordinary and elongated granular mixtures

    Science.gov (United States)

    Hensley, Alexander; Kern, Matthew; Marschall, Theodore; Teitel, Stephen; Franklin, Scott

    2015-03-01

    We present an experimental and computational study of a mixture of discs and moderate aspect-ratio ellipses under two-dimensional annular planar Couette shear. Experimental particles are cut from acrylic sheet, are essentially incompressible, and constrained in the thin gap between two concentric cylinders. The annular radius of curvature is much larger than the particles, and so the experiment is quasi-2d and allows for arbitrarily large pure-shear strains. Synchronized video cameras and software identify all particles and track them as they move from the field of view of one camera to another. We are particularly interested in the global and local properties as the mixture ratio of discs to ellipses varies. Global quantities include average shear rate and distribution of particle species as functions of height, while locally we investigate the orientation of the ellipses and non-affine events that can be characterized as shear transformational zones or possess a quadrupole signature observed previously in systems of purely circular particles. Discrete Element Method simulations on mixtures of circles and spherocylinders extend the study to the dynamics of the force network and energy dissipated as the system evolves. Supported by NSF CBET #1243571 and PRF #51438-UR10.

  18. Improving automatic earthquake locations in subduction zones: a case study for GEOFON catalog of Tonga-Fiji region

    Science.gov (United States)

    Nooshiri, Nima; Heimann, Sebastian; Saul, Joachim; Tilmann, Frederik; Dahm, Torsten

    2015-04-01

    Automatic earthquake locations are sometimes associated with very large residuals up to 10 s even for clear arrivals, especially for regional stations in subduction zones because of their strongly heterogeneous velocity structure associated. Although these residuals are most likely not related to measurement errors but unmodelled velocity heterogeneity, these stations are usually removed from or down-weighted in the location procedure. While this is possible for large events, it may not be useful if the earthquake is weak. In this case, implementation of travel-time station corrections may significantly improve the automatic locations. Here, the shrinking box source-specific station term method (SSST) [Lin and Shearer, 2005] has been applied to improve relative location accuracy of 1678 events that occurred in the Tonga subduction zone between 2010 and mid-2014. Picks were obtained from the GEOFON earthquake bulletin for all available station networks. We calculated a set of timing corrections for each station which vary as a function of source position. A separate time correction was computed for each source-receiver path at the given station by smoothing the residual field over nearby events. We begin with a very large smoothing radius essentially encompassing the whole event set and iterate by progressively shrinking the smoothing radius. In this way, we attempted to correct for the systematic errors, that are introduced into the locations by the inaccuracies in the assumed velocity structure, without solving for a new velocity model itself. One of the advantages of the SSST technique is that the event location part of the calculation is separate from the station term calculation and can be performed using any single event location method. In this study, we applied a non-linear, probabilistic, global-search earthquake location method using the software package NonLinLoc [Lomax et al., 2000]. The non-linear location algorithm implemented in NonLinLoc is less

  19. Local particle flux reversal under strongly sheared flow

    International Nuclear Information System (INIS)

    Terry, P.W.; Newman, D.E.; Ware, A.S.

    2003-01-01

    The advection of electron density by turbulent ExB flow with linearly varying mean yields a particle flux that can reverse sign at certain locations along the direction of magnetic shear. The effect, calculated for strong flow shear, resides in the density-potential cross phase. It is produced by the interplay between the inhomogeneities of magnetic shear and flow shear, but subject to a variety of conditions and constraints. The regions of reversed flux tend to wash out if the turbulence consists of closely spaced modes of different helicities, but survive if modes of a single helicity are relatively isolated. The reversed flux becomes negligible if the electron density response is governed by electron scales while the eigenmode is governed by ion scales. The relationship of these results to experimentally observe flux reversals is discussed

  20. Shear-hosted base metal mineralisation at the Dana Peaks, Murchison Mountains, Fiordland, New Zealand

    International Nuclear Information System (INIS)

    Allibone, A.; Ashley, P.; Craw, D.

    2010-01-01

    Darran Suite dioritic, tonalitic and granodioritic plutonic rocks and schistose Loch Burn Formation volcaniclastic rocks in the central Murchison Mountains at the Dana Peaks have been affected by widespread biotite-sericite-chlorite-albite-quartz-pyrite ± carbonate ± epidote/clinozoisite ± titanite/rutile ± actinolite alteration. More intense, paler coloured sericite-albite-quartz-pyrite ± carbonate alteration is concentrated along orange weathered shear zones. Alteration assemblages are transitional between those commonly referred to as propylitic, potassic and phyllic. Altered rocks contain anomalous concentrations of copper, lead, zinc and silver over an area of c. 2.56 km. Metal concentrations 2-5 times those typical of Darran Suite plutonic rocks and the Loch Burn Formation are commonly associated with more extensive weak to moderate intensity alteration. Higher metal grades up to c. 0.5% copper, 1% zinc, 1.3% lead and 30 ppm silver are concentrated in or adjacent to the 1-5 m wide, more intensely altered shear zones which contain entrained lenses of pyritised country rock, breccias and quartz ± K-feldspar ± chlorite ± carbonate ± hematite ± tourmaline veins. Some mineralised rocks also contain traces of tungsten (2-7 ppm), arsenic (<5-35 ppm) and tellurium (0.2-5.4 ppm). Most samples lack detectable molybdenum (<3 ppm), gold (<0.004 ppm) or bismuth (<0.2 ppm), with atypical higher values (40, 0.03 and 50 ppm, respectively) generally restricted to the most intensely altered and/or deformed rocks. The mineralised rocks show a close spatial and temporal relationship with several narrow ductile shear zones that probably developed in the Early Cretaceous between c. 128 and 110 Ma. Mineralised shear zones form minor splays off larger shear zones that are part of a major intra-arc fault system, active along or near the boundary between inboard and outboard parts of the Median Batholith at this time. Traces of similar lead mineralisation are present at the

  1. Fault zone architecture, San Jacinto fault zone, southern California: evidence for focused fluid flow and heat transfer in the shallow crust

    Science.gov (United States)

    Morton, N.; Girty, G. H.; Rockwell, T. K.

    2011-12-01

    We report results of a new study of the San Jacinto fault zone architecture in Horse Canyon, SW of Anza, California, where stream incision has exposed a near-continuous outcrop of the fault zone at ~0.4 km depth. The fault zone at this location consists of a fault core, transition zone, damage zone, and lithologically similar wall rocks. We collected and analyzed samples for their bulk and grain density, geochemical data, clay mineralogy, and textural and modal mineralogy. Progressive deformation within the fault zone is characterized by mode I cracking, subsequent shearing of already fractured rock, and cataclastic flow. Grain comminution advances towards the strongly indurated cataclasite fault core. Damage progression towards the core is accompanied by a decrease in bulk and grain density, and an increase in porosity and dilational volumetric strain. Palygorskite and mixed-layer illite/smectite clay minerals are present in the damage and transition zones and are the result of hydrolysis reactions. The estimated percentage of illite in illite/smectite increases towards the fault core where the illite/smectite to illite conversion is complete, suggesting elevated temperatures that may have reached 150°C. Chemical alteration and elemental mass changes are observed throughout the fault zone and are most pronounced in the fault core. We conclude that the observed chemical and mineralogical changes can only be produced by the interaction of fractured wall rocks and chemically active fluids that are mobilized through the fault zone by thermo-pressurization during and after seismic events. Based on the high element mobility and absence of illite/smectite in the fault core, we expect that greatest water/rock ratios occur within the fault core. These results indicate that hot pore fluids circulate upwards through the fractured fault core and into the surrounding damage zone. Though difficult to constrain, the site studied during this investigation may represent the top

  2. Texture evolution by shear on two planes during ECAP of a high-strength aluminum alloy

    International Nuclear Information System (INIS)

    Wang Shuncai; Starink, Marco J.; Gao Nong; Qiao Xiaoguang; Xu Cheng; Langdon, Terence G.

    2008-01-01

    The evolution of texture was examined during equal-channel angular pressing (ECAP) of an Al-Zn-Mg-Cu alloy having a strong initial texture. An analysis of the local texture using electron backscatter diffraction demonstrates that shear occurs on two shear planes: the main shear plane (MSP) equivalent to the simple shear plane, and a secondary shear plane which is perpendicular to the MSP. Throughout most regions of the ECAP billet, the MSP is close to the intersection plane of the two channels but with a small (5 deg.) deviation. Only the {1 1 1} and {0 0 1} shear systems were activated and there was no experimental evidence for the existence of other shear systems. In a small region at the bottom edge of the billet that passed through the zone of intersection of the channels, the observed textures were fully consistent with the rolling textures of Copper and Goss

  3. Tree Coring as a Complement to Soil Gas Screening to Locate PCE and TCE Source Zones and Hot Spots

    DEFF Research Database (Denmark)

    Nielsen, Mette Algreen; Trapp, Stefan; Rehne Jensen, Pernille

    2015-01-01

    ) or trichloroethylene (TCE) to evaluate their ability to locate source zones and contaminant hot spots. One test site represented a relatively homogeneous sandy soil and aquifer, and the second a more heterogeneous geology with both sandy and less permeable clay till layers overlying a chalk aquifer. Tree cores from...

  4. Seismic response of earth dams considering dynamic properties of unsaturated zone

    Directory of Open Access Journals (Sweden)

    Ariyan M.

    2016-01-01

    Full Text Available It is conventionally assumed in the analysis and design of earth dams that the soil located above the phreatic line, i.e. the uppermost seepage flow line, is completely dry. However, there is often an unsaturated flow of water through an unsaturated zone above this borderline and variation in moisture content in this zone results in variation of matric suction throughout this region. Variation of matric suction, in turn, results in variation of effective stresses in this zone. In this research, the seismic response of earth dams in terms of the displacement and acceleration at the crown of the dam as well as the stress distribution in the dam body is investigated. Taking into account the effect of unsaturated zone, a comparison is made to investigate the effect of conventional simplification in ignoring the dynamic characteristics of the unsaturated zone above the phreatic line and the more complicated analysis which includes the unsaturated zone. A function for the soil-water retention curve (SWRC was assigned to the soil in the unsaturated zone to determine the variation of matric suction in this zone and analyses were made using finite difference software (FLAC. Results are then compared to the conventional method for homogeneous dams. In these analyzes the soil shear modulus was assumed to vary with the mean effective stress both for saturated and unsaturated zones. Among various results, it was notable that the history of crest x-displacement, and acceleration show higher values in models accounting for the unsaturated region. It was attributed to the considerably lower values of damping ratio in the crest region in the unsaturated models.

  5. Fault zone processes in mechanically layered mudrock and chalk

    Science.gov (United States)

    Ferrill, David A.; Evans, Mark A.; McGinnis, Ronald N.; Morris, Alan P.; Smart, Kevin J.; Wigginton, Sarah S.; Gulliver, Kirk D. H.; Lehrmann, Daniel; de Zoeten, Erich; Sickmann, Zach

    2017-04-01

    A 1.5 km long natural cliff outcrop of nearly horizontal Eagle Ford Formation in south Texas exposes northwest and southeast dipping normal faults with displacements of 0.01-7 m cutting mudrock, chalk, limestone, and volcanic ash. These faults provide analogs for both natural and hydraulically-induced deformation in the productive Eagle Ford Formation - a major unconventional oil and gas reservoir in south Texas, U.S.A. - and other mechanically layered hydrocarbon reservoirs. Fault dips are steep to vertical through chalk and limestone beds, and moderate through mudrock and clay-rich ash, resulting in refracted fault profiles. Steeply dipping fault segments contain rhombohedral calcite veins that cross the fault zone obliquely, parallel to shear segments in mudrock. The vertical dimensions of the calcite veins correspond to the thickness of offset competent beds with which they are contiguous, and the slip parallel dimension is proportional to fault displacement. Failure surface characteristics, including mixed tensile and shear segments, indicate hybrid failure in chalk and limestone, whereas shear failure predominates in mudrock and ash beds - these changes in failure mode contribute to variation in fault dip. Slip on the shear segments caused dilation of the steeper hybrid segments. Tabular sheets of calcite grew by repeated fault slip, dilation, and cementation. Fluid inclusion and stable isotope geochemistry analyses of fault zone cements indicate episodic reactivation at 1.4-4.2 km depths. The results of these analyses document a dramatic bed-scale lithologic control on fault zone architecture that is directly relevant to the development of porosity and permeability anisotropy along faults.

  6. Shear Elasticity and Shear Viscosity Imaging in Soft Tissue

    Science.gov (United States)

    Yang, Yiqun

    In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all

  7. The effect of gradational velocities and anisotropy on fault-zone trapped waves

    Science.gov (United States)

    Gulley, A. K.; Eccles, J. D.; Kaipio, J. P.; Malin, P. E.

    2017-08-01

    Synthetic fault-zone trapped wave (FZTW) dispersion curves and amplitude responses for FL (Love) and FR (Rayleigh) type phases are analysed in transversely isotropic 1-D elastic models. We explore the effects of velocity gradients, anisotropy, source location and mechanism. These experiments suggest: (i) A smooth exponentially decaying velocity model produces a significantly different dispersion curve to that of a three-layer model, with the main difference being that Airy phases are not produced. (ii) The FZTW dispersion and amplitude information of a waveguide with transverse-isotropy depends mostly on the Shear wave velocities in the direction parallel with the fault, particularly if the fault zone to country-rock velocity contrast is small. In this low velocity contrast situation, fully isotropic approximations to a transversely isotropic velocity model can be made. (iii) Fault-aligned fractures and/or bedding in the fault zone that cause transverse-isotropy enhance the amplitude and wave-train length of the FR type FZTW. (iv) Moving the source and/or receiver away from the fault zone removes the higher frequencies first, similar to attenuation. (v) In most physically realistic cases, the radial component of the FR type FZTW is significantly smaller in amplitude than the transverse.

  8. Pre-Alpine (Variscan) Inheritance: A Key for the Location of the Future Valaisan Basin (Western Alps)

    Science.gov (United States)

    Ballèvre, M.; Manzotti, P.; Dal Piaz, G. V.

    2018-03-01

    The boundary between the Helvetic and the Penninic (=Briançonnais) Zones has long been recognized as a major fault ("Penninic Front") in the Western Alps. A narrow oceanic domain has been postulated at least along part of this boundary (the Valaisan Basin). However, the information provided by the pre-Triassic basement has not been fully exploited and will be discussed here in detail. The igneous and metamorphic history of the pre-Triassic basement shows significant differences between the External Massifs from the Helvetic Zone, with abundant Late Carboniferous granites, and the basement of the Briançonnais Zone, including the Internal Massifs (Dora-Maira, Gran Paradiso, and Monte Rosa), devoid of Carboniferous granites. A major coal-bearing basin, the "Zone Houillère," opened along this boundary. This limnic intramontane basin has never been properly investigated. The Zone Houillère is not comparable with the external, paralic, flexural, basins on both sides of the Variscan belt but shows similarities with the Saar-Saale Basin. Like the latter, we interpret the Zone Houillère as a transtensional basin opened along a major, crustal-scale, fault zone, namely, the East Variscan Shear Zone. The Permian magmatism and sedimentation displays contrasting distributions, being absent or very localized in the Helvetic Zone, and widespread in the Penninic Zone. The above data indicate that the structural inheritance from the Variscan belt plays a major role in defining the future location of the Valaisan Basin, that is, the boundary between the European paleomargin and the Briançonnais microcontinent.

  9. Shear machines

    International Nuclear Information System (INIS)

    Astill, M.; Sunderland, A.; Waine, M.G.

    1980-01-01

    A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)

  10. The shear zone-related gold mineralization at the Turmalina deposit, Quadrilátero Ferrífero, Brazil: structural evolution and the two stages of mineralization

    Science.gov (United States)

    Fabricio-Silva, Wendell; Rosière, Carlos Alberto; Bühn, Bernhard

    2018-05-01

    Turmalina is an important orogenic gold deposit located in the NW region of the Quadrilátero Ferrífero. The deposit is hosted in an Archean greenstone belt composed of ortho-amphibolites and pelites with interleaved tuffs metamorphosed under amphibolite facies conditions and intruded by a granite stock. The orebodies are controlled by WNW-ESE-trending shear zones, associated with hydrothermal alteration. Three deformation events are recognized in the Turmalina gold deposit: D1 and D2 are the result of a progressive Archean deformation under ductile conditions between 2749 ± 7 and 2664 ± 35 Ma; D3 is characterized by a transpressional event under ductile-brittle conditions with the age still unclear. The three generations of garnet observed show that Grt1 blastesis is pre- to syn-D1 and Grt2 growth during the late to post-deformation stages of the D2 event. The initial temperature (Grt1 core) is around 548-600 °C, whereas during late D2, the temperatures reached 633 °C (metamorphic peak-Grt2 rim), likely as a result of granite intrusion. The Grt3 resulted from re-equilibration under retrograde conditions. Two gold-bearing sulfide stages were identified: pyrrhotite-arsenopyrite ± löllingite ± chalcopyrite ± gold stage I precipitated below a metamorphic peak temperature of 598 ± 19 °C associated with S1 foliation (D1), and pyrrhotite-pyrite-arsenopyrite ± chalcopyrite ± gold stage II is located commonly along V3 quartz-carbonate veinlets with a temperature range between 442 ± 9 and 510 ± 30 °C. We suggest that the granite intrusion imposed an additional thermal effect that promoted further dehydration of country rocks. The Au derived mainly from a metamorphic fluid source but potentially mixed with magmatic fluids from the granite.

  11. Location of subventricular zone recurrence and its radiation dose predicts survival in patients with glioblastoma.

    Science.gov (United States)

    Weinberg, Brent D; Boreta, Lauren; Braunstein, Steve; Cha, Soonmee

    2018-07-01

    Glioblastomas are aggressive brain tumors that frequently recur in the subventricular zone (SVZ) despite maximal treatment. The purpose of this study was to evaluate imaging patterns of subventricular progression and impact of recurrent subventricular tumor involvement and radiation dose to patient outcome. Retrospective review of 50 patients diagnosed with glioblastoma and treated with surgery, radiation, and concurrent temozolomide from January 2012 to June 2013 was performed. Tumors were classified based on location, size, and cortical and subventricular zone involvement. Survival was compared based on recurrence type, distance from the initial enhancing tumor (local ≤ 2 cm, distant > 2 cm), and the radiation dose at the recurrence site. Progression of enhancing subventricular tumor was common at both local (58%) and distant (42%) sites. Median survival was better after local SVZ recurrence than distant SVZ recurrence (8.7 vs. 4.3 months, p = 0.04). Radiation doses at local SVZ recurrence sites recurrence averaged 57.0 ± 4.0 Gy compared to 44.7 ± 6.7 Gy at distant SVZ recurrence sites (p = 0.008). Distant subventricular progression at a site receiving ≤ 45 Gy predicted worse subsequent survival (p = 0.05). Glioblastomas frequently recurred in the subventricular zone, and patient survival was worse when enhancing tumor occurred at sites that received lower radiation doses. This recurrent disease may represent disease undertreated at the time of diagnosis, and further study is needed to determine if improved treatment strategies, such as including the subventricular zone in radiation fields, could improve clinical outcomes.

  12. Seismic attribute detection of faults and fluid pathways within an active strike-slip shear zone: New insights from high-resolution 3D P-Cable™ seismic data along the Hosgri Fault, offshore California

    Science.gov (United States)

    Kluesner, Jared W.; Brothers, Daniel

    2016-01-01

    Poststack data conditioning and neural-network seismic attribute workflows are used to detect and visualize faulting and fluid migration pathways within a 13.7 km2 13.7 km2 3D P-Cable™ seismic volume located along the Hosgri Fault Zone offshore central California. The high-resolution 3D volume used in this study was collected in 2012 as part of Pacific Gas and Electric’s Central California Seismic Imaging Project. Three-dimensional seismic reflection data were acquired using a triple-plate boomer source (1.75 kJ) and a short-offset, 14-streamer, P-Cable system. The high-resolution seismic data were processed into a prestack time-migrated 3D volume and publically released in 2014. Postprocessing, we employed dip-steering (dip and azimuth) and structural filtering to enhance laterally continuous events and remove random noise and acquisition artifacts. In addition, the structural filtering was used to enhance laterally continuous edges, such as faults. Following data conditioning, neural-network based meta-attribute workflows were used to detect and visualize faults and probable fluid-migration pathways within the 3D seismic volume. The workflow used in this study clearly illustrates the utility of advanced attribute analysis applied to high-resolution 3D P-Cable data. For example, results from the fault attribute workflow reveal a network of splayed and convergent fault strands within an approximately 1.3 km wide shear zone that is characterized by distinctive sections of transpressional and transtensional dominance. Neural-network chimney attribute calculations indicate that fluids are concentrated along discrete faults in the transtensional zones, but appear to be more broadly distributed amongst fault bounded anticlines and structurally controlled traps in the transpressional zones. These results provide high-resolution, 3D constraints on the relationships between strike-slip fault mechanics, substrate deformation, and fluid migration along an active

  13. Radially converging tracer test in a low-angle fracture zone at the Finnsjoen site, central Sweden. The fracture zone project - phase 3

    International Nuclear Information System (INIS)

    Gustafsson, E.; Nordqvist, R.

    1993-10-01

    The performance and results of a radially converging tracer test in a low-angle major fracture zone in crystalline rock are described. The extensive, about 100 m thick, zone 2 was encountered by means of borehole investigations at depths ranging from 100 to 250 metres at the Finnsjon site, central eastern Sweden. The zone studied (zone 2) consists of highly conductive, metre thick interconnected minor shear and fracture zones (sub-zones) with low conductive rock in between. The objective of the tracer test was primarily to determine flow and transport characteristics in a major fracture zone. Secondly new equipment, experimental design and methods of interpretation were developed, tested and improved. The converging flow field was created by pumping in a central borehole from a packed-off interval enclosing the whole thickness of zone 2. Tracer breakthrough was registered from all nine injection points, with first arrivals ranging from 24 to 3200 hours. Evaluated flow and transport parameters included; flow porosity, dispersivity, flow wetted surface, fracture aperture and hydraulic conductivity in fracture flow paths. Directional variations were found in the flow and transport parameters determined, which is concluded to be due to heterogeneity and/or anisotropy. This conditions is more pronounced at depth in zone 2. The results from the tracer test also clearly show that the upper boundary of zone 2 is highly conductive and consistent over hundreds of metres. Within zone 2, and between upper and lower margins, interconnected discrete minor shear and fracture zones (sub-zones) constitute flow paths of considerable variable residence times. The dispersion within the sub-zones of zone 2, expressed as Peclet numbers ranged from 16 to 40. Flow porosity was determined to be 0.001-0.05 in the upper sub-zone and 0.01-0.1 in the intermediate and lower ones and flow wetted surface area per volume of rock was calculated to be within 1-92 m 2 /m 3 . 68 refs, 61 figs, 40 tabs

  14. Cross-shore velocity shear, eddies and heterogeneity in water column properties over fringing coral reefs: West Maui, Hawaii

    Science.gov (United States)

    Storlazzi, C.D.; McManus, M.A.; Logan, J.B.; McLaughlin, B.E.

    2006-01-01

    A multi-day hydrographic survey cruise was conducted to acquire spatially extensive, but temporally limited, high-resolution, three-dimensional measurements of currents, temperature, salinity and turbidity off West Maui in the summer of 2003 to better understand coastal dynamics along a complex island shoreline with coral reefs. These data complement long-term, high-resolution tide, wave, current, temperature, salinity and turbidity measurements made at a number of fixed locations in the study area starting in 2001. Analyses of these hydrographic data, in conjunction with numerous field observations, evoke the following conceptual model of water and turbidity flux along West Maui. Wave- and wind-driven flows appear to be the primary control on flow over shallower portions of the reefs while tidal and subtidal currents dominate flow over the outer portions of the reefs and insular shelf. When the direction of these flows counter one another, which is quite common, they cause a zone of cross-shore horizontal shear and often form a front, with turbid, lower-salinity water inshore of the front and clear, higher-salinity water offshore of the front. It is not clear whether these zones of high shear and fronts are the cause or the result of the location of the fore reef, but they appear to be correlated alongshore over relatively large horizontal distances (orders of kilometers). When two flows converge or when a single flow is bathymetrically steered, eddies can be generated that, in the absence of large ocean surface waves, tend to accumulate material. Areas of higher turbidity and lower salinity tend to correlate with regions of poor coral health or the absence of well-developed reefs, suggesting that the oceanographic processes that concentrate and/or transport nutrients, contaminants, low-salinity water or suspended sediment might strongly influence coral reef ecosystem health and sustainability.

  15. P-T data from central Bhutan imply distributed extensional shear at the Black Mountain "klippe"

    Science.gov (United States)

    Corrie, S. L.; Kohn, M. J.; Long, S. P.; McQuarrie, N.; Tobgay, T.

    2011-12-01

    The Southern Tibetan Detachment system (STDS) occurs along the entire length of the Himalayan orogen, and extensionally emplaces low-grade to unmetamorphosed Tethyan Himalayan (TH) rocks over highly metamorphosed Greater Himalayan sequence (GH) rocks. The base of TH remnants preserved in northern Bhutan all have top-to-the-north shear sense indicators (C'-type shear bands, asymmetric folds, and boudinaged leucogranite dikes) that are interpreted to reflect a discrete shear zone. In contrast, the GH-TH contact in the southernmost TH remnant (the Black Mountain region, central Bhutan) has been interpreted as depositional. A depositional contact limits the magnitude of displacement along the early STDS to 10's of km. If the GH-TH contact in the Black Mountain region is instead a discrete shear zone, as observed farther north, displacement on the STDS could be as high as 100's of km. To discriminate between these two interpretations, we determined peak metamorphic P-T conditions through the GH and TH sections, reasoning that a discrete shear zone would produce a distinct jump in metamorphic temperature, pressure or both. Thin section-scale kinematic indicators reveal pervasive top-to-the-north shear from 2-3 km structurally above the Main Central thrust (MCT) through the rest of the 11 km thick GH and TH sections. P-T conditions were determined from immediately above the MCT to 4 km above the GH-TH contact, with 19 samples from the GH, 6 from the overlying Chekha Fm (TH), and 9 from the overlying Maneting Fm (TH). We applied standard Fe-Mg exchange thermometers and Ca net-transfer barometers involving garnet. P-T conditions range from 700 °C and 11 kbar in migmatitic GHS to 600 °C and 8 kbar at the GH-Chekha contact, and 500 °C and 5 kbar at the top of the Maneting. We found no jumps in either temperature or pressure at any level, but a steeper than lithostatic pressure gradient, which we interpret to result from distributed extensional shear. The average thermal

  16. Weak Serpentine-bearing Fault Zones: laboratory evidence and implications for the activity of of oceanic detachments

    Science.gov (United States)

    Tesei, T.; Harbord, C. W. A.; Paola, N.; Collettini, C.; Viti, C.

    2017-12-01

    Serpentinites are major constituents of oceanic lithosphere shear zones located at slow-spreading margins, transform plate boundaries and obduction complexes. Geological and geophysical evidence suggests that these shear zones are inherently weak and, therefore, studies of serpentine friction are of paramount importance to constrain the strength of oceanic faults. However, laboratory friction experiments give a wide range of friction values for serpentine, which are not conclusive to explain the observed fault weakness. These variable results may arise from the difficulties to accurately characterize the mineralogical composition of serpentinite rocks and, hence, from the lack of pure monomineralic reference samples. Here we present laboratory experiments performed on a suite of serpentine samples, whose mineralogical composition was accurately characterized from the hand specimen down to the nanoscale. We observe that the main, low temperature polymorphs components of ocean-floor retrograde serpentinites (e.g. lizardite, chrysotile and polygonal serpentine) exhibit friction coefficients, µ reported, over a range of pressure and temperature conditions. We applied the frictional reactivation theory based on our experimental result to serpentine-bearing oceanic detachments. We show that detachments may slip until they rotate to very shallow dips 15°, as documented along some Atlantic detachments, accommodating large amounts of extension before being abandoned.

  17. Turbulent shear flow downstream of a sphere with and without an o-ring located over a plane boundary

    Directory of Open Access Journals (Sweden)

    Sahin Besir

    2012-04-01

    Full Text Available Flow-structure interaction of separated shear flow from the sphere and a flat plate was investigated by using dye visualization and the particle image velocimetry technique. Later, a passive control method was applied with 2mm oring located on the sphere surface at 55° from front stagnation point. The experiments were carried out in open water channel for Reynolds number value of Re=5000. Flow characteristics have been examined in terms of the 2-D instantaneous and time-averaged velocity vectors, patterns of vorticity, streamlines, rms of velocity fluctuations and Reynolds stress variations and discussed from the point of flow physics, vortex formation, lengths of large-scale Karman Vortex Streets and Kelvin-Helmholtz vortices depending on the sphere locations over the flat plate. It is demonstrated that the gap flow occurring between the sphere bottom point and the flat plate surface has very high scouring effect until h/d=0.25 and then unsymmetrical flow structure of the wake region keeps up to h/D=1.0 for smooth sphere. For the sphere with o-ring, the wake flow structure becomes symmetrical at smaller gap ratios and reattachment point on the flat plate surface occurs earlier. Moreover, o-ring on the sphere diminishes peak magnitudes of the flow characteristics and thus it is expected that the flow-induced forces will be lessened both on the sphere and flat plate surface. Vortex formation lengths and maximum value occurring points become closer locations to the rear surface of the sphere with o-ring.

  18. Precise Relative Location of San Andreas Fault Tremors Near Cholame, CA, Using Seismometer Clusters: Slip on the Deep Extension of the Fault?

    Science.gov (United States)

    Shelly, D. R.; Ellsworth, W. L.; Ryberg, T.; Haberland, C.; Fuis, G.; Murphy, J.; Nadeau, R.; Bürgmann, R.

    2008-12-01

    Non-volcanic tremor, similar in character to that generated at some subduction zones, was recently identified beneath the strike-slip San Andreas Fault (SAF) in central California (Nadeau and Dolenc, 2005). Using a matched filter method, we closely examine a 24-hour period of active SAF tremor and show that, like tremor in the Nankai Trough subduction zone, this tremor is composed of repeated similar events. We take advantage of this similarity to locate detected similar events relative to several chosen events. While low signal-to-noise makes location challenging, we compensate for this by estimating event-pair differential times at 'clusters' of nearby temporary and permanent stations rather than at single stations. We find that the relative locations consistently form a near-linear structure in map view, striking parallel to the surface trace of the SAF. Therefore, we suggest that at least a portion of the tremor occurs on the deep extension of the fault, similar to the situation for subduction zone tremor. Also notable is the small depth range (a few hundred meters or less) of many of the located tremors, a feature possibly analogous to earthquake streaks observed on the shallower portion of the fault. The close alignment of the tremor with the SAF slip orientation suggests a shear slip mechanism, as has been argued for subduction tremor. At times, we observe a clear migration of the tremor source along the fault, at rates of 15-40 km/hr.

  19. Cutting zone area and chip morphology in high-speed cutting of titanium alloy Ti-6Al-4V

    International Nuclear Information System (INIS)

    Ke, Qing Chan; Xu, Daochun; Xiong, Dan Ping

    2017-01-01

    The titanium alloy Ti-6Al-4V has superior properties but poor machinability, yet is widely used in aerospace and biomedical industries. Chip formation and cutting zone area are important factors that have received limited attention. Thus, we propose a high-speed orthogonal cutting model for serrated chip formation. The high speed orthogonal cutting of Ti-6Al-4V was studied with a cutting speed of 10-160 m/min and a feed of 0.07-0.11 mm/r. Using theoretical models and experimental results, parameters such as chip shape, serration level, slip angle, and shear slip distance were investigated. Cutting zone boundaries (tool-chip contact length, length of shear plane, and critical slip plane) and cutting zone area were obtained. The results showed that discontinuous, long-curling, and continuous chips were formed at low, medium, and high speeds, respectively. Serration level, shear slip distance, and slip angle rose with increasing cutting speed. The length of shear plane, tool-chip contact, and critical slip plane varied subtly with increased cutting speed, and rose noticeably with increased feed. Cutting zone area grew weakly with increased cutting speed, levelling off at high cutting speed; however, it rose noticeably with increased feed. This study furthers our understanding of the shear slip phenomenon and the mechanism of serrated chip formation

  20. Cutting zone area and chip morphology in high-speed cutting of titanium alloy Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Qing Chan; Xu, Daochun; Xiong, Dan Ping [School of Technology, Beijing Forestry University, Beijing (China)

    2017-01-15

    The titanium alloy Ti-6Al-4V has superior properties but poor machinability, yet is widely used in aerospace and biomedical industries. Chip formation and cutting zone area are important factors that have received limited attention. Thus, we propose a high-speed orthogonal cutting model for serrated chip formation. The high speed orthogonal cutting of Ti-6Al-4V was studied with a cutting speed of 10-160 m/min and a feed of 0.07-0.11 mm/r. Using theoretical models and experimental results, parameters such as chip shape, serration level, slip angle, and shear slip distance were investigated. Cutting zone boundaries (tool-chip contact length, length of shear plane, and critical slip plane) and cutting zone area were obtained. The results showed that discontinuous, long-curling, and continuous chips were formed at low, medium, and high speeds, respectively. Serration level, shear slip distance, and slip angle rose with increasing cutting speed. The length of shear plane, tool-chip contact, and critical slip plane varied subtly with increased cutting speed, and rose noticeably with increased feed. Cutting zone area grew weakly with increased cutting speed, levelling off at high cutting speed; however, it rose noticeably with increased feed. This study furthers our understanding of the shear slip phenomenon and the mechanism of serrated chip formation.

  1. Study on shear transfer analysis of reinforced concrete across a crack

    Energy Technology Data Exchange (ETDEWEB)

    Endoh, Takao; Katoh, Osamu

    1984-11-01

    It is a one of the most important problems in the reinforced concrete engineering to clarify the mechanism of shear transfer across cracked concrete planes crossed by reinforcement. By many experimental studies the mechanism of shear transfer across crack surfaces has gradually become clear. And based on those experimental studies, various analytical models of shear transfer have been developed. In this study, the mathematical model presented by M. N. Fardis is adopted and finite element formulation was carried out by the use of developed concrete constitutive law for cracked surface. The numerical result was compared with the experimental ones of Mattock-type push-off tests. Equating the effective range of the cracked bondless zone with the element area where special constitutive law is applied, a satisfying analytical result was obtained.

  2. 33 CFR 165.814 - Security Zones; Captain of the Port Houston-Galveston Zone.

    Science.gov (United States)

    2010-07-01

    ... Port Houston-Galveston Zone. 165.814 Section 165.814 Navigation and Navigable Waters COAST GUARD... § 165.814 Security Zones; Captain of the Port Houston-Galveston Zone. (a) Location. The following areas are designated as security zones: (1) Houston, Texas. The Houston Ship Channel and all associated...

  3. Microscale cavitation as a mechanism for nucleating earthquakes at the base of the seismogenic zone.

    Science.gov (United States)

    Verberne, Berend A; Chen, Jianye; Niemeijer, André R; de Bresser, Johannes H P; Pennock, Gillian M; Drury, Martyn R; Spiers, Christopher J

    2017-11-21

    Major earthquakes frequently nucleate near the base of the seismogenic zone, close to the brittle-ductile transition. Fault zone rupture at greater depths is inhibited by ductile flow of rock. However, the microphysical mechanisms responsible for the transition from ductile flow to seismogenic brittle/frictional behaviour at shallower depths remain unclear. Here we show that the flow-to-friction transition in experimentally simulated calcite faults is characterized by a transition from dislocation and diffusion creep to dilatant deformation, involving incompletely accommodated grain boundary sliding. With increasing shear rate or decreasing temperature, dislocation and diffusion creep become too slow to accommodate the imposed shear strain rate, leading to intergranular cavitation, weakening, strain localization, and a switch from stable flow to runaway fault rupture. The observed shear instability, triggered by the onset of microscale cavitation, provides a key mechanism for bringing about the brittle-ductile transition and for nucleating earthquakes at the base of the seismogenic zone.

  4. Mechanical properties of fracture zones

    International Nuclear Information System (INIS)

    Leijon, B.

    1993-05-01

    Available data on mechanical characteristics of fracture zones are compiled and discussed. The aim is to improve the basis for adequate representation of fracture zones in geomechanical models. The sources of data researched are primarily borehole investigations and case studies in rock engineering, involving observations of fracture zones subjected to artificial load change. Boreholes only yield local information about the components of fracture zones, i.e. intact rock, fractures and various low-strength materials. Difficulties are therefore encountered in evaluating morphological and mechanical properties of fracture zones from borehole data. Although often thought of as macroscopically planar features, available field data consistently show that fracture zones are characterized by geometrical irregularities such as thickness variations, surface undulation and jogs. These irregularities prevail on all scales. As a result, fracture zones are on all scales characterized by large, in-plane variation of strength- and deformational properties. This has important mechanical consequences in terms of non-uniform stress transfer and complex mechanisms of shear deformation. Field evidence for these findings, in particular results from the underground research laboratory in Canada and from studies of induced fault slip in deep mines, is summarized and discussed. 79 refs

  5. Evaluation of sampling, cookery, and shear force protocols for objective evaluation of lamb longissimus tenderness.

    Science.gov (United States)

    Shackelford, S D; Wheeler, T L; Koohmaraie, M

    2004-03-01

    Experiments were conducted to compare the effects of two cookery methods, two shear force procedures, and sampling location within non-callipyge and callipyge lamb LM on the magnitude, variance, and repeatability of LM shear force data. In Exp. 1, 15 non-callipyge and 15 callipyge carcasses were sampled, and Warner-Bratzler shear force (WBSF) was determined for both sides of each carcass at three locations along the length (anterior to posterior) of the LM, whereas slice shear force (SSF) was determined for both sides of each carcass at only one location. For approximately half the carcasses within each genotype, LM chops were cooked for a constant amount of time using a belt grill, and chops of the remaining carcasses were cooked to a constant endpoint temperature using open-hearth electric broilers. Regardless of cooking method and sampling location, repeatability estimates were at least 0.8 for LM WBSF and SSF. For WBSF, repeatability estimates were slightly higher at the anterior location (0.93 to 0.98) than the posterior location (0.88 to 0.90). The difference in repeatability between locations was probably a function of a greater level of variation in shear force at the anterior location. For callipyge LM, WBSF was higher (P lamb LM chops cooked with the belt grill using a larger number of animals (n = 87). In Exp. 2, LM chops were obtained from matching locations of both sides of 44 non-callipyge and 43 callipyge carcasses. Chops were cooked with a belt grill and SSF was measured, and repeatability was estimated to be 0.95. Repeatable estimates of lamb LM tenderness can be achieved either by cooking to a constant endpoint temperature with electric broilers or cooking for a constant amount of time with a belt grill. Likewise, repeatable estimates of lamb LM tenderness can be achieved with WBSF or SSF. However, use of belt grill cookery and the SSF technique could decrease time requirements which would decrease research costs.

  6. Aeromagnetic signatures of Precambrian shield and suture zones of Peninsular India

    Directory of Open Access Journals (Sweden)

    Mita Rajaram

    2014-01-01

    Full Text Available In many Precambrian provinces the understanding of the tectonic history is constrained by limited exposure and aeromagnetic data provide information below the surface cover of sediments, water, etc. and help build a tectonic model of the region. The advantage of using the aeromagnetic data is that the data set has uniform coverage and is independent of the accessibility of the region. In the present study, available reconnaissance scale aeromagnetic data over Peninsular India are analyzed to understand the magnetic signatures of the Precambrian shield and suture zones thereby throwing light on the tectonics of the region. Utilizing a combination of differential reduction to pole map, analytic signal, vertical and tilt derivative and upward continuation maps we are able to identify magnetic source distribution, tectonic elements, terrane boundaries, suture zones and metamorphic history of the region. The magnetic sources in the region are mainly related to charnockites, iron ore and alkaline intrusives. Our analysis suggests that the Chitradurga boundary shear and Sileru shear are terrane boundaries while we interpret the signatures of Palghat Cauvery and Achankovil shears to represent suture zones. Processes like metamorphism leave their signatures on the magnetic data: prograde granulites (charnockites and retrograde eclogites are known to have high susceptibility. We find that charnockites intruded by alkali plutons have higher magnetization compared to the retrogressed charnockites. We interpret that the Dharwar craton to the north of isograd representing greenschist to amphibolite facies transition, has been subjected to metamorphism under low geothermal conditions. Some recent studies suggest a plate tectonic model of subduction–collision–accretion tectonics around the Palghat Cauvery shear zone (PCSZ. Our analysis is able to identify several west to east trending high amplitude magnetic anomalies with deep sources in the region from

  7. Hydrodynamic Characterization of a Surface Storage Zone in a Natural Stream

    Science.gov (United States)

    Sandoval Ulloa, J. C.; Escauriaza, C. R.; Mignot, E.; Mao, L.

    2015-12-01

    Flow developed in surface storage zones in rivers is very important for many physical and biogeochemical processes. These regions are characterized by low velocities compared to the flow in the main channel and long residence times that favor the deposition of contaminants, nutrient uptake and interactions with reactive sediments. The dynamics of the turbulent flows in these zones is very complex, typically characterized by a shear layer that induces a recirculating area, with multiple large-scale coherent structures of different temporal and spatial scales. In this work we present the methodology and analysis of measurements in a natural surface storage zone. We report detailed information of a field campaign carried out in the Lluta River, located in northern Chile in the high altitude Andean environment known as the Altiplano (~4,000 masl). The area of study has great interest for the river ecosystem, since the water has high concentration levels of arsenic and other metals. The Lluta River is also a water source for many agricultural communities and urban centers located in the lower parts of the watershed. Field information obtained was: detailed topography, 3D velocity components in several points, and sediment arsenic concentration in the main channel and in the recirculating region of the natural surface storage zone. Topography was obtained through DGPS and digital image processing. The 3D velocity field was measured with an acoustic Doppler velocimeter (ADV) and surface velocity data was obtained through the LSPIV technique. Arsenic concentration was obtained by sediment sampling analysis. With this data we analyze the flow topology and characteristics features of the velocity, which constitute the controlling mechanisms of contaminant transport in the field. In addition, we contrast with preliminary results of a three-dimensional (3D) numerical simulation, to determine the influence of different parameters on the transport and mixing processes in natural

  8. The Eastern California Shear Zone as the northward extension of the southern San Andreas Fault

    Science.gov (United States)

    Thatcher, Wayne R.; Savage, James C.; Simpson, Robert W.

    2016-01-01

    Cluster analysis offers an agnostic way to organize and explore features of the current GPS velocity field without reference to geologic information or physical models using information only contained in the velocity field itself. We have used cluster analysis of the Southern California Global Positioning System (GPS) velocity field to determine the partitioning of Pacific-North America relative motion onto major regional faults. Our results indicate the large-scale kinematics of the region is best described with two boundaries of high velocity gradient, one centered on the Coachella section of the San Andreas Fault and the Eastern California Shear Zone and the other defined by the San Jacinto Fault south of Cajon Pass and the San Andreas Fault farther north. The ~120 km long strand of the San Andreas between Cajon Pass and Coachella Valley (often termed the San Bernardino and San Gorgonio sections) is thus currently of secondary importance and carries lesser amounts of slip over most or all of its length. We show these first order results are present in maps of the smoothed GPS velocity field itself. They are also generally consistent with currently available, loosely bounded geologic and geodetic fault slip rate estimates that alone do not provide useful constraints on the large-scale partitioning we show here. Our analysis does not preclude the existence of smaller blocks and more block boundaries in Southern California. However, attempts to identify smaller blocks along and adjacent to the San Gorgonio section were not successful.

  9. An in silico framework to analyze the anisotropic shear wave mechanics in cardiac shear wave elastography

    Science.gov (United States)

    Caenen, Annette; Pernot, Mathieu; Peirlinck, Mathias; Mertens, Luc; Swillens, Abigail; Segers, Patrick

    2018-04-01

    Shear wave elastography (SWE) is a potential tool to non-invasively assess cardiac muscle stiffness. This study focused on the effect of the orthotropic material properties and mechanical loading on the performance of cardiac SWE, as it is known that these factors contribute to complex 3D anisotropic shear wave propagation. To investigate the specific impact of these complexities, we constructed a finite element model with an orthotropic material law subjected to different uniaxial stretches to simulate SWE in the stressed cardiac wall. Group and phase speed were analyzed in function of tissue thickness and virtual probe rotation angle. Tissue stretching increased the group and phase speed of the simulated shear wave, especially in the direction of the muscle fiber. As the model provided access to the true fiber orientation and material properties, we assessed the accuracy of two fiber orientation extraction methods based on SWE. We found a higher accuracy (but lower robustness) when extracting fiber orientations based on the location of maximal shear wave speed instead of the angle of the major axis of the ellipsoidal group speed surface. Both methods had a comparable performance for the center region of the cardiac wall, and performed less well towards the edges. Lastly, we also assessed the (theoretical) impact of pathology on shear wave physics and characterization in the model. It was found that SWE was able to detect changes in fiber orientation and material characteristics, potentially associated with cardiac pathologies such as myocardial fibrosis. Furthermore, the model showed clearly altered shear wave patterns for the fibrotic myocardium compared to the healthy myocardium, which forms an initial but promising outcome of this modeling study.

  10. Investigation of sinkhole areas in Germany using 2D shear wave reflection seismics and zero-offset VSP

    Science.gov (United States)

    Tschache, Saskia; Wadas, Sonja; Polom, Ulrich; Krawczyk, Charlotte M.

    2017-04-01

    Sinkholes pose a serious geohazard for humans and infrastructure in populated areas. The Junior Research Group Subrosion within the Leibniz Institute for Applied Geophysics and the joint project SIMULTAN work on the multi-scale investigation of subrosion processes in the subsurface, which cause natural sinkholes. In two case studies in sinkhole areas of Thuringia in Germany, we applied 2D shear wave reflection seismics using SH-waves with the aim to detect suitable parameters for the characterisation of critical zones. This method has the potential to image near-surface collapse and faulting structures in improved resolution compared to P-wave surveys resulting from the shorter wavelength of shear waves. Additionally, the shear wave velocity field derived by NMO velocity analysis is a basis to calculate further physical parameters, as e.g. the dynamic shear modulus. In both investigation areas, vertical seismic profiles (VSP) were acquired by generating P- and SH-waves (6 component VSP) directly next to a borehole equipped with a 3C downhole sensor. They provide shear and compressional wave velocity profiles, which are used to improve the 2D shear wave velocity field from surface seismics, to perform a depth calibration of the seismic image and to calculate the Vp/Vs ratio. The signals in the VSP data are analysed with respect to changes in polarisation and attenuation with depth and/or azimuth. The VSP data reveal low shear wave velocities of 200-300 m/s in rock layers known to be heavily affected by subrosion and confirm the low velocities calculated from the surface seismic data. A discrepancy of the shear wave velocities is observed in other intervals probably due to unsymmetrical travel paths in the surface seismics. In some VSP data dominant conversion of the direct SH-wave to P-wave is observed that is assumed to be caused by an increased presence of cavities. A potential fault distorting the vertical travel paths was detected by abnormal P-wave first

  11. Application and Analysis of Measurement Model for Calibrating Spatial Shear Surface in Triaxial Test

    Science.gov (United States)

    Zhang, Zhihua; Qiu, Hongsheng; Zhang, Xiedong; Zhang, Hang

    2017-12-01

    Discrete element method has great advantages in simulating the contacts, fractures, large displacement and deformation between particles. In order to analyze the spatial distribution of the shear surface in the three-dimensional triaxial test, a measurement model is inserted in the numerical triaxial model which is generated by weighted average assembling method. Due to the non-visibility of internal shear surface in laboratory, it is largely insufficient to judge the trend of internal shear surface only based on the superficial cracks of sheared sample, therefore, the measurement model is introduced. The trend of the internal shear zone is analyzed according to the variations of porosity, coordination number and volumetric strain in each layer. It shows that as a case study on confining stress of 0.8 MPa, the spatial shear surface is calibrated with the results of the rotated particle distribution and the theoretical value with the specific characteristics of the increase of porosity, the decrease of coordination number, and the increase of volumetric strain, which represents the measurement model used in three-dimensional model is applicable.

  12. Global Transition Zone Anisotropy and Consequences for Mantle Flow and Earth's Deep Water Cycle

    Science.gov (United States)

    Beghein, C.; Yuan, K.

    2011-12-01

    The transition zone has long been at the center of the debate between multi- and single-layered convection models that directly relate to heat transport and chemical mixing throughout the mantle. It has also been suggested that the transition zone is a reservoir that collects water transported by subduction of the lithosphere into the mantle. Since water lowers mantle minerals density and viscosity, thereby modifying their rheology and melting behavior, it likely affects global mantle dynamics and the history of plate tectonics. Constraining mantle flow is therefore important for our understanding of Earth's thermochemical evolution and deep water cycle. Because it can result from deformation by dislocation creep during convection, seismic anisotropy can help us model mantle flow. It is relatively well constrained in the uppermost mantle, but its presence in the transition zone is still debated. Its detection below 250 km depth has been challenging to date because of the poor vertical resolution of commonly used datasets. In this study, we used global Love wave overtone phase velocity maps, which are sensitive to structure down to much larger depths than fundamental modes alone, and have greater depth resolution than shear wave-splitting data. This enabled us to obtain a first 3-D model of azimuthal anisotropy for the upper 800km of the mantle. We inverted the 2Ψ terms of anisotropic phase velocity maps [Visser, et al., 2008] for the first five Love wave overtones between 35s and 174s period. The resulting model shows that the average anisotropy amplitude for vertically polarized shear waves displays two main stable peaks: one in the uppermost mantle and, most remarkably, one in the lower transition zone. F-tests showed that the presence of 2Ψ anisotropy in the transition zone is required to improve the third, fourth, and fifth overtones fit. Because of parameter trade-offs, however, we cannot exclude that the anisotropy is located in the upper transition zone as

  13. Detailed seismotectonic analysis of Sumatra subduction zone revealed by high precision earthquake location

    Science.gov (United States)

    Sagala, Ricardo Alfencius; Harjadi, P. J. Prih; Heryandoko, Nova; Sianipar, Dimas

    2017-07-01

    Sumatra was one of the most high seismicity regions in Indonesia. The subduction of Indo-Australian plate beneath Eurasian plate in western Sumatra contributes for many significant earthquakes that occur in this area. These earthquake events can be used to analyze the seismotectonic of Sumatra subduction zone and its system. In this study we use teleseismic double-difference method to obtain more high precision earthquake distribution in Sumatra subduction zone. We use a 3D nested regional-global velocity model. We use a combination of data from both of ISC (International Seismological Center) and BMKG (Agency for Meteorology Climatology and Geophysics, Indonesia). We successfully relocate about 6886 earthquakes that occur on period of 1981-2015. We consider that this new location is more precise than the regular bulletin. The relocation results show greatly reduced of RMS residual of travel time. Using this data, we can construct a new seismotectonic map of Sumatra. A well-built geometry of subduction slab, faults and volcano arc can be obtained from the new bulletin. It is also showed that at a depth of 140-170 km, there is many events occur as moderate-to-deep earthquakes, and we consider about the relation of the slab's events with volcanic arc and inland fault system. A reliable slab model is also built from regression equation using new relocated data. We also analyze the spatial-temporal of seismotectonic using b-value mapping that inspected in detail horizontally and vertically cross-section.

  14. A study on shear transfer analysis of reinforced concrete across a crack

    International Nuclear Information System (INIS)

    Endoh, Takao; Katoh, Osamu

    1984-01-01

    It is a one of the most important problems in the reinforced concrete engineering to clarify the mechanism of shear transfer across cracked concrete planes crossed by reinforcement. By many experimental studies the mechanism of shear transfer across crack surfaces has gradually become clear. And based on those experimental studies, various analytical models of shear transfer have been developed. In this study, the mathematical model presented by M. N. Fardis is adopted and finite element formulation was carried out by the use of developed concrete constitutive law for cracked surface. The numerical result was compared with the experimental ones of Mattock-type push-off tests. Equating the effective range of the cracked bondless zone with the element area where special constitutive law is applied, a satisfying analytical result was obtained. (author)

  15. Shear-rate-dependent strength control on the dynamics of rainfall-triggered landslides, Tokushima Prefecture, Japan

    Science.gov (United States)

    Wang, G.; Suemine, A.; Schulz, W.H.

    2010-01-01

    A typhoon (Typhoon No. 10) attacked Shikoku Island and the Tyugoku area of Japan in 2004. This typhoon produced a new daily precipitation record of 1317 mm on Shikoku Island and triggered hundreds of landslides in Tokushima Prefecture. One catastrophic landslide was triggered in the Shiraishi area of Kisawa village, and destroyed more than 10 houses while also leaving an unstable block high on the slope. The unstable block kept moving after the event, showing accelerating and decelerating movement during and after rainfall and reaching a displacement of several meters before countermeasures were put into place. To examine the mechanism for this landsliding characteristic, samples (weathered serpentinite) were taken from the field, and their shear behaviours examined using ring shear tests. The test results revealed that the residual shear strength of the samples is positively dependent on the shear rate, which may provide an explanation for the continuous acceleratingdecelerating process of the landsliding. The roughness of the shear surface and the microstructure of the shear zone were measured and observed by laser microscope and SEM techniques in an attempt to clarify the mechanism of shear rate effect on the residual shear strength. Copyright ?? 2010 John Wiley & Sons, Ltd.

  16. Experimental study and FEM simulation of the simple shear test of cylindrical rods

    Science.gov (United States)

    Wirti, Pedro H. B.; Costa, André L. M.; Misiolek, Wojciech Z.; Valberg, Henry S.

    2018-05-01

    In the presented work an experimental simple shear device for cutting cylindrical rods was used to obtain force-displacement data for a low-carbon steel. In addition, and FEM 3D-simulation was applied to obtain internal shear stress and strain maps for this material. The experimental longitudinal grid patterns and force-displacement curve were compared with numerical simulation results. Many aspects of the elastic and plastic deformations were described. It was found that bending reduces the shear yield stress of the rod material. Shearing starts on top and bottom die-workpiece contact lines evolving in an arc-shaped area. Due to this geometry, stress concentrates on the surface of the rod until the level of damage reaches the critical value and the fracture starts here. The volume of material in the plastic zone subjected to shearing stress has a very complex shape and is function of a dimensionless geometrical parameter. Expressions to calculate the true shear stress τ and strain γ from the experimental force-displacement data were proposed. The equations' constants are determined by fitting the experimental curve with the stress τ and strain γ simulation point tracked data.

  17. Mechanisms of strain accommodation in plastically-deformed zircon under simple shear deformation conditions during amphibolite-facies metamorphism

    Science.gov (United States)

    Kovaleva, Elizaveta; Klötzli, Urs; Wheeler, John; Habler, Gerlinde

    2018-02-01

    This study documents the strain accommodation mechanisms in zircon under amphibolite-facies metamorphic conditions in simple shear. Microstructural data from undeformed, fractured and crystal-plastically deformed zircon crystals are described in the context of the host shear zone, and evaluated in the light of zircon elastic anisotropy. Our work challenges the existing model of zircon evolution and shows previously undescribed rheological characteristics for this important accessory mineral. Crystal-plastically deformed zircon grains have axis oriented parallel to the foliation plane, with the majority of deformed grains having axis parallel to the lineation. Zircon accommodates strain by a network of stepped low-angle boundaries, formed by switching between tilt dislocations with the slip systems {010} and {110} and rotation axis [001], twist dislocations with the rotation axis [001], and tilt dislocations with the slip system {001} and rotation axis [010]. The slip system {110} is newly described for zircon. Most misorientation axes in plastically-deformed zircon grains are parallel to the XY plane of the sample and have [001] crystallographic direction. Such behaviour of strained zircon lattice is caused by elastic anisotropy that has a direct geometric control on the rheology, deformation mechanisms and dominant slip systems in zircon. Young's modulus and P wave velocity have highest values parallel to zircon [001] axis, indicating that zircon is elastically strong along this direction. Poisson ratio and Shear modulus demonstrate that zircon is also most resistant to shearing along [001]. Thus, [001] axis is the most common rotation axis in zircon. The described zircon behaviour is important to take into account during structural and geochronological investigations of (poly)metamorphic terrains. Geometry of dislocations in zircon may help reconstructing the geometry of the host shear zone(s), large-scale stresses in the crust, and, possibly, the timing of

  18. Flow shear stabilization of hybrid electron-ion drift mode in tokamaks

    International Nuclear Information System (INIS)

    Bai, L.

    1999-01-01

    In this paper, a model of sheared flow stabilization on hybrid electron-ion drift mode is proposed. At first, in the presence of dissipative trapped electrons, there exists an intrinsic oscillation mode in tokamak plasmas, namely hybrid dissipative trapped electron-ion temperature gradient mode (hereafter, called as hybrid electron-ion drift mode). This conclusion is in agreement with the observations in the simulated tokamak experiment on the CLM. Then, it is found that the coupling between the sheared flows and dissipative trapped electrons is proposed as the stabilization mechanism of both toroidal sheared flow and poloidal sheared flow on the hybrid electron-ion drift mode, that is, similar to the stabilizing effect of poloidal sheared flow on edge plasmas in tokamaks, in the presence of both dissipative trapped electrons and toroidal sheared flow, large toroidal sheared flow is always a strong stabilizing effect on the hybrid electron-ion drift mode in internal transport barrier location, too. This result is consistent with the experimental observations in JT-60U. (author)

  19. Flow shear stabilization of hybrid electron-ion drift mode in tokamaks

    International Nuclear Information System (INIS)

    Bai, L.

    2001-01-01

    In this paper, a model of sheared flow stabilization on hybrid electron-ion drift mode is proposed. At first, in the presence of dissipative trapped electrons, there exists an intrinsic oscillation mode in tokamak plasmas, namely hybrid dissipative trapped electron-ion temperature gradient mode (hereafter, called as hybrid electron-ion drift mode). This conclusion is in agreement with the observations in the simulated tokamak experiment on the CLM. Then, it is found that the coupling between the sheared flows and dissipative trapped electrons is proposed as the stabilization mechanism of both toroidal sheared flow and poloidal sheared flow on the hybrid electron-ion drift mode, that is, similar to the stabilizing effect of poloidal sheared flow on edge plasmas in tokamaks, in the presence of both dissipative trapped electrons and toroidal sheared flow, large toroidal sheared flow is always a strong stabilizing effect on the hybrid electron-ion drift mode in internal transport barrier location, too. This result is consistent with the experimental observations in JT-60U. (author)

  20. Re-Os, Sm-Nd, U-Pb, and stepwise lead leaching isotope systematics in shear-zone hosted gold mineralization: genetic tracing and age constraints of crustal hydrothermal activity

    Science.gov (United States)

    Frei, R.; Nägler, Th. F.; Schönberg, R.; Kramers, J. D.

    1998-06-01

    A combined Re-Os, Sm-Nd, U-Pb, and stepwise Pb leaching (PbSL) isotope study of hydrothermal (Mo-W)-bearing minerals and base metal sulfides from two adjacent shear zone hosted gold deposits (RAN, Kimberley) in the Harare-Shamva greenstone belt (Zimbabwe) constrain the timing of the mineralizing events to two periods. During an initial Late Archean event (2.60 Ga) a first molybdenite-scheelite bearing paragenesis was deposited in both shear zone systems, followed by a local reactivation of the shear systems during an Early Proterozoic (1.96 Ga) tectono-thermal overprint, during which base metal sulfides and most of the gold was (re-)deposited. While PbSL has revealed an open-system behavior of the U-Pb systematics in molybdenite and wolframite from the RAN mine, initial Archean Re-Os ages are still preserved implying that this system in these minerals was more resistant to the overprint. A similar retentivity could be shown for the Sm-Nd system in scheelite and powellite associated with the above ore minerals. Re-Os isotopic data from the Proterozoic mineralization in the Kimberley mine point to a recent gain of Re, most pronouncedly affecting Fe-rich sulfides such as pyrrhotite. A significant Re-loss in powellitic scheelite (an alteration phase of molybdenite-bearing scheelite), coupled with a marked loss of U in W-Mo ore minerals, complements the observation of a major Re uptake in Fe-sulfides during oxidizing conditions in a weathering environment. Pyrrhotite under these conditions behaves as an efficient Re-sink. Lead isotope signatures from PbSL residues of molybdenite, powellite, and quartz indicate a continental crustal source and/or contamination for the mineralizing fluid by interaction of the fluids with older sedimentary material as represented by the direct host country rocks. Our investigation reveals the potential of the Re-Os isotopic system applied to crustal hydrothermal ore minerals for genetic tracing and dating purposes. The simplified chemical

  1. Large-Amplitude Long-Wave Instability of a Supersonic Shear Layer

    Science.gov (United States)

    Messiter, A. F.

    1995-01-01

    For sufficiently high Mach numbers, small disturbances on a supersonic vortex sheet are known to grow in amplitude because of slow nonlinear wave steepening. Under the same external conditions, linear theory predicts slow growth of long-wave disturbances to a thin supersonic shear layer. An asymptotic formulation is given here which adds nonzero shear-layer thickness to the weakly nonlinear formulation for a vortex sheet. Spatial evolution is considered, for a spatially periodic disturbance having amplitude of the same order, in Reynolds number, as the shear-layer thickness. A quasi-equilibrium inviscid nonlinear critical layer is found, with effects of diffusion and slow growth appearing through nonsecularity condition. Other limiting cases are also considered, in an attempt to determine a relationship between the vortex-sheet limit and the long-wave limit for a thin shear layer; there appear to be three special limits, corresponding to disturbances of different amplitudes at different locations along the shear layer.

  2. Experimental Research on Boundary Shear Stress in Typical Meandering Channel

    Science.gov (United States)

    Chen, Kai-hua; Xia, Yun-feng; Zhang, Shi-zhao; Wen, Yun-cheng; Xu, Hua

    2018-06-01

    A novel instrument named Micro-Electro-Mechanical System (MEMS) flexible hot-film shear stress sensor was used to study the boundary shear stress distribution in the generalized natural meandering open channel, and the mean sidewall shear stress distribution along the meandering channel, and the lateral boundary shear stress distribution in the typical cross-section of the meandering channel was analysed. Based on the measurement of the boundary shear stress, a semi-empirical semi-theoretical computing approach of the boundary shear stress was derived including the effects of the secondary flow, sidewall roughness factor, eddy viscosity and the additional Reynolds stress, and more importantly, for the first time, it combined the effects of the cross-section central angle and the Reynolds number into the expressions. Afterwards, a comparison between the previous research and this study was developed. Following the result, we found that the semi-empirical semi-theoretical boundary shear stress distribution algorithm can predict the boundary shear stress distribution precisely. Finally, a single factor analysis was conducted on the relationship between the average sidewall shear stress on the convex and concave bank and the flow rate, water depth, slope ratio, or the cross-section central angle of the open channel bend. The functional relationship with each of the above factors was established, and then the distance from the location of the extreme sidewall shear stress to the bottom of the open channel was deduced based on the statistical theory.

  3. The Effects of Shear Strain, Fabric, and Porosity Evolution on Elastic and Mechanical Properties of Clay-Rich Fault Gouge

    Science.gov (United States)

    Kenigsberg, A.; Saffer, D. M.; Riviere, J.; Marone, C.

    2017-12-01

    Ultrasonic/seismic waves are widely used for probing fault zone elastic and mechanical properties (gouge composition, frictional strength, density) and elastic properties (Vp, Vs, bulk and shear moduli), as it can provide insight into key processes and fault properties during shearing. These include fabric and force chain formation, porosity evolution, and fault zone stiffness, which are in turn factors in fault slip, damage, and healing. We report on a suite of direct shear experiments on synthetic fault gouge composed of 50% smectite /50% quartz at a normal stress of 25 MPa, in which we use ultrasonic wave transmission to continuously monitor compressional and shear wave velocities (Vp, Vs) up to shear strains of 25, while simultaneously measuring friction and monitoring the evolution of density and porosity. We find that wavespeeds vary with shear strain, due to fabric development and the evolution of density and porosity. The coefficient of friction peaks at μ .47 at a shear strain of .5 - 1, decreases to a steady state value of μ .43 by shear strains of 4.5- 6 and then remains rather constant to shear strains of 6 - 25, consistent with previous work. Density increases rapidly from 1.78 g/cm3 to 1.83 g/cm3 at shear strains from 0-2 (porosity decreases from 33% to 25% over that range), and then more gradually increases to a density of 2.08 g/cm3 (porosity of 21%) at a shear strain of 25. Vp increases from 2400 m/s to 2900 m/s during the onset of shear until a shear strain of 3, and then decreases to 2400-2500 by shear strain of 7-9. At shear strains above 9, Vp slowly increases as the layer becomes denser and less porous. We interpret the co-evolving changes in friction, porosity, and elastic moduli/wavespeed to reflect fabric development and alignment of clay particles as a function of shearing. More specifically, the decrease in Vp at a shear strain of 3 reflects the clay particles gradually aligning. Once the particles are aligned, the gradual increase of

  4. The Role of Inorganic Polyphosphates in the Formation of Bioengineered Cartilage Incorporating a Zone of Calcified Cartilage In Vitro

    Science.gov (United States)

    St-Pierre, Jean-Philippe

    The development of bioengineered cartilage for replacement of damaged articular cartilage has gained momentum in recent years. One such approach has been developed in the Kandel lab, whereby cartilage is formed by seeding primary articular chondrocytes on the top surface of a porous biodegradable calcium polyphosphate (CPP) bone substitute, permitting anchorage of the tissue within the pores of the substrate; however, the interfacial shear properties of the tissue-substrate interface of these biphasic constructs are 1 to 2 orders of magnitude lower than the native cartilage-subchondral bone interface. To overcome this limitation, a strategy was devised to generate a zone of calcified cartilage (ZCC), thereby mimicking the native architecture of the osteochondral junction; however, the ZCC was located slightly above the cartilage-CPP interface. Thus, it was hypothesized that polyphosphate released from the CPP substrate and accumulating in the tissue inhibits the formation of the ZCC at the tissue-substrate interface. Based on this information, a strategy was devised to generate biphasic constructs incorporating a properly located ZCC. This approach involved the application of a thin calcium phosphate film to the surfaces of porous CPP via a sol-gel procedure, thereby limiting the accumulation of polyphosphate in the cartilaginous tissue. This modification to the substrate surface did not negatively impact the quality of the in vitro-formed cartilage tissue or the ZCC. Interfacial shear testing of biphasic constructs demonstrated significantly improved interfacial shear properties in the presence of a properly located ZCC. These studies also led to the observation that chondrocytes produce endogenous polyphosphate and that its levels in deep zone cartilage appear inversely related to mineral deposition within the tissue. Using an in vitro model of cartilage calcification, it was demonstrated that polyphosphate levels are modulated in part by the inhibitory effects

  5. LITHOSTRATIGRAPHY AND SHEAR-WAVE VELOCITY IN THE CRYSTALLIZED TOPOPAH SPRING TUFF, YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    D. BUESCH; K.H. STOKOE; M. SCHUHEN

    2006-01-01

    Evaluation of the seismic response of the proposed spent nuclear fuel and high-level radioactive waste repository at Yucca Mountain, Nevada, is in part based on the seismic properties of the host rock, the 12.8-million-year-old Topopah Spring Tuff. Because of the processes that formed the tuff, the densely welded and crystallized part has three lithophysal and three nonlithophysal zones, and each zone has characteristic variations in lithostratigraphic features and structures of the rocks. Lithostratigraphic features include lithophysal cavities, rims on lithophysae and some fractures, spots (which are similar to rims but without an associated cavity or aperture), amounts of porosity resulting from welding, crystallization, and vapor-phase corrosion and mineralization, and fractures. Seismic properties, including shear-wave velocity (V s ), have been measured on 38 pieces of core, and there is a good ''first order'' correlation with the lithostratigraphic zones; for example, samples from nonlithophysal zones have larger V s values compared to samples from lithophysal zones. Some samples have V s values that are beyond the typical range for the lithostratigraphic zone; however, these samples typically have one or more fractures, ''large'' lithophysal cavities, or ''missing pieces'' relative to the sample size. Shear-wave velocity data measured in the tunnels have similar relations to lithophysal and nonlithophysal rocks; however, tunnel-based values are typically smaller than those measured in core resulting from increased lithophysae and fracturing effects. Variations in seismic properties such as V s data from small-scale samples (typical and ''flawed'' core) to larger scale traverses in the tunnels provide a basis for merging our understanding of the distributions of lithostratigraphic features (and zones) with a method to scale seismic properties

  6. A new confined high pressure rotary shear apparatus: preliminary results

    Science.gov (United States)

    Faulkner, D.; Coughlan, G.; Bedford, J. D.

    2017-12-01

    The frictional properties of fault zone materials, and their evolution during slip, are of paramount importance for determining the earthquake mechanics of large tectonic faults. Friction is a parameter that is difficult to determine from seismological methods so much of our understanding comes from experiment. Rotary shear apparatuses have been widely used in experimental studies to elucidate the frictional properties of faults under realistic earthquake slip velocities (0.1-10 m/s) and displacements (>20 m). However one technical limitation of rotary shear experiments at seismic slip rates has been the lack of confinement. This has led to a limit on the normal stress (due to the strength of the forcing blocks) and also a lack of control of measurements of the pore fluid pressure. Here we present the first preliminary results from a rotary shear apparatus that has been developed to attempt to address this issue. The new fully confined ring shear apparatus has a fast-acting servo-hydraulic confining pressure system of up to 200 MPa and a servo-controlled upstream and downstream pore pressure system of up to 200 MPa. Displacement rates of 0.01μ/s to 2 m/s can be achieved. Fault gouge samples can therefore be sheared at earthquake speed whilst being subject to pressures typically associated with the depth of earthquake nucleation.

  7. RECENT STRONG EARTHQUAKES IN CENTRAL ASIA: REGULAR TECTONOPHYSICAL FEATURES OF LOCATIONS IN THE STRUCTURE AND GEODYNAMICS OF THE LITHOSPHERE. PART 1. MAIN GEODYNAMIC FACTORS PREDETERMINING LOCATIONS OF STRONG EARTHQUAKES IN THE STRUCTURE OF THE LITHOSPHER

    Directory of Open Access Journals (Sweden)

    S. I. Sherman

    2015-01-01

    gradually, yet do not disappear. (4 In the western regions of Central Asia, the recurrence time of strong earthquakes is about 25 years. It correlates with the regular activation of the seismic process in Asia which is mani-fested in almost the same time intervals; a recurrence time of a strong earthquake controlled by a specific active fault exceeds seems 100–250 years. (5 Mechanisms of all the strong earthquakes contain a slip component that is often accompanied by a compression component. The slip component corresponds to shearing along the faults revealed by geological methods, i.e. correlates with rock mass displacements in the near-fault medium. (6 GPS geodetic meas-urements show that shearing develops in the NW direction in the Tibet. Further northward, the direction changes to the sublatitudinal one. At the boundary of ~105°E, southward of 30°N, the slip vectors attain the SE direction. Further southward of 20°N, at the eastern edge of the Himalayan thrust, the slip vectors again attain the sublatitudinal direc-tion. High velocities/rates of recent crust movements are typical of the Tibet region. (7 The NW direction is typical of the opposite vectors related to the Pacific subduction zone. The resultant of the NE and NW vectors provides for the right-lateral displacement of the rocks in the submeridional border zone. (8 The geodynamic zones around the cen-tral zone (wherein the strong earthquakes are located are significantly less geodynamically active and thus facilitate the accumulation of compression stresses in the central zone, providing for the transition of rocks to the quazi-plastic state and even flow. This is the principal feature distinguishing the region, wherein the strong earthquakes are loca-ted, from its neighboring areas. In Central Asia, the structural positions of recent strong earthquakes are determined with respect to the following factors: (1 the western regions separated in the studied territory; (2 the larger thickness of the crust in

  8. A new perspective on the significance of the Ranotsara shear zone in Madagascar

    DEFF Research Database (Denmark)

    Schreurs, Guido; Giese, Jörg; Berger, Alfons

    2010-01-01

    only a marked deflection along its central segment. The ductile deflection zone is interpreted as a result of E-W indentation of the Antananarivo Block into the less rigid, predominantly metasedimentary rocks of the Southwestern Madagascar Block during a late phase of the Neoproterozoic/Cambrian East...... the central segment of the Ranotsara Zone, confirmed by apatite-fission track results, may have led to the formation of a shallow Neogene basin underlying the Ranotsara plain. The present-day drainage pattern suggests on-going normal fault activity along the central segment. The Ranotsara Zone...

  9. Experimental study of the vortex-induced vibration of drilling risers under the shear flow with the same shear parameter at the different Reynolds numbers.

    Science.gov (United States)

    Liangjie, Mao; Qingyou, Liu; Shouwei, Zhou

    2014-01-01

    A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment.

  10. Experimental study of the vortex-induced vibration of drilling risers under the shear flow with the same shear parameter at the different Reynolds numbers.

    Directory of Open Access Journals (Sweden)

    Mao Liangjie

    Full Text Available A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment.

  11. Steady flow on to a conveyor belt - Causal viscosity and shear shocks

    Science.gov (United States)

    Syer, D.; Narayan, Ramesh

    1993-01-01

    Some hydrodynamical consequences of the adoption of a causal theory of viscosity are explored. Causality is introduced into the theory by letting the coefficient of viscosity go to zero as the flow velocity approaches a designated propagation speed for viscous signals. Consideration is given to a model of viscosity which has a finite propagation speed of shear information, and it is shown that it produces two kinds of shear shock. A 'pure shear shock' corresponds to a transition from a superviscous to a subviscous state with no discontinuity in the velocity. A 'mixed shear shock' has a shear transition occurring at the same location as a normal adiabatic or radiative shock. A generalized version of the Rankine-Hugoniot conditions for mixed shear shocks is derived, and self-consistent numerical solutions to a model 2D problem in which an axisymmetric radially infalling stream encounters a spinning star are presented.

  12. The Black Mountain tectonic zone--a reactivated northeast-trending crustal shear zone in the Yukon-Tanana Upland of east-central Alaska: Chapter D in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    Science.gov (United States)

    O'Neill, J. Michael; Day, Warren C.; Alienikoff, John N.; Saltus, Richard W.; Gough, Larry P.; Day, Warren C.

    2007-01-01

    The Black Mountain tectonic zone in the YukonTanana terrane of east-central Alaska is a belt of diverse northeast-trending geologic features that can been traced across Black Mountain in the southeast corner of the Big Delta 1°×3° degree quadrangle. Geologic mapping in the larger scale B1 quadrangle of the Big Delta quadrangle, in which Black Mountain is the principal physiographic feature, has revealed a continuous zone of normal and left-lateral strikeslip high-angle faults and shear zones, some of which have late Tertiary to Quaternary displacement histories. The tectonic zone includes complexly intruded wall rocks and intermingled apophyses of the contiguous mid-Cretaceous Goodpaster and Mount Harper granodioritic plutons, mafic to intermediate composite dike swarms, precious metal mineralization, early Tertiary volcanic activity and Quaternary fault scarps. These structures define a zone as much as 6 to 13 kilometers (km) wide and more than 40 km long that can be traced diagonally across the B1 quadrangle into the adjacent Eagle 1°×3° quadrangle to the east. Recurrent activity along the tectonic zone, from at least mid-Cretaceous to Quaternary, suggests the presence of a buried, fundamental tectonic feature beneath the zone that has influenced the tectonic development of this part of the Yukon-Tanana terrane. The tectonic zone, centered on Black Mountain, lies directly above a profound northeast-trending aeromagnetic anomaly between the Denali and Tintina fault systems. The anomaly separates moderate to strongly magnetic terrane on the northwest from a huge, weakly magnetic terrane on the southeast. The tectonic zone is parallel to the similarly oriented left-lateral, strike-slip Shaw Creek fault zone 85 km to the west.

  13. Volcanic avalanche fault zone with pseudotachylite and gouge in French Massif Central

    Science.gov (United States)

    Bernard, Karine; van Wyk de Vries, Benjamin

    2017-11-01

    Structures and textures with sedimentological variations at different scales of the lithofacies assemblage help us to constrain the basal kinematic transition from non-depositional to depositional conditions during volcanic avalanche emplacement. In the well-exposed impact-sheared contact along volcanic avalanche fault zone in the French Massif Central, we observe how the granular textures of the pseudotachylite and fault gouge have recorded the propagation of shock wave with granular oscillatory stress. Sequential events of basal aggradation along avalanche fault zone have been established related to fractal D-values, temperature pressure regime and oscillatory stress during slow wave velocity. A typical lithofacies assemblage with a reverse grading shows the pseudotachylite and fault gouge. A cataclastic gradient is characterised by the fractal D-values from 2.7 in jigsaw breccias with pseudotachylite partial melt, to 2.6 in the polymodal gouge. Shock, brecciation and comminution produce cataclastic shear bands in the pseudotachylite and quartz microstructures along the basal contact of the volcanic debris-avalanche deposit. Gouge microstructures show granular segregation, cataclasis with antithetic rotational Riedel shear, and an arching effect between the Riedel shear bands. X-ray microtomography provided 3D microfabrics along the clastic vein in the sandy-gouge. From the available statistical dataset, a few equations have been developed implicating the same cataclastic origin with a co-genetic evolution of lithofacies. An impact wave during primary shear propagation may contribute to produce hydroclastic matrix, pseudotachylite partial melt and proximal gouge thixotropy with v 50m/s and a T < 654 °C. The interseismic period with oscillatory stress is related to crushed clasts and basaltic melt around 800 °C, Riedel shear bands with granular segregation along the fault gouge. The secondary shock by matrix-rich avalanche (ΔP = 10GPa, T ≥ 1000-1500

  14. An Approach Using Gas Monitoring to Find the Residual TCE Location in the Unsaturated Zone of Woosan Industrial Complex (WIC), Korea

    Science.gov (United States)

    Koh, Y.; Lee, S.; Yang, J.; Lee, K.

    2012-12-01

    An area accommodating various industrial facilities has fairly high probability of groundwater contamination with multiple chlorinated solvents such as trichloroethene (TCE), carbon tetrachloride (CT), and chloroform (CF). Source tracing of chlorinated solvents in the unsaturated zone is an essential procedure for the management and remediation of contaminated area. From the previous study on seasonal variations in hydrological stresses and spatial variations in geologic conditions on a TCE plume, the existence of residual DNAPLs at or above the water table has proved. Since TCE is one of the frequently detected VOCs (Volatile Organic Compounds) in groundwater, residual TCE can be detected by gas monitoring. Therefore, monitoring of temporal and spatial variations in the gas phase TCE contaminant at an industrial complex in Wonju, Korea, were used to find the residual TCE locations. As pilot tests, TCE gas samples collected in the unsaturated zone at 4 different wells were analyzed using SPME (Solid Phase MicroExtraction) fiber and Gas Chromatography (GC). The results indicated that detecting TCE in gas phase was successful from these wells and TCE analysis on gas samples, collected from the unsaturated zone, will be useful for source area characterization. However, some values were too high to doubt the accuracy of the current method, which needs a preliminary lab test with known concentrations. The modified experiment setups using packer at different depths are in process to find residual TCE locations in the unsaturated zone. Meanwhile, several PVD (polyethylene-membrane Passive Vapor Diffusion) samplers were placed under water table to detect VOCs by equilibrium between air in the vial and VOCs in pore water.

  15. Residual shear strength variability as a primary control on movement of landslides reactivated by earthquake-induced ground motion: Implications for coastal Oregon, U.S.

    Science.gov (United States)

    Schulz, William H.; Wang, Gonghui

    2014-01-01

    Most large seismogenic landslides are reactivations of preexisting landslides with basal shear zones in the residual strength condition. Residual shear strength often varies during rapid displacement, but the response of residual shear zones to seismic loading is largely unknown. We used a ring shear apparatus to perform simulated seismic loading tests, constant displacement rate tests, and tests during which shear stress was gradually varied on specimens from two landslides to improve understanding of coseismic landslide reactivation and to identify shear strength models valid for slow gravitational failure through rapid coseismic failure. The landslides we studied represent many along the Oregon, U.S., coast. Seismic loading tests resulted in (1) catastrophic failure involving unbounded displacement when stresses represented those for the existing landslides and (2) limited to unbounded displacement when stresses represented those for hypothetical dormant landslides, suggesting that coseismic landslide reactivation may be significant during future great earthquakes occurring near the Oregon Coast. Constant displacement rate tests indicated that shear strength decreased exponentially during the first few decimeters of displacement but increased logarithmically with increasing displacement rate when sheared at 0.001 cm s−1 or greater. Dynamic shear resistance estimated from shear strength models correlated well with stresses observed during seismic loading tests, indicating that displacement rate and amount primarily controlled failure characteristics. We developed a stress-based approach to estimate coseismic landslide displacement that utilizes the variable shear strength model. The approach produced results that compared favorably to observations made during seismic loading tests, indicating its utility for application to landslides.

  16. Tectonic and metamorphic discontinuities in the Greater Himalayan Sequence in Central Himalaya: in-sequence shearing by accretion from the Indian plate

    Science.gov (United States)

    Carosi, Rodolfo

    2016-04-01

    The Greater Himalayan Sequence (GHS) is the main metamorphic unit of the Himalayas, stretching for over 2400 km, bounded to the South by the Main Central Thrust (MCT) and to the North by the South Tibetan Detachment (STD) whose contemporanous activity controlled its exhumation between 23 and 17 Ma (Godin et al., 2006). Several shear zones and/or faults have been recognized within the GHS, usually regarded as out of sequence thrusts. Recent investigations, using a multitechnique approach, allowed to recognize a tectonic and metamorphic discontinuity, localized in the mid GHS, with a top-to-the SW sense of shear (Higher Himalayan Discontinuity: HHD) (Carosi et al., 2010; Montomoli et al., 2013). U-(Th)-Pb in situ monazite ages provide temporal constraint of the acitivity of the HHD from ~ 27-25 Ma to 18-17 Ma. Data on the P and T evolution testify that this shear zone affected the tectono-metamorphic evolution of the belt and different P and T conditions have been recorded in the hanging-wall and footwall of the HHD. The HHD is a regional tectonic feature running for more than 700 km, dividing the GHS in two different portions (Iaccarino et al., 2015; Montomoli et al., 2015). The occurrence of even more structurally higher contractional shear zone in the GHS (above the HHD): the Kalopani shear zone (Kali Gandaki valley, Central Nepal), active from ~ 41 to 30 Ma (U-Th-Pb on monazite) points out to a more complex deformation pattern in the GHS characterized by in sequence shearing. The actual proposed models of exhumation of the GHS, based exclusively on the MCT and STD activities, are not able to explain the occurrence of the HHD and other in-sequence shear zones. Any model of the tectonic and metamorphic evolution of the GHS should account for the occurrence of the tectonic and metamorphic discontinuities within the GHS and its consequences on the metamorphic paths and on the assembly of Himalayan belt. References Godin L., Grujic D., Law, R. D. & Searle, M. P. 2006

  17. Study on shear properties of coral sand under cyclic simple shear condition

    Science.gov (United States)

    Ji, Wendong; Zhang, Yuting; Jin, Yafei

    2018-05-01

    In recent years, the ocean development in our country urgently needs to be accelerated. The construction of artificial coral reefs has become an important development direction. In this paper, experimental studies of simple shear and cyclic simple shear of coral sand are carried out, and the shear properties and particle breakage of coral sand are analyzed. The results show that the coral sand samples show an overall shear failure in the simple shear test, which is more accurate and effective for studying the particle breakage. The shear displacement corresponding to the peak shear stress of the simple shear test is significantly larger than that corresponding to the peak shear stress of the direct shear test. The degree of particle breakage caused by the simple shear test is significantly related to the normal stress level. The particle breakage of coral sand after the cyclic simple shear test obviously increases compared with that of the simple shear test, and universal particle breakage occurs within the whole particle size range. The increasing of the cycle-index under cyclic simple shear test results in continuous compacting of the sample, so that the envelope curve of peak shearing force increases with the accumulated shear displacement.

  18. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The paper deals with the plastic shear strength of non shear reinforced T-beams.The influence of an un-reinforced flange on the shear capacity is investigated by considering a failure mechanism involving crack sliding in the web and a kind of membrane action over an effective width of the flange...

  19. The Numba ductile deformation zone (northwest Cameroon): A ...

    Indian Academy of Sciences (India)

    According to Ngako (1999), the Vallée des Roniers and the Demsa shear zones ..... istry of the Bayuda desert high-grade metamorphic base- ment (Sudan): An ... 1993 Données géochronologiques préliminaires (U–Pb et. Sm–Nd) sur la série ...

  20. Geochemical significance of neoproterozoic rasimalai alkali syenite emplaced along Dharmapuri shear zone in the Northern part of Tamil Nadu

    International Nuclear Information System (INIS)

    Thangavel, S.; Balasubramani, S.; Nagaraju, M.; Bhattacharya, D.; Zakaulla, Syed; Rai, A.K.

    2015-01-01

    The Rasimalai alkali syenite complex is emplaced within Peninsular Gneissic complex and spatially associated with NE-SW trending major Dharmapuri shear zone (DSZ) in the northern part of Tamil Nadu. It is surrounded by epidote hornblend egneiss, which is the fenetised product of Charnockite and occurs about 20 km NE of Alangayam in Vellore district. It is mainly comprised of medium to coarse grained grey syenite (albite and orthoclase) and medium to micro grained pink syenite (orthoclase, microcline and perthite) at places porphyritic in nature with hornblende, riebeckitc, aegirine and acmite as accessory minerals. Grey syenite is non radioactive and uranium mineralisation is associated with pink syenite (syngenetic and disseminated type) and quartz-barite veins (hydrothermal type). Hydrothermal activity is manifested in the form of pyrite, chalcopyrite, galena, barite, calcite and calcian-strontianite which occur in the form of disseminations, stringers, lumps, aggregates, veinlets and veins. Presence of high silica (63.14-75.43%) with high field strength elements (U, Th, Nb and Pb) and large ion lithophile elements (Rb, Sr, K, Ba) possibly indicates that Rasimalai alkali syenite is the product of crustal communication and partial melting of protracted emplacement of parental alkali basaltic magma

  1. Radially sheared azimuthal flows and turbulent transport in a cylindrical helicon plasma device

    International Nuclear Information System (INIS)

    Tynan, G R; Burin, M J; Holland, C; Antar, G; Diamond, P H

    2004-01-01

    A radially sheared azimuthal flow is observed in a cylindrical helicon plasma device. The shear flow is roughly azimuthally symmetric and contains both time-stationary and slowly varying components. The turbulent radial particle flux is found to peak near the density gradient maximum and vanishes at the shear layer location. The shape of the radial plasma potential profile associated with the azimuthal E x B flow is predicted accurately by theory. The existence of the mean shear flow in a plasma with finite flow damping from ion-neutral collisions and no external momentum input implies the existence of radial angular momentum transport from the turbulent Reynolds-stress

  2. Influence of shear cutting parameters on the fatigue behavior of a dual-phase steel

    Science.gov (United States)

    Paetzold, I.; Dittmann, F.; Feistle, M.; Golle, R.; Haefele, P.; Hoffmann, H.; Volk, W.

    2017-09-01

    The influence of the edge condition of car body and chassis components made of steel sheet on fatigue behavior under dynamic loading presents a major challenge for automotive manufacturers and suppliers. The calculated lifetime is based on material data determined by the fatigue testing of specimens with polished edges. Prototype components are often manufactured by milling or laser cutting, whereby in practice, the series components are produced by shear cutting due to its cost-efficiency. Since the fatigue crack in such components usually starts from a shear cut edge, the calculated and experimental determined lifetime will vary due to the different conditions at the shear cut edges. Therefore, the material data determined with polished edges can result in a non-conservative component design. The aim of this study is to understand the relationship between the shear cutting process and the fatigue behavior of a dual-phase steel sheet. The geometry of the shear cut edge as well as the depth and degree of work hardening in the shear affected zone can be adjusted by using specific shear cutting parameters, such as die clearance and cutting edge radius. Stress-controlled fatigue tests of unnotched specimens were carried out to compare the fatigue behavior of different edge conditions. By evaluating the results of the fatigue experiments, influential shear cutting parameters on fatigue behavior were identified. It was possible to assess investigated shear cutting strategies regarding the fatigue behavior of a high-strength steel DP800.

  3. Method for detecting and locating sand-producing zones in friable, unconsolidated sandstone formations of subterranean formations

    International Nuclear Information System (INIS)

    Sparlin, D.D.

    1976-01-01

    A sand-producing zone in a friable, unconsolidated sandstone formation traversed by a well bore is found by first introducing into the reservoir about 0.1--10 gallons of a radioactive mixture per foot of vertical formation being treated, the mixture containing about 0.1--1 lb of radioactive material per gallon of carrier fluid. A dispersing agent containing a deemulsifying surfactant may then be injected into the formation. The radioactivity in the well bore is recorded and the reservoir is returned to production. Another radioactivity log is run and a decrease in radioactivity indicates the location of the sand-producing portions of the formation

  4. Evidence of Enhanced Subrosion in a Fault Zone and Characterization of Hazard Zones with Elastic Parameters derived from SH-wave reflection Seismics and VSP

    Science.gov (United States)

    Wadas, S. H.; Tanner, D. C.; Tschache, S.; Polom, U.; Krawczyk, C. M.

    2017-12-01

    Subrosion, the dissolution of soluble rocks, e.g., sulfate, salt, or carbonate, requires unsaturated water and fluid pathways that enable the water to flow through the subsurface and generate cavities. Over time, different structures can occur that depend on, e.g., rock solubility, flow rate, and overburden type. The two main structures are sinkholes and depressions. To analyze the link between faults, groundwater flow, and soluble rocks, and to determine parameters that are useful to characterize hazard zones, several shear-wave (SH) reflection seismic profiles were surveyed in Thuringia in Germany, where Permian sulfate rocks and salt subcrop close to the surface. From the analysis of the seismic sections we conclude that areas affected by tectonic deformation phases are prone to enhanced subrosion. The deformation of fault blocks leads to the generation of a damage zone with a dense fracture network. This increases the rock permeability and thus serves as a fluid pathway for, e.g., artesian-confined groundwater. The more complex the fault geometry and the more interaction between faults, the more fractures are generated, e.g., in a strike slip-fault zone. The faults also act as barriers for horizontal groundwater flow perpendicular to the fault surfaces and as conduits for groundwater flow along the fault strike. In addition, seismic velocity anomalies and attenuation of seismic waves are observed. Low velocities high attenuation may indicate areas affected by subrosion. Other parameters that characterize the underground stability are the shear modulus and the Vp/Vs ratio. The data revealed zones of low shear modulus high Vp/Vs ratio >2.5, which probably indicate unstable areas due to subrosion. Structural analysis of S-wave seismics is a valuable tool to detect near-surface faults in order to determine whether or not an area is prone to subrosion. The recognition of even small fault blocks can help to better understand the hydrodynamic groundwater conditions

  5. Structure roles for the localization of metasomatite uranium deposit type at Wadi Belih area, Northern Eastern Desert, Egypt

    Directory of Open Access Journals (Sweden)

    Anton G. Waheeb

    2016-06-01

    Due to the resulting younger extension NW–SE event the hydrothermal solution gradually migrates upward forming alkali metasomatite, contemporaneous with uranium mineralization. They are developed along that shear zone where structure contact and the low-stress regions in the vicinity of the shear zone are favorable locations for fluid flow focusing and hence U mineralizations occur in the highly fractured and mylonitized zones along the contact as lensoidal bodies.

  6. Imaging off-plane shear waves with a two-dimensional phononic crystal lens

    International Nuclear Information System (INIS)

    Chiang Chenyu; Luan Pigang

    2010-01-01

    A two-dimensional flat phononic crystal (PC) lens for focusing off-plane shear waves is proposed. The lens consists of a triangular lattice hole-array, embedded in a solid matrix. The self-collimation effect is employed to guide the shear waves propagating through the lens along specific directions. The Dirichlet-to-Neumann maps (DtN) method is employed to calculate the band structure of the PC, which can avoid the problems of bad convergence and fake bands automatically in the void-solid PC structure. When the lens is illuminated by the off-plane shear waves emanating from a point source, a subwavelength image appears in the far-field zone. The imaging characteristics are investigated by calculating the displacement fields explicitly using the multiple scattering method, and the results are in good agreement with the ray-trace predictions. Our results may provide insights for designing new phononic devices.

  7. 78 FR 26508 - Safety Zone; Fireworks Event in Captain of the Port New York Zone

    Science.gov (United States)

    2013-05-07

    ... Harbor located in approximate Safety Zone, 33 CFR 165.160(3.8). position 40[deg]51'58'' N, 073[deg]39'34... Zone; Fireworks Event in Captain of the Port New York Zone AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce safety zones in the Captain of the Port New...

  8. Injection of colloidal size particles of Fe0 in porous media with shearthinning fluids as a method to emplace a permeable reactive zone

    International Nuclear Information System (INIS)

    Cantrell, K.J.; Kaplan, D.I.; Gilmore, T.J.

    1997-01-01

    Previous work has demonstrated the feasibility of injecting suspensions of micron-size zero-valent (FeO) particles into porous media as a method to emplace a permeable reactive zone. Further studies were conducted to evaluate the effects of several shearthinning fluids on enhancing the injectability of micron-size FeO particles into porous media. In contrast to Newtonian fluids, whose viscosities are constant with shear rate, certain non-Newtonian fluids are shearthinning, that is, the viscosity of these fluids decreases with increasing shear rate. The primary benefit of using these fluids for this application is that they increase the viscosity of the aqueous phase without adversely decreasing the hydraulic conductivity. A suspension formulated with a shearthinning fluid will maintain a relatively high viscosity in solution near the FeO particles (where the shear stress is low) relative to locations near the surfaces of the porous media, where the shear stress is high. The increased viscosity decreases the rate of gravitational settling of the dense FeO colloids (7.6 9/cm3) while maintaining a relatively high hydraulic conductivity that permits pumping the colloid suspensions into porous media at greater flowrates and distances. Aqueous solutions of three polymers at different concentrations were investigated. It was determined that, the use of shear thinning fluids greatly increases the injectability of the colloidal FeO suspensions in porous media

  9. Improvement of Shear Strength of Sandy Soil by Cement Grout with Fly Ash

    Directory of Open Access Journals (Sweden)

    Haifaa Abdulrasool Ali

    2018-12-01

    Full Text Available The effects of the permeation cement grout with fly ash on the sandy soil skeleton were studied in the present work in two phase; first phase the shear strength parameters, and the second phase effect of these grouted materials on volume grouted zone by injection (51 cm³ of slurry in sandy soil placed in steel cylinder model with dimension 15 cm in diameter and 30 cm in height. The soil sample was obtained from Karbala city and it is classified as poorly graded sand (SP according to USCS. The soil samples were improved by cement grout with three percentages weight of water cement ratio (w:c; (0.1w:0.9c, 0.8w:0.2c, and 0.7w:0.3c, while the soil samples were dehydrated for one day curing time. Fly ash class (F was used with cement grout as filler material; it was added to the mixture as a replacement material for cement in weight percentages; 10%, 25% and 40%. According to the results of tests, both shear strength and approximate volume of the effective grouted zone for treated samples soil with cement grout was increased when the water cement ratio decreased. Fly ash with cement grout needs to increase the water demand for the grout mixing to give best results in both shear strength and filling the soil voids.

  10. Fault zone architecture of the San Jacinto fault zone in Horse Canyon, southern California: A model for focused post-seismic fluid flow and heat transfer in the shallow crust

    Science.gov (United States)

    Morton, Nissa; Girty, Gary H.; Rockwell, Thomas K.

    2012-05-01

    We report results of a new study of the architecture of the San Jacinto fault zone in Horse Canyon, California, where stream incision has exposed a nearly continuous outcrop of the fault zone at ~ 0.4 km depth. The fault zone at this location consists of a fault core, transition zone, damage zone, and tonalitic wall rocks. We collected and analyzed samples for their bulk and grain density, geochemical data, clay mineralogy, and textural and modal mineralogy. Progressive deformation within the fault zone is characterized by mode I cracking, subsequent shearing of already fractured rock, and cataclastic flow. Grain comminution advances towards the strongly indurated cataclasite fault core. Damage progression towards the core is accompanied by a decrease in bulk and grain density, and an increase in porosity and dilational volumetric strain. Palygorskite and mixed-layer illite/smectite clay minerals are present in the damage and transition zones and are the result of hydrolysis reactions. The estimated percentage of illite in illite/smectite increases towards the fault core where the illite/smectite to illite conversion is complete, suggesting elevated temperatures that may have reached 150 °C. Chemical alteration and elemental mass changes are observed throughout the fault zone and are most pronounced in the fault core. We conclude that the observed chemical and mineralogical changes can only be produced by the interaction of fractured wall rocks and chemically active fluids that are mobilized through the fault zone by thermo-pressurization during and after seismic events. Based on the high element mobility and absence of illite/smectite in the fault core, we expect that the greatest water/rock ratios occur within the fault core. These results indicate that hot pore fluids circulate upwards through the fractured fault core and into the surrounding damage zone. Though difficult to constrain, we speculate that the site studied during this investigation may represent

  11. A Novel Hybrid Intelligent Indoor Location Method for Mobile Devices by Zones Using Wi-Fi Signals.

    Science.gov (United States)

    Castañón-Puga, Manuel; Salazar, Abby Stephanie; Aguilar, Leocundo; Gaxiola-Pacheco, Carelia; Licea, Guillermo

    2015-12-02

    The increasing use of mobile devices in indoor spaces brings challenges to location methods. This work presents a hybrid intelligent method based on data mining and Type-2 fuzzy logic to locate mobile devices in an indoor space by zones using Wi-Fi signals from selected access points (APs). This approach takes advantage of wireless local area networks (WLANs) over other types of architectures and implements the complete method in a mobile application using the developed tools. Besides, the proposed approach is validated by experimental data obtained from case studies and the cross-validation technique. For the purpose of generating the fuzzy rules that conform to the Takagi-Sugeno fuzzy system structure, a semi-supervised data mining technique called subtractive clustering is used. This algorithm finds centers of clusters from the radius map given by the collected signals from APs. Measurements of Wi-Fi signals can be noisy due to several factors mentioned in this work, so this method proposed the use of Type-2 fuzzy logic for modeling and dealing with such uncertain information.

  12. A Novel Hybrid Intelligent Indoor Location Method for Mobile Devices by Zones Using Wi-Fi Signals

    Directory of Open Access Journals (Sweden)

    Manuel Castañón–Puga

    2015-12-01

    Full Text Available The increasing use of mobile devices in indoor spaces brings challenges to location methods. This work presents a hybrid intelligent method based on data mining and Type-2 fuzzy logic to locate mobile devices in an indoor space by zones using Wi-Fi signals from selected access points (APs. This approach takes advantage of wireless local area networks (WLANs over other types of architectures and implements the complete method in a mobile application using the developed tools. Besides, the proposed approach is validated by experimental data obtained from case studies and the cross-validation technique. For the purpose of generating the fuzzy rules that conform to the Takagi–Sugeno fuzzy system structure, a semi-supervised data mining technique called subtractive clustering is used. This algorithm finds centers of clusters from the radius map given by the collected signals from APs. Measurements of Wi-Fi signals can be noisy due to several factors mentioned in this work, so this method proposed the use of Type-2 fuzzy logic for modeling and dealing with such uncertain information.

  13. Experiments on shear Alfven resonance in a tokamak

    International Nuclear Information System (INIS)

    Prager, S.C.; Witherspoon, F.D.; Kieras, C.E.; Kortbawi, D.; Sprott, J.C.; Tataronis, J.A.

    1983-02-01

    Detailed observations have been made of the spatial structure of the wave magnetic field. Measurements of the resonance properties such as radial location, wave polarization, resonance width and risetime are all consistent with shear Alfven resonance theory, although several measurements require improvement in resolution. The resonance location agrees with prediction of a fully two-dimensional ideal MHD theory for the Tokapole II device. To complete the identification a frequency scan and careful comparison of the observed resonance with antenna loading will be undertaken

  14. VHF radar observation of atmospheric winds, associated shears and C2n at a tropical location: interdependence and seasonal pattern

    Directory of Open Access Journals (Sweden)

    A. R. Jain

    Full Text Available The turbulence refractivity structure constant (C2n is an important parameter of the atmosphere. VHF radars have been used extensively for the measurements of C2n. Presently, most of such observations are from mid and high latitudes and only very limited observations are available for equatorial and tropical latitudes. Indian MST radar is an excellent tool for making high-resolution measurements of atmospheric winds, associated shears and turbulence refractivity structure constant (C2n. This radar is located at Gadanki (13.45° N, 79.18° E, a tropical station in India. The objective of this paper is to bring out the height structure of C2n for different seasons using the long series of data (September 1995 – August 1999 from Indian MST radar. An attempt is also made to understand such changes in the height structure of C2n in relation to background atmospheric parameters such as horizontal winds and associated shears. The height structure of C2n, during the summer monsoon and post-monsoon season, shows specific height features that are found to be related to Tropical Easterly Jet (TEJ winds. It is important to examine the nature of the radar back-scatterers and also to understand the causative mechanism of such scatterers. Aspect sensitivity of the received radar echo is examined for this purpose. It is observed that radar back-scatterers at the upper tropospheric and lower stratospheric heights are more anisotropic, with horizontal correlation length of 10–20 m, as compared to those observed at lower and middle tropospheric heights.Key words. Meteorology and atmospheric dynamics (climatology; tropical meteorology; turbulence

  15. Role of low order rational q-values in the ITB events in JT-60U reverse shear plasmas

    International Nuclear Information System (INIS)

    Neudatchin, S.V.; Takizuka, T.; Hayashi, N.; Isayama, A.; Shirai, H.; Fujita, T.; Kamada, Y.; Koide, Y.; Suzuki, T.

    2004-01-01

    Non-local confinement bifurcations inside and around internal transport barriers (ITBs) with a ms timescale (ITB events) have previously been found in JT-60U reverse shear (RS) and high-β p plasmas. ITB events are observed as the simultaneous rise and decay of T e in two zones. They are created by an abrupt non-local reduction (or increase) of heat flux inside 30-40% of the minor radius. Under sufficient neutral beam power P nbi (above ∼8 MW for the 1.2-1.5 MA/3.8 T pulses described below), ITB events were previously detected at various q min values. However, the role of q min equal to 3.5, 3, 2.5, 2 is not obvious for ITB formation. In this paper, we focus on new features of ITB evolution near low-order-rational values of q min . The formation of a stronger ITB and its further splitting into two radially separated ITBs is described. These ITBs are located in both positive and negative shear zones of a plasma with L-mode edge. The similarity of space-time evolution of T e and T i at sufficient power is highlighted (even when the variation is significant and complicated in space and time). Within error-bars, ITB splitting occurs as q min passes through 2.5. The similarity of space-time evolution of T e and T i suggests a similarity in the qualitative behaviour of electron and ion heat diffusivities in time and space. The temporal formation of an ITB in the zone with small positive shear, while q min passes through 3 (after periodical improvements and degradations via ITB events with 8 ms period) in H-mode, with P nbi = 8 MW, is described. At lower powers, ITB events are observed only near rational values of q min . In weak RS shots with P nbi = 4 MW, transport is reduced via ITB events during 0.08 s at q min = 3.5, and repetitive short-term phases of reduced transport are observed as q min passes through 3. The behaviour of T i looks different. The difference in T e and T i evolution, which was detected regularly under low power, probably indicates a decoupling

  16. Tracing of paleo-shear zones by self-potential data inversion: case studies from the KTB, Rittsteig, and Grossensees graphite-bearing fault planes

    Science.gov (United States)

    Mehanee, Salah A.

    2015-01-01

    This paper describes a new method for tracing paleo-shear zones of the continental crust by self-potential (SP) data inversion. The method falls within the deterministic inversion framework, and it is exclusively applicable for the interpretation of the SP anomalies measured along a profile over sheet-type structures such as conductive thin films of interconnected graphite precipitations formed on shear planes. The inverse method fits a residual SP anomaly by a single thin sheet and recovers the characteristic parameters (depth to the top h, extension in depth a, amplitude coefficient k, and amount and direction of dip θ) of the sheet. This method minimizes an objective functional in the space of the logarithmed and non-logarithmed model parameters (log( h), log( a), log( k), and θ) successively by the steepest descent (SD) and Gauss-Newton (GN) techniques in order to essentially maintain the stability and convergence of this inverse method. Prior to applying the method to real data, its accuracy, convergence, and stability are successfully verified on numerical examples with and without noise. The method is then applied to SP profiles from the German Continental Deep Drilling Program (Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschla - KTB), Rittsteig, and Grossensees sites in Germany for tracing paleo-shear planes coated with graphitic deposits. The comparisons of geologic sections constructed in this paper (based on the proposed deterministic approach) against the existing published interpretations (obtained based on trial-and-error modeling) for the SP data of the KTB and Rittsteig sites have revealed that the deterministic approach suggests some new details that are of some geological significance. The findings of the proposed inverse scheme are supported by available drilling and other geophysical data. Furthermore, the real SP data of the Grossensees site have been interpreted (apparently for the first time ever) by the deterministic inverse

  17. Evidence for crustal low shear-wave speed in western Saudi Arabia from multi-scale fundamental-mode Rayleigh-wave group-velocity tomography

    KAUST Repository

    Tang, Zheng

    2018-05-15

    We investigate the crustal and upper-mantle shear-velocity structure of Saudi Arabia by fundamental-mode Rayleigh-wave group-velocity tomography and shear-wave velocity inversion. The seismic dataset is compiled using ∼140 stations of the Saudi National Seismic Network (SNSN) operated by the Saudi Geological Survey (SGS). We measure Rayleigh-wave group-velocities at periods of 8–40 s from regional earthquakes. After obtaining 1-D shear-wave velocity models by inverting group-velocities at each grid node, we construct a 3-D shear-velocity model for Saudi Arabia and adjacent regions by interpolating the 1-D models. Our 3-D model indicates significant lateral variations in crustal and lithospheric thickness, as well as in the shear-wave velocity over the study region. In particular, we identify zones of reduced shear-wave speed at crustal levels beneath the Cenozoic volcanic fields in the Arabian Shield. The inferred reductions of 2–5% in shear-wave speed may be interpreted as possibly indicating the presence of partial melts. However, their precise origin we can only speculate about. Our study also reveals an upper-mantle low velocity zone (LVZ) below the Arabian Shield, supporting the model of lateral mantle flow from the Afar plume. Further geophysical experiments are needed to confirm (or refute) the hypothesis that partial melts may exist below the Cenozoic volcanism in western Saudi Arabia, and to build a comprehensive geodynamic–geological model for the evolution and present state of the lithosphere of the Arabian Plate and the Red Sea.

  18. Evidence for crustal low shear-wave speed in western Saudi Arabia from multi-scale fundamental-mode Rayleigh-wave group-velocity tomography

    KAUST Repository

    Tang, Zheng; Mai, Paul Martin; Chang, Sung-Joon; Zahran, Hani

    2018-01-01

    We investigate the crustal and upper-mantle shear-velocity structure of Saudi Arabia by fundamental-mode Rayleigh-wave group-velocity tomography and shear-wave velocity inversion. The seismic dataset is compiled using ∼140 stations of the Saudi National Seismic Network (SNSN) operated by the Saudi Geological Survey (SGS). We measure Rayleigh-wave group-velocities at periods of 8–40 s from regional earthquakes. After obtaining 1-D shear-wave velocity models by inverting group-velocities at each grid node, we construct a 3-D shear-velocity model for Saudi Arabia and adjacent regions by interpolating the 1-D models. Our 3-D model indicates significant lateral variations in crustal and lithospheric thickness, as well as in the shear-wave velocity over the study region. In particular, we identify zones of reduced shear-wave speed at crustal levels beneath the Cenozoic volcanic fields in the Arabian Shield. The inferred reductions of 2–5% in shear-wave speed may be interpreted as possibly indicating the presence of partial melts. However, their precise origin we can only speculate about. Our study also reveals an upper-mantle low velocity zone (LVZ) below the Arabian Shield, supporting the model of lateral mantle flow from the Afar plume. Further geophysical experiments are needed to confirm (or refute) the hypothesis that partial melts may exist below the Cenozoic volcanism in western Saudi Arabia, and to build a comprehensive geodynamic–geological model for the evolution and present state of the lithosphere of the Arabian Plate and the Red Sea.

  19. Shear Evaluation by Quantitative Flow Visualization Near the Casing Surface of a Centrifugal Blood Pump

    Science.gov (United States)

    Nishida, Masahiro; Yamane, Takashi; Tsukamoto, Yuki; Ito, Kazuyuki; Konishi, Yoshiaki; Masuzawa, Toru; Tsukiya, Tomonori; Endo, Seiko; Taenaka, Yoshiyuki

    To clarify the correlation between high-shear flow and hemolysis in blood pumps, detail shear velocity distribution was quantified by an experimental method with a model centrifugal blood pump that has a series data of hemolysis tests and computational fluid dynamic analyses. Particular attention was paid to the shear velocity near the casing surface in the volute where the high shear causes in circumferentially wide region that is considerable to cause high hemolysis. Three pump models were compared concern with the radial gap width between the impeller and casing (the radial volute width) also with the outlet position whereas the impeller geometry was identical. These casing geometries were as follows: model 1-the gap width is standard 3mm and the outlet locates to make a smooth geometrical connection with the volute, model 2-the gap width is small 0.5mm and the outlet locates to make the smooth geometrical connection with the volute, and model 3-the gap width is small 0.5mm and the outlet locates to hardly make the smooth geometrical connection with the volute but be similar radial position with that of model 1. Velocity was quantified with a particle tracking velocimetry that is one of the quantitative flow visualization techniques, and the shear velocity was calculated. Results showed that all large shear velocity existed within the layers of about 0.1mm from the casing surface and that those layers were hardly affected by a vane passage even if the gap width is 0.5mm. They also showed that the maximum shear velocity appeared on the casing surface, and the shear velocities of models 2 and 3 were almost twice as large as that of model 1. This finding is in full corresponding with the results of hemolysis tests which showed that the hemolysis levels of both models 2 and 3 were 1.5 times higher than that of model 1. These results suggest that detailed high-shear evaluation near the casing surface in the volute is one of the most important keys in estimating the

  20. A Two-Stage Method for Structural Damage Prognosis in Shear Frames Based on Story Displacement Index and Modal Residual Force

    Directory of Open Access Journals (Sweden)

    Asghar Rasouli

    2015-01-01

    Full Text Available A two-stage method is proposed to properly identify the location and the extent of damage in shear frames. In the first stage, a story displacement index (SDI is presented to precisely locate the damage in the shear frame which is calculated using the modal analysis information of the damaged structure. In the second stage, by defining a new objective function, the extent of the actual damage is determined via an imperialist competitive algorithm. The performance of the proposed method is demonstrated by implementing the technique to three examples containing five-, ten-, and twenty-five-story shear frames with noises and without them in modal data. Moreover, the performance of the proposed method has been verified through using a benchmark problem. Numerical results show the high efficiency of the proposed method for accurately identifying the location and the extent of structural damage in shear frames.

  1. Experimental study of shear rate dependence in perpetually sheared granular matter

    Science.gov (United States)

    Liu, Sophie Yang; Guillard, François; Marks, Benjy; Rognon, Pierre; Einav, Itai

    2017-06-01

    We study the shear behaviour of various granular materials by conducting novel perpetual simple shear experiments over four orders of magnitude of relatively low shear rates. The newly developed experimental apparatus employed is called "3D Stadium Shear Device" which is an extended version of the 2D Stadium Shear Device [1]. This device is able to provide a non-radial dependent perpetual shear flow and a nearly linear velocity profile between two oppositely moving shear walls. Using this device, we are able to test a large variety of granular materials. Here, we demonstrate the applicability of the device on glass beads (diameter 1 mm, 3 mm, and 14 mm) and rice. We particularly focus on studying these materials at very low inertial number I ranging from 10-6 to 10-2. We find that, within this range of I, the friction coefficient μ of glass beads has no shear rate dependence. A particularly appealing observation comes from testing rice, where the attainment of critical state develops under much longer duration than in other materials. Initially during shear we find a value of μ similar to that found for glass beads, but with time this value decreases gradually towards the asymptotic critical state value. The reason, we believe, lies in the fact that rice grains are strongly elongated; hence the time to achieve the stable μ is primarily controlled by the time for particles to align themselves with respect to the shear walls. Furthermore, the initial packing conditions of samples also plays a role in the evolution of μ when the shear strain is small, but that impact will eventually be erased after sufficient shear strain.

  2. Spatiotemporal patterns of fault slip rates across the Central Sierra Nevada frontal fault zone

    Science.gov (United States)

    Rood, Dylan H.; Burbank, Douglas W.; Finkel, Robert C.

    2011-01-01

    Patterns in fault slip rates through time and space are examined across the transition from the Sierra Nevada to the Eastern California Shear Zone-Walker Lane belt. At each of four sites along the eastern Sierra Nevada frontal fault zone between 38 and 39° N latitude, geomorphic markers, such as glacial moraines and outwash terraces, are displaced by a suite of range-front normal faults. Using geomorphic mapping, surveying, and 10Be surface exposure dating, mean fault slip rates are defined, and by utilizing markers of different ages (generally, ~ 20 ka and ~ 150 ka), rates through time and interactions among multiple faults are examined over 10 4-10 5 year timescales. At each site for which data are available for the last ~ 150 ky, mean slip rates across the Sierra Nevada frontal fault zone have probably not varied by more than a factor of two over time spans equal to half of the total time interval (~ 20 ky and ~ 150 ky timescales): 0.3 ± 0.1 mm year - 1 (mode and 95% CI) at both Buckeye Creek in the Bridgeport basin and Sonora Junction; and 0.4 + 0.3/-0.1 mm year - 1 along the West Fork of the Carson River at Woodfords. Data permit rates that are relatively constant over the time scales examined. In contrast, slip rates are highly variable in space over the last ~ 20 ky. Slip rates decrease by a factor of 3-5 northward over a distance of ~ 20 km between the northern Mono Basin (1.3 + 0.6/-0.3 mm year - 1 at Lundy Canyon site) to the Bridgeport Basin (0.3 ± 0.1 mm year - 1 ). The 3-fold decrease in the slip rate on the Sierra Nevada frontal fault zone northward from Mono Basin is indicative of a change in the character of faulting north of the Mina Deflection as extension is transferred eastward onto normal faults between the Sierra Nevada and Walker Lane belt. A compilation of regional deformation rates reveals that the spatial pattern of extension rates changes along strike of the Eastern California Shear Zone-Walker Lane belt. South of the Mina Deflection

  3. Sandbox Simulations of the Evolution of a Subduction Wedge following Subduction Initiation

    Science.gov (United States)

    Brandon, M. T.; Ma, K. F.; DeWolf, W.

    2012-12-01

    Subduction wedges at accreting subduction zones are bounded by a landward dipping pro-shear zone (= subduction thrust) and a seaward-dipping retro-shear zone in the overriding plate. For the Cascadia subduction zone, the surface trace of the retro-shear zone corresponds to the east side of the Coast Ranges of Oregon and Washington and the Insular Mountains of Vancouver Island. This coastal high or forearc high shows clear evidence of long-term uplift and erosion along its entire length, indicating that it is an active part of the Cascadia subduction wedge. The question addressed here is what controls the location of the retro-shear zone? In the popular double-sided wedge model of Willet et al (Geology 1993), the retro-shear zone remains pinned to the S point, which is interpreted to represent where the upper-plate Moho intersects the subduction zone. For this interpretation, the relatively strong mantle is considered to operate as a flat backstop. That model, however. is somewhat artificial in that the two plates collide in a symmetric fashion with equal crustal thicknesses on both sides. Using sandbox experiments, we explore a more realistic configuration where the upper and lower plate are separated by a gentle dipping (10 degree) pro-shear zone, to simulate the initial asymmetric geometry of the subduction thrust immediately after initiation of subduction. The entire lithosphere must fail along some plane for subduction to begin and this failure plane must dip in the direction of subduction. Thus, the initial geometry of the overriding plate is better approximated as a tapered wedge than as a layer of uniform thickness, as represented in the Willett et al models. We demonstrate this model using time-lapse movies of a sand wedge above a mylar subducting plate. We use particle image velocimetry (PIV) to show the evolution of strain and structure within the overriding plate. Material accreted to the tapered end of the overriding plate drives deformation and causes

  4. Scenarios of radiological impacts in the long-term safety analysis of radioactive waste disposal at the Vector Site located in the Chernobyl exclusion zone

    Energy Technology Data Exchange (ETDEWEB)

    Rybalka, N.; Mykolaichuk, O. [State Nuclear Regulatory Inspectorate of Ukraine, Kyiv (Ukraine); Alekseeva, Z.; Kondratiev, S.; Nikolaev, E. [State Scientific and Technical Center for Nuclear and Radiation Safety, Kyiv (Ukraine)

    2013-07-01

    In Ukraine, at the Vector site in the Chernobyl exclusion zone, it is planned to dispose of large amounts of radioactive wastes, including those of Chernobyl origin, containing transuranium elements. The paper analyzes the main possible scenarios of radiological impacts of the Vector site for a long-term period after expiration of its active administrative control taking into account location of the Vector site in the exclusion zone. In the paper, assessment of total activities that can be disposed of on site is demonstrated, based on non-exceeding of admissible radiological impacts. (orig.)

  5. Geophysical and isotopic mapping of preexisting crustal structures that influenced the location and development of the San Jacinto fault zone, southern California

    Science.gov (United States)

    Langenheim, V.E.; Jachens, R.C.; Morton, D.M.; Kistler, R.W.; Matti, J.C.

    2004-01-01

    We examine the role of preexisting crustal structure within the Peninsular Ranges batholith on determining the location of the San Jacinto fault zone by analysis of geophysical anomalies and initial strontium ratio data. A 1000-km-long boundary within the Peninsular Ranges batholith, separating relatively mafic, dense, and magnetic rocks of the western Peninsular Ranges batholith from the more felsic, less dense, and weakly magnetic rocks of the eastern Peninsular Ranges batholith, strikes north-northwest toward the San Jacinto fault zone. Modeling of the gravity and magnetic field anomalies caused by this boundary indicates that it extends to depths of at least 20 km. The anomalies do not cross the San Jacinto fault zone, but instead trend northwesterly and coincide with the fault zone. A 75-km-long gradient in initial strontium ratios (Sri) in the eastern Peninsular Ranges batholith coincides with the San Jacinto fault zone. Here rocks east of the fault are characterized by Sri greater than 0.706, indicating a source of largely continental crust, sedimentary materials, or different lithosphere. We argue that the physical property contrast produced by the Peninsular Ranges batholith boundary provided a mechanically favorable path for the San Jacinto fault zone, bypassing the San Gorgonio structural knot as slip was transferred from the San Andreas fault 1.0-1.5 Ma. Two historical M6.7 earthquakes may have nucleated along the Peninsular Ranges batholith discontinuity in San Jacinto Valley, suggesting that Peninsular Ranges batholith crustal structure may continue to affect how strain is accommodated along the San Jacinto fault zone. ?? 2004 Geological Society of America.

  6. A new dedicated finite element for push-over analysis of reinforced concrete shear wall systems

    Directory of Open Access Journals (Sweden)

    Delal Doğru ORMANCI

    2016-06-01

    Full Text Available In this study, a finite element which has been analyzed based on anisotropic behavior of reinforced shear walls is developed. Element stiffness matrices were varied based on whether the element is in the tension or the compression zone of the cross-section. Nonlinear behavior of reinforced shear wall model is investigated under horizontal loads. This behavior is defined with a similar approach to plastic hinge assumption in frame structures that the finite element behaves lineer elastic between joints and plastic deformations are concentrated on joints as vertical plastic displacements. According to this acceptance, plastic behavior of reinforced shear wall occurs when the vertical strain reaches elastic strain limit. In the definition of finite element, displacement functions are chosen considering that the partition of shear walls just at floor levels, are enough for solution. Results of this study are compared with the solution obtained from a different computer programme and experimental results.

  7. Cargo Release from Polymeric Vesicles under Shear

    Directory of Open Access Journals (Sweden)

    Yingying Guo

    2018-03-01

    Full Text Available In this paper we study the release of cargo from polymeric nano-carriers under shear. Vesicles formed by two star block polymers— A 12 B 6 C 2 ( A B C and A 12 B 6 A 2 ( A B A —and one linear block copolymer— A 14 B 6 ( A B , are investigated using dissipative particle dynamics (DPD simulations. A - and C -blocks are solvophobic and B -block is solvophilic. The three polymers form vesicles of different structures. The vesicles are subjected to shear both in bulk and between solvophobic walls. In bulk shear, the mechanisms of cargo release are similar for all vesicles, with cargo travelling through vesicle membrane with no preferential release location. When sheared between walls, high cargo release rate is only observed with A B C vesicle after it touches the wall. For A B C vesicle, the critical condition for high cargo release rate is the formation of wall-polymersome interface after which the effect of shear rate in promoting cargo release is secondary. High release rate is achieved by the formation of solvophilic pathway allowing cargo to travel from the vesicle cavity to the vesicle exterior. The results in this paper show that well controlled target cargo release using polymersomes can be achieved with polymers of suitable design and can potentially be very useful for engineering applications. As an example, polymersomes can be used as carriers for surface active friction reducing additives which are only released at rubbing surfaces where the additives are needed most.

  8. Characterization of Vadose Zone Sediment: Borehole C3103 Located in the 216-B-7A Crib Near the B Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Lindenmeier, Clark W.; Serne, R JEFFREY.; Bjornstad, Bruce N.; Last, George V.; Lanigan, David C.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2002-12-01

    This report summarizes data collected from samples in borehole C3103. Borehole C3103 was completed to further characterize the nature and extent of vadose zone contaminants supplied by intentional liquid discharges into the crib 216-B7A/7B between 1954 and 1967. These cribs received dilute waste streams from the bismuth phosphate fuel reprocessing program in the 1950's and decontamination waste in the 1960's. Elevated concentrations of several constituents were primarily measured at different depth intervals. The primary radionuclides present in this borehole are cesium-137 and uranium near the top of the borehole. Chemical characteristics attributed to wastewater-soil interaction at different locations within this zone are elevated pH, sodium, fluoride, carbonate nitrate, and sulphate

  9. Effect of cutter tip angle on cutting characteristics of acrylic worksheet subjected to punch/die shearing

    Directory of Open Access Journals (Sweden)

    Masami Kojima

    2016-12-01

    Full Text Available This paper aims to describe the effect of tool geometry on cutting characteristics of a 1.0 mm thickness acrylic worksheet subjected to a punch/die shearing. A set of side-wedge punch and side-wedge die which had the edge angle of 30°, 60° and/or 90° was prepared and used for cutting off the worksheet. A load cell and a CCD camera were installed in the cutting system to investigate the cutting load resistance and the side-view deformation of the worksheet. From experimental results, it was revealed that a cracking pattern at a sheared zone was remarkably affected by the edge angle of cutting tool. A cracking direction was almost coincident to the edge angle when considering the punch/die edge angle of 30°, while any matching of them was not observed in case of the punch/die edge angle of 60°, 90°. By using the 30° side-wedge tool, a flat-smooth sheared surface was generated. When combing the punch edge angle of 90° and the die edge angle of 60°, the cracking profile was characterized by the both edge angles for each part (die and punch. Carrying out an elasto-plastic finite element method analysis of cutter indentation with a few of symmetric and asymmetric punch/die edges, the stress distribution and deformation flow at the sheared zone were discussed with the initiation of surface cracks

  10. The WRF model forecast-derived low-level wind shear climatology over the United States great plains

    Energy Technology Data Exchange (ETDEWEB)

    Storm, B. [Wind Science and Engineering Research Center, Texas Tech University, Lubbock, TX (United States); Basu, S. [Atmospheric Science Group, Department of Geosciences, Texas Tech University, Lubbock, TX (United States)

    2010-07-01

    For wind resource assessment projects, it is common practice to use a power-law relationship (U(z) {proportional_to} z{sup {alpha}}) and a fixed shear exponent ({alpha} = 1/7) to extrapolate the observed wind speed from a low measurement level to high turbine hub-heights. However, recent studies using tall-tower observations have found that the annual average shear exponents at several locations over the United States Great Plains (USGP) are significantly higher than 1/7. These findings highlight the critical need for detailed spatio-temporal characterizations of wind shear climatology over the USGP, where numerous large wind farms will be constructed in the foreseeable future. In this paper, a new generation numerical weather prediction model - the Weather Research and Forecasting (WRF) model, a fast and relatively inexpensive alternative to time-consuming and costly tall-tower projects, is utilized to determine whether it can reliably estimate the shear exponent and the magnitude of the directional shear at any arbitrary location over the USGP. Our results indicate that the WRF model qualitatively captures several low-level wind shear characteristics. However, there is definitely room for physics parameterization improvements for the WRF model to reliably represent the lower part of the atmospheric boundary layer. (author)

  11. The Sundance fault: A newly recognized shear zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Spengler, R.W.; Braun, C.A.; Martin, L.G.; Weisenberg, C.W.

    1994-01-01

    Ongoing detailed mapping at a scale of 1:240 of structural features within the potential repository area indicates the presence of several previously unrecognized structural features. Minor north-trending west-side-down faults occur east and west of the Ghost Dance fault and suggest a total width of the Ghost Dance fault system of nearly 366 m (1200 ft). A zone of near-vertical N30 degrees - 40 degrees W - trending faults, at least 274 m (900 ft) wide, has been identified in the northern part of our study area and may traverse across the proposed repository area. On the basis of a preliminary analysis of available data, we propose to name this zone the ''Sundance fault system'' and the dominant structure, occurring near the middle of the zone, the ''Sundance fault.'' Some field relations suggest left-stepping deflections of north-trending faults along a preexisting northwest-trending structural fabric. Other field observations suggest that the ''Sundance fault system'' offsets the Ghost Dance fault system in an apparent right lateral sense by at least 52 m (170 ft). Additional detailed field studies, however, are needed to better understand structural complexities at Yucca Mountain

  12. Temperature-dependent residual shear strength characteristics of smectite-rich landslide soils

    Science.gov (United States)

    Shibasaki, Tatsuya; Matsuura, Sumio; Okamoto, Takashi

    2015-04-01

    behaviors were also recognized during cooling-event tests. Shear stress fluctuations, which were obtained by 1 Hz data sampling, showed that shear behavior characteristically changed in response to temperature conditions. Stick-slip behavior prevailed under room temperature conditions, whereas shear behavior gradually changed into stable sliding behavior as temperature decreased. SEM (Scanning Electric Microscope) observation on shear surfaces indicated that silt- and sand-size asperities in the vicinity of the shear surface influence the occurrence of stick-slip behavior. It is also characteristically noted that rod-shaped smectitic clays, here called "roll", developed on shear surfaces and are arrayed densely perpendicular to the shearing direction in a micrometer scale. We assume that these rolls are probably rotating slowly within shear zone and acting as a lubricant which affects the temperature-dependent frictional properties of the shearing plane. These experimental results show that residual strength characteristics of smectite-rich soils are sensitive to temperature conditions. Our findings imply that if slip surface soils contain a high fraction of smectite, a decrease in ground temperature can lead to lowered shear resistance of the slip surface and triggering of slow landslide movement.

  13. The complex systematics of zircons in migmatitic gneisses: An example from an Archean migmatite along the Patos Shear Zone, Borborema Province, NE Brazil

    International Nuclear Information System (INIS)

    Costa, A.C.D; Hackspacher, P.C; Dantas, E.L; Fetter, A.H.

    2001-01-01

    The Northem Tectonic Domain Borborema Province, in Northeast of Brazil records a complex history of tectonic activity ranging from 3.4 Ga to 0.6 Ga (Brito Neves, 1995 and Dantas, 1996). U-Pb systematics of zircons from a migmatitic gneiss just north of the Patos Shear Zone provide an excellent example of the difficulties encountered using conventional single-grain U/Pb zircon geochronology in polydeformed gneiss terranes. Our conventional single grain zircon analyses of a migmatite yielded Archean ages between ca. 3.3 at 2.8 a, as well as some highly discordant Paleoproterozoic ages. Subsequent cathodoluminescence images of these zircon grains showed complex internal structures that possibly record up to 4 separate stages of zircon growth. With such internal complexity, is impossible resolve primary crystallization ages as well as the ages of subsequent overgrowth events using conventional single grain analyses. Such resolution will require analyses of the individual grain domains using the SHRIMP method (au)

  14. Experimental study of shear rate dependence in perpetually sheared granular matter

    Directory of Open Access Journals (Sweden)

    Liu Sophie Yang

    2017-01-01

    Full Text Available We study the shear behaviour of various granular materials by conducting novel perpetual simple shear experiments over four orders of magnitude of relatively low shear rates. The newly developed experimental apparatus employed is called “3D Stadium Shear Device” which is an extended version of the 2D Stadium Shear Device [1]. This device is able to provide a non-radial dependent perpetual shear flow and a nearly linear velocity profile between two oppositely moving shear walls. Using this device, we are able to test a large variety of granular materials. Here, we demonstrate the applicability of the device on glass beads (diameter 1 mm, 3 mm, and 14 mm and rice. We particularly focus on studying these materials at very low inertial number I ranging from 10−6 to 10−2. We find that, within this range of I, the friction coefficient μ of glass beads has no shear rate dependence. A particularly appealing observation comes from testing rice, where the attainment of critical state develops under much longer duration than in other materials. Initially during shear we find a value of μ similar to that found for glass beads, but with time this value decreases gradually towards the asymptotic critical state value. The reason, we believe, lies in the fact that rice grains are strongly elongated; hence the time to achieve the stable μ is primarily controlled by the time for particles to align themselves with respect to the shear walls. Furthermore, the initial packing conditions of samples also plays a role in the evolution of μ when the shear strain is small, but that impact will eventually be erased after sufficient shear strain.

  15. Thrusting and transpressional shearing in the Pan-African nappe southwest El-Sibai core complex, Central Eastern Desert, Egypt

    Science.gov (United States)

    El-Wahed, Mohamed A. Abd.

    2008-01-01

    The Wadi El-Shush area in the Central Eastern Desert (CED) of Egypt is occupied by the Sibai core complex and its surrounding Pan-African nappe complex. The sequence of metamorphic and structural events in the Sibai core complex and the enveloping Pan-African nappe can be summarized as follows: (1) high temperature metamorphism associated with partial melting of amphibolites and development of gneissic and migmatitic rocks, (2) between 740 and 660 Ma, oblique island arc accretion resulted in Pan-African nappe emplacement and the intrusion of syn-tectonic gneissic tonalite at about 680 ± 10 Ma. The NNW-SSE shortening associated with oblique island arc accretion produced low angle NNW-directed thrusts and open folds in volcaniclastic metasediments, schists and isolated serpentinite masses (Pan-African nappe) and created NNE-trending recumbent folds in syn-tectonic granites. The NNW-SSE shortening has produced imbricate structures and thrust duplexes in the Pan-African nappe, (3) NE-ward thrusting which deformed the Pan-African nappe into SW-dipping imbricate slices. The ENE-WSW compression event has created NE-directed thrusts, folded the NNW-directed thrusts and produced NW-trending major and minor folds in the Pan-African nappe. Prograde metamorphism (480-525 °C at 2-4.5 kbar) was synchronous with thrusting events, (4) retrograde metamorphism during sinistral shearing along NNW- to NW-striking strike-slip shear zones (660-580 Ma), marking the external boundaries of the Sibai core complex and related to the Najd Fault System. Sinistral shearing has produced steeply dipping mylonitic foliation and open plunging folds in the NNW- and NE-ward thrust planes. Presence of retrograde metamorphism supports the slow exhumation of Sibai core complex under brittle-ductile low temperature conditions. Arc-accretion caused thrusting, imbrication and crustal thickening, whereas gravitational collapse of a compressed and thickened lithosphere initiated the sinistral movement

  16. Can glacial shearing of sediment reset the signal used for luminescence dating?

    Science.gov (United States)

    Bateman, Mark D.; Swift, Darrel A.; Piotrowski, Jan A.; Rhodes, Edward J.; Damsgaard, Anders

    2018-04-01

    Understanding the geomorphology left by waxing and waning of former glaciers and ice sheets during the late Quaternary has been the focus of much research. This has been hampered by the difficulty in dating such features. Luminescence has the potential to be applied to glacial sediments but requires signal resetting prior to burial in order to provide accurate ages. This paper explores the possibility that, rather than relying on light to reset the luminescence signal, glacial processes underneath ice might cause resetting. Experiments were conducted on a ring-shear machine set up to replicate subglacial conditions and simulate the shearing that can occur within subglacial sediments. Luminescence measurement at the single grain level indicates that a number (albeit small) of zero-dosed grains were produced and that these increased in abundance with distance travelled within the shearing zone. Observed changes in grain shape characteristics with increasing shear distance indicate the presence of localised high pressure grain-to-grain stresses caused by grain bridges. This appears to explain why some grains became zeroed whilst others retained their palaeodose. Based on the observed experimental trend, it is thought that localised grain stress is a viable luminescence resetting mechanism. As such relatively short shearing distances might be sufficient to reset a small proportion of the luminescence signal within subglacial sediments. Dating of previously avoided subglacial sediments may therefore be possible.

  17. Local Turbulence Suppression and Shear Flow Dynamics During qmin-Triggered Internal Transport Barriers on DIII-D

    Science.gov (United States)

    Shafer, M. W.; McKee, G. R.; Schlossberg, D. J.; Austin, M. E.; Burrell, K. H.

    2008-11-01

    Long-wavelength turbulence (kρiITBs) may form. Application of off-axis ECH slows the q-profile evolution and increases ρqmin, both of which enhance turbulence measurements using a new high-sensitivity large-area (8x,8) 2D BES array. The measured transient turbulence suppression is localized to the low-order rational surface (qmin= 2, 5/2, 3, etc.). Measured poloidal flow shear transiently exceeds the turbulence decorrelation rate, which is consistent with shear suppression. The localized suppression zone propagates radially outward, nearly coincident with the low-order surface.

  18. 77 FR 42176 - Safety Zones; Annual Fireworks Events in the Captain of the Port Detroit Zone

    Science.gov (United States)

    2012-07-18

    ... fireworks launch site located at position 41-34'-18.10'' N, 082-51'-18.70'' W (NAD 83). This zone will be... at position 41-34'-18.10'' N, 082- 51'-18.70'' W (NAD 83). (ii) Expected date. This safety zone will...-AA00 Safety Zones; Annual Fireworks Events in the Captain of the Port Detroit Zone AGENCY: Coast Guard...

  19. Shearing of saturated clays in rock joints at high confining pressures

    International Nuclear Information System (INIS)

    Wang, C.; Mao, N.

    1979-01-01

    Saturated clays are sheared between rock joints at various pore water pressures and at confining pressures up to 3 kb (300 Mpa). Sliding on these joints is stable. For a given clay, the shear stress required to initiate sliding increases linearly with the effective normal stress across the sliding surface, with a slope of 0.08 +- 0.01 for joints filled with saturated montmorillonite, 0.12 +- 0.01 with saturated chlorite, 0.15 +- 0.01 with saturated kaolinite, and 0.22 +- 0.02 with saturated silty illite. Thus at high confining pressures the shear stress required to initiate sliding on joints filled with saturated clays are very much smaller than that required to initiate sliding on clean rock joints or on joints filled with dry gouge materials. In the crust, saturation of gouge materials along active faults would greatly lower the frictional resistance to faulting and would stabilize fault movement. Different fault behaviors such as stable creep along some faults and intermittent but sudden slip along others may reflect in part different degrees of saturation of fault zones at depth

  20. Conversion of Hanford site well locations to Washington coordinate system of 1983, South Zone 1991 (WCS83S)

    International Nuclear Information System (INIS)

    Burnett, R.A.; Tzemos, S.; Dietz, L.A.

    1993-12-01

    Past construction and survey practices have resulted in the use of multiple local coordinate systems for measuring and reporting the horizontal position of wells and other facilities and locations on the Hanford Site. This report describes the development of a coordinate transformation process and algorithm and its application to the conversion of the horizontal coordinates of Hanford site wells from the various local coordinate systems and datums to a single standard coordinate system, the Washington Coordinate system of 1983, South Zone 1991 (WCS83S). The coordinate transformation algorithm, implemented as a computer program called CTRANS, uses standard two-dimensional translation, rotation, and scaling transformation equations and can be applied to any set of horizontal point locations. For each point to be transformed, the coefficients of the transformation equations are calculated locally, using the coordinates of the three nearest registration points (points with known locations in both coordinate systems). The report contains a discussion of efforts to verify and validate both the software and the well location data, a description of the methods used to estimate transformation and registration point accuracy, instructions for using the computer program, and a summary of the Hanford well conversion results for each local coordinate system and datum. Also included are the results of using recent U.S. Army Corps of Engineers survey data to obtain estimated measures of location errors in wells for which the local coordinate data source is undocumented, unverified, and therefore of unknown accuracy

  1. 33 CFR 3.25-10 - Sector Hampton Roads Marine Inspection Zone and Captain of the Port Zone.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sector Hampton Roads Marine... ZONES, AND CAPTAIN OF THE PORT ZONES Fifth Coast Guard District § 3.25-10 Sector Hampton Roads Marine Inspection Zone and Captain of the Port Zone. Sector Hampton Roads' office is located in Portsmouth, VA. The...

  2. REE Geochemistry of ore zones in the Archean auriferous schist ...

    Indian Academy of Sciences (India)

    R. Narasimhan, Krishtel eMaging Solutions

    the fluids could be of higher temperature origin. The initial Nd ... of mantle CO2 along shear zones in the lower crust led to the ..... tors such as permeability and composition of pro- ...... Shenberger D M and Barnes H L 1989 Solubility of gold in ...

  3. How can we describe the entrainment processes in sheared convective boundary layers?: a large-eddy simulation and mixed-layer theory/model comparison study

    NARCIS (Netherlands)

    Pino, D.; Vilà-Guerau de Arellano, J.; Kim, S.W.

    2006-01-01

    Dry convective boundary layers characterized by a significant wind shear on the surface and at the inversion zone are studied by means of the mixed layer theory. Two different representations of the entrainment zone, each of which has a different closure of the entrainment heat flux, are considered.

  4. Rheological Properties of Natural Subduction Zone Interface: Insights from "Digital" Griggs Experiments

    Science.gov (United States)

    Ioannidi, P. I.; Le Pourhiet, L.; Moreno, M.; Agard, P.; Oncken, O.; Angiboust, S.

    2017-12-01

    The physical nature of plate locking and its relation to surface deformation patterns at different time scales (e.g. GPS displacements during the seismic cycle) can be better understood by determining the rheological parameters of the subduction interface. However, since direct rheological measurements are not possible, finite element modelling helps to determine the effective rheological parameters of the subduction interface. We used the open source finite element code pTatin to create 2D models, starting with a homogeneous medium representing shearing at the subduction interface. We tested several boundary conditions that mimic simple shear and opted for the one that best describes the Grigg's type simple shear experiments. After examining different parameters, such as shearing velocity, temperature and viscosity, we added complexity to the geometry by including a second phase. This arises from field observations, where shear zone outcrops are often composites of multiple phases: stronger crustal blocks embedded within a sedimentary and/or serpentinized matrix have been reported for several exhumed subduction zones. We implemented a simplified model to simulate simple shearing of a two-phase medium in order to quantify the effect of heterogeneous rheology on stress and strain localization. Preliminary results show different strength in the models depending on the block-to-matrix ratio. We applied our method to outcrop scale block-in-matrix geometries and by sampling at different depths along exhumed former subduction interfaces, we expect to be able to provide effective friction and viscosity of a natural interface. In a next step, these effective parameters will be used as input into seismic cycle deformation models in an attempt to assess the possible signature of field geometries on the slip behaviour of the plate interface.

  5. Degree of saturation effect on the grout-soil interface shear strength of soil nailing

    Directory of Open Access Journals (Sweden)

    Wang Qiong

    2016-01-01

    Full Text Available In the grouted soil nailing system, the bonding strength of cement grout-soil interface offers the required resistance to maintain the stability of whole structure. In practice, soil nailing applications are often placed at unsaturated conditions, such as soil slopes, shallow foundations, retaining walls and pavement structures. In these cases, the water content in the soil nail zone may increase or decrease due to rain water or dry weather, and even cannot become saturated during their design service life. In this study, the effect of water content (degree of saturation on the shear strength of interface between cement grout and sand are experimentally investigated by means of direct shear test. Meanwhile the water retention curve was determined and interface microstructure was observed. Experimental results show that the shear strength of interface changes non-monotonously with degree of saturation when the interface was prepared, due to the non-monotonousness of the cohesiveness between soil particles. The less the cohesiveness between sand particles, the more grout was observed been penetrated into the voids, and thus the larger the interface shear stress.

  6. Shear thinning and shear thickening of a confined suspension of vesicles

    Science.gov (United States)

    Nait Ouhra, A.; Farutin, A.; Aouane, O.; Ez-Zahraouy, H.; Benyoussef, A.; Misbah, C.

    2018-01-01

    Widely regarded as an interesting model system for studying flow properties of blood, vesicles are closed membranes of phospholipids that mimic the cytoplasmic membranes of red blood cells. In this study we analyze the rheology of a suspension of vesicles in a confined geometry: the suspension, bound by two planar rigid walls on each side, is subject to a shear flow. Flow properties are then analyzed as a function of shear rate γ ˙, the concentration of the suspension ϕ , and the viscosity contrast λ =ηin/ηout , where ηin and ηout are the fluid viscosities of the inner and outer fluids, respectively. We find that the apparent (or effective viscosity) of the suspension exhibits both shear thinning (decreasing viscosity with shear rate) or shear thickening (increasing viscosity with shear rate) in the same concentration range. The shear thinning or thickening behaviors appear as subtle phenomena, dependant on viscosity contrast λ . We provide physical arguments on the origins of these behaviors.

  7. Early Paleozoic tectonic reactivation of the Shaoxing-Jiangshan fault zone: Structural and geochronological constraints from the Chencai domain, South China

    Science.gov (United States)

    Sun, Hanshen; Li, Jianhua; Zhang, Yueqiao; Dong, Shuwen; Xin, Yujia; Yu, Yingqi

    2018-05-01

    The Shaoxing-Jiangshan fault zone (SJFZ), as a fundamental Neoproterozoic block boundary that separates the Yangtze Block from the Cathaysia Block, is the key to understanding the evolution of South China from Neoproterozoic block amalgamation to early Paleozoic crustal reworking. New structural observations coupled with geochronological ages from the Chencai domain indicate that intense ductile deformation and metamorphism along the SJFZ occurred at ∼460-420 Ma, in response to the early Paleozoic orogeny in South China. To the east of the SJFZ, the deformation involves widespread generations of NE-striking foliation, intrafolial folds, and local development of sinistral-oblique shear zones. The shearing deformation occurred under amphibolite facies conditions at temperatures of >550 °C (locally even >650 °C). To the west of the SJFZ, the deformation corresponds to sinistral-oblique shearing along NE-striking, steep-dipping zones under greenschist facies conditions at temperatures of 400-500 °C. These deformation styles, as typical mid-crustal expressions of continental reworking, reflect tectonic reactivation of the pre-existing, deeply rooted Neoproterozoic block boundary in the early Paleozoic. We infer that the tectonic reactivation, possibly induced by oblique underthrusting of north Cathaysia, facilitated ductile shearing and burial metamorphic reactions, giving rise to the high-strain zones and high-grade metamorphic rocks. With respect to pre-existing mechanical weakness, our work highlights the role of tectonic reactivation of early structures in localizing later deformation before it propagates into yet undeformed domains.

  8. A new tribological experimental setup to study confined and sheared monolayers.

    Science.gov (United States)

    Fu, L; Favier, D; Charitat, T; Gauthier, C; Rubin, A

    2016-03-01

    We have developed an original experimental setup, coupling tribology, and velocimetry experiments together with a direct visualization of the contact. The significant interest of the setup is to measure simultaneously the apparent friction coefficient and the velocity of confined layers down to molecular scale. The major challenge of this experimental coupling is to catch information on a nanometer-thick sheared zone confined between a rigid spherical indenter of millimetric radius sliding on a flat surface at constant speed. In order to demonstrate the accuracy of this setup to investigate nanometer-scale sliding layers, we studied a model lipid monolayer deposited on glass slides. It shows that our experimental setup will, therefore, help to highlight the hydrodynamic of such sheared confined layers in lubrication, biolubrication, or friction on solid polymer.

  9. NUMERICAL SIMULATION OF AN AGRICULTURAL SOIL SHEAR STRESS TEST

    Directory of Open Access Journals (Sweden)

    Andrea Formato

    2007-03-01

    Full Text Available In this work a numerical simulation of agricultural soil shear stress tests was performed through soil shear strength data detected by a soil shearometer. We used a soil shearometer available on the market to measure soil shear stress and constructed special equipment that enabled automated detection of soil shear stress. It was connected to an acquisition data system that displayed and recorded soil shear stress during the full field tests. A soil shearometer unit was used to the in situ measurements of soil shear stress in full field conditions for different types of soils located on the right side of the Sele river, at a distance of about 1 km from each other, along the perpendicular to the Sele river in the direction of the sea. Full field tests using the shearometer unit were performed alongside considered soil characteristic parameter data collection. These parameter values derived from hydrostatic compression and triaxial tests performed on considered soil samples and repeated 4 times and we noticed that the difference between the maximum and minimum values detected for every set of performed tests never exceeded 4%. Full field shear tests were simulated by the Abaqus program code considering three different material models of soils normally used in the literature, the Mohr-Coulomb, Drucker-Prager and Cam-Clay models. We then compared all data outcomes obtained by numerical simulations with those from the experimental tests. We also discussed any further simulation data results obtained with different material models and selected the best material model for each considered soil to be used in tyre/soil contact simulation or in soil compaction studies.

  10. In vivo wall shear measurements within the developing zebrafish heart.

    Directory of Open Access Journals (Sweden)

    R Aidan Jamison

    Full Text Available Physical forces can influence the embryonic development of many tissues. Within the cardiovascular system shear forces resulting from blood flow are known to be one of the regulatory signals that shape the developing heart. A key challenge in investigating the role of shear forces in cardiac development is the ability to obtain shear force measurements in vivo. Utilising the zebrafish model system we have developed a methodology that allows the shear force within the developing embryonic heart to be determined. Accurate wall shear measurement requires two essential pieces of information; high-resolution velocity measurements near the heart wall and the location and orientation of the heart wall itself. We have applied high-speed brightfield imaging to capture time-lapse series of blood flow within the beating heart between 3 and 6 days post-fertilization. Cardiac-phase filtering is applied to these time-lapse images to remove the heart wall and other slow moving structures leaving only the red blood cell movement. Using particle image velocimetry to calculate the velocity of red blood cells in different regions within the heart, and using the signal-to-noise ratio of the cardiac-phase filtered images to determine the boundary of blood flow, and therefore the position of the heart wall, we have been able to generate the necessary information to measure wall shear in vivo. We describe the methodology required to measure shear in vivo and the application of this technique to the developing zebrafish heart. We identify a reduction in shear at the ventricular-bulbar valve between 3 and 6 days post-fertilization and demonstrate that the shear environment of the ventricle during systole is constantly developing towards a more uniform level.

  11. In vivo wall shear measurements within the developing zebrafish heart.

    Science.gov (United States)

    Jamison, R Aidan; Samarage, Chaminda R; Bryson-Richardson, Robert J; Fouras, Andreas

    2013-01-01

    Physical forces can influence the embryonic development of many tissues. Within the cardiovascular system shear forces resulting from blood flow are known to be one of the regulatory signals that shape the developing heart. A key challenge in investigating the role of shear forces in cardiac development is the ability to obtain shear force measurements in vivo. Utilising the zebrafish model system we have developed a methodology that allows the shear force within the developing embryonic heart to be determined. Accurate wall shear measurement requires two essential pieces of information; high-resolution velocity measurements near the heart wall and the location and orientation of the heart wall itself. We have applied high-speed brightfield imaging to capture time-lapse series of blood flow within the beating heart between 3 and 6 days post-fertilization. Cardiac-phase filtering is applied to these time-lapse images to remove the heart wall and other slow moving structures leaving only the red blood cell movement. Using particle image velocimetry to calculate the velocity of red blood cells in different regions within the heart, and using the signal-to-noise ratio of the cardiac-phase filtered images to determine the boundary of blood flow, and therefore the position of the heart wall, we have been able to generate the necessary information to measure wall shear in vivo. We describe the methodology required to measure shear in vivo and the application of this technique to the developing zebrafish heart. We identify a reduction in shear at the ventricular-bulbar valve between 3 and 6 days post-fertilization and demonstrate that the shear environment of the ventricle during systole is constantly developing towards a more uniform level.

  12. 2D micromechanical analysis of SiC/Al metal matrix composites under tensile, shear and combined tensile/shear loads

    DEFF Research Database (Denmark)

    Qing, Hai

    2013-01-01

    The influence of interface strength and loading conditions on the mechanical behavior of the metal-matrix composites is investigated in this paper. A program is developed to generate automatically 2D micromechanical Finite element (FE) models including interface, in which both the locations...... and dimensions of Silicon-Carbide (SiC) particles are randomly distributed. Finite element simulations of the deformation and damage evolution of SiC particle reinforced Aluminum (Al) alloy composite are carried out for different microstructures and interphase strengths under tensile, shear and combined tensile....../shear loads. 2D cohesive element is applied to describe the fracture and failure process of interphase, while the damage models based on maximum principal stress criterion and the stress triaxial indicator are developed within Abaqus/Standard Subroutine USDFLD to simulate the failure process of SiC particles...

  13. Numerical simulation of bubble induced shear in membrane bioreactors: effects of mixed liquor rheology and membrane configuration.

    Science.gov (United States)

    Liu, Xuefei; Wang, Yuan; Waite, T David; Leslie, Greg

    2015-05-15

    ferrous salts were added to the membrane filtration zone compared to addition to the primary anoxic zone. The presence of iron salts also improved the distribution of shear stress especially at the lower zone of the membrane module. The CFD models developed here were validated using Particle Image Velocimetry (PIV) with the average difference between simulated liquid velocities and PIV measured velocities found to be 5.5%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Geological and Geophysical Integration Regarding a Structural Evolution Modelling of a Suture Zone Controlled by a Cratonic Buttress - The Case of Dom Feliciano Orogenic Belt, SSE Brazil, Implications for Western Gondwana Assembly

    Science.gov (United States)

    Bruno, H.; Almeida, J.; Heilbron, M. C. P. L.; Salomão, M.

    2017-12-01

    The matters surrounding the amalgamation of tectonic blocks during the Brasiliano / Pan-African orogeny have been the main subject of study of several works in recent years. The main objective of this work is the hierarchy and discrimination of the boundaries between the known tectonic blocks, integrating geological and geophysical data. The geology of the study area is dominated by Precambrian terranes; Luís Alves Terrane, the vulcanosedimentary sequences of the Itajaí and Campo Alegre Basins, the metasedimentary sequences of the Brusque and Paranaguá Terranes and their granitic suites besides the granitoids of the Florianópolis Terrane. The shear zones and faults that separate these crustal blocks were developed during the Brasiliano / Pan-African orogenic cycle that led to the formation of the supercontinent Gondwana. These tectonic boundaries generally separate blocks of different rheology and crustal thickness. The integration of geological and geophysical data allowed the identification of important structural lineaments and crustal boundaries. The presented geodynamic model suggests that the suture between the block composed of the Brusque, Paranaguá and Florianópolis Terranes and the block composed by the Luís Alves Terrane is the Itajaí Perimbó Shear Zone, and not the Major Gercino Shear Zone as previously suggested. Considering the Itajaí Perimbó Shear Zone as the suture zone, the metassediments of the Brusque Terrane were deposited on the basement of the Florianópolis Terrane, hereby declared as part of the Angola Craton, and are correlated to the metassediments of the Paranaguá Terrane as a passive margin that in approximately ca. 650 My became active margin, functioning as a forearc basin. The oblique collision between the blocks would have occurred with the development of a dextral transpression in the Itajaí Perimbó Shear Zone, separating the Luís Alves Terrane from the Brusque Terrane, a sinistral transcurrence represented by the

  15. Animal models of surgically manipulated flow velocities to study shear stress-induced atherosclerosis.

    Science.gov (United States)

    Winkel, Leah C; Hoogendoorn, Ayla; Xing, Ruoyu; Wentzel, Jolanda J; Van der Heiden, Kim

    2015-07-01

    Atherosclerosis is a chronic inflammatory disease of the arterial tree that develops at predisposed sites, coinciding with locations that are exposed to low or oscillating shear stress. Manipulating flow velocity, and concomitantly shear stress, has proven adequate to promote endothelial activation and subsequent plaque formation in animals. In this article, we will give an overview of the animal models that have been designed to study the causal relationship between shear stress and atherosclerosis by surgically manipulating blood flow velocity profiles. These surgically manipulated models include arteriovenous fistulas, vascular grafts, arterial ligation, and perivascular devices. We review these models of manipulated blood flow velocity from an engineering and biological perspective, focusing on the shear stress profiles they induce and the vascular pathology that is observed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Do "Some" Enterprise Zones Create Jobs?

    Science.gov (United States)

    Kolko, Jed; Neumark, David

    2010-01-01

    We study how the employment effects of enterprise zones vary with their location, implementation, and administration, based on evidence from California. We use new establishment-level data and geographic mapping methods, coupled with a survey of enterprise zone administrators. Overall, the evidence indicates that enterprise zones do not increase…

  17. Lattice shear distortions in fluorite structure oxides

    International Nuclear Information System (INIS)

    Faber, J. Jr.; Mueller, M.H.; Hitterman, R.L.

    1979-01-01

    Crystallographic shear distortions have been observed in fluorite structure, single crystals of UO 2 and Zr(Ca)O 2 /sub-x/ by neutron-diffraction techniques. These distortions localize on the oxygen sublattice and do not require the presence of an external strain. The internal rearrangement mode in UO 2 is a transverse, zone boundary q vector = 2π/a (0.5, 0.0) deformation with amplitude 0.014 A. In Zr(Ca)O/sub 2-x/, the mode is a longitudinal, q vector = 2-/a (0,0,0.5) deformation with amplitude 0.23 A. Cation-anion elastic interactions dominate in selecting the nature of the internal distortion

  18. Space-time evolution of cataclasis in carbonate fault zones

    Science.gov (United States)

    Ferraro, Francesco; Grieco, Donato Stefano; Agosta, Fabrizio; Prosser, Giacomo

    2018-05-01

    The present contribution focuses on the micro-mechanisms associated to cataclasis of both calcite- and dolomite-rich fault rocks. This work combines field and laboratory data of carbonate fault cores currently exposed in central and southern Italy. By first deciphering the main fault rock textures, their spatial distribution, crosscutting relationships and multi-scale dimensional properties, the relative timing of Intragranular Extensional Fracturing (IEF), chipping, and localized shear is inferred. IEF was predominant within already fractured carbonates, forming coarse and angular rock fragments, and likely lasted for a longer period within the dolomitic fault rocks. Chipping occurred in both lithologies, and was activated by grain rolling forming minute, sub-rounded survivor grains embedded in a powder-like carbonate matrix. The largest fault zones, which crosscut either limestones or dolostones, were subjected to localized shear and, eventually, to flash temperature increase which caused thermal decomposition of calcite within narrow (cm-thick) slip zones. Results are organized in a synoptic panel including the main dimensional properties of survivor grains. Finally, a conceptual model of the time-dependent evolution of cataclastic deformation in carbonate rocks is proposed.

  19. Habitable Zones in the Universe

    OpenAIRE

    Gonzalez, G.

    2005-01-01

    Habitability varies dramatically with location and time in the universe. This was recognized centuries ago, but it was only in the last few decades that astronomers began to systematize the study of habitability. The introduction of the concept of the habitable zone was key to progress in this area. The habitable zone concept was first applied to the space around a star, now called the Circumstellar Habitable Zone. Recently, other, vastly broader, habitable zones have been proposed. We review...

  20. Preliminary earthquake locations in the Kenai Peninsula recorded by the MOOS Array and their relationship to structure in the 1964 great earthquake zone

    Science.gov (United States)

    Li, J.; Abers, G. A.; Christensen, D. H.; Kim, Y.; Calkins, J. A.

    2011-12-01

    Earthquakes in subduction zones are mostly generated at the interface between the subducting and overlying plates. In 2006-2009, the MOOS (Multidisciplinary Observations Of Subduction) seismic array was deployed around the Kenai Peninsula, Alaska, consisting of 34 broadband seismometers recording for 1-3 years. This region spans the eastern end of the Aleutian megathrust that ruptured in the 1964 Mw 9.2 great earthquake, the second largest recorded earthquake, and ongoing seismicity is abundant. Here, we report an initial analysis of seismicity recorded by MOOS, in the context of preliminary imaging. There were 16,462 events detected in one year from initial STA/LTA signal detections and subsequent event associations from the MOOS Array. We manually reviewed them to eliminate distant earthquakes and noise, leaving 11,879 local earthquakes. To refine this catalog, an adaptive auto-regressive onset estimation algorithm was applied, doubling the original dataset and producing 20,659 P picks and 22,999 S picks for one month (September 2007). Inspection shows that this approach lead to almost negligible false alarms and many more events than hand picking. Within the well-sampled part of the array, roughly 200 km by 300 km, we locate 250% more earthquakes for one month than the permanent network catalog, or 10 earthquakes per day on this patch of the megathrust. Although the preliminary locations of earthquakes still show some scatter, we can see a concentration of events in a ~20-km-wide belt, part of which can be interpreted as seismogenic thrust zone. In conjunction with the seismicity study, we are imaging the plate interface with receiver functions. The main seismicity zone corresponds to the top of a low-velocity layer imaged in receiver functions, nominally attributed to the top of the downgoing plate. As we refine velocity models and apply relative relocation algorithms, we expect to improve the precision of the locations substantially. When combined with image

  1. Closed form solution for the finite anti-plane shear field for a class of hyperelastic incompressible brittle solids

    Science.gov (United States)

    Stolz, Claude

    2010-12-01

    The equilibrium solution of a damaged zone in finite elasticity is given for a class of hyperelastic materials which does not suffer tension when a critical stretching value is reached. The study is made for a crack in anti-plane shear loading condition. The prescribed loading is that of linearized elastostatics conditions at infinity. The geometry of the damaged zone is found and the stationary propagation is discussed when the inertia terms can be neglected.

  2. 29 CFR 1910.307 - Hazardous (classified) locations.

    Science.gov (United States)

    2010-07-01

    ... equipment at the location. (c) Electrical installations. Equipment, wiring methods, and installations of... covers the requirements for electric equipment and wiring in locations that are classified depending on... provisions of this section. (4) Division and zone classification. In Class I locations, an installation must...

  3. Grimsel test site. Excavation disturbed zone experiment (EDZ)

    International Nuclear Information System (INIS)

    Frieg, B.; Blaser, P. C.; Adams, J.; Dollinger, H.; Kuhlmann, U.; Lanyon, G. W.

    2012-07-01

    The ‘Excavation Disturbed Zone (EDZ) Experiment’ was conducted at the Grimsel Test Site (GTS) in the framework of safety analysis of deep geological repositories for radioactive wastes. It concentrated on investigating the hydraulic regime of the near-field of drilled tunnel sections under fully saturated conditions, with the aim of contributing to the development of methods for measuring and modelling axial water flow along tunnels and caverns. The studies focused on the mechanical and hydraulic properties of the rock mass in the direct vicinity of the tunnel wall. The EDZ is defined as the zone around the tunnel where excavation has altered the rock properties. The selected test location was a tunnel section where mechanical stressing of the rock and some breakouts had been observed. In-situ stress measurements were performed in order to record the actual stress redistribution in the tunnel near-field induced by excavation of the tunnel. A small stress increase and microfissures could be identified in the tunnel near-field. The stress measurements and the results of the geological mapping formed the basis for the rock mechanical modelling of the EDZ. Two different models of the development and geometry of the EDZ were used: (a) the regional 3D stress field modelling indicated that the topography has a significant influence on the primary stress field; a good agreement between the measured and calculated stresses in the GTS was achieved by applying an additional far-field tectonic stress component; (b) with the local 2D numerical disturbed zone modelling of the tunnel section itself, stress redistributions, possible plastifications and joint behaviour were investigated; all displacements of the rock matrix and the shear displacements of the discontinuities seem to be the result of the tunnel excavation; maximum shear deformations of 2 - 5 mm occur at the tunnel wall. Prior to the hydraulic test phase, the test location was decoupled from the normal GTS tunnel

  4. Fuel conditioning facility zone-to-zone transfer administrative controls

    International Nuclear Information System (INIS)

    Pope, C. L.

    2000-01-01

    The administrative controls associated with transferring containers from one criticality hazard control zone to another in the Argonne National Laboratory (ANL) Fuel Conditioning Facility (FCF) are described. FCF, located at the ANL-West site near Idaho Falls, Idaho, is used to remotely process spent sodium bonded metallic fuel for disposition. The process involves nearly forty widely varying material forms and types, over fifty specific use container types, and over thirty distinct zones where work activities occur. During 1999, over five thousand transfers from one zone to another were conducted. Limits are placed on mass, material form and type, and container types for each zone. Ml material and containers are tracked using the Mass Tracking System (MTG). The MTG uses an Oracle database and numerous applications to manage the database. The database stores information specific to the process, including material composition and mass, container identification number and mass, transfer history, and the operators involved in each transfer. The process is controlled using written procedures which specify the zone, containers, and material involved in a task. Transferring a container from one zone to another is called a zone-to-zone transfer (ZZT). ZZTs consist of four distinct phases, select, request, identify, and completion

  5. Velocity Field of the McMurdo Shear Zone from Annual Three-Dimensional Ground Penetrating Radar Imaging and Crevasse Matching

    Science.gov (United States)

    Ray, L.; Jordan, M.; Arcone, S. A.; Kaluzienski, L. M.; Koons, P. O.; Lever, J.; Walker, B.; Hamilton, G. S.

    2017-12-01

    The McMurdo Shear Zone (MSZ) is a narrow, intensely crevassed strip tens of km long separating the Ross and McMurdo ice shelves (RIS and MIS) and an important pinning feature for the RIS. We derive local velocity fields within the MSZ from two consecutive annual ground penetrating radar (GPR) datasets that reveal complex firn and marine ice crevassing; no englacial features are evident. The datasets were acquired in 2014 and 2015 using robot-towed 400 MHz and 200 MHz GPR over a 5 km x 5.7 km grid. 100 west-to-east transects at 50 m spacing provide three-dimensional maps that reveal the length of many firn crevasses, and their year-to-year structural evolution. Hand labeling of crevasse cross sections near the MSZ western and eastern boundaries reveal matching firn and marine ice crevasses, and more complex and chaotic features between these boundaries. By matching crevasse features from year to year both on the eastern and western boundaries and within the chaotic region, marine ice crevasses along the western and eastern boundaries are shown to align directly with firn crevasses, and the local velocity field is estimated and compared with data from strain rate surveys and remote sensing. While remote sensing provides global velocity fields, crevasse matching indicates greater local complexity attributed to faulting, folding, and rotation.

  6. Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD

    Science.gov (United States)

    Morrow, Carolyn A.; Lockner, David A.; Hickman, Stephen H.

    2015-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) scientific drillhole near Parkfield, California crosses the San Andreas Fault at a depth of 2.7 km. Downhole measurements and analysis of core retrieved from Phase 3 drilling reveal two narrow, actively deforming zones of smectite-clay gouge within a roughly 200 m-wide fault damage zone of sandstones, siltstones and mudstones. Here we report electrical resistivity and permeability measurements on core samples from all of these structural units at effective confining pressures up to 120 MPa. Electrical resistivity (~10 ohm-m) and permeability (10-21 to 10-22 m2) in the actively deforming zones were one to two orders of magnitude lower than the surrounding damage zone material, consistent with broader-scale observations from the downhole resistivity and seismic velocity logs. The higher porosity of the clay gouge, 2 to 8 times greater than that in the damage zone rocks, along with surface conduction were the principal factors contributing to the observed low resistivities. The high percentage of fine-grained clay in the deforming zones also greatly reduced permeability to values low enough to create a barrier to fluid flow across the fault. Together, resistivity and permeability data can be used to assess the hydrogeologic characteristics of the fault, key to understanding fault structure and strength. The low resistivities and strength measurements of the SAFOD core are consistent with observations of low resistivity clays that are often found in the principal slip zones of other active faults making resistivity logs a valuable tool for identifying these zones.

  7. Geometry and subsidence history of the Dead Sea basin: A case for fluid-induced mid-crustal shear zone?

    Science.gov (United States)

    ten Brink, Uri S.; Flores, C.H.

    2012-01-01

    Pull-apart basins are narrow zones of crustal extension bounded by strike-slip faults that can serve as analogs to the early stages of crustal rifting. We use seismic tomography, 2-D ray tracing, gravity modeling, and subsidence analysis to study crustal extension of the Dead Sea basin (DSB), a large and long-lived pull-apart basin along the Dead Sea transform (DST). The basin gradually shallows southward for 50 km from the only significant transverse normal fault. Stratigraphic relationships there indicate basin elongation with time. The basin is deepest (8-8.5 km) and widest (???15 km) under the Lisan about 40 km north of the transverse fault. Farther north, basin depth is ambiguous, but is 3 km deep immediately north of the lake. The underlying pre-basin sedimentary layer thickens gradually from 2 to 3 km under the southern edge of the DSB to 3-4 km under the northern end of the lake and 5-6 km farther north. Crystalline basement is ???11 km deep under the deepest part of the basin. The upper crust under the basin has lower P wave velocity than in the surrounding regions, which is interpreted to reflect elevated pore fluids there. Within data resolution, the lower crust below ???18 km and the Moho are not affected by basin development. The subsidence rate was several hundreds of m/m.y. since the development of the DST ???17 Ma, similar to other basins along the DST, but subsidence rate has accelerated by an order of magnitude during the Pleistocene, which allowed the accumulation of 4 km of sediment. We propose that the rapid subsidence and perhaps elongation of the DSB are due to the development of inter-connected mid-crustal ductile shear zones caused by alteration of feldspar to muscovite in the presence of pore fluids. This alteration resulted in a significant strength decrease and viscous creep. We propose a similar cause to the enigmatic rapid subsidence of the North Sea at the onset the North Atlantic mantle plume. Thus, we propose that aqueous fluid flux

  8. Kinematics and 40Ar/ 39Ar geochronology of the Gaoligong and Chongshan shear systems, western Yunnan, China: Implications for early Oligocene tectonic extrusion of SE Asia

    Science.gov (United States)

    Wang, Yuejun; Fan, Weiming; Zhang, Yanhua; Peng, Touping; Chen, Xinyue; Xu, Yigang

    2006-06-01

    The Gaoligong and Chongshan shear systems (GLSS and CSSS) in western Yunnan, China, have similar tectonic significance to the Ailaoshan-Red River shear system (ASRRSS) during the Cenozoic tectonic development of the southeastern Tibetan syntaxis. To better understand their kinematics and the Cenozoic tectonic evolution of SE Asia, this paper presents new kinematic and 40Ar/ 39Ar geochronological data for these shear systems. All the structural and microstructural evidence indicate that the GLSS is a dextral strike-slip shear system while the CSSS is a sinistral strike-slip shear system, and both were developed under amphibolite- to greenschist-grade conditions. The 40Ar/ 39Ar dating of synkinematic minerals revealed that the strike-slip shearing on the GLSS and CSSS at least began at ˜ 32 Ma, possibly coeval with the onset of other major shear systems in SE Asia. The late-stage shearing on the GLSS and CSSS is dated at ˜ 27-29 Ma by the biotite 40Ar/ 39Ar ages, consistent with that of the Wang Chao shear zone (WCSZ), but ˜ 10 Ma earlier than that of the ASRRSS. The dextral Gaoligong shear zone within the GLSS may have separated the India plate from the Indochina Block during early Oligocene. Combined with other data in western Yunnan, we propose that the Baoshan/Southern Indochina Block escaped faster southeastward along the CSSS to the east and the GLSS to the west than the Northern Indochina Block along the ASRRSS, accompanying with the obliquely northward motion of the India plate during early Oligocene (28-36 Ma). During 28-17 Ma, the Northern Indochina Block was rotationally extruded along the ASRRSS relative to the South China Block as a result of continuously impinging of the India plate.

  9. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The paper deals with the shear strength of prestressed hollow-core slabs determined by the theory of plasticity. Two failure mechanisms are considered in order to derive the solutions.In the case of sliding failure in a diagonal crack, the shear strength is determined by means of the crack sliding...

  10. Physical properties of fault zone rocks from SAFOD: Tying logging data to high-pressure measurements on drill core

    Science.gov (United States)

    Jeppson, T.; Tobin, H. J.

    2013-12-01

    In the summer of 2005, Phase 2 of the San Andreas Fault Observatory at Depth (SAFOD) borehole was completed and logged with wireline tools including a dipole sonic tool to measure P- and S-wave velocities. A zone of anomalously low velocity was detected from 3150 to 3414 m measured depth (MD), corresponding with the subsurface location of the San Andreas Fault Zone (SAFZ). This low velocity zone is 5-30% slower than the surrounding host rock. Within this broad low-velocity zone, several slip surfaces were identified as well as two actively deforming shear zones: the southwest deformation zone (SDZ) and the central deformation zone (CDZ), located at 3192 and 3302 m MD, respectively. The SAFZ had also previously been identified as a low velocity zone in seismic velocity inversion models. The anomalously low velocity was hypothesized to result from either (a) brittle deformation in the damage zone of the fault, (b) high fluid pressures with in the fault zone, or (c) lithological variation, or a combination of the above. We measured P- and S-wave velocities at ultrasonic frequencies on saturated 2.5 cm diameter core plug samples taken from SAFOD core obtained in 2007 from within the low velocity zone. The resulting values fall into two distinct groups: foliated fault gouge and non-gouge. Samples of the foliated fault gouge have P-wave velocities between 2.3-3.5 km/s while non-gouge samples lie between 4.1-5.4 km/s over a range of effective pressures from 5-70 MPa. There is a good correlation between the log measurements and laboratory values of P-and S wave velocity at in situ pressure conditions especially for the foliated fault gouge. For non-gouge samples the laboratory values are approximately 0.08-0.73 km/s faster than the log values. This difference places the non-gouge velocities within the Great Valley siltstone velocity range, as measured by logs and ultrasonic measurements performed on outcrop samples. As a high fluid pressure zone was not encountered during

  11. Time-lapse electrical surveys to locate infiltration zones in weathered hard rock tropical areas

    Science.gov (United States)

    Wubda, M.; Descloitres, M.; Yalo, N.; Ribolzi, O.; Vouillamoz, J. M.; Boukari, M.; Hector, B.; Séguis, L.

    2017-07-01

    In West Africa, infiltration and groundwater recharge processes in hard rock areas are depending on climatic, surface and subsurface conditions, and are poorly documented. Part of the reason is that identification, location and monitoring of these processes is still a challenge. Here, we explore the potential for time-lapse electrical surveys to bring additional information on these processes for two different climate situations: a semi-arid Sahelian site (north of Burkina and a humid Sudanian site (north of Benin), respectively focusing on indirect (localized) and direct (diffuse) recharge processes. The methodology is based on surveys in dry season and rainy season on typical pond or gully using Electrical Resistivity Tomography (ERT) and frequency electromagnetic (FEM) apparent conductivity mapping. The results show that in the Sahelian zone an indirect recharge occurs as expected, but infiltration doesn't takes place at the center of the pond to the aquifer, but occurs laterally in the banks. In Sudanian zone, the ERT survey shows a direct recharge process as expected, but also a complicated behavior of groundwater dilution, as well as the role of hardpans for fast infiltration. These processes are ascertained by groundwater monitoring in adjacent observing wells. At last, FEM time lapse mapping is found to be difficult to quantitatively interpreted due to the non-uniqueness of the model, clearly evidenced comparing FEM result to auger holes monitoring. Finally, we found that time-lapse ERT can be an efficient way to track infiltration processes across ponds and gullies in both climatic conditions, the Sahelian setting providing results easier to interpret, due to significant resistivity contrasts between dry and rain seasons. Both methods can be used for efficient implementation of punctual sensors for complementary studies. However, FEM time-lapse mapping remains difficult to practice without external information that renders this method less attractive for

  12. Slip rate of the Calico fault: Implications for geologic versus geodetic rate discrepancy in the Eastern California Shear Zone

    Science.gov (United States)

    Oskin, Michael; Perg, Lesley; Blumentritt, Dylan; Mukhopadhyay, Sujoy; Iriondo, Alexander

    2007-03-01

    Long-term (105 years) fault slip rates test the scale of discrepancy between infrequent paleoseismicity and relatively rapid geodetic rates of dextral shear in the Eastern California Shear Zone (ECSZ). The Calico fault is one of a family of dextral faults that traverse the Mojave Desert portion of the ECSZ. Its slip rate is determined from matching and dating incised Pleistocene alluvial fan deposits and surfaces displaced by fault slip. A high-resolution topographic base acquired via airborne laser swath mapping aids in identification and mapping of deformed geomorphic features. The oldest geomorphically preserved alluvial fan, unit B, is displaced 900 ± 200 m from its source at Sheep Springs Wash in the northern Rodman Mountains. This fan deposit contains the first preserved occurrence of basalt clasts derived from the Pipkin lava field and overlies Quaternary conglomerate deposits lacking these clasts. The 40Ar/39Ar dating of two flows from this field yields consistent ages of 770 ± 40 ka and 735 ± 9 ka. An age of 650 ± 100 ka is assigned to this fan deposit based on these ages and on the oldest cosmogenic 3He exposure date of 653 ± 20 ka on a basalt boulder from the surface of unit B. This assigned age and offset together yield a mid-Pleistocene to present average slip rate of 1.4 ± 0.4 mm/yr. A younger fan surface, unit K, records 100 ± 10 m of dextral displacement and preserves original depositional morphology of its surface. Granitic boulders and pavement samples from this surface yield an average age of 56.4 ± 7.7 ka after taking into account minimal cosmogenic inheritance of granitic clasts. The displaced and dated K fans yield a slip rate of 1.8 ± 0.3 mm/yr. Distributed deformation of the region surrounding the fault trace, if active, could increase the overall displacement rate to 2.1 ± 0.5 mm/yr. Acceleration of slip rate from an average of 1.4 mm/yr prior to ˜50 ka to 1.8 mm/yr since ˜50 ka is possible, though a single time-averaged slip

  13. Test procedure for use of the shear vane in tanks 103-SY, 103-AN, and 103-AW

    International Nuclear Information System (INIS)

    LeClair, M.D.; Waters, E.

    1995-01-01

    This is a record copy of a test procedure for application of the full-scale shear vane to underground waste tanks at Hanford. The introduction of the report provides background information on the development and proof-testing of the shear vane, as well as information about its current location. The document was originally prepared in 1988, and the work as shelved temporarily for lack of funds. Activities to utilize the shear vane will be expedited by use of this information

  14. Numerical study on shear resisting mechanism for corroded RC box culverts

    International Nuclear Information System (INIS)

    Matsuo, Toyofumi; Matsumura, Takuro; Iwamori, Akiyuki

    2013-01-01

    This paper discusses the effects of reinforcing steel corrosion on the shear resisting mechanism of RC box culverts and the applicability of the material degradation model in a finite element method. First, in FEM analyses, loss of reinforcement section area and initial tension strain due to reinforcement corrosion, and deteriorated bond characteristics between reinforcement and concrete, were considered. Second, cyclic loading tests using full-scale corroded specimens were numerically analyzed. The analyzed crack patterns and load-displacement relationships up to the maximum load were observed to be in close agreement with the experiment results within the average corrosion ratio of 10% of primary reinforcement. The fact that corrosion cracks can importantly affect the progression of shear cracks and shear strength of RC beams was also found. On the other hand, we established that RC box culverts being statically indeterminate structures, sectional forces are redistributed after cracking damage, and local material deterioration has a minor effect on shear capacity. Furthermore, a parametric study was carried out for corroded RC box culverts using parameters such as size, steel corrosion location, and corrosion level. (author)

  15. Mapping Deep Low Velocity Zones in Alaskan Arctic Coastal Permafrost using Seismic Surface Waves

    Science.gov (United States)

    Dou, S.; Ajo Franklin, J. B.; Dreger, D. S.

    2012-12-01

    Surface Waves (MASW) suggests the existence of pronounced low shear wave velocity zones that span the depth range of 2 - 30 meters; this zone has shear velocity values comparable to partially thawed soils. Such features coincide with previous findings of very low electrical resistivity structure (as low as ~10 Ohm*m at some locations) from measurements obtained in the first NGEE-Arctic geophysical field campaign (conducted in the week of September 24 - October 1, 2011). These low shear velocity zones are likely representative of regions with high unfrozen water content and thus have important implications on the rate of microbial activity and the vulnerability of deep permafrost carbon pools. Analysis of this dataset required development of a novel inversion approach based on waveform inversion. The existence of multiple closely spaced Rayleigh wave modes made traditional inversion based on mode picking virtually impossible; As a result, we selected a direct misfit evaluation based on comparing dispersion images in the phase velocity/frequency domain. The misfit function was optimized using a global search algorithm, in this case Huyer and Neumaier's Multi Coordinate Search algorithm (MCS). This combination of MCS and waveform misfit allowed recovery of the low velocity region despite the existence of closely spaced modes.

  16. Collecting location-based voice messages on a TalkingBadge

    DEFF Research Database (Denmark)

    Hansen, John Paulin; Glenstrup, Arne John; Wusheng, Wang

    2012-01-01

    and specific enough to distinguish between zones located just 20 meters apart. Finally, we played digitized voice messages to 11 participants walking into a zone. They received most of the messages well, but a majority of their comments were negative, expressing concerns for the potential infringement...... of privacy. We conclude that location specific audio messaging works from a technical perspective, but requires careful consideration of social comfort....

  17. An analytical solution to assess the SH seismoelectric response of the vadose zone

    Science.gov (United States)

    Monachesi, L. B.; Zyserman, F. I.; Jouniaux, L.

    2018-03-01

    We derive an analytical solution of the seismoelectric conversions generated in the vadose zone, when this region is crossed by a pure shear horizontal (SH) wave. Seismoelectric conversions are induced by electrokinetic effects linked to relative motions between fluid and porous media. The considered model assumes a one-dimensional soil constituted by a single layer on top of a half space in contact at the water table, and a shearing force located at the earth's surface as the wave source. The water table is an interface expected to induce a seismoelectric interfacial response (IR). The top layer represents a porous rock which porous space is partially saturated by water and air, while the half-space is completely saturated with water, representing the saturated zone. The analytical expressions for the coseismic fields and the interface responses, both electric and magnetic, are derived by solving Pride's equations with proper boundary conditions. An approximate analytical expression of the solution is also obtained, which is very simple and applicable in a fairly broad set of situations. Hypothetical scenarios are proposed to study and analyse the dependence of the electromagnetic fields on various parameters of the medium. An analysis of the approximate solution is also made together with a comparison to the exact solution. The main result of the present analysis is that the amplitude of the interface response generated at the water table is found to be proportional to the jump in the electric current density, which in turn depends on the saturation contrast, poro-mechanical and electrical properties of the medium and on the amplitude of the solid displacement produced by the source. This result is in agreement with the one numerically obtained by the authors, which has been published in a recent work. We also predict the existence of an interface response located at the surface, and that the electric interface response is several orders of magnitude bigger than

  18. An analytical solution to assess the SH seismoelectric response of the vadose zone

    Science.gov (United States)

    Monachesi, L. B.; Zyserman, F. I.; Jouniaux, L.

    2018-06-01

    We derive an analytical solution of the seismoelectric conversions generated in the vadose zone, when this region is crossed by a pure shear horizontal (SH) wave. Seismoelectric conversions are induced by electrokinetic effects linked to relative motions between fluid and porous media. The considered model assumes a 1D soil constituted by a single layer on top of a half-space in contact at the water table, and a shearing force located at the earth's surface as the wave source. The water table is an interface expected to induce a seismoelectric interfacial response (IR). The top layer represents a porous rock in which porous space is partially saturated by water and air, while the half-space is completely saturated with water, representing the saturated zone. The analytical expressions for the coseismic fields and the interface responses, both electric and magnetic, are derived by solving Pride's equations with proper boundary conditions. An approximate analytical expression of the solution is also obtained, which is very simple and applicable in a fairly broad set of situations. Hypothetical scenarios are proposed to study and analyse the dependence of the electromagnetic fields on various parameters of the medium. An analysis of the approximate solution is also made together with a comparison to the exact solution. The main result of the present analysis is that the amplitude of the interface response generated at the water table is found to be proportional to the jump in the electric current density, which in turn depends on the saturation contrast, poro-mechanical and electrical properties of the medium and on the amplitude of the solid displacement produced by the source. This result is in agreement with the one numerically obtained by the authors, which has been published in a recent work. We also predict the existence of an interface response located at the surface, and that the electric interface response is several orders of magnitude bigger than the

  19. Correlation Between Intercritical Heat-Affected Zone and Type IV Creep Damage Zone in Grade 91 Steel

    Science.gov (United States)

    Wang, Yiyu; Kannan, Rangasayee; Li, Leijun

    2018-04-01

    A soft zone in Cr-Mo steel weldments has been reported to accompany the infamous Type IV cracking, the highly localized creep damage in the heat-affected zone of creep-resistant steels. However, the microstructural features and formation mechanism of this soft zone are not well understood. In this study, using microhardness profiling and microstructural verification, the initial soft zone in the as-welded condition was identified to be located in the intercritical heat-affected zone of P91 steel weldments. It has a mixed structure, consisting of Cr-rich re-austenitized prior austenite grains and fine Cr-depleted, tempered martensite grains retained from the base metal. The presence of these further-tempered retained grains, originating from the base metal, is directly responsible for the hardness reduction of the identified soft zone in the as-welded condition. The identified soft zone exhibits a high location consistency at three thermal stages. Local chemistry analysis and thermodynamic calculation show that the lower chromium concentrations inside these retained grains thermodynamically decrease their potentials for austenitic transformation during welding. Heterogeneous grain growth is observed in the soft zone during postweld heat treatment. The mismatch of strengths between the weak Cr-depleted grains and strong Cr-rich grains enhances the creep damage. Local deformation of the weaker Cr-depleted grains accelerates the formation of creep cavities.

  20. IR thermographic observation and shear bands plasticity analysis in Fe-based metallic glass

    International Nuclear Information System (INIS)

    Bouzakher, B.; Benameur, T.; Sidhom, H.

    2009-01-01

    Infrared thermography observation and in situ atomic force microscopy characterization were carried out to investigate the mechanical damage processes at the edge-notch region of large ribbons of Fe 78 Si 10 B 12 metallic glass. An obvious thermoelastic and inelastic degradation phenomenon was observed ahead at the notched region of the specimens, which probably result from free volume accumulation process and shear band activity during plane stress solicitations. Moreover, AFM topographic and frictional analysis of changes in the crack path during stable crack propagation regime revealed a periodic morphology evolution, formation of nanoscale damage cavity in the range of 20-140 nm and a maximum temperature rise ahead of the pre-crack tip was found in the order of 1.5 deg. C. The nanometer scaled shear offset, discreteness and shear bands density were determined. While these key parameters play a role in observing a large plastic zone in front of the crack, however they are unable to explain the distinct intrinsic ductility of some monolithic metallic glasses. A general Mohr-Coulomb-type constitutive description was used to deduce analytic expressions for prediction of the variation of hydrostatic component of the applied stress to the shear stress ratio as function of Poisson's ratio.

  1. Effects of biaxial oscillatory shear stress on endothelial cell proliferation and morphology.

    Science.gov (United States)

    Chakraborty, Amlan; Chakraborty, Sutirtha; Jala, Venkatakrishna R; Haribabu, Bodduluri; Sharp, M Keith; Berson, R Eric

    2012-03-01

    Wall shear stress (WSS) on anchored cells affects their responses, including cell proliferation and morphology. In this study, the effects of the directionality of pulsatile WSS on endothelial cell proliferation and morphology were investigated for cells grown in a Petri dish orbiting on a shaker platform. Time and location dependent WSS was determined by computational fluid dynamics (CFD). At low orbital speed (50 rpm), WSS was shown to be uniform (0-1 dyne/cm(2)) across the bottom of the dish, while at higher orbital speed (100 and 150 rpm), WSS remained fairly uniform near the center and fluctuated significantly (0-9 dyne/cm(2)) near the side walls of the dish. Since WSS on the bottom of the dish is two-dimensional, a new directional oscillatory shear index (DOSI) was developed to quantify the directionality of oscillating shear. DOSI approached zero for biaxial oscillatory shear of equal magnitudes near the center and approached one for uniaxial pulsatile shear near the wall, where large tangential WSS dominated a much smaller radial component. Near the center (low DOSI), more, smaller and less elongated cells grew, whereas larger cells with greater elongation were observed in the more uniaxial oscillatory shear (high DOSI) near the periphery of the dish. Further, cells aligned with the direction of the largest component of shear but were randomly oriented in low magnitude biaxial shear. Statistical analyses of the individual and interacting effects of multiple factors (DOSI, shear magnitudes and orbital speeds) showed that DOSI significantly affected all the responses, indicating that directionality is an important determinant of cellular responses. Copyright © 2011 Wiley Periodicals, Inc.

  2. In vitro shear stress measurements using particle image velocimetry in a family of carotid artery models: effect of stenosis severity, plaque eccentricity, and ulceration.

    Directory of Open Access Journals (Sweden)

    Sarah Kefayati

    Full Text Available Atherosclerotic disease, and the subsequent complications of thrombosis and plaque rupture, has been associated with local shear stress. In the diseased carotid artery, local variations in shear stress are induced by various geometrical features of the stenotic plaque. Greater stenosis severity, plaque eccentricity (symmetry and plaque ulceration have been associated with increased risk of cerebrovascular events based on clinical trial studies. Using particle image velocimetry, the levels and patterns of shear stress (derived from both laminar and turbulent phases were studied for a family of eight matched-geometry models incorporating independently varied plaque features - i.e. stenosis severity up to 70%, one of two forms of plaque eccentricity, and the presence of plaque ulceration. The level of laminar (ensemble-averaged shear stress increased with increasing stenosis severity resulting in 2-16 Pa for free shear stress (FSS and approximately double (4-36 Pa for wall shear stress (WSS. Independent of stenosis severity, marked differences were found in the distribution and extent of shear stress between the concentric and eccentric plaque formations. The maximum WSS, found at the apex of the stenosis, decayed significantly steeper along the outer wall of an eccentric model compared to the concentric counterpart, with a 70% eccentric stenosis having 249% steeper decay coinciding with the large outer-wall recirculation zone. The presence of ulceration (in a 50% eccentric plaque resulted in both elevated FSS and WSS levels that were sustained longer (∼20 ms through the systolic phase compared to the non-ulcerated counterpart model, among other notable differences. Reynolds (turbulent shear stress, elevated around the point of distal jet detachment, became prominent during the systolic deceleration phase and was widely distributed over the large recirculation zone in the eccentric stenoses.

  3. Comparison of shear-wave velocity measurements by crosshole, downhole and seismic cone penetration test methods

    Energy Technology Data Exchange (ETDEWEB)

    Suthaker, N.; Tweedie, R. [Thurber Engineering Ltd., Edmonton, AB (Canada)

    2009-07-01

    Shear wave velocity measurements are an integral part of geotechnical studies for major structures and are an important tool in their design for site specific conditions such as site-specific earthquake response. This paper reported on a study in which shear wave velocities were measured at a proposed petrochemical plant site near Edmonton, Alberta. The proposed site is underlain by lacustrine clay, glacial till and upper Cretaceous clay shale and sandstone bedrock. The most commonly used methods for determining shear wave velocity include crosshole seismic tests, downhole seismic tests, and seismic cone penetration tests (SCPT). This paper presented the results of all 3 methods used in this study and provided a comparison of the various test methods and their limitations. The crosshole test results demonstrated a common trend of increasing shear wave velocity with depth to about 15 m, below which the velocities remained relatively constant. An anomaly was noted at one site, where the shear wave velocity was reduced at a zone corresponding to clay till containing stiff high plastic clay layers. The field study demonstrated that reasonable agreement in shear wave velocity measurements can be made using crosshole, downhole and seismic tests in the same soil conditions. The National Building Code states that the shear wave velocity is the fundamental method for determining site classification, thus emphasizing the importance of obtaining shear wave velocity measurements for site classification. It was concluded that an SCPT program can be incorporated into the field program without much increase in cost and can be supplemented by downhole or crosshole techniques. 5 refs., 2 tabs., 10 figs.

  4. Separate structure of two branches of sheared slab ηi mode and effects of plasma rotation shear in weak magnetic shear region

    International Nuclear Information System (INIS)

    Jiquan Li; Kishimoto, Y.; Tuda, T.

    2000-01-01

    The separate structure of two branches of the sheared slab η i mode near the minimum-q magnetic surface is analysed and the effects of plasma rotation shears are considered in the weak magnetic shear region. Results show that the separation condition depends on the non-monotonous q profile and the deviation of rational surface from the minimum-q surface. Furthermore, it is found that the diamagnetic rotation shear may suppress the perturbation of the sheared slab η i mode at one side of the minimum-q surface, the poloidal rotation shear from the sheared E-vector x B-vector flow has a similar role to the slab mode structure when it possesses a direction same as the diamagnetic shear. A plausible interrelation between the separate structures of the two branches of the sheared slab mode and the discontinuity or gap of the radially global structure of the drift wave near the minimum-q surface observed in the toroidal particle simulation (Kishimoto Y et al 1998 Plasma Phys. Control. Fusion 40 A663) is discussed. It seems to support such a viewpoint: the double or/and global branches of the sheared slab η i mode near the minimum-q surface may become a bridge to connect the radially global structures of the drift wave at two sides of the minimum-q surface and the discontinuity may originate from the separate structures of these slab modes for a flatter q profile. (author)

  5. On some aspects of the stratigraphy, depositional environment and its bearing on uranium mineralisation in parts of the Singhbhum shear zone, Bihar

    International Nuclear Information System (INIS)

    Virnave, S.N.; Mukhopadhyay, T.K.; Krishnabadri, N.S.R.

    1994-01-01

    A review of the geology and controls of uranium mineralisation in the Singhbhum Shear Zone between Narwapahar (Lat. 22deg44'N; Long. 86deg15'E) in the west, to Ghatsila (Lat. 22deg25'N; Long. 86deg20'E) in the southeast and up to Dalmas in the north is presented in the light of new data based on facies analysis and palaeo-current studies on the conglomerate and associated meta-sediments in the area. Synthesis and integration of geologic data have led to the following conclusions: a) The facies variation and its distribution pattern in the area demonstrate fluviatile conditions of deposition with upward fining and thinning sequences b) The sedimentary sequence shows progressive younging towards north without any obvious break or juxta-position of the older over the younger. c) The nature of Jaduguda sedimentary facies assemblage is indicative of a fluvial fan with conglomerate gray-wacke-arenite assemblage representing proximal fan facies. On the basis of facies model, the area north of Subarnarekha river represents a meandering fluvial pattern. d) Uranium mineralisation is distinctly stratabound with characteristic facies association. (author). 13 refs., 11 figs., 3 tabs

  6. Locations of cerebral infarctions in tuberculous meningitis

    International Nuclear Information System (INIS)

    Hsieh, F.Y.; Chia, L.G.; Shen, W.C.

    1992-01-01

    The locations of cerebral infarctions were studied in 14 patients with tuberculous meningitis (TBM) and 173 patients with noninflammatory ischemic stroke (IS). In patients with TBM, 75% of infarctions occurred in the 'TB zone' supplied by medial striate and thalamoperforating arteries; only 11% occurred in the 'IS zone' supplied by lateral striate, anterior choroidal and thalamogeniculate arteries. In patients with IS, 29% of infarctions occurred in the IS zone, 29% in the subcortical white matter, and 24% in (or involving) the cerebral cortex. Only 11% occurred in the TB zone. Bilaterally symmetrical infarctions of the TB zone were common with TBM (71%) but rare with IS (5%). (orig.)

  7. Environmental zoning of a forest Pacific reserve zone located in Cordoba department, colombian Caribe

    International Nuclear Information System (INIS)

    Henao Sarmiento, Jesus Eugenio; Cardenas Torres, Miguel Andres; Fajardo Patino, Alirio

    2008-01-01

    This work includes the completion of a proposed zoning of the Zona de Reserva Forestal del Pacifico (ZRFP) in jurisdiction of the department of Cordoba, which has allowed to establish the managing trends of the natural resources that have been implemented in the municipalities of Tierralta and Valencia, where the uses of the territory have opposite characteristics with the reason of being of these lands, that were originally mainly forest areas and reserves for providing useful wood resources, as well as protective areas, that might reach in the growth of the economy of the country. The offers of zoning use of the soils by vocation and occupation proposed by the Instituto Geografico Agustin Codazzi IGAC (2002) were analyzed in detail; these are the technical foundation for the subtractions, according to the Law 2 of 1959. The work of biotic characterization focuses in the forest refuges that shelter great biodiversity wealth for the region and the department. The results of the characterization and evaluation show that there is a significant deterioration of ecosystems and ecological communities of the territory because of multiple actions performed by man along history, which, besides exploiting the environmental offer, contravene in some extensions the natural vocation of the soils. Therefore, it's important to put in consideration that given the intensity of the width and lengthwise interventions realized in the ZRFP, nowadays only some areas of natural forest remain, especially in the buffer area of the Paramillo National Park and in mountain areas bordering the department of Antioquia, which demands immediate actions of preservation and restoration.

  8. Shear-controlled evolution of the Red Sea: pull apart model

    Science.gov (United States)

    Makris, J.; Rihm, R.

    1991-11-01

    Results of seismic and other geophysical investigations suggest that strike-slip processes controlled the break-up of the Arabian plate from Africa and initiated the Red Sea Rift. Early oceanisation was facilitated by nucleation of pull apart basins and massive intrusives. The evolution of the Red Sea has gone through different stages. It was a zone of structural weakness already during the Pan-African orogeny approximately 600 Ma. A major reactivation, however, that gradually led to the present-day configuration was initiated during the late Oligocene with intense magmatic activity and the development of a continental rift. Wrench faulting played a key role in the early evolution of the Red Sea, as it shaped most of its western flank as a sharp plate boundary and resulted in the generation and rapid oceanisation of linearly arranged pull apart basins. Spatial distribution of these basins reflects the geometry of the strike-slip zone, which was controlled by pre-existing fault systems like the Najd Shear System, the Central African Fault Zone or the Onib-Hamisana and Baraka suture zones. Strike-slip motion along the latter zones of weakness influenced mainly the Egyptian and Sudanese coastal areas. Arabia was therefore separated from Africa by oceanisation in those regions, where pull apart basins developed. They were still connected in the in-between segments by stretched continental crust. With Arabia as the "moving" and Africa as the "stable" plate the eastern Red Sea flank was formed by pure shear through stretching, thinning and diffuse extension. As a consequence, the eastern and western flanks of the Red Sea are asymmetrical. The acceleration of the movement of Arabia in early/middle Miocene could no longer be accommodated by the opening in the Gulf of Suez and consequently the Dead Sea strike-slip fault developed approximately 14 Ma ago. Since plate motion was still oblique to the major structural trends, the pull apart evolution on the western flank

  9. Isotropic events observed with a borehole array in the Chelungpu fault zone, Taiwan.

    Science.gov (United States)

    Ma, Kuo-Fong; Lin, Yen-Yu; Lee, Shiann-Jong; Mori, Jim; Brodsky, Emily E

    2012-07-27

    Shear failure is the dominant mode of earthquake-causing rock failure along faults. High fluid pressure can also potentially induce rock failure by opening cavities and cracks, but an active example of this process has not been directly observed in a fault zone. Using borehole array data collected along the low-stress Chelungpu fault zone, Taiwan, we observed several small seismic events (I-type events) in a fluid-rich permeable zone directly below the impermeable slip zone of the 1999 moment magnitude 7.6 Chi-Chi earthquake. Modeling of the events suggests an isotropic, nonshear source mechanism likely associated with natural hydraulic fractures. These seismic events may be associated with the formation of veins and other fluid features often observed in rocks surrounding fault zones and may be similar to artificially induced hydraulic fracturing.

  10. Structural analysis of the Hasan-Robat marbles as traces of folded basement in the Sanandaj-Sirjan Zone, Iran

    Science.gov (United States)

    Nadimi, Alireza

    2015-11-01

    Cherty marbles of Hasan-Robat area, northwest of Isfahan, in the Sanandaj-Sirjan Zone of Iran preserves evidences of multiple deformational events. The Sanandaj-Sirjan Zone is the inner crystalline zone of the Zagros Orogen, which has been highly deformed and exhumed during continental collision between the Arabian Plate and Central Iran. The Hasan-Robat area is an example of the exposed Precambrian-Paleozoic basement rocks that stretched along two NW-SE-trending faults and located in the inner part of the HasanRobat positive flower strcuture. The Hasan-Robat marbles record a complex shortening and shearing history. This lead to the development of disharmonic ptygmatic folds with vertical to sub-vertical axes and some interference patterns of folding that may have been created from deformations during the Pan-African Orogeny and later phases. Based on this research, tectonic evolution of the Hasan-Robat area is interpreted as the product of three major geotectonic events that have been started after Precambrian to Quaternary: (1) old deformation phases (2) contractional movements and (3) strike-slip movements. Different sets and distributions of joints, faults and folds are confirmed with effect of several deformational stages of the area and formation of the flower structure.

  11. Quantification of Fault-Zone Plasticity Effects with Spontaneous Rupture Simulations

    Science.gov (United States)

    Roten, D.; Olsen, K. B.; Day, S. M.; Cui, Y.

    2017-09-01

    Previous studies have shown that plastic yielding in crustal rocks in the fault zone may impose a physical limit to extreme ground motions. We explore the effects of fault-zone non-linearity on peak ground velocities (PGVs) by simulating a suite of surface-rupturing strike-slip earthquakes in a medium governed by Drucker-Prager plasticity using the AWP-ODC finite-difference code. Our simulations cover magnitudes ranging from 6.5 to 8.0, three different rock strength models, and average stress drops of 3.5 and 7.0 MPa, with a maximum frequency of 1 Hz and a minimum shear-wave velocity of 500 m/s. Friction angles and cohesions in our rock models are based on strength criteria which are frequently used for fractured rock masses in civil and mining engineering. For an average stress drop of 3.5 MPa, plastic yielding reduces near-fault PGVs by 15-30% in pre-fractured, low strength rock, but less than 1% in massive, high-quality rock. These reductions are almost insensitive to magnitude. If the stress drop is doubled, plasticity reduces near-fault PGVs by 38-45% and 5-15% in rocks of low and high strength, respectively. Because non-linearity reduces slip rates and static slip near the surface, plasticity acts in addition to, and may partially be emulated by, a shallow velocity-strengthening layer. The effects of plasticity are exacerbated if a fault damage zone with reduced shear-wave velocities and reduced rock strength is present. In the linear case, fault-zone trapped waves result in higher near-surface peak slip rates and ground velocities compared to simulations without a low-velocity zone. These amplifications are balanced out by fault-zone plasticity if rocks in the damage zone exhibit low-to-moderate strength throughout the depth extent of the low-velocity zone (˜5 km). We also perform dynamic non-linear simulations of a high stress drop (8 MPa) M 7.8 earthquake rupturing the southern San Andreas fault along 250 km from Indio to Lake Hughes. Non-linearity in the

  12. Magnetic Data Interpretation for the Source-Edge Locations in Parts of the Tectonically Active Transition Zone of the Narmada-Son Lineament in Central India

    Science.gov (United States)

    Ghosh, G. K.

    2016-02-01

    The study has been carried out in the transition zone of the Narmada-Son lineament (NSL) which is seismically active with various geological complexities, upwarp movement of the mantle material into the crust through fault, fractures lamination and upwelling. NSL is one of the most prominent lineaments in central India after the Himalaya in the Indian geology. The area of investigation extends from longitude 80.25°E to 81.50°E and latitude 23.50°N to 24.37°N in the central part of the Indian continent. Different types of subsurface geological formations viz. alluvial, Gondwana, Deccan traps, Vindhyan, Mahakoshal, Granite and Gneisses groups exist in this area with varying geological ages. In this study area tectonic movement and crustal variation have been taken place during the past time and which might be reason for the variation of magnetic field. Magnetic anomaly suggests that the area has been highly disturbed which causes the Narmada-Son lineament trending in the ENE-WSW direction. Magnetic anomaly variation has been taken place due to the lithological variations subject to the changes in the geological contacts like thrusts and faults in this area. Shallow and deeper sources have been distinguished using frequency domain analysis by applying different filters. To enhance the magnetic data, various types of derivatives to identify the source-edge locations of the causative source bodies. The present study carried out the interpretation using total horizontal derivative, tilt angle derivative, horizontal tilt angle derivative and Cos (θ) derivative map to get source-edge locations. The results derived from various derivatives of magnetic data have been compared with the basement depth solutions calculated from 3D Euler deconvolution. It is suggested that total horizontal derivative, tilt angle derivative and Cos (θ) derivative are the most useful tools for identifying the multiple source edge locations of the causative bodies in this tectonically active

  13. Reversed shear Alfven eigenmode stabilization by localized electron cyclotron heating

    Energy Technology Data Exchange (ETDEWEB)

    Van Zeeland, M A; Hyatt, A W; Lohr, J; Petty, C C [General Atomics, PO Box 85608 San Diego, CA 92186-5608 (United States); Heidbrink, W W [University of California-Irvine, Irvine, CA 92697 (United States); Nazikian, R; Solomon, W M; Gorelenkov, N N; Kramer, G J [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Austin, M E [University of Texas-Austin, Austin, TX 78712 (United States); Berk, H L [Institute for Fusion Studies, University of Texas at Austin, Austin, TX 78712 (United States); Holcomb, C T; Makowski, M A [Lawrence Livermore National Laboratory, Livermore, CA (United States); McKee, G R [University of Wisconsin-Madison, Madison, WI 53726 (United States); Sharapov, S E [Euratom/UKAEA Fusion Association, Culham, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Rhodes, T L [University of California-Los Angeles, Los Angeles, California, 90095 (United States)], E-mail: vanzeeland@fusion.gat.com

    2008-03-15

    Reversed shear Alfven eigenmode (RSAE) activity in DIII-D is stabilized by electron cyclotron heating (ECH) applied near the minimum of the magnetic safety factor (q{sub min}) in neutral beam heated discharges with reversed-magnetic shear. The degree of RSAE stabilization, fast ion density and the volume averaged neutron production (S{sub n}) are highly dependent on ECH deposition location relative to q{sub min}. While discharges with ECH stabilization of RSAEs have higher S{sub n} and more peaked fast ion profiles than discharges with significant RSAE activity, neutron production remains strongly reduced (up to 60% relative to TRANSP predictions assuming classical fast ion transport) even when RSAEs are stabilized.

  14. Earthquake location in island arcs

    Science.gov (United States)

    Engdahl, E.R.; Dewey, J.W.; Fujita, K.

    1982-01-01

    A comprehensive data set of selected teleseismic P-wave arrivals and local-network P- and S-wave arrivals from large earthquakes occurring at all depths within a small section of the central Aleutians is used to examine the general problem of earthquake location in island arcs. Reference hypocenters for this special data set are determined for shallow earthquakes from local-network data and for deep earthquakes from combined local and teleseismic data by joint inversion for structure and location. The high-velocity lithospheric slab beneath the central Aleutians may displace hypocenters that are located using spherically symmetric Earth models; the amount of displacement depends on the position of the earthquakes with respect to the slab and on whether local or teleseismic data are used to locate the earthquakes. Hypocenters for trench and intermediate-depth events appear to be minimally biased by the effects of slab structure on rays to teleseismic stations. However, locations of intermediate-depth events based on only local data are systematically displaced southwards, the magnitude of the displacement being proportional to depth. Shallow-focus events along the main thrust zone, although well located using only local-network data, are severely shifted northwards and deeper, with displacements as large as 50 km, by slab effects on teleseismic travel times. Hypocenters determined by a method that utilizes seismic ray tracing through a three-dimensional velocity model of the subduction zone, derived by thermal modeling, are compared to results obtained by the method of joint hypocenter determination (JHD) that formally assumes a laterally homogeneous velocity model over the source region and treats all raypath anomalies as constant station corrections to the travel-time curve. The ray-tracing method has the theoretical advantage that it accounts for variations in travel-time anomalies within a group of events distributed over a sizable region of a dipping, high

  15. 3D modelling of plug failure in resistance spot welded shear-lab specimens (DP600-steel)

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2008-01-01

    are based on uni-axial tensile testing of the basis material, while the modelled tensile response of the shear-lab specimens is compared to experimental results for the case of a ductile failure near the heat affected zone (HAZ). A parametric study for a range of weld diameters is carried out, which makes......Ductile plug failure of resistance spot welded shear-lab specimens is studied by full 3D finite element analysis, using an elastic-viscoplastic constitutive relation that accounts for nucleation and growth of microvoids to coalescence (The Gurson model). Tensile properties and damage parameters...... it possible to numerically relate the weld diameter to the tensile shear force (TSF) and the associated displacement, u (TSF) , respectively. Main focus in the paper is on modelling the localization of plastic flow and the corresponding damage development in the vicinity of the spot weld, near the HAZ...

  16. Superswollen microemulsions stabilized by shear and trapped by a temperature quench.

    Science.gov (United States)

    Roger, Kevin; Olsson, Ulf; Zackrisson-Oskolkova, Malin; Lindner, Peter; Cabane, Bernard

    2011-09-06

    We studied the solubilization of oil in the C(16)E(8)/hexadecane/H(2)O system. Close to the phase inversion temperature (PIT), the system, at equilibrium, can form either homogeneous states (i.e., microemulsions) at high surfactant concentrations or three-phase states at lower concentrations. We show that, under gentle shear, at a line we named the clearing boundary (CB), located a few degrees below the PIT, the system is homogeneous regardless of the surfactant concentration. We relate this shift of the microemulsion boundary to shear-induced disruption of the asymmetric bicontinuous structure. Although this state quickly relaxes to equilibrium when shear is stopped, we show that it is still possible to trap it into a metastable state through a temperature quench. This method is the sub-PIT emulsification that we described in a previous work (Roger Langmuir 2010, 26, 3860-3867). © 2011 American Chemical Society

  17. Shearing-induced asymmetry in entorhinal grid cells.

    Science.gov (United States)

    Stensola, Tor; Stensola, Hanne; Moser, May-Britt; Moser, Edvard I

    2015-02-12

    Grid cells are neurons with periodic spatial receptive fields (grids) that tile two-dimensional space in a hexagonal pattern. To provide useful information about location, grids must be stably anchored to an external reference frame. The mechanisms underlying this anchoring process have remained elusive. Here we show in differently sized familiar square enclosures that the axes of the grids are offset from the walls by an angle that minimizes symmetry with the borders of the environment. This rotational offset is invariably accompanied by an elliptic distortion of the grid pattern. Reversing the ellipticity analytically by a shearing transformation removes the angular offset. This, together with the near-absence of rotation in novel environments, suggests that the rotation emerges through non-coaxial strain as a function of experience. The systematic relationship between rotation and distortion of the grid pattern points to shear forces arising from anchoring to specific geometric reference points as key elements of the mechanism for alignment of grid patterns to the external world.

  18. Representing Sheared Convective Boundary Layer by Zeroth- and First-Order-Jump Mixed-Layer Models: Large-Eddy Simulation Verification

    NARCIS (Netherlands)

    Pino, D.; Vilà-Guerau de Arellano, J.; Kim, S.W.

    2006-01-01

    Dry convective boundary layers characterized by a significant wind shear on the surface and at the inversion are studied by means of the mixed-layer theory. Two different representations of the entrainment zone, each of which has a different closure of the entrainment heat flux, are considered. The

  19. Shear-induced Fracture Slip and Permeability Change. Implications for Long-term Performance of a Deep Geological Repository

    International Nuclear Information System (INIS)

    Min, Ki-Bok; Stephansson, Ove

    2009-03-01

    Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in jointed rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this project are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. The first part of the study is about the evolution of thermal stresses in the rock during the lifetime of the repository. Critical sections of heat generated stresses around the repository are selected and classified. Fracture data from Forsmark is used to establish fracture network models (DFN) and the models are subjected to the sum of virgin stress and thermal stresses and the shear slip and related permeability change are studied. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the corners of the repository. In the

  20. Shear-induced Fracture Slip and Permeability Change. Implications for Long-term Performance of a Deep Geological Repository

    Energy Technology Data Exchange (ETDEWEB)

    Min, Ki-Bok (School of Civil, Environmental and Mining Engineering, Univ. of Adelaide, Adelaide (Australia)); Stephansson, Ove (Steph Rock Consulting AB, Berlin (Germany))

    2009-03-15

    Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in jointed rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this project are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. The first part of the study is about the evolution of thermal stresses in the rock during the lifetime of the repository. Critical sections of heat generated stresses around the repository are selected and classified. Fracture data from Forsmark is used to establish fracture network models (DFN) and the models are subjected to the sum of virgin stress and thermal stresses and the shear slip and related permeability change are studied. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the corners of the repository. In the

  1. Scientific drilling into the San Andreas Fault Zone - an overview of SAFOD's first five years

    Science.gov (United States)

    Zoback, Mark; Hickman, Stephen; Ellsworth, William; ,

    2011-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) was drilled to study the physical and chemical processes controlling faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD is located near Parkfield, California and penetrates a section of the fault that is moving due to a combination of repeating microearthquakes and fault creep. Geophysical logs define the San Andreas Fault Zone to be relatively broad (~200 m), containing several discrete zones only 2–3 m wide that exhibit very low P- and S-wave velocities and low resistivity. Two of these zones have progressively deformed the cemented casing at measured depths of 3192 m and 3302 m. Cores from both deforming zones contain a pervasively sheared, cohesionless, foliated fault gouge that coincides with casing deformation and explains the observed extremely low seismic velocities and resistivity. These cores are being now extensively tested in laboratories around the world, and their composition, deformation mechanisms, physical properties, and rheological behavior are studied. Downhole measurements show that within 200 m (maximum) of the active fault trace, the direction of maximum horizontal stress remains at a high angle to the San Andreas Fault, consistent with other measurements. The results from the SAFOD Main Hole, together with the stress state determined in the Pilot Hole, are consistent with a strong crust/weak fault model of the San Andreas. Seismic instrumentation has been deployed to study physics of faulting—earthquake nucleation, propagation, and arrest—in order to test how laboratory-derived concepts scale up to earthquakes occurring in nature.

  2. Plasticity Approach to Shear Design

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1998-01-01

    The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non......-shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed...... in uncracked concrete. Good agree between theory and tests has been found.Keywords: dsign, plasticity, reinforced concrete, reinforcement, shear, web crushing....

  3. Integrated seismic interpretation of the Carlsberg Fault zone, Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Nielsen, Lars; Thybo, Hans; Jørgensen, Mette Iwanouw

    2005-01-01

    the fault zone. The fault zone is a shadow zone to shots detonated outside the fault zone. Finite-difference wavefield modelling supports the interpretations of the fan recordings. Our fan recording approach facilitates cost-efficient mapping of fault zones in densely urbanized areas where seismic normal......We locate the concealed Carlsberg Fault zone along a 12-km-long trace in the Copenhagen city centre by seismic refraction, reflection and fan profiling. The Carlsberg Fault is located in a NNW-SSE striking fault system in the border zone between the Danish Basin and the Baltic Shield. Recent...... earthquakes indicate that this area is tectonically active. A seismic refraction study across the Carlsberg Fault shows that the fault zone is a low-velocity zone and marks a change in seismic velocity structure. A normal incidence reflection seismic section shows a coincident flower-like structure. We have...

  4. Turbulence suppression by E x B shear in JET optimized shear pulses

    International Nuclear Information System (INIS)

    Beer, M.A.; Budny, R.V.; Challis, C.D.; Conway, G.

    2000-01-01

    The authors calculate microinstability growth rates in JET optimized shear plasmas with a comprehensive gyrofluid model, including sheared E x B flows, trapped electrons, and all dominant ion species in realistic magnetic geometry. They find good correlation between E x B shear suppression of microinstabilities and both the formation and collapse of the internal transport barrier

  5. Friction welding; Magnesium; Finite element; Shear test.

    Directory of Open Access Journals (Sweden)

    Leonardo Contri Campanelli

    2013-06-01

    Full Text Available Friction spot welding (FSpW is one of the most recently developed solid state joining technologies. In this work, based on former publications, a computer aided draft and engineering resource is used to model a FSpW joint on AZ31 magnesium alloy sheets and subsequently submit the assembly to a typical shear test loading, using a linear elastic model, in order to conceive mechanical tests results. Finite element analysis shows that the plastic flow is concentrated on the welded zone periphery where yield strength is reached. It is supposed that “through the weld” and “circumferential pull-out” variants should be the main failure behaviors, although mechanical testing may provide other types of fracture due to metallurgical features.

  6. Subspace exclusion zones for damage localization

    DEFF Research Database (Denmark)

    Bernal, Dionisio; Ulriksen, Martin Dalgaard

    2018-01-01

    , this is exploited in the context of structural damage localization to cast the Subspace Exclusion Zone (SEZ) scheme, which locates damage by reconstructing the captured field quantity shifts from analytical subspaces indexed by postulated boundaries, the so-called exclusion zones (EZs), in a model of the structure...

  7. Engineering of hyaline cartilage with a calcified zone using bone marrow stromal cells.

    Science.gov (United States)

    Lee, W D; Hurtig, M B; Pilliar, R M; Stanford, W L; Kandel, R A

    2015-08-01

    In healthy joints, a zone of calcified cartilage (ZCC) provides the mechanical integration between articular cartilage and subchondral bone. Recapitulation of this architectural feature should serve to resist the constant shear force from the movement of the joint and prevent the delamination of tissue-engineered cartilage. Previous approaches to create the ZCC at the cartilage-substrate interface have relied on strategic use of exogenous scaffolds and adhesives, which are susceptible to failure by degradation and wear. In contrast, we report a successful scaffold-free engineering of ZCC to integrate tissue-engineered cartilage and a porous biodegradable bone substitute, using sheep bone marrow stromal cells (BMSCs) as the cell source for both cartilaginous zones. BMSCs were predifferentiated to chondrocytes, harvested and then grown on a porous calcium polyphosphate substrate in the presence of triiodothyronine (T3). T3 was withdrawn, and additional predifferentiated chondrocytes were placed on top of the construct and grown for 21 days. This protocol yielded two distinct zones: hyaline cartilage that accumulated proteoglycans and collagen type II, and calcified cartilage adjacent to the substrate that additionally accumulated mineral and collagen type X. Constructs with the calcified interface had comparable compressive strength to native sheep osteochondral tissue and higher interfacial shear strength compared to control without a calcified zone. This protocol improves on the existing scaffold-free approaches to cartilage tissue engineering by incorporating a calcified zone. Since this protocol employs no xenogeneic material, it will be appropriate for use in preclinical large-animal studies. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  8. A microstructural study of SAFOD gouge from actively creeping San Andreas Fault zone; Implications for shear localization models

    Science.gov (United States)

    Blackburn, E. D.; Hadizadeh, J.; Babaie, H. A.

    2009-12-01

    The prevailing models of shear localization in fault gouges are mainly based on experimental aggregates that necessarily neglect the effects of chemical and mechanical maturation with time. The SAFOD cores have provided a chance to test whether cataclasis as a deformation mechanism and factors such as porosity and particle size, critical in some existing shear localization models continue to be critical in mature gouges. We studied a core sample from 3194m MD in the SAFOD phase 3, which consists of intensely foliated shale-siltstone cataclasites in contact with less deformed shale. Microstructures were studied in 3 perpendicular planes with reference to foliation using high resolution scanning electron microscopy, cathodoluminescence imaging, X-ray fluorescence mapping, and energy dispersive X-ray spectroscopy. The cataclastic foliation, recognizable at length scales >100 μm, is primarily defined by bands of clay gouge with distinct microstructure, clay content, and porosity. Variations in elemental composition and porosity of the clay gouge were measured continuously across the foliation. Prominent features within the foliation bands include lens-shaped clusters of highly brecciated and veined siltstone fragments, pyrite smears, and pyrite-cemented cataclasites. The microstructural relations and chemical data provide clear evidence of multiple episodes of veining and deformation with some possibility of relative age determination for the episodes. There is evidence of syn-deformation hydrothermal changes including growth and brittle shear of pyrite, alteration of host shale clays to illite-smectite clays and Fe-rich smectite. Evidence of grain-boundary corrosion of non-clay mineral fragments suggests pressure solution creep. The gouge porosity estimates varied from 0-18% (about 3% in less deformed shale) with the highest value in the bands with abundant siltstone fragments. The banding is mechanically significant since it pervasively segregates the gouge into

  9. Normal-zone detectors for the MFTF-B coils. Revision 1

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.

    1983-01-01

    In order to protect a set of inductively coupled superconducting magnets, it is necessary to locate and measure normal zone voltages that are small compared with the mutual and self-induced voltages. The method described in this report uses two sets of voltage measurements to locate and measure one or more normal zones in any number of coupled coils. One set of voltages is the outputs of bridges that balance out the self-induced voltages. The other set of voltages can be the voltages across the coils, although alternatives are possible. The two sets of equations form a single combined set of equations. Each normal zone location or combination of normal zones has a set of these combined equations associated with it. It is demonstrated that the normal zone can be located and the correct set chosen, allowing determination of the size of the normal zone. Only a few operations take place in a working detector: multiplication of a constant, addition, and simple decision-making. In many cases the detector for each coil, although weakly linked to the other detectors, can be considered to be independent. An example of the detector design is given for four coils with realistic parameters. The effect on accuracy of changes in the system parameters is discussed

  10. 76 FR 38077 - Special Local Regulations and Safety Zones; Recurring Events in Captain of the Port New York Zone

    Science.gov (United States)

    2011-06-29

    ...: All Zone. waters of Long Island Sound in an area bound by the following points: 40[deg]51'43.5'' N 073... Zone. located in approximate position 40[deg]51'52'' N 073[deg]56'24'' W (NAD 1983), approximately 1750...] RIN 1625-AA00; 1625-AA08 Special Local Regulations and Safety Zones; Recurring Events in Captain of...

  11. Analysis of Geodynamical Conditions of Region of Burning Coal Dumps Location

    Science.gov (United States)

    Batugin, Andrian; Musina, Valeria; Golovko, Irina

    2017-12-01

    Spontaneous combustion of coal dumps and their impact on the environment of mining regions remain important environmental problem, in spite of the measures that are being taken. The paper presents the hypothesis, which states that the location of coal dumps at the boundaries of geodynamically active crust blocks promotes the appearance of conditions for their combustion. At present geodynamically active crust faults that affect the operating conditions of engineering facilities are observed not only in the areas of tectonic activity, but also on platforms. According to the concept of geodynamical zoning, geodynamically dangerous zones for engineering structures can be not only large, well-developed crust faults, but also just formed fractures that appear as boundaries of geodynamically impacting and hierarchically ordered crust blocks. The purpose of the study is to estimate the linkage of burning dumps to boundaries of geodynamically active crust blocks (geodynamically dangerous zones) for subsequent development of recommendations for reducing environmental hazard. The analysis of 27 coal dumps location was made for one of the Eastern Donbass regions (Russia). Nine of sixteen burning dumps are located in geodynamically dangerous zones, which, taking into account relatively small area occupied by all geodynamically dangerous zones, results that there is a concentration (pcs/km2) of burning dumps, which is 14 times higher than the baseline value. While the probability of accidental obtaining of such a result is extremely low, this can be considered as the evidence of the linkage of burning dumps to geodynamically dangerous zones. Taking into account the stressed state of the rock massif in this region, all geodynamically dangerous zones can be divided into compression and tension zones. The statistic is limited, but nevertheless in tension zones the concentration of burning dumps is 2 times higher than in compression zones. Available results of thermal monitoring of

  12. Mechanical evolution of transpression zones affected by fault interactions: Insights from 3D elasto-plastic finite element models

    Science.gov (United States)

    Nabavi, Seyed Tohid; Alavi, Seyed Ahmad; Mohammadi, Soheil; Ghassemi, Mohammad Reza

    2018-01-01

    The mechanical evolution of transpression zones affected by fault interactions is investigated by a 3D elasto-plastic mechanical model solved with the finite-element method. Ductile transpression between non-rigid walls implies an upward and lateral extrusion. The model results demonstrate that a, transpression zone evolves in a 3D strain field along non-coaxial strain paths. Distributed plastic strain, slip transfer, and maximum plastic strain occur within the transpression zone. Outside the transpression zone, fault slip is reduced because deformation is accommodated by distributed plastic shear. With progressive deformation, the σ3 axis (the minimum compressive stress) rotates within the transpression zone to form an oblique angle to the regional transport direction (∼9°-10°). The magnitude of displacement increases faster within the transpression zone than outside it. Rotation of the displacement vectors of oblique convergence with time suggests that transpression zone evolves toward an overall non-plane strain deformation. The slip decreases along fault segments and with increasing depth. This can be attributed to the accommodation of bulk shortening over adjacent fault segments. The model result shows an almost symmetrical domal uplift due to off-fault deformation, generating a doubly plunging fold and a 'positive flower' structure. Outside the overlap zone, expanding asymmetric basins subside to 'negative flower' structures on both sides of the transpression zone and are called 'transpressional basins'. Deflection at fault segments causes the fault dip fall to less than 90° (∼86-89°) near the surface (∼1.5 km). This results in a pure-shear-dominated, triclinic, and discontinuous heterogeneous flow of the transpression zone.

  13. Normal zone detectors for a large number of inductively coupled coils

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.

    1983-01-01

    In order to protect a set of inductively coupled superconducting magnets, it is necessary to locate and measure normal zone voltages that are small compared with the mutual and self-induced voltages. The method described in this paper uses two sets of voltage measurements to locate and measure one or more normal zones in any number of coupled coils. One set of voltages is the outputs of bridges that balance out the self-induced voltages. The other set of voltages can be the voltages across the coils, although alternatives are possible. The two sets of equations form a single combined set of equations. Each normal zone location or combination of normal zones has a set of these combined equations associated with it. It is demonstrated that the normal zone can be located and the correct set chosen, allowing determination of the size of the normal zone. Only a few operations take place in a working detector: multiplication of a constant, addition, and simple decision-making. In many cases the detector for each coil, although weakly linked to the other detectors, can be considered to be independent

  14. Relative viscosity of emulsions in simple shear flow: Temperature, shear rate, and interfacial tension dependence

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Se Bin; Lee, Joon Sang [Dept. of Mechanical Engineering, Yonsei Unversity, Seoul (Korea, Republic of)

    2015-08-15

    We simulate an emulsion system under simple shear rates to analyze its rheological characteristics using the lattice Boltzmann method (LBM). We calculate the relative viscosity of an emulsion under a simple shear flow along with changes in temperature, shear rate, and surfactant concentration. The relative viscosity of emulsions decreased with an increase in temperature. We observed the shear-thinning phenomena, which is responsible for the inverse proportion between the shear rate and viscosity. An increase in the interfacial tension caused a decrease in the relative viscosity of the decane-in-water emulsion because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.

  15. Structural analysis of S-wave seismics around an urban sinkhole: evidence of enhanced dissolution in a strike-slip fault zone

    Science.gov (United States)

    Wadas, Sonja H.; Tanner, David C.; Polom, Ulrich; Krawczyk, Charlotte M.

    2017-12-01

    In November 2010, a large sinkhole opened up in the urban area of Schmalkalden, Germany. To determine the key factors which benefited the development of this collapse structure and therefore the dissolution, we carried out several shear-wave reflection-seismic profiles around the sinkhole. In the seismic sections we see evidence of the Mesozoic tectonic movement in the form of a NW-SE striking, dextral strike-slip fault, known as the Heßleser Fault, which faulted and fractured the subsurface below the town. The strike-slip faulting created a zone of small blocks ( sinkholes and dissolution-induced depressions. Since the processes are still ongoing, the occurrence of a new sinkhole cannot be ruled out. This case study demonstrates how S-wave seismics can characterize a sinkhole and, together with geological information, can be used to study the processes that result in sinkhole formation, such as a near-surface fault zone located in soluble rocks. The more complex the fault geometry and interaction between faults, the more prone an area is to sinkhole occurrence.

  16. Fault zone hydrogeology

    Science.gov (United States)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and address remaining challenges by co-locating study areas, sharing approaches and fusing data, developing conceptual models from hydrogeologic data, numerical modeling, and training interdisciplinary scientists.

  17. Analysis Links Zoning Policies and Disparities

    Science.gov (United States)

    Shah, Nirvi

    2012-01-01

    Location, location, location. This mantra of real estate agents and their clients alike is now the target of a new report from the Brookings Institution linking housing prices and zoning practices to effectively depriving low-income students of high-quality schools. Using test scores from schools in the 100 largest metropolitan areas in the…

  18. Three-dimensional earthward fast flow in the near-Earth plasma sheet in a sheared field: comparisons between simulations and observations

    Directory of Open Access Journals (Sweden)

    K. Kondoh

    2009-06-01

    Full Text Available Three-dimensional configuration of earthward fast flow in the near-Earth plasma sheet is studied using three-dimensional magnetohydrodynamics (MHD simulations on the basis of the spontaneous fast reconnection model. In this study, the sheared magnetic field in the plasma sheet is newly considered in order to investigate the effects of it to the earthward fast flow, and the results are discussed in comparison with no-shear simulations. The virtual probes located at different positions in our simulation domain in shear/no-shear cases could explain different behavior of fast flows in the real observations.

  19. Shear banding, discontinuous shear thickening, and rheological phase transitions in athermally sheared frictionless disks

    Science.gov (United States)

    Vâgberg, Daniel; Olsson, Peter; Teitel, S.

    2017-05-01

    We report on numerical simulations of simple models of athermal, bidisperse, soft-core, massive disks in two dimensions, as a function of packing fraction ϕ , inelasticity of collisions as measured by a parameter Q , and applied uniform shear strain rate γ ˙. Our particles have contact interactions consisting of normally directed elastic repulsion and viscous dissipation, as well as tangentially directed viscous dissipation, but no interparticle Coulombic friction. Mapping the phase diagram in the (ϕ ,Q ) plane for small γ ˙, we find a sharp first-order rheological phase transition from a region with Bagnoldian rheology to a region with Newtonian rheology, and show that the system is always Newtonian at jamming. We consider the rotational motion of particles and demonstrate the crucial importance that the coupling between rotational and translational degrees of freedom has on the phase structure at small Q (strongly inelastic collisions). At small Q , we show that, upon increasing γ ˙, the sharp Bagnoldian-to-Newtonian transition becomes a coexistence region of finite width in the (ϕ ,γ ˙) plane, with coexisting Bagnoldian and Newtonian shear bands. Crossing this coexistence region by increasing γ ˙ at fixed ϕ , we find that discontinuous shear thickening can result if γ ˙ is varied too rapidly for the system to relax to the shear-banded steady state corresponding to the instantaneous value of γ ˙.

  20. Architecture of a low-angle normal fault zone, southern Basin and Range (SE California)

    Science.gov (United States)

    Goyette, J. A.; John, B. E.; Campbell-Stone, E.; Stunitz, H.; Heilbronner, R.; Pec, M.

    2009-12-01

    Exposures of the denuded Cenozoic detachment fault system in the southern Sacramento Mountains (SE California) delimit the architecture of a regional low-angle normal fault, and highlight the evolution of these enigmatic faults. The fault was initiated ~23 Ma in quartzo-feldspathic basement gneiss and granitoids at a low-angle (2km, and amplitudes up to 100m. These corrugations are continuous along their hinges for up to 3.6 km. Damage zone fracture intensity varies both laterally, and perpendicular to the fault plane (over an area of 25km2), decreasing with depth in the footwall, and varies as a function of lithology and proximity to corrugation walls. Deformation is concentrated into narrow damage zones (100m) are found in areas where low-fracture intensity horses are corralled by sub-horizontal zones of cataclasite (up to 8m) and thick zones of epidote (up to 20cm) and silica-rich alteration (up to 1m). Sub-vertical shear and extension fractures, and sub-horizontal shear fractures/zones dominate the NE side of the core complex. In all cases, sub-vertical fractures verge into or are truncated by low-angle fractures that dominate the top of the damage zone. These low-angle fractures have an antithetic dip to the detachment fault plane. Some sub-vertical fractures become curviplanar close to the fault, where they are folded into parallelism with the sub-horizontal fault surface in the direction of transport. These field data, corroborated by ongoing microstructural analyses, indicate fault activity at a low angle accommodated by a variety of deformation mechanisms dependent on lithology, timing, fluid flow, and fault morphology.

  1. Cenozoic extensional tectonics of the Western Anatolia Extended Terrane, Turkey

    International Nuclear Information System (INIS)

    Cemen, I; Catlos, E J; Gogus, O; Diniz, E; Hancer, M

    2008-01-01

    The Western Anatolia Extended Terrane in Turkey is located on the eastern side of the Aegean Extended Terrane and contains one of the largest metamorphic core complexes in the world, the Menderes massif. It has experienced a series of continental collisions from the Late Cretaceous to the Eocene during the formation of the Izmir-Ankara-Erzincan suture zone. Based our field work and monazite ages, we suggest that the north-directed postcollisional Cenozoic extension in the region is the product of three consecutive stages, triggered by three different mechanisms. The first stage was initiated about 30 Ma ago, in the Oligocene by the Orogenic Collapse the thermally weakened continental crust along the north-dipping Southwest Anatolian shear zone. The shear zone was formed as an extensional simple-shear zone with listric geometry at depth and exhibits predominantly normal-slip along its southwestern end. But, it becomes a high-angle oblique-slip shear zone along its northeastern termination. Evidence for the presence of the shear zone includes (1) the dominant top to the north-northeast shear sense indicators throughout the Menderes massif, such as stretching lineations trending N10E to N30E; and (2) a series of Oligocene extensional basins located adjacent to the shear zone that contain only carbonate and ophiolitic rock fragments, but no high grade metamorphic rock fragments. During this stage, erosion and extensional unroofing brought high-grade metamorphic rocks of the Central Menderes massif to the surface by the early Miocene. The second stage of the extension was triggered by subduction roll-back and associated back-arc extension in the early Miocene and produced the north-dipping Alasehir and the south-dipping Bueyuek Menderes detachments of the central Menderes massif and the north-dipping Simav detachment of the northern Menderes massif. The detachments control the Miocene sedimentation in the Alasehir, Bueyuek Menderes, and Simav grabens, containing high

  2. Kinematics and Dynamics of the Makran Subduction Zone

    Science.gov (United States)

    Penney, C.; Tavakoli, F.; Sobouti, F.; Copley, A.; Priestley, K. F.; Jackson, J. A.

    2016-12-01

    The Makran subduction zone, along the southern coasts of Iran and Pakistan, hosts the world's largest exposed accretionary prism. In contrast to the circum-Pacific subduction zones, the Makran has not been extensively studied, with seismic data collected in the offshore region presenting only a time-integrated picture of the deformation. We investigate spatio-temporal variations in the deformation of the accretionary prism and the insights these offer into subduction zone driving forces and megathrust rheology. We combine seismology, geodesy and field observations to study the 2013 Mw 6.1 Minab earthquake, which occurred at the western end of the accretionary prism. We find that the earthquake was a left-lateral rupture on an ENE-WSW plane, approximately perpendicular to the previously mapped faults in the region. The causative fault of the Minab earthquake is one of a series of left-lateral faults in the region which accommodate a velocity field equivalent to right-lateral shear on N-S planes by rotating clockwise about vertical axes. Another recent strike-slip event within the Makran accretionary wedge was the 2013 Mw 7.7 Balochistan earthquake, which occurred on a fault optimally oriented to accommodate the regional compression by thrusting. The dominance of strike-slip faulting within the onshore prism, on faults perpendicular to the regional compression, suggests that the prism may have reached the maximum elevation which the megathrust can support, with the compressional forces which dominated in the early stages of the collision now balanced by gravitational forces. This observation allows us to estimate the mean shear stress on the megathrust interface and its effective coefficient of friction.

  3. Analysis of the Shear Behavior of Stubby Y-Type Perfobond Rib Shear Connectors for a Composite Frame Structure.

    Science.gov (United States)

    Kim, Sang-Hyo; Kim, Kun-Soo; Lee, Do-Hoon; Park, Jun-Seung; Han, Oneil

    2017-11-22

    Shear connectors are used in steel beam-concrete slabs of composite frame and bridge structures to transfer shear force according to design loads. The existing Y-type perfobond rib shear connectors are designed for girder slabs of composite bridges. Therefore, the rib and transverse rebars of the conventional Y-type perfobond rib shear connectors are extremely large for the composite frames of building structures. Thus, this paper proposes stubby Y-type perfobond rib shear connectors, redefining the existing connectors, for composite frames of building structures; these were used to perform push-out tests. These shear connectors have relatively small ribs compared to the conventional Y-type perfobond rib shear connectors. To confirm the shear resistance of these stubby shear connectors, we performed an experiment by using transverse rebars D13 and D16. The results indicate that these shear connectors have suitable shear strength and ductility for application in composite frame structures. The shear strengths obtained using D13 and D16 were not significantly different. However, the ductility of the shear connectors with D16 was 45.1% higher than that of the shear connectors with D13.

  4. Rock strength measurements on Archaean basement granitoids recovered from scientific drilling in the active Koyna seismogenic zone, western India

    Science.gov (United States)

    Goswami, Deepjyoti; Akkiraju, Vyasulu V.; Misra, Surajit; Roy, Sukanta; Singh, Santosh K.; Sinha, Amalendu; Gupta, Harsh; Bansal, B. K.; Nayak, Shailesh

    2017-08-01

    Reservoir triggered earthquakes have been occurring in the Koyna area, western India for the past five decades. Triaxial tests carried out on 181 core samples of Archaean granitoids underlying the Deccan Traps provide valuable constraints on rock strength properties in the Koyna seismogenic zone for the first time. The data include measurements on granite gneiss, granite, migmatitic gneiss and mylonitised granite gneiss obtained from boreholes KBH-3, KBH-4A, KBH-5 and KBH-7 located in the western and eastern margins of the seismic zone. Salient results are as follows. (i) Increase of rock strength with increasing confining pressure allow determination of the linearized failure envelopes from which the cohesive strength and angle of internal friction are calculated. (ii) Variable differential stresses at different depths are the manifestations of deformation partitioning in close association of fault zone(s) or localized fracture zones. (iii) Fractures controlled by naturally developed weak planes such as cleavage and fabric directly affect the rock strength properties, but the majority of failure planes developed during triaxial tests is not consistent with the orientations of pre-existing weak planes. The failure planes may, therefore, represent other planes of weakness induced by ongoing seismic activity. (iv) Stress-strain curves confirm that axial deformation is controlled by the varying intensity of pre-existing shear in the granitoids, viz., mylonite, granite gneiss and migmatitic gneiss. (v) Frequent occurrences of low magnitude earthquakes may be attributed to low and variable rock strength of the granitoids, which, in turn, is modified by successive seismic events.

  5. Episodic reactivation of a Late Precambrian mylonite zone on the Gondwanan Margin of the Appalachians, southern Newfoundland

    Science.gov (United States)

    O'Brien, B. H.; O'Brien, S. J.; Dunning, G. R.; Tucker, R. D.

    1993-08-01

    The Grand Bruit Fault Zone of southern Newfoundland is a fundamental structure within Late Precambrian basement on the Gondwanan margin of the Appalachian orogen. Within the fault zone, a sequence of structures documents changes in the sense of ductile displacement from (1) reverse dip slip, to (2) dextral strike slip, to (3) sinistral oblique slip, and, finally, to (4) dextral lateral offsets. Fault movements along this structure were punctuated by emplacement of a variety of plutons and minor intrusions which, when precisely dated, allow these movements to be bracketed at between 571 Ma and 564 Ma, 497 Ma and 427 Ma, 424 Ma and 420 Ma, and 421 Ma and 387 Ma, respectively. The tectonic evolution of the Gondwanan inlier of southern Newfoundland is mirrored, in large part, by the record of mylonite development within the Grand Bruit Fault Zone. These tectonic events are attributable to well-constrained, regional orogenic events of both the Pan-African and Appalachian cycles. Newly formed shear zones in the fault zone reactivate parts of much older faults of similar regional orientation and are, in some cases, kinematically indistinguishable from the ancestral structures. Integration of precise geochronological data with the sequence of overprinted fault structures demonstrates that, although the role of progressive deformation in shear zone development was important, the observed disposition of structures and rock units is primarily a function of polyorogenic accretion. As a multiple-reactivated structural lineament in a Gondwanan basement inlier, the fault zone exerted fundamental control over the tectonic development of the leading edge of the convergent southeast margin of the orogen.

  6. Promise Zones for Applicants

    Data.gov (United States)

    Department of Housing and Urban Development — This tool assists applicants to HUD's Promise Zone initiative prepare data to submit with their application by allowing applicants to draw the exact location of the...

  7. Comparison of direct shear and simple shear responses of municipal solid waste in USA

    KAUST Repository

    Fei, Xunchang; Zekkos, Dimitrios

    2017-01-01

    Although large-size simple shear (SS) testing of municipal solid waste (MSW) may arguably provide a more realistic estimate of the shear strength (τ ) of MSW than the most commonly used direct shear (DS) testing, a systematic comparison between

  8. Dynamic Site Characterization and Correlation of Shear Wave Velocity with Standard Penetration Test ` N' Values for the City of Agartala, Tripura State, India

    Science.gov (United States)

    Sil, Arjun; Sitharam, T. G.

    2014-08-01

    Seismic site characterization is the basic requirement for seismic microzonation and site response studies of an area. Site characterization helps to gauge the average dynamic properties of soil deposits and thus helps to evaluate the surface level response. This paper presents a seismic site characterization of Agartala city, the capital of Tripura state, in the northeast of India. Seismically, Agartala city is situated in the Bengal Basin zone which is classified as a highly active seismic zone, assigned by Indian seismic code BIS-1893, Indian Standard Criteria for Earthquake Resistant Design of Structures, Part-1 General Provisions and Buildings. According to the Bureau of Indian Standards, New Delhi (2002), it is the highest seismic level (zone-V) in the country. The city is very close to the Sylhet fault (Bangladesh) where two major earthquakes ( M w > 7) have occurred in the past and affected severely this city and the whole of northeast India. In order to perform site response evaluation, a series of geophysical tests at 27 locations were conducted using the multichannel analysis of surface waves (MASW) technique, which is an advanced method for obtaining shear wave velocity ( V s) profiles from in situ measurements. Similarly, standard penetration test (SPT-N) bore log data sets have been obtained from the Urban Development Department, Govt. of Tripura. In the collected data sets, out of 50 bore logs, 27 were selected which are close to the MASW test locations and used for further study. Both the data sets ( V s profiles with depth and SPT-N bore log profiles) have been used to calculate the average shear wave velocity ( V s30) and average SPT-N values for the upper 30 m depth of the subsurface soil profiles. These were used for site classification of the study area recommended by the National Earthquake Hazard Reduction Program (NEHRP) manual. The average V s30 and SPT-N classified the study area as seismic site class D and E categories, indicating that

  9. Effect of periodic fluctuation of soil particle rotation resistance on interface shear behaviour

    International Nuclear Information System (INIS)

    Ebrahimian, Babak; Noorzad, Asadollah

    2010-01-01

    The interface behaviour between infinite extended narrow granular layer and bounding structure is numerically investigated using finite element method. The micro-polar (Cosserat) continuum approach within the framework of elasto-plasticity is employed to remove the numerical difficulties caused by strain-softening of materials in classical continuum mechanics. Mechanical properties of cohesionless granular soil are described with Lade's model enhanced with polar terms including Cosserat rotations, curvatures and couple stresses via mean grain diameter as the internal length. The main attention of paper is laid on the influence of spatial periodic fluctuation of rotation resistance of soil particles interlocked with the surface of bounding structure on evolution and location of shear band developed inside granular body. The finite element results demonstrate that the location and evolution of shear localization in granular body is strongly affected by prescribed non-uniform micro-polar kinematic boundary conditions along the interface.

  10. Double seismic zone for deep earthquakes in the izu-bonin subduction zone.

    Science.gov (United States)

    Iidaka, T; Furukawa, Y

    1994-02-25

    A double seismic zone for deep earthquakes was found in the Izu-Bonin region. An analysis of SP-converted phases confirms that the deep seismic zone consists of two layers separated by approximately 20 kilometers. Numerical modeling of the thermal structure implies that the hypocenters are located along isotherms of 500 degrees to 550 degrees C, which is consistent with the hypothesis that deep earthquakes result from the phase transition of metastable olivine to a high-pressure phase in the subducting slab.

  11. On the physical mechanisms governing the cloud lifecycle in the Central Molecular Zone of the Milky Way

    Science.gov (United States)

    Jeffreson, S. M. R.; Kruijssen, J. M. D.; Krumholz, M. R.; Longmore, S. N.

    2018-05-01

    We apply an analytic theory for environmentally-dependent molecular cloud lifetimes to the Central Molecular Zone of the Milky Way. Within this theory, the cloud lifetime in the Galactic centre is obtained by combining the time-scales for gravitational instability, galactic shear, epicyclic perturbations and cloud-cloud collisions. We find that at galactocentric radii ˜45-120 pc, corresponding to the location of the `100-pc stream', cloud evolution is primarily dominated by gravitational collapse, with median cloud lifetimes between 1.4 and 3.9 Myr. At all other galactocentric radii, galactic shear dominates the cloud lifecycle, and we predict that molecular clouds are dispersed on time-scales between 3 and 9 Myr, without a significant degree of star formation. Along the outer edge of the 100-pc stream, between radii of 100 and 120 pc, the time-scales for epicyclic perturbations and gravitational free-fall are similar. This similarity of time-scales lends support to the hypothesis that, depending on the orbital geometry and timing of the orbital phase, cloud collapse and star formation in the 100-pc stream may be triggered by a tidal compression at pericentre. Based on the derived time-scales, this should happen in approximately 20 per cent of all accretion events onto the 100-pc stream.

  12. Semiconductor laser shearing interferometer

    International Nuclear Information System (INIS)

    Ming Hai; Li Ming; Chen Nong; Xie Jiaping

    1988-03-01

    The application of semiconductor laser on grating shearing interferometry is studied experimentally in the present paper. The method measuring the coherence of semiconductor laser beam by ion etching double frequency grating is proposed. The experimental result of lens aberration with semiconductor laser shearing interferometer is given. Talbot shearing interferometry of semiconductor laser is also described. (author). 2 refs, 9 figs

  13. Recycling and utilisation of industrial solid waste: an explorative study on gold deposit tailings of ductile shear zone type in China.

    Science.gov (United States)

    Liu, Rui; Huang, Fei; Du, Runxiang; Zhao, Chunming; Li, Yongli; Yu, Haoran

    2015-06-01

    Tailings are solid waste arising from mineral processing. This type of waste can cause severe damage to the environment during stockpiling as a result of the leaching of something harmful into the ecosystem. Gold deposit of ductile shear zone type is an important type of gold deposit, and the recycling of its tailings has been challenging researchers for a long time. In this article, the characteristics of this type of tailings were systematically studied by using modern technical means. Considering the characteristics of the tailings, clay was selected to make up for the shortcomings of the tailings and improve their performance. Water and raw materials were mixed to produce green bodies, which are subsequently sintered into ceramic bodies at 980 °C~1020 °C (sintering temperature). The results showed that some new kinds of mineral phases, such as mullite, anorthite and orthoclase, appear in ceramic bodies. Furthermore, the ceramic bodies have a surface hardness of 5 to 6 (Mohs scale), and their water absorption and modulus of rupture can meet some technical requirements of ceramic materials described in ISO 13006-2012 and GB 5001-1985. These gold mine tailings can be made into ceramic tiles, domestic ceramic bodies, and other kinds of ceramic bodies for commercial and industrial purposes after further improvements. © The Author(s) 2015.

  14. SMAS Fusion Zones Determine the Subfascial and Subcutaneous Anatomy of the Human Face: Fascial Spaces, Fat Compartments, and Models of Facial Aging.

    Science.gov (United States)

    Pessa, Joel E

    2016-05-01

    Fusion zones between superficial fascia and deep fascia have been recognized by surgical anatomists since 1938. Anatomical dissection performed by the author suggested that additional superficial fascia fusion zones exist. A study was performed to evaluate and define fusion zones between the superficial and the deep fascia. Dissection of fresh and minimally preserved cadavers was performed using the accepted technique for defining anatomic spaces: dye injection combined with cross-sectional anatomical dissection. This study identified bilaminar membranes traveling from deep to superficial fascia at consistent locations in all specimens. These membranes exist as fusion zones between superficial and deep fascia, and are referred to as SMAS fusion zones. Nerves, blood vessels and lymphatics transition between the deep and superficial fascia of the face by traveling along and within these membranes, a construct that provides stability and minimizes shear. Bilaminar subfascial membranes continue into the subcutaneous tissues as unilaminar septa on their way to skin. This three-dimensional lattice of interlocking horizontal, vertical, and oblique membranes defines the anatomic boundaries of the fascial spaces as well as the deep and superficial fat compartments of the face. This information facilitates accurate volume augmentation; helps to avoid facial nerve injury; and provides the conceptual basis for understanding jowls as a manifestation of enlargement of the buccal space that occurs with age. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  15. Field Test of Enhanced Remedial Amendment Delivery Using a Shear-Thinning Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Vermeul, Vincent R.; Adamson, David; Oostrom, Martinus; Zhong, Lirong; Mackley, Rob D.; Fritz, Brad G.; Horner, Jacob A.; Johnson, Timothy C.; Thomle, Jonathan N.; Newcomer, Darrell R.; Johnson, Christian D.; Rysz, Michal; Wietsma, Thomas W.; Newell, Charles J.

    2015-03-01

    Heterogeneity of hydraulic properties in aquifers may lead to contaminants residing in lower-permeability zones where it is difficult to deliver remediation amendments using conventional injection processes. The focus of this effort is to examine use of a shear-thinning fluid (STF) to improve the uniformity of remedial amendment distribution within a heterogeneous aquifer. Previous studies have demonstrated the significant potential of STFs for improving remedial amendment delivery in heterogeneous aquifers, but quantitative evaluation of these improvements from field applications are lacking. A field-scale test was conducted that compares data from successive injection of a tracer in water followed by injection of a tracer in a STF to evaluate the impact of the STF on tracer distribution uniformity in the presence of permeability contrasts within the targeted injection zone. Data from tracer breakthrough at multiple depth-discrete monitoring intervals and electrical resistivity tomography showed that inclusion of STF in the injection solution slowed movement in high-permeability pathways, improved delivery of amendment to low-permeability materials, and resulted in better uniformity in injected fluid distribution within the targeted treatment zone.

  16. Microstructure and Tensile-Shear Properties of Resistance Spot-Welded Medium Mn Steel

    Directory of Open Access Journals (Sweden)

    Qiang Jia

    2018-01-01

    Full Text Available The medium Mn steels are gaining increasing attention due to their excellent combination of mechanical properties and material cost. A cold-rolled 0.1C5Mn medium Mn steel with a ferrite matrix plus metastable austenite duplex microstructure was resistance spot-welded with various welding currents and times. The nugget size rose with the increase of heat input, but when the welding current exceeded the critical value, the tensile-shear load increased slowly and became unstable due to metal expulsion. The fusion zone exhibited a lath martensite microstructure, and the heat-affected zone was composed of a ferrite/martensite matrix with retained austenite. The volume fraction of retained austenite decreased gradually from the base metal to the fusion zone, while the microhardness presented a reverse varying trend. Interfacial failure occurred along the interface of the steel sheets with lower loading capacity. Sufficient heat input along with serious expulsion brought about high stress concentration around the weld nugget, and the joint failed in partial interfacial mode. Pull-out failure was absent in this study.

  17. Comparison of direct shear and simple shear responses of municipal solid waste in USA

    KAUST Repository

    Fei, Xunchang

    2017-10-25

    Although large-size simple shear (SS) testing of municipal solid waste (MSW) may arguably provide a more realistic estimate of the shear strength (τ ) of MSW than the most commonly used direct shear (DS) testing, a systematic comparison between the shear responses of MSW obtained from the two testing methods is lacking. In this study, a large-size shear device was used to test identical MSW specimens sampled in USA in DS and SS. Eight DS tests and 11 SS tests were conducted at vertical effective stresses of 50–500 kPa. The stress–displacement response of MSW in SS testing was hyperbolic and a maximum shear stress was reached, whereas a maximum shear stress was not reached in most DS tests. The τ, effective friction angle (ϕ ′) and cohesion (c ′) of MSW were obtained from DS and SS tests by using a displacement failure criterion of 40 mm. τ in SS testing was found to be equal to or lower than τ in DS testing with ratios of τ between 73 and 101%. SS testing resulted in higher ϕ ′ but lower c ′ than DS testing. The shear strength parameters were lower than those obtained in previous studies from DS tests at 55 mm displacement.

  18. Finite element models of earthquake cycles in mature strike-slip fault zones

    Science.gov (United States)

    Lynch, John Charles

    The research presented in this dissertation is on the subject of strike-slip earthquakes and the stresses that build and release in the Earth's crust during earthquake cycles. Numerical models of these cycles in a layered elastic/viscoelastic crust are produced using the finite element method. A fault that alternately sticks and slips poses a particularly challenging problem for numerical implementation, and a new contact element dubbed the "Velcro" element was developed to address this problem (Appendix A). Additionally, the finite element code used in this study was bench-marked against analytical solutions for some simplified problems (Chapter 2), and the resolving power was tested for the fault region of the models (Appendix B). With the modeling method thus developed, there are two main questions posed. First, in Chapter 3, the effect of a finite-width shear zone is considered. By defining a viscoelastic shear zone beneath a periodically slipping fault, it is found that shear stress concentrates at the edges of the shear zone and thus causes the stress tensor to rotate into non-Andersonian orientations. Several methods are used to examine the stress patterns, including the plunge angles of the principal stresses and a new method that plots the stress tensor in a manner analogous to seismic focal mechanism diagrams. In Chapter 4, a simple San Andreas-like model is constructed, consisting of two great earthquake producing faults separated by a freely-slipping shorter fault. The model inputs of lower crustal viscosity, fault separation distance, and relative breaking strengths are examined for their effect on fault communication. It is found that with a lower crustal viscosity of 1018 Pa s (in the lower range of estimates for California), the two faults tend to synchronize their earthquake cycles, even in the cases where the faults have asymmetric breaking strengths. These models imply that postseismic stress transfer over hundreds of kilometers may play a

  19. Experimental investigations into the shear behavior of self-compacting RC beams with and without shear reinforcement

    Directory of Open Access Journals (Sweden)

    Ammar N. HANOON

    2014-12-01

    Full Text Available Self-compacting concrete (SCC is a new generation of high-performance concrete, known for its excellent deformability and high resistance to segregation and bleeding. Nonetheless, SCC may be incapable of resisting shear because the shear resistance mechanisms of this concrete are uncertain, especially the aggregate interlock mechanism. This uncertainty is attributed to the fact that SCC contains a smaller amount of coarse aggregates than normal concrete (NC does. This study focuses on the shear strength of self-compacting reinforced concrete (RC beams with and without shear reinforcement. A total of 16 RC beam specimens was manufactured and tested in terms of shear span-to-depth ratio and flexural and shear reinforcement ratio. The test results were compared with those of the shear design equations developed by ACI, BS, CAN and NZ codes. Results show that an increase in web reinforcement enhanced cracking strength and ultimate load. Shear-tension failure was the control failure in all tested beams.

  20. Confocal microscopy of colloidal dispersions in shear flow using a counter-rotating cone-plate shear cell

    International Nuclear Information System (INIS)

    Derks, Didi; Wisman, Hans; Blaaderen, Alfons van; Imhof, Arnout

    2004-01-01

    We report on novel possibilities for studying colloidal suspensions in a steady shear field in real space. Fluorescence confocal microscopy is combined with the use of a counter-rotating cone-plate shear cell. This allows imaging of individual particles in the bulk of a sheared suspension in a stationary plane. Moreover, this plane of zero velocity can be moved in the velocity gradient direction while keeping the shear rate constant. The colloidal system under study consists of rhodamine labelled PMMA spheres in a nearly density and refractive index matched mixture of cyclohexylbromide and cis-decalin. We show measured flow profiles in both the fluid and the crystalline phase and find indications for shear banding in the case of a sheared crystal. Furthermore, we show that, thanks to the counter-rotating principle of the cone-plate shear cell, a layer of particles in the bulk of a sheared crystalline suspension can be imaged for a prolonged time, with the result that their positions can be tracked

  1. Normal zone detectors for a large number of inductively coupled coils

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.

    1983-01-01

    In order to protect a set of inductively coupled superconducting magnets, it is necessary to locate and measure normal zone voltages that are small compared with the mutual and self-induced voltages. The method described in this report uses two sets of voltage measurements to locate and measure one or more normal zones in any number of coupled coils. One set of voltages is the outputs of bridges that balance out the self-induced voltages The other set of voltages can be the voltages across the coils, although alternatives are possible. The two sets of equations form a single combined set of equations. Each normal zone location or combination of normal zones has a set of these combined equations associated with it. It is demonstrated that the normal zone can be located and the correct set chosen, allowing determination of the size of the normal zone. Only a few operations take plae in a working detector: multiplication of a constant, addition, and simple decision-making. In many cases the detector for each coil, although weakly linked to the other detectors, can be considered to be independent. An example of the detector design is given for four coils with realistic parameters. The effect on accuracy of changes in the system parameters is discussed

  2. Detection of the Velocity Shear Effect on the Spatial Distributions of the Galactic Satellites in Isolated Systems

    Science.gov (United States)

    Lee, Jounghun; Choi, Yun-Young

    2015-02-01

    We report a detection of the effect of the large-scale velocity shear on the spatial distributions of the galactic satellites around the isolated hosts. Identifying the isolated galactic systems, each of which consists of a single host galaxy and its satellites, from the Seventh Data Release of the Sloan Digital Sky Survey and reconstructing linearly the velocity shear field in the local universe, we measure the alignments between the relative positions of the satellites from their isolated hosts and the principal axes of the local velocity shear tensors projected onto the plane of sky. We find a clear signal that the galactic satellites in isolated systems are located preferentially along the directions of the minor principal axes of the large-scale velocity shear field. Those galactic satellites that are spirals, are brighter, are located at distances larger than the projected virial radii of the hosts, and belong to the spiral hosts yield stronger alignment signals, which implies that the alignment strength depends on the formation and accretion epochs of the galactic satellites. It is also shown that the alignment strength is quite insensitive to the cosmic web environment, as well as the size and luminosity of the isolated hosts. Although this result is consistent with the numerical finding of Libeskind et al. based on an N-body experiment, owing to the very low significance of the observed signals, it remains inconclusive whether or not the velocity shear effect on the satellite distribution is truly universal.

  3. DETECTION OF THE VELOCITY SHEAR EFFECT ON THE SPATIAL DISTRIBUTIONS OF THE GALACTIC SATELLITES IN ISOLATED SYSTEMS

    International Nuclear Information System (INIS)

    Lee, Jounghun; Choi, Yun-Young

    2015-01-01

    We report a detection of the effect of the large-scale velocity shear on the spatial distributions of the galactic satellites around the isolated hosts. Identifying the isolated galactic systems, each of which consists of a single host galaxy and its satellites, from the Seventh Data Release of the Sloan Digital Sky Survey and reconstructing linearly the velocity shear field in the local universe, we measure the alignments between the relative positions of the satellites from their isolated hosts and the principal axes of the local velocity shear tensors projected onto the plane of sky. We find a clear signal that the galactic satellites in isolated systems are located preferentially along the directions of the minor principal axes of the large-scale velocity shear field. Those galactic satellites that are spirals, are brighter, are located at distances larger than the projected virial radii of the hosts, and belong to the spiral hosts yield stronger alignment signals, which implies that the alignment strength depends on the formation and accretion epochs of the galactic satellites. It is also shown that the alignment strength is quite insensitive to the cosmic web environment, as well as the size and luminosity of the isolated hosts. Although this result is consistent with the numerical finding of Libeskind et al. based on an N-body experiment, owing to the very low significance of the observed signals, it remains inconclusive whether or not the velocity shear effect on the satellite distribution is truly universal

  4. Scientific Drilling Into the San Andreas Fault Zone —An Overview of SAFOD’s First Five Years

    Directory of Open Access Journals (Sweden)

    Stephen Hickman

    2011-03-01

    Full Text Available The San Andreas Fault Observatory at Depth (SAFODwas drilled to study the physical and chemical processes controlling faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD is located near Parkfield, California and penetrates a section of the fault that is moving due to a combination of repeating microearthquakes and fault creep. Geophysical logs define the SanAndreas Fault Zone to be relatively broad (~200 m, containing several discrete zones only 2–3 m wide that exhibit very low P- and S-wave velocities and low resistivity. Two of these zones have progressively deformed the cemented casing at measured depths of 3192 m and 3302 m. Cores from both deforming zones contain a pervasively sheared, cohesionless, foliated fault gouge that coincides with casing deformation and explains the observed extremely low seismic velocities and resistivity. These cores are being now extensivelytested in laboratories around the world, and their composition, deformation mechanisms, physical properties, and rheological behavior are studied. Downhole measurements show that within 200 m (maximum of the active fault trace, the direction of maximum horizontal stress remains at a high angle to the San Andreas Fault, consistent with other measurements. The results from the SAFOD Main Hole, together with the stress state determined in the Pilot Hole, are consistent with a strong crust/weak fault model of the San Andreas. Seismic instrumentation has been deployed to study physics of faulting—earthquake nucleation, propagation, and arrest—in order to test how laboratory-derived concepts scale up to earthquakes occurring in nature.

  5. Excited waves in shear layers

    Science.gov (United States)

    Bechert, D. W.

    1982-01-01

    The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.

  6. Pluton emplacement in a releasing bend in a transpressive regime: the arrozal granite in the Paraíba do Sul shear belt, Rio de Janeiro.

    Science.gov (United States)

    Nummer, Alexis R; Machado, Rômulo; Dehler, Nolan M

    2007-06-01

    The Arrozal Granite, situated in the southwestern region of the State of Rio de Janeiro, has a granitic to granodioritic composition. It contains a strong mylonitic foliation along its border, passing gradually to a well-developed magmatic foliation towards its center. Structural analysis indicates that the Arrozal Granite was emplaced along the Além-Paraíba Shear Zone in a dextral transpressive tectonic regime. A regional shift of the trend along this shear zone from NE-SW to E-W, observed in the area, is interpreted to be casually related to the creation of space for the emplacement of the granite. Our data indicate that releasing bends may have played an important role for space generation during the emplacement of the Arrozal Granite and other plutons.

  7. Bauxite to eclogite: Evidence for late Permian supracontinental subduction at the Red River shear zone, northern Vietnam

    Science.gov (United States)

    Nakano, Nobuhiko; Osanai, Yasuhito; Nam, Nguyen Van; Tri, Tran Van

    2018-03-01

    We have investigated the geological processes recorded in aluminous granulites from the Red River shear zone in northern Vietnam using mineral and whole-rock chemistries, fluid inclusions, metamorphic pressure-temperature paths, and geochronology. The granulites are extremely rich in Al2O3 (36.3-50.9 wt%), TiO2, and total Fe2O3, and poor in SiO2 (7.9-24.1 wt%), MgO, CaO, Na2O, and K2O. The granulites are enriched in high-field-strength elements and rare earth elements, and severely depleted in large-ion lithophile elements. These features strongly suggest the protolith was lateritic bauxite. Moreover, the other elemental concentrations and the Zr/Ti ratios point to basaltic rock as the precursor of the bauxite. Some of the aluminous granulites contain high-pressure mineral inclusions of kyanite, staurolite, siderite, and rutile, none of which are observed in the matrix. Abundant primary carbonic fluid inclusions are observed in garnet, corundum, and staurolite, but are rare in quartz and zircon. The average densities of fluid inclusions in garnet, corundum, staurolite, quartz, and zircon are 1.00 ± 0.06, 1.07 ± 0.04, 1.09 ± 0.03, 0.29 ± 0.07, and 1.15 ± 0.05 g/cm3, respectively. The mineral features not only in the matrix and but also in garnet from all rock types, isochemical phase diagrams obtained for each bulk rock composition, and Zr-in-rutile thermometry indicate an early eclogite-facies metamorphism ( 2.5 GPa at 650 °C) and a subsequent nearly isothermal decompression. Zircons yield a wide range of U-Pb ages from 265 to 36 Ma, whereas the dark luminescent cores of the zircons, which contain high-density CO2 inclusions, yield a concordia age of 257 ± 8 Ma. These observations suggest that the dark luminescent zircon cores were formed at the same time as the garnet, corundum, and staurolite that contain high-density CO2 fluid inclusions. Based on the carbonic fluid inclusion isochore and the densities as well as calculated phase diagram, the concordia

  8. The Effect of Shear Wall Distribution on the Dynamics of Reinforced Concrete Structures

    Science.gov (United States)

    Helou, S. H.; Touqan, A. R.

    2008-07-01

    The inclusion of a soft storey in multistory concrete buildings is a feature gaining popularity in urban areas where land is of exorbitant cost. In earthquake prone zones, this feature has been observed in post earthquake investigations. Although engineers are prepared to accept the notion that a soft storey poses a weak link in Seismic Design, yet the idea demands better understanding. The following study illustrates the importance of the judicious distribution of shear walls. The selected building is analyzed through nine numerical models which address the behavior of framed structures. The parameters discussed include, inter alias, the fundamental period of vibration, lateral displacements, axial and shear forces. It is noticed that an abrupt change in stiffness between the soft storey and the level above is responsible for increasing the strength demand on first storey columns. Extending the elevator shafts throughout the soft storey is strongly recommended.

  9. The Effect of Shear Wall Distribution on the Dynamics of Reinforced Concrete Structures

    International Nuclear Information System (INIS)

    Helou, S. H.; Touqan, A. R.

    2008-01-01

    The inclusion of a soft storey in multistory concrete buildings is a feature gaining popularity in urban areas where land is of exorbitant cost. In earthquake prone zones, this feature has been observed in post earthquake investigations. Although engineers are prepared to accept the notion that a soft storey poses a weak link in Seismic Design, yet the idea demands better understanding. The following study illustrates the importance of the judicious distribution of shear walls. The selected building is analyzed through nine numerical models which address the behavior of framed structures. The parameters discussed include, inter alias, the fundamental period of vibration, lateral displacements, axial and shear forces. It is noticed that an abrupt change in stiffness between the soft storey and the level above is responsible for increasing the strength demand on first storey columns. Extending the elevator shafts throughout the soft storey is strongly recommended

  10. A Novel Application of the Multichannel Analysis of Surface Waves (MASW) Method for Estimating the Critical Zone Thicknes

    Science.gov (United States)

    Nelson, S.; Yaede, J.; McBride, J. H.; Park, C.; Turnbull, S. J.; Tingey, D. G.

    2014-12-01

    MASW approaches are suitable for the accurate measurement of variably thick weathering profiles by producing shear-wave (Vs) profiles. The critical zone (CZ) base is usually a transitional boundary, which is captured by MASW but not by conventional seismic reflection techniques. Modified MASW methods were used in Hawaii, USA to extend the investigative depth of saprolite (kaolin clays, Fe-oxides) thickness calibrated against wells with geologic logs. Active-source ± passive dispersion curves produced improved low-frequency fundamental modes by combining records with varying source-receiver offsets, enabling the generation of Vs profiles to >50 m depth. The top of unaltered bedrock occurs at a Vs of >~500 m/s. Intra-saprolite high Vs zones probably represent aa flow interiors with fewer primary discontinuities (vesicles and fractures), therefore imparting higher secondary stiffness than altered pahoehoe and pyroclastic material. The MASW approach permits measuring CZ thicknesses at discrete locations rapidly, inexpensively, and without drilling. For example, employed on slopes of the Koolau Volcano (neither aggrading nor degrading), the downward rate of advance of the weathering front of the CZ varies from 0.02 to 0.03 mm/yr in wet and ~0.01 mm/yr in dry areas. This compares well with recent work based on solute mass fluxes averaged over large areas. MASW can be deployed in a variety of settings where rapid estimation of the CZ thickness at particular locations is desired.

  11. Dilatant shear band formation and diagenesis in calcareous, arkosic sandstones, Vienna Basin (Austria)

    Science.gov (United States)

    Lommatzsch, Marco; Exner, Ulrike; Gier, Susanne; Grasemann, Bernhard

    2015-01-01

    The present study examines deformation bands in calcareous arkosic sands. The investigated units can be considered as an equivalent to the Matzen field in the Vienna Basin (Austria), which is one of the most productive oil reservoirs in central Europe. The outcrop exposes carbonate-free and carbonatic sediments of Badenian age separated by a normal fault. Carbonatic sediments in the hanging wall of the normal fault develop dilation bands with minor shear displacements (< 2 mm), whereas carbonate-free sediments in the footwall develop cataclastic shear bands with up to 70 cm displacement. The cataclastic shear bands show a permeability reduction up to 3 orders of magnitude and strong baffling effects in the vadose zone. Carbonatic dilation bands show a permeability reduction of 1-2 orders of magnitude and no baffling structures. We distinguished two types of deformation bands in the carbonatic units, which differ in deformation mechanisms, distribution and composition. Full-cemented bands form as dilation bands with an intense syn-kinematic calcite cementation, whereas the younger loose-cemented bands are dilatant shear bands cemented by patchy calcite and clay minerals. All analyzed bands are characterized by a porosity and permeability reduction caused by grain fracturing and cementation. The changed petrophysical properties and especially the porosity evolution are closely related to diagenetic processes driven by varying pore fluids in different diagenetic environments. The deformation band evolution and sealing capacity is controlled by the initial host rock composition. PMID:26300577

  12. A geophysical cross-section of the Hockai Fault Zone (Eastern Belgium): imaging an intraplate weak crustal zone.

    Science.gov (United States)

    Lecocq, T.; Camelbeeck, T.

    2016-12-01

    The Hockai Fault Zone (HFZ) is a NNW-SSE trending structure visible in the regional geomorphology in the Ardennes, Eastern-Belgium. It is situated, between the Pays de Herve (Graben de la Minerie) to the North and the Amblève river, to the South. It crosses the Stavelot Massif, almost perpendicular to the Crête de la Vecquée (Vecquée crest), i.e. the highest crest of the Venn. Faults have been identified or suspected on a contour map of the base of the Tertiary cover (Eocene or Oligocene) in the north western and central Rhenish Massif. These faults are necessary to account for the altitude difference of the base of the cover. The deflection or capture of local rivers show a remarkable alignments on more than 42 km N-S. The alignments are mostly trending SSE-NNW, between N140 and N170, with some potential segments with slightly different orientations. This general orientation has been also evidenced from the analyses of Landsat-1 imagery products. At its crossing with the Vecquée Crest, Demoulin locates the HFZ where the Hoëgne river turns sharply towards the north and crosscuts the quarzitic crest. Demoulin identifies three subparallel faults or fault zones on the Hautes-Fagnes plateau, from East to West: the Eupen faulting zone, the Baelen faulting zone and Hockai faulted zone. In this communication, we report on a large-scale geophysical survey that was conducted in order to search of the Hockai fault zone expression at the surface. The locations to search for the Hockai Fault Zone are based on the surface projection of the 1989/1990 seismic swarm that occurred under the Stavelot Massif, geomorphological evidences and past geophysical surveys in the region. Our objective is not to prove a Quaternary movement of faults, but rather to find reliable evidences of their presence and to analyse their lateral extension. In total, 31 ERT profiles were executed almost parallel to the Vecquée Crest, i.e. a total of 10679 meters of profiles. Four zones are imaged

  13. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed in uncracked concrete.Proposals have been made on how the derived standard solutions may be applied to more complicated cases, such as continuous beams, beams......The report deals with the shear strength of statically indeterminate reinforced concrete beams without shear reinforcement. Solutions for a number of beams with different load and support conditions have been derived by means of the crack sliding model developed by Jin- Ping Zhang.This model...

  14. Additional Samples: Where They Should Be Located

    International Nuclear Information System (INIS)

    Pilger, G. G.; Costa, J. F. C. L.; Koppe, J. C.

    2001-01-01

    Information for mine planning requires to be close spaced, if compared to the grid used for exploration and resource assessment. The additional samples collected during quasimining usually are located in the same pattern of the original diamond drillholes net but closer spaced. This procedure is not the best in mathematical sense for selecting a location. The impact of an additional information to reduce the uncertainty about the parameter been modeled is not the same everywhere within the deposit. Some locations are more sensitive in reducing the local and global uncertainty than others. This study introduces a methodology to select additional sample locations based on stochastic simulation. The procedure takes into account data variability and their spatial location. Multiple equally probable models representing a geological attribute are generated via geostatistical simulation. These models share basically the same histogram and the same variogram obtained from the original data set. At each block belonging to the model a value is obtained from the n simulations and their combination allows one to access local variability. Variability is measured using an uncertainty index proposed. This index was used to map zones of high variability. A value extracted from a given simulation is added to the original data set from a zone identified as erratic in the previous maps. The process of adding samples and simulation is repeated and the benefit of the additional sample is evaluated. The benefit in terms of uncertainty reduction is measure locally and globally. The procedure showed to be robust and theoretically sound, mapping zones where the additional information is most beneficial. A case study in a coal mine using coal seam thickness illustrates the method

  15. Experiments on sheet metal shearing

    OpenAIRE

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  16. Experimental observation of shear thickening oscillation

    DEFF Research Database (Denmark)

    Nagahiro, Shin-ichiro; Nakanishi, Hiizu; Mitarai, Namiko

    2013-01-01

    We report experimental observations of the shear thickening oscillation, i.e. the spontaneous macroscopic oscillation in the shear flow of severe shear thickening fluid. Using a density-matched starch-water mixture, in the cylindrical shear flow of a few centimeters flow width, we observed...

  17. Monitoring the lesion formation during histotripsy treatment using shear wave imaging

    Science.gov (United States)

    Arnal, Bastien; Lee, Wei-Ning; Pernot, Mathieu; Fink, Mathias; Tanter, Mickael

    2012-11-01

    Monitoring the lesion formation induced by histotripsy has mainly relied on the quantitative change in backscatter intensity using ultrasound B-mode imaging. However, how the mechanical properties of the histotripsy-treated tissue region alter during the procedure is yet to be fully investigated. We thus proposed here to monitor such a therapeutic process based on shear modulus estimated by shear wave imaging (SWI). In the therapeutic procedure, a single-element piezo-composite focused transducer (Imasonic, Besançon, France) with a center frequency of 660 kHz, a focal length of 45 mm, and an fnumber of 1 was driven by a function generator (AFG 3101, Tektronix, Beaverton, OR) and a gated RF power amplifier (GA-2500A, RITEC Inc., USA) to generate ultrasound histotripsy pulses. Histotripsy pulses were delivered for 20 seconds and then followed by a 30-second pause and a rapid monitoring step. Such a treatment and monitoring scheme was repeated for 10 mins. Both the reference measurement and monitoring were realized by SWI, where plane shear waves were generated by an 8 MHz linear array probe connected to a prototype ultrasound scanner, and acquired at a frame rate of 10000 Hz. Shear modulus was estimated and mapped in 2D through a time-of-flight algorithm. Gelatin (8%)-agar (2%) phantoms and ex-vivo porcine liver samples were tested. Regions of interests (ROI's) of 2 mm-by-2 mm in both untreated and treated regions were selected to compute the contrast-to-noise ratio (CNR). In all three scenarios where different PD's and PRF's were implemented, during the first 100 seconds of the treatment, 50% decrease in the shear modulus within the histotripsy-targeted zone was already observed, and the CNR of the shear modulus increased by 18 dB. In contrast, the backscatter intensity began to reduce and the corresponding CNR was found to increase by 6 dB only after 120 seconds of treatment. The results demonstrated that SWI can map quantitatively the change of mechanical

  18. Structural Analysis: Folds Classification of metasedimentary rock in the Peninsular Malaysia

    Science.gov (United States)

    Shamsuddin, A.

    2017-10-01

    Understanding shear zone characteristics of deformation are a crucial part in the oil and gas industry as it might increase the knowledge of the fracture characteristics and lead to the prediction of the location of fracture zones or fracture swarms. This zone might give high influence on reservoir performance. There are four general types of shear zones which are brittle, ductile, semibrittle and brittle-ductile transition zones. The objective of this study is to study and observe the structural geometry of the shear zones and its implication as there is a lack of understanding, especially in the subsurface area because of the limitation of seismic resolution. A field study was conducted on the metasedimentary rocks (shear zone) which are exposed along the coastal part of the Peninsular Malaysia as this type of rock resembles the types of rock in the subsurface. The analysis in this area shows three main types of rock which are non-foliated metaquartzite and foliated rock which can be divided into slate and phyllite. Two different fold classification can be determined in this study. Layer 1 with phyllite as the main type of rock can be classified in class 1C and layer 2 with slate as the main type of rock can be classified in class 1A. This study will benefit in predicting the characteristics of the fracture and fracture zones.

  19. Impact of type of the roof rocks on location and range of endogenous fires particular hazard zone by in goaf with caving

    Science.gov (United States)

    Tutak, Magdalena; Brodny, Jarosław

    2018-01-01

    Hazard of endogenous fires is one of the basic and common presented occupational safety hazards in coal mine in Poland and in the world. This hazard means possibility of coal self-ignition as the result of its self-heating process in mining heading or its surrounding. In underground coal-mining during ventilating of operating longwalls takes place migration of parts of airflow to goaf with caving. In a case when in these goaf a coal susceptible to self-ignition occurs, then the airflow through these goaf may influence on formation of favorable conditions for coal oxidation and subsequently to its self-heating and self-ignition. Endogenous fire formed in such conditions can pose a serious hazards for the crew and for continuity of operation of mining plant. From the practical point of view a very significant meaning has determination of the zone in the goaf with caving, in which necessary conditions for occurence of endogenous fire are fulfilled. In the real conditions determination of such a zone is practically impossible. The main aim of the analysis was to determine the impact of type of the roof rocks forming the goaf on the location and range of endogenous fires particular hazard zone by in these goaf. For determined mining-geological conditions, the critical value of velocity of airflow and oxygen concentration in goaf, conditioning initiation of coal oxidation process were determined.

  20. Shear behaviour of reinforced phyllite concrete beams

    International Nuclear Information System (INIS)

    Adom-Asamoah, Mark; Owusu Afrifa, Russell

    2013-01-01

    Highlights: ► Phyllite concrete beams often exhibited shear with anchorage bond failure. ► Different shear design provisions for reinforced phyllite beams are compared. ► Predicted shear capacity of phyllite beams must be modified by a reduction factor. -- Abstract: The shear behaviour of concrete beams made from phyllite aggregates subjected to monotonic and cyclic loading is reported. First diagonal shear crack load of beams with and without shear reinforcement was between 42–58% and 42–92% of the failure loads respectively. The phyllite concrete beams without shear links had lower post-diagonal cracking shear resistance compared to corresponding phyllite beams with shear links. As a result of hysteretic energy dissipation, limited cyclic loading affected the stiffness, strength and deformation of the phyllite beams with shear reinforcement. Generally, beams with and without shear reinforcement showed anchorage bond failure in addition to the shear failure due to high stress concentration near the supports. The ACI, BS and EC codes are conservative for the prediction of phyllite concrete beams without shear reinforcement but they all overestimate the shear strength of phyllite concrete beams with shear reinforcement. It is recommended that the predicted shear capacity of phyllite beams reinforced with steel stirrups be modified by a reduction factor of 0.7 in order to specify a high enough safety factor on their ultimate strength. It is also recommended that susceptibility of phyllite concrete beams to undergo anchorage bond failure is averted in design by the provision of greater anchorage lengths than usually permitted.

  1. The Effects of Zoning Regulations along Fault Zone Areas on Land Development and Property Values after the 921 Chi-Chi Earthquake in Taiwan

    Directory of Open Access Journals (Sweden)

    Tzu-Ling Chen

    2018-04-01

    Full Text Available Earthquakes are widely recognized as unpredictable and infrequent disasters that result in serious impacts on human settlements. Land use planning is one non-structural measure used to eliminate disaster risk by steering future development away from the existing built environment and enforcing particular structural engineering measures according to the disaster risk. However, arguments have arisen about applying land use planning to earthquake risk areas, as this serves as a type of disaster risk information disclosure that might impact the willingness to develop land or property value. Therefore, this study uses the spatial autocorrelation coefficient to examine the impact of land use planning on both land use and property transactions in the Chelungpu fault zone area (15 m from each side of the fault line in Taiwan. The overall impacts with and without zoning regulation in the fault zone area are explored. The results demonstrate that parcels that changed to building use in the earlier time period (1995–2008 are located distant from those maintaining the same building use, whereas, later, building use (2008–2014 is located on or nearby the fault zone area. In addition, the most recently constructed buildings are located in or close to the fault zone area and have a relatively higher property price. The legal zoning regulation along the fault zone for building use requires lower height and less intensive building, which might help mitigate the potential impact of future earthquakes.

  2. Microstructural Characteristics and Mechanical Properties of Friction Stir Spot Welded 2A12-T4 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Huijie Liu

    2013-01-01

    Full Text Available 2A12-T4 aluminum alloy was friction stir spot welded, and the microstructural characteristics and mechanical properties of the joints were investigated. A softened microstructural region existed in the joint, and it consisted of stir zone (SZ, thermal mechanically affected zone (TMAZ, and heat affected zone (HAZ. The minimum hardness was located in TMAZ, and the average hardness value in SZ can be improved by appropriately increasing welding heat input. The area of complete bonding region at the interface increased with increasing welding heat input because more interface metals were mixed. In a certain range of FSSW parameters, the tensile shear failure load of the joint increased with increasing rotation speed, but it decreased with increasing plunge rate or decreasing shoulder plunging depth. Two kinds of failure modes, that is, shear fracture mode and tensile-shear mixed fracture mode, can be observed in the tensile shear tests, and the joint that failed in the tensile-shear mixed fracture mode possessed a high carrying capability.

  3. Volumetric composition and shear strength evaluation of pultruded hybrid kenaf/glass fiber composites

    DEFF Research Database (Denmark)

    Hashemi, Fariborz; Tahir, Paridah Md; Madsen, Bo

    2015-01-01

    by using a gravimetrically based method. Optical microscopy was used to determine the location of voids. The short-beam test method was used to determine the interlaminar shear strength of the composites, and the failure mode was observed. It was found that the void volume fraction of the composites...

  4. Cohesive zone modeling of intergranular cracking in polycrystalline aggregates

    International Nuclear Information System (INIS)

    Simonovski, Igor; Cizelj, Leon

    2015-01-01

    Highlights: • Alternative approach to cohesive elements is proposed: cohesive-zone contact. • Applicability to measured and simulated grain structures is demonstrated. • Normal and normal/shear separation as a damage initialization is explored. • Normal/shear damage initialization significantly reduces ductility. • Little difference in Voronoi aggregate size on macroscopic response. - Abstract: Understanding and controlling early damage initiation and evolution are amongst the most important challenges in nuclear power plants, occurring in ferritic, austenitic steels and nickel based alloys. In this work a meso-scale approach to modeling initiation and evolution of early intergranular cracking is presented. This damage mechanism is present in a number of nuclear power plant components and depends on the material (e.g. composition, heat treatment, microstructure), environment and load. Finite element modeling is used to explicitly model the microstructure – both the grains and the grain boundaries. Spatial Voronoi tessellation is used to obtain the grain topology. In addition, measured topology of a 0.4 mm stainless steel wire is used. Anisotropic elasticity and crystal plasticity are used as constitutive laws for the grains. Grain boundaries are modeled using the cohesive zone approach. Different modeling assumptions/parameters are evaluated against the numerical stability criteria. The biggest positive contribution to numerical stability is the use of cohesive-type contact instead of cohesive elements. A small amount of viscous regularization should be also used along with the addition of a small amount of viscous forces to the global equilibrium equations. Two cases of grain boundary damage initiation are explored: (1) initiation due to normal separation and (2) initiation due to a combination of normal and shear separation. The second criterion significantly decreases the ductility of an aggregate and slightly improves the numerical stability

  5. Sheared Electroconvective Instability

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon

    2012-11-01

    Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.

  6. Coseismic microstructures of experimental fault zones in Carrara marble

    Science.gov (United States)

    Ree, Jin-Han; Ando, Jun-ichi; Han, Raehee; Shimamoto, Toshihiko

    2014-09-01

    Experimental fault zones developed in Carrara marble that were deformed at seismic slip rates (1.18-1.30 m s-1) using a high-velocity-rotary-shear apparatus exhibit very low friction (friction coefficient as low as 0.06) at steady state due to nanoparticle lubrication of the decomposition product (lime). The fault zones show a layered structure; a central slip-localization layer (5-60 μm thick) of lime nanograins mantled by gouge layers (5-150 μm thick) and a plastically deformed layer (45-500 μm thick) between the wall rock and gouge layer in the marginal portion of cylindrical specimens. Calcite grains of the wall rock adjacent to the slip zone deform by dislocation glide when subjected to frictional heating and a lower strain rate than that of the principal slip zone. The very fine (2-5 μm) calcite grains in the gouge layer show a foam structure with relatively straight grain boundaries and 120° triple junctions. This foam structure is presumed to develop by welding at high temperature and low strain once slip is localized along the central layer. We suggest that a seismic event can be inferred from deformed marbles, given: (i) the presence of welded gouge with foam structure in a fault zone where wall rocks show no evidence of thermal metamorphism and (ii) a thin plastically deformed layer immediately adjacent to the principal slip zone of a cataclastic fault zone.

  7. Reduced thoracolumbar fascia shear strain in human chronic low back pain

    Directory of Open Access Journals (Sweden)

    Konofagou Elisa E

    2011-09-01

    Full Text Available Abstract Background The role played by the thoracolumbar fascia in chronic low back pain (LBP is poorly understood. The thoracolumbar fascia is composed of dense connective tissue layers separated by layers of loose connective tissue that normally allow the dense layers to glide past one another during trunk motion. The goal of this study was to quantify shear plane motion within the thoracolumbar fascia using ultrasound elasticity imaging in human subjects with and without chronic low back pain (LBP. Methods We tested 121 human subjects, 50 without LBP and 71 with LBP of greater than 12 months duration. In each subject, an ultrasound cine-recording was acquired on the right and left sides of the back during passive trunk flexion using a motorized articulated table with the hinge point of the table at L4-5 and the ultrasound probe located longitudinally 2 cm lateral to the midline at the level of the L2-3 interspace. Tissue displacement within the thoracolumbar fascia was calculated using cross correlation techniques and shear strain was derived from this displacement data. Additional measures included standard range of motion and physical performance evaluations as well as ultrasound measurement of perimuscular connective tissue thickness and echogenicity. Results Thoracolumbar fascia shear strain was reduced in the LBP group compared with the No-LBP group (56.4% ± 3.1% vs. 70.2% ± 3.6% respectively, p Conclusion Thoracolumbar fascia shear strain was ~20% lower in human subjects with chronic low back pain. This reduction of shear plane motion may be due to abnormal trunk movement patterns and/or intrinsic connective tissue pathology. There appears to be some sex-related differences in thoracolumbar fascia shear strain that may also play a role in altered connective tissue function.

  8. Cyclical Fault Permeability in the Lower Seismogenic Zone: Geological Evidence

    Science.gov (United States)

    Sibson, R. H.

    2005-12-01

    Syntectonic hydrothermal veining is widespread in ancient fault zones exhibiting mixed brittle-ductile behavior that are exhumed from subgreenschist to greenschist environments. The hydrothermal material (predominantly quartz ± carbonate) commonly occurs as fault-veins developed along principal slip surfaces, with textures recording intermittent deposition, sometimes in the form of repeated episodes of brecciation and recementation. Systematic sets of extension veins with histories of incremental dilation often occur in adjacent wallrocks. Conspicuous for their size and continuity among these fault-hosted vein systems are mesozonal Au-quartz lodes, which are most widespread in Archean granite-greenstone belts but also occur throughout the geological record. Most of these lode gold deposits developed at pressures of 1-5 kbar and temperatures of 200-450°C within the lower continental seismogenic zone. A notable characteristic is their vertical continuity: many `ribbon-texture' fault veins with thicknesses of the order of a meter extend over depth ranges approaching 2 km. The largest lodes are usually hosted by reverse or reverse- oblique fault zones with low finite displacement. Associated flat-lying extension veins in the wallrock may taper away from the shear zones over tens or hundreds of meters, and demonstrate repeated attainment of the ~lithostatic fluid overpressures needed for hydraulic extension fracturing. Where hosted by extensional-transtensional fault systems, lode systems tend to be less well developed. Mesozonal vein systems are inferred to be the product of extreme fault-valve behavior, whereby episodic accumulation of pore-fluid pressure to near-lithostatic values over the interseismic period leads to fault rupture, followed by postseismic discharge of substantial fluid volumes along the freshly permeable rupture zone inducing hydrothermal precipitation that seals the fracture permeability. Aqueous mineralizing fluids were generally low

  9. Embodied Archives as Contact Zones

    Directory of Open Access Journals (Sweden)

    Judit Vidiella

    2015-02-01

    Full Text Available This article proposes a reflection about affective politics from locating some theoretical and conceptual genealogies like «emotion», «affection», «zones of contact»…, that understand them as action and force fields. These contributions allow us to rethink the relation of affects with politics and strategies of archive linked to performance, and understood as zones of friction, collision, circulation and contact: performative writing, repertoire, memes…

  10. High strength semi-active energy absorbers using shear- and mixedmode operation at high shear rates

    Science.gov (United States)

    Becnel, Andrew C.

    This body of research expands the design space of semi-active energy absorbers for shock isolation and crash safety by investigating and characterizing magnetorheological fluids (MRFs) at high shear rates ( > 25,000 1/s) under shear and mixed-mode operation. Magnetorheological energy absorbers (MREAs) work well as adaptive isolators due to their ability to quickly and controllably adjust to changes in system mass or impact speed while providing fail-safe operation. However, typical linear stroking MREAs using pressure-driven flows have been shown to exhibit reduced controllability as impact speed (shear rate) increases. The objective of this work is to develop MREAs that improve controllability at high shear rates by using pure shear and mixed shear-squeeze modes of operation, and to present the fundamental theory and models of MR fluids under these conditions. A proof of concept instrument verified that the MR effect persists in shear mode devices at shear rates corresponding to low speed impacts. This instrument, a concentric cylinder Searle cell magnetorheometer, was then used to characterize three commercially available MRFs across a wide range of shear rates, applied magnetic fields, and temperatures. Characterization results are presented both as flow curves according to established practice, and as an alternate nondimensionalized analysis based on Mason number. The Mason number plots show that, with appropriate correction coefficients for operating temperature, the varied flow curve data can be collapsed to a single master curve. This work represents the first shear mode characterization of MRFs at shear rates over 10 times greater than available with commercial rheometers, as well as the first validation of Mason number analysis to high shear rate flows in MRFs. Using the results from the magnetorheometer, a full scale rotary vane MREA was developed as part of the Lightweight Magnetorheological Energy Absorber System (LMEAS) for an SH-60 Seahawk helicopter

  11. Breast tumor classification using axial shear strain elastography: a feasibility study

    International Nuclear Information System (INIS)

    Thitaikumar, Arun; Ophir, Jonathan; Mobbs, Louise M; Kraemer-Chant, Christina M; Garra, Brian S

    2008-01-01

    Recently, the feasibility of visualizing the characteristics of bonding at an inclusion-background boundary using axial-shear strain elastography was demonstrated. In this paper, we report a feasibility study on the utility of the axial-shear strain elastograms in the classification of in vivo breast tumor as being benign or malignant. The study was performed using data sets obtained from 15 benign and 15 malignant cases that were biopsy proven. A total of three independent observers were trained, and their services were utilized for the study. A total of 9 cases were used as training set and the remaining cases were used as testing set. The feature from the axial-shear strain elastogram, namely, the area of the axial-shear region, was extracted by the observers. The observers also outlined the tumor area on the corresponding sonogram, which was used to normalize the area of the axial-shear strain region. There are several observations that can be drawn from the results. First, the result indicates that the observers consistently (∼82% of the cases) noticed the characteristic pattern of the axial-shear strain distribution data as predicted in the previous simulation studies, i.e. alternating regions of positive and negative axial-shear strain values around the tumor-background interface. Second, the analysis of the result suggests that in approximately 57% of the cases in which the observers did not visualize tumor in the sonogram, the elastograms helped them to locate the tumor. Finally, the analysis of the result suggests that for the discriminant feature value of 0.46, the number of unnecessary biopsies could be reduced by 56.3% without compromising on sensitivity and on negative predictive value (NPV). Based on the results in this study, feature values greater than 0.75 appear to be indicative of malignancy, while values less than 0.46 to be indicative of benignity. Feature values between 0.46 and 0.75 may result in an overlap between benign and malignant

  12. Latest Quaternary paleoseismology and evidence of distributed dextral shear along the Mohawk Valley fault zone, northern Walker Lane, California

    Science.gov (United States)

    Gold, Ryan D.; Briggs, Richard; Personius, Stephen; Crone, Anthony J.; Mahan, Shannon; Angster, Stephen

    2014-01-01

    The dextral-slip Mohawk Valley fault zone (MVFZ) strikes northwestward along the eastern margin of the Sierra Nevada in the northern Walker Lane. Geodetic block modeling indicates that the MVFZ may accommodate ~3 mm/yr of regional dextral strain, implying that it is the highest slip-rate strike-slip fault in the region; however, only limited geologic data are available to constrain the system’s slip rate and earthquake history. We mapped the MVFZ using airborne lidar data and field observations and identified a site near Sulphur Creek for paleoseismic investigation. At this site, oblique dextral-normal faulting on the steep valley margin has created a closed depression that floods annually during spring snowmelt to form an ephemeral pond. We excavated three fault-perpendicular trenches at the site and exposed pond sediment that interfingers with multiple colluvial packages eroded from the scarp that bounds the eastern side of the pond. We documented evidence for four surface-rupturing earthquakes on this strand of the MVFZ. OxCal modeling of radiocarbon and luminescence ages indicates that these earthquakes occurred at 14.0 ka, 12.8 ka, 5.7 ka, and 1.9 ka. The mean ~4 kyr recurrence interval is inconsistent with slip rates of ~3 mm/yr; these rates imply surface ruptures of more than 10 m per event, which is geologically implausible for the subdued geomorphic expression and 60 km length of the MVFZ. We propose that unidentified structures not yet incorporated into geodetic models may accommodate significant dextral shear across the northern Walker Lane, highlighting the role of distributed deformation in this region.

  13. Solar-wind turbulence and shear: a superposed-epoch analysis of corotating interaction regions at 1 AU

    Energy Technology Data Exchange (ETDEWEB)

    Borovsky, Joseph E [Los Alamos National Laboratory; Denton, Michael H [LANCASTER UNIV.

    2009-01-01

    A superposed-epoch analysis of ACE and OMNI2 measurements is performed on 27 corotating interaction regions (CIRs) in 2003-2008, with the zero epoch taken to be the stream interface as determined by the maximum of the plasma vorticity. The structure of CIRs is investigated. When the flow measurements are rotated into the local-Parker-spiral coordinate system the shear is seen to be abrupt and intense, with vorticities on the order of 10{sup -5}-10{sup -4} sec{sup -1}. Converging flows perpendicular to the stream interface are seen in the local-Parker-spiral coordinate system and about half of the CIRs show a layer of divergent rebound flow away from the stream interface. Arguments indicate that any spreading of turbulence away from the region where it is produced is limited to about 10{sup 6} km, which is very small compared with the thickness of a CrR. Analysis of the turbulence across the CrRs is performed. When possible, the effects of discontinuities are removed from the data. Fluctuation amplitudes, the Alfvenicity, and the level of Alfvenic correlations all vary smoothly across the CrR. The Alfven ratio exhibits a decrease at the shear zone of the stream interface. Fourier analysis of 4.5-hr subintervals of ACE data is performed and the results are superposed averaged as an ensemble of realizations. The spectral slopes of the velocity, magnetic-field, and total-energy fluctuations vary smoothly across the CIR. The total-energy spectral slope is {approx} 3/2 in the slow and fast wind and in the CrRs. Analysis of the Elsasser inward-outward fluctuations shows a smooth transition across the CrR from an inward-outward balance in the slow wind to an outward dominance in the fast wind. A number of signatures of turbulence driving at the shear zone are sought (entropy change, turbulence amplitude, Alfvenicity, Alfven ratio, spectral slopes, in-out nature): none show evidence of driving of turbulence by shear.

  14. Ionization dual-zone static detector having single radioactive source

    International Nuclear Information System (INIS)

    Ried, L. Jr.; Wade, A.L.

    1977-01-01

    This ionization detector or combustion product detector includes a single radioactive source located in an ionization chamber, and the ionization chamber includes portions comprising a reference zone and a signal zone. Electrical circuitry connected to the reference and signal zones provides an output signal directly related to changes in voltages across the signal zone in relation to the amount of particulates of combustion present in the ionization chamber

  15. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal

    Science.gov (United States)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

    1996-01-01

    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  16. Deformation and failure response of 304L stainless steel SMAW joint under dynamic shear loading

    International Nuclear Information System (INIS)

    Lee, Woei-Shyan; Cheng, J.-I.; Lin, C.-F.

    2004-01-01

    The dynamic shear deformation behavior and fracture characteristics of 304L stainless steel shielded metal arc welding (SMAW) joint are studied experimentally with regard to the relations between mechanical properties and strain rate. Thin-wall tubular specimens are deformed at room temperature under strain rates in the range of 8 x 10 2 to 2.8 x 10 3 s -1 using a torsional split-Hopkinson bar. The results indicate that the strain rate has a significant influence on the mechanical properties and fracture response of the tested SMAW joints. It is found that the flow stress, total shear strain to failure, work hardening rate and strain rate sensitivity all increase with increasing strain rate, but that the activation volume decreases. The observed dynamic shear deformation behavior is modeled using the Kobayashi-Dodd constitutive law, and it is shown that the predicted results are in good agreement with the experimental data. Fractographic analysis using scanning electron microscopy reveals that the tested specimens all fracture within their fusion zones, and that the primary failure mechanism is one of the extensive localized shearing. The fracture surfaces are characterized by the presence of many dimples. A higher strain rate tends to reduce the size of the dimples and to increase their density. The observed fracture features are closely related to the preceding flow behavior

  17. Heterogeneities of the shear wave attenuation field in the lithosphere of East Tien Shan and their relationship with seismicity

    Science.gov (United States)

    Kopnichev, Yu. F.; Sokolova, I. N.

    2012-02-01

    The shear wave attenuation field in the lithosphere of Eastern Tien Shan has been mapped. The method based on analysis of the ratio between amplitudes of Sn and Pn waves was used. On aggregate, about 120 seismograms made at the Makanchi station (MKAR), mainly in the period of 2003-2009, at epicentral distances of about 350-1200 km were analyzed. It was found that shear wave attenuation in the lithosphere of Eastern Tien Shan is weaker than that in the region of Central Tien Shan. This agrees with the fact that the rate of deformation of the Earth's crust in Eastern Tien Shan is lower (based on GPS data), as is the seismicity level, in comparison to Central Tien Shan. The zones of high attenuation, where strong earthquakes with M > 7.0 have not occurred for the last 200 years, have been identified: first of all, these are the area west of Urumqi and that of the Lop Nur test site. It is suggested that in the first zone, where an annular seismicity structure has formed over the last 30 years, a strong earthquake may be being prepared. The second zone is most probably related to the uplift of mantle fluids resulting from a long-term intensive technogenic effect, analogous to what has occurred in areas of other nuclear test sites (Nevada and Semipalatinsk).

  18. Normal zone detectors for a large number of inductively coupled coils. Revision 1

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.

    1983-01-01

    In order to protect a set of inductively coupled superconducting magnets, it is necessary to locate and measure normal zone voltages that are small compared with the mutual and self-induced voltages. The method described in this paper uses two sets of voltage measurements to locate and measure one or more normal zones in any number of coupled coils. One set of voltages is the outputs of bridges that balance out the self-induced voltages. The other set of voltages can be the voltages across the coils, although alternatives are possible. The two sets of equations form a single combined set of equations. Each normal zone location or combination of normal zones has a set of these combined equations associated with it. It is demonstrated that the normal zone can be located and the correct set chosen, allowing determination of the size of the normal zone. Only a few operations take place in a working detector: multiplication of a constant, addition, and simple decision-making. In many cases the detector for each coil, although weakly linked to the other detectors, can be considered to be independent. The effect on accuracy of changes in the system parameters is discussed

  19. SEISMODYNAMICS AND DEEP INTERNAL ORIGIN OF THE NORTH CHINA ZONE OF STRONG EARTHQUAKES

    Directory of Open Access Journals (Sweden)

    Andrey A. Stepashko

    2011-01-01

    Full Text Available Space-and-time regularities of seismicity of the North China (Tan-Lu zone are studies, and tectonic nature of strong earthquakes is analyzed. The concept of its genesis is still a matter of debate as this zone is located in the centre of the ancient SinoKorean craton, i.e. thousand kilometers away from convergent margins of Eurasia and the Pacific оcean and IndoAustralian plates (Figure 1. The information on the regional cycling dynamics [Xu, Deng, 1996] is updated. Two cycles, in which strong earthquakes (14 shocks with М≥7.0 occurred in the region under study, are distinguished, i.e. from 1500 to 1700, and from 1800 to 1980 (Figure 2. The seismodynamics of the North China zone is consistent with the Circum Pacific оcean deformation wave that occurs once in 300 years at the margin between Asia and the ocean and thus causes the strongest earthquakes (М≥8.8 and eruptions of volcanoes in the Pacific оcean belt [Vikulin et al., 2009, 2010]. This wave came to the northern regions of China in the years of 1500 and 1800 (Figure 3 and triggered seismic activity cycles. The second factor predetermining the seismicity of the Northern China is a specific structure of the region which can manifest seismic activity due to the impact of deformation waves. The genesis of the metastable structure of the region is related to tectonic restructuring of the lithosphere of the SinoKorean craton due to shear displacements in the Tan-Lu megazone. Regional variations of compositions of mantle xenoliths of the Sikhote Alin orogeny demonstrate that the latent strike of the Tan-Lu faults can be traced across the south-eastern areas of Russia to the Tatar Strait. These faults are borders of the Vshaped mantle block (400 x 1500 km (Figure 5, which composition is characterized by an anomalous content of iron and a low depletion of peridotites. The tectonic mantle block maintains its activity; being impacted by compression from the west, it is squeezed out towards

  20. A Piezoelectric Shear Stress Sensor

    Science.gov (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  1. Structural and microstructural evolution of fault zones in Cretaceous poorly lithified sandstones of the Rio do Peixe basin, Paraiba, NE Brazil

    Science.gov (United States)

    Balsamo, Fabrizio; Nogueira, Francisco; Storti, Fabrizio; Bezerra, Francisco H. R.; De Carvalho, Bruno R.; André De Souza, Jorge

    2017-04-01

    In this contribution we describe the structural architecture and microstructural features of fault zones developed in Cretaceous, poorly lithified sandstones of the Rio do Peixe basin, NE Brazil. The Rio do Peixe basin is an E-W-trending, intracontinental half-graben basin developed along the Precambrian Patos shear zone where it is abutted by the Porto Alegre shear zone. The basin formed during rifting between South America and Africa plates and was reactivated and inverted in a strike-slip setting during the Cenozoic. Sediments filling the basin consist of an heterolithic sequence of alternating sandstones, conglomerates, siltstone and clay-rich layers. These lithologies are generally poorly lithified far from the major fault zones. Deformational structures in the basin mostly consist of deformation band-dominated fault zones. Extensional and strike-slip fault zones, clusters of deformation bands, and single deformation bands are commonly well developed in the proximity of the basin-boundary fault systems. All deformation structures are generally in positive relief with respect to the host rocks. Extensional fault zones locally have growth strata in their hangingwall blocks and have displacement generally <10 m. In map view, they are organized in anastomosed segments with high connectivity. They strike E-W to NE-SW, and typically consist of wide fault cores (< 1 m in width) surrounded by up to few-meter wide damage zones. Fault cores are characterized by distributed deformation without pervasive strain localization in narrow shear bands, in which bedding is transposed into foliation imparted by grain preferred orientation. Microstructural observations show negligible cataclasis and dominant non-destructive particulate flow, suggesting that extensional fault zones developed in soft-sediment conditions in a water-saturated environment. Strike-slip fault zones commonly overprint the extensional ones and have displacement values typically lower than about 2 m. They

  2. Simulations of Granular Particles Under Cyclic Shear

    Science.gov (United States)

    Royer, John; Chaikin, Paul

    2012-02-01

    We perform molecular dynamics (MD) simulations of spherical grains subjected to cyclic, quasi-static shear in a 3D parallelepiped shear cell. This virtual shear cell is constructed out of rough, bumpy walls in order to minimize wall-induced ordering and has an open top surface to allow the packing to readily dilate or compact. Using a standard routine for MD simulations of frictional grains, we simulate over 1000 shear cycles, measuring grain displacements, the local packing density and changes in the contact network. Varying the shear amplitude and the friction coefficient between grains, we map out a phase diagram for the different types of behavior exhibited by these sheared grains. With low friction and high enough shear, the grains can spontaneously order into densely packed crystals. With low shear and increasing friction the packing remains disordered, yet the grains arrange themselves into configurations which exhibit limit cycles where all grains return to the same position after each full shear cycle. At higher shear and friction there is a transition to a diffusive state, where grains continue rearrange and move throughout the shear cell.

  3. Numerical Simulation of Shear Slitting Process of Grain Oriented Silicon Steel using SPH Method

    Directory of Open Access Journals (Sweden)

    Bohdal Łukasz

    2017-12-01

    Full Text Available Mechanical cutting allows separating of sheet material at low cost and therefore remains the most popular way to produce laminations for electrical machines and transformers. However, recent investigations revealed the deteriorating effect of cutting on the magnetic properties of the material close to the cut edge. The deformations generate elastic stresses in zones adjacent to the area of plastically deformed and strongly affect the magnetic properties. The knowledge about residual stresses is necessary in designing the process. This paper presents the new apprach of modeling residual stresses induced in shear slitting of grain oriented electrical steel using mesh-free method. The applications of SPH (Smoothed Particle Hydrodynamics methodology to the simulation and analysis of 3D shear slitting process is presented. In experimental studies, an advanced vision-based technology based on digital image correlation (DIC for monitoring the cutting process is used.

  4. 33 CFR 165.1141 - Safety Zone; San Clemente 3 NM Safety Zone, San Clemente Island, CA.

    Science.gov (United States)

    2010-07-01

    ...) Location. The following area is a safety zone: All waters of the Pacific Ocean surrounding San Clemente Island, from surface to bottom, extending from the high tide line on the island seaward 3 NM. The zone... 3 NM from the high tide line to 33°02.82′ N, 118°30.65′ W; thence 33°01.29′ N, 118°33.88′ W; thence...

  5. 33 CFR 3.40-28 - Sector Houston-Galveston Marine Inspection Zone and Captain of the Port Zone; Marine Safety Unit...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sector Houston-Galveston Marine....40-28 Sector Houston-Galveston Marine Inspection Zone and Captain of the Port Zone; Marine Safety Unit Port Arthur. Sector Houston-Galveston's office is located in Galena Park, TX. A subordinate unit...

  6. Intermediate-depth earthquakes within young Cocos plate beneath Central Mexico: A hypothesis test for dehydration embrittlement and shear instability

    Science.gov (United States)

    Song, T.

    2010-12-01

    Subducting slab undergoes a series of dehydration reactions on their ways into the mantle and these processes are responsible for transporting water, recycling volatiles and chemical elements in arc magmas. It is generally accepted that the SOC is hydrated. However, it is not clear if subducting oceanic mantle (SOM) is hydrated and how deep the hydration is. Seismic refraction studies found that normal-fault type faulting can extend 12-20 km deep into the interior of the slab off Nicaragua, suggesting deep hydration of the SOM. Seismic refraction studies also found that the uppermost SOM is seismically slow and is partially serpentinized. The fluids released from dehydration inside the SOM can reduce the normal stress locally and facilitate the occurrences of intra-slab events through dehydration embrittlement and hydraulic fracture. It has been suggested that the dehydration of antigorite at about 600C is particularly important in facilitating the lower plane of the double seismic zone. To link the dehydration process to the occurrences of intra-slab events, it is critical to clarify where these events are located, either located at the dehydration boundary or in the neighborhood rocks. However, if the SOM is anhydrous, other mechanism, such as shear instabilities, has to be invoked to explain the occurrences of intermediate-depth intraslab earthquakes. Here I discuss locations of intermediate-depth intraslab earthquakes in Central Mexico subduction zone, where young Cocos plate subducts beneath North America plate. Recent studies involving local converted wave modeling and receiver function analysis indicate the presence of an ultra-slow velocity layer (USL) of about 3 km thick, likely an over-pressured upper oceanic crust. Most events display anomalously large converted SP waves that are 2-2.5 secs after direct P waves and finite difference modeling converge the location of these events about 9 km below the lower boundary USL. With a lower oceanic crust of about

  7. Assessment of impact of mass movements on the upper Tayyah valley's bridge along Shear escarpment highway, Asir region (Saudi Arabia) using remote sensing data and field investigation

    Science.gov (United States)

    Youssef, A. M.; Al-Kathery, M.; Pradhan, B.

    2015-01-01

    Escarpment highways, roads and mountainous areas in Saudi Arabia are facing landslide hazards that are frequently occurring from time to time causing considerable damage to these areas. Shear escarpment highway is located in the north of the Abha city. It is the most important escarpment highway in the area, where all the light and heavy trucks and vehicle used it as the only corridor that connects the coastal areas in the western part of the Saudi Arabia with the Asir and Najran Regions. More than 10 000 heavy trucks and vehicles use this highway every day. In the upper portion of Tayyah valley of Shear escarpment highway, there are several landslide and erosion potential zones that affect the bridges between tunnel 7 and 8 along the Shear escarpment Highway. In this study, different types of landslides and erosion problems were considered to access their impacts on the upper Tayyah valley's bridge along Shear escarpment highway using remote sensing data and field investigation. These landslides and erosion problems have a negative impact on this section of the highway. Results indicate that the areas above the highway and bridge level between bridge 7 and 8 have different landslides including planar, circular, rockfall failures and debris flows. In addition, running water through the gullies cause different erosional (scour) features between and surrounding the bridge piles and culverts. A detailed landslides and erosion features map was created based on intensive field investigation (geological, geomorphological, and structural analysis), and interpretation of Landsat image 15 m and high resolution satellite image (QuickBird 0.61 m), shuttle radar topography mission (SRTM 90 m), geological and topographic maps. The landslides and erosion problems could exhibit serious problems that affect the stability of the bridge. Different mitigation and remediation strategies have been suggested to these critical sites to minimize and/or avoid these problems in the future.

  8. Suppression of plasma turbulence during optimised shear configurations in JET

    International Nuclear Information System (INIS)

    Conway, G.D.; Borba, D.N.; Alper, B.

    1999-08-01

    throughout the plasma as the radial location of the cutoff layer depends on the launched microwave frequency, the toroidal magnetic field B T , plasma current I p , and plasma density n e . Reflectometers are primarily sensitive to long wavelength transverse fluctuations, i.e. wavelengths greater than the beam radius w. For the JET reflectometers the w ∼ 5 cm and so are predominately sensitive to wavenumbers k perpendicular -1 . Spatially, the turbulence in optimised shear discharges can be separated into three regions: outside the ITB (edge), within the ITB gradient, and inside the ITB (core). The turbulence behaves differently in each region. The core turbulence (ITB and within) evolves through four distinct phases. (1) Ohmic breakdown. (2) L-mode pre-heat, using Ion Cyclotron Resonance Heating (ICRH) to slow the current penetration and control the q profile evolution. (3) Main heating using combined co-injected (parallel to I p ) Neutral Beam Injection (NBI) and ICRH, and (4) the ITB formation. The edge turbulence by contrast shows little variation as the discharge evolves. (author)

  9. 33 CFR 165.758 - Security Zone; San Juan, Puerto Rico.

    Science.gov (United States)

    2010-07-01

    ... Security Zone; San Juan, Puerto Rico. (a) Location. Moving and fixed security zones are established 50... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; San Juan, Puerto Rico. 165.758 Section 165.758 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...

  10. Shear punch testing as a tool for evaluating welded pipeline steel

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, G.R.; Elwazri, A.; Varano, R.; Yue, S.; Jonas, J.J. [McGill Univ., Montreal, PQ (Canada). Dept. of Metals and Materials Engineering; Pokutylowicz, N. [ExxonMobil Research and Engineering Co., Annandale, NJ (United States)

    2005-07-01

    This study examined the mechanical properties across a welded joint in a 35 mm steel pipe. Results were compared with microhardness measurements. The chemical composition of the 4130 steel and welding wire included carbon, manganese, silicon, nickel, chromium and molybdenum. The thermal cycles experienced during welding can result in differences in the grain size, phase, composition and morphology of precipitates. These thermal cycles can upset the balance of high strength and good toughness in steels, producing poor toughness in the heat-affected zone (HAZ). In the shear punch test, a flat-ended cylindrical punch was used to produce a 3 mm diameter disk from a sheet specimen with a recommended thickness of 300 to 350 {mu}m. The shear punch test provided tensile property data with only a very small amount of material, which is ideal for testing welds. It also provides full tensile data (yield strength, ultimate tensile strength and elongation) which are not specifically provided by hardness testing. Shear punch techniques can also improve the across-weld resolution of tensile testing. The results showed that the changes in strength properties across the weld were consistent with the microhardness measurements. The change in elongation across the weld joint was successfully measured using the punch test method. The HAZ in the welded joint in this study had a good combination of high strength and ductility, while the weld bead had moderate strength and relatively low ductility. 7 refs., 1 tab., 9 figs.

  11. Examination of uniform momentum zones in hypersonic turbulent boundary layers

    Science.gov (United States)

    Williams, Owen; Helm, Clara; Martin, Pino

    2017-11-01

    The presence of uniform momentum zones (UMZs) separated by regions of high shear is now well-established in incompressible flows, with the mean number of such zones increasing in a log-linear fashion with Reynolds number. While known to be present in supersonic and hypersonic boundary layers, the properties of these UMZs and the appropriate Reynolds number for comparison with incompressible results have not previously been investigated. A large, previously published DNS database of hypersonic boundary layers is used in this investigation, with Mach numbers up to 12 and wall temperatures from cold to adiabatic, resulting in a wide range of outer layer Reynolds numbers. UMZs are examined using a range of parameters in both conventional inner and semi-local scalings, and Reynolds number trends examined.

  12. Toward a physics-based rate and state friction law for earthquake nucleation processes in fault zones with granular gouge

    Science.gov (United States)

    Ferdowsi, B.; Rubin, A. M.

    2017-12-01

    Numerical simulations of earthquake nucleation rely on constitutive rate and state evolution laws to model earthquake initiation and propagation processes. The response of different state evolution laws to large velocity increases is an important feature of these constitutive relations that can significantly change the style of earthquake nucleation in numerical models. However, currently there is not a rigorous understanding of the physical origins of the response of bare rock or gouge-filled fault zones to large velocity increases. This in turn hinders our ability to design physics-based friction laws that can appropriately describe those responses. We here argue that most fault zones form a granular gouge after an initial shearing phase and that it is the behavior of the gouge layer that controls the fault friction. We perform numerical experiments of a confined sheared granular gouge under a range of confining stresses and driving velocities relevant to fault zones and apply 1-3 order of magnitude velocity steps to explore dynamical behavior of the system from grain- to macro-scales. We compare our numerical observations with experimental data from biaxial double-direct-shear fault gouge experiments under equivalent loading and driving conditions. Our intention is to first investigate the degree to which these numerical experiments, with Hertzian normal and Coulomb friction laws at the grain-grain contact scale and without any time-dependent plasticity, can reproduce experimental fault gouge behavior. We next compare the behavior observed in numerical experiments with predictions of the Dieterich (Aging) and Ruina (Slip) friction laws. Finally, the numerical observations at the grain and meso-scales will be used for designing a rate and state evolution law that takes into account recent advances in rheology of granular systems, including local and non-local effects, for a wide range of shear rates and slow and fast deformation regimes of the fault gouge.

  13. Moving not staying still in time to the zone

    OpenAIRE

    Woodward, Kath

    2017-01-01

    Time and temporality are central to being in the zone. Along with harmony and synchrony, the experience of the zone, whether individual or collective is located within a time when everything comes together in a moment, even if the moment is immeasurable and often experienced as timeless. This chapter explores the phenomenon and experience of the zone in boxing, as a powerfully enfleshed sport in which the zone is frequently invoked, both positively and negatively.

  14. Geological and geochemical implications of the genesis of the Qolqoleh orogenic gold mineralisation, Kurdistan Province (Iran

    Directory of Open Access Journals (Sweden)

    Taghipour Batoul

    2015-03-01

    Full Text Available The Qolqoleh gold deposit is located in the northwestern part of the Sanandaj-Sirjan Zone (SSZ, within the NE-SW trending Qolqoleh shear zone. Oligocene granitoids, Cretaceous meta-limestones, schists and metavolcanics are the main lithological units. Chondrite-normalised REE patterns of the ore-hosting metavolcanics indicate REE enrichment relative to hanging wall (chlorite-sericite schist and footwall (meta-limestone rocks. The pattern also reflects an enrichment in LREE relative to HREE. It seems that the LREE enrichment is related to the circulation of SO42- and CO2-bearing fluids and regional metamorphism in the Qolqoleh shear zone. Both positive and negative Eu anomalies are observed in shear-zone metavolcanics. These anomalies are related to the degree of plagioclase alteration during gold mineralisation and hydrothermal alteration. In progressing from a metavolcanic protomylonite to an ultramylonite, significant changes occurred in the major/trace element and REE concentration. Utilising an Al-Fe-Ti isocon for the ore-hosting metavolcanics shows that Sc, Y, K, U, P, and M-HREE (except Eu are relatively unchanged; S, As, Ag, Au, Ca, LOI, Rb and LREE are enriched, and Sr, Ba, Eu, Cr, Co and Ni decrease with an increasing degree of deformation. Based on geochemical features and comparison with other well-known shear zones in the world, the study area is best classified as an Isovolume-Gain (IVG type shear zone and orogenic type gold mineralisation.

  15. Shear flow effect on ion temperature gradient vortices in plasmas with sheared magnetic field

    DEFF Research Database (Denmark)

    Chakrabarti, N.; Juul Rasmussen, J.

    1999-01-01

    The effect of velocity shear on ion temperature gradient (ITG) driven vortices in a nonuniform plasma in a curved, sheared magnetic field is investigated. In absence of parallel ion dynamics, vortex solutions for the ITG mode are studied analytically. It is shown that under certain conditions...... and ultimately lead to a dominating monopolar form. The effects of magnetic shear indicate it may destroy these structures. (C) 1999 American Institute of Physics....

  16. Contact force structure and force chains in 3D sheared granular systems

    Science.gov (United States)

    Mair, Karen; Jettestuen, Espen; Abe, Steffen

    2010-05-01

    Faults often exhibit accumulations of granular debris, ground up to create a layer of rock flour or fault gouge separating the rigid fault walls. Numerical simulations and laboratory experiments of sheared granular materials, suggest that applied loads are preferentially transmitted across such systems by transient force networks that carry enhanced forces. The characterisation of such features is important since their nature and persistence almost certainly influence the macroscopic mechanical stability of these systems and potentially that of natural faults. 3D numerical simulations of granular shear are a valuable investigation tool since they allow us to track individual particle motions, contact forces and their evolution during applied shear, that are difficult to view directly in laboratory experiments or natural fault zones. In characterising contact force distributions, it is important to use global structure measures that allow meaningful comparisons of granular systems having e.g. different grain size distributions, as may be expected at different stages of a fault's evolution. We therefore use a series of simple measures to characterise the structure, such as distributions and correlations of contact forces that can be mapped onto a force network percolation problem as recently proposed by Ostojic and coworkers for 2D granular systems. This allows the use of measures from percolation theory to both define and characterise the force networks. We demonstrate the application of this method to 3D simulations of a sheared granular material. Importantly, we then compare our measure of the contact force structure with macroscopic frictional behaviour measured at the boundaries of our model to determine the influence of the force networks on macroscopic mechanical stability.

  17. Automatic detection and classification of damage zone(s) for incorporating in digital image correlation technique

    Science.gov (United States)

    Bhattacharjee, Sudipta; Deb, Debasis

    2016-07-01

    Digital image correlation (DIC) is a technique developed for monitoring surface deformation/displacement of an object under loading conditions. This method is further refined to make it capable of handling discontinuities on the surface of the sample. A damage zone is referred to a surface area fractured and opened in due course of loading. In this study, an algorithm is presented to automatically detect multiple damage zones in deformed image. The algorithm identifies the pixels located inside these zones and eliminate them from FEM-DIC processes. The proposed algorithm is successfully implemented on several damaged samples to estimate displacement fields of an object under loading conditions. This study shows that displacement fields represent the damage conditions reasonably well as compared to regular FEM-DIC technique without considering the damage zones.

  18. Impact of finite rate chemistry on the hydrodynamic stability of shear flows in turbulent lean premixed combustion

    Science.gov (United States)

    Dagan, Yuval; Ghoniem, Ahmed

    2017-11-01

    Recent experimental observations show that the dynamic response of a reactive flow is strongly impacted by the fuel chemistry. In order to gain insight into some of the underlying mechanisms we formulate a new linear stability model that incorporates the impact of finite rate chemistry on the hydrodynamic stability of shear flows. Contrary to previous studies which typically assume that the velocity field is independent of the kinetic rates, the velocity field in our study is coupled with the temperature field. Using this formulation, we reproduce previous results, e.g., most unstable global modes, obtained for non-reacting shear flow. Moreover, we show that these modes are significantly altered in frequency and gain by the presence of a reaction region within the shear layer. This qualitatively agrees with results of our recent experimental and numerical studies, which show that the flame surface location relative to the shear layer influences the stability characteristics in combustion tunnels. This study suggests a physical explanation for the observed impact of finite rate chemistry on shear flow stability.

  19. Positron emission zone plate holography for particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom)]. E-mail: o.gundogdu@surrey.ac.uk

    2006-01-15

    Positron Emission Particle Tracking (PEPT) is a powerful non-invasive technique that has been used extensively for tracking a single particle. In this paper, we present a study of zone plate holography method in order to track multiple particles, mainly two particles. The main aim is to use as small number of events as possible in the order to make it possible to track particles in fast moving industrial systems. A zone plate with 100% focal efficiency is simulated and applied to the Positron Emission Tomography (PET) data for multiple particle tracking. A simple trajectory code was employed to explore the effects of the nature of the experimental trajectories. A computer holographic reconstruction code that simulates optical reconstruction was developed. The different aspects of the particle location, particle activity ratios for enabling tagging of particles and zone plate and hologram locations are investigated. The effect of the shot noise is investigated and the limitations of the zone plate holography are reported.

  20. Positron emission zone plate holography for particle tracking

    International Nuclear Information System (INIS)

    Gundogdu, O.

    2006-01-01

    Positron Emission Particle Tracking (PEPT) is a powerful non-invasive technique that has been used extensively for tracking a single particle. In this paper, we present a study of zone plate holography method in order to track multiple particles, mainly two particles. The main aim is to use as small number of events as possible in the order to make it possible to track particles in fast moving industrial systems. A zone plate with 100% focal efficiency is simulated and applied to the Positron Emission Tomography (PET) data for multiple particle tracking. A simple trajectory code was employed to explore the effects of the nature of the experimental trajectories. A computer holographic reconstruction code that simulates optical reconstruction was developed. The different aspects of the particle location, particle activity ratios for enabling tagging of particles and zone plate and hologram locations are investigated. The effect of the shot noise is investigated and the limitations of the zone plate holography are reported

  1. Halo shapes, initial shear field, and cosmic web

    International Nuclear Information System (INIS)

    Rossi, G

    2014-01-01

    The ellipsoidal collapse model, combined with the excursion set theory, allows one to estimate the shapes of dark matter halos as seen in high-resolution numerical simulations. The same theoretical framework predicts a quasi-universal behaviour for the conditional axis ratio distributions at later times, set by initial conditions and unaltered by non-linear evolution. The formalism for halo shapes is also useful in making the connection with the initial shear field of the cosmic web, which plays a crucial role in the formation of large-scale structures. The author has briefly discussed the basic aspects of the modelling, as well as the implications of a new formula for the constrained eigenvalues of the initial shear field, given the fact that positions are peaks or dips in the corresponding density field – and not random locations. This formula leads to a new generalized excursion set algorithm for peaks in Gaussian random fields. The results highlighted, here, are relevant for a number of applications, especially for weak lensing studies and for devising algorithms to find and classify structures in the cosmic web

  2. Re-evaluating fault zone evolution, geometry, and slip rate along the restraining bend of the southern San Andreas Fault Zone

    Science.gov (United States)

    Blisniuk, K.; Fosdick, J. C.; Balco, G.; Stone, J. O.

    2017-12-01

    This study presents new multi-proxy data to provide an alternative interpretation of the late -to-mid Quaternary evolution, geometry, and slip rate of the southern San Andreas fault zone, comprising of the Garnet Hill, Banning, and Mission Creek fault strands, along its restraining bend near the San Bernardino Mountains and San Gorgonio Pass. Present geologic and geomorphic studies in the region indicate that as the Mission Creek and Banning faults diverge from one another in the southern Indio Hills, the Banning Fault Strand accommodates the majority of lateral displacement across the San Andreas Fault Zone. In this currently favored kinematic model of the southern San Andreas Fault Zone, slip along the Mission Creek Fault Strand decreases significantly northwestward toward the San Gorgonio Pass. Along this restraining bend, the Mission Creek Fault Strand is considered to be inactive since the late -to-mid Quaternary ( 500-150 kya) due to the transfer of plate boundary strain westward to the Banning and Garnet Hills Fault Strands, the Jacinto Fault Zone, and northeastward, to the Eastern California Shear Zone. Here, we present a revised geomorphic interpretation of fault displacement, initial 36Cl/10Be burial ages, sediment provenance data, and detrital geochronology from modern catchments and displaced Quaternary deposits that improve across-fault correlations. We hypothesize that continuous large-scale translation of this structure has occurred throughout its history into the present. Accordingly, the Mission Creek Fault Strand is active and likely a primary plate boundary fault at this latitude.

  3. crustal shear zone

    Indian Academy of Sciences (India)

    Textural modeling integrating the textural features and balanced chemical reaction of the calc-silicate ... The style and geometry of the .... analyses return the following amphibole forming reaction: ... based on total Al (AlT) content in hornblende.

  4. Geometrical and mechanical properties of the fractures and brittle deformation zones based on the ONKALO tunnel mapping, 2400 - 4390 m tunnel chainage

    Energy Technology Data Exchange (ETDEWEB)

    Moenkkoenen, H.; Rantanen, T.; Kuula, H. [WSP Finland Oy, Helsinki (Finland)

    2012-05-15

    In this report, the rock mechanics parameters of fractures and brittle deformation zones have been estimated in the vicinity of the ONKALO area at the Olkiluoto site, western Finland. This report is an extension of the previously published report: Geometrical and Mechanical properties if the fractures and brittle deformation zones based on ONKALO tunnel mapping, 0-2400 m tunnel chainage (Kuula 2010). In this updated report, mapping data are from 2400-4390 m tunnel chainage. Defined rock mechanics parameters of the fractures are associated with the rock engineering classification quality index, Q', which incorporates the RQD, Jn, Jr and Ja values. The friction angle of the fracture surfaces is estimated from the Jr and Ja numbers. There are no new data from laboratory joint shear and normal tests. The fracture wall compressive strength (JCS) data are available from the chainage range 1280-2400 m. Estimation of the mechanics properties of the 24 brittle deformation zones (BDZ) is based on the mapped Q' value, which is transformed to the GSI value in order to estimate strength and deformability properties. A component of the mapped Q' values is from the ONKALO and another component is from the drill cores. In this study, 24 BDZs have been parameterized. The location and size of the brittle deformation are based on the latest interpretation. New data for intact rock strength of the brittle deformation zones are not available. (orig.)

  5. Teleseismic Investigations of the Malawi and Luangwa Rift Zones: Ongoing Observations From the SAFARI Experiment

    Science.gov (United States)

    Reed, C. A.; Gao, S. S.; Liu, K. H.; Yu, Y.; Chindandali, P. R. N.; Massinque, B.; Mdala, H. S.; Mutamina, D. M.

    2015-12-01

    In order to evaluate the influence of crustal and mantle heterogeneities upon the initiation of the Malawi rift zone (MRZ) and reactivation of the Zambian Luangwa rift zone (LRZ) subject to Cenozoic plate boundary stress fields and mantle buoyancy forces, we installed and operated 33 Seismic Arrays For African Rift Initiation (SAFARI) three-component broadband seismic stations in Malawi, Mozambique, and Zambia from 2012 to 2014. During the twenty-four month acquisition period, nearly 6200 radial receiver functions (RFs) were recorded. Stations situated within the MRZ, either along the coastal plains or within the Shire Graben toward the south, report an average crustal thickness of 42 km relative to approximately 46 km observed at stations located along the rift flanks. This implies the juvenile MRZ is characterized by a stretching factor not exceeding 1.1. Meanwhile, P-to-S velocity ratios within the MRZ increase from 1.71 to 1.82 in southernmost Malawi, indicating a substantial modification of the crust during Recent rifting. Time-series stacking of approximately 5500 RFs recorded by the SAFARI and 44 neighboring network stations reveals an apparent uplift of 10 to 15 km along both the 410- and 660-km mantle transition zone (MTZ) discontinuities beneath the MRZ and LRZ which, coupled with an apparently normal 250-km MTZ thickness, implies a first-order high-velocity contribution from thickened lithosphere. Preliminary manual checking of SAFARI shear-wave splitting (SWS) measurements provides roughly 650 high-quality XKS phases following a component re-orientation to correct station misalignments. Regional azimuthal variations in SWS fast orientations are observed, from rift-parallel in the vicinity of the LRZ to rift-oblique in the MRZ. A major 60° rotation in the fast orientation occurs at approximately 31°E, possibly resulting from the modulation of mantle flow around a relatively thick lithospheric keel situated between the two rift zones.

  6. Localization, Weakening and Fluid-rock Coupling Mechanisms in Gypsum: Development and Initial Data From a New, Combined, Rotary Shear and Acoustic Emission Apparatus.

    Science.gov (United States)

    Benson, P. M.; Pozzi, G.; Guerin-Marthe, S.; De Paola, N.; Nielsen, S. B.; Tomas, R.

    2017-12-01

    We present initial pilot data from a newly developed apparatus designed to measure Acoustic Emissions (AE) during the shear of fault gouges to 25 MPa normal stress and up to a maximum speed of 1 m/s, simulating dynamic earthquake processes. The sample assembly consists of a titanium-vanadium alloy (Ti-alloy, Ti90Al6V4) anvil fitted with 6 ports on the lower (stationary) section for AE sensors that record the activity of the shearing occurring in the gouge layer above. AE data are amplified from between 6 to 70 dB and recorded to disk continuously at a sampling rate of 10 MHz; calibration tests with Teflon shims confirm that the machine noise is negligible. Gouge thicknesses of approximately 2 mm are used, confined with a Teflon ring. Here we focus on Gypsum gouge from the Volterra region of Italy, sieved to give a constant gouge range of between 63 to 90 micrometers. Mechanical data show the onset of weakening after a slip of 1-3 cm for velocities of v = 100 to 1 cm s-1 respectively. Microstructural observations reveal a shear zone bounded by sharp mirror surfaces, and the development of a dehydration front, which is likely to have produced small pockets of water. We also record a characteristic `pulsing' AE signal generated after shearing is arrested, manifested as a series of energy spikes occurring at regular intervals. However, these signals are only generally seen for shear tests conducted on gypsum gouges (not in anhydrite) at 10cm per second or higher. Taken together, we interpret these observations as evidence that the initial shearing generated a thin slip zone that heats up rapidly, generating the dehydration front. Once motion ceases, pockets of trapped pressurized water combined with thermal stress generates distributed micro-fracturing detected as an initial swarm of high energy AE, and allows fluids to vent in pulses to the ambient atmosphere. An initial seismic -b value analysis of the continuous AE waveform also supports these initial findings.

  7. Characteristics of internal transport barrier in JT-60U reversed shear plasmas

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Kamada, Y.; Ide, S.; Fujita, T.; Shirai, H.; Takizuka, T.; Koide, Y.; Fukuda, T.; Oikawa, T.; Suzuki, T.; Shinohara, K.; Yoshino, R.

    2001-01-01

    Characteristics of internal transport barrier (ITB) structure are studied and the active ITB control has been developed in JT-60U reversed shear plasmas. The following results are found. Outward propagation of the ITB with steep T i gradient is limited to the minimum safety factor location (ρ qmin ). However the ITB with reduced T i gradient can move to the outside of ρ qmin . Lower boundary of ITB width is proportional to the ion poloidal gyroradius at the ITB center. Furthermore the demonstration of the active control of the ITB strength based on the modification of the radial electric field shear profile is successfully performed by the toroidal momentum injection in different directions or the increase of heating power by neutral beams. (author)

  8. Evaluation of Extended Wall OSB Sheathing Connection under Combined Uplift and Shear Loading for 24-inch Heel Trusses

    Science.gov (United States)

    Vladimir Kochkin; Andrew DeRenzis; Xiping Wang

    2014-01-01

    This study was designed to evaluate the performance of the extended wall structural panel connection in resisting combined uplift and shear forces at the roof-to-wall interface with a focus on a truss heel height of 24 in. to address the expected increases in the depth of attic insulation used in Climate Zones 5 and higher. Five full-size roof-wall assemblies were...

  9. Magnetorheological dampers in shear mode

    International Nuclear Information System (INIS)

    Wereley, N M; Cho, J U; Choi, Y T; Choi, S B

    2008-01-01

    In this study, three types of shear mode damper using magnetorheological (MR) fluids are theoretically analyzed: linear, rotary drum, and rotary disk dampers. The damping performance of these shear mode MR dampers is characterized in terms of the damping coefficient, which is the ratio of the equivalent viscous damping at field-on status to the damping at field-off status. For these three types of shear mode MR damper, the damping coefficient or dynamic range is derived using three different constitutive models: the Bingham–plastic, biviscous, and Herschel–Bulkley models. The impact of constitutive behavior on shear mode MR dampers is theoretically presented and compared

  10. Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Dahl, Jonas; Tvergaard, Viggo

    2012-01-01

    the numerical analysis, which is also reflected in published literature. Rather than moving towards very low triaxiality shearing, work has focused on extracting wide-ranging results for moderate stress triaxiality (T ~ 1), in order to achieve sufficient understanding of the influence of initial porosity, void...... significant straining of the matrix material located on the axis of rotation. In particular, the void surface material is severely deformed during shearing and void surface contact is established early in the deformation process. This 3D effect intensifies with decreasing stress triaxiality and complicates...... shape, void orientation etc. The objective of this work is to expand the range of stress triaxiality usually faced in 3D cell model studies, such that intense shearing is covered, and to bring forward details on the porosity and void shape evolution. The overall material response is presented...

  11. A detailed map of the 660-kilometer discontinuity beneath the izu-bonin subduction zone.

    Science.gov (United States)

    Wicks, C W; Richards, M A

    1993-09-10

    Dynamical processes in the Earth's mantle, such as cold downwelling at subduction zones, cause deformations of the solid-state phase change that produces a seismic discontinuity near a depth of 660 kilometers. Observations of short-period, shear-to-compressional wave conversions produced at the discontinuity yield a detailed map of deformation beneath the Izu-Bonin subduction zone. The discontinuity is depressed by about 60 kilometers beneath the coldest part of the subducted slab, with a deformation profile consistent with the expected thermal signature of the slab, the experimentally determined Clapeyron slope of the phase transition, and the regional tectonic history.

  12. 47 CFR 73.609 - Zones.

    Science.gov (United States)

    2010-10-01

    ... parallel to the Atlantic Ocean. When any of the above lines pass through a city, the city shall be... Islands and the Virgin Islands. (3) Zone III consists of that portion of the United States located south...

  13. Design and implementation of a shearing apparatus for the experimental study of shear displacement in rocks

    Science.gov (United States)

    Moore, Johnathan; Crandall, Dustin; Gill, Magdalena; Brown, Sarah; Tennant, Bryan

    2018-04-01

    Fluid flow in the subsurface is not well understood in the context of "impermeable" geologic media. This is especially true of formations that have undergone significant stress fluctuations due to injection or withdrawal of fluids that alters the localized pressure regime. When the pressure regime is altered, these formations, which are often already fractured, move via shear to reduce the imbalance in the stress state. While this process is known to happen, the evolution of these fractures and their effects on fluid transport are still relatively unknown. Numerous simulation and several experimental studies have been performed that characterize the relationship between shearing and permeability in fractures; while many of these studies utilize measurements of fluid flow or the starting and ending geometries of the fracture to characterize shear, they do not characterize the intermediate stages during shear. We present an experimental apparatus based on slight modifications to a commonly available Hassler core holder that allows for shearing of rocks, while measuring the hydraulic and mechanical changes to geomaterials during intermediate steps. The core holder modification employs the use of semi-circular end caps and structural supports for the confining membrane that allow for free movement of the sheared material while preventing membrane collapse. By integrating this modified core holder with a computed tomography scanner, we show a new methodology for understanding the interdependent behavior between fracture structure and flow properties during intermediate steps in shearing. We include a case study of this device function which is shown here through shearing of a fractured shale core and simultaneous observation of the mechanical changes and evolution of the hydraulic properties during shearing.

  14. Irradiated Effect on Shear-Moment Interaction of Reinforced Concrete Slab

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Tae-Hyun; Kim, Jun Yeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, HyungTae; Park, Kyoungsoo [Yonsei University, Seoul (Korea, Republic of); Kim, Sang-Ho [Hyundai Engineering, Seoul (Korea, Republic of)

    2015-10-15

    Several deleterious mechanisms include chronic high-temperature exposure, freeze-thaw, and chemical attack and have been reviewed extensively in the literature. On the other hand, the effect of irradiation on RC needs further investigations for the long-term operation of existing NPPs. In this regard, the RC biological shield structure is located in closest proximity to a reactor core and expected to see the highest levels of irradiation over the lifetime. The biological shield structure may undergo a large lateral load from earthquake and become thicker for a suitable shielding. Although the bending strength is easily predictable with the altering steel properties, the more complete behaviors should be studied to see if the promised performance is achievable. Given this, in this study, the shear-moment (VM) interaction of a typical one-way slab representing the biological shield structure is investigated with incremental neutron irradiation. The effect of radiation on the behavior of one-way slab is presented by the shear and moment capacity interaction diagram. The results suggest that the yield strength increase of the longitudinal reinforcement barely affects the shear strength but it increases the bending strength significantly. This may be misleading, however, as the structural capacity to observe the energy from environmental loadings such as earthquake would be actually reducing.

  15. Mean wall-shear stress measurements using the micro-pillar shear-stress sensor MPS3

    International Nuclear Information System (INIS)

    Große, S; Schröder, W

    2008-01-01

    A new sensor to measure the mean turbulent wall-shear stress in turbulent flows is described. The wall-shear stress sensor MPS 3 has been tested in a well-defined fully developed turbulent pipe flow at Reynolds numbers Re b based on the bulk velocity U b and the pipe diameter D in the range of Re b = 10 000–20 000. The results demonstrate a convincing agreement of the mean wall-shear stress obtained with the new sensor technique with analytical and experimental results from the literature. The sensor device consists of a flexible micro-pillar that extends from the wall into the viscous sublayer. Bending due to the exerting fluid forces, the pillar-tip deflection serves as a measure for the local wall-shear stress. The sensor concept, calibration techniques, the achievable accuracy and error estimates, the fields of application and the sensor limits will be discussed. Furthermore, a first estimate of the pillar dynamic response will be derived showing the potential of the sensor to also measure the turbulent fluctuating wall-shear stress

  16. 77 FR 8806 - Foreign-Trade Zone 183-Austin, TX; Application for Reorganization Under the Alternative Site...

    Science.gov (United States)

    2012-02-15

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Docket 8-2012] Foreign-Trade Zone 183--Austin... following sites: Site 1 (33 acres)--Interchange within the Austin Enterprise Zone, located at Bolm Road and Gardner Road, Austin; Site 2 (50 acres)--Balcones Research site located in north central Austin at the...

  17. Rock mechanics observations pertinent to the rheology of the continental lithosphere and the localization of strain along shear zones

    Science.gov (United States)

    Kirby, S.H.

    1985-01-01

    the general phenomenon of ductile faulting in which ductile strains are localized into shear zones. Ductile faults have been produced in experiments of five different rock types and is generally expressed as strain softening in constant-strain-rate tests or as an accelerating-creep-rate stage at constant differential stress. A number of physical mechanisms have been identified that may be responsible for ductile faulting, including the onset of dynamic recrystallization, phase changes, hydrothermal alteration and hydrolytic weakening. Microscopic evidence for these processes as well as larger-scale geological and geophysical observations suggest that ductile faulting in the middle to lower crust and upper mantle may greatly influence the distribution and magnitudes of differential stresses and the style of deformation in the overlying upper continental lithosphere. ?? 1985.

  18. Ectasias and varices of the vocal fold: clearing the striking zone.

    Science.gov (United States)

    Hochman, I; Sataloff, R T; Hillman, R E; Zeitels, S M

    1999-01-01

    Vascular malformations such as ectasias and varices (Es and Vs) are frequently encountered in patients who present with recurrent vocal fold hemorrhage and/or other traumatic vocal fold lesions. This study examined Es and Vs with regard to their anatomic presentation, phonomicrosurgical management, and treatment outcome. Forty-two patients (39 of them singers) were treated for a total of 87 Es and Vs: 67 of 87 (77%) were on the superior surface of the vocal fold and 20 of 87 (23%) were on the medial surface of the vocal fold. Eighty-three percent were located in the middle musculomembranous region (the striking zone), where the greatest aerodynamically induced shearing stresses occur during phonation. Treatment was performed with carbon dioxide laser cauterization (13 patients), or a new technique utilizing cold instrument excision by means of epithelial cordotomies (23 patients), while a combined approach was employed in 6 patients. Comparisons of preoperative and postoperative stroboscopy revealed improvement or no significant change in all patients in whom the cold instrument technique was used, and increased epithelial stiffness was noted in 4 of 19 patients in whom the carbon dioxide laser was used. Clearing the striking zone appears to have halted further hemorrhages by removing the the fragile Es and Vs from this injury-prone region of the vocal fold. Interpretations of stroboscopic examinations were directed at providing new insights into the biomechanical forces of vocal fold vibration that probably contribute to the genesis of Es and Vs in the vocal folds.

  19. Mapping Of The Hydrothermal Alteration Zones At Haimur Gold Mine Area, South Eastern Desert, Egypt, Using Remote Sensing Techniques

    International Nuclear Information System (INIS)

    Madani, A.A.; Abdel Rahman, E.M.; FA WZY, Kh.M.; EMAM, A.

    2003-01-01

    The utilization of the Landsat-7 ETM+ imagery and scanned aerial photograph for mapping hydrothermal alteration zones at the Haimur gold mine area, south Eastern Desert, Egypt and the production of large scale geologic image map, scale 1 :20 000, using fusion technique are the main tasks of this article. The study area lies at the conjunction of two shear zones, namely the Allaqi shear zone (NW-SE) and the Haimur shear zone (NE-SW). The basement rocks covering Haimur gold mine area include ophiolitic blocks and sheets that were tectonically thrusted over and mixed within a matrix of island arc rocks. Principal Component Analysis, band ratios and data fusion are the main remote sensing techniques applied in the present work. The eigenvalue of the first principal component (PCl) includes 95.9% of the information content of the image whereas PC2 and PC5 mark 3.03% and 0.10%, respectively. The PC5 image was found to represent the highly altered rocks in the study area (serpentinites and carbonates), which display dark image signatures. The metagabbros and metapyroclastics can be easily discriminated on the PC1:R, PC2:G and PC5:B false color composite image in which they have dark red and blue image signatures, respectively. The talc carbonates and the serpentinites have bright image signatures on 5/7 band ratio image whereas metapyroxenites have dark image signatures. The talc carbonates are composed mainly of talc, magnesite and calcite with subordinate amounts of fibrous antigorite. These minerals have absorption features near 2.35 m which lead to increase 5/7 band ratio value. The false color composite ratio image 5/7:R, 4/5:G and 3/1:B was merged with scanned high spatial resolution aerial photograph using IHS transformation method. The resultant fused image was then used to delineate the hydrothermal alteration zones as well as listwaenite ridges exposed at the Haimur gold mine area

  20. Microstructural evolution of a model, shear-banding micellar solution during shear startup and cessation.

    Science.gov (United States)

    López-Barrón, Carlos R; Gurnon, A Kate; Eberle, Aaron P R; Porcar, Lionel; Wagner, Norman J

    2014-04-01

    We present direct measurements of the evolution of the segmental-level microstructure of a stable shear-banding polymerlike micelle solution during flow startup and cessation in the plane of flow. These measurements provide a definitive, quantitative microstructural understanding of the stages observed during flow startup: an initial elastic response with limited alignment that yields with a large stress overshoot to a homogeneous flow with associated micellar alignment that persists for approximately three relaxation times. This transient is followed by a shear (kink) band formation with a flow-aligned low-viscosity band that exhibits shear-induced concentration fluctuations and coexists with a nearly isotropic band of homogenous, highly viscoelastic micellar solution. Stable, steady banding flow is achieved only after approximately two reptation times. Flow cessation from this shear-banded state is also found to be nontrivial, exhibiting an initial fast relaxation with only minor structural relaxation, followed by a slower relaxation of the aligned micellar fluid with the equilibrium fluid's characteristic relaxation time. These measurements resolve a controversy in the literature surrounding the mechanism of shear banding in entangled wormlike micelles and, by means of comparison to existing literature, provide further insights into the mechanisms driving shear-banding instabilities in related systems. The methods and instrumentation described should find broad use in exploring complex fluid rheology and testing microstructure-based constitutive equations.